contestId
int64
0
1.01k
index
stringclasses
40 values
name
stringlengths
2
54
type
stringclasses
2 values
rating
int64
0
3.4k
tags
listlengths
0
7
title
stringclasses
393 values
time-limit
stringclasses
7 values
memory-limit
stringclasses
6 values
problem-description
stringlengths
0
2.97k
input-specification
stringlengths
4
1.87k
output-specification
stringlengths
4
1.12k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
3.5k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
1 value
testset
stringclasses
9 values
passedTestCount
int64
1
402
timeConsumedMillis
int64
15
8.06k
memoryConsumedBytes
int64
0
514M
code
stringlengths
11
61.4k
prompt
stringlengths
297
7.35k
response
stringlengths
25
61.4k
score
float64
2.82
3.99
386
A
Second-Price Auction
PROGRAMMING
800
[ "implementation" ]
null
null
In this problem we consider a special type of an auction, which is called the second-price auction. As in regular auction *n* bidders place a bid which is price a bidder ready to pay. The auction is closed, that is, each bidder secretly informs the organizer of the auction price he is willing to pay. After that, the auction winner is the participant who offered the highest price. However, he pay not the price he offers, but the highest price among the offers of other participants (hence the name: the second-price auction). Write a program that reads prices offered by bidders and finds the winner and the price he will pay. Consider that all of the offered prices are different.
The first line of the input contains *n* (2<=≤<=*n*<=≤<=1000) — number of bidders. The second line contains *n* distinct integer numbers *p*1,<=*p*2,<=... *p**n*, separated by single spaces (1<=≤<=*p**i*<=≤<=10000), where *p**i* stands for the price offered by the *i*-th bidder.
The single output line should contain two integers: index of the winner and the price he will pay. Indices are 1-based.
[ "2\n5 7\n", "3\n10 2 8\n", "6\n3 8 2 9 4 14\n" ]
[ "2 5\n", "1 8\n", "6 9\n" ]
none
500
[ { "input": "2\n5 7", "output": "2 5" }, { "input": "3\n10 2 8", "output": "1 8" }, { "input": "6\n3 8 2 9 4 14", "output": "6 9" }, { "input": "4\n4707 7586 4221 5842", "output": "2 5842" }, { "input": "5\n3304 4227 4869 6937 6002", "output": "4 6002" }, { "input": "6\n5083 3289 7708 5362 9031 7458", "output": "5 7708" }, { "input": "7\n9038 6222 3392 1706 3778 1807 2657", "output": "1 6222" }, { "input": "8\n7062 2194 4481 3864 7470 1814 8091 733", "output": "7 7470" }, { "input": "9\n2678 5659 9199 2628 7906 7496 4524 2663 3408", "output": "3 7906" }, { "input": "2\n3458 1504", "output": "1 1504" }, { "input": "50\n9237 3904 407 9052 6657 9229 9752 3888 7732 2512 4614 1055 2355 7108 6506 6849 2529 8862 159 8630 7906 7941 960 8470 333 8659 54 9475 3163 5625 6393 6814 2656 3388 169 7918 4881 8468 9983 6281 6340 280 5108 2996 101 7617 3313 8172 326 1991", "output": "39 9752" }, { "input": "100\n2515 3324 7975 6171 4240 1217 4829 5203 8603 6900 3031 4699 4732 6070 4221 3228 6497 7359 9130 4346 4619 1109 3945 5442 3271 16 9711 2045 6410 2301 3406 8125 6003 1892 1260 9661 3940 6692 4708 7027 4930 6925 1979 5361 4263 3144 867 8639 6230 5562 9714 3676 4231 3347 4733 4920 4881 3431 1059 7313 8912 3038 9308 72 9583 7009 3034 7425 2398 6141 3245 2495 2933 6710 8289 9806 1226 8393 7349 6462 1618 9613 3546 6012 2964 9995 1578 210 2123 4874 1252 8625 348 8020 803 7244 9080 5088 706 2602", "output": "86 9806" }, { "input": "2\n2 1", "output": "1 1" }, { "input": "2\n1 2", "output": "2 1" }, { "input": "3\n10 20 30", "output": "3 20" }, { "input": "3\n10 30 20", "output": "2 20" }, { "input": "3\n20 10 30", "output": "3 20" }, { "input": "3\n20 30 10", "output": "2 20" }, { "input": "3\n30 10 20", "output": "1 20" }, { "input": "3\n30 20 10", "output": "1 20" }, { "input": "2\n1 10000", "output": "2 1" }, { "input": "2\n10000 999", "output": "1 999" }, { "input": "3\n3 4 1", "output": "2 3" }, { "input": "6\n1 2 24 6 5 7", "output": "3 7" } ]
1,698,628,573
2,147,483,647
Python 3
OK
TESTS
42
46
0
n = int(input()) ps = list(map(int,input().split())) idx = ps.index(max(ps)) nn = str(sorted(ps)[-2]) print(*[str(idx+1),nn])
Title: Second-Price Auction Time Limit: None seconds Memory Limit: None megabytes Problem Description: In this problem we consider a special type of an auction, which is called the second-price auction. As in regular auction *n* bidders place a bid which is price a bidder ready to pay. The auction is closed, that is, each bidder secretly informs the organizer of the auction price he is willing to pay. After that, the auction winner is the participant who offered the highest price. However, he pay not the price he offers, but the highest price among the offers of other participants (hence the name: the second-price auction). Write a program that reads prices offered by bidders and finds the winner and the price he will pay. Consider that all of the offered prices are different. Input Specification: The first line of the input contains *n* (2<=≤<=*n*<=≤<=1000) — number of bidders. The second line contains *n* distinct integer numbers *p*1,<=*p*2,<=... *p**n*, separated by single spaces (1<=≤<=*p**i*<=≤<=10000), where *p**i* stands for the price offered by the *i*-th bidder. Output Specification: The single output line should contain two integers: index of the winner and the price he will pay. Indices are 1-based. Demo Input: ['2\n5 7\n', '3\n10 2 8\n', '6\n3 8 2 9 4 14\n'] Demo Output: ['2 5\n', '1 8\n', '6 9\n'] Note: none
```python n = int(input()) ps = list(map(int,input().split())) idx = ps.index(max(ps)) nn = str(sorted(ps)[-2]) print(*[str(idx+1),nn]) ```
3
709
A
Juicer
PROGRAMMING
900
[ "implementation" ]
null
null
Kolya is going to make fresh orange juice. He has *n* oranges of sizes *a*1,<=*a*2,<=...,<=*a**n*. Kolya will put them in the juicer in the fixed order, starting with orange of size *a*1, then orange of size *a*2 and so on. To be put in the juicer the orange must have size not exceeding *b*, so if Kolya sees an orange that is strictly greater he throws it away and continues with the next one. The juicer has a special section to collect waste. It overflows if Kolya squeezes oranges of the total size strictly greater than *d*. When it happens Kolya empties the waste section (even if there are no more oranges) and continues to squeeze the juice. How many times will he have to empty the waste section?
The first line of the input contains three integers *n*, *b* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*b*<=≤<=*d*<=≤<=1<=000<=000) — the number of oranges, the maximum size of the orange that fits in the juicer and the value *d*, which determines the condition when the waste section should be emptied. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000) — sizes of the oranges listed in the order Kolya is going to try to put them in the juicer.
Print one integer — the number of times Kolya will have to empty the waste section.
[ "2 7 10\n5 6\n", "1 5 10\n7\n", "3 10 10\n5 7 7\n", "1 1 1\n1\n" ]
[ "1\n", "0\n", "1\n", "0\n" ]
In the first sample, Kolya will squeeze the juice from two oranges and empty the waste section afterwards. In the second sample, the orange won't fit in the juicer so Kolya will have no juice at all.
500
[ { "input": "2 7 10\n5 6", "output": "1" }, { "input": "1 5 10\n7", "output": "0" }, { "input": "3 10 10\n5 7 7", "output": "1" }, { "input": "1 1 1\n1", "output": "0" }, { "input": "2 951637 951638\n44069 951637", "output": "1" }, { "input": "50 100 129\n55 130 91 19 116 3 63 52 104 76 75 27 151 99 149 147 39 148 84 9 132 49 40 112 124 141 144 93 36 32 146 74 48 38 150 55 94 32 107 69 77 81 33 57 62 98 78 127 154 126", "output": "12" }, { "input": "100 1000 1083\n992 616 818 359 609 783 263 989 501 929 362 394 919 1081 870 830 1097 975 62 346 531 367 323 457 707 360 949 334 867 116 478 417 961 963 1029 114 867 1008 988 916 983 1077 959 942 572 961 579 318 721 337 488 717 111 70 416 685 987 130 353 107 61 191 827 849 106 815 211 953 111 398 889 860 801 71 375 320 395 1059 116 222 931 444 582 74 677 655 88 173 686 491 661 186 114 832 615 814 791 464 517 850", "output": "36" }, { "input": "2 6 8\n2 1", "output": "0" }, { "input": "5 15 16\n7 11 5 12 8", "output": "2" }, { "input": "15 759966 759967\n890397 182209 878577 548548 759966 812923 759966 860479 200595 381358 299175 339368 759966 907668 69574", "output": "4" }, { "input": "5 234613 716125\n642626 494941 234613 234613 234613", "output": "0" }, { "input": "50 48547 567054\n529808 597004 242355 559114 78865 537318 631455 733020 655072 645093 309010 855034 306058 625046 524574 834944 27330 664392 443637 821584 338013 490702 289520 675471 885846 258814 134220 571301 84875 94132 200425 928833 375166 521232 317961 175315 947093 89971 322071 174033 48547 998535 954205 704114 943163 438900 48547 538422 48547 48547", "output": "0" }, { "input": "5 10 20\n10 10 10 10 1", "output": "1" }, { "input": "5 10 11\n10 10 10 10 1", "output": "2" }, { "input": "3 10 10\n4 3 3", "output": "0" }, { "input": "3 5 5\n5 5 5", "output": "1" }, { "input": "3 4 14\n5 5 5", "output": "0" }, { "input": "2 7 10\n1234 1234", "output": "0" }, { "input": "1 5 6\n10", "output": "0" }, { "input": "3 4 6\n1 2 3", "output": "0" }, { "input": "5 10 12\n13 13 13 13 13", "output": "0" }, { "input": "3 4 5\n5 7 9", "output": "0" }, { "input": "3 10 100\n5 5 5", "output": "0" }, { "input": "5 1 2\n2 2 2 2 2", "output": "0" }, { "input": "5 5 5\n5 5 5 5 5", "output": "2" }, { "input": "2 2 5\n5 5", "output": "0" }, { "input": "3 1 4\n2 2 2", "output": "0" } ]
1,621,379,422
2,147,483,647
Python 3
OK
TESTS
58
109
7,270,400
n, b, d = [int(i) for i in input().split()] how_many = 0 storage = 0 a = [int(i) for i in input().split()] for i in a: if i <= b: storage += i if storage>d: storage=0 how_many += 1 print(how_many)
Title: Juicer Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kolya is going to make fresh orange juice. He has *n* oranges of sizes *a*1,<=*a*2,<=...,<=*a**n*. Kolya will put them in the juicer in the fixed order, starting with orange of size *a*1, then orange of size *a*2 and so on. To be put in the juicer the orange must have size not exceeding *b*, so if Kolya sees an orange that is strictly greater he throws it away and continues with the next one. The juicer has a special section to collect waste. It overflows if Kolya squeezes oranges of the total size strictly greater than *d*. When it happens Kolya empties the waste section (even if there are no more oranges) and continues to squeeze the juice. How many times will he have to empty the waste section? Input Specification: The first line of the input contains three integers *n*, *b* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*b*<=≤<=*d*<=≤<=1<=000<=000) — the number of oranges, the maximum size of the orange that fits in the juicer and the value *d*, which determines the condition when the waste section should be emptied. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000) — sizes of the oranges listed in the order Kolya is going to try to put them in the juicer. Output Specification: Print one integer — the number of times Kolya will have to empty the waste section. Demo Input: ['2 7 10\n5 6\n', '1 5 10\n7\n', '3 10 10\n5 7 7\n', '1 1 1\n1\n'] Demo Output: ['1\n', '0\n', '1\n', '0\n'] Note: In the first sample, Kolya will squeeze the juice from two oranges and empty the waste section afterwards. In the second sample, the orange won't fit in the juicer so Kolya will have no juice at all.
```python n, b, d = [int(i) for i in input().split()] how_many = 0 storage = 0 a = [int(i) for i in input().split()] for i in a: if i <= b: storage += i if storage>d: storage=0 how_many += 1 print(how_many) ```
3
789
A
Anastasia and pebbles
PROGRAMMING
1,100
[ "implementation", "math" ]
null
null
Anastasia loves going for a walk in Central Uzhlyandian Park. But she became uninterested in simple walking, so she began to collect Uzhlyandian pebbles. At first, she decided to collect all the pebbles she could find in the park. She has only two pockets. She can put at most *k* pebbles in each pocket at the same time. There are *n* different pebble types in the park, and there are *w**i* pebbles of the *i*-th type. Anastasia is very responsible, so she never mixes pebbles of different types in same pocket. However, she can put different kinds of pebbles in different pockets at the same time. Unfortunately, she can't spend all her time collecting pebbles, so she can collect pebbles from the park only once a day. Help her to find the minimum number of days needed to collect all the pebbles of Uzhlyandian Central Park, taking into consideration that Anastasia can't place pebbles of different types in same pocket.
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105, 1<=≤<=*k*<=≤<=109) — the number of different pebble types and number of pebbles Anastasia can place in one pocket. The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (1<=≤<=*w**i*<=≤<=104) — number of pebbles of each type.
The only line of output contains one integer — the minimum number of days Anastasia needs to collect all the pebbles.
[ "3 2\n2 3 4\n", "5 4\n3 1 8 9 7\n" ]
[ "3\n", "5\n" ]
In the first sample case, Anastasia can collect all pebbles of the first type on the first day, of second type — on the second day, and of third type — on the third day. Optimal sequence of actions in the second sample case: - In the first day Anastasia collects 8 pebbles of the third type. - In the second day she collects 8 pebbles of the fourth type. - In the third day she collects 3 pebbles of the first type and 1 pebble of the fourth type. - In the fourth day she collects 7 pebbles of the fifth type. - In the fifth day she collects 1 pebble of the second type.
500
[ { "input": "3 2\n2 3 4", "output": "3" }, { "input": "5 4\n3 1 8 9 7", "output": "5" }, { "input": "1 22\n1", "output": "1" }, { "input": "3 57\n78 165 54", "output": "3" }, { "input": "5 72\n74 10 146 189 184", "output": "6" }, { "input": "9 13\n132 87 200 62 168 51 185 192 118", "output": "48" }, { "input": "1 1\n10000", "output": "5000" }, { "input": "10 1\n1 1 1 1 1 1 1 1 1 1", "output": "5" }, { "input": "2 2\n2 2", "output": "1" } ]
1,572,809,549
2,147,483,647
PyPy 3
OK
TESTS
31
233
10,342,400
#RAVENS #TEAM_2 #ESSI-DAYI_MOHSEN-LORENZO from math import ceil n, k = map(int,input().split()) a = list(map(int,input().split())) day = 0 b1 = b2 = odd = 0 for i in range(n): yy = ceil(a[i]/k) if yy % 2 == 0:day+=(yy//2) else: odd+=1 day+=ceil(yy/2) print(day-odd//2)
Title: Anastasia and pebbles Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anastasia loves going for a walk in Central Uzhlyandian Park. But she became uninterested in simple walking, so she began to collect Uzhlyandian pebbles. At first, she decided to collect all the pebbles she could find in the park. She has only two pockets. She can put at most *k* pebbles in each pocket at the same time. There are *n* different pebble types in the park, and there are *w**i* pebbles of the *i*-th type. Anastasia is very responsible, so she never mixes pebbles of different types in same pocket. However, she can put different kinds of pebbles in different pockets at the same time. Unfortunately, she can't spend all her time collecting pebbles, so she can collect pebbles from the park only once a day. Help her to find the minimum number of days needed to collect all the pebbles of Uzhlyandian Central Park, taking into consideration that Anastasia can't place pebbles of different types in same pocket. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105, 1<=≤<=*k*<=≤<=109) — the number of different pebble types and number of pebbles Anastasia can place in one pocket. The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (1<=≤<=*w**i*<=≤<=104) — number of pebbles of each type. Output Specification: The only line of output contains one integer — the minimum number of days Anastasia needs to collect all the pebbles. Demo Input: ['3 2\n2 3 4\n', '5 4\n3 1 8 9 7\n'] Demo Output: ['3\n', '5\n'] Note: In the first sample case, Anastasia can collect all pebbles of the first type on the first day, of second type — on the second day, and of third type — on the third day. Optimal sequence of actions in the second sample case: - In the first day Anastasia collects 8 pebbles of the third type. - In the second day she collects 8 pebbles of the fourth type. - In the third day she collects 3 pebbles of the first type and 1 pebble of the fourth type. - In the fourth day she collects 7 pebbles of the fifth type. - In the fifth day she collects 1 pebble of the second type.
```python #RAVENS #TEAM_2 #ESSI-DAYI_MOHSEN-LORENZO from math import ceil n, k = map(int,input().split()) a = list(map(int,input().split())) day = 0 b1 = b2 = odd = 0 for i in range(n): yy = ceil(a[i]/k) if yy % 2 == 0:day+=(yy//2) else: odd+=1 day+=ceil(yy/2) print(day-odd//2) ```
3
629
A
Far Relative’s Birthday Cake
PROGRAMMING
800
[ "brute force", "combinatorics", "constructive algorithms", "implementation" ]
null
null
Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird! The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be? Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column.
In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake. Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'.
Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column.
[ "3\n.CC\nC..\nC.C\n", "4\nCC..\nC..C\n.CC.\n.CC.\n" ]
[ "4\n", "9\n" ]
If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are: 1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3)
500
[ { "input": "3\n.CC\nC..\nC.C", "output": "4" }, { "input": "4\nCC..\nC..C\n.CC.\n.CC.", "output": "9" }, { "input": "5\n.CCCC\nCCCCC\n.CCC.\nCC...\n.CC.C", "output": "46" }, { "input": "7\n.CC..CC\nCC.C..C\nC.C..C.\nC...C.C\nCCC.CCC\n.CC...C\n.C.CCC.", "output": "84" }, { "input": "8\n..C....C\nC.CCC.CC\n.C..C.CC\nCC......\nC..C..CC\nC.C...C.\nC.C..C..\nC...C.C.", "output": "80" }, { "input": "9\n.C...CCCC\nC.CCCC...\n....C..CC\n.CC.CCC..\n.C.C..CC.\nC...C.CCC\nCCC.C...C\nCCCC....C\n..C..C..C", "output": "144" }, { "input": "10\n..C..C.C..\n..CC..C.CC\n.C.C...C.C\n..C.CC..CC\n....C..C.C\n...C..C..C\nCC.CC....C\n..CCCC.C.C\n..CC.CCC..\nCCCC..C.CC", "output": "190" }, { "input": "11\nC.CC...C.CC\nCC.C....C.C\n.....C..CCC\n....C.CC.CC\nC..C..CC...\nC...C...C..\nCC..CCC.C.C\n..C.CC.C..C\nC...C.C..CC\n.C.C..CC..C\n.C.C.CC.C..", "output": "228" }, { "input": "21\n...CCC.....CC..C..C.C\n..CCC...CC...CC.CCC.C\n....C.C.C..CCC..C.C.C\n....CCC..C..C.CC.CCC.\n...CCC.C..C.C.....CCC\n.CCC.....CCC..C...C.C\nCCCC.C...CCC.C...C.CC\nC..C...C.CCC..CC..C..\nC...CC..C.C.CC..C.CC.\nCC..CCCCCCCCC..C....C\n.C..CCCC.CCCC.CCC...C\nCCC...CCC...CCC.C..C.\n.CCCCCCCC.CCCC.CC.C..\n.C.C..C....C.CCCCCC.C\n...C...C.CCC.C.CC..C.\nCCC...CC..CC...C..C.C\n.CCCCC...C.C..C.CC.C.\n..CCC.C.C..CCC.CCC...\n..C..C.C.C.....CC.C..\n.CC.C...C.CCC.C....CC\n...C..CCCC.CCC....C..", "output": "2103" }, { "input": "20\nC.C.CCC.C....C.CCCCC\nC.CC.C..CCC....CCCC.\n.CCC.CC...CC.CCCCCC.\n.C...CCCC..C....CCC.\n.C..CCCCCCC.C.C.....\nC....C.C..CCC.C..CCC\n...C.C.CC..CC..CC...\nC...CC.C.CCCCC....CC\n.CC.C.CCC....C.CCC.C\nCC...CC...CC..CC...C\nC.C..CC.C.CCCC.C.CC.\n..CCCCC.C.CCC..CCCC.\n....C..C..C.CC...C.C\nC..CCC..CC..C.CC..CC\n...CC......C.C..C.C.\nCC.CCCCC.CC.CC...C.C\n.C.CC..CC..CCC.C.CCC\nC..C.CC....C....C...\n..CCC..CCC...CC..C.C\n.C.CCC.CCCCCCCCC..CC", "output": "2071" }, { "input": "17\nCCC..C.C....C.C.C\n.C.CC.CC...CC..C.\n.CCCC.CC.C..CCC.C\n...CCC.CC.CCC.C.C\nCCCCCCCC..C.CC.CC\n...C..C....C.CC.C\nCC....CCC...C.CC.\n.CC.C.CC..C......\n.CCCCC.C.CC.CCCCC\n..CCCC...C..CC..C\nC.CC.C.CC..C.C.C.\nC..C..C..CCC.C...\n.C..CCCC..C......\n.CC.C...C..CC.CC.\nC..C....CC...CC..\nC.CC.CC..C.C..C..\nCCCC...C.C..CCCC.", "output": "1160" }, { "input": "15\nCCCC.C..CCC....\nCCCCCC.CC.....C\n...C.CC.C.C.CC.\nCCCCCCC..C..C..\nC..CCC..C.CCCC.\n.CC..C.C.C.CC.C\n.C.C..C..C.C..C\n...C...C..CCCC.\n.....C.C..CC...\nCC.C.C..CC.C..C\n..CCCCC..CCC...\nCC.CC.C..CC.CCC\n..CCC...CC.C..C\nCC..C.C..CCC..C\n.C.C....CCC...C", "output": "789" }, { "input": "1\n.", "output": "0" }, { "input": "3\n.CC\nC..\nC.C", "output": "4" }, { "input": "13\nC.C...C.C.C..\nCC.CCCC.CC..C\n.C.CCCCC.CC..\nCCCC..C...C..\n...CC.C.C...C\n.CC.CCC...CC.\nCC.CCCCCC....\n.C...C..CC..C\nCCCC.CC...C..\n.C.CCC..C.CC.\n..C...CC..C.C\n..C.CCC..CC.C\n.C...CCC.CC.C", "output": "529" }, { "input": "16\n.C.C.C.C.C...C.C\n..C..C.CCCCCC...\n..C.C.C.C..C..C.\n.CC....C.CCC..C.\n.C.CCC..C....CCC\nCC..C.CC..C.C.CC\n...C..C..CC..CC.\n.CCC..C.CC.C.C..\n.CC.C..........C\nC...C....CC..C..\nC.CCC.C..C..C...\n.CCCCCCCCCCCC..C\n..C.C.CC.CC.CCC.\nCC..C.C....C..CC\nC.CCC..C..C.C.CC\n.C.CCC.CC..CCC.C", "output": "874" }, { "input": "2\nCC\nCC", "output": "4" }, { "input": "3\nC..\nC..\nC..", "output": "3" } ]
1,662,750,602
2,147,483,647
Python 3
OK
TESTS
48
46
0
def paresChocolate(matriz, n): res = 0 for i in range(n): count = 0 for j in range(n): if matriz[i][j] == 'C': count += 1 res += (count * (count - 1)) // 2 count = 0 for j in range(n): if matriz[j][i] == 'C': count += 1 res += (count * (count - 1)) // 2 return res n = int(input()) matriz = [] for i in range(n): matriz.append(input()) print(paresChocolate(matriz, n))
Title: Far Relative’s Birthday Cake Time Limit: None seconds Memory Limit: None megabytes Problem Description: Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird! The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be? Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column. Input Specification: In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake. Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'. Output Specification: Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column. Demo Input: ['3\n.CC\nC..\nC.C\n', '4\nCC..\nC..C\n.CC.\n.CC.\n'] Demo Output: ['4\n', '9\n'] Note: If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are: 1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3)
```python def paresChocolate(matriz, n): res = 0 for i in range(n): count = 0 for j in range(n): if matriz[i][j] == 'C': count += 1 res += (count * (count - 1)) // 2 count = 0 for j in range(n): if matriz[j][i] == 'C': count += 1 res += (count * (count - 1)) // 2 return res n = int(input()) matriz = [] for i in range(n): matriz.append(input()) print(paresChocolate(matriz, n)) ```
3
266
A
Stones on the Table
PROGRAMMING
800
[ "implementation" ]
null
null
There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table. The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue.
Print a single integer — the answer to the problem.
[ "3\nRRG\n", "5\nRRRRR\n", "4\nBRBG\n" ]
[ "1\n", "4\n", "0\n" ]
none
500
[ { "input": "3\nRRG", "output": "1" }, { "input": "5\nRRRRR", "output": "4" }, { "input": "4\nBRBG", "output": "0" }, { "input": "1\nB", "output": "0" }, { "input": "2\nBG", "output": "0" }, { "input": "3\nBGB", "output": "0" }, { "input": "4\nRBBR", "output": "1" }, { "input": "5\nRGGBG", "output": "1" }, { "input": "10\nGGBRBRGGRB", "output": "2" }, { "input": "50\nGRBGGRBRGRBGGBBBBBGGGBBBBRBRGBRRBRGBBBRBBRRGBGGGRB", "output": "18" }, { "input": "15\nBRRBRGGBBRRRRGR", "output": "6" }, { "input": "20\nRRGBBRBRGRGBBGGRGRRR", "output": "6" }, { "input": "25\nBBGBGRBGGBRRBGRRBGGBBRBRB", "output": "6" }, { "input": "30\nGRGGGBGGRGBGGRGRBGBGBRRRRRRGRB", "output": "9" }, { "input": "35\nGBBGBRGBBGGRBBGBRRGGRRRRRRRBRBBRRGB", "output": "14" }, { "input": "40\nGBBRRGBGGGRGGGRRRRBRBGGBBGGGBGBBBBBRGGGG", "output": "20" }, { "input": "45\nGGGBBRBBRRGRBBGGBGRBRGGBRBRGBRRGBGRRBGRGRBRRG", "output": "11" }, { "input": "50\nRBGGBGGRBGRBBBGBBGRBBBGGGRBBBGBBBGRGGBGGBRBGBGRRGG", "output": "17" }, { "input": "50\nGGGBBRGGGGGRRGGRBGGRGBBRBRRBGRGBBBGBRBGRGBBGRGGBRB", "output": "16" }, { "input": "50\nGBGRGRRBRRRRRGGBBGBRRRBBBRBBBRRGRBBRGBRBGGRGRBBGGG", "output": "19" }, { "input": "10\nGRRBRBRBGR", "output": "1" }, { "input": "10\nBRBGBGRRBR", "output": "1" }, { "input": "20\nGBGBGGRRRRGRBBGRGRGR", "output": "5" }, { "input": "20\nRRGGRBBGBBRBGRRBRRBG", "output": "6" }, { "input": "30\nBGBRGBBBGRGBBRGBGRBBBRGGRRGRRB", "output": "8" }, { "input": "30\nBBBBGGBRBGBBGBGBGBGGGRGRRGGBBB", "output": "11" }, { "input": "40\nGBRRGRBGBRRGBRGGGBRGBGBRGBBRRGRGGBBGBGBB", "output": "9" }, { "input": "40\nBRGRGGRGGRBBRRRBRBBGGGRRGBGBBGRBBRGBRRGG", "output": "13" }, { "input": "50\nRBGBGGRRGGRGGBGBGRRBGGBGBRRBBGBBGBBBGBBRBBRBRBRGRG", "output": "13" }, { "input": "50\nRBRRGBGRRRBGRRBGRRGRBBRBBRRBRGGBRBRRBGGRBGGBRBRGRB", "output": "12" }, { "input": "2\nBB", "output": "1" }, { "input": "50\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR", "output": "49" }, { "input": "50\nRRRRRRRRGRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR", "output": "47" }, { "input": "50\nRRRRRRRRRRRRGGRRRRRRRRRBRRRRRRRRRRRRRRBBRRRRRRRRRR", "output": "43" } ]
1,694,435,301
2,147,483,647
Python 3
OK
TESTS
34
92
0
n=int(input()) s=input() t=0 for i in range(1,n): if s[i] in s[i-1]: t+=1 else: continue print(t)
Title: Stones on the Table Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table. The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue. Output Specification: Print a single integer — the answer to the problem. Demo Input: ['3\nRRG\n', '5\nRRRRR\n', '4\nBRBG\n'] Demo Output: ['1\n', '4\n', '0\n'] Note: none
```python n=int(input()) s=input() t=0 for i in range(1,n): if s[i] in s[i-1]: t+=1 else: continue print(t) ```
3
780
A
Andryusha and Socks
PROGRAMMING
800
[ "implementation" ]
null
null
Andryusha is an orderly boy and likes to keep things in their place. Today he faced a problem to put his socks in the wardrobe. He has *n* distinct pairs of socks which are initially in a bag. The pairs are numbered from 1 to *n*. Andryusha wants to put paired socks together and put them in the wardrobe. He takes the socks one by one from the bag, and for each sock he looks whether the pair of this sock has been already took out of the bag, or not. If not (that means the pair of this sock is still in the bag), he puts the current socks on the table in front of him. Otherwise, he puts both socks from the pair to the wardrobe. Andryusha remembers the order in which he took the socks from the bag. Can you tell him what is the maximum number of socks that were on the table at the same time?
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=105) — the number of sock pairs. The second line contains 2*n* integers *x*1,<=*x*2,<=...,<=*x*2*n* (1<=≤<=*x**i*<=≤<=*n*), which describe the order in which Andryusha took the socks from the bag. More precisely, *x**i* means that the *i*-th sock Andryusha took out was from pair *x**i*. It is guaranteed that Andryusha took exactly two socks of each pair.
Print single integer — the maximum number of socks that were on the table at the same time.
[ "1\n1 1\n", "3\n2 1 1 3 2 3\n" ]
[ "1\n", "2\n" ]
In the first example Andryusha took a sock from the first pair and put it on the table. Then he took the next sock which is from the first pair as well, so he immediately puts both socks to the wardrobe. Thus, at most one sock was on the table at the same time. In the second example Andryusha behaved as follows: - Initially the table was empty, he took out a sock from pair 2 and put it on the table. - Sock (2) was on the table. Andryusha took out a sock from pair 1 and put it on the table. - Socks (1, 2) were on the table. Andryusha took out a sock from pair 1, and put this pair into the wardrobe. - Sock (2) was on the table. Andryusha took out a sock from pair 3 and put it on the table. - Socks (2, 3) were on the table. Andryusha took out a sock from pair 2, and put this pair into the wardrobe. - Sock (3) was on the table. Andryusha took out a sock from pair 3 and put this pair into the wardrobe.
500
[ { "input": "1\n1 1", "output": "1" }, { "input": "3\n2 1 1 3 2 3", "output": "2" }, { "input": "5\n5 1 3 2 4 3 1 2 4 5", "output": "5" }, { "input": "10\n4 2 6 3 4 8 7 1 1 5 2 10 6 8 3 5 10 9 9 7", "output": "6" }, { "input": "50\n30 47 31 38 37 50 36 43 9 23 2 2 15 31 14 49 9 16 6 44 27 14 5 6 3 47 25 26 1 35 3 15 24 19 8 46 49 41 4 26 40 28 42 11 34 35 46 18 7 28 18 40 19 42 4 41 38 48 50 12 29 39 33 17 25 22 22 21 36 45 27 30 20 7 13 29 39 44 21 8 37 45 34 1 20 10 11 17 33 12 43 13 10 16 48 24 32 5 23 32", "output": "25" }, { "input": "50\n1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50", "output": "1" }, { "input": "50\n50 50 49 49 48 48 47 47 46 46 45 45 44 44 43 43 42 42 41 41 40 40 39 39 38 38 37 37 36 36 35 35 34 34 33 33 32 32 31 31 30 30 29 29 28 28 27 27 26 26 25 25 24 24 23 23 22 22 21 21 20 20 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1", "output": "1" }, { "input": "50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50", "output": "50" }, { "input": "50\n50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "50" }, { "input": "10\n2 9 4 1 6 7 10 3 1 5 8 6 2 3 10 7 4 8 5 9", "output": "9" } ]
1,516,114,944
2,147,483,647
Python 3
OK
TESTS
56
171
19,456,000
def socks(): n = int(input()) arr = [False for _ in range(n + 1)] pairs = list(map(int, input().split())) count = 0 max_count = 0 for p in pairs: if arr[p]: count -= 1 else: arr[p] = True count += 1 max_count = max(count, max_count) print(max_count) if __name__ == '__main__': socks()
Title: Andryusha and Socks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Andryusha is an orderly boy and likes to keep things in their place. Today he faced a problem to put his socks in the wardrobe. He has *n* distinct pairs of socks which are initially in a bag. The pairs are numbered from 1 to *n*. Andryusha wants to put paired socks together and put them in the wardrobe. He takes the socks one by one from the bag, and for each sock he looks whether the pair of this sock has been already took out of the bag, or not. If not (that means the pair of this sock is still in the bag), he puts the current socks on the table in front of him. Otherwise, he puts both socks from the pair to the wardrobe. Andryusha remembers the order in which he took the socks from the bag. Can you tell him what is the maximum number of socks that were on the table at the same time? Input Specification: The first line contains the single integer *n* (1<=≤<=*n*<=≤<=105) — the number of sock pairs. The second line contains 2*n* integers *x*1,<=*x*2,<=...,<=*x*2*n* (1<=≤<=*x**i*<=≤<=*n*), which describe the order in which Andryusha took the socks from the bag. More precisely, *x**i* means that the *i*-th sock Andryusha took out was from pair *x**i*. It is guaranteed that Andryusha took exactly two socks of each pair. Output Specification: Print single integer — the maximum number of socks that were on the table at the same time. Demo Input: ['1\n1 1\n', '3\n2 1 1 3 2 3\n'] Demo Output: ['1\n', '2\n'] Note: In the first example Andryusha took a sock from the first pair and put it on the table. Then he took the next sock which is from the first pair as well, so he immediately puts both socks to the wardrobe. Thus, at most one sock was on the table at the same time. In the second example Andryusha behaved as follows: - Initially the table was empty, he took out a sock from pair 2 and put it on the table. - Sock (2) was on the table. Andryusha took out a sock from pair 1 and put it on the table. - Socks (1, 2) were on the table. Andryusha took out a sock from pair 1, and put this pair into the wardrobe. - Sock (2) was on the table. Andryusha took out a sock from pair 3 and put it on the table. - Socks (2, 3) were on the table. Andryusha took out a sock from pair 2, and put this pair into the wardrobe. - Sock (3) was on the table. Andryusha took out a sock from pair 3 and put this pair into the wardrobe.
```python def socks(): n = int(input()) arr = [False for _ in range(n + 1)] pairs = list(map(int, input().split())) count = 0 max_count = 0 for p in pairs: if arr[p]: count -= 1 else: arr[p] = True count += 1 max_count = max(count, max_count) print(max_count) if __name__ == '__main__': socks() ```
3
789
A
Anastasia and pebbles
PROGRAMMING
1,100
[ "implementation", "math" ]
null
null
Anastasia loves going for a walk in Central Uzhlyandian Park. But she became uninterested in simple walking, so she began to collect Uzhlyandian pebbles. At first, she decided to collect all the pebbles she could find in the park. She has only two pockets. She can put at most *k* pebbles in each pocket at the same time. There are *n* different pebble types in the park, and there are *w**i* pebbles of the *i*-th type. Anastasia is very responsible, so she never mixes pebbles of different types in same pocket. However, she can put different kinds of pebbles in different pockets at the same time. Unfortunately, she can't spend all her time collecting pebbles, so she can collect pebbles from the park only once a day. Help her to find the minimum number of days needed to collect all the pebbles of Uzhlyandian Central Park, taking into consideration that Anastasia can't place pebbles of different types in same pocket.
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105, 1<=≤<=*k*<=≤<=109) — the number of different pebble types and number of pebbles Anastasia can place in one pocket. The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (1<=≤<=*w**i*<=≤<=104) — number of pebbles of each type.
The only line of output contains one integer — the minimum number of days Anastasia needs to collect all the pebbles.
[ "3 2\n2 3 4\n", "5 4\n3 1 8 9 7\n" ]
[ "3\n", "5\n" ]
In the first sample case, Anastasia can collect all pebbles of the first type on the first day, of second type — on the second day, and of third type — on the third day. Optimal sequence of actions in the second sample case: - In the first day Anastasia collects 8 pebbles of the third type. - In the second day she collects 8 pebbles of the fourth type. - In the third day she collects 3 pebbles of the first type and 1 pebble of the fourth type. - In the fourth day she collects 7 pebbles of the fifth type. - In the fifth day she collects 1 pebble of the second type.
500
[ { "input": "3 2\n2 3 4", "output": "3" }, { "input": "5 4\n3 1 8 9 7", "output": "5" }, { "input": "1 22\n1", "output": "1" }, { "input": "3 57\n78 165 54", "output": "3" }, { "input": "5 72\n74 10 146 189 184", "output": "6" }, { "input": "9 13\n132 87 200 62 168 51 185 192 118", "output": "48" }, { "input": "1 1\n10000", "output": "5000" }, { "input": "10 1\n1 1 1 1 1 1 1 1 1 1", "output": "5" }, { "input": "2 2\n2 2", "output": "1" } ]
1,491,466,003
2,147,483,647
Python 3
OK
TESTS
31
170
12,902,400
import math types, capacity = map(int, input().split()) pebbles = list( map(lambda x: math.ceil(x / capacity), map(int, input().split())) ) print(math.ceil(sum(pebbles)/2))
Title: Anastasia and pebbles Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anastasia loves going for a walk in Central Uzhlyandian Park. But she became uninterested in simple walking, so she began to collect Uzhlyandian pebbles. At first, she decided to collect all the pebbles she could find in the park. She has only two pockets. She can put at most *k* pebbles in each pocket at the same time. There are *n* different pebble types in the park, and there are *w**i* pebbles of the *i*-th type. Anastasia is very responsible, so she never mixes pebbles of different types in same pocket. However, she can put different kinds of pebbles in different pockets at the same time. Unfortunately, she can't spend all her time collecting pebbles, so she can collect pebbles from the park only once a day. Help her to find the minimum number of days needed to collect all the pebbles of Uzhlyandian Central Park, taking into consideration that Anastasia can't place pebbles of different types in same pocket. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105, 1<=≤<=*k*<=≤<=109) — the number of different pebble types and number of pebbles Anastasia can place in one pocket. The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (1<=≤<=*w**i*<=≤<=104) — number of pebbles of each type. Output Specification: The only line of output contains one integer — the minimum number of days Anastasia needs to collect all the pebbles. Demo Input: ['3 2\n2 3 4\n', '5 4\n3 1 8 9 7\n'] Demo Output: ['3\n', '5\n'] Note: In the first sample case, Anastasia can collect all pebbles of the first type on the first day, of second type — on the second day, and of third type — on the third day. Optimal sequence of actions in the second sample case: - In the first day Anastasia collects 8 pebbles of the third type. - In the second day she collects 8 pebbles of the fourth type. - In the third day she collects 3 pebbles of the first type and 1 pebble of the fourth type. - In the fourth day she collects 7 pebbles of the fifth type. - In the fifth day she collects 1 pebble of the second type.
```python import math types, capacity = map(int, input().split()) pebbles = list( map(lambda x: math.ceil(x / capacity), map(int, input().split())) ) print(math.ceil(sum(pebbles)/2)) ```
3
967
B
Watering System
PROGRAMMING
1,000
[ "math", "sortings" ]
null
null
Arkady wants to water his only flower. Unfortunately, he has a very poor watering system that was designed for $n$ flowers and so it looks like a pipe with $n$ holes. Arkady can only use the water that flows from the first hole. Arkady can block some of the holes, and then pour $A$ liters of water into the pipe. After that, the water will flow out from the non-blocked holes proportionally to their sizes $s_1, s_2, \ldots, s_n$. In other words, if the sum of sizes of non-blocked holes is $S$, and the $i$-th hole is not blocked, $\frac{s_i \cdot A}{S}$ liters of water will flow out of it. What is the minimum number of holes Arkady should block to make at least $B$ liters of water flow out of the first hole?
The first line contains three integers $n$, $A$, $B$ ($1 \le n \le 100\,000$, $1 \le B \le A \le 10^4$) — the number of holes, the volume of water Arkady will pour into the system, and the volume he wants to get out of the first hole. The second line contains $n$ integers $s_1, s_2, \ldots, s_n$ ($1 \le s_i \le 10^4$) — the sizes of the holes.
Print a single integer — the number of holes Arkady should block.
[ "4 10 3\n2 2 2 2\n", "4 80 20\n3 2 1 4\n", "5 10 10\n1000 1 1 1 1\n" ]
[ "1\n", "0\n", "4\n" ]
In the first example Arkady should block at least one hole. After that, $\frac{10 \cdot 2}{6} \approx 3.333$ liters of water will flow out of the first hole, and that suits Arkady. In the second example even without blocking any hole, $\frac{80 \cdot 3}{10} = 24$ liters will flow out of the first hole, that is not less than $20$. In the third example Arkady has to block all holes except the first to make all water flow out of the first hole.
1,000
[ { "input": "4 10 3\n2 2 2 2", "output": "1" }, { "input": "4 80 20\n3 2 1 4", "output": "0" }, { "input": "5 10 10\n1000 1 1 1 1", "output": "4" }, { "input": "10 300 100\n20 1 3 10 8 5 3 6 4 3", "output": "1" }, { "input": "10 300 100\n20 25 68 40 60 37 44 85 23 96", "output": "8" }, { "input": "1 1 1\n1", "output": "0" }, { "input": "1 2 1\n1", "output": "0" }, { "input": "2 2 2\n1 10000", "output": "1" }, { "input": "2 10000 1\n1 9999", "output": "0" } ]
1,529,042,344
2,147,483,647
Python 3
OK
TESTS
26
187
6,348,800
n,a,b=map(int,input().split()) z=list(map(int,input().split())) first=z[0] s=sum(z) del(z[0]) z.sort() i=n-2 while first*a/s<b: s-=z[i] i-=1 print(n-i-2)
Title: Watering System Time Limit: None seconds Memory Limit: None megabytes Problem Description: Arkady wants to water his only flower. Unfortunately, he has a very poor watering system that was designed for $n$ flowers and so it looks like a pipe with $n$ holes. Arkady can only use the water that flows from the first hole. Arkady can block some of the holes, and then pour $A$ liters of water into the pipe. After that, the water will flow out from the non-blocked holes proportionally to their sizes $s_1, s_2, \ldots, s_n$. In other words, if the sum of sizes of non-blocked holes is $S$, and the $i$-th hole is not blocked, $\frac{s_i \cdot A}{S}$ liters of water will flow out of it. What is the minimum number of holes Arkady should block to make at least $B$ liters of water flow out of the first hole? Input Specification: The first line contains three integers $n$, $A$, $B$ ($1 \le n \le 100\,000$, $1 \le B \le A \le 10^4$) — the number of holes, the volume of water Arkady will pour into the system, and the volume he wants to get out of the first hole. The second line contains $n$ integers $s_1, s_2, \ldots, s_n$ ($1 \le s_i \le 10^4$) — the sizes of the holes. Output Specification: Print a single integer — the number of holes Arkady should block. Demo Input: ['4 10 3\n2 2 2 2\n', '4 80 20\n3 2 1 4\n', '5 10 10\n1000 1 1 1 1\n'] Demo Output: ['1\n', '0\n', '4\n'] Note: In the first example Arkady should block at least one hole. After that, $\frac{10 \cdot 2}{6} \approx 3.333$ liters of water will flow out of the first hole, and that suits Arkady. In the second example even without blocking any hole, $\frac{80 \cdot 3}{10} = 24$ liters will flow out of the first hole, that is not less than $20$. In the third example Arkady has to block all holes except the first to make all water flow out of the first hole.
```python n,a,b=map(int,input().split()) z=list(map(int,input().split())) first=z[0] s=sum(z) del(z[0]) z.sort() i=n-2 while first*a/s<b: s-=z[i] i-=1 print(n-i-2) ```
3
578
B
"Or" Game
PROGRAMMING
1,700
[ "brute force", "greedy" ]
null
null
You are given *n* numbers *a*1,<=*a*2,<=...,<=*a**n*. You can perform at most *k* operations. For each operation you can multiply one of the numbers by *x*. We want to make as large as possible, where denotes the bitwise OR. Find the maximum possible value of after performing at most *k* operations optimally.
The first line contains three integers *n*, *k* and *x* (1<=≤<=*n*<=≤<=200<=000, 1<=≤<=*k*<=≤<=10, 2<=≤<=*x*<=≤<=8). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109).
Output the maximum value of a bitwise OR of sequence elements after performing operations.
[ "3 1 2\n1 1 1\n", "4 2 3\n1 2 4 8\n" ]
[ "3\n", "79\n" ]
For the first sample, any possible choice of doing one operation will result the same three numbers 1, 1, 2 so the result is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1ee73b671ed4bc53f2f96ed1a85fd98388e1712b.png" style="max-width: 100.0%;max-height: 100.0%;"/>. For the second sample if we multiply 8 by 3 two times we'll get 72. In this case the numbers will become 1, 2, 4, 72 so the OR value will be 79 and is the largest possible result.
500
[ { "input": "3 1 2\n1 1 1", "output": "3" }, { "input": "4 2 3\n1 2 4 8", "output": "79" }, { "input": "2 1 2\n12 9", "output": "30" }, { "input": "2 1 2\n12 7", "output": "31" }, { "input": "3 1 3\n3 2 0", "output": "11" }, { "input": "5 10 8\n1000000000 1000000000 1000000000 1000000000 1000000000", "output": "1073741825000000000" }, { "input": "1 2 3\n612635770", "output": "5513721930" }, { "input": "3 2 5\n0 2 3", "output": "75" }, { "input": "2 1 8\n18 17", "output": "154" }, { "input": "5 10 8\n0 0 0 0 0", "output": "0" }, { "input": "1 1 2\n1", "output": "2" }, { "input": "1 1 2\n0", "output": "0" }, { "input": "3 2 6\n724148075 828984987 810015532", "output": "29996605423" }, { "input": "3 1 2\n17 18 4", "output": "54" }, { "input": "3 1 2\n4 17 18", "output": "54" }, { "input": "2 2 2\n60 59", "output": "252" }, { "input": "2 2 2\n9 10", "output": "46" }, { "input": "3 1 2\n10 12 5", "output": "31" }, { "input": "3 1 2\n20 17 8", "output": "62" }, { "input": "3 1 2\n5 12 10", "output": "31" }, { "input": "3 1 8\n10 17 18", "output": "155" }, { "input": "3 1 2\n17 20 28", "output": "62" }, { "input": "5 1 3\n1 5 13 8 16", "output": "63" } ]
1,642,089,440
2,147,483,647
Python 3
OK
TESTS
32
451
16,486,400
n,k,x=map(int,input().split()) *a,=map(int,input().split()) l=[0]*(n+1) r=[0]*(n+1) for i in range(0,n): l[i+1]=l[i]|a[i] r[n-i-1]=r[n-i]|a[n-i-1] num=x**k res=-1 for i in range(0,n): res=max(l[i]|(a[i]*num)|r[i+1],res) print(res)
Title: "Or" Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given *n* numbers *a*1,<=*a*2,<=...,<=*a**n*. You can perform at most *k* operations. For each operation you can multiply one of the numbers by *x*. We want to make as large as possible, where denotes the bitwise OR. Find the maximum possible value of after performing at most *k* operations optimally. Input Specification: The first line contains three integers *n*, *k* and *x* (1<=≤<=*n*<=≤<=200<=000, 1<=≤<=*k*<=≤<=10, 2<=≤<=*x*<=≤<=8). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109). Output Specification: Output the maximum value of a bitwise OR of sequence elements after performing operations. Demo Input: ['3 1 2\n1 1 1\n', '4 2 3\n1 2 4 8\n'] Demo Output: ['3\n', '79\n'] Note: For the first sample, any possible choice of doing one operation will result the same three numbers 1, 1, 2 so the result is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1ee73b671ed4bc53f2f96ed1a85fd98388e1712b.png" style="max-width: 100.0%;max-height: 100.0%;"/>. For the second sample if we multiply 8 by 3 two times we'll get 72. In this case the numbers will become 1, 2, 4, 72 so the OR value will be 79 and is the largest possible result.
```python n,k,x=map(int,input().split()) *a,=map(int,input().split()) l=[0]*(n+1) r=[0]*(n+1) for i in range(0,n): l[i+1]=l[i]|a[i] r[n-i-1]=r[n-i]|a[n-i-1] num=x**k res=-1 for i in range(0,n): res=max(l[i]|(a[i]*num)|r[i+1],res) print(res) ```
3
608
A
Saitama Destroys Hotel
PROGRAMMING
1,000
[ "implementation", "math" ]
null
null
Saitama accidentally destroyed a hotel again. To repay the hotel company, Genos has volunteered to operate an elevator in one of its other hotels. The elevator is special — it starts on the top floor, can only move down, and has infinite capacity. Floors are numbered from 0 to *s* and elevator initially starts on floor *s* at time 0. The elevator takes exactly 1 second to move down exactly 1 floor and negligible time to pick up passengers. Genos is given a list detailing when and on which floor passengers arrive. Please determine how long in seconds it will take Genos to bring all passengers to floor 0.
The first line of input contains two integers *n* and *s* (1<=≤<=*n*<=≤<=100, 1<=≤<=*s*<=≤<=1000) — the number of passengers and the number of the top floor respectively. The next *n* lines each contain two space-separated integers *f**i* and *t**i* (1<=≤<=*f**i*<=≤<=*s*, 1<=≤<=*t**i*<=≤<=1000) — the floor and the time of arrival in seconds for the passenger number *i*.
Print a single integer — the minimum amount of time in seconds needed to bring all the passengers to floor 0.
[ "3 7\n2 1\n3 8\n5 2\n", "5 10\n2 77\n3 33\n8 21\n9 12\n10 64\n" ]
[ "11\n", "79\n" ]
In the first sample, it takes at least 11 seconds to bring all passengers to floor 0. Here is how this could be done: 1. Move to floor 5: takes 2 seconds. 2. Pick up passenger 3. 3. Move to floor 3: takes 2 seconds. 4. Wait for passenger 2 to arrive: takes 4 seconds. 5. Pick up passenger 2. 6. Go to floor 2: takes 1 second. 7. Pick up passenger 1. 8. Go to floor 0: takes 2 seconds. This gives a total of 2 + 2 + 4 + 1 + 2 = 11 seconds.
500
[ { "input": "3 7\n2 1\n3 8\n5 2", "output": "11" }, { "input": "5 10\n2 77\n3 33\n8 21\n9 12\n10 64", "output": "79" }, { "input": "1 1000\n1000 1000", "output": "2000" }, { "input": "1 1\n1 1", "output": "2" }, { "input": "1 1000\n1 1", "output": "1000" }, { "input": "1 1000\n1 1000", "output": "1001" }, { "input": "100 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "2" }, { "input": "2 7\n6 3\n1 5", "output": "9" }, { "input": "2 100\n99 2\n1 10", "output": "101" }, { "input": "5 5\n1 1\n2 1\n3 1\n4 1\n5 1", "output": "6" }, { "input": "3 7\n1 6\n5 5\n6 1", "output": "10" }, { "input": "2 100\n4 100\n7 99", "output": "106" }, { "input": "2 10\n9 3\n1 4", "output": "12" }, { "input": "2 5\n4 4\n5 4", "output": "9" }, { "input": "2 10\n9 10\n6 11", "output": "19" }, { "input": "2 100\n99 9\n1 10", "output": "108" }, { "input": "2 7\n3 5\n7 4", "output": "11" }, { "input": "4 4\n4 6\n4 8\n1 7\n2 9", "output": "12" }, { "input": "2 1000\n1 2\n1000 1", "output": "1001" }, { "input": "2 20\n1 1\n2 2", "output": "20" }, { "input": "2 20\n10 10\n19 9", "output": "28" } ]
1,450,889,097
597
Python 3
OK
TESTS
39
62
0
n,s=(map(int,input().split())) curtime=0 a=[] for _ in range(n): a.append(tuple(map(int,input().split()))) a.sort() a.reverse() for i in a: curtime+=max(s-i[0],i[1]-curtime) s=i[0] print(curtime+a[-1][0])
Title: Saitama Destroys Hotel Time Limit: None seconds Memory Limit: None megabytes Problem Description: Saitama accidentally destroyed a hotel again. To repay the hotel company, Genos has volunteered to operate an elevator in one of its other hotels. The elevator is special — it starts on the top floor, can only move down, and has infinite capacity. Floors are numbered from 0 to *s* and elevator initially starts on floor *s* at time 0. The elevator takes exactly 1 second to move down exactly 1 floor and negligible time to pick up passengers. Genos is given a list detailing when and on which floor passengers arrive. Please determine how long in seconds it will take Genos to bring all passengers to floor 0. Input Specification: The first line of input contains two integers *n* and *s* (1<=≤<=*n*<=≤<=100, 1<=≤<=*s*<=≤<=1000) — the number of passengers and the number of the top floor respectively. The next *n* lines each contain two space-separated integers *f**i* and *t**i* (1<=≤<=*f**i*<=≤<=*s*, 1<=≤<=*t**i*<=≤<=1000) — the floor and the time of arrival in seconds for the passenger number *i*. Output Specification: Print a single integer — the minimum amount of time in seconds needed to bring all the passengers to floor 0. Demo Input: ['3 7\n2 1\n3 8\n5 2\n', '5 10\n2 77\n3 33\n8 21\n9 12\n10 64\n'] Demo Output: ['11\n', '79\n'] Note: In the first sample, it takes at least 11 seconds to bring all passengers to floor 0. Here is how this could be done: 1. Move to floor 5: takes 2 seconds. 2. Pick up passenger 3. 3. Move to floor 3: takes 2 seconds. 4. Wait for passenger 2 to arrive: takes 4 seconds. 5. Pick up passenger 2. 6. Go to floor 2: takes 1 second. 7. Pick up passenger 1. 8. Go to floor 0: takes 2 seconds. This gives a total of 2 + 2 + 4 + 1 + 2 = 11 seconds.
```python n,s=(map(int,input().split())) curtime=0 a=[] for _ in range(n): a.append(tuple(map(int,input().split()))) a.sort() a.reverse() for i in a: curtime+=max(s-i[0],i[1]-curtime) s=i[0] print(curtime+a[-1][0]) ```
3
796
A
Buying A House
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
Zane the wizard had never loved anyone before, until he fell in love with a girl, whose name remains unknown to us. The girl lives in house *m* of a village. There are *n* houses in that village, lining in a straight line from left to right: house 1, house 2, ..., house *n*. The village is also well-structured: house *i* and house *i*<=+<=1 (1<=≤<=*i*<=&lt;<=*n*) are exactly 10 meters away. In this village, some houses are occupied, and some are not. Indeed, unoccupied houses can be purchased. You will be given *n* integers *a*1,<=*a*2,<=...,<=*a**n* that denote the availability and the prices of the houses. If house *i* is occupied, and therefore cannot be bought, then *a**i* equals 0. Otherwise, house *i* can be bought, and *a**i* represents the money required to buy it, in dollars. As Zane has only *k* dollars to spare, it becomes a challenge for him to choose the house to purchase, so that he could live as near as possible to his crush. Help Zane determine the minimum distance from his crush's house to some house he can afford, to help him succeed in his love.
The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=100) — the number of houses in the village, the house where the girl lives, and the amount of money Zane has (in dollars), respectively. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100) — denoting the availability and the prices of the houses. It is guaranteed that *a**m*<==<=0 and that it is possible to purchase some house with no more than *k* dollars.
Print one integer — the minimum distance, in meters, from the house where the girl Zane likes lives to the house Zane can buy.
[ "5 1 20\n0 27 32 21 19\n", "7 3 50\n62 0 0 0 99 33 22\n", "10 5 100\n1 0 1 0 0 0 0 0 1 1\n" ]
[ "40", "30", "20" ]
In the first sample, with *k* = 20 dollars, Zane can buy only house 5. The distance from house *m* = 1 to house 5 is 10 + 10 + 10 + 10 = 40 meters. In the second sample, Zane can buy houses 6 and 7. It is better to buy house 6 than house 7, since house *m* = 3 and house 6 are only 30 meters away, while house *m* = 3 and house 7 are 40 meters away.
500
[ { "input": "5 1 20\n0 27 32 21 19", "output": "40" }, { "input": "7 3 50\n62 0 0 0 99 33 22", "output": "30" }, { "input": "10 5 100\n1 0 1 0 0 0 0 0 1 1", "output": "20" }, { "input": "5 3 1\n1 1 0 0 1", "output": "10" }, { "input": "5 5 5\n1 0 5 6 0", "output": "20" }, { "input": "15 10 50\n20 0 49 50 50 50 50 50 50 0 50 50 49 0 20", "output": "10" }, { "input": "7 5 1\n0 100 2 2 0 2 1", "output": "20" }, { "input": "100 50 100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 0 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "10" }, { "input": "100 50 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 0 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "490" }, { "input": "100 77 50\n50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 0 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0", "output": "10" }, { "input": "100 1 1\n0 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0", "output": "980" }, { "input": "100 1 100\n0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "10" }, { "input": "100 10 99\n0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 98", "output": "890" }, { "input": "7 4 5\n1 0 6 0 5 6 0", "output": "10" }, { "input": "7 4 5\n1 6 5 0 0 6 0", "output": "10" }, { "input": "100 42 59\n50 50 50 50 50 50 50 50 50 50 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 60 60 60 60 60 60 60 60 0 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 0", "output": "90" }, { "input": "2 1 100\n0 1", "output": "10" }, { "input": "2 2 100\n1 0", "output": "10" }, { "input": "10 1 88\n0 95 0 0 0 0 0 94 0 85", "output": "90" }, { "input": "10 2 14\n2 0 1 26 77 39 41 100 13 32", "output": "10" }, { "input": "10 3 11\n0 0 0 0 0 62 0 52 1 35", "output": "60" }, { "input": "20 12 44\n27 40 58 69 53 38 31 39 75 95 8 0 28 81 77 90 38 61 21 88", "output": "10" }, { "input": "30 29 10\n59 79 34 12 100 6 1 58 18 73 54 11 37 46 89 90 80 85 73 45 64 5 31 0 89 19 0 74 0 82", "output": "70" }, { "input": "40 22 1\n7 95 44 53 0 0 19 93 0 68 65 0 24 91 10 58 17 0 71 0 100 0 94 90 79 73 0 73 4 61 54 81 7 13 21 84 5 41 0 1", "output": "180" }, { "input": "40 22 99\n60 0 100 0 0 100 100 0 0 0 0 100 100 0 0 100 100 0 100 100 100 0 100 100 100 0 100 100 0 0 100 100 100 0 0 100 0 100 0 0", "output": "210" }, { "input": "50 10 82\n56 54 0 0 0 0 88 93 0 0 83 93 0 0 91 89 0 30 62 52 24 84 80 8 38 13 92 78 16 87 23 30 71 55 16 63 15 99 4 93 24 6 3 35 4 42 73 27 86 37", "output": "80" }, { "input": "63 49 22\n18 3 97 52 75 2 12 24 58 75 80 97 22 10 79 51 30 60 68 99 75 2 35 3 97 88 9 7 18 5 0 0 0 91 0 91 56 36 76 0 0 0 52 27 35 0 51 72 0 96 57 0 0 0 0 92 55 28 0 30 0 78 77", "output": "190" }, { "input": "74 38 51\n53 36 55 42 64 5 87 9 0 16 86 78 9 22 19 1 25 72 1 0 0 0 79 0 0 0 77 58 70 0 0 100 64 0 99 59 0 0 0 0 65 74 0 96 0 58 89 93 61 88 0 0 82 89 0 0 49 24 7 77 89 87 94 61 100 31 93 70 39 49 39 14 20 84", "output": "190" }, { "input": "89 22 11\n36 0 68 89 0 85 72 0 38 56 0 44 0 94 0 28 71 0 0 18 0 0 0 89 0 0 0 75 0 0 0 32 66 0 0 0 0 0 0 48 63 0 64 58 0 23 48 0 0 52 93 61 57 0 18 0 0 34 62 17 0 41 0 0 53 59 44 0 0 51 40 0 0 100 100 54 0 88 0 5 45 56 57 67 24 16 88 86 15", "output": "580" }, { "input": "97 44 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 19", "output": "520" }, { "input": "100 1 1\n0 0 0 0 10 54 84 6 17 94 65 82 34 0 61 46 42 0 2 16 56 0 100 0 82 0 0 0 89 78 96 56 0 0 0 0 0 0 0 0 77 70 0 96 67 0 0 32 44 1 72 50 14 11 24 61 100 64 19 5 67 69 44 82 93 22 67 93 22 61 53 64 79 41 84 48 43 97 7 24 8 49 23 16 72 52 97 29 69 47 29 49 64 91 4 73 17 18 51 67", "output": "490" }, { "input": "100 1 50\n0 0 0 60 0 0 54 0 80 0 0 0 97 0 68 97 84 0 0 93 0 0 0 0 68 0 0 62 0 0 55 68 65 87 0 69 0 0 0 0 0 52 61 100 0 71 0 82 88 78 0 81 0 95 0 57 0 67 0 0 0 55 86 0 60 72 0 0 73 0 83 0 0 60 64 0 56 0 0 77 84 0 58 63 84 0 0 67 0 16 3 88 0 98 31 52 40 35 85 23", "output": "890" }, { "input": "100 1 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 70 14", "output": "970" }, { "input": "100 1 29\n0 0 0 0 64 0 89 97 0 0 0 59 0 67 62 0 59 0 0 80 0 0 0 0 0 97 0 57 0 64 32 0 44 0 0 48 0 47 38 0 42 0 0 0 0 0 0 46 74 0 86 33 33 0 44 0 79 0 0 0 0 91 59 0 59 65 55 0 0 58 33 95 0 97 76 0 81 0 41 0 38 81 80 0 85 0 31 0 0 92 0 0 45 96 0 85 91 87 0 10", "output": "990" }, { "input": "100 50 20\n3 0 32 0 48 32 64 0 54 26 0 0 0 0 0 28 0 0 54 0 0 45 49 0 38 74 0 0 39 42 62 48 75 96 89 42 0 44 0 0 30 21 76 0 50 0 79 0 0 0 0 99 0 84 62 0 0 0 0 53 80 0 28 0 0 53 0 0 38 0 62 0 0 62 0 0 88 0 44 32 0 81 35 45 49 0 69 73 38 27 72 0 96 72 69 0 0 22 76 10", "output": "490" }, { "input": "100 50 20\n49 0 56 0 87 25 40 0 50 0 0 97 0 0 36 29 0 0 0 0 0 73 29 71 44 0 0 0 91 92 69 0 0 60 81 49 48 38 0 87 0 82 0 32 0 82 46 39 0 0 29 0 0 29 0 79 47 0 0 0 0 0 49 0 24 33 70 0 63 45 97 90 0 0 29 53 55 0 84 0 0 100 26 0 88 0 0 0 0 81 70 0 30 80 0 75 59 98 0 2", "output": "500" }, { "input": "100 2 2\n0 0 43 90 47 5 2 97 52 69 21 48 64 10 34 97 97 74 8 19 68 56 55 24 47 38 43 73 72 72 60 60 51 36 33 44 100 45 13 54 72 52 0 15 3 6 50 8 88 4 78 26 40 27 30 63 67 83 61 91 33 97 54 20 92 27 89 35 10 7 84 50 11 95 74 88 24 44 74 100 18 56 34 91 41 34 51 51 11 91 89 54 19 100 83 89 10 17 76 20", "output": "50" }, { "input": "100 100 34\n5 73 0 0 44 0 0 0 79 55 0 0 0 0 0 0 0 0 83 67 75 0 0 0 0 59 0 74 0 0 47 98 0 0 72 41 0 55 87 0 0 78 84 0 0 39 0 79 72 95 0 0 0 0 0 85 53 84 0 0 0 0 37 75 0 66 0 0 0 0 61 0 70 0 37 60 42 78 92 52 0 0 0 55 77 57 0 63 37 0 0 0 96 70 0 94 97 0 0 0", "output": "990" }, { "input": "100 100 100\n43 79 21 87 84 14 28 69 92 16 3 71 79 37 48 37 72 58 12 72 62 49 37 17 60 54 41 99 15 72 40 89 76 1 99 87 14 56 63 48 69 37 96 64 7 14 1 73 85 33 98 70 97 71 96 28 49 71 56 2 67 22 100 2 98 100 62 77 92 76 98 98 47 26 22 47 50 56 9 16 72 47 5 62 29 78 81 1 0 63 32 65 87 3 40 53 8 80 93 0", "output": "10" }, { "input": "100 38 1\n3 59 12 81 33 95 0 41 36 17 63 76 42 77 85 56 3 96 55 41 24 87 18 9 0 37 0 61 69 0 0 0 67 0 0 0 0 0 0 18 0 0 47 56 74 0 0 80 0 42 0 1 60 59 62 9 19 87 92 48 58 30 98 51 99 10 42 94 51 53 50 89 24 5 52 82 50 39 98 8 95 4 57 21 10 0 44 32 19 14 64 34 79 76 17 3 15 22 71 51", "output": "140" }, { "input": "100 72 1\n56 98 8 27 9 23 16 76 56 1 34 43 96 73 75 49 62 20 18 23 51 55 30 84 4 20 89 40 75 16 69 35 1 0 16 0 80 0 41 17 0 0 76 23 0 92 0 34 0 91 82 54 0 0 0 63 85 59 98 24 29 0 8 77 26 0 34 95 39 0 0 0 74 0 0 0 0 12 0 92 0 0 55 95 66 30 0 0 29 98 0 0 0 47 0 0 80 0 0 4", "output": "390" }, { "input": "100 66 1\n38 50 64 91 37 44 74 21 14 41 80 90 26 51 78 85 80 86 44 14 49 75 93 48 78 89 23 72 35 22 14 48 100 71 62 22 7 95 80 66 32 20 17 47 79 30 41 52 15 62 67 71 1 6 0 9 0 0 0 11 0 0 24 0 31 0 77 0 51 0 0 0 0 0 0 77 0 36 44 19 90 45 6 25 100 87 93 30 4 97 36 88 33 50 26 71 97 71 51 68", "output": "130" }, { "input": "100 55 1\n0 33 45 83 56 96 58 24 45 30 38 60 39 69 21 87 59 21 72 73 27 46 61 61 11 97 77 5 39 3 3 35 76 37 53 84 24 75 9 48 31 90 100 84 74 81 83 83 42 23 29 94 18 1 0 53 52 99 86 37 94 54 28 75 28 80 17 14 98 68 76 20 32 23 42 31 57 79 60 14 18 27 1 98 32 3 96 25 15 38 2 6 3 28 59 54 63 2 43 59", "output": "10" }, { "input": "100 55 1\n24 52 41 6 55 11 58 25 63 12 70 39 23 28 72 17 96 85 7 84 21 13 34 37 97 43 36 32 15 30 58 5 14 71 40 70 9 92 44 73 31 58 96 90 19 35 29 91 25 36 48 95 61 78 0 1 99 61 81 88 42 53 61 57 42 55 74 45 41 92 99 30 20 25 89 50 37 4 17 24 6 65 15 44 40 2 38 43 7 90 38 59 75 87 96 28 12 67 24 32", "output": "10" }, { "input": "100 21 1\n62 5 97 80 81 28 83 0 26 0 0 0 0 23 0 0 90 0 0 0 0 0 0 0 0 54 71 8 0 0 42 0 73 0 17 0 1 31 71 78 58 72 84 39 54 59 13 29 16 41 71 35 88 55 70 50 33 100 100 60 52 90 7 66 44 55 51 42 90 17 86 44 46 8 52 74 8 22 2 92 34 37 58 98 70 74 19 91 74 25 4 38 71 68 50 68 63 14 60 98", "output": "160" }, { "input": "5 2 20\n27 0 32 21 19", "output": "30" }, { "input": "6 4 10\n10 0 0 0 0 10", "output": "20" }, { "input": "8 7 100\n1 0 0 0 0 0 0 1", "output": "10" }, { "input": "5 3 20\n1 21 0 0 1", "output": "20" }, { "input": "4 3 1\n0 0 0 1", "output": "10" }, { "input": "5 2 3\n4 0 5 6 1", "output": "30" }, { "input": "5 3 87\n88 89 0 1 90", "output": "10" }, { "input": "5 3 20\n15 30 0 15 35", "output": "10" }, { "input": "6 3 50\n0 0 0 1 2 0", "output": "10" }, { "input": "6 4 9\n100 9 10 0 0 9", "output": "20" }, { "input": "5 4 20\n0 20 0 0 20", "output": "10" }, { "input": "6 3 3\n1 5 0 2 2 0", "output": "10" }, { "input": "5 4 100\n0 1 0 0 1", "output": "10" } ]
1,602,213,537
2,147,483,647
Python 3
OK
TESTS
58
108
307,200
n, zane, money = map(int, input().split()) houses = [int(x) for x in input().split()] def findHouseToBuy(n, zane, money): start = zane - 1 end = zane - 1 distance = 10 while start > 0 and end < n - 1: start -= 1 end += 1 if houses[start] != 0 and houses[start] <= money or houses[end] != 0 and houses[end] <= money: return distance distance += 10 while start > 0: start -= 1 if houses[start] != 0 and houses[start] <= money: return distance distance += 10 while end < n-1: end += 1 if houses[end] != 0 and houses[end] <= money: return distance distance += 10 print(findHouseToBuy(n, zane, money))
Title: Buying A House Time Limit: None seconds Memory Limit: None megabytes Problem Description: Zane the wizard had never loved anyone before, until he fell in love with a girl, whose name remains unknown to us. The girl lives in house *m* of a village. There are *n* houses in that village, lining in a straight line from left to right: house 1, house 2, ..., house *n*. The village is also well-structured: house *i* and house *i*<=+<=1 (1<=≤<=*i*<=&lt;<=*n*) are exactly 10 meters away. In this village, some houses are occupied, and some are not. Indeed, unoccupied houses can be purchased. You will be given *n* integers *a*1,<=*a*2,<=...,<=*a**n* that denote the availability and the prices of the houses. If house *i* is occupied, and therefore cannot be bought, then *a**i* equals 0. Otherwise, house *i* can be bought, and *a**i* represents the money required to buy it, in dollars. As Zane has only *k* dollars to spare, it becomes a challenge for him to choose the house to purchase, so that he could live as near as possible to his crush. Help Zane determine the minimum distance from his crush's house to some house he can afford, to help him succeed in his love. Input Specification: The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=100) — the number of houses in the village, the house where the girl lives, and the amount of money Zane has (in dollars), respectively. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100) — denoting the availability and the prices of the houses. It is guaranteed that *a**m*<==<=0 and that it is possible to purchase some house with no more than *k* dollars. Output Specification: Print one integer — the minimum distance, in meters, from the house where the girl Zane likes lives to the house Zane can buy. Demo Input: ['5 1 20\n0 27 32 21 19\n', '7 3 50\n62 0 0 0 99 33 22\n', '10 5 100\n1 0 1 0 0 0 0 0 1 1\n'] Demo Output: ['40', '30', '20'] Note: In the first sample, with *k* = 20 dollars, Zane can buy only house 5. The distance from house *m* = 1 to house 5 is 10 + 10 + 10 + 10 = 40 meters. In the second sample, Zane can buy houses 6 and 7. It is better to buy house 6 than house 7, since house *m* = 3 and house 6 are only 30 meters away, while house *m* = 3 and house 7 are 40 meters away.
```python n, zane, money = map(int, input().split()) houses = [int(x) for x in input().split()] def findHouseToBuy(n, zane, money): start = zane - 1 end = zane - 1 distance = 10 while start > 0 and end < n - 1: start -= 1 end += 1 if houses[start] != 0 and houses[start] <= money or houses[end] != 0 and houses[end] <= money: return distance distance += 10 while start > 0: start -= 1 if houses[start] != 0 and houses[start] <= money: return distance distance += 10 while end < n-1: end += 1 if houses[end] != 0 and houses[end] <= money: return distance distance += 10 print(findHouseToBuy(n, zane, money)) ```
3
104
A
Blackjack
PROGRAMMING
800
[ "implementation" ]
A. Blackjack
2
256
One rainy gloomy evening when all modules hid in the nearby cafes to drink hot energetic cocktails, the Hexadecimal virus decided to fly over the Mainframe to look for a Great Idea. And she has found one! Why not make her own Codeforces, with blackjack and other really cool stuff? Many people will surely be willing to visit this splendid shrine of high culture. In Mainframe a standard pack of 52 cards is used to play blackjack. The pack contains cards of 13 values: 2, 3, 4, 5, 6, 7, 8, 9, 10, jacks, queens, kings and aces. Each value also exists in one of four suits: hearts, diamonds, clubs and spades. Also, each card earns some value in points assigned to it: cards with value from two to ten earn from 2 to 10 points, correspondingly. An ace can either earn 1 or 11, whatever the player wishes. The picture cards (king, queen and jack) earn 10 points. The number of points a card earns does not depend on the suit. The rules of the game are very simple. The player gets two cards, if the sum of points of those cards equals *n*, then the player wins, otherwise the player loses. The player has already got the first card, it's the queen of spades. To evaluate chances for victory, you should determine how many ways there are to get the second card so that the sum of points exactly equals *n*.
The only line contains *n* (1<=≤<=*n*<=≤<=25) — the required sum of points.
Print the numbers of ways to get the second card in the required way if the first card is the queen of spades.
[ "12\n", "20\n", "10\n" ]
[ "4", "15", "0" ]
In the first sample only four two's of different suits can earn the required sum of points. In the second sample we can use all tens, jacks, queens and kings; overall it's 15 cards, as the queen of spades (as any other card) is only present once in the pack of cards and it's already in use. In the third sample there is no card, that would add a zero to the current ten points.
500
[ { "input": "12", "output": "4" }, { "input": "20", "output": "15" }, { "input": "10", "output": "0" }, { "input": "11", "output": "4" }, { "input": "15", "output": "4" }, { "input": "18", "output": "4" }, { "input": "25", "output": "0" }, { "input": "22", "output": "0" }, { "input": "1", "output": "0" }, { "input": "2", "output": "0" }, { "input": "3", "output": "0" }, { "input": "4", "output": "0" }, { "input": "5", "output": "0" }, { "input": "6", "output": "0" }, { "input": "7", "output": "0" }, { "input": "8", "output": "0" }, { "input": "9", "output": "0" }, { "input": "13", "output": "4" }, { "input": "14", "output": "4" }, { "input": "16", "output": "4" }, { "input": "17", "output": "4" }, { "input": "19", "output": "4" }, { "input": "21", "output": "4" }, { "input": "23", "output": "0" }, { "input": "24", "output": "0" } ]
1,631,542,523
2,147,483,647
PyPy 3
OK
TESTS
25
216
20,172,800
n=int(input()) n-=10 if n>11: print(0) elif n==11: print(4) elif n==10: print(15) elif n<10 and n>=1: print(4) elif n<=0: print(0)
Title: Blackjack Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: One rainy gloomy evening when all modules hid in the nearby cafes to drink hot energetic cocktails, the Hexadecimal virus decided to fly over the Mainframe to look for a Great Idea. And she has found one! Why not make her own Codeforces, with blackjack and other really cool stuff? Many people will surely be willing to visit this splendid shrine of high culture. In Mainframe a standard pack of 52 cards is used to play blackjack. The pack contains cards of 13 values: 2, 3, 4, 5, 6, 7, 8, 9, 10, jacks, queens, kings and aces. Each value also exists in one of four suits: hearts, diamonds, clubs and spades. Also, each card earns some value in points assigned to it: cards with value from two to ten earn from 2 to 10 points, correspondingly. An ace can either earn 1 or 11, whatever the player wishes. The picture cards (king, queen and jack) earn 10 points. The number of points a card earns does not depend on the suit. The rules of the game are very simple. The player gets two cards, if the sum of points of those cards equals *n*, then the player wins, otherwise the player loses. The player has already got the first card, it's the queen of spades. To evaluate chances for victory, you should determine how many ways there are to get the second card so that the sum of points exactly equals *n*. Input Specification: The only line contains *n* (1<=≤<=*n*<=≤<=25) — the required sum of points. Output Specification: Print the numbers of ways to get the second card in the required way if the first card is the queen of spades. Demo Input: ['12\n', '20\n', '10\n'] Demo Output: ['4', '15', '0'] Note: In the first sample only four two's of different suits can earn the required sum of points. In the second sample we can use all tens, jacks, queens and kings; overall it's 15 cards, as the queen of spades (as any other card) is only present once in the pack of cards and it's already in use. In the third sample there is no card, that would add a zero to the current ten points.
```python n=int(input()) n-=10 if n>11: print(0) elif n==11: print(4) elif n==10: print(15) elif n<10 and n>=1: print(4) elif n<=0: print(0) ```
3.908425
940
B
Our Tanya is Crying Out Loud
PROGRAMMING
1,400
[ "dp", "greedy" ]
null
null
Right now she actually isn't. But she will be, if you don't solve this problem. You are given integers *n*, *k*, *A* and *B*. There is a number *x*, which is initially equal to *n*. You are allowed to perform two types of operations: 1. Subtract 1 from *x*. This operation costs you *A* coins. 1. Divide *x* by *k*. Can be performed only if *x* is divisible by *k*. This operation costs you *B* coins.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109). The second line contains a single integer *k* (1<=≤<=*k*<=≤<=2·109). The third line contains a single integer *A* (1<=≤<=*A*<=≤<=2·109). The fourth line contains a single integer *B* (1<=≤<=*B*<=≤<=2·109).
Output a single integer — the minimum amount of coins you have to pay to make *x* equal to 1.
[ "9\n2\n3\n1\n", "5\n5\n2\n20\n", "19\n3\n4\n2\n" ]
[ "6\n", "8\n", "12\n" ]
In the first testcase, the optimal strategy is as follows: - Subtract 1 from *x* (9 → 8) paying 3 coins. - Divide *x* by 2 (8 → 4) paying 1 coin. - Divide *x* by 2 (4 → 2) paying 1 coin. - Divide *x* by 2 (2 → 1) paying 1 coin. The total cost is 6 coins. In the second test case the optimal strategy is to subtract 1 from *x* 4 times paying 8 coins in total.
1,250
[ { "input": "9\n2\n3\n1", "output": "6" }, { "input": "5\n5\n2\n20", "output": "8" }, { "input": "19\n3\n4\n2", "output": "12" }, { "input": "1845999546\n999435865\n1234234\n2323423", "output": "1044857680578777" }, { "input": "1604353664\n1604353665\n9993432\n1", "output": "16032999235141416" }, { "input": "777888456\n1\n98\n43", "output": "76233068590" }, { "input": "1162261467\n3\n1\n2000000000", "output": "1162261466" }, { "input": "1000000000\n1999999999\n789987\n184569875", "output": "789986999210013" }, { "input": "2000000000\n2\n1\n2000000000", "output": "1999999999" }, { "input": "1999888325\n3\n2\n2000000000", "output": "3333258884" }, { "input": "1897546487\n687\n89798979\n879876541", "output": "110398404423" }, { "input": "20\n1\n20\n1", "output": "380" }, { "input": "16\n5\n17\n3", "output": "54" }, { "input": "19\n19\n19\n1", "output": "1" }, { "input": "18\n2\n3\n16", "output": "40" }, { "input": "1\n11\n8\n9", "output": "0" }, { "input": "9\n10\n1\n20", "output": "8" }, { "input": "19\n10\n19\n2", "output": "173" }, { "input": "16\n9\n14\n2", "output": "100" }, { "input": "15\n2\n5\n2", "output": "21" }, { "input": "14\n7\n13\n1", "output": "14" }, { "input": "43\n3\n45\n3", "output": "189" }, { "input": "99\n1\n98\n1", "output": "9604" }, { "input": "77\n93\n100\n77", "output": "7600" }, { "input": "81\n3\n91\n95", "output": "380" }, { "input": "78\n53\n87\n34", "output": "2209" }, { "input": "80\n3\n15\n1", "output": "108" }, { "input": "97\n24\n4\n24", "output": "40" }, { "input": "100\n100\n1\n100", "output": "99" }, { "input": "87\n4\n17\n7", "output": "106" }, { "input": "65\n2\n3\n6", "output": "36" }, { "input": "1000000\n1435\n3\n999999", "output": "1005804" }, { "input": "783464\n483464\n2\n966928", "output": "1566926" }, { "input": "248035\n11\n3\n20", "output": "202" }, { "input": "524287\n2\n945658\n999756", "output": "34963354" }, { "input": "947352\n78946\n85\n789654", "output": "790589" }, { "input": "1000000\n1\n999899\n60", "output": "999898000101" }, { "input": "753687\n977456\n6547\n456", "output": "4934382242" }, { "input": "1000000\n500000\n1\n999997", "output": "999998" }, { "input": "997458\n843596\n1\n843596", "output": "997457" }, { "input": "821109\n92\n6547\n98787", "output": "394566" }, { "input": "1073741823\n2\n9543\n8923453", "output": "188412866" }, { "input": "1000999777\n1934999345\n2356346\n34534565", "output": "2358701818178496" }, { "input": "2000000000\n1\n2000000000\n98", "output": "3999999998000000000" }, { "input": "1999324353\n978435356\n1\n978435356", "output": "1020888998" }, { "input": "2000000000\n2\n2000000000\n2000000000", "output": "84000000000" }, { "input": "241375690\n17\n2\n1998789654", "output": "482751378" }, { "input": "171507000\n350\n789\n6548687", "output": "14216965" }, { "input": "1100220011\n10001\n2\n1999778654", "output": "1999998674" }, { "input": "1867622656\n43216\n789644\n12315468", "output": "24630936" }, { "input": "1867622656\n43216\n1\n1879865413", "output": "1867622655" }, { "input": "1999999999\n1000000000\n789987\n184569875", "output": "789987183779888" }, { "input": "1987987897\n103546\n7\n98754563", "output": "98946650" }, { "input": "10\n2\n2\n5", "output": "13" }, { "input": "7\n2\n1\n100000", "output": "6" }, { "input": "7\n2\n3\n1", "output": "8" }, { "input": "2000000000\n666666667\n1\n1", "output": "666666668" }, { "input": "1999999997\n666666666\n2\n2", "output": "1333333334" } ]
1,521,970,838
2,147,483,647
Python 3
OK
TESTS
58
93
7,065,600
n,k,a,b = int(input()),int(input()),int(input()),int(input()) if k==1: print(a*(n-1)) else: ans = 0 while n>1: if n%k==0: nw = n//k diff = n-nw if a*diff<b: ans += a*diff else: ans += b n = nw else: tosub = n%k ans += a*tosub n -= tosub if n==0: ans -= a print(ans)
Title: Our Tanya is Crying Out Loud Time Limit: None seconds Memory Limit: None megabytes Problem Description: Right now she actually isn't. But she will be, if you don't solve this problem. You are given integers *n*, *k*, *A* and *B*. There is a number *x*, which is initially equal to *n*. You are allowed to perform two types of operations: 1. Subtract 1 from *x*. This operation costs you *A* coins. 1. Divide *x* by *k*. Can be performed only if *x* is divisible by *k*. This operation costs you *B* coins. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109). The second line contains a single integer *k* (1<=≤<=*k*<=≤<=2·109). The third line contains a single integer *A* (1<=≤<=*A*<=≤<=2·109). The fourth line contains a single integer *B* (1<=≤<=*B*<=≤<=2·109). Output Specification: Output a single integer — the minimum amount of coins you have to pay to make *x* equal to 1. Demo Input: ['9\n2\n3\n1\n', '5\n5\n2\n20\n', '19\n3\n4\n2\n'] Demo Output: ['6\n', '8\n', '12\n'] Note: In the first testcase, the optimal strategy is as follows: - Subtract 1 from *x* (9 → 8) paying 3 coins. - Divide *x* by 2 (8 → 4) paying 1 coin. - Divide *x* by 2 (4 → 2) paying 1 coin. - Divide *x* by 2 (2 → 1) paying 1 coin. The total cost is 6 coins. In the second test case the optimal strategy is to subtract 1 from *x* 4 times paying 8 coins in total.
```python n,k,a,b = int(input()),int(input()),int(input()),int(input()) if k==1: print(a*(n-1)) else: ans = 0 while n>1: if n%k==0: nw = n//k diff = n-nw if a*diff<b: ans += a*diff else: ans += b n = nw else: tosub = n%k ans += a*tosub n -= tosub if n==0: ans -= a print(ans) ```
3
408
A
Line to Cashier
PROGRAMMING
900
[ "implementation" ]
null
null
Little Vasya went to the supermarket to get some groceries. He walked about the supermarket for a long time and got a basket full of products. Now he needs to choose the cashier to pay for the products. There are *n* cashiers at the exit from the supermarket. At the moment the queue for the *i*-th cashier already has *k**i* people. The *j*-th person standing in the queue to the *i*-th cashier has *m**i*,<=*j* items in the basket. Vasya knows that: - the cashier needs 5 seconds to scan one item; - after the cashier scans each item of some customer, he needs 15 seconds to take the customer's money and give him the change. Of course, Vasya wants to select a queue so that he can leave the supermarket as soon as possible. Help him write a program that displays the minimum number of seconds after which Vasya can get to one of the cashiers.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of cashes in the shop. The second line contains *n* space-separated integers: *k*1,<=*k*2,<=...,<=*k**n* (1<=≤<=*k**i*<=≤<=100), where *k**i* is the number of people in the queue to the *i*-th cashier. The *i*-th of the next *n* lines contains *k**i* space-separated integers: *m**i*,<=1,<=*m**i*,<=2,<=...,<=*m**i*,<=*k**i* (1<=≤<=*m**i*,<=*j*<=≤<=100) — the number of products the *j*-th person in the queue for the *i*-th cash has.
Print a single integer — the minimum number of seconds Vasya needs to get to the cashier.
[ "1\n1\n1\n", "4\n1 4 3 2\n100\n1 2 2 3\n1 9 1\n7 8\n" ]
[ "20\n", "100\n" ]
In the second test sample, if Vasya goes to the first queue, he gets to the cashier in 100·5 + 15 = 515 seconds. But if he chooses the second queue, he will need 1·5 + 2·5 + 2·5 + 3·5 + 4·15 = 100 seconds. He will need 1·5 + 9·5 + 1·5 + 3·15 = 100 seconds for the third one and 7·5 + 8·5 + 2·15 = 105 seconds for the fourth one. Thus, Vasya gets to the cashier quicker if he chooses the second or the third queue.
500
[ { "input": "1\n1\n1", "output": "20" }, { "input": "4\n1 4 3 2\n100\n1 2 2 3\n1 9 1\n7 8", "output": "100" }, { "input": "4\n5 4 5 5\n3 1 3 1 2\n3 1 1 3\n1 1 1 2 2\n2 2 1 1 3", "output": "100" }, { "input": "5\n5 3 6 6 4\n7 5 3 3 9\n6 8 2\n1 10 8 5 9 2\n9 7 8 5 9 10\n9 8 3 3", "output": "125" }, { "input": "5\n10 10 10 10 10\n6 7 8 6 8 5 9 8 10 5\n9 6 9 8 7 8 8 10 8 5\n8 7 7 8 7 5 6 8 9 5\n6 5 10 5 5 10 7 8 5 5\n10 9 8 7 6 9 7 9 6 5", "output": "480" }, { "input": "10\n9 10 10 10 9 5 9 7 8 7\n11 6 10 4 4 15 7 15 5\n3 9 11 12 11 1 13 13 1 5\n6 15 9 12 3 2 8 12 11 10\n7 1 1 6 10 2 6 1 14 2\n8 14 2 3 6 1 14 1 12\n6 10 9 3 5\n13 12 12 7 13 4 4 8 10\n5 6 4 3 14 9 13\n8 12 1 5 7 4 13 1\n1 9 5 3 5 1 4", "output": "240" }, { "input": "10\n5 5 5 5 5 5 5 5 5 5\n5 5 4 5 4\n6 5 7 7 6\n5 4 4 5 5\n4 4 5 5 5\n7 6 4 5 7\n4 6 5 4 5\n6 6 7 6 6\n4 5 4 4 7\n7 5 4 4 5\n6 6 7 4 4", "output": "190" }, { "input": "1\n1\n100", "output": "515" }, { "input": "1\n90\n90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90", "output": "41850" } ]
1,578,684,193
2,147,483,647
Python 3
OK
TESTS
20
109
307,200
n=int(input()) l=list(map(int,input().split())) k=[15*l[x]+sum(list(map(int,input().split())))*5 for x in range(n)] print(min(k))
Title: Line to Cashier Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Vasya went to the supermarket to get some groceries. He walked about the supermarket for a long time and got a basket full of products. Now he needs to choose the cashier to pay for the products. There are *n* cashiers at the exit from the supermarket. At the moment the queue for the *i*-th cashier already has *k**i* people. The *j*-th person standing in the queue to the *i*-th cashier has *m**i*,<=*j* items in the basket. Vasya knows that: - the cashier needs 5 seconds to scan one item; - after the cashier scans each item of some customer, he needs 15 seconds to take the customer's money and give him the change. Of course, Vasya wants to select a queue so that he can leave the supermarket as soon as possible. Help him write a program that displays the minimum number of seconds after which Vasya can get to one of the cashiers. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of cashes in the shop. The second line contains *n* space-separated integers: *k*1,<=*k*2,<=...,<=*k**n* (1<=≤<=*k**i*<=≤<=100), where *k**i* is the number of people in the queue to the *i*-th cashier. The *i*-th of the next *n* lines contains *k**i* space-separated integers: *m**i*,<=1,<=*m**i*,<=2,<=...,<=*m**i*,<=*k**i* (1<=≤<=*m**i*,<=*j*<=≤<=100) — the number of products the *j*-th person in the queue for the *i*-th cash has. Output Specification: Print a single integer — the minimum number of seconds Vasya needs to get to the cashier. Demo Input: ['1\n1\n1\n', '4\n1 4 3 2\n100\n1 2 2 3\n1 9 1\n7 8\n'] Demo Output: ['20\n', '100\n'] Note: In the second test sample, if Vasya goes to the first queue, he gets to the cashier in 100·5 + 15 = 515 seconds. But if he chooses the second queue, he will need 1·5 + 2·5 + 2·5 + 3·5 + 4·15 = 100 seconds. He will need 1·5 + 9·5 + 1·5 + 3·15 = 100 seconds for the third one and 7·5 + 8·5 + 2·15 = 105 seconds for the fourth one. Thus, Vasya gets to the cashier quicker if he chooses the second or the third queue.
```python n=int(input()) l=list(map(int,input().split())) k=[15*l[x]+sum(list(map(int,input().split())))*5 for x in range(n)] print(min(k)) ```
3
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,692,121,583
2,147,483,647
PyPy 3-64
OK
TESTS
35
154
0
a,b=map(int,input().split()) if a%2==0 or b%2==0: res=(a*b)//2 else: res=(a*b-1)//2 print(res)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python a,b=map(int,input().split()) if a%2==0 or b%2==0: res=(a*b)//2 else: res=(a*b-1)//2 print(res) ```
3.9615
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,670,786,315
2,147,483,647
PyPy 3-64
OK
TESTS
102
62
0
import sys #sys.stdin = open("input.txt", "r") #sys.stdout = open("output.txt", "w") def main(): m = sys.stdin.readline().rstrip() n = sys.stdin.readline().rstrip() answer = [] for i in range(len(m)): if m[i] == n[i]: answer.append(0) else: answer.append(1) print(*answer, sep='') if __name__ == '__main__': main()
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python import sys #sys.stdin = open("input.txt", "r") #sys.stdout = open("output.txt", "w") def main(): m = sys.stdin.readline().rstrip() n = sys.stdin.readline().rstrip() answer = [] for i in range(len(m)): if m[i] == n[i]: answer.append(0) else: answer.append(1) print(*answer, sep='') if __name__ == '__main__': main() ```
3.9845
835
A
Key races
PROGRAMMING
800
[ "math" ]
null
null
Two boys decided to compete in text typing on the site "Key races". During the competition, they have to type a text consisting of *s* characters. The first participant types one character in *v*1 milliseconds and has ping *t*1 milliseconds. The second participant types one character in *v*2 milliseconds and has ping *t*2 milliseconds. If connection ping (delay) is *t* milliseconds, the competition passes for a participant as follows: 1. Exactly after *t* milliseconds after the start of the competition the participant receives the text to be entered. 1. Right after that he starts to type it. 1. Exactly *t* milliseconds after he ends typing all the text, the site receives information about it. The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw. Given the length of the text and the information about participants, determine the result of the game.
The first line contains five integers *s*, *v*1, *v*2, *t*1, *t*2 (1<=≤<=*s*,<=*v*1,<=*v*2,<=*t*1,<=*t*2<=≤<=1000) — the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant.
If the first participant wins, print "First". If the second participant wins, print "Second". In case of a draw print "Friendship".
[ "5 1 2 1 2\n", "3 3 1 1 1\n", "4 5 3 1 5\n" ]
[ "First\n", "Second\n", "Friendship\n" ]
In the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant — in 14 milliseconds. So, the first wins. In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant — in 5 milliseconds. So, the second wins. In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant — in 22 milliseconds. So, it is be a draw.
500
[ { "input": "5 1 2 1 2", "output": "First" }, { "input": "3 3 1 1 1", "output": "Second" }, { "input": "4 5 3 1 5", "output": "Friendship" }, { "input": "1000 1000 1000 1000 1000", "output": "Friendship" }, { "input": "1 1 1 1 1", "output": "Friendship" }, { "input": "8 8 1 1 1", "output": "Second" }, { "input": "15 14 32 65 28", "output": "First" }, { "input": "894 197 325 232 902", "output": "First" }, { "input": "1 2 8 8 5", "output": "Friendship" }, { "input": "37 261 207 1 1000", "output": "Friendship" }, { "input": "29 344 406 900 1", "output": "Friendship" }, { "input": "1 2 8 9 8", "output": "First" }, { "input": "2 9 8 8 9", "output": "Friendship" }, { "input": "213 480 811 134 745", "output": "First" }, { "input": "2 313 856 964 421", "output": "Friendship" }, { "input": "1 10 2 6 10", "output": "Friendship" }, { "input": "2 7 6 2 3", "output": "Friendship" }, { "input": "637 324 69 612 998", "output": "Second" }, { "input": "13 849 819 723 918", "output": "Friendship" }, { "input": "9 5 7 8 7", "output": "First" }, { "input": "6 5 7 10 4", "output": "Friendship" }, { "input": "61 464 623 89 548", "output": "First" }, { "input": "641 31 29 161 802", "output": "Friendship" }, { "input": "3 3 1 6 9", "output": "Friendship" }, { "input": "2 3 9 8 2", "output": "Friendship" }, { "input": "485 117 368 567 609", "output": "First" }, { "input": "4 202 512 995 375", "output": "Friendship" }, { "input": "424 41 41 909 909", "output": "Friendship" }, { "input": "884 913 263 641 265", "output": "Second" }, { "input": "12 462 8 311 327", "output": "Second" }, { "input": "436 306 266 493 580", "output": "Second" }, { "input": "69 1 2 1 2", "output": "First" } ]
1,676,023,910
2,147,483,647
PyPy 3-64
OK
TESTS
32
77
0
s, v1, v2, k1, k2=map(int, input().split()) first=(s*v1)+(k1*2) second=(s*v2)+(k2*2) if first==second: print('Friendship') else: if first>second: print('Second') else: print('First')
Title: Key races Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two boys decided to compete in text typing on the site "Key races". During the competition, they have to type a text consisting of *s* characters. The first participant types one character in *v*1 milliseconds and has ping *t*1 milliseconds. The second participant types one character in *v*2 milliseconds and has ping *t*2 milliseconds. If connection ping (delay) is *t* milliseconds, the competition passes for a participant as follows: 1. Exactly after *t* milliseconds after the start of the competition the participant receives the text to be entered. 1. Right after that he starts to type it. 1. Exactly *t* milliseconds after he ends typing all the text, the site receives information about it. The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw. Given the length of the text and the information about participants, determine the result of the game. Input Specification: The first line contains five integers *s*, *v*1, *v*2, *t*1, *t*2 (1<=≤<=*s*,<=*v*1,<=*v*2,<=*t*1,<=*t*2<=≤<=1000) — the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant. Output Specification: If the first participant wins, print "First". If the second participant wins, print "Second". In case of a draw print "Friendship". Demo Input: ['5 1 2 1 2\n', '3 3 1 1 1\n', '4 5 3 1 5\n'] Demo Output: ['First\n', 'Second\n', 'Friendship\n'] Note: In the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant — in 14 milliseconds. So, the first wins. In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant — in 5 milliseconds. So, the second wins. In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant — in 22 milliseconds. So, it is be a draw.
```python s, v1, v2, k1, k2=map(int, input().split()) first=(s*v1)+(k1*2) second=(s*v2)+(k2*2) if first==second: print('Friendship') else: if first>second: print('Second') else: print('First') ```
3
58
A
Chat room
PROGRAMMING
1,000
[ "greedy", "strings" ]
A. Chat room
1
256
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
If Vasya managed to say hello, print "YES", otherwise print "NO".
[ "ahhellllloou\n", "hlelo\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "ahhellllloou", "output": "YES" }, { "input": "hlelo", "output": "NO" }, { "input": "helhcludoo", "output": "YES" }, { "input": "hehwelloho", "output": "YES" }, { "input": "pnnepelqomhhheollvlo", "output": "YES" }, { "input": "tymbzjyqhymedasloqbq", "output": "NO" }, { "input": "yehluhlkwo", "output": "NO" }, { "input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello", "output": "YES" }, { "input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq", "output": "YES" }, { "input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi", "output": "YES" }, { "input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo", "output": "YES" }, { "input": "lqllcolohwflhfhlnaow", "output": "NO" }, { "input": "heheeellollvoo", "output": "YES" }, { "input": "hellooo", "output": "YES" }, { "input": "o", "output": "NO" }, { "input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv", "output": "YES" }, { "input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk", "output": "YES" }, { "input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry", "output": "NO" }, { "input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq", "output": "NO" }, { "input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi", "output": "YES" }, { "input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm", "output": "YES" }, { "input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac", "output": "NO" }, { "input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok", "output": "YES" }, { "input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz", "output": "YES" }, { "input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb", "output": "YES" }, { "input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla", "output": "YES" }, { "input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz", "output": "YES" }, { "input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti", "output": "YES" }, { "input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli", "output": "YES" }, { "input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo", "output": "YES" }, { "input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk", "output": "NO" }, { "input": "loee", "output": "NO" }, { "input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo", "output": "NO" }, { "input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi", "output": "YES" }, { "input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv", "output": "NO" }, { "input": "hello", "output": "YES" }, { "input": "oohell", "output": "NO" }, { "input": "hell", "output": "NO" }, { "input": "eloellohoelo", "output": "NO" }, { "input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo", "output": "YES" } ]
1,691,044,884
2,147,483,647
PyPy 3-64
OK
TESTS
40
62
0
str=input() h=False e=False l1=False l2=False o=False for i in range(len(str)): if str[i]=='h' : h=True elif str[i]=='e' and h==True: e=True elif str[i]=='l' and e==True and l1!=True: l1=True elif str[i]=='l' and l1==True: l2=True elif str[i]=='o' and l2==True: o=True if o==True: print("YES") else: print("NO")
Title: Chat room Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*. Input Specification: The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters. Output Specification: If Vasya managed to say hello, print "YES", otherwise print "NO". Demo Input: ['ahhellllloou\n', 'hlelo\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python str=input() h=False e=False l1=False l2=False o=False for i in range(len(str)): if str[i]=='h' : h=True elif str[i]=='e' and h==True: e=True elif str[i]=='l' and e==True and l1!=True: l1=True elif str[i]=='l' and l1==True: l2=True elif str[i]=='o' and l2==True: o=True if o==True: print("YES") else: print("NO") ```
3.969
894
A
QAQ
PROGRAMMING
800
[ "brute force", "dp" ]
null
null
"QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth. Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!). Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact.
The only line contains a string of length *n* (1<=≤<=*n*<=≤<=100). It's guaranteed that the string only contains uppercase English letters.
Print a single integer — the number of subsequences "QAQ" in the string.
[ "QAQAQYSYIOIWIN\n", "QAQQQZZYNOIWIN\n" ]
[ "4\n", "3\n" ]
In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
500
[ { "input": "QAQAQYSYIOIWIN", "output": "4" }, { "input": "QAQQQZZYNOIWIN", "output": "3" }, { "input": "QA", "output": "0" }, { "input": "IAQVAQZLQBQVQFTQQQADAQJA", "output": "24" }, { "input": "QQAAQASGAYAAAAKAKAQIQEAQAIAAIAQQQQQ", "output": "378" }, { "input": "AMVFNFJIAVNQJWIVONQOAOOQSNQSONOASONAONQINAONAOIQONANOIQOANOQINAONOQINAONOXJCOIAQOAOQAQAQAQAQWWWAQQAQ", "output": "1077" }, { "input": "AAQQAXBQQBQQXBNQRJAQKQNAQNQVDQASAGGANQQQQTJFFQQQTQQA", "output": "568" }, { "input": "KAZXAVLPJQBQVQQQQQAPAQQGQTQVZQAAAOYA", "output": "70" }, { "input": "W", "output": "0" }, { "input": "DBA", "output": "0" }, { "input": "RQAWNACASAAKAGAAAAQ", "output": "10" }, { "input": "QJAWZAAOAAGIAAAAAOQATASQAEAAAAQFQQHPA", "output": "111" }, { "input": "QQKWQAQAAAAAAAAGAAVAQUEQQUMQMAQQQNQLAMAAAUAEAAEMAAA", "output": "411" }, { "input": "QQUMQAYAUAAGWAAAQSDAVAAQAAAASKQJJQQQQMAWAYYAAAAAAEAJAXWQQ", "output": "625" }, { "input": "QORZOYAQ", "output": "1" }, { "input": "QCQAQAGAWAQQQAQAVQAQQQQAQAQQQAQAAATQAAVAAAQQQQAAAUUQAQQNQQWQQWAQAAQQKQYAQAAQQQAAQRAQQQWBQQQQAPBAQGQA", "output": "13174" }, { "input": "QQAQQAKQFAQLQAAWAMQAZQAJQAAQQOACQQAAAYANAQAQQAQAAQQAOBQQJQAQAQAQQQAAAAABQQQAVNZAQQQQAMQQAFAAEAQAQHQT", "output": "10420" }, { "input": "AQEGQHQQKQAQQPQKAQQQAAAAQQQAQEQAAQAAQAQFSLAAQQAQOQQAVQAAAPQQAWAQAQAFQAXAQQQQTRLOQAQQJQNQXQQQQSQVDQQQ", "output": "12488" }, { "input": "QNQKQQQLASQBAVQQQQAAQQOQRJQQAQQQEQZUOANAADAAQQJAQAQARAAAQQQEQBHTQAAQAAAAQQMKQQQIAOJJQQAQAAADADQUQQQA", "output": "9114" }, { "input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ", "output": "35937" }, { "input": "AMQQAAQAAQAAAAAAQQQBOAAANAAKQJCYQAE", "output": "254" }, { "input": "AYQBAEQGAQEOAKGIXLQJAIAKQAAAQPUAJAKAATFWQQAOQQQUFQYAQQMQHOKAAJXGFCARAQSATHAUQQAATQJJQDQRAANQQAE", "output": "2174" }, { "input": "AAQXAAQAYQAAAAGAQHVQYAGIVACADFAAQAAAAQZAAQMAKZAADQAQDAAQDAAAMQQOXYAQQQAKQBAAQQKAXQBJZDDLAAHQQ", "output": "2962" }, { "input": "AYQQYAVAMNIAUAAKBBQVACWKTQSAQZAAQAAASZJAWBCAALAARHACQAKQQAQAARPAQAAQAQAAZQUSHQAMFVFZQQQQSAQQXAA", "output": "2482" }, { "input": "LQMAQQARQAQBJQQQAGAAZQQXALQQAARQAQQQQAAQQAQQQAQQCAQQAQQAYQQQRAAZATQALYQQAAHHAAQHAAAAAAAAQQMAAQNAKQ", "output": "7768" }, { "input": "MAQQWAQOYQMAAAQAQPQZAOAAQAUAQNAAQAAAITQSAQAKAQKAQQWSQAAQQAGUCDQMQWKQUXKWQQAAQQAAQQZQDQQQAABXQUUXQOA", "output": "5422" }, { "input": "QTAAQDAQXAQQJQQQGAAAQQQQSBQZKAQQAQQQQEAQNUQBZCQLYQZQEQQAAQHQVAORKQVAQYQNASZQAARZAAGAAAAOQDCQ", "output": "3024" }, { "input": "QQWAQQGQQUZQQQLZAAQYQXQVAQFQUAQZUQZZQUKBHSHTQYLQAOQXAQQGAQQTQOAQARQADAJRAAQPQAQQUQAUAMAUVQAAAQQAWQ", "output": "4527" }, { "input": "QQAAQQAQVAQZQQQQAOEAQZPQIBQZACQQAFQQLAAQDATZQANHKYQQAQTAAFQRQAIQAJPWQAQTEIRXAEQQAYWAAAUKQQAQAQQQSQQH", "output": "6416" }, { "input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAAAA", "output": "14270" }, { "input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQ", "output": "13136" }, { "input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA", "output": "14270" }, { "input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQQAA", "output": "14231" }, { "input": "QQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA", "output": "15296" }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ", "output": "0" }, { "input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "0" }, { "input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ", "output": "0" }, { "input": "QAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQA", "output": "20825" }, { "input": "AQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQ", "output": "20825" }, { "input": "Q", "output": "0" }, { "input": "A", "output": "0" }, { "input": "FFF", "output": "0" }, { "input": "AAAAAA", "output": "0" } ]
1,610,710,320
2,147,483,647
PyPy 3
OK
TESTS
43
108
0
# -*- coding: utf-8 -*- """ Created on Fri Jan 15 14:27:01 2021 @author: Олег """ s = input() ql = 0 c = 0 qr = s.count('Q') for i in range(len(s)): if s[i] == 'Q': ql += 1 qr -= 1 elif s[i] == 'A': c += ql * qr print(c)
Title: QAQ Time Limit: None seconds Memory Limit: None megabytes Problem Description: "QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth. Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!). Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact. Input Specification: The only line contains a string of length *n* (1<=≤<=*n*<=≤<=100). It's guaranteed that the string only contains uppercase English letters. Output Specification: Print a single integer — the number of subsequences "QAQ" in the string. Demo Input: ['QAQAQYSYIOIWIN\n', 'QAQQQZZYNOIWIN\n'] Demo Output: ['4\n', '3\n'] Note: In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
```python # -*- coding: utf-8 -*- """ Created on Fri Jan 15 14:27:01 2021 @author: Олег """ s = input() ql = 0 c = 0 qr = s.count('Q') for i in range(len(s)): if s[i] == 'Q': ql += 1 qr -= 1 elif s[i] == 'A': c += ql * qr print(c) ```
3
189
A
Cut Ribbon
PROGRAMMING
1,300
[ "brute force", "dp" ]
null
null
Polycarpus has a ribbon, its length is *n*. He wants to cut the ribbon in a way that fulfils the following two conditions: - After the cutting each ribbon piece should have length *a*, *b* or *c*. - After the cutting the number of ribbon pieces should be maximum. Help Polycarpus and find the number of ribbon pieces after the required cutting.
The first line contains four space-separated integers *n*, *a*, *b* and *c* (1<=≤<=*n*,<=*a*,<=*b*,<=*c*<=≤<=4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers *a*, *b* and *c* can coincide.
Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.
[ "5 5 3 2\n", "7 5 5 2\n" ]
[ "2\n", "2\n" ]
In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3. In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.
500
[ { "input": "5 5 3 2", "output": "2" }, { "input": "7 5 5 2", "output": "2" }, { "input": "4 4 4 4", "output": "1" }, { "input": "1 1 1 1", "output": "1" }, { "input": "4000 1 2 3", "output": "4000" }, { "input": "4000 3 4 5", "output": "1333" }, { "input": "10 3 4 5", "output": "3" }, { "input": "100 23 15 50", "output": "2" }, { "input": "3119 3515 1021 7", "output": "11" }, { "input": "918 102 1327 1733", "output": "9" }, { "input": "3164 42 430 1309", "output": "15" }, { "input": "3043 317 1141 2438", "output": "7" }, { "input": "26 1 772 2683", "output": "26" }, { "input": "370 2 1 15", "output": "370" }, { "input": "734 12 6 2", "output": "367" }, { "input": "418 18 14 17", "output": "29" }, { "input": "18 16 28 9", "output": "2" }, { "input": "14 6 2 17", "output": "7" }, { "input": "29 27 18 2", "output": "2" }, { "input": "29 12 7 10", "output": "3" }, { "input": "27 23 4 3", "output": "9" }, { "input": "5 14 5 2", "output": "1" }, { "input": "5 17 26 5", "output": "1" }, { "input": "9 1 10 3", "output": "9" }, { "input": "2 19 15 1", "output": "2" }, { "input": "4 6 4 9", "output": "1" }, { "input": "10 6 2 9", "output": "5" }, { "input": "2 2 9 6", "output": "1" }, { "input": "6 2 4 1", "output": "6" }, { "input": "27 24 5 27", "output": "1" }, { "input": "2683 83 26 2709", "output": "101" }, { "input": "728 412 789 158", "output": "3" }, { "input": "3964 4 2916 176", "output": "991" }, { "input": "3399 2035 2 3334", "output": "683" }, { "input": "3455 244 3301 3", "output": "991" }, { "input": "595 2263 3625 1", "output": "595" }, { "input": "4000 1 1 1", "output": "4000" }, { "input": "3999 2 2 3999", "output": "1" }, { "input": "25 6 8 11", "output": "3" }, { "input": "4000 500 1000 2000", "output": "8" }, { "input": "53 10 11 23", "output": "5" }, { "input": "100 100 1 1", "output": "100" }, { "input": "17 3 4 10", "output": "5" }, { "input": "413 101 102 105", "output": "4" }, { "input": "490 4 49 50", "output": "111" }, { "input": "3999 2 3 3", "output": "1999" }, { "input": "8 3 8 4", "output": "2" }, { "input": "5 1 3 3", "output": "5" }, { "input": "100 3 17 22", "output": "27" }, { "input": "4000 2 3 4", "output": "2000" }, { "input": "4000 3 3 5", "output": "1332" }, { "input": "13 4 6 7", "output": "2" }, { "input": "4000 5 2 2", "output": "2000" }, { "input": "3999 2 2 3", "output": "1999" }, { "input": "4000 33 7 3333", "output": "564" }, { "input": "60 33 20 9", "output": "4" }, { "input": "100 9 11 99", "output": "10" }, { "input": "2009 6 8 9", "output": "334" } ]
1,677,250,065
2,147,483,647
Python 3
OK
TESTS
58
62
0
n, a, b, c = map(int, input().split()) dp = [0] + [-1e9]*5000 for i in range(1, n + 1): dp[i] = max(dp[i - a], dp[i - b], dp[i - c]) + 1 print(dp[n])
Title: Cut Ribbon Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus has a ribbon, its length is *n*. He wants to cut the ribbon in a way that fulfils the following two conditions: - After the cutting each ribbon piece should have length *a*, *b* or *c*. - After the cutting the number of ribbon pieces should be maximum. Help Polycarpus and find the number of ribbon pieces after the required cutting. Input Specification: The first line contains four space-separated integers *n*, *a*, *b* and *c* (1<=≤<=*n*,<=*a*,<=*b*,<=*c*<=≤<=4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers *a*, *b* and *c* can coincide. Output Specification: Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists. Demo Input: ['5 5 3 2\n', '7 5 5 2\n'] Demo Output: ['2\n', '2\n'] Note: In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3. In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.
```python n, a, b, c = map(int, input().split()) dp = [0] + [-1e9]*5000 for i in range(1, n + 1): dp[i] = max(dp[i - a], dp[i - b], dp[i - c]) + 1 print(dp[n]) ```
3
670
D1
Magic Powder - 1
PROGRAMMING
1,400
[ "binary search", "brute force", "implementation" ]
null
null
This problem is given in two versions that differ only by constraints. If you can solve this problem in large constraints, then you can just write a single solution to the both versions. If you find the problem too difficult in large constraints, you can write solution to the simplified version only. Waking up in the morning, Apollinaria decided to bake cookies. To bake one cookie, she needs *n* ingredients, and for each ingredient she knows the value *a**i* — how many grams of this ingredient one needs to bake a cookie. To prepare one cookie Apollinaria needs to use all *n* ingredients. Apollinaria has *b**i* gram of the *i*-th ingredient. Also she has *k* grams of a magic powder. Each gram of magic powder can be turned to exactly 1 gram of any of the *n* ingredients and can be used for baking cookies. Your task is to determine the maximum number of cookies, which Apollinaria is able to bake using the ingredients that she has and the magic powder.
The first line of the input contains two positive integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=1000) — the number of ingredients and the number of grams of the magic powder. The second line contains the sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000), where the *i*-th number is equal to the number of grams of the *i*-th ingredient, needed to bake one cookie. The third line contains the sequence *b*1,<=*b*2,<=...,<=*b**n* (1<=≤<=*b**i*<=≤<=1000), where the *i*-th number is equal to the number of grams of the *i*-th ingredient, which Apollinaria has.
Print the maximum number of cookies, which Apollinaria will be able to bake using the ingredients that she has and the magic powder.
[ "3 1\n2 1 4\n11 3 16\n", "4 3\n4 3 5 6\n11 12 14 20\n" ]
[ "4\n", "3\n" ]
In the first sample it is profitably for Apollinaria to make the existing 1 gram of her magic powder to ingredient with the index 2, then Apollinaria will be able to bake 4 cookies. In the second sample Apollinaria should turn 1 gram of magic powder to ingredient with the index 1 and 1 gram of magic powder to ingredient with the index 3. Then Apollinaria will be able to bake 3 cookies. The remaining 1 gram of the magic powder can be left, because it can't be used to increase the answer.
1,000
[ { "input": "3 1\n2 1 4\n11 3 16", "output": "4" }, { "input": "4 3\n4 3 5 6\n11 12 14 20", "output": "3" }, { "input": "10 926\n5 6 8 1 2 5 1 8 4 4\n351 739 998 725 953 970 906 691 707 1000", "output": "137" }, { "input": "20 925\n7 3 1 2 1 3 1 3 1 2 3 1 5 8 1 3 7 3 4 2\n837 898 965 807 786 670 626 873 968 745 878 359 760 781 829 882 777 740 907 779", "output": "150" }, { "input": "30 300\n1 4 2 1 2 5 6 4 1 3 2 1 1 1 1 1 2 3 1 3 4 2 2 3 2 2 2 1 1 1\n997 817 767 860 835 809 817 565 630 804 586 953 977 356 905 890 958 916 740 583 902 945 313 956 871 729 976 707 516 788", "output": "164" }, { "input": "40 538\n1 3 3 1 4 1 1 1 1 5 3 3 4 1 4 2 7 1 4 1 1 2 2 1 1 1 1 4 1 4 2 3 3 3 1 3 4 1 3 5\n975 635 795 835 982 965 639 787 688 796 988 779 839 942 491 696 396 995 718 810 796 879 957 783 844 765 968 783 647 214 995 868 318 453 989 889 504 962 945 925", "output": "104" }, { "input": "50 530\n2 3 3 1 1 1 3 4 4 2 4 2 5 1 3 1 2 6 1 1 2 5 3 2 1 5 1 3 3 2 1 1 1 1 2 1 1 2 2 1 4 2 1 3 1 2 1 1 4 2\n959 972 201 990 675 679 972 268 976 886 488 924 795 959 647 994 969 862 898 646 763 797 978 763 995 641 923 856 829 921 934 883 904 986 728 980 1000 775 716 745 833 832 999 651 571 626 827 456 636 795", "output": "133" }, { "input": "60 735\n3 1 4 7 1 7 3 1 1 5 4 7 3 3 3 2 5 3 1 2 3 6 1 1 1 1 1 2 5 3 2 1 3 5 2 1 2 2 2 2 1 3 3 3 6 4 3 5 1 3 2 2 1 3 1 1 1 7 1 2\n596 968 975 493 665 571 598 834 948 941 737 649 923 848 950 907 929 865 227 836 956 796 861 801 746 667 539 807 405 355 501 879 994 890 573 848 597 873 130 985 924 426 999 550 586 924 601 807 994 878 410 817 922 898 982 525 611 685 806 847", "output": "103" }, { "input": "1 1\n1\n1", "output": "2" }, { "input": "70 130\n2 1 2 2 3 3 2 5 2 2 3 3 3 1 1 4 3 5 3 2 1 3 7 1 2 7 5 2 1 6 3 4 1 2 1 1 1 1 3 6 4 2 2 8 2 2 4 1 4 2 1 4 4 3 5 1 1 1 1 1 2 3 1 5 1 3 3 4 2 2\n473 311 758 768 797 572 656 898 991 534 989 702 934 767 777 799 1000 655 806 727 718 948 834 965 832 778 706 861 799 874 745 970 772 967 984 886 835 795 832 837 950 952 475 891 947 952 903 929 689 478 725 945 585 943 771 631 729 887 557 738 824 758 999 786 669 992 918 762 964 941", "output": "119" }, { "input": "80 979\n2 1 1 1 2 1 1 1 3 1 4 4 2 1 1 3 1 1 2 1 4 1 1 2 5 4 8 1 3 6 5 7 2 3 4 1 2 2 6 1 2 2 4 1 1 2 3 2 8 1 1 3 3 4 1 1 2 1 4 4 1 4 3 2 6 5 2 1 4 1 2 3 2 1 3 3 1 2 1 3\n498 976 513 869 917 914 664 656 957 893 981 947 985 693 576 958 987 822 981 718 884 729 295 683 485 998 730 894 731 975 739 854 906 740 987 976 606 689 990 775 522 994 920 893 529 651 989 799 643 215 946 987 297 868 425 810 694 908 736 903 970 751 625 904 955 945 839 777 977 974 905 900 666 680 799 873 565 919 536 686", "output": "128" }, { "input": "1 1000\n1000\n1000", "output": "2" }, { "input": "1 1000\n1\n1000", "output": "2000" }, { "input": "1 1\n4\n6", "output": "1" }, { "input": "1 1\n10\n2", "output": "0" }, { "input": "2 1\n2 2\n1 1", "output": "0" }, { "input": "2 6\n1 3\n6 2", "output": "2" } ]
1,618,686,270
2,147,483,647
Python 3
OK
TESTS
119
77
0
class Solution: def getList(self): return list(map(int,input().split())) def solve(self): n,k = input().split() n = int(n) k = int(k) a = self.getList() b = self.getList() c = [b[i]//a[i] for i in range(n)] total = min(c) left = [b[i]-total*a[i] for i in range(n)] while True: required = 0 for i in range(n): if left[i]>=a[i]: left[i] -= a[i] else: required += a[i] - left[i] left[i] = 0 if required <= k: k-=required total+=1 else: break print(total) x = Solution() x.solve()
Title: Magic Powder - 1 Time Limit: None seconds Memory Limit: None megabytes Problem Description: This problem is given in two versions that differ only by constraints. If you can solve this problem in large constraints, then you can just write a single solution to the both versions. If you find the problem too difficult in large constraints, you can write solution to the simplified version only. Waking up in the morning, Apollinaria decided to bake cookies. To bake one cookie, she needs *n* ingredients, and for each ingredient she knows the value *a**i* — how many grams of this ingredient one needs to bake a cookie. To prepare one cookie Apollinaria needs to use all *n* ingredients. Apollinaria has *b**i* gram of the *i*-th ingredient. Also she has *k* grams of a magic powder. Each gram of magic powder can be turned to exactly 1 gram of any of the *n* ingredients and can be used for baking cookies. Your task is to determine the maximum number of cookies, which Apollinaria is able to bake using the ingredients that she has and the magic powder. Input Specification: The first line of the input contains two positive integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=1000) — the number of ingredients and the number of grams of the magic powder. The second line contains the sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000), where the *i*-th number is equal to the number of grams of the *i*-th ingredient, needed to bake one cookie. The third line contains the sequence *b*1,<=*b*2,<=...,<=*b**n* (1<=≤<=*b**i*<=≤<=1000), where the *i*-th number is equal to the number of grams of the *i*-th ingredient, which Apollinaria has. Output Specification: Print the maximum number of cookies, which Apollinaria will be able to bake using the ingredients that she has and the magic powder. Demo Input: ['3 1\n2 1 4\n11 3 16\n', '4 3\n4 3 5 6\n11 12 14 20\n'] Demo Output: ['4\n', '3\n'] Note: In the first sample it is profitably for Apollinaria to make the existing 1 gram of her magic powder to ingredient with the index 2, then Apollinaria will be able to bake 4 cookies. In the second sample Apollinaria should turn 1 gram of magic powder to ingredient with the index 1 and 1 gram of magic powder to ingredient with the index 3. Then Apollinaria will be able to bake 3 cookies. The remaining 1 gram of the magic powder can be left, because it can't be used to increase the answer.
```python class Solution: def getList(self): return list(map(int,input().split())) def solve(self): n,k = input().split() n = int(n) k = int(k) a = self.getList() b = self.getList() c = [b[i]//a[i] for i in range(n)] total = min(c) left = [b[i]-total*a[i] for i in range(n)] while True: required = 0 for i in range(n): if left[i]>=a[i]: left[i] -= a[i] else: required += a[i] - left[i] left[i] = 0 if required <= k: k-=required total+=1 else: break print(total) x = Solution() x.solve() ```
3
776
A
A Serial Killer
PROGRAMMING
900
[ "brute force", "implementation", "strings" ]
null
null
Our beloved detective, Sherlock is currently trying to catch a serial killer who kills a person each day. Using his powers of deduction, he came to know that the killer has a strategy for selecting his next victim. The killer starts with two potential victims on his first day, selects one of these two, kills selected victim and replaces him with a new person. He repeats this procedure each day. This way, each day he has two potential victims to choose from. Sherlock knows the initial two potential victims. Also, he knows the murder that happened on a particular day and the new person who replaced this victim. You need to help him get all the pairs of potential victims at each day so that Sherlock can observe some pattern.
First line of input contains two names (length of each of them doesn't exceed 10), the two initials potential victims. Next line contains integer *n* (1<=≤<=*n*<=≤<=1000), the number of days. Next *n* lines contains two names (length of each of them doesn't exceed 10), first being the person murdered on this day and the second being the one who replaced that person. The input format is consistent, that is, a person murdered is guaranteed to be from the two potential victims at that time. Also, all the names are guaranteed to be distinct and consists of lowercase English letters.
Output *n*<=+<=1 lines, the *i*-th line should contain the two persons from which the killer selects for the *i*-th murder. The (*n*<=+<=1)-th line should contain the two persons from which the next victim is selected. In each line, the two names can be printed in any order.
[ "ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chandler\n", "icm codeforces\n1\ncodeforces technex\n" ]
[ "ross rachel\njoey rachel\njoey phoebe\njoey monica\njoey chandler\n", "icm codeforces\nicm technex\n" ]
In first example, the killer starts with ross and rachel. - After day 1, ross is killed and joey appears. - After day 2, rachel is killed and phoebe appears. - After day 3, phoebe is killed and monica appears. - After day 4, monica is killed and chandler appears.
500
[ { "input": "ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chandler", "output": "ross rachel\njoey rachel\njoey phoebe\njoey monica\njoey chandler" }, { "input": "icm codeforces\n1\ncodeforces technex", "output": "icm codeforces\nicm technex" }, { "input": "a b\n3\na c\nb d\nd e", "output": "a b\nc b\nc d\nc e" }, { "input": "ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj yjlkg", "output": "ze udggmyop\nszhrbmft udggmyop\nszhrbmft mjorab\nojdtfnzxj mjorab\nyjlkg mjorab" }, { "input": "q s\n10\nq b\nb j\ns g\nj f\nf m\ng c\nc a\nm d\nd z\nz o", "output": "q s\nb s\nj s\nj g\nf g\nm g\nm c\nm a\nd a\nz a\no a" }, { "input": "iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ii", "output": "iii iiiiii\niiiiiiiiii iiiiii\niiii iiiiii\ni iiiiii\ni iiiiiiii\ni iiiiiiiii\niiiii iiiiiiiii\nii iiiiiiiii" }, { "input": "bwyplnjn zkms\n26\nzkms nzmcsytxh\nnzmcsytxh yujsb\nbwyplnjn gtbzhudpb\ngtbzhudpb hpk\nyujsb xvy\nhpk wrwnfokml\nwrwnfokml ndouuikw\nndouuikw ucgrja\nucgrja tgfmpldz\nxvy nycrfphn\nnycrfphn quvs\nquvs htdy\nhtdy k\ntgfmpldz xtdpkxm\nxtdpkxm suwqxs\nk fv\nsuwqxs qckllwy\nqckllwy diun\nfv lefa\nlefa gdoqjysx\ndiun dhpz\ngdoqjysx bdmqdyt\ndhpz dgz\ndgz v\nbdmqdyt aswy\naswy ydkayhlrnm", "output": "bwyplnjn zkms\nbwyplnjn nzmcsytxh\nbwyplnjn yujsb\ngtbzhudpb yujsb\nhpk yujsb\nhpk xvy\nwrwnfokml xvy\nndouuikw xvy\nucgrja xvy\ntgfmpldz xvy\ntgfmpldz nycrfphn\ntgfmpldz quvs\ntgfmpldz htdy\ntgfmpldz k\nxtdpkxm k\nsuwqxs k\nsuwqxs fv\nqckllwy fv\ndiun fv\ndiun lefa\ndiun gdoqjysx\ndhpz gdoqjysx\ndhpz bdmqdyt\ndgz bdmqdyt\nv bdmqdyt\nv aswy\nv ydkayhlrnm" }, { "input": "wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yryk\nzk b", "output": "wxz hbeqwqp\nwxz cpieghnszh\nwxz tlqrpd\nwxz ttwrtio\nwxz xapvds\nwxz zk\nyryk zk\nyryk b" }, { "input": "wced gnsgv\n23\ngnsgv japawpaf\njapawpaf nnvpeu\nnnvpeu a\na ddupputljq\nddupputljq qyhnvbh\nqyhnvbh pqwijl\nwced khuvs\nkhuvs bjkh\npqwijl ysacmboc\nbjkh srf\nsrf jknoz\njknoz hodf\nysacmboc xqtkoyh\nhodf rfp\nxqtkoyh bivgnwqvoe\nbivgnwqvoe nknf\nnknf wuig\nrfp e\ne bqqknq\nwuig sznhhhu\nbqqknq dhrtdld\ndhrtdld n\nsznhhhu bguylf", "output": "wced gnsgv\nwced japawpaf\nwced nnvpeu\nwced a\nwced ddupputljq\nwced qyhnvbh\nwced pqwijl\nkhuvs pqwijl\nbjkh pqwijl\nbjkh ysacmboc\nsrf ysacmboc\njknoz ysacmboc\nhodf ysacmboc\nhodf xqtkoyh\nrfp xqtkoyh\nrfp bivgnwqvoe\nrfp nknf\nrfp wuig\ne wuig\nbqqknq wuig\nbqqknq sznhhhu\ndhrtdld sznhhhu\nn sznhhhu\nn bguylf" }, { "input": "qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q", "output": "qqqqqqqqqq qqqqqqqq\nqqqqqqqqqq qqqqqqqqq\nqqqqqqqqqq qqqqq\nqqqqqqqqqq q" }, { "input": "wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwwww", "output": "wwwww w\nwwwwwwww w\nwwwwwwwww w\nwwwwwwwwww w\nwwwwwwwwww www\nwwww www\nww www\nww wwwwww\nww wwwwwww" }, { "input": "k d\n17\nk l\nd v\nv z\nl r\nz i\nr s\ns p\np w\nw j\nj h\ni c\nh m\nm q\nc o\no g\nq x\nx n", "output": "k d\nl d\nl v\nl z\nr z\nr i\ns i\np i\nw i\nj i\nh i\nh c\nm c\nq c\nq o\nq g\nx g\nn g" } ]
1,518,390,597
2,147,483,647
Python 3
OK
TESTS
57
77
5,632,000
# -*- coding: utf-8 -*- """ Created on Sun Feb 11 17:42:31 2018 @author: arjun """ f1,f2 = list(map(str,input().split())) print(f1,f2) n = int(input()) for _ in range(n): dead,replace = list(map(str,input().split())) if(dead==f1): f1 = replace else: f2 = replace print(f1,f2)
Title: A Serial Killer Time Limit: None seconds Memory Limit: None megabytes Problem Description: Our beloved detective, Sherlock is currently trying to catch a serial killer who kills a person each day. Using his powers of deduction, he came to know that the killer has a strategy for selecting his next victim. The killer starts with two potential victims on his first day, selects one of these two, kills selected victim and replaces him with a new person. He repeats this procedure each day. This way, each day he has two potential victims to choose from. Sherlock knows the initial two potential victims. Also, he knows the murder that happened on a particular day and the new person who replaced this victim. You need to help him get all the pairs of potential victims at each day so that Sherlock can observe some pattern. Input Specification: First line of input contains two names (length of each of them doesn't exceed 10), the two initials potential victims. Next line contains integer *n* (1<=≤<=*n*<=≤<=1000), the number of days. Next *n* lines contains two names (length of each of them doesn't exceed 10), first being the person murdered on this day and the second being the one who replaced that person. The input format is consistent, that is, a person murdered is guaranteed to be from the two potential victims at that time. Also, all the names are guaranteed to be distinct and consists of lowercase English letters. Output Specification: Output *n*<=+<=1 lines, the *i*-th line should contain the two persons from which the killer selects for the *i*-th murder. The (*n*<=+<=1)-th line should contain the two persons from which the next victim is selected. In each line, the two names can be printed in any order. Demo Input: ['ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chandler\n', 'icm codeforces\n1\ncodeforces technex\n'] Demo Output: ['ross rachel\njoey rachel\njoey phoebe\njoey monica\njoey chandler\n', 'icm codeforces\nicm technex\n'] Note: In first example, the killer starts with ross and rachel. - After day 1, ross is killed and joey appears. - After day 2, rachel is killed and phoebe appears. - After day 3, phoebe is killed and monica appears. - After day 4, monica is killed and chandler appears.
```python # -*- coding: utf-8 -*- """ Created on Sun Feb 11 17:42:31 2018 @author: arjun """ f1,f2 = list(map(str,input().split())) print(f1,f2) n = int(input()) for _ in range(n): dead,replace = list(map(str,input().split())) if(dead==f1): f1 = replace else: f2 = replace print(f1,f2) ```
3
892
A
Greed
PROGRAMMING
900
[ "greedy", "implementation" ]
null
null
Jafar has *n* cans of cola. Each can is described by two integers: remaining volume of cola *a**i* and can's capacity *b**i* (*a**i* <=≤<= *b**i*). Jafar has decided to pour all remaining cola into just 2 cans, determine if he can do this or not!
The first line of the input contains one integer *n* (2<=≤<=*n*<=≤<=100<=000) — number of cola cans. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109) — volume of remaining cola in cans. The third line contains *n* space-separated integers that *b*1,<=*b*2,<=...,<=*b**n* (*a**i*<=≤<=*b**i*<=≤<=109) — capacities of the cans.
Print "YES" (without quotes) if it is possible to pour all remaining cola in 2 cans. Otherwise print "NO" (without quotes). You can print each letter in any case (upper or lower).
[ "2\n3 5\n3 6\n", "3\n6 8 9\n6 10 12\n", "5\n0 0 5 0 0\n1 1 8 10 5\n", "4\n4 1 0 3\n5 2 2 3\n" ]
[ "YES\n", "NO\n", "YES\n", "YES\n" ]
In the first sample, there are already 2 cans, so the answer is "YES".
500
[ { "input": "2\n3 5\n3 6", "output": "YES" }, { "input": "3\n6 8 9\n6 10 12", "output": "NO" }, { "input": "5\n0 0 5 0 0\n1 1 8 10 5", "output": "YES" }, { "input": "4\n4 1 0 3\n5 2 2 3", "output": "YES" }, { "input": "10\n9 10 24 11 1 7 8 3 28 14\n86 20 34 11 22 94 8 16 73 85", "output": "YES" }, { "input": "4\n25 35 7 31\n70 37 43 35", "output": "YES" }, { "input": "10\n15 26 15 14 14 39 40 4 25 39\n27 72 16 44 69 48 53 17 63 42", "output": "NO" }, { "input": "5\n22 5 19 16 32\n26 10 43 38 37", "output": "NO" }, { "input": "5\n32 4 22 40 26\n39 20 36 98 44", "output": "YES" }, { "input": "6\n18 25 3 10 13 37\n38 73 19 35 24 37", "output": "YES" }, { "input": "2\n2 2\n2 2", "output": "YES" }, { "input": "2\n2 5\n2 5", "output": "YES" }, { "input": "2\n1000 1008\n10000 2352", "output": "YES" }, { "input": "5\n1 2 3 4 5\n1 2 3 4 11", "output": "YES" }, { "input": "4\n1 0 0 0\n2 0 0 0", "output": "YES" }, { "input": "2\n0 0\n1 2", "output": "YES" }, { "input": "3\n9 13 4\n10 14 5", "output": "NO" }, { "input": "2\n0 0\n1 1", "output": "YES" }, { "input": "5\n1 1 2 3 1\n1 1 2 3 4", "output": "NO" }, { "input": "2\n0 0\n0 0", "output": "YES" }, { "input": "3\n5 1 1\n5 5 5", "output": "YES" } ]
1,583,427,790
2,147,483,647
PyPy 3
OK
TESTS
39
342
13,209,600
n= int(input()) can = list(map(int, input().split())) capacity = list(map(int, input().split())) vol= sum(can) capacity.sort(reverse=True) max_capacity = int(capacity[0]) + int(capacity[1]) if vol<=max_capacity: print("YES") else: print("NO")
Title: Greed Time Limit: None seconds Memory Limit: None megabytes Problem Description: Jafar has *n* cans of cola. Each can is described by two integers: remaining volume of cola *a**i* and can's capacity *b**i* (*a**i* <=≤<= *b**i*). Jafar has decided to pour all remaining cola into just 2 cans, determine if he can do this or not! Input Specification: The first line of the input contains one integer *n* (2<=≤<=*n*<=≤<=100<=000) — number of cola cans. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109) — volume of remaining cola in cans. The third line contains *n* space-separated integers that *b*1,<=*b*2,<=...,<=*b**n* (*a**i*<=≤<=*b**i*<=≤<=109) — capacities of the cans. Output Specification: Print "YES" (without quotes) if it is possible to pour all remaining cola in 2 cans. Otherwise print "NO" (without quotes). You can print each letter in any case (upper or lower). Demo Input: ['2\n3 5\n3 6\n', '3\n6 8 9\n6 10 12\n', '5\n0 0 5 0 0\n1 1 8 10 5\n', '4\n4 1 0 3\n5 2 2 3\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n', 'YES\n'] Note: In the first sample, there are already 2 cans, so the answer is "YES".
```python n= int(input()) can = list(map(int, input().split())) capacity = list(map(int, input().split())) vol= sum(can) capacity.sort(reverse=True) max_capacity = int(capacity[0]) + int(capacity[1]) if vol<=max_capacity: print("YES") else: print("NO") ```
3
544
B
Sea and Islands
PROGRAMMING
1,400
[ "constructive algorithms", "implementation" ]
null
null
A map of some object is a rectangular field consisting of *n* rows and *n* columns. Each cell is initially occupied by the sea but you can cover some some cells of the map with sand so that exactly *k* islands appear on the map. We will call a set of sand cells to be island if it is possible to get from each of them to each of them by moving only through sand cells and by moving from a cell only to a side-adjacent cell. The cells are called to be side-adjacent if they share a vertical or horizontal side. It is easy to see that islands do not share cells (otherwise they together form a bigger island). Find a way to cover some cells with sand so that exactly *k* islands appear on the *n*<=×<=*n* map, or determine that no such way exists.
The single line contains two positive integers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=*n*2) — the size of the map and the number of islands you should form.
If the answer doesn't exist, print "NO" (without the quotes) in a single line. Otherwise, print "YES" in the first line. In the next *n* lines print the description of the map. Each of the lines of the description must consist only of characters 'S' and 'L', where 'S' is a cell that is occupied by the sea and 'L' is the cell covered with sand. The length of each line of the description must equal *n*. If there are multiple answers, you may print any of them. You should not maximize the sizes of islands.
[ "5 2\n", "5 25\n" ]
[ "YES\nSSSSS\nLLLLL\nSSSSS\nLLLLL\nSSSSS\n", "NO\n" ]
none
1,000
[ { "input": "5 2", "output": "YES\nSSSSS\nLLLLL\nSSSSS\nLLLLL\nSSSSS" }, { "input": "5 25", "output": "NO" }, { "input": "82 6047", "output": "NO" }, { "input": "6 5", "output": "YES\nLSLSLS\nSLSLSS\nSSSSSS\nSSSSSS\nSSSSSS\nSSSSSS" }, { "input": "10 80", "output": "NO" }, { "input": "48 1279", "output": "NO" }, { "input": "40 1092", "output": "NO" }, { "input": "9 12", "output": "YES\nLSLSLSLSL\nSLSLSLSLS\nLSLSLSSSS\nSSSSSSSSS\nSSSSSSSSS\nSSSSSSSSS\nSSSSSSSSS\nSSSSSSSSS\nSSSSSSSSS" }, { "input": "43 146", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSS..." }, { "input": "100 5000", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS..." }, { "input": "100 4999", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS..." }, { "input": "100 5001", "output": "NO" }, { "input": "99 4901", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nS..." }, { "input": "99 4900", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nS..." }, { "input": "99 4902", "output": "NO" }, { "input": "99 9801", "output": "NO" }, { "input": "99 10", "output": "YES\nLSLSLSLSLSLSLSLSLSLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nS..." }, { "input": "99 1", "output": "YES\nLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nS..." }, { "input": "100 10000", "output": "NO" }, { "input": "100 10", "output": "YES\nLSLSLSLSLSLSLSLSLSLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS..." }, { "input": "50 1200", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL..." }, { "input": "50 1438", "output": "NO" }, { "input": "50 2447", "output": "NO" }, { "input": "49 1719", "output": "NO" }, { "input": "51 1996", "output": "NO" }, { "input": "51 1981", "output": "NO" }, { "input": "34 1060", "output": "NO" }, { "input": "74 3901", "output": "NO" }, { "input": "65 617", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS..." }, { "input": "89 497", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS..." }, { "input": "34 621", "output": "NO" }, { "input": "1 0", "output": "YES\nS" }, { "input": "10 0", "output": "YES\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS" }, { "input": "11 0", "output": "YES\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS" }, { "input": "99 0", "output": "YES\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nS..." }, { "input": "100 0", "output": "YES\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS..." }, { "input": "1 1", "output": "YES\nL" }, { "input": "2 1", "output": "YES\nLS\nSS" }, { "input": "2 0", "output": "YES\nSS\nSS" }, { "input": "2 2", "output": "YES\nLS\nSL" }, { "input": "2 3", "output": "NO" }, { "input": "2 4", "output": "NO" } ]
1,497,859,215
2,147,483,647
Python 3
OK
TESTS
42
62
0
n, k = [int(x) for x in input().split()] if (n * n + 1) // 2 < k: print("NO") else: print("YES") arr = ['L'] * k + ['S'] * ((n * n + 1) // 2 - k) s = 'S'.join(arr) if n % 2 == 0: s += 'S' turn = 1 while s: print(s[:n][::turn]) s = s[n:] if n % 2 == 0: turn = - turn
Title: Sea and Islands Time Limit: None seconds Memory Limit: None megabytes Problem Description: A map of some object is a rectangular field consisting of *n* rows and *n* columns. Each cell is initially occupied by the sea but you can cover some some cells of the map with sand so that exactly *k* islands appear on the map. We will call a set of sand cells to be island if it is possible to get from each of them to each of them by moving only through sand cells and by moving from a cell only to a side-adjacent cell. The cells are called to be side-adjacent if they share a vertical or horizontal side. It is easy to see that islands do not share cells (otherwise they together form a bigger island). Find a way to cover some cells with sand so that exactly *k* islands appear on the *n*<=×<=*n* map, or determine that no such way exists. Input Specification: The single line contains two positive integers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=*n*2) — the size of the map and the number of islands you should form. Output Specification: If the answer doesn't exist, print "NO" (without the quotes) in a single line. Otherwise, print "YES" in the first line. In the next *n* lines print the description of the map. Each of the lines of the description must consist only of characters 'S' and 'L', where 'S' is a cell that is occupied by the sea and 'L' is the cell covered with sand. The length of each line of the description must equal *n*. If there are multiple answers, you may print any of them. You should not maximize the sizes of islands. Demo Input: ['5 2\n', '5 25\n'] Demo Output: ['YES\nSSSSS\nLLLLL\nSSSSS\nLLLLL\nSSSSS\n', 'NO\n'] Note: none
```python n, k = [int(x) for x in input().split()] if (n * n + 1) // 2 < k: print("NO") else: print("YES") arr = ['L'] * k + ['S'] * ((n * n + 1) // 2 - k) s = 'S'.join(arr) if n % 2 == 0: s += 'S' turn = 1 while s: print(s[:n][::turn]) s = s[n:] if n % 2 == 0: turn = - turn ```
3
149
A
Business trip
PROGRAMMING
900
[ "greedy", "implementation", "sortings" ]
null
null
What joy! Petya's parents went on a business trip for the whole year and the playful kid is left all by himself. Petya got absolutely happy. He jumped on the bed and threw pillows all day long, until... Today Petya opened the cupboard and found a scary note there. His parents had left him with duties: he should water their favourite flower all year, each day, in the morning, in the afternoon and in the evening. "Wait a second!" — thought Petya. He know for a fact that if he fulfills the parents' task in the *i*-th (1<=≤<=*i*<=≤<=12) month of the year, then the flower will grow by *a**i* centimeters, and if he doesn't water the flower in the *i*-th month, then the flower won't grow this month. Petya also knows that try as he might, his parents won't believe that he has been watering the flower if it grows strictly less than by *k* centimeters. Help Petya choose the minimum number of months when he will water the flower, given that the flower should grow no less than by *k* centimeters.
The first line contains exactly one integer *k* (0<=≤<=*k*<=≤<=100). The next line contains twelve space-separated integers: the *i*-th (1<=≤<=*i*<=≤<=12) number in the line represents *a**i* (0<=≤<=*a**i*<=≤<=100).
Print the only integer — the minimum number of months when Petya has to water the flower so that the flower grows no less than by *k* centimeters. If the flower can't grow by *k* centimeters in a year, print -1.
[ "5\n1 1 1 1 2 2 3 2 2 1 1 1\n", "0\n0 0 0 0 0 0 0 1 1 2 3 0\n", "11\n1 1 4 1 1 5 1 1 4 1 1 1\n" ]
[ "2\n", "0\n", "3\n" ]
Let's consider the first sample test. There it is enough to water the flower during the seventh and the ninth month. Then the flower grows by exactly five centimeters. In the second sample Petya's parents will believe him even if the flower doesn't grow at all (*k* = 0). So, it is possible for Petya not to water the flower at all.
500
[ { "input": "5\n1 1 1 1 2 2 3 2 2 1 1 1", "output": "2" }, { "input": "0\n0 0 0 0 0 0 0 1 1 2 3 0", "output": "0" }, { "input": "11\n1 1 4 1 1 5 1 1 4 1 1 1", "output": "3" }, { "input": "15\n20 1 1 1 1 2 2 1 2 2 1 1", "output": "1" }, { "input": "7\n8 9 100 12 14 17 21 10 11 100 23 10", "output": "1" }, { "input": "52\n1 12 3 11 4 5 10 6 9 7 8 2", "output": "6" }, { "input": "50\n2 2 3 4 5 4 4 5 7 3 2 7", "output": "-1" }, { "input": "0\n55 81 28 48 99 20 67 95 6 19 10 93", "output": "0" }, { "input": "93\n85 40 93 66 92 43 61 3 64 51 90 21", "output": "1" }, { "input": "99\n36 34 22 0 0 0 52 12 0 0 33 47", "output": "2" }, { "input": "99\n28 32 31 0 10 35 11 18 0 0 32 28", "output": "3" }, { "input": "99\n19 17 0 1 18 11 29 9 29 22 0 8", "output": "4" }, { "input": "76\n2 16 11 10 12 0 20 4 4 14 11 14", "output": "5" }, { "input": "41\n2 1 7 7 4 2 4 4 9 3 10 0", "output": "6" }, { "input": "47\n8 2 2 4 3 1 9 4 2 7 7 8", "output": "7" }, { "input": "58\n6 11 7 0 5 6 3 9 4 9 5 1", "output": "8" }, { "input": "32\n5 2 4 1 5 0 5 1 4 3 0 3", "output": "9" }, { "input": "31\n6 1 0 4 4 5 1 0 5 3 2 0", "output": "9" }, { "input": "35\n2 3 0 0 6 3 3 4 3 5 0 6", "output": "9" }, { "input": "41\n3 1 3 4 3 6 6 1 4 4 0 6", "output": "11" }, { "input": "97\n0 5 3 12 10 16 22 8 21 17 21 10", "output": "5" }, { "input": "100\n21 21 0 0 4 13 0 26 0 0 0 15", "output": "6" }, { "input": "100\n0 0 16 5 22 0 5 0 25 0 14 13", "output": "7" }, { "input": "97\n17 0 10 0 0 0 18 0 14 23 15 0", "output": "6" }, { "input": "100\n0 9 0 18 7 0 0 14 33 3 0 16", "output": "7" }, { "input": "95\n5 2 13 0 15 18 17 0 6 11 0 8", "output": "9" }, { "input": "94\n11 13 0 9 15 8 8 16 3 7 1 3", "output": "11" }, { "input": "96\n8 4 12 15 8 0 4 10 6 6 12 11", "output": "11" }, { "input": "100\n5 5 3 8 6 5 0 3 3 8 1 3", "output": "-1" }, { "input": "100\n1 0 0 1 1 0 1 1 1 1 2 1", "output": "-1" }, { "input": "100\n6 3 2 0 4 1 2 2 2 2 1 1", "output": "-1" }, { "input": "0\n0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0", "output": "-1" }, { "input": "0\n100 100 100 100 100 100 100 100 100 100 100 100", "output": "0" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100", "output": "1" }, { "input": "12\n1 1 1 1 1 1 1 1 1 1 1 1", "output": "12" }, { "input": "13\n1 1 1 1 1 1 1 1 1 1 1 2", "output": "12" }, { "input": "15\n10 1 1 1 1 1 1 1 1 1 1 1", "output": "6" }, { "input": "1\n0 0 0 0 0 0 0 0 0 0 0 0", "output": "-1" } ]
1,661,428,644
2,147,483,647
PyPy 3-64
OK
TESTS
39
124
0
n = int(input()) v = sorted(map(int, input().split()))[::-1] for i in range(13): if sum(v[:i]) >= n: print(i) exit(0) print(-1)
Title: Business trip Time Limit: None seconds Memory Limit: None megabytes Problem Description: What joy! Petya's parents went on a business trip for the whole year and the playful kid is left all by himself. Petya got absolutely happy. He jumped on the bed and threw pillows all day long, until... Today Petya opened the cupboard and found a scary note there. His parents had left him with duties: he should water their favourite flower all year, each day, in the morning, in the afternoon and in the evening. "Wait a second!" — thought Petya. He know for a fact that if he fulfills the parents' task in the *i*-th (1<=≤<=*i*<=≤<=12) month of the year, then the flower will grow by *a**i* centimeters, and if he doesn't water the flower in the *i*-th month, then the flower won't grow this month. Petya also knows that try as he might, his parents won't believe that he has been watering the flower if it grows strictly less than by *k* centimeters. Help Petya choose the minimum number of months when he will water the flower, given that the flower should grow no less than by *k* centimeters. Input Specification: The first line contains exactly one integer *k* (0<=≤<=*k*<=≤<=100). The next line contains twelve space-separated integers: the *i*-th (1<=≤<=*i*<=≤<=12) number in the line represents *a**i* (0<=≤<=*a**i*<=≤<=100). Output Specification: Print the only integer — the minimum number of months when Petya has to water the flower so that the flower grows no less than by *k* centimeters. If the flower can't grow by *k* centimeters in a year, print -1. Demo Input: ['5\n1 1 1 1 2 2 3 2 2 1 1 1\n', '0\n0 0 0 0 0 0 0 1 1 2 3 0\n', '11\n1 1 4 1 1 5 1 1 4 1 1 1\n'] Demo Output: ['2\n', '0\n', '3\n'] Note: Let's consider the first sample test. There it is enough to water the flower during the seventh and the ninth month. Then the flower grows by exactly five centimeters. In the second sample Petya's parents will believe him even if the flower doesn't grow at all (*k* = 0). So, it is possible for Petya not to water the flower at all.
```python n = int(input()) v = sorted(map(int, input().split()))[::-1] for i in range(13): if sum(v[:i]) >= n: print(i) exit(0) print(-1) ```
3
835
A
Key races
PROGRAMMING
800
[ "math" ]
null
null
Two boys decided to compete in text typing on the site "Key races". During the competition, they have to type a text consisting of *s* characters. The first participant types one character in *v*1 milliseconds and has ping *t*1 milliseconds. The second participant types one character in *v*2 milliseconds and has ping *t*2 milliseconds. If connection ping (delay) is *t* milliseconds, the competition passes for a participant as follows: 1. Exactly after *t* milliseconds after the start of the competition the participant receives the text to be entered. 1. Right after that he starts to type it. 1. Exactly *t* milliseconds after he ends typing all the text, the site receives information about it. The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw. Given the length of the text and the information about participants, determine the result of the game.
The first line contains five integers *s*, *v*1, *v*2, *t*1, *t*2 (1<=≤<=*s*,<=*v*1,<=*v*2,<=*t*1,<=*t*2<=≤<=1000) — the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant.
If the first participant wins, print "First". If the second participant wins, print "Second". In case of a draw print "Friendship".
[ "5 1 2 1 2\n", "3 3 1 1 1\n", "4 5 3 1 5\n" ]
[ "First\n", "Second\n", "Friendship\n" ]
In the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant — in 14 milliseconds. So, the first wins. In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant — in 5 milliseconds. So, the second wins. In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant — in 22 milliseconds. So, it is be a draw.
500
[ { "input": "5 1 2 1 2", "output": "First" }, { "input": "3 3 1 1 1", "output": "Second" }, { "input": "4 5 3 1 5", "output": "Friendship" }, { "input": "1000 1000 1000 1000 1000", "output": "Friendship" }, { "input": "1 1 1 1 1", "output": "Friendship" }, { "input": "8 8 1 1 1", "output": "Second" }, { "input": "15 14 32 65 28", "output": "First" }, { "input": "894 197 325 232 902", "output": "First" }, { "input": "1 2 8 8 5", "output": "Friendship" }, { "input": "37 261 207 1 1000", "output": "Friendship" }, { "input": "29 344 406 900 1", "output": "Friendship" }, { "input": "1 2 8 9 8", "output": "First" }, { "input": "2 9 8 8 9", "output": "Friendship" }, { "input": "213 480 811 134 745", "output": "First" }, { "input": "2 313 856 964 421", "output": "Friendship" }, { "input": "1 10 2 6 10", "output": "Friendship" }, { "input": "2 7 6 2 3", "output": "Friendship" }, { "input": "637 324 69 612 998", "output": "Second" }, { "input": "13 849 819 723 918", "output": "Friendship" }, { "input": "9 5 7 8 7", "output": "First" }, { "input": "6 5 7 10 4", "output": "Friendship" }, { "input": "61 464 623 89 548", "output": "First" }, { "input": "641 31 29 161 802", "output": "Friendship" }, { "input": "3 3 1 6 9", "output": "Friendship" }, { "input": "2 3 9 8 2", "output": "Friendship" }, { "input": "485 117 368 567 609", "output": "First" }, { "input": "4 202 512 995 375", "output": "Friendship" }, { "input": "424 41 41 909 909", "output": "Friendship" }, { "input": "884 913 263 641 265", "output": "Second" }, { "input": "12 462 8 311 327", "output": "Second" }, { "input": "436 306 266 493 580", "output": "Second" }, { "input": "69 1 2 1 2", "output": "First" } ]
1,574,357,391
2,147,483,647
Python 3
OK
TESTS
32
124
0
import time def calculateWinner(lenS, first_tps, sec_tps, first_ping, sec_ping): winner = "" first_ttime = lenS * first_tps + 2 * (first_ping) sec_ttime = lenS * sec_tps + 2 * (sec_ping) if first_ttime < sec_ttime: winner = "First" elif first_ttime > sec_ttime: winner = "Second" else: winner = "Friendship" return winner def solve(): lenS, first_tps, sec_tps, first_ping, sec_ping = [int(x) for x in input().split()] print(calculateWinner(lenS, first_tps, sec_tps, first_ping, sec_ping)) # print("%fs" % (time.time() - start_time)) solve()
Title: Key races Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two boys decided to compete in text typing on the site "Key races". During the competition, they have to type a text consisting of *s* characters. The first participant types one character in *v*1 milliseconds and has ping *t*1 milliseconds. The second participant types one character in *v*2 milliseconds and has ping *t*2 milliseconds. If connection ping (delay) is *t* milliseconds, the competition passes for a participant as follows: 1. Exactly after *t* milliseconds after the start of the competition the participant receives the text to be entered. 1. Right after that he starts to type it. 1. Exactly *t* milliseconds after he ends typing all the text, the site receives information about it. The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw. Given the length of the text and the information about participants, determine the result of the game. Input Specification: The first line contains five integers *s*, *v*1, *v*2, *t*1, *t*2 (1<=≤<=*s*,<=*v*1,<=*v*2,<=*t*1,<=*t*2<=≤<=1000) — the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant. Output Specification: If the first participant wins, print "First". If the second participant wins, print "Second". In case of a draw print "Friendship". Demo Input: ['5 1 2 1 2\n', '3 3 1 1 1\n', '4 5 3 1 5\n'] Demo Output: ['First\n', 'Second\n', 'Friendship\n'] Note: In the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant — in 14 milliseconds. So, the first wins. In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant — in 5 milliseconds. So, the second wins. In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant — in 22 milliseconds. So, it is be a draw.
```python import time def calculateWinner(lenS, first_tps, sec_tps, first_ping, sec_ping): winner = "" first_ttime = lenS * first_tps + 2 * (first_ping) sec_ttime = lenS * sec_tps + 2 * (sec_ping) if first_ttime < sec_ttime: winner = "First" elif first_ttime > sec_ttime: winner = "Second" else: winner = "Friendship" return winner def solve(): lenS, first_tps, sec_tps, first_ping, sec_ping = [int(x) for x in input().split()] print(calculateWinner(lenS, first_tps, sec_tps, first_ping, sec_ping)) # print("%fs" % (time.time() - start_time)) solve() ```
3
385
B
Bear and Strings
PROGRAMMING
1,200
[ "brute force", "greedy", "implementation", "math", "strings" ]
null
null
The bear has a string *s*<==<=*s*1*s*2... *s*|*s*| (record |*s*| is the string's length), consisting of lowercase English letters. The bear wants to count the number of such pairs of indices *i*,<=*j* (1<=≤<=*i*<=≤<=*j*<=≤<=|*s*|), that string *x*(*i*,<=*j*)<==<=*s**i**s**i*<=+<=1... *s**j* contains at least one string "bear" as a substring. String *x*(*i*,<=*j*) contains string "bear", if there is such index *k* (*i*<=≤<=*k*<=≤<=*j*<=-<=3), that *s**k*<==<=*b*, *s**k*<=+<=1<==<=*e*, *s**k*<=+<=2<==<=*a*, *s**k*<=+<=3<==<=*r*. Help the bear cope with the given problem.
The first line contains a non-empty string *s* (1<=≤<=|*s*|<=≤<=5000). It is guaranteed that the string only consists of lowercase English letters.
Print a single number — the answer to the problem.
[ "bearbtear\n", "bearaabearc\n" ]
[ "6\n", "20\n" ]
In the first sample, the following pairs (*i*, *j*) match: (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9). In the second sample, the following pairs (*i*, *j*) match: (1,  4), (1,  5), (1,  6), (1,  7), (1,  8), (1,  9), (1,  10), (1,  11), (2,  10), (2,  11), (3,  10), (3,  11), (4,  10), (4,  11), (5,  10), (5,  11), (6,  10), (6,  11), (7,  10), (7,  11).
1,000
[ { "input": "bearbtear", "output": "6" }, { "input": "bearaabearc", "output": "20" }, { "input": "pbearbearhbearzqbearjkterasjhy", "output": "291" }, { "input": "pbearjbearbebearnbabcffbearbearwubearjezpiorrbearbearjbdlbearbearqbearjbearwipmsbearoaftrsebearzsnqb", "output": "4419" }, { "input": "bear", "output": "1" }, { "input": "a", "output": "0" }, { "input": "be", "output": "0" } ]
1,596,658,108
2,147,483,647
PyPy 3
OK
TESTS
43
156
21,606,400
import sys def mi(s): return map(int, s.strip().split()) def lmi(s): return list(mi(s)) def mf(f, s): return map(f, s) def lmf(f, s): return list(mf(f, s)) def main(s): intervals = [] for i in range(len(s) - 3): if s[i:i+4] == "bear": intervals.append((i, i + 3)) count = 0 for e, inter in enumerate(intervals): i, j = inter if e == len(intervals) - 1: right = len(s) - j left = i + 1 count += left * right else: n_i, n_j = intervals[e + 1] left = i + 1 right = n_j - j count += left * right return count if __name__ == "__main__": for e, line in enumerate(sys.stdin.readlines()): s = line.strip() # Proof by induction that sorting is that # same as solving this problem. print(main(s))
Title: Bear and Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: The bear has a string *s*<==<=*s*1*s*2... *s*|*s*| (record |*s*| is the string's length), consisting of lowercase English letters. The bear wants to count the number of such pairs of indices *i*,<=*j* (1<=≤<=*i*<=≤<=*j*<=≤<=|*s*|), that string *x*(*i*,<=*j*)<==<=*s**i**s**i*<=+<=1... *s**j* contains at least one string "bear" as a substring. String *x*(*i*,<=*j*) contains string "bear", if there is such index *k* (*i*<=≤<=*k*<=≤<=*j*<=-<=3), that *s**k*<==<=*b*, *s**k*<=+<=1<==<=*e*, *s**k*<=+<=2<==<=*a*, *s**k*<=+<=3<==<=*r*. Help the bear cope with the given problem. Input Specification: The first line contains a non-empty string *s* (1<=≤<=|*s*|<=≤<=5000). It is guaranteed that the string only consists of lowercase English letters. Output Specification: Print a single number — the answer to the problem. Demo Input: ['bearbtear\n', 'bearaabearc\n'] Demo Output: ['6\n', '20\n'] Note: In the first sample, the following pairs (*i*, *j*) match: (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9). In the second sample, the following pairs (*i*, *j*) match: (1,  4), (1,  5), (1,  6), (1,  7), (1,  8), (1,  9), (1,  10), (1,  11), (2,  10), (2,  11), (3,  10), (3,  11), (4,  10), (4,  11), (5,  10), (5,  11), (6,  10), (6,  11), (7,  10), (7,  11).
```python import sys def mi(s): return map(int, s.strip().split()) def lmi(s): return list(mi(s)) def mf(f, s): return map(f, s) def lmf(f, s): return list(mf(f, s)) def main(s): intervals = [] for i in range(len(s) - 3): if s[i:i+4] == "bear": intervals.append((i, i + 3)) count = 0 for e, inter in enumerate(intervals): i, j = inter if e == len(intervals) - 1: right = len(s) - j left = i + 1 count += left * right else: n_i, n_j = intervals[e + 1] left = i + 1 right = n_j - j count += left * right return count if __name__ == "__main__": for e, line in enumerate(sys.stdin.readlines()): s = line.strip() # Proof by induction that sorting is that # same as solving this problem. print(main(s)) ```
3
469
A
I Wanna Be the Guy
PROGRAMMING
800
[ "greedy", "implementation" ]
null
null
There is a game called "I Wanna Be the Guy", consisting of *n* levels. Little X and his friend Little Y are addicted to the game. Each of them wants to pass the whole game. Little X can pass only *p* levels of the game. And Little Y can pass only *q* levels of the game. You are given the indices of levels Little X can pass and the indices of levels Little Y can pass. Will Little X and Little Y pass the whole game, if they cooperate each other?
The first line contains a single integer *n* (1<=≤<=<=*n*<=≤<=100). The next line contains an integer *p* (0<=≤<=*p*<=≤<=*n*) at first, then follows *p* distinct integers *a*1,<=*a*2,<=...,<=*a**p* (1<=≤<=*a**i*<=≤<=*n*). These integers denote the indices of levels Little X can pass. The next line contains the levels Little Y can pass in the same format. It's assumed that levels are numbered from 1 to *n*.
If they can pass all the levels, print "I become the guy.". If it's impossible, print "Oh, my keyboard!" (without the quotes).
[ "4\n3 1 2 3\n2 2 4\n", "4\n3 1 2 3\n2 2 3\n" ]
[ "I become the guy.\n", "Oh, my keyboard!\n" ]
In the first sample, Little X can pass levels [1 2 3], and Little Y can pass level [2 4], so they can pass all the levels both. In the second sample, no one can pass level 4.
500
[ { "input": "4\n3 1 2 3\n2 2 4", "output": "I become the guy." }, { "input": "4\n3 1 2 3\n2 2 3", "output": "Oh, my keyboard!" }, { "input": "10\n5 8 6 1 5 4\n6 1 3 2 9 4 6", "output": "Oh, my keyboard!" }, { "input": "10\n8 8 10 7 3 1 4 2 6\n8 9 5 10 3 7 2 4 8", "output": "I become the guy." }, { "input": "10\n9 6 1 8 3 9 7 5 10 4\n7 1 3 2 7 6 9 5", "output": "I become the guy." }, { "input": "100\n75 83 69 73 30 76 37 48 14 41 42 21 35 15 50 61 86 85 46 3 31 13 78 10 2 44 80 95 56 82 38 75 77 4 99 9 84 53 12 11 36 74 39 72 43 89 57 28 54 1 51 66 27 22 93 59 68 88 91 29 7 20 63 8 52 23 64 58 100 79 65 49 96 71 33 45\n83 50 89 73 34 28 99 67 77 44 19 60 68 42 8 27 94 85 14 39 17 78 24 21 29 63 92 32 86 22 71 81 31 82 65 48 80 59 98 3 70 55 37 12 15 72 47 9 11 33 16 7 91 74 13 64 38 84 6 61 93 90 45 69 1 54 52 100 57 10 35 49 53 75 76 43 62 5 4 18 36 96 79 23", "output": "Oh, my keyboard!" }, { "input": "1\n1 1\n1 1", "output": "I become the guy." }, { "input": "1\n0\n1 1", "output": "I become the guy." }, { "input": "1\n1 1\n0", "output": "I become the guy." }, { "input": "1\n0\n0", "output": "Oh, my keyboard!" }, { "input": "100\n0\n0", "output": "Oh, my keyboard!" }, { "input": "100\n44 71 70 55 49 43 16 53 7 95 58 56 38 76 67 94 20 73 29 90 25 30 8 84 5 14 77 52 99 91 66 24 39 37 22 44 78 12 63 59 32 51 15 82 34\n56 17 10 96 80 69 13 81 31 57 4 48 68 89 50 45 3 33 36 2 72 100 64 87 21 75 54 74 92 65 23 40 97 61 18 28 98 93 35 83 9 79 46 27 41 62 88 6 47 60 86 26 42 85 19 1 11", "output": "I become the guy." }, { "input": "100\n78 63 59 39 11 58 4 2 80 69 22 95 90 26 65 16 30 100 66 99 67 79 54 12 23 28 45 56 70 74 60 82 73 91 68 43 92 75 51 21 17 97 86 44 62 47 85 78 72 64 50 81 71 5 57 13 31 76 87 9 49 96 25 42 19 35 88 53 7 83 38 27 29 41 89 93 10 84 18\n78 1 16 53 72 99 9 36 59 49 75 77 94 79 35 4 92 42 82 83 76 97 20 68 55 47 65 50 14 30 13 67 98 8 7 40 64 32 87 10 33 90 93 18 26 71 17 46 24 28 89 58 37 91 39 34 25 48 84 31 96 95 80 88 3 51 62 52 85 61 12 15 27 6 45 38 2 22 60", "output": "I become the guy." }, { "input": "2\n2 2 1\n0", "output": "I become the guy." }, { "input": "2\n1 2\n2 1 2", "output": "I become the guy." }, { "input": "80\n57 40 1 47 36 69 24 76 5 72 26 4 29 62 6 60 3 70 8 64 18 37 16 14 13 21 25 7 66 68 44 74 61 39 38 33 15 63 34 65 10 23 56 51 80 58 49 75 71 12 50 57 2 30 54 27 17 52\n61 22 67 15 28 41 26 1 80 44 3 38 18 37 79 57 11 7 65 34 9 36 40 5 48 29 64 31 51 63 27 4 50 13 24 32 58 23 19 46 8 73 39 2 21 56 77 53 59 78 43 12 55 45 30 74 33 68 42 47 17 54", "output": "Oh, my keyboard!" }, { "input": "100\n78 87 96 18 73 32 38 44 29 64 40 70 47 91 60 69 24 1 5 34 92 94 99 22 83 65 14 68 15 20 74 31 39 100 42 4 97 46 25 6 8 56 79 9 71 35 54 19 59 93 58 62 10 85 57 45 33 7 86 81 30 98 26 61 84 41 23 28 88 36 66 51 80 53 37 63 43 95 75\n76 81 53 15 26 37 31 62 24 87 41 39 75 86 46 76 34 4 51 5 45 65 67 48 68 23 71 27 94 47 16 17 9 96 84 89 88 100 18 52 69 42 6 92 7 64 49 12 98 28 21 99 25 55 44 40 82 19 36 30 77 90 14 43 50 3 13 95 78 35 20 54 58 11 2 1 33", "output": "Oh, my keyboard!" }, { "input": "100\n77 55 26 98 13 91 78 60 23 76 12 11 36 62 84 80 18 1 68 92 81 67 19 4 2 10 17 77 96 63 15 69 46 97 82 42 83 59 50 72 14 40 89 9 52 29 56 31 74 39 45 85 22 99 44 65 95 6 90 38 54 32 49 34 3 70 75 33 94 53 21 71 5 66 73 41 100 24\n69 76 93 5 24 57 59 6 81 4 30 12 44 15 67 45 73 3 16 8 47 95 20 64 68 85 54 17 90 86 66 58 13 37 42 51 35 32 1 28 43 80 7 14 48 19 62 55 2 91 25 49 27 26 38 79 89 99 22 60 75 53 88 82 34 21 87 71 72 61", "output": "I become the guy." }, { "input": "100\n74 96 32 63 12 69 72 99 15 22 1 41 79 77 71 31 20 28 75 73 85 37 38 59 42 100 86 89 55 87 68 4 24 57 52 8 92 27 56 98 95 58 34 9 45 14 11 36 66 76 61 19 25 23 78 49 90 26 80 43 70 13 65 10 5 74 81 21 44 60 97 3 47 93 6\n64 68 21 27 16 91 23 22 33 12 71 88 90 50 62 43 28 29 57 59 5 74 10 95 35 1 67 93 36 32 86 40 6 64 78 46 89 15 84 53 18 30 17 85 2 3 47 92 25 48 76 51 20 82 52 83 99 63 80 11 94 54 39 7 58", "output": "I become the guy." }, { "input": "100\n75 11 98 44 47 88 94 23 78 59 70 2 43 39 34 63 71 19 42 61 30 74 14 77 97 53 92 60 67 36 37 13 6 86 62 46 41 3 25 93 7 12 27 48 55 49 31 35 51 10 57 54 95 82 28 90 73 26 17 50 81 56 20 87 40 85 72 64 99 29 91 5 80 18 24 52\n72 93 59 5 88 47 9 58 48 1 43 50 100 87 61 91 45 98 99 56 25 84 53 73 78 54 63 38 37 2 77 95 89 85 4 90 10 33 12 22 74 32 34 70 71 52 96 57 15 66 31 27 75 8 21 39 62 44 67 94 81 68 14 19 36 28 11 79 16 65 46 83 76", "output": "Oh, my keyboard!" }, { "input": "3\n1 2\n2 2 3", "output": "Oh, my keyboard!" }, { "input": "4\n1 2\n3 1 3 4", "output": "I become the guy." }, { "input": "6\n2 1 2\n3 4 5 6", "output": "Oh, my keyboard!" } ]
1,693,329,577
2,147,483,647
Python 3
OK
TESTS
29
46
0
n=int(input()) p=list(map(int,input().split())) s=list(map(int,input().split())) p.pop(0) s.pop(0) m=[] for i in range(1,n+1): m.append(i) sum=0 for j in m: if j in p+s: sum+=1 if sum==len(m): print("I become the guy.") else: print("Oh, my keyboard!")
Title: I Wanna Be the Guy Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a game called "I Wanna Be the Guy", consisting of *n* levels. Little X and his friend Little Y are addicted to the game. Each of them wants to pass the whole game. Little X can pass only *p* levels of the game. And Little Y can pass only *q* levels of the game. You are given the indices of levels Little X can pass and the indices of levels Little Y can pass. Will Little X and Little Y pass the whole game, if they cooperate each other? Input Specification: The first line contains a single integer *n* (1<=≤<=<=*n*<=≤<=100). The next line contains an integer *p* (0<=≤<=*p*<=≤<=*n*) at first, then follows *p* distinct integers *a*1,<=*a*2,<=...,<=*a**p* (1<=≤<=*a**i*<=≤<=*n*). These integers denote the indices of levels Little X can pass. The next line contains the levels Little Y can pass in the same format. It's assumed that levels are numbered from 1 to *n*. Output Specification: If they can pass all the levels, print "I become the guy.". If it's impossible, print "Oh, my keyboard!" (without the quotes). Demo Input: ['4\n3 1 2 3\n2 2 4\n', '4\n3 1 2 3\n2 2 3\n'] Demo Output: ['I become the guy.\n', 'Oh, my keyboard!\n'] Note: In the first sample, Little X can pass levels [1 2 3], and Little Y can pass level [2 4], so they can pass all the levels both. In the second sample, no one can pass level 4.
```python n=int(input()) p=list(map(int,input().split())) s=list(map(int,input().split())) p.pop(0) s.pop(0) m=[] for i in range(1,n+1): m.append(i) sum=0 for j in m: if j in p+s: sum+=1 if sum==len(m): print("I become the guy.") else: print("Oh, my keyboard!") ```
3
520
B
Two Buttons
PROGRAMMING
1,400
[ "dfs and similar", "graphs", "greedy", "implementation", "math", "shortest paths" ]
null
null
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number *n*. Bob wants to get number *m* on the display. What minimum number of clicks he has to make in order to achieve this result?
The first and the only line of the input contains two distinct integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=104), separated by a space .
Print a single number — the minimum number of times one needs to push the button required to get the number *m* out of number *n*.
[ "4 6\n", "10 1\n" ]
[ "2\n", "9\n" ]
In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
1,000
[ { "input": "4 6", "output": "2" }, { "input": "10 1", "output": "9" }, { "input": "1 2", "output": "1" }, { "input": "2 1", "output": "1" }, { "input": "1 3", "output": "3" }, { "input": "3 1", "output": "2" }, { "input": "2 10", "output": "5" }, { "input": "100 99", "output": "1" }, { "input": "99 100", "output": "50" }, { "input": "10 17", "output": "3" }, { "input": "666 6666", "output": "255" }, { "input": "6666 666", "output": "6000" }, { "input": "1 8192", "output": "13" }, { "input": "1 8193", "output": "27" }, { "input": "9999 10000", "output": "5000" }, { "input": "10000 9999", "output": "1" }, { "input": "10000 1", "output": "9999" }, { "input": "1234 5678", "output": "528" }, { "input": "9102 9103", "output": "4552" }, { "input": "8192 1", "output": "8191" }, { "input": "9912 1023", "output": "8889" }, { "input": "100 500", "output": "41" }, { "input": "9997 9999", "output": "4999" }, { "input": "5000 10000", "output": "1" }, { "input": "4000 7997", "output": "3" }, { "input": "1 10000", "output": "20" }, { "input": "1 8191", "output": "14" }, { "input": "9999 10000", "output": "5000" }, { "input": "9097 9998", "output": "4099" }, { "input": "886 9383", "output": "305" }, { "input": "1 9", "output": "7" }, { "input": "1918 10000", "output": "671" }, { "input": "1 3", "output": "3" }, { "input": "1 4", "output": "2" }, { "input": "2 10000", "output": "19" }, { "input": "3 10000", "output": "17" }, { "input": "4 10000", "output": "18" }, { "input": "9998 10000", "output": "4999" }, { "input": "5000 10000", "output": "1" }, { "input": "5001 10000", "output": "2" }, { "input": "10000 1", "output": "9999" }, { "input": "1 9999", "output": "21" }, { "input": "7777 9999", "output": "2779" }, { "input": "2 100", "output": "9" }, { "input": "10 8722", "output": "18" }, { "input": "848 4561", "output": "283" }, { "input": "9967 9973", "output": "4982" }, { "input": "5555 10000", "output": "556" }, { "input": "999 10000", "output": "378" }, { "input": "3 6", "output": "1" }, { "input": "9 38", "output": "8" } ]
1,692,335,930
2,147,483,647
Python 3
OK
TESTS
51
46
0
n,m=map(int,input().split()) count=0 while n<m: if m%2==0: m//=2 else: m+=1 count+=1 count+= n-m print(count)
Title: Two Buttons Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number *n*. Bob wants to get number *m* on the display. What minimum number of clicks he has to make in order to achieve this result? Input Specification: The first and the only line of the input contains two distinct integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=104), separated by a space . Output Specification: Print a single number — the minimum number of times one needs to push the button required to get the number *m* out of number *n*. Demo Input: ['4 6\n', '10 1\n'] Demo Output: ['2\n', '9\n'] Note: In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
```python n,m=map(int,input().split()) count=0 while n<m: if m%2==0: m//=2 else: m+=1 count+=1 count+= n-m print(count) ```
3
122
A
Lucky Division
PROGRAMMING
1,000
[ "brute force", "number theory" ]
null
null
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number *n* is almost lucky.
The single line contains an integer *n* (1<=≤<=*n*<=≤<=1000) — the number that needs to be checked.
In the only line print "YES" (without the quotes), if number *n* is almost lucky. Otherwise, print "NO" (without the quotes).
[ "47\n", "16\n", "78\n" ]
[ "YES\n", "YES\n", "NO\n" ]
Note that all lucky numbers are almost lucky as any number is evenly divisible by itself. In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4.
500
[ { "input": "47", "output": "YES" }, { "input": "16", "output": "YES" }, { "input": "78", "output": "NO" }, { "input": "48", "output": "YES" }, { "input": "100", "output": "YES" }, { "input": "107", "output": "NO" }, { "input": "77", "output": "YES" }, { "input": "477", "output": "YES" }, { "input": "480", "output": "YES" }, { "input": "1", "output": "NO" }, { "input": "3", "output": "NO" }, { "input": "4", "output": "YES" }, { "input": "49", "output": "YES" }, { "input": "56", "output": "YES" }, { "input": "124", "output": "YES" }, { "input": "1000", "output": "YES" }, { "input": "999", "output": "NO" }, { "input": "298", "output": "NO" }, { "input": "274", "output": "NO" }, { "input": "998", "output": "NO" }, { "input": "42", "output": "YES" }, { "input": "788", "output": "YES" }, { "input": "70", "output": "YES" }, { "input": "444", "output": "YES" }, { "input": "777", "output": "YES" }, { "input": "799", "output": "YES" }, { "input": "25", "output": "NO" }, { "input": "882", "output": "YES" }, { "input": "88", "output": "YES" }, { "input": "11", "output": "NO" }, { "input": "2", "output": "NO" }, { "input": "7", "output": "YES" }, { "input": "8", "output": "YES" }, { "input": "94", "output": "YES" }, { "input": "477", "output": "YES" }, { "input": "141", "output": "YES" } ]
1,694,933,677
2,147,483,647
Python 3
OK
TESTS
36
92
0
a = int(input()) def lucky(no): while no!=0: x = no%10 no //= 10 if x!= 7 and x!=4: return 0 else: return 1 for i in range(1,a//2+1): if lucky(i)==1: if a%i==0: print('YES') break else: if lucky(a) == 1: print('YES') else: print('NO')
Title: Lucky Division Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number *n* is almost lucky. Input Specification: The single line contains an integer *n* (1<=≤<=*n*<=≤<=1000) — the number that needs to be checked. Output Specification: In the only line print "YES" (without the quotes), if number *n* is almost lucky. Otherwise, print "NO" (without the quotes). Demo Input: ['47\n', '16\n', '78\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n'] Note: Note that all lucky numbers are almost lucky as any number is evenly divisible by itself. In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4.
```python a = int(input()) def lucky(no): while no!=0: x = no%10 no //= 10 if x!= 7 and x!=4: return 0 else: return 1 for i in range(1,a//2+1): if lucky(i)==1: if a%i==0: print('YES') break else: if lucky(a) == 1: print('YES') else: print('NO') ```
3
27
A
Next Test
PROGRAMMING
1,200
[ "implementation", "sortings" ]
A. Next Test
2
256
«Polygon» is a system which allows to create programming tasks in a simple and professional way. When you add a test to the problem, the corresponding form asks you for the test index. As in most cases it is clear which index the next test will have, the system suggests the default value of the index. It is calculated as the smallest positive integer which is not used as an index for some previously added test. You are to implement this feature. Create a program which determines the default index of the next test, given the indexes of the previously added tests.
The first line contains one integer *n* (1<=≤<=*n*<=≤<=3000) — the amount of previously added tests. The second line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=3000) — indexes of these tests.
Output the required default value for the next test index.
[ "3\n1 7 2\n" ]
[ "3\n" ]
none
500
[ { "input": "1\n1", "output": "2" }, { "input": "2\n2 1", "output": "3" }, { "input": "3\n3 4 1", "output": "2" }, { "input": "4\n6 4 3 5", "output": "1" }, { "input": "5\n3 2 1 7 4", "output": "5" }, { "input": "6\n4 1 2 5 3 7", "output": "6" }, { "input": "7\n3 2 1 6 5 7 4", "output": "8" }, { "input": "8\n2 8 3 7 6 9 1 5", "output": "4" }, { "input": "9\n10 5 9 3 8 7 1 2 4", "output": "6" }, { "input": "10\n7 2 3 8 9 6 5 4 1 10", "output": "11" }, { "input": "1\n1", "output": "2" }, { "input": "2\n1 2", "output": "3" }, { "input": "3\n2 4 1", "output": "3" }, { "input": "4\n4 2 3 1", "output": "5" }, { "input": "5\n3 1 4 2 5", "output": "6" }, { "input": "6\n1 3 6 7 2 4", "output": "5" }, { "input": "7\n1 5 4 7 2 3 6", "output": "8" }, { "input": "8\n12 1 6 5 2 8 3 4", "output": "7" }, { "input": "9\n3 2 7 5 6 4 1 9 10", "output": "8" }, { "input": "10\n1 7 13 6 5 10 3 8 2 4", "output": "9" }, { "input": "1\n2", "output": "1" }, { "input": "1\n3", "output": "1" }, { "input": "1\n3000", "output": "1" }, { "input": "2\n2 3", "output": "1" }, { "input": "2\n3000 1", "output": "2" } ]
1,587,755,019
2,147,483,647
Python 3
OK
TESTS
30
218
307,200
n=int(input()) a=[int(i) for i in input().split()] a.sort() b=[] for i in range(n): b.append(i+1) ans=n+1 for i in range(n): if a[i]!=b[i]: ans=b[i] break print(ans)
Title: Next Test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: «Polygon» is a system which allows to create programming tasks in a simple and professional way. When you add a test to the problem, the corresponding form asks you for the test index. As in most cases it is clear which index the next test will have, the system suggests the default value of the index. It is calculated as the smallest positive integer which is not used as an index for some previously added test. You are to implement this feature. Create a program which determines the default index of the next test, given the indexes of the previously added tests. Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=3000) — the amount of previously added tests. The second line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=3000) — indexes of these tests. Output Specification: Output the required default value for the next test index. Demo Input: ['3\n1 7 2\n'] Demo Output: ['3\n'] Note: none
```python n=int(input()) a=[int(i) for i in input().split()] a.sort() b=[] for i in range(n): b.append(i+1) ans=n+1 for i in range(n): if a[i]!=b[i]: ans=b[i] break print(ans) ```
3.944928
432
A
Choosing Teams
PROGRAMMING
800
[ "greedy", "implementation", "sortings" ]
null
null
The Saratov State University Olympiad Programmers Training Center (SSU OPTC) has *n* students. For each student you know the number of times he/she has participated in the ACM ICPC world programming championship. According to the ACM ICPC rules, each person can participate in the world championship at most 5 times. The head of the SSU OPTC is recently gathering teams to participate in the world championship. Each team must consist of exactly three people, at that, any person cannot be a member of two or more teams. What maximum number of teams can the head make if he wants each team to participate in the world championship with the same members at least *k* times?
The first line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=2000; 1<=≤<=*k*<=≤<=5). The next line contains *n* integers: *y*1,<=*y*2,<=...,<=*y**n* (0<=≤<=*y**i*<=≤<=5), where *y**i* shows the number of times the *i*-th person participated in the ACM ICPC world championship.
Print a single number — the answer to the problem.
[ "5 2\n0 4 5 1 0\n", "6 4\n0 1 2 3 4 5\n", "6 5\n0 0 0 0 0 0\n" ]
[ "1\n", "0\n", "2\n" ]
In the first sample only one team could be made: the first, the fourth and the fifth participants. In the second sample no teams could be created. In the third sample two teams could be created. Any partition into two teams fits.
500
[ { "input": "5 2\n0 4 5 1 0", "output": "1" }, { "input": "6 4\n0 1 2 3 4 5", "output": "0" }, { "input": "6 5\n0 0 0 0 0 0", "output": "2" }, { "input": "3 4\n0 1 0", "output": "1" }, { "input": "3 4\n0 2 0", "output": "0" }, { "input": "6 5\n0 0 0 0 0 0", "output": "2" }, { "input": "12 2\n0 1 2 3 4 0 1 2 3 4 0 1", "output": "3" }, { "input": "15 2\n0 1 2 3 4 0 1 2 3 4 0 1 2 3 4", "output": "4" }, { "input": "13 1\n5 0 5 0 1 5 0 4 1 1 1 4 1", "output": "3" }, { "input": "20 1\n5 0 4 2 2 3 2 1 2 4 1 3 5 5 5 4 4 1 3 0", "output": "5" }, { "input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4", "output": "4" }, { "input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4", "output": "4" }, { "input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4", "output": "4" }, { "input": "20 2\n1 4 5 1 3 4 0 5 0 3 3 0 4 0 0 1 4 2 0 4", "output": "4" }, { "input": "6 3\n4 4 4 4 4 4", "output": "0" }, { "input": "1 4\n1", "output": "0" }, { "input": "1 1\n0", "output": "0" }, { "input": "2 3\n0 0", "output": "0" } ]
1,698,912,334
2,147,483,647
Python 3
OK
TESTS
35
46
0
n, k = map(int, input().split(' ')) inp = map(int, input().split(' ')) add_turns = map(lambda x: x + k, inp) satisfied = filter(lambda x: x <= 5, add_turns) n_teams = len(list(satisfied)) // 3 print(n_teams)
Title: Choosing Teams Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Saratov State University Olympiad Programmers Training Center (SSU OPTC) has *n* students. For each student you know the number of times he/she has participated in the ACM ICPC world programming championship. According to the ACM ICPC rules, each person can participate in the world championship at most 5 times. The head of the SSU OPTC is recently gathering teams to participate in the world championship. Each team must consist of exactly three people, at that, any person cannot be a member of two or more teams. What maximum number of teams can the head make if he wants each team to participate in the world championship with the same members at least *k* times? Input Specification: The first line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=2000; 1<=≤<=*k*<=≤<=5). The next line contains *n* integers: *y*1,<=*y*2,<=...,<=*y**n* (0<=≤<=*y**i*<=≤<=5), where *y**i* shows the number of times the *i*-th person participated in the ACM ICPC world championship. Output Specification: Print a single number — the answer to the problem. Demo Input: ['5 2\n0 4 5 1 0\n', '6 4\n0 1 2 3 4 5\n', '6 5\n0 0 0 0 0 0\n'] Demo Output: ['1\n', '0\n', '2\n'] Note: In the first sample only one team could be made: the first, the fourth and the fifth participants. In the second sample no teams could be created. In the third sample two teams could be created. Any partition into two teams fits.
```python n, k = map(int, input().split(' ')) inp = map(int, input().split(' ')) add_turns = map(lambda x: x + k, inp) satisfied = filter(lambda x: x <= 5, add_turns) n_teams = len(list(satisfied)) // 3 print(n_teams) ```
3
272
D
Dima and Two Sequences
PROGRAMMING
1,600
[ "combinatorics", "math", "sortings" ]
null
null
Little Dima has two sequences of points with integer coordinates: sequence (*a*1,<=1),<=(*a*2,<=2),<=...,<=(*a**n*,<=*n*) and sequence (*b*1,<=1),<=(*b*2,<=2),<=...,<=(*b**n*,<=*n*). Now Dima wants to count the number of distinct sequences of points of length 2·*n* that can be assembled from these sequences, such that the *x*-coordinates of points in the assembled sequence will not decrease. Help him with that. Note that each element of the initial sequences should be used exactly once in the assembled sequence. Dima considers two assembled sequences (*p*1,<=*q*1),<=(*p*2,<=*q*2),<=...,<=(*p*2·*n*,<=*q*2·*n*) and (*x*1,<=*y*1),<=(*x*2,<=*y*2),<=...,<=(*x*2·*n*,<=*y*2·*n*) distinct, if there is such *i* (1<=≤<=*i*<=≤<=2·*n*), that (*p**i*,<=*q**i*)<=≠<=(*x**i*,<=*y**i*). As the answer can be rather large, print the remainder from dividing the answer by number *m*.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109). The third line contains *n* integers *b*1,<=*b*2,<=...,<=*b**n* (1<=≤<=*b**i*<=≤<=109). The numbers in the lines are separated by spaces. The last line contains integer *m* (2<=≤<=*m*<=≤<=109<=+<=7).
In the single line print the remainder after dividing the answer to the problem by number *m*.
[ "1\n1\n2\n7\n", "2\n1 2\n2 3\n11\n" ]
[ "1\n", "2\n" ]
In the first sample you can get only one sequence: (1, 1), (2, 1). In the second sample you can get such sequences : (1, 1), (2, 2), (2, 1), (3, 2); (1, 1), (2, 1), (2, 2), (3, 2). Thus, the answer is 2.
2,000
[ { "input": "1\n1\n2\n7", "output": "1" }, { "input": "2\n1 2\n2 3\n11", "output": "2" }, { "input": "100\n1 8 10 6 5 3 2 3 4 2 3 7 1 1 5 1 4 1 8 1 5 5 6 5 3 7 4 5 5 3 8 7 8 6 8 9 10 7 8 5 8 9 1 3 7 2 6 1 7 7 2 8 1 5 4 2 10 4 9 8 1 10 1 5 9 8 1 9 5 1 5 7 1 6 7 8 8 2 2 3 3 7 2 10 6 3 6 3 5 3 10 4 4 6 9 9 3 2 6 6\n4 3 8 4 4 2 4 6 6 3 3 5 8 4 1 6 2 7 6 1 6 10 7 9 2 9 2 9 10 1 1 1 1 7 4 5 3 6 8 6 10 4 3 4 8 6 5 3 1 2 2 4 1 9 1 3 1 9 6 8 9 4 8 8 4 2 1 4 6 2 6 3 4 7 7 7 8 10 7 8 8 6 4 10 10 7 4 5 5 8 3 8 2 8 6 4 5 2 10 2\n29056621", "output": "5236748" }, { "input": "100\n6 1 10 4 8 7 7 3 2 4 6 3 2 5 3 7 1 6 9 8 3 10 1 6 8 1 4 2 5 6 3 5 4 6 3 10 2 8 10 4 2 6 4 5 3 1 8 6 9 8 5 2 7 1 10 5 10 2 9 1 6 4 9 5 2 4 6 7 10 10 10 6 6 9 2 3 3 1 2 4 1 6 9 8 4 10 10 9 9 2 5 7 10 1 9 7 6 6 4 5\n4 9 2 5 5 4 6 9 1 2 6 3 8 9 4 4 4 3 1 3 6 2 9 1 10 6 5 1 9 10 6 2 10 9 8 7 8 2 1 5 8 4 3 2 10 9 5 7 1 8 4 4 4 2 1 3 4 5 3 6 10 3 8 9 5 6 3 9 3 6 5 1 9 1 4 3 8 4 4 8 10 6 4 9 8 4 2 3 1 9 9 1 4 1 8 4 7 9 10 9\n66921358", "output": "12938646" }, { "input": "100\n2 2 10 3 5 6 4 7 9 8 2 7 5 5 1 7 5 9 2 2 10 3 6 10 9 9 10 7 3 9 7 8 8 3 9 3 9 3 3 6 3 7 9 9 7 10 9 1 1 3 6 2 9 5 9 9 6 2 6 5 6 8 2 10 1 1 6 8 8 4 5 2 6 8 8 5 9 2 3 3 7 7 10 5 4 2 10 6 7 6 5 4 10 6 10 3 9 9 1 5\n3 5 6 4 2 3 2 9 3 8 3 1 10 7 4 3 6 9 3 5 9 5 3 10 4 7 9 7 4 3 3 6 9 8 1 1 10 9 1 6 8 8 8 2 1 6 10 1 8 6 3 5 7 7 10 4 6 6 9 1 5 3 5 10 4 4 1 7 9 7 5 10 6 5 4 1 9 6 4 5 7 3 1 10 2 10 6 6 1 10 7 5 1 4 2 9 2 7 3 10\n727992321", "output": "340960284" }, { "input": "100\n2 5 5 6 5 2 8 10 6 1 5 3 10 3 8 6 4 5 7 9 7 1 3 3 5 2 3 7 9 3 7 2 7 6 7 10 5 9 2 4 8 2 3 8 6 6 8 4 1 2 10 5 2 8 4 3 1 3 8 3 2 4 4 6 8 1 9 8 9 9 1 7 1 9 2 4 6 2 1 9 2 7 9 6 6 7 1 9 3 1 6 10 3 9 10 5 3 3 9 8\n6 5 3 1 3 3 8 6 5 4 2 3 9 3 9 9 10 5 10 6 7 8 8 7 8 4 2 4 4 9 1 3 1 5 8 4 8 9 7 9 7 8 4 9 9 9 4 2 9 1 3 10 6 4 5 3 2 8 1 5 1 8 10 10 3 3 7 1 2 4 4 3 3 5 9 8 9 8 5 9 4 8 10 6 7 4 1 9 4 7 1 8 3 3 5 9 8 6 5 4\n608692736", "output": "550164992" }, { "input": "2\n1 2\n1 2\n4", "output": "1" }, { "input": "4\n1 2 3 4\n4 3 2 1\n1009", "output": "16" }, { "input": "5\n1 2 3 3 5\n1 2 3 5 3\n12", "output": "0" }, { "input": "1\n1000000000\n1000000000\n2", "output": "1" }, { "input": "2\n1 2\n2 2\n4", "output": "3" } ]
1,627,835,872
2,147,483,647
PyPy 3
OK
TESTS
51
778
47,718,400
n = int(input()) #tamaño de las sucesiones a_n = input().split() #sucesion a_n b_n = input().split() #sucesion b_n k = int(input()) #numero para obtener un resultado de la forma km + r con 0 <= r < k def solution(n, a_n, b_n, k): c_n = {} #sucesion c_n que representa la union de a_n con b_n d_n = {} #sucesion d_n que representa la intercepcion de a_n con b_n result = 1 #resultado de la operacion for a_i, b_i in zip(a_n, b_n): #recorremos a_n y b_n al mismo tiempo if a_i == b_i: #si ambos elementos son iguales quiere decir que su par <x,y> es el mismo d_n[a_i] = d_n.get(a_i,0) + 2 #ya que estamos iterando por la misma posicion en ambas sucesiones #luego estos elementos pertenecen a la sucesion d_n c_n[a_i] = c_n.get(a_i,0) + 1 c_n[b_i] = c_n.get(b_i,0) + 1 #añadimos ambos elementos a la sucesion c_n #procedemos a allar el valor del resultado, este seria la combinacion de todas las posibles #combinaciones de cada uno de los elementos que tengan el mismo valor: c_1*c_2*...*c_n #por ende recorremos la sucesion c_n completa for c_i, cant in c_n.items(): #ahora debemos de hallar las posibles combinaciones de c_i, estas se dividen en 2 #las que pertenecen a d_n y las que no pertenecen a d_n; notemos que si esta repetida #significa que las posibles combinaciones entre ellas se van a repetir por 2, #ya que solo existen un maximo de 2 elementos repetidos por cada d_i cant_rep = d_n.get(c_i,0) #hallamos las combinaciones de los elementos repetidos como #la combinacion sin repeticion de todos los elementos entre 2 for i in range(cant - cant_rep + 1, cant, 2): result = (result * i * (i + 1) // 2) % k #hallamos las combinaciones de los elementos no repetidos como #la combinacion sin repeticion de todos los elementos for i in range(1, cant - cant_rep + 1): result = (result * i) % k #repetimos el proceso hasta el final de c_n; nocese que se multiplica directamente #el valor del resultado y que en cada multiplicacion se aplica el resto de la misma #esto es porque en la ecuacion general de: combin = km + r; setiene que si multiplicamos #la ecuacion por un c quedaria: c*combin = c*km + c*r => combin' = km' + c*r => en la #proxima multiplicacion solo queda hallar de nuevo el % k del resto c*r que queda y seria: #combin' = km' + km'' + r' => combin' = k(m' + m'') + r'; y r' seria nuestro nuevo resto return result print(solution(n, a_n, b_n, k))
Title: Dima and Two Sequences Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Dima has two sequences of points with integer coordinates: sequence (*a*1,<=1),<=(*a*2,<=2),<=...,<=(*a**n*,<=*n*) and sequence (*b*1,<=1),<=(*b*2,<=2),<=...,<=(*b**n*,<=*n*). Now Dima wants to count the number of distinct sequences of points of length 2·*n* that can be assembled from these sequences, such that the *x*-coordinates of points in the assembled sequence will not decrease. Help him with that. Note that each element of the initial sequences should be used exactly once in the assembled sequence. Dima considers two assembled sequences (*p*1,<=*q*1),<=(*p*2,<=*q*2),<=...,<=(*p*2·*n*,<=*q*2·*n*) and (*x*1,<=*y*1),<=(*x*2,<=*y*2),<=...,<=(*x*2·*n*,<=*y*2·*n*) distinct, if there is such *i* (1<=≤<=*i*<=≤<=2·*n*), that (*p**i*,<=*q**i*)<=≠<=(*x**i*,<=*y**i*). As the answer can be rather large, print the remainder from dividing the answer by number *m*. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109). The third line contains *n* integers *b*1,<=*b*2,<=...,<=*b**n* (1<=≤<=*b**i*<=≤<=109). The numbers in the lines are separated by spaces. The last line contains integer *m* (2<=≤<=*m*<=≤<=109<=+<=7). Output Specification: In the single line print the remainder after dividing the answer to the problem by number *m*. Demo Input: ['1\n1\n2\n7\n', '2\n1 2\n2 3\n11\n'] Demo Output: ['1\n', '2\n'] Note: In the first sample you can get only one sequence: (1, 1), (2, 1). In the second sample you can get such sequences : (1, 1), (2, 2), (2, 1), (3, 2); (1, 1), (2, 1), (2, 2), (3, 2). Thus, the answer is 2.
```python n = int(input()) #tamaño de las sucesiones a_n = input().split() #sucesion a_n b_n = input().split() #sucesion b_n k = int(input()) #numero para obtener un resultado de la forma km + r con 0 <= r < k def solution(n, a_n, b_n, k): c_n = {} #sucesion c_n que representa la union de a_n con b_n d_n = {} #sucesion d_n que representa la intercepcion de a_n con b_n result = 1 #resultado de la operacion for a_i, b_i in zip(a_n, b_n): #recorremos a_n y b_n al mismo tiempo if a_i == b_i: #si ambos elementos son iguales quiere decir que su par <x,y> es el mismo d_n[a_i] = d_n.get(a_i,0) + 2 #ya que estamos iterando por la misma posicion en ambas sucesiones #luego estos elementos pertenecen a la sucesion d_n c_n[a_i] = c_n.get(a_i,0) + 1 c_n[b_i] = c_n.get(b_i,0) + 1 #añadimos ambos elementos a la sucesion c_n #procedemos a allar el valor del resultado, este seria la combinacion de todas las posibles #combinaciones de cada uno de los elementos que tengan el mismo valor: c_1*c_2*...*c_n #por ende recorremos la sucesion c_n completa for c_i, cant in c_n.items(): #ahora debemos de hallar las posibles combinaciones de c_i, estas se dividen en 2 #las que pertenecen a d_n y las que no pertenecen a d_n; notemos que si esta repetida #significa que las posibles combinaciones entre ellas se van a repetir por 2, #ya que solo existen un maximo de 2 elementos repetidos por cada d_i cant_rep = d_n.get(c_i,0) #hallamos las combinaciones de los elementos repetidos como #la combinacion sin repeticion de todos los elementos entre 2 for i in range(cant - cant_rep + 1, cant, 2): result = (result * i * (i + 1) // 2) % k #hallamos las combinaciones de los elementos no repetidos como #la combinacion sin repeticion de todos los elementos for i in range(1, cant - cant_rep + 1): result = (result * i) % k #repetimos el proceso hasta el final de c_n; nocese que se multiplica directamente #el valor del resultado y que en cada multiplicacion se aplica el resto de la misma #esto es porque en la ecuacion general de: combin = km + r; setiene que si multiplicamos #la ecuacion por un c quedaria: c*combin = c*km + c*r => combin' = km' + c*r => en la #proxima multiplicacion solo queda hallar de nuevo el % k del resto c*r que queda y seria: #combin' = km' + km'' + r' => combin' = k(m' + m'') + r'; y r' seria nuestro nuevo resto return result print(solution(n, a_n, b_n, k)) ```
3
350
A
TL
PROGRAMMING
1,200
[ "brute force", "greedy", "implementation" ]
null
null
Valera wanted to prepare a Codesecrof round. He's already got one problem and he wants to set a time limit (TL) on it. Valera has written *n* correct solutions. For each correct solution, he knows its running time (in seconds). Valera has also wrote *m* wrong solutions and for each wrong solution he knows its running time (in seconds). Let's suppose that Valera will set *v* seconds TL in the problem. Then we can say that a solution passes the system testing if its running time is at most *v* seconds. We can also say that a solution passes the system testing with some "extra" time if for its running time, *a* seconds, an inequality 2*a*<=≤<=*v* holds. As a result, Valera decided to set *v* seconds TL, that the following conditions are met: 1. *v* is a positive integer; 1. all correct solutions pass the system testing; 1. at least one correct solution passes the system testing with some "extra" time; 1. all wrong solutions do not pass the system testing; 1. value *v* is minimum among all TLs, for which points 1, 2, 3, 4 hold. Help Valera and find the most suitable TL or else state that such TL doesn't exist.
The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *n* space-separated positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) — the running time of each of the *n* correct solutions in seconds. The third line contains *m* space-separated positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=100) — the running time of each of *m* wrong solutions in seconds.
If there is a valid TL value, print it. Otherwise, print -1.
[ "3 6\n4 5 2\n8 9 6 10 7 11\n", "3 1\n3 4 5\n6\n" ]
[ "5", "-1\n" ]
none
500
[ { "input": "3 6\n4 5 2\n8 9 6 10 7 11", "output": "5" }, { "input": "3 1\n3 4 5\n6", "output": "-1" }, { "input": "2 5\n45 99\n49 41 77 83 45", "output": "-1" }, { "input": "50 50\n18 13 5 34 10 36 36 12 15 11 16 17 14 36 23 45 32 24 31 18 24 32 7 1 31 3 49 8 16 23 3 39 47 43 42 38 40 22 41 1 49 47 9 8 19 15 29 30 16 18\n91 58 86 51 94 94 73 84 98 69 74 56 52 80 88 61 53 99 88 50 55 95 65 84 87 79 51 52 69 60 74 73 93 61 73 59 64 56 95 78 86 72 79 70 93 78 54 61 71 50", "output": "49" }, { "input": "55 44\n93 17 74 15 34 16 41 80 26 54 94 94 86 93 20 44 63 72 39 43 67 4 37 49 76 94 5 51 64 74 11 47 77 97 57 30 42 72 71 26 8 14 67 64 49 57 30 23 40 4 76 78 87 78 79\n38 55 17 65 26 7 36 65 48 28 49 93 18 98 31 90 26 57 1 26 88 56 48 56 23 13 8 67 80 2 51 3 21 33 20 54 2 45 21 36 3 98 62 2", "output": "-1" }, { "input": "32 100\n30 8 4 35 18 41 18 12 33 39 39 18 39 19 33 46 45 33 34 27 14 39 40 21 38 9 42 35 27 10 14 14\n65 49 89 64 47 78 59 52 73 51 84 82 88 63 91 99 67 87 53 99 75 47 85 82 58 47 80 50 65 91 83 90 77 52 100 88 97 74 98 99 50 93 65 61 65 65 65 96 61 51 84 67 79 90 92 83 100 100 100 95 80 54 77 51 98 64 74 62 60 96 73 74 94 55 89 60 92 65 74 79 66 81 53 47 71 51 54 85 74 97 68 72 88 94 100 85 65 63 65 90", "output": "46" }, { "input": "1 50\n7\n65 52 99 78 71 19 96 72 80 15 50 94 20 35 79 95 44 41 45 53 77 50 74 66 59 96 26 84 27 48 56 84 36 78 89 81 67 34 79 74 99 47 93 92 90 96 72 28 78 66", "output": "14" }, { "input": "1 1\n4\n9", "output": "8" }, { "input": "1 1\n2\n4", "output": "-1" }, { "input": "22 56\n49 20 42 68 15 46 98 78 82 8 7 33 50 30 75 96 36 88 35 99 19 87\n15 18 81 24 35 89 25 32 23 3 48 24 52 69 18 32 23 61 48 98 50 38 5 17 70 20 38 32 49 54 68 11 51 81 46 22 19 59 29 38 45 83 18 13 91 17 84 62 25 60 97 32 23 13 83 58", "output": "-1" }, { "input": "1 1\n50\n100", "output": "-1" }, { "input": "1 1\n49\n100", "output": "98" }, { "input": "1 1\n100\n100", "output": "-1" }, { "input": "1 1\n99\n100", "output": "-1" }, { "input": "8 4\n1 2 49 99 99 95 78 98\n100 100 100 100", "output": "99" }, { "input": "68 85\n43 55 2 4 72 45 19 56 53 81 18 90 11 87 47 8 94 88 24 4 67 9 21 70 25 66 65 27 46 13 8 51 65 99 37 43 71 59 71 79 32 56 49 43 57 85 95 81 40 28 60 36 72 81 60 40 16 78 61 37 29 26 15 95 70 27 50 97\n6 6 48 72 54 31 1 50 29 64 93 9 29 93 66 63 25 90 52 1 66 13 70 30 24 87 32 90 84 72 44 13 25 45 31 16 92 60 87 40 62 7 20 63 86 78 73 88 5 36 74 100 64 34 9 5 62 29 58 48 81 46 84 56 27 1 60 14 54 88 31 93 62 7 9 69 27 48 10 5 33 10 53 66 2", "output": "-1" }, { "input": "5 100\n1 1 1 1 1\n77 53 38 29 97 33 64 17 78 100 27 12 42 44 20 24 44 68 58 57 65 90 8 24 4 6 74 68 61 43 25 69 8 62 36 85 67 48 69 30 35 41 42 12 87 66 50 92 53 76 38 67 85 7 80 78 53 76 94 8 37 50 4 100 4 71 10 48 34 47 83 42 25 81 64 72 25 51 53 75 43 98 53 77 94 38 81 15 89 91 72 76 7 36 27 41 88 18 19 75", "output": "2" }, { "input": "3 3\n2 3 4\n8 9 10", "output": "4" }, { "input": "2 1\n2 3\n15", "output": "4" }, { "input": "2 1\n2 4\n4", "output": "-1" }, { "input": "2 3\n4 5\n10 11 12", "output": "8" }, { "input": "3 1\n2 3 3\n5", "output": "4" }, { "input": "2 1\n9 10\n100", "output": "18" }, { "input": "3 3\n3 12 15\n7 8 9", "output": "-1" }, { "input": "2 2\n3 5\n7 8", "output": "6" }, { "input": "3 3\n4 5 6\n10 11 12", "output": "8" }, { "input": "3 5\n2 3 3\n6 6 6 6 2", "output": "-1" }, { "input": "3 6\n4 5 3\n8 9 7 10 7 11", "output": "6" }, { "input": "3 6\n4 5 2\n8 9 6 10 7 4", "output": "-1" }, { "input": "2 1\n4 6\n10", "output": "8" }, { "input": "1 2\n1\n3 1", "output": "-1" }, { "input": "2 1\n5 6\n20", "output": "10" }, { "input": "2 1\n1 5\n5", "output": "-1" }, { "input": "3 2\n10 20 30\n30 40", "output": "-1" }, { "input": "2 2\n5 6\n7 100", "output": "-1" }, { "input": "2 1\n2 5\n7", "output": "5" }, { "input": "1 1\n5\n20", "output": "10" }, { "input": "2 1\n10 11\n100", "output": "20" }, { "input": "1 1\n1\n10", "output": "2" }, { "input": "1 1\n10\n100", "output": "20" } ]
1,619,784,097
2,147,483,647
PyPy 3
OK
TESTS
45
218
0
n, m = map(int, input().split()) good = list(map(int, input().split())) bad = list(map(int, input().split())) minimum_g, maximum_g = min(good), max(good) minimum_time = -1 if(minimum_g == maximum_g): minimum_time = 2*minimum_g else: minimum_time = max(2*minimum_g, maximum_g) if(min(bad)<=minimum_time): print(-1) else: print(minimum_time)
Title: TL Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera wanted to prepare a Codesecrof round. He's already got one problem and he wants to set a time limit (TL) on it. Valera has written *n* correct solutions. For each correct solution, he knows its running time (in seconds). Valera has also wrote *m* wrong solutions and for each wrong solution he knows its running time (in seconds). Let's suppose that Valera will set *v* seconds TL in the problem. Then we can say that a solution passes the system testing if its running time is at most *v* seconds. We can also say that a solution passes the system testing with some "extra" time if for its running time, *a* seconds, an inequality 2*a*<=≤<=*v* holds. As a result, Valera decided to set *v* seconds TL, that the following conditions are met: 1. *v* is a positive integer; 1. all correct solutions pass the system testing; 1. at least one correct solution passes the system testing with some "extra" time; 1. all wrong solutions do not pass the system testing; 1. value *v* is minimum among all TLs, for which points 1, 2, 3, 4 hold. Help Valera and find the most suitable TL or else state that such TL doesn't exist. Input Specification: The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *n* space-separated positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) — the running time of each of the *n* correct solutions in seconds. The third line contains *m* space-separated positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=100) — the running time of each of *m* wrong solutions in seconds. Output Specification: If there is a valid TL value, print it. Otherwise, print -1. Demo Input: ['3 6\n4 5 2\n8 9 6 10 7 11\n', '3 1\n3 4 5\n6\n'] Demo Output: ['5', '-1\n'] Note: none
```python n, m = map(int, input().split()) good = list(map(int, input().split())) bad = list(map(int, input().split())) minimum_g, maximum_g = min(good), max(good) minimum_time = -1 if(minimum_g == maximum_g): minimum_time = 2*minimum_g else: minimum_time = max(2*minimum_g, maximum_g) if(min(bad)<=minimum_time): print(-1) else: print(minimum_time) ```
3
218
B
Airport
PROGRAMMING
1,100
[ "implementation" ]
null
null
Lolek and Bolek are about to travel abroad by plane. The local airport has a special "Choose Your Plane" offer. The offer's conditions are as follows: - it is up to a passenger to choose a plane to fly on; - if the chosen plane has *x* (*x*<=&gt;<=0) empty seats at the given moment, then the ticket for such a plane costs *x* zlotys (units of Polish currency). The only ticket office of the airport already has a queue of *n* passengers in front of it. Lolek and Bolek have not stood in the queue yet, but they are already wondering what is the maximum and the minimum number of zlotys the airport administration can earn if all *n* passengers buy tickets according to the conditions of this offer? The passengers buy tickets in turn, the first person in the queue goes first, then goes the second one, and so on up to *n*-th person.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the number of passengers in the queue and the number of planes in the airport, correspondingly. The next line contains *m* integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=1000) — *a**i* stands for the number of empty seats in the *i*-th plane before the ticket office starts selling tickets. The numbers in the lines are separated by a space. It is guaranteed that there are at least *n* empty seats in total.
Print two integers — the maximum and the minimum number of zlotys that the airport administration can earn, correspondingly.
[ "4 3\n2 1 1\n", "4 3\n2 2 2\n" ]
[ "5 5\n", "7 6\n" ]
In the first test sample the number of passengers is equal to the number of empty seats, so regardless of the way the planes are chosen, the administration will earn the same sum. In the second sample the sum is maximized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 2-nd plane, the 3-rd person — to the 3-rd plane, the 4-th person — to the 1-st plane. The sum is minimized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 1-st plane, the 3-rd person — to the 2-nd plane, the 4-th person — to the 2-nd plane.
500
[ { "input": "4 3\n2 1 1", "output": "5 5" }, { "input": "4 3\n2 2 2", "output": "7 6" }, { "input": "10 5\n10 3 3 1 2", "output": "58 26" }, { "input": "10 1\n10", "output": "55 55" }, { "input": "10 1\n100", "output": "955 955" }, { "input": "10 2\n4 7", "output": "37 37" }, { "input": "40 10\n1 2 3 4 5 6 7 10 10 10", "output": "223 158" }, { "input": "1 1\n6", "output": "6 6" }, { "input": "1 2\n10 9", "output": "10 9" }, { "input": "2 1\n7", "output": "13 13" }, { "input": "2 2\n7 2", "output": "13 3" }, { "input": "3 2\n4 7", "output": "18 9" }, { "input": "3 3\n2 1 1", "output": "4 4" }, { "input": "3 3\n2 1 1", "output": "4 4" }, { "input": "10 10\n3 1 2 2 1 1 2 1 2 3", "output": "20 13" }, { "input": "10 2\n7 3", "output": "34 34" }, { "input": "10 1\n19", "output": "145 145" }, { "input": "100 3\n29 36 35", "output": "1731 1731" }, { "input": "100 5\n3 38 36 35 2", "output": "2019 1941" }, { "input": "510 132\n50 76 77 69 94 30 47 65 14 62 18 121 26 35 49 17 105 93 47 16 78 3 7 74 7 37 30 36 30 83 71 113 7 58 86 10 65 57 34 102 55 44 43 47 106 44 115 75 109 70 47 45 16 57 62 55 20 88 74 40 45 84 41 1 9 53 65 25 67 31 115 2 63 51 123 70 65 65 18 14 75 14 103 26 117 105 36 104 81 37 35 61 44 90 71 70 88 89 26 21 64 77 89 16 87 99 13 79 27 3 46 120 116 11 14 17 32 70 113 94 108 57 29 100 53 48 44 29 70 30 32 62", "output": "50279 5479" }, { "input": "510 123\n5 2 3 2 5 7 2 3 1 3 6 6 3 1 5 3 5 6 2 2 1 5 5 5 2 2 3 1 6 3 5 8 4 6 1 5 4 5 1 6 5 5 3 6 4 1 6 1 3 5 2 7 5 2 4 4 5 6 5 5 4 3 4 6 5 4 4 3 5 8 5 5 6 3 1 7 4 4 3 3 5 3 6 3 3 6 2 5 3 2 4 5 4 5 2 2 4 4 4 7 3 4 6 5 3 6 4 7 1 6 5 7 6 5 7 3 7 4 4 1 6 6 4", "output": "1501 1501" }, { "input": "610 33\n15 44 8 8 17 11 39 39 38 25 17 36 17 25 21 37 10 11 34 30 29 50 29 50 4 20 32 13 41 14 2 11 2", "output": "12204 8871" } ]
1,692,988,475
2,147,483,647
PyPy 3-64
OK
TESTS
33
154
13,209,600
# n - passengers n, m = map(int, input().split()) args = list(map(int, input().split())) args.sort() def calc(min=True): result = [] start = 0 if min: while start < len(args): result += list(range(1, args[start] + 1))[::-1] start += 1 return result args = calc() min = sum(args[:n]) args.sort(reverse=True) max = sum(args[:n]) print(max, min)
Title: Airport Time Limit: None seconds Memory Limit: None megabytes Problem Description: Lolek and Bolek are about to travel abroad by plane. The local airport has a special "Choose Your Plane" offer. The offer's conditions are as follows: - it is up to a passenger to choose a plane to fly on; - if the chosen plane has *x* (*x*<=&gt;<=0) empty seats at the given moment, then the ticket for such a plane costs *x* zlotys (units of Polish currency). The only ticket office of the airport already has a queue of *n* passengers in front of it. Lolek and Bolek have not stood in the queue yet, but they are already wondering what is the maximum and the minimum number of zlotys the airport administration can earn if all *n* passengers buy tickets according to the conditions of this offer? The passengers buy tickets in turn, the first person in the queue goes first, then goes the second one, and so on up to *n*-th person. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the number of passengers in the queue and the number of planes in the airport, correspondingly. The next line contains *m* integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=1000) — *a**i* stands for the number of empty seats in the *i*-th plane before the ticket office starts selling tickets. The numbers in the lines are separated by a space. It is guaranteed that there are at least *n* empty seats in total. Output Specification: Print two integers — the maximum and the minimum number of zlotys that the airport administration can earn, correspondingly. Demo Input: ['4 3\n2 1 1\n', '4 3\n2 2 2\n'] Demo Output: ['5 5\n', '7 6\n'] Note: In the first test sample the number of passengers is equal to the number of empty seats, so regardless of the way the planes are chosen, the administration will earn the same sum. In the second sample the sum is maximized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 2-nd plane, the 3-rd person — to the 3-rd plane, the 4-th person — to the 1-st plane. The sum is minimized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 1-st plane, the 3-rd person — to the 2-nd plane, the 4-th person — to the 2-nd plane.
```python # n - passengers n, m = map(int, input().split()) args = list(map(int, input().split())) args.sort() def calc(min=True): result = [] start = 0 if min: while start < len(args): result += list(range(1, args[start] + 1))[::-1] start += 1 return result args = calc() min = sum(args[:n]) args.sort(reverse=True) max = sum(args[:n]) print(max, min) ```
3
844
A
Diversity
PROGRAMMING
1,000
[ "greedy", "implementation", "strings" ]
null
null
Calculate the minimum number of characters you need to change in the string *s*, so that it contains at least *k* different letters, or print that it is impossible. String *s* consists only of lowercase Latin letters, and it is allowed to change characters only to lowercase Latin letters too.
First line of input contains string *s*, consisting only of lowercase Latin letters (1<=≤<=|*s*|<=≤<=1000, |*s*| denotes the length of *s*). Second line of input contains integer *k* (1<=≤<=*k*<=≤<=26).
Print single line with a minimum number of necessary changes, or the word «impossible» (without quotes) if it is impossible.
[ "yandex\n6\n", "yahoo\n5\n", "google\n7\n" ]
[ "0\n", "1\n", "impossible\n" ]
In the first test case string contains 6 different letters, so we don't need to change anything. In the second test case string contains 4 different letters: {'*a*', '*h*', '*o*', '*y*'}. To get 5 different letters it is necessary to change one occurrence of '*o*' to some letter, which doesn't occur in the string, for example, {'*b*'}. In the third test case, it is impossible to make 7 different letters because the length of the string is 6.
500
[ { "input": "yandex\n6", "output": "0" }, { "input": "yahoo\n5", "output": "1" }, { "input": "google\n7", "output": "impossible" }, { "input": "a\n1", "output": "0" }, { "input": "z\n2", "output": "impossible" }, { "input": "fwgfrwgkuwghfiruhewgirueguhergiqrbvgrgf\n26", "output": "14" }, { "input": "nfevghreuoghrueighoqghbnebvnejbvnbgneluqe\n26", "output": "12" }, { "input": "a\n3", "output": "impossible" }, { "input": "smaxpqplaqqbxuqxalqmbmmgubbpspxhawbxsuqhhegpmmpebqmqpbbeplwaepxmsahuepuhuhwxeqmmlgqubuaxehwuwasgxpqmugbmuawuhwqlswllssueglbxepbmwgs\n1", "output": "0" }, { "input": "cuguccgcugcugucgggggcgcgucgucugcuuuccccuugccg\n4", "output": "1" }, { "input": "fcfccfcfccfcfcffcffffffcfccfccfcffccccfcffffccfccfcffcfcccccffcfffcccffcfccfffffcccfccffffffccfccccf\n20", "output": "18" }, { "input": "swmkwaruyv\n5", "output": "0" }, { "input": "tnbqpsuhkczmejirvyfdolxwga\n22", "output": "0" }, { "input": "abcde\n3", "output": "0" }, { "input": "abb\n1", "output": "0" }, { "input": "aaaa\n1", "output": "0" }, { "input": "abcde\n2", "output": "0" }, { "input": "yandex\n4", "output": "0" }, { "input": "aaabbbccc\n1", "output": "0" }, { "input": "abcd\n2", "output": "0" }, { "input": "asdfgh\n2", "output": "0" }, { "input": "aab\n1", "output": "0" }, { "input": "mynameissako\n5", "output": "0" }, { "input": "abcde\n1", "output": "0" }, { "input": "abcd\n3", "output": "0" }, { "input": "abcdef\n2", "output": "0" }, { "input": "abcdefg\n4", "output": "0" }, { "input": "abc\n1", "output": "0" }, { "input": "asdafjsgljdllgjdgkl\n5", "output": "0" }, { "input": "yaay\n3", "output": "1" }, { "input": "yaay\n4", "output": "2" }, { "input": "zzzzzz\n2", "output": "1" } ]
1,589,818,114
2,147,483,647
Python 3
OK
TESTS
41
108
0
k=input() n=int(input()) k1=[] if(len(k)<n): print("impossible") else: for i in k: if i not in k1: k1.append(i) print(max(0,n-len(k1)))
Title: Diversity Time Limit: None seconds Memory Limit: None megabytes Problem Description: Calculate the minimum number of characters you need to change in the string *s*, so that it contains at least *k* different letters, or print that it is impossible. String *s* consists only of lowercase Latin letters, and it is allowed to change characters only to lowercase Latin letters too. Input Specification: First line of input contains string *s*, consisting only of lowercase Latin letters (1<=≤<=|*s*|<=≤<=1000, |*s*| denotes the length of *s*). Second line of input contains integer *k* (1<=≤<=*k*<=≤<=26). Output Specification: Print single line with a minimum number of necessary changes, or the word «impossible» (without quotes) if it is impossible. Demo Input: ['yandex\n6\n', 'yahoo\n5\n', 'google\n7\n'] Demo Output: ['0\n', '1\n', 'impossible\n'] Note: In the first test case string contains 6 different letters, so we don't need to change anything. In the second test case string contains 4 different letters: {'*a*', '*h*', '*o*', '*y*'}. To get 5 different letters it is necessary to change one occurrence of '*o*' to some letter, which doesn't occur in the string, for example, {'*b*'}. In the third test case, it is impossible to make 7 different letters because the length of the string is 6.
```python k=input() n=int(input()) k1=[] if(len(k)<n): print("impossible") else: for i in k: if i not in k1: k1.append(i) print(max(0,n-len(k1))) ```
3
855
A
Tom Riddle's Diary
PROGRAMMING
800
[ "brute force", "implementation", "strings" ]
null
null
Harry Potter is on a mission to destroy You-Know-Who's Horcruxes. The first Horcrux that he encountered in the Chamber of Secrets is Tom Riddle's diary. The diary was with Ginny and it forced her to open the Chamber of Secrets. Harry wants to know the different people who had ever possessed the diary to make sure they are not under its influence. He has names of *n* people who possessed the diary in order. You need to tell, for each person, if he/she possessed the diary at some point before or not. Formally, for a name *s**i* in the *i*-th line, output "YES" (without quotes) if there exists an index *j* such that *s**i*<==<=*s**j* and *j*<=&lt;<=*i*, otherwise, output "NO" (without quotes).
First line of input contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of names in the list. Next *n* lines each contain a string *s**i*, consisting of lowercase English letters. The length of each string is between 1 and 100.
Output *n* lines each containing either "YES" or "NO" (without quotes), depending on whether this string was already present in the stream or not. You can print each letter in any case (upper or lower).
[ "6\ntom\nlucius\nginny\nharry\nginny\nharry\n", "3\na\na\na\n" ]
[ "NO\nNO\nNO\nNO\nYES\nYES\n", "NO\nYES\nYES\n" ]
In test case 1, for *i* = 5 there exists *j* = 3 such that *s*<sub class="lower-index">*i*</sub> = *s*<sub class="lower-index">*j*</sub> and *j* &lt; *i*, which means that answer for *i* = 5 is "YES".
500
[ { "input": "6\ntom\nlucius\nginny\nharry\nginny\nharry", "output": "NO\nNO\nNO\nNO\nYES\nYES" }, { "input": "3\na\na\na", "output": "NO\nYES\nYES" }, { "input": "1\nzn", "output": "NO" }, { "input": "9\nliyzmbjwnzryjokufuxcqtzwworjeoxkbaqrujrhdidqdvwdfzilwszgnzglnnbogaclckfnbqovtziuhwvyrqwmskx\nliyzmbjwnzryjokufuxcqtzwworjeoxkbaqrujrhdidqdvwdfzilwszgnzglnnbogaclckfnbqovtziuhwvyrqwmskx\nliyzmbjwnzryjokufuxcqtzwworjeoxkbaqrujrhdidqdvwdfzilwszgnzglnnbogaclckfnbqovtziuhwvyrqwmskx\nhrtm\nssjqvixduertmotgagizamvfucfwtxqnhuowbqbzctgznivehelpcyigwrbbdsxnewfqvcf\nhyrtxvozpbveexfkgalmguozzakitjiwsduqxonb\nwcyxteiwtcyuztaguilqpbiwcwjaiq\nwcyxteiwtcyuztaguilqpbiwcwjaiq\nbdbivqzvhggth", "output": "NO\nYES\nYES\nNO\nNO\nNO\nNO\nYES\nNO" }, { "input": "10\nkkiubdktydpdcbbttwpfdplhhjhrpqmpg\nkkiubdktydpdcbbttwpfdplhhjhrpqmpg\nmvutw\nqooeqoxzxwetlpecqiwgdbogiqqulttysyohwhzxzphvsfmnplizxoebzcvvfyppqbhxjksuzepuezqqzxlfmdanoeaoqmor\nmvutw\nvchawxjoreboqzuklifv\nvchawxjoreboqzuklifv\nnivijte\nrflybruq\nvchawxjoreboqzuklifv", "output": "NO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nNO\nYES" }, { "input": "1\nz", "output": "NO" }, { "input": "9\nl\ny\nm\nj\nn\nr\nj\nk\nf", "output": "NO\nNO\nNO\nNO\nNO\nNO\nYES\nNO\nNO" }, { "input": "14\nw\na\nh\np\nk\nw\ny\nv\ns\nf\nx\nd\nk\nr", "output": "NO\nNO\nNO\nNO\nNO\nYES\nNO\nNO\nNO\nNO\nNO\nNO\nYES\nNO" }, { "input": "25\np\nk\nu\nl\nf\nt\nc\ns\nq\nd\nb\nq\no\ni\ni\nd\ni\nw\nn\ng\nw\nt\na\ne\ni", "output": "NO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nNO\nNO\nYES\nYES\nNO\nNO\nYES" }, { "input": "20\nd\nh\ng\no\np\ne\nt\nj\nv\ni\nt\nh\ns\ni\nw\nf\nx\na\nl\ni", "output": "NO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nNO\nNO\nNO\nNO\nYES" }, { "input": "3\nbbbbbbb\nbbbbbbbbb\nbbbbbbbbbbbbbbbbbbbbbbbbbbbb", "output": "NO\nNO\nNO" }, { "input": "2\nab\nba", "output": "NO\nNO" }, { "input": "6\ntom\nlucius\nginnys\nharpy\nginny\nharry", "output": "NO\nNO\nNO\nNO\nNO\nNO" }, { "input": "2\nabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcde\nabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcde", "output": "NO\nYES" }, { "input": "42\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na", "output": "NO\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES" } ]
1,691,056,002
2,147,483,647
Python 3
OK
TESTS
55
46
0
n = int(input()) a = [] for i in range(n): b = input() if b in a: print('Yes') else: print('No') a.append(b)
Title: Tom Riddle's Diary Time Limit: None seconds Memory Limit: None megabytes Problem Description: Harry Potter is on a mission to destroy You-Know-Who's Horcruxes. The first Horcrux that he encountered in the Chamber of Secrets is Tom Riddle's diary. The diary was with Ginny and it forced her to open the Chamber of Secrets. Harry wants to know the different people who had ever possessed the diary to make sure they are not under its influence. He has names of *n* people who possessed the diary in order. You need to tell, for each person, if he/she possessed the diary at some point before or not. Formally, for a name *s**i* in the *i*-th line, output "YES" (without quotes) if there exists an index *j* such that *s**i*<==<=*s**j* and *j*<=&lt;<=*i*, otherwise, output "NO" (without quotes). Input Specification: First line of input contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of names in the list. Next *n* lines each contain a string *s**i*, consisting of lowercase English letters. The length of each string is between 1 and 100. Output Specification: Output *n* lines each containing either "YES" or "NO" (without quotes), depending on whether this string was already present in the stream or not. You can print each letter in any case (upper or lower). Demo Input: ['6\ntom\nlucius\nginny\nharry\nginny\nharry\n', '3\na\na\na\n'] Demo Output: ['NO\nNO\nNO\nNO\nYES\nYES\n', 'NO\nYES\nYES\n'] Note: In test case 1, for *i* = 5 there exists *j* = 3 such that *s*<sub class="lower-index">*i*</sub> = *s*<sub class="lower-index">*j*</sub> and *j* &lt; *i*, which means that answer for *i* = 5 is "YES".
```python n = int(input()) a = [] for i in range(n): b = input() if b in a: print('Yes') else: print('No') a.append(b) ```
3
134
A
Average Numbers
PROGRAMMING
1,200
[ "brute force", "implementation" ]
null
null
You are given a sequence of positive integers *a*1,<=*a*2,<=...,<=*a**n*. Find all such indices *i*, that the *i*-th element equals the arithmetic mean of all other elements (that is all elements except for this one).
The first line contains the integer *n* (2<=≤<=*n*<=≤<=2·105). The second line contains elements of the sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). All the elements are positive integers.
Print on the first line the number of the sought indices. Print on the second line the sought indices in the increasing order. All indices are integers from 1 to *n*. If the sought elements do not exist, then the first output line should contain number 0. In this case you may either not print the second line or print an empty line.
[ "5\n1 2 3 4 5\n", "4\n50 50 50 50\n" ]
[ "1\n3 ", "4\n1 2 3 4 " ]
none
500
[ { "input": "5\n1 2 3 4 5", "output": "1\n3 " }, { "input": "4\n50 50 50 50", "output": "4\n1 2 3 4 " }, { "input": "3\n2 3 1", "output": "1\n1 " }, { "input": "2\n4 2", "output": "0" }, { "input": "2\n1 1", "output": "2\n1 2 " }, { "input": "10\n3 3 3 3 3 4 3 3 3 2", "output": "8\n1 2 3 4 5 7 8 9 " }, { "input": "10\n15 7 10 7 7 7 4 4 7 2", "output": "5\n2 4 5 6 9 " }, { "input": "6\n2 2 2 2 2 2", "output": "6\n1 2 3 4 5 6 " }, { "input": "6\n3 3 3 3 3 3", "output": "6\n1 2 3 4 5 6 " }, { "input": "4\n6 6 6 7", "output": "0" }, { "input": "2\n1 2", "output": "0" }, { "input": "3\n3 3 4", "output": "0" }, { "input": "5\n7 6 6 6 6", "output": "0" }, { "input": "4\n3 5 5 9", "output": "0" }, { "input": "3\n99 100 99", "output": "0" }, { "input": "4\n5 6 5 5", "output": "0" }, { "input": "6\n1 1 2 1 1 1", "output": "0" }, { "input": "2\n4 5", "output": "0" }, { "input": "4\n1 1 1 2", "output": "0" }, { "input": "3\n1 2 4", "output": "0" }, { "input": "6\n1 1 2 3 3 3", "output": "0" }, { "input": "4\n4 5 5 4", "output": "0" }, { "input": "3\n2 3 5", "output": "0" }, { "input": "3\n2 1 1", "output": "0" }, { "input": "3\n1 1 2", "output": "0" }, { "input": "4\n1 2 3 4", "output": "0" }, { "input": "5\n1 2 3 4 6", "output": "0" }, { "input": "3\n2 2 3", "output": "0" }, { "input": "4\n3 4 5 1", "output": "0" }, { "input": "3\n2 3 2", "output": "0" }, { "input": "3\n3 4 4", "output": "0" }, { "input": "3\n10 5 7", "output": "0" }, { "input": "3\n5 6 5", "output": "0" }, { "input": "4\n1 2 3 7", "output": "0" }, { "input": "5\n2 2 3 3 3", "output": "0" }, { "input": "3\n4 3 6", "output": "0" }, { "input": "3\n1 1 3", "output": "0" }, { "input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "15\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 " } ]
1,570,292,882
2,147,483,647
Python 3
OK
TESTS
58
296
19,046,400
import sys S = sys.stdin.read() S = [int(x) for x in S.split('\n')[1].split()] s = sum(S) n = len(S) T = [i+1 for i in range(n) if n*S[i] == s] print(len(T)) print(' '.join([str(x) for x in T]))
Title: Average Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a sequence of positive integers *a*1,<=*a*2,<=...,<=*a**n*. Find all such indices *i*, that the *i*-th element equals the arithmetic mean of all other elements (that is all elements except for this one). Input Specification: The first line contains the integer *n* (2<=≤<=*n*<=≤<=2·105). The second line contains elements of the sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). All the elements are positive integers. Output Specification: Print on the first line the number of the sought indices. Print on the second line the sought indices in the increasing order. All indices are integers from 1 to *n*. If the sought elements do not exist, then the first output line should contain number 0. In this case you may either not print the second line or print an empty line. Demo Input: ['5\n1 2 3 4 5\n', '4\n50 50 50 50\n'] Demo Output: ['1\n3 ', '4\n1 2 3 4 '] Note: none
```python import sys S = sys.stdin.read() S = [int(x) for x in S.split('\n')[1].split()] s = sum(S) n = len(S) T = [i+1 for i in range(n) if n*S[i] == s] print(len(T)) print(' '.join([str(x) for x in T])) ```
3
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,674,466,646
2,147,483,647
Python 3
OK
TESTS
102
46
0
a=input() b=input() r="" n=len(b) for i in range(n): if((a[i]=='1' and b[i]=='0')or(a[i]=='0' and b[i]=='1')): r+='1' else: r+='0' print(r)
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python a=input() b=input() r="" n=len(b) for i in range(n): if((a[i]=='1' and b[i]=='0')or(a[i]=='0' and b[i]=='1')): r+='1' else: r+='0' print(r) ```
3.9885
598
A
Tricky Sum
PROGRAMMING
900
[ "math" ]
null
null
In this problem you are to calculate the sum of all integers from 1 to *n*, but you should take all powers of two with minus in the sum. For example, for *n*<==<=4 the sum is equal to <=-<=1<=-<=2<=+<=3<=-<=4<==<=<=-<=4, because 1, 2 and 4 are 20, 21 and 22 respectively. Calculate the answer for *t* values of *n*.
The first line of the input contains a single integer *t* (1<=≤<=*t*<=≤<=100) — the number of values of *n* to be processed. Each of next *t* lines contains a single integer *n* (1<=≤<=*n*<=≤<=109).
Print the requested sum for each of *t* integers *n* given in the input.
[ "2\n4\n1000000000\n" ]
[ "-4\n499999998352516354\n" ]
The answer for the first sample is explained in the statement.
0
[ { "input": "2\n4\n1000000000", "output": "-4\n499999998352516354" }, { "input": "10\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10", "output": "-1\n-3\n0\n-4\n1\n7\n14\n6\n15\n25" }, { "input": "10\n10\n9\n47\n33\n99\n83\n62\n1\n100\n53", "output": "25\n15\n1002\n435\n4696\n3232\n1827\n-1\n4796\n1305" }, { "input": "100\n901\n712\n3\n677\n652\n757\n963\n134\n205\n888\n847\n283\n591\n984\n1\n61\n540\n986\n950\n729\n104\n244\n500\n461\n251\n685\n631\n803\n526\n600\n1000\n899\n411\n219\n597\n342\n771\n348\n507\n775\n454\n102\n486\n333\n580\n431\n537\n355\n624\n23\n429\n276\n84\n704\n96\n536\n855\n653\n72\n718\n776\n658\n802\n777\n995\n285\n328\n405\n184\n555\n956\n410\n846\n853\n525\n983\n65\n549\n839\n929\n620\n725\n635\n303\n201\n878\n580\n139\n182\n69\n400\n788\n985\n792\n103\n248\n570\n839\n253\n417", "output": "404305\n251782\n0\n227457\n210832\n284857\n462120\n8535\n20605\n392670\n357082\n39164\n172890\n482574\n-1\n1765\n144024\n484545\n449679\n264039\n5206\n29380\n124228\n105469\n31116\n232909\n197350\n320760\n136555\n178254\n498454\n402504\n83644\n23580\n176457\n57631\n295560\n59704\n127756\n298654\n102263\n4999\n117319\n54589\n166444\n92074\n142407\n62168\n192954\n214\n91213\n37204\n3316\n246114\n4402\n141870\n363894\n211485\n2374\n256075\n299430\n214765\n319957\n300207\n493464\n39733\n52934\n81193\n16510\n15..." }, { "input": "1\n16", "output": "74" }, { "input": "60\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457", "output": "144115186196807682\n144115186733678594\n144115186733678595\n499999998352516354\n499999997352516354\n-1\n-3\n0\n-4\n36028796079439874\n36028796347875330\n36028796347875331\n144115186196807682\n144115186733678594\n144115186733678595\n499999998352516354\n499999997352516354\n-1\n-3\n0\n-4\n36028796079439874\n36028796347875330\n36028796347875331\n144115186196807682\n144115186733678594\n144115186733678595\n499999998352516354\n499999997352516354\n-1\n-3\n0\n-4\n36028796079439874\n36028796347875330\n36028796347875..." }, { "input": "13\n1\n19\n31\n19\n19\n92\n74\n69\n32\n32\n91\n42\n73", "output": "-1\n128\n434\n128\n128\n4024\n2521\n2161\n402\n402\n3932\n777\n2447" }, { "input": "1\n16383", "output": "134176770" }, { "input": "16\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100", "output": "5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908" }, { "input": "1\n414234", "output": "85794061921" }, { "input": "1\n414232", "output": "85793233454" }, { "input": "3\n414231\n414231\n414231", "output": "85792819222\n85792819222\n85792819222" }, { "input": "1\n121", "output": "7127" } ]
1,698,299,505
2,147,483,647
PyPy 3
OK
TESTS
21
93
1,331,200
for _ in range(int(input())): n = int(input()) s = ((1 + n)*n) // 2 p = 1 while p <= n: s -= p*2 p *= 2 print(str(s))
Title: Tricky Sum Time Limit: None seconds Memory Limit: None megabytes Problem Description: In this problem you are to calculate the sum of all integers from 1 to *n*, but you should take all powers of two with minus in the sum. For example, for *n*<==<=4 the sum is equal to <=-<=1<=-<=2<=+<=3<=-<=4<==<=<=-<=4, because 1, 2 and 4 are 20, 21 and 22 respectively. Calculate the answer for *t* values of *n*. Input Specification: The first line of the input contains a single integer *t* (1<=≤<=*t*<=≤<=100) — the number of values of *n* to be processed. Each of next *t* lines contains a single integer *n* (1<=≤<=*n*<=≤<=109). Output Specification: Print the requested sum for each of *t* integers *n* given in the input. Demo Input: ['2\n4\n1000000000\n'] Demo Output: ['-4\n499999998352516354\n'] Note: The answer for the first sample is explained in the statement.
```python for _ in range(int(input())): n = int(input()) s = ((1 + n)*n) // 2 p = 1 while p <= n: s -= p*2 p *= 2 print(str(s)) ```
3
180
F
Mathematical Analysis Rocks!
PROGRAMMING
1,200
[ "constructive algorithms", "implementation", "math" ]
null
null
Students of group 199 have written their lectures dismally. Now an exam on Mathematical Analysis is approaching and something has to be done asap (that is, quickly). Let's number the students of the group from 1 to *n*. Each student *i* (1<=≤<=*i*<=≤<=*n*) has a best friend *p*[*i*] (1<=≤<=*p*[*i*]<=≤<=*n*). In fact, each student is a best friend of exactly one student. In other words, all *p*[*i*] are different. It is possible that the group also has some really "special individuals" for who *i*<==<=*p*[*i*]. Each student wrote exactly one notebook of lecture notes. We know that the students agreed to act by the following algorithm: - on the first day of revising each student studies his own Mathematical Analysis notes, - in the morning of each following day each student gives the notebook to his best friend and takes a notebook from the student who calls him the best friend. Thus, on the second day the student *p*[*i*] (1<=≤<=*i*<=≤<=*n*) studies the *i*-th student's notes, on the third day the notes go to student *p*[*p*[*i*]] and so on. Due to some characteristics of the boys' friendship (see paragraph 1), each day each student has exactly one notebook to study. You are given two sequences that describe the situation on the third and fourth days of revising: - *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* means the student who gets the *i*-th student's notebook on the third day of revising; - *b*1,<=*b*2,<=...,<=*b**n*, where *b**i* means the student who gets the *i*-th student's notebook on the fourth day of revising. You do not know array *p*, that is you do not know who is the best friend to who. Write a program that finds *p* by the given sequences *a* and *b*.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of students in the group. The second line contains sequence of different integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*). The third line contains the sequence of different integers *b*1,<=*b*2,<=...,<=*b**n* (1<=≤<=*b**i*<=≤<=*n*).
Print sequence *n* of different integers *p*[1],<=*p*[2],<=...,<=*p*[*n*] (1<=≤<=*p*[*i*]<=≤<=*n*). It is guaranteed that the solution exists and that it is unique.
[ "4\n2 1 4 3\n3 4 2 1\n", "5\n5 2 3 1 4\n1 3 2 4 5\n", "2\n1 2\n2 1\n" ]
[ "4 3 1 2 ", "4 3 2 5 1 ", "2 1 " ]
none
0
[ { "input": "4\n2 1 4 3\n3 4 2 1", "output": "4 3 1 2 " }, { "input": "5\n5 2 3 1 4\n1 3 2 4 5", "output": "4 3 2 5 1 " }, { "input": "2\n1 2\n2 1", "output": "2 1 " }, { "input": "1\n1\n1", "output": "1 " }, { "input": "2\n1 2\n1 2", "output": "1 2 " }, { "input": "3\n2 3 1\n1 2 3", "output": "3 1 2 " }, { "input": "3\n1 2 3\n2 1 3", "output": "2 1 3 " }, { "input": "3\n1 2 3\n1 2 3", "output": "1 2 3 " }, { "input": "4\n1 2 3 4\n2 1 4 3", "output": "2 1 4 3 " }, { "input": "5\n4 1 2 5 3\n2 3 5 1 4", "output": "3 5 4 2 1 " }, { "input": "10\n2 9 1 7 6 8 5 4 10 3\n6 8 5 1 9 10 2 3 4 7", "output": "5 6 7 3 2 9 1 10 8 4 " }, { "input": "10\n5 9 7 1 4 10 3 6 2 8\n8 3 9 10 6 5 2 1 7 4", "output": "10 7 2 6 8 1 9 4 3 5 " }, { "input": "10\n9 10 6 8 5 3 1 7 4 2\n7 6 2 9 5 10 8 4 1 3", "output": "8 3 10 1 5 2 4 9 7 6 " } ]
1,656,148,542
2,147,483,647
PyPy 3
OK
TESTS
40
996
15,052,800
import sys input = sys.stdin.readline n = int(input()) w = list(map(int, input().split())) s = list(map(int, input().split())) d = [j for i, j in sorted(zip(w, s))] print(' '.join(map(str, d)))
Title: Mathematical Analysis Rocks! Time Limit: None seconds Memory Limit: None megabytes Problem Description: Students of group 199 have written their lectures dismally. Now an exam on Mathematical Analysis is approaching and something has to be done asap (that is, quickly). Let's number the students of the group from 1 to *n*. Each student *i* (1<=≤<=*i*<=≤<=*n*) has a best friend *p*[*i*] (1<=≤<=*p*[*i*]<=≤<=*n*). In fact, each student is a best friend of exactly one student. In other words, all *p*[*i*] are different. It is possible that the group also has some really "special individuals" for who *i*<==<=*p*[*i*]. Each student wrote exactly one notebook of lecture notes. We know that the students agreed to act by the following algorithm: - on the first day of revising each student studies his own Mathematical Analysis notes, - in the morning of each following day each student gives the notebook to his best friend and takes a notebook from the student who calls him the best friend. Thus, on the second day the student *p*[*i*] (1<=≤<=*i*<=≤<=*n*) studies the *i*-th student's notes, on the third day the notes go to student *p*[*p*[*i*]] and so on. Due to some characteristics of the boys' friendship (see paragraph 1), each day each student has exactly one notebook to study. You are given two sequences that describe the situation on the third and fourth days of revising: - *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* means the student who gets the *i*-th student's notebook on the third day of revising; - *b*1,<=*b*2,<=...,<=*b**n*, where *b**i* means the student who gets the *i*-th student's notebook on the fourth day of revising. You do not know array *p*, that is you do not know who is the best friend to who. Write a program that finds *p* by the given sequences *a* and *b*. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of students in the group. The second line contains sequence of different integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*). The third line contains the sequence of different integers *b*1,<=*b*2,<=...,<=*b**n* (1<=≤<=*b**i*<=≤<=*n*). Output Specification: Print sequence *n* of different integers *p*[1],<=*p*[2],<=...,<=*p*[*n*] (1<=≤<=*p*[*i*]<=≤<=*n*). It is guaranteed that the solution exists and that it is unique. Demo Input: ['4\n2 1 4 3\n3 4 2 1\n', '5\n5 2 3 1 4\n1 3 2 4 5\n', '2\n1 2\n2 1\n'] Demo Output: ['4 3 1 2 ', '4 3 2 5 1 ', '2 1 '] Note: none
```python import sys input = sys.stdin.readline n = int(input()) w = list(map(int, input().split())) s = list(map(int, input().split())) d = [j for i, j in sorted(zip(w, s))] print(' '.join(map(str, d))) ```
3
0
none
none
none
0
[ "none" ]
null
null
Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya has two strings *a* and *b* of the same length *n*. The strings consist only of lucky digits. Petya can perform operations of two types: - replace any one digit from string *a* by its opposite (i.e., replace 4 by 7 and 7 by 4); - swap any pair of digits in string *a*. Petya is interested in the minimum number of operations that are needed to make string *a* equal to string *b*. Help him with the task.
The first and the second line contains strings *a* and *b*, correspondingly. Strings *a* and *b* have equal lengths and contain only lucky digits. The strings are not empty, their length does not exceed 105.
Print on the single line the single number — the minimum number of operations needed to convert string *a* into string *b*.
[ "47\n74\n", "774\n744\n", "777\n444\n" ]
[ "1\n", "1\n", "3\n" ]
In the first sample it is enough simply to swap the first and the second digit. In the second sample we should replace the second digit with its opposite. In the third number we should replace all three digits with their opposites.
0
[ { "input": "47\n74", "output": "1" }, { "input": "774\n744", "output": "1" }, { "input": "777\n444", "output": "3" }, { "input": "74747474\n77777777", "output": "4" }, { "input": "444444444444\n777777777777", "output": "12" }, { "input": "4744744447774474447474774\n4477774777444444444777447", "output": "8" }, { "input": "7\n4", "output": "1" }, { "input": "4\n7", "output": "1" }, { "input": "7777777777\n7777777774", "output": "1" }, { "input": "47777777777\n77777777774", "output": "1" }, { "input": "47747477747744447774774444444777444747474747777774\n44777444774477447777444774477777477774444477447777", "output": "14" }, { "input": "44447777447744444777777747477444777444447744444\n47444747774774744474747744447744477747777777447", "output": "13" }, { "input": "4447744774744774744747744774474474444447477477444747477444\n7477477444744774744744774774744474744447744774744477744477", "output": "14" }, { "input": "44747744777777444\n47774747747744777", "output": "6" }, { "input": "44447774444474477747774774477777474774744744477444447777477477744747477774744444744777777777747777477447744774744444747477744744\n77777474477477747774777777474474477444474777477747747777477747747744474474747774747747444777474444744744444477477777747744747477", "output": "37" }, { "input": "774774747744474477447477777447477747477474777477744744747444774474477477747474477447774444774744777\n744477444747477447477777774477447444447747477747477747774477474447474477477474444777444444447474747", "output": "27" }, { "input": "4747447477\n4747444744", "output": "3" }, { "input": "47744447444\n74477447744", "output": "4" }, { "input": "447444777744\n777747744477", "output": "6" }, { "input": "474777477774444\n774747777774477", "output": "4" }, { "input": "47744474447747744777777447\n44744747477474777744777477", "output": "7" }, { "input": "77447447444777777744744747744747774747477774777774447447777474477477774774777\n74777777444744447447474474477747747444444447447774444444747777444747474777447", "output": "28" }, { "input": "7\n7", "output": "0" }, { "input": "444\n444", "output": "0" }, { "input": "77747\n47474", "output": "3" } ]
1,630,903,447
2,147,483,647
Python 3
OK
TESTS
51
186
7,168,000
a=input() b=input() f=0 s=0 for i in range(len(a)): if a[i]!=b[i]: if a[i]=="4": f+=1 else: s+=1 print(max(s,f))
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya has two strings *a* and *b* of the same length *n*. The strings consist only of lucky digits. Petya can perform operations of two types: - replace any one digit from string *a* by its opposite (i.e., replace 4 by 7 and 7 by 4); - swap any pair of digits in string *a*. Petya is interested in the minimum number of operations that are needed to make string *a* equal to string *b*. Help him with the task. Input Specification: The first and the second line contains strings *a* and *b*, correspondingly. Strings *a* and *b* have equal lengths and contain only lucky digits. The strings are not empty, their length does not exceed 105. Output Specification: Print on the single line the single number — the minimum number of operations needed to convert string *a* into string *b*. Demo Input: ['47\n74\n', '774\n744\n', '777\n444\n'] Demo Output: ['1\n', '1\n', '3\n'] Note: In the first sample it is enough simply to swap the first and the second digit. In the second sample we should replace the second digit with its opposite. In the third number we should replace all three digits with their opposites.
```python a=input() b=input() f=0 s=0 for i in range(len(a)): if a[i]!=b[i]: if a[i]=="4": f+=1 else: s+=1 print(max(s,f)) ```
3
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,592,817,342
2,147,483,647
PyPy 3
OK
TESTS
102
171
0
x=input() y=input() a=[] for i in range (len(x)): z=int(x[i])^int(y[i]) a.append(z) print("".join(str(elem) for elem in a))
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python x=input() y=input() a=[] for i in range (len(x)): z=int(x[i])^int(y[i]) a.append(z) print("".join(str(elem) for elem in a)) ```
3.95725
381
A
Sereja and Dima
PROGRAMMING
800
[ "greedy", "implementation", "two pointers" ]
null
null
Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins. Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move. Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her.
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000.
On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game.
[ "4\n4 1 2 10\n", "7\n1 2 3 4 5 6 7\n" ]
[ "12 5\n", "16 12\n" ]
In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
500
[ { "input": "4\n4 1 2 10", "output": "12 5" }, { "input": "7\n1 2 3 4 5 6 7", "output": "16 12" }, { "input": "42\n15 29 37 22 16 5 26 31 6 32 19 3 45 36 33 14 25 20 48 7 42 11 24 28 9 18 8 21 47 17 38 40 44 4 35 1 43 39 41 27 12 13", "output": "613 418" }, { "input": "43\n32 1 15 48 38 26 25 14 20 44 11 30 3 42 49 19 18 46 5 45 10 23 34 9 29 41 2 52 6 17 35 4 50 22 33 51 7 28 47 13 39 37 24", "output": "644 500" }, { "input": "1\n3", "output": "3 0" }, { "input": "45\n553 40 94 225 415 471 126 190 647 394 515 303 189 159 308 6 139 132 326 78 455 75 85 295 135 613 360 614 351 228 578 259 258 591 444 29 33 463 561 174 368 183 140 168 646", "output": "6848 6568" }, { "input": "44\n849 373 112 307 479 608 856 769 526 82 168 143 573 762 115 501 688 36 214 450 396 496 236 309 287 786 397 43 811 141 745 846 350 270 276 677 420 459 403 722 267 54 394 727", "output": "9562 9561" }, { "input": "35\n10 15 18 1 28 16 2 33 6 22 23 4 9 25 35 8 7 26 3 20 30 14 31 19 27 32 11 5 29 24 21 34 13 17 12", "output": "315 315" }, { "input": "17\n580 376 191 496 73 44 520 357 483 149 81 178 514 300 216 598 304", "output": "3238 2222" }, { "input": "30\n334 443 223 424 168 549 189 303 429 559 516 220 459 134 344 346 316 446 209 148 487 526 69 286 102 366 518 280 392 325", "output": "5246 4864" }, { "input": "95\n122 29 188 265 292 287 183 225 222 187 155 256 64 148 173 278 218 136 290 17 31 130 2 87 57 283 255 280 68 166 174 142 102 39 116 206 288 154 26 78 296 172 184 232 77 91 277 8 249 186 94 93 207 251 257 195 101 299 193 124 293 65 58 35 24 302 220 189 252 125 27 284 247 182 141 103 198 97 234 83 281 216 85 180 267 236 109 143 149 239 79 300 191 244 71", "output": "8147 7807" }, { "input": "1\n1", "output": "1 0" } ]
1,685,203,514
2,147,483,647
PyPy 3-64
OK
TESTS
34
77
0
number_of_elems = int(input()) cards = list(map(int, input().split())) sereja_score = 0 dima_score = 0 for i in range(number_of_elems): if i % 2 == 0: if cards[-1] > cards[0]: sereja_score += cards[-1] cards.remove(cards[-1]) elif cards[-1] == cards[0]: sereja_score += cards[0] cards.remove(cards[0]) elif cards[-1] < cards[0]: sereja_score += cards[0] cards.remove(cards[0]) elif i % 2 == 1: if cards[-1] > cards[0]: dima_score += cards[-1] cards.remove(cards[-1]) elif cards[-1] == cards[0]: dima_score += cards[0] cards.remove(cards[0]) elif cards[-1] < cards[0]: dima_score += cards[0] cards.remove(cards[0]) print(f"{sereja_score} {dima_score}")
Title: Sereja and Dima Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins. Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move. Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000. Output Specification: On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game. Demo Input: ['4\n4 1 2 10\n', '7\n1 2 3 4 5 6 7\n'] Demo Output: ['12 5\n', '16 12\n'] Note: In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
```python number_of_elems = int(input()) cards = list(map(int, input().split())) sereja_score = 0 dima_score = 0 for i in range(number_of_elems): if i % 2 == 0: if cards[-1] > cards[0]: sereja_score += cards[-1] cards.remove(cards[-1]) elif cards[-1] == cards[0]: sereja_score += cards[0] cards.remove(cards[0]) elif cards[-1] < cards[0]: sereja_score += cards[0] cards.remove(cards[0]) elif i % 2 == 1: if cards[-1] > cards[0]: dima_score += cards[-1] cards.remove(cards[-1]) elif cards[-1] == cards[0]: dima_score += cards[0] cards.remove(cards[0]) elif cards[-1] < cards[0]: dima_score += cards[0] cards.remove(cards[0]) print(f"{sereja_score} {dima_score}") ```
3
38
A
Army
PROGRAMMING
800
[ "implementation" ]
A. Army
2
256
The Berland Armed Forces System consists of *n* ranks that are numbered using natural numbers from 1 to *n*, where 1 is the lowest rank and *n* is the highest rank. One needs exactly *d**i* years to rise from rank *i* to rank *i*<=+<=1. Reaching a certain rank *i* having not reached all the previous *i*<=-<=1 ranks is impossible. Vasya has just reached a new rank of *a*, but he dreams of holding the rank of *b*. Find for how many more years Vasya should serve in the army until he can finally realize his dream.
The first input line contains an integer *n* (2<=≤<=*n*<=≤<=100). The second line contains *n*<=-<=1 integers *d**i* (1<=≤<=*d**i*<=≤<=100). The third input line contains two integers *a* and *b* (1<=≤<=*a*<=&lt;<=*b*<=≤<=*n*). The numbers on the lines are space-separated.
Print the single number which is the number of years that Vasya needs to rise from rank *a* to rank *b*.
[ "3\n5 6\n1 2\n", "3\n5 6\n1 3\n" ]
[ "5\n", "11\n" ]
none
0
[ { "input": "3\n5 6\n1 2", "output": "5" }, { "input": "3\n5 6\n1 3", "output": "11" }, { "input": "2\n55\n1 2", "output": "55" }, { "input": "3\n85 78\n1 3", "output": "163" }, { "input": "4\n63 4 49\n2 3", "output": "4" }, { "input": "5\n93 83 42 56\n2 5", "output": "181" }, { "input": "6\n22 9 87 89 57\n1 6", "output": "264" }, { "input": "7\n52 36 31 23 74 78\n2 7", "output": "242" }, { "input": "8\n82 14 24 5 91 49 94\n3 8", "output": "263" }, { "input": "9\n12 40 69 39 59 21 59 5\n4 6", "output": "98" }, { "input": "10\n95 81 32 59 71 30 50 61 100\n1 6", "output": "338" }, { "input": "15\n89 55 94 4 15 69 19 60 91 77 3 94 91 62\n3 14", "output": "617" }, { "input": "20\n91 1 41 51 95 67 92 35 23 70 44 91 57 50 21 8 9 71 40\n8 17", "output": "399" }, { "input": "25\n70 95 21 84 97 39 12 98 53 24 78 29 84 65 70 22 100 17 69 27 62 48 35 80\n8 23", "output": "846" }, { "input": "30\n35 69 50 44 19 56 86 56 98 24 21 2 61 24 85 30 2 22 57 35 59 84 12 77 92 53 50 92 9\n1 16", "output": "730" }, { "input": "35\n2 34 47 15 27 61 6 88 67 20 53 65 29 68 77 5 78 86 44 98 32 81 91 79 54 84 95 23 65 97 22 33 42 87\n8 35", "output": "1663" }, { "input": "40\n32 88 59 36 95 45 28 78 73 30 97 13 13 47 48 100 43 21 22 45 88 25 15 13 63 25 72 92 29 5 25 11 50 5 54 51 48 84 23\n7 26", "output": "862" }, { "input": "45\n83 74 73 95 10 31 100 26 29 15 80 100 22 70 31 88 9 56 19 70 2 62 48 30 27 47 52 50 94 44 21 94 23 85 15 3 95 72 43 62 94 89 68 88\n17 40", "output": "1061" }, { "input": "50\n28 8 16 29 19 82 70 51 96 84 74 72 17 69 12 21 37 21 39 3 18 66 19 49 86 96 94 93 2 90 96 84 59 88 58 15 61 33 55 22 35 54 51 29 64 68 29 38 40\n23 28", "output": "344" }, { "input": "60\n24 28 25 21 43 71 64 73 71 90 51 83 69 43 75 43 78 72 56 61 99 7 23 86 9 16 16 94 23 74 18 56 20 72 13 31 75 34 35 86 61 49 4 72 84 7 65 70 66 52 21 38 6 43 69 40 73 46 5\n28 60", "output": "1502" }, { "input": "70\n69 95 34 14 67 61 6 95 94 44 28 94 73 66 39 13 19 71 73 71 28 48 26 22 32 88 38 95 43 59 88 77 80 55 17 95 40 83 67 1 38 95 58 63 56 98 49 2 41 4 73 8 78 41 64 71 60 71 41 61 67 4 4 19 97 14 39 20 27\n9 41", "output": "1767" }, { "input": "80\n65 15 43 6 43 98 100 16 69 98 4 54 25 40 2 35 12 23 38 29 10 89 30 6 4 8 7 96 64 43 11 49 89 38 20 59 54 85 46 16 16 89 60 54 28 37 32 34 67 9 78 30 50 87 58 53 99 48 77 3 5 6 19 99 16 20 31 10 80 76 82 56 56 83 72 81 84 60 28\n18 24", "output": "219" }, { "input": "90\n61 35 100 99 67 87 42 90 44 4 81 65 29 63 66 56 53 22 55 87 39 30 34 42 27 80 29 97 85 28 81 22 50 22 24 75 67 86 78 79 94 35 13 97 48 76 68 66 94 13 82 1 22 85 5 36 86 73 65 97 43 56 35 26 87 25 74 47 81 67 73 75 99 75 53 38 70 21 66 78 38 17 57 40 93 57 68 55 1\n12 44", "output": "1713" }, { "input": "95\n37 74 53 96 65 84 65 72 95 45 6 77 91 35 58 50 51 51 97 30 51 20 79 81 92 10 89 34 40 76 71 54 26 34 73 72 72 28 53 19 95 64 97 10 44 15 12 38 5 63 96 95 86 8 36 96 45 53 81 5 18 18 47 97 65 9 33 53 41 86 37 53 5 40 15 76 83 45 33 18 26 5 19 90 46 40 100 42 10 90 13 81 40 53\n6 15", "output": "570" }, { "input": "96\n51 32 95 75 23 54 70 89 67 3 1 51 4 100 97 30 9 35 56 38 54 77 56 98 43 17 60 43 72 46 87 61 100 65 81 22 74 38 16 96 5 10 54 22 23 22 10 91 9 54 49 82 29 73 33 98 75 8 4 26 24 90 71 42 90 24 94 74 94 10 41 98 56 63 18 43 56 21 26 64 74 33 22 38 67 66 38 60 64 76 53 10 4 65 76\n21 26", "output": "328" }, { "input": "97\n18 90 84 7 33 24 75 55 86 10 96 72 16 64 37 9 19 71 62 97 5 34 85 15 46 72 82 51 52 16 55 68 27 97 42 72 76 97 32 73 14 56 11 86 2 81 59 95 60 93 1 22 71 37 77 100 6 16 78 47 78 62 94 86 16 91 56 46 47 35 93 44 7 86 70 10 29 45 67 62 71 61 74 39 36 92 24 26 65 14 93 92 15 28 79 59\n6 68", "output": "3385" }, { "input": "98\n32 47 26 86 43 42 79 72 6 68 40 46 29 80 24 89 29 7 21 56 8 92 13 33 50 79 5 7 84 85 24 23 1 80 51 21 26 55 96 51 24 2 68 98 81 88 57 100 64 84 54 10 14 2 74 1 89 71 1 20 84 85 17 31 42 58 69 67 48 60 97 90 58 10 21 29 2 21 60 61 68 89 77 39 57 18 61 44 67 100 33 74 27 40 83 29 6\n8 77", "output": "3319" }, { "input": "99\n46 5 16 66 53 12 84 89 26 27 35 68 41 44 63 17 88 43 80 15 59 1 42 50 53 34 75 16 16 55 92 30 28 11 12 71 27 65 11 28 86 47 24 10 60 47 7 53 16 75 6 49 56 66 70 3 20 78 75 41 38 57 89 23 16 74 30 39 1 32 49 84 9 33 25 95 75 45 54 59 17 17 29 40 79 96 47 11 69 86 73 56 91 4 87 47 31 24\n23 36", "output": "514" }, { "input": "100\n63 65 21 41 95 23 3 4 12 23 95 50 75 63 58 34 71 27 75 31 23 94 96 74 69 34 43 25 25 55 44 19 43 86 68 17 52 65 36 29 72 96 84 25 84 23 71 54 6 7 71 7 21 100 99 58 93 35 62 47 36 70 68 9 75 13 35 70 76 36 62 22 52 51 2 87 66 41 54 35 78 62 30 35 65 44 74 93 78 37 96 70 26 32 71 27 85 85 63\n43 92", "output": "2599" }, { "input": "51\n85 38 22 38 42 36 55 24 36 80 49 15 66 91 88 61 46 82 1 61 89 92 6 56 28 8 46 80 56 90 91 38 38 17 69 64 57 68 13 44 45 38 8 72 61 39 87 2 73 88\n15 27", "output": "618" }, { "input": "2\n3\n1 2", "output": "3" }, { "input": "5\n6 8 22 22\n2 3", "output": "8" }, { "input": "6\n3 12 27 28 28\n3 4", "output": "27" }, { "input": "9\n1 2 2 2 2 3 3 5\n3 7", "output": "9" }, { "input": "10\n1 1 1 1 1 1 1 1 1\n6 8", "output": "2" }, { "input": "20\n1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3\n5 17", "output": "23" }, { "input": "25\n1 1 1 4 5 6 8 11 11 11 11 12 13 14 14 14 15 16 16 17 17 17 19 19\n4 8", "output": "23" }, { "input": "35\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2\n30 31", "output": "2" }, { "input": "45\n1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 8 8 8 9 9 9 9 9 10 10 10\n42 45", "output": "30" }, { "input": "50\n1 8 8 13 14 15 15 16 19 21 22 24 26 31 32 37 45 47 47 47 50 50 51 54 55 56 58 61 61 61 63 63 64 66 66 67 67 70 71 80 83 84 85 92 92 94 95 95 100\n4 17", "output": "285" }, { "input": "60\n1 2 4 4 4 6 6 8 9 10 10 13 14 18 20 20 21 22 23 23 26 29 30 32 33 34 35 38 40 42 44 44 46 48 52 54 56 56 60 60 66 67 68 68 69 73 73 74 80 80 81 81 82 84 86 86 87 89 89\n56 58", "output": "173" }, { "input": "70\n1 2 3 3 4 5 5 7 7 7 8 8 8 8 9 9 10 12 12 12 12 13 16 16 16 16 16 16 17 17 18 18 20 20 21 23 24 25 25 26 29 29 29 29 31 32 32 34 35 36 36 37 37 38 39 39 40 40 40 40 41 41 42 43 44 44 44 45 45\n62 65", "output": "126" }, { "input": "80\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12\n17 65", "output": "326" }, { "input": "90\n1 1 3 5 8 9 10 11 11 11 11 12 13 14 15 15 15 16 16 19 19 20 22 23 24 25 25 28 29 29 30 31 33 34 35 37 37 38 41 43 43 44 45 47 51 54 55 56 58 58 59 59 60 62 66 67 67 67 68 68 69 70 71 72 73 73 76 77 77 78 78 78 79 79 79 82 83 84 85 85 87 87 89 93 93 93 95 99 99\n28 48", "output": "784" }, { "input": "95\n2 2 3 3 4 6 6 7 7 7 9 10 12 12 12 12 13 14 15 16 17 18 20 20 20 20 21 21 21 21 22 22 22 22 22 23 23 23 25 26 26 27 27 27 28 29 29 30 30 31 32 33 34 36 37 37 38 39 39 39 42 43 43 43 45 47 48 50 50 51 52 53 54 54 54 55 55 55 58 59 60 61 61 61 61 62 62 63 64 65 66 67 67 67\n64 93", "output": "1636" }, { "input": "96\n1 1 2 3 3 5 8 9 9 10 10 10 11 11 11 11 11 12 13 13 13 14 15 15 16 16 17 17 17 17 18 18 20 20 20 21 21 21 23 24 24 25 25 26 27 27 27 27 29 29 29 30 30 30 32 32 32 32 32 32 33 33 34 34 34 35 35 35 36 36 37 37 37 38 39 40 41 41 41 41 42 42 43 43 45 45 45 46 46 47 47 49 50 52 52\n76 96", "output": "898" }, { "input": "98\n2 3 4 4 5 7 8 10 10 10 11 11 12 12 12 12 13 14 15 15 16 16 18 19 19 20 21 21 21 21 22 23 24 25 26 26 27 27 27 27 29 29 30 30 31 31 37 40 40 40 41 41 41 42 43 44 44 44 46 46 47 49 49 50 50 50 51 53 55 55 56 56 56 56 56 57 57 58 59 60 60 60 62 62 63 64 64 64 65 66 66 67 68 70 70 71 71\n8 90", "output": "3016" }, { "input": "99\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n66 95", "output": "29" }, { "input": "100\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 17\n39 52", "output": "82" }, { "input": "51\n5 7 9 16 19 25 26 29 29 30 31 32 32 41 43 44 47 49 50 50 51 52 54 55 56 63 64 66 67 70 74 74 77 78 79 80 80 85 86 87 89 89 90 92 93 94 94 95 95 97\n3 44", "output": "2268" } ]
1,694,944,236
2,147,483,647
PyPy 3-64
OK
TESTS
50
124
0
n, ans = int(input()), 0 a = list(map(int , input().split())) b = list(map(int , input().split())) for i in range(b[0] - 1, b[1] - 1): ans += a[i] print(ans)
Title: Army Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The Berland Armed Forces System consists of *n* ranks that are numbered using natural numbers from 1 to *n*, where 1 is the lowest rank and *n* is the highest rank. One needs exactly *d**i* years to rise from rank *i* to rank *i*<=+<=1. Reaching a certain rank *i* having not reached all the previous *i*<=-<=1 ranks is impossible. Vasya has just reached a new rank of *a*, but he dreams of holding the rank of *b*. Find for how many more years Vasya should serve in the army until he can finally realize his dream. Input Specification: The first input line contains an integer *n* (2<=≤<=*n*<=≤<=100). The second line contains *n*<=-<=1 integers *d**i* (1<=≤<=*d**i*<=≤<=100). The third input line contains two integers *a* and *b* (1<=≤<=*a*<=&lt;<=*b*<=≤<=*n*). The numbers on the lines are space-separated. Output Specification: Print the single number which is the number of years that Vasya needs to rise from rank *a* to rank *b*. Demo Input: ['3\n5 6\n1 2\n', '3\n5 6\n1 3\n'] Demo Output: ['5\n', '11\n'] Note: none
```python n, ans = int(input()), 0 a = list(map(int , input().split())) b = list(map(int , input().split())) for i in range(b[0] - 1, b[1] - 1): ans += a[i] print(ans) ```
3.969
609
A
USB Flash Drives
PROGRAMMING
800
[ "greedy", "implementation", "sortings" ]
null
null
Sean is trying to save a large file to a USB flash drive. He has *n* USB flash drives with capacities equal to *a*1,<=*a*2,<=...,<=*a**n* megabytes. The file size is equal to *m* megabytes. Find the minimum number of USB flash drives needed to write Sean's file, if he can split the file between drives.
The first line contains positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of USB flash drives. The second line contains positive integer *m* (1<=≤<=*m*<=≤<=105) — the size of Sean's file. Each of the next *n* lines contains positive integer *a**i* (1<=≤<=*a**i*<=≤<=1000) — the sizes of USB flash drives in megabytes. It is guaranteed that the answer exists, i. e. the sum of all *a**i* is not less than *m*.
Print the minimum number of USB flash drives to write Sean's file, if he can split the file between drives.
[ "3\n5\n2\n1\n3\n", "3\n6\n2\n3\n2\n", "2\n5\n5\n10\n" ]
[ "2\n", "3\n", "1\n" ]
In the first example Sean needs only two USB flash drives — the first and the third. In the second example Sean needs all three USB flash drives. In the third example Sean needs only one USB flash drive and he can use any available USB flash drive — the first or the second.
0
[ { "input": "3\n5\n2\n1\n3", "output": "2" }, { "input": "3\n6\n2\n3\n2", "output": "3" }, { "input": "2\n5\n5\n10", "output": "1" }, { "input": "5\n16\n8\n1\n3\n4\n9", "output": "2" }, { "input": "10\n121\n10\n37\n74\n56\n42\n39\n6\n68\n8\n100", "output": "2" }, { "input": "12\n4773\n325\n377\n192\n780\n881\n816\n839\n223\n215\n125\n952\n8", "output": "7" }, { "input": "15\n7758\n182\n272\n763\n910\n24\n359\n583\n890\n735\n819\n66\n992\n440\n496\n227", "output": "15" }, { "input": "30\n70\n6\n2\n10\n4\n7\n10\n5\n1\n8\n10\n4\n3\n5\n9\n3\n6\n6\n4\n2\n6\n5\n10\n1\n9\n7\n2\n1\n10\n7\n5", "output": "8" }, { "input": "40\n15705\n702\n722\n105\n873\n417\n477\n794\n300\n869\n496\n572\n232\n456\n298\n473\n584\n486\n713\n934\n121\n303\n956\n934\n840\n358\n201\n861\n497\n131\n312\n957\n96\n914\n509\n60\n300\n722\n658\n820\n103", "output": "21" }, { "input": "50\n18239\n300\n151\n770\n9\n200\n52\n247\n753\n523\n263\n744\n463\n540\n244\n608\n569\n771\n32\n425\n777\n624\n761\n628\n124\n405\n396\n726\n626\n679\n237\n229\n49\n512\n18\n671\n290\n768\n632\n739\n18\n136\n413\n117\n83\n413\n452\n767\n664\n203\n404", "output": "31" }, { "input": "70\n149\n5\n3\n3\n4\n6\n1\n2\n9\n8\n3\n1\n8\n4\n4\n3\n6\n10\n7\n1\n10\n8\n4\n9\n3\n8\n3\n2\n5\n1\n8\n6\n9\n10\n4\n8\n6\n9\n9\n9\n3\n4\n2\n2\n5\n8\n9\n1\n10\n3\n4\n3\n1\n9\n3\n5\n1\n3\n7\n6\n9\n8\n9\n1\n7\n4\n4\n2\n3\n5\n7", "output": "17" }, { "input": "70\n2731\n26\n75\n86\n94\n37\n25\n32\n35\n92\n1\n51\n73\n53\n66\n16\n80\n15\n81\n100\n87\n55\n48\n30\n71\n39\n87\n77\n25\n70\n22\n75\n23\n97\n16\n75\n95\n61\n61\n28\n10\n78\n54\n80\n51\n25\n24\n90\n58\n4\n77\n40\n54\n53\n47\n62\n30\n38\n71\n97\n71\n60\n58\n1\n21\n15\n55\n99\n34\n88\n99", "output": "35" }, { "input": "70\n28625\n34\n132\n181\n232\n593\n413\n862\n887\n808\n18\n35\n89\n356\n640\n339\n280\n975\n82\n345\n398\n948\n372\n91\n755\n75\n153\n948\n603\n35\n694\n722\n293\n363\n884\n264\n813\n175\n169\n646\n138\n449\n488\n828\n417\n134\n84\n763\n288\n845\n801\n556\n972\n332\n564\n934\n699\n842\n942\n644\n203\n406\n140\n37\n9\n423\n546\n675\n491\n113\n587", "output": "45" }, { "input": "80\n248\n3\n9\n4\n5\n10\n7\n2\n6\n2\n2\n8\n2\n1\n3\n7\n9\n2\n8\n4\n4\n8\n5\n4\n4\n10\n2\n1\n4\n8\n4\n10\n1\n2\n10\n2\n3\n3\n1\n1\n8\n9\n5\n10\n2\n8\n10\n5\n3\n6\n1\n7\n8\n9\n10\n5\n10\n10\n2\n10\n1\n2\n4\n1\n9\n4\n7\n10\n8\n5\n8\n1\n4\n2\n2\n3\n9\n9\n9\n10\n6", "output": "27" }, { "input": "80\n2993\n18\n14\n73\n38\n14\n73\n77\n18\n81\n6\n96\n65\n77\n86\n76\n8\n16\n81\n83\n83\n34\n69\n58\n15\n19\n1\n16\n57\n95\n35\n5\n49\n8\n15\n47\n84\n99\n94\n93\n55\n43\n47\n51\n61\n57\n13\n7\n92\n14\n4\n83\n100\n60\n75\n41\n95\n74\n40\n1\n4\n95\n68\n59\n65\n15\n15\n75\n85\n46\n77\n26\n30\n51\n64\n75\n40\n22\n88\n68\n24", "output": "38" }, { "input": "80\n37947\n117\n569\n702\n272\n573\n629\n90\n337\n673\n589\n576\n205\n11\n284\n645\n719\n777\n271\n567\n466\n251\n402\n3\n97\n288\n699\n208\n173\n530\n782\n266\n395\n957\n159\n463\n43\n316\n603\n197\n386\n132\n799\n778\n905\n784\n71\n851\n963\n883\n705\n454\n275\n425\n727\n223\n4\n870\n833\n431\n463\n85\n505\n800\n41\n954\n981\n242\n578\n336\n48\n858\n702\n349\n929\n646\n528\n993\n506\n274\n227", "output": "70" }, { "input": "90\n413\n5\n8\n10\n7\n5\n7\n5\n7\n1\n7\n8\n4\n3\n9\n4\n1\n10\n3\n1\n10\n9\n3\n1\n8\n4\n7\n5\n2\n9\n3\n10\n10\n3\n6\n3\n3\n10\n7\n5\n1\n1\n2\n4\n8\n2\n5\n5\n3\n9\n5\n5\n3\n10\n2\n3\n8\n5\n9\n1\n3\n6\n5\n9\n2\n3\n7\n10\n3\n4\n4\n1\n5\n9\n2\n6\n9\n1\n1\n9\n9\n7\n7\n7\n8\n4\n5\n3\n4\n6\n9", "output": "59" }, { "input": "90\n4226\n33\n43\n83\n46\n75\n14\n88\n36\n8\n25\n47\n4\n96\n19\n33\n49\n65\n17\n59\n72\n1\n55\n94\n92\n27\n33\n39\n14\n62\n79\n12\n89\n22\n86\n13\n19\n77\n53\n96\n74\n24\n25\n17\n64\n71\n81\n87\n52\n72\n55\n49\n74\n36\n65\n86\n91\n33\n61\n97\n38\n87\n61\n14\n73\n95\n43\n67\n42\n67\n22\n12\n62\n32\n96\n24\n49\n82\n46\n89\n36\n75\n91\n11\n10\n9\n33\n86\n28\n75\n39", "output": "64" }, { "input": "90\n40579\n448\n977\n607\n745\n268\n826\n479\n59\n330\n609\n43\n301\n970\n726\n172\n632\n600\n181\n712\n195\n491\n312\n849\n722\n679\n682\n780\n131\n404\n293\n387\n567\n660\n54\n339\n111\n833\n612\n911\n869\n356\n884\n635\n126\n639\n712\n473\n663\n773\n435\n32\n973\n484\n662\n464\n699\n274\n919\n95\n904\n253\n589\n543\n454\n250\n349\n237\n829\n511\n536\n36\n45\n152\n626\n384\n199\n877\n941\n84\n781\n115\n20\n52\n726\n751\n920\n291\n571\n6\n199", "output": "64" }, { "input": "100\n66\n7\n9\n10\n5\n2\n8\n6\n5\n4\n10\n10\n6\n5\n2\n2\n1\n1\n5\n8\n7\n8\n10\n5\n6\n6\n5\n9\n9\n6\n3\n8\n7\n10\n5\n9\n6\n7\n3\n5\n8\n6\n8\n9\n1\n1\n1\n2\n4\n5\n5\n1\n1\n2\n6\n7\n1\n5\n8\n7\n2\n1\n7\n10\n9\n10\n2\n4\n10\n4\n10\n10\n5\n3\n9\n1\n2\n1\n10\n5\n1\n7\n4\n4\n5\n7\n6\n10\n4\n7\n3\n4\n3\n6\n2\n5\n2\n4\n9\n5\n3", "output": "7" }, { "input": "100\n4862\n20\n47\n85\n47\n76\n38\n48\n93\n91\n81\n31\n51\n23\n60\n59\n3\n73\n72\n57\n67\n54\n9\n42\n5\n32\n46\n72\n79\n95\n61\n79\n88\n33\n52\n97\n10\n3\n20\n79\n82\n93\n90\n38\n80\n18\n21\n43\n60\n73\n34\n75\n65\n10\n84\n100\n29\n94\n56\n22\n59\n95\n46\n22\n57\n69\n67\n90\n11\n10\n61\n27\n2\n48\n69\n86\n91\n69\n76\n36\n71\n18\n54\n90\n74\n69\n50\n46\n8\n5\n41\n96\n5\n14\n55\n85\n39\n6\n79\n75\n87", "output": "70" }, { "input": "100\n45570\n14\n881\n678\n687\n993\n413\n760\n451\n426\n787\n503\n343\n234\n530\n294\n725\n941\n524\n574\n441\n798\n399\n360\n609\n376\n525\n229\n995\n478\n347\n47\n23\n468\n525\n749\n601\n235\n89\n995\n489\n1\n239\n415\n122\n671\n128\n357\n886\n401\n964\n212\n968\n210\n130\n871\n360\n661\n844\n414\n187\n21\n824\n266\n713\n126\n496\n916\n37\n193\n755\n894\n641\n300\n170\n176\n383\n488\n627\n61\n897\n33\n242\n419\n881\n698\n107\n391\n418\n774\n905\n87\n5\n896\n835\n318\n373\n916\n393\n91\n460", "output": "78" }, { "input": "100\n522\n1\n5\n2\n4\n2\n6\n3\n4\n2\n10\n10\n6\n7\n9\n7\n1\n7\n2\n5\n3\n1\n5\n2\n3\n5\n1\n7\n10\n10\n4\n4\n10\n9\n10\n6\n2\n8\n2\n6\n10\n9\n2\n7\n5\n9\n4\n6\n10\n7\n3\n1\n1\n9\n5\n10\n9\n2\n8\n3\n7\n5\n4\n7\n5\n9\n10\n6\n2\n9\n2\n5\n10\n1\n7\n7\n10\n5\n6\n2\n9\n4\n7\n10\n10\n8\n3\n4\n9\n3\n6\n9\n10\n2\n9\n9\n3\n4\n1\n10\n2", "output": "74" }, { "input": "100\n32294\n414\n116\n131\n649\n130\n476\n630\n605\n213\n117\n757\n42\n109\n85\n127\n635\n629\n994\n410\n764\n204\n161\n231\n577\n116\n936\n537\n565\n571\n317\n722\n819\n229\n284\n487\n649\n304\n628\n727\n816\n854\n91\n111\n549\n87\n374\n417\n3\n868\n882\n168\n743\n77\n534\n781\n75\n956\n910\n734\n507\n568\n802\n946\n891\n659\n116\n678\n375\n380\n430\n627\n873\n350\n930\n285\n6\n183\n96\n517\n81\n794\n235\n360\n551\n6\n28\n799\n226\n996\n894\n981\n551\n60\n40\n460\n479\n161\n318\n952\n433", "output": "42" }, { "input": "100\n178\n71\n23\n84\n98\n8\n14\n4\n42\n56\n83\n87\n28\n22\n32\n50\n5\n96\n90\n1\n59\n74\n56\n96\n77\n88\n71\n38\n62\n36\n85\n1\n97\n98\n98\n32\n99\n42\n6\n81\n20\n49\n57\n71\n66\n9\n45\n41\n29\n28\n32\n68\n38\n29\n35\n29\n19\n27\n76\n85\n68\n68\n41\n32\n78\n72\n38\n19\n55\n83\n83\n25\n46\n62\n48\n26\n53\n14\n39\n31\n94\n84\n22\n39\n34\n96\n63\n37\n42\n6\n78\n76\n64\n16\n26\n6\n79\n53\n24\n29\n63", "output": "2" }, { "input": "100\n885\n226\n266\n321\n72\n719\n29\n121\n533\n85\n672\n225\n830\n783\n822\n30\n791\n618\n166\n487\n922\n434\n814\n473\n5\n741\n947\n910\n305\n998\n49\n945\n588\n868\n809\n803\n168\n280\n614\n434\n634\n538\n591\n437\n540\n445\n313\n177\n171\n799\n778\n55\n617\n554\n583\n611\n12\n94\n599\n182\n765\n556\n965\n542\n35\n460\n177\n313\n485\n744\n384\n21\n52\n879\n792\n411\n614\n811\n565\n695\n428\n587\n631\n794\n461\n258\n193\n696\n936\n646\n756\n267\n55\n690\n730\n742\n734\n988\n235\n762\n440", "output": "1" }, { "input": "100\n29\n9\n2\n10\n8\n6\n7\n7\n3\n3\n10\n4\n5\n2\n5\n1\n6\n3\n2\n5\n10\n10\n9\n1\n4\n5\n2\n2\n3\n1\n2\n2\n9\n6\n9\n7\n8\n8\n1\n5\n5\n3\n1\n5\n6\n1\n9\n2\n3\n8\n10\n8\n3\n2\n7\n1\n2\n1\n2\n8\n10\n5\n2\n3\n1\n10\n7\n1\n7\n4\n9\n6\n6\n4\n7\n1\n2\n7\n7\n9\n9\n7\n10\n4\n10\n8\n2\n1\n5\n5\n10\n5\n8\n1\n5\n6\n5\n1\n5\n6\n8", "output": "3" }, { "input": "100\n644\n94\n69\n43\n36\n54\n93\n30\n74\n56\n95\n70\n49\n11\n36\n57\n30\n59\n3\n52\n59\n90\n82\n39\n67\n32\n8\n80\n64\n8\n65\n51\n48\n89\n90\n35\n4\n54\n66\n96\n68\n90\n30\n4\n13\n97\n41\n90\n85\n17\n45\n94\n31\n58\n4\n39\n76\n95\n92\n59\n67\n46\n96\n55\n82\n64\n20\n20\n83\n46\n37\n15\n60\n37\n79\n45\n47\n63\n73\n76\n31\n52\n36\n32\n49\n26\n61\n91\n31\n25\n62\n90\n65\n65\n5\n94\n7\n15\n97\n88\n68", "output": "7" }, { "input": "100\n1756\n98\n229\n158\n281\n16\n169\n149\n239\n235\n182\n147\n215\n49\n270\n194\n242\n295\n289\n249\n19\n12\n144\n157\n92\n270\n122\n212\n97\n152\n14\n42\n12\n198\n98\n295\n154\n229\n191\n294\n5\n156\n43\n185\n184\n20\n125\n23\n10\n257\n244\n264\n79\n46\n277\n13\n22\n97\n212\n77\n293\n20\n51\n17\n109\n37\n68\n117\n51\n248\n10\n149\n179\n192\n239\n161\n13\n173\n297\n73\n43\n109\n288\n198\n81\n70\n254\n187\n277\n1\n295\n113\n95\n291\n293\n119\n205\n191\n37\n34\n116", "output": "6" }, { "input": "100\n20562\n721\n452\n11\n703\n376\n183\n197\n203\n406\n642\n346\n446\n256\n760\n201\n360\n702\n707\n388\n779\n653\n610\n497\n768\n670\n134\n780\n306\n661\n180\n259\n256\n362\n6\n121\n415\n747\n170\n67\n439\n728\n193\n622\n481\n38\n225\n343\n303\n253\n436\n305\n68\n794\n247\n291\n600\n750\n188\n199\n757\n28\n776\n749\n253\n351\n53\n629\n129\n578\n209\n89\n651\n262\n638\n353\n469\n31\n144\n460\n176\n535\n562\n366\n639\n234\n577\n364\n761\n617\n303\n450\n778\n311\n289\n221\n274\n239\n626\n194\n36", "output": "30" }, { "input": "100\n32630\n548\n21\n756\n138\n56\n719\n97\n86\n599\n531\n464\n137\n737\n239\n626\n179\n170\n271\n335\n178\n298\n597\n616\n104\n190\n216\n333\n606\n621\n310\n70\n286\n593\n655\n472\n556\n77\n625\n744\n395\n487\n762\n316\n469\n258\n475\n596\n651\n180\n737\n101\n511\n708\n163\n713\n475\n557\n649\n705\n583\n97\n447\n119\n91\n372\n194\n394\n667\n384\n635\n611\n746\n758\n613\n54\n508\n405\n188\n570\n254\n28\n599\n767\n115\n737\n194\n148\n686\n705\n236\n762\n613\n770\n633\n401\n773\n448\n274\n141\n718", "output": "52" }, { "input": "1\n1\n1", "output": "1" } ]
1,562,538,364
2,147,483,647
Python 3
OK
TESTS
34
109
0
n = int(input()) m = int(input()) l = [] for i in range(n): a = int(input()) l.append(a) l = sorted(l, reverse = True) x = 0 z = 0 for i in l: x += i z += 1 if x >= m: print(z) break
Title: USB Flash Drives Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sean is trying to save a large file to a USB flash drive. He has *n* USB flash drives with capacities equal to *a*1,<=*a*2,<=...,<=*a**n* megabytes. The file size is equal to *m* megabytes. Find the minimum number of USB flash drives needed to write Sean's file, if he can split the file between drives. Input Specification: The first line contains positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of USB flash drives. The second line contains positive integer *m* (1<=≤<=*m*<=≤<=105) — the size of Sean's file. Each of the next *n* lines contains positive integer *a**i* (1<=≤<=*a**i*<=≤<=1000) — the sizes of USB flash drives in megabytes. It is guaranteed that the answer exists, i. e. the sum of all *a**i* is not less than *m*. Output Specification: Print the minimum number of USB flash drives to write Sean's file, if he can split the file between drives. Demo Input: ['3\n5\n2\n1\n3\n', '3\n6\n2\n3\n2\n', '2\n5\n5\n10\n'] Demo Output: ['2\n', '3\n', '1\n'] Note: In the first example Sean needs only two USB flash drives — the first and the third. In the second example Sean needs all three USB flash drives. In the third example Sean needs only one USB flash drive and he can use any available USB flash drive — the first or the second.
```python n = int(input()) m = int(input()) l = [] for i in range(n): a = int(input()) l.append(a) l = sorted(l, reverse = True) x = 0 z = 0 for i in l: x += i z += 1 if x >= m: print(z) break ```
3
265
A
Colorful Stones (Simplified Edition)
PROGRAMMING
800
[ "implementation" ]
null
null
There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively. Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times. Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move. You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction. Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence.
The input contains two lines. The first line contains the string *s* (1<=≤<=|*s*|<=≤<=50). The second line contains the string *t* (1<=≤<=|*t*|<=≤<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence.
Print the final 1-based position of Liss in a single line.
[ "RGB\nRRR\n", "RRRBGBRBBB\nBBBRR\n", "BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n" ]
[ "2\n", "3\n", "15\n" ]
none
500
[ { "input": "RGB\nRRR", "output": "2" }, { "input": "RRRBGBRBBB\nBBBRR", "output": "3" }, { "input": "BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB", "output": "15" }, { "input": "G\nRRBBRBRRBR", "output": "1" }, { "input": "RRRRRBRRBRRGRBGGRRRGRBBRBBBBBRGRBGBRRGBBBRBBGBRGBB\nB", "output": "1" }, { "input": "RRGGBRGRBG\nBRRGGBBGGR", "output": "7" }, { "input": "BBRRGBGGRGBRGBRBRBGR\nGGGRBGGGBRRRRGRBGBGRGRRBGRBGBG", "output": "15" }, { "input": "GBRRBGBGBBBBRRRGBGRRRGBGBBBRGR\nRRGBRRGRBBBBBBGRRBBR", "output": "8" }, { "input": "BRGRRGRGRRGBBGBBBRRBBRRBGBBGRGBBGGRGBRBGGGRRRBGGBB\nRGBBGRRBBBRRGRRBRBBRGBBGGGRGBGRRRRBRBGGBRBGGGRGBRR", "output": "16" }, { "input": "GGRGGBRRGRGBRRGGRBBGGRRGBBBGBBBGGRBGGBRBBRGBRRRBRG\nGGRGRRRRRRRRRGBBBBRGBRGRGRRGBBRGGBRBBRBGBRGRRRRGGR", "output": "18" }, { "input": "RBBRBGBBGGGBRRBGBRGRRGGRBBBBGRBGGBRRBGBBRBRGBBGGGG\nBRRGRBGRBGBRGBRBGGBBBGBBRGRBGRGRBGRBGGRRBGBRGRRBBG", "output": "23" }, { "input": "RRGGRRBRGRGBRGBRGBBRGGGBRBGBRGBRGGBRBRGBGRRBBGGRBR\nBRGRBBBGRBGRRGGRRRRRRRRGGGGGGGGBGGGGGGGRGRBBRGRGBR", "output": "14" }, { "input": "RBRBRRRRRGGR\nBBBBRRGGBGRBRGBBRGGGRGGBRRBRBRBGGG", "output": "12" }, { "input": "GGRGGGBRGRGRBBRGGGRBGRRR\nGBBBBGBGBGBBBRGGRGGBGRRGRRRGBGB", "output": "12" }, { "input": "RGRBGBRBBGBRRGGGBBGBRRBGRGBBBBBGRRRGGRBB\nBGR", "output": "2" }, { "input": "R\nB", "output": "1" }, { "input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR", "output": "50" }, { "input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG", "output": "1" }, { "input": "R\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG", "output": "1" } ]
1,685,836,376
2,147,483,647
Python 3
OK
TESTS
19
92
0
colorful_stones = input() instructions = input() liss_position = 1 for instruction in instructions: if colorful_stones[liss_position - 1] == instruction: liss_position += 1 print(liss_position)
Title: Colorful Stones (Simplified Edition) Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively. Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times. Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move. You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction. Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence. Input Specification: The input contains two lines. The first line contains the string *s* (1<=≤<=|*s*|<=≤<=50). The second line contains the string *t* (1<=≤<=|*t*|<=≤<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence. Output Specification: Print the final 1-based position of Liss in a single line. Demo Input: ['RGB\nRRR\n', 'RRRBGBRBBB\nBBBRR\n', 'BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n'] Demo Output: ['2\n', '3\n', '15\n'] Note: none
```python colorful_stones = input() instructions = input() liss_position = 1 for instruction in instructions: if colorful_stones[liss_position - 1] == instruction: liss_position += 1 print(liss_position) ```
3
29
A
Spit Problem
PROGRAMMING
1,000
[ "brute force" ]
A. Spit Problem
2
256
In a Berland's zoo there is an enclosure with camels. It is known that camels like to spit. Bob watched these interesting animals for the whole day and registered in his notepad where each animal spitted. Now he wants to know if in the zoo there are two camels, which spitted at each other. Help him to solve this task. The trajectory of a camel's spit is an arc, i.e. if the camel in position *x* spits *d* meters right, he can hit only the camel in position *x*<=+<=*d*, if such a camel exists.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the amount of camels in the zoo. Each of the following *n* lines contains two integers *x**i* and *d**i* (<=-<=104<=≤<=*x**i*<=≤<=104,<=1<=≤<=|*d**i*|<=≤<=2·104) — records in Bob's notepad. *x**i* is a position of the *i*-th camel, and *d**i* is a distance at which the *i*-th camel spitted. Positive values of *d**i* correspond to the spits right, negative values correspond to the spits left. No two camels may stand in the same position.
If there are two camels, which spitted at each other, output YES. Otherwise, output NO.
[ "2\n0 1\n1 -1\n", "3\n0 1\n1 1\n2 -2\n", "5\n2 -10\n3 10\n0 5\n5 -5\n10 1\n" ]
[ "YES\n", "NO\n", "YES\n" ]
none
500
[ { "input": "2\n0 1\n1 -1", "output": "YES" }, { "input": "3\n0 1\n1 1\n2 -2", "output": "NO" }, { "input": "5\n2 -10\n3 10\n0 5\n5 -5\n10 1", "output": "YES" }, { "input": "10\n-9897 -1144\n-4230 -6350\n2116 -3551\n-3635 4993\n3907 -9071\n-2362 4120\n-6542 984\n5807 3745\n7594 7675\n-5412 -6872", "output": "NO" }, { "input": "11\n-1536 3809\n-2406 -8438\n-1866 395\n5636 -490\n-6867 -7030\n7525 3575\n-6796 2908\n3884 4629\n-2862 -6122\n-8984 6122\n7137 -326", "output": "YES" }, { "input": "12\n-9765 1132\n-1382 -215\n-9405 7284\n-2040 3947\n-9360 3150\n6425 9386\n806 -2278\n-2121 -7284\n5663 -1608\n-8377 9297\n6245 708\n8470 6024", "output": "YES" }, { "input": "15\n8122 -9991\n-4068 -3386\n8971 3731\n3458 5161\n-8700 7562\n2691 8735\n-1510 -3892\n5183 -3753\n-7018 6637\n-7454 3386\n-818 -6377\n6771 -8647\n-7357 -1246\n-6186 1922\n9889 -3627", "output": "YES" }, { "input": "20\n-5264 6424\n-3664 -7459\n-2780 -9859\n-3317 6842\n5681 -8092\n1555 1904\n-6684 1414\n6593 -1253\n-5708 -1202\n335 1733\n-926 7579\n3459 -1904\n-4486 4006\n6201 3616\n2847 -5255\n8438 7057\n8171 6042\n-9102 3545\n7731 -233\n6264 6563", "output": "YES" }, { "input": "30\n-398 -1774\n313 -6974\n2346 -4657\n8552 -9647\n-5265 1538\n8195 4864\n-5641 -5219\n-1394 8563\n-1190 1992\n-4669 -1156\n7574 256\n9206 -2414\n4140 -549\n-294 2169\n7029 -2871\n3808 -9799\n3141 5690\n4648 -2680\n-5990 9800\n-2299 1697\n6077 -7177\n-400 -9724\n-4644 -2392\n-2198 -9531\n-2105 9386\n-8165 -4201\n-1589 -7916\n2518 -7840\n4173 -6949\n-3368 -9943", "output": "NO" } ]
1,556,375,991
2,147,483,647
Python 3
OK
TESTS
30
218
0
c=[tuple(map(int,input().split())) for _ in range(int(input()))] print('YES' if any(sum(ci)==cj[0] and sum(cj)==ci[0] for ci in c for cj in c) else 'NO')
Title: Spit Problem Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: In a Berland's zoo there is an enclosure with camels. It is known that camels like to spit. Bob watched these interesting animals for the whole day and registered in his notepad where each animal spitted. Now he wants to know if in the zoo there are two camels, which spitted at each other. Help him to solve this task. The trajectory of a camel's spit is an arc, i.e. if the camel in position *x* spits *d* meters right, he can hit only the camel in position *x*<=+<=*d*, if such a camel exists. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the amount of camels in the zoo. Each of the following *n* lines contains two integers *x**i* and *d**i* (<=-<=104<=≤<=*x**i*<=≤<=104,<=1<=≤<=|*d**i*|<=≤<=2·104) — records in Bob's notepad. *x**i* is a position of the *i*-th camel, and *d**i* is a distance at which the *i*-th camel spitted. Positive values of *d**i* correspond to the spits right, negative values correspond to the spits left. No two camels may stand in the same position. Output Specification: If there are two camels, which spitted at each other, output YES. Otherwise, output NO. Demo Input: ['2\n0 1\n1 -1\n', '3\n0 1\n1 1\n2 -2\n', '5\n2 -10\n3 10\n0 5\n5 -5\n10 1\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: none
```python c=[tuple(map(int,input().split())) for _ in range(int(input()))] print('YES' if any(sum(ci)==cj[0] and sum(cj)==ci[0] for ci in c for cj in c) else 'NO') ```
3.9455
680
A
Bear and Five Cards
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
A little bear Limak plays a game. He has five cards. There is one number written on each card. Each number is a positive integer. Limak can discard (throw out) some cards. His goal is to minimize the sum of numbers written on remaining (not discarded) cards. He is allowed to at most once discard two or three cards with the same number. Of course, he won't discard cards if it's impossible to choose two or three cards with the same number. Given five numbers written on cards, cay you find the minimum sum of numbers on remaining cards?
The only line of the input contains five integers *t*1, *t*2, *t*3, *t*4 and *t*5 (1<=≤<=*t**i*<=≤<=100) — numbers written on cards.
Print the minimum possible sum of numbers written on remaining cards.
[ "7 3 7 3 20\n", "7 9 3 1 8\n", "10 10 10 10 10\n" ]
[ "26\n", "28\n", "20\n" ]
In the first sample, Limak has cards with numbers 7, 3, 7, 3 and 20. Limak can do one of the following. - Do nothing and the sum would be 7 + 3 + 7 + 3 + 20 = 40. - Remove two cards with a number 7. The remaining sum would be 3 + 3 + 20 = 26. - Remove two cards with a number 3. The remaining sum would be 7 + 7 + 20 = 34. You are asked to minimize the sum so the answer is 26. In the second sample, it's impossible to find two or three cards with the same number. Hence, Limak does nothing and the sum is 7 + 9 + 1 + 3 + 8 = 28. In the third sample, all cards have the same number. It's optimal to discard any three cards. The sum of two remaining numbers is 10 + 10 = 20.
500
[ { "input": "7 3 7 3 20", "output": "26" }, { "input": "7 9 3 1 8", "output": "28" }, { "input": "10 10 10 10 10", "output": "20" }, { "input": "8 7 1 8 7", "output": "15" }, { "input": "7 7 7 8 8", "output": "16" }, { "input": "8 8 8 2 2", "output": "4" }, { "input": "8 8 2 2 2", "output": "6" }, { "input": "5 50 5 5 60", "output": "110" }, { "input": "100 100 100 100 100", "output": "200" }, { "input": "1 1 1 1 1", "output": "2" }, { "input": "29 29 20 20 20", "output": "58" }, { "input": "20 29 20 29 20", "output": "58" }, { "input": "31 31 20 20 20", "output": "60" }, { "input": "20 20 20 31 31", "output": "60" }, { "input": "20 31 20 31 20", "output": "60" }, { "input": "20 20 20 30 30", "output": "60" }, { "input": "30 30 20 20 20", "output": "60" }, { "input": "8 1 8 8 8", "output": "9" }, { "input": "1 1 1 8 1", "output": "9" }, { "input": "1 2 3 4 5", "output": "15" }, { "input": "100 99 98 97 96", "output": "490" }, { "input": "1 1 100 100 100", "output": "2" }, { "input": "100 100 99 99 98", "output": "296" }, { "input": "98 99 100 99 100", "output": "296" }, { "input": "1 90 1 91 1", "output": "181" }, { "input": "60 1 75 1 92", "output": "227" }, { "input": "15 40 90 40 90", "output": "95" }, { "input": "1 1 15 20 20", "output": "17" }, { "input": "90 11 11 10 10", "output": "110" }, { "input": "20 21 22 23 24", "output": "110" }, { "input": "1 1 2 98 99", "output": "199" }, { "input": "3 7 7 7 10", "output": "13" }, { "input": "1 3 3 3 1", "output": "2" }, { "input": "1 9 9 9 10", "output": "11" }, { "input": "100 1 1 1 1", "output": "101" }, { "input": "2 2 2 100 100", "output": "6" }, { "input": "1 2 2 2 2", "output": "3" }, { "input": "1 1 2 2 5", "output": "7" }, { "input": "1 2 3 4 1", "output": "9" }, { "input": "11 10 10 10 10", "output": "21" }, { "input": "2 2 2 10 10", "output": "6" }, { "input": "1 1 1 1 4", "output": "5" }, { "input": "98 98 98 98 23", "output": "121" }, { "input": "1 2 3 100 100", "output": "6" }, { "input": "2 2 5 10 10", "output": "9" }, { "input": "2 2 3 3 3", "output": "4" }, { "input": "1 1 1 1 2", "output": "3" }, { "input": "12 12 7 7 7", "output": "21" } ]
1,600,489,717
2,147,483,647
Python 3
OK
TESTS
48
109
307,200
t = sorted(list(map(int, input().split()))) b = [] for i in range(5): if t.count(t[i])>1: if t.count(t[i])>3: b.append(t[i]*3) else: b.append(t[i]*t.count(t[i])) if len(b)==0: print(sum(t)) else: print(sum(t)-max(b))
Title: Bear and Five Cards Time Limit: None seconds Memory Limit: None megabytes Problem Description: A little bear Limak plays a game. He has five cards. There is one number written on each card. Each number is a positive integer. Limak can discard (throw out) some cards. His goal is to minimize the sum of numbers written on remaining (not discarded) cards. He is allowed to at most once discard two or three cards with the same number. Of course, he won't discard cards if it's impossible to choose two or three cards with the same number. Given five numbers written on cards, cay you find the minimum sum of numbers on remaining cards? Input Specification: The only line of the input contains five integers *t*1, *t*2, *t*3, *t*4 and *t*5 (1<=≤<=*t**i*<=≤<=100) — numbers written on cards. Output Specification: Print the minimum possible sum of numbers written on remaining cards. Demo Input: ['7 3 7 3 20\n', '7 9 3 1 8\n', '10 10 10 10 10\n'] Demo Output: ['26\n', '28\n', '20\n'] Note: In the first sample, Limak has cards with numbers 7, 3, 7, 3 and 20. Limak can do one of the following. - Do nothing and the sum would be 7 + 3 + 7 + 3 + 20 = 40. - Remove two cards with a number 7. The remaining sum would be 3 + 3 + 20 = 26. - Remove two cards with a number 3. The remaining sum would be 7 + 7 + 20 = 34. You are asked to minimize the sum so the answer is 26. In the second sample, it's impossible to find two or three cards with the same number. Hence, Limak does nothing and the sum is 7 + 9 + 1 + 3 + 8 = 28. In the third sample, all cards have the same number. It's optimal to discard any three cards. The sum of two remaining numbers is 10 + 10 = 20.
```python t = sorted(list(map(int, input().split()))) b = [] for i in range(5): if t.count(t[i])>1: if t.count(t[i])>3: b.append(t[i]*3) else: b.append(t[i]*t.count(t[i])) if len(b)==0: print(sum(t)) else: print(sum(t)-max(b)) ```
3
27
B
Tournament
PROGRAMMING
1,300
[ "bitmasks", "brute force", "dfs and similar", "greedy" ]
B. Tournament
2
256
The tournament «Sleepyhead-2010» in the rapid falling asleep has just finished in Berland. *n* best participants from the country have participated in it. The tournament consists of games, each of them is a match between two participants. *n*·(*n*<=-<=1)<=/<=2 games were played during the tournament, and each participant had a match with each other participant. The rules of the game are quite simple — the participant who falls asleep first wins. The secretary made a record of each game in the form «*x**i* *y**i*», where *x**i* and *y**i* are the numbers of participants. The first number in each pair is a winner (i.e. *x**i* is a winner and *y**i* is a loser). There is no draws. Recently researches form the «Institute Of Sleep» have found that every person is characterized by a value *p**j* — the speed of falling asleep. The person who has lower speed wins. Every person has its own value *p**j*, constant during the life. It is known that all participants of the tournament have distinct speeds of falling asleep. Also it was found that the secretary made records about all the games except one. You are to find the result of the missing game.
The first line contains one integer *n* (3<=≤<=*n*<=≤<=50) — the number of participants. The following *n*·(*n*<=-<=1)<=/<=2<=-<=1 lines contain the results of the games. Each game is described in a single line by two integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*,<=*x**i*<=≠<=*y**i*), where *x**i* и *y**i* are the numbers of the opponents in this game. It is known that during the tournament each of the *n* participants played *n*<=-<=1 games, one game with each other participant.
Output two integers *x* and *y* — the missing record. If there are several solutions, output any of them.
[ "4\n4 2\n4 1\n2 3\n2 1\n3 1\n" ]
[ "4 3\n" ]
none
1,000
[ { "input": "3\n3 2\n1 2", "output": "1 3" }, { "input": "4\n2 4\n3 4\n1 2\n1 4\n1 3", "output": "2 3" }, { "input": "5\n3 5\n2 5\n1 5\n1 4\n4 3\n1 3\n2 3\n4 5\n4 2", "output": "1 2" }, { "input": "6\n3 4\n3 5\n5 4\n1 2\n5 6\n2 6\n5 2\n3 6\n3 2\n4 6\n2 4\n1 3\n1 5\n1 4", "output": "1 6" }, { "input": "7\n2 4\n6 1\n6 5\n3 4\n6 3\n2 6\n6 4\n3 7\n7 1\n1 4\n7 4\n7 5\n2 7\n2 3\n5 4\n3 5\n3 1\n5 1\n6 7\n2 1", "output": "2 5" }, { "input": "8\n4 3\n6 8\n1 5\n8 3\n1 4\n1 7\n5 6\n5 3\n5 8\n7 3\n7 8\n2 3\n1 3\n2 8\n1 6\n5 4\n1 2\n2 5\n4 8\n1 8\n2 6\n2 7\n4 7\n2 4\n6 4\n6 7\n6 3", "output": "5 7" }, { "input": "9\n4 5\n9 6\n5 6\n8 7\n5 1\n8 5\n9 5\n4 7\n2 6\n7 6\n3 5\n2 1\n8 2\n3 7\n9 1\n2 5\n2 7\n4 2\n8 9\n8 1\n3 6\n7 1\n8 6\n3 2\n3 1\n9 2\n4 6\n5 7\n1 6\n4 8\n4 1\n4 3\n4 9\n9 3\n9 7", "output": "8 3" }, { "input": "3\n3 2\n1 2", "output": "1 3" }, { "input": "3\n1 3\n2 3", "output": "1 2" }, { "input": "3\n2 1\n3 1", "output": "2 3" }, { "input": "4\n3 1\n4 1\n4 2\n3 2\n3 4", "output": "1 2" }, { "input": "4\n3 4\n1 4\n2 3\n2 1\n2 4", "output": "1 3" }, { "input": "4\n2 3\n1 3\n2 1\n4 1\n4 3", "output": "2 4" }, { "input": "5\n5 2\n3 1\n5 3\n5 1\n3 4\n1 4\n3 2\n1 2\n5 4", "output": "2 4" }, { "input": "5\n2 1\n4 1\n5 1\n4 5\n3 5\n2 3\n3 1\n2 5\n2 4", "output": "3 4" }, { "input": "5\n4 5\n4 3\n5 3\n4 1\n3 1\n3 2\n5 2\n4 2\n5 1", "output": "1 2" }, { "input": "5\n4 5\n1 5\n4 3\n2 5\n2 1\n2 4\n3 5\n2 3\n1 3", "output": "1 4" }, { "input": "5\n2 4\n5 3\n5 4\n2 5\n1 4\n2 3\n1 5\n1 3\n1 2", "output": "3 4" }, { "input": "6\n6 1\n5 6\n4 1\n3 1\n3 4\n4 6\n4 5\n3 2\n4 2\n6 2\n5 1\n3 5\n3 6\n5 2", "output": "1 2" }, { "input": "6\n6 2\n6 4\n4 1\n4 3\n5 6\n5 2\n6 3\n5 1\n5 3\n2 1\n2 3\n6 1\n3 1\n5 4", "output": "2 4" }, { "input": "6\n5 3\n6 5\n3 4\n1 5\n2 3\n6 2\n2 5\n5 4\n6 4\n1 4\n6 3\n6 1\n2 4\n1 3", "output": "1 2" }, { "input": "6\n3 1\n5 4\n2 1\n6 2\n5 2\n3 6\n6 4\n3 2\n3 4\n6 1\n6 5\n5 1\n2 4\n3 5", "output": "1 4" }, { "input": "6\n6 1\n1 3\n3 4\n6 3\n2 4\n6 2\n1 5\n5 3\n5 4\n6 4\n1 2\n1 4\n6 5\n5 2", "output": "2 3" } ]
1,629,001,890
2,147,483,647
PyPy 3
OK
TESTS
35
310
23,654,400
n=int(input()) d={} l=[] for i in range((n*(n-1))//2-1): x,y=map(int,input().split()) l.append([x,y]) d[x]=d.get(x,0)+1 d[y]=d.get(y,0)+1 ans=[] for i in d.keys(): if d[i]==n-2: ans.append(i) f1=0 f2=0 for i in l: if i[0]==ans[0]: f1+=1 elif i[1]==ans[0]: f1-=1 if i[0]==ans[1]: f2+=1 elif i[1]==ans[1]: f2-=1 if f1<f2: ans=ans[::-1] print(ans[0],ans[1])
Title: Tournament Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The tournament «Sleepyhead-2010» in the rapid falling asleep has just finished in Berland. *n* best participants from the country have participated in it. The tournament consists of games, each of them is a match between two participants. *n*·(*n*<=-<=1)<=/<=2 games were played during the tournament, and each participant had a match with each other participant. The rules of the game are quite simple — the participant who falls asleep first wins. The secretary made a record of each game in the form «*x**i* *y**i*», where *x**i* and *y**i* are the numbers of participants. The first number in each pair is a winner (i.e. *x**i* is a winner and *y**i* is a loser). There is no draws. Recently researches form the «Institute Of Sleep» have found that every person is characterized by a value *p**j* — the speed of falling asleep. The person who has lower speed wins. Every person has its own value *p**j*, constant during the life. It is known that all participants of the tournament have distinct speeds of falling asleep. Also it was found that the secretary made records about all the games except one. You are to find the result of the missing game. Input Specification: The first line contains one integer *n* (3<=≤<=*n*<=≤<=50) — the number of participants. The following *n*·(*n*<=-<=1)<=/<=2<=-<=1 lines contain the results of the games. Each game is described in a single line by two integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*,<=*x**i*<=≠<=*y**i*), where *x**i* и *y**i* are the numbers of the opponents in this game. It is known that during the tournament each of the *n* participants played *n*<=-<=1 games, one game with each other participant. Output Specification: Output two integers *x* and *y* — the missing record. If there are several solutions, output any of them. Demo Input: ['4\n4 2\n4 1\n2 3\n2 1\n3 1\n'] Demo Output: ['4 3\n'] Note: none
```python n=int(input()) d={} l=[] for i in range((n*(n-1))//2-1): x,y=map(int,input().split()) l.append([x,y]) d[x]=d.get(x,0)+1 d[y]=d.get(y,0)+1 ans=[] for i in d.keys(): if d[i]==n-2: ans.append(i) f1=0 f2=0 for i in l: if i[0]==ans[0]: f1+=1 elif i[1]==ans[0]: f1-=1 if i[0]==ans[1]: f2+=1 elif i[1]==ans[1]: f2-=1 if f1<f2: ans=ans[::-1] print(ans[0],ans[1]) ```
3.87844
334
A
Candy Bags
PROGRAMMING
1,000
[ "implementation" ]
null
null
Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies. Help him give *n* bags of candies to each brother so that all brothers got the same number of candies.
The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers.
Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order. It is guaranteed that the solution exists at the given limits.
[ "2\n" ]
[ "1 4\n2 3\n" ]
The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
500
[ { "input": "2", "output": "1 4\n2 3" }, { "input": "4", "output": "1 16 2 15\n3 14 4 13\n5 12 6 11\n7 10 8 9" }, { "input": "6", "output": "1 36 2 35 3 34\n4 33 5 32 6 31\n7 30 8 29 9 28\n10 27 11 26 12 25\n13 24 14 23 15 22\n16 21 17 20 18 19" }, { "input": "8", "output": "1 64 2 63 3 62 4 61\n5 60 6 59 7 58 8 57\n9 56 10 55 11 54 12 53\n13 52 14 51 15 50 16 49\n17 48 18 47 19 46 20 45\n21 44 22 43 23 42 24 41\n25 40 26 39 27 38 28 37\n29 36 30 35 31 34 32 33" }, { "input": "10", "output": "1 100 2 99 3 98 4 97 5 96\n6 95 7 94 8 93 9 92 10 91\n11 90 12 89 13 88 14 87 15 86\n16 85 17 84 18 83 19 82 20 81\n21 80 22 79 23 78 24 77 25 76\n26 75 27 74 28 73 29 72 30 71\n31 70 32 69 33 68 34 67 35 66\n36 65 37 64 38 63 39 62 40 61\n41 60 42 59 43 58 44 57 45 56\n46 55 47 54 48 53 49 52 50 51" }, { "input": "100", "output": "1 10000 2 9999 3 9998 4 9997 5 9996 6 9995 7 9994 8 9993 9 9992 10 9991 11 9990 12 9989 13 9988 14 9987 15 9986 16 9985 17 9984 18 9983 19 9982 20 9981 21 9980 22 9979 23 9978 24 9977 25 9976 26 9975 27 9974 28 9973 29 9972 30 9971 31 9970 32 9969 33 9968 34 9967 35 9966 36 9965 37 9964 38 9963 39 9962 40 9961 41 9960 42 9959 43 9958 44 9957 45 9956 46 9955 47 9954 48 9953 49 9952 50 9951\n51 9950 52 9949 53 9948 54 9947 55 9946 56 9945 57 9944 58 9943 59 9942 60 9941 61 9940 62 9939 63 9938 64 9937 65 993..." }, { "input": "62", "output": "1 3844 2 3843 3 3842 4 3841 5 3840 6 3839 7 3838 8 3837 9 3836 10 3835 11 3834 12 3833 13 3832 14 3831 15 3830 16 3829 17 3828 18 3827 19 3826 20 3825 21 3824 22 3823 23 3822 24 3821 25 3820 26 3819 27 3818 28 3817 29 3816 30 3815 31 3814\n32 3813 33 3812 34 3811 35 3810 36 3809 37 3808 38 3807 39 3806 40 3805 41 3804 42 3803 43 3802 44 3801 45 3800 46 3799 47 3798 48 3797 49 3796 50 3795 51 3794 52 3793 53 3792 54 3791 55 3790 56 3789 57 3788 58 3787 59 3786 60 3785 61 3784 62 3783\n63 3782 64 3781 65 378..." }, { "input": "66", "output": "1 4356 2 4355 3 4354 4 4353 5 4352 6 4351 7 4350 8 4349 9 4348 10 4347 11 4346 12 4345 13 4344 14 4343 15 4342 16 4341 17 4340 18 4339 19 4338 20 4337 21 4336 22 4335 23 4334 24 4333 25 4332 26 4331 27 4330 28 4329 29 4328 30 4327 31 4326 32 4325 33 4324\n34 4323 35 4322 36 4321 37 4320 38 4319 39 4318 40 4317 41 4316 42 4315 43 4314 44 4313 45 4312 46 4311 47 4310 48 4309 49 4308 50 4307 51 4306 52 4305 53 4304 54 4303 55 4302 56 4301 57 4300 58 4299 59 4298 60 4297 61 4296 62 4295 63 4294 64 4293 65 4292..." }, { "input": "18", "output": "1 324 2 323 3 322 4 321 5 320 6 319 7 318 8 317 9 316\n10 315 11 314 12 313 13 312 14 311 15 310 16 309 17 308 18 307\n19 306 20 305 21 304 22 303 23 302 24 301 25 300 26 299 27 298\n28 297 29 296 30 295 31 294 32 293 33 292 34 291 35 290 36 289\n37 288 38 287 39 286 40 285 41 284 42 283 43 282 44 281 45 280\n46 279 47 278 48 277 49 276 50 275 51 274 52 273 53 272 54 271\n55 270 56 269 57 268 58 267 59 266 60 265 61 264 62 263 63 262\n64 261 65 260 66 259 67 258 68 257 69 256 70 255 71 254 72 253\n73 252 7..." }, { "input": "68", "output": "1 4624 2 4623 3 4622 4 4621 5 4620 6 4619 7 4618 8 4617 9 4616 10 4615 11 4614 12 4613 13 4612 14 4611 15 4610 16 4609 17 4608 18 4607 19 4606 20 4605 21 4604 22 4603 23 4602 24 4601 25 4600 26 4599 27 4598 28 4597 29 4596 30 4595 31 4594 32 4593 33 4592 34 4591\n35 4590 36 4589 37 4588 38 4587 39 4586 40 4585 41 4584 42 4583 43 4582 44 4581 45 4580 46 4579 47 4578 48 4577 49 4576 50 4575 51 4574 52 4573 53 4572 54 4571 55 4570 56 4569 57 4568 58 4567 59 4566 60 4565 61 4564 62 4563 63 4562 64 4561 65 4560..." }, { "input": "86", "output": "1 7396 2 7395 3 7394 4 7393 5 7392 6 7391 7 7390 8 7389 9 7388 10 7387 11 7386 12 7385 13 7384 14 7383 15 7382 16 7381 17 7380 18 7379 19 7378 20 7377 21 7376 22 7375 23 7374 24 7373 25 7372 26 7371 27 7370 28 7369 29 7368 30 7367 31 7366 32 7365 33 7364 34 7363 35 7362 36 7361 37 7360 38 7359 39 7358 40 7357 41 7356 42 7355 43 7354\n44 7353 45 7352 46 7351 47 7350 48 7349 49 7348 50 7347 51 7346 52 7345 53 7344 54 7343 55 7342 56 7341 57 7340 58 7339 59 7338 60 7337 61 7336 62 7335 63 7334 64 7333 65 7332..." }, { "input": "96", "output": "1 9216 2 9215 3 9214 4 9213 5 9212 6 9211 7 9210 8 9209 9 9208 10 9207 11 9206 12 9205 13 9204 14 9203 15 9202 16 9201 17 9200 18 9199 19 9198 20 9197 21 9196 22 9195 23 9194 24 9193 25 9192 26 9191 27 9190 28 9189 29 9188 30 9187 31 9186 32 9185 33 9184 34 9183 35 9182 36 9181 37 9180 38 9179 39 9178 40 9177 41 9176 42 9175 43 9174 44 9173 45 9172 46 9171 47 9170 48 9169\n49 9168 50 9167 51 9166 52 9165 53 9164 54 9163 55 9162 56 9161 57 9160 58 9159 59 9158 60 9157 61 9156 62 9155 63 9154 64 9153 65 9152..." }, { "input": "12", "output": "1 144 2 143 3 142 4 141 5 140 6 139\n7 138 8 137 9 136 10 135 11 134 12 133\n13 132 14 131 15 130 16 129 17 128 18 127\n19 126 20 125 21 124 22 123 23 122 24 121\n25 120 26 119 27 118 28 117 29 116 30 115\n31 114 32 113 33 112 34 111 35 110 36 109\n37 108 38 107 39 106 40 105 41 104 42 103\n43 102 44 101 45 100 46 99 47 98 48 97\n49 96 50 95 51 94 52 93 53 92 54 91\n55 90 56 89 57 88 58 87 59 86 60 85\n61 84 62 83 63 82 64 81 65 80 66 79\n67 78 68 77 69 76 70 75 71 74 72 73" }, { "input": "88", "output": "1 7744 2 7743 3 7742 4 7741 5 7740 6 7739 7 7738 8 7737 9 7736 10 7735 11 7734 12 7733 13 7732 14 7731 15 7730 16 7729 17 7728 18 7727 19 7726 20 7725 21 7724 22 7723 23 7722 24 7721 25 7720 26 7719 27 7718 28 7717 29 7716 30 7715 31 7714 32 7713 33 7712 34 7711 35 7710 36 7709 37 7708 38 7707 39 7706 40 7705 41 7704 42 7703 43 7702 44 7701\n45 7700 46 7699 47 7698 48 7697 49 7696 50 7695 51 7694 52 7693 53 7692 54 7691 55 7690 56 7689 57 7688 58 7687 59 7686 60 7685 61 7684 62 7683 63 7682 64 7681 65 7680..." }, { "input": "28", "output": "1 784 2 783 3 782 4 781 5 780 6 779 7 778 8 777 9 776 10 775 11 774 12 773 13 772 14 771\n15 770 16 769 17 768 18 767 19 766 20 765 21 764 22 763 23 762 24 761 25 760 26 759 27 758 28 757\n29 756 30 755 31 754 32 753 33 752 34 751 35 750 36 749 37 748 38 747 39 746 40 745 41 744 42 743\n43 742 44 741 45 740 46 739 47 738 48 737 49 736 50 735 51 734 52 733 53 732 54 731 55 730 56 729\n57 728 58 727 59 726 60 725 61 724 62 723 63 722 64 721 65 720 66 719 67 718 68 717 69 716 70 715\n71 714 72 713 73 712 74 7..." }, { "input": "80", "output": "1 6400 2 6399 3 6398 4 6397 5 6396 6 6395 7 6394 8 6393 9 6392 10 6391 11 6390 12 6389 13 6388 14 6387 15 6386 16 6385 17 6384 18 6383 19 6382 20 6381 21 6380 22 6379 23 6378 24 6377 25 6376 26 6375 27 6374 28 6373 29 6372 30 6371 31 6370 32 6369 33 6368 34 6367 35 6366 36 6365 37 6364 38 6363 39 6362 40 6361\n41 6360 42 6359 43 6358 44 6357 45 6356 46 6355 47 6354 48 6353 49 6352 50 6351 51 6350 52 6349 53 6348 54 6347 55 6346 56 6345 57 6344 58 6343 59 6342 60 6341 61 6340 62 6339 63 6338 64 6337 65 6336..." }, { "input": "48", "output": "1 2304 2 2303 3 2302 4 2301 5 2300 6 2299 7 2298 8 2297 9 2296 10 2295 11 2294 12 2293 13 2292 14 2291 15 2290 16 2289 17 2288 18 2287 19 2286 20 2285 21 2284 22 2283 23 2282 24 2281\n25 2280 26 2279 27 2278 28 2277 29 2276 30 2275 31 2274 32 2273 33 2272 34 2271 35 2270 36 2269 37 2268 38 2267 39 2266 40 2265 41 2264 42 2263 43 2262 44 2261 45 2260 46 2259 47 2258 48 2257\n49 2256 50 2255 51 2254 52 2253 53 2252 54 2251 55 2250 56 2249 57 2248 58 2247 59 2246 60 2245 61 2244 62 2243 63 2242 64 2241 65 224..." }, { "input": "54", "output": "1 2916 2 2915 3 2914 4 2913 5 2912 6 2911 7 2910 8 2909 9 2908 10 2907 11 2906 12 2905 13 2904 14 2903 15 2902 16 2901 17 2900 18 2899 19 2898 20 2897 21 2896 22 2895 23 2894 24 2893 25 2892 26 2891 27 2890\n28 2889 29 2888 30 2887 31 2886 32 2885 33 2884 34 2883 35 2882 36 2881 37 2880 38 2879 39 2878 40 2877 41 2876 42 2875 43 2874 44 2873 45 2872 46 2871 47 2870 48 2869 49 2868 50 2867 51 2866 52 2865 53 2864 54 2863\n55 2862 56 2861 57 2860 58 2859 59 2858 60 2857 61 2856 62 2855 63 2854 64 2853 65 285..." }, { "input": "58", "output": "1 3364 2 3363 3 3362 4 3361 5 3360 6 3359 7 3358 8 3357 9 3356 10 3355 11 3354 12 3353 13 3352 14 3351 15 3350 16 3349 17 3348 18 3347 19 3346 20 3345 21 3344 22 3343 23 3342 24 3341 25 3340 26 3339 27 3338 28 3337 29 3336\n30 3335 31 3334 32 3333 33 3332 34 3331 35 3330 36 3329 37 3328 38 3327 39 3326 40 3325 41 3324 42 3323 43 3322 44 3321 45 3320 46 3319 47 3318 48 3317 49 3316 50 3315 51 3314 52 3313 53 3312 54 3311 55 3310 56 3309 57 3308 58 3307\n59 3306 60 3305 61 3304 62 3303 63 3302 64 3301 65 330..." }, { "input": "64", "output": "1 4096 2 4095 3 4094 4 4093 5 4092 6 4091 7 4090 8 4089 9 4088 10 4087 11 4086 12 4085 13 4084 14 4083 15 4082 16 4081 17 4080 18 4079 19 4078 20 4077 21 4076 22 4075 23 4074 24 4073 25 4072 26 4071 27 4070 28 4069 29 4068 30 4067 31 4066 32 4065\n33 4064 34 4063 35 4062 36 4061 37 4060 38 4059 39 4058 40 4057 41 4056 42 4055 43 4054 44 4053 45 4052 46 4051 47 4050 48 4049 49 4048 50 4047 51 4046 52 4045 53 4044 54 4043 55 4042 56 4041 57 4040 58 4039 59 4038 60 4037 61 4036 62 4035 63 4034 64 4033\n65 403..." }, { "input": "44", "output": "1 1936 2 1935 3 1934 4 1933 5 1932 6 1931 7 1930 8 1929 9 1928 10 1927 11 1926 12 1925 13 1924 14 1923 15 1922 16 1921 17 1920 18 1919 19 1918 20 1917 21 1916 22 1915\n23 1914 24 1913 25 1912 26 1911 27 1910 28 1909 29 1908 30 1907 31 1906 32 1905 33 1904 34 1903 35 1902 36 1901 37 1900 38 1899 39 1898 40 1897 41 1896 42 1895 43 1894 44 1893\n45 1892 46 1891 47 1890 48 1889 49 1888 50 1887 51 1886 52 1885 53 1884 54 1883 55 1882 56 1881 57 1880 58 1879 59 1878 60 1877 61 1876 62 1875 63 1874 64 1873 65 187..." } ]
1,595,358,797
2,147,483,647
PyPy 3
OK
TESTS
21
342
23,859,200
num = int(input()) arr = [x for x in range(1, num ** 2 + 1)] for x in range(len(arr) // 2): print(arr[x], arr[~x])
Title: Candy Bags Time Limit: None seconds Memory Limit: None megabytes Problem Description: Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies. Help him give *n* bags of candies to each brother so that all brothers got the same number of candies. Input Specification: The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers. Output Specification: Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order. It is guaranteed that the solution exists at the given limits. Demo Input: ['2\n'] Demo Output: ['1 4\n2 3\n'] Note: The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
```python num = int(input()) arr = [x for x in range(1, num ** 2 + 1)] for x in range(len(arr) // 2): print(arr[x], arr[~x]) ```
3
682
A
Alyona and Numbers
PROGRAMMING
1,100
[ "constructive algorithms", "math", "number theory" ]
null
null
After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5. Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0. As usual, Alyona has some troubles and asks you to help.
The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000).
Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5.
[ "6 12\n", "11 14\n", "1 5\n", "3 8\n", "5 7\n", "21 21\n" ]
[ "14\n", "31\n", "1\n", "5\n", "7\n", "88\n" ]
Following pairs are suitable in the first sample case: - for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9. Only the pair (1, 4) is suitable in the third sample case.
500
[ { "input": "6 12", "output": "14" }, { "input": "11 14", "output": "31" }, { "input": "1 5", "output": "1" }, { "input": "3 8", "output": "5" }, { "input": "5 7", "output": "7" }, { "input": "21 21", "output": "88" }, { "input": "10 15", "output": "30" }, { "input": "1 1", "output": "0" }, { "input": "1 1000000", "output": "200000" }, { "input": "1000000 1", "output": "200000" }, { "input": "1000000 1000000", "output": "200000000000" }, { "input": "944 844", "output": "159348" }, { "input": "368 984", "output": "72423" }, { "input": "792 828", "output": "131155" }, { "input": "920 969", "output": "178296" }, { "input": "640 325", "output": "41600" }, { "input": "768 170", "output": "26112" }, { "input": "896 310", "output": "55552" }, { "input": "320 154", "output": "9856" }, { "input": "744 999", "output": "148652" }, { "input": "630 843", "output": "106218" }, { "input": "54 688", "output": "7431" }, { "input": "478 828", "output": "79157" }, { "input": "902 184", "output": "33194" }, { "input": "31 29", "output": "180" }, { "input": "751 169", "output": "25384" }, { "input": "879 14", "output": "2462" }, { "input": "7 858", "output": "1201" }, { "input": "431 702", "output": "60512" }, { "input": "855 355", "output": "60705" }, { "input": "553 29", "output": "3208" }, { "input": "721767 525996", "output": "75929310986" }, { "input": "805191 74841", "output": "12052259926" }, { "input": "888615 590981", "output": "105030916263" }, { "input": "4743 139826", "output": "132638943" }, { "input": "88167 721374", "output": "12720276292" }, { "input": "171591 13322", "output": "457187060" }, { "input": "287719 562167", "output": "32349225415" }, { "input": "371143 78307", "output": "5812618980" }, { "input": "487271 627151", "output": "61118498984" }, { "input": "261436 930642", "output": "48660664382" }, { "input": "377564 446782", "output": "33737759810" }, { "input": "460988 28330", "output": "2611958008" }, { "input": "544412 352983", "output": "38433636199" }, { "input": "660540 869123", "output": "114818101284" }, { "input": "743964 417967", "output": "62190480238" }, { "input": "827388 966812", "output": "159985729411" }, { "input": "910812 515656", "output": "93933134534" }, { "input": "26940 64501", "output": "347531388" }, { "input": "110364 356449", "output": "7867827488" }, { "input": "636358 355531", "output": "45248999219" }, { "input": "752486 871672", "output": "131184195318" }, { "input": "803206 420516", "output": "67552194859" }, { "input": "919334 969361", "output": "178233305115" }, { "input": "35462 261309", "output": "1853307952" }, { "input": "118887 842857", "output": "20040948031" }, { "input": "202311 358998", "output": "14525848875" }, { "input": "285735 907842", "output": "51880446774" }, { "input": "401863 456686", "output": "36705041203" }, { "input": "452583 972827", "output": "88056992428" }, { "input": "235473 715013", "output": "33673251230" }, { "input": "318897 263858", "output": "16828704925" }, { "input": "402321 812702", "output": "65393416268" }, { "input": "518449 361546", "output": "37488632431" }, { "input": "634577 910391", "output": "115542637921" }, { "input": "685297 235043", "output": "32214852554" }, { "input": "801425 751183", "output": "120403367155" }, { "input": "884849 300028", "output": "53095895155" }, { "input": "977 848872", "output": "165869588" }, { "input": "51697 397716", "output": "4112144810" }, { "input": "834588 107199", "output": "17893399803" }, { "input": "918012 688747", "output": "126455602192" }, { "input": "1436 237592", "output": "68236422" }, { "input": "117564 753732", "output": "17722349770" }, { "input": "200988 302576", "output": "12162829017" }, { "input": "284412 818717", "output": "46570587880" }, { "input": "400540 176073", "output": "14104855884" }, { "input": "483964 724917", "output": "70166746198" }, { "input": "567388 241058", "output": "27354683301" }, { "input": "650812 789902", "output": "102815540084" }, { "input": "400999 756281", "output": "60653584944" }, { "input": "100 101", "output": "2020" }, { "input": "100 102", "output": "2040" }, { "input": "103 100", "output": "2060" }, { "input": "100 104", "output": "2080" }, { "input": "3 4", "output": "3" }, { "input": "11 23", "output": "50" }, { "input": "8 14", "output": "23" }, { "input": "23423 34234", "output": "160372597" }, { "input": "1 4", "output": "1" }, { "input": "999999 999999", "output": "199999600001" }, { "input": "82 99", "output": "1624" }, { "input": "21 18", "output": "75" }, { "input": "234 234", "output": "10952" }, { "input": "4 4", "output": "4" }, { "input": "6 13", "output": "15" }, { "input": "3 9", "output": "6" }, { "input": "99999 99999", "output": "1999960001" }, { "input": "34 33", "output": "225" }, { "input": "2 2", "output": "0" }, { "input": "333 1", "output": "66" }, { "input": "3 3", "output": "2" }, { "input": "8 2", "output": "3" }, { "input": "2179 2218", "output": "966605" }, { "input": "1000000 999999", "output": "199999800000" }, { "input": "873828 774207", "output": "135304750879" }, { "input": "13 19", "output": "50" }, { "input": "1648 576469", "output": "190004183" }, { "input": "11 13", "output": "28" }, { "input": "5 8", "output": "8" }, { "input": "650074 943659", "output": "122689636154" }, { "input": "1 3", "output": "0" }, { "input": "54 43", "output": "465" }, { "input": "14 9", "output": "26" }, { "input": "2 3", "output": "1" }, { "input": "543 534", "output": "57993" }, { "input": "321 123", "output": "7896" }, { "input": "21 3", "output": "12" }, { "input": "2 1", "output": "0" }, { "input": "4 3", "output": "3" }, { "input": "47474 74747", "output": "709707816" }, { "input": "4 9", "output": "8" }, { "input": "7 4", "output": "6" }, { "input": "9 4", "output": "8" }, { "input": "12414 4214", "output": "10462520" }, { "input": "2 9", "output": "4" }, { "input": "253 821", "output": "41542" }, { "input": "2 4", "output": "2" } ]
1,613,936,046
2,147,483,647
Python 3
OK
TESTS
128
436
0
n,m=map(int,input().split()) ans=0 for i in range(1,n+1): ans+=(i%5+m)//5 print(ans)
Title: Alyona and Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5. Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0. As usual, Alyona has some troubles and asks you to help. Input Specification: The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000). Output Specification: Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5. Demo Input: ['6 12\n', '11 14\n', '1 5\n', '3 8\n', '5 7\n', '21 21\n'] Demo Output: ['14\n', '31\n', '1\n', '5\n', '7\n', '88\n'] Note: Following pairs are suitable in the first sample case: - for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9. Only the pair (1, 4) is suitable in the third sample case.
```python n,m=map(int,input().split()) ans=0 for i in range(1,n+1): ans+=(i%5+m)//5 print(ans) ```
3
136
A
Presents
PROGRAMMING
800
[ "implementation" ]
null
null
Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there. If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift. Now Petya wants to know for each friend *i* the number of a friend who has given him a gift.
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves.
Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*.
[ "4\n2 3 4 1\n", "3\n1 3 2\n", "2\n1 2\n" ]
[ "4 1 2 3\n", "1 3 2\n", "1 2\n" ]
none
500
[ { "input": "4\n2 3 4 1", "output": "4 1 2 3" }, { "input": "3\n1 3 2", "output": "1 3 2" }, { "input": "2\n1 2", "output": "1 2" }, { "input": "1\n1", "output": "1" }, { "input": "10\n1 3 2 6 4 5 7 9 8 10", "output": "1 3 2 5 6 4 7 9 8 10" }, { "input": "5\n5 4 3 2 1", "output": "5 4 3 2 1" }, { "input": "20\n2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19" }, { "input": "21\n3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19", "output": "3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19" }, { "input": "10\n3 4 5 6 7 8 9 10 1 2", "output": "9 10 1 2 3 4 5 6 7 8" }, { "input": "8\n1 5 3 7 2 6 4 8", "output": "1 5 3 7 2 6 4 8" }, { "input": "50\n49 22 4 2 20 46 7 32 5 19 48 24 26 15 45 21 44 11 50 43 39 17 31 1 42 34 3 27 36 25 12 30 13 33 28 35 18 6 8 37 38 14 10 9 29 16 40 23 41 47", "output": "24 4 27 3 9 38 7 39 44 43 18 31 33 42 14 46 22 37 10 5 16 2 48 12 30 13 28 35 45 32 23 8 34 26 36 29 40 41 21 47 49 25 20 17 15 6 50 11 1 19" }, { "input": "34\n13 20 33 30 15 11 27 4 8 2 29 25 24 7 3 22 18 10 26 16 5 1 32 9 34 6 12 14 28 19 31 21 23 17", "output": "22 10 15 8 21 26 14 9 24 18 6 27 1 28 5 20 34 17 30 2 32 16 33 13 12 19 7 29 11 4 31 23 3 25" }, { "input": "92\n23 1 6 4 84 54 44 76 63 34 61 20 48 13 28 78 26 46 90 72 24 55 91 89 53 38 82 5 79 92 29 32 15 64 11 88 60 70 7 66 18 59 8 57 19 16 42 21 80 71 62 27 75 86 36 9 83 73 74 50 43 31 56 30 17 33 40 81 49 12 10 41 22 77 25 68 51 2 47 3 58 69 87 67 39 37 35 65 14 45 52 85", "output": "2 78 80 4 28 3 39 43 56 71 35 70 14 89 33 46 65 41 45 12 48 73 1 21 75 17 52 15 31 64 62 32 66 10 87 55 86 26 85 67 72 47 61 7 90 18 79 13 69 60 77 91 25 6 22 63 44 81 42 37 11 51 9 34 88 40 84 76 82 38 50 20 58 59 53 8 74 16 29 49 68 27 57 5 92 54 83 36 24 19 23 30" }, { "input": "49\n30 24 33 48 7 3 17 2 8 35 10 39 23 40 46 32 18 21 26 22 1 16 47 45 41 28 31 6 12 43 27 11 13 37 19 15 44 5 29 42 4 38 20 34 14 9 25 36 49", "output": "21 8 6 41 38 28 5 9 46 11 32 29 33 45 36 22 7 17 35 43 18 20 13 2 47 19 31 26 39 1 27 16 3 44 10 48 34 42 12 14 25 40 30 37 24 15 23 4 49" }, { "input": "12\n3 8 7 4 6 5 2 1 11 9 10 12", "output": "8 7 1 4 6 5 3 2 10 11 9 12" }, { "input": "78\n16 56 36 78 21 14 9 77 26 57 70 61 41 47 18 44 5 31 50 74 65 52 6 39 22 62 67 69 43 7 64 29 24 40 48 51 73 54 72 12 19 34 4 25 55 33 17 35 23 53 10 8 27 32 42 68 20 63 3 2 1 71 58 46 13 30 49 11 37 66 38 60 28 75 15 59 45 76", "output": "61 60 59 43 17 23 30 52 7 51 68 40 65 6 75 1 47 15 41 57 5 25 49 33 44 9 53 73 32 66 18 54 46 42 48 3 69 71 24 34 13 55 29 16 77 64 14 35 67 19 36 22 50 38 45 2 10 63 76 72 12 26 58 31 21 70 27 56 28 11 62 39 37 20 74 78 8 4" }, { "input": "64\n64 57 40 3 15 8 62 18 33 59 51 19 22 13 4 37 47 45 50 35 63 11 58 42 46 21 7 2 41 48 32 23 28 38 17 12 24 27 49 31 60 6 30 25 61 52 26 54 9 14 29 20 44 39 55 10 34 16 5 56 1 36 53 43", "output": "61 28 4 15 59 42 27 6 49 56 22 36 14 50 5 58 35 8 12 52 26 13 32 37 44 47 38 33 51 43 40 31 9 57 20 62 16 34 54 3 29 24 64 53 18 25 17 30 39 19 11 46 63 48 55 60 2 23 10 41 45 7 21 1" }, { "input": "49\n38 20 49 32 14 41 39 45 25 48 40 19 26 43 34 12 10 3 35 42 5 7 46 47 4 2 13 22 16 24 33 15 11 18 29 31 23 9 44 36 6 17 37 1 30 28 8 21 27", "output": "44 26 18 25 21 41 22 47 38 17 33 16 27 5 32 29 42 34 12 2 48 28 37 30 9 13 49 46 35 45 36 4 31 15 19 40 43 1 7 11 6 20 14 39 8 23 24 10 3" }, { "input": "78\n17 50 30 48 33 12 42 4 18 53 76 67 38 3 20 72 51 55 60 63 46 10 57 45 54 32 24 62 8 11 35 44 65 74 58 28 2 6 56 52 39 23 47 49 61 1 66 41 15 77 7 27 78 13 14 34 5 31 37 21 40 16 29 69 59 43 64 36 70 19 25 73 71 75 9 68 26 22", "output": "46 37 14 8 57 38 51 29 75 22 30 6 54 55 49 62 1 9 70 15 60 78 42 27 71 77 52 36 63 3 58 26 5 56 31 68 59 13 41 61 48 7 66 32 24 21 43 4 44 2 17 40 10 25 18 39 23 35 65 19 45 28 20 67 33 47 12 76 64 69 73 16 72 34 74 11 50 53" }, { "input": "29\n14 21 27 1 4 18 10 17 20 23 2 24 7 9 28 22 8 25 12 15 11 6 16 29 3 26 19 5 13", "output": "4 11 25 5 28 22 13 17 14 7 21 19 29 1 20 23 8 6 27 9 2 16 10 12 18 26 3 15 24" }, { "input": "82\n6 1 10 75 28 66 61 81 78 63 17 19 58 34 49 12 67 50 41 44 3 15 59 38 51 72 36 11 46 29 18 64 27 23 13 53 56 68 2 25 47 40 69 54 42 5 60 55 4 16 24 79 57 20 7 73 32 80 76 52 82 37 26 31 65 8 39 62 33 71 30 9 77 43 48 74 70 22 14 45 35 21", "output": "2 39 21 49 46 1 55 66 72 3 28 16 35 79 22 50 11 31 12 54 82 78 34 51 40 63 33 5 30 71 64 57 69 14 81 27 62 24 67 42 19 45 74 20 80 29 41 75 15 18 25 60 36 44 48 37 53 13 23 47 7 68 10 32 65 6 17 38 43 77 70 26 56 76 4 59 73 9 52 58 8 61" }, { "input": "82\n74 18 15 69 71 77 19 26 80 20 66 7 30 82 22 48 21 44 52 65 64 61 35 49 12 8 53 81 54 16 11 9 40 46 13 1 29 58 5 41 55 4 78 60 6 51 56 2 38 36 34 62 63 25 17 67 45 14 32 37 75 79 10 47 27 39 31 68 59 24 50 43 72 70 42 28 76 23 57 3 73 33", "output": "36 48 80 42 39 45 12 26 32 63 31 25 35 58 3 30 55 2 7 10 17 15 78 70 54 8 65 76 37 13 67 59 82 51 23 50 60 49 66 33 40 75 72 18 57 34 64 16 24 71 46 19 27 29 41 47 79 38 69 44 22 52 53 21 20 11 56 68 4 74 5 73 81 1 61 77 6 43 62 9 28 14" }, { "input": "45\n2 32 34 13 3 15 16 33 22 12 31 38 42 14 27 7 36 8 4 19 45 41 5 35 10 11 39 20 29 44 17 9 6 40 37 28 25 21 1 30 24 18 43 26 23", "output": "39 1 5 19 23 33 16 18 32 25 26 10 4 14 6 7 31 42 20 28 38 9 45 41 37 44 15 36 29 40 11 2 8 3 24 17 35 12 27 34 22 13 43 30 21" }, { "input": "45\n4 32 33 39 43 21 22 35 45 7 14 5 16 9 42 31 24 36 17 29 41 25 37 34 27 20 11 44 3 13 19 2 1 10 26 30 38 18 6 8 15 23 40 28 12", "output": "33 32 29 1 12 39 10 40 14 34 27 45 30 11 41 13 19 38 31 26 6 7 42 17 22 35 25 44 20 36 16 2 3 24 8 18 23 37 4 43 21 15 5 28 9" }, { "input": "74\n48 72 40 67 17 4 27 53 11 32 25 9 74 2 41 24 56 22 14 21 33 5 18 55 20 7 29 36 69 13 52 19 38 30 68 59 66 34 63 6 47 45 54 44 62 12 50 71 16 10 8 64 57 73 46 26 49 42 3 23 35 1 61 39 70 60 65 43 15 28 37 51 58 31", "output": "62 14 59 6 22 40 26 51 12 50 9 46 30 19 69 49 5 23 32 25 20 18 60 16 11 56 7 70 27 34 74 10 21 38 61 28 71 33 64 3 15 58 68 44 42 55 41 1 57 47 72 31 8 43 24 17 53 73 36 66 63 45 39 52 67 37 4 35 29 65 48 2 54 13" }, { "input": "47\n9 26 27 10 6 34 28 42 39 22 45 21 11 43 14 47 38 15 40 32 46 1 36 29 17 25 2 23 31 5 24 4 7 8 12 19 16 44 37 20 18 33 30 13 35 41 3", "output": "22 27 47 32 30 5 33 34 1 4 13 35 44 15 18 37 25 41 36 40 12 10 28 31 26 2 3 7 24 43 29 20 42 6 45 23 39 17 9 19 46 8 14 38 11 21 16" }, { "input": "49\n14 38 6 29 9 49 36 43 47 3 44 20 34 15 7 11 1 28 12 40 16 37 31 10 42 41 33 21 18 30 5 27 17 35 25 26 45 19 2 13 23 32 4 22 46 48 24 39 8", "output": "17 39 10 43 31 3 15 49 5 24 16 19 40 1 14 21 33 29 38 12 28 44 41 47 35 36 32 18 4 30 23 42 27 13 34 7 22 2 48 20 26 25 8 11 37 45 9 46 6" }, { "input": "100\n78 56 31 91 90 95 16 65 58 77 37 89 33 61 10 76 62 47 35 67 69 7 63 83 22 25 49 8 12 30 39 44 57 64 48 42 32 11 70 43 55 50 99 24 85 73 45 14 54 21 98 84 74 2 26 18 9 36 80 53 75 46 66 86 59 93 87 68 94 13 72 28 79 88 92 29 52 82 34 97 19 38 1 41 27 4 40 5 96 100 51 6 20 23 81 15 17 3 60 71", "output": "83 54 98 86 88 92 22 28 57 15 38 29 70 48 96 7 97 56 81 93 50 25 94 44 26 55 85 72 76 30 3 37 13 79 19 58 11 82 31 87 84 36 40 32 47 62 18 35 27 42 91 77 60 49 41 2 33 9 65 99 14 17 23 34 8 63 20 68 21 39 100 71 46 53 61 16 10 1 73 59 95 78 24 52 45 64 67 74 12 5 4 75 66 69 6 89 80 51 43 90" }, { "input": "22\n12 8 11 2 16 7 13 6 22 21 20 10 4 14 18 1 5 15 3 19 17 9", "output": "16 4 19 13 17 8 6 2 22 12 3 1 7 14 18 5 21 15 20 11 10 9" }, { "input": "72\n16 11 49 51 3 27 60 55 23 40 66 7 53 70 13 5 15 32 18 72 33 30 8 31 46 12 28 67 25 38 50 22 69 34 71 52 58 39 24 35 42 9 41 26 62 1 63 65 36 64 68 61 37 14 45 47 6 57 54 20 17 2 56 59 29 10 4 48 21 43 19 44", "output": "46 62 5 67 16 57 12 23 42 66 2 26 15 54 17 1 61 19 71 60 69 32 9 39 29 44 6 27 65 22 24 18 21 34 40 49 53 30 38 10 43 41 70 72 55 25 56 68 3 31 4 36 13 59 8 63 58 37 64 7 52 45 47 50 48 11 28 51 33 14 35 20" }, { "input": "63\n21 56 11 10 62 24 20 42 28 52 38 2 37 43 48 22 7 8 40 14 13 46 53 1 23 4 60 63 51 36 25 12 39 32 49 16 58 44 31 61 33 50 55 54 45 6 47 41 9 57 30 29 26 18 19 27 15 34 3 35 59 5 17", "output": "24 12 59 26 62 46 17 18 49 4 3 32 21 20 57 36 63 54 55 7 1 16 25 6 31 53 56 9 52 51 39 34 41 58 60 30 13 11 33 19 48 8 14 38 45 22 47 15 35 42 29 10 23 44 43 2 50 37 61 27 40 5 28" }, { "input": "18\n2 16 8 4 18 12 3 6 5 9 10 15 11 17 14 13 1 7", "output": "17 1 7 4 9 8 18 3 10 11 13 6 16 15 12 2 14 5" }, { "input": "47\n6 9 10 41 25 3 4 37 20 1 36 22 29 27 11 24 43 31 12 17 34 42 38 39 13 2 7 21 18 5 15 35 44 26 33 46 19 40 30 14 28 23 47 32 45 8 16", "output": "10 26 6 7 30 1 27 46 2 3 15 19 25 40 31 47 20 29 37 9 28 12 42 16 5 34 14 41 13 39 18 44 35 21 32 11 8 23 24 38 4 22 17 33 45 36 43" }, { "input": "96\n41 91 48 88 29 57 1 19 44 43 37 5 10 75 25 63 30 78 76 53 8 92 18 70 39 17 49 60 9 16 3 34 86 59 23 79 55 45 72 51 28 33 96 40 26 54 6 32 89 61 85 74 7 82 52 31 64 66 94 95 11 22 2 73 35 13 42 71 14 47 84 69 50 67 58 12 77 46 38 68 15 36 20 93 27 90 83 56 87 4 21 24 81 62 80 65", "output": "7 63 31 90 12 47 53 21 29 13 61 76 66 69 81 30 26 23 8 83 91 62 35 92 15 45 85 41 5 17 56 48 42 32 65 82 11 79 25 44 1 67 10 9 38 78 70 3 27 73 40 55 20 46 37 88 6 75 34 28 50 94 16 57 96 58 74 80 72 24 68 39 64 52 14 19 77 18 36 95 93 54 87 71 51 33 89 4 49 86 2 22 84 59 60 43" }, { "input": "73\n67 24 39 22 23 20 48 34 42 40 19 70 65 69 64 21 53 11 59 15 26 10 30 33 72 29 55 25 56 71 8 9 57 49 41 61 13 12 6 27 66 36 47 50 73 60 2 37 7 4 51 17 1 46 14 62 35 3 45 63 43 58 54 32 31 5 28 44 18 52 68 38 16", "output": "53 47 58 50 66 39 49 31 32 22 18 38 37 55 20 73 52 69 11 6 16 4 5 2 28 21 40 67 26 23 65 64 24 8 57 42 48 72 3 10 35 9 61 68 59 54 43 7 34 44 51 70 17 63 27 29 33 62 19 46 36 56 60 15 13 41 1 71 14 12 30 25 45" }, { "input": "81\n25 2 78 40 12 80 69 13 49 43 17 33 23 54 32 61 77 66 27 71 24 26 42 55 60 9 5 30 7 37 45 63 53 11 38 44 68 34 28 52 67 22 57 46 47 50 8 16 79 62 4 36 20 14 73 64 6 76 35 74 58 10 29 81 59 31 19 1 75 39 70 18 41 21 72 65 3 48 15 56 51", "output": "68 2 77 51 27 57 29 47 26 62 34 5 8 54 79 48 11 72 67 53 74 42 13 21 1 22 19 39 63 28 66 15 12 38 59 52 30 35 70 4 73 23 10 36 31 44 45 78 9 46 81 40 33 14 24 80 43 61 65 25 16 50 32 56 76 18 41 37 7 71 20 75 55 60 69 58 17 3 49 6 64" }, { "input": "12\n12 3 1 5 11 6 7 10 2 8 9 4", "output": "3 9 2 12 4 6 7 10 11 8 5 1" }, { "input": "47\n7 21 41 18 40 31 12 28 24 14 43 23 33 10 19 38 26 8 34 15 29 44 5 13 39 25 3 27 20 42 35 9 2 1 30 46 36 32 4 22 37 45 6 47 11 16 17", "output": "34 33 27 39 23 43 1 18 32 14 45 7 24 10 20 46 47 4 15 29 2 40 12 9 26 17 28 8 21 35 6 38 13 19 31 37 41 16 25 5 3 30 11 22 42 36 44" }, { "input": "8\n1 3 5 2 4 8 6 7", "output": "1 4 2 5 3 7 8 6" }, { "input": "38\n28 8 2 33 20 32 26 29 23 31 15 38 11 37 18 21 22 19 4 34 1 35 16 7 17 6 27 30 36 12 9 24 25 13 5 3 10 14", "output": "21 3 36 19 35 26 24 2 31 37 13 30 34 38 11 23 25 15 18 5 16 17 9 32 33 7 27 1 8 28 10 6 4 20 22 29 14 12" }, { "input": "10\n2 9 4 6 10 1 7 5 3 8", "output": "6 1 9 3 8 4 7 10 2 5" }, { "input": "23\n20 11 15 1 5 12 23 9 2 22 13 19 16 14 7 4 8 21 6 17 18 10 3", "output": "4 9 23 16 5 19 15 17 8 22 2 6 11 14 3 13 20 21 12 1 18 10 7" }, { "input": "10\n2 4 9 3 6 8 10 5 1 7", "output": "9 1 4 2 8 5 10 6 3 7" }, { "input": "55\n9 48 23 49 11 24 4 22 34 32 17 45 39 13 14 21 19 25 2 31 37 7 55 36 20 51 5 12 54 10 35 40 43 1 46 18 53 41 38 26 29 50 3 42 52 27 8 28 47 33 6 16 30 44 15", "output": "34 19 43 7 27 51 22 47 1 30 5 28 14 15 55 52 11 36 17 25 16 8 3 6 18 40 46 48 41 53 20 10 50 9 31 24 21 39 13 32 38 44 33 54 12 35 49 2 4 42 26 45 37 29 23" }, { "input": "58\n49 13 12 54 2 38 56 11 33 25 26 19 28 8 23 41 20 36 46 55 15 35 9 7 32 37 58 6 3 14 47 31 40 30 53 44 4 50 29 34 10 43 39 57 5 22 27 45 51 42 24 16 18 21 52 17 48 1", "output": "58 5 29 37 45 28 24 14 23 41 8 3 2 30 21 52 56 53 12 17 54 46 15 51 10 11 47 13 39 34 32 25 9 40 22 18 26 6 43 33 16 50 42 36 48 19 31 57 1 38 49 55 35 4 20 7 44 27" }, { "input": "34\n20 25 2 3 33 29 1 16 14 7 21 9 32 31 6 26 22 4 27 23 24 10 34 12 19 15 5 18 28 17 13 8 11 30", "output": "7 3 4 18 27 15 10 32 12 22 33 24 31 9 26 8 30 28 25 1 11 17 20 21 2 16 19 29 6 34 14 13 5 23" }, { "input": "53\n47 29 46 25 23 13 7 31 33 4 38 11 35 16 42 14 15 43 34 39 28 18 6 45 30 1 40 20 2 37 5 32 24 12 44 26 27 3 19 51 36 21 22 9 10 50 41 48 49 53 8 17 52", "output": "26 29 38 10 31 23 7 51 44 45 12 34 6 16 17 14 52 22 39 28 42 43 5 33 4 36 37 21 2 25 8 32 9 19 13 41 30 11 20 27 47 15 18 35 24 3 1 48 49 46 40 53 50" }, { "input": "99\n77 87 90 48 53 38 68 6 28 57 35 82 63 71 60 41 3 12 86 65 10 59 22 67 33 74 93 27 24 1 61 43 25 4 51 52 15 88 9 31 30 42 89 49 23 21 29 32 46 73 37 16 5 69 56 26 92 64 20 54 75 14 98 13 94 2 95 7 36 66 58 8 50 78 84 45 11 96 76 62 97 80 40 39 47 85 34 79 83 17 91 72 19 44 70 81 55 99 18", "output": "30 66 17 34 53 8 68 72 39 21 77 18 64 62 37 52 90 99 93 59 46 23 45 29 33 56 28 9 47 41 40 48 25 87 11 69 51 6 84 83 16 42 32 94 76 49 85 4 44 73 35 36 5 60 97 55 10 71 22 15 31 80 13 58 20 70 24 7 54 95 14 92 50 26 61 79 1 74 88 82 96 12 89 75 86 19 2 38 43 3 91 57 27 65 67 78 81 63 98" }, { "input": "32\n17 29 2 6 30 8 26 7 1 27 10 9 13 24 31 21 15 19 22 18 4 11 25 28 32 3 23 12 5 14 20 16", "output": "9 3 26 21 29 4 8 6 12 11 22 28 13 30 17 32 1 20 18 31 16 19 27 14 23 7 10 24 2 5 15 25" }, { "input": "65\n18 40 1 60 17 19 4 6 12 49 28 58 2 25 13 14 64 56 61 34 62 30 59 51 26 8 33 63 36 48 46 7 43 21 31 27 11 44 29 5 32 23 35 9 53 57 52 50 15 38 42 3 54 65 55 41 20 24 22 47 45 10 39 16 37", "output": "3 13 52 7 40 8 32 26 44 62 37 9 15 16 49 64 5 1 6 57 34 59 42 58 14 25 36 11 39 22 35 41 27 20 43 29 65 50 63 2 56 51 33 38 61 31 60 30 10 48 24 47 45 53 55 18 46 12 23 4 19 21 28 17 54" }, { "input": "71\n35 50 55 58 25 32 26 40 63 34 44 53 24 18 37 7 64 27 56 65 1 19 2 43 42 14 57 47 22 13 59 61 39 67 30 45 54 38 33 48 6 5 3 69 36 21 41 4 16 46 20 17 15 12 10 70 68 23 60 31 52 29 66 28 51 49 62 11 8 9 71", "output": "21 23 43 48 42 41 16 69 70 55 68 54 30 26 53 49 52 14 22 51 46 29 58 13 5 7 18 64 62 35 60 6 39 10 1 45 15 38 33 8 47 25 24 11 36 50 28 40 66 2 65 61 12 37 3 19 27 4 31 59 32 67 9 17 20 63 34 57 44 56 71" }, { "input": "74\n33 8 42 63 64 61 31 74 11 50 68 14 36 25 57 30 7 44 21 15 6 9 23 59 46 3 73 16 62 51 40 60 41 54 5 39 35 28 48 4 58 12 66 69 13 26 71 1 24 19 29 52 37 2 20 43 18 72 17 56 34 38 65 67 27 10 47 70 53 32 45 55 49 22", "output": "48 54 26 40 35 21 17 2 22 66 9 42 45 12 20 28 59 57 50 55 19 74 23 49 14 46 65 38 51 16 7 70 1 61 37 13 53 62 36 31 33 3 56 18 71 25 67 39 73 10 30 52 69 34 72 60 15 41 24 32 6 29 4 5 63 43 64 11 44 68 47 58 27 8" }, { "input": "96\n78 10 82 46 38 91 77 69 2 27 58 80 79 44 59 41 6 31 76 11 42 48 51 37 19 87 43 25 52 32 1 39 63 29 21 65 53 74 92 16 15 95 90 83 30 73 71 5 50 17 96 33 86 60 67 64 20 26 61 40 55 88 94 93 9 72 47 57 14 45 22 3 54 68 13 24 4 7 56 81 89 70 49 8 84 28 18 62 35 36 75 23 66 85 34 12", "output": "31 9 72 77 48 17 78 84 65 2 20 96 75 69 41 40 50 87 25 57 35 71 92 76 28 58 10 86 34 45 18 30 52 95 89 90 24 5 32 60 16 21 27 14 70 4 67 22 83 49 23 29 37 73 61 79 68 11 15 54 59 88 33 56 36 93 55 74 8 82 47 66 46 38 91 19 7 1 13 12 80 3 44 85 94 53 26 62 81 43 6 39 64 63 42 51" }, { "input": "7\n2 1 5 7 3 4 6", "output": "2 1 5 6 3 7 4" }, { "input": "51\n8 33 37 2 16 22 24 30 4 9 5 15 27 3 18 39 31 26 10 17 46 41 25 14 6 1 29 48 36 20 51 49 21 43 19 13 38 50 47 34 11 23 28 12 42 7 32 40 44 45 35", "output": "26 4 14 9 11 25 46 1 10 19 41 44 36 24 12 5 20 15 35 30 33 6 42 7 23 18 13 43 27 8 17 47 2 40 51 29 3 37 16 48 22 45 34 49 50 21 39 28 32 38 31" }, { "input": "27\n12 14 7 3 20 21 25 13 22 15 23 4 2 24 10 17 19 8 26 11 27 18 9 5 6 1 16", "output": "26 13 4 12 24 25 3 18 23 15 20 1 8 2 10 27 16 22 17 5 6 9 11 14 7 19 21" }, { "input": "71\n51 13 20 48 54 23 24 64 14 62 71 67 57 53 3 30 55 43 33 25 39 40 66 6 46 18 5 19 61 16 32 68 70 41 60 44 29 49 27 69 50 38 10 17 45 56 9 21 26 63 28 35 7 59 1 65 2 15 8 11 12 34 37 47 58 22 31 4 36 42 52", "output": "55 57 15 68 27 24 53 59 47 43 60 61 2 9 58 30 44 26 28 3 48 66 6 7 20 49 39 51 37 16 67 31 19 62 52 69 63 42 21 22 34 70 18 36 45 25 64 4 38 41 1 71 14 5 17 46 13 65 54 35 29 10 50 8 56 23 12 32 40 33 11" }, { "input": "9\n8 5 2 6 1 9 4 7 3", "output": "5 3 9 7 2 4 8 1 6" }, { "input": "29\n10 24 11 5 26 25 2 9 22 15 8 14 29 21 4 1 23 17 3 12 13 16 18 28 19 20 7 6 27", "output": "16 7 19 15 4 28 27 11 8 1 3 20 21 12 10 22 18 23 25 26 14 9 17 2 6 5 29 24 13" }, { "input": "60\n39 25 42 4 55 60 16 18 47 1 11 40 7 50 19 35 49 54 12 3 30 38 2 58 17 26 45 6 33 43 37 32 52 36 15 23 27 59 24 20 28 14 8 9 13 29 44 46 41 21 5 48 51 22 31 56 57 53 10 34", "output": "10 23 20 4 51 28 13 43 44 59 11 19 45 42 35 7 25 8 15 40 50 54 36 39 2 26 37 41 46 21 55 32 29 60 16 34 31 22 1 12 49 3 30 47 27 48 9 52 17 14 53 33 58 18 5 56 57 24 38 6" }, { "input": "50\n37 45 22 5 12 21 28 24 18 47 20 25 8 50 14 2 34 43 11 16 49 41 48 1 19 31 39 46 32 23 15 42 3 35 38 30 44 26 10 9 40 36 7 17 33 4 27 6 13 29", "output": "24 16 33 46 4 48 43 13 40 39 19 5 49 15 31 20 44 9 25 11 6 3 30 8 12 38 47 7 50 36 26 29 45 17 34 42 1 35 27 41 22 32 18 37 2 28 10 23 21 14" }, { "input": "30\n8 29 28 16 17 25 27 15 21 11 6 20 2 13 1 30 5 4 24 10 14 3 23 18 26 9 12 22 19 7", "output": "15 13 22 18 17 11 30 1 26 20 10 27 14 21 8 4 5 24 29 12 9 28 23 19 6 25 7 3 2 16" }, { "input": "46\n15 2 44 43 38 19 31 42 4 37 29 30 24 45 27 41 8 20 33 7 35 3 18 46 36 26 1 28 21 40 16 22 32 11 14 13 12 9 25 39 10 6 23 17 5 34", "output": "27 2 22 9 45 42 20 17 38 41 34 37 36 35 1 31 44 23 6 18 29 32 43 13 39 26 15 28 11 12 7 33 19 46 21 25 10 5 40 30 16 8 4 3 14 24" }, { "input": "9\n4 8 6 5 3 9 2 7 1", "output": "9 7 5 1 4 3 8 2 6" }, { "input": "46\n31 30 33 23 45 7 36 8 11 3 32 39 41 20 1 28 6 27 18 24 17 5 16 37 26 13 22 14 2 38 15 46 9 4 19 21 12 44 10 35 25 34 42 43 40 29", "output": "15 29 10 34 22 17 6 8 33 39 9 37 26 28 31 23 21 19 35 14 36 27 4 20 41 25 18 16 46 2 1 11 3 42 40 7 24 30 12 45 13 43 44 38 5 32" }, { "input": "66\n27 12 37 48 46 21 34 58 38 28 66 2 64 32 44 31 13 36 40 15 19 11 22 5 30 29 6 7 61 39 20 42 23 54 51 33 50 9 60 8 57 45 49 10 62 41 59 3 55 63 52 24 25 26 43 56 65 4 16 14 1 35 18 17 53 47", "output": "61 12 48 58 24 27 28 40 38 44 22 2 17 60 20 59 64 63 21 31 6 23 33 52 53 54 1 10 26 25 16 14 36 7 62 18 3 9 30 19 46 32 55 15 42 5 66 4 43 37 35 51 65 34 49 56 41 8 47 39 29 45 50 13 57 11" }, { "input": "13\n3 12 9 2 8 5 13 4 11 1 10 7 6", "output": "10 4 1 8 6 13 12 5 3 11 9 2 7" }, { "input": "80\n21 25 56 50 20 61 7 74 51 69 8 2 46 57 45 71 14 52 17 43 9 30 70 78 31 10 38 13 23 15 37 79 6 16 77 73 80 4 49 48 18 28 26 58 33 41 64 22 54 72 59 60 40 63 53 27 1 5 75 67 62 34 19 39 68 65 44 55 3 32 11 42 76 12 35 47 66 36 24 29", "output": "57 12 69 38 58 33 7 11 21 26 71 74 28 17 30 34 19 41 63 5 1 48 29 79 2 43 56 42 80 22 25 70 45 62 75 78 31 27 64 53 46 72 20 67 15 13 76 40 39 4 9 18 55 49 68 3 14 44 51 52 6 61 54 47 66 77 60 65 10 23 16 50 36 8 59 73 35 24 32 37" }, { "input": "63\n9 49 53 25 40 46 43 51 54 22 58 16 23 26 10 47 5 27 2 8 61 59 19 35 63 56 28 20 34 4 62 38 6 55 36 31 57 15 29 33 1 48 50 37 7 30 18 42 32 52 12 41 14 21 45 11 24 17 39 13 44 60 3", "output": "41 19 63 30 17 33 45 20 1 15 56 51 60 53 38 12 58 47 23 28 54 10 13 57 4 14 18 27 39 46 36 49 40 29 24 35 44 32 59 5 52 48 7 61 55 6 16 42 2 43 8 50 3 9 34 26 37 11 22 62 21 31 25" }, { "input": "26\n11 4 19 13 17 9 2 24 6 5 22 23 14 15 3 25 16 8 18 10 21 1 12 26 7 20", "output": "22 7 15 2 10 9 25 18 6 20 1 23 4 13 14 17 5 19 3 26 21 11 12 8 16 24" }, { "input": "69\n40 22 11 66 4 27 31 29 64 53 37 55 51 2 7 36 18 52 6 1 30 21 17 20 14 9 59 62 49 68 3 50 65 57 44 5 67 46 33 13 34 15 24 48 63 58 38 25 41 35 16 54 32 10 60 61 39 12 69 8 23 45 26 47 56 43 28 19 42", "output": "20 14 31 5 36 19 15 60 26 54 3 58 40 25 42 51 23 17 68 24 22 2 61 43 48 63 6 67 8 21 7 53 39 41 50 16 11 47 57 1 49 69 66 35 62 38 64 44 29 32 13 18 10 52 12 65 34 46 27 55 56 28 45 9 33 4 37 30 59" }, { "input": "6\n4 3 6 5 1 2", "output": "5 6 2 1 4 3" }, { "input": "9\n7 8 5 3 1 4 2 9 6", "output": "5 7 4 6 3 9 1 2 8" }, { "input": "41\n27 24 16 30 25 8 32 2 26 20 39 33 41 22 40 14 36 9 28 4 34 11 31 23 19 18 17 35 3 10 6 13 5 15 29 38 7 21 1 12 37", "output": "39 8 29 20 33 31 37 6 18 30 22 40 32 16 34 3 27 26 25 10 38 14 24 2 5 9 1 19 35 4 23 7 12 21 28 17 41 36 11 15 13" }, { "input": "1\n1", "output": "1" }, { "input": "20\n2 6 4 18 7 10 17 13 16 8 14 9 20 5 19 12 1 3 15 11", "output": "17 1 18 3 14 2 5 10 12 6 20 16 8 11 19 9 7 4 15 13" }, { "input": "2\n2 1", "output": "2 1" }, { "input": "60\n2 4 31 51 11 7 34 20 3 14 18 23 48 54 15 36 38 60 49 40 5 33 41 26 55 58 10 8 13 9 27 30 37 1 21 59 44 57 35 19 46 43 42 45 12 22 39 32 24 16 6 56 53 52 25 17 47 29 50 28", "output": "34 1 9 2 21 51 6 28 30 27 5 45 29 10 15 50 56 11 40 8 35 46 12 49 55 24 31 60 58 32 3 48 22 7 39 16 33 17 47 20 23 43 42 37 44 41 57 13 19 59 4 54 53 14 25 52 38 26 36 18" }, { "input": "14\n14 6 3 12 11 2 7 1 10 9 8 5 4 13", "output": "8 6 3 13 12 2 7 11 10 9 5 4 14 1" }, { "input": "81\n13 43 79 8 7 21 73 46 63 4 62 78 56 11 70 68 61 53 60 49 16 27 59 47 69 5 22 44 77 57 52 48 1 9 72 81 28 55 58 33 51 18 31 17 41 20 42 3 32 54 19 2 75 34 64 10 65 50 30 29 67 12 71 66 74 15 26 23 6 38 25 35 37 24 80 76 40 45 39 36 14", "output": "33 52 48 10 26 69 5 4 34 56 14 62 1 81 66 21 44 42 51 46 6 27 68 74 71 67 22 37 60 59 43 49 40 54 72 80 73 70 79 77 45 47 2 28 78 8 24 32 20 58 41 31 18 50 38 13 30 39 23 19 17 11 9 55 57 64 61 16 25 15 63 35 7 65 53 76 29 12 3 75 36" }, { "input": "42\n41 11 10 8 21 37 32 19 31 25 1 15 36 5 6 27 4 3 13 7 16 17 2 23 34 24 38 28 12 20 30 42 18 26 39 35 33 40 9 14 22 29", "output": "11 23 18 17 14 15 20 4 39 3 2 29 19 40 12 21 22 33 8 30 5 41 24 26 10 34 16 28 42 31 9 7 37 25 36 13 6 27 35 38 1 32" }, { "input": "97\n20 6 76 42 4 18 35 59 39 63 27 7 66 47 61 52 15 36 88 93 19 33 10 92 1 34 46 86 78 57 51 94 77 29 26 73 41 2 58 97 43 65 17 74 21 49 25 3 91 82 95 12 96 13 84 90 69 24 72 37 16 55 54 71 64 62 48 89 11 70 80 67 30 40 44 85 53 83 79 9 56 45 75 87 22 14 81 68 8 38 60 50 28 23 31 32 5", "output": "25 38 48 5 97 2 12 89 80 23 69 52 54 86 17 61 43 6 21 1 45 85 94 58 47 35 11 93 34 73 95 96 22 26 7 18 60 90 9 74 37 4 41 75 82 27 14 67 46 92 31 16 77 63 62 81 30 39 8 91 15 66 10 65 42 13 72 88 57 70 64 59 36 44 83 3 33 29 79 71 87 50 78 55 76 28 84 19 68 56 49 24 20 32 51 53 40" }, { "input": "62\n15 27 46 6 8 51 14 56 23 48 42 49 52 22 20 31 29 12 47 3 62 34 37 35 32 57 19 25 5 60 61 38 18 10 11 55 45 53 17 30 9 36 4 50 41 16 44 28 40 59 24 1 13 39 26 7 33 58 2 43 21 54", "output": "52 59 20 43 29 4 56 5 41 34 35 18 53 7 1 46 39 33 27 15 61 14 9 51 28 55 2 48 17 40 16 25 57 22 24 42 23 32 54 49 45 11 60 47 37 3 19 10 12 44 6 13 38 62 36 8 26 58 50 30 31 21" }, { "input": "61\n35 27 4 61 52 32 41 46 14 37 17 54 55 31 11 26 44 49 15 30 9 50 45 39 7 38 53 3 58 40 13 56 18 19 28 6 43 5 21 42 20 34 2 25 36 12 33 57 16 60 1 8 59 10 22 23 24 48 51 47 29", "output": "51 43 28 3 38 36 25 52 21 54 15 46 31 9 19 49 11 33 34 41 39 55 56 57 44 16 2 35 61 20 14 6 47 42 1 45 10 26 24 30 7 40 37 17 23 8 60 58 18 22 59 5 27 12 13 32 48 29 53 50 4" }, { "input": "59\n31 26 36 15 17 19 10 53 11 34 13 46 55 9 44 7 8 37 32 52 47 25 51 22 35 39 41 4 43 24 5 27 20 57 6 38 3 28 21 40 50 18 14 56 33 45 12 2 49 59 54 29 16 48 42 58 1 30 23", "output": "57 48 37 28 31 35 16 17 14 7 9 47 11 43 4 53 5 42 6 33 39 24 59 30 22 2 32 38 52 58 1 19 45 10 25 3 18 36 26 40 27 55 29 15 46 12 21 54 49 41 23 20 8 51 13 44 34 56 50" }, { "input": "10\n2 10 7 4 1 5 8 6 3 9", "output": "5 1 9 4 6 8 3 7 10 2" }, { "input": "14\n14 2 1 8 6 12 11 10 9 7 3 4 5 13", "output": "3 2 11 12 13 5 10 4 9 8 7 6 14 1" }, { "input": "43\n28 38 15 14 31 42 27 30 19 33 43 26 22 29 18 32 3 13 1 8 35 34 4 12 11 17 41 21 5 25 39 37 20 23 7 24 16 10 40 9 6 36 2", "output": "19 43 17 23 29 41 35 20 40 38 25 24 18 4 3 37 26 15 9 33 28 13 34 36 30 12 7 1 14 8 5 16 10 22 21 42 32 2 31 39 27 6 11" }, { "input": "86\n39 11 20 31 28 76 29 64 35 21 41 71 12 82 5 37 80 73 38 26 79 75 23 15 59 45 47 6 3 62 50 49 51 22 2 65 86 60 70 42 74 17 1 30 55 44 8 66 81 27 57 77 43 13 54 32 72 46 48 56 14 34 78 52 36 85 24 19 69 83 25 61 7 4 84 33 63 58 18 40 68 10 67 9 16 53", "output": "43 35 29 74 15 28 73 47 84 82 2 13 54 61 24 85 42 79 68 3 10 34 23 67 71 20 50 5 7 44 4 56 76 62 9 65 16 19 1 80 11 40 53 46 26 58 27 59 32 31 33 64 86 55 45 60 51 78 25 38 72 30 77 8 36 48 83 81 69 39 12 57 18 41 22 6 52 63 21 17 49 14 70 75 66 37" }, { "input": "99\n65 78 56 98 33 24 61 40 29 93 1 64 57 22 25 52 67 95 50 3 31 15 90 68 71 83 38 36 6 46 89 26 4 87 14 88 72 37 23 43 63 12 80 96 5 34 73 86 9 48 92 62 99 10 16 20 66 27 28 2 82 70 30 94 49 8 84 69 18 60 58 59 44 39 21 7 91 76 54 19 75 85 74 47 55 32 97 77 51 13 35 79 45 42 11 41 17 81 53", "output": "11 60 20 33 45 29 76 66 49 54 95 42 90 35 22 55 97 69 80 56 75 14 39 6 15 32 58 59 9 63 21 86 5 46 91 28 38 27 74 8 96 94 40 73 93 30 84 50 65 19 89 16 99 79 85 3 13 71 72 70 7 52 41 12 1 57 17 24 68 62 25 37 47 83 81 78 88 2 92 43 98 61 26 67 82 48 34 36 31 23 77 51 10 64 18 44 87 4 53" }, { "input": "100\n42 23 48 88 36 6 18 70 96 1 34 40 46 22 39 55 85 93 45 67 71 75 59 9 21 3 86 63 65 68 20 38 73 31 84 90 50 51 56 95 72 33 49 19 83 76 54 74 100 30 17 98 15 94 4 97 5 99 81 27 92 32 89 12 13 91 87 29 60 11 52 43 35 58 10 25 16 80 28 2 44 61 8 82 66 69 41 24 57 62 78 37 79 77 53 7 14 47 26 64", "output": "10 80 26 55 57 6 96 83 24 75 70 64 65 97 53 77 51 7 44 31 25 14 2 88 76 99 60 79 68 50 34 62 42 11 73 5 92 32 15 12 87 1 72 81 19 13 98 3 43 37 38 71 95 47 16 39 89 74 23 69 82 90 28 100 29 85 20 30 86 8 21 41 33 48 22 46 94 91 93 78 59 84 45 35 17 27 67 4 63 36 66 61 18 54 40 9 56 52 58 49" }, { "input": "99\n8 68 94 75 71 60 57 58 6 11 5 48 65 41 49 12 46 72 95 59 13 70 74 7 84 62 17 36 55 76 38 79 2 85 23 10 32 99 87 50 83 28 54 91 53 51 1 3 97 81 21 89 93 78 61 26 82 96 4 98 25 40 31 44 24 47 30 52 14 16 39 27 9 29 45 18 67 63 37 43 90 66 19 69 88 22 92 77 34 42 73 80 56 64 20 35 15 33 86", "output": "47 33 48 59 11 9 24 1 73 36 10 16 21 69 97 70 27 76 83 95 51 86 35 65 61 56 72 42 74 67 63 37 98 89 96 28 79 31 71 62 14 90 80 64 75 17 66 12 15 40 46 68 45 43 29 93 7 8 20 6 55 26 78 94 13 82 77 2 84 22 5 18 91 23 4 30 88 54 32 92 50 57 41 25 34 99 39 85 52 81 44 87 53 3 19 58 49 60 38" }, { "input": "99\n12 99 88 13 7 19 74 47 23 90 16 29 26 11 58 60 64 98 37 18 82 67 72 46 51 85 17 92 87 20 77 36 78 71 57 35 80 54 73 15 14 62 97 45 31 79 94 56 76 96 28 63 8 44 38 86 49 2 52 66 61 59 10 43 55 50 22 34 83 53 95 40 81 21 30 42 27 3 5 41 1 70 69 25 93 48 65 6 24 89 91 33 39 68 9 4 32 84 75", "output": "81 58 78 96 79 88 5 53 95 63 14 1 4 41 40 11 27 20 6 30 74 67 9 89 84 13 77 51 12 75 45 97 92 68 36 32 19 55 93 72 80 76 64 54 44 24 8 86 57 66 25 59 70 38 65 48 35 15 62 16 61 42 52 17 87 60 22 94 83 82 34 23 39 7 99 49 31 33 46 37 73 21 69 98 26 56 29 3 90 10 91 28 85 47 71 50 43 18 2" }, { "input": "99\n20 79 26 75 99 69 98 47 93 62 18 42 43 38 90 66 67 8 13 84 76 58 81 60 64 46 56 23 78 17 86 36 19 52 85 39 48 27 96 49 37 95 5 31 10 24 12 1 80 35 92 33 16 68 57 54 32 29 45 88 72 77 4 87 97 89 59 3 21 22 61 94 83 15 44 34 70 91 55 9 51 50 73 11 14 6 40 7 63 25 2 82 41 65 28 74 71 30 53", "output": "48 91 68 63 43 86 88 18 80 45 84 47 19 85 74 53 30 11 33 1 69 70 28 46 90 3 38 95 58 98 44 57 52 76 50 32 41 14 36 87 93 12 13 75 59 26 8 37 40 82 81 34 99 56 79 27 55 22 67 24 71 10 89 25 94 16 17 54 6 77 97 61 83 96 4 21 62 29 2 49 23 92 73 20 35 31 64 60 66 15 78 51 9 72 42 39 65 7 5" }, { "input": "99\n74 20 9 1 60 85 65 13 4 25 40 99 5 53 64 3 36 31 73 44 55 50 45 63 98 51 68 6 47 37 71 82 88 34 84 18 19 12 93 58 86 7 11 46 90 17 33 27 81 69 42 59 56 32 95 52 76 61 96 62 78 43 66 21 49 97 75 14 41 72 89 16 30 79 22 23 15 83 91 38 48 2 87 26 28 80 94 70 54 92 57 10 8 35 67 77 29 24 39", "output": "4 82 16 9 13 28 42 93 3 92 43 38 8 68 77 72 46 36 37 2 64 75 76 98 10 84 48 85 97 73 18 54 47 34 94 17 30 80 99 11 69 51 62 20 23 44 29 81 65 22 26 56 14 89 21 53 91 40 52 5 58 60 24 15 7 63 95 27 50 88 31 70 19 1 67 57 96 61 74 86 49 32 78 35 6 41 83 33 71 45 79 90 39 87 55 59 66 25 12" }, { "input": "99\n50 94 2 18 69 90 59 83 75 68 77 97 39 78 25 7 16 9 49 4 42 89 44 48 17 96 61 70 3 10 5 81 56 57 88 6 98 1 46 67 92 37 11 30 85 41 8 36 51 29 20 71 19 79 74 93 43 34 55 40 38 21 64 63 32 24 72 14 12 86 82 15 65 23 66 22 28 53 13 26 95 99 91 52 76 27 60 45 47 33 73 84 31 35 54 80 58 62 87", "output": "38 3 29 20 31 36 16 47 18 30 43 69 79 68 72 17 25 4 53 51 62 76 74 66 15 80 86 77 50 44 93 65 90 58 94 48 42 61 13 60 46 21 57 23 88 39 89 24 19 1 49 84 78 95 59 33 34 97 7 87 27 98 64 63 73 75 40 10 5 28 52 67 91 55 9 85 11 14 54 96 32 71 8 92 45 70 99 35 22 6 83 41 56 2 81 26 12 37 82" }, { "input": "99\n19 93 14 34 39 37 33 15 52 88 7 43 69 27 9 77 94 31 48 22 63 70 79 17 50 6 81 8 76 58 23 74 86 11 57 62 41 87 75 51 12 18 68 56 95 3 80 83 84 29 24 61 71 78 59 96 20 85 90 28 45 36 38 97 1 49 40 98 44 67 13 73 72 91 47 10 30 54 35 42 4 2 92 26 64 60 53 21 5 82 46 32 55 66 16 89 99 65 25", "output": "65 82 46 81 89 26 11 28 15 76 34 41 71 3 8 95 24 42 1 57 88 20 31 51 99 84 14 60 50 77 18 92 7 4 79 62 6 63 5 67 37 80 12 69 61 91 75 19 66 25 40 9 87 78 93 44 35 30 55 86 52 36 21 85 98 94 70 43 13 22 53 73 72 32 39 29 16 54 23 47 27 90 48 49 58 33 38 10 96 59 74 83 2 17 45 56 64 68 97" }, { "input": "99\n86 25 50 51 62 39 41 67 44 20 45 14 80 88 66 7 36 59 13 84 78 58 96 75 2 43 48 47 69 12 19 98 22 38 28 55 11 76 68 46 53 70 85 34 16 33 91 30 8 40 74 60 94 82 87 32 37 4 5 10 89 73 90 29 35 26 23 57 27 65 24 3 9 83 77 72 6 31 15 92 93 79 64 18 63 42 56 1 52 97 17 81 71 21 49 99 54 95 61", "output": "88 25 72 58 59 77 16 49 73 60 37 30 19 12 79 45 91 84 31 10 94 33 67 71 2 66 69 35 64 48 78 56 46 44 65 17 57 34 6 50 7 86 26 9 11 40 28 27 95 3 4 89 41 97 36 87 68 22 18 52 99 5 85 83 70 15 8 39 29 42 93 76 62 51 24 38 75 21 82 13 92 54 74 20 43 1 55 14 61 63 47 80 81 53 98 23 90 32 96" }, { "input": "100\n66 44 99 15 43 79 28 33 88 90 49 68 82 38 9 74 4 58 29 81 31 94 10 42 89 21 63 40 62 61 18 6 84 72 48 25 67 69 71 85 98 34 83 70 65 78 91 77 93 41 23 24 87 11 55 12 59 73 36 97 7 14 26 39 30 27 45 20 50 17 53 2 57 47 95 56 75 19 37 96 16 35 8 3 76 60 13 86 5 32 64 80 46 51 54 100 1 22 52 92", "output": "97 72 84 17 89 32 61 83 15 23 54 56 87 62 4 81 70 31 78 68 26 98 51 52 36 63 66 7 19 65 21 90 8 42 82 59 79 14 64 28 50 24 5 2 67 93 74 35 11 69 94 99 71 95 55 76 73 18 57 86 30 29 27 91 45 1 37 12 38 44 39 34 58 16 77 85 48 46 6 92 20 13 43 33 40 88 53 9 25 10 47 100 49 22 75 80 60 41 3 96" }, { "input": "99\n3 73 32 37 25 15 93 63 85 8 91 78 80 5 39 48 46 7 83 70 23 96 9 29 77 53 30 20 56 50 13 45 21 76 87 99 65 31 16 18 14 72 51 28 43 2 81 34 38 40 66 54 74 26 71 4 61 17 58 24 22 33 49 36 42 11 12 55 60 27 62 90 79 92 94 68 1 52 84 41 86 35 69 75 47 10 64 88 97 98 67 19 89 95 59 82 57 44 6", "output": "77 46 1 56 14 99 18 10 23 86 66 67 31 41 6 39 58 40 92 28 33 61 21 60 5 54 70 44 24 27 38 3 62 48 82 64 4 49 15 50 80 65 45 98 32 17 85 16 63 30 43 78 26 52 68 29 97 59 95 69 57 71 8 87 37 51 91 76 83 20 55 42 2 53 84 34 25 12 73 13 47 96 19 79 9 81 35 88 93 72 11 74 7 75 94 22 89 90 36" }, { "input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1" } ]
1,695,334,994
2,147,483,647
PyPy 3
OK
TESTS
101
186
0
n = int(input()) presents = [ int(i) for i in input().split()] i = 1 while (i <= n): print(presents.index(i)+1, end=' ') i += 1
Title: Presents Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there. If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift. Now Petya wants to know for each friend *i* the number of a friend who has given him a gift. Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves. Output Specification: Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*. Demo Input: ['4\n2 3 4 1\n', '3\n1 3 2\n', '2\n1 2\n'] Demo Output: ['4 1 2 3\n', '1 3 2\n', '1 2\n'] Note: none
```python n = int(input()) presents = [ int(i) for i in input().split()] i = 1 while (i <= n): print(presents.index(i)+1, end=' ') i += 1 ```
3
621
A
Wet Shark and Odd and Even
PROGRAMMING
900
[ "implementation" ]
null
null
Today, Wet Shark is given *n* integers. Using any of these integers no more than once, Wet Shark wants to get maximum possible even (divisible by 2) sum. Please, calculate this value for Wet Shark. Note, that if Wet Shark uses no integers from the *n* integers, the sum is an even integer 0.
The first line of the input contains one integer, *n* (1<=≤<=*n*<=≤<=100<=000). The next line contains *n* space separated integers given to Wet Shark. Each of these integers is in range from 1 to 109, inclusive.
Print the maximum possible even sum that can be obtained if we use some of the given integers.
[ "3\n1 2 3\n", "5\n999999999 999999999 999999999 999999999 999999999\n" ]
[ "6", "3999999996" ]
In the first sample, we can simply take all three integers for a total sum of 6. In the second sample Wet Shark should take any four out of five integers 999 999 999.
500
[ { "input": "3\n1 2 3", "output": "6" }, { "input": "5\n999999999 999999999 999999999 999999999 999999999", "output": "3999999996" }, { "input": "1\n1", "output": "0" }, { "input": "15\n39 52 88 78 46 95 84 98 55 3 68 42 6 18 98", "output": "870" }, { "input": "15\n59 96 34 48 8 72 67 90 15 85 7 90 97 47 25", "output": "840" }, { "input": "15\n87 37 91 29 58 45 51 74 70 71 47 38 91 89 44", "output": "922" }, { "input": "15\n11 81 49 7 11 14 30 67 29 50 90 81 77 18 59", "output": "674" }, { "input": "15\n39 21 95 89 73 90 9 55 85 32 30 21 68 59 82", "output": "848" }, { "input": "15\n59 70 48 54 26 67 84 39 40 18 77 69 70 88 93", "output": "902" }, { "input": "15\n87 22 98 32 88 36 72 31 100 97 17 16 60 22 20", "output": "798" }, { "input": "15\n15 63 51 13 37 9 43 19 55 79 57 60 50 59 31", "output": "632" }, { "input": "1\n4", "output": "4" }, { "input": "2\n1 4", "output": "4" }, { "input": "3\n1 2 4", "output": "6" }, { "input": "2\n9 3", "output": "12" }, { "input": "2\n1000000000 1001", "output": "1000000000" }, { "input": "3\n1 8 4", "output": "12" }, { "input": "3\n7 4 4", "output": "8" }, { "input": "5\n2 3 4 5 3", "output": "14" }, { "input": "2\n4 5", "output": "4" }, { "input": "3\n2 4 5", "output": "6" }, { "input": "3\n2 2 3", "output": "4" }, { "input": "2\n2 3", "output": "2" }, { "input": "4\n2 3 7 7", "output": "16" }, { "input": "2\n999999999 2", "output": "2" }, { "input": "2\n2 5", "output": "2" }, { "input": "3\n5 3 1", "output": "8" }, { "input": "4\n3 2 5 7", "output": "14" } ]
1,691,001,047
2,147,483,647
PyPy 3-64
OK
TESTS
87
92
13,516,800
n = int(input()) a = list(map(int,input().split())) lowest_odd = 10**9+1 Sum = 0 for a_i in a: Sum += a_i if a_i % 2 == 1 and a_i < lowest_odd: lowest_odd = a_i if (Sum % 2 == 0): print (Sum) else: print(Sum - lowest_odd)
Title: Wet Shark and Odd and Even Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today, Wet Shark is given *n* integers. Using any of these integers no more than once, Wet Shark wants to get maximum possible even (divisible by 2) sum. Please, calculate this value for Wet Shark. Note, that if Wet Shark uses no integers from the *n* integers, the sum is an even integer 0. Input Specification: The first line of the input contains one integer, *n* (1<=≤<=*n*<=≤<=100<=000). The next line contains *n* space separated integers given to Wet Shark. Each of these integers is in range from 1 to 109, inclusive. Output Specification: Print the maximum possible even sum that can be obtained if we use some of the given integers. Demo Input: ['3\n1 2 3\n', '5\n999999999 999999999 999999999 999999999 999999999\n'] Demo Output: ['6', '3999999996'] Note: In the first sample, we can simply take all three integers for a total sum of 6. In the second sample Wet Shark should take any four out of five integers 999 999 999.
```python n = int(input()) a = list(map(int,input().split())) lowest_odd = 10**9+1 Sum = 0 for a_i in a: Sum += a_i if a_i % 2 == 1 and a_i < lowest_odd: lowest_odd = a_i if (Sum % 2 == 0): print (Sum) else: print(Sum - lowest_odd) ```
3
755
B
PolandBall and Game
PROGRAMMING
1,100
[ "binary search", "data structures", "games", "greedy", "sortings", "strings" ]
null
null
PolandBall is playing a game with EnemyBall. The rules are simple. Players have to say words in turns. You cannot say a word which was already said. PolandBall starts. The Ball which can't say a new word loses. You're given two lists of words familiar to PolandBall and EnemyBall. Can you determine who wins the game, if both play optimally?
The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=103) — number of words PolandBall and EnemyBall know, respectively. Then *n* strings follow, one per line — words familiar to PolandBall. Then *m* strings follow, one per line — words familiar to EnemyBall. Note that one Ball cannot know a word more than once (strings are unique), but some words can be known by both players. Each word is non-empty and consists of no more than 500 lowercase English alphabet letters.
In a single line of print the answer — "YES" if PolandBall wins and "NO" otherwise. Both Balls play optimally.
[ "5 1\npolandball\nis\na\ncool\ncharacter\nnope\n", "2 2\nkremowka\nwadowicka\nkremowka\nwiedenska\n", "1 2\na\na\nb\n" ]
[ "YES", "YES", "NO" ]
In the first example PolandBall knows much more words and wins effortlessly. In the second example if PolandBall says kremowka first, then EnemyBall cannot use that word anymore. EnemyBall can only say wiedenska. PolandBall says wadowicka and wins.
1,000
[ { "input": "5 1\npolandball\nis\na\ncool\ncharacter\nnope", "output": "YES" }, { "input": "2 2\nkremowka\nwadowicka\nkremowka\nwiedenska", "output": "YES" }, { "input": "1 2\na\na\nb", "output": "NO" }, { "input": "2 2\na\nb\nb\nc", "output": "YES" }, { "input": "2 1\nc\na\na", "output": "YES" }, { "input": "3 3\nab\nbc\ncd\ncd\ndf\nfg", "output": "YES" }, { "input": "3 3\nc\na\nb\na\nd\ng", "output": "YES" }, { "input": "1 1\naa\naa", "output": "YES" }, { "input": "2 1\na\nb\na", "output": "YES" }, { "input": "6 5\na\nb\nc\nd\ne\nf\nf\ne\nd\nz\ny", "output": "YES" }, { "input": "3 2\na\nb\nc\nd\ne", "output": "YES" } ]
1,634,946,042
2,147,483,647
Python 3
OK
TESTS
33
46
6,041,600
if __name__ == '__main__': n, m = map(int, input().split()) s = set() for _ in range(n + m): s.add(input()) k = n + m - len(s) if n > m: print("YES") elif m > n: print("NO") elif n + k % 2 > m: print("YES") else: print("NO")
Title: PolandBall and Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: PolandBall is playing a game with EnemyBall. The rules are simple. Players have to say words in turns. You cannot say a word which was already said. PolandBall starts. The Ball which can't say a new word loses. You're given two lists of words familiar to PolandBall and EnemyBall. Can you determine who wins the game, if both play optimally? Input Specification: The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=103) — number of words PolandBall and EnemyBall know, respectively. Then *n* strings follow, one per line — words familiar to PolandBall. Then *m* strings follow, one per line — words familiar to EnemyBall. Note that one Ball cannot know a word more than once (strings are unique), but some words can be known by both players. Each word is non-empty and consists of no more than 500 lowercase English alphabet letters. Output Specification: In a single line of print the answer — "YES" if PolandBall wins and "NO" otherwise. Both Balls play optimally. Demo Input: ['5 1\npolandball\nis\na\ncool\ncharacter\nnope\n', '2 2\nkremowka\nwadowicka\nkremowka\nwiedenska\n', '1 2\na\na\nb\n'] Demo Output: ['YES', 'YES', 'NO'] Note: In the first example PolandBall knows much more words and wins effortlessly. In the second example if PolandBall says kremowka first, then EnemyBall cannot use that word anymore. EnemyBall can only say wiedenska. PolandBall says wadowicka and wins.
```python if __name__ == '__main__': n, m = map(int, input().split()) s = set() for _ in range(n + m): s.add(input()) k = n + m - len(s) if n > m: print("YES") elif m > n: print("NO") elif n + k % 2 > m: print("YES") else: print("NO") ```
3
144
A
Arrival of the General
PROGRAMMING
800
[ "implementation" ]
null
null
A Ministry for Defense sent a general to inspect the Super Secret Military Squad under the command of the Colonel SuperDuper. Having learned the news, the colonel ordered to all *n* squad soldiers to line up on the parade ground. By the military charter the soldiers should stand in the order of non-increasing of their height. But as there's virtually no time to do that, the soldiers lined up in the arbitrary order. However, the general is rather short-sighted and he thinks that the soldiers lined up correctly if the first soldier in the line has the maximum height and the last soldier has the minimum height. Please note that the way other solders are positioned does not matter, including the case when there are several soldiers whose height is maximum or minimum. Only the heights of the first and the last soldier are important. For example, the general considers the sequence of heights (4, 3, 4, 2, 1, 1) correct and the sequence (4, 3, 1, 2, 2) wrong. Within one second the colonel can swap any two neighboring soldiers. Help him count the minimum time needed to form a line-up which the general will consider correct.
The first input line contains the only integer *n* (2<=≤<=*n*<=≤<=100) which represents the number of soldiers in the line. The second line contains integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) the values of the soldiers' heights in the order of soldiers' heights' increasing in the order from the beginning of the line to its end. The numbers are space-separated. Numbers *a*1,<=*a*2,<=...,<=*a**n* are not necessarily different.
Print the only integer — the minimum number of seconds the colonel will need to form a line-up the general will like.
[ "4\n33 44 11 22\n", "7\n10 10 58 31 63 40 76\n" ]
[ "2\n", "10\n" ]
In the first sample the colonel will need to swap the first and second soldier and then the third and fourth soldier. That will take 2 seconds. The resulting position of the soldiers is (44, 33, 22, 11). In the second sample the colonel may swap the soldiers in the following sequence: 1. (10, 10, 58, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 76, 40) 1. (10, 58, 10, 31, 76, 63, 40) 1. (10, 58, 31, 10, 76, 63, 40) 1. (10, 58, 31, 76, 10, 63, 40) 1. (10, 58, 31, 76, 63, 10, 40) 1. (10, 58, 76, 31, 63, 10, 40) 1. (10, 76, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 40, 10)
500
[ { "input": "4\n33 44 11 22", "output": "2" }, { "input": "7\n10 10 58 31 63 40 76", "output": "10" }, { "input": "2\n88 89", "output": "1" }, { "input": "5\n100 95 100 100 88", "output": "0" }, { "input": "7\n48 48 48 48 45 45 45", "output": "0" }, { "input": "10\n68 47 67 29 63 71 71 65 54 56", "output": "10" }, { "input": "15\n77 68 96 60 92 75 61 60 66 79 80 65 60 95 92", "output": "4" }, { "input": "3\n1 2 1", "output": "1" }, { "input": "20\n30 30 30 14 30 14 30 30 30 14 30 14 14 30 14 14 30 14 14 14", "output": "0" }, { "input": "35\n37 41 46 39 47 39 44 47 44 42 44 43 47 39 46 39 38 42 39 37 40 44 41 42 41 42 39 42 36 36 42 36 42 42 42", "output": "7" }, { "input": "40\n99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 98 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99", "output": "47" }, { "input": "50\n48 52 44 54 53 56 62 49 39 41 53 39 40 64 53 50 62 48 40 52 51 48 40 52 61 62 62 61 48 64 55 57 56 40 48 58 41 60 60 56 64 50 64 45 48 45 46 63 59 57", "output": "50" }, { "input": "57\n7 24 17 19 6 19 10 11 12 22 14 5 5 11 13 10 24 19 24 24 24 11 21 20 4 14 24 24 18 13 24 3 20 3 3 3 3 9 3 9 22 22 16 3 3 3 15 11 3 3 8 17 10 13 3 14 13", "output": "3" }, { "input": "65\n58 50 35 44 35 37 36 58 38 36 58 56 56 49 48 56 58 43 40 44 52 44 58 58 57 50 43 35 55 39 38 49 53 56 50 42 41 56 34 57 49 38 34 51 56 38 58 40 53 46 48 34 38 43 49 49 58 56 41 43 44 34 38 48 36", "output": "3" }, { "input": "69\n70 48 49 48 49 71 48 53 55 69 48 53 54 58 53 63 48 48 69 67 72 75 71 75 74 74 57 63 65 60 48 48 65 48 48 51 50 49 62 53 76 68 76 56 76 76 64 76 76 57 61 76 73 51 59 76 65 50 69 50 76 67 76 63 62 74 74 58 73", "output": "73" }, { "input": "75\n70 65 64 71 71 64 71 64 68 71 65 64 65 68 71 66 66 69 68 63 69 65 71 69 68 68 71 67 71 65 65 65 71 71 65 69 63 66 62 67 64 63 62 64 67 65 62 69 62 64 69 62 67 64 67 70 64 63 64 64 69 62 62 64 70 62 62 68 67 69 62 64 66 70 68", "output": "7" }, { "input": "84\n92 95 84 85 94 80 90 86 80 92 95 84 86 83 86 83 93 91 95 92 84 88 82 84 84 84 80 94 93 80 94 80 95 83 85 80 95 95 80 84 86 92 83 81 90 87 81 89 92 93 80 87 90 85 93 85 93 94 93 89 94 83 93 91 80 83 90 94 95 80 95 92 85 84 93 94 94 82 91 95 95 89 85 94", "output": "15" }, { "input": "90\n86 87 72 77 82 71 75 78 61 67 79 90 64 94 94 74 85 87 73 76 71 71 60 69 77 73 76 80 82 57 62 57 57 83 76 72 75 87 72 94 77 85 59 82 86 69 62 80 95 73 83 94 79 85 91 68 85 74 93 95 68 75 89 93 83 78 95 78 83 77 81 85 66 92 63 65 75 78 67 91 77 74 59 86 77 76 90 67 70 64", "output": "104" }, { "input": "91\n94 98 96 94 95 98 98 95 98 94 94 98 95 95 99 97 97 94 95 98 94 98 96 98 96 98 97 95 94 94 94 97 94 96 98 98 98 94 96 95 94 95 97 97 97 98 94 98 96 95 98 96 96 98 94 97 96 98 97 95 97 98 94 95 94 94 97 94 96 97 97 93 94 95 95 94 96 98 97 96 94 98 98 96 96 96 96 96 94 96 97", "output": "33" }, { "input": "92\n44 28 32 29 41 41 36 39 40 39 41 35 41 28 35 27 41 34 28 38 43 43 41 38 27 26 28 36 30 29 39 32 35 35 32 30 39 30 37 27 41 41 28 30 43 31 35 33 36 28 44 40 41 35 31 42 37 38 37 34 39 40 27 40 33 33 44 43 34 33 34 34 35 38 38 37 30 39 35 41 45 42 41 32 33 33 31 30 43 41 43 43", "output": "145" }, { "input": "93\n46 32 52 36 39 30 57 63 63 30 32 44 27 59 46 38 40 45 44 62 35 36 51 48 39 58 36 51 51 51 48 58 59 36 29 35 31 49 64 60 34 38 42 56 33 42 52 31 63 34 45 51 35 45 33 53 33 62 31 38 66 29 51 54 28 61 32 45 57 41 36 34 47 36 31 28 67 48 52 46 32 40 64 58 27 53 43 57 34 66 43 39 26", "output": "76" }, { "input": "94\n56 55 54 31 32 42 46 29 24 54 40 40 20 45 35 56 32 33 51 39 26 56 21 56 51 27 29 39 56 52 54 43 43 55 48 51 44 49 52 49 23 19 19 28 20 26 45 33 35 51 42 36 25 25 38 23 21 35 54 50 41 20 37 28 42 20 22 43 37 34 55 21 24 38 19 41 45 34 19 33 44 54 38 31 23 53 35 32 47 40 39 31 20 34", "output": "15" }, { "input": "95\n57 71 70 77 64 64 76 81 81 58 63 75 81 77 71 71 71 60 70 70 69 67 62 64 78 64 69 62 76 76 57 70 68 77 70 68 73 77 79 73 60 57 69 60 74 65 58 75 75 74 73 73 65 75 72 57 81 62 62 70 67 58 76 57 79 81 68 64 58 77 70 59 79 64 80 58 71 59 81 71 80 64 78 80 78 65 70 68 78 80 57 63 64 76 81", "output": "11" }, { "input": "96\n96 95 95 95 96 97 95 97 96 95 98 96 97 95 98 96 98 96 98 96 98 95 96 95 95 95 97 97 95 95 98 98 95 96 96 95 97 96 98 96 95 97 97 95 97 97 95 94 96 96 97 96 97 97 96 94 94 97 95 95 95 96 95 96 95 97 97 95 97 96 95 94 97 97 97 96 97 95 96 94 94 95 97 94 94 97 97 97 95 97 97 95 94 96 95 95", "output": "13" }, { "input": "97\n14 15 12 12 13 15 12 15 12 12 12 12 12 14 15 15 13 12 15 15 12 12 12 13 14 15 15 13 14 15 14 14 14 14 12 13 12 13 13 12 15 12 13 13 15 12 15 13 12 13 13 13 14 13 12 15 14 13 14 15 13 14 14 13 14 12 15 12 14 12 13 14 15 14 13 15 13 12 15 15 15 13 15 15 13 14 16 16 16 13 15 13 15 14 15 15 15", "output": "104" }, { "input": "98\n37 69 35 70 58 69 36 47 41 63 60 54 49 35 55 50 35 53 52 43 35 41 40 49 38 35 48 70 42 35 35 65 56 54 44 59 59 48 51 49 59 67 35 60 69 35 58 50 35 44 48 69 41 58 44 45 35 47 70 61 49 47 37 39 35 51 44 70 72 65 36 41 63 63 48 66 45 50 50 71 37 52 72 67 72 39 72 39 36 64 48 72 69 49 45 72 72 67", "output": "100" }, { "input": "99\n31 31 16 15 19 31 19 22 29 27 12 22 28 30 25 33 26 25 19 22 34 21 17 33 31 22 16 26 22 30 31 17 13 33 13 17 28 25 18 33 27 22 31 22 13 27 20 22 23 15 24 32 29 13 16 20 32 33 14 33 19 27 16 28 25 17 17 28 18 26 32 33 19 23 30 13 14 23 24 28 14 28 22 20 30 14 24 23 17 29 18 28 29 21 28 18 16 24 32", "output": "107" }, { "input": "100\n37 54 39 29 32 49 21 13 34 21 16 42 34 27 16 26 7 34 51 9 11 27 16 40 36 7 48 52 30 42 42 52 51 11 32 26 6 7 28 54 48 51 6 54 42 20 51 48 46 4 4 31 47 6 9 16 8 23 36 50 49 30 47 37 45 24 48 26 8 50 18 24 27 13 39 7 37 34 5 43 42 19 34 23 52 38 35 6 29 11 53 49 21 29 36 22 45 33 51 22", "output": "50" }, { "input": "100\n41 5 20 23 5 47 28 28 64 5 12 14 34 56 22 48 6 52 39 55 62 40 24 54 39 28 56 27 35 51 14 24 38 10 55 20 39 62 52 2 30 55 49 48 15 23 59 44 31 28 66 29 62 59 31 13 28 12 50 45 41 47 29 27 64 66 14 39 62 22 44 63 24 5 63 17 42 7 25 41 49 33 31 51 63 3 37 66 19 9 2 40 16 45 56 21 34 29 39 61", "output": "59" }, { "input": "100\n66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95", "output": "99" }, { "input": "100\n81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "0" }, { "input": "3\n2 1 2", "output": "1" }, { "input": "2\n100 99", "output": "0" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "197" }, { "input": "100\n87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87", "output": "0" }, { "input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "0" }, { "input": "2\n1 1", "output": "0" }, { "input": "3\n2 2 2", "output": "0" }, { "input": "3\n1 3 2", "output": "2" } ]
1,694,286,312
2,147,483,647
PyPy 3-64
OK
TESTS
39
124
0
n = int(input()) a = list(map(int, input().split())) b = a.index(max(a)) + a[::-1].index(min(a)) print(b - (b >= n))
Title: Arrival of the General Time Limit: None seconds Memory Limit: None megabytes Problem Description: A Ministry for Defense sent a general to inspect the Super Secret Military Squad under the command of the Colonel SuperDuper. Having learned the news, the colonel ordered to all *n* squad soldiers to line up on the parade ground. By the military charter the soldiers should stand in the order of non-increasing of their height. But as there's virtually no time to do that, the soldiers lined up in the arbitrary order. However, the general is rather short-sighted and he thinks that the soldiers lined up correctly if the first soldier in the line has the maximum height and the last soldier has the minimum height. Please note that the way other solders are positioned does not matter, including the case when there are several soldiers whose height is maximum or minimum. Only the heights of the first and the last soldier are important. For example, the general considers the sequence of heights (4, 3, 4, 2, 1, 1) correct and the sequence (4, 3, 1, 2, 2) wrong. Within one second the colonel can swap any two neighboring soldiers. Help him count the minimum time needed to form a line-up which the general will consider correct. Input Specification: The first input line contains the only integer *n* (2<=≤<=*n*<=≤<=100) which represents the number of soldiers in the line. The second line contains integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) the values of the soldiers' heights in the order of soldiers' heights' increasing in the order from the beginning of the line to its end. The numbers are space-separated. Numbers *a*1,<=*a*2,<=...,<=*a**n* are not necessarily different. Output Specification: Print the only integer — the minimum number of seconds the colonel will need to form a line-up the general will like. Demo Input: ['4\n33 44 11 22\n', '7\n10 10 58 31 63 40 76\n'] Demo Output: ['2\n', '10\n'] Note: In the first sample the colonel will need to swap the first and second soldier and then the third and fourth soldier. That will take 2 seconds. The resulting position of the soldiers is (44, 33, 22, 11). In the second sample the colonel may swap the soldiers in the following sequence: 1. (10, 10, 58, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 76, 40) 1. (10, 58, 10, 31, 76, 63, 40) 1. (10, 58, 31, 10, 76, 63, 40) 1. (10, 58, 31, 76, 10, 63, 40) 1. (10, 58, 31, 76, 63, 10, 40) 1. (10, 58, 76, 31, 63, 10, 40) 1. (10, 76, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 40, 10)
```python n = int(input()) a = list(map(int, input().split())) b = a.index(max(a)) + a[::-1].index(min(a)) print(b - (b >= n)) ```
3
2
A
Winner
PROGRAMMING
1,500
[ "hashing", "implementation" ]
A. Winner
1
64
The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points.
The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive.
Print the name of the winner.
[ "3\nmike 3\nandrew 5\nmike 2\n", "3\nandrew 3\nandrew 2\nmike 5\n" ]
[ "andrew\n", "andrew\n" ]
none
0
[ { "input": "3\nmike 3\nandrew 5\nmike 2", "output": "andrew" }, { "input": "3\nandrew 3\nandrew 2\nmike 5", "output": "andrew" }, { "input": "5\nkaxqybeultn -352\nmgochgrmeyieyskhuourfg -910\nkaxqybeultn 691\nmgochgrmeyieyskhuourfg -76\nkaxqybeultn -303", "output": "kaxqybeultn" }, { "input": "7\nksjuuerbnlklcfdjeyq 312\ndthjlkrvvbyahttifpdewvyslsh -983\nksjuuerbnlklcfdjeyq 268\ndthjlkrvvbyahttifpdewvyslsh 788\nksjuuerbnlklcfdjeyq -79\nksjuuerbnlklcfdjeyq -593\nksjuuerbnlklcfdjeyq 734", "output": "ksjuuerbnlklcfdjeyq" }, { "input": "12\natrtthfpcvishmqbakprquvnejr 185\natrtthfpcvishmqbakprquvnejr -699\natrtthfpcvishmqbakprquvnejr -911\natrtthfpcvishmqbakprquvnejr -220\nfcgslzkicjrpbqaifgweyzreajjfdo 132\nfcgslzkicjrpbqaifgweyzreajjfdo -242\nm 177\nm -549\natrtthfpcvishmqbakprquvnejr -242\nm 38\natrtthfpcvishmqbakprquvnejr -761\nfcgslzkicjrpbqaifgweyzreajjfdo 879", "output": "fcgslzkicjrpbqaifgweyzreajjfdo" }, { "input": "15\naawtvezfntstrcpgbzjbf 681\nzhahpvqiptvksnbjkdvmknb -74\naawtvezfntstrcpgbzjbf 661\njpdwmyke 474\naawtvezfntstrcpgbzjbf -547\naawtvezfntstrcpgbzjbf 600\nzhahpvqiptvksnbjkdvmknb -11\njpdwmyke 711\nbjmj 652\naawtvezfntstrcpgbzjbf -1000\naawtvezfntstrcpgbzjbf -171\nbjmj -302\naawtvezfntstrcpgbzjbf 961\nzhahpvqiptvksnbjkdvmknb 848\nbjmj -735", "output": "aawtvezfntstrcpgbzjbf" }, { "input": "17\nqdplghhx -649\nivhgbxiv 424\nivhgbxiv -72\nivhgbxiv 479\nugowfouebkelargxylsxn 83\nugowfouebkelargxylsxn -840\nivhgbxiv 382\nqdplghhx -904\nivhgbxiv -710\nugowfouebkelargxylsxn -838\nqdplghhx -974\nqdplghhx 571\nivhgbxiv -145\nugowfouebkelargxylsxn -788\nivhgbxiv 209\nivhgbxiv 420\nqdplghhx -158", "output": "ivhgbxiv" } ]
1,573,840,893
2,147,483,647
PyPy 3
OK
TESTS
20
310
1,740,800
t=int(input()) d,l={},[] for _ in range(t): s,n=map(str,input().split()) if s in d: d[s]+=int(n) else: d[s]=int(n) l.append((s,d[s])) ma=max(d.values()) t=0 q=[] for i,j in l: q.append(i) #print(q) for i,j in l: if d[i]==ma and j>=ma : print(i) break
Title: Winner Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points. Input Specification: The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive. Output Specification: Print the name of the winner. Demo Input: ['3\nmike 3\nandrew 5\nmike 2\n', '3\nandrew 3\nandrew 2\nmike 5\n'] Demo Output: ['andrew\n', 'andrew\n'] Note: none
```python t=int(input()) d,l={},[] for _ in range(t): s,n=map(str,input().split()) if s in d: d[s]+=int(n) else: d[s]=int(n) l.append((s,d[s])) ma=max(d.values()) t=0 q=[] for i,j in l: q.append(i) #print(q) for i,j in l: if d[i]==ma and j>=ma : print(i) break ```
3.83203
996
A
Hit the Lottery
PROGRAMMING
800
[ "dp", "greedy" ]
null
null
Allen has a LOT of money. He has $n$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $1$, $5$, $10$, $20$, $100$. What is the minimum number of bills Allen could receive after withdrawing his entire balance?
The first and only line of input contains a single integer $n$ ($1 \le n \le 10^9$).
Output the minimum number of bills that Allen could receive.
[ "125\n", "43\n", "1000000000\n" ]
[ "3\n", "5\n", "10000000\n" ]
In the first sample case, Allen can withdraw this with a $100$ dollar bill, a $20$ dollar bill, and a $5$ dollar bill. There is no way for Allen to receive $125$ dollars in one or two bills. In the second sample case, Allen can withdraw two $20$ dollar bills and three $1$ dollar bills. In the third sample case, Allen can withdraw $100000000$ (ten million!) $100$ dollar bills.
500
[ { "input": "125", "output": "3" }, { "input": "43", "output": "5" }, { "input": "1000000000", "output": "10000000" }, { "input": "4", "output": "4" }, { "input": "5", "output": "1" }, { "input": "1", "output": "1" }, { "input": "74", "output": "8" }, { "input": "31", "output": "3" }, { "input": "59", "output": "8" }, { "input": "79", "output": "9" }, { "input": "7", "output": "3" }, { "input": "55", "output": "4" }, { "input": "40", "output": "2" }, { "input": "719", "output": "13" }, { "input": "847", "output": "13" }, { "input": "225", "output": "4" }, { "input": "4704", "output": "51" }, { "input": "1132", "output": "15" }, { "input": "7811", "output": "80" }, { "input": "7981", "output": "84" }, { "input": "82655", "output": "830" }, { "input": "6364", "output": "70" }, { "input": "74611", "output": "748" }, { "input": "45391", "output": "459" }, { "input": "620448", "output": "6210" }, { "input": "265145", "output": "2654" }, { "input": "671704", "output": "6721" }, { "input": "365173", "output": "3658" }, { "input": "7130872", "output": "71314" }, { "input": "9628747", "output": "96292" }, { "input": "8898399", "output": "88993" }, { "input": "9497953", "output": "94985" }, { "input": "19070947", "output": "190714" }, { "input": "20185520", "output": "201856" }, { "input": "91402248", "output": "914028" }, { "input": "27035533", "output": "270360" }, { "input": "22717528", "output": "227180" }, { "input": "24403439", "output": "244041" }, { "input": "163565555", "output": "1635659" }, { "input": "152541908", "output": "1525423" }, { "input": "668439837", "output": "6684403" }, { "input": "20", "output": "1" }, { "input": "999999999", "output": "10000009" }, { "input": "10", "output": "1" }, { "input": "7", "output": "3" }, { "input": "6", "output": "2" }, { "input": "99999999", "output": "1000009" }, { "input": "1000001", "output": "10001" }, { "input": "2521", "output": "27" } ]
1,696,365,085
2,147,483,647
PyPy 3-64
OK
TESTS
49
77
0
n = int(input()) col = n//100 n = n-(n//100)*100 col += n//20 n = n-(n//20)*20 col += n//10 n = n-(n//10)*10 col += n//5 n = n-(n//5)*5 col += n//1 n = n-(n//1)*1 print(col)
Title: Hit the Lottery Time Limit: None seconds Memory Limit: None megabytes Problem Description: Allen has a LOT of money. He has $n$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $1$, $5$, $10$, $20$, $100$. What is the minimum number of bills Allen could receive after withdrawing his entire balance? Input Specification: The first and only line of input contains a single integer $n$ ($1 \le n \le 10^9$). Output Specification: Output the minimum number of bills that Allen could receive. Demo Input: ['125\n', '43\n', '1000000000\n'] Demo Output: ['3\n', '5\n', '10000000\n'] Note: In the first sample case, Allen can withdraw this with a $100$ dollar bill, a $20$ dollar bill, and a $5$ dollar bill. There is no way for Allen to receive $125$ dollars in one or two bills. In the second sample case, Allen can withdraw two $20$ dollar bills and three $1$ dollar bills. In the third sample case, Allen can withdraw $100000000$ (ten million!) $100$ dollar bills.
```python n = int(input()) col = n//100 n = n-(n//100)*100 col += n//20 n = n-(n//20)*20 col += n//10 n = n-(n//10)*10 col += n//5 n = n-(n//5)*5 col += n//1 n = n-(n//1)*1 print(col) ```
3
707
A
Brain's Photos
PROGRAMMING
800
[ "implementation" ]
null
null
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead. As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such). Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour! As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white. Photo can be represented as a matrix sized *n*<=×<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors: - 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black) The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of photo pixel matrix rows and columns respectively. Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
Print the "#Black&amp;White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
[ "2 2\nC M\nY Y\n", "3 2\nW W\nW W\nB B\n", "1 1\nW\n" ]
[ "#Color", "#Black&amp;White", "#Black&amp;White" ]
none
500
[ { "input": "2 2\nC M\nY Y", "output": "#Color" }, { "input": "3 2\nW W\nW W\nB B", "output": "#Black&White" }, { "input": "1 1\nW", "output": "#Black&White" }, { "input": "2 3\nW W W\nB G Y", "output": "#Color" }, { "input": "1 1\nW", "output": "#Black&White" }, { "input": "5 5\nW G B Y M\nG B Y M C\nB Y M C W\nY M C W G\nM C W G B", "output": "#Color" }, { "input": "1 6\nC M Y W G B", "output": "#Color" }, { "input": "1 3\nW G B", "output": "#Black&White" }, { "input": "1 1\nW", "output": "#Black&White" }, { "input": "5 5\nW G B W G\nG B W G B\nB W G B W\nW G B W G\nG B W G B", "output": "#Black&White" }, { "input": "2 3\nW W W\nB G C", "output": "#Color" }, { "input": "2 3\nW W W\nB G M", "output": "#Color" }, { "input": "3 3\nC B W\nB Y M\nB B W", "output": "#Color" }, { "input": "1 3\nW C W", "output": "#Color" }, { "input": "3 3\nB W B\nB C W\nB W W", "output": "#Color" }, { "input": "1 2\nW Y", "output": "#Color" }, { "input": "1 1\nG", "output": "#Black&White" }, { "input": "1 3\nB G W", "output": "#Black&White" }, { "input": "2 2\nW W\nB C", "output": "#Color" }, { "input": "1 1\nM", "output": "#Color" }, { "input": "1 2\nW C", "output": "#Color" }, { "input": "2 3\nW W M\nW W M", "output": "#Color" }, { "input": "3 2\nW W\nW W\nB C", "output": "#Color" }, { "input": "2 3\nW W C\nW W W", "output": "#Color" }, { "input": "1 3\nG G G", "output": "#Black&White" }, { "input": "1 1\nC", "output": "#Color" }, { "input": "1 2\nC W", "output": "#Color" }, { "input": "1 3\nW W C", "output": "#Color" }, { "input": "2 2\nW B\nB G", "output": "#Black&White" }, { "input": "2 2\nB B\nY Y", "output": "#Color" }, { "input": "2 2\nG G\nC C", "output": "#Color" }, { "input": "1 2\nB C", "output": "#Color" }, { "input": "1 4\nG G G C", "output": "#Color" }, { "input": "1 1\nB", "output": "#Black&White" }, { "input": "2 1\nY\nB", "output": "#Color" } ]
1,657,481,570
2,147,483,647
Python 3
OK
TESTS
50
46
0
n,m=map(int,input().split()) y=1 for i in range(n): a=list(map(str,input().split())) for j in a: if j!='W' and j!='B' and j!='G': y=0 if y==1: print('#Black&White') else: print('#Color')
Title: Brain's Photos Time Limit: None seconds Memory Limit: None megabytes Problem Description: Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead. As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such). Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour! As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white. Photo can be represented as a matrix sized *n*<=×<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors: - 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black) The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored. Input Specification: The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of photo pixel matrix rows and columns respectively. Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'. Output Specification: Print the "#Black&amp;White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line. Demo Input: ['2 2\nC M\nY Y\n', '3 2\nW W\nW W\nB B\n', '1 1\nW\n'] Demo Output: ['#Color', '#Black&amp;White', '#Black&amp;White'] Note: none
```python n,m=map(int,input().split()) y=1 for i in range(n): a=list(map(str,input().split())) for j in a: if j!='W' and j!='B' and j!='G': y=0 if y==1: print('#Black&White') else: print('#Color') ```
3
961
A
Tetris
PROGRAMMING
900
[ "implementation" ]
null
null
You are given a following process. There is a platform with $n$ columns. $1 \times 1$ squares are appearing one after another in some columns on this platform. If there are no squares in the column, a square will occupy the bottom row. Otherwise a square will appear at the top of the highest square of this column. When all of the $n$ columns have at least one square in them, the bottom row is being removed. You will receive $1$ point for this, and all the squares left will fall down one row. You task is to calculate the amount of points you will receive.
The first line of input contain 2 integer numbers $n$ and $m$ ($1 \le n, m \le 1000$) — the length of the platform and the number of the squares. The next line contain $m$ integer numbers $c_1, c_2, \dots, c_m$ ($1 \le c_i \le n$) — column in which $i$-th square will appear.
Print one integer — the amount of points you will receive.
[ "3 9\n1 1 2 2 2 3 1 2 3\n" ]
[ "2\n" ]
In the sample case the answer will be equal to $2$ because after the appearing of $6$-th square will be removed one row (counts of the squares on the platform will look like $[2~ 3~ 1]$, and after removing one row will be $[1~ 2~ 0]$). After the appearing of $9$-th square counts will be $[2~ 3~ 1]$, and after removing one row it will look like $[1~ 2~ 0]$. So the answer will be equal to $2$.
0
[ { "input": "3 9\n1 1 2 2 2 3 1 2 3", "output": "2" }, { "input": "1 7\n1 1 1 1 1 1 1", "output": "7" }, { "input": "1 1\n1", "output": "1" }, { "input": "3 5\n1 1 1 2 3", "output": "1" }, { "input": "4 6\n4 4 4 4 4 4", "output": "0" }, { "input": "4 6\n2 3 4 4 4 4", "output": "0" }, { "input": "3 12\n1 1 1 1 2 2 2 2 3 3 3 3", "output": "4" }, { "input": "8 8\n2 2 3 4 5 6 7 8", "output": "0" }, { "input": "100 1\n50", "output": "0" }, { "input": "2 1\n2", "output": "0" }, { "input": "2 1\n1", "output": "0" }, { "input": "2 4\n1 2 1 1", "output": "1" }, { "input": "3 4\n3 2 2 2", "output": "0" }, { "input": "2 2\n2 2", "output": "0" }, { "input": "2 5\n2 1 1 2 1", "output": "2" }, { "input": "15 3\n13 14 15", "output": "0" }, { "input": "4 9\n1 2 3 1 2 3 1 2 3", "output": "0" }, { "input": "100 3\n1 2 3", "output": "0" }, { "input": "1000 10\n999 999 998 34 454 546 343 35 34 1000", "output": "0" }, { "input": "4 2\n1 2", "output": "0" } ]
1,660,932,947
2,147,483,647
Python 3
OK
TESTS
29
46
0
first_input = [int(x) for x in input().split()] n = first_input[0] m = first_input[1] second_input = [int(x) for x in input().split()] list = [] for i in range(n): list.append(0) for j in second_input: list[j-1] += 1 print(min(list))
Title: Tetris Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a following process. There is a platform with $n$ columns. $1 \times 1$ squares are appearing one after another in some columns on this platform. If there are no squares in the column, a square will occupy the bottom row. Otherwise a square will appear at the top of the highest square of this column. When all of the $n$ columns have at least one square in them, the bottom row is being removed. You will receive $1$ point for this, and all the squares left will fall down one row. You task is to calculate the amount of points you will receive. Input Specification: The first line of input contain 2 integer numbers $n$ and $m$ ($1 \le n, m \le 1000$) — the length of the platform and the number of the squares. The next line contain $m$ integer numbers $c_1, c_2, \dots, c_m$ ($1 \le c_i \le n$) — column in which $i$-th square will appear. Output Specification: Print one integer — the amount of points you will receive. Demo Input: ['3 9\n1 1 2 2 2 3 1 2 3\n'] Demo Output: ['2\n'] Note: In the sample case the answer will be equal to $2$ because after the appearing of $6$-th square will be removed one row (counts of the squares on the platform will look like $[2~ 3~ 1]$, and after removing one row will be $[1~ 2~ 0]$). After the appearing of $9$-th square counts will be $[2~ 3~ 1]$, and after removing one row it will look like $[1~ 2~ 0]$. So the answer will be equal to $2$.
```python first_input = [int(x) for x in input().split()] n = first_input[0] m = first_input[1] second_input = [int(x) for x in input().split()] list = [] for i in range(n): list.append(0) for j in second_input: list[j-1] += 1 print(min(list)) ```
3
625
C
K-special Tables
PROGRAMMING
1,300
[ "constructive algorithms", "implementation" ]
null
null
People do many crazy things to stand out in a crowd. Some of them dance, some learn by heart rules of Russian language, some try to become an outstanding competitive programmers, while others collect funny math objects. Alis is among these collectors. Right now she wants to get one of *k*-special tables. In case you forget, the table *n*<=×<=*n* is called *k*-special if the following three conditions are satisfied: - every integer from 1 to *n*2 appears in the table exactly once; - in each row numbers are situated in increasing order; - the sum of numbers in the *k*-th column is maximum possible. Your goal is to help Alice and find at least one *k*-special table of size *n*<=×<=*n*. Both rows and columns are numbered from 1 to *n*, with rows numbered from top to bottom and columns numbered from left to right.
The first line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=500,<=1<=≤<=*k*<=≤<=*n*) — the size of the table Alice is looking for and the column that should have maximum possible sum.
First print the sum of the integers in the *k*-th column of the required table. Next *n* lines should contain the description of the table itself: first line should contains *n* elements of the first row, second line should contain *n* elements of the second row and so on. If there are multiple suitable table, you are allowed to print any.
[ "4 1\n", "5 3\n" ]
[ "28\n1 2 3 4\n5 6 7 8\n9 10 11 12\n13 14 15 16\n", "85\n5 6 17 18 19\n9 10 23 24 25\n7 8 20 21 22\n3 4 14 15 16\n1 2 11 12 13\n\n" ]
none
1,000
[ { "input": "4 1", "output": "28\n1 2 3 4\n5 6 7 8\n9 10 11 12\n13 14 15 16" }, { "input": "5 3", "output": "85\n1 2 11 12 13\n3 4 14 15 16\n5 6 17 18 19\n7 8 20 21 22\n9 10 23 24 25" }, { "input": "1 1", "output": "1\n1" }, { "input": "2 1", "output": "4\n1 2\n3 4" }, { "input": "2 2", "output": "7\n1 3\n2 4" }, { "input": "500 1", "output": "62375500\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "3 1", "output": "12\n1 2 3\n4 5 6\n7 8 9" }, { "input": "3 2", "output": "18\n1 4 5\n2 6 7\n3 8 9" }, { "input": "3 3", "output": "24\n1 2 7\n3 4 8\n5 6 9" }, { "input": "4 2", "output": "38\n1 5 6 7\n2 8 9 10\n3 11 12 13\n4 14 15 16" }, { "input": "4 3", "output": "48\n1 2 9 10\n3 4 11 12\n5 6 13 14\n7 8 15 16" }, { "input": "4 4", "output": "58\n1 2 3 13\n4 5 6 14\n7 8 9 15\n10 11 12 16" }, { "input": "5 1", "output": "55\n1 2 3 4 5\n6 7 8 9 10\n11 12 13 14 15\n16 17 18 19 20\n21 22 23 24 25" }, { "input": "5 2", "output": "70\n1 6 7 8 9\n2 10 11 12 13\n3 14 15 16 17\n4 18 19 20 21\n5 22 23 24 25" }, { "input": "5 4", "output": "100\n1 2 3 16 17\n4 5 6 18 19\n7 8 9 20 21\n10 11 12 22 23\n13 14 15 24 25" }, { "input": "5 5", "output": "115\n1 2 3 4 21\n5 6 7 8 22\n9 10 11 12 23\n13 14 15 16 24\n17 18 19 20 25" }, { "input": "6 1", "output": "96\n1 2 3 4 5 6\n7 8 9 10 11 12\n13 14 15 16 17 18\n19 20 21 22 23 24\n25 26 27 28 29 30\n31 32 33 34 35 36" }, { "input": "6 2", "output": "117\n1 7 8 9 10 11\n2 12 13 14 15 16\n3 17 18 19 20 21\n4 22 23 24 25 26\n5 27 28 29 30 31\n6 32 33 34 35 36" }, { "input": "6 3", "output": "138\n1 2 13 14 15 16\n3 4 17 18 19 20\n5 6 21 22 23 24\n7 8 25 26 27 28\n9 10 29 30 31 32\n11 12 33 34 35 36" }, { "input": "6 4", "output": "159\n1 2 3 19 20 21\n4 5 6 22 23 24\n7 8 9 25 26 27\n10 11 12 28 29 30\n13 14 15 31 32 33\n16 17 18 34 35 36" }, { "input": "6 5", "output": "180\n1 2 3 4 25 26\n5 6 7 8 27 28\n9 10 11 12 29 30\n13 14 15 16 31 32\n17 18 19 20 33 34\n21 22 23 24 35 36" }, { "input": "6 6", "output": "201\n1 2 3 4 5 31\n6 7 8 9 10 32\n11 12 13 14 15 33\n16 17 18 19 20 34\n21 22 23 24 25 35\n26 27 28 29 30 36" }, { "input": "500 500", "output": "124875250\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 ..." }, { "input": "500 250", "output": "93562750\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "94 3", "output": "419898\n1 2 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280\n3 4 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 31..." }, { "input": "22 4", "output": "5863\n1 2 3 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85\n4 5 6 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104\n7 8 9 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123\n10 11 12 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142\n13 14 15 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161\n16 17 18 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180\n19 20 21 181 182 183 184 185 18..." }, { "input": "15 12", "output": "2910\n1 2 3 4 5 6 7 8 9 10 11 166 167 168 169\n12 13 14 15 16 17 18 19 20 21 22 170 171 172 173\n23 24 25 26 27 28 29 30 31 32 33 174 175 176 177\n34 35 36 37 38 39 40 41 42 43 44 178 179 180 181\n45 46 47 48 49 50 51 52 53 54 55 182 183 184 185\n56 57 58 59 60 61 62 63 64 65 66 186 187 188 189\n67 68 69 70 71 72 73 74 75 76 77 190 191 192 193\n78 79 80 81 82 83 84 85 86 87 88 194 195 196 197\n89 90 91 92 93 94 95 96 97 98 99 198 199 200 201\n100 101 102 103 104 105 106 107 108 109 110 202 203 204 205\n111..." }, { "input": "37 35", "output": "48581\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1259 1260 1261\n35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 1262 1263 1264\n69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 1265 1266 1267\n103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 1268 1269 1270\n137 ..." }, { "input": "87 51", "output": "516954\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387\n51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 4388 4389 4390 4391 4392 ..." }, { "input": "15 4", "output": "1950\n1 2 3 46 47 48 49 50 51 52 53 54 55 56 57\n4 5 6 58 59 60 61 62 63 64 65 66 67 68 69\n7 8 9 70 71 72 73 74 75 76 77 78 79 80 81\n10 11 12 82 83 84 85 86 87 88 89 90 91 92 93\n13 14 15 94 95 96 97 98 99 100 101 102 103 104 105\n16 17 18 106 107 108 109 110 111 112 113 114 115 116 117\n19 20 21 118 119 120 121 122 123 124 125 126 127 128 129\n22 23 24 130 131 132 133 134 135 136 137 138 139 140 141\n25 26 27 142 143 144 145 146 147 148 149 150 151 152 153\n28 29 30 154 155 156 157 158 159 160 161 162 1..." }, { "input": "183 2", "output": "3064518\n1 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 ..." }, { "input": "103 6", "output": "567942\n1 2 3 4 5 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613\n6 7 8 9 10 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 6..." }, { "input": "131 11", "output": "1202056\n1 2 3 4 5 6 7 8 9 10 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1..." }, { "input": "193 186", "output": "7039482\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "117 109", "output": "1539603\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 12637 12638 12639 12640 12641 12642 12643 12644 12645\n109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139..." }, { "input": "116 91", "output": "1384576\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466\n91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 1..." }, { "input": "140 79", "output": "2132200\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 1..." }, { "input": "350 14", "output": "22175125\n1 2 3 4 5 6 7 8 9 10 11 12 13 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4..." }, { "input": "374 9", "output": "26648248\n1 2 3 4 5 6 7 8 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 ..." }, { "input": "265 255", "output": "18222195\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "289 287", "output": "24012143\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "276 11", "output": "10856736\n1 2 3 4 5 6 7 8 9 10 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 ..." }, { "input": "204 7", "output": "4349688\n1 2 3 4 5 6 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 ..." }, { "input": "425 15", "output": "39560275\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 604..." }, { "input": "449 6", "output": "45664198\n1 2 3 4 5 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2..." }, { "input": "477 19", "output": "56204433\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8..." }, { "input": "448 437", "output": "88708928\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "472 459", "output": "103591728\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 ..." }, { "input": "500 494", "output": "124123750\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 ..." }, { "input": "462 318", "output": "83103405\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "486 481", "output": "114081696\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 ..." }, { "input": "410 361", "output": "64708660\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." } ]
1,689,016,363
2,147,483,647
PyPy 3-64
OK
TESTS
52
218
10,342,400
import collections import math import copy def main(): #n = int(input()) n,k = list(map(int,input().split())) #m = int(input()) #a = list(map(int,input().split())) #b = list(map(int,input().split())) #a = list(map(int,input().split())) solution(n,k) def solution(n,k): max_num = n*n-(n-k) column = [max_num] for i in range(1,n): column.append(max_num-i*(n-k+1)) column = column[::-1] p = 1 print(sum(column)) for c in column: for _ in range(1,k): print(p,end=' ') p += 1 print(c,end=' ') for t in range(1,n-k+1): print(c+t,end=' ') print() main()
Title: K-special Tables Time Limit: None seconds Memory Limit: None megabytes Problem Description: People do many crazy things to stand out in a crowd. Some of them dance, some learn by heart rules of Russian language, some try to become an outstanding competitive programmers, while others collect funny math objects. Alis is among these collectors. Right now she wants to get one of *k*-special tables. In case you forget, the table *n*<=×<=*n* is called *k*-special if the following three conditions are satisfied: - every integer from 1 to *n*2 appears in the table exactly once; - in each row numbers are situated in increasing order; - the sum of numbers in the *k*-th column is maximum possible. Your goal is to help Alice and find at least one *k*-special table of size *n*<=×<=*n*. Both rows and columns are numbered from 1 to *n*, with rows numbered from top to bottom and columns numbered from left to right. Input Specification: The first line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=500,<=1<=≤<=*k*<=≤<=*n*) — the size of the table Alice is looking for and the column that should have maximum possible sum. Output Specification: First print the sum of the integers in the *k*-th column of the required table. Next *n* lines should contain the description of the table itself: first line should contains *n* elements of the first row, second line should contain *n* elements of the second row and so on. If there are multiple suitable table, you are allowed to print any. Demo Input: ['4 1\n', '5 3\n'] Demo Output: ['28\n1 2 3 4\n5 6 7 8\n9 10 11 12\n13 14 15 16\n', '85\n5 6 17 18 19\n9 10 23 24 25\n7 8 20 21 22\n3 4 14 15 16\n1 2 11 12 13\n\n'] Note: none
```python import collections import math import copy def main(): #n = int(input()) n,k = list(map(int,input().split())) #m = int(input()) #a = list(map(int,input().split())) #b = list(map(int,input().split())) #a = list(map(int,input().split())) solution(n,k) def solution(n,k): max_num = n*n-(n-k) column = [max_num] for i in range(1,n): column.append(max_num-i*(n-k+1)) column = column[::-1] p = 1 print(sum(column)) for c in column: for _ in range(1,k): print(p,end=' ') p += 1 print(c,end=' ') for t in range(1,n-k+1): print(c+t,end=' ') print() main() ```
3
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,661,478,235
2,147,483,647
Python 3
OK
TESTS
30
92
0
str = input().strip() c, C, i, l = 0, 0, 0, len(str) while i < l: if ord(str[i]) > 96: c += 1 else: C += 1 i += 1 if c < C: print(str.upper()) else: print(str.lower())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python str = input().strip() c, C, i, l = 0, 0, 0, len(str) while i < l: if ord(str[i]) > 96: c += 1 else: C += 1 i += 1 if c < C: print(str.upper()) else: print(str.lower()) ```
3.977
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,591,850,932
2,147,483,647
Python 3
OK
TESTS
30
218
0
#ashu@gate22 s=input() lentgh=len(s) no_upper=0 no_lower=0 for i in s: if i.isupper(): no_upper+=1 else: no_lower+=1 if no_lower>=no_upper: print(s.lower()) else: print(s.upper())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python #ashu@gate22 s=input() lentgh=len(s) no_upper=0 no_lower=0 for i in s: if i.isupper(): no_upper+=1 else: no_lower+=1 if no_lower>=no_upper: print(s.lower()) else: print(s.upper()) ```
3.9455
774
C
Maximum Number
PROGRAMMING
1,200
[ "*special", "constructive algorithms", "greedy", "implementation" ]
null
null
Stepan has the newest electronic device with a display. Different digits can be shown on it. Each digit is shown on a seven-section indicator like it is shown on the picture below. So, for example, to show the digit 3 on the display, 5 sections must be highlighted; and for the digit 6, 6 sections must be highlighted. The battery of the newest device allows to highlight at most *n* sections on the display. Stepan wants to know the maximum possible integer number which can be shown on the display of his newest device. Your task is to determine this number. Note that this number must not contain leading zeros. Assume that the size of the display is enough to show any integer.
The first line contains the integer *n* (2<=≤<=*n*<=≤<=100<=000) — the maximum number of sections which can be highlighted on the display.
Print the maximum integer which can be shown on the display of Stepan's newest device.
[ "2\n", "3\n" ]
[ "1\n", "7\n" ]
none
0
[ { "input": "2", "output": "1" }, { "input": "3", "output": "7" }, { "input": "4", "output": "11" }, { "input": "5", "output": "71" }, { "input": "6", "output": "111" }, { "input": "85651", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "85666", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "99999", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "100000", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "99998", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "9", "output": "7111" }, { "input": "99997", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "99996", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "99995", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "156", "output": "111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "255", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "4568", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "5431", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "6782", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "8343", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "9514", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." } ]
1,491,408,544
2,044
Python 3
OK
TESTS
21
202
6,451,200
a = int(input()) if ( a % 2 ): print('7', end='') a -= 3 while (a > 0) : a -= 2 print('1', end='')
Title: Maximum Number Time Limit: None seconds Memory Limit: None megabytes Problem Description: Stepan has the newest electronic device with a display. Different digits can be shown on it. Each digit is shown on a seven-section indicator like it is shown on the picture below. So, for example, to show the digit 3 on the display, 5 sections must be highlighted; and for the digit 6, 6 sections must be highlighted. The battery of the newest device allows to highlight at most *n* sections on the display. Stepan wants to know the maximum possible integer number which can be shown on the display of his newest device. Your task is to determine this number. Note that this number must not contain leading zeros. Assume that the size of the display is enough to show any integer. Input Specification: The first line contains the integer *n* (2<=≤<=*n*<=≤<=100<=000) — the maximum number of sections which can be highlighted on the display. Output Specification: Print the maximum integer which can be shown on the display of Stepan's newest device. Demo Input: ['2\n', '3\n'] Demo Output: ['1\n', '7\n'] Note: none
```python a = int(input()) if ( a % 2 ): print('7', end='') a -= 3 while (a > 0) : a -= 2 print('1', end='') ```
3
729
A
Interview with Oleg
PROGRAMMING
900
[ "implementation", "strings" ]
null
null
Polycarp has interviewed Oleg and has written the interview down without punctuation marks and spaces to save time. Thus, the interview is now a string *s* consisting of *n* lowercase English letters. There is a filler word ogo in Oleg's speech. All words that can be obtained from ogo by adding go several times to the end of it are also considered to be fillers. For example, the words ogo, ogogo, ogogogo are fillers, but the words go, og, ogog, ogogog and oggo are not fillers. The fillers have maximal size, for example, for ogogoo speech we can't consider ogo a filler and goo as a normal phrase. We should consider ogogo as a filler here. To print the interview, Polycarp has to replace each of the fillers with three asterisks. Note that a filler word is replaced with exactly three asterisks regardless of its length. Polycarp has dealt with this problem in no time. Can you do the same? The clock is ticking!
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100) — the length of the interview. The second line contains the string *s* of length *n*, consisting of lowercase English letters.
Print the interview text after the replacement of each of the fillers with "***". It is allowed for the substring "***" to have several consecutive occurences.
[ "7\naogogob\n", "13\nogogmgogogogo\n", "9\nogoogoogo\n" ]
[ "a***b\n", "***gmg***\n", "*********\n" ]
The first sample contains one filler word ogogo, so the interview for printing is "a***b". The second sample contains two fillers ogo and ogogogo. Thus, the interview is transformed to "***gmg***".
500
[ { "input": "7\naogogob", "output": "a***b" }, { "input": "13\nogogmgogogogo", "output": "***gmg***" }, { "input": "9\nogoogoogo", "output": "*********" }, { "input": "32\nabcdefogoghijklmnogoopqrstuvwxyz", "output": "abcdef***ghijklmn***opqrstuvwxyz" }, { "input": "100\nggogogoooggogooggoggogggggogoogoggooooggooggoooggogoooggoggoogggoogoggogggoooggoggoggogggogoogggoooo", "output": "gg***oogg***oggoggoggggg******ggooooggooggooogg***ooggoggoogggo***ggogggoooggoggoggoggg***ogggoooo" }, { "input": "10\nogooggoggo", "output": "***oggoggo" }, { "input": "20\nooggooogooogooogooog", "output": "ooggoo***o***o***oog" }, { "input": "30\ngoggogoooggooggggoggoggoogoggo", "output": "gogg***ooggooggggoggoggo***ggo" }, { "input": "40\nogggogooggoogoogggogooogogggoogggooggooo", "output": "oggg***oggo***oggg***o***gggoogggooggooo" }, { "input": "50\noggggogoogggggggoogogggoooggooogoggogooogogggogooo", "output": "ogggg***ogggggggo***gggoooggoo***gg***o***ggg***oo" }, { "input": "60\nggoooogoggogooogogooggoogggggogogogggggogggogooogogogggogooo", "output": "ggooo***gg***o***oggooggggg***gggggoggg***o***ggg***oo" }, { "input": "70\ngogoooggggoggoggggggoggggoogooogogggggooogggogoogoogoggogggoggogoooooo", "output": "g***ooggggoggoggggggoggggo***o***gggggoooggg*********ggogggogg***ooooo" }, { "input": "80\nooogoggoooggogogoggooooogoogogooogoggggogggggogoogggooogooooooggoggoggoggogoooog", "output": "oo***ggooogg***ggoooo******o***ggggoggggg***ogggoo***oooooggoggoggogg***ooog" }, { "input": "90\nooogoggggooogoggggoooogggggooggoggoggooooooogggoggogggooggggoooooogoooogooggoooogggggooooo", "output": "oo***ggggoo***ggggoooogggggooggoggoggooooooogggoggogggooggggooooo***oo***oggoooogggggooooo" }, { "input": "100\ngooogoggooggggoggoggooooggogoogggoogogggoogogoggogogogoggogggggogggggoogggooogogoggoooggogoooooogogg", "output": "goo***ggooggggoggoggoooogg***ogggo***gggo***gg***ggogggggogggggoogggoo***ggooogg***oooo***gg" }, { "input": "100\ngoogoogggogoooooggoogooogoogoogogoooooogooogooggggoogoggogooogogogoogogooooggoggogoooogooooooggogogo", "output": "go***oggg***ooooggo***o*********oooo***o***oggggo***gg***o******oooggogg***oo***ooooogg***" }, { "input": "100\ngoogoggggogggoooggoogoogogooggoggooggggggogogggogogggoogogggoogoggoggogooogogoooogooggggogggogggoooo", "output": "go***ggggogggoooggo******oggoggoogggggg***ggg***gggo***gggo***ggogg***o***oo***oggggogggogggoooo" }, { "input": "100\nogogogogogoggogogogogogogoggogogogoogoggoggooggoggogoogoooogogoogggogogogogogoggogogogogogogogogogoe", "output": "***gg***gg******ggoggooggogg******oo***oggg***gg***e" }, { "input": "5\nogoga", "output": "***ga" }, { "input": "1\no", "output": "o" }, { "input": "100\nogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogog", "output": "***g" }, { "input": "99\nogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogo", "output": "***" }, { "input": "5\nggggg", "output": "ggggg" }, { "input": "6\ngoogoo", "output": "go***o" }, { "input": "7\nooogooo", "output": "oo***oo" }, { "input": "8\ngggggggg", "output": "gggggggg" }, { "input": "9\nogggogggg", "output": "ogggogggg" }, { "input": "10\nogogoggogo", "output": "***gg***" }, { "input": "11\noooggooggog", "output": "oooggooggog" }, { "input": "12\nogggooooggog", "output": "ogggooooggog" }, { "input": "13\nogoggogogooog", "output": "***gg***oog" }, { "input": "15\nggooogoooggoggg", "output": "ggoo***ooggoggg" }, { "input": "14\noogooooggooggo", "output": "o***oooggooggo" }, { "input": "1\na", "output": "a" }, { "input": "1\ng", "output": "g" }, { "input": "1\nz", "output": "z" }, { "input": "46\nsdfkogogogogergergogogergerogogogogoergoegogog", "output": "sdfk***gergerg***gerger***ergoeg***g" }, { "input": "86\ngdfggogogodfogogdofgoodfogodgodgfogoogdodhbofgobgbgfogoogdfogogogogogoogggsgfosogodgon", "output": "gdfgg***df***gdofgoodf***dgodgf***ogdodhbofgobgbgf***ogdf***ogggsgfos***dgon" }, { "input": "83\nergegergoogogogerogoerorogroeorgefxcfgzdgawofqpwzxcvbnmsdfkfpweoriqgtogooggsdgogoog", "output": "ergegergo***ger***erorogroeorgefxcfgzdgawofqpwzxcvbnmsdfkfpweoriqgt***oggsdg***og" }, { "input": "2\nog", "output": "og" }, { "input": "4\nogog", "output": "***g" }, { "input": "4\nogoo", "output": "***o" }, { "input": "29\naaaogogogogogogogogogogogobbb", "output": "aaa***bbb" }, { "input": "11\nogogogogogo", "output": "***" }, { "input": "9\nogogogogo", "output": "***" }, { "input": "3\nogo", "output": "***" }, { "input": "15\nogogogogogogogo", "output": "***" }, { "input": "25\nogogogogogogogogogogogogo", "output": "***" } ]
1,604,469,927
2,147,483,647
Python 3
OK
TESTS
48
108
0
from math import ceil n = int(input()) x = input() p = ['ogo']+['ogo'+'go'*i for i in range(1,50)] j = ceil((n-3)/2) if n<3: print(x) else: for i in range(100, 0, -1): ss = 'o' + 'go' * i while ss in x: x = x.replace(ss,'***') print(x)
Title: Interview with Oleg Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp has interviewed Oleg and has written the interview down without punctuation marks and spaces to save time. Thus, the interview is now a string *s* consisting of *n* lowercase English letters. There is a filler word ogo in Oleg's speech. All words that can be obtained from ogo by adding go several times to the end of it are also considered to be fillers. For example, the words ogo, ogogo, ogogogo are fillers, but the words go, og, ogog, ogogog and oggo are not fillers. The fillers have maximal size, for example, for ogogoo speech we can't consider ogo a filler and goo as a normal phrase. We should consider ogogo as a filler here. To print the interview, Polycarp has to replace each of the fillers with three asterisks. Note that a filler word is replaced with exactly three asterisks regardless of its length. Polycarp has dealt with this problem in no time. Can you do the same? The clock is ticking! Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100) — the length of the interview. The second line contains the string *s* of length *n*, consisting of lowercase English letters. Output Specification: Print the interview text after the replacement of each of the fillers with "***". It is allowed for the substring "***" to have several consecutive occurences. Demo Input: ['7\naogogob\n', '13\nogogmgogogogo\n', '9\nogoogoogo\n'] Demo Output: ['a***b\n', '***gmg***\n', '*********\n'] Note: The first sample contains one filler word ogogo, so the interview for printing is "a***b". The second sample contains two fillers ogo and ogogogo. Thus, the interview is transformed to "***gmg***".
```python from math import ceil n = int(input()) x = input() p = ['ogo']+['ogo'+'go'*i for i in range(1,50)] j = ceil((n-3)/2) if n<3: print(x) else: for i in range(100, 0, -1): ss = 'o' + 'go' * i while ss in x: x = x.replace(ss,'***') print(x) ```
3
911
D
Inversion Counting
PROGRAMMING
1,800
[ "brute force", "math" ]
null
null
A permutation of size *n* is an array of size *n* such that each integer from 1 to *n* occurs exactly once in this array. An inversion in a permutation *p* is a pair of indices (*i*,<=*j*) such that *i*<=&gt;<=*j* and *a**i*<=&lt;<=*a**j*. For example, a permutation [4,<=1,<=3,<=2] contains 4 inversions: (2,<=1), (3,<=1), (4,<=1), (4,<=3). You are given a permutation *a* of size *n* and *m* queries to it. Each query is represented by two indices *l* and *r* denoting that you have to reverse the segment [*l*,<=*r*] of the permutation. For example, if *a*<==<=[1,<=2,<=3,<=4] and a query *l*<==<=2, *r*<==<=4 is applied, then the resulting permutation is [1,<=4,<=3,<=2]. After each query you have to determine whether the number of inversions is odd or even.
The first line contains one integer *n* (1<=≤<=*n*<=≤<=1500) — the size of the permutation. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=*n*) — the elements of the permutation. These integers are pairwise distinct. The third line contains one integer *m* (1<=≤<=*m*<=≤<=2·105) — the number of queries to process. Then *m* lines follow, *i*-th line containing two integers *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) denoting that *i*-th query is to reverse a segment [*l**i*,<=*r**i*] of the permutation. All queries are performed one after another.
Print *m* lines. *i*-th of them must be equal to odd if the number of inversions in the permutation after *i*-th query is odd, and even otherwise.
[ "3\n1 2 3\n2\n1 2\n2 3\n", "4\n1 2 4 3\n4\n1 1\n1 4\n1 4\n2 3\n" ]
[ "odd\neven\n", "odd\nodd\nodd\neven\n" ]
The first example: 1. after the first query *a* = [2, 1, 3], inversion: (2, 1); 1. after the second query *a* = [2, 3, 1], inversions: (3, 1), (3, 2). The second example: 1. *a* = [1, 2, 4, 3], inversion: (4, 3); 1. *a* = [3, 4, 2, 1], inversions: (3, 1), (4, 1), (3, 2), (4, 2), (4, 3); 1. *a* = [1, 2, 4, 3], inversion: (4, 3); 1. *a* = [1, 4, 2, 3], inversions: (3, 2), (4, 2).
0
[ { "input": "3\n1 2 3\n2\n1 2\n2 3", "output": "odd\neven" }, { "input": "4\n1 2 4 3\n4\n1 1\n1 4\n1 4\n2 3", "output": "odd\nodd\nodd\neven" }, { "input": "7\n2 6 1 7 4 5 3\n5\n4 5\n7 7\n5 6\n4 5\n4 5", "output": "odd\nodd\neven\nodd\neven" }, { "input": "3\n2 1 3\n3\n2 3\n1 1\n1 3", "output": "even\neven\nodd" }, { "input": "1\n1\n10\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "even\neven\neven\neven\neven\neven\neven\neven\neven\neven" } ]
1,514,655,904
2,147,483,647
Python 3
OK
TESTS
23
1,700
21,504,000
n = int(input()) lst = [] for x in input().split(): lst.append(int(x)) m = int(input()) pair = [] for x in range(m): (l, r) = map(int, input().split()) pair.append((l, r)) k = 0 for x in range(0, len(lst) - 1): for y in range(x + 1, len(lst)): if lst[y] < lst[x]: k += 1 for (l, r) in pair: if (k - (r - l + 1) // 2) % 2 == 0: print("even") else: print("odd") k = k - (r - l + 1) // 2
Title: Inversion Counting Time Limit: None seconds Memory Limit: None megabytes Problem Description: A permutation of size *n* is an array of size *n* such that each integer from 1 to *n* occurs exactly once in this array. An inversion in a permutation *p* is a pair of indices (*i*,<=*j*) such that *i*<=&gt;<=*j* and *a**i*<=&lt;<=*a**j*. For example, a permutation [4,<=1,<=3,<=2] contains 4 inversions: (2,<=1), (3,<=1), (4,<=1), (4,<=3). You are given a permutation *a* of size *n* and *m* queries to it. Each query is represented by two indices *l* and *r* denoting that you have to reverse the segment [*l*,<=*r*] of the permutation. For example, if *a*<==<=[1,<=2,<=3,<=4] and a query *l*<==<=2, *r*<==<=4 is applied, then the resulting permutation is [1,<=4,<=3,<=2]. After each query you have to determine whether the number of inversions is odd or even. Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=1500) — the size of the permutation. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=*n*) — the elements of the permutation. These integers are pairwise distinct. The third line contains one integer *m* (1<=≤<=*m*<=≤<=2·105) — the number of queries to process. Then *m* lines follow, *i*-th line containing two integers *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) denoting that *i*-th query is to reverse a segment [*l**i*,<=*r**i*] of the permutation. All queries are performed one after another. Output Specification: Print *m* lines. *i*-th of them must be equal to odd if the number of inversions in the permutation after *i*-th query is odd, and even otherwise. Demo Input: ['3\n1 2 3\n2\n1 2\n2 3\n', '4\n1 2 4 3\n4\n1 1\n1 4\n1 4\n2 3\n'] Demo Output: ['odd\neven\n', 'odd\nodd\nodd\neven\n'] Note: The first example: 1. after the first query *a* = [2, 1, 3], inversion: (2, 1); 1. after the second query *a* = [2, 3, 1], inversions: (3, 1), (3, 2). The second example: 1. *a* = [1, 2, 4, 3], inversion: (4, 3); 1. *a* = [3, 4, 2, 1], inversions: (3, 1), (4, 1), (3, 2), (4, 2), (4, 3); 1. *a* = [1, 2, 4, 3], inversion: (4, 3); 1. *a* = [1, 4, 2, 3], inversions: (3, 2), (4, 2).
```python n = int(input()) lst = [] for x in input().split(): lst.append(int(x)) m = int(input()) pair = [] for x in range(m): (l, r) = map(int, input().split()) pair.append((l, r)) k = 0 for x in range(0, len(lst) - 1): for y in range(x + 1, len(lst)): if lst[y] < lst[x]: k += 1 for (l, r) in pair: if (k - (r - l + 1) // 2) % 2 == 0: print("even") else: print("odd") k = k - (r - l + 1) // 2 ```
3
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,684,505,744
2,147,483,647
Python 3
OK
TESTS
35
92
0
n,m=map(int,input().split()) f=n*m r=int(f/2) print(r)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python n,m=map(int,input().split()) f=n*m r=int(f/2) print(r) ```
3.977
304
A
Pythagorean Theorem II
PROGRAMMING
1,200
[ "brute force", "math" ]
null
null
In mathematics, the Pythagorean theorem — is a relation in Euclidean geometry among the three sides of a right-angled triangle. In terms of areas, it states: In any right-angled triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle). The theorem can be written as an equation relating the lengths of the sides *a*, *b* and *c*, often called the Pythagorean equation: where *c* represents the length of the hypotenuse, and *a* and *b* represent the lengths of the other two sides. Given *n*, your task is to count how many right-angled triangles with side-lengths *a*, *b* and *c* that satisfied an inequality 1<=≤<=*a*<=≤<=*b*<=≤<=*c*<=≤<=*n*.
The only line contains one integer *n* (1<=≤<=*n*<=≤<=104) as we mentioned above.
Print a single integer — the answer to the problem.
[ "5\n", "74\n" ]
[ "1\n", "35\n" ]
none
500
[ { "input": "5", "output": "1" }, { "input": "74", "output": "35" }, { "input": "1000", "output": "881" }, { "input": "586", "output": "472" }, { "input": "2", "output": "0" }, { "input": "362", "output": "258" }, { "input": "778", "output": "653" }, { "input": "194", "output": "120" }, { "input": "906", "output": "786" }, { "input": "659", "output": "535" }, { "input": "75", "output": "37" }, { "input": "787", "output": "664" }, { "input": "851", "output": "730" }, { "input": "563", "output": "446" }, { "input": "979", "output": "862" }, { "input": "395", "output": "291" }, { "input": "755", "output": "634" }, { "input": "171", "output": "103" }, { "input": "883", "output": "759" }, { "input": "400", "output": "294" }, { "input": "817", "output": "693" }, { "input": "177", "output": "107" }, { "input": "593", "output": "476" }, { "input": "305", "output": "214" }, { "input": "721", "output": "595" }, { "input": "785", "output": "664" }, { "input": "497", "output": "383" }, { "input": "913", "output": "791" }, { "input": "625", "output": "507" }, { "input": "334", "output": "236" }, { "input": "10000", "output": "12471" }, { "input": "9999", "output": "12467" } ]
1,591,722,548
2,147,483,647
PyPy 3
OK
TESTS
32
2,744
1,638,400
n=int(input()) dic={} for i in range(1,n+1): dic[i*i]=0 ans=0 for i in range(1,n+1): for j in range(i,n+1): if (i*i)+(j*j) in dic: ans+=1 print(ans)
Title: Pythagorean Theorem II Time Limit: None seconds Memory Limit: None megabytes Problem Description: In mathematics, the Pythagorean theorem — is a relation in Euclidean geometry among the three sides of a right-angled triangle. In terms of areas, it states: In any right-angled triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle). The theorem can be written as an equation relating the lengths of the sides *a*, *b* and *c*, often called the Pythagorean equation: where *c* represents the length of the hypotenuse, and *a* and *b* represent the lengths of the other two sides. Given *n*, your task is to count how many right-angled triangles with side-lengths *a*, *b* and *c* that satisfied an inequality 1<=≤<=*a*<=≤<=*b*<=≤<=*c*<=≤<=*n*. Input Specification: The only line contains one integer *n* (1<=≤<=*n*<=≤<=104) as we mentioned above. Output Specification: Print a single integer — the answer to the problem. Demo Input: ['5\n', '74\n'] Demo Output: ['1\n', '35\n'] Note: none
```python n=int(input()) dic={} for i in range(1,n+1): dic[i*i]=0 ans=0 for i in range(1,n+1): for j in range(i,n+1): if (i*i)+(j*j) in dic: ans+=1 print(ans) ```
3
725
A
Jumping Ball
PROGRAMMING
1,000
[ "implementation" ]
null
null
In a new version of the famous Pinball game, one of the most important parts of the game field is a sequence of *n* bumpers. The bumpers are numbered with integers from 1 to *n* from left to right. There are two types of bumpers. They are denoted by the characters '&lt;' and '&gt;'. When the ball hits the bumper at position *i* it goes one position to the right (to the position *i*<=+<=1) if the type of this bumper is '&gt;', or one position to the left (to *i*<=-<=1) if the type of the bumper at position *i* is '&lt;'. If there is no such position, in other words if *i*<=-<=1<=&lt;<=1 or *i*<=+<=1<=&gt;<=*n*, the ball falls from the game field. Depending on the ball's starting position, the ball may eventually fall from the game field or it may stay there forever. You are given a string representing the bumpers' types. Calculate the number of positions such that the ball will eventually fall from the game field if it starts at that position.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the length of the sequence of bumpers. The second line contains the string, which consists of the characters '&lt;' and '&gt;'. The character at the *i*-th position of this string corresponds to the type of the *i*-th bumper.
Print one integer — the number of positions in the sequence such that the ball will eventually fall from the game field if it starts at that position.
[ "4\n&lt;&lt;&gt;&lt;\n", "5\n&gt;&gt;&gt;&gt;&gt;\n", "4\n&gt;&gt;&lt;&lt;\n" ]
[ "2", "5", "0" ]
In the first sample, the ball will fall from the field if starts at position 1 or position 2. In the second sample, any starting position will result in the ball falling from the field.
500
[ { "input": "4\n<<><", "output": "2" }, { "input": "5\n>>>>>", "output": "5" }, { "input": "4\n>><<", "output": "0" }, { "input": "3\n<<>", "output": "3" }, { "input": "3\n<<<", "output": "3" }, { "input": "3\n><<", "output": "0" }, { "input": "1\n<", "output": "1" }, { "input": "2\n<>", "output": "2" }, { "input": "3\n<>>", "output": "3" }, { "input": "3\n><>", "output": "1" }, { "input": "2\n><", "output": "0" }, { "input": "2\n>>", "output": "2" }, { "input": "2\n<<", "output": "2" }, { "input": "1\n>", "output": "1" }, { "input": "3\n>><", "output": "0" }, { "input": "3\n>>>", "output": "3" }, { "input": "3\n<><", "output": "1" }, { "input": "10\n<<<><<<>>>", "output": "6" }, { "input": "20\n><><<><<<>>>>>>>>>>>", "output": "11" }, { "input": "20\n<<<<<<<<<<><<<<>>>>>", "output": "15" }, { "input": "50\n<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>", "output": "50" }, { "input": "100\n<<<<<<<<<<<<<<<<<<<<<<<<>><<>><<<<<>><>><<<>><><<>>><<>>><<<<><><><<><<<<><>>>>>>>>>>>>>>>>>>>>>>>>>", "output": "49" }, { "input": "100\n<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>><<>><>><>><<><><><><>>>><><<<>>>><<<>>>>>>><><", "output": "50" }, { "input": "100\n<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "output": "100" }, { "input": "100\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", "output": "100" }, { "input": "12\n<<>><<>><<>>", "output": "4" }, { "input": "6\n<<><>>", "output": "4" }, { "input": "6\n><>>>>", "output": "4" }, { "input": "8\n>>>><<<>", "output": "1" }, { "input": "4\n<><>", "output": "2" }, { "input": "4\n><><", "output": "0" }, { "input": "7\n<<>>><>", "output": "3" }, { "input": "10\n><><>>>>>>", "output": "6" }, { "input": "5\n<><>>", "output": "3" }, { "input": "12\n<><<<<>>>>>>", "output": "7" }, { "input": "6\n<>><<>", "output": "2" }, { "input": "6\n>>><>>", "output": "2" }, { "input": "10\n><><>>>><>", "output": "1" }, { "input": "5\n><>>>", "output": "3" }, { "input": "5\n<<><>", "output": "3" }, { "input": "5\n<><<<", "output": "1" }, { "input": "4\n<><<", "output": "1" }, { "input": "8\n<<>><<>>", "output": "4" }, { "input": "7\n<<><>>>", "output": "5" }, { "input": "5\n><<>>", "output": "2" }, { "input": "10\n<<<<<>>>>>", "output": "10" }, { "input": "6\n><<<<<", "output": "0" }, { "input": "8\n<<><><>>", "output": "4" }, { "input": "10\n<<<<><<<><", "output": "4" }, { "input": "12\n<<<>>>><<>>>", "output": "6" }, { "input": "4\n><>>", "output": "2" }, { "input": "11\n<<><<>><<>>", "output": "4" } ]
1,477,149,973
1,272
Python 3
OK
TESTS
78
109
614,400
n = int(input()) s = input() l = 0 pos = 0 for i in range(len(s)): if s[i] == '>': l += 1 if l == 1: pos = i r = s.rfind("<") ans = 0 if l > 0 and pos < r: ans = r - pos + 1 print(len(s) - ans)
Title: Jumping Ball Time Limit: None seconds Memory Limit: None megabytes Problem Description: In a new version of the famous Pinball game, one of the most important parts of the game field is a sequence of *n* bumpers. The bumpers are numbered with integers from 1 to *n* from left to right. There are two types of bumpers. They are denoted by the characters '&lt;' and '&gt;'. When the ball hits the bumper at position *i* it goes one position to the right (to the position *i*<=+<=1) if the type of this bumper is '&gt;', or one position to the left (to *i*<=-<=1) if the type of the bumper at position *i* is '&lt;'. If there is no such position, in other words if *i*<=-<=1<=&lt;<=1 or *i*<=+<=1<=&gt;<=*n*, the ball falls from the game field. Depending on the ball's starting position, the ball may eventually fall from the game field or it may stay there forever. You are given a string representing the bumpers' types. Calculate the number of positions such that the ball will eventually fall from the game field if it starts at that position. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the length of the sequence of bumpers. The second line contains the string, which consists of the characters '&lt;' and '&gt;'. The character at the *i*-th position of this string corresponds to the type of the *i*-th bumper. Output Specification: Print one integer — the number of positions in the sequence such that the ball will eventually fall from the game field if it starts at that position. Demo Input: ['4\n&lt;&lt;&gt;&lt;\n', '5\n&gt;&gt;&gt;&gt;&gt;\n', '4\n&gt;&gt;&lt;&lt;\n'] Demo Output: ['2', '5', '0'] Note: In the first sample, the ball will fall from the field if starts at position 1 or position 2. In the second sample, any starting position will result in the ball falling from the field.
```python n = int(input()) s = input() l = 0 pos = 0 for i in range(len(s)): if s[i] == '>': l += 1 if l == 1: pos = i r = s.rfind("<") ans = 0 if l > 0 and pos < r: ans = r - pos + 1 print(len(s) - ans) ```
3
24
A
Ring road
PROGRAMMING
1,400
[ "graphs" ]
A. Ring road
2
256
Nowadays the one-way traffic is introduced all over the world in order to improve driving safety and reduce traffic jams. The government of Berland decided to keep up with new trends. Formerly all *n* cities of Berland were connected by *n* two-way roads in the ring, i. e. each city was connected directly to exactly two other cities, and from each city it was possible to get to any other city. Government of Berland introduced one-way traffic on all *n* roads, but it soon became clear that it's impossible to get from some of the cities to some others. Now for each road is known in which direction the traffic is directed at it, and the cost of redirecting the traffic. What is the smallest amount of money the government should spend on the redirecting of roads so that from every city you can get to any other?
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of cities (and roads) in Berland. Next *n* lines contain description of roads. Each road is described by three integers *a**i*, *b**i*, *c**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=*a**i*<=≠<=*b**i*,<=1<=≤<=*c**i*<=≤<=100) — road is directed from city *a**i* to city *b**i*, redirecting the traffic costs *c**i*.
Output single integer — the smallest amount of money the government should spend on the redirecting of roads so that from every city you can get to any other.
[ "3\n1 3 1\n1 2 1\n3 2 1\n", "3\n1 3 1\n1 2 5\n3 2 1\n", "6\n1 5 4\n5 3 8\n2 4 15\n1 6 16\n2 3 23\n4 6 42\n", "4\n1 2 9\n2 3 8\n3 4 7\n4 1 5\n" ]
[ "1\n", "2\n", "39\n", "0\n" ]
none
0
[ { "input": "3\n1 3 1\n1 2 1\n3 2 1", "output": "1" }, { "input": "3\n1 3 1\n1 2 5\n3 2 1", "output": "2" }, { "input": "6\n1 5 4\n5 3 8\n2 4 15\n1 6 16\n2 3 23\n4 6 42", "output": "39" }, { "input": "4\n1 2 9\n2 3 8\n3 4 7\n4 1 5", "output": "0" }, { "input": "5\n5 3 89\n2 3 43\n4 2 50\n1 4 69\n1 5 54", "output": "143" }, { "input": "10\n1 8 16\n6 1 80\n6 5 27\n5 7 86\n7 9 72\n4 9 20\n4 3 54\n3 2 57\n10 2 61\n8 10 90", "output": "267" }, { "input": "17\n8 12 43\n13 12 70\n7 13 68\n11 7 19\n5 11 24\n5 1 100\n4 1 10\n3 4 68\n2 3 46\n15 2 58\n15 6 38\n6 9 91\n9 10 72\n14 10 32\n14 17 97\n17 16 67\n8 16 40", "output": "435" }, { "input": "22\n18 22 46\n18 21 87\n5 21 17\n5 10 82\n10 12 81\n17 12 98\n16 17 17\n16 13 93\n4 13 64\n4 11 65\n15 11 18\n6 15 35\n6 7 61\n7 19 12\n19 1 65\n8 1 32\n8 2 46\n9 2 19\n9 3 58\n3 14 65\n20 14 67\n20 22 2", "output": "413" }, { "input": "39\n18 11 10\n5 18 97\n5 39 77\n39 24 64\n24 28 79\n28 14 6\n34 14 72\n6 34 64\n6 12 93\n12 8 66\n13 8 40\n35 13 20\n35 32 4\n32 19 55\n19 3 18\n3 21 26\n30 21 54\n30 27 5\n4 27 8\n22 4 89\n15 22 54\n15 2 90\n36 2 58\n33 36 4\n33 17 50\n17 16 21\n31 16 64\n1 31 77\n1 23 89\n23 7 62\n38 7 74\n9 38 15\n9 25 93\n25 10 32\n10 26 78\n20 26 63\n37 20 9\n29 37 33\n11 29 45", "output": "950" }, { "input": "50\n30 34 48\n11 30 15\n11 5 98\n4 5 57\n43 4 21\n14 43 74\n14 19 52\n45 19 60\n45 28 52\n24 28 94\n24 26 2\n48 26 48\n48 13 53\n13 42 7\n42 37 23\n37 17 70\n17 7 29\n20 7 93\n33 20 21\n33 2 53\n21 2 83\n49 21 33\n46 49 28\n18 46 1\n36 18 99\n47 36 52\n47 29 41\n41 29 40\n31 41 45\n31 38 25\n38 25 41\n25 8 18\n9 8 60\n9 27 29\n16 27 17\n16 22 6\n22 39 1\n1 39 8\n1 50 89\n50 12 64\n40 12 7\n40 44 71\n44 10 23\n15 10 70\n15 32 53\n23 32 92\n35 23 14\n35 3 25\n3 6 93\n6 34 99", "output": "1117" }, { "input": "3\n3 1 1\n2 1 1\n2 3 1", "output": "1" } ]
1,545,325,821
2,147,483,647
Python 3
OK
TESTS
21
248
0
n = int(input()) road = [map(int,input().split()) for i in range(n)] graf = [[] for i in range(n + 1)] s = 0 for a,b,c in road: graf[a].append((b,0)) graf[b].append((a,c)) s += c vis = [0] * (n + 1) def dfs(u,p): d = 0 for v,c in graf[u]: if v != p and vis[v] == 0: vis[v] = 1 d += dfs(v,u) + c return d d = dfs(1,-1) print(min(d,s - d))
Title: Ring road Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Nowadays the one-way traffic is introduced all over the world in order to improve driving safety and reduce traffic jams. The government of Berland decided to keep up with new trends. Formerly all *n* cities of Berland were connected by *n* two-way roads in the ring, i. e. each city was connected directly to exactly two other cities, and from each city it was possible to get to any other city. Government of Berland introduced one-way traffic on all *n* roads, but it soon became clear that it's impossible to get from some of the cities to some others. Now for each road is known in which direction the traffic is directed at it, and the cost of redirecting the traffic. What is the smallest amount of money the government should spend on the redirecting of roads so that from every city you can get to any other? Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of cities (and roads) in Berland. Next *n* lines contain description of roads. Each road is described by three integers *a**i*, *b**i*, *c**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=*a**i*<=≠<=*b**i*,<=1<=≤<=*c**i*<=≤<=100) — road is directed from city *a**i* to city *b**i*, redirecting the traffic costs *c**i*. Output Specification: Output single integer — the smallest amount of money the government should spend on the redirecting of roads so that from every city you can get to any other. Demo Input: ['3\n1 3 1\n1 2 1\n3 2 1\n', '3\n1 3 1\n1 2 5\n3 2 1\n', '6\n1 5 4\n5 3 8\n2 4 15\n1 6 16\n2 3 23\n4 6 42\n', '4\n1 2 9\n2 3 8\n3 4 7\n4 1 5\n'] Demo Output: ['1\n', '2\n', '39\n', '0\n'] Note: none
```python n = int(input()) road = [map(int,input().split()) for i in range(n)] graf = [[] for i in range(n + 1)] s = 0 for a,b,c in road: graf[a].append((b,0)) graf[b].append((a,c)) s += c vis = [0] * (n + 1) def dfs(u,p): d = 0 for v,c in graf[u]: if v != p and vis[v] == 0: vis[v] = 1 d += dfs(v,u) + c return d d = dfs(1,-1) print(min(d,s - d)) ```
3.938
1,005
B
Delete from the Left
PROGRAMMING
900
[ "brute force", "implementation", "strings" ]
null
null
You are given two strings $s$ and $t$. In a single move, you can choose any of two strings and delete the first (that is, the leftmost) character. After a move, the length of the string decreases by $1$. You can't choose a string if it is empty. For example: - by applying a move to the string "where", the result is the string "here", - by applying a move to the string "a", the result is an empty string "". You are required to make two given strings equal using the fewest number of moves. It is possible that, in the end, both strings will be equal to the empty string, and so, are equal to each other. In this case, the answer is obviously the sum of the lengths of the initial strings. Write a program that finds the minimum number of moves to make two given strings $s$ and $t$ equal.
The first line of the input contains $s$. In the second line of the input contains $t$. Both strings consist only of lowercase Latin letters. The number of letters in each string is between 1 and $2\cdot10^5$, inclusive.
Output the fewest number of moves required. It is possible that, in the end, both strings will be equal to the empty string, and so, are equal to each other. In this case, the answer is obviously the sum of the lengths of the given strings.
[ "test\nwest\n", "codeforces\nyes\n", "test\nyes\n", "b\nab\n" ]
[ "2\n", "9\n", "7\n", "1\n" ]
In the first example, you should apply the move once to the first string and apply the move once to the second string. As a result, both strings will be equal to "est". In the second example, the move should be applied to the string "codeforces" $8$ times. As a result, the string becomes "codeforces" $\to$ "es". The move should be applied to the string "yes" once. The result is the same string "yes" $\to$ "es". In the third example, you can make the strings equal only by completely deleting them. That is, in the end, both strings will be empty. In the fourth example, the first character of the second string should be deleted.
0
[ { "input": "test\nwest", "output": "2" }, { "input": "codeforces\nyes", "output": "9" }, { "input": "test\nyes", "output": "7" }, { "input": "b\nab", "output": "1" }, { "input": "z\nz", "output": "0" }, { "input": "abacabadabacaba\nabacabadacaba", "output": "18" }, { "input": "z\na", "output": "2" }, { "input": "ama\nsama", "output": "1" }, { "input": "aaabc\nbc", "output": "3" }, { "input": "lxuyspmieeuyxluv\ndfwxqvavzxctblaa", "output": "32" }, { "input": "ahmedaly\naly", "output": "5" }, { "input": "aa\na", "output": "1" }, { "input": "aa\nba", "output": "2" }, { "input": "cccba\nba", "output": "3" }, { "input": "a\nab", "output": "3" }, { "input": "dadc\ndddc", "output": "4" }, { "input": "aacaaab\nb", "output": "6" }, { "input": "dddc\ncdcde", "output": "9" }, { "input": "bbdab\ndab", "output": "2" }, { "input": "a\naa", "output": "1" }, { "input": "aa\nab", "output": "4" }, { "input": "codeforces\nces", "output": "7" } ]
1,642,523,155
2,147,483,647
Python 3
OK
TESTS
28
108
716,800
a=input() b=input() l=len(a)-1 m=len(b)-1 while l>=0 and m>=0 and a[l]==b[m]: l-=1 m-=1 print(l+m+2)
Title: Delete from the Left Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two strings $s$ and $t$. In a single move, you can choose any of two strings and delete the first (that is, the leftmost) character. After a move, the length of the string decreases by $1$. You can't choose a string if it is empty. For example: - by applying a move to the string "where", the result is the string "here", - by applying a move to the string "a", the result is an empty string "". You are required to make two given strings equal using the fewest number of moves. It is possible that, in the end, both strings will be equal to the empty string, and so, are equal to each other. In this case, the answer is obviously the sum of the lengths of the initial strings. Write a program that finds the minimum number of moves to make two given strings $s$ and $t$ equal. Input Specification: The first line of the input contains $s$. In the second line of the input contains $t$. Both strings consist only of lowercase Latin letters. The number of letters in each string is between 1 and $2\cdot10^5$, inclusive. Output Specification: Output the fewest number of moves required. It is possible that, in the end, both strings will be equal to the empty string, and so, are equal to each other. In this case, the answer is obviously the sum of the lengths of the given strings. Demo Input: ['test\nwest\n', 'codeforces\nyes\n', 'test\nyes\n', 'b\nab\n'] Demo Output: ['2\n', '9\n', '7\n', '1\n'] Note: In the first example, you should apply the move once to the first string and apply the move once to the second string. As a result, both strings will be equal to "est". In the second example, the move should be applied to the string "codeforces" $8$ times. As a result, the string becomes "codeforces" $\to$ "es". The move should be applied to the string "yes" once. The result is the same string "yes" $\to$ "es". In the third example, you can make the strings equal only by completely deleting them. That is, in the end, both strings will be empty. In the fourth example, the first character of the second string should be deleted.
```python a=input() b=input() l=len(a)-1 m=len(b)-1 while l>=0 and m>=0 and a[l]==b[m]: l-=1 m-=1 print(l+m+2) ```
3
894
A
QAQ
PROGRAMMING
800
[ "brute force", "dp" ]
null
null
"QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth. Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!). Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact.
The only line contains a string of length *n* (1<=≤<=*n*<=≤<=100). It's guaranteed that the string only contains uppercase English letters.
Print a single integer — the number of subsequences "QAQ" in the string.
[ "QAQAQYSYIOIWIN\n", "QAQQQZZYNOIWIN\n" ]
[ "4\n", "3\n" ]
In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
500
[ { "input": "QAQAQYSYIOIWIN", "output": "4" }, { "input": "QAQQQZZYNOIWIN", "output": "3" }, { "input": "QA", "output": "0" }, { "input": "IAQVAQZLQBQVQFTQQQADAQJA", "output": "24" }, { "input": "QQAAQASGAYAAAAKAKAQIQEAQAIAAIAQQQQQ", "output": "378" }, { "input": "AMVFNFJIAVNQJWIVONQOAOOQSNQSONOASONAONQINAONAOIQONANOIQOANOQINAONOQINAONOXJCOIAQOAOQAQAQAQAQWWWAQQAQ", "output": "1077" }, { "input": "AAQQAXBQQBQQXBNQRJAQKQNAQNQVDQASAGGANQQQQTJFFQQQTQQA", "output": "568" }, { "input": "KAZXAVLPJQBQVQQQQQAPAQQGQTQVZQAAAOYA", "output": "70" }, { "input": "W", "output": "0" }, { "input": "DBA", "output": "0" }, { "input": "RQAWNACASAAKAGAAAAQ", "output": "10" }, { "input": "QJAWZAAOAAGIAAAAAOQATASQAEAAAAQFQQHPA", "output": "111" }, { "input": "QQKWQAQAAAAAAAAGAAVAQUEQQUMQMAQQQNQLAMAAAUAEAAEMAAA", "output": "411" }, { "input": "QQUMQAYAUAAGWAAAQSDAVAAQAAAASKQJJQQQQMAWAYYAAAAAAEAJAXWQQ", "output": "625" }, { "input": "QORZOYAQ", "output": "1" }, { "input": "QCQAQAGAWAQQQAQAVQAQQQQAQAQQQAQAAATQAAVAAAQQQQAAAUUQAQQNQQWQQWAQAAQQKQYAQAAQQQAAQRAQQQWBQQQQAPBAQGQA", "output": "13174" }, { "input": "QQAQQAKQFAQLQAAWAMQAZQAJQAAQQOACQQAAAYANAQAQQAQAAQQAOBQQJQAQAQAQQQAAAAABQQQAVNZAQQQQAMQQAFAAEAQAQHQT", "output": "10420" }, { "input": "AQEGQHQQKQAQQPQKAQQQAAAAQQQAQEQAAQAAQAQFSLAAQQAQOQQAVQAAAPQQAWAQAQAFQAXAQQQQTRLOQAQQJQNQXQQQQSQVDQQQ", "output": "12488" }, { "input": "QNQKQQQLASQBAVQQQQAAQQOQRJQQAQQQEQZUOANAADAAQQJAQAQARAAAQQQEQBHTQAAQAAAAQQMKQQQIAOJJQQAQAAADADQUQQQA", "output": "9114" }, { "input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ", "output": "35937" }, { "input": "AMQQAAQAAQAAAAAAQQQBOAAANAAKQJCYQAE", "output": "254" }, { "input": "AYQBAEQGAQEOAKGIXLQJAIAKQAAAQPUAJAKAATFWQQAOQQQUFQYAQQMQHOKAAJXGFCARAQSATHAUQQAATQJJQDQRAANQQAE", "output": "2174" }, { "input": "AAQXAAQAYQAAAAGAQHVQYAGIVACADFAAQAAAAQZAAQMAKZAADQAQDAAQDAAAMQQOXYAQQQAKQBAAQQKAXQBJZDDLAAHQQ", "output": "2962" }, { "input": "AYQQYAVAMNIAUAAKBBQVACWKTQSAQZAAQAAASZJAWBCAALAARHACQAKQQAQAARPAQAAQAQAAZQUSHQAMFVFZQQQQSAQQXAA", "output": "2482" }, { "input": "LQMAQQARQAQBJQQQAGAAZQQXALQQAARQAQQQQAAQQAQQQAQQCAQQAQQAYQQQRAAZATQALYQQAAHHAAQHAAAAAAAAQQMAAQNAKQ", "output": "7768" }, { "input": "MAQQWAQOYQMAAAQAQPQZAOAAQAUAQNAAQAAAITQSAQAKAQKAQQWSQAAQQAGUCDQMQWKQUXKWQQAAQQAAQQZQDQQQAABXQUUXQOA", "output": "5422" }, { "input": "QTAAQDAQXAQQJQQQGAAAQQQQSBQZKAQQAQQQQEAQNUQBZCQLYQZQEQQAAQHQVAORKQVAQYQNASZQAARZAAGAAAAOQDCQ", "output": "3024" }, { "input": "QQWAQQGQQUZQQQLZAAQYQXQVAQFQUAQZUQZZQUKBHSHTQYLQAOQXAQQGAQQTQOAQARQADAJRAAQPQAQQUQAUAMAUVQAAAQQAWQ", "output": "4527" }, { "input": "QQAAQQAQVAQZQQQQAOEAQZPQIBQZACQQAFQQLAAQDATZQANHKYQQAQTAAFQRQAIQAJPWQAQTEIRXAEQQAYWAAAUKQQAQAQQQSQQH", "output": "6416" }, { "input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAAAA", "output": "14270" }, { "input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQ", "output": "13136" }, { "input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA", "output": "14270" }, { "input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQQAA", "output": "14231" }, { "input": "QQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA", "output": "15296" }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ", "output": "0" }, { "input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "0" }, { "input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ", "output": "0" }, { "input": "QAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQA", "output": "20825" }, { "input": "AQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQ", "output": "20825" }, { "input": "Q", "output": "0" }, { "input": "A", "output": "0" }, { "input": "FFF", "output": "0" }, { "input": "AAAAAA", "output": "0" } ]
1,699,897,144
2,147,483,647
PyPy 3
OK
TESTS
43
93
1,536,000
rijec = input() def racun(rijec): zbroj = 0 for i in range(len(rijec)): if rijec[i]=='Q': for j in range(i+1,len(rijec)): if rijec[j]=='A': for x in range(j+1,len(rijec)): if rijec[x]=='Q': zbroj+=1 return zbroj # racun(rijec) print(racun(rijec))
Title: QAQ Time Limit: None seconds Memory Limit: None megabytes Problem Description: "QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth. Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!). Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact. Input Specification: The only line contains a string of length *n* (1<=≤<=*n*<=≤<=100). It's guaranteed that the string only contains uppercase English letters. Output Specification: Print a single integer — the number of subsequences "QAQ" in the string. Demo Input: ['QAQAQYSYIOIWIN\n', 'QAQQQZZYNOIWIN\n'] Demo Output: ['4\n', '3\n'] Note: In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
```python rijec = input() def racun(rijec): zbroj = 0 for i in range(len(rijec)): if rijec[i]=='Q': for j in range(i+1,len(rijec)): if rijec[j]=='A': for x in range(j+1,len(rijec)): if rijec[x]=='Q': zbroj+=1 return zbroj # racun(rijec) print(racun(rijec)) ```
3
978
C
Letters
PROGRAMMING
1,000
[ "binary search", "implementation", "two pointers" ]
null
null
There are $n$ dormitories in Berland State University, they are numbered with integers from $1$ to $n$. Each dormitory consists of rooms, there are $a_i$ rooms in $i$-th dormitory. The rooms in $i$-th dormitory are numbered from $1$ to $a_i$. A postman delivers letters. Sometimes there is no specific dormitory and room number in it on an envelope. Instead of it only a room number among all rooms of all $n$ dormitories is written on an envelope. In this case, assume that all the rooms are numbered from $1$ to $a_1 + a_2 + \dots + a_n$ and the rooms of the first dormitory go first, the rooms of the second dormitory go after them and so on. For example, in case $n=2$, $a_1=3$ and $a_2=5$ an envelope can have any integer from $1$ to $8$ written on it. If the number $7$ is written on an envelope, it means that the letter should be delivered to the room number $4$ of the second dormitory. For each of $m$ letters by the room number among all $n$ dormitories, determine the particular dormitory and the room number in a dormitory where this letter should be delivered.
The first line contains two integers $n$ and $m$ $(1 \le n, m \le 2 \cdot 10^{5})$ — the number of dormitories and the number of letters. The second line contains a sequence $a_1, a_2, \dots, a_n$ $(1 \le a_i \le 10^{10})$, where $a_i$ equals to the number of rooms in the $i$-th dormitory. The third line contains a sequence $b_1, b_2, \dots, b_m$ $(1 \le b_j \le a_1 + a_2 + \dots + a_n)$, where $b_j$ equals to the room number (among all rooms of all dormitories) for the $j$-th letter. All $b_j$ are given in increasing order.
Print $m$ lines. For each letter print two integers $f$ and $k$ — the dormitory number $f$ $(1 \le f \le n)$ and the room number $k$ in this dormitory $(1 \le k \le a_f)$ to deliver the letter.
[ "3 6\n10 15 12\n1 9 12 23 26 37\n", "2 3\n5 10000000000\n5 6 9999999999\n" ]
[ "1 1\n1 9\n2 2\n2 13\n3 1\n3 12\n", "1 5\n2 1\n2 9999999994\n" ]
In the first example letters should be delivered in the following order: - the first letter in room $1$ of the first dormitory - the second letter in room $9$ of the first dormitory - the third letter in room $2$ of the second dormitory - the fourth letter in room $13$ of the second dormitory - the fifth letter in room $1$ of the third dormitory - the sixth letter in room $12$ of the third dormitory
0
[ { "input": "3 6\n10 15 12\n1 9 12 23 26 37", "output": "1 1\n1 9\n2 2\n2 13\n3 1\n3 12" }, { "input": "2 3\n5 10000000000\n5 6 9999999999", "output": "1 5\n2 1\n2 9999999994" }, { "input": "1 1\n1\n1", "output": "1 1" }, { "input": "5 15\n10 20 30 20 10\n1 6 10 11 15 30 31 54 60 61 76 80 81 84 90", "output": "1 1\n1 6\n1 10\n2 1\n2 5\n2 20\n3 1\n3 24\n3 30\n4 1\n4 16\n4 20\n5 1\n5 4\n5 10" }, { "input": "1 10\n10\n1 2 3 4 5 6 7 8 9 10", "output": "1 1\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10" }, { "input": "5 8\n10 1 1 1 10\n9 10 11 12 13 14 15 23", "output": "1 9\n1 10\n2 1\n3 1\n4 1\n5 1\n5 2\n5 10" }, { "input": "1 3\n10000\n1 4325 10000", "output": "1 1\n1 4325\n1 10000" }, { "input": "4 18\n5 6 3 4\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18", "output": "1 1\n1 2\n1 3\n1 4\n1 5\n2 1\n2 2\n2 3\n2 4\n2 5\n2 6\n3 1\n3 2\n3 3\n4 1\n4 2\n4 3\n4 4" }, { "input": "3 10\n1000000000 1000000000 1000000000\n543678543 567869543 1000000000 1000000001 1500000000 1999999999 2000000000 2000000001 2754432345 3000000000", "output": "1 543678543\n1 567869543\n1 1000000000\n2 1\n2 500000000\n2 999999999\n2 1000000000\n3 1\n3 754432345\n3 1000000000" } ]
1,667,480,927
2,147,483,647
Python 3
OK
TESTS
16
1,840
23,756,800
n,m=map(int,input().split()) a=list(map(int,input().split())) b=list(map(int,input().split())) for i in range(1,n): a[i]+=a[i-1] def rbinsearch(a, n,x): l = -1 r = n - 1 while r - l > 1: d = (l + r) // 2 if x <= a[d]: r = d else: l = d return r for i in b: ans=rbinsearch(a,n,i) if ans==0: t=0 else: t=a[ans-1] print(ans+1,i-t)
Title: Letters Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are $n$ dormitories in Berland State University, they are numbered with integers from $1$ to $n$. Each dormitory consists of rooms, there are $a_i$ rooms in $i$-th dormitory. The rooms in $i$-th dormitory are numbered from $1$ to $a_i$. A postman delivers letters. Sometimes there is no specific dormitory and room number in it on an envelope. Instead of it only a room number among all rooms of all $n$ dormitories is written on an envelope. In this case, assume that all the rooms are numbered from $1$ to $a_1 + a_2 + \dots + a_n$ and the rooms of the first dormitory go first, the rooms of the second dormitory go after them and so on. For example, in case $n=2$, $a_1=3$ and $a_2=5$ an envelope can have any integer from $1$ to $8$ written on it. If the number $7$ is written on an envelope, it means that the letter should be delivered to the room number $4$ of the second dormitory. For each of $m$ letters by the room number among all $n$ dormitories, determine the particular dormitory and the room number in a dormitory where this letter should be delivered. Input Specification: The first line contains two integers $n$ and $m$ $(1 \le n, m \le 2 \cdot 10^{5})$ — the number of dormitories and the number of letters. The second line contains a sequence $a_1, a_2, \dots, a_n$ $(1 \le a_i \le 10^{10})$, where $a_i$ equals to the number of rooms in the $i$-th dormitory. The third line contains a sequence $b_1, b_2, \dots, b_m$ $(1 \le b_j \le a_1 + a_2 + \dots + a_n)$, where $b_j$ equals to the room number (among all rooms of all dormitories) for the $j$-th letter. All $b_j$ are given in increasing order. Output Specification: Print $m$ lines. For each letter print two integers $f$ and $k$ — the dormitory number $f$ $(1 \le f \le n)$ and the room number $k$ in this dormitory $(1 \le k \le a_f)$ to deliver the letter. Demo Input: ['3 6\n10 15 12\n1 9 12 23 26 37\n', '2 3\n5 10000000000\n5 6 9999999999\n'] Demo Output: ['1 1\n1 9\n2 2\n2 13\n3 1\n3 12\n', '1 5\n2 1\n2 9999999994\n'] Note: In the first example letters should be delivered in the following order: - the first letter in room $1$ of the first dormitory - the second letter in room $9$ of the first dormitory - the third letter in room $2$ of the second dormitory - the fourth letter in room $13$ of the second dormitory - the fifth letter in room $1$ of the third dormitory - the sixth letter in room $12$ of the third dormitory
```python n,m=map(int,input().split()) a=list(map(int,input().split())) b=list(map(int,input().split())) for i in range(1,n): a[i]+=a[i-1] def rbinsearch(a, n,x): l = -1 r = n - 1 while r - l > 1: d = (l + r) // 2 if x <= a[d]: r = d else: l = d return r for i in b: ans=rbinsearch(a,n,i) if ans==0: t=0 else: t=a[ans-1] print(ans+1,i-t) ```
3
152
A
Marks
PROGRAMMING
900
[ "implementation" ]
null
null
Vasya, or Mr. Vasily Petrov is a dean of a department in a local university. After the winter exams he got his hands on a group's gradebook. Overall the group has *n* students. They received marks for *m* subjects. Each student got a mark from 1 to 9 (inclusive) for each subject. Let's consider a student the best at some subject, if there is no student who got a higher mark for this subject. Let's consider a student successful, if there exists a subject he is the best at. Your task is to find the number of successful students in the group.
The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of students and the number of subjects, correspondingly. Next *n* lines each containing *m* characters describe the gradebook. Each character in the gradebook is a number from 1 to 9. Note that the marks in a rows are not sepatated by spaces.
Print the single number — the number of successful students in the given group.
[ "3 3\n223\n232\n112\n", "3 5\n91728\n11828\n11111\n" ]
[ "2\n", "3\n" ]
In the first sample test the student number 1 is the best at subjects 1 and 3, student 2 is the best at subjects 1 and 2, but student 3 isn't the best at any subject. In the second sample test each student is the best at at least one subject.
500
[ { "input": "3 3\n223\n232\n112", "output": "2" }, { "input": "3 5\n91728\n11828\n11111", "output": "3" }, { "input": "2 2\n48\n27", "output": "1" }, { "input": "2 1\n4\n6", "output": "1" }, { "input": "1 2\n57", "output": "1" }, { "input": "1 1\n5", "output": "1" }, { "input": "3 4\n2553\n6856\n5133", "output": "2" }, { "input": "8 7\n6264676\n7854895\n3244128\n2465944\n8958761\n1378945\n3859353\n6615285", "output": "6" }, { "input": "9 8\n61531121\n43529859\n18841327\n88683622\n98995641\n62741632\n57441743\n49396792\n63381994", "output": "4" }, { "input": "10 20\n26855662887514171367\n48525577498621511535\n47683778377545341138\n47331616748732562762\n44876938191354974293\n24577238399664382695\n42724955594463126746\n79187344479926159359\n48349683283914388185\n82157191115518781898", "output": "9" }, { "input": "20 15\n471187383859588\n652657222494199\n245695867594992\n726154672861295\n614617827782772\n862889444974692\n373977167653235\n645434268565473\n785993468314573\n722176861496755\n518276853323939\n723712762593348\n728935312568886\n373898548522463\n769777587165681\n247592995114377\n182375946483965\n497496542536127\n988239919677856\n859844339819143", "output": "18" }, { "input": "13 9\n514562255\n322655246\n135162979\n733845982\n473117129\n513967187\n965649829\n799122777\n661249521\n298618978\n659352422\n747778378\n723261619", "output": "11" }, { "input": "75 1\n2\n3\n8\n3\n2\n1\n3\n1\n5\n1\n5\n4\n8\n8\n4\n2\n5\n1\n7\n6\n3\n2\n2\n3\n5\n5\n2\n4\n7\n7\n9\n2\n9\n5\n1\n4\n9\n5\n2\n4\n6\n6\n3\n3\n9\n3\n3\n2\n3\n4\n2\n6\n9\n1\n1\n1\n1\n7\n2\n3\n2\n9\n7\n4\n9\n1\n7\n5\n6\n8\n3\n4\n3\n4\n6", "output": "7" }, { "input": "92 3\n418\n665\n861\n766\n529\n416\n476\n676\n561\n995\n415\n185\n291\n176\n776\n631\n556\n488\n118\n188\n437\n496\n466\n131\n914\n118\n766\n365\n113\n897\n386\n639\n276\n946\n759\n169\n494\n837\n338\n351\n783\n311\n261\n862\n598\n132\n246\n982\n575\n364\n615\n347\n374\n368\n523\n132\n774\n161\n552\n492\n598\n474\n639\n681\n635\n342\n516\n483\n141\n197\n571\n336\n175\n596\n481\n327\n841\n133\n142\n146\n246\n396\n287\n582\n556\n996\n479\n814\n497\n363\n963\n162", "output": "23" }, { "input": "100 1\n1\n6\n9\n1\n1\n5\n5\n4\n6\n9\n6\n1\n7\n8\n7\n3\n8\n8\n7\n6\n2\n1\n5\n8\n7\n3\n5\n4\n9\n7\n1\n2\n4\n1\n6\n5\n1\n3\n9\n4\n5\n8\n1\n2\n1\n9\n7\n3\n7\n1\n2\n2\n2\n2\n3\n9\n7\n2\n4\n7\n1\n6\n8\n1\n5\n6\n1\n1\n2\n9\n7\n4\n9\n1\n9\n4\n1\n3\n5\n2\n4\n4\n6\n5\n1\n4\n5\n8\n4\n7\n6\n5\n6\n9\n5\n8\n1\n5\n1\n6", "output": "10" }, { "input": "100 2\n71\n87\n99\n47\n22\n87\n49\n73\n21\n12\n77\n43\n18\n41\n78\n62\n61\n16\n64\n89\n81\n54\n53\n92\n93\n94\n68\n93\n15\n68\n42\n93\n28\n19\n86\n16\n97\n17\n11\n43\n72\n76\n54\n95\n58\n53\n48\n45\n85\n85\n74\n21\n44\n51\n89\n75\n76\n17\n38\n62\n81\n22\n66\n59\n89\n85\n91\n87\n12\n97\n52\n87\n43\n89\n51\n58\n57\n98\n78\n68\n82\n41\n87\n29\n75\n72\n48\n14\n35\n71\n74\n91\n66\n67\n42\n98\n52\n54\n22\n41", "output": "21" }, { "input": "5 20\n11111111111111111111\n11111111111111111111\n11111111111111111111\n99999999999999999999\n11111111111111111119", "output": "2" }, { "input": "3 3\n111\n111\n999", "output": "1" }, { "input": "3 3\n119\n181\n711", "output": "3" }, { "input": "15 5\n91728\n11828\n11111\n91728\n11828\n11111\n91728\n11828\n11111\n91728\n11828\n11111\n91728\n11828\n11111", "output": "15" }, { "input": "2 20\n22222222222222222222\n11111111111111111111", "output": "1" }, { "input": "3 3\n233\n222\n111", "output": "2" }, { "input": "4 15\n222222222222222\n111111111111119\n111111111111119\n111111111111111", "output": "3" }, { "input": "4 1\n1\n9\n9\n9", "output": "3" }, { "input": "3 3\n123\n321\n132", "output": "3" }, { "input": "3 3\n113\n332\n322", "output": "3" }, { "input": "2 100\n2222222222222222222222222222222222222222222222222222222222222222222222221222222222222222222222222222\n1111111111111111111111111111111111111111111111111111111111111111111111119111111111111111111111111111", "output": "2" }, { "input": "3 3\n321\n231\n123", "output": "3" }, { "input": "2 100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222", "output": "1" }, { "input": "3 3\n221\n111\n111", "output": "3" } ]
1,525,547,693
2,147,483,647
Python 3
OK
TESTS
44
93
7,065,600
n, m = map(int, input().split()) arr = [] mx = [int(-1) for x in range(m)] for _ in range(n): temp = [int(x) for x in input().strip()] for i,x in enumerate(temp): mx[i] = max(mx[i], x) arr.append(temp) cnt = int(0) for ar in arr: for i,x in enumerate(ar): if mx[i] == x: cnt += 1 break print(cnt)
Title: Marks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya, or Mr. Vasily Petrov is a dean of a department in a local university. After the winter exams he got his hands on a group's gradebook. Overall the group has *n* students. They received marks for *m* subjects. Each student got a mark from 1 to 9 (inclusive) for each subject. Let's consider a student the best at some subject, if there is no student who got a higher mark for this subject. Let's consider a student successful, if there exists a subject he is the best at. Your task is to find the number of successful students in the group. Input Specification: The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of students and the number of subjects, correspondingly. Next *n* lines each containing *m* characters describe the gradebook. Each character in the gradebook is a number from 1 to 9. Note that the marks in a rows are not sepatated by spaces. Output Specification: Print the single number — the number of successful students in the given group. Demo Input: ['3 3\n223\n232\n112\n', '3 5\n91728\n11828\n11111\n'] Demo Output: ['2\n', '3\n'] Note: In the first sample test the student number 1 is the best at subjects 1 and 3, student 2 is the best at subjects 1 and 2, but student 3 isn't the best at any subject. In the second sample test each student is the best at at least one subject.
```python n, m = map(int, input().split()) arr = [] mx = [int(-1) for x in range(m)] for _ in range(n): temp = [int(x) for x in input().strip()] for i,x in enumerate(temp): mx[i] = max(mx[i], x) arr.append(temp) cnt = int(0) for ar in arr: for i,x in enumerate(ar): if mx[i] == x: cnt += 1 break print(cnt) ```
3
318
B
Strings of Power
PROGRAMMING
1,300
[ "implementation", "strings", "two pointers" ]
null
null
Volodya likes listening to heavy metal and (occasionally) reading. No wonder Volodya is especially interested in texts concerning his favourite music style. Volodya calls a string powerful if it starts with "heavy" and ends with "metal". Finding all powerful substrings (by substring Volodya means a subsequence of consecutive characters in a string) in a given text makes our hero especially joyful. Recently he felt an enormous fit of energy while reading a certain text. So Volodya decided to count all powerful substrings in this text and brag about it all day long. Help him in this difficult task. Two substrings are considered different if they appear at the different positions in the text. For simplicity, let us assume that Volodya's text can be represented as a single string.
Input contains a single non-empty string consisting of the lowercase Latin alphabet letters. Length of this string will not be greater than 106 characters.
Print exactly one number — the number of powerful substrings of the given string. Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "heavymetalisheavymetal\n", "heavymetalismetal\n", "trueheavymetalissotruewellitisalsosoheavythatyoucanalmostfeeltheweightofmetalonyou\n" ]
[ "3", "2", "3" ]
In the first sample the string "heavymetalisheavymetal" contains powerful substring "heavymetal" twice, also the whole string "heavymetalisheavymetal" is certainly powerful. In the second sample the string "heavymetalismetal" contains two powerful substrings: "heavymetal" and "heavymetalismetal".
500
[ { "input": "heavymetalisheavymetal", "output": "3" }, { "input": "heavymetalismetal", "output": "2" }, { "input": "trueheavymetalissotruewellitisalsosoheavythatyoucanalmostfeeltheweightofmetalonyou", "output": "3" }, { "input": "fpgzbvhheavymheheavyzmheavyavyebknkhheavyhsbqmmetheavyalmetalheavyyomtua", "output": "5" }, { "input": "metametaheavyetalalmetalavylkeoheavyhemetaleavycdk", "output": "3" }, { "input": "hg", "output": "0" } ]
1,696,382,720
2,147,483,647
Python 3
OK
TESTS
30
966
3,072,000
# بسم الله الرحمن الرحيم # صلو على نبينا محمد صلى الله عليه و سلم ##############--->>>>> Mohamed Mostafa Mohamed Abdelhamed <<<<<---############## """ ____ _ _____ / ___|___ __| | ___| ___|__ _ __ ___ ___ ___ | | / _ \ / _` |/ _ \ |_ / _ \| '__/ __/ _ \/ __| | |__| (_) | (_| | __/ _| (_) | | | (_| __/\__ \ \____\___/ \__,_|\___|_| \___/|_| \___\___||___/ """ ss = input() a = 0 cc = 0 c = 0 while a < len(ss) - 4: if ss[a : a + 5] == "heavy": cc += 1 a += 4 if ss[a : a + 5] == "metal": c += cc a += 4 a += 1 print(c)
Title: Strings of Power Time Limit: None seconds Memory Limit: None megabytes Problem Description: Volodya likes listening to heavy metal and (occasionally) reading. No wonder Volodya is especially interested in texts concerning his favourite music style. Volodya calls a string powerful if it starts with "heavy" and ends with "metal". Finding all powerful substrings (by substring Volodya means a subsequence of consecutive characters in a string) in a given text makes our hero especially joyful. Recently he felt an enormous fit of energy while reading a certain text. So Volodya decided to count all powerful substrings in this text and brag about it all day long. Help him in this difficult task. Two substrings are considered different if they appear at the different positions in the text. For simplicity, let us assume that Volodya's text can be represented as a single string. Input Specification: Input contains a single non-empty string consisting of the lowercase Latin alphabet letters. Length of this string will not be greater than 106 characters. Output Specification: Print exactly one number — the number of powerful substrings of the given string. Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier. Demo Input: ['heavymetalisheavymetal\n', 'heavymetalismetal\n', 'trueheavymetalissotruewellitisalsosoheavythatyoucanalmostfeeltheweightofmetalonyou\n'] Demo Output: ['3', '2', '3'] Note: In the first sample the string "heavymetalisheavymetal" contains powerful substring "heavymetal" twice, also the whole string "heavymetalisheavymetal" is certainly powerful. In the second sample the string "heavymetalismetal" contains two powerful substrings: "heavymetal" and "heavymetalismetal".
```python # بسم الله الرحمن الرحيم # صلو على نبينا محمد صلى الله عليه و سلم ##############--->>>>> Mohamed Mostafa Mohamed Abdelhamed <<<<<---############## """ ____ _ _____ / ___|___ __| | ___| ___|__ _ __ ___ ___ ___ | | / _ \ / _` |/ _ \ |_ / _ \| '__/ __/ _ \/ __| | |__| (_) | (_| | __/ _| (_) | | | (_| __/\__ \ \____\___/ \__,_|\___|_| \___/|_| \___\___||___/ """ ss = input() a = 0 cc = 0 c = 0 while a < len(ss) - 4: if ss[a : a + 5] == "heavy": cc += 1 a += 4 if ss[a : a + 5] == "metal": c += cc a += 4 a += 1 print(c) ```
3
732
A
Buy a Shovel
PROGRAMMING
800
[ "brute force", "constructive algorithms", "implementation", "math" ]
null
null
Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for *k* burles. Assume that there is an unlimited number of such shovels in the shop. In his pocket Polycarp has an unlimited number of "10-burle coins" and exactly one coin of *r* burles (1<=≤<=*r*<=≤<=9). What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of *r* burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel.
The single line of input contains two integers *k* and *r* (1<=≤<=*k*<=≤<=1000, 1<=≤<=*r*<=≤<=9) — the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from "10-burle coins". Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels.
Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change.
[ "117 3\n", "237 7\n", "15 2\n" ]
[ "9\n", "1\n", "2\n" ]
In the first example Polycarp can buy 9 shovels and pay 9·117 = 1053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change. In the second example it is enough for Polycarp to buy one shovel. In the third example Polycarp should buy two shovels and pay 2·15 = 30 burles. It is obvious that he can pay this sum without any change.
500
[ { "input": "117 3", "output": "9" }, { "input": "237 7", "output": "1" }, { "input": "15 2", "output": "2" }, { "input": "1 1", "output": "1" }, { "input": "1 9", "output": "9" }, { "input": "1000 3", "output": "1" }, { "input": "1000 1", "output": "1" }, { "input": "1000 9", "output": "1" }, { "input": "1 2", "output": "2" }, { "input": "999 9", "output": "1" }, { "input": "999 8", "output": "2" }, { "input": "105 6", "output": "2" }, { "input": "403 9", "output": "3" }, { "input": "546 4", "output": "4" }, { "input": "228 9", "output": "5" }, { "input": "57 2", "output": "6" }, { "input": "437 9", "output": "7" }, { "input": "997 6", "output": "8" }, { "input": "109 1", "output": "9" }, { "input": "998 9", "output": "5" }, { "input": "4 2", "output": "3" }, { "input": "9 3", "output": "7" }, { "input": "8 2", "output": "4" }, { "input": "1 3", "output": "3" }, { "input": "1 4", "output": "4" }, { "input": "1 5", "output": "5" }, { "input": "1 6", "output": "6" }, { "input": "1 7", "output": "7" }, { "input": "1 8", "output": "8" }, { "input": "100 3", "output": "1" }, { "input": "1000 2", "output": "1" }, { "input": "1000 4", "output": "1" }, { "input": "1000 5", "output": "1" }, { "input": "1000 6", "output": "1" }, { "input": "1000 7", "output": "1" }, { "input": "1000 8", "output": "1" }, { "input": "23 4", "output": "8" }, { "input": "33 1", "output": "7" }, { "input": "33 2", "output": "4" }, { "input": "666 5", "output": "5" }, { "input": "2 3", "output": "5" }, { "input": "5 5", "output": "1" }, { "input": "3 6", "output": "2" }, { "input": "12 4", "output": "2" }, { "input": "15 5", "output": "1" }, { "input": "2 5", "output": "5" }, { "input": "25 5", "output": "1" }, { "input": "2 9", "output": "5" }, { "input": "6 7", "output": "5" }, { "input": "8 9", "output": "5" }, { "input": "2 7", "output": "5" }, { "input": "4 7", "output": "5" }, { "input": "2 1", "output": "5" }, { "input": "261 1", "output": "1" } ]
1,699,308,052
2,147,483,647
Python 3
OK
TESTS
54
46
0
k , h = map(int,input().split()) for n in range(1,100): m = k * n if m % 10 == 0: print(n) break elif (m - h) % 10 == 0: print(n) break
Title: Buy a Shovel Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for *k* burles. Assume that there is an unlimited number of such shovels in the shop. In his pocket Polycarp has an unlimited number of "10-burle coins" and exactly one coin of *r* burles (1<=≤<=*r*<=≤<=9). What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of *r* burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel. Input Specification: The single line of input contains two integers *k* and *r* (1<=≤<=*k*<=≤<=1000, 1<=≤<=*r*<=≤<=9) — the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from "10-burle coins". Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels. Output Specification: Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change. Demo Input: ['117 3\n', '237 7\n', '15 2\n'] Demo Output: ['9\n', '1\n', '2\n'] Note: In the first example Polycarp can buy 9 shovels and pay 9·117 = 1053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change. In the second example it is enough for Polycarp to buy one shovel. In the third example Polycarp should buy two shovels and pay 2·15 = 30 burles. It is obvious that he can pay this sum without any change.
```python k , h = map(int,input().split()) for n in range(1,100): m = k * n if m % 10 == 0: print(n) break elif (m - h) % 10 == 0: print(n) break ```
3
465
A
inc ARG
PROGRAMMING
900
[ "implementation" ]
null
null
Sergey is testing a next-generation processor. Instead of bytes the processor works with memory cells consisting of *n* bits. These bits are numbered from 1 to *n*. An integer is stored in the cell in the following way: the least significant bit is stored in the first bit of the cell, the next significant bit is stored in the second bit, and so on; the most significant bit is stored in the *n*-th bit. Now Sergey wants to test the following instruction: "add 1 to the value of the cell". As a result of the instruction, the integer that is written in the cell must be increased by one; if some of the most significant bits of the resulting number do not fit into the cell, they must be discarded. Sergey wrote certain values ​​of the bits in the cell and is going to add one to its value. How many bits of the cell will change after the operation?
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of bits in the cell. The second line contains a string consisting of *n* characters — the initial state of the cell. The first character denotes the state of the first bit of the cell. The second character denotes the second least significant bit and so on. The last character denotes the state of the most significant bit.
Print a single integer — the number of bits in the cell which change their state after we add 1 to the cell.
[ "4\n1100\n", "4\n1111\n" ]
[ "3\n", "4\n" ]
In the first sample the cell ends up with value 0010, in the second sample — with 0000.
500
[ { "input": "4\n1100", "output": "3" }, { "input": "4\n1111", "output": "4" }, { "input": "1\n0", "output": "1" }, { "input": "1\n1", "output": "1" }, { "input": "2\n00", "output": "1" }, { "input": "2\n01", "output": "1" }, { "input": "2\n10", "output": "2" }, { "input": "2\n11", "output": "2" }, { "input": "10\n0000000000", "output": "1" }, { "input": "20\n11111111110110001100", "output": "11" }, { "input": "50\n01011110100010000001010000100001001101001101101011", "output": "1" }, { "input": "60\n111111111101111111111111111111111111111111111111111111111111", "output": "11" }, { "input": "60\n111111111111111111111111111111111111111111111111111111111111", "output": "60" }, { "input": "66\n111111010010011001110011000111000100011110011001111110011111111101", "output": "7" }, { "input": "90\n000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1" }, { "input": "91\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "2" }, { "input": "92\n11111111101011111011111111111111111111111011101111111111011111111111111101111111101011111101", "output": "10" }, { "input": "100\n0001011110100011001100100010111001000001111101101001001001001011110100101101010000000110100101110010", "output": "1" }, { "input": "100\n0111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "1" }, { "input": "100\n0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1" }, { "input": "100\n0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "100" }, { "input": "100\n1011001110001000011111110011000100001110010110111101110110011011011000010100110001111100000010110010", "output": "2" }, { "input": "100\n1101111011001111111111110011110111101110111111111111111111111111111111011111111111110111111111111111", "output": "3" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "100" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110", "output": "100" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111101", "output": "99" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111100000", "output": "96" }, { "input": "100\n1111111111111111111111111111111110011000110110001010101100100100001000010010010010000100110000010101", "output": "34" } ]
1,484,465,185
2,147,483,647
Python 3
OK
TESTS
29
77
4,608,000
def to_dec(bina): res = 0 b = 2**len(bina) for i in range(len(bina)): b = b//2 if bina[i] == 1: res = res + b return res def to_bin(d): res = [] while d > 0: res.insert(0, d%2) d = d //2 return "".join(map(str, res))[::-1] n = int(input()) b = input() d = to_dec(list(map(int, b[::-1]))) + 1 b1 = to_bin(d) if len(b1) < n: b1 = b1 + "0"*(n-len(b1)) res = 0 for i in range(n-1, -1, -1): if b[i] != b1[i]: res +=1 print(res)
Title: inc ARG Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sergey is testing a next-generation processor. Instead of bytes the processor works with memory cells consisting of *n* bits. These bits are numbered from 1 to *n*. An integer is stored in the cell in the following way: the least significant bit is stored in the first bit of the cell, the next significant bit is stored in the second bit, and so on; the most significant bit is stored in the *n*-th bit. Now Sergey wants to test the following instruction: "add 1 to the value of the cell". As a result of the instruction, the integer that is written in the cell must be increased by one; if some of the most significant bits of the resulting number do not fit into the cell, they must be discarded. Sergey wrote certain values ​​of the bits in the cell and is going to add one to its value. How many bits of the cell will change after the operation? Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of bits in the cell. The second line contains a string consisting of *n* characters — the initial state of the cell. The first character denotes the state of the first bit of the cell. The second character denotes the second least significant bit and so on. The last character denotes the state of the most significant bit. Output Specification: Print a single integer — the number of bits in the cell which change their state after we add 1 to the cell. Demo Input: ['4\n1100\n', '4\n1111\n'] Demo Output: ['3\n', '4\n'] Note: In the first sample the cell ends up with value 0010, in the second sample — with 0000.
```python def to_dec(bina): res = 0 b = 2**len(bina) for i in range(len(bina)): b = b//2 if bina[i] == 1: res = res + b return res def to_bin(d): res = [] while d > 0: res.insert(0, d%2) d = d //2 return "".join(map(str, res))[::-1] n = int(input()) b = input() d = to_dec(list(map(int, b[::-1]))) + 1 b1 = to_bin(d) if len(b1) < n: b1 = b1 + "0"*(n-len(b1)) res = 0 for i in range(n-1, -1, -1): if b[i] != b1[i]: res +=1 print(res) ```
3
168
A
Wizards and Demonstration
PROGRAMMING
900
[ "implementation", "math" ]
null
null
Some country is populated by wizards. They want to organize a demonstration. There are *n* people living in the city, *x* of them are the wizards who will surely go to the demonstration. Other city people (*n*<=-<=*x* people) do not support the wizards and aren't going to go to the demonstration. We know that the city administration will react only to the demonstration involving at least *y* percent of the city people. Having considered the matter, the wizards decided to create clone puppets which can substitute the city people on the demonstration. So all in all, the demonstration will involve only the wizards and their puppets. The city administration cannot tell the difference between a puppet and a person, so, as they calculate the percentage, the administration will consider the city to be consisting of only *n* people and not containing any clone puppets. Help the wizards and find the minimum number of clones to create to that the demonstration had no less than *y* percent of the city people.
The first line contains three space-separated integers, *n*, *x*, *y* (1<=≤<=*n*,<=*x*,<=*y*<=≤<=104,<=*x*<=≤<=*n*) — the number of citizens in the city, the number of wizards and the percentage the administration needs, correspondingly. Please note that *y* can exceed 100 percent, that is, the administration wants to see on a demonstration more people that actually live in the city (<=&gt;<=*n*).
Print a single integer — the answer to the problem, the minimum number of clones to create, so that the demonstration involved no less than *y* percent of *n* (the real total city population).
[ "10 1 14\n", "20 10 50\n", "1000 352 146\n" ]
[ "1\n", "0\n", "1108\n" ]
In the first sample it is necessary that at least 14% of 10 people came to the demonstration. As the number of people should be integer, then at least two people should come. There is only one wizard living in the city and he is going to come. That isn't enough, so he needs to create one clone. In the second sample 10 people should come to the demonstration. The city has 10 wizards. They will all come to the demonstration, so nobody has to create any clones.
500
[ { "input": "10 1 14", "output": "1" }, { "input": "20 10 50", "output": "0" }, { "input": "1000 352 146", "output": "1108" }, { "input": "68 65 20", "output": "0" }, { "input": "78 28 27", "output": "0" }, { "input": "78 73 58", "output": "0" }, { "input": "70 38 66", "output": "9" }, { "input": "54 4 38", "output": "17" }, { "input": "3 1 69", "output": "2" }, { "input": "11 9 60", "output": "0" }, { "input": "71 49 65", "output": "0" }, { "input": "78 55 96", "output": "20" }, { "input": "2765 768 9020", "output": "248635" }, { "input": "3478 1728 9727", "output": "336578" }, { "input": "9678 6173 5658", "output": "541409" }, { "input": "1138 570 6666", "output": "75290" }, { "input": "7754 204 9038", "output": "700603" }, { "input": "8403 7401 4769", "output": "393339" }, { "input": "4909 2111 8860", "output": "432827" }, { "input": "6571 6449 8965", "output": "582642" }, { "input": "9178 2255 7996", "output": "731618" }, { "input": "6151 6148 3746", "output": "224269" }, { "input": "8890 5449 8734", "output": "771004" }, { "input": "7879 2590 2818", "output": "219441" }, { "input": "8484 6400 547", "output": "40008" }, { "input": "7835 6710 1639", "output": "121706" }, { "input": "2379 1436 9663", "output": "228447" }, { "input": "6487 5670 8", "output": "0" }, { "input": "4470 2543 6", "output": "0" }, { "input": "7261 5328 10", "output": "0" }, { "input": "3871 3795 7", "output": "0" }, { "input": "9620 6557 6", "output": "0" }, { "input": "4890 1112 5", "output": "0" }, { "input": "1 1 1", "output": "0" }, { "input": "1 1 10000", "output": "99" }, { "input": "10000 1 1", "output": "99" }, { "input": "10000 1 10000", "output": "999999" }, { "input": "10000 10000 1", "output": "0" }, { "input": "10000 10000 10000", "output": "990000" }, { "input": "67 1 3", "output": "2" }, { "input": "7878 4534 9159", "output": "717013" }, { "input": "1 1 1", "output": "0" }, { "input": "3271 5 50", "output": "1631" } ]
1,537,171,372
2,147,483,647
PyPy 3
OK
TESTS
43
280
0
n,x,y = map(int,input().split()) import math if((x/n)*100>=y): print(0) else: z = math.ceil((y*n)/100) print(z-x)
Title: Wizards and Demonstration Time Limit: None seconds Memory Limit: None megabytes Problem Description: Some country is populated by wizards. They want to organize a demonstration. There are *n* people living in the city, *x* of them are the wizards who will surely go to the demonstration. Other city people (*n*<=-<=*x* people) do not support the wizards and aren't going to go to the demonstration. We know that the city administration will react only to the demonstration involving at least *y* percent of the city people. Having considered the matter, the wizards decided to create clone puppets which can substitute the city people on the demonstration. So all in all, the demonstration will involve only the wizards and their puppets. The city administration cannot tell the difference between a puppet and a person, so, as they calculate the percentage, the administration will consider the city to be consisting of only *n* people and not containing any clone puppets. Help the wizards and find the minimum number of clones to create to that the demonstration had no less than *y* percent of the city people. Input Specification: The first line contains three space-separated integers, *n*, *x*, *y* (1<=≤<=*n*,<=*x*,<=*y*<=≤<=104,<=*x*<=≤<=*n*) — the number of citizens in the city, the number of wizards and the percentage the administration needs, correspondingly. Please note that *y* can exceed 100 percent, that is, the administration wants to see on a demonstration more people that actually live in the city (<=&gt;<=*n*). Output Specification: Print a single integer — the answer to the problem, the minimum number of clones to create, so that the demonstration involved no less than *y* percent of *n* (the real total city population). Demo Input: ['10 1 14\n', '20 10 50\n', '1000 352 146\n'] Demo Output: ['1\n', '0\n', '1108\n'] Note: In the first sample it is necessary that at least 14% of 10 people came to the demonstration. As the number of people should be integer, then at least two people should come. There is only one wizard living in the city and he is going to come. That isn't enough, so he needs to create one clone. In the second sample 10 people should come to the demonstration. The city has 10 wizards. They will all come to the demonstration, so nobody has to create any clones.
```python n,x,y = map(int,input().split()) import math if((x/n)*100>=y): print(0) else: z = math.ceil((y*n)/100) print(z-x) ```
3
41
A
Translation
PROGRAMMING
800
[ "implementation", "strings" ]
A. Translation
2
256
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
[ "code\nedoc\n", "abb\naba\n", "code\ncode\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "code\nedoc", "output": "YES" }, { "input": "abb\naba", "output": "NO" }, { "input": "code\ncode", "output": "NO" }, { "input": "abacaba\nabacaba", "output": "YES" }, { "input": "q\nq", "output": "YES" }, { "input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk", "output": "NO" }, { "input": "z\na", "output": "NO" }, { "input": "asd\ndsa", "output": "YES" }, { "input": "abcdef\nfecdba", "output": "NO" }, { "input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu", "output": "NO" }, { "input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf", "output": "NO" }, { "input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp", "output": "NO" }, { "input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb", "output": "NO" }, { "input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom", "output": "NO" }, { "input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh", "output": "NO" }, { "input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy", "output": "NO" }, { "input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko", "output": "NO" }, { "input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv", "output": "NO" }, { "input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd", "output": "NO" }, { "input": "w\nw", "output": "YES" }, { "input": "vz\nzv", "output": "YES" }, { "input": "ry\nyr", "output": "YES" }, { "input": "xou\nuox", "output": "YES" }, { "input": "axg\ngax", "output": "NO" }, { "input": "zdsl\nlsdz", "output": "YES" }, { "input": "kudl\nldku", "output": "NO" }, { "input": "zzlzwnqlcl\nlclqnwzlzz", "output": "YES" }, { "input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv", "output": "YES" }, { "input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar", "output": "NO" }, { "input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn", "output": "YES" }, { "input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum", "output": "YES" }, { "input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv", "output": "YES" }, { "input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm", "output": "NO" }, { "input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd", "output": "NO" }, { "input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg", "output": "YES" }, { "input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis", "output": "YES" }, { "input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy", "output": "NO" }, { "input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw", "output": "YES" }, { "input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi", "output": "YES" }, { "input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib", "output": "YES" } ]
1,664,132,761
2,147,483,647
Python 3
OK
TESTS
40
92
0
if __name__ == '__main__': s = input() t = input() lower = 0 upper = 0 for char in s: upper += 1 lower += 1 if t == s[::-1]: print ('YES') else: print("NO")
Title: Translation Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. Input Specification: The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. Output Specification: If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. Demo Input: ['code\nedoc\n', 'abb\naba\n', 'code\ncode\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python if __name__ == '__main__': s = input() t = input() lower = 0 upper = 0 for char in s: upper += 1 lower += 1 if t == s[::-1]: print ('YES') else: print("NO") ```
3.977
755
B
PolandBall and Game
PROGRAMMING
1,100
[ "binary search", "data structures", "games", "greedy", "sortings", "strings" ]
null
null
PolandBall is playing a game with EnemyBall. The rules are simple. Players have to say words in turns. You cannot say a word which was already said. PolandBall starts. The Ball which can't say a new word loses. You're given two lists of words familiar to PolandBall and EnemyBall. Can you determine who wins the game, if both play optimally?
The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=103) — number of words PolandBall and EnemyBall know, respectively. Then *n* strings follow, one per line — words familiar to PolandBall. Then *m* strings follow, one per line — words familiar to EnemyBall. Note that one Ball cannot know a word more than once (strings are unique), but some words can be known by both players. Each word is non-empty and consists of no more than 500 lowercase English alphabet letters.
In a single line of print the answer — "YES" if PolandBall wins and "NO" otherwise. Both Balls play optimally.
[ "5 1\npolandball\nis\na\ncool\ncharacter\nnope\n", "2 2\nkremowka\nwadowicka\nkremowka\nwiedenska\n", "1 2\na\na\nb\n" ]
[ "YES", "YES", "NO" ]
In the first example PolandBall knows much more words and wins effortlessly. In the second example if PolandBall says kremowka first, then EnemyBall cannot use that word anymore. EnemyBall can only say wiedenska. PolandBall says wadowicka and wins.
1,000
[ { "input": "5 1\npolandball\nis\na\ncool\ncharacter\nnope", "output": "YES" }, { "input": "2 2\nkremowka\nwadowicka\nkremowka\nwiedenska", "output": "YES" }, { "input": "1 2\na\na\nb", "output": "NO" }, { "input": "2 2\na\nb\nb\nc", "output": "YES" }, { "input": "2 1\nc\na\na", "output": "YES" }, { "input": "3 3\nab\nbc\ncd\ncd\ndf\nfg", "output": "YES" }, { "input": "3 3\nc\na\nb\na\nd\ng", "output": "YES" }, { "input": "1 1\naa\naa", "output": "YES" }, { "input": "2 1\na\nb\na", "output": "YES" }, { "input": "6 5\na\nb\nc\nd\ne\nf\nf\ne\nd\nz\ny", "output": "YES" }, { "input": "3 2\na\nb\nc\nd\ne", "output": "YES" } ]
1,617,971,739
2,147,483,647
PyPy 3
OK
TESTS
33
171
5,939,200
n, m = map(int, input().split()) a = {input() for _ in range(n)} b ={input() for _ in range(m)} u = len(a.intersection(b)) print("NO") if m - u + u // 2 >= n - u + (u + 1) // 2 else print("YES")
Title: PolandBall and Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: PolandBall is playing a game with EnemyBall. The rules are simple. Players have to say words in turns. You cannot say a word which was already said. PolandBall starts. The Ball which can't say a new word loses. You're given two lists of words familiar to PolandBall and EnemyBall. Can you determine who wins the game, if both play optimally? Input Specification: The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=103) — number of words PolandBall and EnemyBall know, respectively. Then *n* strings follow, one per line — words familiar to PolandBall. Then *m* strings follow, one per line — words familiar to EnemyBall. Note that one Ball cannot know a word more than once (strings are unique), but some words can be known by both players. Each word is non-empty and consists of no more than 500 lowercase English alphabet letters. Output Specification: In a single line of print the answer — "YES" if PolandBall wins and "NO" otherwise. Both Balls play optimally. Demo Input: ['5 1\npolandball\nis\na\ncool\ncharacter\nnope\n', '2 2\nkremowka\nwadowicka\nkremowka\nwiedenska\n', '1 2\na\na\nb\n'] Demo Output: ['YES', 'YES', 'NO'] Note: In the first example PolandBall knows much more words and wins effortlessly. In the second example if PolandBall says kremowka first, then EnemyBall cannot use that word anymore. EnemyBall can only say wiedenska. PolandBall says wadowicka and wins.
```python n, m = map(int, input().split()) a = {input() for _ in range(n)} b ={input() for _ in range(m)} u = len(a.intersection(b)) print("NO") if m - u + u // 2 >= n - u + (u + 1) // 2 else print("YES") ```
3
611
A
New Year and Days
PROGRAMMING
900
[ "implementation" ]
null
null
Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015. Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016. Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month. Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him.
The only line of the input is in one of the following two formats: - "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month.
Print one integer — the number of candies Limak will save in the year 2016.
[ "4 of week\n", "30 of month\n" ]
[ "52\n", "11\n" ]
Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday. In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total. In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
500
[ { "input": "4 of week", "output": "52" }, { "input": "30 of month", "output": "11" }, { "input": "17 of month", "output": "12" }, { "input": "31 of month", "output": "7" }, { "input": "6 of week", "output": "53" }, { "input": "1 of week", "output": "52" }, { "input": "2 of week", "output": "52" }, { "input": "3 of week", "output": "52" }, { "input": "5 of week", "output": "53" }, { "input": "7 of week", "output": "52" }, { "input": "1 of month", "output": "12" }, { "input": "2 of month", "output": "12" }, { "input": "3 of month", "output": "12" }, { "input": "4 of month", "output": "12" }, { "input": "5 of month", "output": "12" }, { "input": "6 of month", "output": "12" }, { "input": "7 of month", "output": "12" }, { "input": "8 of month", "output": "12" }, { "input": "9 of month", "output": "12" }, { "input": "10 of month", "output": "12" }, { "input": "11 of month", "output": "12" }, { "input": "12 of month", "output": "12" }, { "input": "13 of month", "output": "12" }, { "input": "14 of month", "output": "12" }, { "input": "15 of month", "output": "12" }, { "input": "16 of month", "output": "12" }, { "input": "18 of month", "output": "12" }, { "input": "19 of month", "output": "12" }, { "input": "20 of month", "output": "12" }, { "input": "21 of month", "output": "12" }, { "input": "22 of month", "output": "12" }, { "input": "23 of month", "output": "12" }, { "input": "24 of month", "output": "12" }, { "input": "25 of month", "output": "12" }, { "input": "26 of month", "output": "12" }, { "input": "27 of month", "output": "12" }, { "input": "28 of month", "output": "12" }, { "input": "29 of month", "output": "12" } ]
1,584,625,428
2,147,483,647
Python 3
OK
TESTS
38
124
0
l = list(input().split()) if l[-1] == "month": if int(l[0])<=29: print(12) elif int(l[0])==30: print(11) else: print(7) else: if int(l[0])== 5 or int(l[0])==6: print(53) else: print(52)
Title: New Year and Days Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015. Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016. Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month. Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him. Input Specification: The only line of the input is in one of the following two formats: - "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month. Output Specification: Print one integer — the number of candies Limak will save in the year 2016. Demo Input: ['4 of week\n', '30 of month\n'] Demo Output: ['52\n', '11\n'] Note: Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday. In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total. In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
```python l = list(input().split()) if l[-1] == "month": if int(l[0])<=29: print(12) elif int(l[0])==30: print(11) else: print(7) else: if int(l[0])== 5 or int(l[0])==6: print(53) else: print(52) ```
3
268
A
Games
PROGRAMMING
800
[ "brute force" ]
null
null
Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different. There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number. You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question.
The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively.
In a single line print the number of games where the host team is going to play in the guest uniform.
[ "3\n1 2\n2 4\n3 4\n", "4\n100 42\n42 100\n5 42\n100 5\n", "2\n1 2\n1 2\n" ]
[ "1\n", "5\n", "0\n" ]
In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2. In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
500
[ { "input": "3\n1 2\n2 4\n3 4", "output": "1" }, { "input": "4\n100 42\n42 100\n5 42\n100 5", "output": "5" }, { "input": "2\n1 2\n1 2", "output": "0" }, { "input": "7\n4 7\n52 55\n16 4\n55 4\n20 99\n3 4\n7 52", "output": "6" }, { "input": "10\n68 42\n1 35\n25 70\n59 79\n65 63\n46 6\n28 82\n92 62\n43 96\n37 28", "output": "1" }, { "input": "30\n10 39\n89 1\n78 58\n75 99\n36 13\n77 50\n6 97\n79 28\n27 52\n56 5\n93 96\n40 21\n33 74\n26 37\n53 59\n98 56\n61 65\n42 57\n9 7\n25 63\n74 34\n96 84\n95 47\n12 23\n34 21\n71 6\n27 13\n15 47\n64 14\n12 77", "output": "6" }, { "input": "30\n46 100\n87 53\n34 84\n44 66\n23 20\n50 34\n90 66\n17 39\n13 22\n94 33\n92 46\n63 78\n26 48\n44 61\n3 19\n41 84\n62 31\n65 89\n23 28\n58 57\n19 85\n26 60\n75 66\n69 67\n76 15\n64 15\n36 72\n90 89\n42 69\n45 35", "output": "4" }, { "input": "2\n46 6\n6 46", "output": "2" }, { "input": "29\n8 18\n33 75\n69 22\n97 95\n1 97\n78 10\n88 18\n13 3\n19 64\n98 12\n79 92\n41 72\n69 15\n98 31\n57 74\n15 56\n36 37\n15 66\n63 100\n16 42\n47 56\n6 4\n73 15\n30 24\n27 71\n12 19\n88 69\n85 6\n50 11", "output": "10" }, { "input": "23\n43 78\n31 28\n58 80\n66 63\n20 4\n51 95\n40 20\n50 14\n5 34\n36 39\n77 42\n64 97\n62 89\n16 56\n8 34\n58 16\n37 35\n37 66\n8 54\n50 36\n24 8\n68 48\n85 33", "output": "6" }, { "input": "13\n76 58\n32 85\n99 79\n23 58\n96 59\n72 35\n53 43\n96 55\n41 78\n75 10\n28 11\n72 7\n52 73", "output": "0" }, { "input": "18\n6 90\n70 79\n26 52\n67 81\n29 95\n41 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 2", "output": "1" }, { "input": "18\n6 90\n100 79\n26 100\n67 100\n29 100\n100 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 100", "output": "8" }, { "input": "30\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1", "output": "450" }, { "input": "30\n100 99\n58 59\n56 57\n54 55\n52 53\n50 51\n48 49\n46 47\n44 45\n42 43\n40 41\n38 39\n36 37\n34 35\n32 33\n30 31\n28 29\n26 27\n24 25\n22 23\n20 21\n18 19\n16 17\n14 15\n12 13\n10 11\n8 9\n6 7\n4 5\n2 3", "output": "0" }, { "input": "15\n9 3\n2 6\n7 6\n5 10\n9 5\n8 1\n10 5\n2 8\n4 5\n9 8\n5 3\n3 8\n9 8\n4 10\n8 5", "output": "20" }, { "input": "15\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n1 2", "output": "108" }, { "input": "25\n2 1\n1 2\n1 2\n1 2\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n1 2\n2 1\n2 1\n2 1\n2 1\n1 2", "output": "312" }, { "input": "25\n91 57\n2 73\n54 57\n2 57\n23 57\n2 6\n57 54\n57 23\n91 54\n91 23\n57 23\n91 57\n54 2\n6 91\n57 54\n2 57\n57 91\n73 91\n57 23\n91 57\n2 73\n91 2\n23 6\n2 73\n23 6", "output": "96" }, { "input": "28\n31 66\n31 91\n91 31\n97 66\n31 66\n31 66\n66 91\n91 31\n97 31\n91 97\n97 31\n66 31\n66 97\n91 31\n31 66\n31 66\n66 31\n31 97\n66 97\n97 31\n31 91\n66 91\n91 66\n31 66\n91 66\n66 31\n66 31\n91 97", "output": "210" }, { "input": "29\n78 27\n50 68\n24 26\n68 43\n38 78\n26 38\n78 28\n28 26\n27 24\n23 38\n24 26\n24 43\n61 50\n38 78\n27 23\n61 26\n27 28\n43 23\n28 78\n43 27\n43 78\n27 61\n28 38\n61 78\n50 26\n43 27\n26 78\n28 50\n43 78", "output": "73" }, { "input": "29\n80 27\n69 80\n27 80\n69 80\n80 27\n80 27\n80 27\n80 69\n27 69\n80 69\n80 27\n27 69\n69 27\n80 69\n27 69\n69 80\n27 69\n80 69\n80 27\n69 27\n27 69\n27 80\n80 27\n69 80\n27 69\n80 69\n69 80\n69 80\n27 80", "output": "277" }, { "input": "30\n19 71\n7 89\n89 71\n21 7\n19 21\n7 89\n19 71\n89 8\n89 21\n19 8\n21 7\n8 89\n19 89\n7 21\n19 8\n19 7\n7 19\n8 21\n71 21\n71 89\n7 19\n7 19\n21 7\n21 19\n21 19\n71 8\n21 8\n71 19\n19 71\n8 21", "output": "154" }, { "input": "30\n44 17\n44 17\n44 17\n17 44\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n44 17\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n17 44\n44 17\n44 17\n44 17\n17 44\n17 44\n44 17\n17 44\n44 17\n44 17\n44 17", "output": "418" }, { "input": "22\n78 92\n15 92\n92 78\n78 80\n92 16\n24 80\n92 16\n16 92\n78 16\n24 78\n80 78\n92 80\n16 80\n80 78\n15 78\n92 16\n24 15\n24 80\n80 16\n16 80\n92 80\n24 80", "output": "74" }, { "input": "24\n9 83\n90 31\n83 3\n83 3\n21 31\n83 3\n32 31\n12 21\n31 21\n90 32\n32 21\n12 9\n12 31\n9 83\n83 12\n32 3\n32 83\n90 31\n9 32\n31 21\n83 90\n32 21\n21 3\n32 9", "output": "59" }, { "input": "30\n67 21\n85 39\n85 87\n21 39\n66 85\n10 95\n10 21\n87 85\n82 21\n67 21\n95 10\n21 39\n82 21\n21 66\n66 39\n95 30\n67 85\n66 82\n85 82\n21 66\n10 39\n67 10\n21 85\n10 82\n85 95\n10 85\n21 39\n85 39\n39 10\n95 67", "output": "100" }, { "input": "4\n8 7\n8 7\n7 8\n7 8", "output": "8" }, { "input": "6\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1", "output": "10" }, { "input": "12\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1", "output": "72" }, { "input": "4\n1 2\n1 2\n2 1\n2 1", "output": "8" } ]
1,673,891,112
2,147,483,647
Python 3
OK
TESTS
31
92
0
hml = [] awl = [] count = 0 n = int(input()) for _ in range(n): hm, aw = map(int, input().split()) hml.append(hm) awl.append(aw) for i in hml: if i in awl: count+= awl.count(i) print(count)
Title: Games Time Limit: None seconds Memory Limit: None megabytes Problem Description: Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different. There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number. You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question. Input Specification: The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively. Output Specification: In a single line print the number of games where the host team is going to play in the guest uniform. Demo Input: ['3\n1 2\n2 4\n3 4\n', '4\n100 42\n42 100\n5 42\n100 5\n', '2\n1 2\n1 2\n'] Demo Output: ['1\n', '5\n', '0\n'] Note: In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2. In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
```python hml = [] awl = [] count = 0 n = int(input()) for _ in range(n): hm, aw = map(int, input().split()) hml.append(hm) awl.append(aw) for i in hml: if i in awl: count+= awl.count(i) print(count) ```
3
628
B
New Skateboard
PROGRAMMING
1,300
[ "dp" ]
null
null
Max wants to buy a new skateboard. He has calculated the amount of money that is needed to buy a new skateboard. He left a calculator on the floor and went to ask some money from his parents. Meanwhile his little brother Yusuf came and started to press the keys randomly. Unfortunately Max has forgotten the number which he had calculated. The only thing he knows is that the number is divisible by 4. You are given a string *s* consisting of digits (the number on the display of the calculator after Yusuf randomly pressed the keys). Your task is to find the number of substrings which are divisible by 4. A substring can start with a zero. A substring of a string is a nonempty sequence of consecutive characters. For example if string *s* is 124 then we have four substrings that are divisible by 4: 12, 4, 24 and 124. For the string 04 the answer is three: 0, 4, 04. As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use gets/scanf/printf instead of getline/cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java.
The only line contains string *s* (1<=≤<=|*s*|<=≤<=3·105). The string *s* contains only digits from 0 to 9.
Print integer *a* — the number of substrings of the string *s* that are divisible by 4. Note that the answer can be huge, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
[ "124\n", "04\n", "5810438174\n" ]
[ "4\n", "3\n", "9\n" ]
none
0
[ { "input": "124", "output": "4" }, { "input": "04", "output": "3" }, { "input": "5810438174", "output": "9" }, { "input": "1", "output": "0" }, { "input": "039", "output": "1" }, { "input": "97247", "output": "6" }, { "input": "5810438174", "output": "9" }, { "input": "12883340691714056185860211260984431382156326935244", "output": "424" }, { "input": "2144315253572020279108092911160072328496568665545836825277616363478721946398140227406814602154768031", "output": "1528" }, { "input": "80124649014054971081213608137817466046254652492627741860478258558206397113198232823859870363821007188476405951611069347299689170240023979048198711745011542774268179055311013054073075176122755643483380248999657649211459997766221072399103579977409770898200358240970169892326442892826731631357561876251276209119521202062222947560634301788787748428236988789594458520867663257476744168528121470923031438015546006185059454402637036376247785881323277542968298682307854655591317046086531554595892680980142608", "output": "30826" }, { "input": "123456", "output": "7" }, { "input": "4", "output": "1" }, { "input": "123", "output": "1" } ]
1,554,019,091
251
Python 3
OK
TESTS
22
327
3,891,200
s = list(map(int, input())) cnt = 0 for i in range(len(s) - 1): if (s[i] * 2 + s[i + 1]) % 4 == 0: cnt += i + 1 if s[i] % 4 == 0: cnt += 1 if s[-1] % 4 == 0: cnt += 1 print(cnt)
Title: New Skateboard Time Limit: None seconds Memory Limit: None megabytes Problem Description: Max wants to buy a new skateboard. He has calculated the amount of money that is needed to buy a new skateboard. He left a calculator on the floor and went to ask some money from his parents. Meanwhile his little brother Yusuf came and started to press the keys randomly. Unfortunately Max has forgotten the number which he had calculated. The only thing he knows is that the number is divisible by 4. You are given a string *s* consisting of digits (the number on the display of the calculator after Yusuf randomly pressed the keys). Your task is to find the number of substrings which are divisible by 4. A substring can start with a zero. A substring of a string is a nonempty sequence of consecutive characters. For example if string *s* is 124 then we have four substrings that are divisible by 4: 12, 4, 24 and 124. For the string 04 the answer is three: 0, 4, 04. As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use gets/scanf/printf instead of getline/cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java. Input Specification: The only line contains string *s* (1<=≤<=|*s*|<=≤<=3·105). The string *s* contains only digits from 0 to 9. Output Specification: Print integer *a* — the number of substrings of the string *s* that are divisible by 4. Note that the answer can be huge, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type. Demo Input: ['124\n', '04\n', '5810438174\n'] Demo Output: ['4\n', '3\n', '9\n'] Note: none
```python s = list(map(int, input())) cnt = 0 for i in range(len(s) - 1): if (s[i] * 2 + s[i + 1]) % 4 == 0: cnt += i + 1 if s[i] % 4 == 0: cnt += 1 if s[-1] % 4 == 0: cnt += 1 print(cnt) ```
3
9
A
Die Roll
PROGRAMMING
800
[ "math", "probabilities" ]
A. Die Roll
1
64
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
[ "4 2\n" ]
[ "1/2\n" ]
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
0
[ { "input": "4 2", "output": "1/2" }, { "input": "1 1", "output": "1/1" }, { "input": "1 2", "output": "5/6" }, { "input": "1 3", "output": "2/3" }, { "input": "1 4", "output": "1/2" }, { "input": "1 5", "output": "1/3" }, { "input": "1 6", "output": "1/6" }, { "input": "2 1", "output": "5/6" }, { "input": "2 2", "output": "5/6" }, { "input": "2 3", "output": "2/3" }, { "input": "2 4", "output": "1/2" }, { "input": "2 5", "output": "1/3" }, { "input": "2 6", "output": "1/6" }, { "input": "3 1", "output": "2/3" }, { "input": "3 2", "output": "2/3" }, { "input": "3 3", "output": "2/3" }, { "input": "3 4", "output": "1/2" }, { "input": "3 5", "output": "1/3" }, { "input": "3 6", "output": "1/6" }, { "input": "4 1", "output": "1/2" }, { "input": "4 3", "output": "1/2" }, { "input": "4 4", "output": "1/2" }, { "input": "4 5", "output": "1/3" }, { "input": "4 6", "output": "1/6" }, { "input": "5 1", "output": "1/3" }, { "input": "5 2", "output": "1/3" }, { "input": "5 3", "output": "1/3" }, { "input": "5 4", "output": "1/3" }, { "input": "5 5", "output": "1/3" }, { "input": "5 6", "output": "1/6" }, { "input": "6 1", "output": "1/6" }, { "input": "6 2", "output": "1/6" }, { "input": "6 3", "output": "1/6" }, { "input": "6 4", "output": "1/6" }, { "input": "6 5", "output": "1/6" }, { "input": "6 6", "output": "1/6" } ]
1,593,854,267
2,147,483,647
Python 3
OK
TESTS
36
218
0
y,w=list(map(int,input().split())) print ('2' if max(y,w) is 3 else '5' if max(y,w) is 2 else '1',"/", sep="", end="") print ('1' if max(y,w) is 1 else '2' if max(y,w) is 4 else '3' if max(y,w) is 5 or max(y,w) is 3 else '6')
Title: Die Roll Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win. Input Specification: The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls. Output Specification: Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1». Demo Input: ['4 2\n'] Demo Output: ['1/2\n'] Note: Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
```python y,w=list(map(int,input().split())) print ('2' if max(y,w) is 3 else '5' if max(y,w) is 2 else '1',"/", sep="", end="") print ('1' if max(y,w) is 1 else '2' if max(y,w) is 4 else '3' if max(y,w) is 5 or max(y,w) is 3 else '6') ```
3.891
620
A
Professor GukiZ's Robot
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Professor GukiZ makes a new robot. The robot are in the point with coordinates (*x*1,<=*y*1) and should go to the point (*x*2,<=*y*2). In a single step the robot can change any of its coordinates (maybe both of them) by one (decrease or increase). So the robot can move in one of the 8 directions. Find the minimal number of steps the robot should make to get the finish position.
The first line contains two integers *x*1,<=*y*1 (<=-<=109<=≤<=*x*1,<=*y*1<=≤<=109) — the start position of the robot. The second line contains two integers *x*2,<=*y*2 (<=-<=109<=≤<=*x*2,<=*y*2<=≤<=109) — the finish position of the robot.
Print the only integer *d* — the minimal number of steps to get the finish position.
[ "0 0\n4 5\n", "3 4\n6 1\n" ]
[ "5\n", "3\n" ]
In the first example robot should increase both of its coordinates by one four times, so it will be in position (4, 4). After that robot should simply increase its *y* coordinate and get the finish position. In the second example robot should simultaneously increase *x* coordinate and decrease *y* coordinate by one three times.
0
[ { "input": "0 0\n4 5", "output": "5" }, { "input": "3 4\n6 1", "output": "3" }, { "input": "0 0\n4 6", "output": "6" }, { "input": "1 1\n-3 -5", "output": "6" }, { "input": "-1 -1\n-10 100", "output": "101" }, { "input": "1 -1\n100 -100", "output": "99" }, { "input": "-1000000000 -1000000000\n1000000000 1000000000", "output": "2000000000" }, { "input": "-1000000000 -1000000000\n0 999999999", "output": "1999999999" }, { "input": "0 0\n2 1", "output": "2" }, { "input": "10 0\n100 0", "output": "90" }, { "input": "1 5\n6 4", "output": "5" }, { "input": "0 0\n5 4", "output": "5" }, { "input": "10 1\n20 1", "output": "10" }, { "input": "1 1\n-3 4", "output": "4" }, { "input": "-863407280 504312726\n786535210 -661703810", "output": "1649942490" }, { "input": "-588306085 -741137832\n341385643 152943311", "output": "929691728" }, { "input": "0 0\n4 0", "output": "4" }, { "input": "93097194 -48405232\n-716984003 -428596062", "output": "810081197" }, { "input": "9 1\n1 1", "output": "8" }, { "input": "4 6\n0 4", "output": "4" }, { "input": "2 4\n5 2", "output": "3" }, { "input": "-100000000 -100000000\n100000000 100000123", "output": "200000123" }, { "input": "5 6\n5 7", "output": "1" }, { "input": "12 16\n12 1", "output": "15" }, { "input": "0 0\n5 1", "output": "5" }, { "input": "0 1\n1 1", "output": "1" }, { "input": "-44602634 913365223\n-572368780 933284951", "output": "527766146" }, { "input": "-2 0\n2 -2", "output": "4" }, { "input": "0 0\n3 1", "output": "3" }, { "input": "-458 2\n1255 4548", "output": "4546" }, { "input": "-5 -4\n-3 -3", "output": "2" }, { "input": "4 5\n7 3", "output": "3" }, { "input": "-1000000000 -999999999\n1000000000 999999998", "output": "2000000000" }, { "input": "-1000000000 -1000000000\n1000000000 -1000000000", "output": "2000000000" }, { "input": "-464122675 -898521847\n656107323 -625340409", "output": "1120229998" }, { "input": "-463154699 -654742385\n-699179052 -789004997", "output": "236024353" }, { "input": "982747270 -593488945\n342286841 -593604186", "output": "640460429" }, { "input": "-80625246 708958515\n468950878 574646184", "output": "549576124" }, { "input": "0 0\n1 0", "output": "1" }, { "input": "109810 1\n2 3", "output": "109808" }, { "input": "-9 0\n9 9", "output": "18" }, { "input": "9 9\n9 9", "output": "0" }, { "input": "1 1\n4 3", "output": "3" }, { "input": "1 2\n45 1", "output": "44" }, { "input": "207558188 -313753260\n-211535387 -721675423", "output": "419093575" }, { "input": "-11 0\n0 0", "output": "11" }, { "input": "-1000000000 1000000000\n1000000000 -1000000000", "output": "2000000000" }, { "input": "0 0\n1 1", "output": "1" }, { "input": "0 0\n0 1", "output": "1" }, { "input": "0 0\n-1 1", "output": "1" }, { "input": "0 0\n-1 0", "output": "1" }, { "input": "0 0\n-1 -1", "output": "1" }, { "input": "0 0\n0 -1", "output": "1" }, { "input": "0 0\n1 -1", "output": "1" }, { "input": "10 90\n90 10", "output": "80" }, { "input": "851016864 573579544\n-761410925 -380746263", "output": "1612427789" }, { "input": "1 9\n9 9", "output": "8" }, { "input": "1000 1000\n1000 1000", "output": "0" }, { "input": "1 9\n9 1", "output": "8" }, { "input": "1 90\n90 90", "output": "89" }, { "input": "100 100\n1000 1000", "output": "900" }, { "input": "-1 0\n0 0", "output": "1" }, { "input": "-750595959 -2984043\n649569876 -749608783", "output": "1400165835" }, { "input": "958048496 712083589\n423286949 810566863", "output": "534761547" }, { "input": "146316710 53945094\n-523054748 147499505", "output": "669371458" }, { "input": "50383856 -596516251\n-802950224 -557916272", "output": "853334080" }, { "input": "-637204864 -280290367\n-119020929 153679771", "output": "518183935" }, { "input": "-100 -100\n-60 -91", "output": "40" }, { "input": "337537326 74909428\n-765558776 167951547", "output": "1103096102" }, { "input": "0 81\n18 90", "output": "18" }, { "input": "283722202 -902633305\n-831696497 -160868946", "output": "1115418699" }, { "input": "1000 1000\n-1000 1000", "output": "2000" }, { "input": "5 6\n4 8", "output": "2" }, { "input": "40572000 597493595\n-935051731 368493185", "output": "975623731" }, { "input": "-5 5\n5 5", "output": "10" } ]
1,671,895,848
2,147,483,647
Python 3
OK
TESTS
75
46
0
l1=list(map(int, input().split())) l2=list(map(int, input().split())) print(max(abs(l1[0]-l2[0]), abs(l1[1]-l2[1])))
Title: Professor GukiZ's Robot Time Limit: None seconds Memory Limit: None megabytes Problem Description: Professor GukiZ makes a new robot. The robot are in the point with coordinates (*x*1,<=*y*1) and should go to the point (*x*2,<=*y*2). In a single step the robot can change any of its coordinates (maybe both of them) by one (decrease or increase). So the robot can move in one of the 8 directions. Find the minimal number of steps the robot should make to get the finish position. Input Specification: The first line contains two integers *x*1,<=*y*1 (<=-<=109<=≤<=*x*1,<=*y*1<=≤<=109) — the start position of the robot. The second line contains two integers *x*2,<=*y*2 (<=-<=109<=≤<=*x*2,<=*y*2<=≤<=109) — the finish position of the robot. Output Specification: Print the only integer *d* — the minimal number of steps to get the finish position. Demo Input: ['0 0\n4 5\n', '3 4\n6 1\n'] Demo Output: ['5\n', '3\n'] Note: In the first example robot should increase both of its coordinates by one four times, so it will be in position (4, 4). After that robot should simply increase its *y* coordinate and get the finish position. In the second example robot should simultaneously increase *x* coordinate and decrease *y* coordinate by one three times.
```python l1=list(map(int, input().split())) l2=list(map(int, input().split())) print(max(abs(l1[0]-l2[0]), abs(l1[1]-l2[1]))) ```
3
165
A
Supercentral Point
PROGRAMMING
1,000
[ "implementation" ]
null
null
One day Vasya painted a Cartesian coordinate system on a piece of paper and marked some set of points (*x*1,<=*y*1),<=(*x*2,<=*y*2),<=...,<=(*x**n*,<=*y**n*). Let's define neighbors for some fixed point from the given set (*x*,<=*y*): - point (*x*',<=*y*') is (*x*,<=*y*)'s right neighbor, if *x*'<=&gt;<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s left neighbor, if *x*'<=&lt;<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s lower neighbor, if *x*'<==<=*x* and *y*'<=&lt;<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s upper neighbor, if *x*'<==<=*x* and *y*'<=&gt;<=*y* We'll consider point (*x*,<=*y*) from the given set supercentral, if it has at least one upper, at least one lower, at least one left and at least one right neighbor among this set's points. Vasya marked quite many points on the paper. Analyzing the picture manually is rather a challenge, so Vasya asked you to help him. Your task is to find the number of supercentral points in the given set.
The first input line contains the only integer *n* (1<=≤<=*n*<=≤<=200) — the number of points in the given set. Next *n* lines contain the coordinates of the points written as "*x* *y*" (without the quotes) (|*x*|,<=|*y*|<=≤<=1000), all coordinates are integers. The numbers in the line are separated by exactly one space. It is guaranteed that all points are different.
Print the only number — the number of supercentral points of the given set.
[ "8\n1 1\n4 2\n3 1\n1 2\n0 2\n0 1\n1 0\n1 3\n", "5\n0 0\n0 1\n1 0\n0 -1\n-1 0\n" ]
[ "2\n", "1\n" ]
In the first sample the supercentral points are only points (1, 1) and (1, 2). In the second sample there is one supercental point — point (0, 0).
500
[ { "input": "8\n1 1\n4 2\n3 1\n1 2\n0 2\n0 1\n1 0\n1 3", "output": "2" }, { "input": "5\n0 0\n0 1\n1 0\n0 -1\n-1 0", "output": "1" }, { "input": "9\n-565 -752\n-184 723\n-184 -752\n-184 1\n950 723\n-565 723\n950 -752\n950 1\n-565 1", "output": "1" }, { "input": "25\n-651 897\n916 897\n-651 -808\n-748 301\n-734 414\n-651 -973\n-734 897\n916 -550\n-758 414\n916 180\n-758 -808\n-758 -973\n125 -550\n125 -973\n125 301\n916 414\n-748 -808\n-651 301\n-734 301\n-307 897\n-651 -550\n-651 414\n125 -808\n-748 -550\n916 -808", "output": "7" }, { "input": "1\n487 550", "output": "0" }, { "input": "10\n990 -396\n990 736\n990 646\n990 -102\n990 -570\n990 155\n990 528\n990 489\n990 268\n990 676", "output": "0" }, { "input": "30\n507 836\n525 836\n-779 196\n507 -814\n525 -814\n525 42\n525 196\n525 -136\n-779 311\n507 -360\n525 300\n507 578\n507 311\n-779 836\n507 300\n525 -360\n525 311\n-779 -360\n-779 578\n-779 300\n507 42\n525 578\n-779 379\n507 196\n525 379\n507 379\n-779 -814\n-779 42\n-779 -136\n507 -136", "output": "8" }, { "input": "25\n890 -756\n890 -188\n-37 -756\n-37 853\n523 998\n-261 853\n-351 853\n-351 -188\n523 -756\n-261 -188\n-37 998\n523 -212\n-351 998\n-37 -188\n-351 -756\n-37 -212\n890 998\n890 -212\n523 853\n-351 -212\n-261 -212\n-261 998\n-261 -756\n890 853\n523 -188", "output": "9" }, { "input": "21\n-813 -11\n486 254\n685 254\n-708 254\n-55 -11\n-671 -191\n486 -11\n-671 -11\n685 -11\n685 -191\n486 -191\n-55 254\n-708 -11\n-813 254\n-708 -191\n41 -11\n-671 254\n-813 -191\n41 254\n-55 -191\n41 -191", "output": "5" }, { "input": "4\n1 0\n2 0\n1 1\n1 -1", "output": "0" } ]
1,636,864,891
2,147,483,647
PyPy 3-64
OK
TESTS
26
154
31,232,000
from collections import defaultdict def is_super_central(point, xmap, ymap): x, y = point yList = xmap[x] xList = ymap[y] if not xList or not yList: return False l, r = False, False for xi in xList: if xi < x: l = True if xi > x: r = True u, d = False, False for yi in yList: if yi < y: d = True if yi > y: u = True if l and r and u and d: # print(x,y) return True return False if __name__ == '__main__': n = int(input()) points = [] xmap = defaultdict(list) ymap = defaultdict(list) for _ in range(n): x, y = map(int, input().split()) points.append((x, y)) xmap[x].append(y) ymap[y].append(x) # print(points) # print(xmap) # print(ymap) count = 0 for point in points: if is_super_central(point, xmap, ymap): count+=1 print(count)
Title: Supercentral Point Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vasya painted a Cartesian coordinate system on a piece of paper and marked some set of points (*x*1,<=*y*1),<=(*x*2,<=*y*2),<=...,<=(*x**n*,<=*y**n*). Let's define neighbors for some fixed point from the given set (*x*,<=*y*): - point (*x*',<=*y*') is (*x*,<=*y*)'s right neighbor, if *x*'<=&gt;<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s left neighbor, if *x*'<=&lt;<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s lower neighbor, if *x*'<==<=*x* and *y*'<=&lt;<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s upper neighbor, if *x*'<==<=*x* and *y*'<=&gt;<=*y* We'll consider point (*x*,<=*y*) from the given set supercentral, if it has at least one upper, at least one lower, at least one left and at least one right neighbor among this set's points. Vasya marked quite many points on the paper. Analyzing the picture manually is rather a challenge, so Vasya asked you to help him. Your task is to find the number of supercentral points in the given set. Input Specification: The first input line contains the only integer *n* (1<=≤<=*n*<=≤<=200) — the number of points in the given set. Next *n* lines contain the coordinates of the points written as "*x* *y*" (without the quotes) (|*x*|,<=|*y*|<=≤<=1000), all coordinates are integers. The numbers in the line are separated by exactly one space. It is guaranteed that all points are different. Output Specification: Print the only number — the number of supercentral points of the given set. Demo Input: ['8\n1 1\n4 2\n3 1\n1 2\n0 2\n0 1\n1 0\n1 3\n', '5\n0 0\n0 1\n1 0\n0 -1\n-1 0\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample the supercentral points are only points (1, 1) and (1, 2). In the second sample there is one supercental point — point (0, 0).
```python from collections import defaultdict def is_super_central(point, xmap, ymap): x, y = point yList = xmap[x] xList = ymap[y] if not xList or not yList: return False l, r = False, False for xi in xList: if xi < x: l = True if xi > x: r = True u, d = False, False for yi in yList: if yi < y: d = True if yi > y: u = True if l and r and u and d: # print(x,y) return True return False if __name__ == '__main__': n = int(input()) points = [] xmap = defaultdict(list) ymap = defaultdict(list) for _ in range(n): x, y = map(int, input().split()) points.append((x, y)) xmap[x].append(y) ymap[y].append(x) # print(points) # print(xmap) # print(ymap) count = 0 for point in points: if is_super_central(point, xmap, ymap): count+=1 print(count) ```
3
677
A
Vanya and Fence
PROGRAMMING
800
[ "implementation" ]
null
null
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
Print a single integer — the minimum possible valid width of the road.
[ "3 7\n4 5 14\n", "6 1\n1 1 1 1 1 1\n", "6 5\n7 6 8 9 10 5\n" ]
[ "4\n", "6\n", "11\n" ]
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
500
[ { "input": "3 7\n4 5 14", "output": "4" }, { "input": "6 1\n1 1 1 1 1 1", "output": "6" }, { "input": "6 5\n7 6 8 9 10 5", "output": "11" }, { "input": "10 420\n214 614 297 675 82 740 174 23 255 15", "output": "13" }, { "input": "10 561\n657 23 1096 487 785 66 481 554 1000 821", "output": "15" }, { "input": "100 342\n478 143 359 336 162 333 385 515 117 496 310 538 469 539 258 676 466 677 1 296 150 560 26 213 627 221 255 126 617 174 279 178 24 435 70 145 619 46 669 566 300 67 576 251 58 176 441 564 569 194 24 669 73 262 457 259 619 78 400 579 222 626 269 47 80 315 160 194 455 186 315 424 197 246 683 220 68 682 83 233 290 664 273 598 362 305 674 614 321 575 362 120 14 534 62 436 294 351 485 396", "output": "144" }, { "input": "100 290\n244 49 276 77 449 261 468 458 201 424 9 131 300 88 432 394 104 77 13 289 435 259 111 453 168 394 156 412 351 576 178 530 81 271 228 564 125 328 42 372 205 61 180 471 33 360 567 331 222 318 241 117 529 169 188 484 202 202 299 268 246 343 44 364 333 494 59 236 84 485 50 8 428 8 571 227 205 310 210 9 324 472 368 490 114 84 296 305 411 351 569 393 283 120 510 171 232 151 134 366", "output": "145" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 1\n2", "output": "2" }, { "input": "46 71\n30 26 56 138 123 77 60 122 73 45 79 10 130 3 14 1 38 46 128 50 82 16 32 68 28 98 62 106 2 49 131 11 114 39 139 70 40 50 45 137 33 30 35 136 135 19", "output": "63" }, { "input": "20 723\n212 602 293 591 754 91 1135 640 80 495 845 928 1399 498 926 1431 1226 869 814 1386", "output": "31" }, { "input": "48 864\n843 1020 751 1694 18 1429 1395 1174 272 1158 1628 1233 1710 441 765 561 778 748 1501 1200 563 1263 1398 1687 1518 1640 1591 839 500 466 1603 1587 1201 1209 432 868 1159 639 649 628 9 91 1036 147 896 1557 941 518", "output": "75" }, { "input": "26 708\n549 241 821 734 945 1161 566 1268 216 30 1142 730 529 1014 255 168 796 1148 89 113 1328 286 743 871 1259 1397", "output": "41" }, { "input": "75 940\n1620 1745 1599 441 64 1466 1496 1239 1716 1475 778 106 1136 1212 1261 444 781 257 1071 747 626 232 609 1544 682 1326 469 1361 1460 1450 1207 1319 922 625 1737 1057 1698 592 692 80 1016 541 1254 201 682 1007 847 206 1066 809 259 109 240 1611 219 1455 1326 1377 1827 786 42 1002 1382 1592 543 1866 1198 334 1524 1760 340 1566 955 257 1118", "output": "116" } ]
1,691,894,884
2,147,483,647
Python 3
OK
TESTS
29
46
0
x = input().split() n = int(x[0]) h = int(x[1]) w = 0 heights = input().split() for y in heights: if int(y)>h: w += 2 else: w += 1 print(w)
Title: Vanya and Fence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard? Input Specification: The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person. Output Specification: Print a single integer — the minimum possible valid width of the road. Demo Input: ['3 7\n4 5 14\n', '6 1\n1 1 1 1 1 1\n', '6 5\n7 6 8 9 10 5\n'] Demo Output: ['4\n', '6\n', '11\n'] Note: In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
```python x = input().split() n = int(x[0]) h = int(x[1]) w = 0 heights = input().split() for y in heights: if int(y)>h: w += 2 else: w += 1 print(w) ```
3
236
A
Boy or Girl
PROGRAMMING
800
[ "brute force", "implementation", "strings" ]
null
null
Those days, many boys use beautiful girls' photos as avatars in forums. So it is pretty hard to tell the gender of a user at the first glance. Last year, our hero went to a forum and had a nice chat with a beauty (he thought so). After that they talked very often and eventually they became a couple in the network. But yesterday, he came to see "her" in the real world and found out "she" is actually a very strong man! Our hero is very sad and he is too tired to love again now. So he came up with a way to recognize users' genders by their user names. This is his method: if the number of distinct characters in one's user name is odd, then he is a male, otherwise she is a female. You are given the string that denotes the user name, please help our hero to determine the gender of this user by his method.
The first line contains a non-empty string, that contains only lowercase English letters — the user name. This string contains at most 100 letters.
If it is a female by our hero's method, print "CHAT WITH HER!" (without the quotes), otherwise, print "IGNORE HIM!" (without the quotes).
[ "wjmzbmr\n", "xiaodao\n", "sevenkplus\n" ]
[ "CHAT WITH HER!\n", "IGNORE HIM!\n", "CHAT WITH HER!\n" ]
For the first example. There are 6 distinct characters in "wjmzbmr". These characters are: "w", "j", "m", "z", "b", "r". So wjmzbmr is a female and you should print "CHAT WITH HER!".
500
[ { "input": "wjmzbmr", "output": "CHAT WITH HER!" }, { "input": "xiaodao", "output": "IGNORE HIM!" }, { "input": "sevenkplus", "output": "CHAT WITH HER!" }, { "input": "pezu", "output": "CHAT WITH HER!" }, { "input": "wnemlgppy", "output": "CHAT WITH HER!" }, { "input": "zcinitufxoldnokacdvtmdohsfdjepyfioyvclhmujiqwvmudbfjzxjfqqxjmoiyxrfsbvseawwoyynn", "output": "IGNORE HIM!" }, { "input": "qsxxuoynwtebujwpxwpajitiwxaxwgbcylxneqiebzfphugwkftpaikixmumkhfbjiswmvzbtiyifbx", "output": "CHAT WITH HER!" }, { "input": "qwbdfzfylckctudyjlyrtmvbidfatdoqfmrfshsqqmhzohhsczscvwzpwyoyswhktjlykumhvaounpzwpxcspxwlgt", "output": "IGNORE HIM!" }, { "input": "nuezoadauueermoeaabjrkxttkatspjsjegjcjcdmcxgodowzbwuqncfbeqlhkk", "output": "IGNORE HIM!" }, { "input": "lggvdmulrsvtuagoavstuyufhypdxfomjlzpnduulukszqnnwfvxbvxyzmleocmofwclmzz", "output": "IGNORE HIM!" }, { "input": "tgcdptnkc", "output": "IGNORE HIM!" }, { "input": "wvfgnfrzabgibzxhzsojskmnlmrokydjoexnvi", "output": "IGNORE HIM!" }, { "input": "sxtburpzskucowowebgrbovhadrrayamuwypmmxhscrujkmcgvyinp", "output": "IGNORE HIM!" }, { "input": "pjqxhvxkyeqqvyuujxhmbspatvrckhhkfloottuybjivkkhpyivcighxumavrxzxslfpggnwbtalmhysyfllznphzia", "output": "IGNORE HIM!" }, { "input": "fpellxwskyekoyvrfnuf", "output": "CHAT WITH HER!" }, { "input": "xninyvkuvakfbs", "output": "IGNORE HIM!" }, { "input": "vnxhrweyvhqufpfywdwftoyrfgrhxuamqhblkvdpxmgvphcbeeqbqssresjifwyzgfhurmamhkwupymuomak", "output": "CHAT WITH HER!" }, { "input": "kmsk", "output": "IGNORE HIM!" }, { "input": "lqonogasrkzhryjxppjyriyfxmdfubieglthyswz", "output": "CHAT WITH HER!" }, { "input": "ndormkufcrkxlihdhmcehzoimcfhqsmombnfjrlcalffq", "output": "CHAT WITH HER!" }, { "input": "zqzlnnuwcfufwujygtczfakhcpqbtxtejrbgoodychepzdphdahtxyfpmlrycyicqthsgm", "output": "IGNORE HIM!" }, { "input": "ppcpbnhwoizajrl", "output": "IGNORE HIM!" }, { "input": "sgubujztzwkzvztitssxxxwzanfmddfqvv", "output": "CHAT WITH HER!" }, { "input": "ptkyaxycecpbrjnvxcjtbqiocqcswnmicxbvhdsptbxyxswbw", "output": "IGNORE HIM!" }, { "input": "yhbtzfppwcycxqjpqdfmjnhwaogyuaxamwxpnrdrnqsgdyfvxu", "output": "CHAT WITH HER!" }, { "input": "ojjvpnkrxibyevxk", "output": "CHAT WITH HER!" }, { "input": "wjweqcrqfuollfvfbiyriijovweg", "output": "IGNORE HIM!" }, { "input": "hkdbykboclchfdsuovvpknwqr", "output": "IGNORE HIM!" }, { "input": "stjvyfrfowopwfjdveduedqylerqugykyu", "output": "IGNORE HIM!" }, { "input": "rafcaanqytfclvfdegak", "output": "CHAT WITH HER!" }, { "input": "xczn", "output": "CHAT WITH HER!" }, { "input": "arcoaeozyeawbveoxpmafxxzdjldsielp", "output": "IGNORE HIM!" }, { "input": "smdfafbyehdylhaleevhoggiurdgeleaxkeqdixyfztkuqsculgslheqfafxyghyuibdgiuwrdxfcitojxika", "output": "CHAT WITH HER!" }, { "input": "vbpfgjqnhfazmvtkpjrdasfhsuxnpiepxfrzvoh", "output": "CHAT WITH HER!" }, { "input": "dbdokywnpqnotfrhdbrzmuyoxfdtrgrzcccninbtmoqvxfatcqg", "output": "CHAT WITH HER!" }, { "input": "udlpagtpq", "output": "CHAT WITH HER!" }, { "input": "zjurevbytijifnpfuyswfchdzelxheboruwjqijxcucylysmwtiqsqqhktexcynquvcwhbjsipy", "output": "CHAT WITH HER!" }, { "input": "qagzrqjomdwhagkhrjahhxkieijyten", "output": "CHAT WITH HER!" }, { "input": "achhcfjnnfwgoufxamcqrsontgjjhgyfzuhklkmiwybnrlsvblnsrjqdytglipxsulpnphpjpoewvlusalsgovwnsngb", "output": "CHAT WITH HER!" }, { "input": "qbkjsdwpahdbbohggbclfcufqelnojoehsxxkr", "output": "CHAT WITH HER!" }, { "input": "cpvftiwgyvnlmbkadiafddpgfpvhqqvuehkypqjsoibpiudfvpkhzlfrykc", "output": "IGNORE HIM!" }, { "input": "lnpdosnceumubvk", "output": "IGNORE HIM!" }, { "input": "efrk", "output": "CHAT WITH HER!" }, { "input": "temnownneghnrujforif", "output": "IGNORE HIM!" }, { "input": "ottnneymszwbumgobazfjyxewkjakglbfflsajuzescplpcxqta", "output": "IGNORE HIM!" }, { "input": "eswpaclodzcwhgixhpyzvhdwsgneqidanbzdzszquefh", "output": "IGNORE HIM!" }, { "input": "gwntwbpj", "output": "IGNORE HIM!" }, { "input": "wuqvlbblkddeindiiswsinkfrnkxghhwunzmmvyovpqapdfbolyim", "output": "IGNORE HIM!" }, { "input": "swdqsnzmzmsyvktukaoyqsqzgfmbzhezbfaqeywgwizrwjyzquaahucjchegknqaioliqd", "output": "CHAT WITH HER!" }, { "input": "vlhrpzezawyolhbmvxbwhtjustdbqggexmzxyieihjlelvwjosmkwesfjmramsikhkupzvfgezmrqzudjcalpjacmhykhgfhrjx", "output": "IGNORE HIM!" }, { "input": "lxxwbkrjgnqjwsnflfnsdyxihmlspgivirazsbveztnkuzpaxtygidniflyjheejelnjyjvgkgvdqks", "output": "CHAT WITH HER!" }, { "input": "wpxbxzfhtdecetpljcrvpjjnllosdqirnkzesiqeukbedkayqx", "output": "CHAT WITH HER!" }, { "input": "vmzxgacicvweclaodrunmjnfwtimceetsaoickarqyrkdghcmyjgmtgsqastcktyrjgvjqimdc", "output": "CHAT WITH HER!" }, { "input": "yzlzmesxdttfcztooypjztlgxwcr", "output": "IGNORE HIM!" }, { "input": "qpbjwzwgdzmeluheirjrvzrhbmagfsjdgvzgwumjtjzecsfkrfqjasssrhhtgdqqfydlmrktlgfc", "output": "IGNORE HIM!" }, { "input": "aqzftsvezdgouyrirsxpbuvdjupnzvbhguyayeqozfzymfnepvwgblqzvmxxkxcilmsjvcgyqykpoaktjvsxbygfgsalbjoq", "output": "CHAT WITH HER!" }, { "input": "znicjjgijhrbdlnwmtjgtdgziollrfxroabfhadygnomodaembllreorlyhnehijfyjbfxucazellblegyfrzuraogadj", "output": "IGNORE HIM!" }, { "input": "qordzrdiknsympdrkgapjxokbldorpnmnpucmwakklmqenpmkom", "output": "CHAT WITH HER!" }, { "input": "wqfldgihuxfktzanyycluzhtewmwvnawqlfoavuguhygqrrxtstxwouuzzsryjqtfqo", "output": "CHAT WITH HER!" }, { "input": "vujtrrpshinkskgyknlcfckmqdrwtklkzlyipmetjvaqxdsslkskschbalmdhzsdrrjmxdltbtnxbh", "output": "IGNORE HIM!" }, { "input": "zioixjibuhrzyrbzqcdjbbhhdmpgmqykixcxoqupggaqajuzonrpzihbsogjfsrrypbiphehonyhohsbybnnukqebopppa", "output": "CHAT WITH HER!" }, { "input": "oh", "output": "CHAT WITH HER!" }, { "input": "kxqthadqesbpgpsvpbcbznxpecqrzjoilpauttzlnxvaczcqwuri", "output": "IGNORE HIM!" }, { "input": "zwlunigqnhrwirkvufqwrnwcnkqqonebrwzcshcbqqwkjxhymjjeakuzjettebciadjlkbfp", "output": "CHAT WITH HER!" }, { "input": "fjuldpuejgmggvvigkwdyzytfxzwdlofrpifqpdnhfyroginqaufwgjcbgshyyruwhofctsdaisqpjxqjmtpp", "output": "CHAT WITH HER!" }, { "input": "xiwntnheuitbtqxrmzvxmieldudakogealwrpygbxsbluhsqhtwmdlpjwzyafckrqrdduonkgo", "output": "CHAT WITH HER!" }, { "input": "mnmbupgo", "output": "IGNORE HIM!" }, { "input": "mcjehdiygkbmrbfjqwpwxidbdfelifwhstaxdapigbymmsgrhnzsdjhsqchl", "output": "IGNORE HIM!" }, { "input": "yocxrzspinchmhtmqo", "output": "CHAT WITH HER!" }, { "input": "vasvvnpymtgjirnzuynluluvmgpquskuaafwogeztfnvybblajvuuvfomtifeuzpikjrolzeeoftv", "output": "CHAT WITH HER!" }, { "input": "ecsdicrznvglwggrdbrvehwzaenzjutjydhvimtqegweurpxtjkmpcznshtrvotkvrghxhacjkedidqqzrduzad", "output": "IGNORE HIM!" }, { "input": "ubvhyaebyxoghakajqrpqpctwbrfqzli", "output": "CHAT WITH HER!" }, { "input": "gogbxfeqylxoummvgxpkoqzsmobasesxbqjjktqbwqxeiaagnnhbvepbpy", "output": "IGNORE HIM!" }, { "input": "nheihhxkbbrmlpxpxbhnpofcjmxemyvqqdbanwd", "output": "IGNORE HIM!" }, { "input": "acrzbavz", "output": "CHAT WITH HER!" }, { "input": "drvzznznvrzskftnrhvvzxcalwutxmdza", "output": "IGNORE HIM!" }, { "input": "oacwxipdfcoabhkwxqdbtowiekpnflnqhlrkustgzryvws", "output": "CHAT WITH HER!" }, { "input": "tpnwfmfsibnccvdwjvzviyvjfljupinfigfunyff", "output": "CHAT WITH HER!" }, { "input": "gavaihhamfolcndgytcsgucqdqngxkrlovpthvteacmmthoglxu", "output": "CHAT WITH HER!" }, { "input": "hsfcfvameeupldgvchmogrvwxrvsmnwxxkxoawwodtsahqvehlcw", "output": "IGNORE HIM!" }, { "input": "sbkydrscoojychxchqsuciperfroumenelgiyiwlqfwximrgdbyvkmacy", "output": "CHAT WITH HER!" }, { "input": "rhh", "output": "CHAT WITH HER!" }, { "input": "zhdouqfmlkenjzdijxdfxnlegxeuvhelo", "output": "IGNORE HIM!" }, { "input": "yufkkfwyhhvcjntsgsvpzbhqtmtgyxifqoewmuplphykmptfdebjxuaxigomjtwgtljwdjhjernkitifbomifbhysnmadtnyn", "output": "CHAT WITH HER!" }, { "input": "urigreuzpxnej", "output": "CHAT WITH HER!" } ]
1,695,832,759
2,147,483,647
PyPy 3-64
OK
TESTS
85
154
0
txt = input() s=set() for i in range(len(txt)): s.add(txt[i]) if len(s) % 2 == 0: print('CHAT WITH HER!') else: print('IGNORE HIM!')
Title: Boy or Girl Time Limit: None seconds Memory Limit: None megabytes Problem Description: Those days, many boys use beautiful girls' photos as avatars in forums. So it is pretty hard to tell the gender of a user at the first glance. Last year, our hero went to a forum and had a nice chat with a beauty (he thought so). After that they talked very often and eventually they became a couple in the network. But yesterday, he came to see "her" in the real world and found out "she" is actually a very strong man! Our hero is very sad and he is too tired to love again now. So he came up with a way to recognize users' genders by their user names. This is his method: if the number of distinct characters in one's user name is odd, then he is a male, otherwise she is a female. You are given the string that denotes the user name, please help our hero to determine the gender of this user by his method. Input Specification: The first line contains a non-empty string, that contains only lowercase English letters — the user name. This string contains at most 100 letters. Output Specification: If it is a female by our hero's method, print "CHAT WITH HER!" (without the quotes), otherwise, print "IGNORE HIM!" (without the quotes). Demo Input: ['wjmzbmr\n', 'xiaodao\n', 'sevenkplus\n'] Demo Output: ['CHAT WITH HER!\n', 'IGNORE HIM!\n', 'CHAT WITH HER!\n'] Note: For the first example. There are 6 distinct characters in "wjmzbmr". These characters are: "w", "j", "m", "z", "b", "r". So wjmzbmr is a female and you should print "CHAT WITH HER!".
```python txt = input() s=set() for i in range(len(txt)): s.add(txt[i]) if len(s) % 2 == 0: print('CHAT WITH HER!') else: print('IGNORE HIM!') ```
3
1,006
C
Three Parts of the Array
PROGRAMMING
1,200
[ "binary search", "data structures", "two pointers" ]
null
null
You are given an array $d_1, d_2, \dots, d_n$ consisting of $n$ integer numbers. Your task is to split this array into three parts (some of which may be empty) in such a way that each element of the array belongs to exactly one of the three parts, and each of the parts forms a consecutive contiguous subsegment (possibly, empty) of the original array. Let the sum of elements of the first part be $sum_1$, the sum of elements of the second part be $sum_2$ and the sum of elements of the third part be $sum_3$. Among all possible ways to split the array you have to choose a way such that $sum_1 = sum_3$ and $sum_1$ is maximum possible. More formally, if the first part of the array contains $a$ elements, the second part of the array contains $b$ elements and the third part contains $c$ elements, then: $$sum_1 = \sum\limits_{1 \le i \le a}d_i,$$ $$sum_2 = \sum\limits_{a + 1 \le i \le a + b}d_i,$$ $$sum_3 = \sum\limits_{a + b + 1 \le i \le a + b + c}d_i.$$ The sum of an empty array is $0$. Your task is to find a way to split the array such that $sum_1 = sum_3$ and $sum_1$ is maximum possible.
The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the number of elements in the array $d$. The second line of the input contains $n$ integers $d_1, d_2, \dots, d_n$ ($1 \le d_i \le 10^9$) — the elements of the array $d$.
Print a single integer — the maximum possible value of $sum_1$, considering that the condition $sum_1 = sum_3$ must be met. Obviously, at least one valid way to split the array exists (use $a=c=0$ and $b=n$).
[ "5\n1 3 1 1 4\n", "5\n1 3 2 1 4\n", "3\n4 1 2\n" ]
[ "5\n", "4\n", "0\n" ]
In the first example there is only one possible splitting which maximizes $sum_1$: $[1, 3, 1], [~], [1, 4]$. In the second example the only way to have $sum_1=4$ is: $[1, 3], [2, 1], [4]$. In the third example there is only one way to split the array: $[~], [4, 1, 2], [~]$.
0
[ { "input": "5\n1 3 1 1 4", "output": "5" }, { "input": "5\n1 3 2 1 4", "output": "4" }, { "input": "3\n4 1 2", "output": "0" }, { "input": "1\n1000000000", "output": "0" }, { "input": "2\n1 1", "output": "1" }, { "input": "5\n1 3 5 4 5", "output": "9" } ]
1,615,051,090
2,147,483,647
PyPy 3
OK
TESTS
27
280
19,046,400
n=int(input()) p=list(map(int,input().split())) i=0 j=n-1 sm1=p[i] sm2=p[j] nmx=0 while i<j: if sm1<sm2: i+=1 sm1+=p[i] elif sm1>sm2: j-=1 sm2+=p[j] else: i+=1 j-=1 nmx=max(nmx,sm1) sm1+=p[i] sm2+=p[j] print(nmx)
Title: Three Parts of the Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an array $d_1, d_2, \dots, d_n$ consisting of $n$ integer numbers. Your task is to split this array into three parts (some of which may be empty) in such a way that each element of the array belongs to exactly one of the three parts, and each of the parts forms a consecutive contiguous subsegment (possibly, empty) of the original array. Let the sum of elements of the first part be $sum_1$, the sum of elements of the second part be $sum_2$ and the sum of elements of the third part be $sum_3$. Among all possible ways to split the array you have to choose a way such that $sum_1 = sum_3$ and $sum_1$ is maximum possible. More formally, if the first part of the array contains $a$ elements, the second part of the array contains $b$ elements and the third part contains $c$ elements, then: $$sum_1 = \sum\limits_{1 \le i \le a}d_i,$$ $$sum_2 = \sum\limits_{a + 1 \le i \le a + b}d_i,$$ $$sum_3 = \sum\limits_{a + b + 1 \le i \le a + b + c}d_i.$$ The sum of an empty array is $0$. Your task is to find a way to split the array such that $sum_1 = sum_3$ and $sum_1$ is maximum possible. Input Specification: The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the number of elements in the array $d$. The second line of the input contains $n$ integers $d_1, d_2, \dots, d_n$ ($1 \le d_i \le 10^9$) — the elements of the array $d$. Output Specification: Print a single integer — the maximum possible value of $sum_1$, considering that the condition $sum_1 = sum_3$ must be met. Obviously, at least one valid way to split the array exists (use $a=c=0$ and $b=n$). Demo Input: ['5\n1 3 1 1 4\n', '5\n1 3 2 1 4\n', '3\n4 1 2\n'] Demo Output: ['5\n', '4\n', '0\n'] Note: In the first example there is only one possible splitting which maximizes $sum_1$: $[1, 3, 1], [~], [1, 4]$. In the second example the only way to have $sum_1=4$ is: $[1, 3], [2, 1], [4]$. In the third example there is only one way to split the array: $[~], [4, 1, 2], [~]$.
```python n=int(input()) p=list(map(int,input().split())) i=0 j=n-1 sm1=p[i] sm2=p[j] nmx=0 while i<j: if sm1<sm2: i+=1 sm1+=p[i] elif sm1>sm2: j-=1 sm2+=p[j] else: i+=1 j-=1 nmx=max(nmx,sm1) sm1+=p[i] sm2+=p[j] print(nmx) ```
3
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,622,018,094
2,147,483,647
Python 3
OK
TESTS
81
124
0
n = int(input()) x,y,z = [0]*n,[0]*n,[0]*n for i in range(n): x[i],y[i],z[i] = input().split() x[i],y[i],z[i] = int(x[i]),int(y[i]),int(z[i]) if (sum(x))**2 + (sum(y))**2 + sum(z)**2 == 0: print("YES") else: print("NO")
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python n = int(input()) x,y,z = [0]*n,[0]*n,[0]*n for i in range(n): x[i],y[i],z[i] = input().split() x[i],y[i],z[i] = int(x[i]),int(y[i]),int(z[i]) if (sum(x))**2 + (sum(y))**2 + sum(z)**2 == 0: print("YES") else: print("NO") ```
3.969
553
A
Kyoya and Colored Balls
PROGRAMMING
1,500
[ "combinatorics", "dp", "math" ]
null
null
Kyoya Ootori has a bag with *n* colored balls that are colored with *k* different colors. The colors are labeled from 1 to *k*. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color *i* before drawing the last ball of color *i*<=+<=1 for all *i* from 1 to *k*<=-<=1. Now he wonders how many different ways this can happen.
The first line of input will have one integer *k* (1<=≤<=*k*<=≤<=1000) the number of colors. Then, *k* lines will follow. The *i*-th line will contain *c**i*, the number of balls of the *i*-th color (1<=≤<=*c**i*<=≤<=1000). The total number of balls doesn't exceed 1000.
A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1<=000<=000<=007.
[ "3\n2\n2\n1\n", "4\n1\n2\n3\n4\n" ]
[ "3\n", "1680\n" ]
In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:
250
[ { "input": "3\n2\n2\n1", "output": "3" }, { "input": "4\n1\n2\n3\n4", "output": "1680" }, { "input": "10\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100", "output": "12520708" }, { "input": "5\n10\n10\n10\n10\n10", "output": "425711769" }, { "input": "11\n291\n381\n126\n39\n19\n20\n3\n1\n20\n45\n2", "output": "902382672" }, { "input": "1\n1", "output": "1" }, { "input": "13\n67\n75\n76\n80\n69\n86\n75\n86\n81\n84\n73\n72\n76", "output": "232242896" }, { "input": "25\n35\n43\n38\n33\n47\n44\n40\n36\n41\n42\n33\n30\n49\n42\n62\n39\n40\n35\n43\n31\n42\n46\n42\n34\n33", "output": "362689152" }, { "input": "47\n20\n21\n16\n18\n24\n20\n25\n13\n20\n22\n26\n24\n17\n18\n21\n22\n21\n23\n17\n15\n24\n19\n18\n21\n20\n19\n26\n25\n20\n17\n17\n17\n26\n32\n20\n21\n25\n28\n24\n21\n21\n17\n28\n20\n20\n31\n19", "output": "295545118" }, { "input": "3\n343\n317\n337", "output": "691446102" }, { "input": "1\n5", "output": "1" } ]
1,695,531,355
2,147,483,647
PyPy 3-64
OK
TESTS
27
62
0
import sys #sys.setrecursionlimit(20000) #from collections import deque #Counter #from itertools import accumulate, product #from functools import reduce #from math import gcd #sqrt import math def rall(): return [x.strip() for x in sys.stdin.readlines()] def rl(): return sys.stdin.readline().strip() def rl_types(types): str_list = [x for x in sys.stdin.readline().strip().split(' ')] return [types[i](str_list[i]) for i in range(len(str_list))] def pr( something='' ): sys.stdout.write( str(something) + '\n') def pra( array ): sys.stdout.write( ' '.join([str(x) for x in array]) + '\n') if __name__ == '__main__': K = int( rl() ) colors = [int(rl()) for _ in range(K)] #pra(colors) MOD = 1_000_000_007 nways = 1 placed = colors[0] # place all the ones first for i in range(1,K): boxes = placed+1 toplace = colors[i]-1 # -1 because of the one that was already placed nways = (nways * math.comb((boxes+toplace-1),toplace)) % MOD placed += colors[i] print(nways)
Title: Kyoya and Colored Balls Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kyoya Ootori has a bag with *n* colored balls that are colored with *k* different colors. The colors are labeled from 1 to *k*. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color *i* before drawing the last ball of color *i*<=+<=1 for all *i* from 1 to *k*<=-<=1. Now he wonders how many different ways this can happen. Input Specification: The first line of input will have one integer *k* (1<=≤<=*k*<=≤<=1000) the number of colors. Then, *k* lines will follow. The *i*-th line will contain *c**i*, the number of balls of the *i*-th color (1<=≤<=*c**i*<=≤<=1000). The total number of balls doesn't exceed 1000. Output Specification: A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1<=000<=000<=007. Demo Input: ['3\n2\n2\n1\n', '4\n1\n2\n3\n4\n'] Demo Output: ['3\n', '1680\n'] Note: In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:
```python import sys #sys.setrecursionlimit(20000) #from collections import deque #Counter #from itertools import accumulate, product #from functools import reduce #from math import gcd #sqrt import math def rall(): return [x.strip() for x in sys.stdin.readlines()] def rl(): return sys.stdin.readline().strip() def rl_types(types): str_list = [x for x in sys.stdin.readline().strip().split(' ')] return [types[i](str_list[i]) for i in range(len(str_list))] def pr( something='' ): sys.stdout.write( str(something) + '\n') def pra( array ): sys.stdout.write( ' '.join([str(x) for x in array]) + '\n') if __name__ == '__main__': K = int( rl() ) colors = [int(rl()) for _ in range(K)] #pra(colors) MOD = 1_000_000_007 nways = 1 placed = colors[0] # place all the ones first for i in range(1,K): boxes = placed+1 toplace = colors[i]-1 # -1 because of the one that was already placed nways = (nways * math.comb((boxes+toplace-1),toplace)) % MOD placed += colors[i] print(nways) ```
3
952
A
Quirky Quantifiers
PROGRAMMING
800
[ "math" ]
null
null
The input contains a single integer *a* (10<=≤<=*a*<=≤<=999). Output 0 or 1.
The input contains a single integer *a* (10<=≤<=*a*<=≤<=999).
Output 0 or 1.
[ "13\n", "927\n", "48\n" ]
[ "1\n", "1\n", "0\n" ]
none
0
[ { "input": "13", "output": "1" }, { "input": "927", "output": "1" }, { "input": "48", "output": "0" }, { "input": "10", "output": "0" }, { "input": "999", "output": "1" }, { "input": "142", "output": "0" }, { "input": "309", "output": "1" }, { "input": "572", "output": "0" }, { "input": "835", "output": "1" }, { "input": "990", "output": "0" }, { "input": "168", "output": "0" }, { "input": "431", "output": "1" }, { "input": "694", "output": "0" }, { "input": "957", "output": "1" }, { "input": "932", "output": "0" } ]
1,615,900,008
2,147,483,647
Python 3
OK
TESTS
15
62
0
num = int(input()) print(num%2)
Title: Quirky Quantifiers Time Limit: None seconds Memory Limit: None megabytes Problem Description: The input contains a single integer *a* (10<=≤<=*a*<=≤<=999). Output 0 or 1. Input Specification: The input contains a single integer *a* (10<=≤<=*a*<=≤<=999). Output Specification: Output 0 or 1. Demo Input: ['13\n', '927\n', '48\n'] Demo Output: ['1\n', '1\n', '0\n'] Note: none
```python num = int(input()) print(num%2) ```
3
557
A
Ilya and Diplomas
PROGRAMMING
1,100
[ "greedy", "implementation", "math" ]
null
null
Soon a school Olympiad in Informatics will be held in Berland, *n* schoolchildren will participate there. At a meeting of the jury of the Olympiad it was decided that each of the *n* participants, depending on the results, will get a diploma of the first, second or third degree. Thus, each student will receive exactly one diploma. They also decided that there must be given at least *min*1 and at most *max*1 diplomas of the first degree, at least *min*2 and at most *max*2 diplomas of the second degree, and at least *min*3 and at most *max*3 diplomas of the third degree. After some discussion it was decided to choose from all the options of distributing diplomas satisfying these limitations the one that maximizes the number of participants who receive diplomas of the first degree. Of all these options they select the one which maximizes the number of the participants who receive diplomas of the second degree. If there are multiple of these options, they select the option that maximizes the number of diplomas of the third degree. Choosing the best option of distributing certificates was entrusted to Ilya, one of the best programmers of Berland. However, he found more important things to do, so it is your task now to choose the best option of distributing of diplomas, based on the described limitations. It is guaranteed that the described limitations are such that there is a way to choose such an option of distributing diplomas that all *n* participants of the Olympiad will receive a diploma of some degree.
The first line of the input contains a single integer *n* (3<=≤<=*n*<=≤<=3·106) — the number of schoolchildren who will participate in the Olympiad. The next line of the input contains two integers *min*1 and *max*1 (1<=≤<=*min*1<=≤<=*max*1<=≤<=106) — the minimum and maximum limits on the number of diplomas of the first degree that can be distributed. The third line of the input contains two integers *min*2 and *max*2 (1<=≤<=*min*2<=≤<=*max*2<=≤<=106) — the minimum and maximum limits on the number of diplomas of the second degree that can be distributed. The next line of the input contains two integers *min*3 and *max*3 (1<=≤<=*min*3<=≤<=*max*3<=≤<=106) — the minimum and maximum limits on the number of diplomas of the third degree that can be distributed. It is guaranteed that *min*1<=+<=*min*2<=+<=*min*3<=≤<=*n*<=≤<=*max*1<=+<=*max*2<=+<=*max*3.
In the first line of the output print three numbers, showing how many diplomas of the first, second and third degree will be given to students in the optimal variant of distributing diplomas. The optimal variant of distributing diplomas is the one that maximizes the number of students who receive diplomas of the first degree. Of all the suitable options, the best one is the one which maximizes the number of participants who receive diplomas of the second degree. If there are several of these options, the best one is the one that maximizes the number of diplomas of the third degree.
[ "6\n1 5\n2 6\n3 7\n", "10\n1 2\n1 3\n1 5\n", "6\n1 3\n2 2\n2 2\n" ]
[ "1 2 3 \n", "2 3 5 \n", "2 2 2 \n" ]
none
500
[ { "input": "6\n1 5\n2 6\n3 7", "output": "1 2 3 " }, { "input": "10\n1 2\n1 3\n1 5", "output": "2 3 5 " }, { "input": "6\n1 3\n2 2\n2 2", "output": "2 2 2 " }, { "input": "55\n1 1000000\n40 50\n10 200", "output": "5 40 10 " }, { "input": "3\n1 1\n1 1\n1 1", "output": "1 1 1 " }, { "input": "3\n1 1000000\n1 1000000\n1 1000000", "output": "1 1 1 " }, { "input": "1000\n100 400\n300 500\n400 1200", "output": "300 300 400 " }, { "input": "3000000\n1 1000000\n1 1000000\n1 1000000", "output": "1000000 1000000 1000000 " }, { "input": "11\n3 5\n3 5\n3 5", "output": "5 3 3 " }, { "input": "12\n3 5\n3 5\n3 5", "output": "5 4 3 " }, { "input": "13\n3 5\n3 5\n3 5", "output": "5 5 3 " }, { "input": "3000000\n1000000 1000000\n1000000 1000000\n1000000 1000000", "output": "1000000 1000000 1000000 " }, { "input": "50\n1 100\n1 100\n1 100", "output": "48 1 1 " }, { "input": "1279\n123 670\n237 614\n846 923", "output": "196 237 846 " }, { "input": "1589\n213 861\n5 96\n506 634", "output": "861 96 632 " }, { "input": "2115\n987 987\n112 483\n437 959", "output": "987 483 645 " }, { "input": "641\n251 960\n34 370\n149 149", "output": "458 34 149 " }, { "input": "1655\n539 539\n10 425\n605 895", "output": "539 425 691 " }, { "input": "1477\n210 336\n410 837\n448 878", "output": "336 693 448 " }, { "input": "1707\n149 914\n190 422\n898 899", "output": "619 190 898 " }, { "input": "1529\n515 515\n563 869\n169 451", "output": "515 845 169 " }, { "input": "1543\n361 994\n305 407\n102 197", "output": "994 407 142 " }, { "input": "1107\n471 849\n360 741\n71 473", "output": "676 360 71 " }, { "input": "1629279\n267360 999930\n183077 674527\n202618 786988", "output": "999930 426731 202618 " }, { "input": "1233589\n2850 555444\n500608 921442\n208610 607343", "output": "524371 500608 208610 " }, { "input": "679115\n112687 183628\n101770 982823\n81226 781340", "output": "183628 414261 81226 " }, { "input": "1124641\n117999 854291\n770798 868290\n76651 831405", "output": "277192 770798 76651 " }, { "input": "761655\n88152 620061\n60403 688549\n79370 125321", "output": "620061 62224 79370 " }, { "input": "2174477\n276494 476134\n555283 954809\n319941 935631", "output": "476134 954809 743534 " }, { "input": "1652707\n201202 990776\n34796 883866\n162979 983308", "output": "990776 498952 162979 " }, { "input": "2065529\n43217 891429\n434379 952871\n650231 855105", "output": "891429 523869 650231 " }, { "input": "1702543\n405042 832833\n50931 747750\n381818 796831", "output": "832833 487892 381818 " }, { "input": "501107\n19061 859924\n126478 724552\n224611 489718", "output": "150018 126478 224611 " }, { "input": "1629279\n850831 967352\n78593 463906\n452094 885430", "output": "967352 209833 452094 " }, { "input": "1233589\n2850 157021\n535109 748096\n392212 475634", "output": "157021 684356 392212 " }, { "input": "679115\n125987 786267\n70261 688983\n178133 976789", "output": "430721 70261 178133 " }, { "input": "1124641\n119407 734250\n213706 860770\n102149 102149", "output": "734250 288242 102149 " }, { "input": "761655\n325539 325539\n280794 792505\n18540 106895", "output": "325539 417576 18540 " }, { "input": "2174477\n352351 791072\n365110 969163\n887448 955610", "output": "791072 495957 887448 " }, { "input": "1652707\n266774 638522\n65688 235422\n924898 992826", "output": "638522 89287 924898 " }, { "input": "2065529\n608515 608515\n751563 864337\n614898 705451", "output": "608515 842116 614898 " }, { "input": "1702543\n5784 996578\n47395 300407\n151614 710197", "output": "996578 300407 405558 " }, { "input": "501107\n8073 390048\n190494 647328\n274071 376923", "output": "36542 190494 274071 " }, { "input": "200\n50 50\n100 100\n50 50", "output": "50 100 50 " }, { "input": "14\n1 100\n1 100\n8 9", "output": "5 1 8 " }, { "input": "300\n200 400\n50 100\n40 80", "output": "210 50 40 " }, { "input": "10\n3 6\n3 6\n3 6", "output": "4 3 3 " }, { "input": "14\n3 6\n3 6\n3 6", "output": "6 5 3 " }, { "input": "17\n3 6\n3 6\n3 6", "output": "6 6 5 " }, { "input": "1000000\n300000 600000\n300000 600000\n300000 600000", "output": "400000 300000 300000 " }, { "input": "1400000\n300000 600000\n300000 600000\n300000 600000", "output": "600000 500000 300000 " }, { "input": "1700000\n300000 600000\n300000 600000\n300000 600000", "output": "600000 600000 500000 " }, { "input": "561\n400 400\n80 80\n81 81", "output": "400 80 81 " }, { "input": "2000\n100 1000\n1 1\n1 2000", "output": "1000 1 999 " }, { "input": "1000002\n1 1000000\n1 1000000\n999999 1000000", "output": "2 1 999999 " }, { "input": "1000002\n1 1000000\n1 1000000\n1000000 1000000", "output": "1 1 1000000 " } ]
1,680,863,222
2,147,483,647
PyPy 3-64
OK
TESTS
56
77
0
n = int(input()) a1, b1 = map(int, input().split()) a2, b2 = map(int, input().split()) a3, b3 = map(int, input().split()) res = [a1,a2,a3] if sum(res) < n: res[0] += min(b1-a1, n-sum(res)) if sum(res) < n: res[1] += min(b2-a2, n-sum(res)) if sum(res) < n: res[2] += n-sum(res) print(" ".join(str(x) for x in res))
Title: Ilya and Diplomas Time Limit: None seconds Memory Limit: None megabytes Problem Description: Soon a school Olympiad in Informatics will be held in Berland, *n* schoolchildren will participate there. At a meeting of the jury of the Olympiad it was decided that each of the *n* participants, depending on the results, will get a diploma of the first, second or third degree. Thus, each student will receive exactly one diploma. They also decided that there must be given at least *min*1 and at most *max*1 diplomas of the first degree, at least *min*2 and at most *max*2 diplomas of the second degree, and at least *min*3 and at most *max*3 diplomas of the third degree. After some discussion it was decided to choose from all the options of distributing diplomas satisfying these limitations the one that maximizes the number of participants who receive diplomas of the first degree. Of all these options they select the one which maximizes the number of the participants who receive diplomas of the second degree. If there are multiple of these options, they select the option that maximizes the number of diplomas of the third degree. Choosing the best option of distributing certificates was entrusted to Ilya, one of the best programmers of Berland. However, he found more important things to do, so it is your task now to choose the best option of distributing of diplomas, based on the described limitations. It is guaranteed that the described limitations are such that there is a way to choose such an option of distributing diplomas that all *n* participants of the Olympiad will receive a diploma of some degree. Input Specification: The first line of the input contains a single integer *n* (3<=≤<=*n*<=≤<=3·106) — the number of schoolchildren who will participate in the Olympiad. The next line of the input contains two integers *min*1 and *max*1 (1<=≤<=*min*1<=≤<=*max*1<=≤<=106) — the minimum and maximum limits on the number of diplomas of the first degree that can be distributed. The third line of the input contains two integers *min*2 and *max*2 (1<=≤<=*min*2<=≤<=*max*2<=≤<=106) — the minimum and maximum limits on the number of diplomas of the second degree that can be distributed. The next line of the input contains two integers *min*3 and *max*3 (1<=≤<=*min*3<=≤<=*max*3<=≤<=106) — the minimum and maximum limits on the number of diplomas of the third degree that can be distributed. It is guaranteed that *min*1<=+<=*min*2<=+<=*min*3<=≤<=*n*<=≤<=*max*1<=+<=*max*2<=+<=*max*3. Output Specification: In the first line of the output print three numbers, showing how many diplomas of the first, second and third degree will be given to students in the optimal variant of distributing diplomas. The optimal variant of distributing diplomas is the one that maximizes the number of students who receive diplomas of the first degree. Of all the suitable options, the best one is the one which maximizes the number of participants who receive diplomas of the second degree. If there are several of these options, the best one is the one that maximizes the number of diplomas of the third degree. Demo Input: ['6\n1 5\n2 6\n3 7\n', '10\n1 2\n1 3\n1 5\n', '6\n1 3\n2 2\n2 2\n'] Demo Output: ['1 2 3 \n', '2 3 5 \n', '2 2 2 \n'] Note: none
```python n = int(input()) a1, b1 = map(int, input().split()) a2, b2 = map(int, input().split()) a3, b3 = map(int, input().split()) res = [a1,a2,a3] if sum(res) < n: res[0] += min(b1-a1, n-sum(res)) if sum(res) < n: res[1] += min(b2-a2, n-sum(res)) if sum(res) < n: res[2] += n-sum(res) print(" ".join(str(x) for x in res)) ```
3
709
A
Juicer
PROGRAMMING
900
[ "implementation" ]
null
null
Kolya is going to make fresh orange juice. He has *n* oranges of sizes *a*1,<=*a*2,<=...,<=*a**n*. Kolya will put them in the juicer in the fixed order, starting with orange of size *a*1, then orange of size *a*2 and so on. To be put in the juicer the orange must have size not exceeding *b*, so if Kolya sees an orange that is strictly greater he throws it away and continues with the next one. The juicer has a special section to collect waste. It overflows if Kolya squeezes oranges of the total size strictly greater than *d*. When it happens Kolya empties the waste section (even if there are no more oranges) and continues to squeeze the juice. How many times will he have to empty the waste section?
The first line of the input contains three integers *n*, *b* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*b*<=≤<=*d*<=≤<=1<=000<=000) — the number of oranges, the maximum size of the orange that fits in the juicer and the value *d*, which determines the condition when the waste section should be emptied. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000) — sizes of the oranges listed in the order Kolya is going to try to put them in the juicer.
Print one integer — the number of times Kolya will have to empty the waste section.
[ "2 7 10\n5 6\n", "1 5 10\n7\n", "3 10 10\n5 7 7\n", "1 1 1\n1\n" ]
[ "1\n", "0\n", "1\n", "0\n" ]
In the first sample, Kolya will squeeze the juice from two oranges and empty the waste section afterwards. In the second sample, the orange won't fit in the juicer so Kolya will have no juice at all.
500
[ { "input": "2 7 10\n5 6", "output": "1" }, { "input": "1 5 10\n7", "output": "0" }, { "input": "3 10 10\n5 7 7", "output": "1" }, { "input": "1 1 1\n1", "output": "0" }, { "input": "2 951637 951638\n44069 951637", "output": "1" }, { "input": "50 100 129\n55 130 91 19 116 3 63 52 104 76 75 27 151 99 149 147 39 148 84 9 132 49 40 112 124 141 144 93 36 32 146 74 48 38 150 55 94 32 107 69 77 81 33 57 62 98 78 127 154 126", "output": "12" }, { "input": "100 1000 1083\n992 616 818 359 609 783 263 989 501 929 362 394 919 1081 870 830 1097 975 62 346 531 367 323 457 707 360 949 334 867 116 478 417 961 963 1029 114 867 1008 988 916 983 1077 959 942 572 961 579 318 721 337 488 717 111 70 416 685 987 130 353 107 61 191 827 849 106 815 211 953 111 398 889 860 801 71 375 320 395 1059 116 222 931 444 582 74 677 655 88 173 686 491 661 186 114 832 615 814 791 464 517 850", "output": "36" }, { "input": "2 6 8\n2 1", "output": "0" }, { "input": "5 15 16\n7 11 5 12 8", "output": "2" }, { "input": "15 759966 759967\n890397 182209 878577 548548 759966 812923 759966 860479 200595 381358 299175 339368 759966 907668 69574", "output": "4" }, { "input": "5 234613 716125\n642626 494941 234613 234613 234613", "output": "0" }, { "input": "50 48547 567054\n529808 597004 242355 559114 78865 537318 631455 733020 655072 645093 309010 855034 306058 625046 524574 834944 27330 664392 443637 821584 338013 490702 289520 675471 885846 258814 134220 571301 84875 94132 200425 928833 375166 521232 317961 175315 947093 89971 322071 174033 48547 998535 954205 704114 943163 438900 48547 538422 48547 48547", "output": "0" }, { "input": "5 10 20\n10 10 10 10 1", "output": "1" }, { "input": "5 10 11\n10 10 10 10 1", "output": "2" }, { "input": "3 10 10\n4 3 3", "output": "0" }, { "input": "3 5 5\n5 5 5", "output": "1" }, { "input": "3 4 14\n5 5 5", "output": "0" }, { "input": "2 7 10\n1234 1234", "output": "0" }, { "input": "1 5 6\n10", "output": "0" }, { "input": "3 4 6\n1 2 3", "output": "0" }, { "input": "5 10 12\n13 13 13 13 13", "output": "0" }, { "input": "3 4 5\n5 7 9", "output": "0" }, { "input": "3 10 100\n5 5 5", "output": "0" }, { "input": "5 1 2\n2 2 2 2 2", "output": "0" }, { "input": "5 5 5\n5 5 5 5 5", "output": "2" }, { "input": "2 2 5\n5 5", "output": "0" }, { "input": "3 1 4\n2 2 2", "output": "0" } ]
1,637,525,091
2,147,483,647
Python 3
OK
TESTS
58
109
7,372,800
n, b, d = map(int, input().split()) size = list(map(int, input().split())) t = 0 total = 0 for i in range(n): if size[i] > b: size[i] = 0 total += size[i] if total > d: t += 1 total = 0 print(t)
Title: Juicer Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kolya is going to make fresh orange juice. He has *n* oranges of sizes *a*1,<=*a*2,<=...,<=*a**n*. Kolya will put them in the juicer in the fixed order, starting with orange of size *a*1, then orange of size *a*2 and so on. To be put in the juicer the orange must have size not exceeding *b*, so if Kolya sees an orange that is strictly greater he throws it away and continues with the next one. The juicer has a special section to collect waste. It overflows if Kolya squeezes oranges of the total size strictly greater than *d*. When it happens Kolya empties the waste section (even if there are no more oranges) and continues to squeeze the juice. How many times will he have to empty the waste section? Input Specification: The first line of the input contains three integers *n*, *b* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*b*<=≤<=*d*<=≤<=1<=000<=000) — the number of oranges, the maximum size of the orange that fits in the juicer and the value *d*, which determines the condition when the waste section should be emptied. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000) — sizes of the oranges listed in the order Kolya is going to try to put them in the juicer. Output Specification: Print one integer — the number of times Kolya will have to empty the waste section. Demo Input: ['2 7 10\n5 6\n', '1 5 10\n7\n', '3 10 10\n5 7 7\n', '1 1 1\n1\n'] Demo Output: ['1\n', '0\n', '1\n', '0\n'] Note: In the first sample, Kolya will squeeze the juice from two oranges and empty the waste section afterwards. In the second sample, the orange won't fit in the juicer so Kolya will have no juice at all.
```python n, b, d = map(int, input().split()) size = list(map(int, input().split())) t = 0 total = 0 for i in range(n): if size[i] > b: size[i] = 0 total += size[i] if total > d: t += 1 total = 0 print(t) ```
3
38
B
Chess
PROGRAMMING
1,200
[ "brute force", "implementation", "math" ]
B. Chess
2
256
Two chess pieces, a rook and a knight, stand on a standard chessboard 8<=×<=8 in size. The positions in which they are situated are known. It is guaranteed that none of them beats the other one. Your task is to find the number of ways to place another knight on the board so that none of the three pieces on the board beat another one. A new piece can only be placed on an empty square.
The first input line contains the description of the rook's position on the board. This description is a line which is 2 in length. Its first symbol is a lower-case Latin letter from a to h, and its second symbol is a number from 1 to 8. The second line contains the description of the knight's position in a similar way. It is guaranteed that their positions do not coincide.
Print a single number which is the required number of ways.
[ "a1\nb2\n", "a8\nd4\n" ]
[ "44\n", "38\n" ]
none
0
[ { "input": "a1\nb2", "output": "44" }, { "input": "a8\nd4", "output": "38" }, { "input": "a8\nf1", "output": "42" }, { "input": "f8\nh3", "output": "42" }, { "input": "g8\nb7", "output": "42" }, { "input": "h1\ng5", "output": "42" }, { "input": "c6\nb5", "output": "39" }, { "input": "c1\nd2", "output": "42" }, { "input": "g3\nh4", "output": "42" }, { "input": "e3\ng5", "output": "38" }, { "input": "f8\na3", "output": "40" }, { "input": "a2\nh8", "output": "43" }, { "input": "a3\nc5", "output": "40" }, { "input": "g1\ne6", "output": "39" }, { "input": "e1\na7", "output": "41" }, { "input": "b5\nc1", "output": "39" }, { "input": "b2\ne1", "output": "43" }, { "input": "h8\ng2", "output": "43" }, { "input": "a3\nd6", "output": "38" }, { "input": "g6\nb7", "output": "39" }, { "input": "c8\ne6", "output": "40" }, { "input": "e6\nf2", "output": "35" }, { "input": "b6\nd8", "output": "41" }, { "input": "a4\nd1", "output": "42" }, { "input": "b5\nh8", "output": "40" }, { "input": "h6\na1", "output": "42" }, { "input": "c3\na8", "output": "39" }, { "input": "g5\nd2", "output": "38" }, { "input": "b6\ng7", "output": "39" }, { "input": "h6\na8", "output": "43" }, { "input": "a8\nb7", "output": "44" }, { "input": "c8\nb2", "output": "41" }, { "input": "e4\nc1", "output": "37" }, { "input": "f1\nc3", "output": "38" }, { "input": "a3\nc8", "output": "41" }, { "input": "e8\nb6", "output": "40" }, { "input": "a1\nb7", "output": "43" }, { "input": "g2\nb7", "output": "40" }, { "input": "e1\nd6", "output": "38" }, { "input": "e5\nh6", "output": "39" } ]
1,594,400,472
2,147,483,647
PyPy 3
OK
TESTS
40
342
20,684,800
import sys input = sys.stdin.readline import math from collections import defaultdict,deque ml=lambda:map(int,input().split()) ll=lambda:list(map(int,input().split())) ii=lambda:int(input()) ip=lambda:list(input()) ips=lambda:input().split() """========main code===============""" r=ip() k=ip() d=defaultdict(int) j=1 for i in "abcdefgh": d[i]=j j+=1 k_x=d[k[0]] k_y=int(k[1]) r_x=d[r[0]] r_y=int(r[1]) lol=[] lol.append([-2,1]) lol.append([-2,-1]) lol.append([2,1]) lol.append([2,-1]) ans=64 m=defaultdict(int) for i in lol: if(k_x+i[0]>0 and k_x+i[0]<=8 and k_y+i[1]>0 and k_y+i[1]<=8 and m[(k_x+i[0],k_y+i[1])]==0): ans-=1 m[(k_x+i[0],k_y+i[1])]=1 if(k_x+i[1]>0 and k_x+i[1]<=8 and k_y+i[0]>0 and k_y+i[0]<=8 and m[(k_x+i[1],k_y+i[0])]==0): ans-=1 m[(k_x+i[1],k_y+i[0])]=1 if(r_x+i[0]>0 and r_x+i[0]<=8 and r_y+i[1]>0 and r_y+i[1]<=8 and m[(r_x+i[0],r_y+i[1])]==0 ): ans-=1 m[(r_x+i[0],r_y+i[1])]=1 if(r_x+i[1]>0 and r_x+i[1]<=8 and r_y+i[0]>0 and r_y+i[0]<=8 and m[(r_x+i[1],r_y+i[0])]==0): ans-=1 m[(r_x+i[1],r_y+i[0])]=1 for i in range(1,9): if(m[(i,r_y)]==0): ans-=1 if(m[(r_x,i)]==0): ans-=1 print(ans)
Title: Chess Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Two chess pieces, a rook and a knight, stand on a standard chessboard 8<=×<=8 in size. The positions in which they are situated are known. It is guaranteed that none of them beats the other one. Your task is to find the number of ways to place another knight on the board so that none of the three pieces on the board beat another one. A new piece can only be placed on an empty square. Input Specification: The first input line contains the description of the rook's position on the board. This description is a line which is 2 in length. Its first symbol is a lower-case Latin letter from a to h, and its second symbol is a number from 1 to 8. The second line contains the description of the knight's position in a similar way. It is guaranteed that their positions do not coincide. Output Specification: Print a single number which is the required number of ways. Demo Input: ['a1\nb2\n', 'a8\nd4\n'] Demo Output: ['44\n', '38\n'] Note: none
```python import sys input = sys.stdin.readline import math from collections import defaultdict,deque ml=lambda:map(int,input().split()) ll=lambda:list(map(int,input().split())) ii=lambda:int(input()) ip=lambda:list(input()) ips=lambda:input().split() """========main code===============""" r=ip() k=ip() d=defaultdict(int) j=1 for i in "abcdefgh": d[i]=j j+=1 k_x=d[k[0]] k_y=int(k[1]) r_x=d[r[0]] r_y=int(r[1]) lol=[] lol.append([-2,1]) lol.append([-2,-1]) lol.append([2,1]) lol.append([2,-1]) ans=64 m=defaultdict(int) for i in lol: if(k_x+i[0]>0 and k_x+i[0]<=8 and k_y+i[1]>0 and k_y+i[1]<=8 and m[(k_x+i[0],k_y+i[1])]==0): ans-=1 m[(k_x+i[0],k_y+i[1])]=1 if(k_x+i[1]>0 and k_x+i[1]<=8 and k_y+i[0]>0 and k_y+i[0]<=8 and m[(k_x+i[1],k_y+i[0])]==0): ans-=1 m[(k_x+i[1],k_y+i[0])]=1 if(r_x+i[0]>0 and r_x+i[0]<=8 and r_y+i[1]>0 and r_y+i[1]<=8 and m[(r_x+i[0],r_y+i[1])]==0 ): ans-=1 m[(r_x+i[0],r_y+i[1])]=1 if(r_x+i[1]>0 and r_x+i[1]<=8 and r_y+i[0]>0 and r_y+i[0]<=8 and m[(r_x+i[1],r_y+i[0])]==0): ans-=1 m[(r_x+i[1],r_y+i[0])]=1 for i in range(1,9): if(m[(i,r_y)]==0): ans-=1 if(m[(r_x,i)]==0): ans-=1 print(ans) ```
3.875972
1,011
A
Stages
PROGRAMMING
900
[ "greedy", "implementation", "sortings" ]
null
null
Natasha is going to fly to Mars. She needs to build a rocket, which consists of several stages in some order. Each of the stages is defined by a lowercase Latin letter. This way, the rocket can be described by the string — concatenation of letters, which correspond to the stages. There are $n$ stages available. The rocket must contain exactly $k$ of them. Stages in the rocket should be ordered by their weight. So, after the stage with some letter can go only stage with a letter, which is at least two positions after in the alphabet (skipping one letter in between, or even more). For example, after letter 'c' can't go letters 'a', 'b', 'c' and 'd', but can go letters 'e', 'f', ..., 'z'. For the rocket to fly as far as possible, its weight should be minimal. The weight of the rocket is equal to the sum of the weights of its stages. The weight of the stage is the number of its letter in the alphabet. For example, the stage 'a 'weighs one ton,' b 'weighs two tons, and' z' — $26$ tons. Build the rocket with the minimal weight or determine, that it is impossible to build a rocket at all. Each stage can be used at most once.
The first line of input contains two integers — $n$ and $k$ ($1 \le k \le n \le 50$) – the number of available stages and the number of stages to use in the rocket. The second line contains string $s$, which consists of exactly $n$ lowercase Latin letters. Each letter defines a new stage, which can be used to build the rocket. Each stage can be used at most once.
Print a single integer — the minimal total weight of the rocket or -1, if it is impossible to build the rocket at all.
[ "5 3\nxyabd\n", "7 4\nproblem\n", "2 2\nab\n", "12 1\nabaabbaaabbb\n" ]
[ "29", "34", "-1", "1" ]
In the first example, the following rockets satisfy the condition: - "adx" (weight is $1+4+24=29$);- "ady" (weight is $1+4+25=30$);- "bdx" (weight is $2+4+24=30$);- "bdy" (weight is $2+4+25=31$). Rocket "adx" has the minimal weight, so the answer is $29$. In the second example, target rocket is "belo". Its weight is $2+5+12+15=34$. In the third example, $n=k=2$, so the rocket must have both stages: 'a' and 'b'. This rocket doesn't satisfy the condition, because these letters are adjacent in the alphabet. Answer is -1.
500
[ { "input": "5 3\nxyabd", "output": "29" }, { "input": "7 4\nproblem", "output": "34" }, { "input": "2 2\nab", "output": "-1" }, { "input": "12 1\nabaabbaaabbb", "output": "1" }, { "input": "50 13\nqwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa", "output": "169" }, { "input": "50 14\nqwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa", "output": "-1" }, { "input": "1 1\na", "output": "1" }, { "input": "50 1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "1" }, { "input": "50 2\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "-1" }, { "input": "13 13\nuwgmkyqeiaocs", "output": "169" }, { "input": "13 13\nhzdxpbfvrltnj", "output": "182" }, { "input": "1 1\nn", "output": "14" }, { "input": "10 8\nsmzeblyjqw", "output": "113" }, { "input": "20 20\ntzmvhskkyugkuuxpvtbh", "output": "-1" }, { "input": "30 15\nwjzolzzkfulwgioksfxmcxmnnjtoav", "output": "-1" }, { "input": "40 30\nxumfrflllrrgswehqtsskefixhcxjrxbjmrpsshv", "output": "-1" }, { "input": "50 31\nahbyyoxltryqdmvenemaqnbakglgqolxnaifnqtoclnnqiabpz", "output": "-1" }, { "input": "10 7\niuiukrxcml", "output": "99" }, { "input": "38 2\nvjzarfykmrsrvwbwfwldsulhxtykmjbnwmdufa", "output": "5" }, { "input": "12 6\nfwseyrarkwcd", "output": "61" }, { "input": "2 2\nac", "output": "4" }, { "input": "1 1\nc", "output": "3" }, { "input": "2 2\nad", "output": "5" }, { "input": "2 1\nac", "output": "1" }, { "input": "4 3\nadjz", "output": "15" }, { "input": "3 3\naoz", "output": "42" }, { "input": "3 1\nzzz", "output": "26" }, { "input": "2 1\nxz", "output": "24" }, { "input": "5 1\naaddd", "output": "1" } ]
1,610,786,110
2,147,483,647
PyPy 3
OK
TESTS
29
93
3,481,600
import sys input = sys.stdin.readline ############ ---- Input Functions ---- ############ def inlt(): return(list(map(int,input().split()))) def insr(): s = input() return(list(s[:len(s) - 1])) def cint(c): return ord(c) - 96 #################################################### def find_min_weight(n, k, stages): n = len(stages) min_weight = float('inf') def backtrack(s, w, t): nonlocal min_weight if t >= k: min_weight = min(min_weight, w) return if s >= n - 1: return for i in range(s+1, n, 1): if stages[i] - stages[s] > 1: backtrack(i, w+stages[i], t+1) backtrack(0, stages[0], 1) if min_weight == float('inf'): return -1 return min_weight n, k = inlt() stages = list(set(map(cint, insr()))) stages.sort() print(find_min_weight(n, k, stages))
Title: Stages Time Limit: None seconds Memory Limit: None megabytes Problem Description: Natasha is going to fly to Mars. She needs to build a rocket, which consists of several stages in some order. Each of the stages is defined by a lowercase Latin letter. This way, the rocket can be described by the string — concatenation of letters, which correspond to the stages. There are $n$ stages available. The rocket must contain exactly $k$ of them. Stages in the rocket should be ordered by their weight. So, after the stage with some letter can go only stage with a letter, which is at least two positions after in the alphabet (skipping one letter in between, or even more). For example, after letter 'c' can't go letters 'a', 'b', 'c' and 'd', but can go letters 'e', 'f', ..., 'z'. For the rocket to fly as far as possible, its weight should be minimal. The weight of the rocket is equal to the sum of the weights of its stages. The weight of the stage is the number of its letter in the alphabet. For example, the stage 'a 'weighs one ton,' b 'weighs two tons, and' z' — $26$ tons. Build the rocket with the minimal weight or determine, that it is impossible to build a rocket at all. Each stage can be used at most once. Input Specification: The first line of input contains two integers — $n$ and $k$ ($1 \le k \le n \le 50$) – the number of available stages and the number of stages to use in the rocket. The second line contains string $s$, which consists of exactly $n$ lowercase Latin letters. Each letter defines a new stage, which can be used to build the rocket. Each stage can be used at most once. Output Specification: Print a single integer — the minimal total weight of the rocket or -1, if it is impossible to build the rocket at all. Demo Input: ['5 3\nxyabd\n', '7 4\nproblem\n', '2 2\nab\n', '12 1\nabaabbaaabbb\n'] Demo Output: ['29', '34', '-1', '1'] Note: In the first example, the following rockets satisfy the condition: - "adx" (weight is $1+4+24=29$);- "ady" (weight is $1+4+25=30$);- "bdx" (weight is $2+4+24=30$);- "bdy" (weight is $2+4+25=31$). Rocket "adx" has the minimal weight, so the answer is $29$. In the second example, target rocket is "belo". Its weight is $2+5+12+15=34$. In the third example, $n=k=2$, so the rocket must have both stages: 'a' and 'b'. This rocket doesn't satisfy the condition, because these letters are adjacent in the alphabet. Answer is -1.
```python import sys input = sys.stdin.readline ############ ---- Input Functions ---- ############ def inlt(): return(list(map(int,input().split()))) def insr(): s = input() return(list(s[:len(s) - 1])) def cint(c): return ord(c) - 96 #################################################### def find_min_weight(n, k, stages): n = len(stages) min_weight = float('inf') def backtrack(s, w, t): nonlocal min_weight if t >= k: min_weight = min(min_weight, w) return if s >= n - 1: return for i in range(s+1, n, 1): if stages[i] - stages[s] > 1: backtrack(i, w+stages[i], t+1) backtrack(0, stages[0], 1) if min_weight == float('inf'): return -1 return min_weight n, k = inlt() stages = list(set(map(cint, insr()))) stages.sort() print(find_min_weight(n, k, stages)) ```
3
758
A
Holiday Of Equality
PROGRAMMING
800
[ "implementation", "math" ]
null
null
In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury. Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland). You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them.
The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen.
In the only line print the integer *S* — the minimum number of burles which are had to spend.
[ "5\n0 1 2 3 4\n", "5\n1 1 0 1 1\n", "3\n1 3 1\n", "1\n12\n" ]
[ "10", "1", "4", "0" ]
In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4. In the second example it is enough to give one burle to the third citizen. In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3. In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles.
500
[ { "input": "5\n0 1 2 3 4", "output": "10" }, { "input": "5\n1 1 0 1 1", "output": "1" }, { "input": "3\n1 3 1", "output": "4" }, { "input": "1\n12", "output": "0" }, { "input": "3\n1 2 3", "output": "3" }, { "input": "14\n52518 718438 358883 462189 853171 592966 225788 46977 814826 295697 676256 561479 56545 764281", "output": "5464380" }, { "input": "21\n842556 216391 427181 626688 775504 168309 851038 448402 880826 73697 593338 519033 135115 20128 424606 939484 846242 756907 377058 241543 29353", "output": "9535765" }, { "input": "3\n1 3 2", "output": "3" }, { "input": "3\n2 1 3", "output": "3" }, { "input": "3\n2 3 1", "output": "3" }, { "input": "3\n3 1 2", "output": "3" }, { "input": "3\n3 2 1", "output": "3" }, { "input": "1\n228503", "output": "0" }, { "input": "2\n32576 550340", "output": "517764" }, { "input": "3\n910648 542843 537125", "output": "741328" }, { "input": "4\n751720 572344 569387 893618", "output": "787403" }, { "input": "6\n433864 631347 597596 794426 713555 231193", "output": "1364575" }, { "input": "9\n31078 645168 695751 126111 375934 150495 838412 434477 993107", "output": "4647430" }, { "input": "30\n315421 772664 560686 654312 151528 356749 351486 707462 820089 226682 546700 136028 824236 842130 578079 337807 665903 764100 617900 822937 992759 591749 651310 742085 767695 695442 17967 515106 81059 186025", "output": "13488674" }, { "input": "45\n908719 394261 815134 419990 926993 383792 772842 277695 527137 655356 684956 695716 273062 550324 106247 399133 442382 33076 462920 294674 846052 817752 421365 474141 290471 358990 109812 74492 543281 169434 919692 786809 24028 197184 310029 801476 699355 429672 51343 374128 776726 850380 293868 981569 550763", "output": "21993384" }, { "input": "56\n100728 972537 13846 385421 756708 184642 259487 319707 376662 221694 675284 972837 499419 13846 38267 289898 901299 831197 954715 197515 514102 910423 127555 883934 362472 870788 538802 741008 973434 448124 391526 363321 947321 544618 68006 782313 955075 741981 815027 723297 585059 718114 700739 413489 454091 736144 308999 98065 3716 347323 9635 289003 986510 607065 60236 273351", "output": "26984185" }, { "input": "70\n644488 5444 150441 714420 602059 335330 510670 196555 546346 740011 509449 850947 692874 524857 750434 952985 223744 374727 896124 753037 367352 679050 560202 172728 569291 778616 332116 286927 843598 372698 244906 498046 900681 709791 420904 724593 864493 813094 791377 39998 296710 625656 403891 579231 706693 984045 16901 574259 562265 761104 930361 256045 124461 538980 573508 372148 988722 108592 784354 55302 232524 277205 782251 299943 436488 743389 324618 742543 266915 99642", "output": "32816391" }, { "input": "1\n0", "output": "0" }, { "input": "1\n1000000", "output": "0" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "100\n1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "99000000" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000", "output": "99000000" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "99000000" }, { "input": "3\n0 0 0", "output": "0" }, { "input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "3\n5 0 0", "output": "10" }, { "input": "5\n2 10 0 0 0", "output": "38" } ]
1,649,350,713
2,147,483,647
PyPy 3
OK
TESTS
41
93
0
n= int(input()) arr = [int(x) for x in input().split()] val = max(arr) equal = [abs(val-i) for i in arr] print(sum(equal))
Title: Holiday Of Equality Time Limit: None seconds Memory Limit: None megabytes Problem Description: In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury. Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland). You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them. Input Specification: The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen. Output Specification: In the only line print the integer *S* — the minimum number of burles which are had to spend. Demo Input: ['5\n0 1 2 3 4\n', '5\n1 1 0 1 1\n', '3\n1 3 1\n', '1\n12\n'] Demo Output: ['10', '1', '4', '0'] Note: In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4. In the second example it is enough to give one burle to the third citizen. In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3. In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles.
```python n= int(input()) arr = [int(x) for x in input().split()] val = max(arr) equal = [abs(val-i) for i in arr] print(sum(equal)) ```
3
591
B
Rebranding
PROGRAMMING
1,200
[ "implementation", "strings" ]
null
null
The name of one small but proud corporation consists of *n* lowercase English letters. The Corporation has decided to try rebranding — an active marketing strategy, that includes a set of measures to change either the brand (both for the company and the goods it produces) or its components: the name, the logo, the slogan. They decided to start with the name. For this purpose the corporation has consecutively hired *m* designers. Once a company hires the *i*-th designer, he immediately contributes to the creation of a new corporation name as follows: he takes the newest version of the name and replaces all the letters *x**i* by *y**i*, and all the letters *y**i* by *x**i*. This results in the new version. It is possible that some of these letters do no occur in the string. It may also happen that *x**i* coincides with *y**i*. The version of the name received after the work of the last designer becomes the new name of the corporation. Manager Arkady has recently got a job in this company, but is already soaked in the spirit of teamwork and is very worried about the success of the rebranding. Naturally, he can't wait to find out what is the new name the Corporation will receive. Satisfy Arkady's curiosity and tell him the final version of the name.
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=200<=000) — the length of the initial name and the number of designers hired, respectively. The second line consists of *n* lowercase English letters and represents the original name of the corporation. Next *m* lines contain the descriptions of the designers' actions: the *i*-th of them contains two space-separated lowercase English letters *x**i* and *y**i*.
Print the new name of the corporation.
[ "6 1\npolice\np m\n", "11 6\nabacabadaba\na b\nb c\na d\ne g\nf a\nb b\n" ]
[ "molice\n", "cdcbcdcfcdc\n" ]
In the second sample the name of the corporation consecutively changes as follows: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c7648432f7138ca53234357d7e08d1d119166055.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/de89ad7bc7f27c46ec34f5e66ce0dc23bd5bc90a.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/812e653c8d7ff496e6a0f04c676423806751531e.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19c564fcefb8dde36256240a8b877bb6a4792bfe.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e1cafd93792430ad1a49e893e04715383bdae757.png" style="max-width: 100.0%;max-height: 100.0%;"/>
1,000
[ { "input": "6 1\npolice\np m", "output": "molice" }, { "input": "11 6\nabacabadaba\na b\nb c\na d\ne g\nf a\nb b", "output": "cdcbcdcfcdc" }, { "input": "1 1\nf\nz h", "output": "f" }, { "input": "1 1\na\na b", "output": "b" }, { "input": "10 10\nlellelleel\ne l\ne l\ne l\ne l\ne l\ne e\nl l\nl e\nl l\ne e", "output": "lellelleel" } ]
1,445,765,096
1,496
PyPy 3
OK
TESTS
27
1,762
12,492,800
#!/usr/bin/env python # -*- coding: utf-8 -*- n, m = map(int,input().split()) S = input() char = {chr(i) : chr(i) for i in range(ord('a'), ord('z')+1 )} keys = char.keys() for i in range(m): x, y = input().split() for c in keys: if char[c] == x: char[c] = y elif char[c] == y: char[c] = x ans = [] for c in list(S): ans.append(char[c]) print(''.join(ans))
Title: Rebranding Time Limit: None seconds Memory Limit: None megabytes Problem Description: The name of one small but proud corporation consists of *n* lowercase English letters. The Corporation has decided to try rebranding — an active marketing strategy, that includes a set of measures to change either the brand (both for the company and the goods it produces) or its components: the name, the logo, the slogan. They decided to start with the name. For this purpose the corporation has consecutively hired *m* designers. Once a company hires the *i*-th designer, he immediately contributes to the creation of a new corporation name as follows: he takes the newest version of the name and replaces all the letters *x**i* by *y**i*, and all the letters *y**i* by *x**i*. This results in the new version. It is possible that some of these letters do no occur in the string. It may also happen that *x**i* coincides with *y**i*. The version of the name received after the work of the last designer becomes the new name of the corporation. Manager Arkady has recently got a job in this company, but is already soaked in the spirit of teamwork and is very worried about the success of the rebranding. Naturally, he can't wait to find out what is the new name the Corporation will receive. Satisfy Arkady's curiosity and tell him the final version of the name. Input Specification: The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=200<=000) — the length of the initial name and the number of designers hired, respectively. The second line consists of *n* lowercase English letters and represents the original name of the corporation. Next *m* lines contain the descriptions of the designers' actions: the *i*-th of them contains two space-separated lowercase English letters *x**i* and *y**i*. Output Specification: Print the new name of the corporation. Demo Input: ['6 1\npolice\np m\n', '11 6\nabacabadaba\na b\nb c\na d\ne g\nf a\nb b\n'] Demo Output: ['molice\n', 'cdcbcdcfcdc\n'] Note: In the second sample the name of the corporation consecutively changes as follows: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c7648432f7138ca53234357d7e08d1d119166055.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/de89ad7bc7f27c46ec34f5e66ce0dc23bd5bc90a.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/812e653c8d7ff496e6a0f04c676423806751531e.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19c564fcefb8dde36256240a8b877bb6a4792bfe.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e1cafd93792430ad1a49e893e04715383bdae757.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python #!/usr/bin/env python # -*- coding: utf-8 -*- n, m = map(int,input().split()) S = input() char = {chr(i) : chr(i) for i in range(ord('a'), ord('z')+1 )} keys = char.keys() for i in range(m): x, y = input().split() for c in keys: if char[c] == x: char[c] = y elif char[c] == y: char[c] = x ans = [] for c in list(S): ans.append(char[c]) print(''.join(ans)) ```
3
731
A
Night at the Museum
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition. Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture: After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'. Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it.
The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters.
Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input.
[ "zeus\n", "map\n", "ares\n" ]
[ "18\n", "35\n", "34\n" ]
To print the string from the first sample it would be optimal to perform the following sequence of rotations: 1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
500
[ { "input": "zeus", "output": "18" }, { "input": "map", "output": "35" }, { "input": "ares", "output": "34" }, { "input": "l", "output": "11" }, { "input": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv", "output": "99" }, { "input": "gngvi", "output": "44" }, { "input": "aaaaa", "output": "0" }, { "input": "a", "output": "0" }, { "input": "z", "output": "1" }, { "input": "vyadeehhikklnoqrs", "output": "28" }, { "input": "jjiihhhhgggfedcccbazyxx", "output": "21" }, { "input": "fyyptqqxuciqvwdewyppjdzur", "output": "117" }, { "input": "fqcnzmzmbobmancqcoalzmanaobpdse", "output": "368" }, { "input": "zzzzzaaaaaaazzzzzzaaaaaaazzzzzzaaaazzzza", "output": "8" }, { "input": "aucnwhfixuruefkypvrvnvznwtjgwlghoqtisbkhuwxmgzuljvqhmnwzisnsgjhivnjmbknptxatdkelhzkhsuxzrmlcpeoyukiy", "output": "644" }, { "input": "sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss", "output": "8" }, { "input": "nypjygrdtpzpigzyrisqeqfriwgwlengnezppgttgtndbrryjdl", "output": "421" }, { "input": "pnllnnmmmmoqqqqqrrtssssuuvtsrpopqoonllmonnnpppopnonoopooqpnopppqppqstuuuwwwwvxzxzzaa", "output": "84" }, { "input": "btaoahqgxnfsdmzsjxgvdwjukcvereqeskrdufqfqgzqfsftdqcthtkcnaipftcnco", "output": "666" }, { "input": "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrwwwwwwwwww", "output": "22" }, { "input": "uyknzcrwjyzmscqucclvacmorepdgmnyhmakmmnygqwglrxkxhkpansbmruwxdeoprxzmpsvwackopujxbbkpwyeggsvjykpxh", "output": "643" }, { "input": "gzwpooohffcxwtpjgfzwtooiccxsrrokezutoojdzwsrmmhecaxwrojcbyrqlfdwwrliiib", "output": "245" }, { "input": "dbvnkktasjdwqsrzfwwtmjgbcxggdxsoeilecihduypktkkbwfbruxzzhlttrssicgdwqruddwrlbtxgmhdbatzvdxbbro", "output": "468" }, { "input": "mdtvowlktxzzbuaeiuebfeorgbdczauxsovbucactkvyvemsknsjfhifqgycqredzchipmkvzbxdjkcbyukomjlzvxzoswumned", "output": "523" }, { "input": "kkkkkkkaaaaxxaaaaaaaxxxxxxxxaaaaaaxaaaaaaaaaakkkkkkkkkaaaaaaannnnnxxxxkkkkkkkkaannnnnnna", "output": "130" }, { "input": "dffiknqqrsvwzcdgjkmpqtuwxadfhkkkmpqrtwxyadfggjmpppsuuwyyzcdgghhknnpsvvvwwwyabccffiloqruwwyyzabeeehh", "output": "163" }, { "input": "qpppmmkjihgecbyvvsppnnnkjiffeebaaywutrrqpmkjhgddbzzzywtssssqnmmljheddbbaxvusrqonmlifedbbzyywwtqnkheb", "output": "155" }, { "input": "wvvwwwvvwxxxyyyxxwwvwwvuttttttuvvwxxwxxyxxwwwwwvvuttssrssstsssssrqpqqppqrssrsrrssrssssrrsrqqrrqpppqp", "output": "57" }, { "input": "dqcpcobpcobnznamznamzlykxkxlxlylzmaobnaobpbnanbpcoaobnboaoboanzlymzmykylymylzlylymanboanaocqdqesfrfs", "output": "1236" }, { "input": "nnnnnnnnnnnnnnnnnnnnaaaaaaaaaaaaaaaaaaaakkkkkkkkkkkkkkkkkkkkkkaaaaaaaaaaaaaaaaaaaaxxxxxxxxxxxxxxxxxx", "output": "49" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "0" }, { "input": "cgilqsuwzaffilptwwbgmnttyyejkorxzflqvzbddhmnrvxchijpuwaeiimosxyycejlpquuwbfkpvbgijkqvxybdjjjptxcfkqt", "output": "331" }, { "input": "ufsepwgtzgtgjssxaitgpailuvgqweoppszjwhoxdhhhpwwdorwfrdjwcdekxiktwziqwbkvbknrtvajpyeqbjvhiikxxaejjpte", "output": "692" }, { "input": "uhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuh", "output": "1293" }, { "input": "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvgggggggggggggggggggggggggggggggggggggggggggggggggg", "output": "16" }, { "input": "lyidmjyzbszgiwkxhhpnnthfwcvvstueionspfrvqgkvngmwyhezlosrpdnbvtcjjxxsykixwnepbumaacdzadlqhnjlcejovple", "output": "616" }, { "input": "etzqqbaveffalkdguunfmyyrzkccnxmlluxeasqmopxzfvlkbhipqdwjgrttoemruohgwukfisdhznqyvhswbbypoxgtxyappcrl", "output": "605" }, { "input": "lizussgedcbdjhrbeskhgatyozvwwekanlggcstijrniivupmcoofbaxfqrxddyzzptwxcftlhajsmmkkriarrqtkoauhcqefyud", "output": "549" }, { "input": "dvjuvgfdogpknmbowlsfjzcimnygbtjiucyeeroqwhmzwpjqxlbjkqawrdtmvxbiqufllfuqibxvmtdrwaqkjblxqjpwzmhwqore", "output": "688" }, { "input": "eeycuijtbgynmiczjfslwobmnkpgodfgvujvduyfeqchuaoktqrrairkkmmsjahltfcxwtpzzyddxrqfxabfoocmpuviinrjitsc", "output": "604" }, { "input": "cgglnakewwvzoytaghksebrhjdbcdegssuzilrcppayxtgxopybbwshvyqnzhdsifkuwghourmeottrgjwdqpihbklvfzxpomqsa", "output": "572" }, { "input": "aexullmxncckzryymfnuugdklaffevabqqztelpvojecljnhqldazdcaamubpenwxikysxxjjctvbndprsolzehywmgnvkgqvrfp", "output": "609" }, { "input": "psnoieutsvvcwfhtnnphhxkwigzsbzyjmdiyl", "output": "223" }, { "input": "aa", "output": "0" } ]
1,646,340,938
2,147,483,647
Python 3
OK
TESTS
44
46
0
Q = input() W = "abcdefghijklmnopqrstuvwxyz" W1='' result =0 for i in range(len(Q)): result += min(W.index(Q[i]),abs(26-W.index(Q[i]))) W1= W[W.index(Q[i]):]+W[:W.index(Q[i])] W=W1 print(result)
Title: Night at the Museum Time Limit: None seconds Memory Limit: None megabytes Problem Description: Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition. Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture: After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'. Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it. Input Specification: The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters. Output Specification: Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input. Demo Input: ['zeus\n', 'map\n', 'ares\n'] Demo Output: ['18\n', '35\n', '34\n'] Note: To print the string from the first sample it would be optimal to perform the following sequence of rotations: 1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
```python Q = input() W = "abcdefghijklmnopqrstuvwxyz" W1='' result =0 for i in range(len(Q)): result += min(W.index(Q[i]),abs(26-W.index(Q[i]))) W1= W[W.index(Q[i]):]+W[:W.index(Q[i])] W=W1 print(result) ```
3
349
A
Cinema Line
PROGRAMMING
1,100
[ "greedy", "implementation" ]
null
null
The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line?
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line.
Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO".
[ "4\n25 25 50 50\n", "2\n25 100\n", "4\n50 50 25 25\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "4\n25 25 50 50", "output": "YES" }, { "input": "2\n25 100", "output": "NO" }, { "input": "4\n50 50 25 25", "output": "NO" }, { "input": "3\n25 50 100", "output": "NO" }, { "input": "10\n25 25 25 25 25 25 25 25 25 25", "output": "YES" }, { "input": "10\n50 50 50 50 50 50 50 50 50 50", "output": "NO" }, { "input": "10\n100 100 100 100 100 100 100 100 100 100", "output": "NO" }, { "input": "7\n25 25 25 25 50 100 50", "output": "YES" }, { "input": "2\n25 25", "output": "YES" }, { "input": "3\n50 100 100", "output": "NO" }, { "input": "3\n25 50 50", "output": "NO" }, { "input": "2\n50 25", "output": "NO" }, { "input": "14\n25 25 25 25 25 25 25 50 50 50 100 100 100 100", "output": "NO" }, { "input": "5\n25 25 25 100 100", "output": "NO" }, { "input": "7\n25 50 25 50 25 50 100", "output": "NO" }, { "input": "5\n25 50 25 50 100", "output": "NO" }, { "input": "5\n25 25 50 50 50", "output": "NO" }, { "input": "5\n25 25 50 100 50", "output": "NO" }, { "input": "5\n25 25 50 50 100", "output": "NO" }, { "input": "1\n50", "output": "NO" } ]
1,666,975,687
2,147,483,647
PyPy 3-64
OK
TESTS
40
154
13,824,000
import sys n = int(sys.stdin.readline()) A = list(map(int, sys.stdin.readline().split())) num_25 = 0 num_50 = 0 ok = True for a in A: if a == 25: num_25 += 1 elif a == 50: num_50 += 1 if num_25 >= 1: num_25 -= 1 else: ok = False elif a == 100: if num_50 >= 1 and num_25 >= 1: num_50 -= 1 num_25 -= 1 elif num_25 >= 3: num_25 -= 3 else: ok = False print("YES" if ok else "NO")
Title: Cinema Line Time Limit: None seconds Memory Limit: None megabytes Problem Description: The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line? Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line. Output Specification: Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO". Demo Input: ['4\n25 25 50 50\n', '2\n25 100\n', '4\n50 50 25 25\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python import sys n = int(sys.stdin.readline()) A = list(map(int, sys.stdin.readline().split())) num_25 = 0 num_50 = 0 ok = True for a in A: if a == 25: num_25 += 1 elif a == 50: num_50 += 1 if num_25 >= 1: num_25 -= 1 else: ok = False elif a == 100: if num_50 >= 1 and num_25 >= 1: num_50 -= 1 num_25 -= 1 elif num_25 >= 3: num_25 -= 3 else: ok = False print("YES" if ok else "NO") ```
3