description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
|---|---|---|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def check(n):
cur = 0
for c in str(n):
cur += int(c)
return cur
def main():
n, s = map(int, input().split())
a, exp = 0, 1
while check(n) > s:
d = n % 10
n += (10 - d) % 10
a += (10 - d) % 10 * exp
exp *= 10
n //= 10
print(a)
for _ in range(int(input())):
main()
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def soma_total(n):
result = 0
while n != 0:
result += n % 10
n //= 10
return result
numTestes = int(input())
for x in range(numTestes):
numero, s = [int(i) for i in input().split()]
contUnidade = 1
result = 0
atual = 0
for count in range(len(str(numero))):
if soma_total(numero) <= s:
break
aux = (10 - numero // contUnidade % 10) * contUnidade
numeroAt = numero + aux
result += aux
contUnidade *= 10
numero = numeroAt
print(int(result))
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
result = []
total_test_case = int(input())
for i in range(total_test_case):
first_number, second_number = map(int, input().split())
if first_number % second_number == 0:
result.append(0)
elif first_number < second_number:
result.append(second_number - first_number)
else:
reminder = int(first_number / second_number) + 1
a = second_number * reminder - first_number
result.append(a)
for i in range(total_test_case):
print(result[i])
|
ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for i in range(int(input())):
a, b = map(int, input().split())
if a < b:
c = b - a
elif a == b or a % b == 0:
c = 0
elif a > b:
c = (a // b + 1) * b - a
print(c)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
l = []
for i in range(t):
l.append([int(x) for x in input().split()])
def xx(a, b):
if a == b:
return 0
elif a > b:
d = a % b
if d:
return b - d
return d
return b - a
for i in l:
print(xx(i[0], i[1]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF IF VAR VAR RETURN NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR RETURN BIN_OP VAR VAR RETURN VAR RETURN BIN_OP VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def find_number_of_moves(a, b):
if a >= b:
rem = a % b
a = a - rem
c = a - rem
return c % b
else:
return b - a
t = int(input())
for i in range(t):
a, b = input().split()
print(find_number_of_moves(int(a), int(b)))
|
FUNC_DEF IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN BIN_OP VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
n, s = map(int, input().split())
total = n
x = list(map(int, str(n)))
sum1 = sum(x)
if s >= sum1:
print(0)
continue
i = 10
while sum1 > s:
if n % i != 0:
n = n + (i - n % i)
i *= 10
sum1 = list(map(int, str(n)))
sum1 = sum(sum1)
print(n - total)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
a, b = map(int, input().split())
if a > b and a % b != 0:
print(str(b * (a // b + 1) - a))
elif a % b == 0:
print("0")
else:
print(str(b - a))
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
from sys import stdin
def sum_digits(n):
return sum([int(i) for i in str(n)])
for _ in range(int(input())):
n, k = map(int, stdin.readline().rstrip().split(" "))
c_n = n
if sum_digits(n) <= k:
print(0)
else:
i = 1
while True:
c_n = c_n // 10**i * 10**i + 10**i
i += 1
if sum_digits(c_n) <= k:
break
print(c_n - n)
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER VAR BIN_OP NUMBER VAR BIN_OP NUMBER VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for k in range(t):
n, s = map(int, input().split())
sN = str(n)
sum = 0
total = 0
i = 0
while i < len(sN):
sum += int(sN[i])
i += 1
if sum <= s:
total = 0
else:
sum = 1
i = -1
while sum <= s:
i += 1
sum += int(sN[i])
total = pow(10, len(sN) - i) - int(sN[i:])
print(total)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
tc = int(input())
for i in range(tc):
a, b = map(int, input().split())
val = a // b + 1
if a % b == 0:
print("0")
else:
print(b * val - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for s in [*open(0)][1:]:
n, s = s.split()
s = int(s)
m = "0" + n
l = len(m)
i = j = t = 0
if sum(map(int, n)) > s:
for x in m:
t += int(x)
if t >= s:
m = m[:j] + chr(ord(m[j]) + 1) + "0" * (l - j - 1)
break
j = (j, i)[m[i] < "9"]
i += 1
print(int(m) - int(n))
|
FOR VAR LIST FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP STRING BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
def nextMultiple(n, m):
q = n // m
n2 = 0
if n * m > 0:
n2 = m * (q + 1)
else:
n2 = m * (q - 1)
return n2
for _ in range(t):
a, b = list(map(int, input().split(" ")))
if a % b == 0:
print(0, "\n")
else:
print(int(nextMultiple(a, b)) - a, "\n")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def myfun(x, y):
if x % y == 0:
print(0)
else:
print(y - x % y)
t = int(input())
mov = 0
for i in range(t):
liste = input().split()
myfun(int(liste[0]), int(liste[1]))
|
FUNC_DEF IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def sum_digits(num):
return sum([int(s) for s in str(num)])
def solve(N, S):
Q = sum_digits(N)
pow = 1
ans = 0
while Q > S:
diff = N % 10**pow
if N % 10**pow != 0:
ans += 10**pow - diff
N += 10**pow - diff
Q = sum_digits(N)
pow += 1
return ans
T = int(input())
for t in range(1, T + 1):
N, S = [int(s) for s in input().split()]
print(solve(N, S))
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR IF BIN_OP VAR BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR VAR BIN_OP BIN_OP NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
d = []
for _ in range(int(input())):
a, b = map(int, input().split())
c = b - a % b
if c != b:
d.append(c)
else:
d.append(0)
for i in d:
print(i)
|
ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
cases = []
for i in range(t):
inp = input().split()
a = int(inp[0])
b = int(inp[1])
cases.append([a, b])
for i in range(t):
a = cases[i][0]
b = cases[i][1]
r = int(a / b)
if a / b == r:
print(0)
else:
r = r + 1
print(b * r - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(n):
times = 0
nums = tuple(map(int, input().split()))
num1 = nums[0]
num2 = nums[1]
if num1 % num2 == 0:
print(0)
else:
print(num2 - num1 % num2)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(0, n):
a, b = [int(x) for x in input().split()]
if a < b:
print(b - a)
elif a % b != 0:
print(b - a % b)
else:
print(0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
input = sys.stdin.readline
for ti in range(int(input().strip())):
a, b = [int(x) for x in input().strip().split()]
print((b - a % b) % b)
|
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for x in range(t):
s = input()
s1 = s.split()
sum1 = int(s1[1])
sum2 = 0
s = s1[0]
flag = 0
def fun(s):
sum2 = 0
for i in range(len(s)):
sum2 = sum2 + int(s[i])
if sum2 <= sum1:
return 0
else:
return -1
if fun(s) == 0:
print(0)
else:
for i in range(len(s) - 1, -1, -1):
rem = int("".join(["1"] + ["0"] * (len(s) - i))) - int(s[i:])
if fun(str(rem + int(s))) == 0:
print(rem)
break
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL STRING BIN_OP LIST STRING BIN_OP LIST STRING BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = list(map(int, input().split()))
sd = 0
ans = 0
temp = n
for i in range(len(str(n))):
sd += int(str(n)[i])
if sd > s:
flag = 0
temp = n
sd = 0
for i in reversed(range(len(str(n)))):
sd_pre = sd
temp_pre = temp
sd += temp // 10**i
temp -= temp // 10**i * 10**i
if sd >= s:
ans = 10 ** (i + 1) - temp_pre
break
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def sumnum(x):
a = 0
for i in x:
a += int(i)
return a
def plone(lst):
n = 0
for i in lst:
n *= 10
n += int(i)
n += 1
newlst = list(str(n))
return newlst
def solve():
n, s = input().split()
s = int(s)
lst = list(n)
prefzero = True
ans = []
while len(lst):
if prefzero and sumnum(lst) <= s:
break
if not prefzero and sumnum(plone(lst)) <= s:
break
if lst[-1] == 0:
lst.pop()
else:
lst.pop()
prefzero = False
ans.append(0)
if not prefzero:
lst = plone(lst)
k = 0
for i in lst:
k *= 10
k += int(i)
for i in ans:
k *= 10
print(k - int(n))
for i in range(int(input())):
solve()
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
ssi = lambda: map(int, input().split())
def sm(n):
n = str(n)
res = 0
for i in range(len(n)):
res += int(n[i])
return res
for _ in range(int(input())):
n, s = ssi()
if sm(n) <= s:
print(0)
else:
res = 0
i = len(str(n)) - 1
pw = 1
while sm(n) > s and i >= 0:
d = n // pw % 10
tmp = pw * ((10 - d) % 10)
n += tmp
res += tmp
pw *= 10
i -= 1
print(res)
|
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
x = [list(map(int, input().split())) for _ in range(t)]
for a, b in x:
print(abs(b * -(-a // b) - a))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
answers = []
numbers = [input() for _ in range(n)]
for _ in numbers:
a1, a2 = map(int, _.split())
dif = int(a1 % a2)
if dif != 0:
ans = a2 - dif
else:
ans = 0
answers.append(ans)
[print(_) for _ in answers]
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
rem = 0
res = 0
a = []
b = []
for i in range(t):
x, y = list(map(int, input().split()))
a.append(x)
b.append(y)
for i in range(t):
if a[i] % b[i] == 0:
print("0")
elif a[i] > b[i]:
rem = a[i] % b[i]
res = b[i] - rem
print(res)
elif a[i] < b[i]:
res = b[i] - a[i]
print(res)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
from sys import stdin
def inp():
return stdin.buffer.readline().rstrip().decode("utf8")
def itg():
return int(stdin.buffer.readline())
def mpint():
return map(int, stdin.buffer.readline().split())
def solve():
n, s = mpint()
arr = list(map(int, str(n)))
count = sum(arr)
ans = bit = 0
while count > s:
ans += (10 - arr[-1]) * 10**bit
count += -arr[-1] + 1
del arr[-1]
if arr:
arr[-1] += 1
else:
arr = [1]
bit += 1
return ans
for __ in range(itg()):
print(solve())
|
FUNC_DEF RETURN FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER WHILE VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR NUMBER NUMBER ASSIGN VAR LIST NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
def ck(n, s):
total = 0
for e in n:
total += int(e)
return total <= s
for i in range(1, t + 1):
n, s = input().split()
s = int(s)
mul = 1
count = 0
n = list(map(int, n))
if ck(n, s):
print(0)
continue
for i in range(len(n) - 1, -1, -1):
dig = n[i]
add = (10 - dig) % 10
count += add * mul
if n[i] != 0:
n[i - 1] += 1
n[i] = 0
mul *= 10
if ck(n, s):
break
print(count)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR BIN_OP VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def mai(a, b):
a = int(a)
b = int(b)
temp = 0
i = int(a / b)
while temp < a and a % b != 0:
temp = b
temp = temp * i
i = i + 1
if i == int(a / b):
print(temp)
else:
print(temp - a)
for i in range(int(input())):
mai(*input().split())
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR WHILE VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
x, y = map(int, input().split())
z = x // y
if x % y != 0:
print((z + 1) * y - x)
else:
print(0)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = input()
integers = [input() for i in range(int(n))]
for i in integers:
a, b = i.split()
a = int(a)
b = int(b)
if a % b == 0:
print(0)
continue
if a < b:
print(b - a)
continue
else:
div = a // b
div += 1
factor = div * b
print(factor - a)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(1, t + 1):
arr = input()
l = list(map(int, arr.split(" ")))
if l[0] % l[1] != 0:
print(l[1] - l[0] % l[1])
else:
print(0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
input = sys.stdin.readline
t = int(input())
for ti in range(1, t + 1):
a, b = map(int, input().split())
if a % b == 0:
print(0)
else:
print((a + b) // b * b - a)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
while t != 0:
n1, n2 = map(str, input().split())
n2 = int(n2)
s = 0
ans = 0
for i in range(len(n1)):
if int(n1[i]) + s > n2:
t1 = int("1" + "0" * (len(n1) - i)) - int(n1[i:])
ans = t1
break
elif int(n1[i]) + s < n2:
s += int(n1[i])
else:
temp1 = "0" * (len(n1) - i - 1)
temp2 = n1[i + 1 :]
if temp1 == temp2:
ans = 0
break
else:
t1 = int("1" + "0" * (len(n1) - i)) - int(n1[i:])
ans = t1
break
print(ans)
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP STRING BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP STRING BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP STRING BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
num = int(input())
i = 0
while i < num:
a, b = map(int, input().split())
if a < b:
ans = b - a
elif a % b == 0:
ans = 0
else:
re = a % b
ans = b - re
print(ans)
i = i + 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(n):
a, b = map(int, input().split())
rem = a % b
ints = a // b
num = (ints + 1) * b
if num - a == b:
print(0)
else:
print(num - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
from sys import stdin, stdout
DEBUG = True
class Scan:
def __init__(self):
self.read = stdin.read
self.input = stdin.readline
def integer(self, count=1):
if count == 1:
return self._integer()
return [self._integer() for _ in range(count)]
def _integer(self):
sym: str = self.read(1)
while sym != "-" and not sym.isdigit():
sym = self.read(1)
number, sign = (0, -1) if sym == "-" else (int(sym), 1)
sym: str = self.read(1)
while sym.isdigit():
number = number * 10 + int(sym)
sym = self.read(1)
return number * sign
def array(self, func=int, sep=" "):
if func == str:
return input().split(sep)
return list(map(func, input().split(sep)))
def string(self, count=1):
if count == 1:
return self._string()
return (self._string() for _ in range(count))
def _string(self):
sym = self.read(1)
while sym in ("\n", "\r", " "):
sym = self.read(1)
s = str()
while sym not in ("\n", "\r", " "):
s += sym
sym = self.read(1)
return s
class Write:
pass
class Number:
def gcd(self, a, b):
while b > 0:
a, b = b, a % b
return a
def lcm(self, a, b):
return a * b // gcd(a, b)
class Constants:
EPS = 10**-9
INF = 10**18
MOD = 10**9 + 7
scan, write = Scan(), Write()
def solution():
a, b = scan.integer(2)
if a % b == 0:
stdout.write(str(0) + "\n")
else:
stdout.write(str((a // b + 1) * b - a) + "\n")
def main():
queries: int = 1
queries = scan.integer()
for _ in range(queries):
solution()
main()
|
ASSIGN VAR NUMBER CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF NUMBER IF VAR NUMBER RETURN FUNC_CALL VAR RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF VAR VAR FUNC_CALL VAR NUMBER WHILE VAR STRING FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR STRING NUMBER NUMBER FUNC_CALL VAR VAR NUMBER VAR VAR FUNC_CALL VAR NUMBER WHILE FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER RETURN BIN_OP VAR VAR FUNC_DEF VAR STRING IF VAR VAR RETURN FUNC_CALL FUNC_CALL VAR VAR RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_DEF NUMBER IF VAR NUMBER RETURN FUNC_CALL VAR RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR NUMBER WHILE VAR STRING STRING STRING ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR WHILE VAR STRING STRING STRING VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER RETURN VAR CLASS_DEF CLASS_DEF FUNC_DEF WHILE VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR RETURN VAR FUNC_DEF RETURN BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR VAR CLASS_DEF ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR STRING FUNC_DEF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
a, b = map(int, input().split())
f = 1
if a % b == 0:
f = 0
print("0")
elif a < b:
f = 0
print(b - a)
if f == 1:
n = a // b
n += 1
d = b * n
print(d - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
ans = []
nums = []
for i in range(n):
temp = input().split()
temp = [int(l) for l in temp]
if temp[0] % temp[1] == 0:
ans.append(str(0))
else:
res = (int(temp[0] / temp[1] // 1) + 1) * temp[1] - temp[0]
ans.append(str(res))
print("\n".join(ans))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
number_test = int(input())
for k in range(number_test):
ab = input().split(" ")
a, b = int(ab[0]), int(ab[1])
if a < b:
print(b - a)
elif a % b == 0:
print("0")
else:
res = b - a % b
print(res)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
test_cases = eval(input())
total = []
for i in range(test_cases):
a, b = list(map(int, input().split()))
if a % b == 0:
total.append(0)
else:
modulus = a % b
total.append(b - modulus)
for j in range(len(total)):
print(total[j])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
test_cases = int(input())
data = []
while test_cases > 0:
data.append(list(map(int, input().split())))
test_cases -= 1
for test in data:
if test[0] % test[1] == 0:
print("0")
else:
ans = test[1] - test[0] % test[1]
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER FOR VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def aux(n, s):
if sum(int(x) for x in str(n)) <= s:
return 0
a = 10
while n % a == 0:
a *= 10
d = a - n % a
return d + aux(n + d, s)
for t in range(int(input())):
n, s = map(int, input().split())
print(aux(n, s))
|
FUNC_DEF IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR RETURN BIN_OP VAR FUNC_CALL VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
s = [tuple(map(int, input().split())) for i in range(n)]
for v in s:
if v[0] % v[1] == 0:
ans = 0
else:
ans = (v[0] // v[1] + 1) * v[1] - v[0]
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
count = 0
e = []
for i in range(n):
k, m = map(int, input().split())
if k % m == 0:
count = 0
else:
r = k // m
count = m * (r + 1) - k
e.append(count)
for i in range(len(e)):
print(e[i])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(t):
n, s = map(int, input().split())
arr = []
num = []
sum = 0
for j in str(n):
arr.append(int(j))
num.append(int(j))
sum += int(j)
arr.reverse()
num.reverse()
if sum <= s:
print(0)
else:
f = 1
j = 0
while j < len(arr):
sum -= num[j]
if num[j] != 0:
num[j] = 0
j += 1
while j < len(arr):
if num[j] != 9:
num[j] += 1
sum += 1
break
else:
sum -= num[j]
num[j] = 0
j += 1
else:
j += 1
if j == len(arr):
break
if sum <= s:
break
if j == len(arr):
num = [0] * len(num) + [1]
num.reverse()
l = ""
for k in num:
l += str(k)
print(int(l) - n)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP LIST NUMBER FUNC_CALL VAR VAR LIST NUMBER EXPR FUNC_CALL VAR ASSIGN VAR STRING FOR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, d = map(int, input().split())
if n <= d:
print(abs(n - d))
elif n % d:
print(d * (n // d + 1) - n)
else:
print(0)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
input = sys.stdin.readline
Q = int(input())
Query = [list(map(int, input().split())) for _ in range(Q)]
for a, b in Query:
ans = (b - a) % b
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def getno(l):
return int("".join(list(map(str, l))))
for _ in range(int(input())):
n, s = [int(x) for x in input().split()]
cs = 0
for i in str(n):
cs += int(i)
if cs <= s:
print(0)
continue
cs -= s
no = list(map(int, str(n)))
for j in range(len(no) - 1, -1, -1):
if no[j] == 0:
continue
if cs + 1 <= no[j]:
no[j] = 0
if j:
ind = j - 1
while ind >= 0 and no[ind] == 9:
no[ind] = 0
ind -= 1
if ind >= 0:
no[ind] += 1
else:
no.insert(0, 1)
else:
no.insert(0, 1)
break
else:
cs -= no[j]
no[j] = 0
print(getno(no) - n)
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR NUMBER IF VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def isDivisible(a, b):
if a < b:
return b - a
mod = a % b
if mod == 0:
return 0
elif mod != 0:
return (a // b + 1) * b - a
else:
return "out"
t = int(input())
for i in range(t):
a, b = map(int, input().split(" "))
print(isDivisible(a, b))
|
FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR RETURN STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(0, t):
a = input().split()
if int(a[0]) % int(a[1]) == 0:
print(0)
else:
answer = int(a[1]) - int(a[0]) % int(a[1])
print(answer)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def DivisibilityProb(totalValues, listofaChoices, listofbChoices):
for index in range(totalValues):
if listofaChoices[index] < listofbChoices[index]:
print(listofbChoices[index] - listofaChoices[index])
elif listofaChoices[index] % listofbChoices[index] == 0:
print(0)
else:
print(listofbChoices[index] - listofaChoices[index] % listofbChoices[index])
def main():
totalValues = int(input())
listofaChoices = []
listofbChoices = []
for index in range(totalValues):
inputVals = list(map(int, input().split()))
listofaChoices.append(inputVals[0])
listofbChoices.append(inputVals[1])
DivisibilityProb(totalValues, listofaChoices, listofbChoices)
main()
|
FUNC_DEF FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def Stepsneeded(a, b):
if a % b == 0:
return 0
elif a > b:
s = a // b + 1
return b * s - a
else:
return b - a
n = int(input())
for i in range(n):
a, b = map(int, input().split())
print(Stepsneeded(a, b))
|
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN BIN_OP BIN_OP VAR VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def res(a, b):
temp = a / b
if int(temp) == temp:
print(0)
else:
x = int(temp) + 1
y = b * x
print(y - a)
t = int(input())
for _ in range(t):
a, b = [int(x) for x in input().split()]
res(a, b)
|
FUNC_DEF ASSIGN VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def cnt(x):
ret = 0
while x > 0:
ret += x % 10
x //= 10
return ret
t = int(input())
for _ in range(t):
s, a = map(int, input().split())
if cnt(s) <= a:
print(0)
continue
for i in range(19):
cur = (s // 10**i + 1) * 10**i
if cnt(cur) <= a:
print(cur - s)
break
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER BIN_OP NUMBER VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
from sys import stdin
inp = stdin.readline
t = int(inp())
for i in range(t):
a, b = [int(x) for x in inp().split()]
if a < b:
print(b - a)
elif a % b == 0:
print(0)
else:
rounded = a // b + 1
print(abs(a - b * rounded))
|
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
l = []
for i in range(int(input())):
a, b = map(int, input().split())
count = 0
if a % b == 0:
l.append(0)
else:
x = a % b
l.append(b - x)
for i in range(len(l)):
print(l[i])
|
ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
cases = int(input())
def get_moves_to_divisibility(a, b):
if a % b == 0:
return 0
div_value = b * (a // b + 1)
return div_value - a
for _ in range(cases):
vals = input().split(" ")
print(get_moves_to_divisibility(int(vals[0]), int(vals[1])))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def linput():
return [int(i) for i in input().split()]
q = int(input())
for ______ in range(q):
n, m = linput()
if n % m == 0:
print(0)
else:
print(m - n % m)
|
FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
while t > 0:
s, sum = map(str, input().split())
sum = int(sum)
tsum = 0
n = len(s)
num = 0
q = 0
for i in range(n):
q += int(s[i])
if q <= sum:
print(0)
t -= 1
continue
for i in range(n):
if num != 0:
break
tsum = tsum + ord(s[i]) - 48
if tsum >= sum:
if i > 0:
ans = (int(s[i - 1]) + 1) * 10 ** (n - i) - int(s[i - 1 :])
print(ans)
num += 1
else:
ans = 10**n - int(s)
print(ans)
num += 1
if num == 0:
print(0)
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def sumDigits(string):
ans = 0
for char in string:
ans += ord(char) - ord("0")
return ans
def solve(string, maxSum):
if sumDigits(string) <= maxSum:
return string
for i in range(len(string) - 2, -1, -1):
if string[i] == "9":
continue
newString = string[:i] + chr(ord(string[i]) + 1) + "0" * (len(string) - i - 1)
if sumDigits(newString) <= maxSum:
return newString
return "1" + "0" * len(string)
t = int(input())
for _ in range(t):
n, s = input().split()
sumMax = int(s)
final = solve(n, sumMax)
print(int(final) - int(n))
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING RETURN VAR FUNC_DEF IF FUNC_CALL VAR VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP STRING BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR RETURN VAR RETURN BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
test = int(input())
for _ in range(test):
n, s = map(int, input().split())
ns = str(n)
flag = False
last = -1
for i in range(len(ns)):
if int(ns[i]) > s:
if s == 0:
h = ns[last + 1 :]
l = len(h)
dd = 10**l
ans = dd - int(h)
print(ans)
else:
h = ns[i:]
l = len(h)
dd = 10**l
ans = dd - int(h)
print(ans)
flag = True
break
else:
s -= int(ns[i])
if s:
last = i
if flag == False:
print(0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR VAR IF VAR ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def calc(n, s):
total = 0
for i in range(len(n)):
total += int(n[i])
if total >= s:
rem = n[i : len(n)]
break
main = "1" + "0" * len(rem)
return int(main) - int(rem)
for ii in range(int(input())):
n, s = map(int, input().split())
n = str(n)
total = 0
for i in range(len(n)):
total += int(n[i])
if total <= s:
print(0)
else:
print(calc(n, s))
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(1, n + 1):
l = list(map(int, input().split()))
b = l[0]
a = l[1]
if b % a == 0:
print(0)
else:
con = b // a
ans = (con + 1) * a - b
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
ncases = int(input())
for i in range(ncases):
pair = input().split()
if int(pair[0]) % int(pair[1]) == 0:
print("0")
else:
print(str(int(int(pair[1]) - int(pair[0]) % int(pair[1]))))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def divisible(a, b):
if a < b:
n = b - a
elif a > b:
if a % b == 0:
n = 0
else:
n = b - a % b
else:
n = 0
return n
t = int(input())
for _ in range(t):
a, b = map(int, input().split())
print(divisible(a, b))
|
FUNC_DEF IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def Solution(a, b):
if a < b:
return b - a
l = a % b
if l is 0:
return 0
return b - l
for _ in range(int(input())):
test = input().split(" ")
print(Solution(int(test[0]), int(test[1])))
|
FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
input = sys.stdin.readline
t = int(input())
for _ in range(t):
n, s = input().rstrip().split()
s = int(s)
N = list(map(int, reversed(list(n)))) + [0]
ans = 0
S = sum(N)
for i in range(len(str(n))):
if S <= s:
break
if N[i] == 0:
continue
S -= N[i] - 1
ans += (10 - N[i]) * pow(10, i)
N[i] = 0
N[i + 1] += 1
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
rr = lambda: input().strip()
rri = lambda: int(rr())
rrm = lambda: map(int, rr().split())
T = rri()
for i in range(T):
a, b = rrm()
x = a % b
if x:
x = b - x
print(x)
|
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
from sys import stdin
def get_int():
return int(stdin.readline())
def get_str():
return stdin.readline().strip()
def get_ints():
return map(int, stdin.readline().strip().split())
def get_array():
return list(map(int, stdin.readline().strip().split()))
def get_array2d(row):
return [list(map(int, stdin.readline().strip().split())) for _ in range(row)]
T = get_int()
for _ in range(T):
n, s = get_ints()
dig = [int(x) for x in str(n)]
Sum = sum(dig)
ans = []
if Sum <= s:
print(0)
else:
lenN = len(dig)
c = 0
i = lenN - 1
while Sum + c > s:
if dig[i] + c == 0:
ans.append(0)
i -= 1
continue
Sum = Sum - dig[i]
ans.append(10 - dig[i] - c)
c = 1
dig[i] = 0
i -= 1
ans = ans[::-1]
lenAns = len(ans)
s = 0
while ans[s] == 0:
s += 1
for i in range(s, lenAns):
print(ans[i], end="")
print()
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE BIN_OP VAR VAR VAR IF BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
k = int(input())
i = 0
my_list = []
while i < k:
t = list(map(int, input().rstrip().split()))
a = t[0] % t[1]
b = t[1] - a
if a == 0:
my_list.append(0)
else:
my_list.append(b)
i = i + 1
j = 0
while j < k:
print(my_list[j])
j = j + 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = input()
t = int(t)
while t > 0:
x = input()
x = x.split(" ")
a, b = int(x[0]), int(x[1])
if a < b:
print(b - a)
elif a % b == 0:
print(0)
else:
count = a - a % b + b
print(count - a)
t = t - 1
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
num = int(input())
for i in range(num):
num1, num2 = input().split()
a = int(num1)
b = int(num2)
print((b - a % b) % b)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
T = int(input())
while T:
T -= 1
a, b = [int(x) for x in input().split()]
f = a % b
if f == 0:
print(f)
else:
print(b - f)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
from sys import stdin
def solve(tc):
a, b = map(int, stdin.readline().split())
div = a // b
rem = a % b
if rem > 0:
div += 1
print(b * div - a)
LOCAL_TEST = not __debug__
if LOCAL_TEST:
infile = __file__.split(".")[0] + "-test.in"
stdin = open(infile, "r")
tcs = int(stdin.readline().strip())
tc = 1
while tc <= tcs:
solve(tc)
tc += 1
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR VAR IF VAR ASSIGN VAR BIN_OP FUNC_CALL VAR STRING NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
numbers_of_test_cases = int(input())
numbers = list()
for i in range(numbers_of_test_cases):
a, b = map(int, input().split())
if a > b:
if a % b != 0:
numbers.append(b - a % b)
else:
numbers.append(0)
else:
numbers.append(b - a)
for move in numbers:
print(move)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def function(a, b):
if a == b:
return 0
elif a > b:
if a % b == 0:
return 0
moves = a % b
return b - moves
else:
moves = b - a
return moves
t = int(input())
for _ in range(t):
a, b = map(int, input().split())
print(function(a, b))
|
FUNC_DEF IF VAR VAR RETURN NUMBER IF VAR VAR IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
count = 0
while n != 0:
n -= 1
x, y = map(int, input().split())
if x % y == 0:
print(count)
else:
s = x % y
print(y - s)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
results = ""
for _ in range(int(input())):
a, b = map(int, input().split())
if a % b:
results += f"{-a % b}\n"
else:
results += "0\n"
print(results[:-1])
|
ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR VAR BIN_OP VAR VAR STRING VAR STRING EXPR FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def ssum(n):
csum = 0
lst = []
while n != 0:
n, r = divmod(n, 10)
csum += r
lst.append(r)
return lst, csum
def solve(n, s, csum, start, steps):
if csum <= s:
return steps
if n[start] == 0:
return solve(n, s, csum, start + 1, steps)
steps += (10 - n[start]) * 10**start
csum -= n[start] - 1
n[start] = 0
n[start + 1] += 1
return solve(n, s, csum, start + 1, steps)
t = int(input())
for _ in range(t):
n, s = (int(x) for x in input().split())
lst, csum = ssum(n)
lst.append(0)
print(solve(lst, s, csum, 0, 0))
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR VAR FUNC_DEF IF VAR VAR RETURN VAR IF VAR VAR NUMBER RETURN FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER RETURN FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
results = []
for i in range(n):
a, b = map(int, input().split())
if a % b == 0:
results.append(0)
elif a < b:
results.append(b - a)
elif a > b:
results.append((a // b + 1) * b % a)
for i in range(len(results)):
print(results[i])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def divisible(a, b):
if a % b == 0:
return 0
power = a // b + 1
return b * power - a
def main():
n = int(input())
ans = []
for i in range(n):
a, b = list(map(int, input().split(" ")))
ans.append(divisible(a, b))
for i in ans:
print(i)
main()
|
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN BIN_OP BIN_OP VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = input()
t = int(t)
def solve(n, s):
def digit_sum(n):
rev_n = str(n)
a = 0
for x in rev_n:
a += int(x)
return a
current_sum = digit_sum(str(n))
if current_sum <= s:
print(0)
return
rev_n = str(n)[::-1]
limit = len(rev_n)
for i in range(limit):
tmp_current_sum = current_sum
if rev_n[i] != "0":
ans = 10 ** (i + 1) - n % 10 ** (i + 1)
tmp_current_sum -= digit_sum(n % 10 ** (i + 1))
if i + 1 < limit and rev_n[i + 1] == "9":
tmp_current_sum -= 9
tmp_current_sum += 1
if tmp_current_sum <= s:
current_sum = tmp_current_sum
break
if current_sum > s:
ans = 10**limit - n % 10**limit
print(ans)
for i in range(t):
n, s = map(int, input().split())
solve(n, s)
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER STRING VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
def int_to_arr(n, s):
arr = []
n_copy = n
while n_copy > 0:
arr.append(n_copy % 10)
n_copy = n_copy // 10
return trying(arr, n, s)
def trying(arr, n, s):
summa = 0
for i in range(len(arr) - 1, -1, -1):
summa += arr[i]
if summa > s:
need = 10 ** (i + 1) - n % 10 ** (i + 1)
to_add[0] += need
n += need
int_to_arr(n, s)
return
print(to_add[0])
for _ in range(t):
to_add = [0]
n, s = map(int, input().split())
int_to_arr(n, s)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR LIST ASSIGN VAR VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR RETURN EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
st = str(n)
p = [0] * len(st)
for i in range(len(st) - 1, -1, -1):
p[i] += int(st[i])
if i + 1 < len(p):
p[i] += p[i + 1]
if p[0] <= s:
print(0)
continue
last = 0
moves = float("inf")
for j in range(len(p) - 1, -1, -1):
last += int(st[j])
val = p[0] - last + 1
if val <= s:
if j - 1 >= 0:
newnum = int(
st[: j - 1] + str(int(st[j - 1]) + 1) + "0" * (len(st) - j)
)
moves = min(moves, newnum - n)
else:
newnum = int("1" + "0" * len(st))
moves = min(moves, newnum - n)
print(moves)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP STRING BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
output = []
for _ in range(int(input())):
k = 0
numbers = input().split()
a, b = int(numbers[0]), int(numbers[1])
if a <= b:
output.append(b - a)
else:
need = b - a % b
if need == b:
need = 0
output.append(need)
for _ in output:
print(_)
|
ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for j in range(t):
n, s = [int(k) for k in input().split()]
digs = []
while n > 0:
digs.append(n % 10)
n = n // 10
digs.append(0)
sm = sum(digs)
i = 0
if sm <= s:
print("0")
continue
while sm + 1 > s:
sm = sm - digs[i]
i += 1
ans = ""
for k in digs[:i][::-1]:
ans += str(k)
if ans == "":
ans = "1"
print(10**i - int(ans))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR STRING FOR VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR IF VAR STRING ASSIGN VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
tx = int(input())
for i in range(tx):
a, b = [int(i) for i in input().split()]
k = a
t = 1
t2 = 0
s = str(a)
for i in s:
t2 += ord(i) - ord("0")
while t <= pow(10, 18):
if t > 1:
a += t - a % t
t2 = 0
s = str(a)
for i in s:
t2 += ord(i) - ord("0")
if t2 <= b:
print(a - k)
break
t *= 10
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING WHILE VAR FUNC_CALL VAR NUMBER NUMBER IF VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split(" "))
n_str = str(n)
n_int = [int(num) for num in n_str]
x = sum(n_int)
if x <= s:
ans = 0
else:
tu = 0
a = len(n_int)
for i in range(a):
if tu + n_int[i] >= s:
k = i
break
else:
tu = tu + n_int[i]
b = a - k
ans = 10**b - int(n_str[k:a])
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
for t in range(int(sys.stdin.readline().strip())):
n, m = [int(j) for j in sys.stdin.readline().split()]
ans = (n // m + 1) * m - n
if ans == m:
sys.stdout.write("0")
else:
sys.stdout.write(str((n // m + 1) * m - n))
sys.stdout.write("\n")
|
IMPORT FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def sum(n):
s = str(n)
ans = 0
for i in s:
ans += int(i)
return ans
for _ in range(int(input())):
n, s = map(int, input().split())
if sum(n) <= s:
print(0)
else:
num = ""
sm = 0
for i in str(n):
sm += int(i)
if sm >= s:
if num == "":
num = "1"
while int(num) < n:
num = num + "0"
break
else:
num = str(int(num) + 1)
while int(num) < n:
num = num + "0"
break
else:
num += i
print(int(num) - n)
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR STRING ASSIGN VAR STRING WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR STRING VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, su = map(int, input().split())
s = str(n)
summ = 0
ss = []
for i in range(len(s)):
summ += int(s[i])
if summ <= su:
print(0)
else:
summ = 0
for i in range(len(s)):
if int(s[i]) + summ < su:
summ += int(s[i])
ss.append(s[i])
else:
for j in range(i, len(s)):
ss += ["0"]
ch = i - 1
while ch > -1 and ss[ch] == "9":
ss[ch] = "0"
ch -= 1
if ch == -1:
ss = ["1"] + ss
else:
ss[ch] = str(int(ss[ch]) + 1)
ans = ""
for q in range(len(ss)):
ans += ss[q]
print(int(ans) - n)
break
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR LIST STRING ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR STRING ASSIGN VAR VAR STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP LIST STRING VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
digsum = lambda x: sum(map(int, str(x)))
t = n
while digsum(t) > s:
for i, j in enumerate(str(t)[::-1]):
if int(j) > 0:
t += (10 - int(j)) * 10**i
break
print(t - n)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE FUNC_CALL VAR VAR VAR FOR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
res = []
for i in range(n):
a, b = map(int, input().split())
res.append(str((0, b - a % b)[a % b != 0]))
print("\n".join(res))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
from sys import stdin, stdout
def decrease_the_sum_of_digits(n, s):
n_s = str(n)
v = 0
ans = 0
for i in range(len(n_s)):
v += ord(n_s[i]) - ord("0")
if v >= s and ans == 0:
ans = 10 ** (len(n_s) - i) - int(n_s[i:])
if v == s:
return 0
else:
return ans
t = int(stdin.readline())
for _ in range(t):
n, s = map(int, stdin.readline().split())
ans = decrease_the_sum_of_digits(n, s)
stdout.write(str(ans) + "\n")
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING IF VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def sum_of_digit(n):
ans = 0
while n > 0:
ans += n % 10
n = n // 10
return ans
for _ in range(int(input())):
n, s = map(int, input().split())
if sum_of_digit(n) <= s:
print(0)
else:
ans = 1
start = n
while 1:
n += 10**ans - n % 10**ans
ans += 1
if sum_of_digit(n) <= s:
break
print(n - start)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE NUMBER VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
while t > 0:
l = input().split()
a = int(l[0])
b = int(l[1])
p = a % b
if p == 0:
print(p)
else:
print(b - p)
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
def input():
return sys.stdin.readline().strip()
def list2d(a, b, c):
return [([c] * b) for i in range(a)]
def list3d(a, b, c, d):
return [[([d] * c) for j in range(b)] for i in range(a)]
def list4d(a, b, c, d, e):
return [[[([e] * d) for j in range(c)] for j in range(b)] for i in range(a)]
def ceil(x, y=1):
return int(-(-x // y))
def INT():
return int(input())
def MAP():
return map(int, input().split())
def LIST(N=None):
return list(MAP()) if N is None else [INT() for i in range(N)]
def Yes():
print("Yes")
def No():
print("No")
def YES():
print("YES")
def NO():
print("NO")
INF = 10**19
MOD = 10**9 + 7
def digit_sum(n):
ans = 0
while n > 0:
ans += n % 10
n //= 10
return ans
for _ in range(INT()):
N, s = MAP()
dsm = digit_sum(N)
if dsm <= s:
print(0)
continue
A = list(map(int, str(N)))[::-1]
M = len(A)
for i in range(M - 1):
if A[i] == 0:
continue
dsm += 1 - A[i]
A[i] = 0
A[i + 1] += 1
if dsm <= s:
break
for i in range(M - 1):
if A[i] == 10:
dsm += 1 - A[i]
A[i] = 0
A[i + 1] += 1
if A[-1] == 10:
dsm += 1 - A[-1]
A[-1] = 0
A.append(1)
while dsm > s:
dsm += 1 - A[-1]
A[-1] = 0
A.append(1)
L = int("".join(map(str, A[::-1])))
ans = L - N
print(ans)
|
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF NONE RETURN VAR NONE FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP NUMBER VAR VAR ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP NUMBER VAR VAR ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER NUMBER VAR BIN_OP NUMBER VAR NUMBER ASSIGN VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER WHILE VAR VAR VAR BIN_OP NUMBER VAR NUMBER ASSIGN VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def inp():
t = int(input())
G = []
for i in range(t):
a, d = list(map(int, input().split()))
G.append([a, d])
return G
def A(G):
for a, b in G:
if a % b:
print(b - a % b)
else:
print(0)
A(inp())
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR LIST VAR VAR RETURN VAR FUNC_DEF FOR VAR VAR VAR IF BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.