fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
spec_le_iff (R : CommRingCat) (p q : Spec R) : p ≤ q ↔ q.asIdeal ≤ p.asIdeal := by aesop (add simp PrimeSpectrum.le_iff_specializes)
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
spec_le_iff
null
@[stacks 01Z2] Scheme.nonempty_of_isLimit [IsCofilteredOrEmpty I] [∀ {i j} (f : i ⟶ j), IsAffineHom (D.map f)] [∀ i, Nonempty (D.obj i)] [∀ i, CompactSpace (D.obj i)] : Nonempty c.pt := by classical cases isEmpty_or_nonempty I · have e := (isLimitEquivIsTerminalOfIsEmpty _ _ hc).uniqueUpToIso specULiftZIsTerminal exact Nonempty.map e.inv.base inferInstance · have i := Nonempty.some ‹Nonempty I› have : IsCofiltered I := ⟨⟩ let 𝒰 := (D.obj i).affineCover.finiteSubcover have (i' : _) : IsAffine (𝒰.X i') := inferInstanceAs (IsAffine (Spec _)) obtain ⟨j, H⟩ : ∃ j : 𝒰.I₀, ∀ {i'} (f : i' ⟶ i), Nonempty ((𝒰.pullback₁ (D.map f)).X j) := by by_contra! H choose i' f hf using H let g (j) := IsCofiltered.infTo (insert i (Finset.univ.image i')) (Finset.univ.image fun j : 𝒰.I₀ ↦ ⟨_, _, by simp, by simp, f j⟩) (X := j) have (j : 𝒰.I₀) : IsEmpty ((𝒰.pullback₁ (D.map (g i (by simp)))).X j) := by let F : (𝒰.pullback₁ (D.map (g i (by simp)))).X j ⟶ (𝒰.pullback₁ (D.map (f j))).X j := pullback.map _ _ _ _ (D.map (g _ (by simp))) (𝟙 _) (𝟙 _) (by rw [← D.map_comp, IsCofiltered.infTo_commutes] · simp [g] · simp · exact Finset.mem_image_of_mem _ (Finset.mem_univ _)) (by simp) exact Function.isEmpty F.base obtain ⟨x, -⟩ := Cover.covers (𝒰.pullback₁ (D.map (g i (by simp)))) (Nonempty.some inferInstance) exact (this _).elim x let F := Over.post D ⋙ Over.pullback (𝒰.f j) ⋙ Over.forget _ have (i' : _) : IsAffine (F.obj i') := have : IsAffineHom (pullback.snd (D.map i'.hom) (𝒰.f j)) := MorphismProperty.pullback_snd _ _ inferInstance isAffine_of_isAffineHom (pullback.snd (D.map i'.hom) (𝒰.f j)) have (i' : _) : Nonempty (F.obj i') := H i'.hom let e : F ⟶ (F ⋙ Scheme.Γ.rightOp) ⋙ Scheme.Spec := Functor.whiskerLeft F ΓSpec.adjunction.unit have (i : _) : IsIso (e.app i) := IsAffine.affine have : IsIso e := NatIso.isIso_of_isIso_app e let c' : LimitCone F := ⟨_, (IsLimit.postcomposeInvEquiv (asIso e) _).symm (isLimitOfPreserves Scheme.Spec (limit.isLimit (F ⋙ Scheme.Γ.rightOp)))⟩ have : Nonempty c'.1.pt := by apply (config := { allowSynthFailures := true }) PrimeSpectrum.instNonemptyOfNontrivial have (i' : _) : Nontrivial ((F ⋙ Scheme.Γ.rightOp).leftOp.obj i') := by apply (config := { allowSynthFailures := true }) Scheme.component_nontrivial simp exact CommRingCat.FilteredColimits.nontrivial (isColimitCoconeLeftOpOfCone _ (limit.isLimit (F ⋙ Scheme.Γ.rightOp))) let α : F ⟶ Over.forget _ ⋙ D := Functor.whiskerRight (Functor.whiskerLeft (Over.post D) (Over.mapPullbackAdj (𝒰.f j)).counit) (Over.forget _) ...
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
Scheme.nonempty_of_isLimit
Suppose we have a cofiltered diagram of nonempty quasi-compact schemes, whose transition maps are affine. Then the limit is also nonempty.
exists_mem_of_isClosed_of_nonempty [IsCofilteredOrEmpty I] [∀ {i j} (f : i ⟶ j), IsAffineHom (D.map f)] (Z : ∀ (i : I), Set (D.obj i)) (hZc : ∀ (i : I), IsClosed (Z i)) (hZne : ∀ i, (Z i).Nonempty) (hZcpt : ∀ i, IsCompact (Z i)) (hmapsTo : ∀ {i i' : I} (f : i ⟶ i'), Set.MapsTo (D.map f).base (Z i) (Z i')) : ∃ (s : c.pt), ∀ i, (c.π.app i).base s ∈ Z i := by let D' : I ⥤ Scheme := { obj i := (vanishingIdeal ⟨Z i, hZc i⟩).subscheme map {X Y} f := subschemeMap _ _ (D.map f) (by rw [map_vanishingIdeal, ← le_support_iff_le_vanishingIdeal] simpa [(hZc _).closure_subset_iff] using (hmapsTo f).subset_preimage) map_id _ := by simp [← cancel_mono (subschemeι _)] map_comp _ _ := by simp [← cancel_mono (subschemeι _)] } let ι : D' ⟶ D := { app i := subschemeι _, naturality _ _ _ := by simp [D'] } haveI {i j} (f : i ⟶ j) : IsAffineHom (D'.map f) := by suffices IsAffineHom (D'.map f ≫ ι.app j) from .of_comp _ (ι.app j) simp only [subschemeMap_subschemeι, D', ι] infer_instance haveI _ (i) : Nonempty (D'.obj i) := Set.nonempty_coe_sort.mpr (hZne i) haveI _ (i) : CompactSpace (D'.obj i) := isCompact_iff_compactSpace.mp (hZcpt i) let c' : Cone D' := { pt := (⨆ i, (vanishingIdeal ⟨Z i, hZc i⟩).comap (c.π.app i)).subscheme π := { app i := subschemeMap _ _ (c.π.app i) (by simp [le_map_iff_comap_le, le_iSup_of_le i]) naturality {i j} f := by simp [D', ← cancel_mono (subschemeι _)] } } let hc' : IsLimit c' := { lift s := IsClosedImmersion.lift (subschemeι _) (hc.lift ((Cones.postcompose ι).obj s)) (by suffices ∀ i, vanishingIdeal ⟨Z i, hZc i⟩ ≤ (s.π.app i ≫ ι.app i).ker by simpa [← le_map_iff_comap_le, ← Scheme.Hom.ker_comp] refine fun i ↦ .trans ?_ (Scheme.Hom.le_ker_comp _ _) simp [ι]) fac s i := by simp [← cancel_mono (subschemeι _), c', ι] uniq s m hm := by rw [← cancel_mono (subschemeι _)] refine hc.hom_ext fun i ↦ ?_ simp [ι, c', ← hm] } have : Nonempty (⨆ i, (vanishingIdeal ⟨Z i, hZc i⟩).comap (c.π.app i)).support := Scheme.nonempty_of_isLimit D' c' hc' simpa using this include hc in
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
exists_mem_of_isClosed_of_nonempty
Suppose we have a cofiltered diagram of schemes whose transition maps are affine. The limit of a family of compatible nonempty quasicompact closed sets in the diagram is also nonempty.
@[stacks 01Z3] exists_mem_of_isClosed_of_nonempty' [IsCofilteredOrEmpty I] [∀ {i j} (f : i ⟶ j), IsAffineHom (D.map f)] {j : I} (Z : ∀ (i : I), (i ⟶ j) → Set (D.obj i)) (hZc : ∀ i hij, IsClosed (Z i hij)) (hZne : ∀ i hij, (Z i hij).Nonempty) (hZcpt : ∀ i hij, IsCompact (Z i hij)) (hstab : ∀ (i i' : I) (hi'i : i' ⟶ i) (hij : i ⟶ j), Set.MapsTo (D.map hi'i).base (Z i' (hi'i ≫ hij)) (Z i hij)) : ∃ (s : c.pt), ∀ i hij, (c.π.app i).base s ∈ Z i hij := by have {i₁ i₂ : Over j} (f : i₁ ⟶ i₂) : IsAffineHom ((Over.forget j ⋙ D).map f) := by dsimp; infer_instance simpa [Over.forall_iff] using exists_mem_of_isClosed_of_nonempty (Over.forget j ⋙ D) _ ((Functor.Initial.isLimitWhiskerEquiv (Over.forget j) c).symm hc) (fun i ↦ Z i.left i.hom) (fun _ ↦ hZc _ _) (fun _ ↦ hZne _ _) (fun _ ↦ hZcpt _ _) (fun {i₁ i₂} f ↦ by dsimp; rw [← Over.w f]; exact hstab ..) /-!
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
exists_mem_of_isClosed_of_nonempty'
A variant of `exists_mem_of_isClosed_of_nonempty` where the closed sets are only defined for the objects over a given `j : I`.
ExistsHomHomCompEqCompAux where /-- (Implementation) The limit cone. See the section docstring. -/ c : Cone D /-- (Implementation) The limit cone is a limit. See the section docstring. -/ hc : IsLimit c /-- (Implementation) The index on which `a` and `b` lives. See the section docstring. -/ i : I /-- (Implementation) `a`. See the section docstring. -/ a : D.obj i ⟶ X ha : t.app i = a ≫ f /-- (Implementation) `b`. See the section docstring. -/ b : D.obj i ⟶ X hb : t.app i = b ≫ f hab : c.π.app i ≫ a = c.π.app i ≫ b /-- (Implementation) An open cover on `S`. See the section docstring. -/ 𝒰S : Scheme.OpenCover.{u} S [h𝒰S : ∀ i, IsAffine (𝒰S.X i)] /-- (Implementation) A family of open covers refining `𝒰S`. See the section docstring. -/ 𝒰X (i : (𝒰S.pullback₁ f).I₀) : Scheme.OpenCover.{u} ((𝒰S.pullback₁ f).X i) [h𝒰X : ∀ i j, IsAffine ((𝒰X i).X j)] attribute [instance] ExistsHomHomCompEqCompAux.h𝒰S ExistsHomHomCompEqCompAux.h𝒰X
structure
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
ExistsHomHomCompEqCompAux
Subsumed by `Scheme.exists_hom_hom_comp_eq_comp_of_locallyOfFiniteType`. -/ private nonrec lemma Scheme.exists_hom_hom_comp_eq_comp_of_isAffine_of_locallyOfFiniteType [IsAffine S] [IsAffine X] [∀ i, IsAffine (D.obj i)] [IsAffine c.pt] {i : I} (a : D.obj i ⟶ X) (ha : t.app i = a ≫ f) {j : I} (b : D.obj j ⟶ X) (hb : t.app j = b ≫ f) (hab : c.π.app i ≫ a = c.π.app j ≫ b) : ∃ (k : I) (hik : k ⟶ i) (hjk : k ⟶ j), D.map hik ≫ a = D.map hjk ≫ b := by wlog hS : ∃ R, S = Spec R generalizing S · exact this (t ≫ ((Functor.const I).mapIso S.isoSpec).hom) (f ≫ S.isoSpec.hom) (by simp [ha]) (by simp [hb]) ⟨_, rfl⟩ obtain ⟨R, rfl⟩ := hS wlog hX : ∃ S, X = Spec S generalizing X · simpa using this (a ≫ X.isoSpec.hom) (b ≫ X.isoSpec.hom) (by simp [hab]) (X.isoSpec.inv ≫ f) (by simp [ha]) (by simp [hb]) ⟨_, rfl⟩ obtain ⟨S, rfl⟩ := hX obtain ⟨φ, rfl⟩ := Spec.map_surjective f wlog hD : ∃ D' : I ⥤ CommRingCatᵒᵖ, D = D' ⋙ Scheme.Spec generalizing D · let e : D ⟶ D ⋙ Scheme.Γ.rightOp ⋙ Scheme.Spec := D.whiskerLeft ΓSpec.adjunction.unit have inst (i) : IsIso (e.app i) := by dsimp [e]; infer_instance have inst : IsIso e := NatIso.isIso_of_isIso_app e have inst (i) : IsAffine ((D ⋙ Scheme.Γ.rightOp ⋙ Scheme.Spec).obj i) := by dsimp; infer_instance have inst : IsAffine ((Cones.postcompose (asIso e).hom).obj c).pt := by dsimp; infer_instance have := this (D ⋙ Scheme.Γ.rightOp ⋙ Scheme.Spec) ((Cones.postcompose (asIso e).hom).obj c) ((IsLimit.postcomposeHomEquiv (asIso e) c).symm hc) (inv e ≫ t) ((inv e).app _ ≫ a) ((inv e).app _ ≫ b) (by simp [hab]) (by simp [ha]) (by simp [hb]) ⟨D ⋙ Scheme.Γ.rightOp, rfl⟩ simp_rw [(inv e).naturality_assoc] at this simpa using this obtain ⟨D, rfl⟩ := hD obtain ⟨a, rfl⟩ := Spec.map_surjective a obtain ⟨b, rfl⟩ := Spec.map_surjective b let e : ((Functor.const Iᵒᵖ).obj R).rightOp ⋙ Scheme.Spec ≅ (Functor.const I).obj (Spec R) := NatIso.ofComponents (fun _ ↦ Iso.refl _) (by simp) obtain ⟨t, rfl⟩ : ∃ t' : (Functor.const Iᵒᵖ).obj R ⟶ D.leftOp, t = Functor.whiskerRight (NatTrans.rightOp t') Scheme.Spec ≫ e.hom := ⟨⟨fun i ↦ Spec.preimage (t.app i.unop), fun _ _ f ↦ Spec.map_injective (by simpa using (t.naturality f.unop).symm)⟩, by ext : 2; simp [e]⟩ have := monadicCreatesLimits Scheme.Spec obtain ⟨k, hik, hjk, H⟩ := (HasRingHomProperty.Spec_iff.mp ‹LocallyOfFiniteType (Spec.map φ)›) |>.essFiniteType.exists_comp_map_eq_of_isColimit _ D.leftOp t _ (coconeLeftOpOfCone (liftLimit hc)) (isColimitCoconeLeftOpOfCone _ (liftedLimitIsLimit _)) a (Spec.map_injective (by simpa using ha.symm)) b (Spec.map_injective (by simpa using hb.symm)) (Spec.map_injective (by simp only [coconeLeftOpOfCone_pt, Functor.const_obj_obj, Functor.leftOp_obj, coconeLeftOpOfCone_ι_app, Spec.map_comp] simp only [← Scheme.Spec_map, ← liftedLimitMapsToOriginal_hom_π, Category.assoc, hab])) exact ⟨k.unop, hik.unop, hjk.unop, by simpa [← Spec.map_comp, Spec.map_inj] using H⟩ /-- (Implementation) An auxiliary structure used to prove `Scheme.exists_hom_hom_comp_eq_comp_of_locallyOfFiniteType`. See the section docstring.
exists_index : ∃ (i' : I) (hii' : i' ⟶ A.i), ((D.map hii' ≫ pullback.lift A.a A.b (A.ha.symm.trans A.hb)).base ⁻¹' ((Scheme.Pullback.diagonalCoverDiagonalRange f A.𝒰S A.𝒰X : Set <| ↑(pullback f f))ᶜ)) = ∅ := by let W := Scheme.Pullback.diagonalCoverDiagonalRange f A.𝒰S A.𝒰X by_contra! h let Z (i' : I) (hii' : i' ⟶ A.i) := (D.map hii' ≫ pullback.lift A.a A.b (A.ha.symm.trans A.hb)).base ⁻¹' Wᶜ have hZ (i') (hii' : i' ⟶ A.i) : IsClosed (Z i' hii') := (W.isOpen.isClosed_compl).preimage <| Scheme.Hom.continuous _ obtain ⟨s, hs⟩ := exists_mem_of_isClosed_of_nonempty' D A.c A.hc Z hZ h (fun _ _ ↦ (hZ _ _).isCompact) (fun i i' hii' hij ↦ by simp [Z, Set.MapsTo]) refine hs A.i (𝟙 A.i) (Scheme.Pullback.range_diagonal_subset_diagonalCoverDiagonalRange _ _ _ ?_) use (A.c.π.app A.i ≫ A.a).base s have H : A.c.π.app A.i ≫ A.a ≫ pullback.diagonal f = A.c.π.app A.i ≫ pullback.lift A.a A.b (A.ha.symm.trans A.hb) := by ext <;> simp [hab] simp [← Scheme.comp_base_apply, - Scheme.comp_coeBase, H]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
exists_index
null
i' : I := A.exists_index.choose
def
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
i'
(Implementation) The index `i'` such that `a` and `b` restricted onto `i'` maps into the diagonal components. See the section docstring.
hii' : A.i' ⟶ A.i := A.exists_index.choose_spec.choose
def
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
hii'
(Implementation) The map from `i'` to `i`. See the section docstring.
g : D.obj A.i' ⟶ pullback f f := (D.map A.hii' ≫ pullback.lift A.a A.b (A.ha.symm.trans A.hb)) omit [LocallyOfFiniteType f] in
def
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
g
(Implementation) The map sending `x` to `(a x, b x)`, which should fall in the diagonal component. See the section docstring.
range_g_subset : Set.range A.g.base ⊆ Scheme.Pullback.diagonalCoverDiagonalRange f A.𝒰S A.𝒰X := by simpa [ExistsHomHomCompEqCompAux.hii', g] using A.exists_index.choose_spec.choose_spec
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
range_g_subset
null
noncomputable 𝒰D₀ : Scheme.OpenCover.{u} (D.obj A.i') := Scheme.Cover.mkOfCovers (Σ i : A.𝒰S.I₀, (A.𝒰X i).I₀) _ (fun i ↦ ((Scheme.Pullback.diagonalCover f A.𝒰S A.𝒰X).pullback₁ A.g).f ⟨i.1, i.2, i.2⟩) (fun x ↦ by simpa [← Set.mem_range, Scheme.Pullback.range_fst, Scheme.Pullback.diagonalCoverDiagonalRange] using A.range_g_subset ⟨x, rfl⟩)
def
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
𝒰D₀
(Implementation) The covering of `D(i')` by the pullback of the diagonal components of `X ×ₛ X`. See the section docstring.
noncomputable 𝒰D : Scheme.OpenCover.{u} (D.obj A.i') := A.𝒰D₀.bind fun _ ↦ Scheme.affineCover _ attribute [-simp] cast_eq eq_mpr_eq_cast
def
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
𝒰D
(Implementation) An affine open cover refining `𝒰D₀`. See the section docstring.
D' (j : A.𝒰D.I₀) : Over A.i' ⥤ Scheme := Over.post D ⋙ Over.pullback (A.𝒰D.f j) ⋙ Over.forget _
def
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
D'
(Implementation) The diagram restricted to `Over i'`. See the section docstring.
c' (j : A.𝒰D.I₀) : Cone (A.D' j) := (Over.pullback (A.𝒰D.f j) ⋙ Over.forget _).mapCone ((Over.conePost _ _).obj A.c) attribute [local instance] IsCofiltered.isConnected
def
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
c'
(Implementation) The limit cone restricted to `Over i'`. See the section docstring.
hc' (j : A.𝒰D.I₀) : IsLimit (A.c' j) := isLimitOfPreserves (Over.pullback (A.𝒰D.f j) ⋙ Over.forget _) (Over.isLimitConePost _ A.hc) variable [∀ i, IsAffineHom (A.c.π.app i)]
def
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
hc'
(Implementation) The limit cone restricted to `Over i'` is still a limit because the diagram is cofiltered. See the section docstring.
exists_eq (j : A.𝒰D.I₀) : ∃ (k : I) (hki' : k ⟶ A.i'), (A.𝒰D.pullback₁ (D.map hki')).f j ≫ D.map (hki' ≫ A.hii') ≫ A.a = (A.𝒰D.pullback₁ (D.map hki')).f j ≫ D.map (hki' ≫ A.hii') ≫ A.b := by have : IsAffine (A.𝒰D.X j) := by dsimp [𝒰D]; infer_instance have (i : _) : IsAffine ((Over.post D ⋙ Over.pullback (A.𝒰D.f j) ⋙ Over.forget _).obj i) := by dsimp; infer_instance have : IsAffine ((Over.pullback (A.𝒰D.f j) ⋙ Over.forget (A.𝒰D.X j)).mapCone ((Over.conePost D A.i').obj A.c)).pt := by dsimp; infer_instance have : LocallyOfFiniteType ((A.𝒰X j.fst.fst).f j.fst.snd ≫ A.𝒰S.pullbackHom f j.fst.fst) := by dsimp [Scheme.Cover.pullbackHom]; infer_instance have H₁ := congr($(pullback.condition (f := A.g) (g := (Scheme.Pullback.diagonalCover f A.𝒰S A.𝒰X).f ⟨j.1.1, (j.1.2, j.1.2)⟩)) ≫ pullback.fst _ _) have H₂ := congr($(pullback.condition (f := A.g) (g := (Scheme.Pullback.diagonalCover f A.𝒰S A.𝒰X).f ⟨j.1.1, (j.1.2, j.1.2)⟩)) ≫ pullback.snd _ _) simp only [Scheme.Pullback.openCoverOfBase_I₀, Scheme.Pullback.openCoverOfBase_X, Scheme.Cover.pullbackHom, Scheme.Pullback.openCoverOfLeftRight_I₀, g, Category.assoc, limit.lift_π, PullbackCone.mk_pt, PullbackCone.mk_π_app, Scheme.Pullback.diagonalCover_map] at H₁ H₂ obtain ⟨k, hik, hjk, H⟩ := Scheme.exists_hom_hom_comp_eq_comp_of_isAffine_of_locallyOfFiniteType (Over.post D ⋙ Over.pullback (A.𝒰D.f j) ⋙ Over.forget _) ((Over.post D ⋙ Over.pullback (A.𝒰D.f j)).whiskerLeft (Comma.natTrans _ _) ≫ (Functor.const _).map ((A.𝒰D₀.X j.1).affineCover.f j.2 ≫ (Scheme.Pullback.diagonalCover f A.𝒰S A.𝒰X).pullbackHom _ _ ≫ pullback.fst _ _ ≫ (A.𝒰X j.fst.fst).f j.fst.snd ≫ Scheme.Cover.pullbackHom A.𝒰S f j.fst.fst)) (((A.𝒰X j.1.1).f j.1.2 ≫ A.𝒰S.pullbackHom f j.1.1)) ((Over.pullback (A.𝒰D.f j) ⋙ Over.forget _).mapCone ((Over.conePost _ _).obj A.c)) (by refine isLimitOfPreserves (Over.pullback (A.𝒰D.f j) ⋙ Over.forget _) ?_ apply isLimitOfReflects (Over.forget (D.obj A.i')) exact (Functor.Initial.isLimitWhiskerEquiv (Over.forget A.i') A.c).symm A.hc) (i := Over.mk (𝟙 _)) (pullback.snd _ _ ≫ (A.𝒰D₀.X j.1).affineCover.f j.2 ≫ (Scheme.Pullback.diagonalCover f A.𝒰S A.𝒰X).pullbackHom _ _ ≫ pullback.fst _ _) (by simp) (j := Over.mk (𝟙 _)) (pullback.snd _ _ ≫ (A.𝒰D₀.X j.1).affineCover.f j.2 ≫ (Scheme.Pullback.diagonalCover f A.𝒰S A.𝒰X).pullbackHom _ _ ≫ pullback.snd _ _) (by simp [pullback.condition]) (by rw [← cancel_mono ((A.𝒰X j.1.1).f j.1.2), ← cancel_mono (pullback.fst f (A.𝒰S.f j.1.1))] have H₃ := congr(pullback.fst (A.c.π.app A.i') (A.𝒰D.f j) ≫ $(A.hab)) simp only [pullback.condition_assoc, 𝒰D, ← A.c.w A.hii', Category.assoc] at H₃ simpa [Scheme.Cover.pullbackHom, g, ← H₁, ← H₂, -Cone.w, -Cone.w_assoc] using H₃) refine ⟨k.left, k.hom, ?_⟩ simpa [← cancel_mono ((A.𝒰X j.1.1).f j.1.2), ← cancel_mono (pullback.fst f (A.𝒰S.f j.1.1)), Scheme.Cover.pullbackHom, g, ← H₁, ← H₂, pullback.condition_assoc] using H
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
exists_eq
null
@[stacks 01ZC "Injective part of (1) => (3)"] Scheme.exists_hom_hom_comp_eq_comp_of_locallyOfFiniteType {i : I} (a : D.obj i ⟶ X) (ha : t.app i = a ≫ f) {j : I} (b : D.obj j ⟶ X) (hb : t.app j = b ≫ f) (hab : c.π.app i ≫ a = c.π.app j ≫ b) : ∃ (k : I) (hik : k ⟶ i) (hjk : k ⟶ j), D.map hik ≫ a = D.map hjk ≫ b := by classical wlog h : i = j · let o := IsCofiltered.min i j have := this D t f c hc (D.map (IsCofiltered.minToLeft i j) ≫ a) (by simp [← ha]) (D.map (IsCofiltered.minToRight i j) ≫ b) (by simp [← hb]) (by simpa) rfl obtain ⟨k, hik, hjk, heq⟩ := this use k, hik ≫ IsCofiltered.minToLeft i j, hjk ≫ IsCofiltered.minToRight i j simpa using heq subst h let A : ExistsHomHomCompEqCompAux D t f := { c := c, hc := hc, i := i, a := a, ha := ha, b := b, hb := hb, hab := hab 𝒰S := S.affineCover, 𝒰X i := Scheme.affineCover _ } let 𝒰 := Scheme.Pullback.diagonalCover f A.𝒰S A.𝒰X let W := Scheme.Pullback.diagonalCoverDiagonalRange f A.𝒰S A.𝒰X choose k hki' heq using A.exists_eq let 𝒰Df := A.𝒰D.finiteSubcover rcases isEmpty_or_nonempty (D.obj A.i') with h | h · exact ⟨A.i', A.hii', A.hii', isInitialOfIsEmpty.hom_ext _ _⟩ let O : Finset I := {A.i'} ∪ Finset.univ.image (fun i : 𝒰Df.I₀ ↦ k <| A.𝒰D.idx i.1) let o := Nonempty.some (inferInstanceAs <| Nonempty 𝒰Df.I₀) have ho : k (A.𝒰D.idx o.1) ∈ O := by simp [O] obtain ⟨l, hl1, hl2⟩ := IsCofiltered.inf_exists O (Finset.univ.image (fun i : 𝒰Df.I₀ ↦ ⟨k <| A.𝒰D.idx i.1, A.i', by simp [O], by simp [O], hki' <| A.𝒰D.idx i.1⟩)) have (w v : 𝒰Df.I₀) : hl1 (by simp [O]) ≫ hki' (A.𝒰D.idx w.1) = hl1 (by simp [O]) ≫ hki' (A.𝒰D.idx v.1) := by trans hl1 (show A.i' ∈ O by simp [O]) · exact hl2 _ _ (Finset.mem_image_of_mem _ (Finset.mem_univ _)) · exact .symm <| hl2 _ _ (Finset.mem_image_of_mem _ (by simp)) refine ⟨l, hl1 ho ≫ hki' _ ≫ A.hii', hl1 ho ≫ hki' _ ≫ A.hii', ?_⟩ apply Cover.hom_ext (𝒰Df.pullback₁ (D.map <| hl1 ho ≫ hki' _)) intro u let F : pullback (D.map (hl1 ho ≫ hki' (A.𝒰D.idx o.1))) (𝒰Df.f u) ⟶ pullback (D.map (hki' <| A.𝒰D.idx u.1)) (A.𝒰D.f <| A.𝒰D.idx u.1) := pullback.map _ _ _ _ (D.map <| hl1 (by simp [O])) (𝟙 _) (𝟙 _) (by rw [Category.comp_id, ← D.map_comp, this]) rfl have hF : F ≫ pullback.fst (D.map (hki' _)) (A.𝒰D.f _) = pullback.fst _ _ ≫ D.map (hl1 (by simp [O])) := by simp [F] simp only [Precoverage.ZeroHypercover.pullback₁_toPreZeroHypercover, PreZeroHypercover.pullback₁_X, PreZeroHypercover.pullback₁_f, Functor.map_comp, Category.assoc] at heq ⊢ simp_rw [← D.map_comp_assoc, reassoc_of% this o u, D.map_comp_assoc] ...
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.Category.Ring.FinitePresentation", "Mathlib.AlgebraicGeometry.IdealSheaf.Functorial", "Mathlib.AlgebraicGeometry.Morphisms.Separated", "Mathlib.CategoryTheory.Filtered.Final", "Mathlib.CategoryTheory.Monad.Limits" ]
Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean
Scheme.exists_hom_hom_comp_eq_comp_of_locallyOfFiniteType
Given a cofiltered diagram `D` of quasi-compact `S`-schemes with affine transition maps, and another scheme `X` of finite type over `S`. Then the canonical map `colim Homₛ(Dᵢ, X) ⟶ Homₛ(lim Dᵢ, X)` is injective. In other words, for each pair of `a : Homₛ(Dᵢ, X)` and `b : Homₛ(Dⱼ, X)` that give rise to the same map `Homₛ(lim Dᵢ, X)`, there exists a `k` with `fᵢ : k ⟶ i` and `fⱼ : k ⟶ j` such that `D(fᵢ) ≫ a = D(fⱼ) ≫ b`.
Scheme.Hom.fiber (f : X.Hom Y) (y : Y) : Scheme := pullback f (Y.fromSpecResidueField y)
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
Scheme.Hom.fiber
`f.fiber y` is the scheme-theoretic fiber of `f` at `y`.
Scheme.Hom.fiberι (f : X.Hom Y) (y : Y) : f.fiber y ⟶ X := pullback.fst _ _
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
Scheme.Hom.fiberι
`f.fiberι y : f.fiber y ⟶ X` is the embedding of the scheme-theoretic fiber into `X`.
Scheme.Hom.fiberToSpecResidueField (f : X.Hom Y) (y : Y) : f.fiber y ⟶ Spec (Y.residueField y) := pullback.snd _ _
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
Scheme.Hom.fiberToSpecResidueField
The canonical map from the scheme-theoretic fiber to the residue field.
@[reducible] Scheme.Hom.fiberOverSpecResidueField (f : X.Hom Y) (y : Y) : (f.fiber y).Over (Spec (Y.residueField y)) where hom := f.fiberToSpecResidueField y
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
Scheme.Hom.fiberOverSpecResidueField
The fiber of `f` at `y` is naturally a `κ(y)`-scheme.
Scheme.Hom.fiberToSpecResidueField_apply (f : X.Hom Y) (y : Y) (x : f.fiber y) : (f.fiberToSpecResidueField y).base x = IsLocalRing.closedPoint (Y.residueField y) := Subsingleton.elim (α := PrimeSpectrum _) _ _
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
Scheme.Hom.fiberToSpecResidueField_apply
null
Scheme.Hom.range_fiberι (f : X.Hom Y) (y : Y) : Set.range (f.fiberι y).base = f.base ⁻¹' {y} := by simp [fiber, fiberι, Scheme.Pullback.range_fst, Scheme.range_fromSpecResidueField]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
Scheme.Hom.range_fiberι
null
Scheme.Hom.fiberHomeo (f : X.Hom Y) (y : Y) : f.fiber y ≃ₜ f.base ⁻¹' {y} := .trans (f.fiberι y).isEmbedding.toHomeomorph (.setCongr (f.range_fiberι y)) @[simp]
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
Scheme.Hom.fiberHomeo
The scheme-theoretic fiber of `f` at `y` is homeomorphic to `f ⁻¹' {y}`.
Scheme.Hom.fiberHomeo_apply (f : X.Hom Y) (y : Y) (x : f.fiber y) : (f.fiberHomeo y x).1 = (f.fiberι y).base x := rfl @[simp]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
Scheme.Hom.fiberHomeo_apply
null
Scheme.Hom.fiberι_fiberHomeo_symm (f : X.Hom Y) (y : Y) (x : f.base ⁻¹' {y}) : (f.fiberι y).base ((f.fiberHomeo y).symm x) = x := congr($((f.fiberHomeo y).apply_symm_apply x).1)
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
Scheme.Hom.fiberι_fiberHomeo_symm
null
Scheme.Hom.asFiber (f : X.Hom Y) (x : X) : f.fiber (f.base x) := (f.fiberHomeo (f.base x)).symm ⟨x, rfl⟩ @[simp]
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
Scheme.Hom.asFiber
A point `x` as a point in the fiber of `f` at `f x`.
Scheme.Hom.fiberι_asFiber (f : X.Hom Y) (x : X) : (f.fiberι _).base (f.asFiber x) = x := f.fiberι_fiberHomeo_symm _ _
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
Scheme.Hom.fiberι_asFiber
null
QuasiCompact.isCompact_preimage_singleton (f : X ⟶ Y) [QuasiCompact f] (y : Y) : IsCompact (f.base ⁻¹' {y}) := f.range_fiberι y ▸ isCompact_range (f.fiberι y).continuous
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
QuasiCompact.isCompact_preimage_singleton
null
IsFinite.finite_preimage_singleton (f : X ⟶ Y) [IsFinite f] (y : Y) : (f.base ⁻¹' {y}).Finite := f.range_fiberι y ▸ Set.finite_range (f.fiberι y).base
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
IsFinite.finite_preimage_singleton
null
Scheme.Hom.finite_preimage (f : X.Hom Y) [IsFinite f] {s : Set Y} (hs : s.Finite) : (f.base ⁻¹' s).Finite := by rw [← Set.biUnion_of_singleton s, Set.preimage_iUnion₂] exact hs.biUnion fun _ _ ↦ IsFinite.finite_preimage_singleton f _
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
Scheme.Hom.finite_preimage
null
Scheme.Hom.discrete_fiber (f : X ⟶ Y) (y : Y) [IsFinite f] : DiscreteTopology (f.fiber y) := inferInstance
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.PullbackCarrier", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.RingTheory.Spectrum.Prime.Jacobson" ]
Mathlib/AlgebraicGeometry/Fiber.lean
Scheme.Hom.discrete_fiber
null
noncomputable Scheme.functionField [IrreducibleSpace X] : CommRingCat := X.presheaf.stalk (genericPoint X)
abbrev
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Properties" ]
Mathlib/AlgebraicGeometry/FunctionField.lean
Scheme.functionField
The function field of an irreducible scheme is the local ring at its generic point. Despite the name, this is a field only when the scheme is integral.
noncomputable Scheme.germToFunctionField [IrreducibleSpace X] (U : X.Opens) [h : Nonempty U] : Γ(X, U) ⟶ X.functionField := X.presheaf.germ U (genericPoint X) (((genericPoint_spec X).mem_open_set_iff U.isOpen).mpr (by simpa using h))
abbrev
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Properties" ]
Mathlib/AlgebraicGeometry/FunctionField.lean
Scheme.germToFunctionField
The restriction map from a component to the function field.
germ_injective_of_isIntegral [IsIntegral X] {U : X.Opens} (x : X) (hx : x ∈ U) : Function.Injective (X.presheaf.germ U x hx) := by rw [injective_iff_map_eq_zero] intro y hy rw [← (X.presheaf.germ U x hx).hom.map_zero] at hy obtain ⟨W, hW, iU, iV, e⟩ := X.presheaf.germ_eq _ hx hx _ _ hy cases Subsingleton.elim iU iV haveI : Nonempty W := ⟨⟨_, hW⟩⟩ exact map_injective_of_isIntegral X iU e
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Properties" ]
Mathlib/AlgebraicGeometry/FunctionField.lean
germ_injective_of_isIntegral
null
Scheme.germToFunctionField_injective [IsIntegral X] (U : X.Opens) [Nonempty U] : Function.Injective (X.germToFunctionField U) := germ_injective_of_isIntegral _ _ _
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Properties" ]
Mathlib/AlgebraicGeometry/FunctionField.lean
Scheme.germToFunctionField_injective
null
genericPoint_eq_of_isOpenImmersion {X Y : Scheme} (f : X ⟶ Y) [H : IsOpenImmersion f] [hX : IrreducibleSpace X] [IrreducibleSpace Y] : f.base (genericPoint X) = genericPoint Y := by apply ((genericPoint_spec Y).eq _).symm convert (genericPoint_spec X).image (show Continuous f.base by fun_prop) symm rw [← Set.univ_subset_iff] convert subset_closure_inter_of_isPreirreducible_of_isOpen _ H.base_open.isOpen_range _ · rw [Set.univ_inter, Set.image_univ] · apply PreirreducibleSpace.isPreirreducible_univ (X := Y) · exact ⟨_, trivial, Set.mem_range_self hX.2.some⟩
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Properties" ]
Mathlib/AlgebraicGeometry/FunctionField.lean
genericPoint_eq_of_isOpenImmersion
null
noncomputable stalkFunctionFieldAlgebra [IrreducibleSpace X] (x : X) : Algebra (X.presheaf.stalk x) X.functionField := by apply RingHom.toAlgebra exact (X.presheaf.stalkSpecializes ((genericPoint_spec X).specializes trivial)).hom
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Properties" ]
Mathlib/AlgebraicGeometry/FunctionField.lean
stalkFunctionFieldAlgebra
null
functionField_isScalarTower [IrreducibleSpace X] (U : X.Opens) (x : U) [Nonempty U] : IsScalarTower Γ(X, U) (X.presheaf.stalk x) X.functionField := by apply IsScalarTower.of_algebraMap_eq' simp_rw [RingHom.algebraMap_toAlgebra] change _ = (X.presheaf.germ U x x.2 ≫ _).hom rw [X.presheaf.germ_stalkSpecializes]
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Properties" ]
Mathlib/AlgebraicGeometry/FunctionField.lean
functionField_isScalarTower
null
@[simp] genericPoint_eq_bot_of_affine (R : CommRingCat) [IsDomain R] : genericPoint (Spec R) = (⊥ : PrimeSpectrum R) := by apply (genericPoint_spec (Spec R)).eq rw [isGenericPoint_def] rw [← PrimeSpectrum.zeroLocus_vanishingIdeal_eq_closure, PrimeSpectrum.vanishingIdeal_singleton] rw [← PrimeSpectrum.zeroLocus_singleton_zero] rfl
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Properties" ]
Mathlib/AlgebraicGeometry/FunctionField.lean
genericPoint_eq_bot_of_affine
null
functionField_isFractionRing_of_affine (R : CommRingCat.{u}) [IsDomain R] : IsFractionRing R (Spec R).functionField := by convert StructureSheaf.IsLocalization.to_stalk R (genericPoint (Spec R)) delta IsFractionRing IsLocalization.AtPrime apply Eq.to_iff congr 1 rw [genericPoint_eq_bot_of_affine] ext exact mem_nonZeroDivisors_iff_ne_zero
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Properties" ]
Mathlib/AlgebraicGeometry/FunctionField.lean
functionField_isFractionRing_of_affine
null
IsAffineOpen.primeIdealOf_genericPoint {X : Scheme} [IsIntegral X] {U : X.Opens} (hU : IsAffineOpen U) [h : Nonempty U] : hU.primeIdealOf ⟨genericPoint X, ((genericPoint_spec X).mem_open_set_iff U.isOpen).mpr (by simpa using h)⟩ = genericPoint (Spec Γ(X, U)) := by haveI : IsAffine _ := hU delta IsAffineOpen.primeIdealOf convert genericPoint_eq_of_isOpenImmersion (U.toScheme.isoSpec.hom ≫ Spec.map (X.presheaf.map (eqToHom U.isOpenEmbedding_obj_top).op)) apply Subtype.ext exact (genericPoint_eq_of_isOpenImmersion U.ι).symm
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Properties" ]
Mathlib/AlgebraicGeometry/FunctionField.lean
IsAffineOpen.primeIdealOf_genericPoint
null
functionField_isFractionRing_of_isAffineOpen [IsIntegral X] (U : X.Opens) (hU : IsAffineOpen U) [Nonempty U] : IsFractionRing Γ(X, U) X.functionField := by haveI : IsAffine _ := hU haveI : IsIntegral U := @isIntegral_of_isAffine_of_isDomain _ _ _ (by rw [Scheme.Opens.toScheme_presheaf_obj, Opens.isOpenEmbedding_obj_top]; infer_instance) delta IsFractionRing Scheme.functionField convert hU.isLocalization_stalk ⟨genericPoint X, (((genericPoint_spec X).mem_open_set_iff U.isOpen).mpr (by simpa using ‹Nonempty U›))⟩ using 1 rw [hU.primeIdealOf_genericPoint, genericPoint_eq_bot_of_affine] ext; exact mem_nonZeroDivisors_iff_ne_zero
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Properties" ]
Mathlib/AlgebraicGeometry/FunctionField.lean
functionField_isFractionRing_of_isAffineOpen
null
toΓSpecFun : X → PrimeSpectrum (Γ.obj (op X)) := fun x => comap (X.presheaf.Γgerm x).hom (IsLocalRing.closedPoint (X.presheaf.stalk x))
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpecFun
The canonical map from the underlying set to the prime spectrum of `Γ(X)`.
notMem_prime_iff_unit_in_stalk (r : Γ.obj (op X)) (x : X) : r ∉ (X.toΓSpecFun x).asIdeal ↔ IsUnit (X.presheaf.Γgerm x r) := by simp [toΓSpecFun, IsLocalRing.closedPoint] @[deprecated (since := "2025-05-23")] alias not_mem_prime_iff_unit_in_stalk := notMem_prime_iff_unit_in_stalk
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
notMem_prime_iff_unit_in_stalk
null
toΓSpec_preimage_basicOpen_eq (r : Γ.obj (op X)) : X.toΓSpecFun ⁻¹' basicOpen r = SetLike.coe (X.toRingedSpace.basicOpen r) := by ext dsimp simp only [Set.mem_preimage, SetLike.mem_coe] rw [X.toRingedSpace.mem_top_basicOpen] exact notMem_prime_iff_unit_in_stalk ..
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpec_preimage_basicOpen_eq
The preimage of a basic open in `Spec Γ(X)` under the unit is the basic open in `X` defined by the same element (they are equal as sets).
toΓSpec_continuous : Continuous X.toΓSpecFun := by rw [isTopologicalBasis_basic_opens.continuous_iff] rintro _ ⟨r, rfl⟩ rw [X.toΓSpec_preimage_basicOpen_eq r] exact (X.toRingedSpace.basicOpen r).2
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpec_continuous
`toΓSpecFun` is continuous.
toΓSpecBase : X.toTopCat ⟶ Spec.topObj (Γ.obj (op X)) := TopCat.ofHom { toFun := X.toΓSpecFun continuous_toFun := X.toΓSpec_continuous } variable (r : Γ.obj (op X))
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpecBase
The canonical (bundled) continuous map from the underlying topological space of `X` to the prime spectrum of its global sections.
toΓSpecMapBasicOpen : Opens X := (Opens.map X.toΓSpecBase).obj (basicOpen r)
abbrev
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpecMapBasicOpen
The preimage in `X` of a basic open in `Spec Γ(X)` (as an open set).
toΓSpecMapBasicOpen_eq : X.toΓSpecMapBasicOpen r = X.toRingedSpace.basicOpen r := Opens.ext (X.toΓSpec_preimage_basicOpen_eq r)
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpecMapBasicOpen_eq
The preimage is the basic open in `X` defined by the same element `r`.
toToΓSpecMapBasicOpen : X.presheaf.obj (op ⊤) ⟶ X.presheaf.obj (op <| X.toΓSpecMapBasicOpen r) := X.presheaf.map (X.toΓSpecMapBasicOpen r).leTop.op
abbrev
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toToΓSpecMapBasicOpen
The map from the global sections `Γ(X)` to the sections on the (preimage of) a basic open.
isUnit_res_toΓSpecMapBasicOpen : IsUnit (X.toToΓSpecMapBasicOpen r r) := by convert (X.presheaf.map <| (eqToHom <| X.toΓSpecMapBasicOpen_eq r).op).hom.isUnit_map (X.toRingedSpace.isUnit_res_basicOpen r) rw [← CommRingCat.comp_apply, ← Functor.map_comp] congr
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
isUnit_res_toΓSpecMapBasicOpen
`r` is a unit as a section on the basic open defined by `r`.
toΓSpecCApp : (structureSheaf <| Γ.obj <| op X).val.obj (op <| basicOpen r) ⟶ X.presheaf.obj (op <| X.toΓSpecMapBasicOpen r) := CommRingCat.ofHom <| IsLocalization.Away.lift (R := Γ.obj (op X)) (S := (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r))) r (isUnit_res_toΓSpecMapBasicOpen _ r)
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpecCApp
Define the sheaf hom on individual basic opens for the unit.
toΓSpecCApp_iff (f : (structureSheaf <| Γ.obj <| op X).val.obj (op <| basicOpen r) ⟶ X.presheaf.obj (op <| X.toΓSpecMapBasicOpen r)) : toOpen _ (basicOpen r) ≫ f = X.toToΓSpecMapBasicOpen r ↔ f = X.toΓSpecCApp r := by have loc_inst := IsLocalization.to_basicOpen (Γ.obj (op X)) r refine ConcreteCategory.ext_iff.trans ?_ rw [← @IsLocalization.Away.lift_comp _ _ _ _ _ _ _ r loc_inst _ (X.isUnit_res_toΓSpecMapBasicOpen r)] constructor · intro h ext : 1 exact IsLocalization.ringHom_ext (Submonoid.powers r) h apply congr_arg
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpecCApp_iff
Characterization of the sheaf hom on basic opens, direction ← (next lemma) is used at various places, but → is not used in this file.
toΓSpecCApp_spec : toOpen _ (basicOpen r) ≫ X.toΓSpecCApp r = X.toToΓSpecMapBasicOpen r := (X.toΓSpecCApp_iff r _).2 rfl
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpecCApp_spec
null
@[simps app] toΓSpecCBasicOpens : (inducedFunctor basicOpen).op ⋙ (structureSheaf (Γ.obj (op X))).1 ⟶ (inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward _ X.toΓSpecBase).obj X.𝒪).1 where app r := X.toΓSpecCApp r.unop naturality r s f := by apply (StructureSheaf.to_basicOpen_epi (Γ.obj (op X)) r.unop).1 simp only [← Category.assoc] rw [X.toΓSpecCApp_spec r.unop] convert X.toΓSpecCApp_spec s.unop symm apply X.presheaf.map_comp
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpecCBasicOpens
The sheaf hom on all basic opens, commuting with restrictions.
@[simps] toΓSpecSheafedSpace : X.toSheafedSpace ⟶ Spec.toSheafedSpace.obj (op (Γ.obj (op X))) where base := X.toΓSpecBase c := TopCat.Sheaf.restrictHomEquivHom (structureSheaf (Γ.obj (op X))).1 _ isBasis_basic_opens X.toΓSpecCBasicOpens
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpecSheafedSpace
The canonical morphism of sheafed spaces from `X` to the spectrum of its global sections.
toΓSpecSheafedSpace_app_eq : X.toΓSpecSheafedSpace.c.app (op (basicOpen r)) = X.toΓSpecCApp r := by apply TopCat.Sheaf.extend_hom_app _ _ _ @[reassoc] theorem toΓSpecSheafedSpace_app_spec (r : Γ.obj (op X)) : toOpen (Γ.obj (op X)) (basicOpen r) ≫ X.toΓSpecSheafedSpace.c.app (op (basicOpen r)) = X.toToΓSpecMapBasicOpen r := (X.toΓSpecSheafedSpace_app_eq r).symm ▸ X.toΓSpecCApp_spec r
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpecSheafedSpace_app_eq
null
toStalk_stalkMap_toΓSpec (x : X) : toStalk _ _ ≫ X.toΓSpecSheafedSpace.stalkMap x = X.presheaf.Γgerm x := by rw [PresheafedSpace.Hom.stalkMap, ← toOpen_germ _ (basicOpen (1 : Γ.obj (op X))) _ (by rw [basicOpen_one]; trivial), ← Category.assoc, Category.assoc (toOpen _ _), stalkFunctor_map_germ, ← Category.assoc, X.toΓSpecSheafedSpace_app_eq, X.toΓSpecCApp_spec, Γgerm] erw [← stalkPushforward_germ _ _ X.presheaf ⊤] congr 1 exact (X.toΓSpecBase _* X.presheaf).germ_res le_top.hom _ _
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toStalk_stalkMap_toΓSpec
The map on stalks induced by the unit commutes with maps from `Γ(X)` to stalks (in `Spec Γ(X)` and in `X`).
@[simps! base] toΓSpec : X ⟶ Spec.locallyRingedSpaceObj (Γ.obj (op X)) where __ := X.toΓSpecSheafedSpace prop := by intro x let p : PrimeSpectrum (Γ.obj (op X)) := X.toΓSpecFun x constructor let S := (structureSheaf _).presheaf.stalk p rintro (t : S) ht obtain ⟨⟨r, s⟩, he⟩ := IsLocalization.surj p.asIdeal.primeCompl t dsimp at he set t' := _ change t * t' = _ at he apply isUnit_of_mul_isUnit_left (y := t') rw [he] refine IsLocalization.map_units S (⟨r, ?_⟩ : p.asIdeal.primeCompl) apply (notMem_prime_iff_unit_in_stalk _ _ _).mpr rw [← toStalk_stalkMap_toΓSpec, CommRingCat.comp_apply] erw [← he] rw [RingHom.map_mul] exact ht.mul <| (IsLocalization.map_units (R := Γ.obj (op X)) S s).map _
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpec
The canonical morphism from `X` to the spectrum of its global sections.
toΓSpec_preimage_zeroLocus_eq {X : LocallyRingedSpace.{u}} (s : Set (X.presheaf.obj (op ⊤))) : X.toΓSpec.base ⁻¹' PrimeSpectrum.zeroLocus s = X.toRingedSpace.zeroLocus s := by simp only [RingedSpace.zeroLocus] have (i : LocallyRingedSpace.Γ.obj (op X)) (_ : i ∈ s) : (SetLike.coe (X.toRingedSpace.basicOpen i))ᶜ = X.toΓSpec.base ⁻¹' ((PrimeSpectrum.basicOpen i).carrier)ᶜ := by symm rw [Set.preimage_compl, Opens.carrier_eq_coe] erw [X.toΓSpec_preimage_basicOpen_eq i] erw [Set.iInter₂_congr this] simp_rw [← Set.preimage_iInter₂, Opens.carrier_eq_coe, PrimeSpectrum.basicOpen_eq_zeroLocus_compl, compl_compl] rw [← PrimeSpectrum.zeroLocus_iUnion₂] simp
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toΓSpec_preimage_zeroLocus_eq
On a locally ringed space `X`, the preimage of the zero locus of the prime spectrum of `Γ(X, ⊤)` under `toΓSpec` agrees with the associated zero locus on `X`.
comp_ring_hom_ext {X : LocallyRingedSpace.{u}} {R : CommRingCat.{u}} {f : R ⟶ Γ.obj (op X)} {β : X ⟶ Spec.locallyRingedSpaceObj R} (w : X.toΓSpec.base ≫ (Spec.locallyRingedSpaceMap f).base = β.base) (h : ∀ r : R, f ≫ X.presheaf.map (homOfLE le_top : (Opens.map β.base).obj (basicOpen r) ⟶ _).op = toOpen R (basicOpen r) ≫ β.c.app (op (basicOpen r))) : X.toΓSpec ≫ Spec.locallyRingedSpaceMap f = β := by ext1 refine Spec.basicOpen_hom_ext w ?_ intro r U rw [LocallyRingedSpace.comp_c_app] erw [toOpen_comp_comap_assoc] rw [Category.assoc] erw [toΓSpecSheafedSpace_app_spec, ← X.presheaf.map_comp] exact h r
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
comp_ring_hom_ext
null
Γ_Spec_left_triangle : toSpecΓ (Γ.obj (op X)) ≫ X.toΓSpec.c.app (op ⊤) = 𝟙 _ := by unfold toSpecΓ rw [← toOpen_res _ (basicOpen (1 : Γ.obj (op X))) ⊤ (eqToHom basicOpen_one.symm), Category.assoc, NatTrans.naturality, ← Category.assoc] erw [X.toΓSpecSheafedSpace_app_spec 1, ← Functor.map_comp] convert eqToHom_map X.presheaf _; rfl
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Γ_Spec_left_triangle
`toSpecΓ _` is an isomorphism so these are mutually two-sided inverses.
identityToΓSpec : 𝟭 LocallyRingedSpace.{u} ⟶ Γ.rightOp ⋙ Spec.toLocallyRingedSpace where app := LocallyRingedSpace.toΓSpec naturality X Y f := by symm apply LocallyRingedSpace.comp_ring_hom_ext · ext1 x dsimp change PrimeSpectrum.comap (f.c.app (op ⊤)).hom (X.toΓSpecFun x) = Y.toΓSpecFun (f.base x) dsimp [toΓSpecFun] rw [← IsLocalRing.comap_closedPoint (f.stalkMap x).hom, ← PrimeSpectrum.comap_comp_apply, ← PrimeSpectrum.comap_comp_apply, ← CommRingCat.hom_comp, ← CommRingCat.hom_comp] congr 3 exact (PresheafedSpace.stalkMap_germ f.1 ⊤ x trivial).symm · intro r rw [LocallyRingedSpace.comp_c_app, ← Category.assoc] erw [Y.toΓSpecSheafedSpace_app_spec, f.c.naturality] rfl
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
identityToΓSpec
The unit as a natural transformation.
left_triangle (X : LocallyRingedSpace) : SpecΓIdentity.inv.app (Γ.obj (op X)) ≫ (identityToΓSpec.app X).c.app (op ⊤) = 𝟙 _ := X.Γ_Spec_left_triangle
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
left_triangle
null
right_triangle (R : CommRingCat) : identityToΓSpec.app (Spec.toLocallyRingedSpace.obj <| op R) ≫ Spec.toLocallyRingedSpace.map (SpecΓIdentity.inv.app R).op = 𝟙 _ := by apply LocallyRingedSpace.comp_ring_hom_ext · ext (p : PrimeSpectrum R) dsimp refine PrimeSpectrum.ext (Ideal.ext fun x => ?_) rw [← IsLocalization.AtPrime.to_map_mem_maximal_iff ((structureSheaf R).presheaf.stalk p) p.asIdeal x] rfl · intro r; apply toOpen_res
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
right_triangle
`SpecΓIdentity` is iso so these are mutually two-sided inverses.
@[simps] locallyRingedSpaceAdjunction : Γ.rightOp ⊣ Spec.toLocallyRingedSpace.{u} where unit := identityToΓSpec counit := (NatIso.op SpecΓIdentity).inv left_triangle_components X := by simp only [Functor.id_obj, Functor.rightOp_obj, Γ_obj, Functor.comp_obj, Spec.toLocallyRingedSpace_obj, Spec.locallyRingedSpaceObj_toSheafedSpace, Spec.sheafedSpaceObj_carrier, Spec.sheafedSpaceObj_presheaf, Functor.rightOp_map, Γ_map, Quiver.Hom.unop_op, NatIso.op_inv, NatTrans.op_app, SpecΓIdentity_inv_app] exact congr_arg Quiver.Hom.op (left_triangle X) right_triangle_components R := by simp only [Spec.toLocallyRingedSpace_obj, Functor.id_obj, Functor.comp_obj, Functor.rightOp_obj, Γ_obj, Spec.locallyRingedSpaceObj_toSheafedSpace, Spec.sheafedSpaceObj_carrier, Spec.sheafedSpaceObj_presheaf, NatIso.op_inv, NatTrans.op_app, op_unop, SpecΓIdentity_inv_app, Spec.toLocallyRingedSpace_map, Quiver.Hom.unop_op] exact right_triangle R.unop
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
locallyRingedSpaceAdjunction
The adjunction `Γ ⊣ Spec` from `CommRingᵒᵖ` to `LocallyRingedSpace`.
@[simp] toSpecΓ_unop (R : CommRingCatᵒᵖ) : AlgebraicGeometry.toSpecΓ (Opposite.unop R) = toOpen R.unop ⊤ := rfl
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toSpecΓ_unop
`@[simp]`-normal form of `locallyRingedSpaceAdjunction_counit_app`.
@[simp] toSpecΓ_of (R : Type u) [CommRing R] : AlgebraicGeometry.toSpecΓ (CommRingCat.of R) = toOpen R ⊤ := rfl
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toSpecΓ_of
`@[simp]`-normal form of `locallyRingedSpaceAdjunction_counit_app'`.
locallyRingedSpaceAdjunction_counit_app (R : CommRingCatᵒᵖ) : locallyRingedSpaceAdjunction.counit.app R = (toOpen R.unop ⊤).op := rfl
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
locallyRingedSpaceAdjunction_counit_app
null
locallyRingedSpaceAdjunction_counit_app' (R : Type u) [CommRing R] : locallyRingedSpaceAdjunction.counit.app (op <| CommRingCat.of R) = (toOpen R ⊤).op := rfl
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
locallyRingedSpaceAdjunction_counit_app'
null
locallyRingedSpaceAdjunction_homEquiv_apply {X : LocallyRingedSpace} {R : CommRingCatᵒᵖ} (f : Γ.rightOp.obj X ⟶ R) : locallyRingedSpaceAdjunction.homEquiv X R f = identityToΓSpec.app X ≫ Spec.locallyRingedSpaceMap f.unop := rfl
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
locallyRingedSpaceAdjunction_homEquiv_apply
null
locallyRingedSpaceAdjunction_homEquiv_apply' {X : LocallyRingedSpace} {R : Type u} [CommRing R] (f : CommRingCat.of R ⟶ Γ.obj <| op X) : locallyRingedSpaceAdjunction.homEquiv X (op <| CommRingCat.of R) (op f) = identityToΓSpec.app X ≫ Spec.locallyRingedSpaceMap f := rfl
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
locallyRingedSpaceAdjunction_homEquiv_apply'
null
toOpen_comp_locallyRingedSpaceAdjunction_homEquiv_app {X : LocallyRingedSpace} {R : Type u} [CommRing R] (f : Γ.rightOp.obj X ⟶ op (CommRingCat.of R)) (U) : StructureSheaf.toOpen R U.unop ≫ (locallyRingedSpaceAdjunction.homEquiv X (op <| CommRingCat.of R) f).c.app U = f.unop ≫ X.presheaf.map (homOfLE le_top).op := by rw [← StructureSheaf.toOpen_res _ _ _ (homOfLE le_top), Category.assoc, NatTrans.naturality _ (homOfLE (le_top (a := U.unop))).op, show (toOpen R ⊤) = (toOpen R ⊤).op.unop from rfl, ← locallyRingedSpaceAdjunction_counit_app'] simp_rw [← Γ_map_op] rw [← Γ.rightOp_map_unop, ← Category.assoc, ← unop_comp, ← Adjunction.homEquiv_counit, Equiv.symm_apply_apply] rfl
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toOpen_comp_locallyRingedSpaceAdjunction_homEquiv_app
null
adjunction : Scheme.Γ.rightOp ⊣ Scheme.Spec.{u} where unit := { app := fun X ↦ ⟨locallyRingedSpaceAdjunction.{u}.unit.app X.toLocallyRingedSpace⟩ naturality := fun _ _ f ↦ Scheme.Hom.ext' (locallyRingedSpaceAdjunction.{u}.unit.naturality f.toLRSHom) } counit := (NatIso.op Scheme.SpecΓIdentity.{u}).inv left_triangle_components Y := locallyRingedSpaceAdjunction.left_triangle_components Y.toLocallyRingedSpace right_triangle_components R := Scheme.Hom.ext' <| locallyRingedSpaceAdjunction.right_triangle_components R
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
adjunction
The adjunction `Γ ⊣ Spec` from `CommRingᵒᵖ` to `Scheme`.
adjunction_homEquiv_apply {X : Scheme} {R : CommRingCatᵒᵖ} (f : (op <| Scheme.Γ.obj <| op X) ⟶ R) : ΓSpec.adjunction.homEquiv X R f = ⟨locallyRingedSpaceAdjunction.homEquiv X.1 R f⟩ := rfl
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
adjunction_homEquiv_apply
null
adjunction_homEquiv_symm_apply {X : Scheme} {R : CommRingCatᵒᵖ} (f : X ⟶ Scheme.Spec.obj R) : (ΓSpec.adjunction.homEquiv X R).symm f = (locallyRingedSpaceAdjunction.homEquiv X.1 R).symm f.toLRSHom := rfl
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
adjunction_homEquiv_symm_apply
null
adjunction_counit_app' {R : CommRingCatᵒᵖ} : ΓSpec.adjunction.counit.app R = locallyRingedSpaceAdjunction.counit.app R := rfl @[simp]
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
adjunction_counit_app'
null
adjunction_counit_app {R : CommRingCatᵒᵖ} : ΓSpec.adjunction.counit.app R = (Scheme.ΓSpecIso (unop R)).inv.op := rfl
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
adjunction_counit_app
null
_root_.AlgebraicGeometry.Scheme.toSpecΓ (X : Scheme.{u}) : X ⟶ Spec Γ(X, ⊤) := ΓSpec.adjunction.unit.app X @[simp]
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
_root_.AlgebraicGeometry.Scheme.toSpecΓ
The canonical map `X ⟶ Spec Γ(X, ⊤)`. This is the unit of the `Γ-Spec` adjunction.
adjunction_unit_app {X : Scheme} : ΓSpec.adjunction.unit.app X = X.toSpecΓ := rfl
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
adjunction_unit_app
null
isIso_locallyRingedSpaceAdjunction_counit : IsIso.{u + 1, u + 1} locallyRingedSpaceAdjunction.counit := (NatIso.op SpecΓIdentity).isIso_inv
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
isIso_locallyRingedSpaceAdjunction_counit
null
isIso_adjunction_counit : IsIso ΓSpec.adjunction.counit := by apply (config := { allowSynthFailures := true }) NatIso.isIso_of_isIso_app intro R rw [adjunction_counit_app] infer_instance
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
isIso_adjunction_counit
null
Scheme.toSpecΓ_base (X : Scheme.{u}) (x) : (Scheme.toSpecΓ X).base x = (Spec.map (X.presheaf.germ ⊤ x trivial)).base (IsLocalRing.closedPoint _) := rfl @[reassoc]
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Scheme.toSpecΓ_base
null
Scheme.toSpecΓ_naturality {X Y : Scheme.{u}} (f : X ⟶ Y) : f ≫ Y.toSpecΓ = X.toSpecΓ ≫ Spec.map (f.appTop) := ΓSpec.adjunction.unit.naturality f @[simp]
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Scheme.toSpecΓ_naturality
null
Scheme.toSpecΓ_appTop (X : Scheme.{u}) : X.toSpecΓ.appTop = (Scheme.ΓSpecIso Γ(X, ⊤)).hom := by have := ΓSpec.adjunction.left_triangle_components X dsimp at this rw [← IsIso.eq_comp_inv] at this simp only [Category.id_comp] at this rw [← Quiver.Hom.op_inj.eq_iff, this, ← op_inv, IsIso.Iso.inv_inv] @[simp]
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Scheme.toSpecΓ_appTop
null
SpecMap_ΓSpecIso_hom (R : CommRingCat.{u}) : Spec.map ((Scheme.ΓSpecIso R).hom) = (Spec R).toSpecΓ := by have := ΓSpec.adjunction.right_triangle_components (op R) dsimp at this rwa [← IsIso.eq_comp_inv, Category.id_comp, ← Spec.map_inv, IsIso.Iso.inv_inv, eq_comm] at this
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
SpecMap_ΓSpecIso_hom
null
Scheme.toSpecΓ_preimage_basicOpen (X : Scheme.{u}) (r : Γ(X, ⊤)) : X.toSpecΓ ⁻¹ᵁ (PrimeSpectrum.basicOpen r) = X.basicOpen r := by rw [← basicOpen_eq_of_affine, Scheme.preimage_basicOpen, ← Scheme.Hom.appTop] congr rw [Scheme.toSpecΓ_appTop] exact Iso.inv_hom_id_apply (C := CommRingCat) _ _ @[reassoc (attr := simp)]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Scheme.toSpecΓ_preimage_basicOpen
null
toOpen_toSpecΓ_app {X : Scheme.{u}} (U) : StructureSheaf.toOpen _ _ ≫ X.toSpecΓ.app U = X.presheaf.map (homOfLE (by exact le_top)).op := by rw [← StructureSheaf.toOpen_res _ _ _ (homOfLE le_top), Category.assoc, NatTrans.naturality _ (homOfLE (le_top (a := U))).op] change (ΓSpec.adjunction.counit.app (Scheme.Γ.rightOp.obj X)).unop ≫ (Scheme.Γ.rightOp.map (ΓSpec.adjunction.unit.app X)).unop ≫ _ = _ rw [← Category.assoc, ← unop_comp, ΓSpec.adjunction.left_triangle_components] dsimp exact Category.id_comp _
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
toOpen_toSpecΓ_app
null
ΓSpecIso_inv_ΓSpec_adjunction_homEquiv {X : Scheme.{u}} {B : CommRingCat} (φ : B ⟶ Γ(X, ⊤)) : (Scheme.ΓSpecIso B).inv ≫ ((ΓSpec.adjunction.homEquiv X (op B)) φ.op).appTop = φ := by simp only [Adjunction.homEquiv_apply, Scheme.Spec_map, Opens.map_top, Scheme.comp_app] simp
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
ΓSpecIso_inv_ΓSpec_adjunction_homEquiv
null
ΓSpec_adjunction_homEquiv_eq {X : Scheme.{u}} {B : CommRingCat} (φ : B ⟶ Γ(X, ⊤)) : ((ΓSpec.adjunction.homEquiv X (op B)) φ.op).appTop = (Scheme.ΓSpecIso B).hom ≫ φ := by rw [← Iso.inv_comp_eq, ΓSpecIso_inv_ΓSpec_adjunction_homEquiv]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
ΓSpec_adjunction_homEquiv_eq
null
ΓSpecIso_obj_hom {X : Scheme.{u}} (U : X.Opens) : (Scheme.ΓSpecIso Γ(X, U)).hom = (Spec.map U.topIso.inv).appTop ≫ U.toScheme.toSpecΓ.appTop ≫ U.topIso.hom := by simp /-! Immediate consequences of the adjunction. -/
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
ΓSpecIso_obj_hom
null
Spec.fullyFaithfulToLocallyRingedSpace : Spec.toLocallyRingedSpace.FullyFaithful := ΓSpec.locallyRingedSpaceAdjunction.fullyFaithfulROfIsIsoCounit
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Spec.fullyFaithfulToLocallyRingedSpace
The functor `Spec.toLocallyRingedSpace : CommRingCatᵒᵖ ⥤ LocallyRingedSpace` is fully faithful.
Spec.fullyFaithful : Scheme.Spec.FullyFaithful := ΓSpec.adjunction.fullyFaithfulROfIsIsoCounit
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Spec.fullyFaithful
Spec is a full functor. -/ instance : Spec.toLocallyRingedSpace.Full := Spec.fullyFaithfulToLocallyRingedSpace.full /-- Spec is a faithful functor. -/ instance : Spec.toLocallyRingedSpace.Faithful := Spec.fullyFaithfulToLocallyRingedSpace.faithful /-- The functor `Spec : CommRingCatᵒᵖ ⥤ Scheme` is fully faithful.
Spec.full : Scheme.Spec.Full := Spec.fullyFaithful.full
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Spec.full
Spec is a full functor.
Spec.faithful : Scheme.Spec.Faithful := Spec.fullyFaithful.faithful
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Spec.faithful
Spec is a faithful functor.
Spec.map_inj : Spec.map φ = Spec.map ψ ↔ φ = ψ := by rw [iff_comm, ← Quiver.Hom.op_inj.eq_iff, ← Scheme.Spec.map_injective.eq_iff] rfl
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Spec.map_inj
null
Spec.map_injective {R S : CommRingCat} : Function.Injective (Spec.map : (R ⟶ S) → _) := fun _ _ ↦ Spec.map_inj.mp @[simp]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Spec.map_injective
null
Spec.map_eq_id {R : CommRingCat} {ϕ : R ⟶ R} : Spec.map ϕ = 𝟙 (Spec R) ↔ ϕ = 𝟙 R := by simp [← map_inj]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Spec.map_eq_id
null
Spec.preimage : R ⟶ S := (Scheme.Spec.preimage f).unop @[simp] lemma Spec.map_preimage : Spec.map (Spec.preimage f) = f := Scheme.Spec.map_preimage f @[simp] lemma Spec.map_preimage_unop (f : Spec R ⟶ Spec S) : Spec.map (Spec.fullyFaithful.preimage f).unop = f := Spec.fullyFaithful.map_preimage _ variable (φ) in @[simp] lemma Spec.preimage_map : Spec.preimage (Spec.map φ) = φ := Spec.map_injective (Spec.map_preimage (Spec.map φ))
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Adjunction.Limits", "Mathlib.CategoryTheory.Adjunction.Opposites", "Mathlib.CategoryTheory.Adjunction.Reflective" ]
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Spec.preimage
The preimage under Spec.