fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
algHom_ext' {A} [Semiring A] [Algebra S A] ⦃f g : tsze R M →ₐ[S] A⦄ (hinl : f.comp (inlAlgHom S R M) = g.comp (inlAlgHom S R M)) (hinr : f.toLinearMap.comp (inrHom R M |>.restrictScalars S) = g.toLinearMap.comp (inrHom R M |>.restrictScalars S)) : f = g := AlgHom.toLinearMap_injective <| linearMap_ext (AlgHom.congr_fun hinl) (LinearMap.congr_fun hinr) variable {A : Type*} [Semiring A] [Algebra S A] [Algebra R' A]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
algHom_ext'
null
lift (f : R →ₐ[S] A) (g : M →ₗ[S] A) (hg : ∀ x y, g x * g y = 0) (hfg : ∀ r x, g (r •> x) = f r * g x) (hgf : ∀ r x, g (x <• r) = g x * f r) : tsze R M →ₐ[S] A := AlgHom.ofLinearMap ((f.comp <| fstHom S R M).toLinearMap + g ∘ₗ (sndHom R M |>.restrictScalars S)) (show f 1 + g (0 : M) = 1 by rw [map_zero, map_one, add_zero]) (TrivSqZeroExt.ind fun r₁ m₁ => TrivSqZeroExt.ind fun r₂ m₂ => by dsimp simp only [add_zero, zero_add, add_mul, mul_add, hg] rw [← map_mul, LinearMap.map_add, add_comm (g _), add_assoc, hfg, hgf])
def
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
lift
Assemble an algebra morphism `TrivSqZeroExt R M →ₐ[S] A` from separate morphisms on `R` and `M`. Namely, we require that for an algebra morphism `f : R →ₐ[S] A` and a linear map `g : M →ₗ[S] A`, we have: * `g x * g y = 0`: the elements of `M` continue to square to zero. * `g (r •> x) = f r * g x` and `g (x <• r) = g x * f r`: scalar multiplication on the left and right is sent to left- and right- multiplication by the image under `f`. See `TrivSqZeroExt.liftEquiv` for this as an equiv; namely that any such algebra morphism can be factored in this way. When `R` is commutative, this can be invoked with `f = Algebra.ofId R A`, which satisfies `hfg` and `hgf`. This version is captured as an equiv by `TrivSqZeroExt.liftEquivOfComm`.
lift_def (f : R →ₐ[S] A) (g : M →ₗ[S] A) (hg : ∀ x y, g x * g y = 0) (hfg : ∀ r x, g (r • x) = f r * g x) (hgf : ∀ r x, g (op r • x) = g x * f r) (x : tsze R M) : lift f g hg hfg hgf x = f x.fst + g x.snd := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
lift_def
null
lift_apply_inl (f : R →ₐ[S] A) (g : M →ₗ[S] A) (hg : ∀ x y, g x * g y = 0) (hfg : ∀ r x, g (r •> x) = f r * g x) (hgf : ∀ r x, g (x <• r) = g x * f r) (r : R) : lift f g hg hfg hgf (inl r) = f r := show f r + g 0 = f r by rw [map_zero, add_zero] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
lift_apply_inl
null
lift_apply_inr (f : R →ₐ[S] A) (g : M →ₗ[S] A) (hg : ∀ x y, g x * g y = 0) (hfg : ∀ r x, g (r •> x) = f r * g x) (hgf : ∀ r x, g (x <• r) = g x * f r) (m : M) : lift f g hg hfg hgf (inr m) = g m := show f 0 + g m = g m by rw [map_zero, zero_add] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
lift_apply_inr
null
lift_comp_inlHom (f : R →ₐ[S] A) (g : M →ₗ[S] A) (hg : ∀ x y, g x * g y = 0) (hfg : ∀ r x, g (r •> x) = f r * g x) (hgf : ∀ r x, g (x <• r) = g x * f r) : (lift f g hg hfg hgf).comp (inlAlgHom S R M) = f := AlgHom.ext <| lift_apply_inl f g hg hfg hgf @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
lift_comp_inlHom
null
lift_comp_inrHom (f : R →ₐ[S] A) (g : M →ₗ[S] A) (hg : ∀ x y, g x * g y = 0) (hfg : ∀ r x, g (r •> x) = f r * g x) (hgf : ∀ r x, g (x <• r) = g x * f r) : (lift f g hg hfg hgf).toLinearMap.comp (inrHom R M |>.restrictScalars S) = g := LinearMap.ext <| lift_apply_inr f g hg hfg hgf
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
lift_comp_inrHom
null
@[simp] lift_inlAlgHom_inrHom : lift (inlAlgHom _ _ _) (inrHom R M |>.restrictScalars S) (inr_mul_inr R) (fun _ _ => (inl_mul_inr _ _).symm) (fun _ _ => (inr_mul_inl _ _).symm) = AlgHom.id S (tsze R M) := algHom_ext' (lift_comp_inlHom _ _ _ _ _) (lift_comp_inrHom _ _ _ _ _) @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
lift_inlAlgHom_inrHom
When applied to `inr` and `inl` themselves, `lift` is the identity.
range_inlAlgHom_sup_adjoin_range_inr : (inlAlgHom S R M).range ⊔ Algebra.adjoin S (Set.range inr) = (⊤ : Subalgebra S (tsze R M)) := by refine top_unique fun x hx => ?_; clear hx rw [← x.inl_fst_add_inr_snd_eq] refine add_mem ?_ ?_ · exact le_sup_left (α := Subalgebra S _) <| Set.mem_range_self x.fst · exact le_sup_right (α := Subalgebra S _) <| Algebra.subset_adjoin <| Set.mem_range_self x.snd @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
range_inlAlgHom_sup_adjoin_range_inr
null
range_liftAux (f : R →ₐ[S] A) (g : M →ₗ[S] A) (hg : ∀ x y, g x * g y = 0) (hfg : ∀ r x, g (r •> x) = f r * g x) (hgf : ∀ r x, g (x <• r) = g x * f r) : (lift f g hg hfg hgf).range = f.range ⊔ Algebra.adjoin S (Set.range g) := by simp_rw [← Algebra.map_top, ← range_inlAlgHom_sup_adjoin_range_inr, Algebra.map_sup, AlgHom.map_adjoin, ← AlgHom.range_comp, lift_comp_inlHom, ← Set.range_comp, Function.comp_def, lift_apply_inr, Algebra.map_top]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
range_liftAux
null
@[simps! apply symm_apply_coe] liftEquiv : {fg : (R →ₐ[S] A) × (M →ₗ[S] A) // (∀ x y, fg.2 x * fg.2 y = 0) ∧ (∀ r x, fg.2 (r •> x) = fg.1 r * fg.2 x) ∧ (∀ r x, fg.2 (x <• r) = fg.2 x * fg.1 r)} ≃ (tsze R M →ₐ[S] A) where toFun fg := lift fg.val.1 fg.val.2 fg.prop.1 fg.prop.2.1 fg.prop.2.2 invFun F := ⟨(F.comp (inlAlgHom _ _ _), F.toLinearMap ∘ₗ (inrHom _ _ |>.restrictScalars _)), (fun _x _y => (map_mul F _ _).symm.trans <| (F.congr_arg <| inr_mul_inr _ _ _).trans (map_zero F)), (fun _r _x => (F.congr_arg (inl_mul_inr _ _).symm).trans (map_mul F _ _)), (fun _r _x => (F.congr_arg (inr_mul_inl _ _).symm).trans (map_mul F _ _))⟩ left_inv _f := Subtype.ext <| Prod.ext (lift_comp_inlHom _ _ _ _ _) (lift_comp_inrHom _ _ _ _ _) right_inv _F := algHom_ext' (lift_comp_inlHom _ _ _ _ _) (lift_comp_inrHom _ _ _ _ _)
def
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
liftEquiv
A universal property of the trivial square-zero extension, providing a unique `TrivSqZeroExt R M →ₐ[R] A` for every pair of maps `f : R →ₐ[S] A` and `g : M →ₗ[S] A`, where the range of `g` has no non-zero products, and scaling the input to `g` on the left or right amounts to a corresponding multiplication by `f` in the output. This isomorphism is named to match the very similar `Complex.lift`.
@[simps! apply symm_apply_coe] liftEquivOfComm : { f : M →ₗ[R'] A // ∀ x y, f x * f y = 0 } ≃ (tsze R' M →ₐ[R'] A) := by refine Equiv.trans ?_ liftEquiv exact { toFun := fun f => ⟨(Algebra.ofId _ _, f.val), f.prop, fun r x => by simp [Algebra.smul_def, Algebra.ofId_apply], fun r x => by simp [Algebra.smul_def, Algebra.ofId_apply, Algebra.commutes]⟩ invFun := fun fg => ⟨fg.val.2, fg.prop.1⟩ }
def
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
liftEquivOfComm
A simplified version of `TrivSqZeroExt.liftEquiv` for the commutative case.
map (f : M →ₗ[R'] N) : TrivSqZeroExt R' M →ₐ[R'] TrivSqZeroExt R' N := liftEquivOfComm ⟨inrHom R' N ∘ₗ f, fun _ _ => inr_mul_inr _ _ _⟩ @[simp]
def
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
map
Functoriality of `TrivSqZeroExt` when the ring is commutative: a linear map `f : M →ₗ[R'] N` induces a morphism of `R'`-algebras from `TrivSqZeroExt R' M` to `TrivSqZeroExt R' N`. Note that we cannot neatly state the non-commutative case, as we do not have morphisms of bimodules.
map_inl (f : M →ₗ[R'] N) (r : R') : map f (inl r) = inl r := by rw [map, liftEquivOfComm_apply, lift_apply_inl, Algebra.ofId_apply, algebraMap_eq_inl] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
map_inl
null
map_inr (f : M →ₗ[R'] N) (x : M) : map f (inr x) = inr (f x) := by rw [map, liftEquivOfComm_apply, lift_apply_inr, LinearMap.comp_apply, inrHom_apply] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
map_inr
null
fst_map (f : M →ₗ[R'] N) (x : TrivSqZeroExt R' M) : fst (map f x) = fst x := by simp [map, lift_def, Algebra.ofId_apply, algebraMap_eq_inl] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
fst_map
null
snd_map (f : M →ₗ[R'] N) (x : TrivSqZeroExt R' M) : snd (map f x) = f (snd x) := by simp [map, lift_def, Algebra.ofId_apply, algebraMap_eq_inl] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
snd_map
null
map_comp_inlAlgHom (f : M →ₗ[R'] N) : (map f).comp (inlAlgHom R' R' M) = inlAlgHom R' R' N := AlgHom.ext <| map_inl _ @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
map_comp_inlAlgHom
null
map_comp_inrHom (f : M →ₗ[R'] N) : (map f).toLinearMap ∘ₗ inrHom R' M = inrHom R' N ∘ₗ f := LinearMap.ext <| map_inr _ @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
map_comp_inrHom
null
fstHom_comp_map (f : M →ₗ[R'] N) : (fstHom R' R' N).comp (map f) = fstHom R' R' M := AlgHom.ext <| fst_map _ @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
fstHom_comp_map
null
sndHom_comp_map (f : M →ₗ[R'] N) : sndHom R' N ∘ₗ (map f).toLinearMap = f ∘ₗ sndHom R' M := LinearMap.ext <| snd_map _ @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
sndHom_comp_map
null
map_id : map (LinearMap.id : M →ₗ[R'] M) = AlgHom.id R' _ := by apply algHom_ext simp only [map_inr, LinearMap.id_coe, id_eq, AlgHom.coe_id, forall_const]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
map_id
null
map_comp_map (f : M →ₗ[R'] N) (g : N →ₗ[R'] P) : map (g.comp f) = (map g).comp (map f) := by apply algHom_ext simp only [map_inr, LinearMap.coe_comp, Function.comp_apply, AlgHom.coe_comp, forall_const]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.GroupWithZero.Action", "Mathlib.Algebra.GroupWithZero.Invertible", "Mathlib.LinearAlgebra.Prod", "Mathlib.Algebra.Algebra.Subalgebra.Lattice" ]
Mathlib/Algebra/TrivSqZeroExt.lean
map_comp_map
null
AffineScheme := Scheme.Spec.EssImageSubcategory deriving Category
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
AffineScheme
The category of affine schemes
IsAffine (X : Scheme) : Prop where affine : IsIso X.toSpecΓ attribute [instance] IsAffine.affine
class
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
IsAffine
A Scheme is affine if the canonical map `X ⟶ Spec Γ(X)` is an isomorphism.
@[simps! -isSimp hom] Scheme.isoSpec (X : Scheme) [IsAffine X] : X ≅ Spec Γ(X, ⊤) := asIso X.toSpecΓ @[reassoc]
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.isoSpec
The canonical isomorphism `X ≅ Spec Γ(X)` for an affine scheme.
Scheme.isoSpec_hom_naturality {X Y : Scheme} [IsAffine X] [IsAffine Y] (f : X ⟶ Y) : X.isoSpec.hom ≫ Spec.map (f.appTop) = f ≫ Y.isoSpec.hom := by simp only [isoSpec, asIso_hom, Scheme.toSpecΓ_naturality] @[reassoc]
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.isoSpec_hom_naturality
null
Scheme.isoSpec_inv_naturality {X Y : Scheme} [IsAffine X] [IsAffine Y] (f : X ⟶ Y) : Spec.map (f.appTop) ≫ Y.isoSpec.inv = X.isoSpec.inv ≫ f := by rw [Iso.eq_inv_comp, isoSpec, asIso_hom, ← Scheme.toSpecΓ_naturality_assoc, isoSpec, asIso_inv, IsIso.hom_inv_id, Category.comp_id] @[reassoc (attr := simp)]
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.isoSpec_inv_naturality
null
Scheme.toSpecΓ_isoSpec_inv (X : Scheme.{u}) [IsAffine X] : X.toSpecΓ ≫ X.isoSpec.inv = 𝟙 _ := X.isoSpec.hom_inv_id @[reassoc (attr := simp)]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.toSpecΓ_isoSpec_inv
null
Scheme.isoSpec_inv_toSpecΓ (X : Scheme.{u}) [IsAffine X] : X.isoSpec.inv ≫ X.toSpecΓ = 𝟙 _ := X.isoSpec.inv_hom_id
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.isoSpec_inv_toSpecΓ
null
@[simps] AffineScheme.mk (X : Scheme) (_ : IsAffine X) : AffineScheme := ⟨X, ΓSpec.adjunction.mem_essImage_of_unit_isIso _⟩
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
AffineScheme.mk
Construct an affine scheme from a scheme and the information that it is affine. Also see `AffineScheme.of` for a typeclass version.
AffineScheme.of (X : Scheme) [h : IsAffine X] : AffineScheme := AffineScheme.mk X h
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
AffineScheme.of
Construct an affine scheme from a scheme. Also see `AffineScheme.mk` for a non-typeclass version.
AffineScheme.ofHom {X Y : Scheme} [IsAffine X] [IsAffine Y] (f : X ⟶ Y) : AffineScheme.of X ⟶ AffineScheme.of Y := f @[simp]
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
AffineScheme.ofHom
Type check a morphism of schemes as a morphism in `AffineScheme`.
essImage_Spec {X : Scheme} : Scheme.Spec.essImage X ↔ IsAffine X := ⟨fun h => ⟨Functor.essImage.unit_isIso h⟩, fun _ => ΓSpec.adjunction.mem_essImage_of_unit_isIso _⟩ @[deprecated (since := "2025-04-08")] alias mem_Spec_essImage := essImage_Spec
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
essImage_Spec
null
isAffine_affineScheme (X : AffineScheme.{u}) : IsAffine X.obj := ⟨Functor.essImage.unit_isIso X.property⟩
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isAffine_affineScheme
null
isAffine_Spec (R : CommRingCat) : IsAffine (Spec R) := AlgebraicGeometry.isAffine_affineScheme ⟨_, Scheme.Spec.obj_mem_essImage (op R)⟩
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isAffine_Spec
null
IsAffine.of_isIso {X Y : Scheme} (f : X ⟶ Y) [IsIso f] [h : IsAffine Y] : IsAffine X := by rw [← essImage_Spec] at h ⊢; exact Functor.essImage.ofIso (asIso f).symm h @[deprecated (since := "2025-03-31")] alias isAffine_of_isIso := IsAffine.of_isIso
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
IsAffine.of_isIso
null
noncomputable arrowIsoSpecΓOfIsAffine {X Y : Scheme} [IsAffine X] [IsAffine Y] (f : X ⟶ Y) : Arrow.mk f ≅ Arrow.mk (Spec.map f.appTop) := Arrow.isoMk X.isoSpec Y.isoSpec (ΓSpec.adjunction.unit_naturality _)
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
arrowIsoSpecΓOfIsAffine
If `f : X ⟶ Y` is a morphism between affine schemes, the corresponding arrow is isomorphic to the arrow of the morphism on prime spectra induced by the map on global sections.
arrowIsoΓSpecOfIsAffine {A B : CommRingCat} (f : A ⟶ B) : Arrow.mk f ≅ Arrow.mk ((Spec.map f).appTop) := Arrow.isoMk (Scheme.ΓSpecIso _).symm (Scheme.ΓSpecIso _).symm (Scheme.ΓSpecIso_inv_naturality f).symm
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
arrowIsoΓSpecOfIsAffine
If `f : A ⟶ B` is a ring homomorphism, the corresponding arrow is isomorphic to the arrow of the morphism induced on global sections by the map on prime spectra.
Scheme.isoSpec_Spec (R : CommRingCat.{u}) : (Spec R).isoSpec = Scheme.Spec.mapIso (Scheme.ΓSpecIso R).op := Iso.ext (SpecMap_ΓSpecIso_hom R).symm @[simp] theorem Scheme.isoSpec_Spec_hom (R : CommRingCat.{u}) : (Spec R).isoSpec.hom = Spec.map (Scheme.ΓSpecIso R).hom := (SpecMap_ΓSpecIso_hom R).symm @[simp] theorem Scheme.isoSpec_Spec_inv (R : CommRingCat.{u}) : (Spec R).isoSpec.inv = Spec.map (Scheme.ΓSpecIso R).inv := congr($(isoSpec_Spec R).inv)
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.isoSpec_Spec
null
ext_of_isAffine {X Y : Scheme} [IsAffine Y] {f g : X ⟶ Y} (e : f.appTop = g.appTop) : f = g := by rw [← cancel_mono Y.toSpecΓ, Scheme.toSpecΓ_naturality, Scheme.toSpecΓ_naturality, e]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
ext_of_isAffine
null
Spec : CommRingCatᵒᵖ ⥤ AffineScheme := Scheme.Spec.toEssImage /-! We copy over instances from `Scheme.Spec.toEssImage`. -/
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Spec
The `Spec` functor into the category of affine schemes.
Spec_full : Spec.Full := Functor.Full.toEssImage _
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Spec_full
null
Spec_faithful : Spec.Faithful := Functor.Faithful.toEssImage _
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Spec_faithful
null
Spec_essSurj : Spec.EssSurj := Functor.EssSurj.toEssImage (F := _)
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Spec_essSurj
null
@[simps!] forgetToScheme : AffineScheme ⥤ Scheme := Scheme.Spec.essImage.ι /-! We copy over instances from `Scheme.Spec.essImageInclusion`. -/
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
forgetToScheme
The forgetful functor `AffineScheme ⥤ Scheme`.
forgetToScheme_full : forgetToScheme.Full := inferInstanceAs Scheme.Spec.essImage.ι.Full
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
forgetToScheme_full
null
forgetToScheme_faithful : forgetToScheme.Faithful := inferInstanceAs Scheme.Spec.essImage.ι.Faithful
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
forgetToScheme_faithful
null
Γ : AffineSchemeᵒᵖ ⥤ CommRingCat := forgetToScheme.op ⋙ Scheme.Γ
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Γ
The global section functor of an affine scheme.
equivCommRingCat : AffineScheme ≌ CommRingCatᵒᵖ := equivEssImageOfReflective.symm
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
equivCommRingCat
The category of affine schemes is equivalent to the category of commutative rings.
ΓIsEquiv : Γ.{u}.IsEquivalence := inferInstanceAs (Γ.{u}.rightOp.op ⋙ (opOpEquivalence _).functor).IsEquivalence
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
ΓIsEquiv
null
hasColimits : HasColimits AffineScheme.{u} := haveI := Adjunction.has_limits_of_equivalence.{u} Γ.{u} Adjunction.has_colimits_of_equivalence.{u} (opOpEquivalence AffineScheme.{u}).inverse
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
hasColimits
null
hasLimits : HasLimits AffineScheme.{u} := by haveI := Adjunction.has_colimits_of_equivalence Γ.{u} haveI : HasLimits AffineScheme.{u}ᵒᵖᵒᵖ := Limits.hasLimits_op_of_hasColimits exact Adjunction.has_limits_of_equivalence (opOpEquivalence AffineScheme.{u}).inverse
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
hasLimits
null
noncomputable Γ_preservesLimits : PreservesLimits Γ.{u}.rightOp := inferInstance
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Γ_preservesLimits
null
noncomputable forgetToScheme_preservesLimits : PreservesLimits forgetToScheme := by apply (config := { allowSynthFailures := true }) @preservesLimits_of_natIso _ _ _ _ _ _ (Functor.isoWhiskerRight equivCommRingCat.unitIso forgetToScheme).symm change PreservesLimits (equivCommRingCat.functor ⋙ Scheme.Spec) infer_instance
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
forgetToScheme_preservesLimits
null
IsAffineOpen {X : Scheme} (U : X.Opens) : Prop := IsAffine U
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
IsAffineOpen
An open subset of a scheme is affine if the open subscheme is affine.
Scheme.affineOpens (X : Scheme) : Set X.Opens := {U : X.Opens | IsAffineOpen U}
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.affineOpens
The set of affine opens as a subset of `opens X`.
isAffineOpen_opensRange {X Y : Scheme} [IsAffine X] (f : X ⟶ Y) [H : IsOpenImmersion f] : IsAffineOpen (Scheme.Hom.opensRange f) := by refine .of_isIso (IsOpenImmersion.isoOfRangeEq f (Y.ofRestrict _) ?_).inv exact Subtype.range_val.symm
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isAffineOpen_opensRange
null
isAffineOpen_top (X : Scheme) [IsAffine X] : IsAffineOpen (⊤ : X.Opens) := by convert isAffineOpen_opensRange (𝟙 X) ext1 exact Set.range_id.symm
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isAffineOpen_top
null
exists_isAffineOpen_mem_and_subset {X : Scheme.{u}} {x : X} {U : X.Opens} (hxU : x ∈ U) : ∃ W : X.Opens, IsAffineOpen W ∧ x ∈ W ∧ W.1 ⊆ U := by obtain ⟨R, f, hf⟩ := AlgebraicGeometry.Scheme.exists_affine_mem_range_and_range_subset hxU exact ⟨Scheme.Hom.opensRange f (H := hf.1), ⟨AlgebraicGeometry.isAffineOpen_opensRange f (H := hf.1), hf.2.1, hf.2.2⟩⟩
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
exists_isAffineOpen_mem_and_subset
null
Scheme.isAffine_affineCover (X : Scheme) (i : X.affineCover.I₀) : IsAffine (X.affineCover.X i) := isAffine_Spec _
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.isAffine_affineCover
null
Scheme.isAffine_affineBasisCover (X : Scheme) (i : X.affineBasisCover.I₀) : IsAffine (X.affineBasisCover.X i) := isAffine_Spec _
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.isAffine_affineBasisCover
null
Scheme.isAffine_affineOpenCover (X : Scheme) (𝒰 : X.AffineOpenCover) (i : 𝒰.I₀) : IsAffine (𝒰.openCover.X i) := inferInstanceAs (IsAffine (Spec (𝒰.X i)))
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.isAffine_affineOpenCover
null
isBasis_affine_open (X : Scheme) : Opens.IsBasis X.affineOpens := by rw [Opens.isBasis_iff_nbhd] rintro U x (hU : x ∈ (U : Set X)) obtain ⟨S, hS, hxS, hSU⟩ := X.affineBasisCover_is_basis.exists_subset_of_mem_open hU U.isOpen refine ⟨⟨S, X.affineBasisCover_is_basis.isOpen hS⟩, ?_, hxS, hSU⟩ rcases hS with ⟨i, rfl⟩ exact isAffineOpen_opensRange _
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isBasis_affine_open
null
iSup_affineOpens_eq_top (X : Scheme) : ⨆ i : X.affineOpens, (i : X.Opens) = ⊤ := by apply Opens.ext rw [Opens.coe_iSup] apply IsTopologicalBasis.sUnion_eq rw [← Set.image_eq_range] exact isBasis_affine_open X
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
iSup_affineOpens_eq_top
null
Scheme.map_PrimeSpectrum_basicOpen_of_affine (X : Scheme) [IsAffine X] (f : Γ(X, ⊤)) : X.isoSpec.hom ⁻¹ᵁ PrimeSpectrum.basicOpen f = X.basicOpen f := Scheme.toSpecΓ_preimage_basicOpen _ _
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.map_PrimeSpectrum_basicOpen_of_affine
null
isBasis_basicOpen (X : Scheme) [IsAffine X] : Opens.IsBasis (Set.range (X.basicOpen : Γ(X, ⊤) → X.Opens)) := by convert PrimeSpectrum.isBasis_basic_opens.of_isInducing (TopCat.homeoOfIso (Scheme.forgetToTop.mapIso X.isoSpec)).isInducing using 1 ext V simp only [Set.mem_range, exists_exists_eq_and, Set.mem_setOf, ← Opens.coe_inj (V := V), ← Scheme.toSpecΓ_preimage_basicOpen] rfl
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isBasis_basicOpen
null
noncomputable Scheme.Opens.toSpecΓ {X : Scheme.{u}} (U : X.Opens) : U.toScheme ⟶ Spec Γ(X, U) := U.toScheme.toSpecΓ ≫ Spec.map U.topIso.inv @[reassoc (attr := simp)]
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.Opens.toSpecΓ
The canonical map `U ⟶ Spec Γ(X, U)` for an open `U ⊆ X`.
Scheme.Opens.toSpecΓ_SpecMap_map {X : Scheme} (U V : X.Opens) (h : U ≤ V) : U.toSpecΓ ≫ Spec.map (X.presheaf.map (homOfLE h).op) = X.homOfLE h ≫ V.toSpecΓ := by delta Scheme.Opens.toSpecΓ simp [← Spec.map_comp, ← X.presheaf.map_comp, toSpecΓ_naturality_assoc] @[simp]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.Opens.toSpecΓ_SpecMap_map
null
Scheme.Opens.toSpecΓ_top {X : Scheme} : (⊤ : X.Opens).toSpecΓ = (⊤ : X.Opens).ι ≫ X.toSpecΓ := by simp [Scheme.Opens.toSpecΓ, toSpecΓ_naturality]; rfl @[reassoc]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.Opens.toSpecΓ_top
null
Scheme.Opens.toSpecΓ_appTop {X : Scheme.{u}} (U : X.Opens) : U.toSpecΓ.appTop = (Scheme.ΓSpecIso Γ(X, U)).hom ≫ U.topIso.inv := by simp [Scheme.Opens.toSpecΓ]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.Opens.toSpecΓ_appTop
null
@[simps! -isSimp inv] isoSpec : ↑U ≅ Spec Γ(X, U) := haveI : IsAffine U := hU U.toScheme.isoSpec ≪≫ Scheme.Spec.mapIso U.topIso.symm.op
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isoSpec
The isomorphism `U ≅ Spec Γ(X, U)` for an affine `U`.
isoSpec_hom : hU.isoSpec.hom = U.toSpecΓ := rfl @[reassoc (attr := simp)]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isoSpec_hom
null
toSpecΓ_isoSpec_inv : U.toSpecΓ ≫ hU.isoSpec.inv = 𝟙 _ := hU.isoSpec.hom_inv_id @[reassoc (attr := simp)]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
toSpecΓ_isoSpec_inv
null
isoSpec_inv_toSpecΓ : hU.isoSpec.inv ≫ U.toSpecΓ = 𝟙 _ := hU.isoSpec.inv_hom_id open IsLocalRing in
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isoSpec_inv_toSpecΓ
null
isoSpec_hom_base_apply (x : U) : hU.isoSpec.hom.base x = (Spec.map (X.presheaf.germ U x x.2)).base (closedPoint _) := by dsimp [IsAffineOpen.isoSpec_hom, Scheme.isoSpec_hom, Scheme.toSpecΓ_base, Scheme.Opens.toSpecΓ] rw [← Scheme.comp_base_apply, ← Spec.map_comp, (Iso.eq_comp_inv _).mpr (Scheme.Opens.germ_stalkIso_hom U (V := ⊤) x trivial), X.presheaf.germ_res_assoc, Spec.map_comp, Scheme.comp_base_apply] congr 1 exact IsLocalRing.comap_closedPoint (U.stalkIso x).inv.hom
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isoSpec_hom_base_apply
null
isoSpec_inv_appTop : hU.isoSpec.inv.appTop = U.topIso.hom ≫ (Scheme.ΓSpecIso Γ(X, U)).inv := by simp_rw [Scheme.Opens.toScheme_presheaf_obj, isoSpec_inv, Scheme.isoSpec, asIso_inv, Scheme.comp_app, Scheme.Opens.topIso_hom, Scheme.ΓSpecIso_inv_naturality, Scheme.inv_appTop, -- `check_compositions` reports defeq problems starting after this step. IsIso.inv_comp_eq] rw [Scheme.toSpecΓ_appTop] erw [Iso.hom_inv_id_assoc] simp only [Opens.map_top]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isoSpec_inv_appTop
null
isoSpec_hom_appTop : hU.isoSpec.hom.appTop = (Scheme.ΓSpecIso Γ(X, U)).hom ≫ U.topIso.inv := by have := congr(inv $hU.isoSpec_inv_appTop) rw [IsIso.inv_comp, IsIso.Iso.inv_inv, IsIso.Iso.inv_hom] at this have := (Scheme.Γ.map_inv hU.isoSpec.inv.op).trans this rwa [← op_inv, IsIso.Iso.inv_inv] at this
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isoSpec_hom_appTop
null
fromSpec : Spec Γ(X, U) ⟶ X := haveI : IsAffine U := hU hU.isoSpec.inv ≫ U.ι
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
fromSpec
The open immersion `Spec Γ(X, U) ⟶ X` for an affine `U`.
isOpenImmersion_fromSpec : IsOpenImmersion hU.fromSpec := by delta fromSpec infer_instance @[reassoc (attr := simp)]
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isOpenImmersion_fromSpec
null
isoSpec_inv_ι : hU.isoSpec.inv ≫ U.ι = hU.fromSpec := rfl @[reassoc (attr := simp)]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isoSpec_inv_ι
null
toSpecΓ_fromSpec : U.toSpecΓ ≫ hU.fromSpec = U.ι := toSpecΓ_isoSpec_inv_assoc _ _ @[simp]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
toSpecΓ_fromSpec
null
range_fromSpec : Set.range hU.fromSpec.base = (U : Set X) := by delta IsAffineOpen.fromSpec; dsimp [IsAffineOpen.isoSpec_inv] rw [Set.range_comp, Set.range_eq_univ.mpr, Set.image_univ] · exact Subtype.range_coe rw [← TopCat.coe_comp, ← TopCat.epi_iff_surjective] infer_instance @[simp]
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
range_fromSpec
null
opensRange_fromSpec : hU.fromSpec.opensRange = U := Opens.ext (range_fromSpec hU) @[reassoc (attr := simp)]
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
opensRange_fromSpec
null
map_fromSpec {V : X.Opens} (hV : IsAffineOpen V) (f : op U ⟶ op V) : Spec.map (X.presheaf.map f) ≫ hU.fromSpec = hV.fromSpec := by have : IsAffine U := hU haveI : IsAffine _ := hV conv_rhs => rw [fromSpec, ← X.homOfLE_ι (V := U) f.unop.le, isoSpec_inv, Category.assoc, ← Scheme.isoSpec_inv_naturality_assoc, ← Spec.map_comp_assoc, Scheme.homOfLE_appTop, ← Functor.map_comp] rw [fromSpec, isoSpec_inv, Category.assoc, ← Spec.map_comp_assoc, ← Functor.map_comp] rfl @[reassoc]
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
map_fromSpec
null
Spec_map_appLE_fromSpec (f : X ⟶ Y) {V : X.Opens} {U : Y.Opens} (hU : IsAffineOpen U) (hV : IsAffineOpen V) (i : V ≤ f ⁻¹ᵁ U) : Spec.map (f.appLE U V i) ≫ hU.fromSpec = hV.fromSpec ≫ f := by have : IsAffine U := hU simp only [IsAffineOpen.fromSpec, Category.assoc, isoSpec_inv] simp_rw [← Scheme.homOfLE_ι _ i] rw [Category.assoc, ← morphismRestrict_ι, ← Category.assoc _ (f ∣_ U) U.ι, ← @Scheme.isoSpec_inv_naturality_assoc, ← Spec.map_comp_assoc, ← Spec.map_comp_assoc, Scheme.comp_appTop, morphismRestrict_appTop, Scheme.homOfLE_appTop, Scheme.Hom.app_eq_appLE, Scheme.Hom.appLE_map, Scheme.Hom.appLE_map, Scheme.Hom.appLE_map, Scheme.Hom.map_appLE]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Spec_map_appLE_fromSpec
null
fromSpec_top [IsAffine X] : (isAffineOpen_top X).fromSpec = X.isoSpec.inv := by rw [fromSpec, isoSpec_inv, Category.assoc, ← @Scheme.isoSpec_inv_naturality, ← Spec.map_comp_assoc, Scheme.Opens.ι_appTop, ← X.presheaf.map_comp, ← op_comp, eqToHom_comp_homOfLE, ← eqToHom_eq_homOfLE rfl, eqToHom_refl, op_id, X.presheaf.map_id, Spec.map_id, Category.id_comp]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
fromSpec_top
null
fromSpec_app_of_le (V : X.Opens) (h : U ≤ V) : hU.fromSpec.app V = X.presheaf.map (homOfLE h).op ≫ (Scheme.ΓSpecIso Γ(X, U)).inv ≫ (Spec _).presheaf.map (homOfLE le_top).op := by have : U.ι ⁻¹ᵁ V = ⊤ := eq_top_iff.mpr fun x _ ↦ h x.2 rw [IsAffineOpen.fromSpec, Scheme.comp_app, Scheme.Opens.ι_app, Scheme.app_eq _ this, ← Scheme.Hom.appTop, IsAffineOpen.isoSpec_inv_appTop] simp only [Scheme.Opens.toScheme_presheaf_map, Scheme.Opens.topIso_hom, Category.assoc, ← X.presheaf.map_comp_assoc] rfl include hU in
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
fromSpec_app_of_le
null
protected isCompact : IsCompact (U : Set X) := by convert @IsCompact.image _ _ _ _ Set.univ hU.fromSpec.base PrimeSpectrum.compactSpace.1 (by fun_prop) convert hU.range_fromSpec.symm exact Set.image_univ include hU in
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isCompact
null
image_of_isOpenImmersion (f : X ⟶ Y) [H : IsOpenImmersion f] : IsAffineOpen (f ''ᵁ U) := by have : IsAffine _ := hU convert isAffineOpen_opensRange (U.ι ≫ f) ext1 exact Set.image_eq_range _ _
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
image_of_isOpenImmersion
null
preimage_of_isIso {U : Y.Opens} (hU : IsAffineOpen U) (f : X ⟶ Y) [IsIso f] : IsAffineOpen (f ⁻¹ᵁ U) := haveI : IsAffine _ := hU .of_isIso (f ∣_ U)
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
preimage_of_isIso
null
_root_.AlgebraicGeometry.Scheme.Hom.isAffineOpen_iff_of_isOpenImmersion (f : AlgebraicGeometry.Scheme.Hom X Y) [H : IsOpenImmersion f] {U : X.Opens} : IsAffineOpen (f ''ᵁ U) ↔ IsAffineOpen U where mp hU := by refine .of_isIso (IsOpenImmersion.isoOfRangeEq (X.ofRestrict U.isOpenEmbedding ≫ f) (Y.ofRestrict _) ?_).hom (h := hU) rw [Scheme.comp_base, TopCat.coe_comp, Set.range_comp] dsimp [Opens.coe_inclusion', Scheme.restrict] rw [Subtype.range_coe, Subtype.range_coe] rfl mpr hU := hU.image_of_isOpenImmersion f
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
_root_.AlgebraicGeometry.Scheme.Hom.isAffineOpen_iff_of_isOpenImmersion
null
@[simps] _root_.AlgebraicGeometry.IsOpenImmersion.affineOpensEquiv (f : X ⟶ Y) [H : IsOpenImmersion f] : X.affineOpens ≃ { U : Y.affineOpens // U ≤ f.opensRange } where toFun U := ⟨⟨f ''ᵁ U, U.2.image_of_isOpenImmersion f⟩, Set.image_subset_range _ _⟩ invFun U := ⟨f ⁻¹ᵁ U, f.isAffineOpen_iff_of_isOpenImmersion.mp (by rw [show f ''ᵁ f ⁻¹ᵁ U = U from Opens.ext (Set.image_preimage_eq_of_subset U.2)]; exact U.1.2)⟩ left_inv _ := Subtype.ext (Opens.ext (Set.preimage_image_eq _ H.base_open.injective)) right_inv U := Subtype.ext (Subtype.ext (Opens.ext (Set.image_preimage_eq_of_subset U.2)))
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
_root_.AlgebraicGeometry.IsOpenImmersion.affineOpensEquiv
The affine open sets of an open subscheme corresponds to the affine open sets containing in the image.
@[simps! apply_coe_coe] _root_.AlgebraicGeometry.affineOpensRestrict {X : Scheme.{u}} (U : X.Opens) : U.toScheme.affineOpens ≃ { V : X.affineOpens // V ≤ U } := (IsOpenImmersion.affineOpensEquiv U.ι).trans (Equiv.subtypeEquivProp (by simp)) @[simp]
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
_root_.AlgebraicGeometry.affineOpensRestrict
The affine open sets of an open subscheme corresponds to the affine open sets containing in the subset.
_root_.AlgebraicGeometry.affineOpensRestrict_symm_apply_coe {X : Scheme.{u}} (U : X.Opens) (V) : ((affineOpensRestrict U).symm V).1 = U.ι ⁻¹ᵁ V := rfl
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
_root_.AlgebraicGeometry.affineOpensRestrict_symm_apply_coe
null
@[simp] fromSpec_preimage_self : hU.fromSpec ⁻¹ᵁ U = ⊤ := by ext1 rw [Opens.map_coe, Opens.coe_top, ← hU.range_fromSpec, ← Set.image_univ] exact Set.preimage_image_eq _ PresheafedSpace.IsOpenImmersion.base_open.injective
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
fromSpec_preimage_self
null
ΓSpecIso_hom_fromSpec_app : (Scheme.ΓSpecIso Γ(X, U)).hom ≫ hU.fromSpec.app U = (Spec Γ(X, U)).presheaf.map (eqToHom hU.fromSpec_preimage_self).op := by simp only [fromSpec, Scheme.comp_coeBase, Opens.map_comp_obj, Scheme.comp_app, Scheme.Opens.ι_app_self, eqToHom_op, Scheme.app_eq _ U.ι_preimage_self, Scheme.Opens.toScheme_presheaf_map, eqToHom_unop, eqToHom_map U.ι.opensFunctor, Opens.map_top, isoSpec_inv_appTop, Scheme.Opens.topIso_hom, Category.assoc, ← Functor.map_comp_assoc, eqToHom_trans, eqToHom_refl, X.presheaf.map_id, Category.id_comp, Iso.hom_inv_id_assoc] @[elementwise]
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
ΓSpecIso_hom_fromSpec_app
null
fromSpec_app_self : hU.fromSpec.app U = (Scheme.ΓSpecIso Γ(X, U)).inv ≫ (Spec Γ(X, U)).presheaf.map (eqToHom hU.fromSpec_preimage_self).op := by rw [← hU.ΓSpecIso_hom_fromSpec_app, Iso.inv_hom_id_assoc]
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
fromSpec_app_self
null
fromSpec_preimage_basicOpen' : hU.fromSpec ⁻¹ᵁ X.basicOpen f = (Spec Γ(X, U)).basicOpen ((Scheme.ΓSpecIso Γ(X, U)).inv f) := by rw [Scheme.preimage_basicOpen, hU.fromSpec_app_self] exact Scheme.basicOpen_res_eq _ _ (eqToHom hU.fromSpec_preimage_self).op
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
fromSpec_preimage_basicOpen'
null
fromSpec_preimage_basicOpen : hU.fromSpec ⁻¹ᵁ X.basicOpen f = PrimeSpectrum.basicOpen f := by rw [fromSpec_preimage_basicOpen', ← basicOpen_eq_of_affine]
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
fromSpec_preimage_basicOpen
null