fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
fromSpec_image_basicOpen : hU.fromSpec ''ᵁ (PrimeSpectrum.basicOpen f) = X.basicOpen f := by rw [← hU.fromSpec_preimage_basicOpen] ext1 change hU.fromSpec.base '' (hU.fromSpec.base ⁻¹' (X.basicOpen f : Set X)) = _ rw [Set.image_preimage_eq_inter_range, Set.inter_eq_left, hU.range_fromSpec] exact Scheme.basicOpen_le _ _ @[simp]
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
fromSpec_image_basicOpen
null
basicOpen_fromSpec_app : (Spec Γ(X, U)).basicOpen (hU.fromSpec.app U f) = PrimeSpectrum.basicOpen f := by rw [← hU.fromSpec_preimage_basicOpen, Scheme.preimage_basicOpen] include hU in
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
basicOpen_fromSpec_app
null
basicOpen : IsAffineOpen (X.basicOpen f) := by rw [← hU.fromSpec_image_basicOpen, Scheme.Hom.isAffineOpen_iff_of_isOpenImmersion] convert isAffineOpen_opensRange (Spec.map (CommRingCat.ofHom <| algebraMap Γ(X, U) (Localization.Away f))) exact Opens.ext (PrimeSpectrum.localization_away_comap_range (Localization.Away f) f).symm
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
basicOpen
null
Spec_basicOpen {R : CommRingCat} (f : R) : IsAffineOpen (X := Spec R) (PrimeSpectrum.basicOpen f) := basicOpen_eq_of_affine f ▸ (isAffineOpen_top Spec(R)).basicOpen _
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Spec_basicOpen
null
ι_basicOpen_preimage (r : Γ(X, ⊤)) : IsAffineOpen ((X.basicOpen r).ι ⁻¹ᵁ U) := by apply (X.basicOpen r).ι.isAffineOpen_iff_of_isOpenImmersion.mp dsimp [Scheme.Hom.opensFunctor, LocallyRingedSpace.IsOpenImmersion.opensFunctor] rw [Opens.functor_obj_map_obj, Opens.isOpenEmbedding_obj_top, inf_comm, ← Scheme.basicOpen_res _ _ (homOfLE le_top).op] exact hU.basicOpen _ include hU in
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
ι_basicOpen_preimage
null
exists_basicOpen_le {V : X.Opens} (x : V) (h : ↑x ∈ U) : ∃ f : Γ(X, U), X.basicOpen f ≤ V ∧ ↑x ∈ X.basicOpen f := by have : IsAffine _ := hU obtain ⟨_, ⟨_, ⟨r, rfl⟩, rfl⟩, h₁, h₂⟩ := (isBasis_basicOpen U).exists_subset_of_mem_open (x.2 : (⟨x, h⟩ : U) ∈ _) ((Opens.map U.inclusion').obj V).isOpen have : U.ι ''ᵁ (U.toScheme.basicOpen r) = X.basicOpen (X.presheaf.map (eqToHom U.isOpenEmbedding_obj_top.symm).op r) := by refine (Scheme.image_basicOpen U.ι r).trans ?_ rw [Scheme.basicOpen_res_eq] simp only [Scheme.Opens.toScheme_presheaf_obj, Scheme.Opens.ι_appIso, Iso.refl_inv, CommRingCat.id_apply] use X.presheaf.map (eqToHom U.isOpenEmbedding_obj_top.symm).op r rw [← this] exact ⟨Set.image_subset_iff.mpr h₂, ⟨_, h⟩, h₁, rfl⟩
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
exists_basicOpen_le
null
@[simp] algebraMap_Spec_obj {R : CommRingCat} {U} : algebraMap R Γ(Spec R, U) = ((Scheme.ΓSpecIso R).inv ≫ (Spec R).presheaf.map (homOfLE le_top).op).hom := rfl
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
algebraMap_Spec_obj
null
basicOpenSectionsToAffine : Γ(X, X.basicOpen f) ⟶ Γ(Spec Γ(X, U), PrimeSpectrum.basicOpen f) := hU.fromSpec.c.app (op <| X.basicOpen f) ≫ (Spec Γ(X, U)).presheaf.map (eqToHom <| (hU.fromSpec_preimage_basicOpen f).symm).op
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
basicOpenSectionsToAffine
Given an affine open U and some `f : U`, this is the canonical map `Γ(𝒪ₓ, D(f)) ⟶ Γ(Spec 𝒪ₓ(U), D(f))` This is an isomorphism, as witnessed by an `IsIso` instance.
basicOpenSectionsToAffine_isIso : IsIso (basicOpenSectionsToAffine hU f) := by delta basicOpenSectionsToAffine refine IsIso.comp_isIso' ?_ inferInstance apply PresheafedSpace.IsOpenImmersion.isIso_of_subset rw [hU.range_fromSpec] exact RingedSpace.basicOpen_le _ _ include hU in
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
basicOpenSectionsToAffine_isIso
null
isLocalization_basicOpen : IsLocalization.Away f Γ(X, X.basicOpen f) := by apply (IsLocalization.isLocalization_iff_of_ringEquiv (Submonoid.powers f) (asIso <| basicOpenSectionsToAffine hU f).commRingCatIsoToRingEquiv).mpr convert StructureSheaf.IsLocalization.to_basicOpen _ f using 1 congr 1 dsimp [CommRingCat.ofHom, RingHom.algebraMap_toAlgebra, ← CommRingCat.hom_comp, basicOpenSectionsToAffine] rw [hU.fromSpec.naturality_assoc, hU.fromSpec_app_self] simp only [Category.assoc, ← Functor.map_comp, ← op_comp] exact CommRingCat.hom_ext_iff.mp (StructureSheaf.toOpen_res _ _ _ _)
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isLocalization_basicOpen
null
_root_.AlgebraicGeometry.isLocalization_away_of_isAffine [IsAffine X] (r : Γ(X, ⊤)) : IsLocalization.Away r Γ(X, X.basicOpen r) := isLocalization_basicOpen (isAffineOpen_top X) r
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
_root_.AlgebraicGeometry.isLocalization_away_of_isAffine
null
appLE_eq_away_map {X Y : Scheme.{u}} (f : X ⟶ Y) {U : Y.Opens} (hU : IsAffineOpen U) {V : X.Opens} (hV : IsAffineOpen V) (e) (r : Γ(Y, U)) : letI := hU.isLocalization_basicOpen r letI := hV.isLocalization_basicOpen (f.appLE U V e r) f.appLE (Y.basicOpen r) (X.basicOpen (f.appLE U V e r)) (by simp [Scheme.Hom.appLE]) = CommRingCat.ofHom (IsLocalization.Away.map _ _ (f.appLE U V e).hom r) := by letI := hU.isLocalization_basicOpen r letI := hV.isLocalization_basicOpen (f.appLE U V e r) ext : 1 apply IsLocalization.ringHom_ext (.powers r) rw [IsLocalization.Away.map, CommRingCat.hom_ofHom, IsLocalization.map_comp, RingHom.algebraMap_toAlgebra, RingHom.algebraMap_toAlgebra, ← CommRingCat.hom_comp, ← CommRingCat.hom_comp, Scheme.Hom.appLE_map, Scheme.Hom.map_appLE]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
appLE_eq_away_map
null
app_basicOpen_eq_away_map {X Y : Scheme.{u}} (f : X ⟶ Y) {U : Y.Opens} (hU : IsAffineOpen U) (h : IsAffineOpen (f ⁻¹ᵁ U)) (r : Γ(Y, U)) : haveI := hU.isLocalization_basicOpen r haveI := h.isLocalization_basicOpen (f.app U r) f.app (Y.basicOpen r) = (CommRingCat.ofHom (IsLocalization.Away.map Γ(Y, Y.basicOpen r) Γ(X, X.basicOpen (f.app U r)) (f.app U).hom r) ≫ X.presheaf.map (eqToHom (by simp)).op) := by haveI := hU.isLocalization_basicOpen r haveI := h.isLocalization_basicOpen (f.app U r) ext : 1 apply IsLocalization.ringHom_ext (.powers r) rw [IsLocalization.Away.map, CommRingCat.hom_comp, RingHom.comp_assoc, CommRingCat.hom_ofHom, IsLocalization.map_comp, RingHom.algebraMap_toAlgebra, RingHom.algebraMap_toAlgebra, ← RingHom.comp_assoc, ← CommRingCat.hom_comp, ← CommRingCat.hom_comp, ← X.presheaf.map_comp] simp
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
app_basicOpen_eq_away_map
null
appBasicOpenIsoAwayMap {X Y : Scheme.{u}} (f : X ⟶ Y) {U : Y.Opens} (hU : IsAffineOpen U) (h : IsAffineOpen (f ⁻¹ᵁ U)) (r : Γ(Y, U)) : haveI := hU.isLocalization_basicOpen r haveI := h.isLocalization_basicOpen (f.app U r) Arrow.mk (f.app (Y.basicOpen r)) ≅ Arrow.mk (CommRingCat.ofHom (IsLocalization.Away.map Γ(Y, Y.basicOpen r) Γ(X, X.basicOpen (f.app U r)) (f.app U).hom r)) := Arrow.isoMk (Iso.refl _) (X.presheaf.mapIso (eqToIso (by simp)).op) <| by simp [hU.app_basicOpen_eq_away_map f h] include hU in
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
appBasicOpenIsoAwayMap
`f.app (Y.basicOpen r)` is isomorphic to map induced on localizations `Γ(Y, Y.basicOpen r) ⟶ Γ(X, X.basicOpen (f.app U r))`
isLocalization_of_eq_basicOpen {V : X.Opens} (i : V ⟶ U) (e : V = X.basicOpen f) : @IsLocalization.Away _ _ f Γ(X, V) _ (X.presheaf.map i.op).hom.toAlgebra := by subst e; convert isLocalization_basicOpen hU f using 3
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isLocalization_of_eq_basicOpen
null
_root_.AlgebraicGeometry.Γ_restrict_isLocalization (X : Scheme.{u}) [IsAffine X] (r : Γ(X, ⊤)) : IsLocalization.Away r Γ(X.basicOpen r, ⊤) := (isAffineOpen_top X).isLocalization_of_eq_basicOpen r _ (Opens.isOpenEmbedding_obj_top _) include hU in
instance
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
_root_.AlgebraicGeometry.Γ_restrict_isLocalization
null
basicOpen_basicOpen_is_basicOpen (g : Γ(X, X.basicOpen f)) : ∃ f' : Γ(X, U), X.basicOpen f' = X.basicOpen g := by have := isLocalization_basicOpen hU f obtain ⟨x, ⟨_, n, rfl⟩, rfl⟩ := IsLocalization.surj'' (Submonoid.powers f) g use f * x rw [Algebra.smul_def, Scheme.basicOpen_mul, Scheme.basicOpen_mul, RingHom.algebraMap_toAlgebra, Scheme.basicOpen_res] refine (inf_eq_left.mpr (inf_le_left.trans_eq (Scheme.basicOpen_of_isUnit _ ?_).symm)).symm exact Submonoid.leftInv_le_isUnit _ (IsLocalization.toInvSubmonoid (Submonoid.powers f) (Γ(X, X.basicOpen f)) _).prop include hU in
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
basicOpen_basicOpen_is_basicOpen
null
_root_.AlgebraicGeometry.exists_basicOpen_le_affine_inter {V : X.Opens} (hV : IsAffineOpen V) (x : X) (hx : x ∈ U ⊓ V) : ∃ (f : Γ(X, U)) (g : Γ(X, V)), X.basicOpen f = X.basicOpen g ∧ x ∈ X.basicOpen f := by obtain ⟨f, hf₁, hf₂⟩ := hU.exists_basicOpen_le ⟨x, hx.2⟩ hx.1 obtain ⟨g, hg₁, hg₂⟩ := hV.exists_basicOpen_le ⟨x, hf₂⟩ hx.2 obtain ⟨f', hf'⟩ := basicOpen_basicOpen_is_basicOpen hU f (X.presheaf.map (homOfLE hf₁ : _ ⟶ V).op g) replace hf' := (hf'.trans (RingedSpace.basicOpen_res _ _ _)).trans (inf_eq_right.mpr hg₁) exact ⟨f', g, hf', hf'.symm ▸ hg₂⟩
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
_root_.AlgebraicGeometry.exists_basicOpen_le_affine_inter
null
noncomputable primeIdealOf (x : U) : PrimeSpectrum Γ(X, U) := hU.isoSpec.hom.base x
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
primeIdealOf
The prime ideal of `𝒪ₓ(U)` corresponding to a point `x : U`.
fromSpec_primeIdealOf (x : U) : hU.fromSpec.base (hU.primeIdealOf x) = x.1 := by dsimp only [IsAffineOpen.fromSpec, Subtype.coe_mk, IsAffineOpen.primeIdealOf] rw [← Scheme.comp_base_apply, Iso.hom_inv_id_assoc] rfl open IsLocalRing in
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
fromSpec_primeIdealOf
null
primeIdealOf_eq_map_closedPoint (x : U) : hU.primeIdealOf x = (Spec.map (X.presheaf.germ _ x x.2)).base (closedPoint _) := hU.isoSpec_hom_base_apply _
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
primeIdealOf_eq_map_closedPoint
null
primeIdealOf_isMaximal_of_isClosed (x : U) (hx : IsClosed {(x : X)}) : (hU.primeIdealOf x).asIdeal.IsMaximal := by have hx₀ : IsClosed {x} := by simpa [← Set.image_singleton, Set.preimage_image_eq _ Subtype.val_injective] using hx.preimage U.isOpenEmbedding'.continuous apply (hU.primeIdealOf x).isClosed_singleton_iff_isMaximal.mp rw [primeIdealOf, ← Set.image_singleton] refine (Topology.IsClosedEmbedding.isClosed_iff_image_isClosed <| IsHomeomorph.isClosedEmbedding ?_).mp hx₀ apply (TopCat.isIso_iff_isHomeomorph _).mp infer_instance
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
primeIdealOf_isMaximal_of_isClosed
If a point `x : U` is a closed point, then its corresponding prime ideal is maximal.
isLocalization_stalk' (y : PrimeSpectrum Γ(X, U)) (hy : hU.fromSpec.base y ∈ U) : @IsLocalization.AtPrime (R := Γ(X, U)) (S := X.presheaf.stalk <| hU.fromSpec.base y) _ _ ((TopCat.Presheaf.algebra_section_stalk X.presheaf _)) y.asIdeal _ := by apply (@IsLocalization.isLocalization_iff_of_ringEquiv (R := Γ(X, U)) (S := X.presheaf.stalk (hU.fromSpec.base y)) _ y.asIdeal.primeCompl _ (TopCat.Presheaf.algebra_section_stalk X.presheaf ⟨hU.fromSpec.base y, hy⟩) _ _ (asIso <| hU.fromSpec.stalkMap y).commRingCatIsoToRingEquiv).mpr convert StructureSheaf.IsLocalization.to_stalk Γ(X, U) y using 1 delta IsLocalization.AtPrime StructureSheaf.stalkAlgebra rw [RingHom.algebraMap_toAlgebra, RingEquiv.toRingHom_eq_coe, CategoryTheory.Iso.commRingCatIsoToRingEquiv_toRingHom, asIso_hom, ← CommRingCat.hom_comp, Scheme.stalkMap_germ, IsAffineOpen.fromSpec_app_self, Category.assoc, TopCat.Presheaf.germ_res] rfl
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isLocalization_stalk'
null
isLocalization_stalk (x : U) : IsLocalization.AtPrime (X.presheaf.stalk x) (hU.primeIdealOf x).asIdeal := by rcases x with ⟨x, hx⟩ set y := hU.primeIdealOf ⟨x, hx⟩ with hy have : hU.fromSpec.base y = x := hy ▸ hU.fromSpec_primeIdealOf ⟨x, hx⟩ clear_value y subst this exact hU.isLocalization_stalk' y hx
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isLocalization_stalk
null
stalkMap_injective (f : X ⟶ Y) {U : Opens Y} (hU : IsAffineOpen U) (x : X) (hx : f.base x ∈ U) (h : ∀ g, f.stalkMap x (Y.presheaf.germ U (f.base x) hx g) = 0 → Y.presheaf.germ U (f.base x) hx g = 0) : Function.Injective (f.stalkMap x) := by letI := Y.presheaf.algebra_section_stalk ⟨f.base x, hx⟩ apply (hU.isLocalization_stalk ⟨f.base x, hx⟩).injective_of_map_algebraMap_zero exact h include hU in
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
stalkMap_injective
null
mem_ideal_iff {s : Γ(X, U)} {I : Ideal Γ(X, U)} : s ∈ I ↔ ∀ (x : X) (h : x ∈ U), X.presheaf.germ U x h s ∈ I.map (X.presheaf.germ U x h).hom := by refine ⟨fun hs x hxU ↦ Ideal.mem_map_of_mem _ hs, fun H ↦ ?_⟩ letI (x : _) : Algebra Γ(X, U) (X.presheaf.stalk (hU.fromSpec.base x)) := TopCat.Presheaf.algebra_section_stalk X.presheaf _ have (P : Ideal Γ(X, U)) [hP : P.IsPrime] : IsLocalization.AtPrime _ P := hU.isLocalization_stalk' ⟨P, hP⟩ (hU.isoSpec.inv.base _).2 refine Submodule.mem_of_localization_maximal (fun P hP ↦ X.presheaf.stalk (hU.fromSpec.base ⟨P, hP.isPrime⟩)) (fun P hP ↦ Algebra.linearMap _ _) _ _ ?_ intro P hP rw [Ideal.localized₀_eq_restrictScalars_map] exact H _ _ include hU in
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
mem_ideal_iff
null
ideal_le_iff {I J : Ideal Γ(X, U)} : I ≤ J ↔ ∀ (x : X) (h : x ∈ U), I.map (X.presheaf.germ U x h).hom ≤ J.map (X.presheaf.germ U x h).hom := ⟨fun h _ _ ↦ Ideal.map_mono h, fun H _ hs ↦ hU.mem_ideal_iff.mpr fun x hx ↦ H x hx (Ideal.mem_map_of_mem _ hs)⟩ include hU in
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
ideal_le_iff
null
ideal_ext_iff {I J : Ideal Γ(X, U)} : I = J ↔ ∀ (x : X) (h : x ∈ U), I.map (X.presheaf.germ U x h).hom = J.map (X.presheaf.germ U x h).hom := by simp_rw [le_antisymm_iff, hU.ideal_le_iff, forall_and]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
ideal_ext_iff
null
@[simps] _root_.AlgebraicGeometry.Scheme.affineBasicOpen (X : Scheme) {U : X.affineOpens} (f : Γ(X, U)) : X.affineOpens := ⟨X.basicOpen f, U.prop.basicOpen f⟩
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
_root_.AlgebraicGeometry.Scheme.affineBasicOpen
The basic open set of a section `f` on an affine open as an `X.affineOpens`.
_root_.AlgebraicGeometry.Scheme.affineBasicOpen_le (X : Scheme) {V : X.affineOpens} (f : Γ(X, V.1)) : X.affineBasicOpen f ≤ V := X.basicOpen_le f include hU in
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
_root_.AlgebraicGeometry.Scheme.affineBasicOpen_le
null
basicOpen_union_eq_self_iff (s : Set Γ(X, U)) : ⨆ f : s, X.basicOpen (f : Γ(X, U)) = U ↔ Ideal.span s = ⊤ := by trans ⋃ i : s, (PrimeSpectrum.basicOpen i.1).1 = Set.univ · trans hU.fromSpec.base ⁻¹' (⨆ f : s, X.basicOpen (f : Γ(X, U))).1 = hU.fromSpec.base ⁻¹' U.1 · refine ⟨fun h => by rw [h], ?_⟩ intro h apply_fun Set.image hU.fromSpec.base at h rw [Set.image_preimage_eq_inter_range, Set.image_preimage_eq_inter_range, hU.range_fromSpec] at h simp only [Set.inter_self, Opens.carrier_eq_coe, Set.inter_eq_right] at h ext1 refine Set.Subset.antisymm ?_ h simp only [Set.iUnion_subset_iff, SetCoe.forall, Opens.coe_iSup] intro x _ exact X.basicOpen_le x · simp only [Opens.iSup_def, Set.preimage_iUnion] congr! 1 · refine congr_arg (Set.iUnion ·) ?_ ext1 x exact congr_arg Opens.carrier (hU.fromSpec_preimage_basicOpen _) · exact congr_arg Opens.carrier hU.fromSpec_preimage_self · simp only [Opens.carrier_eq_coe, PrimeSpectrum.basicOpen_eq_zeroLocus_compl] rw [← Set.compl_iInter, Set.compl_univ_iff, ← PrimeSpectrum.zeroLocus_iUnion, ← PrimeSpectrum.zeroLocus_empty_iff_eq_top, PrimeSpectrum.zeroLocus_span] simp only [Set.iUnion_singleton_eq_range, Subtype.range_val_subtype, Set.setOf_mem_eq] include hU in
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
basicOpen_union_eq_self_iff
In an affine open set `U`, a family of basic open covers `U` iff the sections span `Γ(X, U)`. See `iSup_basicOpen_of_span_eq_top` for the inverse direction without the affine-ness assumption.
self_le_basicOpen_union_iff (s : Set Γ(X, U)) : (U ≤ ⨆ f : s, X.basicOpen f.1) ↔ Ideal.span s = ⊤ := by rw [← hU.basicOpen_union_eq_self_iff, @comm _ Eq] refine ⟨fun h => le_antisymm h ?_, le_of_eq⟩ simp only [iSup_le_iff, SetCoe.forall] intro x _ exact X.basicOpen_le x
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
self_le_basicOpen_union_iff
null
noncomputable SpecMapRestrictBasicOpenIso {R S : CommRingCat} (f : R ⟶ S) (r : R) : Arrow.mk (Spec.map f ∣_ (PrimeSpectrum.basicOpen r)) ≅ Arrow.mk (Spec.map <| CommRingCat.ofHom (Localization.awayMap f.hom r)) := by letI e₁ : Localization.Away r ≃ₐ[R] Γ(Spec R, basicOpen r) := IsLocalization.algEquiv (Submonoid.powers r) _ _ letI e₂ : Localization.Away (f.hom r) ≃ₐ[S] Γ(Spec S, basicOpen (f.hom r)) := IsLocalization.algEquiv (Submonoid.powers (f.hom r)) _ _ refine Arrow.isoMk ?_ ?_ ?_ · exact Spec(S).isoOfEq (comap_basicOpen _ _) ≪≫ (IsAffineOpen.Spec_basicOpen (f.hom r)).isoSpec ≪≫ Scheme.Spec.mapIso e₂.toCommRingCatIso.op · exact (IsAffineOpen.Spec_basicOpen r).isoSpec ≪≫ Scheme.Spec.mapIso e₁.toCommRingCatIso.op · have := AlgebraicGeometry.IsOpenImmersion.of_isLocalization (S := (Localization.Away r)) r rw [← cancel_mono (Spec.map (CommRingCat.ofHom (algebraMap R (Localization.Away r))))] simp only [Arrow.mk_left, Arrow.mk_right, Functor.id_obj, Scheme.isoOfEq_rfl, Iso.refl_trans, Iso.trans_hom, Functor.mapIso_hom, Iso.op_hom, Scheme.Spec_map, Quiver.Hom.unop_op, Arrow.mk_hom, Category.assoc, ← Spec.map_comp] conv => congr · enter [2, 1]; tactic => change _ = (f ≫ (Scheme.ΓSpecIso S).inv ≫ (Spec S).presheaf.map (homOfLE le_top).op) ext simp only [Localization.awayMap, IsLocalization.Away.map, AlgEquiv.toRingEquiv_eq_coe, RingEquiv.toCommRingCatIso_hom, AlgEquiv.toRingEquiv_toRingHom, CommRingCat.hom_comp, CommRingCat.hom_ofHom, RingHom.comp_apply, IsLocalization.map_eq, RingHom.coe_coe, AlgEquiv.commutes, IsAffineOpen.algebraMap_Spec_obj] · enter [2, 2, 1]; tactic => change _ = (Scheme.ΓSpecIso R).inv ≫ (Spec R).presheaf.map (homOfLE le_top).op ext simp only [AlgEquiv.toRingEquiv_eq_coe, RingEquiv.toCommRingCatIso_hom, AlgEquiv.toRingEquiv_toRingHom, CommRingCat.hom_comp, CommRingCat.hom_ofHom, RingHom.coe_comp, RingHom.coe_coe, Function.comp_apply, AlgEquiv.commutes, IsAffineOpen.algebraMap_Spec_obj, homOfLE_leOfHom] simp only [IsAffineOpen.isoSpec_hom, homOfLE_leOfHom, Spec.map_comp, Category.assoc, Scheme.Opens.toSpecΓ_SpecMap_map_assoc, Scheme.Opens.toSpecΓ_top, Scheme.homOfLE_ι_assoc, morphismRestrict_ι_assoc] simp only [← SpecMap_ΓSpecIso_hom, ← Spec.map_comp, Category.assoc, Iso.inv_hom_id, Category.comp_id, Category.id_comp] rfl
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
SpecMapRestrictBasicOpenIso
The restriction of `Spec.map f` to a basic open `D(r)` is isomorphic to `Spec.map` of the localization of `f` away from `r`.
stalkMap_injective_of_isAffine {X Y : Scheme} (f : X ⟶ Y) [IsAffine Y] (x : X) (h : ∀ g, f.stalkMap x (Y.presheaf.Γgerm (f.base x) g) = 0 → Y.presheaf.Γgerm (f.base x) g = 0) : Function.Injective (f.stalkMap x) := (isAffineOpen_top Y).stalkMap_injective f x trivial h
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
stalkMap_injective_of_isAffine
null
iSup_basicOpen_of_span_eq_top {X : Scheme} (U) (s : Set Γ(X, U)) (hs : Ideal.span s = ⊤) : (⨆ i ∈ s, X.basicOpen i) = U := by apply le_antisymm · rw [iSup₂_le_iff] exact fun i _ ↦ X.basicOpen_le i · intro x hx obtain ⟨_, ⟨V, hV, rfl⟩, hxV, hVU⟩ := (isBasis_affine_open X).exists_subset_of_mem_open hx U.2 refine SetLike.mem_of_subset ?_ hxV rw [← (hV.basicOpen_union_eq_self_iff (X.presheaf.map (homOfLE hVU).op '' s)).mpr (by rw [← Ideal.map_span, hs, Ideal.map_top])] simp only [Opens.iSup_mk, Opens.carrier_eq_coe, Set.iUnion_coe_set, Set.mem_image, Set.iUnion_exists, Set.biUnion_and', Set.iUnion_iUnion_eq_right, Scheme.basicOpen_res, Opens.coe_inf, Opens.coe_mk, Set.iUnion_subset_iff] exact fun i hi ↦ (Set.inter_subset_right.trans (Set.subset_iUnion₂ (s := fun x _ ↦ (X.basicOpen x : Set X)) i hi))
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
iSup_basicOpen_of_span_eq_top
Given a spanning set of `Γ(X, U)`, the corresponding basic open sets cover `U`. See `IsAffineOpen.basicOpen_union_eq_self_iff` for the inverse direction for affine open sets.
@[elab_as_elim] of_affine_open_cover {X : Scheme} {P : X.affineOpens → Prop} {ι} (U : ι → X.affineOpens) (iSup_U : (⨆ i, U i : X.Opens) = ⊤) (V : X.affineOpens) (basicOpen : ∀ (U : X.affineOpens) (f : Γ(X, U)), P U → P (X.affineBasicOpen f)) (openCover : ∀ (U : X.affineOpens) (s : Finset (Γ(X, U))) (_ : Ideal.span (s : Set (Γ(X, U))) = ⊤), (∀ f : s, P (X.affineBasicOpen f.1)) → P U) (hU : ∀ i, P (U i)) : P V := by classical have : ∀ (x : V.1), ∃ f : Γ(X, V), ↑x ∈ X.basicOpen f ∧ P (X.affineBasicOpen f) := by intro x obtain ⟨i, hi⟩ := Opens.mem_iSup.mp (show x.1 ∈ (⨆ i, U i : X.Opens) from iSup_U ▸ trivial) obtain ⟨f, g, e, hf⟩ := exists_basicOpen_le_affine_inter V.prop (U i).prop x ⟨x.prop, hi⟩ refine ⟨f, hf, ?_⟩ convert basicOpen _ g (hU i) using 1 ext1 exact e choose f hf₁ hf₂ using this suffices Ideal.span (Set.range f) = ⊤ by obtain ⟨t, ht₁, ht₂⟩ := (Ideal.span_eq_top_iff_finite _).mp this apply openCover V t ht₂ rintro ⟨i, hi⟩ obtain ⟨x, rfl⟩ := ht₁ hi exact hf₂ x rw [← V.prop.self_le_basicOpen_union_iff] intro x hx rw [iSup_range', SetLike.mem_coe, Opens.mem_iSup] exact ⟨_, hf₁ ⟨x, hx⟩⟩
theorem
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
of_affine_open_cover
Let `P` be a predicate on the affine open sets of `X` satisfying 1. If `P` holds on `U`, then `P` holds on the basic open set of every section on `U`. 2. If `P` holds for a family of basic open sets covering `U`, then `P` holds for `U`. 3. There exists an affine open cover of `X` each satisfying `P`. Then `P` holds for every affine open of `X`. This is also known as the **Affine communication lemma** in [*The rising sea*][RisingSea].
toSpecΓ_preimage_zeroLocus (s : Set Γ(X, ⊤)) : X.toSpecΓ.base ⁻¹' PrimeSpectrum.zeroLocus s = X.zeroLocus s := LocallyRingedSpace.toΓSpec_preimage_zeroLocus_eq s
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
toSpecΓ_preimage_zeroLocus
On a scheme `X`, the preimage of the zero locus of the prime spectrum of `Γ(X, ⊤)` under `X.toSpecΓ : X ⟶ Spec Γ(X, ⊤)` agrees with the associated zero locus on `X`.
isoSpec_image_zeroLocus [IsAffine X] (s : Set Γ(X, ⊤)) : X.isoSpec.hom.base '' X.zeroLocus s = PrimeSpectrum.zeroLocus s := by rw [← X.toSpecΓ_preimage_zeroLocus] erw [Set.image_preimage_eq] exact (bijective_of_isIso X.isoSpec.hom.base).surjective
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isoSpec_image_zeroLocus
If `X` is affine, the image of the zero locus of global sections of `X` under `X.isoSpec` is the zero locus in terms of the prime spectrum of `Γ(X, ⊤)`.
toSpecΓ_image_zeroLocus [IsAffine X] (s : Set Γ(X, ⊤)) : X.toSpecΓ.base '' X.zeroLocus s = PrimeSpectrum.zeroLocus s := X.isoSpec_image_zeroLocus _
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
toSpecΓ_image_zeroLocus
null
isoSpec_inv_preimage_zeroLocus [IsAffine X] (s : Set Γ(X, ⊤)) : X.isoSpec.inv.base ⁻¹' X.zeroLocus s = PrimeSpectrum.zeroLocus s := by rw [← toSpecΓ_preimage_zeroLocus, ← Set.preimage_comp, ← TopCat.coe_comp, ← Scheme.comp_base, X.isoSpec_inv_toSpecΓ] rfl
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isoSpec_inv_preimage_zeroLocus
null
isoSpec_inv_image_zeroLocus [IsAffine X] (s : Set Γ(X, ⊤)) : X.isoSpec.inv.base '' PrimeSpectrum.zeroLocus s = X.zeroLocus s := by rw [← isoSpec_inv_preimage_zeroLocus, Set.image_preimage_eq] exact (bijective_of_isIso X.isoSpec.inv.base).surjective
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
isoSpec_inv_image_zeroLocus
null
eq_zeroLocus_of_isClosed_of_isAffine [IsAffine X] (s : Set X) : IsClosed s ↔ ∃ I : Ideal (Γ(X, ⊤)), s = X.zeroLocus (I : Set Γ(X, ⊤)) := by refine ⟨fun hs ↦ ?_, ?_⟩ · let Z : Set (Spec <| Γ(X, ⊤)) := X.toΓSpecFun '' s have hZ : IsClosed Z := (X.isoSpec.hom.homeomorph).isClosedMap _ hs obtain ⟨I, (hI : Z = _)⟩ := (PrimeSpectrum.isClosed_iff_zeroLocus_ideal _).mp hZ use I simp only [← Scheme.toSpecΓ_preimage_zeroLocus, ← hI, Z] symm exact Set.preimage_image_eq _ (bijective_of_isIso X.isoSpec.hom.base).injective · rintro ⟨I, rfl⟩ exact zeroLocus_isClosed X I.carrier open Set.Notation in
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
eq_zeroLocus_of_isClosed_of_isAffine
If `X` is an affine scheme, every closed set of `X` is the zero locus of a set of global sections.
Opens.toSpecΓ_preimage_zeroLocus {X : Scheme.{u}} (U : X.Opens) (s : Set Γ(X, U)) : U.toSpecΓ.base ⁻¹' PrimeSpectrum.zeroLocus s = U.1 ↓∩ X.zeroLocus s := by rw [toSpecΓ, Scheme.comp_base, TopCat.coe_comp, Set.preimage_comp, Spec.map_base, hom_ofHom] erw [PrimeSpectrum.preimage_comap_zeroLocus] rw [Scheme.toSpecΓ_preimage_zeroLocus] change _ = U.ι.base ⁻¹' (X.zeroLocus s) rw [Scheme.preimage_zeroLocus, U.ι_app_self, ← zeroLocus_map_of_eq _ U.ι_preimage_self, ← Set.image_comp, ← RingHom.coe_comp, ← CommRingCat.hom_comp] congr! simp [← Functor.map_comp] rfl
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Opens.toSpecΓ_preimage_zeroLocus
null
IsAffineOpen.fromSpec_preimage_zeroLocus {X : Scheme.{u}} {U : X.Opens} (hU : IsAffineOpen U) (s : Set Γ(X, U)) : hU.fromSpec.base ⁻¹' X.zeroLocus s = PrimeSpectrum.zeroLocus s := by ext x suffices (∀ f ∈ s, ¬f ∉ x.asIdeal) ↔ s ⊆ x.asIdeal by simpa [← hU.fromSpec_image_basicOpen, -not_not] using this simp_rw [not_not] rfl
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
IsAffineOpen.fromSpec_preimage_zeroLocus
null
IsAffineOpen.fromSpec_image_zeroLocus {X : Scheme.{u}} {U : X.Opens} (hU : IsAffineOpen U) (s : Set Γ(X, U)) : hU.fromSpec.base '' PrimeSpectrum.zeroLocus s = X.zeroLocus s ∩ U := by rw [← hU.fromSpec_preimage_zeroLocus, Set.image_preimage_eq_inter_range, range_fromSpec] open Set.Notation in
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
IsAffineOpen.fromSpec_image_zeroLocus
null
Scheme.zeroLocus_inf (X : Scheme.{u}) {U : X.Opens} (I J : Ideal Γ(X, U)) : X.zeroLocus (U := U) ↑(I ⊓ J) = X.zeroLocus (U := U) I ∪ X.zeroLocus (U := U) J := by suffices U.1 ↓∩ (X.zeroLocus (U := U) ↑(I ⊓ J)) = U.1 ↓∩ (X.zeroLocus (U := U) I ∪ X.zeroLocus (U := U) J) by ext x by_cases hxU : x ∈ U · simpa [hxU] using congr(⟨x, hxU⟩ ∈ $this) · simp only [Submodule.coe_inf, Set.mem_union, codisjoint_iff_compl_le_left.mp (X.codisjoint_zeroLocus (U := U) (I ∩ J)) hxU, codisjoint_iff_compl_le_left.mp (X.codisjoint_zeroLocus (U := U) I) hxU, true_or] simp only [← U.toSpecΓ_preimage_zeroLocus, PrimeSpectrum.zeroLocus_inf I J, Set.preimage_union]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.zeroLocus_inf
null
Scheme.zeroLocus_biInf {X : Scheme.{u}} {U : X.Opens} {ι : Type*} (I : ι → Ideal Γ(X, U)) {t : Set ι} (ht : t.Finite) : X.zeroLocus (U := U) ↑(⨅ i ∈ t, I i) = (⋃ i ∈ t, X.zeroLocus (U := U) (I i)) ∪ (↑U)ᶜ := by refine ht.induction_on _ (by simp) fun {i t} hit ht IH ↦ ?_ simp only [Set.mem_insert_iff, Set.iUnion_iUnion_eq_or_left, ← IH, ← zeroLocus_inf, Submodule.coe_inf, Set.union_assoc] congr! simp
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.zeroLocus_biInf
null
Scheme.zeroLocus_biInf_of_nonempty {X : Scheme.{u}} {U : X.Opens} {ι : Type*} (I : ι → Ideal Γ(X, U)) {t : Set ι} (ht : t.Finite) (ht' : t.Nonempty) : X.zeroLocus (U := U) ↑(⨅ i ∈ t, I i) = ⋃ i ∈ t, X.zeroLocus (U := U) (I i) := by rw [zeroLocus_biInf I ht, Set.union_eq_left] obtain ⟨i, hi⟩ := ht' exact fun x hx ↦ Set.mem_iUnion₂_of_mem hi (codisjoint_iff_compl_le_left.mp (X.codisjoint_zeroLocus (U := U) (I i)) hx)
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.zeroLocus_biInf_of_nonempty
null
Scheme.zeroLocus_iInf {X : Scheme.{u}} {U : X.Opens} {ι : Type*} (I : ι → Ideal Γ(X, U)) [Finite ι] : X.zeroLocus (U := U) ↑(⨅ i, I i) = (⋃ i, X.zeroLocus (U := U) (I i)) ∪ (↑U)ᶜ := by simpa using zeroLocus_biInf I Set.finite_univ
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.zeroLocus_iInf
null
Scheme.zeroLocus_iInf_of_nonempty {X : Scheme.{u}} {U : X.Opens} {ι : Type*} (I : ι → Ideal Γ(X, U)) [Finite ι] [Nonempty ι] : X.zeroLocus (U := U) ↑(⨅ i, I i) = ⋃ i, X.zeroLocus (U := U) (I i) := by simpa using zeroLocus_biInf_of_nonempty I Set.finite_univ
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.zeroLocus_iInf_of_nonempty
null
Scheme.Hom.liftQuotient (f : X.Hom (Spec A)) (I : Ideal A) (hI : I ≤ RingHom.ker ((Scheme.ΓSpecIso A).inv ≫ f.appTop).hom) : X ⟶ Spec(A ⧸ I) := X.toSpecΓ ≫ Spec.map (CommRingCat.ofHom (Ideal.Quotient.lift _ ((Scheme.ΓSpecIso _).inv ≫ f.appTop).hom hI)) @[reassoc]
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.Hom.liftQuotient
Given `f : X ⟶ Spec A` and some ideal `I ≤ ker(A ⟶ Γ(X, ⊤))`, this is the lift to `X ⟶ Spec (A ⧸ I)`.
Scheme.Hom.liftQuotient_comp (f : X.Hom (Spec A)) (I : Ideal A) (hI : I ≤ RingHom.ker ((Scheme.ΓSpecIso A).inv ≫ f.appTop).hom) : f.liftQuotient I hI ≫ Spec.map (CommRingCat.ofHom (Ideal.Quotient.mk _)) = f := by rw [Scheme.Hom.liftQuotient, Category.assoc, ← Spec.map_comp, ← CommRingCat.ofHom_comp, Ideal.Quotient.lift_comp_mk] simp only [CommRingCat.hom_comp, CommRingCat.ofHom_comp, CommRingCat.ofHom_hom, Spec.map_comp, ← Scheme.toSpecΓ_naturality_assoc, ← SpecMap_ΓSpecIso_hom] simp only [← Spec.map_comp, Iso.inv_hom_id, Spec.map_id, Category.comp_id]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.Hom.liftQuotient_comp
null
specTargetImageIdeal (f : X ⟶ Spec A) : Ideal A := (RingHom.ker <| (((ΓSpec.adjunction).homEquiv X (op A)).symm f).unop.hom)
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
specTargetImageIdeal
If `X ⟶ Spec A` is a morphism of schemes, then `Spec` of `A ⧸ specTargetImage f` is the scheme-theoretic image of `f`. For this quotient as an object of `CommRingCat` see `specTargetImage` below.
specTargetImage (f : X ⟶ Spec A) : CommRingCat := CommRingCat.of (A ⧸ specTargetImageIdeal f)
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
specTargetImage
If `X ⟶ Spec A` is a morphism of schemes, then `Spec` of `specTargetImage f` is the scheme-theoretic image of `f` and `f` factors as `specTargetImageFactorization f ≫ Spec.map (specTargetImageRingHom f)` (see `specTargetImageFactorization_comp`).
specTargetImageFactorization (f : X ⟶ Spec A) : X ⟶ Spec (specTargetImage f) := f.liftQuotient _ le_rfl
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
specTargetImageFactorization
If `f : X ⟶ Spec A` is a morphism of schemes, then `f` factors via the inclusion of `Spec (specTargetImage f)` into `X`.
specTargetImageRingHom (f : X ⟶ Spec A) : A ⟶ specTargetImage f := CommRingCat.ofHom (Ideal.Quotient.mk (specTargetImageIdeal f)) variable (f : X ⟶ Spec A)
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
specTargetImageRingHom
If `f : X ⟶ Spec A` is a morphism of schemes, the induced morphism on spectra of `specTargetImageRingHom f` is the inclusion of the scheme-theoretic image of `f` into `Spec A`.
specTargetImageRingHom_surjective : Function.Surjective (specTargetImageRingHom f) := Ideal.Quotient.mk_surjective
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
specTargetImageRingHom_surjective
null
specTargetImageFactorization_app_injective : Function.Injective <| (specTargetImageFactorization f).appTop := by let φ : A ⟶ Γ(X, ⊤) := (((ΓSpec.adjunction).homEquiv X (op A)).symm f).unop let φ' : specTargetImage f ⟶ Scheme.Γ.obj (op X) := CommRingCat.ofHom (RingHom.kerLift φ.hom) change Function.Injective <| ((ΓSpec.adjunction.homEquiv X _) φ'.op).appTop rw [ΓSpec_adjunction_homEquiv_eq] apply (RingHom.kerLift_injective φ.hom).comp exact ((ConcreteCategory.isIso_iff_bijective (Scheme.ΓSpecIso _).hom).mp inferInstance).injective @[reassoc (attr := simp)]
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
specTargetImageFactorization_app_injective
null
specTargetImageFactorization_comp : specTargetImageFactorization f ≫ Spec.map (specTargetImageRingHom f) = f := f.liftQuotient_comp _ _ open RingHom
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
specTargetImageFactorization_comp
null
@[elementwise] Scheme.localRingHom_comp_stalkIso {R S : CommRingCat.{u}} (f : R ⟶ S) (p : PrimeSpectrum S) : (StructureSheaf.stalkIso R (PrimeSpectrum.comap f.hom p)).hom ≫ (CommRingCat.ofHom <| Localization.localRingHom (PrimeSpectrum.comap f.hom p).asIdeal p.asIdeal f.hom rfl) ≫ (StructureSheaf.stalkIso S p).inv = (Spec.map f).stalkMap p := AlgebraicGeometry.localRingHom_comp_stalkIso f p
lemma
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.localRingHom_comp_stalkIso
Variant of `AlgebraicGeometry.localRingHom_comp_stalkIso` for `Spec.map`.
Scheme.arrowStalkMapSpecIso {R S : CommRingCat.{u}} (f : R ⟶ S) (p : PrimeSpectrum S) : Arrow.mk ((Spec.map f).stalkMap p) ≅ Arrow.mk (CommRingCat.ofHom <| Localization.localRingHom (PrimeSpectrum.comap f.hom p).asIdeal p.asIdeal f.hom rfl) := Arrow.isoMk (StructureSheaf.stalkIso R (PrimeSpectrum.comap f.hom p)) (StructureSheaf.stalkIso S p) <| by rw [← Scheme.localRingHom_comp_stalkIso] simp
def
AlgebraicGeometry
[ "Mathlib.AlgebraicGeometry.Cover.Open", "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "Mathlib.AlgebraicGeometry.Restrict", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.RingTheory.Localization.InvSubmonoid", "Mathlib.RingTheory.LocalProperties.Basic", "Mathlib.Topology.Sheaves.CommRingCat" ]
Mathlib/AlgebraicGeometry/AffineScheme.lean
Scheme.arrowStalkMapSpecIso
Given a morphism of rings `f : R ⟶ S`, the stalk map of `Spec S ⟶ Spec R` at a prime of `S` is isomorphic to the localized ring homomorphism.
AffineSpace (n : Type v) (S : Scheme.{max u v}) : Scheme.{max u v} := pullback (terminal.from S) (terminal.from (Spec ℤ[n].{u, v}))
def
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
AffineSpace
`𝔸(n; S)` is the affine `n`-space over `S`. Note that `n` is an arbitrary index type (e.g. `Fin m`).
toSpecMvPoly : 𝔸(n; S) ⟶ Spec ℤ[n].{u, v} := pullback.snd _ _ variable {X : Scheme.{max u v}}
def
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
toSpecMvPoly
`𝔸(n; S)` is the affine `n`-space over `S`. -/ scoped [AlgebraicGeometry] notation "𝔸("n"; "S")" => AffineSpace n S variable {n} in lemma of_mvPolynomial_int_ext {R} {f g : ℤ[n] ⟶ R} (h : ∀ i, f (.X i) = g (.X i)) : f = g := by suffices f.hom.comp (MvPolynomial.mapEquiv _ ULift.ringEquiv.symm).toRingHom = g.hom.comp (MvPolynomial.mapEquiv _ ULift.ringEquiv.symm).toRingHom by ext x · obtain ⟨x⟩ := x simpa [-map_intCast, -eq_intCast] using DFunLike.congr_fun this (C x) · simpa [-map_intCast, -eq_intCast] using DFunLike.congr_fun this (X x) ext1 · exact RingHom.ext_int _ _ · simpa using h _ @[simps -isSimp] instance over : 𝔸(n; S).CanonicallyOver S where hom := pullback.fst _ _ /-- The map from the affine `n`-space over `S` to the integral model `Spec ℤ[n]`.
@[simps] toSpecMvPolyIntEquiv : (X ⟶ Spec ℤ[n]) ≃ (n → Γ(X, ⊤)) where toFun f i := f.appTop ((Scheme.ΓSpecIso ℤ[n]).inv (.X i)) invFun v := X.toSpecΓ ≫ Spec.map (CommRingCat.ofHom (MvPolynomial.eval₂Hom ((algebraMap ℤ _).comp ULift.ringEquiv.toRingHom) v)) left_inv f := by apply (ΓSpec.adjunction.homEquiv _ _).symm.injective apply Quiver.Hom.unop_inj rw [Adjunction.homEquiv_symm_apply, Adjunction.homEquiv_symm_apply] simp only [Functor.rightOp_obj, Scheme.Γ_obj, Scheme.Spec_obj, algebraMap_int_eq, RingEquiv.toRingHom_eq_coe, TopologicalSpace.Opens.map_top, Functor.rightOp_map, op_comp, Scheme.Γ_map, unop_comp, Quiver.Hom.unop_op, Scheme.comp_app, Scheme.toSpecΓ_appTop, Scheme.ΓSpecIso_naturality, ΓSpec.adjunction_counit_app, Category.assoc, Iso.cancel_iso_inv_left, ← Iso.eq_inv_comp] apply of_mvPolynomial_int_ext intro i rw [ConcreteCategory.hom_ofHom, coe_eval₂Hom, eval₂_X] rfl right_inv v := by ext i simp only [algebraMap_int_eq, RingEquiv.toRingHom_eq_coe, TopologicalSpace.Opens.map_top, Scheme.comp_app, Scheme.toSpecΓ_appTop, Scheme.ΓSpecIso_naturality, CommRingCat.comp_apply, CommRingCat.coe_of] rw [CommRingCat.hom_inv_apply] simp
def
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
toSpecMvPolyIntEquiv
Morphisms into `Spec ℤ[n]` are equivalent the choice of `n` global sections. Use `homOverEquiv` instead.
toSpecMvPolyIntEquiv_comp {X Y : Scheme} (f : X ⟶ Y) (g : Y ⟶ Spec ℤ[n]) (i) : toSpecMvPolyIntEquiv n (f ≫ g) i = f.appTop (toSpecMvPolyIntEquiv n g i) := rfl variable {n} in
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
toSpecMvPolyIntEquiv_comp
null
coord (i : n) : Γ(𝔸(n; S), ⊤) := toSpecMvPolyIntEquiv _ (toSpecMvPoly n S) i
def
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
coord
The standard coordinates of `𝔸(n; S)`.
homOfVector (f : X ⟶ S) (v : n → Γ(X, ⊤)) : X ⟶ 𝔸(n; S) := pullback.lift f ((toSpecMvPolyIntEquiv n).symm v) (by simp) variable (f : X ⟶ S) (v : n → Γ(X, ⊤)) @[reassoc (attr := simp)]
def
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
homOfVector
The morphism `X ⟶ 𝔸(n; S)` given by a `X ⟶ S` and a choice of `n`-coordinate functions.
homOfVector_over : homOfVector f v ≫ 𝔸(n; S) ↘ S = f := pullback.lift_fst _ _ _ @[reassoc]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
homOfVector_over
null
homOfVector_toSpecMvPoly : homOfVector f v ≫ toSpecMvPoly n S = (toSpecMvPolyIntEquiv n).symm v := pullback.lift_snd _ _ _ @[simp]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
homOfVector_toSpecMvPoly
null
homOfVector_appTop_coord (i) : (homOfVector f v).appTop (coord S i) = v i := by rw [coord, ← toSpecMvPolyIntEquiv_comp, homOfVector_toSpecMvPoly, Equiv.apply_symm_apply] @[ext 1100]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
homOfVector_appTop_coord
null
hom_ext {f g : X ⟶ 𝔸(n; S)} (h₁ : f ≫ 𝔸(n; S) ↘ S = g ≫ 𝔸(n; S) ↘ S) (h₂ : ∀ i, f.appTop (coord S i) = g.appTop (coord S i)) : f = g := by apply pullback.hom_ext h₁ change f ≫ toSpecMvPoly _ _ = g ≫ toSpecMvPoly _ _ apply (toSpecMvPolyIntEquiv n).injective ext i rw [toSpecMvPolyIntEquiv_comp, toSpecMvPolyIntEquiv_comp] exact h₂ i @[reassoc]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
hom_ext
null
comp_homOfVector {X Y : Scheme} (v : n → Γ(Y, ⊤)) (f : X ⟶ Y) (g : Y ⟶ S) : f ≫ homOfVector g v = homOfVector (f ≫ g) (f.appTop ∘ v) := by ext1 <;> simp
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
comp_homOfVector
null
@[simps] homOverEquiv : { f : X ⟶ 𝔸(n; S) // f.IsOver S } ≃ (n → Γ(X, ⊤)) where toFun f i := f.1.appTop (coord S i) invFun v := ⟨homOfVector (X ↘ S) v, inferInstance⟩ left_inv f := by ext : 2 · simp [f.2.1] · rw [homOfVector_appTop_coord] right_inv v := by ext i; simp [-TopologicalSpace.Opens.map_top, homOfVector_appTop_coord] variable (n) in
def
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
homOverEquiv
`S`-morphisms into `Spec 𝔸(n; S)` are equivalent to the choice of `n` global sections.
@[simps -isSimp hom inv] isoOfIsAffine [IsAffine S] : 𝔸(n; S) ≅ Spec(MvPolynomial n Γ(S, ⊤)) where hom := 𝔸(n; S).toSpecΓ ≫ Spec.map (CommRingCat.ofHom (eval₂Hom ((𝔸(n; S) ↘ S).appTop).hom (coord S))) inv := homOfVector (Spec.map (CommRingCat.ofHom C) ≫ S.isoSpec.inv) ((Scheme.ΓSpecIso (.of (MvPolynomial n Γ(S, ⊤)))).inv ∘ MvPolynomial.X) hom_inv_id := by ext1 · simp only [Category.assoc, homOfVector_over, Category.id_comp] rw [← Spec.map_comp_assoc, ← CommRingCat.ofHom_comp, eval₂Hom_comp_C, CommRingCat.ofHom_hom, ← Scheme.toSpecΓ_naturality_assoc] simp [Scheme.isoSpec] · simp only [Category.assoc, Scheme.comp_app, Scheme.comp_coeBase, TopologicalSpace.Opens.map_comp_obj, TopologicalSpace.Opens.map_top, Scheme.toSpecΓ_appTop, Scheme.ΓSpecIso_naturality, CommRingCat.comp_apply, homOfVector_appTop_coord, Function.comp_apply, CommRingCat.coe_of, Scheme.id_app, CommRingCat.id_apply] rw [CommRingCat.hom_inv_apply] exact eval₂_X _ _ _ inv_hom_id := by apply ext_of_isAffine simp only [Scheme.comp_coeBase, TopologicalSpace.Opens.map_comp_obj, TopologicalSpace.Opens.map_top, Scheme.comp_app, Scheme.toSpecΓ_appTop, Scheme.ΓSpecIso_naturality, Category.assoc, Scheme.id_app, ← Iso.eq_inv_comp, Category.comp_id] ext : 1 apply ringHom_ext' · change _ = (CommRingCat.ofHom C ≫ _).hom rw [CommRingCat.hom_comp, RingHom.comp_assoc, CommRingCat.hom_ofHom, eval₂Hom_comp_C, ← CommRingCat.hom_comp, ← CommRingCat.hom_ext_iff, ← cancel_mono (Scheme.ΓSpecIso _).hom] rw [← Scheme.comp_appTop, homOfVector_over, Scheme.comp_appTop] simp only [Category.assoc, Scheme.ΓSpecIso_naturality, CommRingCat.of_carrier, ← Scheme.toSpecΓ_appTop] rw [← Scheme.comp_appTop_assoc, Scheme.isoSpec, asIso_inv, IsIso.hom_inv_id] simp · intro i rw [CommRingCat.comp_apply, ConcreteCategory.hom_ofHom, coe_eval₂Hom] simp only [eval₂_X] exact homOfVector_appTop_coord _ _ _ @[simp]
def
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
isoOfIsAffine
The affine space over an affine base is isomorphic to the spectrum of the polynomial ring. Also see `AffineSpace.SpecIso`.
isoOfIsAffine_hom_appTop [IsAffine S] : (isoOfIsAffine n S).hom.appTop = (Scheme.ΓSpecIso _).hom ≫ CommRingCat.ofHom (eval₂Hom ((𝔸(n; S) ↘ S).appTop).hom (coord S)) := by simp [isoOfIsAffine_hom] @[simp]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
isoOfIsAffine_hom_appTop
null
isoOfIsAffine_inv_appTop_coord [IsAffine S] (i) : (isoOfIsAffine n S).inv.appTop (coord _ i) = (Scheme.ΓSpecIso (.of _)).inv (.X i) := homOfVector_appTop_coord _ _ _ @[reassoc (attr := simp)]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
isoOfIsAffine_inv_appTop_coord
null
isoOfIsAffine_inv_over [IsAffine S] : (isoOfIsAffine n S).inv ≫ 𝔸(n; S) ↘ S = Spec.map (CommRingCat.ofHom C) ≫ S.isoSpec.inv := pullback.lift_fst _ _ _
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
isoOfIsAffine_inv_over
null
SpecIso (R : CommRingCat.{max u v}) : 𝔸(n; Spec R) ≅ Spec(MvPolynomial n R) := isoOfIsAffine _ _ ≪≫ Scheme.Spec.mapIso (MvPolynomial.mapEquiv _ (Scheme.ΓSpecIso R).symm.commRingCatIsoToRingEquiv).toCommRingCatIso.op @[simp]
def
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
SpecIso
The affine space over an affine base is isomorphic to the spectrum of the polynomial ring.
SpecIso_hom_appTop (R : CommRingCat.{max u v}) : (SpecIso n R).hom.appTop = (Scheme.ΓSpecIso _).hom ≫ CommRingCat.ofHom (eval₂Hom ((Scheme.ΓSpecIso _).inv ≫ (𝔸(n; Spec R) ↘ Spec R).appTop).hom (coord (Spec R))) := by simp only [SpecIso, Iso.trans_hom, Functor.mapIso_hom, Iso.op_hom, Scheme.Spec_map, Quiver.Hom.unop_op, TopologicalSpace.Opens.map_top, Scheme.comp_app, isoOfIsAffine_hom_appTop, Scheme.ΓSpecIso_naturality_assoc] congr 1 ext : 1 apply ringHom_ext' · ext; simp · simp @[simp]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
SpecIso_hom_appTop
null
SpecIso_inv_appTop_coord (R : CommRingCat.{max u v}) (i) : (SpecIso n R).inv.appTop (coord _ i) = (Scheme.ΓSpecIso (.of _)).inv (.X i) := by simp only [SpecIso, Iso.trans_inv, Functor.mapIso_inv, Iso.op_inv, Scheme.Spec_map, Quiver.Hom.unop_op, TopologicalSpace.Opens.map_top, Scheme.comp_app, CommRingCat.comp_apply] rw [isoOfIsAffine_inv_appTop_coord, ← CommRingCat.comp_apply, ← Scheme.ΓSpecIso_inv_naturality, CommRingCat.comp_apply] congr 1 exact map_X _ _ @[reassoc (attr := simp)]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
SpecIso_inv_appTop_coord
null
SpecIso_inv_over (R : CommRingCat.{max u v}) : (SpecIso n R).inv ≫ 𝔸(n; Spec R) ↘ Spec R = Spec.map (CommRingCat.ofHom C) := by simp only [SpecIso, Iso.trans_inv, Functor.mapIso_inv, Iso.op_inv, Scheme.Spec_map, Quiver.Hom.unop_op, Category.assoc, isoOfIsAffine_inv_over, Scheme.isoSpec_Spec_inv, ← Spec.map_comp] congr 1 rw [Iso.inv_comp_eq] ext : 2 exact map_C _ _
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
SpecIso_inv_over
null
map {S T : Scheme.{max u v}} (f : S ⟶ T) : 𝔸(n; S) ⟶ 𝔸(n; T) := homOfVector (𝔸(n; S) ↘ S ≫ f) (coord S) @[reassoc (attr := simp)]
def
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
map
`𝔸(n; S)` is functorial w.r.t. `S`.
map_over {S T : Scheme.{max u v}} (f : S ⟶ T) : map n f ≫ 𝔸(n; T) ↘ T = 𝔸(n; S) ↘ S ≫ f := pullback.lift_fst _ _ _ @[simp]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
map_over
null
map_appTop_coord {S T : Scheme.{max u v}} (f : S ⟶ T) (i) : (map n f).appTop (coord T i) = coord S i := homOfVector_appTop_coord _ _ _ @[reassoc (attr := simp)]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
map_appTop_coord
null
map_toSpecMvPoly {S T : Scheme.{max u v}} (f : S ⟶ T) : map n f ≫ toSpecMvPoly n T = toSpecMvPoly n S := by apply (toSpecMvPolyIntEquiv _).injective ext i rw [toSpecMvPolyIntEquiv_comp, ← coord, map_appTop_coord, coord] @[simp]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
map_toSpecMvPoly
null
map_id : map n (𝟙 S) = 𝟙 𝔸(n; S) := by ext1 <;> simp @[reassoc, simp]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
map_id
null
map_comp {S S' S'' : Scheme} (f : S ⟶ S') (g : S' ⟶ S'') : map n (f ≫ g) = map n f ≫ map n g := by ext1 · simp · simp
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
map_comp
null
map_Spec_map {R S : CommRingCat.{max u v}} (φ : R ⟶ S) : map n (Spec.map φ) = (SpecIso n S).hom ≫ Spec.map (CommRingCat.ofHom (MvPolynomial.map φ.hom)) ≫ (SpecIso n R).inv := by rw [← Iso.inv_comp_eq] ext1 · simp only [map_over, Category.assoc, SpecIso_inv_over, SpecIso_inv_over_assoc, ← Spec.map_comp, ← CommRingCat.ofHom_comp] rw [map_comp_C, CommRingCat.ofHom_comp, CommRingCat.ofHom_hom] · simp only [TopologicalSpace.Opens.map_top, Scheme.comp_app, CommRingCat.comp_apply] conv_lhs => enter[2]; tactic => exact map_appTop_coord _ _ conv_rhs => enter[2]; tactic => exact SpecIso_inv_appTop_coord _ _ rw [SpecIso_inv_appTop_coord, ← CommRingCat.comp_apply, ← Scheme.ΓSpecIso_inv_naturality, CommRingCat.comp_apply, ConcreteCategory.hom_ofHom, map_X]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
map_Spec_map
null
mapSpecMap {R S : CommRingCat.{max u v}} (φ : R ⟶ S) : Arrow.mk (map n (Spec.map φ)) ≅ Arrow.mk (Spec.map (CommRingCat.ofHom (MvPolynomial.map (σ := n) φ.hom))) := Arrow.isoMk (SpecIso n S) (SpecIso n R) (by have := (SpecIso n R).inv_hom_id; simp [map_Spec_map])
def
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
mapSpecMap
The map between affine spaces over affine bases is isomorphic to the natural map between polynomial rings.
isPullback_map {S T : Scheme.{max u v}} (f : S ⟶ T) : IsPullback (map n f) (𝔸(n; S) ↘ S) (𝔸(n; T) ↘ T) f := by refine (IsPullback.paste_horiz_iff (.flip <| .of_hasPullback _ _) (map_over f)).mp ?_ simp only [terminal.comp_from, ] convert (IsPullback.of_hasPullback _ _).flip rw [← toSpecMvPoly, ← toSpecMvPoly, map_toSpecMvPoly]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
isPullback_map
null
reindex {n m : Type v} (i : m → n) (S : Scheme.{max u v}) : 𝔸(n; S) ⟶ 𝔸(m; S) := homOfVector (𝔸(n; S) ↘ S) (coord S ∘ i) @[simp, reassoc]
def
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
reindex
`𝔸(n; S)` is functorial w.r.t. `n`.
reindex_over {n m : Type v} (i : m → n) (S : Scheme.{max u v}) : reindex i S ≫ 𝔸(m; S) ↘ S = 𝔸(n; S) ↘ S := pullback.lift_fst _ _ _ @[simp]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
reindex_over
null
reindex_appTop_coord {n m : Type v} (i : m → n) (S : Scheme.{max u v}) (j : m) : (reindex i S).appTop (coord S j) = coord S (i j) := homOfVector_appTop_coord _ _ _ @[simp]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
reindex_appTop_coord
null
reindex_id : reindex id S = 𝟙 𝔸(n; S) := by ext1 <;> simp @[simp, reassoc]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
reindex_id
null
reindex_comp {n₁ n₂ n₃ : Type v} (i : n₁ → n₂) (j : n₂ → n₃) (S : Scheme.{max u v}) : reindex (j ∘ i) S = reindex j S ≫ reindex i S := by have H₁ : reindex (j ∘ i) S ≫ 𝔸(n₁; S) ↘ S = (reindex j S ≫ reindex i S) ≫ 𝔸(n₁; S) ↘ S := by simp have H₂ (k) : (reindex (j ∘ i) S).appTop (coord S k) = (reindex j S).appTop ((reindex i S).appTop (coord S k)) := by rw [reindex_appTop_coord, reindex_appTop_coord, reindex_appTop_coord] rfl exact hom_ext H₁ H₂ @[reassoc (attr := simp)]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
reindex_comp
null
map_reindex {n₁ n₂ : Type v} (i : n₁ → n₂) {S T : Scheme.{max u v}} (f : S ⟶ T) : map n₂ f ≫ reindex i T = reindex i S ≫ map n₁ f := by apply hom_ext <;> simp
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
map_reindex
null
@[simps] functor : (Type v)ᵒᵖ ⥤ Scheme.{max u v} ⥤ Scheme.{max u v} where obj n := { obj := AffineSpace n.unop, map := map n.unop, map_id := map_id, map_comp := map_comp } map {n m} i := { app := reindex i.unop, naturality := fun _ _ ↦ map_reindex i.unop } map_id n := by ext: 2; exact reindex_id _ map_comp f g := by ext: 2; dsimp; exact reindex_comp _ _ _
def
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
functor
The affine space as a functor.
isOpenMap_over : IsOpenMap (𝔸(n; S) ↘ S).base := by change topologically @IsOpenMap _ wlog hS : ∃ R, S = Spec R · refine (IsLocalAtTarget.iff_of_openCover (P := topologically @IsOpenMap) S.affineCover).mpr ?_ intro i have := this (n := n) (S.affineCover.X i) ⟨_, rfl⟩ rwa [← (isPullback_map (n := n) (S.affineCover.f i)).isoPullback_hom_snd, MorphismProperty.cancel_left_of_respectsIso (P := topologically @IsOpenMap)] at this obtain ⟨R, rfl⟩ := hS rw [← MorphismProperty.cancel_left_of_respectsIso (P := topologically @IsOpenMap) (SpecIso n R).inv, SpecIso_inv_over] exact MvPolynomial.isOpenMap_comap_C open MorphismProperty in
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
isOpenMap_over
null
isIntegralHom_over_iff_isEmpty : IsIntegralHom (𝔸(n; S) ↘ S) ↔ IsEmpty S ∨ IsEmpty n := by constructor · intro h cases isEmpty_or_nonempty S · exact .inl ‹_› refine .inr ?_ wlog hS : ∃ R, S = Spec R · obtain ⟨x⟩ := ‹Nonempty S› obtain ⟨y, hy⟩ := S.affineCover.covers x exact this (S.affineCover.X _) (MorphismProperty.IsStableUnderBaseChange.of_isPullback (isPullback_map (S.affineCover.f _)) h) ⟨y⟩ ⟨_, rfl⟩ obtain ⟨R, rfl⟩ := hS have : Nontrivial R := (subsingleton_or_nontrivial R).resolve_left fun H ↦ not_isEmpty_of_nonempty (Spec R) (inferInstanceAs (IsEmpty (PrimeSpectrum R))) constructor intro i have := RingHom.toMorphismProperty_respectsIso_iff.mp RingHom.isIntegral_respectsIso.{max u v} rw [← MorphismProperty.cancel_left_of_respectsIso @IsIntegralHom (SpecIso n R).inv, SpecIso_inv_over, HasAffineProperty.iff_of_isAffine (P := @IsIntegralHom)] at h obtain ⟨p : Polynomial R, hp, hp'⟩ := (MorphismProperty.arrow_mk_iso_iff (RingHom.toMorphismProperty RingHom.IsIntegral) (arrowIsoΓSpecOfIsAffine _)).mpr h.2 (X i) have : (rename fun _ ↦ i).comp (pUnitAlgEquiv.{_, v} _).symm.toAlgHom p = 0 := by simp [← hp', ← algebraMap_eq] rw [AlgHom.comp_apply, map_eq_zero_iff _ (rename_injective _ (fun _ _ _ ↦ rfl))] at this simp only [AlgEquiv.toAlgHom_eq_coe, AlgHom.coe_coe, EmbeddingLike.map_eq_zero_iff] at this simp [this] at hp · rintro (_ | _) <;> infer_instance
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
isIntegralHom_over_iff_isEmpty
null
not_isIntegralHom [Nonempty S] [Nonempty n] : ¬ IsIntegralHom (𝔸(n; S) ↘ S) := by simp [isIntegralHom_over_iff_isEmpty]
lemma
AlgebraicGeometry
[ "Mathlib.Algebra.MvPolynomial.Monad", "Mathlib.AlgebraicGeometry.Morphisms.Finite", "Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation", "Mathlib.RingTheory.Spectrum.Prime.Polynomial", "Mathlib.AlgebraicGeometry.PullbackCarrier" ]
Mathlib/AlgebraicGeometry/AffineSpace.lean
not_isIntegralHom
null