fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
tsum_biUnion_le {ι : Type*} (f : α → ℝ≥0∞) (s : Finset ι) (t : ι → Set α) : ∑' x : ⋃ i ∈ s, t i, f x ≤ ∑ i ∈ s, ∑' x : t i, f x := (tsum_biUnion_le_tsum f s.toSet t).trans_eq (Finset.tsum_subtype s fun i => ∑' x : t i, f x)
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_biUnion_le
null
tsum_iUnion_le {ι : Type*} [Fintype ι] (f : α → ℝ≥0∞) (t : ι → Set α) : ∑' x : ⋃ i, t i, f x ≤ ∑ i, ∑' x : t i, f x := by rw [← tsum_fintype] exact tsum_iUnion_le_tsum f t
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_iUnion_le
null
tsum_union_le (f : α → ℝ≥0∞) (s t : Set α) : ∑' x : ↑(s ∪ t), f x ≤ ∑' x : s, f x + ∑' x : t, f x := calc ∑' x : ↑(s ∪ t), f x = ∑' x : ⋃ b, cond b s t, f x := tsum_congr_set_coe _ union_eq_iUnion _ ≤ _ := by simpa using tsum_iUnion_le f (cond · s t) open Classical in
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_union_le
null
tsum_eq_add_tsum_ite {f : β → ℝ≥0∞} (b : β) : ∑' x, f x = f b + ∑' x, ite (x = b) 0 (f x) := ENNReal.summable.tsum_eq_add_tsum_ite' b
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_eq_add_tsum_ite
null
tsum_add_one_eq_top {f : ℕ → ℝ≥0∞} (hf : ∑' n, f n = ∞) (hf0 : f 0 ≠ ∞) : ∑' n, f (n + 1) = ∞ := by rw [tsum_eq_zero_add' ENNReal.summable, add_eq_top] at hf exact hf.resolve_left hf0
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_add_one_eq_top
null
finite_const_le_of_tsum_ne_top {ι : Type*} {a : ι → ℝ≥0∞} (tsum_ne_top : ∑' i, a i ≠ ∞) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) : { i : ι | ε ≤ a i }.Finite := by by_contra h have := Infinite.to_subtype h refine tsum_ne_top (top_unique ?_) calc ∞ = ∑' _ : { i | ε ≤ a i }, ε := (tsum_const_eq_top_of_ne_zero ε_ne_zero).symm _ ≤ ∑' i, a i := ENNReal.summable.tsum_le_tsum_of_inj (↑) Subtype.val_injective (fun _ _ => zero_le _) (fun i => i.2) ENNReal.summable
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
finite_const_le_of_tsum_ne_top
A sum of extended nonnegative reals which is finite can have only finitely many terms above any positive threshold.
finset_card_const_le_le_of_tsum_le {ι : Type*} {a : ι → ℝ≥0∞} {c : ℝ≥0∞} (c_ne_top : c ≠ ∞) (tsum_le_c : ∑' i, a i ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0) : ∃ hf : { i : ι | ε ≤ a i }.Finite, #hf.toFinset ≤ c / ε := by have hf : { i : ι | ε ≤ a i }.Finite := finite_const_le_of_tsum_ne_top (ne_top_of_le_ne_top c_ne_top tsum_le_c) ε_ne_zero refine ⟨hf, (ENNReal.le_div_iff_mul_le (.inl ε_ne_zero) (.inr c_ne_top)).2 ?_⟩ calc #hf.toFinset * ε = ∑ _i ∈ hf.toFinset, ε := by rw [Finset.sum_const, nsmul_eq_mul] _ ≤ ∑ i ∈ hf.toFinset, a i := Finset.sum_le_sum fun i => hf.mem_toFinset.1 _ ≤ ∑' i, a i := ENNReal.sum_le_tsum _ _ ≤ c := tsum_le_c
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
finset_card_const_le_le_of_tsum_le
Markov's inequality for `Finset.card` and `tsum` in `ℝ≥0∞`.
tsum_fiberwise (f : β → ℝ≥0∞) (g : β → γ) : ∑' x, ∑' b : g ⁻¹' {x}, f b = ∑' i, f i := by apply HasSum.tsum_eq let equiv := Equiv.sigmaFiberEquiv g apply (equiv.hasSum_iff.mpr ENNReal.summable.hasSum).sigma exact fun _ ↦ ENNReal.summable.hasSum_iff.mpr rfl
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_fiberwise
null
tendsto_toReal_iff {ι} {fi : Filter ι} {f : ι → ℝ≥0∞} (hf : ∀ i, f i ≠ ∞) {x : ℝ≥0∞} (hx : x ≠ ∞) : Tendsto (fun n => (f n).toReal) fi (𝓝 x.toReal) ↔ Tendsto f fi (𝓝 x) := by lift f to ι → ℝ≥0 using hf lift x to ℝ≥0 using hx simp [tendsto_coe]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_toReal_iff
null
tsum_coe_ne_top_iff_summable_coe {f : α → ℝ≥0} : (∑' a, (f a : ℝ≥0∞)) ≠ ∞ ↔ Summable fun a => (f a : ℝ) := by rw [NNReal.summable_coe] exact tsum_coe_ne_top_iff_summable
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_coe_ne_top_iff_summable_coe
null
tsum_coe_eq_top_iff_not_summable_coe {f : α → ℝ≥0} : (∑' a, (f a : ℝ≥0∞)) = ∞ ↔ ¬Summable fun a => (f a : ℝ) := tsum_coe_ne_top_iff_summable_coe.not_right
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_coe_eq_top_iff_not_summable_coe
null
hasSum_toReal {f : α → ℝ≥0∞} (hsum : ∑' x, f x ≠ ∞) : HasSum (fun x => (f x).toReal) (∑' x, (f x).toReal) := by lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hsum simp only [coe_toReal, ← NNReal.coe_tsum, NNReal.hasSum_coe] exact (tsum_coe_ne_top_iff_summable.1 hsum).hasSum
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
hasSum_toReal
null
summable_toReal {f : α → ℝ≥0∞} (hsum : ∑' x, f x ≠ ∞) : Summable fun x => (f x).toReal := (hasSum_toReal hsum).summable
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
summable_toReal
null
tsum_eq_toNNReal_tsum {f : β → ℝ≥0} : ∑' b, f b = (∑' b, (f b : ℝ≥0∞)).toNNReal := by by_cases h : Summable f · rw [← ENNReal.coe_tsum h, ENNReal.toNNReal_coe] · have A := tsum_eq_zero_of_not_summable h simp only [← ENNReal.tsum_coe_ne_top_iff_summable, Classical.not_not] at h simp only [h, ENNReal.toNNReal_top, A]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_eq_toNNReal_tsum
null
exists_le_hasSum_of_le {f g : β → ℝ≥0} {r : ℝ≥0} (hgf : ∀ b, g b ≤ f b) (hfr : HasSum f r) : ∃ p ≤ r, HasSum g p := have : (∑' b, (g b : ℝ≥0∞)) ≤ r := by refine hasSum_le (fun b => ?_) ENNReal.summable.hasSum (ENNReal.hasSum_coe.2 hfr) exact ENNReal.coe_le_coe.2 (hgf _) let ⟨p, Eq, hpr⟩ := ENNReal.le_coe_iff.1 this ⟨p, hpr, ENNReal.hasSum_coe.1 <| Eq ▸ ENNReal.summable.hasSum⟩
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
exists_le_hasSum_of_le
Comparison test of convergence of `ℝ≥0`-valued series.
summable_of_le {f g : β → ℝ≥0} (hgf : ∀ b, g b ≤ f b) : Summable f → Summable g | ⟨_r, hfr⟩ => let ⟨_p, _, hp⟩ := exists_le_hasSum_of_le hgf hfr hp.summable
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
summable_of_le
Comparison test of convergence of `ℝ≥0`-valued series.
_root_.Summable.countable_support_nnreal (f : α → ℝ≥0) (h : Summable f) : f.support.Countable := by rw [← NNReal.summable_coe] at h simpa [support] using h.countable_support
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
_root_.Summable.countable_support_nnreal
Summable non-negative functions have countable support
hasSum_iff_tendsto_nat {f : ℕ → ℝ≥0} {r : ℝ≥0} : HasSum f r ↔ Tendsto (fun n : ℕ => ∑ i ∈ Finset.range n, f i) atTop (𝓝 r) := by rw [← ENNReal.hasSum_coe, ENNReal.hasSum_iff_tendsto_nat] simp only [← ENNReal.coe_finset_sum] exact ENNReal.tendsto_coe
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
hasSum_iff_tendsto_nat
A series of non-negative real numbers converges to `r` in the sense of `HasSum` if and only if the sequence of partial sum converges to `r`.
not_summable_iff_tendsto_nat_atTop {f : ℕ → ℝ≥0} : ¬Summable f ↔ Tendsto (fun n : ℕ => ∑ i ∈ Finset.range n, f i) atTop atTop := by constructor · intro h refine ((tendsto_of_monotone ?_).resolve_right h).comp ?_ exacts [Finset.sum_mono_set _, tendsto_finset_range] · rintro hnat ⟨r, hr⟩ exact not_tendsto_nhds_of_tendsto_atTop hnat _ (hasSum_iff_tendsto_nat.1 hr)
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
not_summable_iff_tendsto_nat_atTop
null
summable_iff_not_tendsto_nat_atTop {f : ℕ → ℝ≥0} : Summable f ↔ ¬Tendsto (fun n : ℕ => ∑ i ∈ Finset.range n, f i) atTop atTop := by rw [← not_iff_not, Classical.not_not, not_summable_iff_tendsto_nat_atTop]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
summable_iff_not_tendsto_nat_atTop
null
summable_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0} (h : ∀ n, ∑ i ∈ Finset.range n, f i ≤ c) : Summable f := by refine summable_iff_not_tendsto_nat_atTop.2 fun H => ?_ rcases exists_lt_of_tendsto_atTop H 0 c with ⟨n, -, hn⟩ exact lt_irrefl _ (hn.trans_le (h n))
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
summable_of_sum_range_le
null
tsum_le_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0} (h : ∀ n, ∑ i ∈ Finset.range n, f i ≤ c) : ∑' n, f n ≤ c := (summable_of_sum_range_le h).tsum_le_of_sum_range_le h
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_le_of_sum_range_le
null
tsum_comp_le_tsum_of_inj {β : Type*} {f : α → ℝ≥0} (hf : Summable f) {i : β → α} (hi : Function.Injective i) : (∑' x, f (i x)) ≤ ∑' x, f x := (summable_comp_injective hf hi).tsum_le_tsum_of_inj i hi (fun _ _ => zero_le _) (fun _ => le_rfl) hf
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_comp_le_tsum_of_inj
null
summable_sigma {β : α → Type*} {f : (Σ x, β x) → ℝ≥0} : Summable f ↔ (∀ x, Summable fun y => f ⟨x, y⟩) ∧ Summable fun x => ∑' y, f ⟨x, y⟩ := by constructor · simp only [← NNReal.summable_coe, NNReal.coe_tsum] exact fun h => ⟨h.sigma_factor, h.sigma⟩ · rintro ⟨h₁, h₂⟩ simpa only [← ENNReal.tsum_coe_ne_top_iff_summable, ENNReal.tsum_sigma', ENNReal.coe_tsum (h₁ _)] using h₂
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
summable_sigma
null
indicator_summable {f : α → ℝ≥0} (hf : Summable f) (s : Set α) : Summable (s.indicator f) := by classical refine NNReal.summable_of_le (fun a => le_trans (le_of_eq (s.indicator_apply f a)) ?_) hf split_ifs · exact le_refl (f a) · exact zero_le_coe
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
indicator_summable
null
tsum_indicator_ne_zero {f : α → ℝ≥0} (hf : Summable f) {s : Set α} (h : ∃ a ∈ s, f a ≠ 0) : (∑' x, (s.indicator f) x) ≠ 0 := fun h' => let ⟨a, ha, hap⟩ := h hap ((Set.indicator_apply_eq_self.mpr (absurd ha)).symm.trans ((indicator_summable hf s).tsum_eq_zero_iff.1 h' a)) open Finset
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_indicator_ne_zero
null
tendsto_sum_nat_add (f : ℕ → ℝ≥0) : Tendsto (fun i => ∑' k, f (k + i)) atTop (𝓝 0) := by rw [← tendsto_coe] convert _root_.tendsto_sum_nat_add fun i => (f i : ℝ) norm_cast nonrec theorem hasSum_lt {f g : α → ℝ≥0} {sf sg : ℝ≥0} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i) (hf : HasSum f sf) (hg : HasSum g sg) : sf < sg := by have A : ∀ a : α, (f a : ℝ) ≤ g a := fun a => NNReal.coe_le_coe.2 (h a) have : (sf : ℝ) < sg := hasSum_lt A (NNReal.coe_lt_coe.2 hi) (hasSum_coe.2 hf) (hasSum_coe.2 hg) exact NNReal.coe_lt_coe.1 this @[mono]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_sum_nat_add
For `f : ℕ → ℝ≥0`, then `∑' k, f (k + i)` tends to zero. This does not require a summability assumption on `f`, as otherwise all sums are zero.
hasSum_strict_mono {f g : α → ℝ≥0} {sf sg : ℝ≥0} (hf : HasSum f sf) (hg : HasSum g sg) (h : f < g) : sf < sg := let ⟨hle, _i, hi⟩ := Pi.lt_def.mp h hasSum_lt hle hi hf hg
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
hasSum_strict_mono
null
tsum_lt_tsum {f g : α → ℝ≥0} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i) (hg : Summable g) : ∑' n, f n < ∑' n, g n := hasSum_lt h hi (summable_of_le h hg).hasSum hg.hasSum @[mono]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_lt_tsum
null
tsum_strict_mono {f g : α → ℝ≥0} (hg : Summable g) (h : f < g) : ∑' n, f n < ∑' n, g n := let ⟨hle, _i, hi⟩ := Pi.lt_def.mp h tsum_lt_tsum hle hi hg
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_strict_mono
null
tsum_pos {g : α → ℝ≥0} (hg : Summable g) (i : α) (hi : 0 < g i) : 0 < ∑' b, g b := by rw [← tsum_zero] exact tsum_lt_tsum (fun a => zero_le _) hi hg open Classical in
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_pos
null
tsum_eq_add_tsum_ite {f : α → ℝ≥0} (hf : Summable f) (i : α) : ∑' x, f x = f i + ∑' x, ite (x = i) 0 (f x) := by refine (NNReal.summable_of_le (fun i' => ?_) hf).tsum_eq_add_tsum_ite' i rw [Function.update_apply] split_ifs <;> simp only [zero_le', le_rfl]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_eq_add_tsum_ite
null
tsum_toNNReal_eq {f : α → ℝ≥0∞} (hf : ∀ a, f a ≠ ∞) : (∑' a, f a).toNNReal = ∑' a, (f a).toNNReal := (congr_arg ENNReal.toNNReal (tsum_congr fun x => (coe_toNNReal (hf x)).symm)).trans NNReal.tsum_eq_toNNReal_tsum.symm
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_toNNReal_eq
null
tsum_toReal_eq {f : α → ℝ≥0∞} (hf : ∀ a, f a ≠ ∞) : (∑' a, f a).toReal = ∑' a, (f a).toReal := by simp only [ENNReal.toReal, tsum_toNNReal_eq hf, NNReal.coe_tsum]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_toReal_eq
null
tendsto_sum_nat_add (f : ℕ → ℝ≥0∞) (hf : ∑' i, f i ≠ ∞) : Tendsto (fun i => ∑' k, f (k + i)) atTop (𝓝 0) := by lift f to ℕ → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hf replace hf : Summable f := tsum_coe_ne_top_iff_summable.1 hf simp only [← ENNReal.coe_tsum, NNReal.summable_nat_add _ hf, ← ENNReal.coe_zero] exact mod_cast NNReal.tendsto_sum_nat_add f
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_sum_nat_add
null
tsum_le_of_sum_range_le {f : ℕ → ℝ≥0∞} {c : ℝ≥0∞} (h : ∀ n, ∑ i ∈ Finset.range n, f i ≤ c) : ∑' n, f n ≤ c := ENNReal.summable.tsum_le_of_sum_range_le h
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_le_of_sum_range_le
null
hasSum_lt {f g : α → ℝ≥0∞} {sf sg : ℝ≥0∞} {i : α} (h : ∀ a : α, f a ≤ g a) (hi : f i < g i) (hsf : sf ≠ ∞) (hf : HasSum f sf) (hg : HasSum g sg) : sf < sg := by by_cases hsg : sg = ∞ · exact hsg.symm ▸ lt_of_le_of_ne le_top hsf · have hg' : ∀ x, g x ≠ ∞ := ENNReal.ne_top_of_tsum_ne_top (hg.tsum_eq.symm ▸ hsg) lift f to α → ℝ≥0 using fun x => ne_of_lt (lt_of_le_of_lt (h x) <| lt_of_le_of_ne le_top (hg' x)) lift g to α → ℝ≥0 using hg' lift sf to ℝ≥0 using hsf lift sg to ℝ≥0 using hsg simp only [coe_le_coe, coe_lt_coe] at h hi ⊢ exact NNReal.hasSum_lt h hi (ENNReal.hasSum_coe.1 hf) (ENNReal.hasSum_coe.1 hg)
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
hasSum_lt
null
tsum_lt_tsum {f g : α → ℝ≥0∞} {i : α} (hfi : tsum f ≠ ∞) (h : ∀ a : α, f a ≤ g a) (hi : f i < g i) : ∑' x, f x < ∑' x, g x := hasSum_lt h hi hfi ENNReal.summable.hasSum ENNReal.summable.hasSum
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_lt_tsum
null
tsum_comp_le_tsum_of_inj {β : Type*} {f : α → ℝ} (hf : Summable f) (hn : ∀ a, 0 ≤ f a) {i : β → α} (hi : Function.Injective i) : tsum (f ∘ i) ≤ tsum f := by lift f to α → ℝ≥0 using hn rw [NNReal.summable_coe] at hf simpa only [Function.comp_def, ← NNReal.coe_tsum] using NNReal.tsum_comp_le_tsum_of_inj hf hi
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tsum_comp_le_tsum_of_inj
null
Summable.of_nonneg_of_le {f g : β → ℝ} (hg : ∀ b, 0 ≤ g b) (hgf : ∀ b, g b ≤ f b) (hf : Summable f) : Summable g := by lift f to β → ℝ≥0 using fun b => (hg b).trans (hgf b) lift g to β → ℝ≥0 using hg rw [NNReal.summable_coe] at hf ⊢ exact NNReal.summable_of_le (fun b => NNReal.coe_le_coe.1 (hgf b)) hf
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
Summable.of_nonneg_of_le
Comparison test of convergence of series of non-negative real numbers.
Summable.toNNReal {f : α → ℝ} (hf : Summable f) : Summable fun n => (f n).toNNReal := by apply NNReal.summable_coe.1 refine .of_nonneg_of_le (fun n => NNReal.coe_nonneg _) (fun n => ?_) hf.abs simp only [le_abs_self, Real.coe_toNNReal', max_le_iff, abs_nonneg, and_self_iff]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
Summable.toNNReal
null
Summable.tsum_ofReal_lt_top {f : α → ℝ} (hf : Summable f) : ∑' i, .ofReal (f i) < ∞ := by unfold ENNReal.ofReal rw [lt_top_iff_ne_top, ENNReal.tsum_coe_ne_top_iff_summable] exact hf.toNNReal
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
Summable.tsum_ofReal_lt_top
null
Summable.tsum_ofReal_ne_top {f : α → ℝ} (hf : Summable f) : ∑' i, .ofReal (f i) ≠ ∞ := hf.tsum_ofReal_lt_top.ne
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
Summable.tsum_ofReal_ne_top
null
_root_.Summable.countable_support_ennreal {f : α → ℝ≥0∞} (h : ∑' (i : α), f i ≠ ∞) : f.support.Countable := by lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top h simpa [support] using (ENNReal.tsum_coe_ne_top_iff_summable.1 h).countable_support_nnreal
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
_root_.Summable.countable_support_ennreal
Finitely summable non-negative functions have countable support
hasSum_iff_tendsto_nat_of_nonneg {f : ℕ → ℝ} (hf : ∀ i, 0 ≤ f i) (r : ℝ) : HasSum f r ↔ Tendsto (fun n : ℕ => ∑ i ∈ Finset.range n, f i) atTop (𝓝 r) := by lift f to ℕ → ℝ≥0 using hf simp only [HasSum, ← NNReal.coe_sum, NNReal.tendsto_coe'] exact exists_congr fun hr => NNReal.hasSum_iff_tendsto_nat
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
hasSum_iff_tendsto_nat_of_nonneg
A series of non-negative real numbers converges to `r` in the sense of `HasSum` if and only if the sequence of partial sum converges to `r`.
ENNReal.ofReal_tsum_of_nonneg {f : α → ℝ} (hf_nonneg : ∀ n, 0 ≤ f n) (hf : Summable f) : ENNReal.ofReal (∑' n, f n) = ∑' n, ENNReal.ofReal (f n) := by simp_rw [ENNReal.ofReal, ENNReal.tsum_coe_eq (NNReal.hasSum_real_toNNReal_of_nonneg hf_nonneg hf)]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
ENNReal.ofReal_tsum_of_nonneg
null
edist_ne_top_of_mem_ball {a : β} {r : ℝ≥0∞} (x y : ball a r) : edist x.1 y.1 ≠ ∞ := ne_of_lt <| calc edist x y ≤ edist a x + edist a y := edist_triangle_left x.1 y.1 a _ < r + r := by rw [edist_comm a x, edist_comm a y]; exact ENNReal.add_lt_add x.2 y.2 _ ≤ ∞ := le_top
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
edist_ne_top_of_mem_ball
In an emetric ball, the distance between points is everywhere finite
metricSpaceEMetricBall (a : β) (r : ℝ≥0∞) : MetricSpace (ball a r) := EMetricSpace.toMetricSpace edist_ne_top_of_mem_ball
def
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
metricSpaceEMetricBall
Each ball in an extended metric space gives us a metric space, as the edist is everywhere finite.
nhds_eq_nhds_emetric_ball (a x : β) (r : ℝ≥0∞) (h : x ∈ ball a r) : 𝓝 x = map ((↑) : ball a r → β) (𝓝 ⟨x, h⟩) := (map_nhds_subtype_coe_eq_nhds _ <| IsOpen.mem_nhds EMetric.isOpen_ball h).symm
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
nhds_eq_nhds_emetric_ball
null
tendsto_iff_edist_tendsto_0 {l : Filter β} {f : β → α} {y : α} : Tendsto f l (𝓝 y) ↔ Tendsto (fun x => edist (f x) y) l (𝓝 0) := by simp only [EMetric.nhds_basis_eball.tendsto_right_iff, EMetric.mem_ball, @tendsto_order ℝ≥0∞ β _ _, forall_prop_of_false ENNReal.not_lt_zero, forall_const, true_and]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_iff_edist_tendsto_0
null
EMetric.cauchySeq_iff_le_tendsto_0 [Nonempty β] [SemilatticeSup β] {s : β → α} : CauchySeq s ↔ ∃ b : β → ℝ≥0∞, (∀ n m N : β, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) := EMetric.cauchySeq_iff.trans <| by constructor · intro hs /- `s` is Cauchy sequence. Let `b n` be the diameter of the set `s '' Set.Ici n`. -/ refine ⟨fun N => EMetric.diam (s '' Ici N), fun n m N hn hm => ?_, ?_⟩ · exact EMetric.edist_le_diam_of_mem (mem_image_of_mem _ hn) (mem_image_of_mem _ hm) · refine ENNReal.tendsto_nhds_zero.2 fun ε ε0 => ?_ rcases hs ε ε0 with ⟨N, hN⟩ refine (eventually_ge_atTop N).mono fun n hn => EMetric.diam_le ?_ rintro _ ⟨k, hk, rfl⟩ _ ⟨l, hl, rfl⟩ exact (hN _ (hn.trans hk) _ (hn.trans hl)).le · rintro ⟨b, ⟨b_bound, b_lim⟩⟩ ε εpos have : ∀ᶠ n in atTop, b n < ε := b_lim.eventually (gt_mem_nhds εpos) rcases this.exists with ⟨N, hN⟩ refine ⟨N, fun m hm n hn => ?_⟩ calc edist (s m) (s n) ≤ b N := b_bound m n N hm hn _ < ε := hN
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
EMetric.cauchySeq_iff_le_tendsto_0
Yet another metric characterization of Cauchy sequences on integers. This one is often the most efficient.
continuous_of_le_add_edist {f : α → ℝ≥0∞} (C : ℝ≥0∞) (hC : C ≠ ∞) (h : ∀ x y, f x ≤ f y + C * edist x y) : Continuous f := by refine continuous_iff_continuousAt.2 fun x => ENNReal.tendsto_nhds_of_Icc fun ε ε0 => ?_ rcases ENNReal.exists_nnreal_pos_mul_lt hC ε0.ne' with ⟨δ, δ0, hδ⟩ rw [mul_comm] at hδ filter_upwards [EMetric.closedBall_mem_nhds x (ENNReal.coe_pos.2 δ0)] with y hy refine ⟨tsub_le_iff_right.2 <| (h x y).trans ?_, (h y x).trans ?_⟩ <;> refine add_le_add_left (le_trans (mul_le_mul_left' ?_ _) hδ.le) _ exacts [EMetric.mem_closedBall'.1 hy, EMetric.mem_closedBall.1 hy]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
continuous_of_le_add_edist
null
continuous_edist : Continuous fun p : α × α => edist p.1 p.2 := by apply continuous_of_le_add_edist 2 (by decide) rintro ⟨x, y⟩ ⟨x', y'⟩ calc edist x y ≤ edist x x' + edist x' y' + edist y' y := edist_triangle4 _ _ _ _ _ = edist x' y' + (edist x x' + edist y y') := by simp only [edist_comm]; ac_rfl _ ≤ edist x' y' + (edist (x, y) (x', y') + edist (x, y) (x', y')) := by gcongr <;> apply_rules [le_max_left, le_max_right] _ = edist x' y' + 2 * edist (x, y) (x', y') := by rw [← mul_two, mul_comm] @[continuity, fun_prop]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
continuous_edist
null
Continuous.edist [TopologicalSpace β] {f g : β → α} (hf : Continuous f) (hg : Continuous g) : Continuous fun b => edist (f b) (g b) := continuous_edist.comp (hf.prodMk hg :)
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
Continuous.edist
null
Filter.Tendsto.edist {f g : β → α} {x : Filter β} {a b : α} (hf : Tendsto f x (𝓝 a)) (hg : Tendsto g x (𝓝 b)) : Tendsto (fun x => edist (f x) (g x)) x (𝓝 (edist a b)) := (continuous_edist.tendsto (a, b)).comp (hf.prodMk_nhds hg)
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
Filter.Tendsto.edist
null
cauchySeq_of_edist_le_of_summable {f : ℕ → α} (d : ℕ → ℝ≥0) (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : Summable d) : CauchySeq f := by refine EMetric.cauchySeq_iff_NNReal.2 fun ε εpos ↦ ?_ replace hd : CauchySeq fun n : ℕ ↦ ∑ x ∈ Finset.range n, d x := let ⟨_, H⟩ := hd H.tendsto_sum_nat.cauchySeq refine (Metric.cauchySeq_iff'.1 hd ε (NNReal.coe_pos.2 εpos)).imp fun N hN n hn ↦ ?_ specialize hN n hn rw [dist_nndist, NNReal.nndist_eq, ← Finset.sum_range_add_sum_Ico _ hn, add_tsub_cancel_left, NNReal.coe_lt_coe, max_lt_iff] at hN rw [edist_comm] refine lt_of_le_of_lt (edist_le_Ico_sum_of_edist_le hn fun _ _ ↦ hf _) ?_ exact mod_cast hN.1
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
cauchySeq_of_edist_le_of_summable
If the extended distance between consecutive points of a sequence is estimated by a summable series of `NNReal`s, then the original sequence is a Cauchy sequence.
cauchySeq_of_edist_le_of_tsum_ne_top {f : ℕ → α} (d : ℕ → ℝ≥0∞) (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : tsum d ≠ ∞) : CauchySeq f := by lift d to ℕ → NNReal using fun i => ENNReal.ne_top_of_tsum_ne_top hd i rw [ENNReal.tsum_coe_ne_top_iff_summable] at hd exact cauchySeq_of_edist_le_of_summable d hf hd
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
cauchySeq_of_edist_le_of_tsum_ne_top
null
EMetric.isClosed_closedBall {a : α} {r : ℝ≥0∞} : IsClosed (closedBall a r) := isClosed_le (continuous_id.edist continuous_const) continuous_const @[simp]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
EMetric.isClosed_closedBall
null
EMetric.diam_closure (s : Set α) : diam (closure s) = diam s := by refine le_antisymm (diam_le fun x hx y hy => ?_) (diam_mono subset_closure) have : edist x y ∈ closure (Iic (diam s)) := map_mem_closure₂ continuous_edist hx hy fun x hx y hy => edist_le_diam_of_mem hx hy rwa [closure_Iic] at this @[simp]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
EMetric.diam_closure
null
Metric.diam_closure {α : Type*} [PseudoMetricSpace α] (s : Set α) : Metric.diam (closure s) = diam s := by simp only [Metric.diam, EMetric.diam_closure]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
Metric.diam_closure
null
isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0) (s : Set α) : IsClosed { f : α → β | LipschitzOnWith K f s } := by simp only [LipschitzOnWith, setOf_forall] refine isClosed_biInter fun x _ => isClosed_biInter fun y _ => isClosed_le ?_ ?_ exacts [.edist (continuous_apply x) (continuous_apply y), continuous_const]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
isClosed_setOf_lipschitzOnWith
null
isClosed_setOf_lipschitzWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0) : IsClosed { f : α → β | LipschitzWith K f } := by simp only [← lipschitzOnWith_univ, isClosed_setOf_lipschitzOnWith]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
isClosed_setOf_lipschitzWith
null
ediam_eq {s : Set ℝ} (h : Bornology.IsBounded s) : EMetric.diam s = ENNReal.ofReal (sSup s - sInf s) := by rcases eq_empty_or_nonempty s with (rfl | hne) · simp refine le_antisymm (Metric.ediam_le_of_forall_dist_le fun x hx y hy => ?_) ?_ · exact Real.dist_le_of_mem_Icc (h.subset_Icc_sInf_sSup hx) (h.subset_Icc_sInf_sSup hy) · apply ENNReal.ofReal_le_of_le_toReal rw [← Metric.diam, ← Metric.diam_closure] calc sSup s - sInf s ≤ dist (sSup s) (sInf s) := le_abs_self _ _ ≤ Metric.diam (closure s) := dist_le_diam_of_mem h.closure (csSup_mem_closure hne h.bddAbove) (csInf_mem_closure hne h.bddBelow)
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
ediam_eq
For a bounded set `s : Set ℝ`, its `EMetric.diam` is equal to `sSup s - sInf s` reinterpreted as `ℝ≥0∞`.
diam_eq {s : Set ℝ} (h : Bornology.IsBounded s) : Metric.diam s = sSup s - sInf s := by rw [Metric.diam, Real.ediam_eq h, ENNReal.toReal_ofReal] exact sub_nonneg.2 (Real.sInf_le_sSup s h.bddBelow h.bddAbove) @[simp]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
diam_eq
For a bounded set `s : Set ℝ`, its `Metric.diam` is equal to `sSup s - sInf s`.
ediam_Ioo (a b : ℝ) : EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a) := by rcases le_or_gt b a with (h | h) · simp [h] · rw [Real.ediam_eq (isBounded_Ioo _ _), csSup_Ioo h, csInf_Ioo h] @[simp]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
ediam_Ioo
null
ediam_Icc (a b : ℝ) : EMetric.diam (Icc a b) = ENNReal.ofReal (b - a) := by rcases le_or_gt a b with (h | h) · rw [Real.ediam_eq (isBounded_Icc _ _), csSup_Icc h, csInf_Icc h] · simp [h, h.le] @[simp]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
ediam_Icc
null
ediam_Ico (a b : ℝ) : EMetric.diam (Ico a b) = ENNReal.ofReal (b - a) := le_antisymm (ediam_Icc a b ▸ diam_mono Ico_subset_Icc_self) (ediam_Ioo a b ▸ diam_mono Ioo_subset_Ico_self) @[simp]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
ediam_Ico
null
ediam_Ioc (a b : ℝ) : EMetric.diam (Ioc a b) = ENNReal.ofReal (b - a) := le_antisymm (ediam_Icc a b ▸ diam_mono Ioc_subset_Icc_self) (ediam_Ioo a b ▸ diam_mono Ioo_subset_Ioc_self)
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
ediam_Ioc
null
diam_Icc {a b : ℝ} (h : a ≤ b) : Metric.diam (Icc a b) = b - a := by simp [Metric.diam, ENNReal.toReal_ofReal (sub_nonneg.2 h)]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
diam_Icc
null
diam_Ico {a b : ℝ} (h : a ≤ b) : Metric.diam (Ico a b) = b - a := by simp [Metric.diam, ENNReal.toReal_ofReal (sub_nonneg.2 h)]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
diam_Ico
null
diam_Ioc {a b : ℝ} (h : a ≤ b) : Metric.diam (Ioc a b) = b - a := by simp [Metric.diam, ENNReal.toReal_ofReal (sub_nonneg.2 h)]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
diam_Ioc
null
diam_Ioo {a b : ℝ} (h : a ≤ b) : Metric.diam (Ioo a b) = b - a := by simp [Metric.diam, ENNReal.toReal_ofReal (sub_nonneg.2 h)]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
diam_Ioo
null
edist_le_tsum_of_edist_le_of_tendsto {f : ℕ → α} (d : ℕ → ℝ≥0∞) (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) {a : α} (ha : Tendsto f atTop (𝓝 a)) (n : ℕ) : edist (f n) a ≤ ∑' m, d (n + m) := by refine le_of_tendsto (tendsto_const_nhds.edist ha) (mem_atTop_sets.2 ⟨n, fun m hnm => ?_⟩) change edist _ _ ≤ _ refine le_trans (edist_le_Ico_sum_of_edist_le hnm fun _ _ => hf _) ?_ rw [Finset.sum_Ico_eq_sum_range] exact ENNReal.summable.sum_le_tsum _ (fun _ _ => zero_le _)
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
edist_le_tsum_of_edist_le_of_tendsto
If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ℝ≥0∞`, then the distance from `f n` to the limit is bounded by `∑'_{k=n}^∞ d k`.
edist_le_tsum_of_edist_le_of_tendsto₀ {f : ℕ → α} (d : ℕ → ℝ≥0∞) (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) {a : α} (ha : Tendsto f atTop (𝓝 a)) : edist (f 0) a ≤ ∑' m, d m := by simpa using edist_le_tsum_of_edist_le_of_tendsto d hf ha 0
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
edist_le_tsum_of_edist_le_of_tendsto₀
If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ℝ≥0∞`, then the distance from `f 0` to the limit is bounded by `∑'_{k=0}^∞ d k`.
noncomputable truncateToReal (t x : ℝ≥0∞) : ℝ := (min t x).toReal
def
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
truncateToReal
With truncation level `t`, the truncated cast `ℝ≥0∞ → ℝ` is given by `x ↦ (min t x).toReal`. Unlike `ENNReal.toReal`, this cast is continuous and monotone when `t ≠ ∞`.
truncateToReal_eq_toReal {t x : ℝ≥0∞} (t_ne_top : t ≠ ∞) (x_le : x ≤ t) : truncateToReal t x = x.toReal := by have x_lt_top : x < ∞ := lt_of_le_of_lt x_le t_ne_top.lt_top have obs : min t x ≠ ∞ := by simp_all only [ne_eq, min_eq_top, false_and, not_false_eq_true] exact (ENNReal.toReal_eq_toReal obs x_lt_top.ne).mpr (min_eq_right x_le)
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
truncateToReal_eq_toReal
null
truncateToReal_le {t : ℝ≥0∞} (t_ne_top : t ≠ ∞) {x : ℝ≥0∞} : truncateToReal t x ≤ t.toReal := by rw [truncateToReal] gcongr exacts [t_ne_top, min_le_left t x]
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
truncateToReal_le
null
truncateToReal_nonneg {t x : ℝ≥0∞} : 0 ≤ truncateToReal t x := toReal_nonneg
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
truncateToReal_nonneg
null
monotone_truncateToReal {t : ℝ≥0∞} (t_ne_top : t ≠ ∞) : Monotone (truncateToReal t) := by intro x y x_le_y simp only [truncateToReal] gcongr exact ne_top_of_le_ne_top t_ne_top (min_le_left _ _)
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
monotone_truncateToReal
The truncated cast `ENNReal.truncateToReal t : ℝ≥0∞ → ℝ` is monotone when `t ≠ ∞`.
@[fun_prop] continuous_truncateToReal {t : ℝ≥0∞} (t_ne_top : t ≠ ∞) : Continuous (truncateToReal t) := by apply continuousOn_toReal.comp_continuous (by fun_prop) simp [t_ne_top]
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
continuous_truncateToReal
The truncated cast `ENNReal.truncateToReal t : ℝ≥0∞ → ℝ` is continuous when `t ≠ ∞`.
limsup_sub_const (F : Filter ι) (f : ι → ℝ≥0∞) (c : ℝ≥0∞) : Filter.limsup (fun i ↦ f i - c) F = Filter.limsup f F - c := by rcases F.eq_or_neBot with rfl | _ · simp only [limsup_bot, bot_eq_zero', zero_le, tsub_eq_zero_of_le] · exact (Monotone.map_limsSup_of_continuousAt (F := F.map f) (f := fun (x : ℝ≥0∞) ↦ x - c) (fun _ _ h ↦ tsub_le_tsub_right h c) (continuous_sub_right c).continuousAt).symm
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
limsup_sub_const
null
liminf_sub_const (F : Filter ι) [NeBot F] (f : ι → ℝ≥0∞) (c : ℝ≥0∞) : Filter.liminf (fun i ↦ f i - c) F = Filter.liminf f F - c := (Monotone.map_limsInf_of_continuousAt (F := F.map f) (f := fun (x : ℝ≥0∞) ↦ x - c) (fun _ _ h ↦ tsub_le_tsub_right h c) (continuous_sub_right c).continuousAt).symm
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
liminf_sub_const
null
limsup_const_sub (F : Filter ι) (f : ι → ℝ≥0∞) {c : ℝ≥0∞} (c_ne_top : c ≠ ∞) : Filter.limsup (fun i ↦ c - f i) F = c - Filter.liminf f F := by rcases F.eq_or_neBot with rfl | _ · simp only [limsup_bot, bot_eq_zero', liminf_bot, le_top, tsub_eq_zero_of_le] · exact (Antitone.map_limsInf_of_continuousAt (F := F.map f) (f := fun (x : ℝ≥0∞) ↦ c - x) (fun _ _ h ↦ tsub_le_tsub_left h c) (continuous_sub_left c_ne_top).continuousAt).symm
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
limsup_const_sub
null
liminf_const_sub (F : Filter ι) [NeBot F] (f : ι → ℝ≥0∞) {c : ℝ≥0∞} (c_ne_top : c ≠ ∞) : Filter.liminf (fun i ↦ c - f i) F = c - Filter.limsup f F := (Antitone.map_limsSup_of_continuousAt (F := F.map f) (f := fun (x : ℝ≥0∞) ↦ c - x) (fun _ _ h ↦ tsub_le_tsub_left h c) (continuous_sub_left c_ne_top).continuousAt).symm
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
liminf_const_sub
null
le_limsup_mul : limsup u f * liminf v f ≤ limsup (u * v) f := mul_le_of_forall_lt fun a a_u b b_v ↦ (le_limsup_iff).2 fun c c_ab ↦ Frequently.mono (Frequently.and_eventually ((frequently_lt_of_lt_limsup) a_u) ((eventually_lt_of_lt_liminf) b_v)) fun _ ab_x ↦ c_ab.trans (mul_lt_mul ab_x.1 ab_x.2)
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
le_limsup_mul
null
limsup_mul_le' (h : limsup u f ≠ 0 ∨ limsup v f ≠ ∞) (h' : limsup u f ≠ ∞ ∨ limsup v f ≠ 0) : limsup (u * v) f ≤ limsup u f * limsup v f := by refine le_mul_of_forall_lt h h' fun a a_u b b_v ↦ (limsup_le_iff).2 fun c c_ab ↦ ?_ filter_upwards [eventually_lt_of_limsup_lt a_u, eventually_lt_of_limsup_lt b_v] with x a_x b_x exact (mul_lt_mul a_x b_x).trans c_ab
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
limsup_mul_le'
See also `ENNReal.limsup_mul_le`.
le_liminf_mul : liminf u f * liminf v f ≤ liminf (u * v) f := by refine mul_le_of_forall_lt fun a a_u b b_v ↦ (le_liminf_iff).2 fun c c_ab ↦ ?_ filter_upwards [eventually_lt_of_lt_liminf a_u, eventually_lt_of_lt_liminf b_v] with x a_x b_x exact c_ab.trans (mul_lt_mul a_x b_x)
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
le_liminf_mul
null
liminf_mul_le (h : limsup u f ≠ 0 ∨ liminf v f ≠ ∞) (h' : limsup u f ≠ ∞ ∨ liminf v f ≠ 0) : liminf (u * v) f ≤ limsup u f * liminf v f := le_mul_of_forall_lt h h' fun a a_u b b_v ↦ (liminf_le_iff).2 fun c c_ab ↦ Frequently.mono (((frequently_lt_of_liminf_lt) b_v).and_eventually ((eventually_lt_of_limsup_lt) a_u)) fun _ ab_x ↦ (mul_lt_mul ab_x.2 ab_x.1).trans c_ab
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
liminf_mul_le
null
liminf_toReal_eq [NeBot f] {b : ℝ≥0∞} (b_ne_top : b ≠ ∞) (le_b : ∀ᶠ i in f, u i ≤ b) : f.liminf (fun i ↦ (u i).toReal) = (f.liminf u).toReal := by have liminf_le : f.liminf u ≤ b := by apply liminf_le_of_le ⟨0, by simp⟩ intro y h obtain ⟨i, hi⟩ := (Eventually.and h le_b).exists exact hi.1.trans hi.2 have aux : ∀ᶠ i in f, (u i).toReal = ENNReal.truncateToReal b (u i) := by filter_upwards [le_b] with i i_le_b simp only [truncateToReal_eq_toReal b_ne_top i_le_b] have aux' : (f.liminf u).toReal = ENNReal.truncateToReal b (f.liminf u) := by rw [truncateToReal_eq_toReal b_ne_top liminf_le] simp_rw [liminf_congr aux, aux'] have key := Monotone.map_liminf_of_continuousAt (F := f) (monotone_truncateToReal b_ne_top) u (continuous_truncateToReal b_ne_top).continuousAt (IsBoundedUnder.isCoboundedUnder_ge ⟨b, by simpa only [eventually_map] using le_b⟩) ⟨0, Eventually.of_forall (by simp)⟩ rw [key] rfl
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
liminf_toReal_eq
If `u : ι → ℝ≥0∞` is bounded, then we have `liminf (toReal ∘ u) = toReal (liminf u)`.
limsup_toReal_eq [NeBot f] {b : ℝ≥0∞} (b_ne_top : b ≠ ∞) (le_b : ∀ᶠ i in f, u i ≤ b) : f.limsup (fun i ↦ (u i).toReal) = (f.limsup u).toReal := by have aux : ∀ᶠ i in f, (u i).toReal = ENNReal.truncateToReal b (u i) := by filter_upwards [le_b] with i i_le_b simp only [truncateToReal_eq_toReal b_ne_top i_le_b] have aux' : (f.limsup u).toReal = ENNReal.truncateToReal b (f.limsup u) := by rw [truncateToReal_eq_toReal b_ne_top (limsup_le_of_le ⟨0, by simp⟩ le_b)] simp_rw [limsup_congr aux, aux'] have key := Monotone.map_limsup_of_continuousAt (F := f) (monotone_truncateToReal b_ne_top) u (continuous_truncateToReal b_ne_top).continuousAt ⟨b, by simpa only [eventually_map] using le_b⟩ (IsBoundedUnder.isCoboundedUnder_le ⟨0, Eventually.of_forall (by simp)⟩) rw [key] rfl @[simp, norm_cast]
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
limsup_toReal_eq
If `u : ι → ℝ≥0∞` is bounded, then we have `liminf (toReal ∘ u) = toReal (liminf u)`.
ofNNReal_limsup {u : ι → ℝ≥0} (hf : f.IsBoundedUnder (· ≤ ·) u) : limsup u f = limsup (fun i ↦ (u i : ℝ≥0∞)) f := by refine eq_of_forall_nnreal_iff fun r ↦ ?_ rw [coe_le_coe, le_limsup_iff, le_limsup_iff] simp [forall_ennreal] @[simp, norm_cast]
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
ofNNReal_limsup
null
ofNNReal_liminf {u : ι → ℝ≥0} (hf : f.IsCoboundedUnder (· ≥ ·) u) : liminf u f = liminf (fun i ↦ (u i : ℝ≥0∞)) f := by refine eq_of_forall_nnreal_iff fun r ↦ ?_ rw [coe_le_coe, le_liminf_iff, le_liminf_iff] simp [forall_ennreal]
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
ofNNReal_liminf
null
liminf_add_of_right_tendsto_zero {u : Filter ι} {g : ι → ℝ≥0∞} (hg : u.Tendsto g (𝓝 0)) (f : ι → ℝ≥0∞) : u.liminf (f + g) = u.liminf f := by refine le_antisymm ?_ <| liminf_le_liminf <| .of_forall <| by simp refine liminf_le_of_le (by isBoundedDefault) fun b hb ↦ ?_ rw [Filter.le_liminf_iff'] rintro a hab filter_upwards [hb, ENNReal.tendsto_nhds_zero.1 hg _ <| lt_min (tsub_pos_of_lt hab) one_pos] with i hfg hg exact ENNReal.le_of_add_le_add_right (hg.trans_lt <| by simp).ne <| (add_le_of_le_tsub_left_of_le hab.le <| hg.trans <| min_le_left ..).trans hfg
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
liminf_add_of_right_tendsto_zero
null
liminf_add_of_left_tendsto_zero {u : Filter ι} {f : ι → ℝ≥0∞} (hf : u.Tendsto f (𝓝 0)) (g : ι → ℝ≥0∞) : u.liminf (f + g) = u.liminf g := by rw [add_comm, liminf_add_of_right_tendsto_zero hf]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
liminf_add_of_left_tendsto_zero
null
limsup_add_of_right_tendsto_zero {u : Filter ι} {g : ι → ℝ≥0∞} (hg : u.Tendsto g (𝓝 0)) (f : ι → ℝ≥0∞) : u.limsup (f + g) = u.limsup f := by refine le_antisymm ?_ <| limsup_le_limsup <| .of_forall <| by simp refine le_limsup_of_le (by isBoundedDefault) fun b hb ↦ ?_ rw [Filter.limsup_le_iff'] rintro a hba filter_upwards [hb, ENNReal.tendsto_nhds_zero.1 hg _ <| tsub_pos_of_lt hba] with i hf hg calc f i + g i _ ≤ b + g i := by gcongr _ ≤ a := add_le_of_le_tsub_left_of_le hba.le hg
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
limsup_add_of_right_tendsto_zero
null
limsup_add_of_left_tendsto_zero {u : Filter ι} {f : ι → ℝ≥0∞} (hf : u.Tendsto f (𝓝 0)) (g : ι → ℝ≥0∞) : u.limsup (f + g) = u.limsup g := by rw [add_comm, limsup_add_of_right_tendsto_zero hf]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
limsup_add_of_left_tendsto_zero
null
isEmbedding_coe : IsEmbedding ((↑) : ℝ → EReal) := coe_strictMono.isEmbedding_of_ordConnected <| by rw [range_coe_eq_Ioo]; exact ordConnected_Ioo
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
isEmbedding_coe
null
isOpenEmbedding_coe : IsOpenEmbedding ((↑) : ℝ → EReal) := ⟨isEmbedding_coe, by simp only [range_coe_eq_Ioo, isOpen_Ioo]⟩ @[norm_cast]
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
isOpenEmbedding_coe
null
tendsto_coe {α : Type*} {f : Filter α} {m : α → ℝ} {a : ℝ} : Tendsto (fun a => (m a : EReal)) f (𝓝 ↑a) ↔ Tendsto m f (𝓝 a) := isEmbedding_coe.tendsto_nhds_iff.symm
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
tendsto_coe
null
_root_.continuous_coe_real_ereal : Continuous ((↑) : ℝ → EReal) := isEmbedding_coe.continuous
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
_root_.continuous_coe_real_ereal
null