fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
PseudoMetricSpace.replaceUniformity {α} [U : UniformSpace α] (m : PseudoMetricSpace α) (H : 𝓤[U] = 𝓤[PseudoEMetricSpace.toUniformSpace]) : PseudoMetricSpace α := { m with toUniformSpace := U uniformity_dist := H.trans PseudoMetricSpace.uniformity_dist }
abbrev
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
PseudoMetricSpace.replaceUniformity
Build a new pseudometric space from an old one where the bundled uniform structure is provably (but typically non-definitionaly) equal to some given uniform structure. See Note [forgetful inheritance]. See Note [reducible non-instances].
PseudoMetricSpace.replaceUniformity_eq {α} [U : UniformSpace α] (m : PseudoMetricSpace α) (H : 𝓤[U] = 𝓤[PseudoEMetricSpace.toUniformSpace]) : m.replaceUniformity H = m := by ext rfl
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
PseudoMetricSpace.replaceUniformity_eq
null
PseudoMetricSpace.replaceTopology {γ} [U : TopologicalSpace γ] (m : PseudoMetricSpace γ) (H : U = m.toUniformSpace.toTopologicalSpace) : PseudoMetricSpace γ := @PseudoMetricSpace.replaceUniformity γ (m.toUniformSpace.replaceTopology H) m rfl
abbrev
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
PseudoMetricSpace.replaceTopology
Build a new pseudo metric space from an old one where the bundled topological structure is provably (but typically non-definitionaly) equal to some given topological structure. See Note [forgetful inheritance]. See Note [reducible non-instances].
PseudoMetricSpace.replaceTopology_eq {γ} [U : TopologicalSpace γ] (m : PseudoMetricSpace γ) (H : U = m.toUniformSpace.toTopologicalSpace) : m.replaceTopology H = m := by ext rfl
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
PseudoMetricSpace.replaceTopology_eq
null
PseudoEMetricSpace.toPseudoMetricSpaceOfDist {α : Type u} [e : PseudoEMetricSpace α] (dist : α → α → ℝ) (edist_ne_top : ∀ x y : α, edist x y ≠ ⊤) (h : ∀ x y, dist x y = ENNReal.toReal (edist x y)) : PseudoMetricSpace α where dist := dist dist_self x := by simp [h] dist_comm x y := by simp [h, edist_comm] dist_triangle x y z := by simp only [h] exact ENNReal.toReal_le_add (edist_triangle _ _ _) (edist_ne_top _ _) (edist_ne_top _ _) edist := edist edist_dist _ _ := by simp only [h, ENNReal.ofReal_toReal (edist_ne_top _ _)] toUniformSpace := e.toUniformSpace uniformity_dist := e.uniformity_edist.trans <| by simpa only [ENNReal.coe_toNNReal (edist_ne_top _ _), h] using (Metric.uniformity_edist_aux fun x y : α => (edist x y).toNNReal).symm
abbrev
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
PseudoEMetricSpace.toPseudoMetricSpaceOfDist
One gets a pseudometric space from an emetric space if the edistance is everywhere finite, by pushing the edistance to reals. We set it up so that the edist and the uniformity are defeq in the pseudometric space and the pseudoemetric space. In this definition, the distance is given separately, to be able to prescribe some expression which is not defeq to the push-forward of the edistance to reals. See note [reducible non-instances].
PseudoEMetricSpace.toPseudoMetricSpace {α : Type u} [PseudoEMetricSpace α] (h : ∀ x y : α, edist x y ≠ ⊤) : PseudoMetricSpace α := PseudoEMetricSpace.toPseudoMetricSpaceOfDist (fun x y => ENNReal.toReal (edist x y)) h fun _ _ => rfl
abbrev
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
PseudoEMetricSpace.toPseudoMetricSpace
One gets a pseudometric space from an emetric space if the edistance is everywhere finite, by pushing the edistance to reals. We set it up so that the edist and the uniformity are defeq in the pseudometric space and the emetric space.
PseudoMetricSpace.replaceBornology {α} [B : Bornology α] (m : PseudoMetricSpace α) (H : ∀ s, @IsBounded _ B s ↔ @IsBounded _ PseudoMetricSpace.toBornology s) : PseudoMetricSpace α := { m with toBornology := B cobounded_sets := Set.ext <| compl_surjective.forall.2 fun s => (H s).trans <| by rw [isBounded_iff, mem_setOf_eq, compl_compl] }
abbrev
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
PseudoMetricSpace.replaceBornology
Build a new pseudometric space from an old one where the bundled bornology structure is provably (but typically non-definitionaly) equal to some given bornology structure. See Note [forgetful inheritance]. See Note [reducible non-instances].
PseudoMetricSpace.replaceBornology_eq {α} [m : PseudoMetricSpace α] [B : Bornology α] (H : ∀ s, @IsBounded _ B s ↔ @IsBounded _ PseudoMetricSpace.toBornology s) : PseudoMetricSpace.replaceBornology _ H = m := by ext rfl
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
PseudoMetricSpace.replaceBornology_eq
null
Real.pseudoMetricSpace : PseudoMetricSpace ℝ where dist x y := |x - y| dist_self := by simp [abs_zero] dist_comm _ _ := abs_sub_comm _ _ dist_triangle _ _ _ := abs_sub_le _ _ _
instance
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Real.pseudoMetricSpace
Instantiate the reals as a pseudometric space.
Real.dist_eq (x y : ℝ) : dist x y = |x - y| := rfl
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Real.dist_eq
null
Real.nndist_eq (x y : ℝ) : nndist x y = Real.nnabs (x - y) := rfl
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Real.nndist_eq
null
Real.nndist_eq' (x y : ℝ) : nndist x y = Real.nnabs (y - x) := nndist_comm _ _
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Real.nndist_eq'
null
Real.dist_0_eq_abs (x : ℝ) : dist x 0 = |x| := by simp [Real.dist_eq]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Real.dist_0_eq_abs
null
Real.sub_le_dist (x y : ℝ) : x - y ≤ dist x y := by rw [Real.dist_eq, le_abs] exact Or.inl (le_refl _)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Real.sub_le_dist
null
Real.ball_eq_Ioo (x r : ℝ) : ball x r = Ioo (x - r) (x + r) := Set.ext fun y => by rw [mem_ball, dist_comm, Real.dist_eq, abs_sub_lt_iff, mem_Ioo, ← sub_lt_iff_lt_add', sub_lt_comm]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Real.ball_eq_Ioo
null
Real.closedBall_eq_Icc {x r : ℝ} : closedBall x r = Icc (x - r) (x + r) := by ext y rw [mem_closedBall, dist_comm, Real.dist_eq, abs_sub_le_iff, mem_Icc, ← sub_le_iff_le_add', sub_le_comm]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Real.closedBall_eq_Icc
null
Real.Ioo_eq_ball (x y : ℝ) : Ioo x y = ball ((x + y) / 2) ((y - x) / 2) := by rw [Real.ball_eq_Ioo, ← sub_div, add_comm, ← sub_add, add_sub_cancel_left, add_self_div_two, ← add_div, add_assoc, add_sub_cancel, add_self_div_two]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Real.Ioo_eq_ball
null
Real.Icc_eq_closedBall (x y : ℝ) : Icc x y = closedBall ((x + y) / 2) ((y - x) / 2) := by rw [Real.closedBall_eq_Icc, ← sub_div, add_comm, ← sub_add, add_sub_cancel_left, add_self_div_two, ← add_div, add_assoc, add_sub_cancel, add_self_div_two]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Real.Icc_eq_closedBall
null
Metric.uniformity_eq_comap_nhds_zero : 𝓤 α = comap (fun p : α × α => dist p.1 p.2) (𝓝 (0 : ℝ)) := by ext s simp only [mem_uniformity_dist, (nhds_basis_ball.comap _).mem_iff] simp [subset_def, Real.dist_0_eq_abs]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Metric.uniformity_eq_comap_nhds_zero
null
tendsto_uniformity_iff_dist_tendsto_zero {f : ι → α × α} {p : Filter ι} : Tendsto f p (𝓤 α) ↔ Tendsto (fun x => dist (f x).1 (f x).2) p (𝓝 0) := by rw [Metric.uniformity_eq_comap_nhds_zero, tendsto_comap_iff, Function.comp_def]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
tendsto_uniformity_iff_dist_tendsto_zero
null
Filter.Tendsto.congr_dist {f₁ f₂ : ι → α} {p : Filter ι} {a : α} (h₁ : Tendsto f₁ p (𝓝 a)) (h : Tendsto (fun x => dist (f₁ x) (f₂ x)) p (𝓝 0)) : Tendsto f₂ p (𝓝 a) := h₁.congr_uniformity <| tendsto_uniformity_iff_dist_tendsto_zero.2 h alias tendsto_of_tendsto_of_dist := Filter.Tendsto.congr_dist
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Filter.Tendsto.congr_dist
null
tendsto_iff_of_dist {f₁ f₂ : ι → α} {p : Filter ι} {a : α} (h : Tendsto (fun x => dist (f₁ x) (f₂ x)) p (𝓝 0)) : Tendsto f₁ p (𝓝 a) ↔ Tendsto f₂ p (𝓝 a) := Uniform.tendsto_congr <| tendsto_uniformity_iff_dist_tendsto_zero.2 h
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
tendsto_iff_of_dist
null
PseudoMetricSpace.dist_eq_of_dist_zero (x : α) {y z : α} (h : dist y z = 0) : dist x y = dist x z := dist_comm y x ▸ dist_comm z x ▸ sub_eq_zero.1 (abs_nonpos_iff.1 (h ▸ abs_dist_sub_le y z x))
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
PseudoMetricSpace.dist_eq_of_dist_zero
null
dist_dist_dist_le_left (x y z : α) : dist (dist x z) (dist y z) ≤ dist x y := abs_dist_sub_le ..
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_dist_dist_le_left
null
dist_dist_dist_le_right (x y z : α) : dist (dist x y) (dist x z) ≤ dist y z := by simpa only [dist_comm x] using dist_dist_dist_le_left y z x
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_dist_dist_le_right
null
dist_dist_dist_le (x y x' y' : α) : dist (dist x y) (dist x' y') ≤ dist x x' + dist y y' := (dist_triangle _ _ _).trans <| add_le_add (dist_dist_dist_le_left _ _ _) (dist_dist_dist_le_right _ _ _)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_dist_dist_le
null
nhds_comap_dist (a : α) : ((𝓝 (0 : ℝ)).comap (dist · a)) = 𝓝 a := by simp only [@nhds_eq_comap_uniformity α, Metric.uniformity_eq_comap_nhds_zero, comap_comap, Function.comp_def, dist_comm]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nhds_comap_dist
null
tendsto_iff_dist_tendsto_zero {f : β → α} {x : Filter β} {a : α} : Tendsto f x (𝓝 a) ↔ Tendsto (fun b => dist (f b) a) x (𝓝 0) := by rw [← nhds_comap_dist a, tendsto_comap_iff, Function.comp_def]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
tendsto_iff_dist_tendsto_zero
null
ball_subset_interior_closedBall : ball x ε ⊆ interior (closedBall x ε) := interior_maximal ball_subset_closedBall isOpen_ball
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_subset_interior_closedBall
null
mem_closure_iff {s : Set α} {a : α} : a ∈ closure s ↔ ∀ ε > 0, ∃ b ∈ s, dist a b < ε := (mem_closure_iff_nhds_basis nhds_basis_ball).trans <| by simp only [mem_ball, dist_comm]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_closure_iff
ε-characterization of the closure in pseudometric spaces
mem_closure_range_iff {e : β → α} {a : α} : a ∈ closure (range e) ↔ ∀ ε > 0, ∃ k : β, dist a (e k) < ε := by simp only [mem_closure_iff, exists_range_iff]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_closure_range_iff
null
mem_closure_range_iff_nat {e : β → α} {a : α} : a ∈ closure (range e) ↔ ∀ n : ℕ, ∃ k : β, dist a (e k) < 1 / ((n : ℝ) + 1) := (mem_closure_iff_nhds_basis nhds_basis_ball_inv_nat_succ).trans <| by simp only [mem_ball, dist_comm, exists_range_iff, forall_const]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_closure_range_iff_nat
null
mem_of_closed' {s : Set α} (hs : IsClosed s) {a : α} : a ∈ s ↔ ∀ ε > 0, ∃ b ∈ s, dist a b < ε := by simpa only [hs.closure_eq] using @mem_closure_iff _ _ s a
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_of_closed'
null
dense_iff {s : Set α} : Dense s ↔ ∀ x, ∀ r > 0, (ball x r ∩ s).Nonempty := forall_congr' fun x => by simp only [mem_closure_iff, Set.Nonempty, mem_inter_iff, mem_ball', and_comm]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dense_iff
null
dense_iff_iUnion_ball (s : Set α) : Dense s ↔ ∀ r > 0, ⋃ c ∈ s, ball c r = univ := by simp_rw [eq_univ_iff_forall, mem_iUnion, exists_prop, mem_ball, Dense, mem_closure_iff, forall_comm (α := α)]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dense_iff_iUnion_ball
null
denseRange_iff {f : β → α} : DenseRange f ↔ ∀ x, ∀ r > 0, ∃ y, dist x (f y) < r := forall_congr' fun x => by simp only [mem_closure_iff, exists_range_iff]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
denseRange_iff
null
@[simp] nndist_ofMul (a b : X) : nndist (ofMul a) (ofMul b) = nndist a b := rfl @[simp] theorem nndist_ofAdd (a b : X) : nndist (ofAdd a) (ofAdd b) = nndist a b := rfl @[simp] theorem nndist_toMul (a b : Additive X) : nndist a.toMul b.toMul = nndist a b := rfl @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nndist_ofMul
null
nndist_toAdd (a b : Multiplicative X) : nndist a.toAdd b.toAdd = nndist a b := rfl
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nndist_toAdd
null
@[simp] nndist_toDual (a b : X) : nndist (toDual a) (toDual b) = nndist a b := rfl @[simp] theorem nndist_ofDual (a b : Xᵒᵈ) : nndist (ofDual a) (ofDual b) = nndist a b := rfl
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nndist_toDual
null
Real.singleton_eq_inter_Icc (b : ℝ) : {b} = ⋂ (r > 0), Icc (b - r) (b + r) := by simp [Icc_eq_closedBall, biInter_basis_nhds Metric.nhds_basis_closedBall]
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
Real.singleton_eq_inter_Icc
null
squeeze_zero' {α} {f g : α → ℝ} {t₀ : Filter α} (hf : ∀ᶠ t in t₀, 0 ≤ f t) (hft : ∀ᶠ t in t₀, f t ≤ g t) (g0 : Tendsto g t₀ (𝓝 0)) : Tendsto f t₀ (𝓝 0) := tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds g0 hf hft
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
squeeze_zero'
Special case of the sandwich lemma; see `tendsto_of_tendsto_of_tendsto_of_le_of_le'` for the general case.
squeeze_zero {α} {f g : α → ℝ} {t₀ : Filter α} (hf : ∀ t, 0 ≤ f t) (hft : ∀ t, f t ≤ g t) (g0 : Tendsto g t₀ (𝓝 0)) : Tendsto f t₀ (𝓝 0) := squeeze_zero' (Eventually.of_forall hf) (Eventually.of_forall hft) g0
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
squeeze_zero
Special case of the sandwich lemma; see `tendsto_of_tendsto_of_tendsto_of_le_of_le` and `tendsto_of_tendsto_of_tendsto_of_le_of_le'` for the general case.
eventually_closedBall_subset {x : α} {u : Set α} (hu : u ∈ 𝓝 x) : ∀ᶠ r in 𝓝 (0 : ℝ), closedBall x r ⊆ u := by obtain ⟨ε, εpos, hε⟩ : ∃ ε, 0 < ε ∧ closedBall x ε ⊆ u := nhds_basis_closedBall.mem_iff.1 hu have : Iic ε ∈ 𝓝 (0 : ℝ) := Iic_mem_nhds εpos filter_upwards [this] with _ hr using Subset.trans (closedBall_subset_closedBall hr) hε
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
eventually_closedBall_subset
If `u` is a neighborhood of `x`, then for small enough `r`, the closed ball `Metric.closedBall x r` is contained in `u`.
tendsto_closedBall_smallSets (x : α) : Tendsto (closedBall x) (𝓝 0) (𝓝 x).smallSets := tendsto_smallSets_iff.2 fun _ ↦ eventually_closedBall_subset
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
tendsto_closedBall_smallSets
null
isClosed_closedBall : IsClosed (closedBall x ε) := isClosed_le (continuous_id.dist continuous_const) continuous_const
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
isClosed_closedBall
null
isClosed_sphere : IsClosed (sphere x ε) := isClosed_eq (continuous_id.dist continuous_const) continuous_const @[simp]
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
isClosed_sphere
null
closure_closedBall : closure (closedBall x ε) = closedBall x ε := isClosed_closedBall.closure_eq @[simp]
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
closure_closedBall
null
closure_sphere : closure (sphere x ε) = sphere x ε := isClosed_sphere.closure_eq
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
closure_sphere
null
closure_ball_subset_closedBall : closure (ball x ε) ⊆ closedBall x ε := closure_minimal ball_subset_closedBall isClosed_closedBall
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
closure_ball_subset_closedBall
null
frontier_ball_subset_sphere : frontier (ball x ε) ⊆ sphere x ε := frontier_lt_subset_eq (continuous_id.dist continuous_const) continuous_const
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
frontier_ball_subset_sphere
null
frontier_closedBall_subset_sphere : frontier (closedBall x ε) ⊆ sphere x ε := frontier_le_subset_eq (continuous_id.dist continuous_const) continuous_const
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
frontier_closedBall_subset_sphere
null
closedBall_zero' (x : α) : closedBall x 0 = closure {x} := Subset.antisymm (fun _y hy => mem_closure_iff.2 fun _ε ε0 => ⟨x, mem_singleton x, (mem_closedBall.1 hy).trans_lt ε0⟩) (closure_minimal (singleton_subset_iff.2 (dist_self x).le) isClosed_closedBall)
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
closedBall_zero'
null
eventually_isCompact_closedBall [WeaklyLocallyCompactSpace α] (x : α) : ∀ᶠ r in 𝓝 (0 : ℝ), IsCompact (closedBall x r) := by rcases exists_compact_mem_nhds x with ⟨s, s_compact, hs⟩ filter_upwards [eventually_closedBall_subset hs] with r hr exact IsCompact.of_isClosed_subset s_compact isClosed_closedBall hr
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
eventually_isCompact_closedBall
null
exists_isCompact_closedBall [WeaklyLocallyCompactSpace α] (x : α) : ∃ r, 0 < r ∧ IsCompact (closedBall x r) := by have : ∀ᶠ r in 𝓝[>] 0, IsCompact (closedBall x r) := eventually_nhdsWithin_of_eventually_nhds (eventually_isCompact_closedBall x) simpa only [and_comm] using (this.and self_mem_nhdsWithin).exists
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
exists_isCompact_closedBall
null
biInter_gt_closedBall (x : α) (r : ℝ) : ⋂ r' > r, closedBall x r' = closedBall x r := by ext simp [forall_gt_imp_ge_iff_le_of_dense]
theorem
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
biInter_gt_closedBall
null
biInter_gt_ball (x : α) (r : ℝ) : ⋂ r' > r, ball x r' = closedBall x r := by ext simp [forall_gt_iff_le]
theorem
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
biInter_gt_ball
null
biUnion_lt_ball (x : α) (r : ℝ) : ⋃ r' < r, ball x r' = ball x r := by ext rw [← not_iff_not] simp [forall_lt_imp_le_iff_le_of_dense]
theorem
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
biUnion_lt_ball
null
biUnion_lt_closedBall (x : α) (r : ℝ) : ⋃ r' < r, closedBall x r' = ball x r := by ext rw [← not_iff_not] simp [forall_lt_iff_le]
theorem
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
biUnion_lt_closedBall
null
lebesgue_number_lemma_of_metric {s : Set α} {ι : Sort*} {c : ι → Set α} (hs : IsCompact s) (hc₁ : ∀ i, IsOpen (c i)) (hc₂ : s ⊆ ⋃ i, c i) : ∃ δ > 0, ∀ x ∈ s, ∃ i, ball x δ ⊆ c i := by simpa only [ball, UniformSpace.ball, preimage_setOf_eq, dist_comm] using uniformity_basis_dist.lebesgue_number_lemma hs hc₁ hc₂
theorem
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
lebesgue_number_lemma_of_metric
null
lebesgue_number_lemma_of_metric_sUnion {s : Set α} {c : Set (Set α)} (hs : IsCompact s) (hc₁ : ∀ t ∈ c, IsOpen t) (hc₂ : s ⊆ ⋃₀ c) : ∃ δ > 0, ∀ x ∈ s, ∃ t ∈ c, ball x δ ⊆ t := by rw [sUnion_eq_iUnion] at hc₂; simpa using lebesgue_number_lemma_of_metric hs (by simpa) hc₂
theorem
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Constructions", "Mathlib.Topology.Order.DenselyOrdered", "Mathlib.Topology.UniformSpace.Compact" ]
Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean
lebesgue_number_lemma_of_metric_sUnion
null
pseudoMetricSpacePi : PseudoMetricSpace (∀ b, X b) := by /- we construct the instance from the pseudoemetric space instance to avoid checking again that the uniformity is the same as the product uniformity, but we register nevertheless a nice formula for the distance -/ let i := PseudoEMetricSpace.toPseudoMetricSpaceOfDist (fun f g : ∀ b, X b => ((sup univ fun b => nndist (f b) (g b) : ℝ≥0) : ℝ)) (fun f g => ((Finset.sup_lt_iff bot_lt_top).2 fun b _ => edist_lt_top _ _).ne) (fun f g => by simp only [edist_pi_def, edist_nndist, ← ENNReal.coe_finset_sup, ENNReal.coe_toReal]) refine i.replaceBornology fun s => ?_ simp only [isBounded_iff_eventually, ← forall_isBounded_image_eval_iff, forall_mem_image, ← Filter.eventually_all, @dist_nndist (X _)] refine eventually_congr ((eventually_ge_atTop 0).mono fun C hC ↦ ?_) lift C to ℝ≥0 using hC refine ⟨fun H x hx y hy ↦ NNReal.coe_le_coe.2 <| Finset.sup_le fun b _ ↦ H b hx hy, fun H b x hx y hy ↦ NNReal.coe_le_coe.2 ?_⟩ simpa only using Finset.sup_le_iff.1 (NNReal.coe_le_coe.1 <| H hx hy) b (Finset.mem_univ b)
instance
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
pseudoMetricSpacePi
A finite product of pseudometric spaces is a pseudometric space, with the sup distance.
nndist_pi_def (f g : ∀ b, X b) : nndist f g = sup univ fun b => nndist (f b) (g b) := rfl
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
nndist_pi_def
null
dist_pi_def (f g : ∀ b, X b) : dist f g = (sup univ fun b => nndist (f b) (g b) : ℝ≥0) := rfl
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
dist_pi_def
null
nndist_pi_le_iff {f g : ∀ b, X b} {r : ℝ≥0} : nndist f g ≤ r ↔ ∀ b, nndist (f b) (g b) ≤ r := by simp [nndist_pi_def]
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
nndist_pi_le_iff
null
nndist_pi_lt_iff {f g : ∀ b, X b} {r : ℝ≥0} (hr : 0 < r) : nndist f g < r ↔ ∀ b, nndist (f b) (g b) < r := by simp [nndist_pi_def, Finset.sup_lt_iff hr]
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
nndist_pi_lt_iff
null
nndist_pi_eq_iff {f g : ∀ b, X b} {r : ℝ≥0} (hr : 0 < r) : nndist f g = r ↔ (∃ i, nndist (f i) (g i) = r) ∧ ∀ b, nndist (f b) (g b) ≤ r := by rw [eq_iff_le_not_lt, nndist_pi_lt_iff hr, nndist_pi_le_iff, not_forall, and_comm] simp_rw [not_lt, and_congr_left_iff, le_antisymm_iff] intro h refine exists_congr fun b => ?_ apply (and_iff_right <| h _).symm
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
nndist_pi_eq_iff
null
dist_pi_lt_iff {f g : ∀ b, X b} {r : ℝ} (hr : 0 < r) : dist f g < r ↔ ∀ b, dist (f b) (g b) < r := by lift r to ℝ≥0 using hr.le exact nndist_pi_lt_iff hr
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
dist_pi_lt_iff
null
dist_pi_le_iff {f g : ∀ b, X b} {r : ℝ} (hr : 0 ≤ r) : dist f g ≤ r ↔ ∀ b, dist (f b) (g b) ≤ r := by lift r to ℝ≥0 using hr exact nndist_pi_le_iff
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
dist_pi_le_iff
null
dist_pi_eq_iff {f g : ∀ b, X b} {r : ℝ} (hr : 0 < r) : dist f g = r ↔ (∃ i, dist (f i) (g i) = r) ∧ ∀ b, dist (f b) (g b) ≤ r := by lift r to ℝ≥0 using hr.le simp_rw [← coe_nndist, NNReal.coe_inj, nndist_pi_eq_iff hr, NNReal.coe_le_coe]
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
dist_pi_eq_iff
null
dist_pi_le_iff' [Nonempty β] {f g : ∀ b, X b} {r : ℝ} : dist f g ≤ r ↔ ∀ b, dist (f b) (g b) ≤ r := by by_cases hr : 0 ≤ r · exact dist_pi_le_iff hr · exact iff_of_false (fun h => hr <| dist_nonneg.trans h) fun h => hr <| dist_nonneg.trans <| h <| Classical.arbitrary _
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
dist_pi_le_iff'
null
dist_pi_const_le (a b : α) : (dist (fun _ : β => a) fun _ => b) ≤ dist a b := (dist_pi_le_iff dist_nonneg).2 fun _ => le_rfl
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
dist_pi_const_le
null
nndist_pi_const_le (a b : α) : (nndist (fun _ : β => a) fun _ => b) ≤ nndist a b := nndist_pi_le_iff.2 fun _ => le_rfl @[simp]
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
nndist_pi_const_le
null
dist_pi_const [Nonempty β] (a b : α) : (dist (fun _ : β => a) fun _ => b) = dist a b := by simpa only [dist_edist] using congr_arg ENNReal.toReal (edist_pi_const a b) @[simp]
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
dist_pi_const
null
nndist_pi_const [Nonempty β] (a b : α) : (nndist (fun _ : β => a) fun _ => b) = nndist a b := NNReal.eq <| dist_pi_const a b
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
nndist_pi_const
null
nndist_le_pi_nndist (f g : ∀ b, X b) (b : β) : nndist (f b) (g b) ≤ nndist f g := by rw [← ENNReal.coe_le_coe, ← edist_nndist, ← edist_nndist] exact edist_le_pi_edist f g b
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
nndist_le_pi_nndist
null
dist_le_pi_dist (f g : ∀ b, X b) (b : β) : dist (f b) (g b) ≤ dist f g := by simp only [dist_nndist, NNReal.coe_le_coe, nndist_le_pi_nndist f g b]
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
dist_le_pi_dist
null
ball_pi (x : ∀ b, X b) {r : ℝ} (hr : 0 < r) : ball x r = Set.pi univ fun b => ball (x b) r := by ext p simp [dist_pi_lt_iff hr]
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
ball_pi
An open ball in a product space is a product of open balls. See also `ball_pi'` for a version assuming `Nonempty β` instead of `0 < r`.
ball_pi' [Nonempty β] (x : ∀ b, X b) (r : ℝ) : ball x r = Set.pi univ fun b => ball (x b) r := (lt_or_ge 0 r).elim (ball_pi x) fun hr => by simp [ball_eq_empty.2 hr]
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
ball_pi'
An open ball in a product space is a product of open balls. See also `ball_pi` for a version assuming `0 < r` instead of `Nonempty β`.
closedBall_pi (x : ∀ b, X b) {r : ℝ} (hr : 0 ≤ r) : closedBall x r = Set.pi univ fun b => closedBall (x b) r := by ext p simp [dist_pi_le_iff hr]
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
closedBall_pi
A closed ball in a product space is a product of closed balls. See also `closedBall_pi'` for a version assuming `Nonempty β` instead of `0 ≤ r`.
closedBall_pi' [Nonempty β] (x : ∀ b, X b) (r : ℝ) : closedBall x r = Set.pi univ fun b => closedBall (x b) r := (le_or_gt 0 r).elim (closedBall_pi x) fun hr => by simp [closedBall_eq_empty.2 hr]
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
closedBall_pi'
A closed ball in a product space is a product of closed balls. See also `closedBall_pi` for a version assuming `0 ≤ r` instead of `Nonempty β`.
sphere_pi (x : ∀ b, X b) {r : ℝ} (h : 0 < r ∨ Nonempty β) : sphere x r = (⋃ i : β, Function.eval i ⁻¹' sphere (x i) r) ∩ closedBall x r := by obtain hr | rfl | hr := lt_trichotomy r 0 · simp [hr] · rw [closedBall_eq_sphere_of_nonpos le_rfl, eq_comm, Set.inter_eq_right] letI := h.resolve_left (lt_irrefl _) inhabit β refine subset_iUnion_of_subset default ?_ intro x hx replace hx := hx.le rw [dist_pi_le_iff le_rfl] at hx exact le_antisymm (hx default) dist_nonneg · ext simp [dist_pi_eq_iff hr, dist_pi_le_iff hr.le] @[simp]
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
sphere_pi
A sphere in a product space is a union of spheres on each component restricted to the closed ball.
Fin.nndist_insertNth_insertNth {n : ℕ} {α : Fin (n + 1) → Type*} [∀ i, PseudoMetricSpace (α i)] (i : Fin (n + 1)) (x y : α i) (f g : ∀ j, α (i.succAbove j)) : nndist (i.insertNth x f) (i.insertNth y g) = max (nndist x y) (nndist f g) := eq_of_forall_ge_iff fun c => by simp [nndist_pi_le_iff, i.forall_iff_succAbove] @[simp]
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
Fin.nndist_insertNth_insertNth
null
Fin.dist_insertNth_insertNth {n : ℕ} {α : Fin (n + 1) → Type*} [∀ i, PseudoMetricSpace (α i)] (i : Fin (n + 1)) (x y : α i) (f g : ∀ j, α (i.succAbove j)) : dist (i.insertNth x f) (i.insertNth y g) = max (dist x y) (dist f g) := by simp only [dist_nndist, Fin.nndist_insertNth_insertNth, NNReal.coe_max]
lemma
Topology
[ "Mathlib.Data.ENNReal.Lemmas", "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.EMetricSpace.Pi", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Pi.lean
Fin.dist_insertNth_insertNth
null
dist_left_le_of_mem_uIcc {x y z : ℝ} (h : y ∈ uIcc x z) : dist x y ≤ dist x z := by simpa only [dist_comm x] using abs_sub_left_of_mem_uIcc h
lemma
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Topology.MetricSpace.Pseudo.Pi" ]
Mathlib/Topology/MetricSpace/Pseudo/Real.lean
dist_left_le_of_mem_uIcc
null
dist_right_le_of_mem_uIcc {x y z : ℝ} (h : y ∈ uIcc x z) : dist y z ≤ dist x z := by simpa only [dist_comm _ z] using abs_sub_right_of_mem_uIcc h
lemma
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Topology.MetricSpace.Pseudo.Pi" ]
Mathlib/Topology/MetricSpace/Pseudo/Real.lean
dist_right_le_of_mem_uIcc
null
dist_le_of_mem_uIcc {x y x' y' : ℝ} (hx : x ∈ uIcc x' y') (hy : y ∈ uIcc x' y') : dist x y ≤ dist x' y' := abs_sub_le_of_uIcc_subset_uIcc <| uIcc_subset_uIcc (by rwa [uIcc_comm]) (by rwa [uIcc_comm])
lemma
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Topology.MetricSpace.Pseudo.Pi" ]
Mathlib/Topology/MetricSpace/Pseudo/Real.lean
dist_le_of_mem_uIcc
null
dist_le_of_mem_Icc {x y x' y' : ℝ} (hx : x ∈ Icc x' y') (hy : y ∈ Icc x' y') : dist x y ≤ y' - x' := by simpa only [Real.dist_eq, abs_of_nonpos (sub_nonpos.2 <| hx.1.trans hx.2), neg_sub] using Real.dist_le_of_mem_uIcc (Icc_subset_uIcc hx) (Icc_subset_uIcc hy)
lemma
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Topology.MetricSpace.Pseudo.Pi" ]
Mathlib/Topology/MetricSpace/Pseudo/Real.lean
dist_le_of_mem_Icc
null
dist_le_of_mem_Icc_01 {x y : ℝ} (hx : x ∈ Icc (0 : ℝ) 1) (hy : y ∈ Icc (0 : ℝ) 1) : dist x y ≤ 1 := by simpa only [sub_zero] using Real.dist_le_of_mem_Icc hx hy variable [Fintype ι] {x y x' y' : ι → ℝ}
lemma
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Topology.MetricSpace.Pseudo.Pi" ]
Mathlib/Topology/MetricSpace/Pseudo/Real.lean
dist_le_of_mem_Icc_01
null
dist_le_of_mem_pi_Icc (hx : x ∈ Icc x' y') (hy : y ∈ Icc x' y') : dist x y ≤ dist x' y' := by refine (dist_pi_le_iff dist_nonneg).2 fun b => (Real.dist_le_of_mem_uIcc ?_ ?_).trans (dist_le_pi_dist x' y' b) <;> refine Icc_subset_uIcc ?_ exacts [⟨hx.1 _, hx.2 _⟩, ⟨hy.1 _, hy.2 _⟩]
lemma
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Topology.MetricSpace.Pseudo.Pi" ]
Mathlib/Topology/MetricSpace/Pseudo/Real.lean
dist_le_of_mem_pi_Icc
null
IsUltrametricDist (X : Type*) [Dist X] : Prop where dist_triangle_max : ∀ x y z : X, dist x z ≤ max (dist x y) (dist y z) open Metric variable [PseudoMetricSpace X] [IsUltrametricDist X] (x y z : X) (r s : ℝ)
class
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
IsUltrametricDist
The `dist : X → X → ℝ` respects the ultrametric inequality of `dist(x, z) ≤ max (dist(x,y)) (dist(y,z))`.
dist_triangle_max : dist x z ≤ max (dist x y) (dist y z) := IsUltrametricDist.dist_triangle_max x y z
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
dist_triangle_max
null
dist_eq_max_of_dist_ne_dist (h : dist x y ≠ dist y z) : dist x z = max (dist x y) (dist y z) := by apply le_antisymm (dist_triangle_max x y z) rcases h.lt_or_gt with h | h · rw [max_eq_right h.le] apply (le_max_iff.mp <| dist_triangle_max y x z).resolve_left simpa only [not_le, dist_comm x y] using h · rw [max_eq_left h.le, dist_comm x y, dist_comm x z] apply (le_max_iff.mp <| dist_triangle_max y z x).resolve_left simpa only [not_le, dist_comm x y] using h
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
dist_eq_max_of_dist_ne_dist
All triangles are isosceles in an ultrametric space.
subtype (p : X → Prop) : IsUltrametricDist (Subtype p) := ⟨fun _ _ _ ↦ by simpa [Subtype.dist_eq] using dist_triangle_max _ _ _⟩
instance
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
subtype
null
ball_eq_of_mem {x y : X} {r : ℝ} (h : y ∈ ball x r) : ball x r = ball y r := by ext a simp_rw [mem_ball] at h ⊢ constructor <;> intro h' <;> exact (dist_triangle_max _ _ _).trans_lt (max_lt h' (dist_comm x _ ▸ h)) @[deprecated (since := "2025-08-16")] alias mem_ball_iff := mem_ball_comm
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
ball_eq_of_mem
null
ball_subset_trichotomy : ball x r ⊆ ball y s ∨ ball y s ⊆ ball x r ∨ Disjoint (ball x r) (ball y s) := by wlog hrs : r ≤ s generalizing x y r s · rw [disjoint_comm, ← or_assoc, or_comm (b := _ ⊆ _), or_assoc] exact this y x s r (lt_of_not_ge hrs).le · refine Set.disjoint_or_nonempty_inter (ball x r) (ball y s) |>.symm.imp (fun h ↦ ?_) (Or.inr ·) obtain ⟨hxz, hyz⟩ := (Set.mem_inter_iff _ _ _).mp h.some_mem have hx := ball_subset_ball hrs (x := x) rwa [ball_eq_of_mem hyz |>.trans (ball_eq_of_mem <| hx hxz).symm]
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
ball_subset_trichotomy
null
ball_eq_or_disjoint : ball x r = ball y r ∨ Disjoint (ball x r) (ball y r) := by refine Set.disjoint_or_nonempty_inter (ball x r) (ball y r) |>.symm.imp (fun h ↦ ?_) id have h₁ := ball_eq_of_mem <| Set.inter_subset_left h.some_mem have h₂ := ball_eq_of_mem <| Set.inter_subset_right h.some_mem exact h₁.trans h₂.symm
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
ball_eq_or_disjoint
null
closedBall_eq_of_mem {x y : X} {r : ℝ} (h : y ∈ closedBall x r) : closedBall x r = closedBall y r := by ext simp_rw [mem_closedBall] at h ⊢ constructor <;> intro h' <;> exact (dist_triangle_max _ _ _).trans (max_le h' (dist_comm x _ ▸ h)) @[deprecated (since := "2025-08-16")] alias mem_closedBall_iff := mem_closedBall_comm
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
closedBall_eq_of_mem
null
closedBall_subset_trichotomy : closedBall x r ⊆ closedBall y s ∨ closedBall y s ⊆ closedBall x r ∨ Disjoint (closedBall x r) (closedBall y s) := by wlog hrs : r ≤ s generalizing x y r s · rw [disjoint_comm, ← or_assoc, or_comm (b := _ ⊆ _), or_assoc] exact this y x s r (lt_of_not_ge hrs).le · refine Set.disjoint_or_nonempty_inter (closedBall x r) (closedBall y s) |>.symm.imp (fun h ↦ ?_) (Or.inr ·) obtain ⟨hxz, hyz⟩ := (Set.mem_inter_iff _ _ _).mp h.some_mem have hx := closedBall_subset_closedBall hrs (x := x) rwa [closedBall_eq_of_mem hyz |>.trans (closedBall_eq_of_mem <| hx hxz).symm]
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
closedBall_subset_trichotomy
null
isClosed_ball (x : X) (r : ℝ) : IsClosed (ball x r) := by cases le_or_gt r 0 with | inl hr => simp [ball_eq_empty.mpr hr] | inr h => rw [← isOpen_compl_iff, isOpen_iff] simp only [Set.mem_compl_iff, gt_iff_lt] intro y hy cases ball_eq_or_disjoint x y r with | inl hd => rw [hd] at hy simp [h.not_ge] at hy | inr hd => use r simp [h, ← Set.le_iff_subset, le_compl_iff_disjoint_left, hd]
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
isClosed_ball
null
isClopen_ball : IsClopen (ball x r) := ⟨isClosed_ball x r, isOpen_ball⟩
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
isClopen_ball
null