fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
@[ext] ext : a.re = b.re → a.imI = b.imI → a.imJ = b.imJ → a.imK = b.imK → a = b := QuaternionAlgebra.ext
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
ext
null
im (x : ℍ[R]) : ℍ[R] := QuaternionAlgebra.im x @[simp] theorem re_im : a.im.re = 0 := rfl @[deprecated (since := "2025-08-31")] alias im_re := re_im @[simp] theorem imI_im : a.im.imI = a.imI := rfl @[deprecated (since := "2025-08-31")] alias im_imI := imI_im @[simp] theorem imJ_im : a.im.imJ = a.imJ := rfl @[deprecated (since := "2025-08-31")] alias im_imJ := imJ_im @[simp] theorem imK_im : a.im.imK = a.imK := rfl @[deprecated (since := "2025-08-31")] alias im_imK := imK_im @[simp] theorem im_idem : a.im.im = a.im := rfl @[simp] theorem re_add_im : ↑a.re + a.im = a := QuaternionAlgebra.re_add_im a @[simp] theorem sub_im_self : a - a.im = a.re := QuaternionAlgebra.sub_im_self a @[deprecated (since := "2025-08-31")] alias sub_self_im := sub_im_self @[simp] theorem sub_re_self : a - ↑a.re = a.im := QuaternionAlgebra.sub_re_self a @[deprecated (since := "2025-08-31")] alias sub_self_re := sub_re_self @[simp, norm_cast]
def
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
im
The imaginary part of a quaternion.
re_coe : (x : ℍ[R]).re = x := rfl @[deprecated (since := "2025-08-31")] alias coe_re := re_coe @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
re_coe
null
imI_coe : (x : ℍ[R]).imI = 0 := rfl @[deprecated (since := "2025-08-31")] alias coe_imI := imI_coe @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
imI_coe
null
imJ_coe : (x : ℍ[R]).imJ = 0 := rfl @[deprecated (since := "2025-08-31")] alias coe_imJ := imJ_coe @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
imJ_coe
null
imK_coe : (x : ℍ[R]).imK = 0 := rfl @[deprecated (since := "2025-08-31")] alias coe_imK := imK_coe @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
imK_coe
null
im_coe : (x : ℍ[R]).im = 0 := rfl @[deprecated (since := "2025-08-31")] alias coe_im := im_coe @[scoped simp] theorem re_zero : (0 : ℍ[R]).re = 0 := rfl @[deprecated (since := "2025-08-31")] alias zero_re := re_zero @[scoped simp] theorem imI_zero : (0 : ℍ[R]).imI = 0 := rfl @[deprecated (since := "2025-08-31")] alias zero_imI := imI_zero @[scoped simp] theorem imJ_zero : (0 : ℍ[R]).imJ = 0 := rfl @[deprecated (since := "2025-08-31")] alias zero_imJ := imJ_zero @[scoped simp] theorem imK_zero : (0 : ℍ[R]).imK = 0 := rfl @[deprecated (since := "2025-08-31")] alias zero_imK := imK_zero @[scoped simp] theorem im_zero : (0 : ℍ[R]).im = 0 := rfl @[deprecated (since := "2025-08-31")] alias zero_im := im_zero @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
im_coe
null
coe_zero : ((0 : R) : ℍ[R]) = 0 := rfl @[scoped simp] theorem re_one : (1 : ℍ[R]).re = 1 := rfl @[deprecated (since := "2025-08-31")] alias one_re := re_one @[scoped simp] theorem imI_one : (1 : ℍ[R]).imI = 0 := rfl @[deprecated (since := "2025-08-31")] alias one_imI := imI_one @[scoped simp] theorem imJ_one : (1 : ℍ[R]).imJ = 0 := rfl @[deprecated (since := "2025-08-31")] alias one_imJ := imJ_one @[scoped simp] theorem imK_one : (1 : ℍ[R]).imK = 0 := rfl @[deprecated (since := "2025-08-31")] alias one_imK := imK_one @[scoped simp] theorem im_one : (1 : ℍ[R]).im = 0 := rfl @[deprecated (since := "2025-08-31")] alias one_im := im_one @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_zero
null
coe_one : ((1 : R) : ℍ[R]) = 1 := rfl @[simp] theorem re_add : (a + b).re = a.re + b.re := rfl @[deprecated (since := "2025-08-31")] alias add_re := re_add @[simp] theorem imI_add : (a + b).imI = a.imI + b.imI := rfl @[deprecated (since := "2025-08-31")] alias add_imI := imI_add @[simp] theorem imJ_add : (a + b).imJ = a.imJ + b.imJ := rfl @[deprecated (since := "2025-08-31")] alias add_imJ := imJ_add @[simp] theorem imK_add : (a + b).imK = a.imK + b.imK := rfl @[deprecated (since := "2025-08-31")] alias add_imK := imK_add @[simp] theorem im_add : (a + b).im = a.im + b.im := QuaternionAlgebra.im_add a b @[deprecated (since := "2025-08-31")] alias add_im := im_add @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_one
null
coe_add : ((x + y : R) : ℍ[R]) = x + y := QuaternionAlgebra.coe_add x y @[simp] theorem re_neg : (-a).re = -a.re := rfl @[deprecated (since := "2025-08-31")] alias neg_re := re_neg @[simp] theorem imI_neg : (-a).imI = -a.imI := rfl @[deprecated (since := "2025-08-31")] alias neg_imI := imI_neg @[simp] theorem imJ_neg : (-a).imJ = -a.imJ := rfl @[deprecated (since := "2025-08-31")] alias neg_imJ := imJ_neg @[simp] theorem imK_neg : (-a).imK = -a.imK := rfl @[deprecated (since := "2025-08-31")] alias neg_imK := imK_neg @[simp] theorem im_neg : (-a).im = -a.im := QuaternionAlgebra.im_neg a @[deprecated (since := "2025-08-31")] alias neg_im := im_neg @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_add
null
coe_neg : ((-x : R) : ℍ[R]) = -x := QuaternionAlgebra.coe_neg x @[simp] theorem re_sub : (a - b).re = a.re - b.re := rfl @[deprecated (since := "2025-08-31")] alias sub_re := re_sub @[simp] theorem imI_sub : (a - b).imI = a.imI - b.imI := rfl @[deprecated (since := "2025-08-31")] alias sub_imI := imI_sub @[simp] theorem imJ_sub : (a - b).imJ = a.imJ - b.imJ := rfl @[deprecated (since := "2025-08-31")] alias sub_imJ := imJ_sub @[simp] theorem imK_sub : (a - b).imK = a.imK - b.imK := rfl @[deprecated (since := "2025-08-31")] alias sub_imK := imK_sub @[simp] theorem im_sub : (a - b).im = a.im - b.im := QuaternionAlgebra.im_sub a b @[deprecated (since := "2025-08-31")] alias sub_im := im_sub @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_neg
null
coe_sub : ((x - y : R) : ℍ[R]) = x - y := QuaternionAlgebra.coe_sub x y @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_sub
null
re_mul : (a * b).re = a.re * b.re - a.imI * b.imI - a.imJ * b.imJ - a.imK * b.imK := (QuaternionAlgebra.re_mul a b).trans <| by simp [one_mul, neg_mul, sub_eq_add_neg, neg_neg] @[deprecated (since := "2025-08-31")] alias mul_re := re_mul @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
re_mul
null
imI_mul : (a * b).imI = a.re * b.imI + a.imI * b.re + a.imJ * b.imK - a.imK * b.imJ := (QuaternionAlgebra.imI_mul a b).trans <| by ring @[deprecated (since := "2025-08-31")] alias mul_imI := imI_mul @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
imI_mul
null
imJ_mul : (a * b).imJ = a.re * b.imJ - a.imI * b.imK + a.imJ * b.re + a.imK * b.imI := (QuaternionAlgebra.imJ_mul a b).trans <| by ring @[deprecated (since := "2025-08-31")] alias mul_imJ := imJ_mul @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
imJ_mul
null
imK_mul : (a * b).imK = a.re * b.imK + a.imI * b.imJ - a.imJ * b.imI + a.imK * b.re := (QuaternionAlgebra.imK_mul a b).trans <| by ring @[deprecated (since := "2025-08-31")] alias mul_imK := imK_mul @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
imK_mul
null
coe_mul : ((x * y : R) : ℍ[R]) = x * y := QuaternionAlgebra.coe_mul x y @[norm_cast, simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_mul
null
coe_pow (n : ℕ) : (↑(x ^ n) : ℍ[R]) = (x : ℍ[R]) ^ n := QuaternionAlgebra.coe_pow x n @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_pow
null
re_natCast (n : ℕ) : (n : ℍ[R]).re = n := rfl @[deprecated (since := "2025-08-31")] alias natCast_re := re_natCast @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
re_natCast
null
imI_natCast (n : ℕ) : (n : ℍ[R]).imI = 0 := rfl @[deprecated (since := "2025-08-31")] alias natCast_imI := imI_natCast @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
imI_natCast
null
imJ_natCast (n : ℕ) : (n : ℍ[R]).imJ = 0 := rfl @[deprecated (since := "2025-08-31")] alias natCast_imJ := imJ_natCast @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
imJ_natCast
null
imK_natCast (n : ℕ) : (n : ℍ[R]).imK = 0 := rfl @[deprecated (since := "2025-08-31")] alias natCast_imK := imK_natCast @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
imK_natCast
null
im_natCast (n : ℕ) : (n : ℍ[R]).im = 0 := rfl @[deprecated (since := "2025-08-31")] alias natCast_im := im_natCast @[norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
im_natCast
null
coe_natCast (n : ℕ) : ↑(n : R) = (n : ℍ[R]) := rfl @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_natCast
null
re_intCast (z : ℤ) : (z : ℍ[R]).re = z := rfl @[deprecated (since := "2025-08-31")] alias intCast_re := re_intCast @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
re_intCast
null
imI_intCast (z : ℤ) : (z : ℍ[R]).imI = 0 := rfl @[deprecated (since := "2025-08-31")] alias intCast_imI := imI_intCast @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
imI_intCast
null
imJ_intCast (z : ℤ) : (z : ℍ[R]).imJ = 0 := rfl @[deprecated (since := "2025-08-31")] alias intCast_imJ := imJ_intCast @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
imJ_intCast
null
imK_intCast (z : ℤ) : (z : ℍ[R]).imK = 0 := rfl @[deprecated (since := "2025-08-31")] alias intCast_imK := imK_intCast @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
imK_intCast
null
im_intCast (z : ℤ) : (z : ℍ[R]).im = 0 := rfl @[deprecated (since := "2025-08-31")] alias intCast_im := im_intCast @[norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
im_intCast
null
coe_intCast (z : ℤ) : ↑(z : R) = (z : ℍ[R]) := rfl
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_intCast
null
coe_injective : Function.Injective (coe : R → ℍ[R]) := QuaternionAlgebra.coe_injective @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_injective
null
coe_inj {x y : R} : (x : ℍ[R]) = y ↔ x = y := coe_injective.eq_iff @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_inj
null
re_smul [SMul S R] (s : S) : (s • a).re = s • a.re := rfl @[deprecated (since := "2025-08-31")] alias smul_re := re_smul @[simp] theorem imI_smul [SMul S R] (s : S) : (s • a).imI = s • a.imI := rfl @[deprecated (since := "2025-08-31")] alias smul_imI := imI_smul @[simp] theorem imJ_smul [SMul S R] (s : S) : (s • a).imJ = s • a.imJ := rfl @[deprecated (since := "2025-08-31")] alias smul_imJ := imJ_smul @[simp] theorem imK_smul [SMul S R] (s : S) : (s • a).imK = s • a.imK := rfl @[deprecated (since := "2025-08-31")] alias smul_imK := imK_smul @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
re_smul
null
im_smul [SMulZeroClass S R] (s : S) : (s • a).im = s • a.im := QuaternionAlgebra.im_smul a s @[deprecated (since := "2025-08-31")] alias smul_im := im_smul @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
im_smul
null
coe_smul [SMulZeroClass S R] (s : S) (r : R) : (↑(s • r) : ℍ[R]) = s • (r : ℍ[R]) := QuaternionAlgebra.coe_smul _ _
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_smul
null
coe_commutes : ↑r * a = a * r := QuaternionAlgebra.coe_commutes r a
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_commutes
null
coe_commute : Commute (↑r) a := QuaternionAlgebra.coe_commute r a
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_commute
null
coe_mul_eq_smul : ↑r * a = r • a := QuaternionAlgebra.coe_mul_eq_smul r a
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_mul_eq_smul
null
mul_coe_eq_smul : a * r = r • a := QuaternionAlgebra.mul_coe_eq_smul r a @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
mul_coe_eq_smul
null
algebraMap_def : ⇑(algebraMap R ℍ[R]) = coe := rfl
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
algebraMap_def
null
algebraMap_injective : (algebraMap R ℍ[R] : _ → _).Injective := QuaternionAlgebra.algebraMap_injective
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
algebraMap_injective
null
smul_coe : x • (y : ℍ[R]) = ↑(x * y) := QuaternionAlgebra.smul_coe x y
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
smul_coe
null
rank_eq_four [StrongRankCondition R] : Module.rank R ℍ[R] = 4 := QuaternionAlgebra.rank_eq_four _ _ _
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
rank_eq_four
null
finrank_eq_four [StrongRankCondition R] : Module.finrank R ℍ[R] = 4 := QuaternionAlgebra.finrank_eq_four _ _ _ @[simp] theorem re_star : (star a).re = a.re := by rw [QuaternionAlgebra.re_star, zero_mul, add_zero] @[deprecated (since := "2025-08-31")] alias star_re := re_star @[simp] theorem imI_star : (star a).imI = -a.imI := rfl @[deprecated (since := "2025-08-31")] alias star_imI := imI_star @[simp] theorem imJ_star : (star a).imJ = -a.imJ := rfl @[deprecated (since := "2025-08-31")] alias star_imJ := imJ_star @[simp] theorem imK_star : (star a).imK = -a.imK := rfl @[deprecated (since := "2025-08-31")] alias star_imK := imK_star @[simp] theorem im_star : (star a).im = -a.im := QuaternionAlgebra.im_star a
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
finrank_eq_four
null
self_add_star' : a + star a = ↑(2 * a.re) := by simpa using QuaternionAlgebra.self_add_star' a
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
self_add_star'
null
self_add_star : a + star a = 2 * a.re := by simpa using QuaternionAlgebra.self_add_star a
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
self_add_star
null
star_add_self' : star a + a = ↑(2 * a.re) := by simpa using QuaternionAlgebra.star_add_self' a
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
star_add_self'
null
star_add_self : star a + a = 2 * a.re := by simpa using QuaternionAlgebra.star_add_self a
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
star_add_self
null
star_eq_two_re_sub : star a = ↑(2 * a.re) - a := by simpa using QuaternionAlgebra.star_eq_two_re_sub a @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
star_eq_two_re_sub
null
star_coe : star (x : ℍ[R]) = x := QuaternionAlgebra.star_coe x @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
star_coe
null
star_im : star a.im = -a.im := by ext <;> simp @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
star_im
null
star_smul [Monoid S] [DistribMulAction S R] (s : S) (a : ℍ[R]) : star (s • a) = s • star a := QuaternionAlgebra.star_smul' s a
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
star_smul
null
eq_re_of_eq_coe {a : ℍ[R]} {x : R} (h : a = x) : a = a.re := QuaternionAlgebra.eq_re_of_eq_coe h
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
eq_re_of_eq_coe
null
eq_re_iff_mem_range_coe {a : ℍ[R]} : a = a.re ↔ a ∈ Set.range (coe : R → ℍ[R]) := QuaternionAlgebra.eq_re_iff_mem_range_coe
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
eq_re_iff_mem_range_coe
null
@[simp] star_eq_self {a : ℍ[R]} : star a = a ↔ a = a.re := QuaternionAlgebra.star_eq_self @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
star_eq_self
null
star_eq_neg {a : ℍ[R]} : star a = -a ↔ a.re = 0 := QuaternionAlgebra.star_eq_neg
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
star_eq_neg
null
star_mul_eq_coe : star a * a = (star a * a).re := QuaternionAlgebra.star_mul_eq_coe a
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
star_mul_eq_coe
null
mul_star_eq_coe : a * star a = (a * star a).re := QuaternionAlgebra.mul_star_eq_coe a open MulOpposite
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
mul_star_eq_coe
null
starAe : ℍ[R] ≃ₐ[R] ℍ[R]ᵐᵒᵖ := QuaternionAlgebra.starAe @[simp]
def
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
starAe
Quaternion conjugate as an `AlgEquiv` to the opposite ring.
coe_starAe : ⇑(starAe : ℍ[R] ≃ₐ[R] ℍ[R]ᵐᵒᵖ) = op ∘ star := rfl
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_starAe
null
normSq : ℍ[R] →*₀ R where toFun a := (a * star a).re map_zero' := by simp only [star_zero, zero_mul, re_zero] map_one' := by simp only [star_one, one_mul, re_one] map_mul' x y := coe_injective <| by conv_lhs => rw [← mul_star_eq_coe, star_mul, mul_assoc, ← mul_assoc y, y.mul_star_eq_coe, coe_commutes, ← mul_assoc, x.mul_star_eq_coe, ← coe_mul]
def
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq
Square of the norm.
normSq_def : normSq a = (a * star a).re := rfl
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_def
null
normSq_def' : normSq a = a.1 ^ 2 + a.2 ^ 2 + a.3 ^ 2 + a.4 ^ 2 := by simp only [normSq_def, sq, mul_neg, sub_neg_eq_add, re_mul, re_star, imI_star, imJ_star, imK_star]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_def'
null
normSq_coe : normSq (x : ℍ[R]) = x ^ 2 := by rw [normSq_def, star_coe, ← coe_mul, re_coe, sq] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_coe
null
normSq_star : normSq (star a) = normSq a := by simp [normSq_def'] @[norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_star
null
normSq_natCast (n : ℕ) : normSq (n : ℍ[R]) = (n : R) ^ 2 := by rw [← coe_natCast, normSq_coe] @[norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_natCast
null
normSq_intCast (z : ℤ) : normSq (z : ℍ[R]) = (z : R) ^ 2 := by rw [← coe_intCast, normSq_coe] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_intCast
null
normSq_neg : normSq (-a) = normSq a := by simp only [normSq_def, star_neg, neg_mul_neg]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_neg
null
self_mul_star : a * star a = normSq a := by rw [mul_star_eq_coe, normSq_def]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
self_mul_star
null
star_mul_self : star a * a = normSq a := by rw [star_comm_self, self_mul_star]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
star_mul_self
null
im_sq : a.im ^ 2 = -normSq a.im := by simp_rw [sq, ← star_mul_self, star_im, neg_mul, neg_neg]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
im_sq
null
coe_normSq_add : normSq (a + b) = normSq a + a * star b + b * star a + normSq b := by simp only [star_add, ← self_mul_star, mul_add, add_mul, add_assoc, add_left_comm]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_normSq_add
null
normSq_smul (r : R) (q : ℍ[R]) : normSq (r • q) = r ^ 2 * normSq q := by simp only [normSq_def', re_smul, imI_smul, imJ_smul, imK_smul, mul_pow, mul_add, smul_eq_mul]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_smul
null
normSq_add (a b : ℍ[R]) : normSq (a + b) = normSq a + normSq b + 2 * (a * star b).re := calc normSq (a + b) = normSq a + (a * star b).re + ((b * star a).re + normSq b) := by simp_rw [normSq_def, star_add, add_mul, mul_add, re_add] _ = normSq a + normSq b + ((a * star b).re + (b * star a).re) := by abel _ = normSq a + normSq b + 2 * (a * star b).re := by rw [← re_add, ← star_mul_star a b, self_add_star', re_coe]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_add
null
@[simp] normSq_eq_zero : normSq a = 0 ↔ a = 0 := by refine ⟨fun h => ?_, fun h => h.symm ▸ normSq.map_zero⟩ rw [normSq_def', add_eq_zero_iff_of_nonneg, add_eq_zero_iff_of_nonneg, add_eq_zero_iff_of_nonneg] at h · exact ext a 0 (pow_eq_zero h.1.1.1) (pow_eq_zero h.1.1.2) (pow_eq_zero h.1.2) (pow_eq_zero h.2) all_goals apply_rules [sq_nonneg, add_nonneg]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_eq_zero
null
normSq_ne_zero : normSq a ≠ 0 ↔ a ≠ 0 := normSq_eq_zero.not @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_ne_zero
null
normSq_nonneg : 0 ≤ normSq a := by rw [normSq_def'] apply_rules [sq_nonneg, add_nonneg] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_nonneg
null
normSq_le_zero : normSq a ≤ 0 ↔ a = 0 := normSq_nonneg.ge_iff_eq'.trans normSq_eq_zero
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_le_zero
null
instNontrivial : Nontrivial ℍ[R] where exists_pair_ne := ⟨0, 1, mt (congr_arg QuaternionAlgebra.re) zero_ne_one⟩
instance
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
instNontrivial
null
sq_eq_normSq : a ^ 2 = normSq a ↔ a = a.re := by rw [← star_eq_self, ← star_mul_self, sq, mul_eq_mul_right_iff, eq_comm] exact or_iff_left_of_imp fun ha ↦ ha.symm ▸ star_zero _
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
sq_eq_normSq
null
sq_eq_neg_normSq : a ^ 2 = -normSq a ↔ a.re = 0 := by simp_rw [← star_eq_neg] obtain rfl | hq0 := eq_or_ne a 0 · simp · rw [← star_mul_self, ← mul_neg, ← neg_sq, sq, mul_left_inj' (neg_ne_zero.mpr hq0), eq_comm]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
sq_eq_neg_normSq
null
instNNRatCast : NNRatCast ℍ[R] where nnratCast q := (q : R)
instance
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
instNNRatCast
null
instRatCast : RatCast ℍ[R] where ratCast q := (q : R) @[simp, norm_cast] lemma re_nnratCast (q : ℚ≥0) : (q : ℍ[R]).re = q := rfl @[simp, norm_cast] lemma im_nnratCast (q : ℚ≥0) : (q : ℍ[R]).im = 0 := rfl @[simp, norm_cast] lemma imI_nnratCast (q : ℚ≥0) : (q : ℍ[R]).imI = 0 := rfl @[simp, norm_cast] lemma imJ_nnratCast (q : ℚ≥0) : (q : ℍ[R]).imJ = 0 := rfl @[simp, norm_cast] lemma imK_nnratCast (q : ℚ≥0) : (q : ℍ[R]).imK = 0 := rfl @[simp, norm_cast] lemma re_ratCast (q : ℚ) : (q : ℍ[R]).re = q := rfl @[simp, norm_cast] lemma im_ratCast (q : ℚ) : (q : ℍ[R]).im = 0 := rfl @[simp, norm_cast] lemma imI_ratCast (q : ℚ) : (q : ℍ[R]).imI = 0 := rfl @[simp, norm_cast] lemma imJ_ratCast (q : ℚ) : (q : ℍ[R]).imJ = 0 := rfl @[simp, norm_cast] lemma imK_ratCast (q : ℚ) : (q : ℍ[R]).imK = 0 := rfl @[deprecated (since := "2025-08-31")] alias ratCast_re := re_ratCast @[deprecated (since := "2025-08-31")] alias ratCast_im := im_ratCast @[deprecated (since := "2025-08-31")] alias ratCast_imI := imI_ratCast @[deprecated (since := "2025-08-31")] alias ratCast_imJ := imJ_ratCast @[deprecated (since := "2025-08-31")] alias ratCast_imK := imK_ratCast @[norm_cast] lemma coe_nnratCast (q : ℚ≥0) : ↑(q : R) = (q : ℍ[R]) := rfl @[norm_cast] lemma coe_ratCast (q : ℚ) : ↑(q : R) = (q : ℍ[R]) := rfl variable [LinearOrder R] [IsStrictOrderedRing R] (a b : ℍ[R]) @[simps -isSimp]
instance
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
instRatCast
null
instInv : Inv ℍ[R] := ⟨fun a => (normSq a)⁻¹ • star a⟩
instance
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
instInv
null
instGroupWithZero : GroupWithZero ℍ[R] := { Quaternion.instNontrivial with inv := Inv.inv inv_zero := by rw [inv_def, star_zero, smul_zero] mul_inv_cancel := fun a ha => by rw [inv_def, Algebra.mul_smul_comm (normSq a)⁻¹ a (star a), self_mul_star, smul_coe, inv_mul_cancel₀ (normSq_ne_zero.2 ha), coe_one] } @[norm_cast, simp]
instance
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
instGroupWithZero
null
coe_inv (x : R) : ((x⁻¹ : R) : ℍ[R]) = (↑x)⁻¹ := map_inv₀ (algebraMap R ℍ[R]) _ @[norm_cast, simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_inv
null
coe_div (x y : R) : ((x / y : R) : ℍ[R]) = x / y := map_div₀ (algebraMap R ℍ[R]) x y @[norm_cast, simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_div
null
coe_zpow (x : R) (z : ℤ) : ((x ^ z : R) : ℍ[R]) = (x : ℍ[R]) ^ z := map_zpow₀ (algebraMap R ℍ[R]) x z
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
coe_zpow
null
instDivisionRing : DivisionRing ℍ[R] where __ := Quaternion.instRing __ := Quaternion.instGroupWithZero nnqsmul := (· • ·) qsmul := (· • ·) nnratCast_def _ := by rw [← coe_nnratCast, NNRat.cast_def, coe_div, coe_natCast, coe_natCast] ratCast_def _ := by rw [← coe_ratCast, Rat.cast_def, coe_div, coe_intCast, coe_natCast] nnqsmul_def _ _ := by rw [← coe_nnratCast, coe_mul_eq_smul]; ext <;> exact NNRat.smul_def .. qsmul_def _ _ := by rw [← coe_ratCast, coe_mul_eq_smul]; ext <;> exact Rat.smul_def ..
instance
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
instDivisionRing
null
normSq_inv : normSq a⁻¹ = (normSq a)⁻¹ := map_inv₀ normSq _
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_inv
null
normSq_div : normSq (a / b) = normSq a / normSq b := map_div₀ normSq a b
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_div
null
normSq_zpow (z : ℤ) : normSq (a ^ z) = normSq a ^ z := map_zpow₀ normSq a z @[norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_zpow
null
normSq_ratCast (q : ℚ) : normSq (q : ℍ[R]) = (q : ℍ[R]) ^ 2 := by rw [← coe_ratCast, normSq_coe, coe_pow]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
normSq_ratCast
null
private pow_four [Infinite R] : #R ^ 4 = #R := power_nat_eq (aleph0_le_mk R) <| by decide
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
pow_four
null
mk_quaternionAlgebra : #(ℍ[R,c₁,c₂,c₃]) = #R ^ 4 := by rw [mk_congr (QuaternionAlgebra.equivProd c₁ c₂ c₃)] simp only [mk_prod, lift_id] ring @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
mk_quaternionAlgebra
The cardinality of a quaternion algebra, as a type.
mk_quaternionAlgebra_of_infinite [Infinite R] : #(ℍ[R,c₁,c₂,c₃]) = #R := by rw [mk_quaternionAlgebra, pow_four]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
mk_quaternionAlgebra_of_infinite
null
mk_univ_quaternionAlgebra : #(Set.univ : Set ℍ[R,c₁,c₂,c₃]) = #R ^ 4 := by rw [mk_univ, mk_quaternionAlgebra]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
mk_univ_quaternionAlgebra
The cardinality of a quaternion algebra, as a set.
mk_univ_quaternionAlgebra_of_infinite [Infinite R] : #(Set.univ : Set ℍ[R,c₁,c₂,c₃]) = #R := by rw [mk_univ_quaternionAlgebra, pow_four]
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
mk_univ_quaternionAlgebra_of_infinite
null
@[simp] mk_quaternion : #(ℍ[R]) = #R ^ 4 := mk_quaternionAlgebra _ _ _
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
mk_quaternion
Show the quaternion ⟨w, x, y, z⟩ as a string "{ re := w, imI := x, imJ := y, imK := z }". For the typical case of quaternions over ℝ, each component will show as a Cauchy sequence due to the way Real numbers are represented. -/ instance [Repr R] {a b c : R} : Repr ℍ[R, a, b, c] where reprPrec q _ := s!"\{ re := {repr q.re}, imI := {repr q.imI}, imJ := {repr q.imJ}, imK := {repr q.imK} }" end QuaternionAlgebra section Quaternion variable (R : Type*) [Zero R] [One R] [Neg R] /-- The cardinality of the quaternions, as a type.
mk_quaternion_of_infinite [Infinite R] : #(ℍ[R]) = #R := mk_quaternionAlgebra_of_infinite _ _ _
theorem
Algebra
[ "Mathlib.Algebra.Star.SelfAdjoint", "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/Quaternion.lean
mk_quaternion_of_infinite
null