fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
smul_mk (s : S) (x y : R) : s • (mk x y : QuadraticAlgebra R a b) = mk (s • x) (s • y) := rfl
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
smul_mk
null
@[simp, norm_cast] coe_smul [Zero R] [SMulZeroClass S R] (s : S) (r : R) : (↑(s • r) : QuadraticAlgebra R a b) = s • (r : QuadraticAlgebra R a b) := QuadraticAlgebra.ext rfl (smul_zero _).symm
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_smul
null
@[simp, norm_cast] coe_ofNat (n : ℕ) [n.AtLeastTwo] : ((ofNat(n) : R) : QuadraticAlgebra R a b) = (ofNat(n) : QuadraticAlgebra R a b) := by ext <;> rfl @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_ofNat
null
re_natCast (n : ℕ) : (n : QuadraticAlgebra R a b).re = n := rfl @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
re_natCast
null
im_natCast (n : ℕ) : (n : QuadraticAlgebra R a b).im = 0 := rfl @[norm_cast]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
im_natCast
null
coe_natCast (n : ℕ) : ↑(↑n : R) = (↑n : QuadraticAlgebra R a b) := rfl @[scoped simp]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_natCast
null
re_ofNat (n : ℕ) [n.AtLeastTwo] : (ofNat(n) : QuadraticAlgebra R a b).re = ofNat(n) := rfl @[scoped simp]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
re_ofNat
null
im_ofNat (n : ℕ) [n.AtLeastTwo] : (ofNat(n) : QuadraticAlgebra R a b).im = 0 := rfl
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
im_ofNat
null
@[simp, norm_cast] re_intCast (n : ℤ) : (n : QuadraticAlgebra R a b).re = n := rfl @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
re_intCast
null
im_intCast (n : ℤ) : (n : QuadraticAlgebra R a b).im = 0 := rfl @[norm_cast]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
im_intCast
null
coe_intCast (n : ℤ) : ↑(n : R) = (n : QuadraticAlgebra R a b) := rfl
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_intCast
null
instNonUnitalNonAssocSemiring : NonUnitalNonAssocSemiring (QuadraticAlgebra R a b) where left_distrib _ _ _ := by ext <;> simpa using by simp [mul_add]; abel right_distrib _ _ _ := by ext <;> simpa using by simp [mul_add, add_mul]; abel zero_mul _ := by ext <;> simp mul_zero _ := by ext <;> simp
instance
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
instNonUnitalNonAssocSemiring
null
coe_mul_eq_smul (r : R) (x : QuadraticAlgebra R a b) : (r * x : QuadraticAlgebra R a b) = r • x := by ext <;> simp @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_mul_eq_smul
null
coe_mul (x y : R) : ↑(x * y) = (↑x * ↑y : QuadraticAlgebra R a b) := by ext <;> simp
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_mul
null
instNonAssocSemiring : NonAssocSemiring (QuadraticAlgebra R a b) where one_mul _ := by ext <;> simp mul_one _ := by ext <;> simp
instance
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
instNonAssocSemiring
null
@[simps] reₗ : QuadraticAlgebra R a b →ₗ[R] R where toFun := re map_add' _ _ := rfl map_smul' _ _ := rfl
def
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
reₗ
`QuadraticAlgebra.re` as a `LinearMap`
@[simps] imₗ : QuadraticAlgebra R a b →ₗ[R] R where toFun := im map_add' _ _ := rfl map_smul' _ _ := rfl
def
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
imₗ
`QuadraticAlgebra.im` as a `LinearMap`
linearEquivTuple : QuadraticAlgebra R a b ≃ₗ[R] (Fin 2 → R) where __ := equivProd a b |>.trans <| finTwoArrowEquiv _ |>.symm map_add' _ _ := funext <| Fin.forall_fin_two.2 ⟨rfl, rfl⟩ map_smul' _ _ := funext <| Fin.forall_fin_two.2 ⟨rfl, rfl⟩ @[simp]
def
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
linearEquivTuple
`QuadraticAlgebra.equivTuple` as a `LinearEquiv`
linearEquivTuple_apply (z : QuadraticAlgebra R a b) : (linearEquivTuple a b) z = ![z.re, z.im] := rfl @[simp]
lemma
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
linearEquivTuple_apply
null
linearEquivTuple_symm_apply (x : Fin 2 → R) : (linearEquivTuple a b).symm x = ⟨x 0, x 1⟩ := rfl
lemma
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
linearEquivTuple_symm_apply
null
noncomputable basis : Module.Basis (Fin 2) R (QuadraticAlgebra R a b) := .ofEquivFun <| linearEquivTuple a b @[simp]
def
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
basis
`QuadraticAlgebra R a b` has a basis over `R` given by `1` and `i`
basis_repr_apply (x : QuadraticAlgebra R a b) : (basis a b).repr x = ![x.re, x.im] := rfl
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
basis_repr_apply
null
rank_eq_two [StrongRankCondition R] : Module.rank R (QuadraticAlgebra R a b) = 2 := by simp [rank_eq_card_basis (basis a b)]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
rank_eq_two
null
finrank_eq_two [StrongRankCondition R] : Module.finrank R (QuadraticAlgebra R a b) = 2 := by simp [Module.finrank, rank_eq_two]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
finrank_eq_two
null
instCommSemiring : CommSemiring (QuadraticAlgebra R a b) where mul_assoc _ _ _ := by ext <;> simpa using by ring mul_comm _ _ := by ext <;> simpa using by ring
instance
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
instCommSemiring
null
algebraMap_eq (r : R) : algebraMap R (QuadraticAlgebra R a b) r = ⟨r, 0⟩ := rfl
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
algebraMap_eq
null
algebraMap_injective : (algebraMap R (QuadraticAlgebra R a b) : _ → _).Injective := fun _ _ ↦ by simp [algebraMap_eq]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
algebraMap_injective
null
@[norm_cast, simp] coe_pow (n : ℕ) (r : R) : ((r ^ n : R) : QuadraticAlgebra R a b) = (r : QuadraticAlgebra R a b) ^ n := (algebraMap R (QuadraticAlgebra R a b)).map_pow r n
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_pow
null
mul_coe_eq_smul (r : R) (x : QuadraticAlgebra R a b) : (x * r : QuadraticAlgebra R a b) = r • x := by rw [mul_comm, coe_mul_eq_smul r x] @[norm_cast, simp]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
mul_coe_eq_smul
null
coe_algebraMap : ⇑(algebraMap R (QuadraticAlgebra R a b)) = coe := rfl
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_algebraMap
null
smul_coe (r1 r2 : R) : r1 • (r2 : QuadraticAlgebra R a b) = ↑(r1 * r2) := by rw [coe_mul, coe_mul_eq_smul]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
smul_coe
null
instCommRing [CommRing R] : CommRing (QuadraticAlgebra R a b) where
instance
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
instCommRing
null
discrim [Ring R] (a b c : R) : R := b ^ 2 - 4 * a * c @[simp] lemma discrim_neg [Ring R] (a b c : R) : discrim (-a) (-b) (-c) = discrim a b c := by simp [discrim] variable [CommRing R] {a b c : R}
def
Algebra
[ "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Tactic.FieldSimp", "Mathlib.Tactic.LinearCombination", "Mathlib.Tactic.Linarith.Frontend" ]
Mathlib/Algebra/QuadraticDiscriminant.lean
discrim
Discriminant of a quadratic
discrim_eq_sq_of_quadratic_eq_zero {x : R} (h : a * (x * x) + b * x + c = 0) : discrim a b c = (2 * a * x + b) ^ 2 := by rw [discrim] linear_combination -4 * a * h
lemma
Algebra
[ "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Tactic.FieldSimp", "Mathlib.Tactic.LinearCombination", "Mathlib.Tactic.Linarith.Frontend" ]
Mathlib/Algebra/QuadraticDiscriminant.lean
discrim_eq_sq_of_quadratic_eq_zero
null
quadratic_eq_zero_iff_discrim_eq_sq [NeZero (2 : R)] [NoZeroDivisors R] (ha : a ≠ 0) (x : R) : a * (x * x) + b * x + c = 0 ↔ discrim a b c = (2 * a * x + b) ^ 2 := by refine ⟨discrim_eq_sq_of_quadratic_eq_zero, fun h ↦ ?_⟩ rw [discrim] at h have ha : 2 * 2 * a ≠ 0 := mul_ne_zero (mul_ne_zero (NeZero.ne _) (NeZero.ne _)) ha apply mul_left_cancel₀ ha linear_combination -h
theorem
Algebra
[ "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Tactic.FieldSimp", "Mathlib.Tactic.LinearCombination", "Mathlib.Tactic.Linarith.Frontend" ]
Mathlib/Algebra/QuadraticDiscriminant.lean
quadratic_eq_zero_iff_discrim_eq_sq
A quadratic has roots if and only if its discriminant equals some square.
quadratic_ne_zero_of_discrim_ne_sq (h : ∀ s : R, discrim a b c ≠ s^2) (x : R) : a * (x * x) + b * x + c ≠ 0 := mt discrim_eq_sq_of_quadratic_eq_zero (h _)
theorem
Algebra
[ "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Tactic.FieldSimp", "Mathlib.Tactic.LinearCombination", "Mathlib.Tactic.Linarith.Frontend" ]
Mathlib/Algebra/QuadraticDiscriminant.lean
quadratic_ne_zero_of_discrim_ne_sq
A quadratic has no root if its discriminant has no square root.
quadratic_eq_zero_iff (ha : a ≠ 0) {s : K} (h : discrim a b c = s * s) (x : K) : a * (x * x) + b * x + c = 0 ↔ x = (-b + s) / (2 * a) ∨ x = (-b - s) / (2 * a) := by rw [quadratic_eq_zero_iff_discrim_eq_sq ha, h, sq, mul_self_eq_mul_self_iff] field_simp grind
theorem
Algebra
[ "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Tactic.FieldSimp", "Mathlib.Tactic.LinearCombination", "Mathlib.Tactic.Linarith.Frontend" ]
Mathlib/Algebra/QuadraticDiscriminant.lean
quadratic_eq_zero_iff
Roots of a quadratic equation.
exists_quadratic_eq_zero (ha : a ≠ 0) (h : ∃ s, discrim a b c = s * s) : ∃ x, a * (x * x) + b * x + c = 0 := by rcases h with ⟨s, hs⟩ use (-b + s) / (2 * a) rw [quadratic_eq_zero_iff ha hs] simp
theorem
Algebra
[ "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Tactic.FieldSimp", "Mathlib.Tactic.LinearCombination", "Mathlib.Tactic.Linarith.Frontend" ]
Mathlib/Algebra/QuadraticDiscriminant.lean
exists_quadratic_eq_zero
A quadratic has roots if its discriminant has square roots
quadratic_eq_zero_iff_of_discrim_eq_zero (ha : a ≠ 0) (h : discrim a b c = 0) (x : K) : a * (x * x) + b * x + c = 0 ↔ x = -b / (2 * a) := by have : discrim a b c = 0 * 0 := by rw [h, mul_zero] rw [quadratic_eq_zero_iff ha this, add_zero, sub_zero, or_self_iff]
theorem
Algebra
[ "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Tactic.FieldSimp", "Mathlib.Tactic.LinearCombination", "Mathlib.Tactic.Linarith.Frontend" ]
Mathlib/Algebra/QuadraticDiscriminant.lean
quadratic_eq_zero_iff_of_discrim_eq_zero
Root of a quadratic when its discriminant equals zero
discrim_eq_zero_of_existsUnique (ha : a ≠ 0) (h : ∃! x, a * (x * x) + b * x + c = 0) : discrim a b c = 0 := by simp_rw [quadratic_eq_zero_iff_discrim_eq_sq ha] at h generalize discrim a b c = d at h obtain ⟨x, rfl, hx⟩ := h specialize hx (-(x + b / a)) grind
theorem
Algebra
[ "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Tactic.FieldSimp", "Mathlib.Tactic.LinearCombination", "Mathlib.Tactic.Linarith.Frontend" ]
Mathlib/Algebra/QuadraticDiscriminant.lean
discrim_eq_zero_of_existsUnique
null
discrim_eq_zero_iff (ha : a ≠ 0) : discrim a b c = 0 ↔ (∃! x, a * (x * x) + b * x + c = 0) := by refine ⟨fun hd => ?_, discrim_eq_zero_of_existsUnique ha⟩ simp_rw [quadratic_eq_zero_iff_of_discrim_eq_zero ha hd, existsUnique_eq]
theorem
Algebra
[ "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Tactic.FieldSimp", "Mathlib.Tactic.LinearCombination", "Mathlib.Tactic.Linarith.Frontend" ]
Mathlib/Algebra/QuadraticDiscriminant.lean
discrim_eq_zero_iff
null
discrim_le_zero (h : ∀ x : K, 0 ≤ a * (x * x) + b * x + c) : discrim a b c ≤ 0 := by rw [discrim, sq] obtain ha | rfl | ha : a < 0 ∨ a = 0 ∨ 0 < a := lt_trichotomy a 0 · have : Tendsto (fun x => (a * x + b) * x + c) atTop atBot := tendsto_atBot_add_const_right _ c <| (tendsto_atBot_add_const_right _ b (tendsto_id.const_mul_atTop_of_neg ha)).atBot_mul_atTop₀ tendsto_id rcases (this.eventually (eventually_lt_atBot 0)).exists with ⟨x, hx⟩ exact False.elim ((h x).not_gt <| by rwa [← mul_assoc, ← add_mul]) · rcases eq_or_ne b 0 with (rfl | hb) · simp · have := h ((-c - 1) / b) rw [mul_div_cancel₀ _ hb] at this linarith · have ha' : 0 ≤ 4 * a := mul_nonneg zero_le_four ha.le convert neg_nonpos.2 (mul_nonneg ha' (h (-b / (2 * a)))) using 1 field_simp ring
theorem
Algebra
[ "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Tactic.FieldSimp", "Mathlib.Tactic.LinearCombination", "Mathlib.Tactic.Linarith.Frontend" ]
Mathlib/Algebra/QuadraticDiscriminant.lean
discrim_le_zero
If a polynomial of degree 2 is always nonnegative, then its discriminant is nonpositive
discrim_le_zero_of_nonpos (h : ∀ x : K, a * (x * x) + b * x + c ≤ 0) : discrim a b c ≤ 0 := discrim_neg a b c ▸ discrim_le_zero <| by simpa only [neg_mul, ← neg_add, neg_nonneg]
lemma
Algebra
[ "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Tactic.FieldSimp", "Mathlib.Tactic.LinearCombination", "Mathlib.Tactic.Linarith.Frontend" ]
Mathlib/Algebra/QuadraticDiscriminant.lean
discrim_le_zero_of_nonpos
null
discrim_lt_zero (ha : a ≠ 0) (h : ∀ x : K, 0 < a * (x * x) + b * x + c) : discrim a b c < 0 := by have : ∀ x : K, 0 ≤ a * (x * x) + b * x + c := fun x => le_of_lt (h x) refine lt_of_le_of_ne (discrim_le_zero this) fun h' ↦ ?_ have := h (-b / (2 * a)) have : a * (-b / (2 * a)) * (-b / (2 * a)) + b * (-b / (2 * a)) + c = 0 := by rw [mul_assoc, quadratic_eq_zero_iff_of_discrim_eq_zero ha h' (-b / (2 * a))] linarith
theorem
Algebra
[ "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Tactic.FieldSimp", "Mathlib.Tactic.LinearCombination", "Mathlib.Tactic.Linarith.Frontend" ]
Mathlib/Algebra/QuadraticDiscriminant.lean
discrim_lt_zero
If a polynomial of degree 2 is always positive, then its discriminant is negative, at least when the coefficient of the quadratic term is nonzero.
discrim_lt_zero_of_neg (ha : a ≠ 0) (h : ∀ x : K, a * (x * x) + b * x + c < 0) : discrim a b c < 0 := discrim_neg a b c ▸ discrim_lt_zero (neg_ne_zero.2 ha) <| by simpa only [neg_mul, ← neg_add, neg_pos]
lemma
Algebra
[ "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Tactic.FieldSimp", "Mathlib.Tactic.LinearCombination", "Mathlib.Tactic.Linarith.Frontend" ]
Mathlib/Algebra/QuadraticDiscriminant.lean
discrim_lt_zero_of_neg
null
Shelf (α : Type u) where /-- The action of the `Shelf` over `α` -/ act : α → α → α /-- A verification that `act` is self-distributive -/ self_distrib : ∀ {x y z : α}, act x (act y z) = act (act x y) (act x z)
class
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
Shelf
A *Shelf* is a structure with a self-distributive binary operation. The binary operation is regarded as a left action of the type on itself.
UnitalShelf (α : Type u) extends Shelf α, One α where one_act : ∀ a : α, act 1 a = a act_one : ∀ a : α, act a 1 = a
class
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
UnitalShelf
A *unital shelf* is a shelf equipped with an element `1` such that, for all elements `x`, we have both `x ◃ 1` and `1 ◃ x` equal `x`.
@[ext] ShelfHom (S₁ : Type*) (S₂ : Type*) [Shelf S₁] [Shelf S₂] where /-- The function under the Shelf Homomorphism -/ toFun : S₁ → S₂ /-- The homomorphism property of a Shelf Homomorphism -/ map_act' : ∀ {x y : S₁}, toFun (Shelf.act x y) = Shelf.act (toFun x) (toFun y)
structure
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
ShelfHom
The type of homomorphisms between shelves. This is also the notion of rack and quandle homomorphisms.
Rack (α : Type u) extends Shelf α where /-- The inverse actions of the elements -/ invAct : α → α → α /-- Proof of left inverse -/ left_inv : ∀ x, Function.LeftInverse (invAct x) (act x) /-- Proof of right inverse -/ right_inv : ∀ x, Function.RightInverse (invAct x) (act x)
class
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
Rack
A *rack* is an automorphic set (a set with an action on itself by bijections) that is self-distributive. It is a shelf such that each element's action is invertible. The notations `x ◃ y` and `x ◃⁻¹ y` denote the action and the inverse action, respectively, and they are right associative.
act_act_self_eq (x y : S) : (x ◃ y) ◃ x = x ◃ y := by have h : (x ◃ y) ◃ x = (x ◃ y) ◃ (x ◃ 1) := by rw [act_one] rw [h, ← Shelf.self_distrib, act_one]
lemma
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
act_act_self_eq
Action of a Shelf -/ scoped[Quandles] infixr:65 " ◃ " => Shelf.act /-- Inverse Action of a Rack -/ scoped[Quandles] infixr:65 " ◃⁻¹ " => Rack.invAct /-- Shelf Homomorphism -/ scoped[Quandles] infixr:25 " →◃ " => ShelfHom open Quandles namespace UnitalShelf open Shelf variable {S : Type*} [UnitalShelf S] /-- A monoid is *graphic* if, for all `x` and `y`, the *graphic identity* `(x * y) * x = x * y` holds. For a unital shelf, this graphic identity holds.
act_idem (x : S) : (x ◃ x) = x := by rw [← act_one x, ← Shelf.self_distrib, act_one]
lemma
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
act_idem
null
act_self_act_eq (x y : S) : x ◃ (x ◃ y) = x ◃ y := by have h : x ◃ (x ◃ y) = (x ◃ 1) ◃ (x ◃ y) := by rw [act_one] rw [h, ← Shelf.self_distrib, one_act]
lemma
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
act_self_act_eq
null
assoc (x y z : S) : (x ◃ y) ◃ z = x ◃ y ◃ z := by rw [self_distrib, self_distrib, act_act_self_eq, act_self_act_eq]
lemma
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
assoc
The associativity of a unital shelf comes for free.
act' (x : R) : R ≃ R where toFun := Shelf.act x invFun := invAct x left_inv := left_inv x right_inv := right_inv x @[simp]
def
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
act'
A rack acts on itself by equivalences.
act'_apply (x y : R) : act' x y = x ◃ y := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
act'_apply
null
act'_symm_apply (x y : R) : (act' x).symm y = x ◃⁻¹ y := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
act'_symm_apply
null
invAct_apply (x y : R) : (act' x)⁻¹ y = x ◃⁻¹ y := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
invAct_apply
null
invAct_act_eq (x y : R) : x ◃⁻¹ x ◃ y = y := left_inv x y @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
invAct_act_eq
null
act_invAct_eq (x y : R) : x ◃ x ◃⁻¹ y = y := right_inv x y
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
act_invAct_eq
null
left_cancel (x : R) {y y' : R} : x ◃ y = x ◃ y' ↔ y = y' := by constructor · apply (act' x).injective rintro rfl rfl
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
left_cancel
null
left_cancel_inv (x : R) {y y' : R} : x ◃⁻¹ y = x ◃⁻¹ y' ↔ y = y' := by constructor · apply (act' x).symm.injective rintro rfl rfl
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
left_cancel_inv
null
self_distrib_inv {x y z : R} : x ◃⁻¹ y ◃⁻¹ z = (x ◃⁻¹ y) ◃⁻¹ x ◃⁻¹ z := by rw [← left_cancel (x ◃⁻¹ y), right_inv, ← left_cancel x, right_inv, self_distrib] repeat' rw [right_inv]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
self_distrib_inv
null
ad_conj {R : Type*} [Rack R] (x y : R) : act' (x ◃ y) = act' x * act' y * (act' x)⁻¹ := by rw [eq_mul_inv_iff_mul_eq]; ext z apply self_distrib.symm
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
ad_conj
The *adjoint action* of a rack on itself is `op'`, and the adjoint action of `x ◃ y` is the conjugate of the action of `y` by the action of `x`. It is another way to understand the self-distributivity axiom. This is used in the natural rack homomorphism `toConj` from `R` to `Conj (R ≃ R)` defined by `op'`.
oppositeRack : Rack Rᵐᵒᵖ where act x y := op (invAct (unop x) (unop y)) self_distrib := by intro x y z induction x induction y induction z simp only [op_inj, unop_op] rw [self_distrib_inv] invAct x y := op (Shelf.act (unop x) (unop y)) left_inv := MulOpposite.rec' fun x => MulOpposite.rec' fun y => by simp right_inv := MulOpposite.rec' fun x => MulOpposite.rec' fun y => by simp @[simp]
instance
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
oppositeRack
The opposite rack, swapping the roles of `◃` and `◃⁻¹`.
op_act_op_eq {x y : R} : op x ◃ op y = op (x ◃⁻¹ y) := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
op_act_op_eq
null
op_invAct_op_eq {x y : R} : op x ◃⁻¹ op y = op (x ◃ y) := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
op_invAct_op_eq
null
self_act_act_eq {x y : R} : (x ◃ x) ◃ y = x ◃ y := by rw [← right_inv x y, ← self_distrib] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
self_act_act_eq
null
self_invAct_invAct_eq {x y : R} : (x ◃⁻¹ x) ◃⁻¹ y = x ◃⁻¹ y := by have h := @self_act_act_eq _ _ (op x) (op y) simpa using h @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
self_invAct_invAct_eq
null
self_act_invAct_eq {x y : R} : (x ◃ x) ◃⁻¹ y = x ◃⁻¹ y := by rw [← left_cancel (x ◃ x)] rw [right_inv] rw [self_act_act_eq] rw [right_inv] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
self_act_invAct_eq
null
self_invAct_act_eq {x y : R} : (x ◃⁻¹ x) ◃ y = x ◃ y := by have h := @self_act_invAct_eq _ _ (op x) (op y) simpa using h
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
self_invAct_act_eq
null
self_act_eq_iff_eq {x y : R} : x ◃ x = y ◃ y ↔ x = y := by constructor; swap · rintro rfl; rfl intro h trans (x ◃ x) ◃⁻¹ x ◃ x · rw [← left_cancel (x ◃ x), right_inv, self_act_act_eq] · rw [h, ← left_cancel (y ◃ y), right_inv, self_act_act_eq]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
self_act_eq_iff_eq
null
self_invAct_eq_iff_eq {x y : R} : x ◃⁻¹ x = y ◃⁻¹ y ↔ x = y := by have h := @self_act_eq_iff_eq _ _ (op x) (op y) simpa using h
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
self_invAct_eq_iff_eq
null
selfApplyEquiv (R : Type*) [Rack R] : R ≃ R where toFun x := x ◃ x invFun x := x ◃⁻¹ x left_inv x := by simp right_inv x := by simp
def
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
selfApplyEquiv
The map `x ↦ x ◃ x` is a bijection. (This has applications for the regular isotopy version of the Reidemeister I move for knot diagrams.)
IsInvolutory (R : Type*) [Rack R] : Prop := ∀ x : R, Function.Involutive (Shelf.act x)
def
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
IsInvolutory
An involutory rack is one for which `Rack.oppositeRack R x` is an involution for every x.
involutory_invAct_eq_act {R : Type*} [Rack R] (h : IsInvolutory R) (x y : R) : x ◃⁻¹ y = x ◃ y := by rw [← left_cancel x, right_inv, h x]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
involutory_invAct_eq_act
null
IsAbelian (R : Type*) [Rack R] : Prop := ∀ x y z w : R, (x ◃ y) ◃ z ◃ w = (x ◃ z) ◃ y ◃ w
def
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
IsAbelian
An abelian rack is one for which the mediality axiom holds.
assoc_iff_id {R : Type*} [Rack R] {x y z : R} : x ◃ y ◃ z = (x ◃ y) ◃ z ↔ x ◃ z = z := by rw [self_distrib] rw [left_cancel]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
assoc_iff_id
Associative racks are uninteresting.
@[simp] toFun_eq_coe (f : S₁ →◃ S₂) : f.toFun = f := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
toFun_eq_coe
null
map_act (f : S₁ →◃ S₂) {x y : S₁} : f (x ◃ y) = f x ◃ f y := map_act' f
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
map_act
null
id (S : Type*) [Shelf S] : S →◃ S where toFun := fun x => x map_act' := by simp
def
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
id
The identity homomorphism
inhabited (S : Type*) [Shelf S] : Inhabited (S →◃ S) := ⟨id S⟩
instance
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
inhabited
null
comp (g : S₂ →◃ S₃) (f : S₁ →◃ S₂) : S₁ →◃ S₃ where toFun := g.toFun ∘ f.toFun map_act' := by simp @[simp]
def
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
comp
The composition of shelf homomorphisms
comp_apply (g : S₂ →◃ S₃) (f : S₁ →◃ S₂) (x : S₁) : (g.comp f) x = g (f x) := rfl
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
comp_apply
null
Quandle (α : Type*) extends Rack α where /-- The fixing property of a Quandle -/ fix : ∀ {x : α}, act x x = x
class
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
Quandle
A quandle is a rack such that each automorphism fixes its corresponding element.
@[simp] fix_inv {x : Q} : x ◃⁻¹ x = x := by rw [← left_cancel x] simp
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
fix_inv
null
oppositeQuandle : Quandle Qᵐᵒᵖ where fix := by intro x induction x simp
instance
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
oppositeQuandle
null
Conj (G : Type*) := G
abbrev
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
Conj
The conjugation quandle of a group. Each element of the group acts by the corresponding inner automorphism.
Conj.quandle (G : Type*) [Group G] : Quandle (Conj G) where act x := @MulAut.conj G _ x self_distrib := by intro x y z dsimp only [MulAut.conj_apply] simp [mul_assoc] invAct x := (@MulAut.conj G _ x).symm left_inv x y := by simp [mul_assoc] right_inv x y := by simp [mul_assoc] fix := by simp @[simp]
instance
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
Conj.quandle
null
conj_act_eq_conj {G : Type*} [Group G] (x y : Conj G) : x ◃ y = ((x : G) * (y : G) * (x : G)⁻¹ : G) := rfl
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
conj_act_eq_conj
null
conj_swap {G : Type*} [Group G] (x y : Conj G) : x ◃ y = y ↔ y ◃ x = x := by dsimp [Conj] at *; constructor repeat' intro h; conv_rhs => rw [eq_mul_inv_of_mul_eq (eq_mul_inv_of_mul_eq h)]; simp
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
conj_swap
null
Conj.map {G : Type*} {H : Type*} [Group G] [Group H] (f : G →* H) : Conj G →◃ Conj H where toFun := f map_act' := by simp
def
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
Conj.map
`Conj` is functorial
Dihedral (n : ℕ) := ZMod n
def
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
Dihedral
The dihedral quandle. This is the conjugation quandle of the dihedral group restricted to flips. Used for Fox n-colorings of knots.
dihedralAct (n : ℕ) (a : ZMod n) : ZMod n → ZMod n := fun b => 2 * a - b
def
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
dihedralAct
The operation for the dihedral quandle. It does not need to be an equivalence because it is an involution (see `dihedralAct.inv`).
dihedralAct.inv (n : ℕ) (a : ZMod n) : Function.Involutive (dihedralAct n a) := by intro b dsimp only [dihedralAct] simp
theorem
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
dihedralAct.inv
null
toConj (R : Type*) [Rack R] : R →◃ Quandle.Conj (R ≃ R) where toFun := act' map_act' := by intro x y exact ad_conj x y
def
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
toConj
This is the natural rack homomorphism to the conjugation quandle of the group `R ≃ R` that acts on the rack.
PreEnvelGroup (R : Type u) : Type u | unit : PreEnvelGroup R | incl (x : R) : PreEnvelGroup R | mul (a b : PreEnvelGroup R) : PreEnvelGroup R | inv (a : PreEnvelGroup R) : PreEnvelGroup R
inductive
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
PreEnvelGroup
Free generators of the enveloping group.
PreEnvelGroup.inhabited (R : Type u) : Inhabited (PreEnvelGroup R) := ⟨PreEnvelGroup.unit⟩ open PreEnvelGroup
instance
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
PreEnvelGroup.inhabited
null
PreEnvelGroupRel' (R : Type u) [Rack R] : PreEnvelGroup R → PreEnvelGroup R → Type u | refl {a : PreEnvelGroup R} : PreEnvelGroupRel' R a a | symm {a b : PreEnvelGroup R} (hab : PreEnvelGroupRel' R a b) : PreEnvelGroupRel' R b a | trans {a b c : PreEnvelGroup R} (hab : PreEnvelGroupRel' R a b) (hbc : PreEnvelGroupRel' R b c) : PreEnvelGroupRel' R a c | congr_mul {a b a' b' : PreEnvelGroup R} (ha : PreEnvelGroupRel' R a a') (hb : PreEnvelGroupRel' R b b') : PreEnvelGroupRel' R (mul a b) (mul a' b') | congr_inv {a a' : PreEnvelGroup R} (ha : PreEnvelGroupRel' R a a') : PreEnvelGroupRel' R (inv a) (inv a') | assoc (a b c : PreEnvelGroup R) : PreEnvelGroupRel' R (mul (mul a b) c) (mul a (mul b c)) | one_mul (a : PreEnvelGroup R) : PreEnvelGroupRel' R (mul unit a) a | mul_one (a : PreEnvelGroup R) : PreEnvelGroupRel' R (mul a unit) a | inv_mul_cancel (a : PreEnvelGroup R) : PreEnvelGroupRel' R (mul (inv a) a) unit | act_incl (x y : R) : PreEnvelGroupRel' R (mul (mul (incl x) (incl y)) (inv (incl x))) (incl (x ◃ y))
inductive
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
PreEnvelGroupRel'
Relations for the enveloping group. This is a type-valued relation because `toEnvelGroup.mapAux.well_def` inducts on it to show `toEnvelGroup.map` is well-defined. The relation `PreEnvelGroupRel` is the `Prop`-valued version, which is used to define `EnvelGroup` itself.
PreEnvelGroupRel'.inhabited (R : Type u) [Rack R] : Inhabited (PreEnvelGroupRel' R unit unit) := ⟨PreEnvelGroupRel'.refl⟩
instance
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
PreEnvelGroupRel'.inhabited
null
PreEnvelGroupRel (R : Type u) [Rack R] : PreEnvelGroup R → PreEnvelGroup R → Prop | rel {a b : PreEnvelGroup R} (r : PreEnvelGroupRel' R a b) : PreEnvelGroupRel R a b
inductive
Algebra
[ "Mathlib.Algebra.Group.End", "Mathlib.Data.ZMod.Defs", "Mathlib.Tactic.Ring" ]
Mathlib/Algebra/Quandle.lean
PreEnvelGroupRel
The `PreEnvelGroupRel` relation as a `Prop`. Used as the relation for `PreEnvelGroup.setoid`.