fact
stringlengths 6
3.84k
| type
stringclasses 11
values | library
stringclasses 32
values | imports
listlengths 1
14
| filename
stringlengths 20
95
| symbolic_name
stringlengths 1
90
| docstring
stringlengths 7
20k
⌀ |
|---|---|---|---|---|---|---|
addCommSemigroup [AddCommSemigroup R] [AddCommSemigroup M] : AddCommSemigroup (tsze R M) :=
Prod.instAddCommSemigroup
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
addCommSemigroup
| null |
addCommMonoid [AddCommMonoid R] [AddCommMonoid M] : AddCommMonoid (tsze R M) :=
Prod.instAddCommMonoid
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
addCommMonoid
| null |
addCommGroup [AddCommGroup R] [AddCommGroup M] : AddCommGroup (tsze R M) :=
Prod.instAddCommGroup
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
addCommGroup
| null |
smul [SMul S R] [SMul S M] : SMul S (tsze R M) :=
Prod.instSMul
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
smul
| null |
isScalarTower [SMul T R] [SMul T M] [SMul S R] [SMul S M] [SMul T S]
[IsScalarTower T S R] [IsScalarTower T S M] : IsScalarTower T S (tsze R M) :=
Prod.isScalarTower
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
isScalarTower
| null |
smulCommClass [SMul T R] [SMul T M] [SMul S R] [SMul S M]
[SMulCommClass T S R] [SMulCommClass T S M] : SMulCommClass T S (tsze R M) :=
Prod.smulCommClass
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
smulCommClass
| null |
isCentralScalar [SMul S R] [SMul S M] [SMul Sᵐᵒᵖ R] [SMul Sᵐᵒᵖ M] [IsCentralScalar S R]
[IsCentralScalar S M] : IsCentralScalar S (tsze R M) :=
Prod.isCentralScalar
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
isCentralScalar
| null |
mulAction [Monoid S] [MulAction S R] [MulAction S M] : MulAction S (tsze R M) :=
Prod.mulAction
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
mulAction
| null |
distribMulAction [Monoid S] [AddMonoid R] [AddMonoid M]
[DistribMulAction S R] [DistribMulAction S M] : DistribMulAction S (tsze R M) :=
Prod.distribMulAction
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
distribMulAction
| null |
module [Semiring S] [AddCommMonoid R] [AddCommMonoid M] [Module S R] [Module S M] :
Module S (tsze R M) :=
Prod.instModule
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
module
| null |
instNontrivial_of_left {R M : Type*} [Nontrivial R] [Nonempty M] :
Nontrivial (TrivSqZeroExt R M) :=
fst_surjective.nontrivial
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
instNontrivial_of_left
|
The trivial square-zero extension is nontrivial if it is over a nontrivial ring.
|
instNontrivial_of_right {R M : Type*} [Nonempty R] [Nontrivial M] :
Nontrivial (TrivSqZeroExt R M) :=
snd_surjective.nontrivial
@[simp]
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
instNontrivial_of_right
|
The trivial square-zero extension is nontrivial if it is over a nontrivial module.
|
fst_zero [Zero R] [Zero M] : (0 : tsze R M).fst = 0 :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
fst_zero
| null |
snd_zero [Zero R] [Zero M] : (0 : tsze R M).snd = 0 :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
snd_zero
| null |
fst_add [Add R] [Add M] (x₁ x₂ : tsze R M) : (x₁ + x₂).fst = x₁.fst + x₂.fst :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
fst_add
| null |
snd_add [Add R] [Add M] (x₁ x₂ : tsze R M) : (x₁ + x₂).snd = x₁.snd + x₂.snd :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
snd_add
| null |
fst_neg [Neg R] [Neg M] (x : tsze R M) : (-x).fst = -x.fst :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
fst_neg
| null |
snd_neg [Neg R] [Neg M] (x : tsze R M) : (-x).snd = -x.snd :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
snd_neg
| null |
fst_sub [Sub R] [Sub M] (x₁ x₂ : tsze R M) : (x₁ - x₂).fst = x₁.fst - x₂.fst :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
fst_sub
| null |
snd_sub [Sub R] [Sub M] (x₁ x₂ : tsze R M) : (x₁ - x₂).snd = x₁.snd - x₂.snd :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
snd_sub
| null |
fst_smul [SMul S R] [SMul S M] (s : S) (x : tsze R M) : (s • x).fst = s • x.fst :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
fst_smul
| null |
snd_smul [SMul S R] [SMul S M] (s : S) (x : tsze R M) : (s • x).snd = s • x.snd :=
rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
snd_smul
| null |
fst_sum {ι} [AddCommMonoid R] [AddCommMonoid M] (s : Finset ι) (f : ι → tsze R M) :
(∑ i ∈ s, f i).fst = ∑ i ∈ s, (f i).fst :=
Prod.fst_sum
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
fst_sum
| null |
snd_sum {ι} [AddCommMonoid R] [AddCommMonoid M] (s : Finset ι) (f : ι → tsze R M) :
(∑ i ∈ s, f i).snd = ∑ i ∈ s, (f i).snd :=
Prod.snd_sum
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
snd_sum
| null |
@[simp]
inl_zero [Zero R] [Zero M] : (inl 0 : tsze R M) = 0 :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_zero
| null |
inl_add [Add R] [AddZeroClass M] (r₁ r₂ : R) :
(inl (r₁ + r₂) : tsze R M) = inl r₁ + inl r₂ :=
ext rfl (add_zero 0).symm
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_add
| null |
inl_neg [Neg R] [NegZeroClass M] (r : R) : (inl (-r) : tsze R M) = -inl r :=
ext rfl neg_zero.symm
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_neg
| null |
inl_sub [Sub R] [SubNegZeroMonoid M] (r₁ r₂ : R) :
(inl (r₁ - r₂) : tsze R M) = inl r₁ - inl r₂ :=
ext rfl (sub_zero _).symm
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_sub
| null |
inl_smul [Monoid S] [AddMonoid M] [SMul S R] [DistribMulAction S M] (s : S) (r : R) :
(inl (s • r) : tsze R M) = s • inl r :=
ext rfl (smul_zero s).symm
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_smul
| null |
inl_sum {ι} [AddCommMonoid R] [AddCommMonoid M] (s : Finset ι) (f : ι → R) :
(inl (∑ i ∈ s, f i) : tsze R M) = ∑ i ∈ s, inl (f i) :=
map_sum (LinearMap.inl ℕ _ _) _ _
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_sum
| null |
@[simp]
inr_zero [Zero R] [Zero M] : (inr 0 : tsze R M) = 0 :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inr_zero
| null |
inr_add [AddZeroClass R] [Add M] (m₁ m₂ : M) :
(inr (m₁ + m₂) : tsze R M) = inr m₁ + inr m₂ :=
ext (add_zero 0).symm rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inr_add
| null |
inr_neg [NegZeroClass R] [Neg M] (m : M) : (inr (-m) : tsze R M) = -inr m :=
ext neg_zero.symm rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inr_neg
| null |
inr_sub [SubNegZeroMonoid R] [Sub M] (m₁ m₂ : M) :
(inr (m₁ - m₂) : tsze R M) = inr m₁ - inr m₂ :=
ext (sub_zero _).symm rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inr_sub
| null |
inr_smul [Zero R] [SMulZeroClass S R] [SMul S M] (r : S) (m : M) :
(inr (r • m) : tsze R M) = r • inr m :=
ext (smul_zero _).symm rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inr_smul
| null |
inr_sum {ι} [AddCommMonoid R] [AddCommMonoid M] (s : Finset ι) (f : ι → M) :
(inr (∑ i ∈ s, f i) : tsze R M) = ∑ i ∈ s, inr (f i) :=
map_sum (LinearMap.inr ℕ _ _) _ _
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inr_sum
| null |
inl_fst_add_inr_snd_eq [AddZeroClass R] [AddZeroClass M] (x : tsze R M) :
inl x.fst + inr x.snd = x :=
ext (add_zero x.1) (zero_add x.2)
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_fst_add_inr_snd_eq
| null |
@[elab_as_elim, induction_eliminator, cases_eliminator]
ind {R M} [AddZeroClass R] [AddZeroClass M] {P : TrivSqZeroExt R M → Prop}
(inl_add_inr : ∀ r m, P (inl r + inr m)) (x) : P x :=
inl_fst_add_inr_snd_eq x ▸ inl_add_inr x.1 x.2
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
ind
|
To show a property hold on all `TrivSqZeroExt R M` it suffices to show it holds
on terms of the form `inl r + inr m`.
|
linearMap_ext {N} [Semiring S] [AddCommMonoid R] [AddCommMonoid M] [AddCommMonoid N]
[Module S R] [Module S M] [Module S N] ⦃f g : tsze R M →ₗ[S] N⦄
(hl : ∀ r, f (inl r) = g (inl r)) (hr : ∀ m, f (inr m) = g (inr m)) : f = g :=
LinearMap.prod_ext (LinearMap.ext hl) (LinearMap.ext hr)
variable (R M)
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
linearMap_ext
|
This cannot be marked `@[ext]` as it ends up being used instead of `LinearMap.prod_ext` when
working with `R × M`.
|
@[simps apply]
inrHom [Semiring R] [AddCommMonoid M] [Module R M] : M →ₗ[R] tsze R M :=
{ LinearMap.inr R R M with toFun := inr }
|
def
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inrHom
|
The canonical `R`-linear inclusion `M → TrivSqZeroExt R M`.
|
@[simps apply]
sndHom [Semiring R] [AddCommMonoid M] [Module R M] : tsze R M →ₗ[R] M :=
{ LinearMap.snd _ _ _ with toFun := snd }
|
def
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
sndHom
|
The canonical `R`-linear projection `TrivSqZeroExt R M → M`.
|
one [One R] [Zero M] : One (tsze R M) :=
⟨(1, 0)⟩
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
one
| null |
mul [Mul R] [Add M] [SMul R M] [SMul Rᵐᵒᵖ M] : Mul (tsze R M) :=
⟨fun x y => (x.1 * y.1, x.1 •> y.2 + x.2 <• y.1)⟩
@[simp]
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
mul
| null |
fst_one [One R] [Zero M] : (1 : tsze R M).fst = 1 :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
fst_one
| null |
snd_one [One R] [Zero M] : (1 : tsze R M).snd = 0 :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
snd_one
| null |
fst_mul [Mul R] [Add M] [SMul R M] [SMul Rᵐᵒᵖ M] (x₁ x₂ : tsze R M) :
(x₁ * x₂).fst = x₁.fst * x₂.fst :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
fst_mul
| null |
snd_mul [Mul R] [Add M] [SMul R M] [SMul Rᵐᵒᵖ M] (x₁ x₂ : tsze R M) :
(x₁ * x₂).snd = x₁.fst •> x₂.snd + x₁.snd <• x₂.fst :=
rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
snd_mul
| null |
@[simp]
inl_one [One R] [Zero M] : (inl 1 : tsze R M) = 1 :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_one
| null |
inl_mul [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
(r₁ r₂ : R) : (inl (r₁ * r₂) : tsze R M) = inl r₁ * inl r₂ :=
ext rfl <| show (0 : M) = r₁ •> (0 : M) + (0 : M) <• r₂ by rw [smul_zero, zero_add, smul_zero]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_mul
| null |
inl_mul_inl [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
(r₁ r₂ : R) : (inl r₁ * inl r₂ : tsze R M) = inl (r₁ * r₂) :=
(inl_mul M r₁ r₂).symm
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_mul_inl
| null |
@[simp]
inr_mul_inr [Semiring R] [AddCommMonoid M] [Module R M] [Module Rᵐᵒᵖ M] (m₁ m₂ : M) :
(inr m₁ * inr m₂ : tsze R M) = 0 :=
ext (mul_zero _) <|
show (0 : R) •> m₂ + m₁ <• (0 : R) = 0 by rw [zero_smul, zero_add, op_zero, zero_smul]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inr_mul_inr
| null |
inl_mul_inr [MonoidWithZero R] [AddMonoid M] [DistribMulAction R M]
[DistribMulAction Rᵐᵒᵖ M] (r : R) (m : M) : (inl r * inr m : tsze R M) = inr (r • m) :=
ext (mul_zero r) <|
show r • m + (0 : Rᵐᵒᵖ) • (0 : M) = r • m by rw [smul_zero, add_zero]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_mul_inr
| null |
inr_mul_inl [MonoidWithZero R] [AddMonoid M] [DistribMulAction R M]
[DistribMulAction Rᵐᵒᵖ M] (r : R) (m : M) : (inr m * inl r : tsze R M) = inr (m <• r) :=
ext (zero_mul r) <|
show (0 : R) •> (0 : M) + m <• r = m <• r by rw [smul_zero, zero_add]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inr_mul_inl
| null |
inl_mul_eq_smul [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
(r : R) (x : tsze R M) :
inl r * x = r •> x :=
ext rfl (by dsimp; rw [smul_zero, add_zero])
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_mul_eq_smul
| null |
mul_inl_eq_op_smul [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
(x : tsze R M) (r : R) :
x * inl r = x <• r :=
ext rfl (by dsimp; rw [smul_zero, zero_add])
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
mul_inl_eq_op_smul
| null |
mulOneClass [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M] :
MulOneClass (tsze R M) :=
{ TrivSqZeroExt.one, TrivSqZeroExt.mul with
one_mul := fun x =>
ext (one_mul x.1) <|
show (1 : R) •> x.2 + (0 : M) <• x.1 = x.2 by rw [one_smul, smul_zero, add_zero]
mul_one := fun x =>
ext (mul_one x.1) <|
show x.1 • (0 : M) + x.2 <• (1 : R) = x.2 by rw [smul_zero, zero_add, op_one, one_smul] }
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
mulOneClass
| null |
addMonoidWithOne [AddMonoidWithOne R] [AddMonoid M] : AddMonoidWithOne (tsze R M) :=
{ TrivSqZeroExt.addMonoid, TrivSqZeroExt.one with
natCast := fun n => inl n
natCast_zero := by simp [Nat.cast]
natCast_succ := fun _ => by ext <;> simp [Nat.cast] }
@[simp]
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
addMonoidWithOne
| null |
fst_natCast [AddMonoidWithOne R] [AddMonoid M] (n : ℕ) : (n : tsze R M).fst = n :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
fst_natCast
| null |
snd_natCast [AddMonoidWithOne R] [AddMonoid M] (n : ℕ) : (n : tsze R M).snd = 0 :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
snd_natCast
| null |
inl_natCast [AddMonoidWithOne R] [AddMonoid M] (n : ℕ) : (inl n : tsze R M) = n :=
rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_natCast
| null |
addGroupWithOne [AddGroupWithOne R] [AddGroup M] : AddGroupWithOne (tsze R M) :=
{ TrivSqZeroExt.addGroup, TrivSqZeroExt.addMonoidWithOne with
intCast := fun z => inl z
intCast_ofNat := fun _n => ext (Int.cast_natCast _) rfl
intCast_negSucc := fun _n => ext (Int.cast_negSucc _) neg_zero.symm }
@[simp]
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
addGroupWithOne
| null |
fst_intCast [AddGroupWithOne R] [AddGroup M] (z : ℤ) : (z : tsze R M).fst = z :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
fst_intCast
| null |
snd_intCast [AddGroupWithOne R] [AddGroup M] (z : ℤ) : (z : tsze R M).snd = 0 :=
rfl
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
snd_intCast
| null |
inl_intCast [AddGroupWithOne R] [AddGroup M] (z : ℤ) : (inl z : tsze R M) = z :=
rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inl_intCast
| null |
nonAssocSemiring [Semiring R] [AddCommMonoid M] [Module R M] [Module Rᵐᵒᵖ M] :
NonAssocSemiring (tsze R M) :=
{ TrivSqZeroExt.addMonoidWithOne, TrivSqZeroExt.mulOneClass, TrivSqZeroExt.addCommMonoid with
zero_mul := fun x =>
ext (zero_mul x.1) <|
show (0 : R) •> x.2 + (0 : M) <• x.1 = 0 by rw [zero_smul, zero_add, smul_zero]
mul_zero := fun x =>
ext (mul_zero x.1) <|
show x.1 • (0 : M) + (0 : Rᵐᵒᵖ) • x.2 = 0 by rw [smul_zero, zero_add, zero_smul]
left_distrib := fun x₁ x₂ x₃ =>
ext (mul_add x₁.1 x₂.1 x₃.1) <|
show
x₁.1 •> (x₂.2 + x₃.2) + x₁.2 <• (x₂.1 + x₃.1) =
x₁.1 •> x₂.2 + x₁.2 <• x₂.1 + (x₁.1 •> x₃.2 + x₁.2 <• x₃.1)
by simp_rw [smul_add, MulOpposite.op_add, add_smul, add_add_add_comm]
right_distrib := fun x₁ x₂ x₃ =>
ext (add_mul x₁.1 x₂.1 x₃.1) <|
show
(x₁.1 + x₂.1) •> x₃.2 + (x₁.2 + x₂.2) <• x₃.1 =
x₁.1 •> x₃.2 + x₁.2 <• x₃.1 + (x₂.1 •> x₃.2 + x₂.2 <• x₃.1)
by simp_rw [add_smul, smul_add, add_add_add_comm] }
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
nonAssocSemiring
| null |
nonAssocRing [Ring R] [AddCommGroup M] [Module R M] [Module Rᵐᵒᵖ M] :
NonAssocRing (tsze R M) :=
{ TrivSqZeroExt.addGroupWithOne, TrivSqZeroExt.nonAssocSemiring with }
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
nonAssocRing
| null |
snd_list_prod [Monoid R] [AddCommMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
[SMulCommClass R Rᵐᵒᵖ M] (l : List (tsze R M)) :
l.prod.snd =
(l.zipIdx.map fun x : tsze R M × ℕ =>
((l.map fst).take x.2).prod •> x.fst.snd <• ((l.map fst).drop x.2.succ).prod).sum := by
induction l with
| nil => simp
| cons x xs ih =>
rw [List.zipIdx_cons']
simp_rw [List.map_cons, List.map_map, Function.comp_def, Prod.map_snd, Prod.map_fst, id,
List.take_zero, List.take_succ_cons, List.prod_nil, List.prod_cons, snd_mul, one_smul,
List.drop, mul_smul, List.sum_cons, fst_list_prod, ih, List.smul_sum, List.map_map,
← smul_comm (_ : R) (_ : Rᵐᵒᵖ)]
exact add_comm _ _
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
snd_list_prod
|
In the general non-commutative case, the power operator is
$$\begin{align}
(r + m)^n &= r^n + r^{n-1}m + r^{n-2}mr + \cdots + rmr^{n-2} + mr^{n-1} \\
& =r^n + \sum_{i = 0}^{n - 1} r^{(n - 1) - i} m r^{i}
\end{align}$$
In the commutative case this becomes the simpler $(r + m)^n = r^n + nr^{n-1}m$.
-/
instance [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M] :
Pow (tsze R M) ℕ :=
⟨fun x n =>
⟨x.fst ^ n, ((List.range n).map fun i => x.fst ^ (n.pred - i) •> x.snd <• x.fst ^ i).sum⟩⟩
@[simp]
theorem fst_pow [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
(x : tsze R M) (n : ℕ) : fst (x ^ n) = x.fst ^ n :=
rfl
theorem snd_pow_eq_sum [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
(x : tsze R M) (n : ℕ) :
snd (x ^ n) = ((List.range n).map fun i => x.fst ^ (n.pred - i) •> x.snd <• x.fst ^ i).sum :=
rfl
theorem snd_pow_of_smul_comm [Monoid R] [AddMonoid M] [DistribMulAction R M]
[DistribMulAction Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M] (x : tsze R M) (n : ℕ)
(h : x.snd <• x.fst = x.fst •> x.snd) : snd (x ^ n) = n • x.fst ^ n.pred •> x.snd := by
simp_rw [snd_pow_eq_sum, ← smul_comm (_ : R) (_ : Rᵐᵒᵖ), aux, smul_smul, ← pow_add]
match n with
| 0 => rw [Nat.pred_zero, pow_zero, List.range_zero, zero_smul, List.map_nil, List.sum_nil]
| (Nat.succ n) =>
simp_rw [Nat.pred_succ]
exact (List.sum_eq_card_nsmul _ (x.fst ^ n • x.snd) (by grind)).trans
(by rw [List.length_map, List.length_range])
where
aux : ∀ n : ℕ, x.snd <• x.fst ^ n = x.fst ^ n •> x.snd := by
intro n
induction n with
| zero => simp
| succ n ih =>
rw [pow_succ, op_mul, mul_smul, mul_smul, ← h, smul_comm (_ : R) (op x.fst) x.snd, ih]
theorem snd_pow_of_smul_comm' [Monoid R] [AddMonoid M] [DistribMulAction R M]
[DistribMulAction Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M] (x : tsze R M) (n : ℕ)
(h : x.snd <• x.fst = x.fst •> x.snd) : snd (x ^ n) = n • (x.snd <• x.fst ^ n.pred) := by
rw [snd_pow_of_smul_comm _ _ h, snd_pow_of_smul_comm.aux _ h]
@[simp]
theorem snd_pow [CommMonoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
[IsCentralScalar R M] (x : tsze R M) (n : ℕ) : snd (x ^ n) = n • x.fst ^ n.pred • x.snd :=
snd_pow_of_smul_comm _ _ (op_smul_eq_smul _ _)
@[simp]
theorem inl_pow [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M] (r : R)
(n : ℕ) : (inl r ^ n : tsze R M) = inl (r ^ n) :=
ext rfl <| by simp [snd_pow_eq_sum, List.map_const']
instance monoid [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
[SMulCommClass R Rᵐᵒᵖ M] : Monoid (tsze R M) :=
{ TrivSqZeroExt.mulOneClass with
mul_assoc := fun x y z =>
ext (mul_assoc x.1 y.1 z.1) <|
show
(x.1 * y.1) •> z.2 + (x.1 •> y.2 + x.2 <• y.1) <• z.1 =
x.1 •> (y.1 •> z.2 + y.2 <• z.1) + x.2 <• (y.1 * z.1)
by simp_rw [smul_add, ← mul_smul, add_assoc, smul_comm, op_mul]
npow := fun n x => x ^ n
npow_zero := fun x => ext (pow_zero x.fst) (by simp [snd_pow_eq_sum])
npow_succ := fun n x =>
ext (pow_succ _ _)
(by
simp_rw [snd_mul, snd_pow_eq_sum, Nat.pred_succ]
cases n
· simp [List.range_succ]
rw [List.sum_range_succ']
simp only [pow_zero, op_one, Nat.sub_zero, one_smul, Nat.succ_sub_succ_eq_sub, fst_pow,
Nat.pred_succ, List.smul_sum, List.map_map, Function.comp_def]
simp_rw [← smul_comm (_ : R) (_ : Rᵐᵒᵖ), smul_smul, pow_succ]
rfl) }
theorem fst_list_prod [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
[SMulCommClass R Rᵐᵒᵖ M] (l : List (tsze R M)) : l.prod.fst = (l.map fst).prod :=
map_list_prod ({ toFun := fst, map_one' := fst_one, map_mul' := fst_mul } : tsze R M →* R) _
instance semiring [Semiring R] [AddCommMonoid M]
[Module R M] [Module Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M] : Semiring (tsze R M) :=
{ TrivSqZeroExt.monoid, TrivSqZeroExt.nonAssocSemiring with }
/-- The second element of a product $\prod_{i=0}^n (r_i + m_i)$ is a sum of terms of the form
$r_0\cdots r_{i-1}m_ir_{i+1}\cdots r_n$.
|
ring [Ring R] [AddCommGroup M] [Module R M] [Module Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M] :
Ring (tsze R M) :=
{ TrivSqZeroExt.semiring, TrivSqZeroExt.nonAssocRing with }
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
ring
| null |
commMonoid [CommMonoid R] [AddCommMonoid M] [DistribMulAction R M]
[DistribMulAction Rᵐᵒᵖ M] [IsCentralScalar R M] : CommMonoid (tsze R M) :=
{ TrivSqZeroExt.monoid with
mul_comm := fun x₁ x₂ =>
ext (mul_comm x₁.1 x₂.1) <|
show x₁.1 •> x₂.2 + x₁.2 <• x₂.1 = x₂.1 •> x₁.2 + x₂.2 <• x₁.1 by
rw [op_smul_eq_smul, op_smul_eq_smul, add_comm] }
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
commMonoid
| null |
commSemiring [CommSemiring R] [AddCommMonoid M] [Module R M] [Module Rᵐᵒᵖ M]
[IsCentralScalar R M] : CommSemiring (tsze R M) :=
{ TrivSqZeroExt.commMonoid, TrivSqZeroExt.nonAssocSemiring with }
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
commSemiring
| null |
commRing [CommRing R] [AddCommGroup M] [Module R M] [Module Rᵐᵒᵖ M] [IsCentralScalar R M] :
CommRing (tsze R M) :=
{ TrivSqZeroExt.nonAssocRing, TrivSqZeroExt.commSemiring with }
variable (R M)
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
commRing
| null |
@[simps apply]
inlHom [Semiring R] [AddCommMonoid M] [Module R M] [Module Rᵐᵒᵖ M] : R →+* tsze R M where
toFun := inl
map_one' := inl_one M
map_mul' := inl_mul M
map_zero' := inl_zero M
map_add' := inl_add M
|
def
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inlHom
|
The canonical inclusion of rings `R → TrivSqZeroExt R M`.
|
instInv : Inv (tsze R M) :=
⟨fun b => (b.1⁻¹, -(b.1⁻¹ •> b.2 <• b.1⁻¹))⟩
@[simp] theorem fst_inv (x : tsze R M) : fst x⁻¹ = (fst x)⁻¹ :=
rfl
@[simp] theorem snd_inv (x : tsze R M) : snd x⁻¹ = -((fst x)⁻¹ •> snd x <• (fst x)⁻¹) :=
rfl
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
instInv
|
Inversion of the trivial-square-zero extension, sending $r + m$ to $r^{-1} - r^{-1}mr^{-1}$.
Strictly this is only a _two_-sided inverse when the left and right actions associate.
|
invertibleFstOfInvertible (x : tsze R M) [Invertible x] : Invertible x.fst where
invOf := (⅟x).fst
invOf_mul_self := by rw [← fst_mul, invOf_mul_self, fst_one]
mul_invOf_self := by rw [← fst_mul, mul_invOf_self, fst_one]
|
abbrev
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
invertibleFstOfInvertible
|
`x.fst : R` is invertible when `x : tzre R M` is.
|
fst_invOf (x : tsze R M) [Invertible x] [Invertible x.fst] : (⅟x).fst = ⅟(x.fst) := by
letI := invertibleFstOfInvertible x
convert (rfl : _ = ⅟x.fst)
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
fst_invOf
| null |
mul_left_eq_one (r : R) (x : tsze R M) (h : r * x.fst = 1) :
(inl r + inr (-((r •> x.snd) <• r))) * x = 1 := by
ext <;> dsimp
· rw [add_zero, h]
· rw [add_zero, zero_add, smul_neg, op_smul_op_smul, h, op_one, one_smul,
add_neg_cancel]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
mul_left_eq_one
| null |
mul_right_eq_one (x : tsze R M) (r : R) (h : x.fst * r = 1) :
x * (inl r + inr (-(r •> (x.snd <• r)))) = 1 := by
ext <;> dsimp
· rw [add_zero, h]
· rw [add_zero, zero_add, smul_neg, smul_smul, h, one_smul, neg_add_cancel]
variable [SMulCommClass R Rᵐᵒᵖ M]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
mul_right_eq_one
| null |
invertibleOfInvertibleFst (x : tsze R M) [Invertible x.fst] : Invertible x where
invOf := (⅟x.fst, -(⅟x.fst •> x.snd <• ⅟x.fst))
invOf_mul_self := by
convert mul_left_eq_one _ _ (invOf_mul_self x.fst)
ext <;> simp
mul_invOf_self := by
convert mul_right_eq_one _ _ (mul_invOf_self x.fst)
ext <;> simp [smul_comm]
|
abbrev
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
invertibleOfInvertibleFst
|
`x : tzre R M` is invertible when `x.fst : R` is.
|
snd_invOf (x : tsze R M) [Invertible x] [Invertible x.fst] :
(⅟x).snd = -(⅟x.fst •> x.snd <• ⅟x.fst) := by
letI := invertibleOfInvertibleFst x
convert congr_arg (TrivSqZeroExt.snd (R := R) (M := M)) (_ : _ = ⅟x)
convert rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
snd_invOf
| null |
@[simps]
invertibleEquivInvertibleFst (x : tsze R M) : Invertible x ≃ Invertible x.fst where
toFun _ := invertibleFstOfInvertible x
invFun _ := invertibleOfInvertibleFst x
left_inv _ := Subsingleton.elim _ _
right_inv _ := Subsingleton.elim _ _
|
def
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
invertibleEquivInvertibleFst
|
Together `TrivSqZeroExt.detInvertibleOfInvertible` and `TrivSqZeroExt.invertibleOfDetInvertible`
form an equivalence, although both sides of the equiv are subsingleton anyway.
|
isUnit_iff_isUnit_fst {x : tsze R M} : IsUnit x ↔ IsUnit x.fst := by
simp only [← nonempty_invertible_iff_isUnit, (invertibleEquivInvertibleFst x).nonempty_congr]
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
isUnit_iff_isUnit_fst
|
When lowered to a prop, `Matrix.invertibleEquivInvertibleFst` forms an `iff`.
|
isUnit_inl_iff {r : R} : IsUnit (inl r : tsze R M) ↔ IsUnit r := by
rw [isUnit_iff_isUnit_fst, fst_inl]
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
isUnit_inl_iff
| null |
isUnit_inr_iff {m : M} : IsUnit (inr m : tsze R M) ↔ Subsingleton R := by
simp_rw [isUnit_iff_isUnit_fst, fst_inr, isUnit_zero_iff, subsingleton_iff_zero_eq_one]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
isUnit_inr_iff
| null |
protected inv_inl (r : R) :
(inl r)⁻¹ = (inl (r⁻¹ : R) : tsze R M) := by
ext
· rw [fst_inv, fst_inl, fst_inl]
· rw [snd_inv, fst_inl, snd_inl, snd_inl, smul_zero, smul_zero, neg_zero]
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inv_inl
| null |
inv_inr (m : M) : (inr m)⁻¹ = (0 : tsze R M) := by
ext
· rw [fst_inv, fst_inr, fst_zero, inv_zero]
· rw [snd_inv, snd_inr, fst_inr, inv_zero, op_zero, zero_smul, snd_zero, neg_zero]
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inv_inr
| null |
protected inv_zero : (0 : tsze R M)⁻¹ = (0 : tsze R M) := by
rw [← inl_zero, TrivSqZeroExt.inv_inl, inv_zero]
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inv_zero
| null |
protected inv_one : (1 : tsze R M)⁻¹ = (1 : tsze R M) := by
rw [← inl_one, TrivSqZeroExt.inv_inl, inv_one]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inv_one
| null |
protected inv_mul_cancel {x : tsze R M} (hx : fst x ≠ 0) : x⁻¹ * x = 1 := by
convert mul_left_eq_one _ _ (_root_.inv_mul_cancel₀ hx) using 2
ext <;> simp
variable [SMulCommClass R Rᵐᵒᵖ M]
@[simp] theorem invOf_eq_inv (x : tsze R M) [Invertible x] : ⅟x = x⁻¹ := by
letI := invertibleFstOfInvertible x
ext <;> simp [fst_invOf, snd_invOf]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inv_mul_cancel
| null |
protected mul_inv_cancel {x : tsze R M} (hx : fst x ≠ 0) : x * x⁻¹ = 1 := by
have : Invertible x.fst := Units.invertible (.mk0 _ hx)
have := invertibleOfInvertibleFst x
rw [← invOf_eq_inv, mul_invOf_self]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
mul_inv_cancel
| null |
protected mul_inv_rev (a b : tsze R M) :
(a * b)⁻¹ = b⁻¹ * a⁻¹ := by
ext
· rw [fst_inv, fst_mul, fst_mul, mul_inv_rev, fst_inv, fst_inv]
· simp only [snd_inv, snd_mul, fst_mul, fst_inv]
simp only [smul_neg, smul_add]
simp_rw [mul_inv_rev, smul_comm (_ : R), op_smul_op_smul, smul_smul, add_comm, neg_add]
obtain ha0 | ha := eq_or_ne (fst a) 0
· simp [ha0]
obtain hb0 | hb := eq_or_ne (fst b) 0
· simp [hb0]
rw [inv_mul_cancel_right₀ ha, mul_inv_cancel_left₀ hb]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
mul_inv_rev
| null |
protected inv_inv {x : tsze R M} (hx : fst x ≠ 0) : x⁻¹⁻¹ = x :=
calc
x⁻¹⁻¹ = 1 * x⁻¹⁻¹ := by rw [one_mul]
_ = x * x⁻¹ * x⁻¹⁻¹ := by rw [TrivSqZeroExt.mul_inv_cancel hx]
_ = x := by
rw [mul_assoc, TrivSqZeroExt.mul_inv_cancel, mul_one]
rw [fst_inv]
apply inv_ne_zero hx
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inv_inv
| null |
isUnit_inv_iff {x : tsze R M} : IsUnit x⁻¹ ↔ IsUnit x := by
simp_rw [isUnit_iff_isUnit_fst, fst_inv, isUnit_iff_ne_zero, ne_eq, inv_eq_zero]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
isUnit_inv_iff
| null |
protected inv_neg {x : tsze R M} : (-x)⁻¹ = -(x⁻¹) := by
ext <;> simp [inv_neg]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inv_neg
| null |
algebra' : Algebra S (tsze R M) where
algebraMap := (TrivSqZeroExt.inlHom R M).comp (algebraMap S R)
smul := (· • ·)
commutes' := fun s x =>
ext (Algebra.commutes _ _) <|
show algebraMap S R s •> x.snd + (0 : M) <• x.fst
= x.fst •> (0 : M) + x.snd <• algebraMap S R s by
rw [smul_zero, smul_zero, add_zero, zero_add]
rw [Algebra.algebraMap_eq_smul_one, MulOpposite.op_smul, op_one, smul_assoc,
one_smul, smul_assoc, one_smul]
smul_def' := fun s x =>
ext (Algebra.smul_def _ _) <|
show s • x.snd = algebraMap S R s •> x.snd + (0 : M) <• x.fst by
rw [smul_zero, add_zero, algebraMap_smul]
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
algebra'
| null |
algebraMap_eq_inl : ⇑(algebraMap R' (tsze R' M)) = inl :=
rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
algebraMap_eq_inl
| null |
algebraMap_eq_inlHom : algebraMap R' (tsze R' M) = inlHom R' M :=
rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
algebraMap_eq_inlHom
| null |
algebraMap_eq_inl' (s : S) : algebraMap S (tsze R M) s = inl (algebraMap S R s) :=
rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
algebraMap_eq_inl'
| null |
@[simps]
fstHom : tsze R M →ₐ[S] R where
toFun := fst
map_one' := fst_one
map_mul' := fst_mul
map_zero' := fst_zero (M := M)
map_add' := fst_add
commutes' _r := fst_inl M _
|
def
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
fstHom
|
The canonical `S`-algebra projection `TrivSqZeroExt R M → R`.
|
@[simps]
inlAlgHom : R →ₐ[S] tsze R M where
toFun := inl
map_one' := inl_one _
map_mul' := inl_mul _
map_zero' := inl_zero (M := M)
map_add' := inl_add _
commutes' _r := (algebraMap_eq_inl' _ _ _ _).symm
variable {R R' S M}
|
def
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
inlAlgHom
|
The canonical `S`-algebra inclusion `R → TrivSqZeroExt R M`.
|
algHom_ext {A} [Semiring A] [Algebra R' A] ⦃f g : tsze R' M →ₐ[R'] A⦄
(h : ∀ m, f (inr m) = g (inr m)) : f = g :=
AlgHom.toLinearMap_injective <|
linearMap_ext (fun _r => (f.commutes _).trans (g.commutes _).symm) h
@[ext]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.GroupWithZero.Action",
"Mathlib.Algebra.GroupWithZero.Invertible",
"Mathlib.LinearAlgebra.Prod",
"Mathlib.Algebra.Algebra.Subalgebra.Lattice"
] |
Mathlib/Algebra/TrivSqZeroExt.lean
|
algHom_ext
| null |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.