blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 6
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
87
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 15
values | visit_date
timestamp[us]date 2016-08-04 09:00:04
2023-09-05 17:18:33
| revision_date
timestamp[us]date 1998-12-11 00:15:10
2023-09-02 05:42:40
| committer_date
timestamp[us]date 2005-04-26 09:58:02
2023-09-02 05:42:40
| github_id
int64 436k
586M
⌀ | star_events_count
int64 0
12.3k
| fork_events_count
int64 0
6.3k
| gha_license_id
stringclasses 7
values | gha_event_created_at
timestamp[us]date 2012-11-16 11:45:07
2023-09-14 20:45:37
⌀ | gha_created_at
timestamp[us]date 2010-03-22 23:34:58
2023-01-07 03:47:44
⌀ | gha_language
stringclasses 36
values | src_encoding
stringclasses 17
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 15
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7970b5eacefdb2edd12055cb2528bbaefb18db7c
|
4ebea1be375a38f07d1b8536e25cd91584882389
|
/src/test/example013.tst
|
e6f532151d16f6877a36734702adbf7dd69f8dad
|
[
"MIT"
] |
permissive
|
robertsmeets/rjhg-pl
|
f5c2d850ba7a5e3daa0d4147357d37a275c7100a
|
87721b77f92d5180c34123265fac70dcf54c77a9
|
refs/heads/master
| 2021-05-22T06:46:14.395448
| 2021-02-21T05:54:35
| 2021-02-21T05:54:35
| 32,521,807
| 1
| 1
|
MIT
| 2020-05-17T16:48:51
| 2015-03-19T13:07:49
|
C
|
UTF-8
|
Scilab
| false
| false
| 26
|
tst
|
example013.tst
|
add some strings together
|
0cb31375d2ae204e8f189fa6348b99b808c50fbf
|
0bb08b35184b47c6f5e74d41f7cb0b927162dd82
|
/test/teste3.tst
|
20c86812a56b156851579a9f640b4db347e7c04e
|
[] |
no_license
|
DanielPBL/tp_compiladores
|
6df7d3bde74d7e4098a32914396f1bdfef7f4843
|
6536f3588785819f5e28d6358fc36e53c7d52adb
|
refs/heads/master
| 2021-01-19T01:10:25.009830
| 2017-06-29T20:20:23
| 2017-06-29T20:20:23
| 87,229,469
| 1
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 306
|
tst
|
teste3.tst
|
{ Programa de Teste
Calculo de idade }
init
cont_, qtd is integer;
media, idade, soma, altura is integer;
cont_ := 5;
soma := 0;
do
write("Altura: ");
read (altura);
soma := soma + altura;
cont_ := cont_ - 1;
while (cont_ > 0);
write("Media: ");
write(soma / qtd);
stop
|
688928edfd4f76da6824eb521165053a3c781806
|
b829a470efb851fdd8700559c2092711adaa42e0
|
/Data/OVI-CV-03-Facenet/CV-Groups/cv-group-114528472701/OVI-Test/cv-group-114528472701-run-03.tst
|
179068135c447cd25c9c435f31e902b9905081db
|
[] |
no_license
|
achbogga/FaceRecognition
|
6f9d50bd1f32f2eb7f23c7ae56f9e7b225d32325
|
165ebc7658228d2cceaee4619e129e248665c49a
|
refs/heads/master
| 2021-07-04T21:47:57.252016
| 2017-08-01T18:53:12
| 2017-08-01T18:53:12
| 96,568,452
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 504
|
tst
|
cv-group-114528472701-run-03.tst
|
Huiping\Huiping_018.jpg
Huiping\Huiping_014.jpg
Don\Don_003.jpg
Don\Don_012.jpg
Shirley\Shirley_001.jpg
Shirley\Shirley_006.jpg
Kiran\Kiran_012.jpg
Kiran\Kiran_016.jpg
Allison\Allison_013.jpg
Allison\Allison_010.jpg
Amit\Amit_010.jpg
Amit\Amit_004.jpg
Gang\Gang_008.jpg
Gang\Gang_014.jpg
Ethan\Ethan_013.jpg
Ethan\Ethan_005.jpg
Rob\Rob_001.jpg
Rob\Rob_003.jpg
Nara\Nara_009.jpg
Nara\Nara_013.jpg
Weihong\Weihong_010.jpg
Weihong\Weihong_003.jpg
Dave\Dave_010.jpg
Dave\Dave_005.jpg
|
14265153d902cf3534cce5e123ea7a0375d9bed4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2417/CH7/EX7.9/Ex7_9.sce
|
cdc248f3d348c00065ea267a5f13296536fe34e8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,166
|
sce
|
Ex7_9.sce
|
//scilab 5.4.1
clear;
clc;
printf("\t\t\tProblem Number 7.9\n\n\n");
// Chapter 7 : Mixtures Of Ideal Gases
// Problem 7.9 (page no. 331)
// Solution
//Given: cp of oxygen is 0.23 Btu/lbm*R.cp of nitrogen is 0.25 Btu/lbm*R. 160 lbm/hr of oxygen and 196 lbm/hr of nitrogen are mixed.oxygen is at 500 F and nitrogen is at 200 F.
//The energy equation for the steady-flow,adiaatic mixing process gives us the requirement that the enthalpy of the mixture must equal to the enthalpies of the components,because deltah=q=0.An alternative statement of this requirement is that the gain in enthalpy of the nitrogen must equal the decrease in enthalpy of the oxygen.Using the latter statement,that the change in enthalpy of nitrogen,yields
// (160*0.23*(500-tm)) = (196*0.25*(tm-200)) where tm=mixture temperature
//where m*cp*deltat has been used for deltah. //cp=specific heat at constant pressure //Unit for cp is Btu/lbm*R
//rearranging the above equation,
tm=((500*160*0.23)+(196*0.25*200))/((196*0.25)+(160*0.23)); //tm=mixture temperature //Unit:fahrenheit
printf("The final temperature of the mixture is %f F\n",tm);
//Using the requirement that the enthalpy of the mixture must equal to the sum of the enthalpies of the components yields an alternative solution to this problem.Let us assume that at 0 F,the enthalpy of each gas and of the mixture is zero.The enthalpy of the entering oxygen is (160*0.23*(500-0)),and the enthalpy of the entering nitrogen is (196*0.25*(200-0)).The enthalpy of the mixture is ((160+196)*cpm*(tm-0))
//Therefore, (160*0.23*500)+(196*0.25*200) = ((160+196)*cpm*tm)
cpm=((160/(160+196))*0.23)+((196/(160+196))*0.25); //specific heat at constant pressure for gas mixture //Btu/lbm*R
printf("For mixture,Specific heat at constant pressure is %f Btu/lbm*R\n",cpm);
//therefore,
tm=((160*0.23*500)+(196*0.25*200))/(cpm*(160+196)); //tm=mixture temperature //Unit:fahrenheit
printf("By using value of cpm,The final temperature of the mixture is %f F\n",tm);
//The use of 0 F as a base was arbitrary but convenient.Any base would yield the same results.
//The answer of cpm is wrong in the book.
|
0631b7ecae37e493716994b4b7d85480f0d76cd9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3523/CH12/EX12.17.2/Ex12_2.sce
|
d3b5bb8872186e51476538d823cc8121db608f79
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 285
|
sce
|
Ex12_2.sce
|
//Example 2// Ch 12
clc;
clear;
close;
// given data
V=100;//in kV
Em=55;//max permissible gradient in kV/cm
//voltage gradient at the conductor surface is inversely proportional to the core radius
r=V*sqrt(2)/Em;//conductor radius in cm
printf("conductor radius %f cm",r)
|
4af00d157e551112d8f28b2233b0f34cc08c0b94
|
484e05962b62928b49ae2e8fd80d4c45031eb3dc
|
/cfx/cfx.tst
|
70f4fc2b1ab5ff90c8e748815a2102bd14c7b436
|
[] |
no_license
|
Royallle/hdl_cfx
|
adbb9dce7e3ae69507a4c1b26cddbd3b3a9eb0dc
|
52cbe66f365516b659b65909e86aacb60da0342b
|
refs/heads/master
| 2022-02-24T06:54:22.169423
| 2019-09-15T15:29:35
| 2019-09-15T15:29:35
| 110,464,895
| 0
| 0
| null | 2017-11-14T13:40:42
| 2017-11-12T20:05:58
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 553
|
tst
|
cfx.tst
|
// Script de teste do circuito Principal
load cfx.hdl,
output-file cfx.out,
compare-to cfx.cmp,
output-list x%B1.5.1 y%B1.5.1 nx%B2.1.2 ny%B2.1.2 px%B2.1.2 py%B2.1.2 zx%B2.1.2 zy%B2.1.2 eq%B2.1.2 si%B2.1.2 outsum%B1.5.1 outsub%B1.5.1 outsix%B1.5.1 overflow%B2.5.2;
set x %B00000, // x=0 y=0
set y %B00000,
eval,
output;
set x %B00011, // x=3 y=2
set y %B00010,
eval,
output;
set x %B00101, // x=5 y=-5
set y %B11011,
eval,
output;
set x %B01000, // x=8 y=8
set y %B01000,
eval,
output;
set x %B10110, // x=-10 y=-5
set y %B11011,
eval,
output;
|
b6086bd7053df876b4b08e7f58b766bc09f0c027
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/RT23.prev.tst
|
8dd73c06f5078072bbb0a6787ed5297e1fe0cee9
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 636
|
tst
|
RT23.prev.tst
|
[[1],[4,7],[9,17,15],[8,22,27,18]] / [[1],[2,3]] =
quot[2,2] = 6, remd = [[1],[4,7],[9,17,15],[8,22,27,18]], prod = [[0],[0,0],[0,0,6],[0,0,12,18]]
quot[2,1] = 5, remd = [[1],[4,7],[9,17,9],[8,22,15], prod = [[0],[0,0],[0,5,0],[0,10,15]
quot[2,0] = 4, remd = [[1],[4,7],[9,12,9],[8,12], prod = [[0],[0,0],[4,0,0],[8,12]
quot[1,1] = 3, remd = [[1],[4,7],[5,12,9]], prod = [[0],[0,3],[0,6,9]]
quot[1,0] = 2, remd = [[1],[4,4],[5,6], prod = [[0],[2,0],[4,6]
quot[0,0] = 4/3, remd = [[1],[2,4],[1], prod = [[4/3],[8/3,4]]
[[4/3],[2,3],[4,5,6]], remainder = [[-1/3],[-2/3,0],[1]
2*x + 4*x^2 + 3*x*y + 5*x^2*y + 6*x^2*y^2, rest=x^2
|
7f5e7969feb96dcd8935b95e6b43d723dbd081b4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2243/CH3/EX3.6/Ex3_6.sce
|
8b5f140b23ea2ec35bf1118b183933af2703061b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,309
|
sce
|
Ex3_6.sce
|
clc();
clear;
//Given:
lambda = 5890; // Wavelength of a beam of sodium light in A
l = 100 ; // thickness in cm
mu1 = 1.00;//refractive index of air
mu2 = 1.33;// refractive index of water
mu3 = 1.39; // refractive index of oil
mu4 = 1.64; // refractive index of glass
c = 3*10^8 ;// Velocity of light in vacuum in m/s
//For Air :
lambda1 = lambda/mu1; // wavelength of light in A
v1 = c/mu1;// Velocity of light in air in m/s
// 1cm = 1*10^-2 m
t1 = (l*10^-2/v1); //time of travel in s
// 1 A = 1*10^-10 m
N1 = (l*10^-2)/(lambda1*10^-10);// Number of waves
delta1 = mu1*l; //Optical path in cm
//For Water :
lambda2 = lambda/mu2; // wavelength of light in A
v2 = c/mu2;// Velocity of light in water in m/s
//1cm = 1*10^-2 m
t2 = (l*10^-2/v2); //time of travel in s
//1 A = 1*10^-10 m
N2 = (l*10^-2)/(lambda2*10^-10);// Number of waves
delta2 = mu2*l; //Optical path in cm
//For Oil :
lambda3 = lambda/mu3; // wavelength of light in A
v3 = c/mu3;// Velocity of light in Oil in m/s
//1cm = 1*10^-2 m
t3 = (l*10^-2/v3); //time of travel in s
//1 A = 1*10^-10 m
N3 = (l*10^-2)/(lambda3*10^-10);// Number of waves
delta3 = mu3*l; //Optical path in cm
//For Glass:
lambda4 = lambda/mu4; // wavelength of light in A
v4 = c/mu4;// Velocity of light in Glass in m/s
// 1cm = 1*10^-2 m
t4 = (l*10^-2/v4); //time of travel in s
//1 A = 1*10^-10 m
N4 = (l*10^-2)/(lambda4*10^-10);// Number of waves
delta4 = mu4*l; //Optical path in cm
delta = delta1+delta2+delta3+delta4; // total optical path in cm
printf("Parameters \t\t\t Air \t\t\t Water \t\t\t Oil \t\t\tGlass \n\n");
printf("Wavelength : \t\t %.0f A \t\t %.1f A \t\t %.1f A \t\t %.1f A \n",lambda1,lambda2,lambda3,lambda4);
printf("Velocity : \t\t %.0f x 10^8 m/s \t\t %.2f x 10^8m/s \t %.2f x 10^8 m/s \t %.2f x 10^8 m/s \n",v1*10^-8,v2*10^-8,v3*10^-8,v4*10^-8);
printf("Time of travel : \t %2.1f x 10^-10 s\t %2.1f x 10^-10 s\t %2.1f x 10^-10 s\t %2.1f x 10^-10 s \n",t1*10^10,t2*10^10,t3*10^10,t4*10^10);
printf("Number of waves: \t %.1f x 10^6 \t\t %.1f x 10^6 \t\t %.1f x 10^6 \t\t %.1f x10^6 \n",N1*10^-6,N2*10^-6,N3*10^-6,N4*10^-6);
printf("Optical path : \t\t %d cm \t\t %d cm \t\t %d cm \t\t %d cm \n\n",delta1,delta2,delta3,delta4);
printf(" The total optical path = %d cm\n\n",delta);
|
1c63dff4ca5aebcbb3e1534e1f6904dbd0cd30d3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3159/CH11/EX11.4/Ex11_4.sce
|
d323041bdb97a0a452fcdd12b6022a1c28d0e886
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 556
|
sce
|
Ex11_4.sce
|
// Find the yield stress for a grain size of ASTM 9
clc
sigma1 = 120 // initial yield strength of material in MNm^-2
sigma2 = 220 // Final yield strength of material in MN m^-2
d1 = 0.04 // initial diameter in mm
d2 = 0.01 // final diameter in mm
n = 9 // astm number
printf("Example 11.4")
k = (sigma2-sigma1)*1e6/(1/sqrt(d2*1e-3)-1/sqrt(d1*1e-3))
sigma_i = sigma1*1e6 -k/sqrt((d1*1e-3))
d = 1/sqrt(2^(n-1)*1e4/645)
sigma_y = sigma_i+k*(d*1e-3)^(-0.5)
printf("\n Yield stress for a grain size of ASTM 9 is %d MN m^-2",ceil(sigma_y/1e6))
|
a25f485495ba206974993275708e8fa2a3252dd2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/181/CH6/EX6.7/example6_7.sce
|
378ef574b94e2af0c44c6facb725ae1cdd215402
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 817
|
sce
|
example6_7.sce
|
// Determine Vgs,Id,Vds
// Determine Vgs,Id,Vds,operating region
// Basic Electronics
// By Debashis De
// First Edition, 2010
// Dorling Kindersley Pvt. Ltd. India
// Example 6-7 in page 277
clear; clc; close;
// Given data
Ids=8*10^-3; // Drain current in mA
Vp=-4; // Peak voltage in V
Vdd=18; // Drain voltage in V
Rd=8*10^3; // Drain resistance in K-ohms
// Calculation
vgs1=(-214+sqrt(214^2-(4*63*180)))/(2*63);
vgs2=(-214-sqrt(214^2-(4*63*180)))/(2*63);
printf("(a)Vgs = %0.2f V,%0.2f V\n",vgs1,vgs2);
id1=-vgs1/(1*10^3);
id2=-vgs2/(1*10^3);
printf("(b)Id = %0.2e A,%0.2e A\n",id1,id2);
Vds1=((-9*10^3)*id1)+18;
Vds2=((-9*10^3)*id2)+18;
printf("(c)Vds = %0.2f V,%0.2f V",Vds1,Vds2);
// Result
// (a) Vgs = -1.53 V,-1.86 V
// (b) Id = 1.53 mA,1.86 mA
// (c) Vds = 4.23 V,1.26 V
|
c9afb27d94cb734b9210b7ec7909e8b89f7550f6
|
5f48beee3dc825617c83ba20a7c82c544061af65
|
/tests/l/11.tst
|
60f3a96d2cc171b60cd9f892c1d33ec7ec4fb389
|
[] |
no_license
|
grenkin/compiler
|
bed06cd6dac49c1ca89d2723174210cd3dc8efea
|
30634ec46fba10333cf284399f577be7fb8e5b61
|
refs/heads/master
| 2020-06-20T12:44:17.903582
| 2016-11-27T03:08:20
| 2016-11-27T03:08:20
| 74,863,612
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 93
|
tst
|
11.tst
|
.,:&|^~!*/+-><
{}()[];abc.,
8 9 10 /* 11 12 13 14 15
16 17 18 19 /*20 */ 21 22 23 24*/ 25
|
fc0937cabfb39b3f50b27a006f00b0862234b737
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3871/CH6/EX6.2/Ex6_2.sce
|
ff969b20e442c4eaf07f57536cf21200842ca257
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,128
|
sce
|
Ex6_2.sce
|
//===========================================================================
//chapter 6 example 2
clc;clear all;
//variable declaration
Rm = 1; //instrument resistance in Ω
Rse = 4999; //series resistance in Ω
V = 250; //full-scale deflection voltage in V
Rs = 4999; //Shunt resistance in Ω(Rs =1/(499))
I1 = 50; //full-scale defelction current in A
//calculations
Rs1 = 1/(Rs);
Im = V/(Rm+Rse); //full-scale deflection current in A
I = Im*(1+(Rm/Rs1)); //current in A
N = I1/(Im);
Rsh = Rm/(N-1); //shunt resistance in Ω
//result
mprintf("full-scale defelction current in Im = %3.2f A",Im);
mprintf("\ncurrent range of instrument when used as an ammeter with coil connected across shunt is I = %3.2f A",I);
mprintf("\nShunt resistance for the instrument to give a full-scale deflection of 50A is Rsh = %3.4f Ω",Rsh);
|
97e2fc0e23870a07c5a0c956a6376d01bc4cc9e5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2126/CH1/EX1.1/1.sce
|
da3db8f9498cb65f10c578405281c1d17bce6a1c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 800
|
sce
|
1.sce
|
clc
clear
//Input data
m=0.75 //Mass of air in kg
T1=800 //Intial Temperature in K
P1=400 //Initial Pressure in kPa
P2=150 //Final Pressure in kPa
k=1.4 //Adiabatic constant
R=0.287 //Specific Gas constant in J/kg-K
//Calculation
p1=P2/P1 //pressure ratio of process
T2=T1*p1^((k-1)/k) //Final temperature in K
W=((m*R*(T1-T2))/(k-1)) //Workdone in kJ
//P-V Diagram
scf()
clf()
V1=(((m*R*T1)/P1)^(1/k))*10^3 //Inlet volume in cc
V2=(((m*R*T2)/P2)^(1/k))*10^3 //Final volume in cc
V = V1:(V2-V1)/100:V2 //Representing volume on graph, adiabatic expansion
P = P1*V1^k./V^k //Representing pressure on graph
plot(V, P) //Plotting
legend('P*V^k=C') //Defining curve
xtitle("PV Diagram", "V (cc)", "P (kPa)") //Titles of axes
//Output
printf('Workdone is %3.2f kJ',W)
|
db1ac03082cea6cb668c22f4430205e2da54b907
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/25/CH8/EX8.2/8_2.sce
|
e792650f8c5f1e8cc9dda6fc0411b12429a2fc22
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 383
|
sce
|
8_2.sce
|
//example:-8.2,page no.-398.
// program to design an equi-split wilkinson power divider for 50 ohm system impedence.
Zo=50;
Z=sqrt(2)*Zo; // impedence of quarter wave transmission line.
R=2*Zo; // shunt resistor.
disp(R,'the shunt resistance value should be in ohm = ')
disp(Z,'the quarter wave transmission line in the divide should have a characteristic impedence in ohm = ')
|
585d264c342a9a58816c79e18f7b78b75adda463
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/803/CH8/EX8.5/ex8_5.sce
|
c5bd3544c69aa542a3cdb93d99a714494e66f4d1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 739
|
sce
|
ex8_5.sce
|
clc
n=10;...................................//total pulses selected
p=0.8;..................................//probability of pulses hitting the dish
q=0.2;..................................//probability of miss
add=0;
for k=2;
x(k)=((factorial(n)*(p^k)*((1-p)^(n-k)))/(factorial(k)*factorial(n-k)));
disp(x(k),"Exactly two pulses missing the target");
end;
for k=0:1
x(k)=((factorial(n)*(p^k)*((1-p)^(n-k)))/(factorial(k)*factorial(n-k)));
add=add+x(k);
end;
y(k)=1-add;
disp(y(k),"Two or more pulses missing the target");
for k=6:10
x(k)=((factorial(n)*(p^k)*((1-p)^(n-k)))/(factorial(k)*factorial(n-(k)));
y(k)=sum(x(k));
disp(y(k),"More than 5 pulses missing the target");
end;
|
6dc7c5c1f70be4104dbdf198910d9cc24c2061c3
|
d465fcea94a1198464d7f8a912244e8a6dcf41f9
|
/kMatlab/kReadByte.sci
|
ff4d41225a979326b9277b86c0c59217cc90a4e6
|
[] |
no_license
|
manasdas17/kiks-scilab
|
4f4064ed7619cad9e2117a6c0040a51056c938ee
|
37dc68914547c9d0f423008d44e973ba296de67b
|
refs/heads/master
| 2021-01-15T14:18:21.918789
| 2009-05-11T05:43:11
| 2009-05-11T05:43:11
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 724
|
sci
|
kReadByte.sci
|
function [r] = kReadByte(ref,address)
// Ouput variables initialisation (not found in input variables)
r=[];
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
//KREADBYTE Read a byte from the extension bus
//
//value = kReadByte(ref)
// Read a byte from an address (0..63) on the extension bus
// Use the reference obtained with kopen.
// !! L.8: Matlab function sprintf not yet converted, original calling sequence used
reply = kcmd(ref,sprintf("R,%d",round(mtlb_double(address))));
// !! L.9: Matlab function sscanf not yet converted, original calling sequence used
[value,count,errmsg] = sscanf(reply,"r,%d");
if isempty(errmsg) then
r = value;
else
r = -1;
end;
endfunction
|
87b476de4b94597959dbeeaec1adf84d6aacf750
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3630/CH8/EX8.14/Ex8_14.sce
|
518f8642c6bc3f06d0c224548df7651c6f6f862f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 97
|
sce
|
Ex8_14.sce
|
clc;
AvdB=6;
Av=10^(AvdB/20);
disp(' ',Av,"Av=");//The answers vary due to round off error
|
53e44d5c7da255ed94606384da2be380e29f44cc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/764/CH6/EX6.4.b/solution6_4.sce
|
1f137969954f1fc370121d49672bc0da2901eae8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,032
|
sce
|
solution6_4.sce
|
//Obtain path of solution file
path = get_absolute_file_path('solution6_4.sce')
//Obtain path of data file
datapath = path + filesep() + 'data6_4.sci'
//Clear all
clc
//Execute the data file
exec(datapath)
//Calculate the lead of the screw l (mm)
l = n * p
//Calculate mean diameter of the screw dm (mm)
dm = d - (0.5 * p)
//Calculate the lead angle alpha (degree)
alpha = atand(l/(%pi * dm))
//Calculate the angle of repose fi (degree)
fi = atand(mu1)
//Axial force on the screw while raising the gate W1 (N)
W1 = (w * 1000) + (fr *1000)
//External torque applied to raise the gate Mt (N-mm)
Mt = ((W1 * dm)*(tand(fi + alpha)))/2
//Calculate the torque required to overcome washer friction Mtc (N-mm)
Mtc = (mu2 * W1 * (Do + Di))/4
//Calculate total torque required to raise the gate Mraise (N-mm)
Mraise = Mt + Mtc
//Calculate force exerted by each arm while raising the gate P1 (N)
P1 = Mraise/(2 * rad)
//Net axial force on the screw while lowering the gate W2 (N)
W2 = (w * 1000) - (fr * 1000)
//External torque applied to lower the gate Ml (N-mm)
Ml = (W2 * dm * tand(fi - alpha))/2
//Calculate the torque required to overcome washer friction Mtc (N-mm)
Mlc = (mu2 * W2 * (Do + Di))/4
//Calculate total torque required to lower the gate Mlower (N-mm)
Mlower = Ml + Mlc
//Calculate force exerted by each arm while lowering the gate P2 (N)
P2 = Mlower/(2 * rad)
//Calculate the efficiency of the gate mechanism eta (%)
eta = (W1 * l)/(2 * %pi * Mraise)
//Calculate the core diameter of the screw dc (mm)
dc = d - p
//Calculate the number of threads z
z = (4 * W1)/(%pi * Sb * ((d^2) - (dc^2)))
z = ceil(z)
//Calculate the length of the nut L (mm)
L = z * p
//Print results
printf('\nMaximum force exerted by each arm when the gate is being raised(P1) = %f N\n',P1)
printf('\nMaximum force exerted by each arm when the gate is being lowered(P2) = %f N\n',P2)
printf('\nEfficiency of the gate mechanism(eta) = %f percent\n',eta*100)
printf('\nLength of the nut(L) = %f mm\n',L)
|
8d72fa6e3f6646b794db946ec72ee33fc05709bf
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/PD3.prev.tst
|
e9edef2edd3dcf0d193a499fafd0d297b8693c5e
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 56
|
tst
|
PD3.prev.tst
|
(x + 1).degree() = -1
(x + 1).degree(false) = -1
|
f33831b038e3290cca9c4e1e988241c304e4f375
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set5/s_Digital_Signal_Processing_R._Babu_52.zip/Digital_Signal_Processing_R._Babu_52/CH3/EX3.26/Example3_26.sce
|
88f2d7647c00c19cd305d0580f91b538cdbce3aa
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 301
|
sce
|
Example3_26.sce
|
errcatch(-1,"stop");mode(2);//Example 3.26
//Program to Compute the Linear Convolution of the following Sequences
//x[n]=[1,-1,1]
//h[n]=[2,2,1]
;
;
;
x=[1,-1,1];
h=[2,2,1];
//Convolution Computation
y= convol(x,h);
//Display sequence y[n] in command window
disp(y,"y[n]=");
exit();
|
9b44dbe3b158c06ad03af45a1f807de771ca7a18
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2223/CH9/EX9.2/Ex9_2.sce
|
098438e072247e8a1b61ab008545b685edfc7b75
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,128
|
sce
|
Ex9_2.sce
|
// scilab Code Exa 9.2 Calculation on an axial turbine stage
dh=0.450; // hub diameter in m
dt=0.750; // tip diameter in m
d=0.5*(dt+dh); // mean diameter of the impeller blade in m
r=d/2;
T1=500; // Initial Temperature in degree C
t1=T1+273; // in Kelvin
p1=100; // Initial Pressure in bar
N=6e3; // rotor Speed in RPM
m=100; // in kg/s
alpha2m=75; // air angle at nozzle exit
beta2m=45; // air angle at rotor entry
beta3m=76; // air angle at rotor exit
u=%pi*d*N/60;
uh=%pi*dh*N/60;
ut=%pi*dt*N/60;
// for mean section
c2m=(cosd(beta2m)/sind(alpha2m-beta2m))*u;
cx2m=c2m*cosd(alpha2m);
ct2m=c2m*sind(alpha2m);
ct3m=(cx2m*tand(beta3m))-u;
C2=r*ct2m;
C3=r*ct3m;
// part(a) the relative and absolute air angles
disp("for mean section")
disp("(a) the relative and absolute air angles are")
disp("degree",beta2m,"air angle at rotor entry is beta2m= ")
disp("degree",beta3m,"air angle at rotor exit is beta3m= ")
disp("degree",alpha2m,"air angle at nozzle exit is alpha2m= ")
// part(b) degree of reaction
cx=cx2m;
R=cx*(tand(beta3m)-tand(beta2m))*100/(2*u);
disp("%",R,"(b)degree of reaction is")
// part(c) blade-to-gas speed ratio
sigma=u/c2m;
disp(sigma,"(c)blade-to-gas speed ratio is")
// part(d) specific work
omega=2*%pi*N/60;
w=omega*(C2+C3);
disp("kJ/kg",w*1e-3,"(d)specific work is")
// part(e) the loading coefficient
z=w/(u^2);
disp(z,"(e)the loading coefficient is")
// for hub section
rh=dh/2;
alpha2h=atand(C2/(rh*cx));
disp("for hub section")
disp("(a) the relative and absolute air angles are")
disp("degree",alpha2h,"air angle at nozzle exit is alpha2h= ")
beta2h=atand(tand(alpha2h)-(uh/cx));
disp("degree",beta2h,"air angle at rotor entry is beta2h= ")
beta3h=atand((C3/(rh*cx))+(uh/cx));
disp("degree",beta3h,"air angle at rotor exit is beta3h= ")
// part(b) degree of reaction
Rh=cx*(tand(beta3h)-tand(beta2h))*100/(2*uh);
disp("%",Rh,"(b)degree of reaction is")
// part(c) blade-to-gas speed ratio
c2h=cx/(cosd(alpha2h));
sigmah=uh/c2h;
disp(sigmah,"(c)blade-to-gas speed ratio is")
// part(d) specific work
wh=uh*cx*(tand(beta3h)+tand(beta2h));
disp("kJ/kg",wh*1e-3,"(d)specific work is")
// part(e) the loading coefficient
zh=wh/(uh^2);
disp(zh,"(e)the loading coefficient is")
// for tip section
rt=dt/2;
alpha2t=atand(C2/(rt*cx));
disp("for tip section")
disp("(a) the relative and absolute air angles are")
disp("degree",alpha2t,"air angle at nozzle exit is alpha2t= ")
beta2t=atand(tand(alpha2t)-(ut/cx));
disp("degree",beta2t,"air angle at rotor entry is beta2t= ")
beta3t=atand((C3/(rt*cx))+(ut/cx));
disp("degree",beta3t,"air angle at rotor exit is beta3t= ")
// part(b) degree of reaction
Rt=cx*(tand(beta3t)-tand(beta2t))*100/(2*ut);
disp("%",Rt,"(b)degree of reaction is")
// part(c) blade-to-gas speed ratio
c2t=cx/(cosd(alpha2t));
sigmat=ut/c2t;
disp(sigmat,"(c)blade-to-gas speed ratio is")
// part(d) specific work
wt=ut*cx*(tand(beta3t)+tand(beta2t));
disp("kJ/kg",wt*1e-3,"(d)specific work is")
// part(e) the loading coefficient
zt=wt/(ut^2);
disp(zt,"(e)the loading coefficient is")
|
a8d92c73d9daaba225bd4f09fe11b8266cf00275
|
25ec4bae7c1d991a8b4f36a96650a07061417648
|
/Exemplos/exemplo05AjusteMotores/plotaPotencia.sce
|
0564630f6d4d220c67028a9ade51415a66636ba2
|
[] |
no_license
|
OtacilioNeto/EV3MicroPythonExamples
|
716f76e4179d98157577d68b116a33a078aed085
|
037af9585402fe294d3c82d3b7d88cb49bc26bcf
|
refs/heads/master
| 2023-06-08T19:34:49.916922
| 2023-06-02T13:24:10
| 2023-06-02T13:24:10
| 226,492,496
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 8,421
|
sce
|
plotaPotencia.sce
|
funcprot(0)
clc
function ret=MinimosQuadrados(Y, X)
n = size(X)(1)
ret(1) = (n*X'*Y - sum(X)*sum(Y)) / (n*sum(X^2) - sum(X)^2)
ret(2) = mean(Y) - ret(1)*mean(X)
endfunction
exec(get_absolute_file_path('plotaPotencia.sce')+'datalog.sce', 0);
scf(1001)
clf()
// subplot(3,2,1);
plot2d(datalog(:,1), datalog(:,2:3), leg="Motor Esquerdo@Motor Direito", style=[-3, -2])
p = get("hdl")
p.children(1).mark_size=3;
p.children(2).mark_size=3;
p.parent.x_label.text = "Potência (%)"
p.parent.x_label.font_size = 4;
p.parent.y_label.text = "Graus/%S"
p.parent.y_label.font_size = 4;
p.parent.title.text = "Giro dos motores vs. Percentual da potência máxima"
p.parent.title.font_size = 4;
p.parent.font_size = 4;
p.parent.box = "on";
p.parent.children(2).font_size = 4;
p.parent.children(2).legend_location="in_lower_right";
p.parent.children(2).fill_mode = "on";
xgrid(5, 1, 7);
// Vamos fazer a regressão linear pelo método dos mínimos quadrados
Y=datalog(:,2);
X=datalog(:,1);
motorEsquerdo = MinimosQuadrados(Y, X)
Y=datalog(:,3);
X=datalog(:,1);
motorDireito = MinimosQuadrados(Y, X)
// Vamos calcular os gráficos
yEsquerdo = motorEsquerdo(1)*datalog(:,1) + motorEsquerdo(2);
yDireito = motorDireito(1)*datalog(:,1) + motorDireito(2);
// Eh preciso retirar a área negativa porque na prática o motor nunca gira para trás no experimento
for i=1:size(yEsquerdo)(1)
if(yEsquerdo(i, 1)<0) then
yEsquerdo(i, 1) = 0;
end
end
for i=1:size(yDireito)(1)
if(yDireito(i, 1)<0) then
yDireito(i, 1) = 0;
end
end
scf(1002)
clf()
// subplot(3,2,5);
plot2d(datalog(:,1), [datalog(:,2), datalog(:,3), yEsquerdo, yDireito], leg="Motor esquerdo@Motor direito@Função ajustada (motor esquerdo)@Função ajustada (motor direito)", style=[-3, -2, 2, 13])
a=gca(); // Handle on axes entity
a.x_location = "origin";
a.y_location = "origin";
p = get("hdl")
p.children(1).thickness=3;
p.children(2).thickness=3;
p.children(3).mark_size=3;
p.children(4).mark_size=3;
p.parent.x_label.text = "Potência (%)"
p.parent.x_label.font_size = 4;
p.parent.y_label.text = "Graus/%S"
p.parent.y_label.font_size = 4;
p.parent.title.text = "Giro dos motores vs. Percentual da potência máxima"
p.parent.title.font_size = 4;
p.parent.font_size = 4;
p.parent.box = "on";
p.parent.children(2).font_size = 4;
p.parent.children(2).legend_location="in_lower_right";
p.parent.children(2).fill_mode = "on";
xgrid(5, 1, 7);
scf(1003)
clf()
// subplot(3,2,3);
plot2d(datalog(:,1), [yEsquerdo, yDireito], leg="Função ajustada (motor esquerdo)@Função ajustada (motor direito)", style=[2, 13])
a=gca(); // Handle on axes entity
a.x_location = "origin";
a.y_location = "origin";
p = get("hdl")
p.children(1).thickness=3;
p.children(2).thickness=3;
p.parent.x_label.text = "Potência (%)"
p.parent.x_label.font_size = 4;
p.parent.y_label.text = "Graus/%S"
p.parent.y_label.font_size = 4;
p.parent.title.text = "Giro dos motores vs. Percentual da potência máxima"
p.parent.title.font_size = 4;
p.parent.font_size = 4;
p.parent.box = "on";
p.parent.children(2).font_size = 4;
p.parent.children(2).legend_location="in_lower_right";
p.parent.children(2).fill_mode = "on";
xgrid(5, 1, 7);
scf(1004)
clf()
yDesejadoEsquerdo = datalog(:, 1)*yEsquerdo(size(yEsquerdo)(1))/datalog(size(datalog)(1),1)
yDesejadoDireito = datalog(:, 1)*yDireito(size(yDireito)(1))/datalog(size(datalog)(1),1)
plot2d(datalog(:,1), [yDesejadoEsquerdo, yDesejadoDireito], leg="Motor esquerdo@Motor direito", style=[2, 13])
a=gca(); // Handle on axes entity
a.x_location = "origin";
a.y_location = "origin";
p = get("hdl")
p.children(1).thickness=3;
p.children(2).thickness=3;
p.parent.x_label.text = "Potência (%)"
p.parent.x_label.font_size = 4;
p.parent.y_label.text = "Graus/%S"
p.parent.y_label.font_size = 4;
p.parent.title.text = "Resposta desejada dos motores"
p.parent.title.font_size = 4;
p.parent.font_size = 4;
p.parent.box = "on";
p.parent.children(2).font_size = 4;
p.parent.children(2).legend_location="in_lower_right";
p.parent.children(2).fill_mode = "on";
xgrid(5, 1, 7);
scf(1005)
clf()
plot2d(datalog(:,1), [yEsquerdo, yDireito, yDesejadoEsquerdo], leg="Função ajustada (motor esquerdo)@Função ajustada (motor direito)@Função desejada")
a=gca(); // Handle on axes entity
a.x_location = "origin";
a.y_location = "origin";
p = get("hdl")
p.children(1).thickness=3;
p.children(2).thickness=3;
p.children(3).thickness=3;
p.parent.x_label.text = "Potência (%)"
p.parent.x_label.font_size = 4;
p.parent.y_label.text = "Graus/%S"
p.parent.y_label.font_size = 4;
p.parent.title.text = "Funçõs desejadas vs.funções obtidas"
p.parent.title.font_size = 4;
p.parent.font_size = 4;
p.parent.box = "on";
p.parent.children(2).font_size = 4;
p.parent.children(2).legend_location="in_lower_right";
p.parent.children(2).fill_mode = "on";
xgrid(5, 1, 7);
// A funcao de correção é potr = pot*100/(100-zona morta) + zona morta
B = - motorEsquerdo(2)/motorEsquerdo(1);
A = (yEsquerdo(size(yEsquerdo)(1)) - B) / yEsquerdo(size(yEsquerdo)(1));
printf("Potência Esquerda(x) = %.4f(x) + %.4f\n", A, B);
B = - motorDireito(2)/motorDireito(1);
A = (yDireito(size(yDireito)(1)) - B) / yDireito(size(yDireito)(1));
printf("Potência Direita(x) = %.4f(x) + %.4f\n", A, B);
printf("VOCÊ JÁ MEDIU OS VALORES CORRIGIDOS [S/N]?");
// Carregar os valores corrigidos
exec(get_absolute_file_path('plotaPotencia.sce')+'datalog2.sce', 0);
// Vamos ajustar duas retas. Uma para cada motor.
scf(1006)
clf()
// subplot(3,2,2);
plot2d(datalog(:,1), datalog(:,2:3), leg="Motor esquerdo@Motor direito", style=[-3, -2])
p = get("hdl")
p.children(1).mark_size=3;
p.children(2).mark_size=3;
p.parent.x_label.text = "Potência (%)"
p.parent.x_label.font_size = 4;
p.parent.y_label.text = "Graus/%S"
p.parent.y_label.font_size = 4;
p.parent.title.text = "Giro dos motores vs. Percentual da potência máxima após correção"
p.parent.title.font_size = 4;
p.parent.font_size = 4;
p.parent.box = "on";
p.parent.children(2).font_size = 4;
p.parent.children(2).legend_location="in_lower_right";
p.parent.children(2).fill_mode = "on";
xgrid(5, 1, 7);
// Vamos fazer uma regressão linear para ajustar duas retas. Uma para cada motor.
Y=datalog(:,2);
X=datalog(:,1);
motorEsquerdo=MinimosQuadrados(Y, X);
Y=datalog(:,3);
X=datalog(:,1);
motorDireito=MinimosQuadrados(Y, X);
// Vamos calcular os gráficos
yEsquerdoC = motorEsquerdo(1)*datalog(:,1) + motorEsquerdo(2);
yDireitoC = motorDireito(1)*datalog(:,1) + motorDireito(2);
for i=1:size(yEsquerdoC)(1)
if(yEsquerdoC(i, 1)<0) then
yEsquerdoC(i, 1) = 0;
end
end
for i=1:size(yDireitoC)(1)
if(yDireitoC(i, 1)<0) then
yDireitoC(i, 1) = 0;
end
end
scf(1007)
clf()
// subplot(3,2,6);
plot2d(datalog(:,1), [datalog(:,2), datalog(:,3), yEsquerdoC, yDireitoC], leg="Motor esquerdo@Motor direito@Função ajustada (motor esquerdo)@Função ajustada (motor direito)", style=[-3, -2, 2, 13])
a=gca(); // Handle on axes entity
a.x_location = "origin";
a.y_location = "origin";
p = get("hdl")
p.children(1).thickness=3;
p.children(2).thickness=3;
p.children(3).mark_size=3;
p.children(4).mark_size=3;
p.parent.x_label.text = "Potência (%)"
p.parent.x_label.font_size = 4;
p.parent.y_label.text = "Graus/%S"
p.parent.y_label.font_size = 4;
p.parent.title.text = "Giro dos motores vs.Percentual da potência máxima após correção"
p.parent.title.font_size = 4;
p.parent.font_size = 4;
p.parent.box = "on";
p.parent.children(2).font_size = 4;
p.parent.children(2).legend_location="in_lower_right";
p.parent.children(2).fill_mode = "on";
xgrid(5, 1, 7);
scf(1008)
clf()
// subplot(3,2,4);
plot2d(datalog(:,1), [yEsquerdoC, yDireitoC], leg="Função ajustada (motor esquerdo)@Função ajustada (motor direito)", style=[2, 13])
a=gca(); // Handle on axes entity
a.x_location = "origin";
a.y_location = "origin";
p = get("hdl")
p.children(1).thickness=3;
p.children(2).thickness=3;
p.parent.x_label.text = "Potência (%)"
p.parent.x_label.font_size = 4;
p.parent.y_label.text = "Graus/%S"
p.parent.y_label.font_size = 4;
p.parent.title.text = "Giro dos motores vs.Percentual da potência máxima após correção"
p.parent.title.font_size = 4;
p.parent.font_size = 4;
p.parent.box = "on";
p.parent.children(2).font_size = 4;
p.parent.children(2).legend_location="in_lower_right";
p.parent.children(2).fill_mode = "on";
xgrid(5, 1, 7);
|
200c65178af57dbd8042fe4b914936b09b75c660
|
caeeba65136d7b667e3e14cc35ec86579cd57e52
|
/Ticket/Attachment/134668/36391/html-tidy.tst
|
57543de65b834fa052cb7a819ee99f1df0477c92
|
[] |
no_license
|
rt-cpan/rt-cpan.github.io
|
934a442fa11602a2b377029eb166199bbe2f6fbe
|
28345cf6425a51e68d37fe6ce2a0b4ff399b44ec
|
refs/heads/master
| 2023-03-10T19:34:13.055361
| 2021-03-01T12:45:51
| 2021-03-01T12:45:51
| 321,269,936
| 9
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,099
|
tst
|
html-tidy.tst
|
~/HTML-Tidy-1.04 15:03:36% make test
PERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-e" "test_harness(0, 'blib/lib', 'blib/arch')" t/*.t
t/00.load............ok
t/extra-quote........ok
t/ignore-text........NOK 3
# Failed test (t/ignore-text.t at line 28)
# Structures begin differing at:
# $got->[0] = 'DATA (24:86) Warning: unescaped & which should be written as &'
# $expected->[0] = 'DATA (24:78) Warning: unescaped & which should be written as &'
# Looks like you failed 1 test of 3.
t/ignore-text........dubious
Test returned status 1 (wstat 256, 0x100)
DIED. FAILED test 3
Failed 1/3 tests, 66.67% okay
t/ignore.............NOK 3
# Failed test (t/ignore.t at line 33)
# Structures begin differing at:
# $got->[2] = '- (24:86) Warning: unescaped & which should be written as &'
# $expected->[2] = '- (24:78) Warning: unescaped & which should be written as &'
# Looks like you failed 1 test of 7.
t/ignore.............dubious
Test returned status 1 (wstat 256, 0x100)
DIED. FAILED test 3
Failed 1/7 tests, 85.71% okay
t/levels.............NOK 3
# Failed test (t/levels.t at line 23)
# Structures begin differing at:
# $got->[3] = '- (24:86) Warning: unescaped & which should be written as &'
# $expected->[3] = '- (24:78) Warning: unescaped & which should be written as &'
# Looks like you failed 1 test of 3.
t/levels.............dubious
Test returned status 1 (wstat 256, 0x100)
DIED. FAILED test 3
Failed 1/3 tests, 66.67% okay
t/message............ok
t/perfect............ok
t/pod-coverage.......ok
t/pod................ok
t/segfault-form......ok
t/simple.............ok
t/too-many-titles....ok
Failed Test Stat Wstat Total Fail Failed List of Failed
-------------------------------------------------------------------------------
t/ignore-text.t 1 256 3 1 33.33% 3
t/ignore.t 1 256 7 1 14.29% 3
t/levels.t 1 256 3 1 33.33% 3
Failed 3/12 test scripts, 75.00% okay. 3/53 subtests failed, 94.34% okay.
make: *** [test_dynamic] Error 255
--------
~/HTML-Tidy-1.04 15:08:56% perl -v
This is perl, v5.8.6 built for darwin-thread-multi-2level
(with 2 registered patches, see perl -V for more detail)
|
b1ece3eee4dc19af63c4eca66ca9f95cf0e751b8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1271/CH13/EX13.14/example13_14.sce
|
ef966441d1d126834b329bac16477c3dd743feb9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 543
|
sce
|
example13_14.sce
|
clc
// Given that
d = 2.51 // the space between adjacent plane in angstrom
theta = 9 // glancing angle in degree
// Sample Problem 14 on page no. 13.29
printf("\n # PROBLEM 14 # \n")
printf(" Standard formula used \n")
printf(" n*lambda = 2 * d * sin(theta) \n")
n = 1 // for n=1
lambda = 2 * d * sind(theta) / n
n = 2 // for n=2
theta = asind(lambda / d)
printf("\n Wavelength of x-ray is %f angstrom.\n Glancing angle for second order diffraction is %f degree.",lambda,theta)
|
fc3b03b6927a784f8d030f281a64c6644e70cbbd
|
286a3b61feec58c992ceda8f1ce28b8e4db5caf5
|
/algorithmes/QR_&_LU.sci
|
a5d781c610b45dc5d50bc8178b14b9b3c75f3abf
|
[] |
no_license
|
confiture/M2
|
970865ab3a52c5c65a84637f987dc27d6485542d
|
e95ca27c1eccd36337348ff042b8db144c08f0d5
|
refs/heads/master
| 2021-01-22T07:32:37.900029
| 2017-11-06T13:07:58
| 2017-11-06T13:07:58
| 1,020,201
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,342
|
sci
|
QR_&_LU.sci
|
function X=scal(N,M);
[m,n]=size(N);
if ~((m==1)|(n==1)|~(size(N)==size(M))) then error('vecteur dim'); end ;
X=sum(N.*M);
endfunction ;
//methode QR
function [Q,R]=qr_moi(A)
[m,n]=size(A);
// vérifications de base
if ~(m==n) then error('il faut une matrice carré'); end;
if det(A)==0 then error('matrice de determinant nul'); end;
Q=A;
J=eye(n,n) //pour stocker les opérations élémentaires
for i=1:n;
//GS pour colonne i, sauf la premiere colonne
if ~(i==1) then
V=eye(n,n); //création de la matrice élementaire
for j=1:i-1;
V(j,i)=-scal(Q(1:n,j),Q(1:n,i));
end;//on place chaque prod scal suivant l'algo
Q=Q*V;
J=J*V;
end;
//enfin, on normalise la colonne i...
U=eye(n,n);
U(i,i)=1/((scal(Q(1:n,i),Q(1:n,i)))^(1/2));
Q=Q*U;
J=J*U;
end;
Q=Q;
R=inv(J);
endfunction ;
// methode LU
function [L,U]=LU_moi(A)
[m,n]=size(A);
// vérifications de base
if ~(m==n) then error('il faut une matrice carré'); end;
if det(A)==0 then error('matrice de determinant nul'); end;
U=A;
B=zeros(A);
for i=1:n-1 ;
J=eye(n,n);
for j=i+1:n ;
if U(i,i)==0 then error('aie'); end;
B(j,i)=U(j,i)/U(i,i);
J(j,i)=-B(j,i);
end ;
U=J*U;
end;
U=U;
L=B+eye(n,n);
endfunction;
|
9d5e4d2dc3a7b8d17c703fc79fd44ea7df0f3ef3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3250/CH7/EX7.4/Ex7_4.sce
|
c9c7f2b9cc680ba7dac950763e77589c9acfcca4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 386
|
sce
|
Ex7_4.sce
|
clc
// Given that
J_ = 2 // The threshold value of dose in kJ/cm^3
J = 15 // The dose of top surface in kJ/cm^3
x_ = 300 // Depth below the surface in micro meter
// Sample Problem 4 on page no. 4
printf("\n # PROBLEM 7.4 # \n")
function y=f(x),y = 3/((J*(exp(-0.1*sqrt(x))))^(1.6)-3),
endfunction
t = intg(0,x_,f)
printf("\n The time required to develop the PMMA resist = %d min",t)
|
731de244462b12755c1dd155081c4a53983c5621
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2417/CH8/EX8.9/Ex8_9.sce
|
ee72269c0e1dc07238639c2937f13e30f638520c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,064
|
sce
|
Ex8_9.sce
|
//scilab 5.4.1
clear;
clc;
printf("\t\t\tProblem Number 8.9\n\n\n");
// Chapter 8 : Vapor Power Cycles
// Problem 8.9 (page no. 388)
// Solution
//The Mollier chart provides a convenient way of solving this problem.Expanding from 980F,400 psia,s=1.7567 to 200 psia yields a final enthalpy of 1413 Btu/lbm.Expanding from 200 psia ans an enthalpy of 1515 Btu/lbm to 14.696 psia yields a final enthaply of 1205 Btu/lbm.
h4=1515; //Unit:Btu/lbm //enthalpy
h5=1205; //Unit:Btu/lbm //enthalpy
h7=1413; //Unit:Btu/lbm //enthalpy
h1=180.15; //Unit:Btu/lbm //enthalpy
nreheat=((h4-h5)+(h4-h7))/((h4-h1)+(h4-h7)); //The efficiency of the reheat cycle
printf("The efficiency of the reheat cycle is %f percentage",nreheat*100);
//It is apparent that for the conditions of this problem,the increase in efficiency is not very large.The final condition of the fluid after the second expansion is superheated steam at
//14.696 psia.By condensing at this relatively high pressure condition,a large amount of heat is rejected to the condenser cooling water.7
|
eb1ccf9bb575d7209f6b34b2af5d5e5005a6d76a
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/1.1/macros/metanet/g_ynode.sci
|
bb0d11ad24bf36132b84695579b5c3cfbc93b144
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 76
|
sci
|
g_ynode.sci
|
function y=g_ynode(g)
[lhs,rhs]=argn(0), if rhs=0 then g=the_g, end
y=g(17)
|
85832547f295a131f9d896fd98c7afc27c1448ee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2138/CH8/EX8.1/ex_8_1.sce
|
03e510cac2b44f2ac6b2885cdfa4b93f74610cd9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 175
|
sce
|
ex_8_1.sce
|
//Example 8.1 // speed
clc;
clear;
close;
//given data :
pi=22/7;
s=22; // shaft of the motor in hp
Tsh=210; // torue in hp
N=(s*60*746)/(2*pi*Tsh);
disp(N,"speed,N(rpm) = ")
|
6c3032862a82c5c1adeacc4339736bdb46211f22
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set9/s_Engineering_Physics_K._V._Kumar_3537.zip/Engineering_Physics_K._V._Kumar_3537/CH1/EX1.8/Ex1_8.sce
|
a0a143559367e9c77a8480f3048f13749f1fb662
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 981
|
sce
|
Ex1_8.sce
|
errcatch(-1,"stop");mode(2);//Example 1_8
;
;
//To Calculate the Angular position of the 10th maximum and first minimum
//The distance from centre where 10th maximum is obtained by
lamda=5460 //units in angstrom
lamda=5460*10^-10 //units in mts
n=10
d=0.1 //units in mm
d=0.1*10^-3 //units in mts
D=2 //units in mts
x10=(n*lamda*D)/d //units in mts
//angular position with respect to center is
tantheta=(x10/D) //units in radians
z=atan(tantheta)*(180/%pi) //units in degrees
printf("Angular position of 10th maximum is theta=%.3f degrees",z)
x1=(lamda*D)/(2*d) //units n mts
printf("\n The distance from centre where 1st minimum is obtained is %f metres",x1)
tantheta1=(x1/D) //units in radians
z1=atan(tantheta1)*(180/%pi) //units in degrees
printf("\n Angular position with respect to center is theta=%.3f degrees",z1)
exit();
|
d39ab4c1ef62d48ccf35a5ae76f45da132a49a7b
|
13c3ed7bef4d80dabd836219bbf4396f07cb934a
|
/demo.sci
|
361d57a6344beb6e0ad1c583500b7b31a4f26d80
|
[] |
no_license
|
Mushirahmed/scilab_workspace
|
99f489a110a5e295ce9fca9991122d14840018d3
|
f58b91b87bb0357fff82dcb97b05541e7e976eca
|
refs/heads/master
| 2021-01-10T15:48:40.576771
| 2016-02-10T10:32:46
| 2016-02-10T10:32:46
| 43,348,489
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 216
|
sci
|
demo.sci
|
function ydot = f(t,y)
ydot=[a-y(2)*y(2)-1;1 0]*y
endfunction
a=1;y0=[1;0];t0=0;instants = 0:0.02:20;
y=ode(y0,t0,instants,f);
plot2d(y(1,:),y(2,:),style=-1,rect=[-3,-3,3,3],nax=[10,2,10,2])
xtitle('Van der pol')
|
0d54c41126264b590a65a6552aca13ca3f762be1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2666/CH12/EX12.1/12_1.sce
|
5d10fc976bcc89e424dd4ff49887a9b74ef7d462
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 588
|
sce
|
12_1.sce
|
clc
//initialisation of variables
p=5//tons
t1=20//F
t2=60//F
p1=147//psia
t=460//F
h=14.7//ft
q=0.4/1.4//ft
w1=200//ft
h1=480//R
m=0.24//ft
t3=520//R
q1=42.4//tons
s=53.3//ft
g=144//ft
//CALCULATIONS
T=(t1+t)*(p1/h)^q//R
T1=(t2+t)/(p1/h)^q//R
W=p*(w1)/((m)*(h1-T1))//lb per min
Q=W*m*(T-t3)//Btu per min
J=Q-p*w1//Btu per min
H1=J/q1//hp
C=p*w1/J//hp
V=(W*s*h1)/(g*h)//cu ft per min
V1=(W*s*T1)/(g*h)//cu ft per min
//RESULTS
printf('The air cooler is=% f Btu per min',Q)
printf('the net horsepower=% f hp',C)
printf('the air after is volume is=% f hp',V1)
|
099b069fa2f8eb800451180f756caf703922ed86
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/620/CH25/EX25.9/example25_9.sce
|
62489fb8cf9491d088955113c2e1e1f71b34f35e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 107
|
sce
|
example25_9.sce
|
v=120;
v1=40+%i*30;
v2=25-%i*90;
v3=v-v1-v2;
disp("voltage (in V) across the third load is"); disp(v3);
|
f6986a104ec2297d985ca5ea00cfc453bd3b2deb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3526/CH17/EX17.9/EX17_9.sce
|
1214dfb6203a9bcf77f9fd906397af7dce3e197f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,038
|
sce
|
EX17_9.sce
|
clc;funcprot(0);//EXAMPLE 17.9
//page 542
// Initialisation of Variables
psi=10*10^6;..............//Modulus of elasticity of 7075-T6 in psi
psi1=55*10^6;..............//Modulus of elasticity of Boron fiber in psi
psi2=11*10^6;..............//Modulus of elasticity of Typical AL-LI in psi
f1=0.6;...............//Volume fraction of Boron Fiber
f2=0.4;...............//Volume fraction of typical AL-LI
rho1=0.085;...........//Density of Boron Fibers in lb/in*3
rho2=0.09;...........//Density of typical AL-LI in lb/in^3
//Calculations
sm1=psi/(((2.7*(2.54)^3))/454);..........//Specific Modulus of current alloy in in.
rho=(f1*rho1)+(f2*rho2);........//Density of composite in lb/in^3
Ec=(f1*psi1)+(f2*psi2);........//Modulus of elasticity of mixture in psi
sm2=Ec/rho;..........//Specific Modulus of composite in in.
disp(sm1,"Specific Modulus of current alloy in in.:")
disp(rho,"Density of composite in lb/in^3:")
disp(Ec,"Modulus of elasticity of mixture in psi:")
disp(sm2,"Specific Modulus of composite in in.:")
|
89e13e24eb65bc484d9a18c570aa760d647fb1d4
|
e7055fdf94e8a24293cab7ccbeac12039d6fe512
|
/macros/scharr.sci
|
2e1a6cf006636167d29c5686221b8608a5b28ae1
|
[] |
no_license
|
sidn77/FOSSEE-Image-Processing-Toolbox
|
6c6b8b860f637362a73d28dcfe13e87d18af3e2c
|
8dfbdbdfd38c73dc8a02d1a25678c4a6a724fe18
|
refs/heads/master
| 2020-12-02T16:26:06.431376
| 2017-11-08T17:54:03
| 2017-11-08T17:54:03
| 96,552,565
| 0
| 0
| null | 2017-07-07T15:37:18
| 2017-07-07T15:37:18
| null |
UTF-8
|
Scilab
| false
| false
| 1,522
|
sci
|
scharr.sci
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Sukul Bagai
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function new_image = scharr(image, ddepth, dx, dy, scale, delta)
// Calculates the first x- or y- image derivative using Scharr operator.
//
// Calling Sequence
// new_image = imcontrast(srcImg, aplha, beta)
//
// Parameters
// srcImg: input image.
// ddepth: output image depth. The possible ddepth values are the following <itemizedlist><listitem> CV_8U </listitem><listitem> CV_16U/CV_16S </listitem><listitem> CV_32F</listitem><listitem> CV_64F </listitem></itemizedlist>
// dx: order of the derivative x.
// dy: order of the derivative y.
// scale: Scale factor for the computed derivative values.
// delta: Delta value that is added to the results.
//
// Description
// This function is used to find the derivative of the source image using the
// Scharr operator.
//
// Examples
// image = imread("lena.jpg");
// new_image = scharr(image, "CV_8U", 2, 3, 1.5, 2);
//
// See also
// imread
//
// Authors
// Sukul Bagai
image_list = mattolist(image)
out = raw_scharr(image_list, ddepth, dx, dy, scale, delta)
sz = size(out)
for i = 1: sz
new_image(:, :, i) = out(i)
end
endfunction
|
ef8e51b19e51ceeac892764231f3eaf24f2286e2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/24/CH45/EX45.2/Example45_2.sce
|
3e34f4b3165c92dac42cd3ce4ff6eb514a435bba
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 306
|
sce
|
Example45_2.sce
|
//Given that
Epi = 139.6 //in Mev
Ek = 493.7 //in Mev
Ep = 983.3 //in Mev
Es = 1189.4 //in Mev
//Sample Problem 45-2
pt = mopen('Example45_2_result.txt', 'wt')
mfprintf(pt, '**Sample Problem 45-2**\n')
Q = Epi + Ep - Ek - Es
mfprintf(pt, 'The energy of the reaction is %dMev', Q)
mclose(pt)
|
90c8551fd033aced55689cc7066dbede606b0308
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/172/CH9/EX9.1/ex1.sce
|
e4d1538c70ff794e8d0dd8f011269cae801bf0da
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 765
|
sce
|
ex1.sce
|
//example 1
//work done by steam
clear
clc
hi=3051.2 //initial specific heat of enthalpy of steam in kJ/kg
si=7.1228 //initial specific entropy of steam in kJ/kg-K
Pe=0.15 //final pressure in MPa
se=si //specific entropy in final state in kJ/kg-K
sf=1.4335 //in kJ/kg-K
sfg=5.7897 //in kJ/kg-K
vi=50 //velocity with which steam enters turbine in m/s
ve=200 //velocity with which steam leaves the turbine in m/s
xe=(se-sf)/sfg //quality of steam in final state
hf=467.1 //in kJ/kg
hfg=2226.5 //in kJ/kg
he=hf+xe*hfg //final specific heat of enthalpy of steam in kJ/kg
w=hi+vi^2/(2*1000)-he-ve^2/(2*1000) //work of steam for isentropic process in kJ/kg
printf("\n hence, work per kilogram of steam for this isentropic process is w=%.1f kJ/kg-K.\n",w)
|
d4287d02232c317840175ff874e951e74dc78c5e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3673/CH3/EX3.8/Ex3_8.sce
|
7094fad4024a74642904afc6184f69ba52bd5170
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 199
|
sce
|
Ex3_8.sce
|
//Example 3_8 page no:125
clc
Rs=25//resistance in ohm
Rl=Rs//according to maximum power transfet theorem
I=50/(Rl+Rs)
P=I^2*Rl
disp(P,"the maximum power delivered to the load is (in watts)")
|
729b0210f4f66c8f8c52282b11b1afc10d0fcf22
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2150/CH4/EX4.3/ex_4_3.sce
|
e8c3b69b3d1b9bd6ee87fb827ac5c8b5b3f5b204
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 228
|
sce
|
ex_4_3.sce
|
// Example 4.3
clc;
clear;
close;
// Given data
// Part (i)
a= 0.90;
B=a/(1-a);
disp(B,"At alpha= 0.90, the value of Bita is : ")
// Part (ii)
a= 0.99;
B=a/(1-a);
disp(B,"At alpha= 0.99, the value of Bita is : ")
|
e33429588c5c9e42f88969c7be7891d2847da398
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfas_ap_vrt_ind/~BivLCM-SR-bfas_ap_vrt_ind-PLin-VLin.tst
|
cc027792d58d1723b92bd518971da92fbaeb562a
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205
| 2019-03-04T17:03:26
| 2019-03-04T17:03:26
| 143,070,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,974
|
tst
|
~BivLCM-SR-bfas_ap_vrt_ind-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.253747D+00
2 -0.342757D-02 0.194384D-02
3 -0.133869D+00 0.162846D-02 0.347676D+00
4 0.259041D-02 -0.100208D-02 -0.720439D-02 0.287362D-02
5 -0.257805D-03 0.116123D-04 0.120762D-02 -0.516263D-04 0.256543D-02
6 -0.551674D-03 0.229226D-04 -0.532242D-03 -0.209321D-04 0.310738D-03
7 -0.198984D-02 -0.309246D-04 -0.399639D-03 -0.646381D-04 -0.312882D-03
8 -0.119199D-02 0.738050D-04 -0.335183D-03 0.514274D-04 -0.478637D-04
9 -0.231388D+00 0.100858D-02 0.210074D+00 0.883793D-02 0.400138D-01
10 -0.212981D+00 -0.375726D-02 0.323060D+00 0.146661D-02 0.117240D+00
11 0.780508D-01 -0.668779D-03 0.840299D-02 0.961777D-03 -0.510227D-01
12 -0.163035D-01 -0.603422D-02 0.300881D+00 -0.483002D-01 0.458370D-01
13 -0.127765D-01 0.740513D-02 -0.153674D+00 -0.744972D-02 -0.172992D-02
14 -0.205565D-02 0.627772D-02 0.449613D+00 0.794829D-02 0.174764D-01
15 -0.146069D+01 0.136833D-01 0.394891D+00 -0.182749D-01 -0.832408D-01
16 -0.109416D-01 -0.789776D-02 0.399009D-02 0.409352D-02 0.519778D-03
17 -0.100008D-02 -0.315660D-03 0.214567D-02 0.269021D-03 -0.246028D-03
18 0.540498D+00 -0.166806D-01 -0.336749D+00 0.280481D-01 -0.165542D-01
19 0.138774D-01 0.826465D-02 -0.101503D+00 0.327711D-02 -0.249566D-01
20 -0.191711D+00 -0.565342D-02 0.259898D+00 -0.295992D-01 0.142735D+00
21 -0.102519D-01 0.139550D-03 0.975124D-01 -0.852434D-02 0.217445D-01
22 0.229408D-02 0.287933D-03 -0.111335D-02 -0.281283D-03 0.368488D-03
23 0.501122D-02 -0.317601D-02 0.325644D-01 -0.122871D-03 0.340761D-02
24 -0.255138D-02 -0.144591D-03 -0.193727D-02 0.850171D-03 -0.101884D-02
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.779468D-03
7 0.427144D-03 0.326979D-02
8 -0.157626D-03 0.912191D-03 0.295170D-02
9 -0.378537D-02 -0.456770D-01 -0.134704D-02 0.358304D+02
10 0.107627D-01 -0.156056D-01 -0.148476D-03 0.107537D+01 0.132770D+02
11 0.152815D-01 0.226076D-01 -0.949522D-02 -0.139475D+02 -0.119519D+01
12 -0.341127D-01 -0.125229D-01 0.475504D-01 0.102814D+02 0.269116D+01
13 0.459834D-01 0.101219D+00 0.152459D-01 -0.119104D+01 -0.213342D+01
14 -0.116190D-01 0.116614D-01 0.120433D+00 -0.612829D-01 0.481948D+01
15 0.620967D-02 0.378904D-01 -0.365286D-01 -0.404846D+01 -0.690912D+01
16 -0.287337D-03 -0.113706D-02 -0.135064D-02 0.468576D+00 0.930398D-01
17 0.228999D-03 0.195313D-03 0.265571D-03 -0.676864D-01 -0.374424D-03
18 -0.291468D-01 -0.871624D-01 -0.274053D-01 0.142601D+01 0.295712D+00
19 -0.991081D-02 0.143784D-01 0.350866D-02 -0.934314D+00 -0.214964D+01
20 0.188376D-01 -0.560496D-01 -0.204435D+00 0.182893D+01 0.963846D+01
21 0.977687D-02 -0.177485D-01 -0.409899D-02 0.251730D+00 0.188031D+01
22 -0.119165D-03 0.502487D-04 0.331605D-03 0.173802D-01 0.118721D-01
23 -0.896656D-03 -0.307683D-02 -0.145613D-02 0.155090D+00 0.273128D+00
24 0.863348D-04 0.296071D-03 -0.106251D-03 -0.246214D-03 -0.587318D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.350613D+02
12 -0.333844D+02 0.138241D+03
13 -0.152899D+01 -0.152562D+01 0.118639D+02
14 0.381919D+00 0.214816D+01 -0.646190D+01 0.509568D+02
15 0.366781D+00 0.309965D+01 0.115194D+01 -0.248880D+01 0.163829D+03
16 -0.274213D+00 0.695617D-01 -0.717126D-01 -0.590820D-01 0.341139D+00
17 0.653515D-01 -0.775238D-01 0.211672D-01 0.114297D-01 -0.736029D+00
18 0.329599D+01 -0.332315D+01 -0.592539D+01 0.734941D+01 -0.753983D+02
19 0.805238D+00 -0.251424D+01 0.131401D+00 -0.484778D+00 -0.387494D+00
20 -0.855440D+01 0.372565D+01 0.400582D+01 -0.309302D+02 0.275783D+02
21 -0.274041D+00 0.203116D+01 -0.254049D+00 0.277864D+00 0.755621D+00
22 -0.830910D-01 0.135668D+00 0.157536D-01 0.868632D-03 0.342571D+00
23 -0.567027D+00 0.130675D+01 -0.326873D-01 0.454315D-01 -0.594613D+00
24 0.125769D+00 -0.329901D+00 -0.204895D-01 0.284778D-01 -0.110715D+00
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.325458D+00
17 -0.150915D-01 0.100890D-01
18 0.151117D+00 0.358260D+00 0.134026D+03
19 -0.177664D+00 0.174697D-01 -0.230362D+00 0.406839D+01
20 -0.294951D+00 -0.193065D+00 -0.101298D+03 -0.442012D+01 0.319762D+03
21 -0.115670D+00 -0.176732D-02 0.894833D+00 -0.375483D+01 0.351604D+01
22 0.672330D-02 -0.499173D-02 -0.644030D+00 -0.590719D-02 0.491120D+00
23 0.627929D-01 -0.162751D-02 -0.282123D+00 -0.171025D+00 0.297111D+01
24 -0.850382D-03 0.257260D-02 0.486555D+00 0.342349D-01 -0.141196D+01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.445289D+01
22 -0.304771D-01 0.826122D-02
23 -0.193781D+00 0.144430D-01 0.538324D+00
24 -0.636297D-02 -0.613170D-02 -0.545752D-01 0.153217D-01
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.154 1.000
3 -0.451 0.063 1.000
4 0.096 -0.424 -0.228 1.000
5 -0.010 0.005 0.040 -0.019 1.000
6 -0.039 0.019 -0.032 -0.014 0.220
7 -0.069 -0.012 -0.012 -0.021 -0.108
8 -0.044 0.031 -0.010 0.018 -0.017
9 -0.077 0.004 0.060 0.028 0.132
10 -0.116 -0.023 0.150 0.008 0.635
11 0.026 -0.003 0.002 0.003 -0.170
12 -0.003 -0.012 0.043 -0.077 0.077
13 -0.007 0.049 -0.076 -0.040 -0.010
14 -0.001 0.020 0.107 0.021 0.048
15 -0.227 0.024 0.052 -0.027 -0.128
16 -0.038 -0.314 0.012 0.134 0.018
17 -0.020 -0.071 0.036 0.050 -0.048
18 0.093 -0.033 -0.049 0.045 -0.028
19 0.014 0.093 -0.085 0.030 -0.244
20 -0.021 -0.007 0.025 -0.031 0.158
21 -0.010 0.001 0.078 -0.075 0.203
22 0.050 0.072 -0.021 -0.058 0.080
23 0.014 -0.098 0.075 -0.003 0.092
24 -0.041 -0.026 -0.027 0.128 -0.163
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.268 1.000
8 -0.104 0.294 1.000
9 -0.023 -0.133 -0.004 1.000
10 0.106 -0.075 -0.001 0.049 1.000
11 0.092 0.067 -0.030 -0.394 -0.055
12 -0.104 -0.019 0.074 0.146 0.063
13 0.478 0.514 0.081 -0.058 -0.170
14 -0.058 0.029 0.311 -0.001 0.185
15 0.017 0.052 -0.053 -0.053 -0.148
16 -0.018 -0.035 -0.044 0.137 0.045
17 0.082 0.034 0.049 -0.113 -0.001
18 -0.090 -0.132 -0.044 0.021 0.007
19 -0.176 0.125 0.032 -0.077 -0.292
20 0.038 -0.055 -0.210 0.017 0.148
21 0.166 -0.147 -0.036 0.020 0.245
22 -0.047 0.010 0.067 0.032 0.036
23 -0.044 -0.073 -0.037 0.035 0.102
24 0.025 0.042 -0.016 0.000 -0.130
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 -0.480 1.000
13 -0.075 -0.038 1.000
14 0.009 0.026 -0.263 1.000
15 0.005 0.021 0.026 -0.027 1.000
16 -0.081 0.010 -0.036 -0.015 0.047
17 0.110 -0.066 0.061 0.016 -0.572
18 0.048 -0.024 -0.149 0.089 -0.509
19 0.067 -0.106 0.019 -0.034 -0.015
20 -0.081 0.018 0.065 -0.242 0.120
21 -0.022 0.082 -0.035 0.018 0.028
22 -0.154 0.127 0.050 0.001 0.294
23 -0.131 0.151 -0.013 0.009 -0.063
24 0.172 -0.227 -0.048 0.032 -0.070
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.263 1.000
18 0.023 0.308 1.000
19 -0.154 0.086 -0.010 1.000
20 -0.029 -0.107 -0.489 -0.123 1.000
21 -0.096 -0.008 0.037 -0.882 0.093
22 0.130 -0.547 -0.612 -0.032 0.302
23 0.150 -0.022 -0.033 -0.116 0.226
24 -0.012 0.207 0.340 0.137 -0.638
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.159 1.000
23 -0.125 0.217 1.000
24 -0.024 -0.545 -0.601 1.000
|
6e9ba689c971e6b083acae108715171d3e45f188
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH13/EX13.21/Ex13_21.sce
|
a6279c03e650e8cf77dde1e9e6c463fb432b2653
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 375
|
sce
|
Ex13_21.sce
|
clear
//Given
Vr=150 //V
R=75.0 //ohm
f=50 //Hz
L=318*10**-3 //H
//Calculation
//
Iv=Vr/R
Xl=2*%pi*f*L
Vl=Iv*Xl
Z=sqrt(R**2+Xl**2)
Ev=Iv*Z
a=Xl/R
a1=atan(a)*180/3.14
//Result
printf("\n (i) The supply voltage is %0.0f V",Ev)
printf("\n (ii) The phase angle is %0.2f degree lag",a1)
|
184263e24ac34e410ed13ff8815c6a7b4b83d4ee
|
74fffce9cc4eec19f74cee33440f5bf129117c0a
|
/sed-builder/src/test/resources/test_data/3c273.tst
|
b356b8c33b5e320301650655b62478768211d9a7
|
[] |
no_license
|
ChandraCXC/iris
|
be7c97891db3f827f01254109fd7b94954c0f5f5
|
354f171ef253260677b93c35b5d2b105c28d2bc3
|
refs/heads/master
| 2021-04-15T19:16:53.830702
| 2017-03-06T14:11:13
| 2017-03-06T14:11:13
| 17,256,484
| 3
| 2
| null | 2021-03-26T17:54:07
| 2014-02-27T16:55:48
|
Java
|
UTF-8
|
Scilab
| false
| false
| 130,507
|
tst
|
3c273.tst
|
Photometric Data for 3C 273
# Table parameters
Description: Published and Homogenized by NED [Frequency, Flux Density] Units
utype: spec:Spectrum
DataModel: Spectrum 1.03
DatasetType: Photometry Point
DataLength: 455
Title: Photometric Data for 3C 273, calculated by NED from available published values
Creator: NASA/IPAC Extragalactic Database (NED)
CreationType: Derived
Publisher: NASA/IPAC Extragalactic Database (NED)
TargetName: 3C 273
SpectralAxisName: SpectralCoord
SpectralAxisUcd: em.freq
SpectralAxisUnit: Hz
SpectralAxisCalibration: Calibrated
FluxAxisName: Flux
FluxAxisUcd: phot.flux.density;em.freq
FluxAxisCalibration: Calibrated
SpatialAxisCoverageLocation: 194.0465271 -5.789311
DataSpectralUcd: em.freq
DataSpectralUnit: Hz
DataFluxUcd: phot.flux.density;em.freq
QUERY_STATUS: OK
REQUEST: getData
VERSION: 1.0
LINK: file:/services/accessSED?TARGETNAME=3C 273&REQUEST=getData
# Attempted guesses about identity of columns in the table.
# These have been inferred from column UCDs and/or names
# in the original table data.
# The algorithm which identifies these columns is not particularly reliable,
# so it is possible that these are incorrect.
id_col: 17
ra_col: -1
dec_col: -1
# This TST file generated by STIL v3.0
DataPointNumber DataSpectralPassBand DataFluxPublishedValue DataFluxPublishedStatErr DataFluxPublishedUnit DataSpectralValue DataFluxValue DataFluxStatErr DataFluxUnit DataRefcode DataSignificance DataSpectralPublishedValue DataFrequencyMode DataTargetPos DataSpatialMode DataQualifiers DataComments Index
--------------- -------------------- ---------------------- ------------------------ --------------------- ----------------- ------------- --------------- ------------ ----------- ---------------- -------------------------- ----------------- ------------- --------------- -------------- ------------ -----
1 EGRET (0.1-5 GeV) 2.72E-11 4.42E-12 Jy 6.17E23 2.72E-11 4.42E-12 Jy 1995ApJS..101..259T 1 sigma 2.55 GeV Broad-band measurement 122900. +020600. (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 1
2 40-100 keV INTEGRAL 8.01E-11 4.71E-12 erg cm^-2^ s^-1^ 1.69E19 4.74E-7 2.79E-8 Jy 2006ApJ...636..765B uncertainty 70 keV Broad-band measurement 187.293 2.027 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 2
3 40-100 keV INTEGRAL 6.29E-11 1.7E-12 erg cm^-2^ s^-1^ 1.69E19 3.72E-7 1.01E-8 Jy 2006ApJ...638..642B uncertainty 70 keV Broad-band measurement 12 29 07 +02 03 09 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 3
4 40-100 keV INTEGRAL 11.5 0.3 milliCrab 1.69E19 6.41E-7 1.67E-8 Jy 2007ApJS..170..175B uncertainty 70 keV Broad-band measurement 187.280 +02.049 (J2000) Flux integrated from map Time-averaged flux From reprocessed raw data; NED frequency assigned tomid-point of band in keV 4
5 17-60 keV (INTEGRAL) 1.383E-10 2.3E-12 erg s^-1^ cm^-2^ 9.31E18 1.49E-6 2.47E-8 Jy 2007A&A...462...57S uncertainty 38.50 keV Broad-band measurement Flux integrated from map Averaged new and previously published data; NED frequencyassigned to mid-point of band in keV 5
6 20-40 keV (INTEGRAL) 5.68E-11 2.27E-12 erg cm^-2^ s^-1^ 7.25E18 7.83E-7 3.13E-8 Jy 2006ApJ...636..765B uncertainty 30 keV Broad-band measurement 187.293 2.027 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 6
7 20-40 keV (INTEGRAL) 5.5E-11 1.5E-12 erg cm^-2^ s^-1^ 7.25E18 7.59E-7 2.07E-8 Jy 2006ApJ...638..642B uncertainty 30 keV Broad-band measurement 12 29 07 +02 03 09 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 7
8 20-40 keV (INTEGRAL) 10.1 0.2 milliCrab 7.25E18 1.05E-6 2.09E-8 Jy 2007ApJS..170..175B uncertainty 30 keV Broad-band measurement 187.280 +02.049 (J2000) Flux integrated from map Time-averaged flux From reprocessed raw data; NED frequency assigned tomid-point of band in keV 8
9 F_2-10_ keV 5.72E-6 5.72E-7 Jy 1.45E18 5.72E-6 5.72E-7 Jy 1989MNRAS.240..833T typical accuracy 6.0 keV Broad-band measurement Flux integrated from map Energy index 0.53 + 3.7 From new raw data; NED frequency assigned to mid-point ofband in keV 9
10 2-10 keV (XMM) 7.87E-11 erg cm^-2^ s^-1^ 1.45E18 5.42E-6 Jy 2005A&A...432...15P no uncertainty reported 6 keV Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 10
11 3-9 keV (BeppoSAX) 1.17E-13 W m^-2^ 1.45E18 8.06E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 1997.01.13 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 11
12 3-9 keV (BeppoSAX) 1.12E-13 W m^-2^ 1.45E18 7.72E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 1997.01.15 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 12
13 3-9 keV (BeppoSAX) 1.08E-13 W m^-2^ 1.45E18 7.44E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 1997.01.17 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 13
14 3-9 keV (BeppoSAX) 1.03E-13 W m^-2^ 1.45E18 7.1E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 1997.01.22 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 14
15 4-8 keV (BeppoSAX) 7.01E-14 W m^-2^ 1.45E18 4.83E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 1996.07.18 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 15
16 4-8 keV (BeppoSAX) 1.08E-13 W m^-2^ 1.45E18 7.44E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 1998.06.24 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 16
17 4-8 keV (BeppoSAX) 1.16E-13 W m^-2^ 1.45E18 7.99E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 2000.01.09 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 17
18 4-8 keV (BeppoSAX) 8.67E-14 W m^-2^ 1.45E18 5.98E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 2000.06.13 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 18
19 4-8 keV (BeppoSAX) 1.01E-13 W m^-2^ 1.45E18 6.96E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 2001.06.12 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 19
20 2-10 keV 9.033E-11 2.08E-11 ergs cm^-2^ s^-1^ 1.45E18 6.23E-6 1.43E-6 Jy 2005ApJ...629...61K uncertainty 6 keV Broad-band measurement Flux integrated from map Flux from 1997MNRAS.288..920L Averaged from previously published data; Extinction-correctedfor Milky Way 20
21 2-10 keV (INTEGRAL) 9.21E-11 2.9E-12 erg cm^-2^ s^-1^ 1.45E18 6.35E-6 2.0E-7 Jy 2006ApJ...638..642B uncertainty 6 keV Broad-band measurement 12 29 07 +02 03 09 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 21
22 2.0-10 keV (HEAO-1) 7.5E-11 ergs cm^-2^ s^-1^ 1.45E18 5.17E-6 Jy 2006AJ....131.2843S no uncertainty reported 6 keV Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Flux integrated from map Transformed from previously published data; NED frequencyassigned to mid-point of band in keV 22
23 2.0-10 keV (XMM) 9.4E-11 ergs cm^-2^ s^-1^ 1.45E18 6.48E-6 Jy 2006AJ....131.2843S no uncertainty reported 6 keV Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 23
24 2-10 keV (BeppoSAX) 7.9E-11 9.0E-12 erg/cm^2^/s 1.45E18 5.45E-6 6.21E-7 Jy 2007A&A...472..705V uncertainty 6.00 keV Broad-band measurement 12 29 05.4 +02 02 20.7 (J2000) Flux integrated from map From new raw data; Extinction-corrected for Milky Way; NEDfrequency assigned to mid-point of band in keV 24
25 2-10 keV (BeppoSAX) 1.02E-10 1.0E-11 erg/s/cm^2^ 1.45E18 7.03E-6 6.9E-7 Jy 2008A&A...479..365P uncertainty 6.00 keV Broad-band measurement Modelled datum From reprocessed raw data; NED frequency assigned tomid-point of band in keV 25
26 2-10 keV (Swift) 1.85E-10 4.0E-12 erg/cm^2^/s 1.45E18 1.28E-5 2.76E-7 Jy 2009A&A...494...49P statistical error 6.00 keV Broad-band measurement Modelled datum From new raw data; NED frequency assigned to mid-point ofband in keV 26
27 0.4-10 keV (XMM) 1.22E-10 erg cm^-2^ s^-1^ 1.26E18 9.68E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 27
28 0.4-10 keV (XMM) 1.18E-10 erg cm^-2^ s^-1^ 1.26E18 9.37E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 28
29 0.4-10 keV (XMM) 1.15E-10 erg cm^-2^ s^-1^ 1.26E18 9.13E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 29
30 0.4-10 keV (XMM) 1.45E-10 erg cm^-2^ s^-1^ 1.26E18 1.15E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 30
31 0.4-10 keV (XMM) 1.74E-10 erg cm^-2^ s^-1^ 1.26E18 1.38E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 31
32 0.4-10 keV (XMM) 1.75E-10 erg cm^-2^ s^-1^ 1.26E18 1.39E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 32
33 0.4-10 keV (XMM) 1.27E-10 erg cm^-2^ s^-1^ 1.26E18 1.01E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 33
34 0.4-10 keV (XMM) 1.77E-10 erg cm^-2^ s^-1^ 1.26E18 1.4E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 34
35 0.4-10 keV (XMM) 1.43E-10 erg cm^-2^ s^-1^ 1.26E18 1.13E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 35
36 0.4-10 keV (XMM) 1.85E-10 erg cm^-2^ s^-1^ 1.26E18 1.47E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 36
37 0.4-10 keV (XMM) 1.58E-10 erg cm^-2^ s^-1^ 1.26E18 1.25E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 37
38 0.4-10 keV (XMM) 1.25E-10 erg cm^-2^ s^-1^ 1.26E18 9.92E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 38
39 0.4-10 keV (XMM) 1.07E-10 erg cm^-2^ s^-1^ 1.26E18 8.49E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 39
40 0.4-10 keV (XMM) 1.27E-10 erg cm^-2^ s^-1^ 1.26E18 1.01E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 40
41 0.4-10 keV (XMM) 1.25E-10 erg cm^-2^ s^-1^ 1.26E18 9.92E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 41
42 0.4-10 keV (XMM) 1.21E-10 erg cm^-2^ s^-1^ 1.26E18 9.6E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 42
43 0.4-10 keV (XMM) 1.22E-10 erg cm^-2^ s^-1^ 1.26E18 9.68E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 43
44 0.4-10 keV (XMM) 1.57E-10 erg cm^-2^ s^-1^ 1.26E18 1.25E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 44
45 0.4-10 keV (XMM) 1.84E-10 erg cm^-2^ s^-1^ 1.26E18 1.46E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 45
46 0.4-10 keV (XMM) 1.31E-10 erg cm^-2^ s^-1^ 1.26E18 1.04E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 46
47 0.4-10 keV (XMM) 1.86E-10 erg cm^-2^ s^-1^ 1.26E18 1.48E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 47
48 0.4-10 keV (XMM) 1.51E-10 erg cm^-2^ s^-1^ 1.26E18 1.2E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 48
49 0.4-10 keV (XMM) 1.54E-10 erg cm^-2^ s^-1^ 1.26E18 1.22E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 49
50 0.4-10 keV (XMM) 1.95E-10 erg cm^-2^ s^-1^ 1.26E18 1.55E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 50
51 0.4-10 keV (XMM) 1.64E-10 erg cm^-2^ s^-1^ 1.26E18 1.3E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 51
52 0.4-10 keV (XMM) 1.32E-10 erg cm^-2^ s^-1^ 1.26E18 1.05E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 52
53 0.4-10 keV (XMM) 1.12E-10 erg cm^-2^ s^-1^ 1.26E18 8.89E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 53
54 0.5-10 keV (ASCA) 230.0 ergs cm^-2^ s^-1^ 1.21E18 1.9E-5 Jy 2000MNRAS.316..234R no uncertainty reported 5.0 keV Broad-band measurement; broad-band flux derived by integration over spectrum; synthetic band Not reported in paper Recalibrated data; Extinction-corrected for internal andMilky Way and K-correction applied; NED frequency assigned tomid-point of band in keV 54
55 4 keV (Einstein) 5.05 microJy 9.67E17 5.05E-6 Jy 1994ApJS...95....1E no uncertainty reported 4 keV Broad-band measurement Flux integrated from map From 1992ApJ...384...62C Averaged from previously published data; Extinction-correctedfor Milky Way; NED frequency assigned to mid-point of band inkeV 55
56 4 keV (Einstein) 5.84 microJy 9.67E17 5.84E-6 Jy 1994ApJS...95....1E no uncertainty reported 4 keV Broad-band measurement Flux integrated from map From 1992ApJ...389..157W Averaged from previously published data; Extinction-correctedfor Milky Way; NED frequency assigned to mid-point of band inkeV 56
57 0.3-3.5 keV Einstein 7.49 0.26 erg cm^-2^ s^-1^ 4.59E17 1.63E-5 3.9E-6 Jy 1987ApJ...323..243W uncertainty 1.9 keV Broad-band measurement Flux integrated from map From new raw data; Extinction-corrected for Milky Way; NEDfrequency assigned to mid-point of band in keV 57
58 0.3-3.5 keV Einstein 7.39 0.08 erg cm^-2^ s^-1^ 4.59E17 1.61E-5 1.19E-6 Jy 1987ApJ...323..243W uncertainty 1.9 keV Broad-band measurement Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 58
59 ROSAT (0.1-2.4 keV) 1.17E-10 2.16E-12 ergs sec^-1^ cm^-2^ 3.25E17 3.6E-5 6.65E-7 Jy 1994A&A...281..355B based on count statistics only 1.3 keV Broad-band measurement; synthetic band Flux integrated from map From new raw data; Extinction-corrected for Milky Way 59
60 0.5-2 keV (XMM) 4.38E-11 erg cm^-2^ s^-1^ 3.02E17 1.45E-5 Jy 2005A&A...432...15P no uncertainty reported 1.25 keV Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 60
61 1 keV (Einstein IPC) 10.98 1.14 microJy 2.42E17 1.1E-5 1.15E-5 Jy 1987ApJ...323..243W uncertainty 1 keV Broad-band measurement Flux integrated from map From new raw data; Extinction-corrected for Milky Way; NEDfrequency assigned to mid-point of band in keV 61
62 1 keV (Einstein IPC) 10.83 0.9 microJy 2.42E17 1.08E-5 8.98E-6 Jy 1987ApJ...323..243W uncertainty 1 keV Broad-band measurement Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 62
63 1 keV (Einstein) 9.8 0.2 microJy 2.42E17 9.8E-6 2.0E-7 Jy 1994ApJS...95....1E 90% confidence 1 keV Broad-band measurement Flux integrated from map From 1992A&A...253...35M Averaged from previously published data; Extinction-correctedfor Milky Way; NED frequency assigned to mid-point of band inkeV 63
64 0.2 keV (Einstein) 48.9 3.3 microJy 4.84E16 4.89E-5 3.3E-6 Jy 1994ApJS...95....1E 90% confidence 0.2 keV Broad-band measurement Flux integrated from map From 1992A&A...253...35M From reprocessed raw data; Extinction-corrected for MilkyWay; NED frequency assigned to mid-point of band in keV 64
65 1000 A (FUSE) 3.63E-13 7.0E-16 ergs/cm^2^/s/A 3.0E15 0.0121 2.34E-5 Jy 2004ApJ...615..135S uncertainty 1000 A Broad-band measurement From fitting to map Power-law continuum fit From reprocessed raw data 65
66 1030 A (FUSE) 6.9E-14 erg/cm^2^/s/A 2.91E15 0.00245 Jy 2006ApJS..165..229F no uncertainty reported 1030 A Broad-band measurement Flux integrated from map S/N = 31.2 From reprocessed raw data 66
67 1031 A (FUSE) 2.69E-13 erg/cm^2^/s/A 2.91E15 0.00955 Jy 2009ApJS..182..378W no uncertainty reported 1031 A Broad-band measurement Flux integrated from map From new raw data 67
68 1350 A (HST/FOS) 0.00658 6.58E-4 Jy 2.22E15 0.00658 6.58E-4 Jy 2006MNRAS.373..551L uncertainty 1350 A Broad-band measurement 12 29 06.7 +02 03 08.6 (J2000) From fitting to map From reprocessed raw data; Extinction-corrected for Milky Way 68
69 1450 A 1.5E-13 4.0E-14 ergs/cm^2^/s/A 2.07E15 0.0105 0.00281 Jy 2005ApJ...629...61K uncertainty 1450 A Broad-band measurement Flux integrated from map From new raw data; Extinction-corrected for Milky Way 69
70 1549 A 2.11E-13 erg/cm^2^/s/A 1.94E15 0.0169 Jy 2005MNRAS.356.1029B no uncertainty reported 1549.05 A Broad-band measurement Not reported in paper C IV continuum From new raw data; Extinction-corrected for Milky Way 70
71 UVW2 (XMM OM) 11.28 0.01 mag 1.41E15 0.0249 2.29E-4 Jy 2006MNRAS.366..953B uncertainty 2120 A Broad-band measurement Flux in fixed aperture From new raw data; Extinction-corrected for Milky Way 71
72 UVM2 (XMM OM) 11.33 0.01 mag 1.3E15 0.0234 2.15E-4 Jy 2006MNRAS.366..953B uncertainty 2310 A Broad-band measurement Flux in fixed aperture From new raw data; Extinction-corrected for Milky Way 72
73 UVW1 (XMM OM) 11.49 0.01 mag 1.03E15 0.0268 2.47E-4 Jy 2006MNRAS.366..953B uncertainty 2910 A Broad-band measurement Flux in fixed aperture From new raw data; Extinction-corrected for Milky Way 73
74 log nu(Hz) 14.95 1.46 0.02 log f_nu (milliJy) 8.91E14 0.0288 0.00136 Jy 1979ApJ...230...79N uncertainty 14.95 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 74
75 u (SDSS PSF) AB 12.718 0.038 asinh mag 8.36E14 0.0308 0.00107 Jy 2007SDSS6.C...0000: based on count statistics only 3585 A Broad-band measurement 187.2779119548 2.0523862748 (J2000) Modelled datum SDSS flags: CHILD - object is part of a blended parent object; BAD_RADIAL - some low S/N radial points; INTERP - object contains interpolated-over pixels; BINNED1 - detected at >=5 sigma in original imaging frame; From new raw data 75
76 U (Johnson) 27.11 0.79 milliJy 8.19E14 0.0271 7.9E-4 Jy 1983ApJS...52..341M 1 sigma 0.366 microns Broad-band measurement 122633.2 +021943 (B1950) Flux in fixed aperture 17.7" aperture From new raw data 76
77 U (Johnson) 24.92 0.6 milliJy 8.19E14 0.0249 6.0E-4 Jy 1983ApJS...52..341M 1 sigma 0.366 microns Broad-band measurement 122633.2 +021943 (B1950) Flux in fixed aperture 15.4" aperture From new raw data 77
78 U 11.99 mag 8.19E14 0.029 Jy 1978ApJS...36..317W no uncertainty reported 3660 A Broad-band measurement Flux integrated from map Averaged new and previously published data; derived from aflux in a different band and a color; Standard Johnson UBVRIfilters assumed 78
79 U (XMM OM) 11.77 0.01 mag 8.03E14 0.0288 2.66E-4 Jy 2006MNRAS.366..953B uncertainty 3735 A Broad-band measurement Flux in fixed aperture From new raw data; Extinction-corrected for Milky Way 79
80 log nu(Hz) 14.90 1.46 0.02 log f_nu (milliJy) 7.94E14 0.0288 0.00136 Jy 1979ApJ...230...79N uncertainty 14.90 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 80
81 log nu(Hz) 14.85 1.47 0.02 log f_nu (milliJy) 7.08E14 0.0295 0.00139 Jy 1979ApJ...230...79N uncertainty 14.85 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 81
82 B (Mt. Lemmon) 26.0 2.0 milliJy 7.02E14 0.026 0.0020 Jy 1983ApJ...268...68L uncertainty 0.427 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 82
83 B 12.86 mag 6.81E14 0.0306 Jy 1978ApJS...36..317W no uncertainty reported 4400 A Broad-band measurement Flux integrated from map Averaged new and previously published data; derived from aflux in a different band and a color; Standard Johnson UBVRIfilters assumed 83
84 B Johnson (FLWO) 12.986 0.074 mag 6.81E14 0.0272 0.00187 Jy 1994ApJS...95....1E uncertainty 4400 A Broad-band measurement Flux in fixed aperture 14" aperture From new raw data; derived from a flux in a different bandand a color 84
85 B (Johnson) 12.686 0.027 mag 6.81E14 0.0359 8.93E-4 Jy 2009AJ....138..845O rms uncertainty 4400 A Broad-band measurement Flux in fixed aperture From new raw data 85
86 B (Johnson) 12.895 mag 6.81E14 0.0296 Jy 2009MNRAS.392.1181D no uncertainty reported 4400 A Broad-band measurement Flux in fixed aperture Mean magnitude From new raw data 86
87 B (XMM OM) 12.94 0.01 mag 6.75E14 0.0263 2.42E-4 Jy 2006MNRAS.366..953B uncertainty 4443 A Broad-band measurement Flux in fixed aperture From new raw data; Extinction-corrected for Milky Way 87
88 B (Johnson) 28.36 0.94 milliJy 6.69E14 0.0284 9.4E-4 Jy 1983ApJS...52..341M 1 sigma 0.448 microns Broad-band measurement 122633.2 +021943 (B1950) Flux in fixed aperture 17.7" aperture From new raw data 88
89 B (Johnson) 26.44 0.53 milliJy 6.69E14 0.0264 5.3E-4 Jy 1983ApJS...52..341M 1 sigma 0.448 microns Broad-band measurement 122633.2 +021943 (B1950) Flux in fixed aperture 15.4" aperture From new raw data 89
90 log nu(Hz) 14.80 1.44 0.02 log f_nu (milliJy) 6.31E14 0.0275 0.0013 Jy 1979ApJ...230...79N uncertainty 14.80 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 90
91 4861 A 2.841E-14 erg/cm^2^/s/A 6.17E14 0.0224 Jy 2005MNRAS.356.1029B no uncertainty reported 4861 A Broad-band measurement Not reported in paper H {beta} continuum From new raw data; Extinction-corrected for Milky Way 91
92 g (SDSS PSF) AB 12.803 0.0 asinh mag 6.17E14 0.0275 1.04E-5 Jy 2007SDSS6.C...0000: based on count statistics only 4858 A Broad-band measurement 187.2779119548 2.0523862748 (J2000) Modelled datum SDSS flags: CHILD - object is part of a blended parent object; BAD_RADIAL - some low S/N radial points; INTERP - object contains interpolated-over pixels; SATUR - object contains saturated pixels; BINNED1 - detected at >=5 sigma in original imaging frame; SATUR_CENTER - object's center is saturated; INTERP_CENTER - interpolated pixel(s) within 3 pixels of center; PSF_FLUX_INTERP - a signifcant amount of PSF's flux is interpolated; BRIGHTEST_GALAXY_CHILD - brightest child among one parent's children; AMOMENT_FAINT - too faint for adaptive moments; HAS_SATUR_DN - saturated, but bleed trail counts added back in; From new raw data 92
93 5100 A 2.13E-14 2.6E-15 ergs/cm^2^/s/A 5.88E14 0.0185 0.00226 Jy 2000ApJ...533..631K rms uncertainty 5100 A Broad-band measurement 12 26 33.4 +02 19 42 (J2000) Total flux From new raw data 93
94 log nu(Hz) 14.75 1.42 0.02 log f_nu (milliJy) 5.62E14 0.0263 0.00124 Jy 1979ApJ...230...79N uncertainty 14.75 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 94
95 V (Johnson) 12.78 0.06 mag 5.48E14 0.0281 0.0016 Jy 1978ApJ...224...22O uncertainty 5471 A Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Corrected for line contamination 95
96 V (Mt. Lemmon) 28.0 2.0 milliJy 5.48E14 0.028 0.0020 Jy 1983ApJ...268...68L uncertainty 0.547 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 96
97 V (Johnson) 12.87 0.04 mag 5.48E14 0.0259 9.72E-4 Jy 1978ApJ...224...22O uncertainty 5471 A Broad-band measurement Flux in fixed aperture 27" aperture From new raw data 97
98 V (XMM OM) 12.64 0.01 mag 5.47E14 0.0288 2.65E-4 Jy 2006MNRAS.366..953B uncertainty 5483 A Broad-band measurement Flux in fixed aperture From new raw data; Extinction-corrected for Milky Way 98
99 V (HST/WFPC2) 12.6 0.15 mag 5.45E14 0.0332 0.00459 Jy 2008ApJ...678...22H statistical error 5500 A Broad-band measurement Modelled datum Nuclear magnitude From reprocessed raw data 99
100 V (HST/WFPC2) 15.65 0.2 mag 5.45E14 0.0020 3.69E-4 Jy 2008ApJ...678...22H statistical error 5500 A Broad-band measurement Modelled datum Host magnitude From reprocessed raw data 100
101 V (Johnson) 12.81 0.05 mag 5.42E14 0.0274 0.00129 Jy 1978ApJS...38..267O uncertainty 5530 A Broad-band measurement Flux in fixed aperture 18" aperture Averaged new and previously published data 101
102 V (Johnson) 12.87 0.05 mag 5.42E14 0.0259 0.00122 Jy 1978ApJS...38..267O uncertainty 5530 A Broad-band measurement Flux in fixed aperture 27" aperture From new raw data 102
103 V (Johnson) 0.023 Jy 5.42E14 0.023 Jy 1965ApJ...141..336L no uncertainty reported 5530 A Broad-band measurement Flux in fixed aperture From new raw data 103
104 V (Johnson) 27.46 0.5 milliJy 5.42E14 0.0275 5.0E-4 Jy 1983ApJS...52..341M 1 sigma 5530 A Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 15.4" aperture From new raw data 104
105 V (Johnson) 26.51 0.67 milliJy 5.42E14 0.0265 6.7E-4 Jy 1983ApJS...52..341M 1 sigma 5530 A Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 17.7" aperture From new raw data 105
106 V 12.72 mag 5.42E14 0.0297 Jy 1978ApJS...36..317W no uncertainty reported 5530 A Broad-band measurement Estimated by eye Averaged new and previously published data; Standard JohnsonUBVRI filters assumed 106
107 V Johnson (FLWO) 12.81 0.069 mag 5.42E14 0.0274 0.00174 Jy 1994ApJS...95....1E uncertainty 5530 A Broad-band measurement Flux in fixed aperture 14" aperture From new raw data 107
108 V (AIT) 24.78 milliJy 5.42E14 0.0248 Jy 2004A&A...419...25F no uncertainty reported 5530 A Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Not reported in paper Averaged over 10 years From new raw data; Extinction-corrected for Milky Way 108
109 V (Johnson) 12.627 0.013 mag 5.42E14 0.0324 3.88E-4 Jy 2009AJ....138..845O rms uncertainty 5530 A Broad-band measurement Flux in fixed aperture From new raw data 109
110 V (Johnson) (SHAO) 12.204 0.062 mag 5.42E14 0.0478 0.00273 Jy 2009AJ....138.1428F uncertainty 5530 A Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux in fixed aperture Variable From new raw data; Extinction-corrected for Milky Way 110
111 V (Johnson) 12.698 mag 5.42E14 0.0303 Jy 2009MNRAS.392.1181D no uncertainty reported 5530 A Broad-band measurement Flux in fixed aperture Mean magnitude From new raw data 111
112 5700 A 2.724E-25 1.2E-27 erg/s/cm^2^/Hz 5.26E14 0.0272 1.2E-4 Jy 2006ApJ...650...57T uncertainty 5700 A Broad-band measurement 12 29 06.6 +02 03 08 (J2000) Modelled datum Averaged new and previously published data 112
113 log nu(Hz) 14.70 1.4 0.02 log f_nu (milliJy) 5.01E14 0.0251 0.00118 Jy 1979ApJ...230...79N uncertainty 14.70 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 113
114 r (SDSS PSF) AB 12.733 0.0 asinh mag 4.77E14 0.0293 1.16E-5 Jy 2007SDSS6.C...0000: based on count statistics only 6290 A Broad-band measurement 187.2779119548 2.0523862748 (J2000) Modelled datum SDSS flags: CHILD - object is part of a blended parent object; BAD_RADIAL - some low S/N radial points; INTERP - object contains interpolated-over pixels; SATUR - object contains saturated pixels; BINNED1 - detected at >=5 sigma in original imaging frame; SATUR_CENTER - object's center is saturated; INTERP_CENTER - interpolated pixel(s) within 3 pixels of center; PSF_FLUX_INTERP - a signifcant amount of PSF's flux is interpolated; BRIGHTEST_GALAXY_CHILD - brightest child among one parent's children; CANONICAL_BAND - this band was primary (usually r); AMOMENT_FAINT - too faint for adaptive moments; NOTCHECKED_CENTER - object's center has pixels not checked for peaks; HAS_SATUR_DN - saturated, but bleed trail counts added back in; From new raw data 114
115 R (AIT) 26.19 milliJy 4.68E14 0.0262 Jy 2004A&A...419...25F no uncertainty reported 6400 A Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Not reported in paper Averaged over 10 years From new raw data; Extinction-corrected for Milky Way 115
116 R 14.11 mag 4.68E14 0.00699 Jy 2008ApJS..175...97H no uncertainty reported 6400 A Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux integrated from map Averaged new and previously published data 116
117 R (Cousins) (SHAO) 12.014 0.014 mag 4.68E14 0.0482 6.21E-4 Jy 2009AJ....138.1428F uncertainty 6400 A Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux in fixed aperture Variable From new raw data; Extinction-corrected for Milky Way 117
118 R (Cousins) 12.441 mag 4.68E14 0.0325 Jy 2009MNRAS.392.1181D no uncertainty reported 6400 A Broad-band measurement Flux in fixed aperture Mean magnitude From new raw data 118
119 R' (Cousins) 27.6 0.61 milliJy 4.48E14 0.0276 6.1E-4 Jy 1983ApJS...52..341M 1 sigma 6690 A Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 15.4" aperture From new raw data 119
120 R' (Cousins) 26.09 0.82 milliJy 4.48E14 0.0261 8.2E-4 Jy 1983ApJS...52..341M 1 sigma 6690 A Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 17.7" aperture From new raw data 120
121 log nu(Hz) 14.65 1.39 0.02 log f_nu (milliJy) 4.47E14 0.0245 0.00116 Jy 1979ApJ...230...79N uncertainty 14.65 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 121
122 R (Johnson) 12.52 0.05 mag 4.35E14 0.0273 0.00129 Jy 1978ApJ...224...22O uncertainty 6892 A Broad-band measurement Flux in fixed aperture 27" aperture From new raw data 122
123 R (Johnson) 12.51 0.06 mag 4.35E14 0.0276 0.00156 Jy 1978ApJ...224...22O uncertainty 6892 A Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Corrected for line contamination 123
124 R (Mt. Lemmon) 30.0 2.0 milliJy 4.35E14 0.03 0.0020 Jy 1983ApJ...268...68L uncertainty 0.689 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 124
125 R Johnson (FLWO) 12.714 0.074 mag 4.33E14 0.0237 0.00162 Jy 1994ApJS...95....1E uncertainty 6930 A Broad-band measurement Flux in fixed aperture 14" aperture From new raw data; derived from a flux in a different bandand a color 125
126 R (Johnson) 12.475 0.011 mag 4.33E14 0.0296 3.0E-4 Jy 2009AJ....138..845O rms uncertainty 6930 A Broad-band measurement Flux in fixed aperture From new raw data 126
127 R (Johnson) 12.5 0.05 mag 4.28E14 0.0278 0.00131 Jy 1978ApJS...38..267O uncertainty 7000 A Broad-band measurement Flux in fixed aperture 18" aperture Averaged new and previously published data 127
128 R (Johnson) 12.52 0.05 mag 4.28E14 0.0273 0.00129 Jy 1978ApJS...38..267O uncertainty 7000 A Broad-band measurement Flux in fixed aperture 27" aperture From new raw data 128
129 R (Johnson) 0.024 Jy 4.28E14 0.024 Jy 1965ApJ...141..336L no uncertainty reported 7000 A Broad-band measurement Flux in fixed aperture From new raw data 129
130 log nu(Hz) 14.60 1.42 0.02 log f_nu (milliJy) 3.98E14 0.0263 0.00124 Jy 1979ApJ...230...79N uncertainty 14.60 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 130
131 i (SDSS PSF) AB 12.473 0.0 asinh mag 3.89E14 0.0372 1.46E-5 Jy 2007SDSS6.C...0000: based on count statistics only 7706 A Broad-band measurement 187.2779119548 2.0523862748 (J2000) Modelled datum SDSS flags: CHILD - object is part of a blended parent object; BAD_RADIAL - some low S/N radial points; INTERP - object contains interpolated-over pixels; SATUR - object contains saturated pixels; BINNED1 - detected at >=5 sigma in original imaging frame; SATUR_CENTER - object's center is saturated; INTERP_CENTER - interpolated pixel(s) within 3 pixels of center; PSF_FLUX_INTERP - a signifcant amount of PSF's flux is interpolated; BRIGHTEST_GALAXY_CHILD - brightest child among one parent's children; AMOMENT_FAINT - too faint for adaptive moments; HAS_SATUR_DN - saturated, but bleed trail counts added back in; From new raw data 131
132 I (AIT) 30.86 milliJy 3.79E14 0.0309 Jy 2004A&A...419...25F no uncertainty reported 7900 A Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Not reported in paper Averaged over 10 years From new raw data; Extinction-corrected for Milky Way 132
133 I (Cousins) (SHAO) 11.628 0.046 mag 3.79E14 0.0569 0.00241 Jy 2009AJ....138.1428F uncertainty 7900 A Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux in fixed aperture Variable From new raw data; Extinction-corrected for Milky Way 133
134 I (Cousins) 12.139 mag 3.79E14 0.0356 Jy 2009MNRAS.392.1181D no uncertainty reported 7900 A Broad-band measurement Flux in fixed aperture Mean magnitude From new raw data 134
135 I' (Cousins) 36.49 0.89 milliJy 3.75E14 0.0365 8.9E-4 Jy 1983ApJS...52..341M 1 sigma 8000 A Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 15.4" aperture From new raw data 135
136 I' (Cousins) 41.29 1.4 milliJy 3.75E14 0.0413 0.0014 Jy 1983ApJS...52..341M 1 sigma 8000 A Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 17.7" aperture From new raw data 136
137 log nu(Hz) 14.55 1.45 0.02 log f_nu (milliJy) 3.55E14 0.0282 0.00133 Jy 1979ApJ...230...79N uncertainty 14.55 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 137
138 I Johnson (FLWO) 12.13 0.078 mag 3.41E14 0.0321 0.00229 Jy 1994ApJS...95....1E uncertainty 8785 A Broad-band measurement Flux in fixed aperture 14" aperture From new raw data; derived from a flux in a different bandand a color 138
139 I (Johnson) 11.974 0.01 mag 3.41E14 0.037 3.41E-4 Jy 2009AJ....138..845O rms uncertainty 8785 A Broad-band measurement Flux in fixed aperture From new raw data 139
140 I (Johnson) 0.028 Jy 3.33E14 0.028 Jy 1965ApJ...141..336L no uncertainty reported 9000 A Broad-band measurement Flux in fixed aperture From new raw data 140
141 z (SDSS PSF) AB 12.749 0.014 asinh mag 3.25E14 0.0283 3.65E-4 Jy 2007SDSS6.C...0000: based on count statistics only 9222 A Broad-band measurement 187.2779119548 2.0523862748 (J2000) Modelled datum SDSS flags: CHILD - object is part of a blended parent object; BAD_RADIAL - some low S/N radial points; BINNED1 - detected at >=5 sigma in original imaging frame; From new raw data 141
142 log nu(Hz) 14.50 1.49 0.02 log f_nu (milliJy) 3.16E14 0.0309 0.00146 Jy 1979ApJ...230...79N uncertainty 14.50 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 142
143 log nu(Hz) 14.45 1.52 0.02 log f_nu (milliJy) 2.82E14 0.0331 0.00156 Jy 1979ApJ...230...79N uncertainty 14.45 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 143
144 J (ESO/SPM) 33.2 2.21 milliJy 2.5E14 0.0332 0.00221 Jy 1995ApJ...453..616S rms uncertainty 1.198 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture 15" aperture From new raw data 144
145 J (RGO) 11.63 0.07 mag 2.5E14 0.0366 0.00243 Jy 1981MNRAS.194..795G uncertainty 1.20 microns Broad-band measurement Flux in fixed aperture 12" aperture From new raw data 145
146 J (RGO) 11.63 0.07 mag 2.5E14 0.0366 0.00243 Jy 1979MNRAS.186p..29G uncertainty 1.20 microns Broad-band measurement Flux in fixed aperture From new raw data 146
147 J (AAO) 11.74 mag 2.5E14 0.033 Jy 1982MNRAS.199..943H no uncertainty reported 1.20 microns Broad-band measurement Flux in fixed aperture From new raw data; derived from a flux in a different bandand a color 147
148 F_J (total) 1.63 1.04 log milliJy 2.41E14 0.0427 0.011 Jy 1995ApJ...453..616S 1 sigma 1.244 microns Broad-band measurement Corrected to total flux from single aperture measurement Homogenized from new and previously published data 148
149 J_20 (2MASS LGA) 11.726 0.017 mag 2.4E14 0.0325 5.12E-4 Jy 2003AJ....125..525J 1 sigma uncert. 1.25 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux integrated from map 16.2 x 16.2 arcsec integration area. From new raw data 149
150 J_Kron (2MASS LGA) 11.764 0.016 mag 2.4E14 0.0314 4.65E-4 Jy 2003AJ....125..525J 1 sigma uncert. 1.25 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux integrated from map 10.2 x 10.2 arcsec integration area. From new raw data 150
151 J_tot (2MASS LGA) 11.692 0.023 mag 2.4E14 0.0335 7.17E-4 Jy 2003AJ....125..525J 1 sigma uncert. 1.25 microns Broad-band measurement 122906.75 +020308.4 (J2000) Total flux From new raw data 151
152 J_14arcsec (2MASS) 11.738 0.017 mag 2.4E14 0.0321 5.07E-4 Jy 20032MASX.C.......: 1 sigma uncert. 1.25 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux in fixed aperture 14.0 x 14.0 arcsec aperture From new raw data 152
153 J 11.71 0.06 mag 2.4E14 0.0324 0.00179 Jy 1994ApJS...95....1E uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 1988; MMT; Beam = 5" From new raw data 153
154 J 11.78 0.04 mag 2.4E14 0.0304 0.00112 Jy 1994ApJS...95....1E uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 1988; IRTF; Beam = 6" From new raw data 154
155 J (UKIRT) 11.5 0.01 mag 2.4E14 0.0402 3.7E-4 Jy 2007ApJ...663..781M statistical error 1.250 microns Broad-band measurement Flux in fixed aperture From new raw data 155
156 log nu(Hz) 14.380 1.49 0.02 log f_nu (milliJy) 2.4E14 0.0309 0.00146 Jy 1979ApJ...230...79N uncertainty 14.38 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 156
157 J 11.86 0.07 mag 2.4E14 0.0271 0.0018 Jy 1978ApJS...38..267O uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 18" aperture Averaged new and previously published data 157
158 J (Mt. Lemmon) 11.78 0.07 mag 2.4E14 0.0291 0.00194 Jy 1978ApJ...224...22O uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 158
159 J (Mt. Lemmon) 11.94 0.14 mag 2.4E14 0.0251 0.00346 Jy 1978ApJ...224...22O uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 159
160 J (Mt. Lemmon) 37.7 0.9 milliJy 2.4E14 0.0377 9.0E-4 Jy 1982ApJ...259..486S uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 160
161 J 11.41 0.18 mag 2.4E14 0.0409 0.00738 Jy 1978ApJS...38..267O uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 9" aperture From new raw data 161
162 J (Johnson) 43.9 1.4 milliJy 2.38E14 0.0439 0.0014 Jy 1983ApJS...52..341M 1 sigma 1.26 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 15.8" aperture From new raw data 162
163 J (Johnson) 71.2 2.6 milliJy 2.38E14 0.0712 0.0026 Jy 1983ApJS...52..341M 1 sigma 1.26 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 9.1" aperture From new raw data 163
164 1.27 microns 1.51 0.03 log milliJy 2.36E14 0.0324 0.00216 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1985 Jun 5 From new raw data; Standard Caltech JHKL filters assumed 164
165 1.27 microns 1.53 0.04 log milliJy 2.36E14 0.0339 0.00298 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1979 Jul 3 From new raw data; Standard Caltech JHKL filters assumed 165
166 1.27 microns 1.63 0.04 log milliJy 2.36E14 0.0427 0.00376 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1983 Jul 25 From new raw data; Standard Caltech JHKL filters assumed 166
167 1.27 microns 1.59 0.03 log milliJy 2.36E14 0.0389 0.00259 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 May 11 From new raw data; Standard Caltech JHKL filters assumed 167
168 1.27 microns 1.51 0.04 log milliJy 2.36E14 0.0324 0.00285 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1976 May 13 From new raw data; Standard Caltech JHKL filters assumed 168
169 1.27 microns 1.52 0.03 log milliJy 2.36E14 0.0331 0.00221 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1977 May 29 From new raw data; Standard Caltech JHKL filters assumed 169
170 1.27 microns 1.57 0.03 log milliJy 2.36E14 0.0372 0.00248 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 Jul 22 From new raw data; Standard Caltech JHKL filters assumed 170
171 H (ESO/SPM) 47.0 3.13 milliJy 1.9E14 0.047 0.00313 Jy 1995ApJ...453..616S rms uncertainty 1.580 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture 15" aperture From new raw data 171
172 H (Johnson) 60.0 1.3 milliJy 1.87E14 0.06 0.0013 Jy 1983ApJS...52..341M 1 sigma 1.60 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 15.8" aperture From new raw data 172
173 H (Johnson) 88.3 1.5 milliJy 1.87E14 0.0883 0.0015 Jy 1983ApJS...52..341M 1 sigma 1.60 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 9.1" aperture From new raw data 173
174 H (Johnson) 10.79 0.05 mag 1.87E14 0.0519 0.00245 Jy 1976ApJ...207..367A uncertainty 1.6 microns Broad-band measurement Flux in fixed aperture 17" aperture;Low quality data From new raw data 174
175 H (RGO) 10.88 0.06 mag 1.83E14 0.0458 0.0026 Jy 1981MNRAS.194..795G uncertainty 1.64 microns Broad-band measurement Flux in fixed aperture 12" aperture From new raw data 175
176 H (RGO) 10.88 0.06 mag 1.83E14 0.0458 0.0026 Jy 1979MNRAS.186p..29G uncertainty 1.64 microns Broad-band measurement Flux in fixed aperture From new raw data 176
177 H (AAO) 10.86 mag 1.83E14 0.0467 Jy 1982MNRAS.199..943H no uncertainty reported 1.64 microns Broad-band measurement Flux in fixed aperture From new raw data; derived from a flux in a different bandand a color 177
178 H_20 (2MASS LGA) 11.006 0.017 mag 1.82E14 0.0405 6.4E-4 Jy 2003AJ....125..525J 1 sigma uncert. 1.65 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux integrated from map 16.2 x 16.2 arcsec integration area. From new raw data 178
179 1.65 microns 1.64 0.03 log milliJy 1.82E14 0.0437 0.00291 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1976 May 13 From new raw data; Standard Caltech JHKL filters assumed 179
180 H_Kron (2MASS LGA) 11.043 0.016 mag 1.82E14 0.0392 5.82E-4 Jy 2003AJ....125..525J 1 sigma uncert. 1.65 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux integrated from map 10.2 x 10.2 arcsec integration area. From new raw data 180
181 1.65 microns 1.64 0.03 log milliJy 1.82E14 0.0437 0.00291 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1977 May 29 From new raw data; Standard Caltech JHKL filters assumed 181
182 H_tot (2MASS LGA) 10.953 0.023 mag 1.82E14 0.0426 9.11E-4 Jy 2003AJ....125..525J 1 sigma uncert. 1.65 microns Broad-band measurement 122906.75 +020308.4 (J2000) Total flux From new raw data 182
183 1.65 microns 1.69 0.03 log milliJy 1.82E14 0.049 0.00327 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1979 Jul 3 From new raw data; Standard Caltech JHKL filters assumed 183
184 H_14arcsec (2MASS) 11.019 0.017 mag 1.82E14 0.0401 6.32E-4 Jy 20032MASX.C.......: 1 sigma uncert. 1.65 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux in fixed aperture 14.0 x 14.0 arcsec aperture From new raw data 184
185 1.65 microns 1.7 0.03 log milliJy 1.82E14 0.0501 0.00335 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 May 11 From new raw data; Standard Caltech JHKL filters assumed 185
186 1.65 microns 1.7 0.04 log milliJy 1.82E14 0.0501 0.00441 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 Jul 22 From new raw data; Standard Caltech JHKL filters assumed 186
187 H 10.84 0.06 mag 1.82E14 0.0469 0.00259 Jy 1994ApJS...95....1E uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 1988; MMT; Beam = 5" From new raw data 187
188 H 10.87 0.04 mag 1.82E14 0.0456 0.00168 Jy 1994ApJS...95....1E uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 1988; IRTF; Beam = 6" From new raw data 188
189 1.65 microns 1.76 0.05 log milliJy 1.82E14 0.0575 0.00625 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1983 Jul 25 From new raw data; Standard Caltech JHKL filters assumed 189
190 log nu(Hz) 14.260 1.67 0.01 log f_nu (milliJy) 1.82E14 0.0468 0.00109 Jy 1979ApJ...230...79N uncertainty 14.26 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 190
191 H (UH) 10.88 0.1 mag 1.82E14 0.0462 0.00426 Jy 1999ApJ...512..162S uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture From new raw data 191
192 H (UH) 11.04 0.1 mag 1.82E14 0.0399 0.00367 Jy 1999ApJ...512..162S uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture Nuclear mag From new raw data 192
193 1.65 microns 1.63 0.03 log milliJy 1.82E14 0.0427 0.00285 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1985 Jun 5 From new raw data; Standard Caltech JHKL filters assumed 193
194 H 10.93 0.06 mag 1.82E14 0.042 0.00239 Jy 1978ApJS...38..267O uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 18" aperture Averaged new and previously published data 194
195 H (Mt. Lemmon) 10.89 0.05 mag 1.82E14 0.0436 0.00206 Jy 1978ApJ...224...22O uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 195
196 H (Mt. Lemmon) 10.97 0.04 mag 1.82E14 0.0405 0.00152 Jy 1978ApJ...224...22O uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 196
197 H 10.96 0.06 mag 1.82E14 0.0409 0.00232 Jy 1978ApJS...38..267O uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 9" aperture From new raw data 197
198 H (Mt. Lemmon) 46.9 0.4 milliJy 1.82E14 0.0469 4.0E-4 Jy 1982ApJ...259..486S uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 198
199 K' (UH) 9.7 0.1 mag 1.41E14 0.0852 0.00784 Jy 1999ApJ...512..162S uncertainty 2.12 microns Broad-band measurement Flux in fixed aperture From new raw data 199
200 K' (UH) 9.85 0.1 mag 1.41E14 0.0742 0.00683 Jy 1999ApJ...512..162S uncertainty 2.12 microns Broad-band measurement Flux in fixed aperture Nuclear mag From new raw data 200
201 K_20 (2MASS LGA) 9.942 0.017 mag 1.38E14 0.0703 0.00111 Jy 2003AJ....125..525J 1 sigma uncert. 2.17 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux integrated from map 16.2 x 16.2 arcsec integration area. From new raw data 201
202 K_Kron (2MASS LGA) 9.976 0.016 mag 1.38E14 0.0682 0.00101 Jy 2003AJ....125..525J 1 sigma uncert. 2.17 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux integrated from map 10.2 x 10.2 arcsec integration area. From new raw data 202
203 K_tot (2MASS LGA) 9.937 0.02 mag 1.38E14 0.0707 0.00131 Jy 2003AJ....125..525J 1 sigma uncert. 2.17 microns Broad-band measurement 122906.75 +020308.4 (J2000) Total flux From new raw data 203
204 K_s_14arcsec (2MASS) 9.953 0.016 mag 1.38E14 0.0696 0.00103 Jy 20032MASX.C.......: 1 sigma uncert. 2.17 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux in fixed aperture 14.0 x 14.0 arcsec aperture From new raw data 204
205 F_K (total) 2.0 1.41 log milliJy 1.37E14 0.1 0.0259 Jy 1995ApJ...453..616S 1 sigma 2.194 microns Broad-band measurement Corrected to total flux from single aperture measurement Homogenized from new and previously published data 205
206 K (AAO) 9.81 mag 1.37E14 0.0774 Jy 1982MNRAS.199..943H no uncertainty reported 2.19 microns Broad-band measurement Flux in fixed aperture From new raw data 206
207 K (RGO) 9.71 0.04 mag 1.37E14 0.0849 0.00319 Jy 1979MNRAS.186p..29G uncertainty 2.19 microns Broad-band measurement Flux in fixed aperture From new raw data 207
208 K (RGO) 9.71 0.04 mag 1.37E14 0.0849 0.00319 Jy 1981MNRAS.194..795G uncertainty 2.19 microns Broad-band measurement Flux in fixed aperture 12" aperture From new raw data 208
209 2.2 microns 0.094 0.01 Jy 1.36E14 0.094 0.01 Jy 1972ApJ...176L..95R 1 sigma 2.2 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 209
210 2.2 microns 0.09 0.04 Jy 1.36E14 0.09 0.04 Jy 1970ApJ...159L.165K no uncertainty reported 2.2 microns Broad-band measurement Flux in fixed aperture From new raw data 210
211 2.2 microns 0.18 0.07 Jy 1.36E14 0.18 0.07 Jy 1970ApJ...159L.165K no uncertainty reported 2.2 microns Broad-band measurement Flux in fixed aperture From new raw data 211
212 log nu(Hz) 14.134 1.93 0.01 log f_nu (milliJy) 1.36E14 0.0851 0.00198 Jy 1979ApJ...230...79N uncertainty 14.13 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 212
213 K (ESO/SPM) 73.1 4.87 milliJy 1.36E14 0.0731 0.00487 Jy 1995ApJ...453..616S rms uncertainty 2.210 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture 15" aperture From new raw data 213
214 2.2 microns 1.91 0.03 log milliJy 1.36E14 0.0813 0.00542 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1976 May 13 From new raw data; Standard Caltech JHKL filters assumed 214
215 K 9.71 0.06 mag 1.36E14 0.0897 0.00496 Jy 1994ApJS...95....1E uncertainty 2.20 microns Broad-band measurement Flux in fixed aperture 1988; MMT; Beam = 5" From new raw data 215
216 K 9.78 0.04 mag 1.36E14 0.0841 0.0031 Jy 1994ApJS...95....1E uncertainty 2.20 microns Broad-band measurement Flux in fixed aperture 1988; IRTF; Beam = 6" From new raw data 216
217 2.2 microns 1.99 0.04 log milliJy 1.36E14 0.0977 0.0086 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1983 Jul 25 From new raw data; Standard Caltech JHKL filters assumed 217
218 2.2 microns 1.9 0.03 log milliJy 1.36E14 0.0794 0.0053 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1977 May 29 From new raw data; Standard Caltech JHKL filters assumed 218
219 2.2 microns 1.92 0.03 log milliJy 1.36E14 0.0832 0.00556 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1979 Jul 3 From new raw data; Standard Caltech JHKL filters assumed 219
220 2.2 microns 1.95 0.03 log milliJy 1.36E14 0.0891 0.00595 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 May 11 From new raw data; Standard Caltech JHKL filters assumed 220
221 2.2 microns 1.95 0.04 log milliJy 1.36E14 0.0891 0.00785 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 Jul 22 From new raw data; Standard Caltech JHKL filters assumed 221
222 2.2 microns 1.91 0.03 log milliJy 1.36E14 0.0813 0.00542 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1985 Jun 5 From new raw data; Standard Caltech JHKL filters assumed 222
223 K (Johnson) 112.8 2.9 milliJy 1.35E14 0.113 0.0029 Jy 1983ApJS...52..341M 1 sigma 2.22 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 9.1" aperture From new raw data 223
224 K (Johnson) 0.127 Jy 1.35E14 0.127 Jy 1965ApJ...141..336L no uncertainty reported 2.22 microns Broad-band measurement Flux in fixed aperture From new raw data 224
225 K (Johnson) 96.8 2.2 milliJy 1.35E14 0.0968 0.0022 Jy 1983ApJS...52..341M 1 sigma 2.22 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 15.8" aperture From new raw data 225
226 K (Johnson) 9.73 0.04 mag 1.35E14 0.0855 0.00321 Jy 1976ApJ...207..367A uncertainty 2.22 microns Broad-band measurement Flux in fixed aperture 17" aperture From new raw data 226
227 K 9.69 0.04 mag 1.31E14 0.0785 0.00295 Jy 1978ApJS...38..267O uncertainty 2.28 microns Broad-band measurement Flux in fixed aperture 18" aperture Averaged new and previously published data 227
228 K 9.71 0.04 mag 1.31E14 0.0771 0.00289 Jy 1978ApJS...38..267O uncertainty 2.28 microns Broad-band measurement Flux in fixed aperture 9" aperture Averaged new and previously published data 228
229 K (Mt. Lemmon) 9.7 0.04 mag 1.31E14 0.0778 0.00292 Jy 1978ApJ...224...22O uncertainty 2.28 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 229
230 K (Mt. Lemmon) 9.68 0.06 mag 1.31E14 0.0792 0.0045 Jy 1978ApJ...224...22O uncertainty 2.28 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 230
231 K (Mt. Lemmon) 94.4 1.0 milliJy 1.31E14 0.0944 0.0010 Jy 1982ApJ...259..486S uncertainty 2.28 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 231
232 N34 8.23 0.06 mag 8.82E13 0.166 0.00917 Jy 1994ApJS...95....1E uncertainty 3.40 microns Broad-band measurement Flux in fixed aperture 1988; MMT; Beam = 5" From new raw data 232
233 log nu(Hz) 13.934 2.19 0.01 log f_nu (milliJy) 8.59E13 0.155 0.00361 Jy 1979ApJ...230...79N uncertainty 13.93 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 233
234 3.7 microns 2.06 0.03 log milliJy 8.57E13 0.115 0.00765 Jy 1987ApJS...63..615N estimated error 3.5 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1977 May 29 From new raw data; Standard Caltech JHKL filters assumed 234
235 3.7 microns 2.0 0.06 log milliJy 8.57E13 0.1 0.0129 Jy 1987ApJS...63..615N estimated error 3.5 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1979 Jul 3 From new raw data; Standard Caltech JHKL filters assumed 235
236 3.7 microns 2.18 0.03 log milliJy 8.57E13 0.151 0.0101 Jy 1987ApJS...63..615N estimated error 3.5 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 May 11 From new raw data; Standard Caltech JHKL filters assumed 236
237 3.7 microns 2.26 0.05 log milliJy 8.57E13 0.182 0.0198 Jy 1987ApJS...63..615N estimated error 3.5 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1983 Jul 25 From new raw data; Standard Caltech JHKL filters assumed 237
238 3.7 microns 2.18 0.04 log milliJy 8.57E13 0.151 0.0134 Jy 1987ApJS...63..615N estimated error 3.5 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1976 May 13 From new raw data; Standard Caltech JHKL filters assumed 238
239 3.7 microns 2.17 0.03 log milliJy 8.57E13 0.148 0.00986 Jy 1987ApJS...63..615N estimated error 3.5 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1985 Jun 5 From new raw data; Standard Caltech JHKL filters assumed 239
240 L (RGO) 8.19 0.06 mag 8.57E13 0.148 0.00843 Jy 1979MNRAS.186p..29G uncertainty 3.5 microns Broad-band measurement Flux in fixed aperture From new raw data 240
241 L (Mt. Lemmon) 8.33 0.07 mag 8.57E13 0.13 0.00868 Jy 1978ApJ...224...22O uncertainty 3.5 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 241
242 L (Mt. Lemmon) 148.0 3.0 milliJy 8.57E13 0.148 0.0030 Jy 1982ApJ...259..486S uncertainty 3.50 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 242
243 3.5 microns 0.2 0.04 Jy 8.57E13 0.2 0.04 Jy 1972ApJ...176L..95R 1 sigma 3.5 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 243
244 L (Mt. Lemmon) 8.29 0.09 mag 8.57E13 0.135 0.0117 Jy 1978ApJ...224...22O uncertainty 3.5 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 244
245 L 8.27 0.07 mag 8.57E13 0.138 0.00918 Jy 1978ApJS...38..267O uncertainty 3.5 microns Broad-band measurement Flux in fixed aperture 9" aperture Averaged new and previously published data 245
246 L 8.31 0.07 mag 8.57E13 0.133 0.00884 Jy 1978ApJS...38..267O uncertainty 3.5 microns Broad-band measurement Flux in fixed aperture 18" aperture Averaged new and previously published data 246
247 L (Johnson) 172.4 5.2 milliJy 8.47E13 0.172 0.0052 Jy 1983ApJS...52..341M 1 sigma 3.54 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 9.1" aperture From new raw data 247
248 L (Johnson) 8.35 0.04 mag 8.47E13 0.132 0.00494 Jy 1976ApJ...207..367A uncertainty 3.54 microns Broad-band measurement Flux in fixed aperture 17" aperture From new raw data 248
249 L' 7.91 0.04 mag 7.89E13 0.175 0.00647 Jy 1994ApJS...95....1E uncertainty 3.80 microns Broad-band measurement Flux in fixed aperture 1988; IRTF; Beam = 6" From new raw data 249
250 M (Johnson) 198.4 32.7 milliJy 6.25E13 0.198 0.0327 Jy 1983ApJS...52..341M 1 sigma 4.8 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 4.6" aperture From new raw data 250
251 5.0 microns 2.4 0.8 Jy 6.0E13 2.4 0.8 Jy 1970ApJ...159L.165K no uncertainty reported 5.0 microns Broad-band measurement Flux in fixed aperture Low quality data From new raw data 251
252 5.0 microns 0.24 0.05 Jy 6.0E13 0.24 0.05 Jy 1972ApJ...176L..95R 1 sigma 5.0 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 252
253 6 microns (Spizter) 238.3 milliJy 5.0E13 Jy 2009ApJS..182..628V no uncertainty reported 6 microns Broad-band measurement Flux integrated from map From IRS spectra with 3.3% bandpass From new raw data 253
254 6.7 microns (ISOCAM) 190.0 10.0 milliJy 4.47E13 0.19 0.01 Jy 2004A&A...421..129S 1 sigma 6.7 microns Broad-band measurement From multi-aperture data From reprocessed raw data 254
255 6.7 microns (ISO) 0.194 0.0582 Jy 4.44E13 0.194 0.0582 Jy 2003A&A...402...87H uncertainty 6.75 microns Broad-band measurement Flux in fixed aperture Aperture 21 arcsec From new raw data 255
256 8.4 microns 5.7 0.4 mag 3.57E13 0.283 1.03 Jy 1976ApJ...207..367A uncertainty 8.4 microns Broad-band measurement Flux in fixed aperture 13" aperture From new raw data 256
257 log nu(Hz) 13.48 2.51 0.02 log f_nu (milliJy) 3.02E13 0.324 0.0153 Jy 1979ApJ...230...79N uncertainty 13.48 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 257
258 10 microns 0.61 0.16 Jy 3.0E13 0.61 0.16 Jy 1972ApJ...177L.115R uncertainty 10 microns Broad-band measurement Flux in fixed aperture 12" aperture From new raw data 258
259 10 microns 0.4 0.1 Jy 3.0E13 0.4 0.1 Jy 1972ApJ...177L.115R uncertainty 10 microns Broad-band measurement Flux in fixed aperture 6" aperture;Low quality data From new raw data 259
260 10.1 microns 2.52 0.05 log milliJy 2.97E13 0.331 0.036 Jy 1987ApJS...63..615N estimated error 10.1 microns Broad-band measurement Flux in fixed aperture 4".5 aperture, 1979 Jul 3 From new raw data; Standard Caltech JHKL filters assumed 260
261 10.1 microns 2.5 0.06 log milliJy 2.97E13 0.316 0.0408 Jy 1987ApJS...63..615N estimated error 10.1 microns Broad-band measurement Flux in fixed aperture 4".5 aperture, 1981 May 11 From new raw data; Standard Caltech JHKL filters assumed 261
262 10.1 microns 2.48 0.05 log milliJy 2.97E13 0.302 0.0329 Jy 1987ApJS...63..615N estimated error 10.1 microns Broad-band measurement Flux in fixed aperture 4".5 aperture, 1985 Jun 5 From new raw data; Standard Caltech JHKL filters assumed 262
263 10.1 microns 2.55 0.06 log milliJy 2.97E13 0.355 0.0458 Jy 1987ApJS...63..615N estimated error 10.1 microns Broad-band measurement Flux in fixed aperture 4".5 aperture, 1977 May 29 From new raw data; Standard Caltech JHKL filters assumed 263
264 10.1 microns 2.48 0.06 log milliJy 2.97E13 0.302 0.039 Jy 1987ApJS...63..615N estimated error 10.1 microns Broad-band measurement Flux in fixed aperture 4".5 aperture, 1981 Jul 22 From new raw data; Standard Caltech JHKL filters assumed 264
265 10.1 microns 2.52 0.07 log milliJy 2.97E13 0.331 0.0493 Jy 1987ApJS...63..615N estimated error 10.1 microns Broad-band measurement Flux in fixed aperture 4".5 aperture, 1976 May 13 From new raw data; Standard Caltech JHKL filters assumed 265
266 N 338.0 14.0 milliJy 2.97E13 0.338 0.014 Jy 1982ApJ...259..486S uncertainty 10.1 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data; Extinction-corrected for Milky Way 266
267 N 0.43 0.04 Jy 2.94E13 0.43 0.04 Jy 1970ApJ...161L.203K no uncertainty reported 10.2 microns Broad-band measurement Flux in fixed aperture Low quality data From new raw data 267
268 N (Johnson) 4.2 Jy 2.88E13 4.2 Jy 1965ApJ...141..336L no uncertainty reported 10.4 microns Broad-band measurement Flux in fixed aperture From new raw data 268
269 10.5 microns 0.59 0.07 Jy 2.86E13 0.59 0.07 Jy 1972ApJ...176L..95R 1 sigma 10.5 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 269
270 10.5 microns 0.24 0.05 Jy 2.86E13 0.24 0.05 Jy 1972ApJ...176L..95R 1 sigma 10.5 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 270
271 10.8 microns MIRLIN 247.0 17.0 milliJy 2.78E13 0.247 0.017 Jy 2004ApJ...605..156G statistical error 10.8 microns Broad-band measurement Flux in fixed aperture 1.5" diam aperture From new raw data 271
272 IRAS 12 microns 417.0 12.0 milliJy 2.5E13 0.417 0.012 Jy 1989ApJ...347...29S uncertainty 12 microns Broad-band measurement Integrated from scans From pointed observations From new raw data 272
273 IRAS 12 microns 0.548 0.0548 Jy 2.5E13 0.548 0.0548 Jy 1990IRASF.C...0000M uncertainty 12 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture IRAS quality flag = 3 From new raw data 273
274 14.3 microns ISOCAM 290.0 15.0 milliJy 2.1E13 0.29 0.015 Jy 2004A&A...421..129S 1 sigma 14.3 microns Broad-band measurement From multi-aperture data From reprocessed raw data 274
275 14.3 microns (ISO) 0.294 0.0882 Jy 2.0E13 0.294 0.0882 Jy 2003A&A...402...87H uncertainty 15.0 microns Broad-band measurement Flux in fixed aperture Aperture 21 arcsec From new raw data 275
276 15 microns (Spitzer) 508.7 milliJy 2.0E13 Jy 2009ApJS..182..628V no uncertainty reported 15 microns Broad-band measurement Flux integrated from map From IRS spectra with 3.3% bandpass From new raw data 276
277 20 microns (Spitzer) 583.8 milliJy 1.5E13 Jy 2009ApJS..182..628V no uncertainty reported 20 microns Broad-band measurement Flux integrated from map From IRS spectra with 3.3% bandpass From new raw data 277
278 21 microns 0.6 0.2 Jy 1.43E13 0.6 0.2 Jy 1972ApJ...176L..95R 1 sigma 21 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 278
279 21 microns 1.3 0.4 Jy 1.43E13 1.3 0.4 Jy 1972ApJ...177L.115R uncertainty 21 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 279
280 21 microns 1.3 0.4 Jy 1.43E13 1.3 0.4 Jy 1972ApJ...176L..95R 1 sigma 21 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 280
281 22 microns 7.0 5.0 Jy 1.36E13 7.0 5.0 Jy 1970ApJ...159L.165K no uncertainty reported 22 microns Broad-band measurement Flux in fixed aperture Low quality data From new raw data 281
282 24 microns (MIPS) 499.1 0.8 milliJy 1.27E13 0.499 8.0E-4 Jy 2008ApJ...678..712D 1 sigma 23.68 microns Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux in fixed aperture 15" radius aperture From reprocessed raw data 282
283 IRAS 25 microns 941.0 27.0 milliJy 1.2E13 0.941 0.027 Jy 1989ApJ...347...29S uncertainty 25 microns Broad-band measurement Integrated from scans From pointed observations From new raw data 283
284 25 microns (Spitzer) 556.5 milliJy 1.2E13 Jy 2009ApJS..182..628V no uncertainty reported 25 microns Broad-band measurement Flux integrated from map From IRS spectra with 3.3% bandpass From new raw data 284
285 IRAS 25 microns 0.896 0.0438 Jy 1.2E13 0.896 0.0438 Jy 1990IRASF.C...0000M uncertainty 25 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture IRAS quality flag = 3 From new raw data 285
286 30 microns (Spitzer) 605.3 milliJy 9.99E12 Jy 2009ApJS..182..628V no uncertainty reported 30 microns Broad-band measurement Flux integrated from map From IRS spectra with 3.3% bandpass From new raw data 286
287 IRAS 60 microns 1805.0 14.0 milliJy 5.0E12 1.81 0.014 Jy 1989ApJ...347...29S uncertainty 60 microns Broad-band measurement Integrated from scans From pointed observations From new raw data 287
288 IRAS 60 microns 2.06 0.144 Jy 5.0E12 2.06 0.144 Jy 1990IRASF.C...0000M uncertainty 60 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture IRAS quality flag = 3 From new raw data 288
289 60 microns (ISO) 1124.0 86.0 milliJy 4.93E12 1.12 0.086 Jy 2001A&A...372..719M based on count statistics only 60.8 microns Broad-band measurement Flux in fixed aperture 46" x 46" aperture From new raw data 289
290 70 microns (MIPS) 414.9 3.9 milliJy 4.2E12 0.415 0.0039 Jy 2008ApJ...678..712D 1 sigma 71.42 microns Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux in fixed aperture 24" radius aperture From reprocessed raw data 290
291 80 microns (ISO) 1.29 0.387 Jy 3.74E12 1.29 0.387 Jy 2003A&A...402...87H uncertainty 80.1 microns Broad-band measurement Flux in fixed aperture Aperture 45 arcsec From new raw data 291
292 IRAS 100 microns 3109.0 45.0 milliJy 3.0E12 3.11 0.045 Jy 1989ApJ...347...29S uncertainty 100 microns Broad-band measurement Integrated from scans From pointed observations From new raw data 292
293 IRAS 100 microns 2.89 0.202 Jy 3.0E12 2.89 0.202 Jy 1990IRASF.C...0000M uncertainty 100 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture IRAS quality flag = 2 From new raw data 293
294 100 microns (ISO) 1348.0 68.0 milliJy 2.9E12 1.35 0.068 Jy 2001A&A...372..719M based on count statistics only 103.5 microns Broad-band measurement Flux in fixed aperture 46" x 46" aperture From new raw data 294
295 120 microns (ISO) 1.49 0.13 Jy 2.52E12 1.49 0.13 Jy 2002ApJ...572..105S 1 sigma uncert. 119.0 microns Broad-band measurement From fitting to map From new raw data 295
296 120 microns (ISO) 1546.0 94.0 milliJy 2.52E12 1.55 0.094 Jy 2001A&A...372..719M based on count statistics only 119.0 microns Broad-band measurement Flux in fixed aperture 184" x 184" aperture From new raw data 296
297 160 microns (MIPS) 402.1 11.9 milliJy 1.92E12 0.402 0.00119 Jy 2008ApJ...678..712D 1 sigma 155.9 microns Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) From fitting to map From reprocessed raw data 297
298 150 microns (ISO) 1.09 0.08 Jy 1.86E12 1.09 0.08 Jy 2002ApJ...572..105S 1 sigma uncert. 161.0 microns Broad-band measurement From fitting to map From new raw data 298
299 150 microns (ISO) 1.11 0.334 Jy 1.86E12 1.11 0.334 Jy 2003A&A...402...87H uncertainty 161 microns Broad-band measurement Flux in fixed aperture Aperture 90 arcsec From new raw data 299
300 170 microns (ISO) 1.1 0.05 Jy 1.72E12 1.1 0.05 Jy 2002ApJ...572..105S 1 sigma uncert. 174.0 microns Broad-band measurement From fitting to map From new raw data 300
301 170 microns (ISO) 1292.0 21.0 milliJy 1.72E12 1.29 0.021 Jy 2001A&A...372..719M based on count statistics only 174.0 microns Broad-band measurement Flux in fixed aperture 184" x 184" aperture From new raw data 301
302 180 microns (ISO) 0.8 0.11 Jy 1.62E12 0.8 0.11 Jy 2002ApJ...572..105S 1 sigma uncert. 185.5 microns Broad-band measurement From fitting to map From new raw data 302
303 180 microns (ISO) 1056.0 75.0 milliJy 1.62E12 1.06 0.075 Jy 2001A&A...372..719M based on count statistics only 185.5 microns Broad-band measurement Flux in fixed aperture 184" x 184" aperture From new raw data 303
304 200 microns (ISO) 0.79 0.11 Jy 1.47E12 0.79 0.11 Jy 2002ApJ...572..105S 1 sigma uncert. 204.6 microns Broad-band measurement From fitting to map From new raw data 304
305 200 microns (ISO) 1.09 0.327 Jy 1.47E12 1.09 0.327 Jy 2003A&A...402...87H uncertainty 205 microns Broad-band measurement Flux in fixed aperture Aperture 90 arcsec From new raw data 305
306 375 GHz 3.7 1.0 Jy 3.75E11 3.7 1.0 Jy 1994MNRAS.267..167G rms uncertainty 375 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 306
307 375 GHz 10.0 0.7 Jy 3.75E11 10.0 0.7 Jy 1994MNRAS.267..167G rms uncertainty 375 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 307
308 375 GHz 7.38 0.49 Jy 3.75E11 7.38 0.49 Jy 1994MNRAS.267..167G rms uncertainty 375 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 308
309 870 microns 6454.0 77.0 milliJy 3.45E11 6.45 0.077 Jy 1989A&A...221L...3C rms uncertainty 870 A Broad-band measurement Flux in fixed aperture From new raw data 309
310 1 mm 14.0 2.0 Jy 3.0E11 14.0 2.0 Jy 1984A&A...137..117C rms uncertainty 1 A Broad-band measurement; peak value reported Flux in fixed aperture epoch 1983.071 From new raw data 310
311 300 GHz (Hale) 10.5 1.6 Jy 3.0E11 10.5 1.6 Jy 1983ApJ...268...68L uncertainty 300 GHz Broad-band measurement Flux integrated from map From new raw data 311
312 270 GHz 12.5 0.3 Jy 2.7E11 12.5 0.3 Jy 1994MNRAS.267..167G rms uncertainty 270 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 312
313 270 GHz 5.7 0.2 Jy 2.7E11 5.7 0.2 Jy 1994MNRAS.267..167G rms uncertainty 270 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 313
314 270 GHz 10.31 0.26 Jy 2.7E11 10.3 0.26 Jy 1994MNRAS.267..167G rms uncertainty 270 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 314
315 1300 microns 8620.0 42.0 milliJy 2.31E11 8.62 0.042 Jy 1989A&A...221L...3C rms uncertainty 1300 A Broad-band measurement Flux in fixed aperture From new raw data 315
316 230 GHz 6.1 0.6 Jy 2.3E11 6.1 0.6 Jy 1994MNRAS.267..167G rms uncertainty 230 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 316
317 230 GHz 13.5 0.4 Jy 2.3E11 13.5 0.4 Jy 1994MNRAS.267..167G rms uncertainty 230 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 317
318 230 GHz 11.49 0.48 Jy 2.3E11 11.5 0.48 Jy 1994MNRAS.267..167G rms uncertainty 230 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 318
319 226 GHz (NRAO) 9.4 0.4 Jy 2.26E11 9.4 0.4 Jy 1983ApJ...268...68L 1 sigma 226 GHz Broad-band measurement Flux integrated from map From new raw data 319
320 215 GHz (VLBI) 9.2 0.6 Jy 2.15E11 9.2 0.6 Jy 1997A&A...323L..17K uncertainty 215 GHz Broad-band measurement Total flux From new raw data 320
321 150 GHz 10.8 1.3 Jy 1.5E11 10.8 1.3 Jy 1994MNRAS.267..167G rms uncertainty 150 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 321
322 150 GHz 20.1 0.7 Jy 1.5E11 20.1 0.7 Jy 1994MNRAS.267..167G rms uncertainty 150 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 322
323 150 GHz 17.59 1.13 Jy 1.5E11 17.6 1.13 Jy 1994MNRAS.267..167G rms uncertainty 150 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 323
324 3 mm (VLBI) 10.0 Jy 1.0E11 10.0 Jy 1998AJ....116....8L no uncertainty reported 3 mm Broad-band measurement Total flux variable From new raw data 324
325 3 mm (VLBI) 6.0 Jy 1.0E11 6.0 Jy 1998AJ....116....8L no uncertainty reported 3 mm Broad-band measurement Total flux variable From new raw data 325
326 W (WMAP) 10.5 0.4 Jy 9.4E10 10.5 0.4 Jy 2009ApJS..180..283W uncertainty 94 GHz Broad-band measurement 12 29 06 +02 03 00 (J2000) Flux integrated from map From new raw data 326
327 94 GHz (WMAP) 9.0 0.8 Jy 9.4E10 9.0 0.8 Jy 2003ApJS..148...97B uncertainty 94 GHz Broad-band measurement 122906.6 +020319 (J2000) Flux integrated from map From new raw data 327
328 90 GHz 26.26 1.31 Jy 9.0E10 26.3 1.31 Jy 1994MNRAS.267..167G rms uncertainty 90 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 328
329 90000 MHz 20.28 1.96 Jy 9.0E10 20.3 1.96 Jy 1978AJ.....83..685O uncertainty 90000 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 329
330 90 GHz 20.28 1.96 Jy 9.0E10 20.3 1.96 Jy 1978ApJ...224...22O 1 sigma 90 GHz Broad-band measurement Flux in fixed aperture From new raw data 330
331 90000 MHz 15.9 1.6 Jy 9.0E10 15.9 1.6 Jy 1980AJ.....85..351O uncertainty 90000 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 331
332 89600 MHz 14.07 0.29 Jy 8.96E10 14.1 0.29 Jy 1981AJ.....86.1306G uncertainty 89600 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 332
333 87.3 GHz (FCRAO) 19.6 0.4 Jy 8.73E10 19.6 0.4 Jy 1983ApJ...268...68L uncertainty 87.3 GHz Broad-band measurement Flux integrated from map From new raw data 333
334 86 GHz (VLBI) 17.1 0.2 Jy 8.63E10 17.1 0.2 Jy 1997A&A...323L..17K uncertainty 86.25 GHz Broad-band measurement Total flux From new raw data 334
335 86 GHz (VLBI) 10.81 Jy 8.6E10 10.8 Jy 2008AJ....136..159L no uncertainty reported 86 GHz Broad-band measurement 12 29 06.69973 +02 03 08.5982 (J2000) Total flux From new raw data 335
336 77 GHz (MRT) 45.0 2.8 Jy 7.7E10 45.0 2.8 Jy 1987A&AS...71..125T 1 sigma 77 GHz Broad-band measurement Flux integrated from map From new raw data 336
337 61 GHz (WMAP) 14.5 0.4 Jy 6.1E10 14.5 0.4 Jy 2003ApJS..148...97B uncertainty 61 GHz Broad-band measurement 122906.6 +020319 (J2000) Flux integrated from map From new raw data 337
338 V (WMAP) 14.6 0.2 Jy 6.1E10 14.6 0.2 Jy 2009ApJS..180..283W uncertainty 61 GHz Broad-band measurement 12 29 06 +02 03 00 (J2000) Flux integrated from map From new raw data 338
339 41 GHz (WMAP) 17.5 0.3 Jy 4.1E10 17.5 0.3 Jy 2003ApJS..148...97B uncertainty 41 GHz Broad-band measurement 122906.6 +020319 (J2000) Flux integrated from map From new raw data 339
340 Q (WMAP) 16.8 0.1 Jy 4.1E10 16.8 0.1 Jy 2009ApJS..180..283W uncertainty 41 GHz Broad-band measurement 12 29 06 +02 03 00 (J2000) Flux integrated from map From new raw data 340
341 41 GHz (WMAP) 1151.0 211.0 milliJy 4.1E10 1.15 0.211 Jy 2009MNRAS.392..733M uncertainty 41 GHz Broad-band measurement 194.4829 -31.9295 (J2000) Flux integrated from map From new raw data 341
342 37 GHz 38.09 0.76 Jy 3.7E10 38.1 0.76 Jy 1994MNRAS.267..167G rms uncertainty 37 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 342
343 37 GHz 36.82 0.78 Jy 3.7E10 36.8 0.78 Jy 1994MNRAS.267..167G rms uncertainty 37 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 343
344 37 GHz 23.65 0.49 Jy 3.7E10 23.7 0.49 Jy 1994MNRAS.267..167G rms uncertainty 37 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 344
345 37 GHz 34.52 0.79 Jy 3.68E10 34.5 0.79 Jy 1992AJ....104.1009W uncertainty 37 GHz Broad-band measurement Flux in fixed aperture From new raw data 345
346 37 GHz 25.52 0.55 Jy 3.68E10 25.5 0.55 Jy 1992AJ....104.1009W uncertainty 37 GHz Broad-band measurement Flux in fixed aperture From new raw data 346
347 33 GHz (WMAP) 18.3 0.2 Jy 3.3E10 18.3 0.2 Jy 2003ApJS..148...97B uncertainty 33 GHz Broad-band measurement 122906.6 +020319 (J2000) Flux integrated from map From new raw data 347
348 Ka (WMAP) 18.4 0.1 Jy 3.3E10 18.4 0.1 Jy 2009ApJS..180..283W uncertainty 33 GHz Broad-band measurement 12 29 06 +02 03 00 (J2000) Flux integrated from map From new raw data 348
349 33 GHz (WMAP) 981.0 189.0 milliJy 3.3E10 0.981 0.189 Jy 2009MNRAS.392..733M uncertainty 33 GHz Broad-band measurement 194.4829 -31.9295 (J2000) Flux integrated from map From new raw data 349
350 31400 MHz 32.1 1.62 Jy 3.14E10 32.1 1.62 Jy 1980AJ.....85..351O uncertainty 31400 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 350
351 31400 MHz 49.7 0.17 Jy 3.14E10 49.7 0.17 Jy 1981AJ.....86.1306G uncertainty 31400 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 351
352 K (WMAP) 20.0 0.06 Jy 2.3E10 20.0 0.06 Jy 2009ApJS..180..283W uncertainty 23 GHz Broad-band measurement 12 29 06 +02 03 00 (J2000) Flux integrated from map From new raw data 352
353 23 GHz (WMAP) 20.0 0.1 Jy 2.3E10 20.0 0.1 Jy 2003ApJS..148...97B uncertainty 23 GHz Broad-band measurement 122906.6 +020319 (J2000) Flux integrated from map From new raw data 353
354 23 GHz (WMAP) 1184.0 174.0 milliJy 2.3E10 1.18 0.174 Jy 2009MNRAS.392..733M uncertainty 23 GHz Broad-band measurement 194.4829 -31.9295 (J2000) Flux integrated from map From new raw data 354
355 22 GHz (VLA) 19460.0 185.0 milliJy 2.24E10 19.5 0.185 Jy 2008ApJ...678..712D 1 sigma 22.4 GHz Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux integrated from map Core flux From new raw data 355
356 22 GHz 33.38 1.35 Jy 2.22E10 33.4 1.35 Jy 1992AJ....104.1009W uncertainty 22 GHz Broad-band measurement Flux in fixed aperture From new raw data 356
357 22 GHz 23.86 0.51 Jy 2.22E10 23.9 0.51 Jy 1992AJ....104.1009W uncertainty 22 GHz Broad-band measurement Flux in fixed aperture From new raw data 357
358 22185 MHz 32.37 4.86 Jy 2.22E10 32.4 4.86 Jy 1978ApJ...224...22O uncertainty 22185 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 358
359 22 GHz 32.37 4.86 Jy 2.22E10 32.4 4.86 Jy 1978ApJ...224...22O 1 sigma 22 GHz Broad-band measurement Flux in fixed aperture From new raw data 359
360 22 GHz 42.67 1.76 Jy 2.2E10 42.7 1.76 Jy 1994MNRAS.267..167G rms uncertainty 22 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 360
361 22 GHz 26.67 0.57 Jy 2.2E10 26.7 0.57 Jy 1994MNRAS.267..167G rms uncertainty 22 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 361
362 22 GHz 43.46 1.13 Jy 2.2E10 43.5 1.13 Jy 1994MNRAS.267..167G rms uncertainty 22 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 362
363 15 GHz (VLBA) 22.78 Jy 1.54E10 22.8 Jy 2005AJ....130.1389L no uncertainty reported 15.366 GHz Broad-band measurement 12 29 06.6997 +02 03 08.5981 (J2000) Total flux From new raw data 363
364 15.1 GHz (VLBA) 21571.0 milliJy 1.51E10 21.6 Jy 2004ApJ...612..749Z no uncertainty reported 15.1 GHz Broad-band measurement Flux integrated from map Core flux From new raw data 364
365 15 GHz 34.63 1.73 Jy 1.51E10 34.6 1.73 Jy 1978ApJ...224...22O 1 sigma 15 GHz Broad-band measurement Flux in fixed aperture From new raw data 365
366 15064 MHz 34.63 1.74 Jy 1.51E10 34.6 1.74 Jy 1978ApJ...224...22O uncertainty 15064 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 366
367 15 GHz (VLA) 33.0 3.3 Jy 1.5E10 33.0 3.3 Jy 1983ApJ...268...68L uncertainty 15 GHz Broad-band measurement Total flux From new raw data 367
368 15 GHz (VLBA) 29.12 Jy 1.5E10 29.1 Jy 2005AJ....130.2473K no uncertainty reported 15.366 GHz Broad-band measurement 12 29 06.6997 +02 03 08.5982 (J2000) Total flux From new raw data 368
369 15 GHz (VLBA) 41.4 Jy 1.5E10 41.4 Jy 2004ApJ...609..539K no uncertainty reported 15 GHz Broad-band measurement Total flux From new raw data 369
370 15 GHz (VLBA) 41.399 Jy 1.5E10 41.4 Jy 2008ApJ...674..111C no uncertainty reported 15 GHz Broad-band measurement Total flux Averaged from previously published data 370
371 14900 MHz 45.8 0.2 Jy 1.49E10 45.8 0.2 Jy 1976AJ.....81.1084G uncertainty 14900 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 371
372 14.9 GHz (VLA) 24060.0 102.0 milliJy 1.49E10 24.1 0.102 Jy 2008ApJ...678..712D 1 sigma 14.9 GHz Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux integrated from map Core flux From new raw data 372
373 14 GHz 31.35 0.59 Jy 1.4E10 31.4 0.59 Jy 1994MNRAS.267..167G rms uncertainty 14 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 373
374 14 GHz 47.56 0.42 Jy 1.4E10 47.6 0.42 Jy 1994MNRAS.267..167G rms uncertainty 14 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 374
375 14 GHz 47.45 0.51 Jy 1.4E10 47.5 0.51 Jy 1994MNRAS.267..167G rms uncertainty 14 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 375
376 10695 MHz 45.1 0.39 Jy 1.07E10 45.1 0.39 Jy 1981A&AS...45..367K uncertainty 10695 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From new raw data 376
377 8870 MHz 46.6 1.6 Jy 8.87E9 46.6 1.6 Jy 1973AuJPh..26...93S uncertainty 8870 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 377
378 8.6 GHz (ATCA) 32.53 Jy 8.6E9 32.5 Jy 2003PASJ...55..351T no uncertainty reported 8.6 GHz Broad-band measurement Flux integrated from map From new raw data 378
379 8400 MHz 55.35 Jy 8.4E9 55.4 Jy 1990PKS90.C...0000W no uncertainty reported 8400 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 379
380 8.4 GHz (VLA) 41725.0 milliJy 8.4E9 41.7 Jy 2007ApJS..171...61H no uncertainty reported 8.4 GHz Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux integrated from map From new raw data 380
381 8.1 GHz (VLBA) 26828.0 milliJy 8.11E9 26.8 Jy 2004ApJ...612..749Z no uncertainty reported 8.11 GHz Broad-band measurement Flux integrated from map Core flux From new raw data 381
382 8085 MHz 30.5 1.53 Jy 8.08E9 30.5 1.53 Jy 1980AJ.....85..351O uncertainty 8085 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 382
383 8 GHz 48.14 0.33 Jy 8.0E9 48.1 0.33 Jy 1994MNRAS.267..167G rms uncertainty 8 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 383
384 8 GHz 35.66 0.28 Jy 8.0E9 35.7 0.28 Jy 1994MNRAS.267..167G rms uncertainty 8 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 384
385 8 GHz 48.21 0.35 Jy 8.0E9 48.2 0.35 Jy 1994MNRAS.267..167G rms uncertainty 8 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 385
386 5009 MHz 41.13 0.53 Jy 5.01E9 41.1 0.53 Jy 1981A&AS...45..367K uncertainty 5009 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.03 Recalibrated data 386
387 5000 MHz 44.59 2.23 Jy 5.0E9 44.6 2.23 Jy 1981A&AS...45..367K uncertainty 5000 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 0.993 Recalibrated data 387
388 5 GHz (VLBA) 43.6 Jy 5.0E9 43.6 Jy 2004ApJ...616..110H no uncertainty reported 5 GHz Broad-band measurement Total flux From new raw data 388
389 5000 MHz 36.7 Jy 5.0E9 36.7 Jy 1990PKS90.C...0000W no uncertainty reported 5000 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 389
390 5 GHz 38.77 0.35 Jy 5.0E9 38.8 0.35 Jy 1994MNRAS.267..167G rms uncertainty 5 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 390
391 5 GHz 35.41 0.32 Jy 5.0E9 35.4 0.32 Jy 1994MNRAS.267..167G rms uncertainty 5 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 391
392 5000 MHz 44.9 2.25 Jy 5.0E9 44.9 2.25 Jy 1969ApJ...157....1K rms uncertainty 5000 MHz Broad-band measurement Flux integrated from map From new raw data 392
393 5 GHz 38.41 0.35 Jy 5.0E9 38.4 0.35 Jy 1994MNRAS.267..167G rms uncertainty 5 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 393
394 4.9 GHz (VLA) 26.7 1.33 Jy 4.9E9 26.7 1.33 Jy 1983ApJ...268...68L uncertainty 4.9 GHz Broad-band measurement Total flux Interpolated From new raw data 394
395 4885 MHz 34.9 1.75 Jy 4.88E9 34.9 1.75 Jy 1980AJ.....85..351O uncertainty 4885 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 395
396 4.85 GHz 44.9 6.74 Jy 4.85E9 44.9 6.74 Jy 1991ApJS...75....1B uncertainty 4.85 GHz Broad-band measurement 122633.1 +021927 (B1950) Peak flux From new raw data; Corrected for contaminating sources 396
397 4.85 GHz 43627.0 6105.0 milliJy 4.85E9 43.6 6.11 Jy 1991ApJS...75.1011G rms noise 4.85 GHz Broad-band measurement 122633.1 +021928 (B1950) Modelled datum From new raw data; Corrected for contaminating sources 397
398 4.85 GHz 36923.0 99.0 milliJy 4.85E9 36.9 0.099 Jy 1995ApJS...97..347G rms noise 4.85 GHz Broad-band measurement 122905.6 +020309 (J2000) Modelled datum From new raw data; Corrected for contaminating sources 398
399 4.8 GHz (ATCA) 31.95 Jy 4.8E9 32.0 Jy 2003PASJ...55..351T no uncertainty reported 4.8 GHz Broad-band measurement Flux integrated from map From new raw data 399
400 4775 MHz (NRAO) 5000.0 milliJy 4.78E9 5.0 Jy 1986ApJS...61....1B 99 times noise 4775 MHz Broad-band measurement 12 29 06.2 +02 02 55 (J2000) Flux integrated from map From new raw data 400
401 4585 MHz 41.15 2.06 Jy 4.58E9 41.1 2.06 Jy 1978ApJ...224...22O uncertainty 4585 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 401
402 4.6 GHz 38.1 1.91 Jy 4.58E9 38.1 1.91 Jy 1978ApJ...224...22O 1 sigma 4.6 GHz Broad-band measurement Flux in fixed aperture From new raw data 402
403 2700 MHz 42.73 2.13 Jy 2.7E9 42.7 2.13 Jy 1981A&AS...45..367K uncertainty 2700 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.022 Recalibrated data 403
404 2700 MHz 43.35 0.71 Jy 2.7E9 43.4 0.71 Jy 1975AuJPA..38....1W uncertainty 2700 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 404
405 2700 MHz 40.9 Jy 2.7E9 40.9 Jy 1990PKS90.C...0000W no uncertainty reported 2700 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 405
406 2700 MHz 38.9 1.17 Jy 2.7E9 38.9 1.17 Jy 1971AuJPA..19....1W uncertainty 2700 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 406
407 2695 MHz 30.9 1.55 Jy 2.7E9 30.9 1.55 Jy 1980AJ.....85..351O uncertainty 2695 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 407
408 2695 MHz 41.8 2.09 Jy 2.7E9 41.8 2.09 Jy 1969ApJ...157....1K rms uncertainty 2695 MHz Broad-band measurement Flux integrated from map From new raw data 408
409 2.5 GHz (ATCA) 34.66 Jy 2.5E9 34.7 Jy 2003PASJ...55..351T no uncertainty reported 2.5 GHz Broad-band measurement Flux integrated from map From new raw data 409
410 1.5 GHz (VLA) 32.0 1.6 Jy 1.5E9 32.0 1.6 Jy 1983ApJ...268...68L uncertainty 1.5 GHz Broad-band measurement Total flux From new raw data 410
411 1484 MHz 36.1 1.81 Jy 1.48E9 36.1 1.81 Jy 1980AJ.....85..351O uncertainty 1484 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 411
412 1410 MHz 45.17 1.07 Jy 1.41E9 45.2 1.07 Jy 1981A&AS...45..367K uncertainty 1410 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.017 Recalibrated data 412
413 1410 MHz 42.0 Jy 1.41E9 42.0 Jy 1990PKS90.C...0000W no uncertainty reported 1410 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 413
414 1.4 GHz (ATCA) 35.82 Jy 1.4E9 35.8 Jy 2003PASJ...55..351T no uncertainty reported 1.4 GHz Broad-band measurement Flux integrated from map From new raw data 414
415 1400 MHz 39.62 0.38 Jy 1.4E9 39.6 0.38 Jy 1966ApJS...13...65P internal error 1400 MHz Broad-band measurement 122631.1 +021938. (B1950) Peak flux From new raw data 415
416 1.4GHz 54992.1 1900.3 milliJy 1.4E9 55.0 1.9 Jy 1998AJ....115.1693C uncertainty 1.40 GHz Broad-band measurement 12 29 6.41 +02 03 5.1 (J2000) Flux integrated from map High peak From new raw data 416
417 1400 MHz 45.0 2.25 Jy 1.4E9 45.0 2.25 Jy 1969ApJ...157....1K rms uncertainty 1400 MHz Broad-band measurement Flux integrated from map From new raw data 417
418 1400 MHz 41.28 1.23 Jy 1.4E9 41.3 1.23 Jy 1981A&AS...45..367K uncertainty 1400 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.029 Recalibrated data 418
419 1400 MHz 46.3 2.3 Jy 1.4E9 46.3 2.3 Jy 1981A&AS...45..367K uncertainty 1400 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.029 Recalibrated data 419
420 1.40 GHz 50100.0 milliJy 1.4E9 50.1 Jy 1992ApJS...79..331W no uncertainty reported 1.4 GHz Broad-band measurement 122633.1 +021927 (B1950) Peak flux From new raw data 420
421 1379 MHz 41.5 2.08 Jy 1.38E9 41.5 2.08 Jy 1978ApJ...224...22O uncertainty 1379 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 421
422 1.38 GHz 38.48 1.92 Jy 1.38E9 38.5 1.92 Jy 1978ApJ...224...22O 1 sigma 1.38 GHz Broad-band measurement Flux in fixed aperture From new raw data 422
423 960 MHz 49.63 0.76 Jy 9.6E8 49.6 0.76 Jy 1981A&AS...45..367K uncertainty 960 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.029 Recalibrated data 423
424 750 MHz 45.97 0.28 Jy 7.5E8 46.0 0.28 Jy 1966ApJS...13...65P internal error 750 MHz Broad-band measurement 122631.1 +021938. (B1950) Peak flux From new raw data 424
425 750 MHz 47.4 2.4 Jy 7.5E8 47.4 2.4 Jy 1981A&AS...45..367K uncertainty 750 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.046 Recalibrated data 425
426 750 MHz 45.3 2.27 Jy 7.5E8 45.3 2.27 Jy 1969ApJ...157....1K rms uncertainty 750 MHz Broad-band measurement Flux integrated from map From new raw data 426
427 750 MHz 48.68 0.3 Jy 7.5E8 48.7 0.3 Jy 1981A&AS...45..367K uncertainty 750 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.059 Recalibrated data 427
428 635 MHz 56.48 0.88 Jy 6.35E8 56.5 0.88 Jy 1981A&AS...45..367K uncertainty 635 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.035 Recalibrated data 428
429 468 MHz 59.88 0.55 Jy 4.68E8 59.9 0.55 Jy 1981A&AS...45..367K uncertainty 468 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.045 Recalibrated data 429
430 408 MHz 55.1 Jy 4.08E8 55.1 Jy 1990PKS90.C...0000W no uncertainty reported 408 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 430
431 408 MHz 59.75 1.82 Jy 4.08E8 59.8 1.82 Jy 1981MNRAS.194..693L rms noise 408 MHz Broad-band measurement 122632.6 021932 (B1950) Modelled datum Neighboring sources; flux density biased From new raw data; Corrected for contaminating sources 431
432 Texas 365 MHz 66.452 1.908 Jy 3.65E8 66.5 1.91 Jy 1996AJ....111.1945D internal error 365 MHz Broad-band measurement; obtained by interpolation over frequency 122632.546 +021931.06 (B1950) Integrated from scans Model:D;MFlag:C;EFlag:C;LFlag:+. From new raw data 432
433 318 MHz 64.0 2.5 Jy 3.18E8 64.0 2.5 Jy 1981A&AS...45..367K uncertainty 318 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.05 Recalibrated data 433
434 178 MHz 62.8 6.28 Jy 1.78E8 62.8 6.28 Jy 1969ApJ...157....1K rms uncertainty 178 MHz Broad-band measurement Flux integrated from map From new raw data 434
435 178 MHz 84.4 8.4 Jy 1.78E8 84.4 8.4 Jy 1981A&AS...45..367K uncertainty 178 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.11 Recalibrated data 435
436 178 MHz 75.0 Jy 1.78E8 75.0 Jy 1990PKS90.C...0000W no uncertainty reported 178 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 436
437 178 MHz 80.33 3.3 Jy 1.78E8 80.3 3.3 Jy 1981A&AS...45..367K uncertainty 178 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.19 Recalibrated data 437
438 178 MHz 75.0 6.0 Jy 1.78E8 75.0 6.0 Jy 1967MmRAS..71...49G uncertainty 178 MHz Broad-band measurement 122632.8 +021736 (B1950) Integrated from scans From new raw data; Uncorrected for known sources in beam 438
439 160 MHz 97.3 12.7 Jy 1.6E8 97.3 12.7 Jy 1981A&AS...45..367K uncertainty 160 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.11 Recalibrated data 439
440 160 MHz 102.0 Jy 1.6E8 102.0 Jy 1995AuJPh..48..143S no uncertainty reported 160 MHz Broad-band measurement 122632.1 +021914. (B1950) Flux integrated from map From new raw data 440
441 80 MHz 147.0 21.0 Jy 8.0E7 147.0 21.0 Jy 1981A&AS...45..367K uncertainty 80 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.074 Recalibrated data 441
442 80 MHz 142.0 Jy 8.0E7 142.0 Jy 1990PKS90.C...0000W no uncertainty reported 80 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 442
443 80 MHz 156.0 Jy 8.0E7 156.0 Jy 1995AuJPh..48..143S no uncertainty reported 80 MHz Broad-band measurement 122632.1 +021914. (B1950) Flux integrated from map From new raw data 443
444 80 MHz 176.0 26.0 Jy 8.0E7 176.0 26.0 Jy 1981A&AS...45..367K uncertainty 80 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.074 Recalibrated data 444
445 74 MHz (VLA) 140.6 1.42 Jy 7.38E7 141.0 1.42 Jy 2007ApJS..172..686K uncertainty 73.8 MHz Broad-band measurement Flux integrated from map From new raw data 445
446 74 MHz (VLA) 149.96 15.0 Jy 7.38E7 150.0 15.0 Jy 2007AJ....134.1245C rms uncertainty 73.8 MHz Broad-band measurement 12 29 05.93 +02 02 56.0 (J2000) Flux integrated from map Corrected for clean bias From new raw data 446
447 60 MHz 157.0 15.0 Jy 6.0E7 157.0 15.0 Jy 1968Afz.....4..129A rms uncertainty 60 MHz Broad-band measurement Modelled datum; Beam filling or dilution corrected From new raw data 447
448 38 MHz 155.4 30.0 Jy 3.8E7 155.0 30.0 Jy 1981A&AS...45..367K uncertainty 38 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.09 Recalibrated data 448
449 25 MHz (UTR-1) 860.0 370.0 Jy 2.5E7 860.0 370.0 Jy 1969MNRAS.143..289B uncertainty 25 MHz Broad-band measurement 12 26 32.8 +02 17.6 (B1950) Total flux From new raw data 449
450 25.0 MHz 860.0 370.0 Jy 2.5E7 860.0 370.0 Jy 1969MNRAS.143..289B estimated error 25.0 MHz Broad-band measurement Total flux From new raw data 450
451 22 MHz (DRAO) 410.0 70.0 Jy 2.23E7 410.0 70.0 Jy 1986A&AS...65..485R uncertainty 22.25 MHz Broad-band measurement 12 26 31.8 +02 20 36 (B1950) Flux integrated from map From new raw data 451
452 20 MHz (UTR-1) 670.0 188.0 Jy 2.0E7 670.0 188.0 Jy 1969MNRAS.143..289B uncertainty 20 MHz Broad-band measurement 12 26 32.8 +02 17.6 (B1950) Total flux From new raw data 452
453 20.0 MHz 670.0 188.0 Jy 2.0E7 670.0 188.0 Jy 1969MNRAS.143..289B estimated error 20.0 MHz Broad-band measurement Total flux From new raw data 453
454 16.7 MHz 580.0 215.0 Jy 1.67E7 580.0 215.0 Jy 1969MNRAS.143..289B estimated error 16.7 MHz Broad-band measurement Total flux From new raw data 454
455 16.7 MHz (UTR-1) 580.0 215.0 Jy 1.67E7 580.0 215.0 Jy 1969MNRAS.143..289B uncertainty 16.7 MHz Broad-band measurement 12 26 32.8 +02 17.6 (B1950) Total flux From new raw data 455
[EOD]
|
da8bd39c2626671b6326eeb094847746c75a96ab
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/24/CH2/EX2.1.a/Example2_1a.sce
|
8bce2b73d08344f9a7afe3a377d79bd00a57fdfe
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 342
|
sce
|
Example2_1a.sce
|
//Given that
velocity = 70 //in km/h
distance_covered = 8.4 //in km
next_time = 30 //in min
next_walk = 2 //in km
//Sample Problem 2-1a
printf("**Sample Problem 2-1a**\n")
overall_displacement = distance_covered + next_walk
printf("Overall displacement from begining of the drive to the station is %f km", overall_displacement)
|
21406164e7fb054edb2504f16930f45d9bd8cf29
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.4.1/macros/util/%sp_diag.sci
|
9910ea76a2596fcae0d76359327967b0b5458465
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 658
|
sci
|
%sp_diag.sci
|
function d=%sp_diag(a,k)
// %sp_diag - implement diag function for sparse matrix, rational matrix ,..
// Copyright INRIA
[lhs,rhs]=argn(0)
if rhs==1 then k=0,end
[ij,v,sz]=spget(a)
m=sz(1);n=sz(2)
if m>1&n>1 then
l=find(ij(:,1)==(ij(:,2)-k))
if k<=0 then
mn=mini(m+k,n)
i0=-k
else
mn=min(m,n-k)
i0=0
end
kk=abs(k)
if l==[] then d=sparse([],[],[mn,1]);return;end
d=sparse([ij(l,1)-i0,ones(ij(l,1))],v(l),[mn,1])
else
if m>1 then ij=ij(:,1);else ij=ij(:,2);end
nn = max(m,n)+abs(k)
if ij==[] then
d=sparse([],[],[nn,nn])
else
d=sparse([ij,ij+k],v,[nn,nn])
end
end
|
8ed62a816be21a1d58e37e58c00067ae03c3053e
|
efa427de3490f3bb884d8ac0a7d78829ec7990f9
|
/fibonacci.sce
|
2ab8a7808b96e37749900a392a33b2140f200bc9
|
[] |
no_license
|
letyrobueno/Scilab
|
a47648473aa681556561d5cea20659d143e4f492
|
2f23623dccea89a3ab2db12ec1f615186f785aa4
|
refs/heads/master
| 2020-09-01T19:00:30.804237
| 2019-11-01T17:45:22
| 2019-11-01T17:45:22
| 219,031,973
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 261
|
sce
|
fibonacci.sce
|
// Return the sequence of Fibonacci for a given number
n = input("Give a number: ")
i = 1
j = 0
printf("The sequence of Fibonacci for n=%g is:\n",n)
printf("0th number: %g\n",j)
for(k=1:n)
t = i+j
i = j
j = t
printf("%gth number: %g\n",k,j)
end
|
4d596e153be3684657c26bc8e5f0a9bc9cc4300f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/213/CH2/EX2.3/2_3.sce
|
bcda83c8346e0d9489181b78e6f04b13cdd1a00a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 609
|
sce
|
2_3.sce
|
//To Find the Velocity
clc
//Given:
//Initial parameters
v0=100 //kmph
t0=0
//Parameters at the end of 40 seconds
v1=90/100*v0 //kmph
t1=40 //seconds
//Solution:
//The acceleration is given by, a=(-dv/dt)=k*v
//Integrating, we get ln(v)=-k*t+C
//Calculating the constant of integration
C=integrate('1/v','v',1,100)
//Calculating the constant of proportionality
k=(C-2.3*log10(90))/40
//Time after 120 seconds
t2=120 //seconds
//Calculating the velocity after 120 seconds
v120=10^((-k*t2+C)/2.29)
//Results:
printf("\n\n The velocity at the end of 120 seconds, v120 = %.1f kmph.\n\n",v120)
|
b0678afc0644b950b118239d3007127272c2b594
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/380/CH7/EX7.6/7_6.txt
|
224e53f8ed4be3f354a98adbdafb15b402ac056a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 924
|
txt
|
7_6.txt
|
//Caption:Find the voltage regulation when power factor of load is (a)80% lagging (b) unity (c) 80%leading
//Exa:7.6
clc;
clear;
close;
V=208;//in volts
P_o=9000;
R=0.1+(%i*5.6);
V_a=int(V/sqrt(3));//rms value of per phase voltage
I_a=P_o/(3*V_a);//rms value of per phase current
disp("(a) For 80% lagging power factor of load");
theta=(-1)*acosd(0.8);
I_a_L=(I_a)*(cosd(theta)+((%i)*sind(theta)));
E_a=V_a+I_a_L*R;//in volts
VR=((abs(E_a)-V_a)/V_a)*100;
disp(VR,'voltage regulation (%)=');
disp("(b) For Unity power factor of load");
theta=acosd(1);
I_a_L=(I_a)*(cosd(theta)+((%i)*sind(theta)));
E_a=V_a+I_a_L*R;//in volts
VR=((abs(E_a)-V_a)/V_a)*100;
disp(VR,'voltage regulation (%)=');
disp("(c) For 80% leading power factor of load");
theta=acosd(0.8);
I_a_L=(I_a)*(cosd(theta)+((%i)*sind(theta)));
E_a=V_a+I_a_L*R;//in volts
VR=((abs(E_a)-V_a)/V_a)*100;
disp(VR,'voltage regulation (%)=');
|
96e737475f3f60f9f74d647c5f7f46ad1c24f6ae
|
0e972c54fd1fabed6d1759f65f371a044d96c86e
|
/make_graf.sce
|
668ac11d0270cbe5faddf83973598977fa4a493c
|
[] |
no_license
|
dddmak/scilab_sample
|
63c844f82b95e7f4ac91b6b275ef43a63b18d22a
|
32e47f5d743091d0091731303360cee89bcaa55a
|
refs/heads/master
| 2020-04-29T12:41:39.329033
| 2019-03-17T20:24:21
| 2019-03-17T20:24:21
| 176,146,880
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,048
|
sce
|
make_graf.sce
|
//reference:https://help.scilab.org/docs/5.5.1/ja_JP/csvRead.html
//http://hotic.blog129.fc2.com/blog-entry-10.html
//http://scilab.kani33.com/2015/05/graphic-color/
//ファイル読み取り
//filename = fullfile("/Users/makino/Desktop/scilab/check.csv");
filenamex = fullfile("/Users/makino/Desktop/scilab/Book2.csv");
//csv読み取り
//data = csvRead(filename);
datax = csvRead(filenamex);
//プロット
//plot2d(data(:,1),data(:,3),2)
plot2d(datax(:,1),datax(:,2),2)
//plot2d(datax(:,1),datax(:,3),3)
a=get("current_axes"); //get the current axes
a.font_size=6;
replot([3 -40 7 40]);
//title('angle from front','fontsize',7); //タイトル
//legends(['camera' 'sensor'],[2 3],font_size=7,opt="ur")
legends('angle from motion capture', [2],font_size=7,opt="ur")
//legends('from Camera', 3,font_size=7,opt="ur")
xlabel('Time[s]','fontsize',7); //X軸ラベル
ylabel('angle[dig]','fontsize',7); //Y軸ラベル
//一部のみ拡大(未実装。参考部分)
//a=gca();
//a.data_bounds(1:2,1)=[18;60];
//実行時 exec( 'make_graf.sce' )
|
2f55dca80854871a6b9a2f080516cbf79022e734
|
bb30bb4c59326f7819c15fe66feca6ad5151c89b
|
/TP3/main.sci
|
85f2efd97df1b1c2bbe5ea09d45cb272482b2f86
|
[
"MIT"
] |
permissive
|
AmineKheldouni/Modeling-the-Hazard
|
1f0f15e8faa3a8b6a2f39cfe1f102410b51c0ee7
|
68d9f6da23450db5488c1af473471b376945395e
|
refs/heads/master
| 2020-04-14T22:29:35.105793
| 2019-01-04T23:32:38
| 2019-01-04T23:32:38
| 164,164,692
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 6,605
|
sci
|
main.sci
|
funcprot(0);
n=10; // Nombre de pages
// alpha in 0.8 0.9
alpha = 0.8;
function show_adj(Adj,diameters)
[lhs,rhs]=argn(0);
if rhs < 2 then diameters = 30*ones(1,n);end
graph = mat_2_graph(sparse(Adj),1,'node-node');
graph('node_x')=300*cos(2*%pi*(1:n)/(n+1));
graph('node_y')=300*sin(2*%pi*(1:n)/(n+1));
graph('node_name')=string([1:n]);
graph('node_diam')= diameters;
graph('node_color')= 1:n;
show_graph(graph);
rep=[1 1 1 1 2 2 2 2 2 2 2 2 2];
plot_graph(graph,rep);
endfunction
Adj=grand(n,n,'bin',1,0.2);
//show_adj(Adj);
// Construction de la matrice de transition P
// associ´ee `a une matrice d’adjacence.
// Pss: transition d’origine,
// P: matrice de google
// z: vecteur de teleportation
// d: vecteur vaut 1 si le degré vaut zero et 0 sinon
function [P,Pss,P1,d,z,alpha]=google(Adj)
Pss = Adj;
alpha = 0.8;
d = ones(n,1);
z = ones(1,n)/n;
e = ones(n,1);
for i=1:n do
if sum(Adj(i,:)) ~= 0 then
Pss(i,:) = Adj(i,:) / sum(Adj(i,:));
d(i,1) = 0;
end
end
P1 = Pss;
for i=1:n do
if sum(Adj(i,:)) == 0 then
P1(i,:) = z;
end
end
disp(size(alpha*P1))
disp(size((1-alpha)*e*z))
P = alpha*P1 + (1-alpha) * e * z;
endfunction
[P,Pss,Pprim,d,z,alpha]=google(Adj);
// verification que P est stochastique
sum(P,'c');
e = ones(n,1);
x= rand(n,1)
y1= P'*x;
y2= alpha*Pss'*x + (alpha*d*z)'*x+ ((1-alpha)*e*z)'*x;
disp(y1)
disp(y2)
disp(y1 - y2)
[evals,X] =spec(P');
disp(evals)
disp(X)
pi = abs(evals(:,1)/sum(evals(:,1)));
disp(pi)
disp(sum(pi))
clf();
//show_adj(Adj,int(300*pi'));
function [pi]=pi_iterative()
p=ones(n,1);
k = 1;
while k < 100000
pn = P'*p;
k = k + 1;
if norm(pn-p,%inf) < 10*%eps then
break;
end
p = pn;
end
pi= pn/sum(pn);
endfunction
pi = pi_iterative();
clean(P'*pi - pi);
disp(pi)
disp(sum(pi))
disp(P'*pi - pi)
function [pi]=pi_iterative_sparse()
p=ones(n,1);
k = 1;
while k < 100000
pn = alpha*Pss'*p + (alpha*d*z)'*p+ ((1-alpha)*e*z)'*p;
k = k + 1;
if norm(pn-p,%inf) < 10*%eps then
break;
end
p = pn;
end
pi= abs(p/sum(p));
endfunction
pi=pi_iterative_sparse();
clean(P'*pi - pi);
disp(pi)
disp(P'*pi- pi)
//Question 7
function []=maximizePageRank(p,m, Adj)
Adj_copy = Adj;
k = 1;
PR = pi_iterative_sparse();
PR = sum(PR(1,m));
while k < 100000
for i=m+1:n do
end
end
endfunction
//Question 8
function y=r(x)
y=x.^2
endfunction
n=4;
P=rand(n,n)
pr=sum(P,'c');
P = P ./ (pr*ones(1,n));
function [cerg]=ergodique_markov_T(T,P)
//on prend la loi initiale u uniforme de X0
//on rappelle que la loi de Xt est (P^t)'u
vecteur=[1:n];
vecteur=vecteur';
loiInit=ones(n,1)/n;
Matrice=eye(n,n);
Esperance=0;
for i=0:(T-1) do
Esperance=Esperance+((Matrice'*loiInit)')*(r(vecteur));
Matrice=Matrice*P;
end
cerg=Esperance/T;
endfunction
function [cerg,pi]=ergodique_markov(P)
p=ones(n,1);
vecteur=[1:n];
vecteur=vecteur';
k = 1;
while k < 100000
pn = P'*p;
k = k + 1;
if norm(pn-p,%inf) < 10*%eps then
break;
end
p = pn;
end
pi= pn/sum(pn);
cerg=(pi')*r(vecteur);
endfunction
disp(ergodique_markov_T(10,P));
// test
T=100000;
CT=ergodique_markov_T(T,P);
[c,pi]=ergodique_markov(P);
disp("Test");
disp(c-CT);
// Le noyau de P-I est engendr´e par ones(n,1)
[x0,K]=linsolve(P- eye(n,n),zeros(n,1));
disp("x0");
disp(x0);
disp("K");
disp(K);
//Question 9
// le projecteur spectral sur Espace propre associ´e a 1
pi=pi';
Pr = ones(n,1)*pi; // [pi;pi;pi;....]
A = P-eye(n,n); // A -Id
S = Pr - inv(Pr-A) // Pr-A est inversible
// v´erifier que S*Pr et Pr*S sont nuls
disp("s*Pr");
clean(S*Pr);
disp(S*Pr);
disp("Pr*S");
clean(Pr*S);
disp(Pr*S);
// A*w + R - c= 0
// A*c = 0
R = r([1:n]');
// v´erifions que w=-S*R et c=Pr*R sont solution du systeme linaire
w= -S*R;
c= Pr*R;
disp("A*w+R-c");
disp(A*w + R -c);
disp("A*c");
disp(A*c);
// Noter que w n’est pas unique, on peut rajouter `a w les elts du noyau de A
// Montrons inversement que c doit ^etre egal `a Pr*R
// Pr*A est nul
disp("Pr*A");
disp(Pr*A);
// on doit donc avoir
// Pr*R - Pr*c = 0 et A*c =0
// en sommant
// Pr*R = (Pr-A)*c
// c = (Pr-A)^-1 *Pr*R
// c = (Pr-S)*Pr*R = Pr*Pr*R -S*Pr*R = Pr*R
// car Pr est un projecteur Pr^2 = Pr et S*Pr = 0
disp("Pr.^2-Pr");
clean(Pr.^2-Pr);
disp(Pr.^2-Pr);
disp("S*Pr");
clean(S*Pr);
disp(S*Pr);
// conclusion c doit valoir Pr*R
// on le v´erifie avec linsolve
[x0,K]=linsolve([A,-eye(n,n);zeros(n,n),A],[R;zeros(n,1)]);
disp("x0 et K");
disp(x0);
// on v´erifie bien que e = Pr*RK);
disp("Pr*r");
disp(Pr*R);
P1=rand(n,n);
pr=sum(P1,'c');
P1 = P1 ./ (pr*ones(1,n));
z=grand(1,n,'unf',0,1);
z=z/sum(z);
alpha = 0.8;
P = alpha*P1 + (1-alpha)*ones(n,1)*z;
// les couts Rm(i,j)
Rm = grand(n,n,'unf',0,1);
//Question 10
// On le v´erifie numeriquement
// trouver la solution de
// w = alpha*P1*w + sum(P.*Rm,’c’)
[x0,K]=linsolve(alpha*P1- eye(n,n),sum(P.*Rm,'c'));
w = x0;
disp("w");
disp(w-alpha*P1*w-sum(P.*Rm,'c'));
// calcul de c
c = (1-alpha)*z*w
// (w,c) solution du pb ergodique ?
disp("verification de la solution (w,c) trouvée ");
disp(size(P));
disp(size(R));
disp("test de w");
disp(w + c - (P*w + sum(P.*Rm,'c')));
// Maintenant on peut utiliser une m´ethode iterative
//Question 11
function [w]=iterative_c(tol)
res1=ones(n,1);
res2=alpha*P1*res1+sum(P.*Rm,'c');
while(((res2-res1).^(2)/n)>tol)
res1=res2;
res2=alpha*P1*res2+sum(P.*Rm,'c');
end
w=res2;
endfunction
w=iterative_c(10*%eps);
disp("w valeur");
disp(w);
disp("test w");
disp(alpha*P1*w+sum(P.*Rm,'c')-w);
// calcul de c
c = (1-alpha)*z*w
// (w,c) solution du pb ergodique ?
disp(w + c - (P*w + sum(P.*Rm,'c')));
//Question 12
function [w]=algo_iter(tol, max_iter)
w0 = zeros()
w1 = ones()
k = 0
while (abs(w1-w0) > tol & k<max_iter)
w0 = w1;
k = k+1;
// expr = expression de droite
// Calcul de nu_k optimal
expr = -%inf
nu_k = 0
for x=1:n do
expr_tmp = ...
if (expr_tmp > expr)
expr = expr_tmp;
nu_k = ...
end
end
// On a nu_k optimal
// Résolution du système pour trouver w_{k+1} :
w1 = ... ;
end
endfunction
|
87f8071830aab0afaf44cbe1d9219a014b32dddc
|
485d12352540751c6df0586faf03ec5acad68a98
|
/CSCE 312/nand2tetris/P4Codes/lcd.tst
|
4bfe550861c84a8b299491d86d4eb36c6bc03fa9
|
[] |
no_license
|
vidhurpotluri/TAMU-CSCE
|
690988634ed4d90f2856cd96246ad22b55362d91
|
3edc09790413c2a3290348591c9be6ac192ff53d
|
refs/heads/main
| 2023-06-30T11:42:09.989814
| 2021-07-28T22:32:02
| 2021-07-28T22:32:02
| 390,512,025
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 906
|
tst
|
lcd.tst
|
load lcd.hack,
output-file lcd.out,
compare-to lcd.cmp,
output-list RAM[0]%D2.6.2 RAM[1]%D2.6.2 RAM[2]%D2.6.2;
set RAM[0] 9,
set RAM[1] 6,
set RAM[2] 0,
repeat 400 {
ticktock;
}
output;
set PC 0,
set RAM[0] 11,
set RAM[1] 21,
set RAM[2] 0,
repeat 1000 {
ticktock;
}
output;
set PC 0,
set RAM[0] 18,
set RAM[1] 66,
set RAM[2] 0,
repeat 1000 {
ticktock;
}
output;
set PC 0,
set RAM[0] 11,
set RAM[1] 11,
set RAM[2] 0,
repeat 1000 {
ticktock;
}
output;
set PC 0,
set RAM[0] 12,
set RAM[1] 16,
set RAM[2] 0,
repeat 1000 {
ticktock;
}
output;
set PC 0,
set RAM[0] 121,
set RAM[1] 11,
set RAM[2] 0,
repeat 1000 {
ticktock;
}
output;
set PC 0,
set RAM[0] 0,
set RAM[1] 10,
set RAM[2] 0,
repeat 1000 {
ticktock;
}
output;
set PC 0,
set RAM[0] 25,
set RAM[1] 15,
set RAM[2] 0,
repeat 1000 {
ticktock;
}
output;
set PC 0,
set RAM[0] 50,
set RAM[1] 4,
set RAM[2] 0,
repeat 1000 {
ticktock;
}
output;
|
5af4c35d3ae4a6c028ae506955f94e58f029f043
|
704a8e9047b24c6e005fdc6206aacf6b3ea623bb
|
/UE/S1/bin/ANALYSE/tridiaganal.sci
|
23fef89613162d226f54cf1bbf10e436a3c945ac
|
[] |
no_license
|
GuangYueCHEN/ENSIIE
|
e84ffd6be1718b958bc72cef791a77dc49fa057f
|
f2014c0cf5b1adda3f327d5dd1d39217e703871b
|
refs/heads/master
| 2021-06-30T21:50:49.946086
| 2019-06-18T09:53:36
| 2019-06-18T09:53:36
| 114,696,410
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 225
|
sci
|
tridiaganal.sci
|
function B=tridiaganal(n)
B=zeros(n,n);
for i=1:n,
B(i,i)=3
end
for i=2:n,
B(i,i-1)=1
end
for i=1:n-1,
B(i,i+1)=1
end
endfunction
|
20fb5f0224452249802001cccb57ca265756430e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1919/CH12/EX12.10/Ex12_10.sce
|
ca5d146d67ead47e9279d3ae6768466117cc2bcd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 719
|
sce
|
Ex12_10.sce
|
// Theory and Problems of Thermodynamics
// Chapter 12
// Statistical Thermodynamics
// Example 10
clear ;clc;
//Given data
T = 300 // Temperature of ammonia gas in K
M = 17*1e-3 // molar mass of ammonia in kg/mol
R = 8.314 // gas constant
// Calculations
V = (8*R*T/%pi/M)^0.5 // average speed of ammonia
V_rms = (3*R*T/M)^0.5 // root mean square speed of ammonia
V_mp = (2*R*T/M)^0.5 // most probable speed of ammonia
// Output results
mprintf('Average speed of ammonia = %4.1f m/s', V)
mprintf('\n Root mean square speed of ammonia = %4.1f m/s', V_rms)
mprintf('\n Most probable speed of ammonia = %4.1f m/s', V_mp)
|
dacee36aa2b67c025bdf227393e49b0c4b677a55
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3415/CH8/EX8.6/Ex8_6.sce
|
f36c03b9ff67e05d582c5d26e0d4b8032c76277f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 727
|
sce
|
Ex8_6.sce
|
//fiber optic communications by joseph c. palais
//example 8.6
//OS=Windows XP sp3
//Scilab version 5.4.1
//given
clc
clear all
NA1=0.24//numerical aperture SI fiber 1 ALl glass
NA2=0.41//numerical aperture SI fiber 2 PCS
NA3=0.48//numerical aperture SI fiber 3 All plastic
NA_loss1=-10*log10(NA1^2)//losses SI fiber 1
NA_loss2=-10*log10(NA2^2)//losses SI fiber 2
NA_loss3=-10*log10(NA3^2)//losses SI fiber 3
ref_loss=0.2//Reflection_loss in dB
total_loss1=NA_loss1+ref_loss//Total Loss in dB
mprintf('Total Loss SI fiber 1=%fdB',total_loss1)
total_loss2=NA_loss2+ref_loss
mprintf('\nTotal Loss SI fiber 2=%fdB',total_loss2)
total_loss3=NA_loss3+ref_loss
mprintf('\nTotal Loss SI fiber 3=%fdB',total_loss3)
|
cf8bbf5ecdca1cfec2a3ebcb606dfa6d2108b49a
|
0845790d81f9fd3b8393b14fc9c2bdde0ffe46cf
|
/1_gen_of_elem_signals/1gen_of_elem_signal.sce
|
90e2331f162bdd6e1eab22a2dd0cf35bfdf5ef0d
|
[] |
no_license
|
NARAYAN1201/Scilab
|
1a3fb62895b157f87b0d9e024ecd2f1c000eb6df
|
48980c28ab2def9939e7519867da572660c8ac97
|
refs/heads/main
| 2023-02-26T02:09:05.762483
| 2021-02-01T07:24:54
| 2021-02-01T07:24:54
| 335,216,077
| 0
| 0
| null | 2021-02-02T08:17:23
| 2021-02-02T08:17:23
| null |
UTF-8
|
Scilab
| false
| false
| 620
|
sce
|
1gen_of_elem_signal.sce
|
//unit-impulse signal
L = 5;
x1 = [zeros(1,L) 1 zeros(1,L)];
nx1 = -L:L;
subplot(2,4,1)
plot2d3(nx1,x1)
//unit-step signal
L = 10;
x2 = [zeros(1,L) ones(1,L+1)];
nx2 = -L:L;
subplot(2,4,2)
plot2d3(nx2,x2)
//ramp signal
n = 0:10;
x = n;
subplot(2,4,3)
plot2d3(n,x);
//sine signal
x = 0:0.01:2*%pi;
y = sin(x);
subplot(2,4,4)
plot(y)
//cos signal
x = 0:0.01:2*%pi;
y = cos(x);
subplot(2,4,5)
plot(y)
//decreasing expo
a = 0.6;
n = 0:10;
x = a^n
subplot(2,4,6)
plot2d3(x)
//increasing expo
a = 0.6;
n = 10: -1 :0;
x = a^n
subplot(2,4,7)
plot2d3(x)
//signumfunc
t = -5:0.1:5
x = sign(t) ;
subplot(2,4,8)
plot2d(t,x);
|
d41767ea4382349669faa5766f303ba37f6c6c65
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3537/CH2/EX2.2/Ex2_2.sce
|
8758ff256ba7855defb3b130f3579b1e91c63266
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 379
|
sce
|
Ex2_2.sce
|
//Example 2_2
clc();
clear;
//To find the difference in the angles of deviation in the first and third spectra
lemda=5000*10^-8 //units in meters
e=1/6000
theta1=asin(lemda/e)*180/%pi //for first order
theta2=asin((3*lemda)/e)*180/%pi //for third order
theta=(theta2-theta1)
printf("The difference in the angles of deviation is %.1f degrees",theta)
|
e166ab1e9ae4682a58fdf8fa4b3bb686216176ed
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2096/CH1/EX1.49/ex_1_49.sce
|
72ebea8daf7002dc7142d9ac769104288971c3d0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 563
|
sce
|
ex_1_49.sce
|
//Example 1.49://ARITHEMATIC MEAN,AVERAGE DEVIATION ,STANDARD DEVIATION AND VARAIANCE
clc;
clear;
q=[1.34,1.38,1.56,1.47,1.42,1.44,1.53,1.48,1.40,1.59];//length in mm
AM= mean(q);//arithematic mean in mm
for i= 1:10
qb(i)= q(i)-AM;
end
Q= [qb(1),qb(2),qb(3),qb(4),qb(5),qb(6),qb(7),qb(8),qb(9),qb(10)];//
AV=(-qb(1)-qb(2)+qb(3)+qb(4)-qb(5)-qb(6)+qb(7)+qb(8)-qb(9)+qb(10))/10;//
SD=stdev(Q);//standard deviation
V=SD^2;//variance
disp(AM,"arithematic mean in mm")
disp(AV,"average deviation")
disp(SD,"standard deviation in mm")
disp(V,"variance in mm square")
|
59dec736f086e2ccc7f40b85e997b7963f4a9238
|
4058f38b392324aa5099819881f3c7d7219a174f
|
/3 bit Shift Register/SIPO_using_74HC595/SIPO_using_74HC595_consecutive_inputs/SIPO MSBFIRST/cmd_shift_out_msb.sci
|
1222ebcdb1c7dba649d280080a4f1c80ec2e1470
|
[] |
no_license
|
anupma-s/Scilab-Xcos-Arduino-Digital-Circuits
|
612a033422bf14e2e58bcdce371f15cafb30224f
|
2b4bf8e8f155d20a5eda2feb31c5523a51569d73
|
refs/heads/master
| 2021-01-20T17:20:13.073180
| 2016-07-04T15:25:07
| 2016-07-04T15:25:07
| 62,569,455
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,081
|
sci
|
cmd_shift_out_msb.sci
|
//MSBFIRST
function[]= cmd_shift_out_msb(dataPin,clockPin,val)
val1=[0 0 0 0 0 0 0 0]; //output matrix.
//If all elements of the matrix are 0,
//output pinstate will be 0 (i.e LOW).
//If 1 or more elements of the matrix is 1,
//output pinstate will be 1 (i.e HIGH)
val2=0;
mat=[1 0 0 0 0 0 0 0;0 1 0 0 0 0 0 0;0 0 1 0 0 0 0 0;0 0 0 1 0 0 0 0;0 0 0 0 1 0 0 0;0 0 0 0 0 1 0 0;0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 1];
for i=1:8
//val1=[(val(1) & mat(i,1)) (val(2) & mat(i,2)) (val(3) & mat(i,3)) (val(4) & mat(i,4)) (val(5) & mat(i,5)) (val(6) & mat(i,6)) (val(7) & mat(i,7)) (val(8) & mat(i,8)) ];
val1=(val & mat(i,:));
//disp(val1);
val2=sum(val1); //adds the elements of matrix
if val2==0
val3=0;
else
val3=1;
end
disp(val2);
cmd_digital_out(1,dataPin,val3);
//1 clock pulse
cmd_digital_out(1,clockPin,1);
cmd_digital_out(1,clockPin,0);
end
endfunction
|
9588573059622a573dd2e6c8cff3885045da04c8
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/CS3B.prev.tst
|
6edf324392975ad87a3aff1bef93039633720256
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,752
|
tst
|
CS3B.prev.tst
|
CandidateSelector expand width=4 base=5 exponent=3 left=4 right=0 fileName=test/CS3B.data.tmp
chain8 [[0,-3,-2,-2],[-1,1,1,1],[0,2,2,1],[0,2,1,2]] det=-1 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099]
chain8 [[4,1,-1,-1],[-1,1,1,1],[0,2,2,1],[0,2,1,2]] det=3 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099]
chain8 [[0,-3,-2,-2],[-1,1,1,1],[-4,-2,1,0],[0,2,1,2]] det=-2 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099]
chain8 [[4,1,-1,-1],[-1,1,1,1],[-4,-2,1,0],[0,2,1,2]] det=2 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099]
chain2 [[0,-3,-2,-2],[-1,1,1,1],[-3,4,-1,-2],[-1,-4,3,4]] det=-2 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-459,-461]
chain2 [[4,1,-1,-1],[-1,1,1,1],[-3,4,-1,-2],[-1,-4,3,4]] det=2 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-459,-461]
chain8 [[1,3,-4,-4],[2,-1,4,4],[-1,3,-2,3],[-3,-3,4,-1]] det=230 [28,-18,-21,-19] [134,-86,-97,-95] [644,-414,-483,-437] [3082,-1978,-2231,-2185] [14812,-9522,-11109,-10051] [70886,-45494,-51313,-50255] [340676,-219006,-255507,-231173] [1630378,-1046362,-1180199,-1155865] [7835548,-5037138,-5876661,-5316979]
chain8 [[0,-3,-2,-2],[-1,1,1,1],[0,2,2,1],[-4,-2,0,1]] det=-2 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099]
chain8 [[4,1,-1,-1],[-1,1,1,1],[0,2,2,1],[-4,-2,0,1]] det=2 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099]
chain8 [[0,-3,-2,-2],[-1,1,1,1],[-4,-2,1,0],[-4,-2,0,1]] det=-3 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099]
chain8 [[4,1,-1,-1],[-1,1,1,1],[-4,-2,1,0],[-4,-2,0,1]] det=1 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099]
chain8 [[1,-1,1,1],[1,4,-1,-1],[2,0,2,1],[2,0,1,2]] det=3 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205]
chain8 [[1,-1,1,1],[-3,0,-2,-2],[2,0,2,1],[2,0,1,2]] det=-1 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205]
chain8 [[1,-1,1,1],[1,4,-1,-1],[-2,-4,1,0],[2,0,1,2]] det=2 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205]
chain8 [[1,-1,1,1],[-3,0,-2,-2],[-2,-4,1,0],[2,0,1,2]] det=-2 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205]
chain8 [[1,-1,1,1],[1,4,-1,-1],[2,0,2,1],[-2,-4,0,1]] det=2 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205]
chain8 [[1,-1,1,1],[-3,0,-2,-2],[2,0,2,1],[-2,-4,0,1]] det=-2 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205]
chain8 [[1,-1,1,1],[1,4,-1,-1],[-2,-4,1,0],[-2,-4,0,1]] det=1 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205]
chain8 [[1,-1,1,1],[-3,0,-2,-2],[-2,-4,1,0],[-2,-4,0,1]] det=-3 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205]
|
227bbf07647628ce4606b1d88ea4fdeb74e404c1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3012/CH11/EX11.10/Ex11_10.sce
|
8b1a2eb83c11f40c47db9d597ff06227ee80cfd4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,811
|
sce
|
Ex11_10.sce
|
// Given:-
// Analysis
V = 0.241 // volume of the mixture in m^3
T = 511.00 // temperature of the mixture in kelvin
n1 = 0.18 // number of moles of methane in kmol
n2 = 0.274 // number of moles of butane in kmol
Rbar = 8314 // universal gas constant in (N.m)/(kmol.K)
// Calculations
n = n1 + n2 // The total number of moles of mixture
y1 = n1/n // mole fraction of methane
y2 = n2/n // mole fraction of butane
vbar = V/(n) // The specific volume of the mixture on a molar basis in m^3/kmol
// Part(a)
p = (Rbar*T/vbar)*10**-5 // in bar
// Result
printf( ' The pressure in bar obtained using ideal gas equation is: %.2f',p)
// Part(b)
// From table A-1
Tc1 = 191.00 // critical temperature for methane in kelvin
Pc1 = 46.4 // critical pressure for methane in bar
Tc2 = 425.00 // critical temperature for butane in kelvin
Pc2 = 38.00 // critical pressure for butane in bar
Z = 0.88
// Calculations
Tc = y1*Tc1 + y2*Tc2 // critical temperature in kelvin
Pc = y1*Pc1 + y2*Pc2 // critical pressure in bar
TR = T/Tc // reduced temperature of the mixture
vRdash= vbar*Pc/(Rbar*Tc)
p = ((Z*Rbar*T)/vbar)*10**-5 // mixture pressure in bar
// Result
printf( ' Pressure obtained using Kay’s rule together with the generalized compressibility chart, is: %.2f ',p)
// Part(c)
// Table A-24 gives the following van der Waals constants values for methane
a1 = 2.293 // in (m^3/kmol)^2
b1 = 0.0428 // in m^3/kmol
// Table A-24 gives the following van der Waals constants values for butane
a2 = 13.86 // in (m^3/kmol)^2
b2 = 0.1162 // in m^3/kmol
a = (y1*a1**.5 + y2*a2**.5)**2 // in bar*(m^3/kmol)^2
b = y1*b1+y2*b2 // in m^3/kmol
// From van der Waals equation
p = ((Rbar*T)/(vbar-b))*10**-5 - a/(vbar**2)
printf( ' The pressure in bar from van der Waals equation is: %.2f',p)
// Part(d)
// For methane
TR1 = T/Tc1
vR1dash = (.241/.18)*10**5*Pc1/(Rbar*Tc1)
Z1 = 1.00
// For butane
TR2 = T/Tc2
vR2dash = (.88*10**5*Pc2)/(Rbar*Tc2)
Z2 = 0.8
Z = y1*Z1 + y2*Z2
// Accordingly, the same value for pressure as determined in part (b) using Kay’s rule results:
p = 70.4
// Result
printf( ' The pressure in bar obtained using the rule of additive pressures employing the generalized compressibility chart is: %.2f',p)
|
15c028715990718e5f2f943007e04493fc1ebd4e
|
57a39df08383d18148a77915551223cef3bc8cd6
|
/bode1.sce
|
2e934ec0cdc73db71fdb01e0460874766cb9ff92
|
[] |
no_license
|
sonusharma55/Misc.-MATLAB-Scilab
|
0abbc7ab22e963b3b3e147a18e17af2f3021d3ce
|
dbfaab1b84719948ef665798c4192e6ca934e46a
|
refs/heads/master
| 2020-07-25T22:00:11.975476
| 2019-09-14T12:31:37
| 2019-09-14T12:31:37
| 208,434,501
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 171
|
sce
|
bode1.sce
|
s=%s
num = 2*(1+2*s)*(1+0.05*s)
den=s*(((s^2)/6400)+1)*(1+0.25*s)
g=syslin('c',num,den)
bode(g)
show_margins(g)
[gm,fp]=g_margin(g)
[ph,fg]=p_margin(g)
pm=180+ph
|
662e71d41d9505e03c6aacfc414ca561dbda1889
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3869/CH6/EX6.23/Ex6_23.sce
|
64ab97fa733cccdaab072d5a5d1ec9af9e9f9b00
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 388
|
sce
|
Ex6_23.sce
|
clear
//
//
//
//Variable declaration
h=1
k=1
l=0 //miller indices
d100=0.28 //lattice constant(nm)
n=2
lamda=0.071 //wavelength(nm)
//Calculation
d110=d100/sqrt(h**2+k**2+l**2) //interplanar spacing(m)
theta=asin(n*lamda/(2*d110))*180/%pi //glancing angle(degrees)
//Result
printf("\n glancing angle is %0.0f degrees",theta)
|
7e08490daa1dbe7b616a5e273277f9065df2a867
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set5/s_Electrical_Machines_M._V._Despande_833.zip/Electrical_Machines_M._V._Despande_833/CH14/EX14.3/Ex14_3.sce
|
d98cdfa6b7a7329b25a764e1adc2954c8bc25a53
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 576
|
sce
|
Ex14_3.sce
|
errcatch(-1,"stop");mode(2);//Caption:Find Regulation and resultant excitation
//Exa:14.3
;
;
pf=0.8//Power factor lagging
P=1000//Power of Synchronous generator(in KVA)
Eo=1.25//No load voltage(in per unit)
V=6600//Voltage of Synchronous generator(in volts)
f=50//Frequency(in hertz)
Fe=1//Field excitation to produce terminal voltage(in per unit)
Fa=1//Field excitation to produce full load current(in per unit)
Ft=sqrt(((Fe+(Fa*sind(acosd(pf))))^2)+((Fa*pf)^2))
Re=(Eo-Fa)*100/Fa
disp(Re,Ft,'Resultant excitation(in per unit) and regulation(in %)=')
exit();
|
2f0cddf622454b652e85270f16ffbb4248b1503a
|
62e6605ab494919b6833bf1a1b158bcb6f9b79df
|
/idinputtest.sce
|
7f1006660ec327213c88d399a32d4c7a7995bf52
|
[] |
no_license
|
mani1250/system-identification
|
c597c26d10bb5dd62b1b4db650b3945afc336e37
|
5db0536c792dfaa4a8f01561315263503ff34d3d
|
refs/heads/master
| 2021-01-12T06:56:00.703593
| 2017-03-07T12:18:15
| 2017-03-07T12:18:15
| 76,865,655
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 129
|
sce
|
idinputtest.sce
|
// Rgs
n = 8
band = [0 0.39889];
evels = [-1 1];
X = idinput(n,"rgs",band,levels);
// Rbs
X = idinput(n,"rbs",band,levels)
|
c695c9a7703526489a9af5c7803a59e6181391dc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/896/CH8/EX8.2/2.sce
|
3eaf9a28edc7f0e49a63ebcd9248fc7e7660dbc7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 345
|
sce
|
2.sce
|
clc
//Example 8.2
//Calculate the speed of sound in air at 20 C
R=10.73//lbf.ft^3/in^2/lbmol/R
//1 ft = 12 in
//1 lbf.s^2 = 32.2 lbm.ft
R1=(R*144*32.2)^0.5//ft/s*(lbm/lbmol/R)^0.5
k=1.4//dimentionless
T=528//R (Rankine temperature scale)
M=29//lbm/lbmol
c=R1*(k*T/M)^0.5//ft/s
printf("the speed of sound in air at 20 C is %f ft/s",c);
|
af269a1ba205b8e601cedbba4d6db5f7333ec6e6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/339/CH8/EX8.12/ex8_12.sce
|
21d6f69ac94d38982a76c971e5c82e9f8c6869c3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 376
|
sce
|
ex8_12.sce
|
Ic=10*10^-3; //Collector current
Vce=3;
Vcc=5;
beta=100; //current gain
Vbe=0.8;
I1=Ic+Ic/beta;
R1=(Vcc-Vce)/I1;
R2=(Vce-Vbe)/(Ic/beta);
Vx=1.5;
R3=(Vx-Vbe)/(Ic/beta);
Ix=10*(Ic/beta);
R11=(Vx/Ix);
R22=(Vcc-Vx)/(Ix+(Ic/beta));
R4=(Vcc-Vce)/Ic;
disp("Amperes",I1,"I1","Ohms",R1,"R1","Ohms",R2,"R2","Ohms",R3,"R3","Ohms",R11,"R11","Ohms",R22,"R22","Ohms",R4,"R4");
|
b57ff8227dfc2730d7a7e4a477c46ec1e590e571
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3751/CH2/EX2.2/Ex2_2.sce
|
10322f83dda0526dd251bb62182caded75bb236b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,216
|
sce
|
Ex2_2.sce
|
//Fluid system - By - Shiv Kumar
//Chapter 2 - Impact of Jet
//Example 2.2
clc
clear
//Given Data:-
V=25; //Velocity of the Jet, m/s
theta=45; //Inclination of the plate with Jet axis, degrees
a=30; //cross-sectional area of the Jet, cm^2
//Data Used:-
rho=1000; //Density of water, kg/m^3
//Computations:-
a=a*10^-4; //m^2
//(a) Force normal to the plate is the maximum force of Jet on the plate Fn
Fn=rho*a*V^2*sind(theta); //N
//(b) Components of the force Fn,
Fx=Fn*sind(theta); //N
Fy=Fn*cosd(theta); //N
//(c) Ratio in which the discharge gets divided
Q1_by_Q2=(1+cosd(theta))/(1-cosd(theta));
//Results:-
printf("(a)The Maximum force of the Jet on the plate, Fn=%.2f N \n", Fn) //The answer vary due to round off error
printf("(b)Components of the Normal force, Fn are: \n\t")
printf("Fx=%.2f N , Fy=%.2f N \n", Fx, Fy) //The answer vary due to round off error
printf("(C)The Ratio in which discharge gets divided, Q1/Q2=%.2f \n", Q1_by_Q2) //The answer vary due to round off error
|
065ff939e78b03f017e1ec169f12c83b0990b751
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfi_c_vrt_ind/~BivLCM-SR-bfi_c_vrt_ind-PLin-VLin.tst
|
efed4da016cd2ece143033873b6a4527631c59a8
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205
| 2019-03-04T17:03:26
| 2019-03-04T17:03:26
| 143,070,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,974
|
tst
|
~BivLCM-SR-bfi_c_vrt_ind-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.302244D+00
2 -0.233073D-02 0.232280D-02
3 0.433749D-02 -0.135346D-02 0.342347D+00
4 -0.725280D-03 0.162139D-04 -0.710680D-02 0.287329D-02
5 -0.601576D-03 0.935985D-04 0.897217D-03 0.802389D-04 0.364196D-02
6 0.296997D-03 -0.417197D-04 0.820371D-04 0.210684D-04 -0.627715D-04
7 -0.402607D-03 0.997683D-04 -0.809587D-03 0.203336D-04 0.507537D-03
8 -0.397301D-03 -0.530750D-04 -0.318763D-03 0.683516D-04 0.530932D-04
9 -0.343729D+00 0.113947D-01 0.238527D+00 -0.183690D-01 0.435714D-01
10 -0.166659D+00 -0.103280D-01 0.252336D+00 -0.776896D-03 0.112991D+00
11 -0.104585D+00 -0.436675D-02 0.140753D+00 -0.245885D-03 0.355822D-01
12 -0.182158D+00 0.104381D-01 0.232383D+00 -0.484209D-01 0.345887D-01
13 -0.105461D-01 0.719051D-02 -0.315911D-01 -0.364617D-02 -0.826186D-02
14 0.744086D-01 0.753381D-02 0.425862D+00 0.934308D-02 0.268175D-01
15 -0.224850D+01 -0.281631D-01 -0.157288D+00 0.151638D-01 -0.122758D+00
16 -0.635977D-01 -0.243643D-02 0.680474D-02 -0.324228D-02 -0.121160D-02
17 0.992306D-02 -0.548752D-03 -0.304800D-02 0.132596D-04 -0.391602D-03
18 0.649550D-01 -0.657684D-02 0.441409D-01 -0.269183D-01 0.528121D-03
19 -0.458310D-01 0.562723D-02 -0.113591D-01 -0.638143D-02 0.342346D-02
20 0.366649D+00 -0.222264D-01 0.223320D+00 -0.314240D-01 -0.186692D-01
21 0.721375D-01 -0.111122D-01 0.206121D-01 0.356779D-02 -0.265758D-02
22 -0.343601D-02 0.151699D-03 -0.188937D-02 0.212923D-03 -0.424763D-03
23 0.185470D-01 -0.283619D-02 0.243699D-01 -0.259939D-03 0.157453D-02
24 -0.433669D-02 0.219031D-03 -0.133623D-02 0.788427D-03 0.267568D-04
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.764941D-03
7 0.705808D-03 0.315688D-02
8 0.232776D-05 0.195353D-03 0.271536D-02
9 0.201394D-01 0.203050D-01 0.143836D-02 0.459629D+02
10 -0.370526D-02 0.147845D-01 0.936379D-02 0.462105D+01 0.187789D+02
11 0.508453D-01 0.776833D-01 0.223112D-01 0.866859D+01 0.204539D+01
12 0.748768D-02 0.834421D-01 0.616313D-01 0.822963D+01 0.248348D+01
13 0.469778D-01 0.103837D+00 -0.499452D-02 0.211921D+01 -0.932167D+00
14 0.174691D-02 0.120150D-01 0.111222D+00 0.201232D+01 0.307672D+01
15 -0.181638D-01 -0.255316D-01 -0.277821D-01 -0.971196D+01 -0.117477D+02
16 0.715224D-03 0.211486D-03 -0.822316D-03 0.787583D+00 -0.161891D+00
17 -0.249479D-04 -0.285560D-03 0.137922D-03 -0.159805D+00 0.222114D-02
18 -0.411981D-01 -0.981712D-01 -0.134441D-01 -0.708697D+01 -0.275939D+00
19 -0.136501D-01 0.142349D-02 -0.332149D-02 -0.132394D+01 -0.545504D+00
20 -0.750437D-02 -0.391101D-01 -0.190728D+00 -0.663032D+00 0.126125D+01
21 0.129935D-01 -0.115888D-02 0.344811D-02 0.102100D+01 0.632090D+00
22 -0.960439D-04 -0.207328D-03 0.629039D-04 0.303206D-01 -0.290587D-01
23 0.222417D-03 0.233980D-04 -0.110631D-02 0.384860D-01 0.369000D-01
24 0.264470D-04 -0.197234D-04 -0.120329D-03 -0.225183D-01 0.157611D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.416538D+02
12 -0.380481D+00 0.145048D+03
13 0.494280D+00 0.233242D+01 0.111330D+02
14 0.344519D+01 0.278947D+01 -0.757566D+00 0.491490D+02
15 -0.151204D+01 -0.169898D+00 -0.124741D+00 0.355191D+01 0.241654D+03
16 0.708585D-02 0.247320D+00 0.972891D-01 0.180910D-01 0.180264D+01
17 -0.190502D-01 -0.392040D-01 -0.166914D-01 -0.421122D-01 -0.104281D+01
18 -0.495654D+01 0.193189D+00 -0.467835D+01 0.331865D+01 0.824469D+00
19 -0.117073D+01 -0.171138D+00 -0.746398D-01 -0.967259D+00 0.218488D+01
20 -0.435777D+01 -0.375086D+01 -0.196418D+01 -0.276480D+02 0.356881D+01
21 0.211789D+01 0.187211D+00 0.633615D-01 0.131458D+01 -0.219326D+01
22 -0.827093D-01 -0.199009D-01 -0.572571D-02 -0.256476D-01 0.231747D-01
23 -0.614231D-01 0.107693D+01 -0.733864D-02 0.710325D-01 -0.918129D+00
24 0.117002D-01 -0.278343D+00 0.162908D-02 0.141480D-01 0.746677D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.459311D+00
17 -0.200583D-01 0.137956D-01
18 -0.347873D-01 0.724154D-01 0.159601D+03
19 0.597328D-01 -0.600284D-02 0.297574D+01 0.483875D+01
20 -0.680991D+00 0.486655D-01 -0.799850D+01 -0.402650D+01 0.309186D+03
21 0.692735D-01 0.168092D-02 -0.196011D+01 -0.454004D+01 0.292257D+01
22 -0.272086D-02 0.886448D-03 -0.675214D+00 -0.172276D-01 0.116302D+00
23 0.574095D-02 0.389123D-03 0.568056D-01 0.411741D-01 0.274308D+01
24 -0.134921D-02 -0.480116D-03 0.639931D-01 -0.476001D-03 -0.133457D+01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.541026D+01
22 -0.341660D-01 0.811290D-02
23 -0.480765D-01 -0.338575D-02 0.520944D+00
24 0.886762D-03 -0.104634D-02 -0.535833D-01 0.145197D-01
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.088 1.000
3 0.013 -0.048 1.000
4 -0.025 0.006 -0.227 1.000
5 -0.018 0.032 0.025 0.025 1.000
6 0.020 -0.031 0.005 0.014 -0.038
7 -0.013 0.037 -0.025 0.007 0.150
8 -0.014 -0.021 -0.010 0.024 0.017
9 -0.092 0.035 0.060 -0.051 0.106
10 -0.070 -0.049 0.100 -0.003 0.432
11 -0.029 -0.014 0.037 -0.001 0.091
12 -0.028 0.018 0.033 -0.075 0.048
13 -0.006 0.045 -0.016 -0.020 -0.041
14 0.019 0.022 0.104 0.025 0.063
15 -0.263 -0.038 -0.017 0.018 -0.131
16 -0.171 -0.075 0.017 -0.089 -0.030
17 0.154 -0.097 -0.044 0.002 -0.055
18 0.009 -0.011 0.006 -0.040 0.001
19 -0.038 0.053 -0.009 -0.054 0.026
20 0.038 -0.026 0.022 -0.033 -0.018
21 0.056 -0.099 0.015 0.029 -0.019
22 -0.069 0.035 -0.036 0.044 -0.078
23 0.047 -0.082 0.058 -0.007 0.036
24 -0.065 0.038 -0.019 0.122 0.004
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.454 1.000
8 0.002 0.067 1.000
9 0.107 0.053 0.004 1.000
10 -0.031 0.061 0.041 0.157 1.000
11 0.285 0.214 0.066 0.198 0.073
12 0.022 0.123 0.098 0.101 0.048
13 0.509 0.554 -0.029 0.094 -0.064
14 0.009 0.031 0.304 0.042 0.101
15 -0.042 -0.029 -0.034 -0.092 -0.174
16 0.038 0.006 -0.023 0.171 -0.055
17 -0.008 -0.043 0.023 -0.201 0.004
18 -0.118 -0.138 -0.020 -0.083 -0.005
19 -0.224 0.012 -0.029 -0.089 -0.057
20 -0.015 -0.040 -0.208 -0.006 0.017
21 0.202 -0.009 0.028 0.065 0.063
22 -0.039 -0.041 0.013 0.050 -0.074
23 0.011 0.001 -0.029 0.008 0.012
24 0.008 -0.003 -0.019 -0.028 0.030
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 -0.005 1.000
13 0.023 0.058 1.000
14 0.076 0.033 -0.032 1.000
15 -0.015 -0.001 -0.002 0.033 1.000
16 0.002 0.030 0.043 0.004 0.171
17 -0.025 -0.028 -0.043 -0.051 -0.571
18 -0.061 0.001 -0.111 0.037 0.004
19 -0.082 -0.006 -0.010 -0.063 0.064
20 -0.038 -0.018 -0.033 -0.224 0.013
21 0.141 0.007 0.008 0.081 -0.061
22 -0.142 -0.018 -0.019 -0.041 0.017
23 -0.013 0.124 -0.003 0.014 -0.082
24 0.015 -0.192 0.004 0.017 0.040
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.252 1.000
18 -0.004 0.049 1.000
19 0.040 -0.023 0.107 1.000
20 -0.057 0.024 -0.036 -0.104 1.000
21 0.044 0.006 -0.067 -0.887 0.071
22 -0.045 0.084 -0.593 -0.087 0.073
23 0.012 0.005 0.006 0.026 0.216
24 -0.017 -0.034 0.042 -0.002 -0.630
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.163 1.000
23 -0.029 -0.052 1.000
24 0.003 -0.096 -0.616 1.000
|
c6700354b873649405dd88c8d57d91210a3be797
|
3a5107b829276ce4530b98283206e13ef2bfff7c
|
/Interpolação_Newton.sce
|
d630e2b5c1b53acdc914746f1625bd8b85f44761
|
[] |
no_license
|
daniel1sender/T-picos-de-F-sica-Computacional
|
902932aaa0616171ecd7e21650cb41ed4a29ef72
|
755a3b085f2190d579fcac90d562a7668f4f60d1
|
refs/heads/main
| 2023-04-23T04:15:27.660423
| 2021-05-10T15:57:41
| 2021-05-10T15:57:41
| 339,199,113
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 647
|
sce
|
Interpolação_Newton.sce
|
clear
clc
//método interpolação de newton
//dados experimentais:
x=[0,15,30,45,60,75,90];
y = [1.0000,0.9659,0.8660,0.7071,0.5000,0.2588,0.0000];
//pontos quaisquer dados para interpolar:
xi=[3,9,13,20,25,27,50,55,57,80,85,87];
//fórmula de recorrência para o polinomio interpolador de newton de grau 1:
dff=y; //diferença dividida tem mesma ordem do número de pontos
poli=y(1);//valor constante do polinomio interpolador
termo=1;//diferença que vai multiplicando
for k=1:length(x)-1
dff=(dff(2:$)-dff(1:$-1))./(x(1+k:$)-x(1:$-k))
termo=termo.*(xi-x(k))
poli= poli+ dff(1)*termo
end
plot(x,y,'b.')
plot(xi,poli,'k^')
|
411622e84a93a587f3721233b216682fb2e78652
|
28a8d47c4d79b231f8bebc28925792a290f67e9f
|
/bk/others/prototype/test/test_dao.tst
|
0473147c9a032a30486d4a8e1885a5bf8694574b
|
[] |
no_license
|
ZVlad1980/doo
|
a1fe7d18ccfd0acf6ced7dbb33927c86a925aae8
|
e81be8f524b78b9a6ec06b7f83a8c13354fc6412
|
refs/heads/master
| 2021-08-17T02:03:54.553822
| 2017-11-20T17:21:03
| 2017-11-20T17:21:03
| 111,440,129
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,728
|
tst
|
test_dao.tst
|
PL/SQL Developer Test script 3.0
95
declare
a anydata;
obj xxdoo.xxdoo_cntr_contractor_typ;
coll xxdoo.xxdoo_cntr_contractors_typ;
l_dummy pls_integer;
dao xxdoo.xxdoo_db_dao;
x xmltype := xmltype('<content>
<id></id>
<name>IBM</name>
<type>Vendor</type>
<sites>
<site>
<id>1</id>
<contractor_id>1</contractor_id>
<role>Ship to</role>
<address_id>
<id>1</id>
<country>
<id>RU</id>
<name>Russian Federation</name>
<localizedName>Russia</localizedName>
</country>
<postal_code>111111</postal_code>
<addr_line>Moscow</addr_line>
</address_id>
<siteAccounts>
<siteAccount>
<id>1</id>
<accountId>
<id>1</id>
<siteId>1</siteId>
<accountNum>10101010101</accountNum>
</accountId>
<siteId>1</siteId>
</siteAccount>
</siteAccounts>
</site>
<site>
<id>2</id>
<contractor_id>1</contractor_id>
<role>Bill to</role>
<address_id>
<id>1</id>
<country>
<id>RU</id>
<name>Russian Federation</name>
<localizedName>Russia</localizedName>
</country>
<postal_code>111111</postal_code>
<addr_line>Moscow</addr_line>
</address_id>
<accounts/>
</site>
</sites>
</content>
');
begin
xxdoo.xxdoo_db_utils_pkg.init_exceptions;
dbms_output.put_line(rpad('-',30,'-'));
dbms_output.put_line('Object');
obj := xxdoo.xxdoo_cntr_contractor_typ();
dao := xxdoo.xxdoo_db_dao(obj);
--obj := xxdoo.xxdoo_cntr_contractor_typ(dao.get_object(1));
--dbms_output.put_line(xmltype.createxml(obj).getClobVal);
--return;
dbms_output.put_line(rpad('-',30,'-'));
dbms_output.put_line('Load');
obj := xxdoo_cntr_contractor_typ(dao.load(x));
dbms_output.put_line(xmltype.createxml(obj).getClobVal);
--return;
obj.name := case
when obj.name = 'XEROX' then
'Lenovo'
else
'XEROX'
end;
dao.put(obj.get_anydata);
dbms_output.put_line(rpad('-',30,'-'));
dbms_output.put_line('Put name '||obj.name);
--
dbms_output.put_line(rpad('-',30,'-'));
dbms_output.put_line('Collection');
dao.query.w('rownum',3,'<');
dao.query.o('name');
a := dao.get;
l_dummy := a.getCollection(coll);
for i in 1..coll.count loop
dbms_output.put_line(xmltype.createxml(coll(i)).getClobVal);
end loop;
exception
when others then
xxdoo.xxdoo_utl_pkg.fix_exception('O-oops');
xxdoo.xxdoo_utl_pkg.show_errors;
end;
0
0
|
fe7880bf33a5e465ac661cc9751d2ffd16e340b0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/275/CH3/EX3.3.86/Ch3_3_86.sce
|
0d40146ed6d72f9268df83d2df21bd582e823eca
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 557
|
sce
|
Ch3_3_86.sce
|
clc
disp("Example 3.86")
printf("\n")
disp("Find the stability factor & change in Ic for increase in temperature of collector to base bias circuit")
printf("Given\n")
//given
hFE=100
Rc=2.2*10^3
Rb=270*10^3
Icbo1=15*10^-9
T1=25
T2=105
//stability factor
S=(1+hFE)/(1+((hFE*Rc)/(Rc+Rb)))
//Change in collector to base reverse saturation current(delIcbo)
n=(T2-T1)/10
Icbo2=Icbo1*2^8
delIcbo=Icbo2-Icbo1
//Change in Ic for increase in temperature
delIc=S*delIcbo
printf("stability factor %f \n",S)
printf("change in Ic %f ampere\n",delIc)
|
833c3db7c953d14d5175021555d7b4e01186b591
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1427/CH16/EX16.4/16_4.sce
|
bde0ca8dfd971b9e35a44edd605524a18e6b5581
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 273
|
sce
|
16_4.sce
|
//ques-16.4
//Determining rate law and order with respect to A and B
clc
//R=k*[A]^x*[B]^y
//2R=k*[A]^x*[2*B]^y
//8*R=k*[2*A]^x*[2*B]^y
x=log10(4)/log10(2);
y=log10(2)/log10(2);
printf("Order with respect to A is %d and B is %d and rate law is k*[A]^2*[B].",x,y);
|
3a54ec94753d62a969f8b1396bb982ffbb5dfc00
|
b61214213da59c049ec1a018e815f4feb95bccca
|
/lexers/Scilab/interpolation.sce
|
1075ef0b5b5d28786dfa91a6382bef8bf14cd04b
|
[] |
no_license
|
Alexey-T/lexer_tests
|
25ab893f928fe2ac073c153e349c140fd3bd8678
|
3d26a98a4f9a2ae12c4074ea90b9416d75736b83
|
refs/heads/master
| 2023-08-17T13:07:10.432096
| 2023-08-13T06:51:15
| 2023-08-13T06:51:15
| 74,854,492
| 3
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 7,404
|
sce
|
interpolation.sce
|
// Copyright 2012 Manolo Venturin, EnginSoft S.P.A.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// A collection of interpolation examples
// Close all opened figures and clear workspace
xdel(winsid());
clear;
clc;
pathdir = get_absolute_file_path('interpolation.sce');
exec(pathdir + "polyfit.sci");
// Figure #1: Plotting of the Runge function
// ----------
// Define Runge function
deff('[y]=f(x)','y = 1 ./(1+x.^2)');
// Interpolation points
xi = linspace(-5,5,7)';
yi = f(xi);
// Visualization data
xrunge = linspace(-6,6,101)';
yrunge = f(xrunge);
// Plot
scf(1);
clf(1);
plot(xrunge,yrunge,'b-');
plot(xi,yi,'or');
xlabel("x");
ylabel("y");
title("Runge function");
// Figure #2: Intepolation points
// ----------
// Plot
scf(2);
clf(2);
plot(xi,yi*0,'xo');
p = get("hdl");
p.children.mark_mode = "on";
p.children.mark_style = 4;
p.children.thickness = 4;
p.children.mark_foreground = 2;
xlabel("x");
ylabel("y");
title("Interpolation Points");
// Evaluation points
xval = linspace(-6,6,101)';
// Figure #3: Piecewise interpolation
// ----------
// Interpolation
xx_c = xval;
yy_c = interp1(xi,yi,xx_c,'nearest','extrap');
// Plot
scf(3);
clf(3);
plot(xrunge,yrunge,'k-');
plot(xx_c,yy_c,'b-');
plot(xi,yi,'or');
xlabel("x");
ylabel("y");
title("Piecewise interpolation");
legend(["Runge func";"Interp.";"Interp. val"]);
// Figure #4: Linear interpolation
// ----------
// Interpolation
xx_l = xval;
yy_l = interp1(xi,yi,xx_c,'linear','extrap');
// Plot
scf(4);
clf(4);
plot(xrunge,yrunge,'k-');
plot(xx_l,yy_l,'b-');
plot(xi,yi,'or');
xlabel("x");
ylabel("y");
title("Linear interpolation");
legend(["Runge func";"Interp.";"Interp. val"]);
// Figure #5: Polynomial interpolation
// ----------
// Import function
exec("polyfit.sci",-1);
// Interpolation
xx_p = xval;
[Pn] = polyfit(xi, yi, length(xi)-1);
yy_p = horner(Pn,xx_p);
// Plot
scf(5);
clf(5);
plot(xrunge,yrunge,'k-');
plot(xx_p,yy_p,'b-');
plot(xi,yi,'or');
xlabel("x");
ylabel("y");
title("Polynomial interpolation");
legend(["Runge func";"Interp.";"Interp. val"]);
// Figure #6: Spline interpolation
// ----------
// Splines examples
d = splin(xi, yi,"not_a_knot");
// d = splin(xi, yi,"natural");
// d = splin(xi, yi,"periodic");
xx_s = xval;
yy_s = interp(xx_s, xi, yi, d,"linear");
// Plot
scf(6);
clf(6);
plot(xrunge,yrunge,'k-');
plot(xx_s,yy_s,'b-');
plot(xi,yi,'or');
xlabel("x");
ylabel("y");
title("Spline interpolation");
legend(["Runge func";"Interp.";"Interp. val"]);
// Figure #7: Gaussian Radial Basis Interpolation (RBF)
// ----------
// Gaussian RBF
deff('[y]=rbf_gauss(r,sigma)','y = exp(-r.^2 ./(2*sigma))');
// Plot
scf(7);
clf(7);
r = linspace(0,3);
y1 = rbf_gauss(r,0.1);
y2 = rbf_gauss(r,1.0);
y3 = rbf_gauss(r,2.0);
plot(r,y1,'k-');
plot(r,y2,'b-');
plot(r,y3,'r-');
xlabel("$r$");
ylabel("$\phi(r)$");
title("Gaussian rbf");
legend(["$\sigma = 0.1$";"$\sigma = 1.0$";"$\sigma = 2.0$"]);
// Figure #8/9: Gaussian Radial Basis Interpolation (RBF)
// -----------
// Evaluation point: the same of the orginal plot
xx_rbf = xval;
yy_runge = f(xval); // used for error computation
np = length(xval);
sigmaval = linspace(0.1,1.0,101);
rbf_error = zeros(np,1);
for index = 1:length(sigmaval)
disp(["Performing iteration: " + string(index) + "/" + string(length(sigmaval))]);
yy_rbf = zeros(np,1);
sigma = sigmaval(index);
// Compute interpolation coefficient
n = length(xi);
Phi_ij = zeros(n,n);
for i = 1:n,
for j = 1:n
r = norm(xi(i)-xi(j));
Phi_ij(i,j) = rbf_gauss(r,sigma);
end
end
acoeff = Phi_ij\yi;
// Loop over all point to be evaluated
for k=1:np
// Eval all rbf function
fval = zeros(length(acoeff),1);
for i=1:length(acoeff)
// Evaluate distances
r = norm(xi(i)-xx_rbf(k));
// Evaluate rbf
fval(i) = rbf_gauss(r,sigma);
end
// Evaluate rbf interpolation in the given point
yy_rbf(k) = fval'*acoeff;
end
// Evaluate error
rbf_error(index) = sum(abs(yrunge-yy_rbf));
end
// Plot error
scf(8);
clf(8);
plot(sigmaval,rbf_error);
xlabel("sigma");
ylabel("error");
title("Intepolation error");
// Find minimum error
[errmin,indmin] = min(rbf_error);
sigma = sigmaval(indmin);
// Re-evalute rbf
n = length(xi);
Phi_ij = zeros(n,n);
for i = 1:n,
for j = 1:n
r = norm(xi(i)-xi(j));
Phi_ij(i,j) = rbf_gauss(r,sigma);
end
end
acoeff = Phi_ij\yi;
yy_rbf = zeros(np,1);
for k=1:np
fval = zeros(length(acoeff),1);
for i=1:length(acoeff)
r = norm(xi(i)-xx_rbf(k));
fval(i) = rbf_gauss(r,sigma);
end
yy_rbf(k) = fval'*acoeff;
end
// Plot optimal RBF
scf(9);
clf(9);
subplot(1,2,1);
plot(xrunge,yrunge,'k-');
plot(xx_rbf,yy_rbf,'b-');
plot(xi,yi,'or');
xlabel("x");
ylabel("y");
title("Rbf interpolation");
legend(["Runge func";"Interp.";"Interp. val"]);
// Plot non optimal RBF
// Re-evalute rbf
sigma = 0.2;
n = length(xi);
Phi_ij = zeros(n,n);
for i = 1:n,
for j = 1:n
r = norm(xi(i)-xi(j));
Phi_ij(i,j) = rbf_gauss(r,sigma);
end
end
acoeff = Phi_ij\yi;
yy_rbf = zeros(np,1);
for k=1:np
fval = zeros(length(acoeff),1);
for i=1:length(acoeff)
r = norm(xi(i)-xx_rbf(k));
fval(i) = rbf_gauss(r,sigma);
end
yy_rbf(k) = fval'*acoeff;
end
subplot(1,2,2);
plot(xrunge,yrunge,'k-');
plot(xx_rbf,yy_rbf,'b-');
plot(xi,yi,'or');
xlabel("x");
ylabel("y");
title("Rbf interpolation");
legend(["Runge func";"Interp.";"Interp. val"]);
// Figure #10: Example of approximation in 1D (full polinomial)
// ----------
np = 100;
noise = 0.7*(rand(np,1)-0.5);
x = linspace(0,2,np)';
yexact = x.^2 + x;
ynoise = yexact + noise;
// degree 1
p1 = polyfit(x, ynoise, 1);
p1val = horner(p1,x);
// degree 2
p2 = polyfit(x, ynoise, 2);
p2val = horner(p2,x);
// plot
scf(10);
clf(10);
plot(x,yexact,'k-');
plot(x,ynoise,'b-');
plot(x,p1val,'r-');
plot(x,p2val,'g-');
xlabel("x");
title("Best polynomial approximation");
legend(["yexact";"ynoise";"p1val";"p2val"]);
// Figure #11: Example of approximation in 2D (plane)
// ----------
// Generating random points along a plane
np = 30;
noise = 0.5*(rand(np,1)-0.5);
// Extract data
x = rand(np,1);
y = rand(np,1);
znoise = -x+2*y+noise;
// Vandermonde matrix for P(x,y) = a+b*x+c*y
V = [ones(np,1),x,y];
// Find coefficient i.e. minimize error norm
coeff = V\znoise;
// Evaluate polynomial in a grid for plotting
ndiv = 40;
xdiv = linspace(0,1,ndiv);
ydiv = linspace(0,1,ndiv);
[X,Y] = meshgrid(xdiv,ydiv);
Z = zeros(np,np);
for i=1:size(X,1)
for j=1:size(X,2)
xval = X(i,j);
yval = Y(i,j);
Z(i,j) = coeff(1)+coeff(2)*xval+coeff(3)*yval;
end
end
// Plot data
fz = scf(11);
clf(11);
fz.color_map=jetcolormap(32);
surf(X,Y,Z)
plot3d(x,y,znoise,theta=40,alpha=60);
fz.children.children(1).surface_mode="off";
fz.children.children(1).mark_mode="on";
fz.children.children(1).mark_size=2;
fz.children.children(1).mark_style=9;
fz.children.children(1).mark_foreground=3;
fz.children.children(1).mark_background=3;
|
47cee3a2d1132ec6e69e639b2b9d0239c1fc0b7b
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set14/s_Machine_Design_U._C._Jindal_683.zip/Machine_Design_U._C._Jindal_683/CH24/EX24.3/RD_3.sce
|
4663dedc270ebbf8a8a83158d5040b3b403a490a
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 207
|
sce
|
RD_3.sce
|
errcatch(-1,"stop");mode(2);// sum 24-3
;
;
d=12;
sigut=1960;
Pb=0.0025*sigut;
Ds=480;
F=Pb*d*Ds/2;
W=F*2*10^-3;
// printing data in scilab o/p window
printf("W is %0.3f kN ",W);
exit();
|
57e8891d6315a19c4c314d7f24b6db146e621d89
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2045/CH11/EX11.3/Ex11_3.sce
|
2f51741807c764cff4117a2938f1e21f7e22caa2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 310
|
sce
|
Ex11_3.sce
|
//pagenumber 516 example 3
clear
c1=0.004*10^-6;//farad
c2=0.03*10^-6;//farad
induct=4*10^-3;//henry
//min voltage
mivolt=c2/c1;
disp("min voltage >= "+string((mivolt))+"volt");
//frequency
freque=(((1/(2*3.14)))*sqrt((c1+c2)/(induct*c1*c2)));
disp("frequency = "+string((freque))+"hertz");
|
062ad0d0abb2e5560d7653578a9b4f941007ba70
|
e86f908be00c4a3a017e81d12588d76562c56b75
|
/macros/movingrms.sci
|
231a9f1d74613dc07b884c32963796f522f4e59d
|
[] |
no_license
|
ShashikiranYadalam/FOSSEE_SP_task
|
8869a14f664329625b76e15e771058b90b69b1e1
|
601ca7b7c91587a430c69c9ceb1f87b196c8e566
|
refs/heads/master
| 2020-03-20T06:38:26.598686
| 2019-03-01T12:31:10
| 2019-03-01T12:31:10
| 137,255,176
| 0
| 0
| null | 2018-06-14T05:16:17
| 2018-06-13T18:27:32
|
HTML
|
UTF-8
|
Scilab
| false
| false
| 1,032
|
sci
|
movingrms.sci
|
function [rmsx,w]=movingrms(x,w,rc,Fs)
// Find moving RMS value of signal in x
// Calling Sequence
// [rmsx,w]=movingrms(x,w,rc,Fs=1)
// Parameters
// x: Real or complex valued vector or matrix
// w: Real or complex scalar value
// rc: Real or complex scalar value
// Fs: Real or complex scalar value
// Description
// This is an Octave function.
// The signal is convoluted against a sigmoid window of width w and risetime rc with the units of these parameters relative to the value of the sampling frequency given in Fs (Default value=1).
// Examples
// 1. [a,b]=movingrms ([4.4 94 1;-2 5i 5],1,-2)
// a = 0.91237 17.71929 0.96254
// 0.91237 17.71929 0.96254
// b = 0.18877
// 0.18877
// 2. [a,b]=movingrms ([4.4 94 1;-2 5i 5],1,-2,2)
// a = 4.8332 93.8669 5.0990
// 4.8332 93.8669 5.0990
// b = 1
// 1
funcprot(0);
rhs=argn(2);
if (rhs<3) then
error("Wrong number of input arguments.")
elseif (rhs==3) then Fs=1;
end
[rmsx,w]=callOctave("movingrms",x,w,rc,Fs)
endfunction
|
6b331fe4b90f2fc50f1ee5321ddb05e38cf694be
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1736/CH8/EX8.14/Ch08Ex14.sce
|
ec3bea2f8284987f69a95a011f6f78b77aeb83ba
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,206
|
sce
|
Ch08Ex14.sce
|
// Scilab code Ex8.14 Page:268 (2006)
clc; clear;
C = cell(4,4);
// Enter compound names
C(1,1).entries = 'LaTiO3';
C(2,1).entries = 'LaCrO3';
C(3,1).entries = 'LaFeO3';
C(4,1).entries = 'LaCoO3';
// Enter total energy difference w.r.t. ground state for Paramagnetics, mRyd
C(1,2).entries = 0.014;
C(2,2).entries = 158.3;
C(3,2).entries = 20.69;
C(4,2).entries = 0.000;
// Enter total energy difference w.r.t. ground state for Ferromagnetics, mRyd
C(1,3).entries = 0.034;
C(2,3).entries = 13.99;
C(3,3).entries = 0.006;
C(4,3).entries = 0.010;
// Enter total energy difference w.r.t. ground state for Antiferromagnetics, mRyd
C(1,4).entries = 0.000;
C(2,4).entries = 0.000;
C(3,4).entries = 0.000;
C(4,4).entries = 0.003;
printf("\n______________________________________________________________");
printf("\nSolid Total energy difference (mRyd) (w.r.t. ground state)");
printf("\n ____________________________________________________");
printf("\n Paramagnetic Ferromagnetic Antiferromagnetic ");
printf("\n______________________________________________________________");
for i = 1:1:4
printf("\n%s %10.3f %10.3f %10.3f", C(i,1).entries, C(i,2).entries, C(i,3).entries, C(i,4).entries);
end
printf("\n______________________________________________________________");
printf("\nAll the solids given above crystallize in the antiferromagnetic state except that of LaCoO3.");
// Result
// ______________________________________________________________
// Solid Total energy difference (mRyd) (w.r.t. ground state)
// ____________________________________________________
// Paramagnetic Ferromagnetic Antiferromagnetic
// ______________________________________________________________
// LaTiO3 0.014 0.034 0.000
// LaCrO3 158.300 13.990 0.000
// LaFeO3 20.690 0.006 0.000
// LaCoO3 0.000 0.010 0.003
// ______________________________________________________________
// All the solids given above crystallize in the antiferromagnetic state except that of LaCoO3.
|
9e26fcdcf673f0a651e8574cae83ada517a935a8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2201/CH4/EX4.13/ex4_13.sce
|
8096b7333c1c3ea8ee31b20019af55e3ded43389
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 236
|
sce
|
ex4_13.sce
|
// Exa 4.13
clc;
clear;
close;
// Given data
I_o = 1.8 * 10^-9;// A
v = 0.6;// in V
Eta = 2;
V_T = 26;// in mV
V_T=V_T*10^-3;// in V
I = I_o *(%e^(v/(Eta * V_T)));// in A
disp(I*10^3,"The current in the junction in mA is");
|
b7c9f40866f642e83929b8e27a6d057a1dbf8482
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1949/CH2/EX2.24/2_24.sce
|
8ad6bdebc5eb6d553262846de6beffed82f4d03c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 485
|
sce
|
2_24.sce
|
//Chapter-2,Example 2_24,Page 2-47
clc()
//Given Data:
N=5*5000 //N=W/(a+b) Number of lines on grating
m=2 //order
lam=6*10^-7 //Wavelength of light
//Calculations:
//i)
RP=m*N //Resolving power
printf('i)Resolving power is = %.0f \n \n',RP)
//ii)
//We know that R.P.=lam/dlam
dlam=lam/RP //Smallest wavelength which can be resolved
printf(' ii)Smallest wavelength which can be resolved is = %.12f m \n \n',dlam)
|
5ea9ca5410ea1122cf1e3b1cdde718ebd6ffdd78
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1976/CH2/EX2.3/Ex2_3.sce
|
6324d30bf405b00b0d28490b053b8524e20c4962
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,373
|
sce
|
Ex2_3.sce
|
//To Determine the Yearly Cost of the substation
//Page 75
clc;
clear;
Teff=95/100; //Transmission Efficiency
Deff=85/100; //Distribution Efficiency
DFT=1.2; //Diversity Factor For Transmission
DFD=1.3; //Diversity Factor For Distribution
MDGS=100*(10^6); //Maximum Demand of Generating Station
ALF=40/100; //Annual Load Factor
ACCT=2.5*(10^6); //Annual Capital Charge for Transmission
ACCD=2*(10^6); //Annual Capital Charge for Distribution
GCC=100; //Generating Cost per KW demand
GCCU=5/100; // Per Unit Cost
//Fixed Charges from Supply to Substation Annually
GFC=GCC*MDGS/1000; //Generating
TFC=ACCT; //Transmission
TotFCS=GFC+TFC //Total
//Fixed Charges for supply upto Consumer Annually
DFC=ACCD; //Distribution
TotFCC=TotFCS+DFC; //Total
AMDS= DFT*MDGS/1000; //Aggregate of Maximum Demand at Supply
AMDC= DFD*AMDS; //Aggregate of Maximum Demand for Consumers
FCS=TotFCS/AMDS; //Fixed Charges Per KW at substation
CES=GCCU/Teff; //Cost of energy at the substation
FCC=TotFCC/AMDC; //Fixed Charges per KW at the consumer premises
CEC=CES/Deff; //Cost of Energy at the consumer premises
printf('The Yealy Cost per KW demand and the cost per KWhr at:\n')
printf('a) The substation is %g rupees per KW and %g paise per KWhr\n',FCS,CES*100)
printf('b) The consumer premises is %g rupees per KW and %g paise per KWhr\n',FCC,CEC*100)
|
67038b380a1f8eb8438f5af073b5880a62b75ce5
|
b80969c9d72c732b0153d0de2b8fd28dc10d8a16
|
/Biologie/Site/sauvegarde/28.07.2016/www/Documents/simulation/equationDifferentielle/chapitre4/ex2.sci
|
706d3a27b0b83a0e22c59538aa34aaa26ad5240c
|
[] |
no_license
|
adamdepossylux/stem_cells
|
6a2596a0734e3604b570cfdaa1e6cb798d13d7b7
|
e1ffdf24a223fea3a3606a0bd262067edc81f5b9
|
refs/heads/master
| 2020-04-01T17:26:21.772875
| 2017-05-10T15:15:09
| 2017-05-10T15:15:09
| 61,795,551
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 70
|
sci
|
ex2.sci
|
clf
N=1000;
x=-2+(2+2)*rand(1,N);
y=-2+(2+2)*rand(1,N);
plot(x,y,'.')
|
5f79a088f7ac613efb4fb7464e39bfc9888635fa
|
1db0a7f58e484c067efa384b541cecee64d190ab
|
/macros/dftmtx.sci
|
39ef91f48a9e562fc20b6f53087d1aba251a4264
|
[] |
no_license
|
sonusharma55/Signal-Toolbox
|
3eff678d177633ee8aadca7fb9782b8bd7c2f1ce
|
89bfeffefc89137fe3c266d3a3e746a749bbc1e9
|
refs/heads/master
| 2020-03-22T21:37:22.593805
| 2018-07-12T12:35:54
| 2018-07-12T12:35:54
| 140,701,211
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 806
|
sci
|
dftmtx.sci
|
function [d]=dftmtx(n)
// Computes Discrete n-by-n Fourier transformation matrix
// Calling Sequence
// [d]=dftmtx(n)
// Parameters
// n: Real positive scalar number
// Description
// This is an Octave function
// This fuction gives a complex matrix of values whose product with a vector produces the discrete Fourier transform. This can also be achieved by directly using the fft function i.e. y=fft(x) is same as y=A*x where A=dftmtx(n).
// Examples
// 1. dftmtx(3)
// ans = 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i
// 1.00000 + 0.00000i -0.50000 - 0.86603i -0.50000 + 0.86603i
// 1.00000 - 0.00000i -0.50000 + 0.86603i -0.50000 - 0.86603i
funcprot(0);
rhs=argn(2);
if (rhs<1) then
error("Wrong number of input arguments.")
else d= callOctave("dftmtx",n)
end
endfunction
|
a64811c5576c34b7e2010b0180870ef95783d2fc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1574/CH3/EX3.4/M_Ex_3_4.sce
|
5d0bb62206510908e7295cab915035b3d99a271a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 593
|
sce
|
M_Ex_3_4.sce
|
clc
//Chapter3: Modulation
//Example3.4, page no 138
//Given
Ebb=2e3//DC plate supply
Ecc=-500//DC grid bias
Ib=67e-3//DC plate current
Ic=30e-3//DC grid current
Egm=750//RF peak grid voltage
Pout=75//RF Power output
Ma=0.75//Depth of modulation
Paf=(Ma^2*Ebb*Ib)/(2*1)//modulating power required from the audio source
Pdc=Ebb*Ib//Power supplied by DC source
Zm=Ebb^2/Pdc//Modulator Impedance
Pd=Pdc+Paf-Pout//Plate dissipation
mprintf('modulating power required from the audio source\n is:%f watts\n Modulator Impedance is:%f ohm\n Plate dissipation is:%f watts',Paf,Zm,Pd)
|
0e7e08cc7b49f9f513e9741bbc3a3136bc8203fe
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/61/CH15/EX15.8/ex15_8.sce
|
7824d37799c3c6ae487188507d04b9b59ff4a998
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 212
|
sce
|
ex15_8.sce
|
//ex15.8
R4=12*10^3;
C1=0.22*10^-6;
R7=R4;
C2=C1;
R6=3.3*10^3;
Q=10;
f0=1/(2*%pi*R7*C2);
R5=(3*Q-1)*R6;
disp(f0,'center frequency in hertz')
disp(R5,'R5 in ohms')
disp('Nearest value is 100 kilo-ohms')
|
27f2149ba012aaba0095f36a9bb4447da8bceeb3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/866/CH12/EX12.5/12_5.sce
|
287d5efe1ade809223843f20e4bc657a60341f21
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 162
|
sce
|
12_5.sce
|
clc
d=400 //mm
m=15
ASs=120 //N/mm^2
ASc=6.5 //N/mm^2
BM=40*10^3 //Nm
n=d/(ASs/(ASc*m) +1 )
As=BM*10^3/(ASs*(d-n/3))
printf("required area= %f mm^2",As)
|
083f309eebef1e376e70062236d97501e3bccd16
|
e806e966b06a53388fb300d89534354b222c2cad
|
/macros/getrotationmatrix2d.sci
|
f1cc44fcf0792783498ac36f65cf0be143839352
|
[] |
no_license
|
gursimarsingh/FOSSEE_Image_Processing_Toolbox
|
76c9d524193ade302c48efe11936fe640f4de200
|
a6df67e8bcd5159cde27556f4f6a315f8dc2215f
|
refs/heads/master
| 2021-01-22T02:08:45.870957
| 2017-01-15T21:26:17
| 2017-01-15T21:26:17
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 171
|
sci
|
getrotationmatrix2d.sci
|
function [out]=getrotationmatrix2d(Point2fcenter, doubleangle, doublescale)
out=opencv_getrotationmatrix2d(Point2fcenter, doubleangle, doublescale);
endfunction;
|
0f390535d21fb4645c78c52d3885ca714831e18a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3809/CH6/EX6.7/EX6_7.sce
|
fba76de47fe64be7aaac49b0b9fea6a2b8340f83
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 575
|
sce
|
EX6_7.sce
|
//Chapter 6, Example 6.7
clc
//Initialisation
pi=3.14 //pi
f=50 //frequency in hertz
L=400*10**-3 //inductance in hemry
C=50*10**-6 //capacitance in farad
R=200 //resistance in ohm
//Calculation
w=2*pi*f //angular frequency
Xl=w*L //inductive reactance
Xc=1/(w*C) //Capacitive Reactance
X=Xl-Xc //Complex part
//Results
printf("Complex Impedance = %d + j %d Ohm",R, round(X))
|
6ca30db7441b82b231ad270529bd351af26c1af7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/55/CH5/EX5.6/5ex6.sci
|
423bd6f4db4cdaa8613969f924614826e0267b21
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 141
|
sci
|
5ex6.sci
|
a=[7,-4,5];
b=[3,2,-1]';
k=a*b;
disp(k,'product of a and b is;')
p=[6,-1,8,3];
q=[4,-9,-2,5]';
l=p*q;
disp(l,'product of p and q is:')
|
6c8b3132793c7943ea1f032d42d1868a6c60d822
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2522/CH9/EX9.1/exm9_1.sce
|
48860f84f326aa3a9560136c0bb48a141d9f6c9d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,105
|
sce
|
exm9_1.sce
|
// page no 283
// example no 9.1
// PUSH POP AND DELAY INSTRUCTIONS
clc;
printf('LXI SP,2099H \n \n'); // the stack pointer is located at 2099H.
printf('LXI H,42F2H \n ');
printf('H--> 42 L-->F2 \n \n');
printf('PUSH H \n'); // sends the data of HL register pair in the stack.
// stack pointer is decremented by one to 2098H and the contents of the H register are copied to memory location 2098H
printf('2098H--> 42 \n');
// stack pointer is again decremented by one to 2097H and the contents of the L register are copied to memory location 2097H
printf('2097H--> F2 \n \n');
printf('Delay Counter \n \n');
n=hex2dec(['42F2']);
for i=1:n // DELAY LOOP
{
}
end
printf(' POP H \n'); // sends the data in the stack back to the HL register pair.
// the contents of the top of the stack are copied to L register and the stack pointer is incremented by one to 2098H
printf('L--> F2H \n');
// the contents of the current location of stack are copied to H register and the stack pointer is again incremented by one to 2099H.
printf('H--> 42H \n');
|
513b8a56a163002ad807d2293e026a1f4a666de9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1055/CH4/EX4.4/ch4_4.sce
|
f9e195f67902b8e8cd0daf9726f3282bfe5d4b5c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 527
|
sce
|
ch4_4.sce
|
//To calculate the voltage across each load impedence and current in the nuetral
clear
clc;
IR=(400)/((sqrt(3)*(6.3+%i*9)));
IY=231*(cosd(-120) + %i*sind(-120))/8.3;
IB=231*(cosd(120) + %i*sind(120))/(6.3-%i*8);
In=abs((IR +IY +IB));//Neutral current
mprintf("Neutral current =%.2f amps\n",In);
VR=abs(IR*(6+ %i*9));
VY=abs(IY*(8));
VB=abs(IB*(6-%i*8));
mprintf("Voltage across Phase R =%.1f volts \n",VR);
mprintf("Voltage across Phase Y =%.2f volts \n",VY);
mprintf("Voltage across Phase B =%.0f volts \n",VB);
|
6fe9db04586ceaf187d1fbd63b46e554895b1b27
|
fe48ae0c518509ac5c57688957075e939956f2b1
|
/Complex in polar form.sce
|
995d259b729b324bc444006417b0b4405a7ef136
|
[] |
no_license
|
dibakardhar/Scilab-Notes
|
d8161939a96b5d9f89106440059b6aaa717f5d79
|
6bc6a6caa5120a4c7a20f15430860e5b51e8014e
|
refs/heads/main
| 2023-07-09T18:48:56.525225
| 2021-08-15T16:32:36
| 2021-08-15T16:32:36
| 396,415,364
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 222
|
sce
|
Complex in polar form.sce
|
x=input("Enter the value of x:")
y=input("Enter the value of y:")
n=input("Enter the order:")
z=x+y*%i
r=sqrt(x*x+y*y)
q=atan(y/x)
k=0:(n-1)
j=%i*((q+2*%pi*k)/n)
m=exp(j)
z1=r^(1/n)*m
disp(z1,"Roots of z are:")
|
10297cc802030e4eb3fba44e2952e6bd905b2d0a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1646/CH16/EX16.10/Ch16Ex10.sce
|
efdd61bcfa5e31c1aa8bafa77784b6865ce6cb2c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 498
|
sce
|
Ch16Ex10.sce
|
// Scilab Code Ex16.10 : Page-824 (2011)
clc; clear;
a = 2.5, b = 2.5, c = 1.8; // Lattice parameter of tetragonal crystal, angstrom
h = 1; k = 1; l = 1; // Miller Indices for planes in a tetragonal crystal
d_hkl = 1/sqrt((h/a)^2+(k/b)^2+(l/c)^2); // The interplanar spacing for tetragonal crystals, m
printf("\nThe interplanar spacing between consecutive (111) planes = %4.2f angstrom", d_hkl);
// Result
// The interplanar spacing between consecutive (111) planes = 1.26 angstrom
|
9c3db298ac32e7fd08f228674ad091a60aec564b
|
a4bbc60bcc82ee6212825ce21fc9e4fa7b04e870
|
/Bioinformatics_3k/4uzd/tests/1A26.tst
|
a518bee60a7998afdee36de3dfdb2cc38410a840
|
[] |
no_license
|
Luksys5/LT_programos
|
3a7cabb6c5e8a23a856983c1938d2d492cddf916
|
959ab74029df334767fcad84adc46ae36cf7cdf1
|
refs/heads/master
| 2021-01-19T19:33:11.505596
| 2017-03-12T18:08:14
| 2017-03-12T18:08:14
| 16,478,166
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 14,782
|
tst
|
1A26.tst
|
VDWCONT 3.032 3.04 -0.0079 1A26.cif A O ASP 147 C O HOH .
VDWCONT 3.032 3.04 -0.0079 1A26.cif C O HOH . A O ASP 147
VDWCONT 3.0347 3.04 -0.0052 1A26.cif A O ASP 117 C O HOH .
VDWCONT 3.0347 3.04 -0.0052 1A26.cif C O HOH . A O ASP 117
VDWCONT 3.036 3.04 -0.0039 1A26.cif C O HOH . C O HOH .
VDWCONT 3.036 3.04 -0.0039 1A26.cif C O HOH . C O HOH .
VDWCONT 3.0365 3.04 -0.0034 1A26.cif A O ASP 25 A O SER 28
VDWCONT 3.0365 3.04 -0.0034 1A26.cif A O SER 28 A O ASP 25
VDWCONT 3.0412 3.04 0.0012 1A26.cif A O GLY 223 C O HOH .
VDWCONT 3.0412 3.04 0.0012 1A26.cif C O HOH . A O GLY 223
VDWCONT 3.0445 3.04 0.0045 1A26.cif A O TYR 104 A O TYR 84
VDWCONT 3.0445 3.04 0.0045 1A26.cif A O TYR 84 A O TYR 104
VDWCONT 3.0463 3.04 0.0063 1A26.cif A O LEU 224 C O HOH .
VDWCONT 3.0463 3.04 0.0063 1A26.cif C O HOH . A O LEU 224
VDWCONT 3.047 3.04 0.007 1A26.cif B O CNA . B O CNA .
VDWCONT 3.047 3.04 0.007 1A26.cif B O CNA . B O CNA .
VDWCONT 3.0481 3.04 0.0081 1A26.cif A O GLY 71 A O SER 72
VDWCONT 3.0481 3.04 0.0081 1A26.cif A O SER 72 A O GLY 71
VDWCONT 3.0602 3.07 -0.0097 1A26.cif A N LYS 108 A O ILE 105
VDWCONT 3.0602 3.07 -0.0097 1A26.cif A O ILE 105 A N LYS 108
VDWCONT 3.0603 3.07 -0.0096 1A26.cif A N THR 306 A O THR 306
VDWCONT 3.0603 3.07 -0.0096 1A26.cif A O THR 306 A N THR 306
VDWCONT 3.0604 3.07 -0.0095 1A26.cif A N ASP 113 A O GLN 110
VDWCONT 3.0604 3.07 -0.0095 1A26.cif A O GLN 110 A N ASP 113
VDWCONT 3.063 3.07 -0.0069 1A26.cif A N VAL 34 A O LYS 31
VDWCONT 3.063 3.07 -0.0069 1A26.cif A O LYS 31 A N VAL 34
VDWCONT 3.0648 3.07 -0.0051 1A26.cif A N PHE 354 A O PRO 262
VDWCONT 3.0648 3.07 -0.0051 1A26.cif A O PRO 262 A N PHE 354
VDWCONT 3.0658 3.07 -0.0041 1A26.cif A N ILE 16 A O LYS 14
VDWCONT 3.0658 3.07 -0.0041 1A26.cif A O LYS 14 A N ILE 16
VDWCONT 3.0672 3.07 -0.0027 1A26.cif A N LYS 296 A O TYR 277
VDWCONT 3.0672 3.07 -0.0027 1A26.cif A O TYR 277 A N LYS 296
VDWCONT 3.0677 3.07 -0.0022 1A26.cif A N SER 68 A O GLN 64
VDWCONT 3.0677 3.07 -0.0022 1A26.cif A O GLN 64 A N SER 68
VDWCONT 3.0685 3.07 -0.0014 1A26.cif A N PHE 198 A O LYS 196
VDWCONT 3.0685 3.07 -0.0014 1A26.cif A O LYS 196 A N PHE 198
VDWCONT 3.0691 3.07 -0.0008 1A26.cif A N CYS 255 A O ALA 252
VDWCONT 3.0691 3.07 -0.0008 1A26.cif A O ALA 252 A N CYS 255
VDWCONT 3.0694 3.07 -0.0005 1A26.cif A N SER 249 A O MET 247
VDWCONT 3.0694 3.07 -0.0005 1A26.cif A O MET 247 A N SER 249
VDWCONT 3.0698 3.07 -0.0001 1A26.cif A N ALA 56 A O GLN 52
VDWCONT 3.0698 3.07 -0.0001 1A26.cif A O GLN 52 A N ALA 56
VDWCONT 3.071 3.07 0.001 1A26.cif A N ASP 261 A O SER 258
VDWCONT 3.071 3.07 0.001 1A26.cif A O SER 258 A N ASP 261
VDWCONT 3.0724 3.07 0.0024 1A26.cif A N SER 55 A O ARG 51
VDWCONT 3.0724 3.07 0.0024 1A26.cif A O ARG 51 A N SER 55
VDWCONT 3.0726 3.07 0.0026 1A26.cif A N MET 247 A O ASP 246
VDWCONT 3.0726 3.07 0.0026 1A26.cif A O ASP 246 A N MET 247
VDWCONT 3.07 3.07 0 1A26.cif A N GLY 92 A O ASP 90
VDWCONT 3.07 3.07 0 1A26.cif A O ASP 90 A N GLY 92
VDWCONT 3.0735 3.07 0.0035 1A26.cif A N GLN 222 A O SER 221
VDWCONT 3.0735 3.07 0.0035 1A26.cif A O SER 221 A N GLN 222
VDWCONT 3.0737 3.07 0.0037 1A26.cif A N ALA 342 A O ASP 340
VDWCONT 3.0737 3.07 0.0037 1A26.cif A O ASP 340 A N ALA 342
VDWCONT 3.0761 3.07 0.0061 1A26.cif A N LYS 21 A O GLN 17
VDWCONT 3.0761 3.07 0.0061 1A26.cif A O GLN 17 A N LYS 21
VDWCONT 3.0776 3.07 0.0076 1A26.cif A N LYS 300 A O LEU 332
VDWCONT 3.0776 3.07 0.0076 1A26.cif A O LEU 332 A N LYS 300
VDWCONT 3.0786 3.07 0.0086 1A26.cif A N PHE 24 A O ILE 20
VDWCONT 3.0786 3.07 0.0086 1A26.cif A O ILE 20 A N PHE 24
VDWCONT 3.0788 3.07 0.0088 1A26.cif A N LYS 108 A O TYR 104
VDWCONT 3.0788 3.07 0.0088 1A26.cif A O TYR 104 A N LYS 108
VDWCONT 3.2102 3.22 -0.0097 1A26.cif A C ASP 131 A O ASP 131
VDWCONT 3.2102 3.22 -0.0097 1A26.cif A O ASP 131 A C ASP 131
VDWCONT 3.2104 3.22 -0.0095 1A26.cif A C LEU 201 A O LEU 201
VDWCONT 3.2104 3.22 -0.0095 1A26.cif A O LEU 201 A C LEU 201
VDWCONT 3.211 3.22 -0.0089 1A26.cif A C VAL 248 A O VAL 165
VDWCONT 3.211 3.22 -0.0089 1A26.cif A O VAL 165 A C VAL 248
VDWCONT 3.2123 3.22 -0.0076 1A26.cif A C GLN 41 A O GLN 41
VDWCONT 3.2123 3.22 -0.0076 1A26.cif A O GLN 41 A C GLN 41
VDWCONT 3.2124 3.22 -0.0075 1A26.cif A C ASN 114 A O ASN 114
VDWCONT 3.2124 3.22 -0.0075 1A26.cif A O ASN 114 A C ASN 114
VDWCONT 3.2127 3.22 -0.0072 1A26.cif A C ILE 16 A O PRO 15
VDWCONT 3.2127 3.22 -0.0072 1A26.cif A O PRO 15 A C ILE 16
VDWCONT 3.2138 3.22 -0.0061 1A26.cif A C LEU 318 A O GLY 319
VDWCONT 3.2138 3.22 -0.0061 1A26.cif A O GLY 319 A C LEU 318
VDWCONT 3.2139 3.22 -0.006 1A26.cif A C ASP 135 A O ASP 135
VDWCONT 3.2139 3.22 -0.006 1A26.cif A O ASP 135 A C ASP 135
VDWCONT 3.214 3.22 -0.0059 1A26.cif A C ASN 114 A O ASP 113
VDWCONT 3.214 3.22 -0.0059 1A26.cif A C ASP 135 C O HOH .
VDWCONT 3.214 3.22 -0.0059 1A26.cif A C GLY 223 A O LEU 224
VDWCONT 3.214 3.22 -0.0059 1A26.cif A O ASP 113 A C ASN 114
VDWCONT 3.214 3.22 -0.0059 1A26.cif A O LEU 224 A C GLY 223
VDWCONT 3.214 3.22 -0.0059 1A26.cif C O HOH . A C ASP 135
VDWCONT 3.2154 3.22 -0.0045 1A26.cif A C GLN 200 A O LEU 201
VDWCONT 3.2154 3.22 -0.0045 1A26.cif A O LEU 201 A C GLN 200
VDWCONT 3.2155 3.22 -0.0044 1A26.cif A C SER 249 A O SER 249
VDWCONT 3.2155 3.22 -0.0044 1A26.cif A C TYR 84 A O TYR 84
VDWCONT 3.2155 3.22 -0.0044 1A26.cif A O SER 249 A C SER 249
VDWCONT 3.2155 3.22 -0.0044 1A26.cif A O TYR 84 A C TYR 84
VDWCONT 3.2157 3.22 -0.0042 1A26.cif A C GLY 71 A O GLY 70
VDWCONT 3.2157 3.22 -0.0042 1A26.cif A O GLY 70 A C GLY 71
VDWCONT 3.2158 3.22 -0.0041 1A26.cif A C ILE 285 A O SER 283
VDWCONT 3.2158 3.22 -0.0041 1A26.cif A O SER 283 A C ILE 285
VDWCONT 3.2161 3.22 -0.0038 1A26.cif A C LEU 45 C O HOH .
VDWCONT 3.2161 3.22 -0.0038 1A26.cif C O HOH . A C LEU 45
VDWCONT 3.2166 3.22 -0.0033 1A26.cif A C ASP 304 A O THR 306
VDWCONT 3.2166 3.22 -0.0033 1A26.cif A O THR 306 A C ASP 304
VDWCONT 3.2167 3.22 -0.0032 1A26.cif A C MET 237 A O MET 237
VDWCONT 3.2167 3.22 -0.0032 1A26.cif A O MET 237 A C MET 237
VDWCONT 3.2174 3.22 -0.0025 1A26.cif A C VAL 120 A O VAL 120
VDWCONT 3.2174 3.22 -0.0025 1A26.cif A O VAL 120 A C VAL 120
VDWCONT 3.2178 3.22 -0.0021 1A26.cif A C GLY 319 A O ASN 320
VDWCONT 3.2178 3.22 -0.0021 1A26.cif A O ASN 320 A C GLY 319
VDWCONT 3.218 3.22 -0.0019 1A26.cif A C HIS 293 A O LEU 273
VDWCONT 3.218 3.22 -0.0019 1A26.cif A C VAL 67 A O VAL 67
VDWCONT 3.218 3.22 -0.0019 1A26.cif A O LEU 273 A C HIS 293
VDWCONT 3.218 3.22 -0.0019 1A26.cif A O VAL 67 A C VAL 67
VDWCONT 3.2184 3.22 -0.0015 1A26.cif A C THR 85 A O THR 85
VDWCONT 3.2184 3.22 -0.0015 1A26.cif A O THR 85 A C THR 85
VDWCONT 3.2185 3.22 -0.0014 1A26.cif A C TYR 164 A O LEU 206
VDWCONT 3.2185 3.22 -0.0014 1A26.cif A O LEU 206 A C TYR 164
VDWCONT 3.2188 3.22 -0.0011 1A26.cif A C LYS 357 A O LYS 357
VDWCONT 3.2188 3.22 -0.0011 1A26.cif A O LYS 357 A C LYS 357
VDWCONT 3.2196 3.22 -0.0003 1A26.cif A C ALA 260 A O ALA 260
VDWCONT 3.2196 3.22 -0.0003 1A26.cif A O ALA 260 A C ALA 260
VDWCONT 3.2201 3.22 0.0001 1A26.cif A C ALA 66 A O ALA 66
VDWCONT 3.2201 3.22 0.0001 1A26.cif A O ALA 66 A C ALA 66
VDWCONT 3.2205 3.22 0.0005 1A26.cif A C ILE 139 A O ASP 135
VDWCONT 3.2205 3.22 0.0005 1A26.cif A O ASP 135 A C ILE 139
VDWCONT 3.2219 3.22 0.0019 1A26.cif A C TYR 348 A O TYR 348
VDWCONT 3.2219 3.22 0.0019 1A26.cif A O TYR 348 A C TYR 348
VDWCONT 3.2221 3.22 0.0021 1A26.cif A C PRO 305 A O ASP 304
VDWCONT 3.2221 3.22 0.0021 1A26.cif A O ASP 304 A C PRO 305
VDWCONT 3.2226 3.22 0.0026 1A26.cif A C ASP 312 A O ASP 312
VDWCONT 3.2226 3.22 0.0026 1A26.cif A O ASP 312 A C ASP 312
VDWCONT 3.22 3.22 0 1A26.cif A C TYR 195 A O GLU 270
VDWCONT 3.22 3.22 0 1A26.cif A O GLU 270 A C TYR 195
VDWCONT 3.2242 3.22 0.0042 1A26.cif A C ILE 59 A O ILE 59
VDWCONT 3.2242 3.22 0.0042 1A26.cif A C THR 286 A O THR 286
VDWCONT 3.2242 3.22 0.0042 1A26.cif A O ILE 59 A C ILE 59
VDWCONT 3.2242 3.22 0.0042 1A26.cif A O THR 286 A C THR 286
VDWCONT 3.2249 3.22 0.0049 1A26.cif A C ALA 227 A O TYR 236
VDWCONT 3.2249 3.22 0.0049 1A26.cif A O TYR 236 A C ALA 227
VDWCONT 3.2254 3.22 0.0054 1A26.cif A C ASN 281 A O ASN 281
VDWCONT 3.2254 3.22 0.0054 1A26.cif A O ASN 281 A C ASN 281
VDWCONT 3.2257 3.22 0.0057 1A26.cif A C ALA 56 A O ILE 53
VDWCONT 3.2257 3.22 0.0057 1A26.cif A O ILE 53 A C ALA 56
VDWCONT 3.226 3.22 0.006 1A26.cif A C ILE 87 A O TYR 84
VDWCONT 3.226 3.22 0.006 1A26.cif A O TYR 84 A C ILE 87
VDWCONT 3.2267 3.22 0.0067 1A26.cif A C ALA 252 A O ALA 252
VDWCONT 3.2267 3.22 0.0067 1A26.cif A O ALA 252 A C ALA 252
VDWCONT 3.2278 3.22 0.0078 1A26.cif A C VAL 233 A O VAL 233
VDWCONT 3.2278 3.22 0.0078 1A26.cif A O VAL 233 A C VAL 233
VDWCONT 3.2279 3.22 0.0079 1A26.cif A C GLN 259 A O GLN 259
VDWCONT 3.2279 3.22 0.0079 1A26.cif A O GLN 259 A C GLN 259
VDWCONT 3.2281 3.22 0.0081 1A26.cif A C ILE 59 A O ALA 56
VDWCONT 3.2281 3.22 0.0081 1A26.cif A C TYR 333 A O TYR 333
VDWCONT 3.2281 3.22 0.0081 1A26.cif A O ALA 56 A C ILE 59
VDWCONT 3.2281 3.22 0.0081 1A26.cif A O TYR 333 A C TYR 333
VDWCONT 3.228 3.22 0.008 1A26.cif A C VAL 165 A O ILE 161
VDWCONT 3.228 3.22 0.008 1A26.cif A O ILE 161 A C VAL 165
VDWCONT 3.2294 3.22 0.0094 1A26.cif A C ASN 203 A O ASN 203
VDWCONT 3.2294 3.22 0.0094 1A26.cif A O ASN 203 A C ASN 203
VDWCONT 3.2401 3.25 -0.0098 1A26.cif A C LEU 115 A N ASP 117
VDWCONT 3.2401 3.25 -0.0098 1A26.cif A N ASP 117 A C LEU 115
VDWCONT 3.2408 3.25 -0.0091 1A26.cif A C ALA 32 A N VAL 34
VDWCONT 3.2408 3.25 -0.0091 1A26.cif A N VAL 34 A C ALA 32
VDWCONT 3.2429 3.25 -0.007 1A26.cif A C LYS 108 A N GLN 110
VDWCONT 3.2429 3.25 -0.007 1A26.cif A C PHE 24 A N PHE 24
VDWCONT 3.2429 3.25 -0.007 1A26.cif A N GLN 110 A C LYS 108
VDWCONT 3.2429 3.25 -0.007 1A26.cif A N PHE 24 A C PHE 24
VDWCONT 3.24 3.25 -0.0099 1A26.cif A C ILE 160 A N LYS 162
VDWCONT 3.24 3.25 -0.0099 1A26.cif A C PRO 305 A N ALA 307
VDWCONT 3.24 3.25 -0.0099 1A26.cif A N ALA 307 A C PRO 305
VDWCONT 3.24 3.25 -0.0099 1A26.cif A N LYS 162 A C ILE 160
VDWCONT 3.2433 3.25 -0.0066 1A26.cif A C VAL 26 A N GLU 27
VDWCONT 3.2433 3.25 -0.0066 1A26.cif A N GLU 27 A C VAL 26
VDWCONT 3.2435 3.25 -0.0064 1A26.cif A C VAL 63 A N VAL 63
VDWCONT 3.2435 3.25 -0.0064 1A26.cif A N VAL 63 A C VAL 63
VDWCONT 3.2437 3.25 -0.0062 1A26.cif A C GLU 27 A N SER 28
VDWCONT 3.2437 3.25 -0.0062 1A26.cif A N SER 28 A C GLU 27
VDWCONT 3.2451 3.25 -0.0048 1A26.cif A C VAL 233 A N THR 234
VDWCONT 3.2451 3.25 -0.0048 1A26.cif A N THR 234 A C VAL 233
VDWCONT 3.2468 3.25 -0.0031 1A26.cif A C ASP 312 A N VAL 314
VDWCONT 3.2468 3.25 -0.0031 1A26.cif A N VAL 314 A C ASP 312
VDWCONT 3.251 3.25 0.001 1A26.cif A C GLU 27 A N MET 29
VDWCONT 3.251 3.25 0.001 1A26.cif A N MET 29 A C GLU 27
VDWCONT 3.2513 3.25 0.0013 1A26.cif A C GLU 73 A N SER 74
VDWCONT 3.2513 3.25 0.0013 1A26.cif A N SER 74 A C GLU 73
VDWCONT 3.2543 3.25 0.0043 1A26.cif A C ILE 105 A N ALA 107
VDWCONT 3.2543 3.25 0.0043 1A26.cif A N ALA 107 A C ILE 105
VDWCONT 3.2551 3.25 0.0051 1A26.cif A C SER 28 A N MET 29
VDWCONT 3.2551 3.25 0.0051 1A26.cif A N MET 29 A C SER 28
VDWCONT 3.255 3.25 0.005 1A26.cif A C ALA 107 A N VAL 109
VDWCONT 3.255 3.25 0.005 1A26.cif A N VAL 109 A C ALA 107
VDWCONT 3.2558 3.25 0.0058 1A26.cif A C LEU 220 A N SER 221
VDWCONT 3.2558 3.25 0.0058 1A26.cif A N SER 221 A C LEU 220
VDWCONT 3.2565 3.25 0.0065 1A26.cif A C LEU 79 A N ASN 81
VDWCONT 3.2565 3.25 0.0065 1A26.cif A N ASN 81 A C LEU 79
VDWCONT 3.2571 3.25 0.0071 1A26.cif A C PHE 244 A N PHE 244
VDWCONT 3.2571 3.25 0.0071 1A26.cif A N PHE 244 A C PHE 244
VDWCONT 3.2582 3.25 0.0082 1A26.cif A C GLU 156 A N ALA 158
VDWCONT 3.2582 3.25 0.0082 1A26.cif A N ALA 158 A C GLU 156
VDWCONT 3.258 3.25 0.008 1A26.cif A C GLN 41 A N LYS 42
VDWCONT 3.258 3.25 0.008 1A26.cif A N LYS 42 A C GLN 41
VDWCONT 3.2584 3.25 0.0084 1A26.cif A C LYS 287 A N LEU 288
VDWCONT 3.2584 3.25 0.0084 1A26.cif A N LEU 288 A C LYS 287
VDWCONT 3.2585 3.25 0.0085 1A26.cif A C TYR 104 A N ILE 105
VDWCONT 3.2585 3.25 0.0085 1A26.cif A N ILE 105 A C TYR 104
VDWCONT 3.2591 3.25 0.0091 1A26.cif A C PRO 229 A N ALA 231
VDWCONT 3.2591 3.25 0.0091 1A26.cif A N ALA 231 A C PRO 229
VDWCONT 3.3907 3.4 -0.0092 1A26.cif A C ALA 245 A C ASP 246
VDWCONT 3.3907 3.4 -0.0092 1A26.cif A C ASP 246 A C ALA 245
VDWCONT 3.3913 3.4 -0.0086 1A26.cif A C LYS 11 A C SER 10
VDWCONT 3.3913 3.4 -0.0086 1A26.cif A C SER 10 A C LYS 11
VDWCONT 3.3915 3.4 -0.0084 1A26.cif A C ASP 328 A C THR 329
VDWCONT 3.3915 3.4 -0.0084 1A26.cif A C THR 329 A C ASP 328
VDWCONT 3.3926 3.4 -0.0073 1A26.cif A C GLY 241 A C ILE 242
VDWCONT 3.3926 3.4 -0.0073 1A26.cif A C ILE 242 A C GLY 241
VDWCONT 3.3938 3.4 -0.0061 1A26.cif A C PRO 97 A C PRO 97
VDWCONT 3.3938 3.4 -0.0061 1A26.cif A C PRO 97 A C PRO 97
VDWCONT 3.3943 3.4 -0.0056 1A26.cif A C THR 308 A C THR 309
VDWCONT 3.3943 3.4 -0.0056 1A26.cif A C THR 309 A C THR 308
VDWCONT 3.394 3.4 -0.0059 1A26.cif A C PHE 184 A C PHE 184
VDWCONT 3.394 3.4 -0.0059 1A26.cif A C PHE 184 A C PHE 184
VDWCONT 3.3979 3.4 -0.002 1A26.cif A C ASN 327 A C ILE 326
VDWCONT 3.3979 3.4 -0.002 1A26.cif A C ILE 326 A C ASN 327
VDWCONT 3.3981 3.4 -0.0018 1A26.cif A C LEU 267 A C LEU 268
VDWCONT 3.3981 3.4 -0.0018 1A26.cif A C LEU 268 A C LEU 267
VDWCONT 3.398 3.4 -0.0019 1A26.cif A C LYS 347 A C TYR 348
VDWCONT 3.398 3.4 -0.0019 1A26.cif A C TYR 348 A C LYS 347
VDWCONT 3.3986 3.4 -0.0013 1A26.cif A C ILE 23 A C PHE 24
VDWCONT 3.3986 3.4 -0.0013 1A26.cif A C PHE 24 A C ILE 23
VDWCONT 3.3999 3.4 0 1A26.cif A C LEU 178 A C LYS 179
VDWCONT 3.3999 3.4 0 1A26.cif A C LYS 179 A C LEU 178
VDWCONT 3.4014 3.4 0.0014 1A26.cif A C ILE 337 A C VAL 338
VDWCONT 3.4014 3.4 0.0014 1A26.cif A C VAL 338 A C ILE 337
VDWCONT 3.4019 3.4 0.0019 1A26.cif A C LYS 296 A C LYS 296
VDWCONT 3.4019 3.4 0.0019 1A26.cif A C LYS 296 A C LYS 296
VDWCONT 3.4025 3.4 0.0025 1A26.cif A C MET 237 B C CNA .
VDWCONT 3.4025 3.4 0.0025 1A26.cif B C CNA . A C MET 237
VDWCONT 3.4027 3.4 0.0027 1A26.cif A C LEU 178 A C LYS 179
VDWCONT 3.4027 3.4 0.0027 1A26.cif A C LYS 179 A C LEU 178
VDWCONT 3.4036 3.4 0.0036 1A26.cif A C LYS 42 A C MET 43
VDWCONT 3.4036 3.4 0.0036 1A26.cif A C MET 43 A C LYS 42
VDWCONT 3.4043 3.4 0.0043 1A26.cif A C GLU 230 A C GLU 230
VDWCONT 3.4043 3.4 0.0043 1A26.cif A C GLU 230 A C GLU 230
VDWCONT 3.4045 3.4 0.0045 1A26.cif A C ASP 261 A C PRO 262
VDWCONT 3.4045 3.4 0.0045 1A26.cif A C PRO 262 A C ASP 261
VDWCONT 3.4047 3.4 0.0047 1A26.cif A C LEU 332 A C TYR 333
VDWCONT 3.4047 3.4 0.0047 1A26.cif A C TYR 333 A C LEU 332
VDWCONT 3.405 3.4 0.005 1A26.cif A C ARG 204 A C GLN 205
VDWCONT 3.405 3.4 0.005 1A26.cif A C GLN 205 A C ARG 204
VDWCONT 3.4075 3.4 0.0075 1A26.cif A C TRP 208 A C TRP 208
VDWCONT 3.4075 3.4 0.0075 1A26.cif A C TRP 208 A C TRP 208
VDWCONT 3.408 3.4 0.008 1A26.cif A C LEU 298 A C LYS 296
VDWCONT 3.408 3.4 0.008 1A26.cif A C LYS 296 A C LEU 298
VDWCONT 3.4095 3.4 0.0095 1A26.cif A C PRO 317 A C PRO 317
VDWCONT 3.4095 3.4 0.0095 1A26.cif A C PRO 317 A C PRO 317
|
0cc97ce2d32c3b846325fd85c80dead486c1af86
|
e8dbcf469ba8a31d6926ba791ebc5dcccd50282b
|
/css/Scripts/Funciones/get_religion.tst
|
8f57add9004d425680bef3efaac2241d7c2702ef
|
[] |
no_license
|
bryanjimenezchacon/bryanjimenezchacon.github.io
|
5f2a0f1dbfbc584a65dece48f98b1c13d755512f
|
7062d1860934808265c05491007c83f69da1112a
|
refs/heads/master
| 2021-01-23T17:20:11.542585
| 2015-10-10T05:52:52
| 2015-10-10T05:52:52
| 41,244,377
| 2
| 0
| null | 2015-08-26T15:46:04
| 2015-08-23T09:52:06
|
JavaScript
|
UTF-8
|
Scilab
| false
| false
| 171
|
tst
|
get_religion.tst
|
PL/SQL Developer Test script 3.0
4
begin
-- Call the function
:result := get_religion(preligion_id => :preligion_id);
end;
2
result
1
Panteismo
5
preligion_id
1
1
4
0
|
46100f614cf9e7e75712aefc887e82452ecbb39d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2870/CH8/EX8.12/Ex8_12.sce
|
b4feb243792439bd7a76d879d72e2566879728cf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 359
|
sce
|
Ex8_12.sce
|
clc;clear;
//Example 8.12
//given data
m=2;
T0=70+460;//in R
P1=20;
T1=70+460;//in R
T2=130+460;//in R
//constants used
Cv=0.172;//in Btu/lbm - F
//calculations
Xdestroyed=T0*m*Cv*log(T2/T1);
disp(Xdestroyed,'exergy destroyed in Btu');
Wrev=integrate('(1-T0/T)*m*Cv','T',T1,T2);
Wrev=round(Wrev);
disp(Wrev,'the reversible work in Btu')
|
7575eb2e8708d3e6a3ec56414b10920162ae7bae
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1439/CH6/EX6.4/6_4.sce
|
d2f86a61f5d28cada01f60005dd3fc9a3dc9a8a6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 252
|
sce
|
6_4.sce
|
clc
//initialisation of variables
y1= 32.47*10^-4
y2= 34.71*10^-4
x1= 1.625
x2= 1.107
R= 1.987 //cal mole^-1 K^-1
//CALCULATIONS
slope= (x2-x1)/(y2-y1)
Hvap= -slope*2.303*R
//RESULTS
printf ('Heat of vapourization= %.f cal mole^-1',Hvap)
|
0b59757a03474693124992d8fd2212f15f027f65
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/964/CH15/EX15.1/15_1.sce
|
57a5b950c95d004cd9462e784b9a60c0b8bfc0db
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 507
|
sce
|
15_1.sce
|
clc;
clear;
regular=[7 10 9 150];
premium=[11 8 6 175];
res_avail=[77 80];
//total profit(to be maximized)=z=150*x1+175*x2
//total gas used=7*x1+11*x2 (has to be less than 77 m^3/week)
//similarly other constraints are developed
disp("Maximize z=150*x1+175*x2")
disp("subject to")
disp("7*x1+11*x2<=77 (Material constraint)")
disp("10*x1+8*x2<=80 (Time constraint)")
disp("x1<=9 (Regular storage constraint)")
disp("x2<=6 (Premium storage constraint)")
disp("x1,x2>=0 (Positivity constraint)")
|
91c12864bf8a63ef02951d4201a89835f18326f0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/632/CH12/EX12.1/example12_1.sce
|
c6af8f7c6d27f4c18b0acd0e235ce6c377b9079d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 612
|
sce
|
example12_1.sce
|
//clc()
N = 100;//mol gas mixture burned
//CO(g) + 1/2 O2(g) = CO2 - Hr1 = - 282.91kJ/mol
//H2(g) + 1/2 O2(g) = H2O - Hr2 = - 241.83kJ/mol
Hr1 = - 282.91;//kJ/mol
Hr2 = - 241.83;//kJ/mol
Nco1 = 20;
Nh21 = 30;
Nn21 = 50;
Htotal = Nco1*Hr1 + Nh21*Hr2;
disp("kJ",-Htotal,"the amount of heat liberated on the complete combustion of 100mol of the gas mixture = ")
Ncoreac = Nco1 * 0.9;
Nh2reac = Nh21 * 0.8;
Htotal1 = Ncoreac*Hr1 + Nh2reac*Hr2;
disp("kJ",-Htotal1,"the amount of heat liberated if only 90% of CO and 80% of H2 react of 100mol of the gas mixture = ")
|
7f0786ed1ca7b78bbe226c0a79ba1e38a9dec8f5
|
6813325b126713766d9778d7665c10b5ba67227b
|
/Chapter6/Ch_6_Eg_6.19.sce
|
46d945780cb7055a683420a8944b008d705b746c
|
[] |
no_license
|
arvindrachna/Introduction_to_Scilab
|
955b2063b3faa33a855d18ac41ed7e0e3ab6bd1f
|
9ca5d6be99e0536ba1c08a7a1bf4ba64620ec140
|
refs/heads/master
| 2020-03-15T19:26:52.964755
| 2018-05-31T04:49:57
| 2018-05-31T04:49:57
| 132,308,878
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 299
|
sce
|
Ch_6_Eg_6.19.sce
|
// A program to read data from a string.
mprintf("\nEnter a string in the format Name:ABC,ID:01,Age:20,Weight:50.35kg");
s=mscanf("%s");
[n,Name,ID,Age,Weight]=msscanf(s,"Name:%3s,ID:%d,Age:%d,Weight:%fkg");
disp(Weight,Age,ID,n);
A=msscanf(s,"Name:%3s,ID:%d,Age:%d,Weight:%fkg");
disp(A);
|
65f1e505d85dc54a202de45619b6cf71d5d2c083
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2219/CH9/EX9.6/Ex9_6.sce
|
04ed7d169b24cd18f4fd67360e6cdbe768b85d64
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,018
|
sce
|
Ex9_6.sce
|
// Chapter 9 example 6
//------------------------------------------------------------------------------
clc;
clear;
// Given Data
Vs = 330; // velocity of sound in m/s
NM = 1.85*(5/18) // 1NM equivalent in m/s
V1 = 0.5; // velocity of first aircraft in mach
V2 = 400; // velocity of second aircraft in NM/hr
theta = 30; // angle with radial axis in degrees
lamda = 3*10^-2; // wavelength in m
// Calculations
v1 = V1*Vs // velocity of first aircraft in m/s
fd1 = (2*v1)/lamda // doppler freq.
v2 = V2*NM*cos(30*(%pi/180)) // velocity of second aircraft in m/s
fd2 = (2*v2)/lamda // doppler freq
dd = fd2 - fd1 // doppler difference
Tl = 1/dd // look time in s
// Output
mprintf('Required minimum look time = %3.2f ms',Tl/10^-3);
mprintf('\n Note: Cos(30) value is taken as 0.5 in textbook');
//------------------------------------------------------------------------------
|
25f550c34656ea914425d7d669461ef6bfafc893
|
3e5f48beb8d918ce886ffe48f120a181840d28b5
|
/Algebra Linear Algoritmica/paraboloide.sce
|
24b8d942de77b45ce14348f4096f2c0d48a5b88d
|
[
"MIT"
] |
permissive
|
elvisigkeit/graduate-stuff
|
dd0e11dd5c7765adc77835f4ba96b53d7d25717c
|
700c8e97cefffcb48dccccdefefb3a470df29f1f
|
refs/heads/master
| 2023-05-31T05:25:36.381690
| 2021-06-17T01:53:38
| 2021-06-17T01:53:38
| 212,691,118
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 428
|
sce
|
paraboloide.sce
|
clear
//Definida positiva
//A = [2, 0; 0, 2]
//Definida negativa
//A = [-4, 1; 2, -5]
//Semidefinida positiva
//A = [2, 2; 1, 1]
//Semidefinida negativa
//A = -1*[2, 2; 1, 1]
//Indefinida
//A = [-4, 2; 0, 7]
A = -1*[2, 2; 1, 1]
b = [1; 1]
c = 3
x = -4:0.1:4
y = -4:0.1:4
cx = length(x)
cy = length(y)
for i = 1:cx
for j = 1:cy
v = [x(i); y(j)]
Z(i, j) = v'*A*v + b'*v + c
end
end
surf(x, y, Z)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.