blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
6
214
content_id
stringlengths
40
40
detected_licenses
listlengths
0
50
license_type
stringclasses
2 values
repo_name
stringlengths
6
87
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
15 values
visit_date
timestamp[us]date
2016-08-04 09:00:04
2023-09-05 17:18:33
revision_date
timestamp[us]date
1998-12-11 00:15:10
2023-09-02 05:42:40
committer_date
timestamp[us]date
2005-04-26 09:58:02
2023-09-02 05:42:40
github_id
int64
436k
586M
star_events_count
int64
0
12.3k
fork_events_count
int64
0
6.3k
gha_license_id
stringclasses
7 values
gha_event_created_at
timestamp[us]date
2012-11-16 11:45:07
2023-09-14 20:45:37
gha_created_at
timestamp[us]date
2010-03-22 23:34:58
2023-01-07 03:47:44
gha_language
stringclasses
36 values
src_encoding
stringclasses
17 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
5
10.4M
extension
stringclasses
15 values
filename
stringlengths
2
96
content
stringlengths
5
10.4M
7970b5eacefdb2edd12055cb2528bbaefb18db7c
4ebea1be375a38f07d1b8536e25cd91584882389
/src/test/example013.tst
e6f532151d16f6877a36734702adbf7dd69f8dad
[ "MIT" ]
permissive
robertsmeets/rjhg-pl
f5c2d850ba7a5e3daa0d4147357d37a275c7100a
87721b77f92d5180c34123265fac70dcf54c77a9
refs/heads/master
2021-05-22T06:46:14.395448
2021-02-21T05:54:35
2021-02-21T05:54:35
32,521,807
1
1
MIT
2020-05-17T16:48:51
2015-03-19T13:07:49
C
UTF-8
Scilab
false
false
26
tst
example013.tst
add some strings together
0cb31375d2ae204e8f189fa6348b99b808c50fbf
0bb08b35184b47c6f5e74d41f7cb0b927162dd82
/test/teste3.tst
20c86812a56b156851579a9f640b4db347e7c04e
[]
no_license
DanielPBL/tp_compiladores
6df7d3bde74d7e4098a32914396f1bdfef7f4843
6536f3588785819f5e28d6358fc36e53c7d52adb
refs/heads/master
2021-01-19T01:10:25.009830
2017-06-29T20:20:23
2017-06-29T20:20:23
87,229,469
1
1
null
null
null
null
UTF-8
Scilab
false
false
306
tst
teste3.tst
{ Programa de Teste Calculo de idade } init cont_, qtd is integer; media, idade, soma, altura is integer; cont_ := 5; soma := 0; do write("Altura: "); read (altura); soma := soma + altura; cont_ := cont_ - 1; while (cont_ > 0); write("Media: "); write(soma / qtd); stop
688928edfd4f76da6824eb521165053a3c781806
b829a470efb851fdd8700559c2092711adaa42e0
/Data/OVI-CV-03-Facenet/CV-Groups/cv-group-114528472701/OVI-Test/cv-group-114528472701-run-03.tst
179068135c447cd25c9c435f31e902b9905081db
[]
no_license
achbogga/FaceRecognition
6f9d50bd1f32f2eb7f23c7ae56f9e7b225d32325
165ebc7658228d2cceaee4619e129e248665c49a
refs/heads/master
2021-07-04T21:47:57.252016
2017-08-01T18:53:12
2017-08-01T18:53:12
96,568,452
0
0
null
null
null
null
UTF-8
Scilab
false
false
504
tst
cv-group-114528472701-run-03.tst
Huiping\Huiping_018.jpg Huiping\Huiping_014.jpg Don\Don_003.jpg Don\Don_012.jpg Shirley\Shirley_001.jpg Shirley\Shirley_006.jpg Kiran\Kiran_012.jpg Kiran\Kiran_016.jpg Allison\Allison_013.jpg Allison\Allison_010.jpg Amit\Amit_010.jpg Amit\Amit_004.jpg Gang\Gang_008.jpg Gang\Gang_014.jpg Ethan\Ethan_013.jpg Ethan\Ethan_005.jpg Rob\Rob_001.jpg Rob\Rob_003.jpg Nara\Nara_009.jpg Nara\Nara_013.jpg Weihong\Weihong_010.jpg Weihong\Weihong_003.jpg Dave\Dave_010.jpg Dave\Dave_005.jpg
14265153d902cf3534cce5e123ea7a0375d9bed4
449d555969bfd7befe906877abab098c6e63a0e8
/2417/CH7/EX7.9/Ex7_9.sce
cdc248f3d348c00065ea267a5f13296536fe34e8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
2,166
sce
Ex7_9.sce
//scilab 5.4.1 clear; clc; printf("\t\t\tProblem Number 7.9\n\n\n"); // Chapter 7 : Mixtures Of Ideal Gases // Problem 7.9 (page no. 331) // Solution //Given: cp of oxygen is 0.23 Btu/lbm*R.cp of nitrogen is 0.25 Btu/lbm*R. 160 lbm/hr of oxygen and 196 lbm/hr of nitrogen are mixed.oxygen is at 500 F and nitrogen is at 200 F. //The energy equation for the steady-flow,adiaatic mixing process gives us the requirement that the enthalpy of the mixture must equal to the enthalpies of the components,because deltah=q=0.An alternative statement of this requirement is that the gain in enthalpy of the nitrogen must equal the decrease in enthalpy of the oxygen.Using the latter statement,that the change in enthalpy of nitrogen,yields // (160*0.23*(500-tm)) = (196*0.25*(tm-200)) where tm=mixture temperature //where m*cp*deltat has been used for deltah. //cp=specific heat at constant pressure //Unit for cp is Btu/lbm*R //rearranging the above equation, tm=((500*160*0.23)+(196*0.25*200))/((196*0.25)+(160*0.23)); //tm=mixture temperature //Unit:fahrenheit printf("The final temperature of the mixture is %f F\n",tm); //Using the requirement that the enthalpy of the mixture must equal to the sum of the enthalpies of the components yields an alternative solution to this problem.Let us assume that at 0 F,the enthalpy of each gas and of the mixture is zero.The enthalpy of the entering oxygen is (160*0.23*(500-0)),and the enthalpy of the entering nitrogen is (196*0.25*(200-0)).The enthalpy of the mixture is ((160+196)*cpm*(tm-0)) //Therefore, (160*0.23*500)+(196*0.25*200) = ((160+196)*cpm*tm) cpm=((160/(160+196))*0.23)+((196/(160+196))*0.25); //specific heat at constant pressure for gas mixture //Btu/lbm*R printf("For mixture,Specific heat at constant pressure is %f Btu/lbm*R\n",cpm); //therefore, tm=((160*0.23*500)+(196*0.25*200))/(cpm*(160+196)); //tm=mixture temperature //Unit:fahrenheit printf("By using value of cpm,The final temperature of the mixture is %f F\n",tm); //The use of 0 F as a base was arbitrary but convenient.Any base would yield the same results. //The answer of cpm is wrong in the book.
0631b7ecae37e493716994b4b7d85480f0d76cd9
449d555969bfd7befe906877abab098c6e63a0e8
/3523/CH12/EX12.17.2/Ex12_2.sce
d3b5bb8872186e51476538d823cc8121db608f79
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
285
sce
Ex12_2.sce
//Example 2// Ch 12 clc; clear; close; // given data V=100;//in kV Em=55;//max permissible gradient in kV/cm //voltage gradient at the conductor surface is inversely proportional to the core radius r=V*sqrt(2)/Em;//conductor radius in cm printf("conductor radius %f cm",r)
4af00d157e551112d8f28b2233b0f34cc08c0b94
484e05962b62928b49ae2e8fd80d4c45031eb3dc
/cfx/cfx.tst
70f4fc2b1ab5ff90c8e748815a2102bd14c7b436
[]
no_license
Royallle/hdl_cfx
adbb9dce7e3ae69507a4c1b26cddbd3b3a9eb0dc
52cbe66f365516b659b65909e86aacb60da0342b
refs/heads/master
2022-02-24T06:54:22.169423
2019-09-15T15:29:35
2019-09-15T15:29:35
110,464,895
0
0
null
2017-11-14T13:40:42
2017-11-12T20:05:58
Scilab
UTF-8
Scilab
false
false
553
tst
cfx.tst
// Script de teste do circuito Principal load cfx.hdl, output-file cfx.out, compare-to cfx.cmp, output-list x%B1.5.1 y%B1.5.1 nx%B2.1.2 ny%B2.1.2 px%B2.1.2 py%B2.1.2 zx%B2.1.2 zy%B2.1.2 eq%B2.1.2 si%B2.1.2 outsum%B1.5.1 outsub%B1.5.1 outsix%B1.5.1 overflow%B2.5.2; set x %B00000, // x=0 y=0 set y %B00000, eval, output; set x %B00011, // x=3 y=2 set y %B00010, eval, output; set x %B00101, // x=5 y=-5 set y %B11011, eval, output; set x %B01000, // x=8 y=8 set y %B01000, eval, output; set x %B10110, // x=-10 y=-5 set y %B11011, eval, output;
b6086bd7053df876b4b08e7f58b766bc09f0c027
1bb72df9a084fe4f8c0ec39f778282eb52750801
/test/RT23.prev.tst
8dd73c06f5078072bbb0a6787ed5297e1fe0cee9
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
gfis/ramath
498adfc7a6d353d4775b33020fdf992628e3fbff
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
refs/heads/master
2023-08-17T00:10:37.092379
2023-08-04T07:48:00
2023-08-04T07:48:00
30,116,803
2
0
null
null
null
null
UTF-8
Scilab
false
false
636
tst
RT23.prev.tst
[[1],[4,7],[9,17,15],[8,22,27,18]] / [[1],[2,3]] = quot[2,2] = 6, remd = [[1],[4,7],[9,17,15],[8,22,27,18]], prod = [[0],[0,0],[0,0,6],[0,0,12,18]] quot[2,1] = 5, remd = [[1],[4,7],[9,17,9],[8,22,15], prod = [[0],[0,0],[0,5,0],[0,10,15] quot[2,0] = 4, remd = [[1],[4,7],[9,12,9],[8,12], prod = [[0],[0,0],[4,0,0],[8,12] quot[1,1] = 3, remd = [[1],[4,7],[5,12,9]], prod = [[0],[0,3],[0,6,9]] quot[1,0] = 2, remd = [[1],[4,4],[5,6], prod = [[0],[2,0],[4,6] quot[0,0] = 4/3, remd = [[1],[2,4],[1], prod = [[4/3],[8/3,4]] [[4/3],[2,3],[4,5,6]], remainder = [[-1/3],[-2/3,0],[1] 2*x + 4*x^2 + 3*x*y + 5*x^2*y + 6*x^2*y^2, rest=x^2
7f5e7969feb96dcd8935b95e6b43d723dbd081b4
449d555969bfd7befe906877abab098c6e63a0e8
/2243/CH3/EX3.6/Ex3_6.sce
8b5f140b23ea2ec35bf1118b183933af2703061b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
2,309
sce
Ex3_6.sce
clc(); clear; //Given: lambda = 5890; // Wavelength of a beam of sodium light in A l = 100 ; // thickness in cm mu1 = 1.00;//refractive index of air mu2 = 1.33;// refractive index of water mu3 = 1.39; // refractive index of oil mu4 = 1.64; // refractive index of glass c = 3*10^8 ;// Velocity of light in vacuum in m/s //For Air : lambda1 = lambda/mu1; // wavelength of light in A v1 = c/mu1;// Velocity of light in air in m/s // 1cm = 1*10^-2 m t1 = (l*10^-2/v1); //time of travel in s // 1 A = 1*10^-10 m N1 = (l*10^-2)/(lambda1*10^-10);// Number of waves delta1 = mu1*l; //Optical path in cm //For Water : lambda2 = lambda/mu2; // wavelength of light in A v2 = c/mu2;// Velocity of light in water in m/s //1cm = 1*10^-2 m t2 = (l*10^-2/v2); //time of travel in s //1 A = 1*10^-10 m N2 = (l*10^-2)/(lambda2*10^-10);// Number of waves delta2 = mu2*l; //Optical path in cm //For Oil : lambda3 = lambda/mu3; // wavelength of light in A v3 = c/mu3;// Velocity of light in Oil in m/s //1cm = 1*10^-2 m t3 = (l*10^-2/v3); //time of travel in s //1 A = 1*10^-10 m N3 = (l*10^-2)/(lambda3*10^-10);// Number of waves delta3 = mu3*l; //Optical path in cm //For Glass: lambda4 = lambda/mu4; // wavelength of light in A v4 = c/mu4;// Velocity of light in Glass in m/s // 1cm = 1*10^-2 m t4 = (l*10^-2/v4); //time of travel in s //1 A = 1*10^-10 m N4 = (l*10^-2)/(lambda4*10^-10);// Number of waves delta4 = mu4*l; //Optical path in cm delta = delta1+delta2+delta3+delta4; // total optical path in cm printf("Parameters \t\t\t Air \t\t\t Water \t\t\t Oil \t\t\tGlass \n\n"); printf("Wavelength : \t\t %.0f A \t\t %.1f A \t\t %.1f A \t\t %.1f A \n",lambda1,lambda2,lambda3,lambda4); printf("Velocity : \t\t %.0f x 10^8 m/s \t\t %.2f x 10^8m/s \t %.2f x 10^8 m/s \t %.2f x 10^8 m/s \n",v1*10^-8,v2*10^-8,v3*10^-8,v4*10^-8); printf("Time of travel : \t %2.1f x 10^-10 s\t %2.1f x 10^-10 s\t %2.1f x 10^-10 s\t %2.1f x 10^-10 s \n",t1*10^10,t2*10^10,t3*10^10,t4*10^10); printf("Number of waves: \t %.1f x 10^6 \t\t %.1f x 10^6 \t\t %.1f x 10^6 \t\t %.1f x10^6 \n",N1*10^-6,N2*10^-6,N3*10^-6,N4*10^-6); printf("Optical path : \t\t %d cm \t\t %d cm \t\t %d cm \t\t %d cm \n\n",delta1,delta2,delta3,delta4); printf(" The total optical path = %d cm\n\n",delta);
1c63dff4ca5aebcbb3e1534e1f6904dbd0cd30d3
449d555969bfd7befe906877abab098c6e63a0e8
/3159/CH11/EX11.4/Ex11_4.sce
d323041bdb97a0a452fcdd12b6022a1c28d0e886
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
556
sce
Ex11_4.sce
// Find the yield stress for a grain size of ASTM 9 clc sigma1 = 120 // initial yield strength of material in MNm^-2 sigma2 = 220 // Final yield strength of material in MN m^-2 d1 = 0.04 // initial diameter in mm d2 = 0.01 // final diameter in mm n = 9 // astm number printf("Example 11.4") k = (sigma2-sigma1)*1e6/(1/sqrt(d2*1e-3)-1/sqrt(d1*1e-3)) sigma_i = sigma1*1e6 -k/sqrt((d1*1e-3)) d = 1/sqrt(2^(n-1)*1e4/645) sigma_y = sigma_i+k*(d*1e-3)^(-0.5) printf("\n Yield stress for a grain size of ASTM 9 is %d MN m^-2",ceil(sigma_y/1e6))
a25f485495ba206974993275708e8fa2a3252dd2
449d555969bfd7befe906877abab098c6e63a0e8
/181/CH6/EX6.7/example6_7.sce
378ef574b94e2af0c44c6facb725ae1cdd215402
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
817
sce
example6_7.sce
// Determine Vgs,Id,Vds // Determine Vgs,Id,Vds,operating region // Basic Electronics // By Debashis De // First Edition, 2010 // Dorling Kindersley Pvt. Ltd. India // Example 6-7 in page 277 clear; clc; close; // Given data Ids=8*10^-3; // Drain current in mA Vp=-4; // Peak voltage in V Vdd=18; // Drain voltage in V Rd=8*10^3; // Drain resistance in K-ohms // Calculation vgs1=(-214+sqrt(214^2-(4*63*180)))/(2*63); vgs2=(-214-sqrt(214^2-(4*63*180)))/(2*63); printf("(a)Vgs = %0.2f V,%0.2f V\n",vgs1,vgs2); id1=-vgs1/(1*10^3); id2=-vgs2/(1*10^3); printf("(b)Id = %0.2e A,%0.2e A\n",id1,id2); Vds1=((-9*10^3)*id1)+18; Vds2=((-9*10^3)*id2)+18; printf("(c)Vds = %0.2f V,%0.2f V",Vds1,Vds2); // Result // (a) Vgs = -1.53 V,-1.86 V // (b) Id = 1.53 mA,1.86 mA // (c) Vds = 4.23 V,1.26 V
c9afb27d94cb734b9210b7ec7909e8b89f7550f6
5f48beee3dc825617c83ba20a7c82c544061af65
/tests/l/11.tst
60f3a96d2cc171b60cd9f892c1d33ec7ec4fb389
[]
no_license
grenkin/compiler
bed06cd6dac49c1ca89d2723174210cd3dc8efea
30634ec46fba10333cf284399f577be7fb8e5b61
refs/heads/master
2020-06-20T12:44:17.903582
2016-11-27T03:08:20
2016-11-27T03:08:20
74,863,612
3
0
null
null
null
null
UTF-8
Scilab
false
false
93
tst
11.tst
.,:&|^~!*/+->< {}()[];abc., 8 9 10 /* 11 12 13 14 15 16 17 18 19 /*20 */ 21 22 23 24*/ 25
fc0937cabfb39b3f50b27a006f00b0862234b737
449d555969bfd7befe906877abab098c6e63a0e8
/3871/CH6/EX6.2/Ex6_2.sce
ff969b20e442c4eaf07f57536cf21200842ca257
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,128
sce
Ex6_2.sce
//=========================================================================== //chapter 6 example 2 clc;clear all; //variable declaration Rm = 1; //instrument resistance in Ω Rse = 4999; //series resistance in Ω V = 250; //full-scale deflection voltage in V Rs = 4999; //Shunt resistance in Ω(Rs =1/(499)) I1 = 50; //full-scale defelction current in A //calculations Rs1 = 1/(Rs); Im = V/(Rm+Rse); //full-scale deflection current in A I = Im*(1+(Rm/Rs1)); //current in A N = I1/(Im); Rsh = Rm/(N-1); //shunt resistance in Ω //result mprintf("full-scale defelction current in Im = %3.2f A",Im); mprintf("\ncurrent range of instrument when used as an ammeter with coil connected across shunt is I = %3.2f A",I); mprintf("\nShunt resistance for the instrument to give a full-scale deflection of 50A is Rsh = %3.4f Ω",Rsh);
97e2fc0e23870a07c5a0c956a6376d01bc4cc9e5
449d555969bfd7befe906877abab098c6e63a0e8
/2126/CH1/EX1.1/1.sce
da3db8f9498cb65f10c578405281c1d17bce6a1c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
800
sce
1.sce
clc clear //Input data m=0.75 //Mass of air in kg T1=800 //Intial Temperature in K P1=400 //Initial Pressure in kPa P2=150 //Final Pressure in kPa k=1.4 //Adiabatic constant R=0.287 //Specific Gas constant in J/kg-K //Calculation p1=P2/P1 //pressure ratio of process T2=T1*p1^((k-1)/k) //Final temperature in K W=((m*R*(T1-T2))/(k-1)) //Workdone in kJ //P-V Diagram scf() clf() V1=(((m*R*T1)/P1)^(1/k))*10^3 //Inlet volume in cc V2=(((m*R*T2)/P2)^(1/k))*10^3 //Final volume in cc V = V1:(V2-V1)/100:V2 //Representing volume on graph, adiabatic expansion P = P1*V1^k./V^k //Representing pressure on graph plot(V, P) //Plotting legend('P*V^k=C') //Defining curve xtitle("PV Diagram", "V (cc)", "P (kPa)") //Titles of axes //Output printf('Workdone is %3.2f kJ',W)
db1ac03082cea6cb668c22f4430205e2da54b907
449d555969bfd7befe906877abab098c6e63a0e8
/25/CH8/EX8.2/8_2.sce
e792650f8c5f1e8cc9dda6fc0411b12429a2fc22
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
383
sce
8_2.sce
//example:-8.2,page no.-398. // program to design an equi-split wilkinson power divider for 50 ohm system impedence. Zo=50; Z=sqrt(2)*Zo; // impedence of quarter wave transmission line. R=2*Zo; // shunt resistor. disp(R,'the shunt resistance value should be in ohm = ') disp(Z,'the quarter wave transmission line in the divide should have a characteristic impedence in ohm = ')
585d264c342a9a58816c79e18f7b78b75adda463
449d555969bfd7befe906877abab098c6e63a0e8
/803/CH8/EX8.5/ex8_5.sce
c5bd3544c69aa542a3cdb93d99a714494e66f4d1
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
739
sce
ex8_5.sce
clc n=10;...................................//total pulses selected p=0.8;..................................//probability of pulses hitting the dish q=0.2;..................................//probability of miss add=0; for k=2; x(k)=((factorial(n)*(p^k)*((1-p)^(n-k)))/(factorial(k)*factorial(n-k))); disp(x(k),"Exactly two pulses missing the target"); end; for k=0:1 x(k)=((factorial(n)*(p^k)*((1-p)^(n-k)))/(factorial(k)*factorial(n-k))); add=add+x(k); end; y(k)=1-add; disp(y(k),"Two or more pulses missing the target"); for k=6:10 x(k)=((factorial(n)*(p^k)*((1-p)^(n-k)))/(factorial(k)*factorial(n-(k))); y(k)=sum(x(k)); disp(y(k),"More than 5 pulses missing the target"); end;
6dc7c5c1f70be4104dbdf198910d9cc24c2061c3
d465fcea94a1198464d7f8a912244e8a6dcf41f9
/kMatlab/kReadByte.sci
ff4d41225a979326b9277b86c0c59217cc90a4e6
[]
no_license
manasdas17/kiks-scilab
4f4064ed7619cad9e2117a6c0040a51056c938ee
37dc68914547c9d0f423008d44e973ba296de67b
refs/heads/master
2021-01-15T14:18:21.918789
2009-05-11T05:43:11
2009-05-11T05:43:11
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
724
sci
kReadByte.sci
function [r] = kReadByte(ref,address) // Ouput variables initialisation (not found in input variables) r=[]; // Display mode mode(0); // Display warning for floating point exception ieee(1); //KREADBYTE Read a byte from the extension bus // //value = kReadByte(ref) // Read a byte from an address (0..63) on the extension bus // Use the reference obtained with kopen. // !! L.8: Matlab function sprintf not yet converted, original calling sequence used reply = kcmd(ref,sprintf("R,%d",round(mtlb_double(address)))); // !! L.9: Matlab function sscanf not yet converted, original calling sequence used [value,count,errmsg] = sscanf(reply,"r,%d"); if isempty(errmsg) then r = value; else r = -1; end; endfunction
87b476de4b94597959dbeeaec1adf84d6aacf750
449d555969bfd7befe906877abab098c6e63a0e8
/3630/CH8/EX8.14/Ex8_14.sce
518f8642c6bc3f06d0c224548df7651c6f6f862f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
97
sce
Ex8_14.sce
clc; AvdB=6; Av=10^(AvdB/20); disp(' ',Av,"Av=");//The answers vary due to round off error
53e44d5c7da255ed94606384da2be380e29f44cc
449d555969bfd7befe906877abab098c6e63a0e8
/764/CH6/EX6.4.b/solution6_4.sce
1f137969954f1fc370121d49672bc0da2901eae8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
2,032
sce
solution6_4.sce
//Obtain path of solution file path = get_absolute_file_path('solution6_4.sce') //Obtain path of data file datapath = path + filesep() + 'data6_4.sci' //Clear all clc //Execute the data file exec(datapath) //Calculate the lead of the screw l (mm) l = n * p //Calculate mean diameter of the screw dm (mm) dm = d - (0.5 * p) //Calculate the lead angle alpha (degree) alpha = atand(l/(%pi * dm)) //Calculate the angle of repose fi (degree) fi = atand(mu1) //Axial force on the screw while raising the gate W1 (N) W1 = (w * 1000) + (fr *1000) //External torque applied to raise the gate Mt (N-mm) Mt = ((W1 * dm)*(tand(fi + alpha)))/2 //Calculate the torque required to overcome washer friction Mtc (N-mm) Mtc = (mu2 * W1 * (Do + Di))/4 //Calculate total torque required to raise the gate Mraise (N-mm) Mraise = Mt + Mtc //Calculate force exerted by each arm while raising the gate P1 (N) P1 = Mraise/(2 * rad) //Net axial force on the screw while lowering the gate W2 (N) W2 = (w * 1000) - (fr * 1000) //External torque applied to lower the gate Ml (N-mm) Ml = (W2 * dm * tand(fi - alpha))/2 //Calculate the torque required to overcome washer friction Mtc (N-mm) Mlc = (mu2 * W2 * (Do + Di))/4 //Calculate total torque required to lower the gate Mlower (N-mm) Mlower = Ml + Mlc //Calculate force exerted by each arm while lowering the gate P2 (N) P2 = Mlower/(2 * rad) //Calculate the efficiency of the gate mechanism eta (%) eta = (W1 * l)/(2 * %pi * Mraise) //Calculate the core diameter of the screw dc (mm) dc = d - p //Calculate the number of threads z z = (4 * W1)/(%pi * Sb * ((d^2) - (dc^2))) z = ceil(z) //Calculate the length of the nut L (mm) L = z * p //Print results printf('\nMaximum force exerted by each arm when the gate is being raised(P1) = %f N\n',P1) printf('\nMaximum force exerted by each arm when the gate is being lowered(P2) = %f N\n',P2) printf('\nEfficiency of the gate mechanism(eta) = %f percent\n',eta*100) printf('\nLength of the nut(L) = %f mm\n',L)
8d72fa6e3f6646b794db946ec72ee33fc05709bf
1bb72df9a084fe4f8c0ec39f778282eb52750801
/test/PD3.prev.tst
e9edef2edd3dcf0d193a499fafd0d297b8693c5e
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
gfis/ramath
498adfc7a6d353d4775b33020fdf992628e3fbff
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
refs/heads/master
2023-08-17T00:10:37.092379
2023-08-04T07:48:00
2023-08-04T07:48:00
30,116,803
2
0
null
null
null
null
UTF-8
Scilab
false
false
56
tst
PD3.prev.tst
(x + 1).degree() = -1 (x + 1).degree(false) = -1
f33831b038e3290cca9c4e1e988241c304e4f375
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set5/s_Digital_Signal_Processing_R._Babu_52.zip/Digital_Signal_Processing_R._Babu_52/CH3/EX3.26/Example3_26.sce
88f2d7647c00c19cd305d0580f91b538cdbce3aa
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
301
sce
Example3_26.sce
errcatch(-1,"stop");mode(2);//Example 3.26 //Program to Compute the Linear Convolution of the following Sequences //x[n]=[1,-1,1] //h[n]=[2,2,1] ; ; ; x=[1,-1,1]; h=[2,2,1]; //Convolution Computation y= convol(x,h); //Display sequence y[n] in command window disp(y,"y[n]="); exit();
9b44dbe3b158c06ad03af45a1f807de771ca7a18
449d555969bfd7befe906877abab098c6e63a0e8
/2223/CH9/EX9.2/Ex9_2.sce
098438e072247e8a1b61ab008545b685edfc7b75
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
3,128
sce
Ex9_2.sce
// scilab Code Exa 9.2 Calculation on an axial turbine stage dh=0.450; // hub diameter in m dt=0.750; // tip diameter in m d=0.5*(dt+dh); // mean diameter of the impeller blade in m r=d/2; T1=500; // Initial Temperature in degree C t1=T1+273; // in Kelvin p1=100; // Initial Pressure in bar N=6e3; // rotor Speed in RPM m=100; // in kg/s alpha2m=75; // air angle at nozzle exit beta2m=45; // air angle at rotor entry beta3m=76; // air angle at rotor exit u=%pi*d*N/60; uh=%pi*dh*N/60; ut=%pi*dt*N/60; // for mean section c2m=(cosd(beta2m)/sind(alpha2m-beta2m))*u; cx2m=c2m*cosd(alpha2m); ct2m=c2m*sind(alpha2m); ct3m=(cx2m*tand(beta3m))-u; C2=r*ct2m; C3=r*ct3m; // part(a) the relative and absolute air angles disp("for mean section") disp("(a) the relative and absolute air angles are") disp("degree",beta2m,"air angle at rotor entry is beta2m= ") disp("degree",beta3m,"air angle at rotor exit is beta3m= ") disp("degree",alpha2m,"air angle at nozzle exit is alpha2m= ") // part(b) degree of reaction cx=cx2m; R=cx*(tand(beta3m)-tand(beta2m))*100/(2*u); disp("%",R,"(b)degree of reaction is") // part(c) blade-to-gas speed ratio sigma=u/c2m; disp(sigma,"(c)blade-to-gas speed ratio is") // part(d) specific work omega=2*%pi*N/60; w=omega*(C2+C3); disp("kJ/kg",w*1e-3,"(d)specific work is") // part(e) the loading coefficient z=w/(u^2); disp(z,"(e)the loading coefficient is") // for hub section rh=dh/2; alpha2h=atand(C2/(rh*cx)); disp("for hub section") disp("(a) the relative and absolute air angles are") disp("degree",alpha2h,"air angle at nozzle exit is alpha2h= ") beta2h=atand(tand(alpha2h)-(uh/cx)); disp("degree",beta2h,"air angle at rotor entry is beta2h= ") beta3h=atand((C3/(rh*cx))+(uh/cx)); disp("degree",beta3h,"air angle at rotor exit is beta3h= ") // part(b) degree of reaction Rh=cx*(tand(beta3h)-tand(beta2h))*100/(2*uh); disp("%",Rh,"(b)degree of reaction is") // part(c) blade-to-gas speed ratio c2h=cx/(cosd(alpha2h)); sigmah=uh/c2h; disp(sigmah,"(c)blade-to-gas speed ratio is") // part(d) specific work wh=uh*cx*(tand(beta3h)+tand(beta2h)); disp("kJ/kg",wh*1e-3,"(d)specific work is") // part(e) the loading coefficient zh=wh/(uh^2); disp(zh,"(e)the loading coefficient is") // for tip section rt=dt/2; alpha2t=atand(C2/(rt*cx)); disp("for tip section") disp("(a) the relative and absolute air angles are") disp("degree",alpha2t,"air angle at nozzle exit is alpha2t= ") beta2t=atand(tand(alpha2t)-(ut/cx)); disp("degree",beta2t,"air angle at rotor entry is beta2t= ") beta3t=atand((C3/(rt*cx))+(ut/cx)); disp("degree",beta3t,"air angle at rotor exit is beta3t= ") // part(b) degree of reaction Rt=cx*(tand(beta3t)-tand(beta2t))*100/(2*ut); disp("%",Rt,"(b)degree of reaction is") // part(c) blade-to-gas speed ratio c2t=cx/(cosd(alpha2t)); sigmat=ut/c2t; disp(sigmat,"(c)blade-to-gas speed ratio is") // part(d) specific work wt=ut*cx*(tand(beta3t)+tand(beta2t)); disp("kJ/kg",wt*1e-3,"(d)specific work is") // part(e) the loading coefficient zt=wt/(ut^2); disp(zt,"(e)the loading coefficient is")
a8d92c73d9daaba225bd4f09fe11b8266cf00275
25ec4bae7c1d991a8b4f36a96650a07061417648
/Exemplos/exemplo05AjusteMotores/plotaPotencia.sce
0564630f6d4d220c67028a9ade51415a66636ba2
[]
no_license
OtacilioNeto/EV3MicroPythonExamples
716f76e4179d98157577d68b116a33a078aed085
037af9585402fe294d3c82d3b7d88cb49bc26bcf
refs/heads/master
2023-06-08T19:34:49.916922
2023-06-02T13:24:10
2023-06-02T13:24:10
226,492,496
0
0
null
null
null
null
UTF-8
Scilab
false
false
8,421
sce
plotaPotencia.sce
funcprot(0) clc function ret=MinimosQuadrados(Y, X) n = size(X)(1) ret(1) = (n*X'*Y - sum(X)*sum(Y)) / (n*sum(X^2) - sum(X)^2) ret(2) = mean(Y) - ret(1)*mean(X) endfunction exec(get_absolute_file_path('plotaPotencia.sce')+'datalog.sce', 0); scf(1001) clf() // subplot(3,2,1); plot2d(datalog(:,1), datalog(:,2:3), leg="Motor Esquerdo@Motor Direito", style=[-3, -2]) p = get("hdl") p.children(1).mark_size=3; p.children(2).mark_size=3; p.parent.x_label.text = "Potência (%)" p.parent.x_label.font_size = 4; p.parent.y_label.text = "Graus/%S" p.parent.y_label.font_size = 4; p.parent.title.text = "Giro dos motores vs. Percentual da potência máxima" p.parent.title.font_size = 4; p.parent.font_size = 4; p.parent.box = "on"; p.parent.children(2).font_size = 4; p.parent.children(2).legend_location="in_lower_right"; p.parent.children(2).fill_mode = "on"; xgrid(5, 1, 7); // Vamos fazer a regressão linear pelo método dos mínimos quadrados Y=datalog(:,2); X=datalog(:,1); motorEsquerdo = MinimosQuadrados(Y, X) Y=datalog(:,3); X=datalog(:,1); motorDireito = MinimosQuadrados(Y, X) // Vamos calcular os gráficos yEsquerdo = motorEsquerdo(1)*datalog(:,1) + motorEsquerdo(2); yDireito = motorDireito(1)*datalog(:,1) + motorDireito(2); // Eh preciso retirar a área negativa porque na prática o motor nunca gira para trás no experimento for i=1:size(yEsquerdo)(1) if(yEsquerdo(i, 1)<0) then yEsquerdo(i, 1) = 0; end end for i=1:size(yDireito)(1) if(yDireito(i, 1)<0) then yDireito(i, 1) = 0; end end scf(1002) clf() // subplot(3,2,5); plot2d(datalog(:,1), [datalog(:,2), datalog(:,3), yEsquerdo, yDireito], leg="Motor esquerdo@Motor direito@Função ajustada (motor esquerdo)@Função ajustada (motor direito)", style=[-3, -2, 2, 13]) a=gca(); // Handle on axes entity a.x_location = "origin"; a.y_location = "origin"; p = get("hdl") p.children(1).thickness=3; p.children(2).thickness=3; p.children(3).mark_size=3; p.children(4).mark_size=3; p.parent.x_label.text = "Potência (%)" p.parent.x_label.font_size = 4; p.parent.y_label.text = "Graus/%S" p.parent.y_label.font_size = 4; p.parent.title.text = "Giro dos motores vs. Percentual da potência máxima" p.parent.title.font_size = 4; p.parent.font_size = 4; p.parent.box = "on"; p.parent.children(2).font_size = 4; p.parent.children(2).legend_location="in_lower_right"; p.parent.children(2).fill_mode = "on"; xgrid(5, 1, 7); scf(1003) clf() // subplot(3,2,3); plot2d(datalog(:,1), [yEsquerdo, yDireito], leg="Função ajustada (motor esquerdo)@Função ajustada (motor direito)", style=[2, 13]) a=gca(); // Handle on axes entity a.x_location = "origin"; a.y_location = "origin"; p = get("hdl") p.children(1).thickness=3; p.children(2).thickness=3; p.parent.x_label.text = "Potência (%)" p.parent.x_label.font_size = 4; p.parent.y_label.text = "Graus/%S" p.parent.y_label.font_size = 4; p.parent.title.text = "Giro dos motores vs. Percentual da potência máxima" p.parent.title.font_size = 4; p.parent.font_size = 4; p.parent.box = "on"; p.parent.children(2).font_size = 4; p.parent.children(2).legend_location="in_lower_right"; p.parent.children(2).fill_mode = "on"; xgrid(5, 1, 7); scf(1004) clf() yDesejadoEsquerdo = datalog(:, 1)*yEsquerdo(size(yEsquerdo)(1))/datalog(size(datalog)(1),1) yDesejadoDireito = datalog(:, 1)*yDireito(size(yDireito)(1))/datalog(size(datalog)(1),1) plot2d(datalog(:,1), [yDesejadoEsquerdo, yDesejadoDireito], leg="Motor esquerdo@Motor direito", style=[2, 13]) a=gca(); // Handle on axes entity a.x_location = "origin"; a.y_location = "origin"; p = get("hdl") p.children(1).thickness=3; p.children(2).thickness=3; p.parent.x_label.text = "Potência (%)" p.parent.x_label.font_size = 4; p.parent.y_label.text = "Graus/%S" p.parent.y_label.font_size = 4; p.parent.title.text = "Resposta desejada dos motores" p.parent.title.font_size = 4; p.parent.font_size = 4; p.parent.box = "on"; p.parent.children(2).font_size = 4; p.parent.children(2).legend_location="in_lower_right"; p.parent.children(2).fill_mode = "on"; xgrid(5, 1, 7); scf(1005) clf() plot2d(datalog(:,1), [yEsquerdo, yDireito, yDesejadoEsquerdo], leg="Função ajustada (motor esquerdo)@Função ajustada (motor direito)@Função desejada") a=gca(); // Handle on axes entity a.x_location = "origin"; a.y_location = "origin"; p = get("hdl") p.children(1).thickness=3; p.children(2).thickness=3; p.children(3).thickness=3; p.parent.x_label.text = "Potência (%)" p.parent.x_label.font_size = 4; p.parent.y_label.text = "Graus/%S" p.parent.y_label.font_size = 4; p.parent.title.text = "Funçõs desejadas vs.funções obtidas" p.parent.title.font_size = 4; p.parent.font_size = 4; p.parent.box = "on"; p.parent.children(2).font_size = 4; p.parent.children(2).legend_location="in_lower_right"; p.parent.children(2).fill_mode = "on"; xgrid(5, 1, 7); // A funcao de correção é potr = pot*100/(100-zona morta) + zona morta B = - motorEsquerdo(2)/motorEsquerdo(1); A = (yEsquerdo(size(yEsquerdo)(1)) - B) / yEsquerdo(size(yEsquerdo)(1)); printf("Potência Esquerda(x) = %.4f(x) + %.4f\n", A, B); B = - motorDireito(2)/motorDireito(1); A = (yDireito(size(yDireito)(1)) - B) / yDireito(size(yDireito)(1)); printf("Potência Direita(x) = %.4f(x) + %.4f\n", A, B); printf("VOCÊ JÁ MEDIU OS VALORES CORRIGIDOS [S/N]?"); // Carregar os valores corrigidos exec(get_absolute_file_path('plotaPotencia.sce')+'datalog2.sce', 0); // Vamos ajustar duas retas. Uma para cada motor. scf(1006) clf() // subplot(3,2,2); plot2d(datalog(:,1), datalog(:,2:3), leg="Motor esquerdo@Motor direito", style=[-3, -2]) p = get("hdl") p.children(1).mark_size=3; p.children(2).mark_size=3; p.parent.x_label.text = "Potência (%)" p.parent.x_label.font_size = 4; p.parent.y_label.text = "Graus/%S" p.parent.y_label.font_size = 4; p.parent.title.text = "Giro dos motores vs. Percentual da potência máxima após correção" p.parent.title.font_size = 4; p.parent.font_size = 4; p.parent.box = "on"; p.parent.children(2).font_size = 4; p.parent.children(2).legend_location="in_lower_right"; p.parent.children(2).fill_mode = "on"; xgrid(5, 1, 7); // Vamos fazer uma regressão linear para ajustar duas retas. Uma para cada motor. Y=datalog(:,2); X=datalog(:,1); motorEsquerdo=MinimosQuadrados(Y, X); Y=datalog(:,3); X=datalog(:,1); motorDireito=MinimosQuadrados(Y, X); // Vamos calcular os gráficos yEsquerdoC = motorEsquerdo(1)*datalog(:,1) + motorEsquerdo(2); yDireitoC = motorDireito(1)*datalog(:,1) + motorDireito(2); for i=1:size(yEsquerdoC)(1) if(yEsquerdoC(i, 1)<0) then yEsquerdoC(i, 1) = 0; end end for i=1:size(yDireitoC)(1) if(yDireitoC(i, 1)<0) then yDireitoC(i, 1) = 0; end end scf(1007) clf() // subplot(3,2,6); plot2d(datalog(:,1), [datalog(:,2), datalog(:,3), yEsquerdoC, yDireitoC], leg="Motor esquerdo@Motor direito@Função ajustada (motor esquerdo)@Função ajustada (motor direito)", style=[-3, -2, 2, 13]) a=gca(); // Handle on axes entity a.x_location = "origin"; a.y_location = "origin"; p = get("hdl") p.children(1).thickness=3; p.children(2).thickness=3; p.children(3).mark_size=3; p.children(4).mark_size=3; p.parent.x_label.text = "Potência (%)" p.parent.x_label.font_size = 4; p.parent.y_label.text = "Graus/%S" p.parent.y_label.font_size = 4; p.parent.title.text = "Giro dos motores vs.Percentual da potência máxima após correção" p.parent.title.font_size = 4; p.parent.font_size = 4; p.parent.box = "on"; p.parent.children(2).font_size = 4; p.parent.children(2).legend_location="in_lower_right"; p.parent.children(2).fill_mode = "on"; xgrid(5, 1, 7); scf(1008) clf() // subplot(3,2,4); plot2d(datalog(:,1), [yEsquerdoC, yDireitoC], leg="Função ajustada (motor esquerdo)@Função ajustada (motor direito)", style=[2, 13]) a=gca(); // Handle on axes entity a.x_location = "origin"; a.y_location = "origin"; p = get("hdl") p.children(1).thickness=3; p.children(2).thickness=3; p.parent.x_label.text = "Potência (%)" p.parent.x_label.font_size = 4; p.parent.y_label.text = "Graus/%S" p.parent.y_label.font_size = 4; p.parent.title.text = "Giro dos motores vs.Percentual da potência máxima após correção" p.parent.title.font_size = 4; p.parent.font_size = 4; p.parent.box = "on"; p.parent.children(2).font_size = 4; p.parent.children(2).legend_location="in_lower_right"; p.parent.children(2).fill_mode = "on"; xgrid(5, 1, 7);
200c65178af57dbd8042fe4b914936b09b75c660
caeeba65136d7b667e3e14cc35ec86579cd57e52
/Ticket/Attachment/134668/36391/html-tidy.tst
57543de65b834fa052cb7a819ee99f1df0477c92
[]
no_license
rt-cpan/rt-cpan.github.io
934a442fa11602a2b377029eb166199bbe2f6fbe
28345cf6425a51e68d37fe6ce2a0b4ff399b44ec
refs/heads/master
2023-03-10T19:34:13.055361
2021-03-01T12:45:51
2021-03-01T12:45:51
321,269,936
9
0
null
null
null
null
UTF-8
Scilab
false
false
3,099
tst
html-tidy.tst
~/HTML-Tidy-1.04 15:03:36% make test PERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-e" "test_harness(0, 'blib/lib', 'blib/arch')" t/*.t t/00.load............ok t/extra-quote........ok t/ignore-text........NOK 3 # Failed test (t/ignore-text.t at line 28) # Structures begin differing at: # $got->[0] = 'DATA (24:86) Warning: unescaped & which should be written as &amp;' # $expected->[0] = 'DATA (24:78) Warning: unescaped & which should be written as &amp;' # Looks like you failed 1 test of 3. t/ignore-text........dubious Test returned status 1 (wstat 256, 0x100) DIED. FAILED test 3 Failed 1/3 tests, 66.67% okay t/ignore.............NOK 3 # Failed test (t/ignore.t at line 33) # Structures begin differing at: # $got->[2] = '- (24:86) Warning: unescaped & which should be written as &amp;' # $expected->[2] = '- (24:78) Warning: unescaped & which should be written as &amp;' # Looks like you failed 1 test of 7. t/ignore.............dubious Test returned status 1 (wstat 256, 0x100) DIED. FAILED test 3 Failed 1/7 tests, 85.71% okay t/levels.............NOK 3 # Failed test (t/levels.t at line 23) # Structures begin differing at: # $got->[3] = '- (24:86) Warning: unescaped & which should be written as &amp;' # $expected->[3] = '- (24:78) Warning: unescaped & which should be written as &amp;' # Looks like you failed 1 test of 3. t/levels.............dubious Test returned status 1 (wstat 256, 0x100) DIED. FAILED test 3 Failed 1/3 tests, 66.67% okay t/message............ok t/perfect............ok t/pod-coverage.......ok t/pod................ok t/segfault-form......ok t/simple.............ok t/too-many-titles....ok Failed Test Stat Wstat Total Fail Failed List of Failed ------------------------------------------------------------------------------- t/ignore-text.t 1 256 3 1 33.33% 3 t/ignore.t 1 256 7 1 14.29% 3 t/levels.t 1 256 3 1 33.33% 3 Failed 3/12 test scripts, 75.00% okay. 3/53 subtests failed, 94.34% okay. make: *** [test_dynamic] Error 255 -------- ~/HTML-Tidy-1.04 15:08:56% perl -v This is perl, v5.8.6 built for darwin-thread-multi-2level (with 2 registered patches, see perl -V for more detail)
b1ece3eee4dc19af63c4eca66ca9f95cf0e751b8
449d555969bfd7befe906877abab098c6e63a0e8
/1271/CH13/EX13.14/example13_14.sce
ef966441d1d126834b329bac16477c3dd743feb9
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
543
sce
example13_14.sce
clc // Given that d = 2.51 // the space between adjacent plane in angstrom theta = 9 // glancing angle in degree // Sample Problem 14 on page no. 13.29 printf("\n # PROBLEM 14 # \n") printf(" Standard formula used \n") printf(" n*lambda = 2 * d * sin(theta) \n") n = 1 // for n=1 lambda = 2 * d * sind(theta) / n n = 2 // for n=2 theta = asind(lambda / d) printf("\n Wavelength of x-ray is %f angstrom.\n Glancing angle for second order diffraction is %f degree.",lambda,theta)
fc3b03b6927a784f8d030f281a64c6644e70cbbd
286a3b61feec58c992ceda8f1ce28b8e4db5caf5
/algorithmes/QR_&_LU.sci
a5d781c610b45dc5d50bc8178b14b9b3c75f3abf
[]
no_license
confiture/M2
970865ab3a52c5c65a84637f987dc27d6485542d
e95ca27c1eccd36337348ff042b8db144c08f0d5
refs/heads/master
2021-01-22T07:32:37.900029
2017-11-06T13:07:58
2017-11-06T13:07:58
1,020,201
1
0
null
null
null
null
UTF-8
Scilab
false
false
1,342
sci
QR_&_LU.sci
function X=scal(N,M); [m,n]=size(N); if ~((m==1)|(n==1)|~(size(N)==size(M))) then error('vecteur dim'); end ; X=sum(N.*M); endfunction ; //methode QR function [Q,R]=qr_moi(A) [m,n]=size(A); // vérifications de base if ~(m==n) then error('il faut une matrice carré'); end; if det(A)==0 then error('matrice de determinant nul'); end; Q=A; J=eye(n,n) //pour stocker les opérations élémentaires for i=1:n; //GS pour colonne i, sauf la premiere colonne if ~(i==1) then V=eye(n,n); //création de la matrice élementaire for j=1:i-1; V(j,i)=-scal(Q(1:n,j),Q(1:n,i)); end;//on place chaque prod scal suivant l'algo Q=Q*V; J=J*V; end; //enfin, on normalise la colonne i... U=eye(n,n); U(i,i)=1/((scal(Q(1:n,i),Q(1:n,i)))^(1/2)); Q=Q*U; J=J*U; end; Q=Q; R=inv(J); endfunction ; // methode LU function [L,U]=LU_moi(A) [m,n]=size(A); // vérifications de base if ~(m==n) then error('il faut une matrice carré'); end; if det(A)==0 then error('matrice de determinant nul'); end; U=A; B=zeros(A); for i=1:n-1 ; J=eye(n,n); for j=i+1:n ; if U(i,i)==0 then error('aie'); end; B(j,i)=U(j,i)/U(i,i); J(j,i)=-B(j,i); end ; U=J*U; end; U=U; L=B+eye(n,n); endfunction;
9d5e4d2dc3a7b8d17c703fc79fd44ea7df0f3ef3
449d555969bfd7befe906877abab098c6e63a0e8
/3250/CH7/EX7.4/Ex7_4.sce
c9c7f2b9cc680ba7dac950763e77589c9acfcca4
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
386
sce
Ex7_4.sce
clc // Given that J_ = 2 // The threshold value of dose in kJ/cm^3 J = 15 // The dose of top surface in kJ/cm^3 x_ = 300 // Depth below the surface in micro meter // Sample Problem 4 on page no. 4 printf("\n # PROBLEM 7.4 # \n") function y=f(x),y = 3/((J*(exp(-0.1*sqrt(x))))^(1.6)-3), endfunction t = intg(0,x_,f) printf("\n The time required to develop the PMMA resist = %d min",t)
731de244462b12755c1dd155081c4a53983c5621
449d555969bfd7befe906877abab098c6e63a0e8
/2417/CH8/EX8.9/Ex8_9.sce
ee72269c0e1dc07238639c2937f13e30f638520c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,064
sce
Ex8_9.sce
//scilab 5.4.1 clear; clc; printf("\t\t\tProblem Number 8.9\n\n\n"); // Chapter 8 : Vapor Power Cycles // Problem 8.9 (page no. 388) // Solution //The Mollier chart provides a convenient way of solving this problem.Expanding from 980F,400 psia,s=1.7567 to 200 psia yields a final enthalpy of 1413 Btu/lbm.Expanding from 200 psia ans an enthalpy of 1515 Btu/lbm to 14.696 psia yields a final enthaply of 1205 Btu/lbm. h4=1515; //Unit:Btu/lbm //enthalpy h5=1205; //Unit:Btu/lbm //enthalpy h7=1413; //Unit:Btu/lbm //enthalpy h1=180.15; //Unit:Btu/lbm //enthalpy nreheat=((h4-h5)+(h4-h7))/((h4-h1)+(h4-h7)); //The efficiency of the reheat cycle printf("The efficiency of the reheat cycle is %f percentage",nreheat*100); //It is apparent that for the conditions of this problem,the increase in efficiency is not very large.The final condition of the fluid after the second expansion is superheated steam at //14.696 psia.By condensing at this relatively high pressure condition,a large amount of heat is rejected to the condenser cooling water.7
eb1ccf9bb575d7209f6b34b2af5d5e5005a6d76a
8217f7986187902617ad1bf89cb789618a90dd0a
/source/1.1/macros/metanet/g_ynode.sci
bb0d11ad24bf36132b84695579b5c3cfbc93b144
[ "LicenseRef-scancode-public-domain", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-unknown-license-reference" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
76
sci
g_ynode.sci
function y=g_ynode(g) [lhs,rhs]=argn(0), if rhs=0 then g=the_g, end y=g(17)
85832547f295a131f9d896fd98c7afc27c1448ee
449d555969bfd7befe906877abab098c6e63a0e8
/2138/CH8/EX8.1/ex_8_1.sce
03e510cac2b44f2ac6b2885cdfa4b93f74610cd9
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
175
sce
ex_8_1.sce
//Example 8.1 // speed clc; clear; close; //given data : pi=22/7; s=22; // shaft of the motor in hp Tsh=210; // torue in hp N=(s*60*746)/(2*pi*Tsh); disp(N,"speed,N(rpm) = ")
6c3032862a82c5c1adeacc4339736bdb46211f22
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set9/s_Engineering_Physics_K._V._Kumar_3537.zip/Engineering_Physics_K._V._Kumar_3537/CH1/EX1.8/Ex1_8.sce
a0a143559367e9c77a8480f3048f13749f1fb662
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
981
sce
Ex1_8.sce
errcatch(-1,"stop");mode(2);//Example 1_8 ; ; //To Calculate the Angular position of the 10th maximum and first minimum //The distance from centre where 10th maximum is obtained by lamda=5460 //units in angstrom lamda=5460*10^-10 //units in mts n=10 d=0.1 //units in mm d=0.1*10^-3 //units in mts D=2 //units in mts x10=(n*lamda*D)/d //units in mts //angular position with respect to center is tantheta=(x10/D) //units in radians z=atan(tantheta)*(180/%pi) //units in degrees printf("Angular position of 10th maximum is theta=%.3f degrees",z) x1=(lamda*D)/(2*d) //units n mts printf("\n The distance from centre where 1st minimum is obtained is %f metres",x1) tantheta1=(x1/D) //units in radians z1=atan(tantheta1)*(180/%pi) //units in degrees printf("\n Angular position with respect to center is theta=%.3f degrees",z1) exit();
d39ab4c1ef62d48ccf35a5ae76f45da132a49a7b
13c3ed7bef4d80dabd836219bbf4396f07cb934a
/demo.sci
361d57a6344beb6e0ad1c583500b7b31a4f26d80
[]
no_license
Mushirahmed/scilab_workspace
99f489a110a5e295ce9fca9991122d14840018d3
f58b91b87bb0357fff82dcb97b05541e7e976eca
refs/heads/master
2021-01-10T15:48:40.576771
2016-02-10T10:32:46
2016-02-10T10:32:46
43,348,489
0
0
null
null
null
null
UTF-8
Scilab
false
false
216
sci
demo.sci
function ydot = f(t,y) ydot=[a-y(2)*y(2)-1;1 0]*y endfunction a=1;y0=[1;0];t0=0;instants = 0:0.02:20; y=ode(y0,t0,instants,f); plot2d(y(1,:),y(2,:),style=-1,rect=[-3,-3,3,3],nax=[10,2,10,2]) xtitle('Van der pol')
0d54c41126264b590a65a6552aca13ca3f762be1
449d555969bfd7befe906877abab098c6e63a0e8
/2666/CH12/EX12.1/12_1.sce
5d10fc976bcc89e424dd4ff49887a9b74ef7d462
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
588
sce
12_1.sce
clc //initialisation of variables p=5//tons t1=20//F t2=60//F p1=147//psia t=460//F h=14.7//ft q=0.4/1.4//ft w1=200//ft h1=480//R m=0.24//ft t3=520//R q1=42.4//tons s=53.3//ft g=144//ft //CALCULATIONS T=(t1+t)*(p1/h)^q//R T1=(t2+t)/(p1/h)^q//R W=p*(w1)/((m)*(h1-T1))//lb per min Q=W*m*(T-t3)//Btu per min J=Q-p*w1//Btu per min H1=J/q1//hp C=p*w1/J//hp V=(W*s*h1)/(g*h)//cu ft per min V1=(W*s*T1)/(g*h)//cu ft per min //RESULTS printf('The air cooler is=% f Btu per min',Q) printf('the net horsepower=% f hp',C) printf('the air after is volume is=% f hp',V1)
099b069fa2f8eb800451180f756caf703922ed86
449d555969bfd7befe906877abab098c6e63a0e8
/620/CH25/EX25.9/example25_9.sce
62489fb8cf9491d088955113c2e1e1f71b34f35e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
107
sce
example25_9.sce
v=120; v1=40+%i*30; v2=25-%i*90; v3=v-v1-v2; disp("voltage (in V) across the third load is"); disp(v3);
f6986a104ec2297d985ca5ea00cfc453bd3b2deb
449d555969bfd7befe906877abab098c6e63a0e8
/3526/CH17/EX17.9/EX17_9.sce
1214dfb6203a9bcf77f9fd906397af7dce3e197f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,038
sce
EX17_9.sce
clc;funcprot(0);//EXAMPLE 17.9 //page 542 // Initialisation of Variables psi=10*10^6;..............//Modulus of elasticity of 7075-T6 in psi psi1=55*10^6;..............//Modulus of elasticity of Boron fiber in psi psi2=11*10^6;..............//Modulus of elasticity of Typical AL-LI in psi f1=0.6;...............//Volume fraction of Boron Fiber f2=0.4;...............//Volume fraction of typical AL-LI rho1=0.085;...........//Density of Boron Fibers in lb/in*3 rho2=0.09;...........//Density of typical AL-LI in lb/in^3 //Calculations sm1=psi/(((2.7*(2.54)^3))/454);..........//Specific Modulus of current alloy in in. rho=(f1*rho1)+(f2*rho2);........//Density of composite in lb/in^3 Ec=(f1*psi1)+(f2*psi2);........//Modulus of elasticity of mixture in psi sm2=Ec/rho;..........//Specific Modulus of composite in in. disp(sm1,"Specific Modulus of current alloy in in.:") disp(rho,"Density of composite in lb/in^3:") disp(Ec,"Modulus of elasticity of mixture in psi:") disp(sm2,"Specific Modulus of composite in in.:")
89e13e24eb65bc484d9a18c570aa760d647fb1d4
e7055fdf94e8a24293cab7ccbeac12039d6fe512
/macros/scharr.sci
2e1a6cf006636167d29c5686221b8608a5b28ae1
[]
no_license
sidn77/FOSSEE-Image-Processing-Toolbox
6c6b8b860f637362a73d28dcfe13e87d18af3e2c
8dfbdbdfd38c73dc8a02d1a25678c4a6a724fe18
refs/heads/master
2020-12-02T16:26:06.431376
2017-11-08T17:54:03
2017-11-08T17:54:03
96,552,565
0
0
null
2017-07-07T15:37:18
2017-07-07T15:37:18
null
UTF-8
Scilab
false
false
1,522
sci
scharr.sci
// Copyright (C) 2015 - IIT Bombay - FOSSEE // // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt // Author: Sukul Bagai // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in function new_image = scharr(image, ddepth, dx, dy, scale, delta) // Calculates the first x- or y- image derivative using Scharr operator. // // Calling Sequence // new_image = imcontrast(srcImg, aplha, beta) // // Parameters // srcImg: input image. // ddepth: output image depth. The possible ddepth values are the following <itemizedlist><listitem> CV_8U </listitem><listitem> CV_16U/CV_16S </listitem><listitem> CV_32F</listitem><listitem> CV_64F </listitem></itemizedlist> // dx: order of the derivative x. // dy: order of the derivative y. // scale: Scale factor for the computed derivative values. // delta: Delta value that is added to the results. // // Description // This function is used to find the derivative of the source image using the // Scharr operator. // // Examples // image = imread("lena.jpg"); // new_image = scharr(image, "CV_8U", 2, 3, 1.5, 2); // // See also // imread // // Authors // Sukul Bagai image_list = mattolist(image) out = raw_scharr(image_list, ddepth, dx, dy, scale, delta) sz = size(out) for i = 1: sz new_image(:, :, i) = out(i) end endfunction
ef8e51b19e51ceeac892764231f3eaf24f2286e2
449d555969bfd7befe906877abab098c6e63a0e8
/24/CH45/EX45.2/Example45_2.sce
3e34f4b3165c92dac42cd3ce4ff6eb514a435bba
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
306
sce
Example45_2.sce
//Given that Epi = 139.6 //in Mev Ek = 493.7 //in Mev Ep = 983.3 //in Mev Es = 1189.4 //in Mev //Sample Problem 45-2 pt = mopen('Example45_2_result.txt', 'wt') mfprintf(pt, '**Sample Problem 45-2**\n') Q = Epi + Ep - Ek - Es mfprintf(pt, 'The energy of the reaction is %dMev', Q) mclose(pt)
90c8551fd033aced55689cc7066dbede606b0308
449d555969bfd7befe906877abab098c6e63a0e8
/172/CH9/EX9.1/ex1.sce
e4d1538c70ff794e8d0dd8f011269cae801bf0da
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
765
sce
ex1.sce
//example 1 //work done by steam clear clc hi=3051.2 //initial specific heat of enthalpy of steam in kJ/kg si=7.1228 //initial specific entropy of steam in kJ/kg-K Pe=0.15 //final pressure in MPa se=si //specific entropy in final state in kJ/kg-K sf=1.4335 //in kJ/kg-K sfg=5.7897 //in kJ/kg-K vi=50 //velocity with which steam enters turbine in m/s ve=200 //velocity with which steam leaves the turbine in m/s xe=(se-sf)/sfg //quality of steam in final state hf=467.1 //in kJ/kg hfg=2226.5 //in kJ/kg he=hf+xe*hfg //final specific heat of enthalpy of steam in kJ/kg w=hi+vi^2/(2*1000)-he-ve^2/(2*1000) //work of steam for isentropic process in kJ/kg printf("\n hence, work per kilogram of steam for this isentropic process is w=%.1f kJ/kg-K.\n",w)
d4287d02232c317840175ff874e951e74dc78c5e
449d555969bfd7befe906877abab098c6e63a0e8
/3673/CH3/EX3.8/Ex3_8.sce
7094fad4024a74642904afc6184f69ba52bd5170
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
199
sce
Ex3_8.sce
//Example 3_8 page no:125 clc Rs=25//resistance in ohm Rl=Rs//according to maximum power transfet theorem I=50/(Rl+Rs) P=I^2*Rl disp(P,"the maximum power delivered to the load is (in watts)")
729b0210f4f66c8f8c52282b11b1afc10d0fcf22
449d555969bfd7befe906877abab098c6e63a0e8
/2150/CH4/EX4.3/ex_4_3.sce
e8c3b69b3d1b9bd6ee87fb827ac5c8b5b3f5b204
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
228
sce
ex_4_3.sce
// Example 4.3 clc; clear; close; // Given data // Part (i) a= 0.90; B=a/(1-a); disp(B,"At alpha= 0.90, the value of Bita is : ") // Part (ii) a= 0.99; B=a/(1-a); disp(B,"At alpha= 0.99, the value of Bita is : ")
e33429588c5c9e42f88969c7be7891d2847da398
1b969fbb81566edd3ef2887c98b61d98b380afd4
/Rez/bivariate-lcmsr-post_mi/bfas_ap_vrt_ind/~BivLCM-SR-bfas_ap_vrt_ind-PLin-VLin.tst
cc027792d58d1723b92bd518971da92fbaeb562a
[]
no_license
psdlab/life-in-time-values-and-personality
35fbf5bbe4edd54b429a934caf289fbb0edfefee
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
refs/heads/master
2020-03-24T22:08:27.964205
2019-03-04T17:03:26
2019-03-04T17:03:26
143,070,821
1
0
null
null
null
null
UTF-8
Scilab
false
false
11,974
tst
~BivLCM-SR-bfas_ap_vrt_ind-PLin-VLin.tst
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM. ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 1 2 3 4 5 ________ ________ ________ ________ ________ 1 0.253747D+00 2 -0.342757D-02 0.194384D-02 3 -0.133869D+00 0.162846D-02 0.347676D+00 4 0.259041D-02 -0.100208D-02 -0.720439D-02 0.287362D-02 5 -0.257805D-03 0.116123D-04 0.120762D-02 -0.516263D-04 0.256543D-02 6 -0.551674D-03 0.229226D-04 -0.532242D-03 -0.209321D-04 0.310738D-03 7 -0.198984D-02 -0.309246D-04 -0.399639D-03 -0.646381D-04 -0.312882D-03 8 -0.119199D-02 0.738050D-04 -0.335183D-03 0.514274D-04 -0.478637D-04 9 -0.231388D+00 0.100858D-02 0.210074D+00 0.883793D-02 0.400138D-01 10 -0.212981D+00 -0.375726D-02 0.323060D+00 0.146661D-02 0.117240D+00 11 0.780508D-01 -0.668779D-03 0.840299D-02 0.961777D-03 -0.510227D-01 12 -0.163035D-01 -0.603422D-02 0.300881D+00 -0.483002D-01 0.458370D-01 13 -0.127765D-01 0.740513D-02 -0.153674D+00 -0.744972D-02 -0.172992D-02 14 -0.205565D-02 0.627772D-02 0.449613D+00 0.794829D-02 0.174764D-01 15 -0.146069D+01 0.136833D-01 0.394891D+00 -0.182749D-01 -0.832408D-01 16 -0.109416D-01 -0.789776D-02 0.399009D-02 0.409352D-02 0.519778D-03 17 -0.100008D-02 -0.315660D-03 0.214567D-02 0.269021D-03 -0.246028D-03 18 0.540498D+00 -0.166806D-01 -0.336749D+00 0.280481D-01 -0.165542D-01 19 0.138774D-01 0.826465D-02 -0.101503D+00 0.327711D-02 -0.249566D-01 20 -0.191711D+00 -0.565342D-02 0.259898D+00 -0.295992D-01 0.142735D+00 21 -0.102519D-01 0.139550D-03 0.975124D-01 -0.852434D-02 0.217445D-01 22 0.229408D-02 0.287933D-03 -0.111335D-02 -0.281283D-03 0.368488D-03 23 0.501122D-02 -0.317601D-02 0.325644D-01 -0.122871D-03 0.340761D-02 24 -0.255138D-02 -0.144591D-03 -0.193727D-02 0.850171D-03 -0.101884D-02 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 6 7 8 9 10 ________ ________ ________ ________ ________ 6 0.779468D-03 7 0.427144D-03 0.326979D-02 8 -0.157626D-03 0.912191D-03 0.295170D-02 9 -0.378537D-02 -0.456770D-01 -0.134704D-02 0.358304D+02 10 0.107627D-01 -0.156056D-01 -0.148476D-03 0.107537D+01 0.132770D+02 11 0.152815D-01 0.226076D-01 -0.949522D-02 -0.139475D+02 -0.119519D+01 12 -0.341127D-01 -0.125229D-01 0.475504D-01 0.102814D+02 0.269116D+01 13 0.459834D-01 0.101219D+00 0.152459D-01 -0.119104D+01 -0.213342D+01 14 -0.116190D-01 0.116614D-01 0.120433D+00 -0.612829D-01 0.481948D+01 15 0.620967D-02 0.378904D-01 -0.365286D-01 -0.404846D+01 -0.690912D+01 16 -0.287337D-03 -0.113706D-02 -0.135064D-02 0.468576D+00 0.930398D-01 17 0.228999D-03 0.195313D-03 0.265571D-03 -0.676864D-01 -0.374424D-03 18 -0.291468D-01 -0.871624D-01 -0.274053D-01 0.142601D+01 0.295712D+00 19 -0.991081D-02 0.143784D-01 0.350866D-02 -0.934314D+00 -0.214964D+01 20 0.188376D-01 -0.560496D-01 -0.204435D+00 0.182893D+01 0.963846D+01 21 0.977687D-02 -0.177485D-01 -0.409899D-02 0.251730D+00 0.188031D+01 22 -0.119165D-03 0.502487D-04 0.331605D-03 0.173802D-01 0.118721D-01 23 -0.896656D-03 -0.307683D-02 -0.145613D-02 0.155090D+00 0.273128D+00 24 0.863348D-04 0.296071D-03 -0.106251D-03 -0.246214D-03 -0.587318D-01 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 11 12 13 14 15 ________ ________ ________ ________ ________ 11 0.350613D+02 12 -0.333844D+02 0.138241D+03 13 -0.152899D+01 -0.152562D+01 0.118639D+02 14 0.381919D+00 0.214816D+01 -0.646190D+01 0.509568D+02 15 0.366781D+00 0.309965D+01 0.115194D+01 -0.248880D+01 0.163829D+03 16 -0.274213D+00 0.695617D-01 -0.717126D-01 -0.590820D-01 0.341139D+00 17 0.653515D-01 -0.775238D-01 0.211672D-01 0.114297D-01 -0.736029D+00 18 0.329599D+01 -0.332315D+01 -0.592539D+01 0.734941D+01 -0.753983D+02 19 0.805238D+00 -0.251424D+01 0.131401D+00 -0.484778D+00 -0.387494D+00 20 -0.855440D+01 0.372565D+01 0.400582D+01 -0.309302D+02 0.275783D+02 21 -0.274041D+00 0.203116D+01 -0.254049D+00 0.277864D+00 0.755621D+00 22 -0.830910D-01 0.135668D+00 0.157536D-01 0.868632D-03 0.342571D+00 23 -0.567027D+00 0.130675D+01 -0.326873D-01 0.454315D-01 -0.594613D+00 24 0.125769D+00 -0.329901D+00 -0.204895D-01 0.284778D-01 -0.110715D+00 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 16 17 18 19 20 ________ ________ ________ ________ ________ 16 0.325458D+00 17 -0.150915D-01 0.100890D-01 18 0.151117D+00 0.358260D+00 0.134026D+03 19 -0.177664D+00 0.174697D-01 -0.230362D+00 0.406839D+01 20 -0.294951D+00 -0.193065D+00 -0.101298D+03 -0.442012D+01 0.319762D+03 21 -0.115670D+00 -0.176732D-02 0.894833D+00 -0.375483D+01 0.351604D+01 22 0.672330D-02 -0.499173D-02 -0.644030D+00 -0.590719D-02 0.491120D+00 23 0.627929D-01 -0.162751D-02 -0.282123D+00 -0.171025D+00 0.297111D+01 24 -0.850382D-03 0.257260D-02 0.486555D+00 0.342349D-01 -0.141196D+01 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 21 22 23 24 ________ ________ ________ ________ 21 0.445289D+01 22 -0.304771D-01 0.826122D-02 23 -0.193781D+00 0.144430D-01 0.538324D+00 24 -0.636297D-02 -0.613170D-02 -0.545752D-01 0.153217D-01 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 1 2 3 4 5 ________ ________ ________ ________ ________ 1 1.000 2 -0.154 1.000 3 -0.451 0.063 1.000 4 0.096 -0.424 -0.228 1.000 5 -0.010 0.005 0.040 -0.019 1.000 6 -0.039 0.019 -0.032 -0.014 0.220 7 -0.069 -0.012 -0.012 -0.021 -0.108 8 -0.044 0.031 -0.010 0.018 -0.017 9 -0.077 0.004 0.060 0.028 0.132 10 -0.116 -0.023 0.150 0.008 0.635 11 0.026 -0.003 0.002 0.003 -0.170 12 -0.003 -0.012 0.043 -0.077 0.077 13 -0.007 0.049 -0.076 -0.040 -0.010 14 -0.001 0.020 0.107 0.021 0.048 15 -0.227 0.024 0.052 -0.027 -0.128 16 -0.038 -0.314 0.012 0.134 0.018 17 -0.020 -0.071 0.036 0.050 -0.048 18 0.093 -0.033 -0.049 0.045 -0.028 19 0.014 0.093 -0.085 0.030 -0.244 20 -0.021 -0.007 0.025 -0.031 0.158 21 -0.010 0.001 0.078 -0.075 0.203 22 0.050 0.072 -0.021 -0.058 0.080 23 0.014 -0.098 0.075 -0.003 0.092 24 -0.041 -0.026 -0.027 0.128 -0.163 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 6 7 8 9 10 ________ ________ ________ ________ ________ 6 1.000 7 0.268 1.000 8 -0.104 0.294 1.000 9 -0.023 -0.133 -0.004 1.000 10 0.106 -0.075 -0.001 0.049 1.000 11 0.092 0.067 -0.030 -0.394 -0.055 12 -0.104 -0.019 0.074 0.146 0.063 13 0.478 0.514 0.081 -0.058 -0.170 14 -0.058 0.029 0.311 -0.001 0.185 15 0.017 0.052 -0.053 -0.053 -0.148 16 -0.018 -0.035 -0.044 0.137 0.045 17 0.082 0.034 0.049 -0.113 -0.001 18 -0.090 -0.132 -0.044 0.021 0.007 19 -0.176 0.125 0.032 -0.077 -0.292 20 0.038 -0.055 -0.210 0.017 0.148 21 0.166 -0.147 -0.036 0.020 0.245 22 -0.047 0.010 0.067 0.032 0.036 23 -0.044 -0.073 -0.037 0.035 0.102 24 0.025 0.042 -0.016 0.000 -0.130 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 11 12 13 14 15 ________ ________ ________ ________ ________ 11 1.000 12 -0.480 1.000 13 -0.075 -0.038 1.000 14 0.009 0.026 -0.263 1.000 15 0.005 0.021 0.026 -0.027 1.000 16 -0.081 0.010 -0.036 -0.015 0.047 17 0.110 -0.066 0.061 0.016 -0.572 18 0.048 -0.024 -0.149 0.089 -0.509 19 0.067 -0.106 0.019 -0.034 -0.015 20 -0.081 0.018 0.065 -0.242 0.120 21 -0.022 0.082 -0.035 0.018 0.028 22 -0.154 0.127 0.050 0.001 0.294 23 -0.131 0.151 -0.013 0.009 -0.063 24 0.172 -0.227 -0.048 0.032 -0.070 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 16 17 18 19 20 ________ ________ ________ ________ ________ 16 1.000 17 -0.263 1.000 18 0.023 0.308 1.000 19 -0.154 0.086 -0.010 1.000 20 -0.029 -0.107 -0.489 -0.123 1.000 21 -0.096 -0.008 0.037 -0.882 0.093 22 0.130 -0.547 -0.612 -0.032 0.302 23 0.150 -0.022 -0.033 -0.116 0.226 24 -0.012 0.207 0.340 0.137 -0.638 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 21 22 23 24 ________ ________ ________ ________ 21 1.000 22 -0.159 1.000 23 -0.125 0.217 1.000 24 -0.024 -0.545 -0.601 1.000
6e9ba689c971e6b083acae108715171d3e45f188
449d555969bfd7befe906877abab098c6e63a0e8
/3769/CH13/EX13.21/Ex13_21.sce
a6279c03e650e8cf77dde1e9e6c463fb432b2653
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
375
sce
Ex13_21.sce
clear //Given Vr=150 //V R=75.0 //ohm f=50 //Hz L=318*10**-3 //H //Calculation // Iv=Vr/R Xl=2*%pi*f*L Vl=Iv*Xl Z=sqrt(R**2+Xl**2) Ev=Iv*Z a=Xl/R a1=atan(a)*180/3.14 //Result printf("\n (i) The supply voltage is %0.0f V",Ev) printf("\n (ii) The phase angle is %0.2f degree lag",a1)
184263e24ac34e410ed13ff8815c6a7b4b83d4ee
74fffce9cc4eec19f74cee33440f5bf129117c0a
/sed-builder/src/test/resources/test_data/3c273.tst
b356b8c33b5e320301650655b62478768211d9a7
[]
no_license
ChandraCXC/iris
be7c97891db3f827f01254109fd7b94954c0f5f5
354f171ef253260677b93c35b5d2b105c28d2bc3
refs/heads/master
2021-04-15T19:16:53.830702
2017-03-06T14:11:13
2017-03-06T14:11:13
17,256,484
3
2
null
2021-03-26T17:54:07
2014-02-27T16:55:48
Java
UTF-8
Scilab
false
false
130,507
tst
3c273.tst
Photometric Data for 3C 273 # Table parameters Description: Published and Homogenized by NED [Frequency, Flux Density] Units utype: spec:Spectrum DataModel: Spectrum 1.03 DatasetType: Photometry Point DataLength: 455 Title: Photometric Data for 3C 273, calculated by NED from available published values Creator: NASA/IPAC Extragalactic Database (NED) CreationType: Derived Publisher: NASA/IPAC Extragalactic Database (NED) TargetName: 3C 273 SpectralAxisName: SpectralCoord SpectralAxisUcd: em.freq SpectralAxisUnit: Hz SpectralAxisCalibration: Calibrated FluxAxisName: Flux FluxAxisUcd: phot.flux.density;em.freq FluxAxisCalibration: Calibrated SpatialAxisCoverageLocation: 194.0465271 -5.789311 DataSpectralUcd: em.freq DataSpectralUnit: Hz DataFluxUcd: phot.flux.density;em.freq QUERY_STATUS: OK REQUEST: getData VERSION: 1.0 LINK: file:/services/accessSED?TARGETNAME=3C 273&REQUEST=getData # Attempted guesses about identity of columns in the table. # These have been inferred from column UCDs and/or names # in the original table data. # The algorithm which identifies these columns is not particularly reliable, # so it is possible that these are incorrect. id_col: 17 ra_col: -1 dec_col: -1 # This TST file generated by STIL v3.0 DataPointNumber DataSpectralPassBand DataFluxPublishedValue DataFluxPublishedStatErr DataFluxPublishedUnit DataSpectralValue DataFluxValue DataFluxStatErr DataFluxUnit DataRefcode DataSignificance DataSpectralPublishedValue DataFrequencyMode DataTargetPos DataSpatialMode DataQualifiers DataComments Index --------------- -------------------- ---------------------- ------------------------ --------------------- ----------------- ------------- --------------- ------------ ----------- ---------------- -------------------------- ----------------- ------------- --------------- -------------- ------------ ----- 1 EGRET (0.1-5 GeV) 2.72E-11 4.42E-12 Jy 6.17E23 2.72E-11 4.42E-12 Jy 1995ApJS..101..259T 1 sigma 2.55 GeV Broad-band measurement 122900. +020600. (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 1 2 40-100 keV INTEGRAL 8.01E-11 4.71E-12 erg cm^-2^ s^-1^ 1.69E19 4.74E-7 2.79E-8 Jy 2006ApJ...636..765B uncertainty 70 keV Broad-band measurement 187.293 2.027 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 2 3 40-100 keV INTEGRAL 6.29E-11 1.7E-12 erg cm^-2^ s^-1^ 1.69E19 3.72E-7 1.01E-8 Jy 2006ApJ...638..642B uncertainty 70 keV Broad-band measurement 12 29 07 +02 03 09 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 3 4 40-100 keV INTEGRAL 11.5 0.3 milliCrab 1.69E19 6.41E-7 1.67E-8 Jy 2007ApJS..170..175B uncertainty 70 keV Broad-band measurement 187.280 +02.049 (J2000) Flux integrated from map Time-averaged flux From reprocessed raw data; NED frequency assigned tomid-point of band in keV 4 5 17-60 keV (INTEGRAL) 1.383E-10 2.3E-12 erg s^-1^ cm^-2^ 9.31E18 1.49E-6 2.47E-8 Jy 2007A&A...462...57S uncertainty 38.50 keV Broad-band measurement Flux integrated from map Averaged new and previously published data; NED frequencyassigned to mid-point of band in keV 5 6 20-40 keV (INTEGRAL) 5.68E-11 2.27E-12 erg cm^-2^ s^-1^ 7.25E18 7.83E-7 3.13E-8 Jy 2006ApJ...636..765B uncertainty 30 keV Broad-band measurement 187.293 2.027 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 6 7 20-40 keV (INTEGRAL) 5.5E-11 1.5E-12 erg cm^-2^ s^-1^ 7.25E18 7.59E-7 2.07E-8 Jy 2006ApJ...638..642B uncertainty 30 keV Broad-band measurement 12 29 07 +02 03 09 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 7 8 20-40 keV (INTEGRAL) 10.1 0.2 milliCrab 7.25E18 1.05E-6 2.09E-8 Jy 2007ApJS..170..175B uncertainty 30 keV Broad-band measurement 187.280 +02.049 (J2000) Flux integrated from map Time-averaged flux From reprocessed raw data; NED frequency assigned tomid-point of band in keV 8 9 F_2-10_ keV 5.72E-6 5.72E-7 Jy 1.45E18 5.72E-6 5.72E-7 Jy 1989MNRAS.240..833T typical accuracy 6.0 keV Broad-band measurement Flux integrated from map Energy index 0.53 + 3.7 From new raw data; NED frequency assigned to mid-point ofband in keV 9 10 2-10 keV (XMM) 7.87E-11 erg cm^-2^ s^-1^ 1.45E18 5.42E-6 Jy 2005A&A...432...15P no uncertainty reported 6 keV Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 10 11 3-9 keV (BeppoSAX) 1.17E-13 W m^-2^ 1.45E18 8.06E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 1997.01.13 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 11 12 3-9 keV (BeppoSAX) 1.12E-13 W m^-2^ 1.45E18 7.72E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 1997.01.15 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 12 13 3-9 keV (BeppoSAX) 1.08E-13 W m^-2^ 1.45E18 7.44E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 1997.01.17 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 13 14 3-9 keV (BeppoSAX) 1.03E-13 W m^-2^ 1.45E18 7.1E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 1997.01.22 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 14 15 4-8 keV (BeppoSAX) 7.01E-14 W m^-2^ 1.45E18 4.83E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 1996.07.18 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 15 16 4-8 keV (BeppoSAX) 1.08E-13 W m^-2^ 1.45E18 7.44E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 1998.06.24 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 16 17 4-8 keV (BeppoSAX) 1.16E-13 W m^-2^ 1.45E18 7.99E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 2000.01.09 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 17 18 4-8 keV (BeppoSAX) 8.67E-14 W m^-2^ 1.45E18 5.98E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 2000.06.13 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 18 19 4-8 keV (BeppoSAX) 1.01E-13 W m^-2^ 1.45E18 6.96E-6 Jy 2005A&A...433.1163D no uncertainty reported 6 keV Broad-band measurement Flux integrated from map Observation made on 2001.06.12 Averaged new and previously published data;Extinction-corrected for Milky Way; NED frequency assigned tomid-point of band in keV 19 20 2-10 keV 9.033E-11 2.08E-11 ergs cm^-2^ s^-1^ 1.45E18 6.23E-6 1.43E-6 Jy 2005ApJ...629...61K uncertainty 6 keV Broad-band measurement Flux integrated from map Flux from 1997MNRAS.288..920L Averaged from previously published data; Extinction-correctedfor Milky Way 20 21 2-10 keV (INTEGRAL) 9.21E-11 2.9E-12 erg cm^-2^ s^-1^ 1.45E18 6.35E-6 2.0E-7 Jy 2006ApJ...638..642B uncertainty 6 keV Broad-band measurement 12 29 07 +02 03 09 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 21 22 2.0-10 keV (HEAO-1) 7.5E-11 ergs cm^-2^ s^-1^ 1.45E18 5.17E-6 Jy 2006AJ....131.2843S no uncertainty reported 6 keV Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Flux integrated from map Transformed from previously published data; NED frequencyassigned to mid-point of band in keV 22 23 2.0-10 keV (XMM) 9.4E-11 ergs cm^-2^ s^-1^ 1.45E18 6.48E-6 Jy 2006AJ....131.2843S no uncertainty reported 6 keV Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 23 24 2-10 keV (BeppoSAX) 7.9E-11 9.0E-12 erg/cm^2^/s 1.45E18 5.45E-6 6.21E-7 Jy 2007A&A...472..705V uncertainty 6.00 keV Broad-band measurement 12 29 05.4 +02 02 20.7 (J2000) Flux integrated from map From new raw data; Extinction-corrected for Milky Way; NEDfrequency assigned to mid-point of band in keV 24 25 2-10 keV (BeppoSAX) 1.02E-10 1.0E-11 erg/s/cm^2^ 1.45E18 7.03E-6 6.9E-7 Jy 2008A&A...479..365P uncertainty 6.00 keV Broad-band measurement Modelled datum From reprocessed raw data; NED frequency assigned tomid-point of band in keV 25 26 2-10 keV (Swift) 1.85E-10 4.0E-12 erg/cm^2^/s 1.45E18 1.28E-5 2.76E-7 Jy 2009A&A...494...49P statistical error 6.00 keV Broad-band measurement Modelled datum From new raw data; NED frequency assigned to mid-point ofband in keV 26 27 0.4-10 keV (XMM) 1.22E-10 erg cm^-2^ s^-1^ 1.26E18 9.68E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 27 28 0.4-10 keV (XMM) 1.18E-10 erg cm^-2^ s^-1^ 1.26E18 9.37E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 28 29 0.4-10 keV (XMM) 1.15E-10 erg cm^-2^ s^-1^ 1.26E18 9.13E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 29 30 0.4-10 keV (XMM) 1.45E-10 erg cm^-2^ s^-1^ 1.26E18 1.15E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 30 31 0.4-10 keV (XMM) 1.74E-10 erg cm^-2^ s^-1^ 1.26E18 1.38E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 31 32 0.4-10 keV (XMM) 1.75E-10 erg cm^-2^ s^-1^ 1.26E18 1.39E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 32 33 0.4-10 keV (XMM) 1.27E-10 erg cm^-2^ s^-1^ 1.26E18 1.01E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 33 34 0.4-10 keV (XMM) 1.77E-10 erg cm^-2^ s^-1^ 1.26E18 1.4E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 34 35 0.4-10 keV (XMM) 1.43E-10 erg cm^-2^ s^-1^ 1.26E18 1.13E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 35 36 0.4-10 keV (XMM) 1.85E-10 erg cm^-2^ s^-1^ 1.26E18 1.47E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 36 37 0.4-10 keV (XMM) 1.58E-10 erg cm^-2^ s^-1^ 1.26E18 1.25E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 37 38 0.4-10 keV (XMM) 1.25E-10 erg cm^-2^ s^-1^ 1.26E18 9.92E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 38 39 0.4-10 keV (XMM) 1.07E-10 erg cm^-2^ s^-1^ 1.26E18 8.49E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Single PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 39 40 0.4-10 keV (XMM) 1.27E-10 erg cm^-2^ s^-1^ 1.26E18 1.01E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 40 41 0.4-10 keV (XMM) 1.25E-10 erg cm^-2^ s^-1^ 1.26E18 9.92E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 41 42 0.4-10 keV (XMM) 1.21E-10 erg cm^-2^ s^-1^ 1.26E18 9.6E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 42 43 0.4-10 keV (XMM) 1.22E-10 erg cm^-2^ s^-1^ 1.26E18 9.68E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 43 44 0.4-10 keV (XMM) 1.57E-10 erg cm^-2^ s^-1^ 1.26E18 1.25E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 44 45 0.4-10 keV (XMM) 1.84E-10 erg cm^-2^ s^-1^ 1.26E18 1.46E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 45 46 0.4-10 keV (XMM) 1.31E-10 erg cm^-2^ s^-1^ 1.26E18 1.04E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 46 47 0.4-10 keV (XMM) 1.86E-10 erg cm^-2^ s^-1^ 1.26E18 1.48E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 47 48 0.4-10 keV (XMM) 1.51E-10 erg cm^-2^ s^-1^ 1.26E18 1.2E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 48 49 0.4-10 keV (XMM) 1.54E-10 erg cm^-2^ s^-1^ 1.26E18 1.22E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 49 50 0.4-10 keV (XMM) 1.95E-10 erg cm^-2^ s^-1^ 1.26E18 1.55E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 50 51 0.4-10 keV (XMM) 1.64E-10 erg cm^-2^ s^-1^ 1.26E18 1.3E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 51 52 0.4-10 keV (XMM) 1.32E-10 erg cm^-2^ s^-1^ 1.26E18 1.05E-5 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 52 53 0.4-10 keV (XMM) 1.12E-10 erg cm^-2^ s^-1^ 1.26E18 8.89E-6 Jy 2006A&A...453..829F no uncertainty reported 5.20 keV Broad-band measurement 12 29 06.7 +02 03 09 (J2000) Flux integrated from map Broken PL model From reprocessed raw data; NED frequency assigned tomid-point of band in keV 53 54 0.5-10 keV (ASCA) 230.0 ergs cm^-2^ s^-1^ 1.21E18 1.9E-5 Jy 2000MNRAS.316..234R no uncertainty reported 5.0 keV Broad-band measurement; broad-band flux derived by integration over spectrum; synthetic band Not reported in paper Recalibrated data; Extinction-corrected for internal andMilky Way and K-correction applied; NED frequency assigned tomid-point of band in keV 54 55 4 keV (Einstein) 5.05 microJy 9.67E17 5.05E-6 Jy 1994ApJS...95....1E no uncertainty reported 4 keV Broad-band measurement Flux integrated from map From 1992ApJ...384...62C Averaged from previously published data; Extinction-correctedfor Milky Way; NED frequency assigned to mid-point of band inkeV 55 56 4 keV (Einstein) 5.84 microJy 9.67E17 5.84E-6 Jy 1994ApJS...95....1E no uncertainty reported 4 keV Broad-band measurement Flux integrated from map From 1992ApJ...389..157W Averaged from previously published data; Extinction-correctedfor Milky Way; NED frequency assigned to mid-point of band inkeV 56 57 0.3-3.5 keV Einstein 7.49 0.26 erg cm^-2^ s^-1^ 4.59E17 1.63E-5 3.9E-6 Jy 1987ApJ...323..243W uncertainty 1.9 keV Broad-band measurement Flux integrated from map From new raw data; Extinction-corrected for Milky Way; NEDfrequency assigned to mid-point of band in keV 57 58 0.3-3.5 keV Einstein 7.39 0.08 erg cm^-2^ s^-1^ 4.59E17 1.61E-5 1.19E-6 Jy 1987ApJ...323..243W uncertainty 1.9 keV Broad-band measurement Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 58 59 ROSAT (0.1-2.4 keV) 1.17E-10 2.16E-12 ergs sec^-1^ cm^-2^ 3.25E17 3.6E-5 6.65E-7 Jy 1994A&A...281..355B based on count statistics only 1.3 keV Broad-band measurement; synthetic band Flux integrated from map From new raw data; Extinction-corrected for Milky Way 59 60 0.5-2 keV (XMM) 4.38E-11 erg cm^-2^ s^-1^ 3.02E17 1.45E-5 Jy 2005A&A...432...15P no uncertainty reported 1.25 keV Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 60 61 1 keV (Einstein IPC) 10.98 1.14 microJy 2.42E17 1.1E-5 1.15E-5 Jy 1987ApJ...323..243W uncertainty 1 keV Broad-band measurement Flux integrated from map From new raw data; Extinction-corrected for Milky Way; NEDfrequency assigned to mid-point of band in keV 61 62 1 keV (Einstein IPC) 10.83 0.9 microJy 2.42E17 1.08E-5 8.98E-6 Jy 1987ApJ...323..243W uncertainty 1 keV Broad-band measurement Flux integrated from map From new raw data; NED frequency assigned to mid-point ofband in keV 62 63 1 keV (Einstein) 9.8 0.2 microJy 2.42E17 9.8E-6 2.0E-7 Jy 1994ApJS...95....1E 90% confidence 1 keV Broad-band measurement Flux integrated from map From 1992A&A...253...35M Averaged from previously published data; Extinction-correctedfor Milky Way; NED frequency assigned to mid-point of band inkeV 63 64 0.2 keV (Einstein) 48.9 3.3 microJy 4.84E16 4.89E-5 3.3E-6 Jy 1994ApJS...95....1E 90% confidence 0.2 keV Broad-band measurement Flux integrated from map From 1992A&A...253...35M From reprocessed raw data; Extinction-corrected for MilkyWay; NED frequency assigned to mid-point of band in keV 64 65 1000 A (FUSE) 3.63E-13 7.0E-16 ergs/cm^2^/s/A 3.0E15 0.0121 2.34E-5 Jy 2004ApJ...615..135S uncertainty 1000 A Broad-band measurement From fitting to map Power-law continuum fit From reprocessed raw data 65 66 1030 A (FUSE) 6.9E-14 erg/cm^2^/s/A 2.91E15 0.00245 Jy 2006ApJS..165..229F no uncertainty reported 1030 A Broad-band measurement Flux integrated from map S/N = 31.2 From reprocessed raw data 66 67 1031 A (FUSE) 2.69E-13 erg/cm^2^/s/A 2.91E15 0.00955 Jy 2009ApJS..182..378W no uncertainty reported 1031 A Broad-band measurement Flux integrated from map From new raw data 67 68 1350 A (HST/FOS) 0.00658 6.58E-4 Jy 2.22E15 0.00658 6.58E-4 Jy 2006MNRAS.373..551L uncertainty 1350 A Broad-band measurement 12 29 06.7 +02 03 08.6 (J2000) From fitting to map From reprocessed raw data; Extinction-corrected for Milky Way 68 69 1450 A 1.5E-13 4.0E-14 ergs/cm^2^/s/A 2.07E15 0.0105 0.00281 Jy 2005ApJ...629...61K uncertainty 1450 A Broad-band measurement Flux integrated from map From new raw data; Extinction-corrected for Milky Way 69 70 1549 A 2.11E-13 erg/cm^2^/s/A 1.94E15 0.0169 Jy 2005MNRAS.356.1029B no uncertainty reported 1549.05 A Broad-band measurement Not reported in paper C IV continuum From new raw data; Extinction-corrected for Milky Way 70 71 UVW2 (XMM OM) 11.28 0.01 mag 1.41E15 0.0249 2.29E-4 Jy 2006MNRAS.366..953B uncertainty 2120 A Broad-band measurement Flux in fixed aperture From new raw data; Extinction-corrected for Milky Way 71 72 UVM2 (XMM OM) 11.33 0.01 mag 1.3E15 0.0234 2.15E-4 Jy 2006MNRAS.366..953B uncertainty 2310 A Broad-band measurement Flux in fixed aperture From new raw data; Extinction-corrected for Milky Way 72 73 UVW1 (XMM OM) 11.49 0.01 mag 1.03E15 0.0268 2.47E-4 Jy 2006MNRAS.366..953B uncertainty 2910 A Broad-band measurement Flux in fixed aperture From new raw data; Extinction-corrected for Milky Way 73 74 log nu(Hz) 14.95 1.46 0.02 log f_nu (milliJy) 8.91E14 0.0288 0.00136 Jy 1979ApJ...230...79N uncertainty 14.95 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 74 75 u (SDSS PSF) AB 12.718 0.038 asinh mag 8.36E14 0.0308 0.00107 Jy 2007SDSS6.C...0000: based on count statistics only 3585 A Broad-band measurement 187.2779119548 2.0523862748 (J2000) Modelled datum SDSS flags: CHILD - object is part of a blended parent object; BAD_RADIAL - some low S/N radial points; INTERP - object contains interpolated-over pixels; BINNED1 - detected at >=5 sigma in original imaging frame; From new raw data 75 76 U (Johnson) 27.11 0.79 milliJy 8.19E14 0.0271 7.9E-4 Jy 1983ApJS...52..341M 1 sigma 0.366 microns Broad-band measurement 122633.2 +021943 (B1950) Flux in fixed aperture 17.7" aperture From new raw data 76 77 U (Johnson) 24.92 0.6 milliJy 8.19E14 0.0249 6.0E-4 Jy 1983ApJS...52..341M 1 sigma 0.366 microns Broad-band measurement 122633.2 +021943 (B1950) Flux in fixed aperture 15.4" aperture From new raw data 77 78 U 11.99 mag 8.19E14 0.029 Jy 1978ApJS...36..317W no uncertainty reported 3660 A Broad-band measurement Flux integrated from map Averaged new and previously published data; derived from aflux in a different band and a color; Standard Johnson UBVRIfilters assumed 78 79 U (XMM OM) 11.77 0.01 mag 8.03E14 0.0288 2.66E-4 Jy 2006MNRAS.366..953B uncertainty 3735 A Broad-band measurement Flux in fixed aperture From new raw data; Extinction-corrected for Milky Way 79 80 log nu(Hz) 14.90 1.46 0.02 log f_nu (milliJy) 7.94E14 0.0288 0.00136 Jy 1979ApJ...230...79N uncertainty 14.90 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 80 81 log nu(Hz) 14.85 1.47 0.02 log f_nu (milliJy) 7.08E14 0.0295 0.00139 Jy 1979ApJ...230...79N uncertainty 14.85 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 81 82 B (Mt. Lemmon) 26.0 2.0 milliJy 7.02E14 0.026 0.0020 Jy 1983ApJ...268...68L uncertainty 0.427 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 82 83 B 12.86 mag 6.81E14 0.0306 Jy 1978ApJS...36..317W no uncertainty reported 4400 A Broad-band measurement Flux integrated from map Averaged new and previously published data; derived from aflux in a different band and a color; Standard Johnson UBVRIfilters assumed 83 84 B Johnson (FLWO) 12.986 0.074 mag 6.81E14 0.0272 0.00187 Jy 1994ApJS...95....1E uncertainty 4400 A Broad-band measurement Flux in fixed aperture 14" aperture From new raw data; derived from a flux in a different bandand a color 84 85 B (Johnson) 12.686 0.027 mag 6.81E14 0.0359 8.93E-4 Jy 2009AJ....138..845O rms uncertainty 4400 A Broad-band measurement Flux in fixed aperture From new raw data 85 86 B (Johnson) 12.895 mag 6.81E14 0.0296 Jy 2009MNRAS.392.1181D no uncertainty reported 4400 A Broad-band measurement Flux in fixed aperture Mean magnitude From new raw data 86 87 B (XMM OM) 12.94 0.01 mag 6.75E14 0.0263 2.42E-4 Jy 2006MNRAS.366..953B uncertainty 4443 A Broad-band measurement Flux in fixed aperture From new raw data; Extinction-corrected for Milky Way 87 88 B (Johnson) 28.36 0.94 milliJy 6.69E14 0.0284 9.4E-4 Jy 1983ApJS...52..341M 1 sigma 0.448 microns Broad-band measurement 122633.2 +021943 (B1950) Flux in fixed aperture 17.7" aperture From new raw data 88 89 B (Johnson) 26.44 0.53 milliJy 6.69E14 0.0264 5.3E-4 Jy 1983ApJS...52..341M 1 sigma 0.448 microns Broad-band measurement 122633.2 +021943 (B1950) Flux in fixed aperture 15.4" aperture From new raw data 89 90 log nu(Hz) 14.80 1.44 0.02 log f_nu (milliJy) 6.31E14 0.0275 0.0013 Jy 1979ApJ...230...79N uncertainty 14.80 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 90 91 4861 A 2.841E-14 erg/cm^2^/s/A 6.17E14 0.0224 Jy 2005MNRAS.356.1029B no uncertainty reported 4861 A Broad-band measurement Not reported in paper H {beta} continuum From new raw data; Extinction-corrected for Milky Way 91 92 g (SDSS PSF) AB 12.803 0.0 asinh mag 6.17E14 0.0275 1.04E-5 Jy 2007SDSS6.C...0000: based on count statistics only 4858 A Broad-band measurement 187.2779119548 2.0523862748 (J2000) Modelled datum SDSS flags: CHILD - object is part of a blended parent object; BAD_RADIAL - some low S/N radial points; INTERP - object contains interpolated-over pixels; SATUR - object contains saturated pixels; BINNED1 - detected at >=5 sigma in original imaging frame; SATUR_CENTER - object's center is saturated; INTERP_CENTER - interpolated pixel(s) within 3 pixels of center; PSF_FLUX_INTERP - a signifcant amount of PSF's flux is interpolated; BRIGHTEST_GALAXY_CHILD - brightest child among one parent's children; AMOMENT_FAINT - too faint for adaptive moments; HAS_SATUR_DN - saturated, but bleed trail counts added back in; From new raw data 92 93 5100 A 2.13E-14 2.6E-15 ergs/cm^2^/s/A 5.88E14 0.0185 0.00226 Jy 2000ApJ...533..631K rms uncertainty 5100 A Broad-band measurement 12 26 33.4 +02 19 42 (J2000) Total flux From new raw data 93 94 log nu(Hz) 14.75 1.42 0.02 log f_nu (milliJy) 5.62E14 0.0263 0.00124 Jy 1979ApJ...230...79N uncertainty 14.75 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 94 95 V (Johnson) 12.78 0.06 mag 5.48E14 0.0281 0.0016 Jy 1978ApJ...224...22O uncertainty 5471 A Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Corrected for line contamination 95 96 V (Mt. Lemmon) 28.0 2.0 milliJy 5.48E14 0.028 0.0020 Jy 1983ApJ...268...68L uncertainty 0.547 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 96 97 V (Johnson) 12.87 0.04 mag 5.48E14 0.0259 9.72E-4 Jy 1978ApJ...224...22O uncertainty 5471 A Broad-band measurement Flux in fixed aperture 27" aperture From new raw data 97 98 V (XMM OM) 12.64 0.01 mag 5.47E14 0.0288 2.65E-4 Jy 2006MNRAS.366..953B uncertainty 5483 A Broad-band measurement Flux in fixed aperture From new raw data; Extinction-corrected for Milky Way 98 99 V (HST/WFPC2) 12.6 0.15 mag 5.45E14 0.0332 0.00459 Jy 2008ApJ...678...22H statistical error 5500 A Broad-band measurement Modelled datum Nuclear magnitude From reprocessed raw data 99 100 V (HST/WFPC2) 15.65 0.2 mag 5.45E14 0.0020 3.69E-4 Jy 2008ApJ...678...22H statistical error 5500 A Broad-band measurement Modelled datum Host magnitude From reprocessed raw data 100 101 V (Johnson) 12.81 0.05 mag 5.42E14 0.0274 0.00129 Jy 1978ApJS...38..267O uncertainty 5530 A Broad-band measurement Flux in fixed aperture 18" aperture Averaged new and previously published data 101 102 V (Johnson) 12.87 0.05 mag 5.42E14 0.0259 0.00122 Jy 1978ApJS...38..267O uncertainty 5530 A Broad-band measurement Flux in fixed aperture 27" aperture From new raw data 102 103 V (Johnson) 0.023 Jy 5.42E14 0.023 Jy 1965ApJ...141..336L no uncertainty reported 5530 A Broad-band measurement Flux in fixed aperture From new raw data 103 104 V (Johnson) 27.46 0.5 milliJy 5.42E14 0.0275 5.0E-4 Jy 1983ApJS...52..341M 1 sigma 5530 A Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 15.4" aperture From new raw data 104 105 V (Johnson) 26.51 0.67 milliJy 5.42E14 0.0265 6.7E-4 Jy 1983ApJS...52..341M 1 sigma 5530 A Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 17.7" aperture From new raw data 105 106 V 12.72 mag 5.42E14 0.0297 Jy 1978ApJS...36..317W no uncertainty reported 5530 A Broad-band measurement Estimated by eye Averaged new and previously published data; Standard JohnsonUBVRI filters assumed 106 107 V Johnson (FLWO) 12.81 0.069 mag 5.42E14 0.0274 0.00174 Jy 1994ApJS...95....1E uncertainty 5530 A Broad-band measurement Flux in fixed aperture 14" aperture From new raw data 107 108 V (AIT) 24.78 milliJy 5.42E14 0.0248 Jy 2004A&A...419...25F no uncertainty reported 5530 A Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Not reported in paper Averaged over 10 years From new raw data; Extinction-corrected for Milky Way 108 109 V (Johnson) 12.627 0.013 mag 5.42E14 0.0324 3.88E-4 Jy 2009AJ....138..845O rms uncertainty 5530 A Broad-band measurement Flux in fixed aperture From new raw data 109 110 V (Johnson) (SHAO) 12.204 0.062 mag 5.42E14 0.0478 0.00273 Jy 2009AJ....138.1428F uncertainty 5530 A Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux in fixed aperture Variable From new raw data; Extinction-corrected for Milky Way 110 111 V (Johnson) 12.698 mag 5.42E14 0.0303 Jy 2009MNRAS.392.1181D no uncertainty reported 5530 A Broad-band measurement Flux in fixed aperture Mean magnitude From new raw data 111 112 5700 A 2.724E-25 1.2E-27 erg/s/cm^2^/Hz 5.26E14 0.0272 1.2E-4 Jy 2006ApJ...650...57T uncertainty 5700 A Broad-band measurement 12 29 06.6 +02 03 08 (J2000) Modelled datum Averaged new and previously published data 112 113 log nu(Hz) 14.70 1.4 0.02 log f_nu (milliJy) 5.01E14 0.0251 0.00118 Jy 1979ApJ...230...79N uncertainty 14.70 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 113 114 r (SDSS PSF) AB 12.733 0.0 asinh mag 4.77E14 0.0293 1.16E-5 Jy 2007SDSS6.C...0000: based on count statistics only 6290 A Broad-band measurement 187.2779119548 2.0523862748 (J2000) Modelled datum SDSS flags: CHILD - object is part of a blended parent object; BAD_RADIAL - some low S/N radial points; INTERP - object contains interpolated-over pixels; SATUR - object contains saturated pixels; BINNED1 - detected at >=5 sigma in original imaging frame; SATUR_CENTER - object's center is saturated; INTERP_CENTER - interpolated pixel(s) within 3 pixels of center; PSF_FLUX_INTERP - a signifcant amount of PSF's flux is interpolated; BRIGHTEST_GALAXY_CHILD - brightest child among one parent's children; CANONICAL_BAND - this band was primary (usually r); AMOMENT_FAINT - too faint for adaptive moments; NOTCHECKED_CENTER - object's center has pixels not checked for peaks; HAS_SATUR_DN - saturated, but bleed trail counts added back in; From new raw data 114 115 R (AIT) 26.19 milliJy 4.68E14 0.0262 Jy 2004A&A...419...25F no uncertainty reported 6400 A Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Not reported in paper Averaged over 10 years From new raw data; Extinction-corrected for Milky Way 115 116 R 14.11 mag 4.68E14 0.00699 Jy 2008ApJS..175...97H no uncertainty reported 6400 A Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux integrated from map Averaged new and previously published data 116 117 R (Cousins) (SHAO) 12.014 0.014 mag 4.68E14 0.0482 6.21E-4 Jy 2009AJ....138.1428F uncertainty 6400 A Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux in fixed aperture Variable From new raw data; Extinction-corrected for Milky Way 117 118 R (Cousins) 12.441 mag 4.68E14 0.0325 Jy 2009MNRAS.392.1181D no uncertainty reported 6400 A Broad-band measurement Flux in fixed aperture Mean magnitude From new raw data 118 119 R' (Cousins) 27.6 0.61 milliJy 4.48E14 0.0276 6.1E-4 Jy 1983ApJS...52..341M 1 sigma 6690 A Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 15.4" aperture From new raw data 119 120 R' (Cousins) 26.09 0.82 milliJy 4.48E14 0.0261 8.2E-4 Jy 1983ApJS...52..341M 1 sigma 6690 A Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 17.7" aperture From new raw data 120 121 log nu(Hz) 14.65 1.39 0.02 log f_nu (milliJy) 4.47E14 0.0245 0.00116 Jy 1979ApJ...230...79N uncertainty 14.65 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 121 122 R (Johnson) 12.52 0.05 mag 4.35E14 0.0273 0.00129 Jy 1978ApJ...224...22O uncertainty 6892 A Broad-band measurement Flux in fixed aperture 27" aperture From new raw data 122 123 R (Johnson) 12.51 0.06 mag 4.35E14 0.0276 0.00156 Jy 1978ApJ...224...22O uncertainty 6892 A Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Corrected for line contamination 123 124 R (Mt. Lemmon) 30.0 2.0 milliJy 4.35E14 0.03 0.0020 Jy 1983ApJ...268...68L uncertainty 0.689 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 124 125 R Johnson (FLWO) 12.714 0.074 mag 4.33E14 0.0237 0.00162 Jy 1994ApJS...95....1E uncertainty 6930 A Broad-band measurement Flux in fixed aperture 14" aperture From new raw data; derived from a flux in a different bandand a color 125 126 R (Johnson) 12.475 0.011 mag 4.33E14 0.0296 3.0E-4 Jy 2009AJ....138..845O rms uncertainty 6930 A Broad-band measurement Flux in fixed aperture From new raw data 126 127 R (Johnson) 12.5 0.05 mag 4.28E14 0.0278 0.00131 Jy 1978ApJS...38..267O uncertainty 7000 A Broad-band measurement Flux in fixed aperture 18" aperture Averaged new and previously published data 127 128 R (Johnson) 12.52 0.05 mag 4.28E14 0.0273 0.00129 Jy 1978ApJS...38..267O uncertainty 7000 A Broad-band measurement Flux in fixed aperture 27" aperture From new raw data 128 129 R (Johnson) 0.024 Jy 4.28E14 0.024 Jy 1965ApJ...141..336L no uncertainty reported 7000 A Broad-band measurement Flux in fixed aperture From new raw data 129 130 log nu(Hz) 14.60 1.42 0.02 log f_nu (milliJy) 3.98E14 0.0263 0.00124 Jy 1979ApJ...230...79N uncertainty 14.60 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 130 131 i (SDSS PSF) AB 12.473 0.0 asinh mag 3.89E14 0.0372 1.46E-5 Jy 2007SDSS6.C...0000: based on count statistics only 7706 A Broad-band measurement 187.2779119548 2.0523862748 (J2000) Modelled datum SDSS flags: CHILD - object is part of a blended parent object; BAD_RADIAL - some low S/N radial points; INTERP - object contains interpolated-over pixels; SATUR - object contains saturated pixels; BINNED1 - detected at >=5 sigma in original imaging frame; SATUR_CENTER - object's center is saturated; INTERP_CENTER - interpolated pixel(s) within 3 pixels of center; PSF_FLUX_INTERP - a signifcant amount of PSF's flux is interpolated; BRIGHTEST_GALAXY_CHILD - brightest child among one parent's children; AMOMENT_FAINT - too faint for adaptive moments; HAS_SATUR_DN - saturated, but bleed trail counts added back in; From new raw data 131 132 I (AIT) 30.86 milliJy 3.79E14 0.0309 Jy 2004A&A...419...25F no uncertainty reported 7900 A Broad-band measurement 12 29 06.7 +02 03 08 (J2000) Not reported in paper Averaged over 10 years From new raw data; Extinction-corrected for Milky Way 132 133 I (Cousins) (SHAO) 11.628 0.046 mag 3.79E14 0.0569 0.00241 Jy 2009AJ....138.1428F uncertainty 7900 A Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux in fixed aperture Variable From new raw data; Extinction-corrected for Milky Way 133 134 I (Cousins) 12.139 mag 3.79E14 0.0356 Jy 2009MNRAS.392.1181D no uncertainty reported 7900 A Broad-band measurement Flux in fixed aperture Mean magnitude From new raw data 134 135 I' (Cousins) 36.49 0.89 milliJy 3.75E14 0.0365 8.9E-4 Jy 1983ApJS...52..341M 1 sigma 8000 A Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 15.4" aperture From new raw data 135 136 I' (Cousins) 41.29 1.4 milliJy 3.75E14 0.0413 0.0014 Jy 1983ApJS...52..341M 1 sigma 8000 A Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 17.7" aperture From new raw data 136 137 log nu(Hz) 14.55 1.45 0.02 log f_nu (milliJy) 3.55E14 0.0282 0.00133 Jy 1979ApJ...230...79N uncertainty 14.55 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 137 138 I Johnson (FLWO) 12.13 0.078 mag 3.41E14 0.0321 0.00229 Jy 1994ApJS...95....1E uncertainty 8785 A Broad-band measurement Flux in fixed aperture 14" aperture From new raw data; derived from a flux in a different bandand a color 138 139 I (Johnson) 11.974 0.01 mag 3.41E14 0.037 3.41E-4 Jy 2009AJ....138..845O rms uncertainty 8785 A Broad-band measurement Flux in fixed aperture From new raw data 139 140 I (Johnson) 0.028 Jy 3.33E14 0.028 Jy 1965ApJ...141..336L no uncertainty reported 9000 A Broad-band measurement Flux in fixed aperture From new raw data 140 141 z (SDSS PSF) AB 12.749 0.014 asinh mag 3.25E14 0.0283 3.65E-4 Jy 2007SDSS6.C...0000: based on count statistics only 9222 A Broad-band measurement 187.2779119548 2.0523862748 (J2000) Modelled datum SDSS flags: CHILD - object is part of a blended parent object; BAD_RADIAL - some low S/N radial points; BINNED1 - detected at >=5 sigma in original imaging frame; From new raw data 141 142 log nu(Hz) 14.50 1.49 0.02 log f_nu (milliJy) 3.16E14 0.0309 0.00146 Jy 1979ApJ...230...79N uncertainty 14.50 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 142 143 log nu(Hz) 14.45 1.52 0.02 log f_nu (milliJy) 2.82E14 0.0331 0.00156 Jy 1979ApJ...230...79N uncertainty 14.45 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 143 144 J (ESO/SPM) 33.2 2.21 milliJy 2.5E14 0.0332 0.00221 Jy 1995ApJ...453..616S rms uncertainty 1.198 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture 15" aperture From new raw data 144 145 J (RGO) 11.63 0.07 mag 2.5E14 0.0366 0.00243 Jy 1981MNRAS.194..795G uncertainty 1.20 microns Broad-band measurement Flux in fixed aperture 12" aperture From new raw data 145 146 J (RGO) 11.63 0.07 mag 2.5E14 0.0366 0.00243 Jy 1979MNRAS.186p..29G uncertainty 1.20 microns Broad-band measurement Flux in fixed aperture From new raw data 146 147 J (AAO) 11.74 mag 2.5E14 0.033 Jy 1982MNRAS.199..943H no uncertainty reported 1.20 microns Broad-band measurement Flux in fixed aperture From new raw data; derived from a flux in a different bandand a color 147 148 F_J (total) 1.63 1.04 log milliJy 2.41E14 0.0427 0.011 Jy 1995ApJ...453..616S 1 sigma 1.244 microns Broad-band measurement Corrected to total flux from single aperture measurement Homogenized from new and previously published data 148 149 J_20 (2MASS LGA) 11.726 0.017 mag 2.4E14 0.0325 5.12E-4 Jy 2003AJ....125..525J 1 sigma uncert. 1.25 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux integrated from map 16.2 x 16.2 arcsec integration area. From new raw data 149 150 J_Kron (2MASS LGA) 11.764 0.016 mag 2.4E14 0.0314 4.65E-4 Jy 2003AJ....125..525J 1 sigma uncert. 1.25 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux integrated from map 10.2 x 10.2 arcsec integration area. From new raw data 150 151 J_tot (2MASS LGA) 11.692 0.023 mag 2.4E14 0.0335 7.17E-4 Jy 2003AJ....125..525J 1 sigma uncert. 1.25 microns Broad-band measurement 122906.75 +020308.4 (J2000) Total flux From new raw data 151 152 J_14arcsec (2MASS) 11.738 0.017 mag 2.4E14 0.0321 5.07E-4 Jy 20032MASX.C.......: 1 sigma uncert. 1.25 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux in fixed aperture 14.0 x 14.0 arcsec aperture From new raw data 152 153 J 11.71 0.06 mag 2.4E14 0.0324 0.00179 Jy 1994ApJS...95....1E uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 1988; MMT; Beam = 5" From new raw data 153 154 J 11.78 0.04 mag 2.4E14 0.0304 0.00112 Jy 1994ApJS...95....1E uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 1988; IRTF; Beam = 6" From new raw data 154 155 J (UKIRT) 11.5 0.01 mag 2.4E14 0.0402 3.7E-4 Jy 2007ApJ...663..781M statistical error 1.250 microns Broad-band measurement Flux in fixed aperture From new raw data 155 156 log nu(Hz) 14.380 1.49 0.02 log f_nu (milliJy) 2.4E14 0.0309 0.00146 Jy 1979ApJ...230...79N uncertainty 14.38 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 156 157 J 11.86 0.07 mag 2.4E14 0.0271 0.0018 Jy 1978ApJS...38..267O uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 18" aperture Averaged new and previously published data 157 158 J (Mt. Lemmon) 11.78 0.07 mag 2.4E14 0.0291 0.00194 Jy 1978ApJ...224...22O uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 158 159 J (Mt. Lemmon) 11.94 0.14 mag 2.4E14 0.0251 0.00346 Jy 1978ApJ...224...22O uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 159 160 J (Mt. Lemmon) 37.7 0.9 milliJy 2.4E14 0.0377 9.0E-4 Jy 1982ApJ...259..486S uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 160 161 J 11.41 0.18 mag 2.4E14 0.0409 0.00738 Jy 1978ApJS...38..267O uncertainty 1.25 microns Broad-band measurement Flux in fixed aperture 9" aperture From new raw data 161 162 J (Johnson) 43.9 1.4 milliJy 2.38E14 0.0439 0.0014 Jy 1983ApJS...52..341M 1 sigma 1.26 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 15.8" aperture From new raw data 162 163 J (Johnson) 71.2 2.6 milliJy 2.38E14 0.0712 0.0026 Jy 1983ApJS...52..341M 1 sigma 1.26 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 9.1" aperture From new raw data 163 164 1.27 microns 1.51 0.03 log milliJy 2.36E14 0.0324 0.00216 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1985 Jun 5 From new raw data; Standard Caltech JHKL filters assumed 164 165 1.27 microns 1.53 0.04 log milliJy 2.36E14 0.0339 0.00298 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1979 Jul 3 From new raw data; Standard Caltech JHKL filters assumed 165 166 1.27 microns 1.63 0.04 log milliJy 2.36E14 0.0427 0.00376 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1983 Jul 25 From new raw data; Standard Caltech JHKL filters assumed 166 167 1.27 microns 1.59 0.03 log milliJy 2.36E14 0.0389 0.00259 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 May 11 From new raw data; Standard Caltech JHKL filters assumed 167 168 1.27 microns 1.51 0.04 log milliJy 2.36E14 0.0324 0.00285 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1976 May 13 From new raw data; Standard Caltech JHKL filters assumed 168 169 1.27 microns 1.52 0.03 log milliJy 2.36E14 0.0331 0.00221 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1977 May 29 From new raw data; Standard Caltech JHKL filters assumed 169 170 1.27 microns 1.57 0.03 log milliJy 2.36E14 0.0372 0.00248 Jy 1987ApJS...63..615N estimated error 1.27 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 Jul 22 From new raw data; Standard Caltech JHKL filters assumed 170 171 H (ESO/SPM) 47.0 3.13 milliJy 1.9E14 0.047 0.00313 Jy 1995ApJ...453..616S rms uncertainty 1.580 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture 15" aperture From new raw data 171 172 H (Johnson) 60.0 1.3 milliJy 1.87E14 0.06 0.0013 Jy 1983ApJS...52..341M 1 sigma 1.60 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 15.8" aperture From new raw data 172 173 H (Johnson) 88.3 1.5 milliJy 1.87E14 0.0883 0.0015 Jy 1983ApJS...52..341M 1 sigma 1.60 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 9.1" aperture From new raw data 173 174 H (Johnson) 10.79 0.05 mag 1.87E14 0.0519 0.00245 Jy 1976ApJ...207..367A uncertainty 1.6 microns Broad-band measurement Flux in fixed aperture 17" aperture;Low quality data From new raw data 174 175 H (RGO) 10.88 0.06 mag 1.83E14 0.0458 0.0026 Jy 1981MNRAS.194..795G uncertainty 1.64 microns Broad-band measurement Flux in fixed aperture 12" aperture From new raw data 175 176 H (RGO) 10.88 0.06 mag 1.83E14 0.0458 0.0026 Jy 1979MNRAS.186p..29G uncertainty 1.64 microns Broad-band measurement Flux in fixed aperture From new raw data 176 177 H (AAO) 10.86 mag 1.83E14 0.0467 Jy 1982MNRAS.199..943H no uncertainty reported 1.64 microns Broad-band measurement Flux in fixed aperture From new raw data; derived from a flux in a different bandand a color 177 178 H_20 (2MASS LGA) 11.006 0.017 mag 1.82E14 0.0405 6.4E-4 Jy 2003AJ....125..525J 1 sigma uncert. 1.65 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux integrated from map 16.2 x 16.2 arcsec integration area. From new raw data 178 179 1.65 microns 1.64 0.03 log milliJy 1.82E14 0.0437 0.00291 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1976 May 13 From new raw data; Standard Caltech JHKL filters assumed 179 180 H_Kron (2MASS LGA) 11.043 0.016 mag 1.82E14 0.0392 5.82E-4 Jy 2003AJ....125..525J 1 sigma uncert. 1.65 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux integrated from map 10.2 x 10.2 arcsec integration area. From new raw data 180 181 1.65 microns 1.64 0.03 log milliJy 1.82E14 0.0437 0.00291 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1977 May 29 From new raw data; Standard Caltech JHKL filters assumed 181 182 H_tot (2MASS LGA) 10.953 0.023 mag 1.82E14 0.0426 9.11E-4 Jy 2003AJ....125..525J 1 sigma uncert. 1.65 microns Broad-band measurement 122906.75 +020308.4 (J2000) Total flux From new raw data 182 183 1.65 microns 1.69 0.03 log milliJy 1.82E14 0.049 0.00327 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1979 Jul 3 From new raw data; Standard Caltech JHKL filters assumed 183 184 H_14arcsec (2MASS) 11.019 0.017 mag 1.82E14 0.0401 6.32E-4 Jy 20032MASX.C.......: 1 sigma uncert. 1.65 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux in fixed aperture 14.0 x 14.0 arcsec aperture From new raw data 184 185 1.65 microns 1.7 0.03 log milliJy 1.82E14 0.0501 0.00335 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 May 11 From new raw data; Standard Caltech JHKL filters assumed 185 186 1.65 microns 1.7 0.04 log milliJy 1.82E14 0.0501 0.00441 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 Jul 22 From new raw data; Standard Caltech JHKL filters assumed 186 187 H 10.84 0.06 mag 1.82E14 0.0469 0.00259 Jy 1994ApJS...95....1E uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 1988; MMT; Beam = 5" From new raw data 187 188 H 10.87 0.04 mag 1.82E14 0.0456 0.00168 Jy 1994ApJS...95....1E uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 1988; IRTF; Beam = 6" From new raw data 188 189 1.65 microns 1.76 0.05 log milliJy 1.82E14 0.0575 0.00625 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1983 Jul 25 From new raw data; Standard Caltech JHKL filters assumed 189 190 log nu(Hz) 14.260 1.67 0.01 log f_nu (milliJy) 1.82E14 0.0468 0.00109 Jy 1979ApJ...230...79N uncertainty 14.26 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 190 191 H (UH) 10.88 0.1 mag 1.82E14 0.0462 0.00426 Jy 1999ApJ...512..162S uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture From new raw data 191 192 H (UH) 11.04 0.1 mag 1.82E14 0.0399 0.00367 Jy 1999ApJ...512..162S uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture Nuclear mag From new raw data 192 193 1.65 microns 1.63 0.03 log milliJy 1.82E14 0.0427 0.00285 Jy 1987ApJS...63..615N estimated error 1.65 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1985 Jun 5 From new raw data; Standard Caltech JHKL filters assumed 193 194 H 10.93 0.06 mag 1.82E14 0.042 0.00239 Jy 1978ApJS...38..267O uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 18" aperture Averaged new and previously published data 194 195 H (Mt. Lemmon) 10.89 0.05 mag 1.82E14 0.0436 0.00206 Jy 1978ApJ...224...22O uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 195 196 H (Mt. Lemmon) 10.97 0.04 mag 1.82E14 0.0405 0.00152 Jy 1978ApJ...224...22O uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 196 197 H 10.96 0.06 mag 1.82E14 0.0409 0.00232 Jy 1978ApJS...38..267O uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 9" aperture From new raw data 197 198 H (Mt. Lemmon) 46.9 0.4 milliJy 1.82E14 0.0469 4.0E-4 Jy 1982ApJ...259..486S uncertainty 1.65 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 198 199 K' (UH) 9.7 0.1 mag 1.41E14 0.0852 0.00784 Jy 1999ApJ...512..162S uncertainty 2.12 microns Broad-band measurement Flux in fixed aperture From new raw data 199 200 K' (UH) 9.85 0.1 mag 1.41E14 0.0742 0.00683 Jy 1999ApJ...512..162S uncertainty 2.12 microns Broad-band measurement Flux in fixed aperture Nuclear mag From new raw data 200 201 K_20 (2MASS LGA) 9.942 0.017 mag 1.38E14 0.0703 0.00111 Jy 2003AJ....125..525J 1 sigma uncert. 2.17 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux integrated from map 16.2 x 16.2 arcsec integration area. From new raw data 201 202 K_Kron (2MASS LGA) 9.976 0.016 mag 1.38E14 0.0682 0.00101 Jy 2003AJ....125..525J 1 sigma uncert. 2.17 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux integrated from map 10.2 x 10.2 arcsec integration area. From new raw data 202 203 K_tot (2MASS LGA) 9.937 0.02 mag 1.38E14 0.0707 0.00131 Jy 2003AJ....125..525J 1 sigma uncert. 2.17 microns Broad-band measurement 122906.75 +020308.4 (J2000) Total flux From new raw data 203 204 K_s_14arcsec (2MASS) 9.953 0.016 mag 1.38E14 0.0696 0.00103 Jy 20032MASX.C.......: 1 sigma uncert. 2.17 microns Broad-band measurement 122906.75 +020308.4 (J2000) Flux in fixed aperture 14.0 x 14.0 arcsec aperture From new raw data 204 205 F_K (total) 2.0 1.41 log milliJy 1.37E14 0.1 0.0259 Jy 1995ApJ...453..616S 1 sigma 2.194 microns Broad-band measurement Corrected to total flux from single aperture measurement Homogenized from new and previously published data 205 206 K (AAO) 9.81 mag 1.37E14 0.0774 Jy 1982MNRAS.199..943H no uncertainty reported 2.19 microns Broad-band measurement Flux in fixed aperture From new raw data 206 207 K (RGO) 9.71 0.04 mag 1.37E14 0.0849 0.00319 Jy 1979MNRAS.186p..29G uncertainty 2.19 microns Broad-band measurement Flux in fixed aperture From new raw data 207 208 K (RGO) 9.71 0.04 mag 1.37E14 0.0849 0.00319 Jy 1981MNRAS.194..795G uncertainty 2.19 microns Broad-band measurement Flux in fixed aperture 12" aperture From new raw data 208 209 2.2 microns 0.094 0.01 Jy 1.36E14 0.094 0.01 Jy 1972ApJ...176L..95R 1 sigma 2.2 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 209 210 2.2 microns 0.09 0.04 Jy 1.36E14 0.09 0.04 Jy 1970ApJ...159L.165K no uncertainty reported 2.2 microns Broad-band measurement Flux in fixed aperture From new raw data 210 211 2.2 microns 0.18 0.07 Jy 1.36E14 0.18 0.07 Jy 1970ApJ...159L.165K no uncertainty reported 2.2 microns Broad-band measurement Flux in fixed aperture From new raw data 211 212 log nu(Hz) 14.134 1.93 0.01 log f_nu (milliJy) 1.36E14 0.0851 0.00198 Jy 1979ApJ...230...79N uncertainty 14.13 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 212 213 K (ESO/SPM) 73.1 4.87 milliJy 1.36E14 0.0731 0.00487 Jy 1995ApJ...453..616S rms uncertainty 2.210 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture 15" aperture From new raw data 213 214 2.2 microns 1.91 0.03 log milliJy 1.36E14 0.0813 0.00542 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1976 May 13 From new raw data; Standard Caltech JHKL filters assumed 214 215 K 9.71 0.06 mag 1.36E14 0.0897 0.00496 Jy 1994ApJS...95....1E uncertainty 2.20 microns Broad-band measurement Flux in fixed aperture 1988; MMT; Beam = 5" From new raw data 215 216 K 9.78 0.04 mag 1.36E14 0.0841 0.0031 Jy 1994ApJS...95....1E uncertainty 2.20 microns Broad-band measurement Flux in fixed aperture 1988; IRTF; Beam = 6" From new raw data 216 217 2.2 microns 1.99 0.04 log milliJy 1.36E14 0.0977 0.0086 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1983 Jul 25 From new raw data; Standard Caltech JHKL filters assumed 217 218 2.2 microns 1.9 0.03 log milliJy 1.36E14 0.0794 0.0053 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1977 May 29 From new raw data; Standard Caltech JHKL filters assumed 218 219 2.2 microns 1.92 0.03 log milliJy 1.36E14 0.0832 0.00556 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1979 Jul 3 From new raw data; Standard Caltech JHKL filters assumed 219 220 2.2 microns 1.95 0.03 log milliJy 1.36E14 0.0891 0.00595 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 May 11 From new raw data; Standard Caltech JHKL filters assumed 220 221 2.2 microns 1.95 0.04 log milliJy 1.36E14 0.0891 0.00785 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 Jul 22 From new raw data; Standard Caltech JHKL filters assumed 221 222 2.2 microns 1.91 0.03 log milliJy 1.36E14 0.0813 0.00542 Jy 1987ApJS...63..615N estimated error 2.2 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1985 Jun 5 From new raw data; Standard Caltech JHKL filters assumed 222 223 K (Johnson) 112.8 2.9 milliJy 1.35E14 0.113 0.0029 Jy 1983ApJS...52..341M 1 sigma 2.22 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 9.1" aperture From new raw data 223 224 K (Johnson) 0.127 Jy 1.35E14 0.127 Jy 1965ApJ...141..336L no uncertainty reported 2.22 microns Broad-band measurement Flux in fixed aperture From new raw data 224 225 K (Johnson) 96.8 2.2 milliJy 1.35E14 0.0968 0.0022 Jy 1983ApJS...52..341M 1 sigma 2.22 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 15.8" aperture From new raw data 225 226 K (Johnson) 9.73 0.04 mag 1.35E14 0.0855 0.00321 Jy 1976ApJ...207..367A uncertainty 2.22 microns Broad-band measurement Flux in fixed aperture 17" aperture From new raw data 226 227 K 9.69 0.04 mag 1.31E14 0.0785 0.00295 Jy 1978ApJS...38..267O uncertainty 2.28 microns Broad-band measurement Flux in fixed aperture 18" aperture Averaged new and previously published data 227 228 K 9.71 0.04 mag 1.31E14 0.0771 0.00289 Jy 1978ApJS...38..267O uncertainty 2.28 microns Broad-band measurement Flux in fixed aperture 9" aperture Averaged new and previously published data 228 229 K (Mt. Lemmon) 9.7 0.04 mag 1.31E14 0.0778 0.00292 Jy 1978ApJ...224...22O uncertainty 2.28 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 229 230 K (Mt. Lemmon) 9.68 0.06 mag 1.31E14 0.0792 0.0045 Jy 1978ApJ...224...22O uncertainty 2.28 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 230 231 K (Mt. Lemmon) 94.4 1.0 milliJy 1.31E14 0.0944 0.0010 Jy 1982ApJ...259..486S uncertainty 2.28 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 231 232 N34 8.23 0.06 mag 8.82E13 0.166 0.00917 Jy 1994ApJS...95....1E uncertainty 3.40 microns Broad-band measurement Flux in fixed aperture 1988; MMT; Beam = 5" From new raw data 232 233 log nu(Hz) 13.934 2.19 0.01 log f_nu (milliJy) 8.59E13 0.155 0.00361 Jy 1979ApJ...230...79N uncertainty 13.93 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 233 234 3.7 microns 2.06 0.03 log milliJy 8.57E13 0.115 0.00765 Jy 1987ApJS...63..615N estimated error 3.5 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1977 May 29 From new raw data; Standard Caltech JHKL filters assumed 234 235 3.7 microns 2.0 0.06 log milliJy 8.57E13 0.1 0.0129 Jy 1987ApJS...63..615N estimated error 3.5 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1979 Jul 3 From new raw data; Standard Caltech JHKL filters assumed 235 236 3.7 microns 2.18 0.03 log milliJy 8.57E13 0.151 0.0101 Jy 1987ApJS...63..615N estimated error 3.5 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1981 May 11 From new raw data; Standard Caltech JHKL filters assumed 236 237 3.7 microns 2.26 0.05 log milliJy 8.57E13 0.182 0.0198 Jy 1987ApJS...63..615N estimated error 3.5 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1983 Jul 25 From new raw data; Standard Caltech JHKL filters assumed 237 238 3.7 microns 2.18 0.04 log milliJy 8.57E13 0.151 0.0134 Jy 1987ApJS...63..615N estimated error 3.5 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1976 May 13 From new raw data; Standard Caltech JHKL filters assumed 238 239 3.7 microns 2.17 0.03 log milliJy 8.57E13 0.148 0.00986 Jy 1987ApJS...63..615N estimated error 3.5 microns Broad-band measurement Flux in fixed aperture 5".5 aperture, 1985 Jun 5 From new raw data; Standard Caltech JHKL filters assumed 239 240 L (RGO) 8.19 0.06 mag 8.57E13 0.148 0.00843 Jy 1979MNRAS.186p..29G uncertainty 3.5 microns Broad-band measurement Flux in fixed aperture From new raw data 240 241 L (Mt. Lemmon) 8.33 0.07 mag 8.57E13 0.13 0.00868 Jy 1978ApJ...224...22O uncertainty 3.5 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 241 242 L (Mt. Lemmon) 148.0 3.0 milliJy 8.57E13 0.148 0.0030 Jy 1982ApJ...259..486S uncertainty 3.50 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data; Extinction-corrected for Milky Way 242 243 3.5 microns 0.2 0.04 Jy 8.57E13 0.2 0.04 Jy 1972ApJ...176L..95R 1 sigma 3.5 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 243 244 L (Mt. Lemmon) 8.29 0.09 mag 8.57E13 0.135 0.0117 Jy 1978ApJ...224...22O uncertainty 3.5 microns Broad-band measurement Flux in fixed aperture 18" aperture From new raw data 244 245 L 8.27 0.07 mag 8.57E13 0.138 0.00918 Jy 1978ApJS...38..267O uncertainty 3.5 microns Broad-band measurement Flux in fixed aperture 9" aperture Averaged new and previously published data 245 246 L 8.31 0.07 mag 8.57E13 0.133 0.00884 Jy 1978ApJS...38..267O uncertainty 3.5 microns Broad-band measurement Flux in fixed aperture 18" aperture Averaged new and previously published data 246 247 L (Johnson) 172.4 5.2 milliJy 8.47E13 0.172 0.0052 Jy 1983ApJS...52..341M 1 sigma 3.54 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 9.1" aperture From new raw data 247 248 L (Johnson) 8.35 0.04 mag 8.47E13 0.132 0.00494 Jy 1976ApJ...207..367A uncertainty 3.54 microns Broad-band measurement Flux in fixed aperture 17" aperture From new raw data 248 249 L' 7.91 0.04 mag 7.89E13 0.175 0.00647 Jy 1994ApJS...95....1E uncertainty 3.80 microns Broad-band measurement Flux in fixed aperture 1988; IRTF; Beam = 6" From new raw data 249 250 M (Johnson) 198.4 32.7 milliJy 6.25E13 0.198 0.0327 Jy 1983ApJS...52..341M 1 sigma 4.8 microns Broad-band measurement 12 26 33.2 +02 19 43 ( ) Flux in fixed aperture 4.6" aperture From new raw data 250 251 5.0 microns 2.4 0.8 Jy 6.0E13 2.4 0.8 Jy 1970ApJ...159L.165K no uncertainty reported 5.0 microns Broad-band measurement Flux in fixed aperture Low quality data From new raw data 251 252 5.0 microns 0.24 0.05 Jy 6.0E13 0.24 0.05 Jy 1972ApJ...176L..95R 1 sigma 5.0 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 252 253 6 microns (Spizter) 238.3 milliJy 5.0E13 Jy 2009ApJS..182..628V no uncertainty reported 6 microns Broad-band measurement Flux integrated from map From IRS spectra with 3.3% bandpass From new raw data 253 254 6.7 microns (ISOCAM) 190.0 10.0 milliJy 4.47E13 0.19 0.01 Jy 2004A&A...421..129S 1 sigma 6.7 microns Broad-band measurement From multi-aperture data From reprocessed raw data 254 255 6.7 microns (ISO) 0.194 0.0582 Jy 4.44E13 0.194 0.0582 Jy 2003A&A...402...87H uncertainty 6.75 microns Broad-band measurement Flux in fixed aperture Aperture 21 arcsec From new raw data 255 256 8.4 microns 5.7 0.4 mag 3.57E13 0.283 1.03 Jy 1976ApJ...207..367A uncertainty 8.4 microns Broad-band measurement Flux in fixed aperture 13" aperture From new raw data 256 257 log nu(Hz) 13.48 2.51 0.02 log f_nu (milliJy) 3.02E13 0.324 0.0153 Jy 1979ApJ...230...79N uncertainty 13.48 log nu(Hz) Broad-band measurement Flux in fixed aperture From new raw data 257 258 10 microns 0.61 0.16 Jy 3.0E13 0.61 0.16 Jy 1972ApJ...177L.115R uncertainty 10 microns Broad-band measurement Flux in fixed aperture 12" aperture From new raw data 258 259 10 microns 0.4 0.1 Jy 3.0E13 0.4 0.1 Jy 1972ApJ...177L.115R uncertainty 10 microns Broad-band measurement Flux in fixed aperture 6" aperture;Low quality data From new raw data 259 260 10.1 microns 2.52 0.05 log milliJy 2.97E13 0.331 0.036 Jy 1987ApJS...63..615N estimated error 10.1 microns Broad-band measurement Flux in fixed aperture 4".5 aperture, 1979 Jul 3 From new raw data; Standard Caltech JHKL filters assumed 260 261 10.1 microns 2.5 0.06 log milliJy 2.97E13 0.316 0.0408 Jy 1987ApJS...63..615N estimated error 10.1 microns Broad-band measurement Flux in fixed aperture 4".5 aperture, 1981 May 11 From new raw data; Standard Caltech JHKL filters assumed 261 262 10.1 microns 2.48 0.05 log milliJy 2.97E13 0.302 0.0329 Jy 1987ApJS...63..615N estimated error 10.1 microns Broad-band measurement Flux in fixed aperture 4".5 aperture, 1985 Jun 5 From new raw data; Standard Caltech JHKL filters assumed 262 263 10.1 microns 2.55 0.06 log milliJy 2.97E13 0.355 0.0458 Jy 1987ApJS...63..615N estimated error 10.1 microns Broad-band measurement Flux in fixed aperture 4".5 aperture, 1977 May 29 From new raw data; Standard Caltech JHKL filters assumed 263 264 10.1 microns 2.48 0.06 log milliJy 2.97E13 0.302 0.039 Jy 1987ApJS...63..615N estimated error 10.1 microns Broad-band measurement Flux in fixed aperture 4".5 aperture, 1981 Jul 22 From new raw data; Standard Caltech JHKL filters assumed 264 265 10.1 microns 2.52 0.07 log milliJy 2.97E13 0.331 0.0493 Jy 1987ApJS...63..615N estimated error 10.1 microns Broad-band measurement Flux in fixed aperture 4".5 aperture, 1976 May 13 From new raw data; Standard Caltech JHKL filters assumed 265 266 N 338.0 14.0 milliJy 2.97E13 0.338 0.014 Jy 1982ApJ...259..486S uncertainty 10.1 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data; Extinction-corrected for Milky Way 266 267 N 0.43 0.04 Jy 2.94E13 0.43 0.04 Jy 1970ApJ...161L.203K no uncertainty reported 10.2 microns Broad-band measurement Flux in fixed aperture Low quality data From new raw data 267 268 N (Johnson) 4.2 Jy 2.88E13 4.2 Jy 1965ApJ...141..336L no uncertainty reported 10.4 microns Broad-band measurement Flux in fixed aperture From new raw data 268 269 10.5 microns 0.59 0.07 Jy 2.86E13 0.59 0.07 Jy 1972ApJ...176L..95R 1 sigma 10.5 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 269 270 10.5 microns 0.24 0.05 Jy 2.86E13 0.24 0.05 Jy 1972ApJ...176L..95R 1 sigma 10.5 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 270 271 10.8 microns MIRLIN 247.0 17.0 milliJy 2.78E13 0.247 0.017 Jy 2004ApJ...605..156G statistical error 10.8 microns Broad-band measurement Flux in fixed aperture 1.5" diam aperture From new raw data 271 272 IRAS 12 microns 417.0 12.0 milliJy 2.5E13 0.417 0.012 Jy 1989ApJ...347...29S uncertainty 12 microns Broad-band measurement Integrated from scans From pointed observations From new raw data 272 273 IRAS 12 microns 0.548 0.0548 Jy 2.5E13 0.548 0.0548 Jy 1990IRASF.C...0000M uncertainty 12 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture IRAS quality flag = 3 From new raw data 273 274 14.3 microns ISOCAM 290.0 15.0 milliJy 2.1E13 0.29 0.015 Jy 2004A&A...421..129S 1 sigma 14.3 microns Broad-band measurement From multi-aperture data From reprocessed raw data 274 275 14.3 microns (ISO) 0.294 0.0882 Jy 2.0E13 0.294 0.0882 Jy 2003A&A...402...87H uncertainty 15.0 microns Broad-band measurement Flux in fixed aperture Aperture 21 arcsec From new raw data 275 276 15 microns (Spitzer) 508.7 milliJy 2.0E13 Jy 2009ApJS..182..628V no uncertainty reported 15 microns Broad-band measurement Flux integrated from map From IRS spectra with 3.3% bandpass From new raw data 276 277 20 microns (Spitzer) 583.8 milliJy 1.5E13 Jy 2009ApJS..182..628V no uncertainty reported 20 microns Broad-band measurement Flux integrated from map From IRS spectra with 3.3% bandpass From new raw data 277 278 21 microns 0.6 0.2 Jy 1.43E13 0.6 0.2 Jy 1972ApJ...176L..95R 1 sigma 21 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 278 279 21 microns 1.3 0.4 Jy 1.43E13 1.3 0.4 Jy 1972ApJ...177L.115R uncertainty 21 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 279 280 21 microns 1.3 0.4 Jy 1.43E13 1.3 0.4 Jy 1972ApJ...176L..95R 1 sigma 21 microns Broad-band measurement Flux in fixed aperture 6" aperture From new raw data 280 281 22 microns 7.0 5.0 Jy 1.36E13 7.0 5.0 Jy 1970ApJ...159L.165K no uncertainty reported 22 microns Broad-band measurement Flux in fixed aperture Low quality data From new raw data 281 282 24 microns (MIPS) 499.1 0.8 milliJy 1.27E13 0.499 8.0E-4 Jy 2008ApJ...678..712D 1 sigma 23.68 microns Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux in fixed aperture 15" radius aperture From reprocessed raw data 282 283 IRAS 25 microns 941.0 27.0 milliJy 1.2E13 0.941 0.027 Jy 1989ApJ...347...29S uncertainty 25 microns Broad-band measurement Integrated from scans From pointed observations From new raw data 283 284 25 microns (Spitzer) 556.5 milliJy 1.2E13 Jy 2009ApJS..182..628V no uncertainty reported 25 microns Broad-band measurement Flux integrated from map From IRS spectra with 3.3% bandpass From new raw data 284 285 IRAS 25 microns 0.896 0.0438 Jy 1.2E13 0.896 0.0438 Jy 1990IRASF.C...0000M uncertainty 25 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture IRAS quality flag = 3 From new raw data 285 286 30 microns (Spitzer) 605.3 milliJy 9.99E12 Jy 2009ApJS..182..628V no uncertainty reported 30 microns Broad-band measurement Flux integrated from map From IRS spectra with 3.3% bandpass From new raw data 286 287 IRAS 60 microns 1805.0 14.0 milliJy 5.0E12 1.81 0.014 Jy 1989ApJ...347...29S uncertainty 60 microns Broad-band measurement Integrated from scans From pointed observations From new raw data 287 288 IRAS 60 microns 2.06 0.144 Jy 5.0E12 2.06 0.144 Jy 1990IRASF.C...0000M uncertainty 60 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture IRAS quality flag = 3 From new raw data 288 289 60 microns (ISO) 1124.0 86.0 milliJy 4.93E12 1.12 0.086 Jy 2001A&A...372..719M based on count statistics only 60.8 microns Broad-band measurement Flux in fixed aperture 46" x 46" aperture From new raw data 289 290 70 microns (MIPS) 414.9 3.9 milliJy 4.2E12 0.415 0.0039 Jy 2008ApJ...678..712D 1 sigma 71.42 microns Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux in fixed aperture 24" radius aperture From reprocessed raw data 290 291 80 microns (ISO) 1.29 0.387 Jy 3.74E12 1.29 0.387 Jy 2003A&A...402...87H uncertainty 80.1 microns Broad-band measurement Flux in fixed aperture Aperture 45 arcsec From new raw data 291 292 IRAS 100 microns 3109.0 45.0 milliJy 3.0E12 3.11 0.045 Jy 1989ApJ...347...29S uncertainty 100 microns Broad-band measurement Integrated from scans From pointed observations From new raw data 292 293 IRAS 100 microns 2.89 0.202 Jy 3.0E12 2.89 0.202 Jy 1990IRASF.C...0000M uncertainty 100 microns Broad-band measurement 122634.1 +021937 (B1950) Flux in fixed aperture IRAS quality flag = 2 From new raw data 293 294 100 microns (ISO) 1348.0 68.0 milliJy 2.9E12 1.35 0.068 Jy 2001A&A...372..719M based on count statistics only 103.5 microns Broad-band measurement Flux in fixed aperture 46" x 46" aperture From new raw data 294 295 120 microns (ISO) 1.49 0.13 Jy 2.52E12 1.49 0.13 Jy 2002ApJ...572..105S 1 sigma uncert. 119.0 microns Broad-band measurement From fitting to map From new raw data 295 296 120 microns (ISO) 1546.0 94.0 milliJy 2.52E12 1.55 0.094 Jy 2001A&A...372..719M based on count statistics only 119.0 microns Broad-band measurement Flux in fixed aperture 184" x 184" aperture From new raw data 296 297 160 microns (MIPS) 402.1 11.9 milliJy 1.92E12 0.402 0.00119 Jy 2008ApJ...678..712D 1 sigma 155.9 microns Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) From fitting to map From reprocessed raw data 297 298 150 microns (ISO) 1.09 0.08 Jy 1.86E12 1.09 0.08 Jy 2002ApJ...572..105S 1 sigma uncert. 161.0 microns Broad-band measurement From fitting to map From new raw data 298 299 150 microns (ISO) 1.11 0.334 Jy 1.86E12 1.11 0.334 Jy 2003A&A...402...87H uncertainty 161 microns Broad-band measurement Flux in fixed aperture Aperture 90 arcsec From new raw data 299 300 170 microns (ISO) 1.1 0.05 Jy 1.72E12 1.1 0.05 Jy 2002ApJ...572..105S 1 sigma uncert. 174.0 microns Broad-band measurement From fitting to map From new raw data 300 301 170 microns (ISO) 1292.0 21.0 milliJy 1.72E12 1.29 0.021 Jy 2001A&A...372..719M based on count statistics only 174.0 microns Broad-band measurement Flux in fixed aperture 184" x 184" aperture From new raw data 301 302 180 microns (ISO) 0.8 0.11 Jy 1.62E12 0.8 0.11 Jy 2002ApJ...572..105S 1 sigma uncert. 185.5 microns Broad-band measurement From fitting to map From new raw data 302 303 180 microns (ISO) 1056.0 75.0 milliJy 1.62E12 1.06 0.075 Jy 2001A&A...372..719M based on count statistics only 185.5 microns Broad-band measurement Flux in fixed aperture 184" x 184" aperture From new raw data 303 304 200 microns (ISO) 0.79 0.11 Jy 1.47E12 0.79 0.11 Jy 2002ApJ...572..105S 1 sigma uncert. 204.6 microns Broad-band measurement From fitting to map From new raw data 304 305 200 microns (ISO) 1.09 0.327 Jy 1.47E12 1.09 0.327 Jy 2003A&A...402...87H uncertainty 205 microns Broad-band measurement Flux in fixed aperture Aperture 90 arcsec From new raw data 305 306 375 GHz 3.7 1.0 Jy 3.75E11 3.7 1.0 Jy 1994MNRAS.267..167G rms uncertainty 375 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 306 307 375 GHz 10.0 0.7 Jy 3.75E11 10.0 0.7 Jy 1994MNRAS.267..167G rms uncertainty 375 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 307 308 375 GHz 7.38 0.49 Jy 3.75E11 7.38 0.49 Jy 1994MNRAS.267..167G rms uncertainty 375 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 308 309 870 microns 6454.0 77.0 milliJy 3.45E11 6.45 0.077 Jy 1989A&A...221L...3C rms uncertainty 870 A Broad-band measurement Flux in fixed aperture From new raw data 309 310 1 mm 14.0 2.0 Jy 3.0E11 14.0 2.0 Jy 1984A&A...137..117C rms uncertainty 1 A Broad-band measurement; peak value reported Flux in fixed aperture epoch 1983.071 From new raw data 310 311 300 GHz (Hale) 10.5 1.6 Jy 3.0E11 10.5 1.6 Jy 1983ApJ...268...68L uncertainty 300 GHz Broad-band measurement Flux integrated from map From new raw data 311 312 270 GHz 12.5 0.3 Jy 2.7E11 12.5 0.3 Jy 1994MNRAS.267..167G rms uncertainty 270 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 312 313 270 GHz 5.7 0.2 Jy 2.7E11 5.7 0.2 Jy 1994MNRAS.267..167G rms uncertainty 270 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 313 314 270 GHz 10.31 0.26 Jy 2.7E11 10.3 0.26 Jy 1994MNRAS.267..167G rms uncertainty 270 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 314 315 1300 microns 8620.0 42.0 milliJy 2.31E11 8.62 0.042 Jy 1989A&A...221L...3C rms uncertainty 1300 A Broad-band measurement Flux in fixed aperture From new raw data 315 316 230 GHz 6.1 0.6 Jy 2.3E11 6.1 0.6 Jy 1994MNRAS.267..167G rms uncertainty 230 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 316 317 230 GHz 13.5 0.4 Jy 2.3E11 13.5 0.4 Jy 1994MNRAS.267..167G rms uncertainty 230 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 317 318 230 GHz 11.49 0.48 Jy 2.3E11 11.5 0.48 Jy 1994MNRAS.267..167G rms uncertainty 230 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 318 319 226 GHz (NRAO) 9.4 0.4 Jy 2.26E11 9.4 0.4 Jy 1983ApJ...268...68L 1 sigma 226 GHz Broad-band measurement Flux integrated from map From new raw data 319 320 215 GHz (VLBI) 9.2 0.6 Jy 2.15E11 9.2 0.6 Jy 1997A&A...323L..17K uncertainty 215 GHz Broad-band measurement Total flux From new raw data 320 321 150 GHz 10.8 1.3 Jy 1.5E11 10.8 1.3 Jy 1994MNRAS.267..167G rms uncertainty 150 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 321 322 150 GHz 20.1 0.7 Jy 1.5E11 20.1 0.7 Jy 1994MNRAS.267..167G rms uncertainty 150 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 322 323 150 GHz 17.59 1.13 Jy 1.5E11 17.6 1.13 Jy 1994MNRAS.267..167G rms uncertainty 150 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 323 324 3 mm (VLBI) 10.0 Jy 1.0E11 10.0 Jy 1998AJ....116....8L no uncertainty reported 3 mm Broad-band measurement Total flux variable From new raw data 324 325 3 mm (VLBI) 6.0 Jy 1.0E11 6.0 Jy 1998AJ....116....8L no uncertainty reported 3 mm Broad-band measurement Total flux variable From new raw data 325 326 W (WMAP) 10.5 0.4 Jy 9.4E10 10.5 0.4 Jy 2009ApJS..180..283W uncertainty 94 GHz Broad-band measurement 12 29 06 +02 03 00 (J2000) Flux integrated from map From new raw data 326 327 94 GHz (WMAP) 9.0 0.8 Jy 9.4E10 9.0 0.8 Jy 2003ApJS..148...97B uncertainty 94 GHz Broad-band measurement 122906.6 +020319 (J2000) Flux integrated from map From new raw data 327 328 90 GHz 26.26 1.31 Jy 9.0E10 26.3 1.31 Jy 1994MNRAS.267..167G rms uncertainty 90 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 328 329 90000 MHz 20.28 1.96 Jy 9.0E10 20.3 1.96 Jy 1978AJ.....83..685O uncertainty 90000 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 329 330 90 GHz 20.28 1.96 Jy 9.0E10 20.3 1.96 Jy 1978ApJ...224...22O 1 sigma 90 GHz Broad-band measurement Flux in fixed aperture From new raw data 330 331 90000 MHz 15.9 1.6 Jy 9.0E10 15.9 1.6 Jy 1980AJ.....85..351O uncertainty 90000 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 331 332 89600 MHz 14.07 0.29 Jy 8.96E10 14.1 0.29 Jy 1981AJ.....86.1306G uncertainty 89600 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 332 333 87.3 GHz (FCRAO) 19.6 0.4 Jy 8.73E10 19.6 0.4 Jy 1983ApJ...268...68L uncertainty 87.3 GHz Broad-band measurement Flux integrated from map From new raw data 333 334 86 GHz (VLBI) 17.1 0.2 Jy 8.63E10 17.1 0.2 Jy 1997A&A...323L..17K uncertainty 86.25 GHz Broad-band measurement Total flux From new raw data 334 335 86 GHz (VLBI) 10.81 Jy 8.6E10 10.8 Jy 2008AJ....136..159L no uncertainty reported 86 GHz Broad-band measurement 12 29 06.69973 +02 03 08.5982 (J2000) Total flux From new raw data 335 336 77 GHz (MRT) 45.0 2.8 Jy 7.7E10 45.0 2.8 Jy 1987A&AS...71..125T 1 sigma 77 GHz Broad-band measurement Flux integrated from map From new raw data 336 337 61 GHz (WMAP) 14.5 0.4 Jy 6.1E10 14.5 0.4 Jy 2003ApJS..148...97B uncertainty 61 GHz Broad-band measurement 122906.6 +020319 (J2000) Flux integrated from map From new raw data 337 338 V (WMAP) 14.6 0.2 Jy 6.1E10 14.6 0.2 Jy 2009ApJS..180..283W uncertainty 61 GHz Broad-band measurement 12 29 06 +02 03 00 (J2000) Flux integrated from map From new raw data 338 339 41 GHz (WMAP) 17.5 0.3 Jy 4.1E10 17.5 0.3 Jy 2003ApJS..148...97B uncertainty 41 GHz Broad-band measurement 122906.6 +020319 (J2000) Flux integrated from map From new raw data 339 340 Q (WMAP) 16.8 0.1 Jy 4.1E10 16.8 0.1 Jy 2009ApJS..180..283W uncertainty 41 GHz Broad-band measurement 12 29 06 +02 03 00 (J2000) Flux integrated from map From new raw data 340 341 41 GHz (WMAP) 1151.0 211.0 milliJy 4.1E10 1.15 0.211 Jy 2009MNRAS.392..733M uncertainty 41 GHz Broad-band measurement 194.4829 -31.9295 (J2000) Flux integrated from map From new raw data 341 342 37 GHz 38.09 0.76 Jy 3.7E10 38.1 0.76 Jy 1994MNRAS.267..167G rms uncertainty 37 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 342 343 37 GHz 36.82 0.78 Jy 3.7E10 36.8 0.78 Jy 1994MNRAS.267..167G rms uncertainty 37 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 343 344 37 GHz 23.65 0.49 Jy 3.7E10 23.7 0.49 Jy 1994MNRAS.267..167G rms uncertainty 37 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 344 345 37 GHz 34.52 0.79 Jy 3.68E10 34.5 0.79 Jy 1992AJ....104.1009W uncertainty 37 GHz Broad-band measurement Flux in fixed aperture From new raw data 345 346 37 GHz 25.52 0.55 Jy 3.68E10 25.5 0.55 Jy 1992AJ....104.1009W uncertainty 37 GHz Broad-band measurement Flux in fixed aperture From new raw data 346 347 33 GHz (WMAP) 18.3 0.2 Jy 3.3E10 18.3 0.2 Jy 2003ApJS..148...97B uncertainty 33 GHz Broad-band measurement 122906.6 +020319 (J2000) Flux integrated from map From new raw data 347 348 Ka (WMAP) 18.4 0.1 Jy 3.3E10 18.4 0.1 Jy 2009ApJS..180..283W uncertainty 33 GHz Broad-band measurement 12 29 06 +02 03 00 (J2000) Flux integrated from map From new raw data 348 349 33 GHz (WMAP) 981.0 189.0 milliJy 3.3E10 0.981 0.189 Jy 2009MNRAS.392..733M uncertainty 33 GHz Broad-band measurement 194.4829 -31.9295 (J2000) Flux integrated from map From new raw data 349 350 31400 MHz 32.1 1.62 Jy 3.14E10 32.1 1.62 Jy 1980AJ.....85..351O uncertainty 31400 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 350 351 31400 MHz 49.7 0.17 Jy 3.14E10 49.7 0.17 Jy 1981AJ.....86.1306G uncertainty 31400 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 351 352 K (WMAP) 20.0 0.06 Jy 2.3E10 20.0 0.06 Jy 2009ApJS..180..283W uncertainty 23 GHz Broad-band measurement 12 29 06 +02 03 00 (J2000) Flux integrated from map From new raw data 352 353 23 GHz (WMAP) 20.0 0.1 Jy 2.3E10 20.0 0.1 Jy 2003ApJS..148...97B uncertainty 23 GHz Broad-band measurement 122906.6 +020319 (J2000) Flux integrated from map From new raw data 353 354 23 GHz (WMAP) 1184.0 174.0 milliJy 2.3E10 1.18 0.174 Jy 2009MNRAS.392..733M uncertainty 23 GHz Broad-band measurement 194.4829 -31.9295 (J2000) Flux integrated from map From new raw data 354 355 22 GHz (VLA) 19460.0 185.0 milliJy 2.24E10 19.5 0.185 Jy 2008ApJ...678..712D 1 sigma 22.4 GHz Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux integrated from map Core flux From new raw data 355 356 22 GHz 33.38 1.35 Jy 2.22E10 33.4 1.35 Jy 1992AJ....104.1009W uncertainty 22 GHz Broad-band measurement Flux in fixed aperture From new raw data 356 357 22 GHz 23.86 0.51 Jy 2.22E10 23.9 0.51 Jy 1992AJ....104.1009W uncertainty 22 GHz Broad-band measurement Flux in fixed aperture From new raw data 357 358 22185 MHz 32.37 4.86 Jy 2.22E10 32.4 4.86 Jy 1978ApJ...224...22O uncertainty 22185 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 358 359 22 GHz 32.37 4.86 Jy 2.22E10 32.4 4.86 Jy 1978ApJ...224...22O 1 sigma 22 GHz Broad-band measurement Flux in fixed aperture From new raw data 359 360 22 GHz 42.67 1.76 Jy 2.2E10 42.7 1.76 Jy 1994MNRAS.267..167G rms uncertainty 22 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 360 361 22 GHz 26.67 0.57 Jy 2.2E10 26.7 0.57 Jy 1994MNRAS.267..167G rms uncertainty 22 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 361 362 22 GHz 43.46 1.13 Jy 2.2E10 43.5 1.13 Jy 1994MNRAS.267..167G rms uncertainty 22 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 362 363 15 GHz (VLBA) 22.78 Jy 1.54E10 22.8 Jy 2005AJ....130.1389L no uncertainty reported 15.366 GHz Broad-band measurement 12 29 06.6997 +02 03 08.5981 (J2000) Total flux From new raw data 363 364 15.1 GHz (VLBA) 21571.0 milliJy 1.51E10 21.6 Jy 2004ApJ...612..749Z no uncertainty reported 15.1 GHz Broad-band measurement Flux integrated from map Core flux From new raw data 364 365 15 GHz 34.63 1.73 Jy 1.51E10 34.6 1.73 Jy 1978ApJ...224...22O 1 sigma 15 GHz Broad-band measurement Flux in fixed aperture From new raw data 365 366 15064 MHz 34.63 1.74 Jy 1.51E10 34.6 1.74 Jy 1978ApJ...224...22O uncertainty 15064 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 366 367 15 GHz (VLA) 33.0 3.3 Jy 1.5E10 33.0 3.3 Jy 1983ApJ...268...68L uncertainty 15 GHz Broad-band measurement Total flux From new raw data 367 368 15 GHz (VLBA) 29.12 Jy 1.5E10 29.1 Jy 2005AJ....130.2473K no uncertainty reported 15.366 GHz Broad-band measurement 12 29 06.6997 +02 03 08.5982 (J2000) Total flux From new raw data 368 369 15 GHz (VLBA) 41.4 Jy 1.5E10 41.4 Jy 2004ApJ...609..539K no uncertainty reported 15 GHz Broad-band measurement Total flux From new raw data 369 370 15 GHz (VLBA) 41.399 Jy 1.5E10 41.4 Jy 2008ApJ...674..111C no uncertainty reported 15 GHz Broad-band measurement Total flux Averaged from previously published data 370 371 14900 MHz 45.8 0.2 Jy 1.49E10 45.8 0.2 Jy 1976AJ.....81.1084G uncertainty 14900 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 371 372 14.9 GHz (VLA) 24060.0 102.0 milliJy 1.49E10 24.1 0.102 Jy 2008ApJ...678..712D 1 sigma 14.9 GHz Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux integrated from map Core flux From new raw data 372 373 14 GHz 31.35 0.59 Jy 1.4E10 31.4 0.59 Jy 1994MNRAS.267..167G rms uncertainty 14 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 373 374 14 GHz 47.56 0.42 Jy 1.4E10 47.6 0.42 Jy 1994MNRAS.267..167G rms uncertainty 14 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 374 375 14 GHz 47.45 0.51 Jy 1.4E10 47.5 0.51 Jy 1994MNRAS.267..167G rms uncertainty 14 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 375 376 10695 MHz 45.1 0.39 Jy 1.07E10 45.1 0.39 Jy 1981A&AS...45..367K uncertainty 10695 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From new raw data 376 377 8870 MHz 46.6 1.6 Jy 8.87E9 46.6 1.6 Jy 1973AuJPh..26...93S uncertainty 8870 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 377 378 8.6 GHz (ATCA) 32.53 Jy 8.6E9 32.5 Jy 2003PASJ...55..351T no uncertainty reported 8.6 GHz Broad-band measurement Flux integrated from map From new raw data 378 379 8400 MHz 55.35 Jy 8.4E9 55.4 Jy 1990PKS90.C...0000W no uncertainty reported 8400 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 379 380 8.4 GHz (VLA) 41725.0 milliJy 8.4E9 41.7 Jy 2007ApJS..171...61H no uncertainty reported 8.4 GHz Broad-band measurement 12 29 06.70 +02 03 08.6 (J2000) Flux integrated from map From new raw data 380 381 8.1 GHz (VLBA) 26828.0 milliJy 8.11E9 26.8 Jy 2004ApJ...612..749Z no uncertainty reported 8.11 GHz Broad-band measurement Flux integrated from map Core flux From new raw data 381 382 8085 MHz 30.5 1.53 Jy 8.08E9 30.5 1.53 Jy 1980AJ.....85..351O uncertainty 8085 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 382 383 8 GHz 48.14 0.33 Jy 8.0E9 48.1 0.33 Jy 1994MNRAS.267..167G rms uncertainty 8 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 383 384 8 GHz 35.66 0.28 Jy 8.0E9 35.7 0.28 Jy 1994MNRAS.267..167G rms uncertainty 8 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 384 385 8 GHz 48.21 0.35 Jy 8.0E9 48.2 0.35 Jy 1994MNRAS.267..167G rms uncertainty 8 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 385 386 5009 MHz 41.13 0.53 Jy 5.01E9 41.1 0.53 Jy 1981A&AS...45..367K uncertainty 5009 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.03 Recalibrated data 386 387 5000 MHz 44.59 2.23 Jy 5.0E9 44.6 2.23 Jy 1981A&AS...45..367K uncertainty 5000 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 0.993 Recalibrated data 387 388 5 GHz (VLBA) 43.6 Jy 5.0E9 43.6 Jy 2004ApJ...616..110H no uncertainty reported 5 GHz Broad-band measurement Total flux From new raw data 388 389 5000 MHz 36.7 Jy 5.0E9 36.7 Jy 1990PKS90.C...0000W no uncertainty reported 5000 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 389 390 5 GHz 38.77 0.35 Jy 5.0E9 38.8 0.35 Jy 1994MNRAS.267..167G rms uncertainty 5 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 390 391 5 GHz 35.41 0.32 Jy 5.0E9 35.4 0.32 Jy 1994MNRAS.267..167G rms uncertainty 5 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 391 392 5000 MHz 44.9 2.25 Jy 5.0E9 44.9 2.25 Jy 1969ApJ...157....1K rms uncertainty 5000 MHz Broad-band measurement Flux integrated from map From new raw data 392 393 5 GHz 38.41 0.35 Jy 5.0E9 38.4 0.35 Jy 1994MNRAS.267..167G rms uncertainty 5 GHz Broad-band measurement Flux in fixed aperture From new raw data; OBJ_NAME modified from published value 393 394 4.9 GHz (VLA) 26.7 1.33 Jy 4.9E9 26.7 1.33 Jy 1983ApJ...268...68L uncertainty 4.9 GHz Broad-band measurement Total flux Interpolated From new raw data 394 395 4885 MHz 34.9 1.75 Jy 4.88E9 34.9 1.75 Jy 1980AJ.....85..351O uncertainty 4885 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 395 396 4.85 GHz 44.9 6.74 Jy 4.85E9 44.9 6.74 Jy 1991ApJS...75....1B uncertainty 4.85 GHz Broad-band measurement 122633.1 +021927 (B1950) Peak flux From new raw data; Corrected for contaminating sources 396 397 4.85 GHz 43627.0 6105.0 milliJy 4.85E9 43.6 6.11 Jy 1991ApJS...75.1011G rms noise 4.85 GHz Broad-band measurement 122633.1 +021928 (B1950) Modelled datum From new raw data; Corrected for contaminating sources 397 398 4.85 GHz 36923.0 99.0 milliJy 4.85E9 36.9 0.099 Jy 1995ApJS...97..347G rms noise 4.85 GHz Broad-band measurement 122905.6 +020309 (J2000) Modelled datum From new raw data; Corrected for contaminating sources 398 399 4.8 GHz (ATCA) 31.95 Jy 4.8E9 32.0 Jy 2003PASJ...55..351T no uncertainty reported 4.8 GHz Broad-band measurement Flux integrated from map From new raw data 399 400 4775 MHz (NRAO) 5000.0 milliJy 4.78E9 5.0 Jy 1986ApJS...61....1B 99 times noise 4775 MHz Broad-band measurement 12 29 06.2 +02 02 55 (J2000) Flux integrated from map From new raw data 400 401 4585 MHz 41.15 2.06 Jy 4.58E9 41.1 2.06 Jy 1978ApJ...224...22O uncertainty 4585 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 401 402 4.6 GHz 38.1 1.91 Jy 4.58E9 38.1 1.91 Jy 1978ApJ...224...22O 1 sigma 4.6 GHz Broad-band measurement Flux in fixed aperture From new raw data 402 403 2700 MHz 42.73 2.13 Jy 2.7E9 42.7 2.13 Jy 1981A&AS...45..367K uncertainty 2700 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.022 Recalibrated data 403 404 2700 MHz 43.35 0.71 Jy 2.7E9 43.4 0.71 Jy 1975AuJPA..38....1W uncertainty 2700 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 404 405 2700 MHz 40.9 Jy 2.7E9 40.9 Jy 1990PKS90.C...0000W no uncertainty reported 2700 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 405 406 2700 MHz 38.9 1.17 Jy 2.7E9 38.9 1.17 Jy 1971AuJPA..19....1W uncertainty 2700 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 406 407 2695 MHz 30.9 1.55 Jy 2.7E9 30.9 1.55 Jy 1980AJ.....85..351O uncertainty 2695 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 407 408 2695 MHz 41.8 2.09 Jy 2.7E9 41.8 2.09 Jy 1969ApJ...157....1K rms uncertainty 2695 MHz Broad-band measurement Flux integrated from map From new raw data 408 409 2.5 GHz (ATCA) 34.66 Jy 2.5E9 34.7 Jy 2003PASJ...55..351T no uncertainty reported 2.5 GHz Broad-band measurement Flux integrated from map From new raw data 409 410 1.5 GHz (VLA) 32.0 1.6 Jy 1.5E9 32.0 1.6 Jy 1983ApJ...268...68L uncertainty 1.5 GHz Broad-band measurement Total flux From new raw data 410 411 1484 MHz 36.1 1.81 Jy 1.48E9 36.1 1.81 Jy 1980AJ.....85..351O uncertainty 1484 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 411 412 1410 MHz 45.17 1.07 Jy 1.41E9 45.2 1.07 Jy 1981A&AS...45..367K uncertainty 1410 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.017 Recalibrated data 412 413 1410 MHz 42.0 Jy 1.41E9 42.0 Jy 1990PKS90.C...0000W no uncertainty reported 1410 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 413 414 1.4 GHz (ATCA) 35.82 Jy 1.4E9 35.8 Jy 2003PASJ...55..351T no uncertainty reported 1.4 GHz Broad-band measurement Flux integrated from map From new raw data 414 415 1400 MHz 39.62 0.38 Jy 1.4E9 39.6 0.38 Jy 1966ApJS...13...65P internal error 1400 MHz Broad-band measurement 122631.1 +021938. (B1950) Peak flux From new raw data 415 416 1.4GHz 54992.1 1900.3 milliJy 1.4E9 55.0 1.9 Jy 1998AJ....115.1693C uncertainty 1.40 GHz Broad-band measurement 12 29 6.41 +02 03 5.1 (J2000) Flux integrated from map High peak From new raw data 416 417 1400 MHz 45.0 2.25 Jy 1.4E9 45.0 2.25 Jy 1969ApJ...157....1K rms uncertainty 1400 MHz Broad-band measurement Flux integrated from map From new raw data 417 418 1400 MHz 41.28 1.23 Jy 1.4E9 41.3 1.23 Jy 1981A&AS...45..367K uncertainty 1400 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.029 Recalibrated data 418 419 1400 MHz 46.3 2.3 Jy 1.4E9 46.3 2.3 Jy 1981A&AS...45..367K uncertainty 1400 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.029 Recalibrated data 419 420 1.40 GHz 50100.0 milliJy 1.4E9 50.1 Jy 1992ApJS...79..331W no uncertainty reported 1.4 GHz Broad-band measurement 122633.1 +021927 (B1950) Peak flux From new raw data 420 421 1379 MHz 41.5 2.08 Jy 1.38E9 41.5 2.08 Jy 1978ApJ...224...22O uncertainty 1379 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper From Kuhr catalog (1981A&AS...45..367K) Transformed from previously published data 421 422 1.38 GHz 38.48 1.92 Jy 1.38E9 38.5 1.92 Jy 1978ApJ...224...22O 1 sigma 1.38 GHz Broad-band measurement Flux in fixed aperture From new raw data 422 423 960 MHz 49.63 0.76 Jy 9.6E8 49.6 0.76 Jy 1981A&AS...45..367K uncertainty 960 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.029 Recalibrated data 423 424 750 MHz 45.97 0.28 Jy 7.5E8 46.0 0.28 Jy 1966ApJS...13...65P internal error 750 MHz Broad-band measurement 122631.1 +021938. (B1950) Peak flux From new raw data 424 425 750 MHz 47.4 2.4 Jy 7.5E8 47.4 2.4 Jy 1981A&AS...45..367K uncertainty 750 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.046 Recalibrated data 425 426 750 MHz 45.3 2.27 Jy 7.5E8 45.3 2.27 Jy 1969ApJ...157....1K rms uncertainty 750 MHz Broad-band measurement Flux integrated from map From new raw data 426 427 750 MHz 48.68 0.3 Jy 7.5E8 48.7 0.3 Jy 1981A&AS...45..367K uncertainty 750 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.059 Recalibrated data 427 428 635 MHz 56.48 0.88 Jy 6.35E8 56.5 0.88 Jy 1981A&AS...45..367K uncertainty 635 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.035 Recalibrated data 428 429 468 MHz 59.88 0.55 Jy 4.68E8 59.9 0.55 Jy 1981A&AS...45..367K uncertainty 468 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.045 Recalibrated data 429 430 408 MHz 55.1 Jy 4.08E8 55.1 Jy 1990PKS90.C...0000W no uncertainty reported 408 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 430 431 408 MHz 59.75 1.82 Jy 4.08E8 59.8 1.82 Jy 1981MNRAS.194..693L rms noise 408 MHz Broad-band measurement 122632.6 021932 (B1950) Modelled datum Neighboring sources; flux density biased From new raw data; Corrected for contaminating sources 431 432 Texas 365 MHz 66.452 1.908 Jy 3.65E8 66.5 1.91 Jy 1996AJ....111.1945D internal error 365 MHz Broad-band measurement; obtained by interpolation over frequency 122632.546 +021931.06 (B1950) Integrated from scans Model:D;MFlag:C;EFlag:C;LFlag:+. From new raw data 432 433 318 MHz 64.0 2.5 Jy 3.18E8 64.0 2.5 Jy 1981A&AS...45..367K uncertainty 318 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.05 Recalibrated data 433 434 178 MHz 62.8 6.28 Jy 1.78E8 62.8 6.28 Jy 1969ApJ...157....1K rms uncertainty 178 MHz Broad-band measurement Flux integrated from map From new raw data 434 435 178 MHz 84.4 8.4 Jy 1.78E8 84.4 8.4 Jy 1981A&AS...45..367K uncertainty 178 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.11 Recalibrated data 435 436 178 MHz 75.0 Jy 1.78E8 75.0 Jy 1990PKS90.C...0000W no uncertainty reported 178 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 436 437 178 MHz 80.33 3.3 Jy 1.78E8 80.3 3.3 Jy 1981A&AS...45..367K uncertainty 178 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.19 Recalibrated data 437 438 178 MHz 75.0 6.0 Jy 1.78E8 75.0 6.0 Jy 1967MmRAS..71...49G uncertainty 178 MHz Broad-band measurement 122632.8 +021736 (B1950) Integrated from scans From new raw data; Uncorrected for known sources in beam 438 439 160 MHz 97.3 12.7 Jy 1.6E8 97.3 12.7 Jy 1981A&AS...45..367K uncertainty 160 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.11 Recalibrated data 439 440 160 MHz 102.0 Jy 1.6E8 102.0 Jy 1995AuJPh..48..143S no uncertainty reported 160 MHz Broad-band measurement 122632.1 +021914. (B1950) Flux integrated from map From new raw data 440 441 80 MHz 147.0 21.0 Jy 8.0E7 147.0 21.0 Jy 1981A&AS...45..367K uncertainty 80 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.074 Recalibrated data 441 442 80 MHz 142.0 Jy 8.0E7 142.0 Jy 1990PKS90.C...0000W no uncertainty reported 80 MHz Broad-band measurement 12 26 33.2 +02 19 43 (B1950) Integrated from scans Homogenized from new and previously published data 442 443 80 MHz 156.0 Jy 8.0E7 156.0 Jy 1995AuJPh..48..143S no uncertainty reported 80 MHz Broad-band measurement 122632.1 +021914. (B1950) Flux integrated from map From new raw data 443 444 80 MHz 176.0 26.0 Jy 8.0E7 176.0 26.0 Jy 1981A&AS...45..367K uncertainty 80 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.074 Recalibrated data 444 445 74 MHz (VLA) 140.6 1.42 Jy 7.38E7 141.0 1.42 Jy 2007ApJS..172..686K uncertainty 73.8 MHz Broad-band measurement Flux integrated from map From new raw data 445 446 74 MHz (VLA) 149.96 15.0 Jy 7.38E7 150.0 15.0 Jy 2007AJ....134.1245C rms uncertainty 73.8 MHz Broad-band measurement 12 29 05.93 +02 02 56.0 (J2000) Flux integrated from map Corrected for clean bias From new raw data 446 447 60 MHz 157.0 15.0 Jy 6.0E7 157.0 15.0 Jy 1968Afz.....4..129A rms uncertainty 60 MHz Broad-band measurement Modelled datum; Beam filling or dilution corrected From new raw data 447 448 38 MHz 155.4 30.0 Jy 3.8E7 155.0 30.0 Jy 1981A&AS...45..367K uncertainty 38 MHz Broad-band measurement 122633.25 +021943.3 (B1950) Not reported in paper Recal. to Baars scale by factor of 1.09 Recalibrated data 448 449 25 MHz (UTR-1) 860.0 370.0 Jy 2.5E7 860.0 370.0 Jy 1969MNRAS.143..289B uncertainty 25 MHz Broad-band measurement 12 26 32.8 +02 17.6 (B1950) Total flux From new raw data 449 450 25.0 MHz 860.0 370.0 Jy 2.5E7 860.0 370.0 Jy 1969MNRAS.143..289B estimated error 25.0 MHz Broad-band measurement Total flux From new raw data 450 451 22 MHz (DRAO) 410.0 70.0 Jy 2.23E7 410.0 70.0 Jy 1986A&AS...65..485R uncertainty 22.25 MHz Broad-band measurement 12 26 31.8 +02 20 36 (B1950) Flux integrated from map From new raw data 451 452 20 MHz (UTR-1) 670.0 188.0 Jy 2.0E7 670.0 188.0 Jy 1969MNRAS.143..289B uncertainty 20 MHz Broad-band measurement 12 26 32.8 +02 17.6 (B1950) Total flux From new raw data 452 453 20.0 MHz 670.0 188.0 Jy 2.0E7 670.0 188.0 Jy 1969MNRAS.143..289B estimated error 20.0 MHz Broad-band measurement Total flux From new raw data 453 454 16.7 MHz 580.0 215.0 Jy 1.67E7 580.0 215.0 Jy 1969MNRAS.143..289B estimated error 16.7 MHz Broad-band measurement Total flux From new raw data 454 455 16.7 MHz (UTR-1) 580.0 215.0 Jy 1.67E7 580.0 215.0 Jy 1969MNRAS.143..289B uncertainty 16.7 MHz Broad-band measurement 12 26 32.8 +02 17.6 (B1950) Total flux From new raw data 455 [EOD]
da8bd39c2626671b6326eeb094847746c75a96ab
449d555969bfd7befe906877abab098c6e63a0e8
/24/CH2/EX2.1.a/Example2_1a.sce
8bce2b73d08344f9a7afe3a377d79bd00a57fdfe
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
342
sce
Example2_1a.sce
//Given that velocity = 70 //in km/h distance_covered = 8.4 //in km next_time = 30 //in min next_walk = 2 //in km //Sample Problem 2-1a printf("**Sample Problem 2-1a**\n") overall_displacement = distance_covered + next_walk printf("Overall displacement from begining of the drive to the station is %f km", overall_displacement)
21406164e7fb054edb2504f16930f45d9bd8cf29
8217f7986187902617ad1bf89cb789618a90dd0a
/source/2.4.1/macros/util/%sp_diag.sci
9910ea76a2596fcae0d76359327967b0b5458465
[ "LicenseRef-scancode-public-domain", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
658
sci
%sp_diag.sci
function d=%sp_diag(a,k) // %sp_diag - implement diag function for sparse matrix, rational matrix ,.. // Copyright INRIA [lhs,rhs]=argn(0) if rhs==1 then k=0,end [ij,v,sz]=spget(a) m=sz(1);n=sz(2) if m>1&n>1 then l=find(ij(:,1)==(ij(:,2)-k)) if k<=0 then mn=mini(m+k,n) i0=-k else mn=min(m,n-k) i0=0 end kk=abs(k) if l==[] then d=sparse([],[],[mn,1]);return;end d=sparse([ij(l,1)-i0,ones(ij(l,1))],v(l),[mn,1]) else if m>1 then ij=ij(:,1);else ij=ij(:,2);end nn = max(m,n)+abs(k) if ij==[] then d=sparse([],[],[nn,nn]) else d=sparse([ij,ij+k],v,[nn,nn]) end end
8ed62a816be21a1d58e37e58c00067ae03c3053e
efa427de3490f3bb884d8ac0a7d78829ec7990f9
/fibonacci.sce
2ab8a7808b96e37749900a392a33b2140f200bc9
[]
no_license
letyrobueno/Scilab
a47648473aa681556561d5cea20659d143e4f492
2f23623dccea89a3ab2db12ec1f615186f785aa4
refs/heads/master
2020-09-01T19:00:30.804237
2019-11-01T17:45:22
2019-11-01T17:45:22
219,031,973
0
0
null
null
null
null
UTF-8
Scilab
false
false
261
sce
fibonacci.sce
// Return the sequence of Fibonacci for a given number n = input("Give a number: ") i = 1 j = 0 printf("The sequence of Fibonacci for n=%g is:\n",n) printf("0th number: %g\n",j) for(k=1:n) t = i+j i = j j = t printf("%gth number: %g\n",k,j) end
4d596e153be3684657c26bc8e5f0a9bc9cc4300f
449d555969bfd7befe906877abab098c6e63a0e8
/213/CH2/EX2.3/2_3.sce
bcda83c8346e0d9489181b78e6f04b13cdd1a00a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
609
sce
2_3.sce
//To Find the Velocity clc //Given: //Initial parameters v0=100 //kmph t0=0 //Parameters at the end of 40 seconds v1=90/100*v0 //kmph t1=40 //seconds //Solution: //The acceleration is given by, a=(-dv/dt)=k*v //Integrating, we get ln(v)=-k*t+C //Calculating the constant of integration C=integrate('1/v','v',1,100) //Calculating the constant of proportionality k=(C-2.3*log10(90))/40 //Time after 120 seconds t2=120 //seconds //Calculating the velocity after 120 seconds v120=10^((-k*t2+C)/2.29) //Results: printf("\n\n The velocity at the end of 120 seconds, v120 = %.1f kmph.\n\n",v120)
b0678afc0644b950b118239d3007127272c2b594
449d555969bfd7befe906877abab098c6e63a0e8
/380/CH7/EX7.6/7_6.txt
224e53f8ed4be3f354a98adbdafb15b402ac056a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
924
txt
7_6.txt
//Caption:Find the voltage regulation when power factor of load is (a)80% lagging (b) unity (c) 80%leading //Exa:7.6 clc; clear; close; V=208;//in volts P_o=9000; R=0.1+(%i*5.6); V_a=int(V/sqrt(3));//rms value of per phase voltage I_a=P_o/(3*V_a);//rms value of per phase current disp("(a) For 80% lagging power factor of load"); theta=(-1)*acosd(0.8); I_a_L=(I_a)*(cosd(theta)+((%i)*sind(theta))); E_a=V_a+I_a_L*R;//in volts VR=((abs(E_a)-V_a)/V_a)*100; disp(VR,'voltage regulation (%)='); disp("(b) For Unity power factor of load"); theta=acosd(1); I_a_L=(I_a)*(cosd(theta)+((%i)*sind(theta))); E_a=V_a+I_a_L*R;//in volts VR=((abs(E_a)-V_a)/V_a)*100; disp(VR,'voltage regulation (%)='); disp("(c) For 80% leading power factor of load"); theta=acosd(0.8); I_a_L=(I_a)*(cosd(theta)+((%i)*sind(theta))); E_a=V_a+I_a_L*R;//in volts VR=((abs(E_a)-V_a)/V_a)*100; disp(VR,'voltage regulation (%)=');
96e737475f3f60f9f74d647c5f7f46ad1c24f6ae
0e972c54fd1fabed6d1759f65f371a044d96c86e
/make_graf.sce
668ac11d0270cbe5faddf83973598977fa4a493c
[]
no_license
dddmak/scilab_sample
63c844f82b95e7f4ac91b6b275ef43a63b18d22a
32e47f5d743091d0091731303360cee89bcaa55a
refs/heads/master
2020-04-29T12:41:39.329033
2019-03-17T20:24:21
2019-03-17T20:24:21
176,146,880
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,048
sce
make_graf.sce
//reference:https://help.scilab.org/docs/5.5.1/ja_JP/csvRead.html //http://hotic.blog129.fc2.com/blog-entry-10.html //http://scilab.kani33.com/2015/05/graphic-color/ //ファイル読み取り //filename = fullfile("/Users/makino/Desktop/scilab/check.csv"); filenamex = fullfile("/Users/makino/Desktop/scilab/Book2.csv"); //csv読み取り //data = csvRead(filename); datax = csvRead(filenamex); //プロット //plot2d(data(:,1),data(:,3),2) plot2d(datax(:,1),datax(:,2),2) //plot2d(datax(:,1),datax(:,3),3) a=get("current_axes"); //get the current axes a.font_size=6; replot([3 -40 7 40]); //title('angle from front','fontsize',7); //タイトル //legends(['camera' 'sensor'],[2 3],font_size=7,opt="ur") legends('angle from motion capture', [2],font_size=7,opt="ur") //legends('from Camera', 3,font_size=7,opt="ur") xlabel('Time[s]','fontsize',7); //X軸ラベル ylabel('angle[dig]','fontsize',7); //Y軸ラベル //一部のみ拡大(未実装。参考部分) //a=gca(); //a.data_bounds(1:2,1)=[18;60]; //実行時 exec( 'make_graf.sce' )
2f55dca80854871a6b9a2f080516cbf79022e734
bb30bb4c59326f7819c15fe66feca6ad5151c89b
/TP3/main.sci
85f2efd97df1b1c2bbe5ea09d45cb272482b2f86
[ "MIT" ]
permissive
AmineKheldouni/Modeling-the-Hazard
1f0f15e8faa3a8b6a2f39cfe1f102410b51c0ee7
68d9f6da23450db5488c1af473471b376945395e
refs/heads/master
2020-04-14T22:29:35.105793
2019-01-04T23:32:38
2019-01-04T23:32:38
164,164,692
0
0
null
null
null
null
UTF-8
Scilab
false
false
6,605
sci
main.sci
funcprot(0); n=10; // Nombre de pages // alpha in 0.8 0.9 alpha = 0.8; function show_adj(Adj,diameters) [lhs,rhs]=argn(0); if rhs < 2 then diameters = 30*ones(1,n);end graph = mat_2_graph(sparse(Adj),1,'node-node'); graph('node_x')=300*cos(2*%pi*(1:n)/(n+1)); graph('node_y')=300*sin(2*%pi*(1:n)/(n+1)); graph('node_name')=string([1:n]); graph('node_diam')= diameters; graph('node_color')= 1:n; show_graph(graph); rep=[1 1 1 1 2 2 2 2 2 2 2 2 2]; plot_graph(graph,rep); endfunction Adj=grand(n,n,'bin',1,0.2); //show_adj(Adj); // Construction de la matrice de transition P // associ´ee `a une matrice d’adjacence. // Pss: transition d’origine, // P: matrice de google // z: vecteur de teleportation // d: vecteur vaut 1 si le degré vaut zero et 0 sinon function [P,Pss,P1,d,z,alpha]=google(Adj) Pss = Adj; alpha = 0.8; d = ones(n,1); z = ones(1,n)/n; e = ones(n,1); for i=1:n do if sum(Adj(i,:)) ~= 0 then Pss(i,:) = Adj(i,:) / sum(Adj(i,:)); d(i,1) = 0; end end P1 = Pss; for i=1:n do if sum(Adj(i,:)) == 0 then P1(i,:) = z; end end disp(size(alpha*P1)) disp(size((1-alpha)*e*z)) P = alpha*P1 + (1-alpha) * e * z; endfunction [P,Pss,Pprim,d,z,alpha]=google(Adj); // verification que P est stochastique sum(P,'c'); e = ones(n,1); x= rand(n,1) y1= P'*x; y2= alpha*Pss'*x + (alpha*d*z)'*x+ ((1-alpha)*e*z)'*x; disp(y1) disp(y2) disp(y1 - y2) [evals,X] =spec(P'); disp(evals) disp(X) pi = abs(evals(:,1)/sum(evals(:,1))); disp(pi) disp(sum(pi)) clf(); //show_adj(Adj,int(300*pi')); function [pi]=pi_iterative() p=ones(n,1); k = 1; while k < 100000 pn = P'*p; k = k + 1; if norm(pn-p,%inf) < 10*%eps then break; end p = pn; end pi= pn/sum(pn); endfunction pi = pi_iterative(); clean(P'*pi - pi); disp(pi) disp(sum(pi)) disp(P'*pi - pi) function [pi]=pi_iterative_sparse() p=ones(n,1); k = 1; while k < 100000 pn = alpha*Pss'*p + (alpha*d*z)'*p+ ((1-alpha)*e*z)'*p; k = k + 1; if norm(pn-p,%inf) < 10*%eps then break; end p = pn; end pi= abs(p/sum(p)); endfunction pi=pi_iterative_sparse(); clean(P'*pi - pi); disp(pi) disp(P'*pi- pi) //Question 7 function []=maximizePageRank(p,m, Adj) Adj_copy = Adj; k = 1; PR = pi_iterative_sparse(); PR = sum(PR(1,m)); while k < 100000 for i=m+1:n do end end endfunction //Question 8 function y=r(x) y=x.^2 endfunction n=4; P=rand(n,n) pr=sum(P,'c'); P = P ./ (pr*ones(1,n)); function [cerg]=ergodique_markov_T(T,P) //on prend la loi initiale u uniforme de X0 //on rappelle que la loi de Xt est (P^t)'u vecteur=[1:n]; vecteur=vecteur'; loiInit=ones(n,1)/n; Matrice=eye(n,n); Esperance=0; for i=0:(T-1) do Esperance=Esperance+((Matrice'*loiInit)')*(r(vecteur)); Matrice=Matrice*P; end cerg=Esperance/T; endfunction function [cerg,pi]=ergodique_markov(P) p=ones(n,1); vecteur=[1:n]; vecteur=vecteur'; k = 1; while k < 100000 pn = P'*p; k = k + 1; if norm(pn-p,%inf) < 10*%eps then break; end p = pn; end pi= pn/sum(pn); cerg=(pi')*r(vecteur); endfunction disp(ergodique_markov_T(10,P)); // test T=100000; CT=ergodique_markov_T(T,P); [c,pi]=ergodique_markov(P); disp("Test"); disp(c-CT); // Le noyau de P-I est engendr´e par ones(n,1) [x0,K]=linsolve(P- eye(n,n),zeros(n,1)); disp("x0"); disp(x0); disp("K"); disp(K); //Question 9 // le projecteur spectral sur Espace propre associ´e a 1 pi=pi'; Pr = ones(n,1)*pi; // [pi;pi;pi;....] A = P-eye(n,n); // A -Id S = Pr - inv(Pr-A) // Pr-A est inversible // v´erifier que S*Pr et Pr*S sont nuls disp("s*Pr"); clean(S*Pr); disp(S*Pr); disp("Pr*S"); clean(Pr*S); disp(Pr*S); // A*w + R - c= 0 // A*c = 0 R = r([1:n]'); // v´erifions que w=-S*R et c=Pr*R sont solution du systeme linaire w= -S*R; c= Pr*R; disp("A*w+R-c"); disp(A*w + R -c); disp("A*c"); disp(A*c); // Noter que w n’est pas unique, on peut rajouter `a w les elts du noyau de A // Montrons inversement que c doit ^etre egal `a Pr*R // Pr*A est nul disp("Pr*A"); disp(Pr*A); // on doit donc avoir // Pr*R - Pr*c = 0 et A*c =0 // en sommant // Pr*R = (Pr-A)*c // c = (Pr-A)^-1 *Pr*R // c = (Pr-S)*Pr*R = Pr*Pr*R -S*Pr*R = Pr*R // car Pr est un projecteur Pr^2 = Pr et S*Pr = 0 disp("Pr.^2-Pr"); clean(Pr.^2-Pr); disp(Pr.^2-Pr); disp("S*Pr"); clean(S*Pr); disp(S*Pr); // conclusion c doit valoir Pr*R // on le v´erifie avec linsolve [x0,K]=linsolve([A,-eye(n,n);zeros(n,n),A],[R;zeros(n,1)]); disp("x0 et K"); disp(x0); // on v´erifie bien que e = Pr*RK); disp("Pr*r"); disp(Pr*R); P1=rand(n,n); pr=sum(P1,'c'); P1 = P1 ./ (pr*ones(1,n)); z=grand(1,n,'unf',0,1); z=z/sum(z); alpha = 0.8; P = alpha*P1 + (1-alpha)*ones(n,1)*z; // les couts Rm(i,j) Rm = grand(n,n,'unf',0,1); //Question 10 // On le v´erifie numeriquement // trouver la solution de // w = alpha*P1*w + sum(P.*Rm,’c’) [x0,K]=linsolve(alpha*P1- eye(n,n),sum(P.*Rm,'c')); w = x0; disp("w"); disp(w-alpha*P1*w-sum(P.*Rm,'c')); // calcul de c c = (1-alpha)*z*w // (w,c) solution du pb ergodique ? disp("verification de la solution (w,c) trouvée "); disp(size(P)); disp(size(R)); disp("test de w"); disp(w + c - (P*w + sum(P.*Rm,'c'))); // Maintenant on peut utiliser une m´ethode iterative //Question 11 function [w]=iterative_c(tol) res1=ones(n,1); res2=alpha*P1*res1+sum(P.*Rm,'c'); while(((res2-res1).^(2)/n)>tol) res1=res2; res2=alpha*P1*res2+sum(P.*Rm,'c'); end w=res2; endfunction w=iterative_c(10*%eps); disp("w valeur"); disp(w); disp("test w"); disp(alpha*P1*w+sum(P.*Rm,'c')-w); // calcul de c c = (1-alpha)*z*w // (w,c) solution du pb ergodique ? disp(w + c - (P*w + sum(P.*Rm,'c'))); //Question 12 function [w]=algo_iter(tol, max_iter) w0 = zeros() w1 = ones() k = 0 while (abs(w1-w0) > tol & k<max_iter) w0 = w1; k = k+1; // expr = expression de droite // Calcul de nu_k optimal expr = -%inf nu_k = 0 for x=1:n do expr_tmp = ... if (expr_tmp > expr) expr = expr_tmp; nu_k = ... end end // On a nu_k optimal // Résolution du système pour trouver w_{k+1} : w1 = ... ; end endfunction
87f8071830aab0afaf44cbe1d9219a014b32dddc
485d12352540751c6df0586faf03ec5acad68a98
/CSCE 312/nand2tetris/P4Codes/lcd.tst
4bfe550861c84a8b299491d86d4eb36c6bc03fa9
[]
no_license
vidhurpotluri/TAMU-CSCE
690988634ed4d90f2856cd96246ad22b55362d91
3edc09790413c2a3290348591c9be6ac192ff53d
refs/heads/main
2023-06-30T11:42:09.989814
2021-07-28T22:32:02
2021-07-28T22:32:02
390,512,025
0
0
null
null
null
null
UTF-8
Scilab
false
false
906
tst
lcd.tst
load lcd.hack, output-file lcd.out, compare-to lcd.cmp, output-list RAM[0]%D2.6.2 RAM[1]%D2.6.2 RAM[2]%D2.6.2; set RAM[0] 9, set RAM[1] 6, set RAM[2] 0, repeat 400 { ticktock; } output; set PC 0, set RAM[0] 11, set RAM[1] 21, set RAM[2] 0, repeat 1000 { ticktock; } output; set PC 0, set RAM[0] 18, set RAM[1] 66, set RAM[2] 0, repeat 1000 { ticktock; } output; set PC 0, set RAM[0] 11, set RAM[1] 11, set RAM[2] 0, repeat 1000 { ticktock; } output; set PC 0, set RAM[0] 12, set RAM[1] 16, set RAM[2] 0, repeat 1000 { ticktock; } output; set PC 0, set RAM[0] 121, set RAM[1] 11, set RAM[2] 0, repeat 1000 { ticktock; } output; set PC 0, set RAM[0] 0, set RAM[1] 10, set RAM[2] 0, repeat 1000 { ticktock; } output; set PC 0, set RAM[0] 25, set RAM[1] 15, set RAM[2] 0, repeat 1000 { ticktock; } output; set PC 0, set RAM[0] 50, set RAM[1] 4, set RAM[2] 0, repeat 1000 { ticktock; } output;
5af4c35d3ae4a6c028ae506955f94e58f029f043
704a8e9047b24c6e005fdc6206aacf6b3ea623bb
/UE/S1/bin/ANALYSE/tridiaganal.sci
23fef89613162d226f54cf1bbf10e436a3c945ac
[]
no_license
GuangYueCHEN/ENSIIE
e84ffd6be1718b958bc72cef791a77dc49fa057f
f2014c0cf5b1adda3f327d5dd1d39217e703871b
refs/heads/master
2021-06-30T21:50:49.946086
2019-06-18T09:53:36
2019-06-18T09:53:36
114,696,410
0
0
null
null
null
null
UTF-8
Scilab
false
false
225
sci
tridiaganal.sci
function B=tridiaganal(n) B=zeros(n,n); for i=1:n, B(i,i)=3 end for i=2:n, B(i,i-1)=1 end for i=1:n-1, B(i,i+1)=1 end endfunction
20fb5f0224452249802001cccb57ca265756430e
449d555969bfd7befe906877abab098c6e63a0e8
/1919/CH12/EX12.10/Ex12_10.sce
ca5d146d67ead47e9279d3ae6768466117cc2bcd
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
719
sce
Ex12_10.sce
// Theory and Problems of Thermodynamics // Chapter 12 // Statistical Thermodynamics // Example 10 clear ;clc; //Given data T = 300 // Temperature of ammonia gas in K M = 17*1e-3 // molar mass of ammonia in kg/mol R = 8.314 // gas constant // Calculations V = (8*R*T/%pi/M)^0.5 // average speed of ammonia V_rms = (3*R*T/M)^0.5 // root mean square speed of ammonia V_mp = (2*R*T/M)^0.5 // most probable speed of ammonia // Output results mprintf('Average speed of ammonia = %4.1f m/s', V) mprintf('\n Root mean square speed of ammonia = %4.1f m/s', V_rms) mprintf('\n Most probable speed of ammonia = %4.1f m/s', V_mp)
dacee36aa2b67c025bdf227393e49b0c4b677a55
449d555969bfd7befe906877abab098c6e63a0e8
/3415/CH8/EX8.6/Ex8_6.sce
f36c03b9ff67e05d582c5d26e0d4b8032c76277f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
727
sce
Ex8_6.sce
//fiber optic communications by joseph c. palais //example 8.6 //OS=Windows XP sp3 //Scilab version 5.4.1 //given clc clear all NA1=0.24//numerical aperture SI fiber 1 ALl glass NA2=0.41//numerical aperture SI fiber 2 PCS NA3=0.48//numerical aperture SI fiber 3 All plastic NA_loss1=-10*log10(NA1^2)//losses SI fiber 1 NA_loss2=-10*log10(NA2^2)//losses SI fiber 2 NA_loss3=-10*log10(NA3^2)//losses SI fiber 3 ref_loss=0.2//Reflection_loss in dB total_loss1=NA_loss1+ref_loss//Total Loss in dB mprintf('Total Loss SI fiber 1=%fdB',total_loss1) total_loss2=NA_loss2+ref_loss mprintf('\nTotal Loss SI fiber 2=%fdB',total_loss2) total_loss3=NA_loss3+ref_loss mprintf('\nTotal Loss SI fiber 3=%fdB',total_loss3)
cf8bbf5ecdca1cfec2a3ebcb606dfa6d2108b49a
0845790d81f9fd3b8393b14fc9c2bdde0ffe46cf
/1_gen_of_elem_signals/1gen_of_elem_signal.sce
90e2331f162bdd6e1eab22a2dd0cf35bfdf5ef0d
[]
no_license
NARAYAN1201/Scilab
1a3fb62895b157f87b0d9e024ecd2f1c000eb6df
48980c28ab2def9939e7519867da572660c8ac97
refs/heads/main
2023-02-26T02:09:05.762483
2021-02-01T07:24:54
2021-02-01T07:24:54
335,216,077
0
0
null
2021-02-02T08:17:23
2021-02-02T08:17:23
null
UTF-8
Scilab
false
false
620
sce
1gen_of_elem_signal.sce
//unit-impulse signal L = 5; x1 = [zeros(1,L) 1 zeros(1,L)]; nx1 = -L:L; subplot(2,4,1) plot2d3(nx1,x1) //unit-step signal L = 10; x2 = [zeros(1,L) ones(1,L+1)]; nx2 = -L:L; subplot(2,4,2) plot2d3(nx2,x2) //ramp signal n = 0:10; x = n; subplot(2,4,3) plot2d3(n,x); //sine signal x = 0:0.01:2*%pi; y = sin(x); subplot(2,4,4) plot(y) //cos signal x = 0:0.01:2*%pi; y = cos(x); subplot(2,4,5) plot(y) //decreasing expo a = 0.6; n = 0:10; x = a^n subplot(2,4,6) plot2d3(x) //increasing expo a = 0.6; n = 10: -1 :0; x = a^n subplot(2,4,7) plot2d3(x) //signumfunc t = -5:0.1:5 x = sign(t) ; subplot(2,4,8) plot2d(t,x);
d41767ea4382349669faa5766f303ba37f6c6c65
449d555969bfd7befe906877abab098c6e63a0e8
/3537/CH2/EX2.2/Ex2_2.sce
8758ff256ba7855defb3b130f3579b1e91c63266
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
379
sce
Ex2_2.sce
//Example 2_2 clc(); clear; //To find the difference in the angles of deviation in the first and third spectra lemda=5000*10^-8 //units in meters e=1/6000 theta1=asin(lemda/e)*180/%pi //for first order theta2=asin((3*lemda)/e)*180/%pi //for third order theta=(theta2-theta1) printf("The difference in the angles of deviation is %.1f degrees",theta)
e166ab1e9ae4682a58fdf8fa4b3bb686216176ed
449d555969bfd7befe906877abab098c6e63a0e8
/2096/CH1/EX1.49/ex_1_49.sce
72ebea8daf7002dc7142d9ac769104288971c3d0
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
563
sce
ex_1_49.sce
//Example 1.49://ARITHEMATIC MEAN,AVERAGE DEVIATION ,STANDARD DEVIATION AND VARAIANCE clc; clear; q=[1.34,1.38,1.56,1.47,1.42,1.44,1.53,1.48,1.40,1.59];//length in mm AM= mean(q);//arithematic mean in mm for i= 1:10 qb(i)= q(i)-AM; end Q= [qb(1),qb(2),qb(3),qb(4),qb(5),qb(6),qb(7),qb(8),qb(9),qb(10)];// AV=(-qb(1)-qb(2)+qb(3)+qb(4)-qb(5)-qb(6)+qb(7)+qb(8)-qb(9)+qb(10))/10;// SD=stdev(Q);//standard deviation V=SD^2;//variance disp(AM,"arithematic mean in mm") disp(AV,"average deviation") disp(SD,"standard deviation in mm") disp(V,"variance in mm square")
59dec736f086e2ccc7f40b85e997b7963f4a9238
4058f38b392324aa5099819881f3c7d7219a174f
/3 bit Shift Register/SIPO_using_74HC595/SIPO_using_74HC595_consecutive_inputs/SIPO MSBFIRST/cmd_shift_out_msb.sci
1222ebcdb1c7dba649d280080a4f1c80ec2e1470
[]
no_license
anupma-s/Scilab-Xcos-Arduino-Digital-Circuits
612a033422bf14e2e58bcdce371f15cafb30224f
2b4bf8e8f155d20a5eda2feb31c5523a51569d73
refs/heads/master
2021-01-20T17:20:13.073180
2016-07-04T15:25:07
2016-07-04T15:25:07
62,569,455
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,081
sci
cmd_shift_out_msb.sci
//MSBFIRST function[]= cmd_shift_out_msb(dataPin,clockPin,val) val1=[0 0 0 0 0 0 0 0]; //output matrix. //If all elements of the matrix are 0, //output pinstate will be 0 (i.e LOW). //If 1 or more elements of the matrix is 1, //output pinstate will be 1 (i.e HIGH) val2=0; mat=[1 0 0 0 0 0 0 0;0 1 0 0 0 0 0 0;0 0 1 0 0 0 0 0;0 0 0 1 0 0 0 0;0 0 0 0 1 0 0 0;0 0 0 0 0 1 0 0;0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 1]; for i=1:8 //val1=[(val(1) & mat(i,1)) (val(2) & mat(i,2)) (val(3) & mat(i,3)) (val(4) & mat(i,4)) (val(5) & mat(i,5)) (val(6) & mat(i,6)) (val(7) & mat(i,7)) (val(8) & mat(i,8)) ]; val1=(val & mat(i,:)); //disp(val1); val2=sum(val1); //adds the elements of matrix if val2==0 val3=0; else val3=1; end disp(val2); cmd_digital_out(1,dataPin,val3); //1 clock pulse cmd_digital_out(1,clockPin,1); cmd_digital_out(1,clockPin,0); end endfunction
9588573059622a573dd2e6c8cff3885045da04c8
1bb72df9a084fe4f8c0ec39f778282eb52750801
/test/CS3B.prev.tst
6edf324392975ad87a3aff1bef93039633720256
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
gfis/ramath
498adfc7a6d353d4775b33020fdf992628e3fbff
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
refs/heads/master
2023-08-17T00:10:37.092379
2023-08-04T07:48:00
2023-08-04T07:48:00
30,116,803
2
0
null
null
null
null
UTF-8
Scilab
false
false
4,752
tst
CS3B.prev.tst
CandidateSelector expand width=4 base=5 exponent=3 left=4 right=0 fileName=test/CS3B.data.tmp chain8 [[0,-3,-2,-2],[-1,1,1,1],[0,2,2,1],[0,2,1,2]] det=-1 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099] chain8 [[4,1,-1,-1],[-1,1,1,1],[0,2,2,1],[0,2,1,2]] det=3 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099] chain8 [[0,-3,-2,-2],[-1,1,1,1],[-4,-2,1,0],[0,2,1,2]] det=-2 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099] chain8 [[4,1,-1,-1],[-1,1,1,1],[-4,-2,1,0],[0,2,1,2]] det=2 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099] chain2 [[0,-3,-2,-2],[-1,1,1,1],[-3,4,-1,-2],[-1,-4,3,4]] det=-2 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-459,-461] chain2 [[4,1,-1,-1],[-1,1,1,1],[-3,4,-1,-2],[-1,-4,3,4]] det=2 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-459,-461] chain8 [[1,3,-4,-4],[2,-1,4,4],[-1,3,-2,3],[-3,-3,4,-1]] det=230 [28,-18,-21,-19] [134,-86,-97,-95] [644,-414,-483,-437] [3082,-1978,-2231,-2185] [14812,-9522,-11109,-10051] [70886,-45494,-51313,-50255] [340676,-219006,-255507,-231173] [1630378,-1046362,-1180199,-1155865] [7835548,-5037138,-5876661,-5316979] chain8 [[0,-3,-2,-2],[-1,1,1,1],[0,2,2,1],[-4,-2,0,1]] det=-2 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099] chain8 [[4,1,-1,-1],[-1,1,1,1],[0,2,2,1],[-4,-2,0,1]] det=2 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099] chain8 [[0,-3,-2,-2],[-1,1,1,1],[-4,-2,1,0],[-4,-2,0,1]] det=-3 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099] chain8 [[4,1,-1,-1],[-1,1,1,1],[-4,-2,1,0],[-4,-2,0,1]] det=1 [28,-18,-21,-19] [134,-86,-97,-95] [642,-412,-461,-459] [3076,-1974,-2205,-2203] [14738,-9458,-10561,-10559] [70614,-45316,-50597,-50595] [338332,-217122,-242421,-242419] [1621046,-1040294,-1161505,-1161503] [7766898,-4984348,-5565101,-5565099] chain8 [[1,-1,1,1],[1,4,-1,-1],[2,0,2,1],[2,0,1,2]] det=3 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205] chain8 [[1,-1,1,1],[-3,0,-2,-2],[2,0,2,1],[2,0,1,2]] det=-1 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205] chain8 [[1,-1,1,1],[1,4,-1,-1],[-2,-4,1,0],[2,0,1,2]] det=2 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205] chain8 [[1,-1,1,1],[-3,0,-2,-2],[-2,-4,1,0],[2,0,1,2]] det=-2 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205] chain8 [[1,-1,1,1],[1,4,-1,-1],[2,0,2,1],[-2,-4,0,1]] det=2 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205] chain8 [[1,-1,1,1],[-3,0,-2,-2],[2,0,2,1],[-2,-4,0,1]] det=-2 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205] chain8 [[1,-1,1,1],[1,4,-1,-1],[-2,-4,1,0],[-2,-4,0,1]] det=1 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205] chain8 [[1,-1,1,1],[-3,0,-2,-2],[-2,-4,1,0],[-2,-4,0,1]] det=-3 [134,-86,-97,-95] [28,-18,-21,-19] [6,-4,-5,-3] [2,-2,-1,1] [4,-6,3,5] [18,-28,19,21] [86,-134,95,97] [412,-642,459,461] [1974,-3076,2203,2205]
227bbf07647628ce4606b1d88ea4fdeb74e404c1
449d555969bfd7befe906877abab098c6e63a0e8
/3012/CH11/EX11.10/Ex11_10.sce
8b1a2eb83c11f40c47db9d597ff06227ee80cfd4
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
3,811
sce
Ex11_10.sce
// Given:- // Analysis V = 0.241 // volume of the mixture in m^3 T = 511.00 // temperature of the mixture in kelvin n1 = 0.18 // number of moles of methane in kmol n2 = 0.274 // number of moles of butane in kmol Rbar = 8314 // universal gas constant in (N.m)/(kmol.K) // Calculations n = n1 + n2 // The total number of moles of mixture y1 = n1/n // mole fraction of methane y2 = n2/n // mole fraction of butane vbar = V/(n) // The specific volume of the mixture on a molar basis in m^3/kmol // Part(a) p = (Rbar*T/vbar)*10**-5 // in bar // Result printf( ' The pressure in bar obtained using ideal gas equation is: %.2f',p) // Part(b) // From table A-1 Tc1 = 191.00 // critical temperature for methane in kelvin Pc1 = 46.4 // critical pressure for methane in bar Tc2 = 425.00 // critical temperature for butane in kelvin Pc2 = 38.00 // critical pressure for butane in bar Z = 0.88 // Calculations Tc = y1*Tc1 + y2*Tc2 // critical temperature in kelvin Pc = y1*Pc1 + y2*Pc2 // critical pressure in bar TR = T/Tc // reduced temperature of the mixture vRdash= vbar*Pc/(Rbar*Tc) p = ((Z*Rbar*T)/vbar)*10**-5 // mixture pressure in bar // Result printf( ' Pressure obtained using Kay’s rule together with the generalized compressibility chart, is: %.2f ',p) // Part(c) // Table A-24 gives the following van der Waals constants values for methane a1 = 2.293 // in (m^3/kmol)^2 b1 = 0.0428 // in m^3/kmol // Table A-24 gives the following van der Waals constants values for butane a2 = 13.86 // in (m^3/kmol)^2 b2 = 0.1162 // in m^3/kmol a = (y1*a1**.5 + y2*a2**.5)**2 // in bar*(m^3/kmol)^2 b = y1*b1+y2*b2 // in m^3/kmol // From van der Waals equation p = ((Rbar*T)/(vbar-b))*10**-5 - a/(vbar**2) printf( ' The pressure in bar from van der Waals equation is: %.2f',p) // Part(d) // For methane TR1 = T/Tc1 vR1dash = (.241/.18)*10**5*Pc1/(Rbar*Tc1) Z1 = 1.00 // For butane TR2 = T/Tc2 vR2dash = (.88*10**5*Pc2)/(Rbar*Tc2) Z2 = 0.8 Z = y1*Z1 + y2*Z2 // Accordingly, the same value for pressure as determined in part (b) using Kay’s rule results: p = 70.4 // Result printf( ' The pressure in bar obtained using the rule of additive pressures employing the generalized compressibility chart is: %.2f',p)
15c028715990718e5f2f943007e04493fc1ebd4e
57a39df08383d18148a77915551223cef3bc8cd6
/bode1.sce
2e934ec0cdc73db71fdb01e0460874766cb9ff92
[]
no_license
sonusharma55/Misc.-MATLAB-Scilab
0abbc7ab22e963b3b3e147a18e17af2f3021d3ce
dbfaab1b84719948ef665798c4192e6ca934e46a
refs/heads/master
2020-07-25T22:00:11.975476
2019-09-14T12:31:37
2019-09-14T12:31:37
208,434,501
0
0
null
null
null
null
UTF-8
Scilab
false
false
171
sce
bode1.sce
s=%s num = 2*(1+2*s)*(1+0.05*s) den=s*(((s^2)/6400)+1)*(1+0.25*s) g=syslin('c',num,den) bode(g) show_margins(g) [gm,fp]=g_margin(g) [ph,fg]=p_margin(g) pm=180+ph
662e71d41d9505e03c6aacfc414ca561dbda1889
449d555969bfd7befe906877abab098c6e63a0e8
/3869/CH6/EX6.23/Ex6_23.sce
64ab97fa733cccdaab072d5a5d1ec9af9e9f9b00
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
388
sce
Ex6_23.sce
clear // // // //Variable declaration h=1 k=1 l=0 //miller indices d100=0.28 //lattice constant(nm) n=2 lamda=0.071 //wavelength(nm) //Calculation d110=d100/sqrt(h**2+k**2+l**2) //interplanar spacing(m) theta=asin(n*lamda/(2*d110))*180/%pi //glancing angle(degrees) //Result printf("\n glancing angle is %0.0f degrees",theta)
7e08490daa1dbe7b616a5e273277f9065df2a867
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set5/s_Electrical_Machines_M._V._Despande_833.zip/Electrical_Machines_M._V._Despande_833/CH14/EX14.3/Ex14_3.sce
d98cdfa6b7a7329b25a764e1adc2954c8bc25a53
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
576
sce
Ex14_3.sce
errcatch(-1,"stop");mode(2);//Caption:Find Regulation and resultant excitation //Exa:14.3 ; ; pf=0.8//Power factor lagging P=1000//Power of Synchronous generator(in KVA) Eo=1.25//No load voltage(in per unit) V=6600//Voltage of Synchronous generator(in volts) f=50//Frequency(in hertz) Fe=1//Field excitation to produce terminal voltage(in per unit) Fa=1//Field excitation to produce full load current(in per unit) Ft=sqrt(((Fe+(Fa*sind(acosd(pf))))^2)+((Fa*pf)^2)) Re=(Eo-Fa)*100/Fa disp(Re,Ft,'Resultant excitation(in per unit) and regulation(in %)=') exit();
2f0cddf622454b652e85270f16ffbb4248b1503a
62e6605ab494919b6833bf1a1b158bcb6f9b79df
/idinputtest.sce
7f1006660ec327213c88d399a32d4c7a7995bf52
[]
no_license
mani1250/system-identification
c597c26d10bb5dd62b1b4db650b3945afc336e37
5db0536c792dfaa4a8f01561315263503ff34d3d
refs/heads/master
2021-01-12T06:56:00.703593
2017-03-07T12:18:15
2017-03-07T12:18:15
76,865,655
0
0
null
null
null
null
UTF-8
Scilab
false
false
129
sce
idinputtest.sce
// Rgs n = 8 band = [0 0.39889]; evels = [-1 1]; X = idinput(n,"rgs",band,levels); // Rbs X = idinput(n,"rbs",band,levels)
c695c9a7703526489a9af5c7803a59e6181391dc
449d555969bfd7befe906877abab098c6e63a0e8
/896/CH8/EX8.2/2.sce
3eaf9a28edc7f0e49a63ebcd9248fc7e7660dbc7
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
345
sce
2.sce
clc //Example 8.2 //Calculate the speed of sound in air at 20 C R=10.73//lbf.ft^3/in^2/lbmol/R //1 ft = 12 in //1 lbf.s^2 = 32.2 lbm.ft R1=(R*144*32.2)^0.5//ft/s*(lbm/lbmol/R)^0.5 k=1.4//dimentionless T=528//R (Rankine temperature scale) M=29//lbm/lbmol c=R1*(k*T/M)^0.5//ft/s printf("the speed of sound in air at 20 C is %f ft/s",c);
af269a1ba205b8e601cedbba4d6db5f7333ec6e6
449d555969bfd7befe906877abab098c6e63a0e8
/339/CH8/EX8.12/ex8_12.sce
21d6f69ac94d38982a76c971e5c82e9f8c6869c3
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
376
sce
ex8_12.sce
Ic=10*10^-3; //Collector current Vce=3; Vcc=5; beta=100; //current gain Vbe=0.8; I1=Ic+Ic/beta; R1=(Vcc-Vce)/I1; R2=(Vce-Vbe)/(Ic/beta); Vx=1.5; R3=(Vx-Vbe)/(Ic/beta); Ix=10*(Ic/beta); R11=(Vx/Ix); R22=(Vcc-Vx)/(Ix+(Ic/beta)); R4=(Vcc-Vce)/Ic; disp("Amperes",I1,"I1","Ohms",R1,"R1","Ohms",R2,"R2","Ohms",R3,"R3","Ohms",R11,"R11","Ohms",R22,"R22","Ohms",R4,"R4");
b57ff8227dfc2730d7a7e4a477c46ec1e590e571
449d555969bfd7befe906877abab098c6e63a0e8
/3751/CH2/EX2.2/Ex2_2.sce
10322f83dda0526dd251bb62182caded75bb236b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,216
sce
Ex2_2.sce
//Fluid system - By - Shiv Kumar //Chapter 2 - Impact of Jet //Example 2.2 clc clear //Given Data:- V=25; //Velocity of the Jet, m/s theta=45; //Inclination of the plate with Jet axis, degrees a=30; //cross-sectional area of the Jet, cm^2 //Data Used:- rho=1000; //Density of water, kg/m^3 //Computations:- a=a*10^-4; //m^2 //(a) Force normal to the plate is the maximum force of Jet on the plate Fn Fn=rho*a*V^2*sind(theta); //N //(b) Components of the force Fn, Fx=Fn*sind(theta); //N Fy=Fn*cosd(theta); //N //(c) Ratio in which the discharge gets divided Q1_by_Q2=(1+cosd(theta))/(1-cosd(theta)); //Results:- printf("(a)The Maximum force of the Jet on the plate, Fn=%.2f N \n", Fn) //The answer vary due to round off error printf("(b)Components of the Normal force, Fn are: \n\t") printf("Fx=%.2f N , Fy=%.2f N \n", Fx, Fy) //The answer vary due to round off error printf("(C)The Ratio in which discharge gets divided, Q1/Q2=%.2f \n", Q1_by_Q2) //The answer vary due to round off error
065ff939e78b03f017e1ec169f12c83b0990b751
1b969fbb81566edd3ef2887c98b61d98b380afd4
/Rez/bivariate-lcmsr-post_mi/bfi_c_vrt_ind/~BivLCM-SR-bfi_c_vrt_ind-PLin-VLin.tst
efed4da016cd2ece143033873b6a4527631c59a8
[]
no_license
psdlab/life-in-time-values-and-personality
35fbf5bbe4edd54b429a934caf289fbb0edfefee
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
refs/heads/master
2020-03-24T22:08:27.964205
2019-03-04T17:03:26
2019-03-04T17:03:26
143,070,821
1
0
null
null
null
null
UTF-8
Scilab
false
false
11,974
tst
~BivLCM-SR-bfi_c_vrt_ind-PLin-VLin.tst
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM. ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 1 2 3 4 5 ________ ________ ________ ________ ________ 1 0.302244D+00 2 -0.233073D-02 0.232280D-02 3 0.433749D-02 -0.135346D-02 0.342347D+00 4 -0.725280D-03 0.162139D-04 -0.710680D-02 0.287329D-02 5 -0.601576D-03 0.935985D-04 0.897217D-03 0.802389D-04 0.364196D-02 6 0.296997D-03 -0.417197D-04 0.820371D-04 0.210684D-04 -0.627715D-04 7 -0.402607D-03 0.997683D-04 -0.809587D-03 0.203336D-04 0.507537D-03 8 -0.397301D-03 -0.530750D-04 -0.318763D-03 0.683516D-04 0.530932D-04 9 -0.343729D+00 0.113947D-01 0.238527D+00 -0.183690D-01 0.435714D-01 10 -0.166659D+00 -0.103280D-01 0.252336D+00 -0.776896D-03 0.112991D+00 11 -0.104585D+00 -0.436675D-02 0.140753D+00 -0.245885D-03 0.355822D-01 12 -0.182158D+00 0.104381D-01 0.232383D+00 -0.484209D-01 0.345887D-01 13 -0.105461D-01 0.719051D-02 -0.315911D-01 -0.364617D-02 -0.826186D-02 14 0.744086D-01 0.753381D-02 0.425862D+00 0.934308D-02 0.268175D-01 15 -0.224850D+01 -0.281631D-01 -0.157288D+00 0.151638D-01 -0.122758D+00 16 -0.635977D-01 -0.243643D-02 0.680474D-02 -0.324228D-02 -0.121160D-02 17 0.992306D-02 -0.548752D-03 -0.304800D-02 0.132596D-04 -0.391602D-03 18 0.649550D-01 -0.657684D-02 0.441409D-01 -0.269183D-01 0.528121D-03 19 -0.458310D-01 0.562723D-02 -0.113591D-01 -0.638143D-02 0.342346D-02 20 0.366649D+00 -0.222264D-01 0.223320D+00 -0.314240D-01 -0.186692D-01 21 0.721375D-01 -0.111122D-01 0.206121D-01 0.356779D-02 -0.265758D-02 22 -0.343601D-02 0.151699D-03 -0.188937D-02 0.212923D-03 -0.424763D-03 23 0.185470D-01 -0.283619D-02 0.243699D-01 -0.259939D-03 0.157453D-02 24 -0.433669D-02 0.219031D-03 -0.133623D-02 0.788427D-03 0.267568D-04 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 6 7 8 9 10 ________ ________ ________ ________ ________ 6 0.764941D-03 7 0.705808D-03 0.315688D-02 8 0.232776D-05 0.195353D-03 0.271536D-02 9 0.201394D-01 0.203050D-01 0.143836D-02 0.459629D+02 10 -0.370526D-02 0.147845D-01 0.936379D-02 0.462105D+01 0.187789D+02 11 0.508453D-01 0.776833D-01 0.223112D-01 0.866859D+01 0.204539D+01 12 0.748768D-02 0.834421D-01 0.616313D-01 0.822963D+01 0.248348D+01 13 0.469778D-01 0.103837D+00 -0.499452D-02 0.211921D+01 -0.932167D+00 14 0.174691D-02 0.120150D-01 0.111222D+00 0.201232D+01 0.307672D+01 15 -0.181638D-01 -0.255316D-01 -0.277821D-01 -0.971196D+01 -0.117477D+02 16 0.715224D-03 0.211486D-03 -0.822316D-03 0.787583D+00 -0.161891D+00 17 -0.249479D-04 -0.285560D-03 0.137922D-03 -0.159805D+00 0.222114D-02 18 -0.411981D-01 -0.981712D-01 -0.134441D-01 -0.708697D+01 -0.275939D+00 19 -0.136501D-01 0.142349D-02 -0.332149D-02 -0.132394D+01 -0.545504D+00 20 -0.750437D-02 -0.391101D-01 -0.190728D+00 -0.663032D+00 0.126125D+01 21 0.129935D-01 -0.115888D-02 0.344811D-02 0.102100D+01 0.632090D+00 22 -0.960439D-04 -0.207328D-03 0.629039D-04 0.303206D-01 -0.290587D-01 23 0.222417D-03 0.233980D-04 -0.110631D-02 0.384860D-01 0.369000D-01 24 0.264470D-04 -0.197234D-04 -0.120329D-03 -0.225183D-01 0.157611D-01 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 11 12 13 14 15 ________ ________ ________ ________ ________ 11 0.416538D+02 12 -0.380481D+00 0.145048D+03 13 0.494280D+00 0.233242D+01 0.111330D+02 14 0.344519D+01 0.278947D+01 -0.757566D+00 0.491490D+02 15 -0.151204D+01 -0.169898D+00 -0.124741D+00 0.355191D+01 0.241654D+03 16 0.708585D-02 0.247320D+00 0.972891D-01 0.180910D-01 0.180264D+01 17 -0.190502D-01 -0.392040D-01 -0.166914D-01 -0.421122D-01 -0.104281D+01 18 -0.495654D+01 0.193189D+00 -0.467835D+01 0.331865D+01 0.824469D+00 19 -0.117073D+01 -0.171138D+00 -0.746398D-01 -0.967259D+00 0.218488D+01 20 -0.435777D+01 -0.375086D+01 -0.196418D+01 -0.276480D+02 0.356881D+01 21 0.211789D+01 0.187211D+00 0.633615D-01 0.131458D+01 -0.219326D+01 22 -0.827093D-01 -0.199009D-01 -0.572571D-02 -0.256476D-01 0.231747D-01 23 -0.614231D-01 0.107693D+01 -0.733864D-02 0.710325D-01 -0.918129D+00 24 0.117002D-01 -0.278343D+00 0.162908D-02 0.141480D-01 0.746677D-01 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 16 17 18 19 20 ________ ________ ________ ________ ________ 16 0.459311D+00 17 -0.200583D-01 0.137956D-01 18 -0.347873D-01 0.724154D-01 0.159601D+03 19 0.597328D-01 -0.600284D-02 0.297574D+01 0.483875D+01 20 -0.680991D+00 0.486655D-01 -0.799850D+01 -0.402650D+01 0.309186D+03 21 0.692735D-01 0.168092D-02 -0.196011D+01 -0.454004D+01 0.292257D+01 22 -0.272086D-02 0.886448D-03 -0.675214D+00 -0.172276D-01 0.116302D+00 23 0.574095D-02 0.389123D-03 0.568056D-01 0.411741D-01 0.274308D+01 24 -0.134921D-02 -0.480116D-03 0.639931D-01 -0.476001D-03 -0.133457D+01 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 21 22 23 24 ________ ________ ________ ________ 21 0.541026D+01 22 -0.341660D-01 0.811290D-02 23 -0.480765D-01 -0.338575D-02 0.520944D+00 24 0.886762D-03 -0.104634D-02 -0.535833D-01 0.145197D-01 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 1 2 3 4 5 ________ ________ ________ ________ ________ 1 1.000 2 -0.088 1.000 3 0.013 -0.048 1.000 4 -0.025 0.006 -0.227 1.000 5 -0.018 0.032 0.025 0.025 1.000 6 0.020 -0.031 0.005 0.014 -0.038 7 -0.013 0.037 -0.025 0.007 0.150 8 -0.014 -0.021 -0.010 0.024 0.017 9 -0.092 0.035 0.060 -0.051 0.106 10 -0.070 -0.049 0.100 -0.003 0.432 11 -0.029 -0.014 0.037 -0.001 0.091 12 -0.028 0.018 0.033 -0.075 0.048 13 -0.006 0.045 -0.016 -0.020 -0.041 14 0.019 0.022 0.104 0.025 0.063 15 -0.263 -0.038 -0.017 0.018 -0.131 16 -0.171 -0.075 0.017 -0.089 -0.030 17 0.154 -0.097 -0.044 0.002 -0.055 18 0.009 -0.011 0.006 -0.040 0.001 19 -0.038 0.053 -0.009 -0.054 0.026 20 0.038 -0.026 0.022 -0.033 -0.018 21 0.056 -0.099 0.015 0.029 -0.019 22 -0.069 0.035 -0.036 0.044 -0.078 23 0.047 -0.082 0.058 -0.007 0.036 24 -0.065 0.038 -0.019 0.122 0.004 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 6 7 8 9 10 ________ ________ ________ ________ ________ 6 1.000 7 0.454 1.000 8 0.002 0.067 1.000 9 0.107 0.053 0.004 1.000 10 -0.031 0.061 0.041 0.157 1.000 11 0.285 0.214 0.066 0.198 0.073 12 0.022 0.123 0.098 0.101 0.048 13 0.509 0.554 -0.029 0.094 -0.064 14 0.009 0.031 0.304 0.042 0.101 15 -0.042 -0.029 -0.034 -0.092 -0.174 16 0.038 0.006 -0.023 0.171 -0.055 17 -0.008 -0.043 0.023 -0.201 0.004 18 -0.118 -0.138 -0.020 -0.083 -0.005 19 -0.224 0.012 -0.029 -0.089 -0.057 20 -0.015 -0.040 -0.208 -0.006 0.017 21 0.202 -0.009 0.028 0.065 0.063 22 -0.039 -0.041 0.013 0.050 -0.074 23 0.011 0.001 -0.029 0.008 0.012 24 0.008 -0.003 -0.019 -0.028 0.030 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 11 12 13 14 15 ________ ________ ________ ________ ________ 11 1.000 12 -0.005 1.000 13 0.023 0.058 1.000 14 0.076 0.033 -0.032 1.000 15 -0.015 -0.001 -0.002 0.033 1.000 16 0.002 0.030 0.043 0.004 0.171 17 -0.025 -0.028 -0.043 -0.051 -0.571 18 -0.061 0.001 -0.111 0.037 0.004 19 -0.082 -0.006 -0.010 -0.063 0.064 20 -0.038 -0.018 -0.033 -0.224 0.013 21 0.141 0.007 0.008 0.081 -0.061 22 -0.142 -0.018 -0.019 -0.041 0.017 23 -0.013 0.124 -0.003 0.014 -0.082 24 0.015 -0.192 0.004 0.017 0.040 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 16 17 18 19 20 ________ ________ ________ ________ ________ 16 1.000 17 -0.252 1.000 18 -0.004 0.049 1.000 19 0.040 -0.023 0.107 1.000 20 -0.057 0.024 -0.036 -0.104 1.000 21 0.044 0.006 -0.067 -0.887 0.071 22 -0.045 0.084 -0.593 -0.087 0.073 23 0.012 0.005 0.006 0.026 0.216 24 -0.017 -0.034 0.042 -0.002 -0.630 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 21 22 23 24 ________ ________ ________ ________ 21 1.000 22 -0.163 1.000 23 -0.029 -0.052 1.000 24 0.003 -0.096 -0.616 1.000
c6700354b873649405dd88c8d57d91210a3be797
3a5107b829276ce4530b98283206e13ef2bfff7c
/Interpolação_Newton.sce
d630e2b5c1b53acdc914746f1625bd8b85f44761
[]
no_license
daniel1sender/T-picos-de-F-sica-Computacional
902932aaa0616171ecd7e21650cb41ed4a29ef72
755a3b085f2190d579fcac90d562a7668f4f60d1
refs/heads/main
2023-04-23T04:15:27.660423
2021-05-10T15:57:41
2021-05-10T15:57:41
339,199,113
0
0
null
null
null
null
UTF-8
Scilab
false
false
647
sce
Interpolação_Newton.sce
clear clc //método interpolação de newton //dados experimentais: x=[0,15,30,45,60,75,90]; y = [1.0000,0.9659,0.8660,0.7071,0.5000,0.2588,0.0000]; //pontos quaisquer dados para interpolar: xi=[3,9,13,20,25,27,50,55,57,80,85,87]; //fórmula de recorrência para o polinomio interpolador de newton de grau 1: dff=y; //diferença dividida tem mesma ordem do número de pontos poli=y(1);//valor constante do polinomio interpolador termo=1;//diferença que vai multiplicando for k=1:length(x)-1 dff=(dff(2:$)-dff(1:$-1))./(x(1+k:$)-x(1:$-k)) termo=termo.*(xi-x(k)) poli= poli+ dff(1)*termo end plot(x,y,'b.') plot(xi,poli,'k^')
411622e84a93a587f3721233b216682fb2e78652
28a8d47c4d79b231f8bebc28925792a290f67e9f
/bk/others/prototype/test/test_dao.tst
0473147c9a032a30486d4a8e1885a5bf8694574b
[]
no_license
ZVlad1980/doo
a1fe7d18ccfd0acf6ced7dbb33927c86a925aae8
e81be8f524b78b9a6ec06b7f83a8c13354fc6412
refs/heads/master
2021-08-17T02:03:54.553822
2017-11-20T17:21:03
2017-11-20T17:21:03
111,440,129
0
0
null
null
null
null
UTF-8
Scilab
false
false
2,728
tst
test_dao.tst
PL/SQL Developer Test script 3.0 95 declare a anydata; obj xxdoo.xxdoo_cntr_contractor_typ; coll xxdoo.xxdoo_cntr_contractors_typ; l_dummy pls_integer; dao xxdoo.xxdoo_db_dao; x xmltype := xmltype('<content> <id></id> <name>IBM</name> <type>Vendor</type> <sites> <site> <id>1</id> <contractor_id>1</contractor_id> <role>Ship to</role> <address_id> <id>1</id> <country> <id>RU</id> <name>Russian Federation</name> <localizedName>Russia</localizedName> </country> <postal_code>111111</postal_code> <addr_line>Moscow</addr_line> </address_id> <siteAccounts> <siteAccount> <id>1</id> <accountId> <id>1</id> <siteId>1</siteId> <accountNum>10101010101</accountNum> </accountId> <siteId>1</siteId> </siteAccount> </siteAccounts> </site> <site> <id>2</id> <contractor_id>1</contractor_id> <role>Bill to</role> <address_id> <id>1</id> <country> <id>RU</id> <name>Russian Federation</name> <localizedName>Russia</localizedName> </country> <postal_code>111111</postal_code> <addr_line>Moscow</addr_line> </address_id> <accounts/> </site> </sites> </content> '); begin xxdoo.xxdoo_db_utils_pkg.init_exceptions; dbms_output.put_line(rpad('-',30,'-')); dbms_output.put_line('Object'); obj := xxdoo.xxdoo_cntr_contractor_typ(); dao := xxdoo.xxdoo_db_dao(obj); --obj := xxdoo.xxdoo_cntr_contractor_typ(dao.get_object(1)); --dbms_output.put_line(xmltype.createxml(obj).getClobVal); --return; dbms_output.put_line(rpad('-',30,'-')); dbms_output.put_line('Load'); obj := xxdoo_cntr_contractor_typ(dao.load(x)); dbms_output.put_line(xmltype.createxml(obj).getClobVal); --return; obj.name := case when obj.name = 'XEROX' then 'Lenovo' else 'XEROX' end; dao.put(obj.get_anydata); dbms_output.put_line(rpad('-',30,'-')); dbms_output.put_line('Put name '||obj.name); -- dbms_output.put_line(rpad('-',30,'-')); dbms_output.put_line('Collection'); dao.query.w('rownum',3,'<'); dao.query.o('name'); a := dao.get; l_dummy := a.getCollection(coll); for i in 1..coll.count loop dbms_output.put_line(xmltype.createxml(coll(i)).getClobVal); end loop; exception when others then xxdoo.xxdoo_utl_pkg.fix_exception('O-oops'); xxdoo.xxdoo_utl_pkg.show_errors; end; 0 0
fe7880bf33a5e465ac661cc9751d2ffd16e340b0
449d555969bfd7befe906877abab098c6e63a0e8
/275/CH3/EX3.3.86/Ch3_3_86.sce
0d40146ed6d72f9268df83d2df21bd582e823eca
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
557
sce
Ch3_3_86.sce
clc disp("Example 3.86") printf("\n") disp("Find the stability factor & change in Ic for increase in temperature of collector to base bias circuit") printf("Given\n") //given hFE=100 Rc=2.2*10^3 Rb=270*10^3 Icbo1=15*10^-9 T1=25 T2=105 //stability factor S=(1+hFE)/(1+((hFE*Rc)/(Rc+Rb))) //Change in collector to base reverse saturation current(delIcbo) n=(T2-T1)/10 Icbo2=Icbo1*2^8 delIcbo=Icbo2-Icbo1 //Change in Ic for increase in temperature delIc=S*delIcbo printf("stability factor %f \n",S) printf("change in Ic %f ampere\n",delIc)
833c3db7c953d14d5175021555d7b4e01186b591
449d555969bfd7befe906877abab098c6e63a0e8
/1427/CH16/EX16.4/16_4.sce
bde0ca8dfd971b9e35a44edd605524a18e6b5581
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
273
sce
16_4.sce
//ques-16.4 //Determining rate law and order with respect to A and B clc //R=k*[A]^x*[B]^y //2R=k*[A]^x*[2*B]^y //8*R=k*[2*A]^x*[2*B]^y x=log10(4)/log10(2); y=log10(2)/log10(2); printf("Order with respect to A is %d and B is %d and rate law is k*[A]^2*[B].",x,y);
3a54ec94753d62a969f8b1396bb982ffbb5dfc00
b61214213da59c049ec1a018e815f4feb95bccca
/lexers/Scilab/interpolation.sce
1075ef0b5b5d28786dfa91a6382bef8bf14cd04b
[]
no_license
Alexey-T/lexer_tests
25ab893f928fe2ac073c153e349c140fd3bd8678
3d26a98a4f9a2ae12c4074ea90b9416d75736b83
refs/heads/master
2023-08-17T13:07:10.432096
2023-08-13T06:51:15
2023-08-13T06:51:15
74,854,492
3
1
null
null
null
null
UTF-8
Scilab
false
false
7,404
sce
interpolation.sce
// Copyright 2012 Manolo Venturin, EnginSoft S.P.A. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // A collection of interpolation examples // Close all opened figures and clear workspace xdel(winsid()); clear; clc; pathdir = get_absolute_file_path('interpolation.sce'); exec(pathdir + "polyfit.sci"); // Figure #1: Plotting of the Runge function // ---------- // Define Runge function deff('[y]=f(x)','y = 1 ./(1+x.^2)'); // Interpolation points xi = linspace(-5,5,7)'; yi = f(xi); // Visualization data xrunge = linspace(-6,6,101)'; yrunge = f(xrunge); // Plot scf(1); clf(1); plot(xrunge,yrunge,'b-'); plot(xi,yi,'or'); xlabel("x"); ylabel("y"); title("Runge function"); // Figure #2: Intepolation points // ---------- // Plot scf(2); clf(2); plot(xi,yi*0,'xo'); p = get("hdl"); p.children.mark_mode = "on"; p.children.mark_style = 4; p.children.thickness = 4; p.children.mark_foreground = 2; xlabel("x"); ylabel("y"); title("Interpolation Points"); // Evaluation points xval = linspace(-6,6,101)'; // Figure #3: Piecewise interpolation // ---------- // Interpolation xx_c = xval; yy_c = interp1(xi,yi,xx_c,'nearest','extrap'); // Plot scf(3); clf(3); plot(xrunge,yrunge,'k-'); plot(xx_c,yy_c,'b-'); plot(xi,yi,'or'); xlabel("x"); ylabel("y"); title("Piecewise interpolation"); legend(["Runge func";"Interp.";"Interp. val"]); // Figure #4: Linear interpolation // ---------- // Interpolation xx_l = xval; yy_l = interp1(xi,yi,xx_c,'linear','extrap'); // Plot scf(4); clf(4); plot(xrunge,yrunge,'k-'); plot(xx_l,yy_l,'b-'); plot(xi,yi,'or'); xlabel("x"); ylabel("y"); title("Linear interpolation"); legend(["Runge func";"Interp.";"Interp. val"]); // Figure #5: Polynomial interpolation // ---------- // Import function exec("polyfit.sci",-1); // Interpolation xx_p = xval; [Pn] = polyfit(xi, yi, length(xi)-1); yy_p = horner(Pn,xx_p); // Plot scf(5); clf(5); plot(xrunge,yrunge,'k-'); plot(xx_p,yy_p,'b-'); plot(xi,yi,'or'); xlabel("x"); ylabel("y"); title("Polynomial interpolation"); legend(["Runge func";"Interp.";"Interp. val"]); // Figure #6: Spline interpolation // ---------- // Splines examples d = splin(xi, yi,"not_a_knot"); // d = splin(xi, yi,"natural"); // d = splin(xi, yi,"periodic"); xx_s = xval; yy_s = interp(xx_s, xi, yi, d,"linear"); // Plot scf(6); clf(6); plot(xrunge,yrunge,'k-'); plot(xx_s,yy_s,'b-'); plot(xi,yi,'or'); xlabel("x"); ylabel("y"); title("Spline interpolation"); legend(["Runge func";"Interp.";"Interp. val"]); // Figure #7: Gaussian Radial Basis Interpolation (RBF) // ---------- // Gaussian RBF deff('[y]=rbf_gauss(r,sigma)','y = exp(-r.^2 ./(2*sigma))'); // Plot scf(7); clf(7); r = linspace(0,3); y1 = rbf_gauss(r,0.1); y2 = rbf_gauss(r,1.0); y3 = rbf_gauss(r,2.0); plot(r,y1,'k-'); plot(r,y2,'b-'); plot(r,y3,'r-'); xlabel("$r$"); ylabel("$\phi(r)$"); title("Gaussian rbf"); legend(["$\sigma = 0.1$";"$\sigma = 1.0$";"$\sigma = 2.0$"]); // Figure #8/9: Gaussian Radial Basis Interpolation (RBF) // ----------- // Evaluation point: the same of the orginal plot xx_rbf = xval; yy_runge = f(xval); // used for error computation np = length(xval); sigmaval = linspace(0.1,1.0,101); rbf_error = zeros(np,1); for index = 1:length(sigmaval) disp(["Performing iteration: " + string(index) + "/" + string(length(sigmaval))]); yy_rbf = zeros(np,1); sigma = sigmaval(index); // Compute interpolation coefficient n = length(xi); Phi_ij = zeros(n,n); for i = 1:n, for j = 1:n r = norm(xi(i)-xi(j)); Phi_ij(i,j) = rbf_gauss(r,sigma); end end acoeff = Phi_ij\yi; // Loop over all point to be evaluated for k=1:np // Eval all rbf function fval = zeros(length(acoeff),1); for i=1:length(acoeff) // Evaluate distances r = norm(xi(i)-xx_rbf(k)); // Evaluate rbf fval(i) = rbf_gauss(r,sigma); end // Evaluate rbf interpolation in the given point yy_rbf(k) = fval'*acoeff; end // Evaluate error rbf_error(index) = sum(abs(yrunge-yy_rbf)); end // Plot error scf(8); clf(8); plot(sigmaval,rbf_error); xlabel("sigma"); ylabel("error"); title("Intepolation error"); // Find minimum error [errmin,indmin] = min(rbf_error); sigma = sigmaval(indmin); // Re-evalute rbf n = length(xi); Phi_ij = zeros(n,n); for i = 1:n, for j = 1:n r = norm(xi(i)-xi(j)); Phi_ij(i,j) = rbf_gauss(r,sigma); end end acoeff = Phi_ij\yi; yy_rbf = zeros(np,1); for k=1:np fval = zeros(length(acoeff),1); for i=1:length(acoeff) r = norm(xi(i)-xx_rbf(k)); fval(i) = rbf_gauss(r,sigma); end yy_rbf(k) = fval'*acoeff; end // Plot optimal RBF scf(9); clf(9); subplot(1,2,1); plot(xrunge,yrunge,'k-'); plot(xx_rbf,yy_rbf,'b-'); plot(xi,yi,'or'); xlabel("x"); ylabel("y"); title("Rbf interpolation"); legend(["Runge func";"Interp.";"Interp. val"]); // Plot non optimal RBF // Re-evalute rbf sigma = 0.2; n = length(xi); Phi_ij = zeros(n,n); for i = 1:n, for j = 1:n r = norm(xi(i)-xi(j)); Phi_ij(i,j) = rbf_gauss(r,sigma); end end acoeff = Phi_ij\yi; yy_rbf = zeros(np,1); for k=1:np fval = zeros(length(acoeff),1); for i=1:length(acoeff) r = norm(xi(i)-xx_rbf(k)); fval(i) = rbf_gauss(r,sigma); end yy_rbf(k) = fval'*acoeff; end subplot(1,2,2); plot(xrunge,yrunge,'k-'); plot(xx_rbf,yy_rbf,'b-'); plot(xi,yi,'or'); xlabel("x"); ylabel("y"); title("Rbf interpolation"); legend(["Runge func";"Interp.";"Interp. val"]); // Figure #10: Example of approximation in 1D (full polinomial) // ---------- np = 100; noise = 0.7*(rand(np,1)-0.5); x = linspace(0,2,np)'; yexact = x.^2 + x; ynoise = yexact + noise; // degree 1 p1 = polyfit(x, ynoise, 1); p1val = horner(p1,x); // degree 2 p2 = polyfit(x, ynoise, 2); p2val = horner(p2,x); // plot scf(10); clf(10); plot(x,yexact,'k-'); plot(x,ynoise,'b-'); plot(x,p1val,'r-'); plot(x,p2val,'g-'); xlabel("x"); title("Best polynomial approximation"); legend(["yexact";"ynoise";"p1val";"p2val"]); // Figure #11: Example of approximation in 2D (plane) // ---------- // Generating random points along a plane np = 30; noise = 0.5*(rand(np,1)-0.5); // Extract data x = rand(np,1); y = rand(np,1); znoise = -x+2*y+noise; // Vandermonde matrix for P(x,y) = a+b*x+c*y V = [ones(np,1),x,y]; // Find coefficient i.e. minimize error norm coeff = V\znoise; // Evaluate polynomial in a grid for plotting ndiv = 40; xdiv = linspace(0,1,ndiv); ydiv = linspace(0,1,ndiv); [X,Y] = meshgrid(xdiv,ydiv); Z = zeros(np,np); for i=1:size(X,1) for j=1:size(X,2) xval = X(i,j); yval = Y(i,j); Z(i,j) = coeff(1)+coeff(2)*xval+coeff(3)*yval; end end // Plot data fz = scf(11); clf(11); fz.color_map=jetcolormap(32); surf(X,Y,Z) plot3d(x,y,znoise,theta=40,alpha=60); fz.children.children(1).surface_mode="off"; fz.children.children(1).mark_mode="on"; fz.children.children(1).mark_size=2; fz.children.children(1).mark_style=9; fz.children.children(1).mark_foreground=3; fz.children.children(1).mark_background=3;
47cee3a2d1132ec6e69e639b2b9d0239c1fc0b7b
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set14/s_Machine_Design_U._C._Jindal_683.zip/Machine_Design_U._C._Jindal_683/CH24/EX24.3/RD_3.sce
4663dedc270ebbf8a8a83158d5040b3b403a490a
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
207
sce
RD_3.sce
errcatch(-1,"stop");mode(2);// sum 24-3 ; ; d=12; sigut=1960; Pb=0.0025*sigut; Ds=480; F=Pb*d*Ds/2; W=F*2*10^-3; // printing data in scilab o/p window printf("W is %0.3f kN ",W); exit();
57e8891d6315a19c4c314d7f24b6db146e621d89
449d555969bfd7befe906877abab098c6e63a0e8
/2045/CH11/EX11.3/Ex11_3.sce
2f51741807c764cff4117a2938f1e21f7e22caa2
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
310
sce
Ex11_3.sce
//pagenumber 516 example 3 clear c1=0.004*10^-6;//farad c2=0.03*10^-6;//farad induct=4*10^-3;//henry //min voltage mivolt=c2/c1; disp("min voltage >= "+string((mivolt))+"volt"); //frequency freque=(((1/(2*3.14)))*sqrt((c1+c2)/(induct*c1*c2))); disp("frequency = "+string((freque))+"hertz");
062ad0d0abb2e5560d7653578a9b4f941007ba70
e86f908be00c4a3a017e81d12588d76562c56b75
/macros/movingrms.sci
231a9f1d74613dc07b884c32963796f522f4e59d
[]
no_license
ShashikiranYadalam/FOSSEE_SP_task
8869a14f664329625b76e15e771058b90b69b1e1
601ca7b7c91587a430c69c9ceb1f87b196c8e566
refs/heads/master
2020-03-20T06:38:26.598686
2019-03-01T12:31:10
2019-03-01T12:31:10
137,255,176
0
0
null
2018-06-14T05:16:17
2018-06-13T18:27:32
HTML
UTF-8
Scilab
false
false
1,032
sci
movingrms.sci
function [rmsx,w]=movingrms(x,w,rc,Fs) // Find moving RMS value of signal in x // Calling Sequence // [rmsx,w]=movingrms(x,w,rc,Fs=1) // Parameters // x: Real or complex valued vector or matrix // w: Real or complex scalar value // rc: Real or complex scalar value // Fs: Real or complex scalar value // Description // This is an Octave function. // The signal is convoluted against a sigmoid window of width w and risetime rc with the units of these parameters relative to the value of the sampling frequency given in Fs (Default value=1). // Examples // 1. [a,b]=movingrms ([4.4 94 1;-2 5i 5],1,-2) // a = 0.91237 17.71929 0.96254 // 0.91237 17.71929 0.96254 // b = 0.18877 // 0.18877 // 2. [a,b]=movingrms ([4.4 94 1;-2 5i 5],1,-2,2) // a = 4.8332 93.8669 5.0990 // 4.8332 93.8669 5.0990 // b = 1 // 1 funcprot(0); rhs=argn(2); if (rhs<3) then error("Wrong number of input arguments.") elseif (rhs==3) then Fs=1; end [rmsx,w]=callOctave("movingrms",x,w,rc,Fs) endfunction
6b331fe4b90f2fc50f1ee5321ddb05e38cf694be
449d555969bfd7befe906877abab098c6e63a0e8
/1736/CH8/EX8.14/Ch08Ex14.sce
ec3bea2f8284987f69a95a011f6f78b77aeb83ba
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
2,206
sce
Ch08Ex14.sce
// Scilab code Ex8.14 Page:268 (2006) clc; clear; C = cell(4,4); // Enter compound names C(1,1).entries = 'LaTiO3'; C(2,1).entries = 'LaCrO3'; C(3,1).entries = 'LaFeO3'; C(4,1).entries = 'LaCoO3'; // Enter total energy difference w.r.t. ground state for Paramagnetics, mRyd C(1,2).entries = 0.014; C(2,2).entries = 158.3; C(3,2).entries = 20.69; C(4,2).entries = 0.000; // Enter total energy difference w.r.t. ground state for Ferromagnetics, mRyd C(1,3).entries = 0.034; C(2,3).entries = 13.99; C(3,3).entries = 0.006; C(4,3).entries = 0.010; // Enter total energy difference w.r.t. ground state for Antiferromagnetics, mRyd C(1,4).entries = 0.000; C(2,4).entries = 0.000; C(3,4).entries = 0.000; C(4,4).entries = 0.003; printf("\n______________________________________________________________"); printf("\nSolid Total energy difference (mRyd) (w.r.t. ground state)"); printf("\n ____________________________________________________"); printf("\n Paramagnetic Ferromagnetic Antiferromagnetic "); printf("\n______________________________________________________________"); for i = 1:1:4 printf("\n%s %10.3f %10.3f %10.3f", C(i,1).entries, C(i,2).entries, C(i,3).entries, C(i,4).entries); end printf("\n______________________________________________________________"); printf("\nAll the solids given above crystallize in the antiferromagnetic state except that of LaCoO3."); // Result // ______________________________________________________________ // Solid Total energy difference (mRyd) (w.r.t. ground state) // ____________________________________________________ // Paramagnetic Ferromagnetic Antiferromagnetic // ______________________________________________________________ // LaTiO3 0.014 0.034 0.000 // LaCrO3 158.300 13.990 0.000 // LaFeO3 20.690 0.006 0.000 // LaCoO3 0.000 0.010 0.003 // ______________________________________________________________ // All the solids given above crystallize in the antiferromagnetic state except that of LaCoO3.
9e26fcdcf673f0a651e8574cae83ada517a935a8
449d555969bfd7befe906877abab098c6e63a0e8
/2201/CH4/EX4.13/ex4_13.sce
8096b7333c1c3ea8ee31b20019af55e3ded43389
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
236
sce
ex4_13.sce
// Exa 4.13 clc; clear; close; // Given data I_o = 1.8 * 10^-9;// A v = 0.6;// in V Eta = 2; V_T = 26;// in mV V_T=V_T*10^-3;// in V I = I_o *(%e^(v/(Eta * V_T)));// in A disp(I*10^3,"The current in the junction in mA is");
b7c9f40866f642e83929b8e27a6d057a1dbf8482
449d555969bfd7befe906877abab098c6e63a0e8
/1949/CH2/EX2.24/2_24.sce
8ad6bdebc5eb6d553262846de6beffed82f4d03c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
485
sce
2_24.sce
//Chapter-2,Example 2_24,Page 2-47 clc() //Given Data: N=5*5000 //N=W/(a+b) Number of lines on grating m=2 //order lam=6*10^-7 //Wavelength of light //Calculations: //i) RP=m*N //Resolving power printf('i)Resolving power is = %.0f \n \n',RP) //ii) //We know that R.P.=lam/dlam dlam=lam/RP //Smallest wavelength which can be resolved printf(' ii)Smallest wavelength which can be resolved is = %.12f m \n \n',dlam)
5ea9ca5410ea1122cf1e3b1cdde718ebd6ffdd78
449d555969bfd7befe906877abab098c6e63a0e8
/1976/CH2/EX2.3/Ex2_3.sce
6324d30bf405b00b0d28490b053b8524e20c4962
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,373
sce
Ex2_3.sce
//To Determine the Yearly Cost of the substation //Page 75 clc; clear; Teff=95/100; //Transmission Efficiency Deff=85/100; //Distribution Efficiency DFT=1.2; //Diversity Factor For Transmission DFD=1.3; //Diversity Factor For Distribution MDGS=100*(10^6); //Maximum Demand of Generating Station ALF=40/100; //Annual Load Factor ACCT=2.5*(10^6); //Annual Capital Charge for Transmission ACCD=2*(10^6); //Annual Capital Charge for Distribution GCC=100; //Generating Cost per KW demand GCCU=5/100; // Per Unit Cost //Fixed Charges from Supply to Substation Annually GFC=GCC*MDGS/1000; //Generating TFC=ACCT; //Transmission TotFCS=GFC+TFC //Total //Fixed Charges for supply upto Consumer Annually DFC=ACCD; //Distribution TotFCC=TotFCS+DFC; //Total AMDS= DFT*MDGS/1000; //Aggregate of Maximum Demand at Supply AMDC= DFD*AMDS; //Aggregate of Maximum Demand for Consumers FCS=TotFCS/AMDS; //Fixed Charges Per KW at substation CES=GCCU/Teff; //Cost of energy at the substation FCC=TotFCC/AMDC; //Fixed Charges per KW at the consumer premises CEC=CES/Deff; //Cost of Energy at the consumer premises printf('The Yealy Cost per KW demand and the cost per KWhr at:\n') printf('a) The substation is %g rupees per KW and %g paise per KWhr\n',FCS,CES*100) printf('b) The consumer premises is %g rupees per KW and %g paise per KWhr\n',FCC,CEC*100)
67038b380a1f8eb8438f5af073b5880a62b75ce5
b80969c9d72c732b0153d0de2b8fd28dc10d8a16
/Biologie/Site/sauvegarde/28.07.2016/www/Documents/simulation/equationDifferentielle/chapitre4/ex2.sci
706d3a27b0b83a0e22c59538aa34aaa26ad5240c
[]
no_license
adamdepossylux/stem_cells
6a2596a0734e3604b570cfdaa1e6cb798d13d7b7
e1ffdf24a223fea3a3606a0bd262067edc81f5b9
refs/heads/master
2020-04-01T17:26:21.772875
2017-05-10T15:15:09
2017-05-10T15:15:09
61,795,551
0
0
null
null
null
null
UTF-8
Scilab
false
false
70
sci
ex2.sci
clf N=1000; x=-2+(2+2)*rand(1,N); y=-2+(2+2)*rand(1,N); plot(x,y,'.')
5f79a088f7ac613efb4fb7464e39bfc9888635fa
1db0a7f58e484c067efa384b541cecee64d190ab
/macros/dftmtx.sci
39ef91f48a9e562fc20b6f53087d1aba251a4264
[]
no_license
sonusharma55/Signal-Toolbox
3eff678d177633ee8aadca7fb9782b8bd7c2f1ce
89bfeffefc89137fe3c266d3a3e746a749bbc1e9
refs/heads/master
2020-03-22T21:37:22.593805
2018-07-12T12:35:54
2018-07-12T12:35:54
140,701,211
2
0
null
null
null
null
UTF-8
Scilab
false
false
806
sci
dftmtx.sci
function [d]=dftmtx(n) // Computes Discrete n-by-n Fourier transformation matrix // Calling Sequence // [d]=dftmtx(n) // Parameters // n: Real positive scalar number // Description // This is an Octave function // This fuction gives a complex matrix of values whose product with a vector produces the discrete Fourier transform. This can also be achieved by directly using the fft function i.e. y=fft(x) is same as y=A*x where A=dftmtx(n). // Examples // 1. dftmtx(3) // ans = 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i // 1.00000 + 0.00000i -0.50000 - 0.86603i -0.50000 + 0.86603i // 1.00000 - 0.00000i -0.50000 + 0.86603i -0.50000 - 0.86603i funcprot(0); rhs=argn(2); if (rhs<1) then error("Wrong number of input arguments.") else d= callOctave("dftmtx",n) end endfunction
a64811c5576c34b7e2010b0180870ef95783d2fc
449d555969bfd7befe906877abab098c6e63a0e8
/1574/CH3/EX3.4/M_Ex_3_4.sce
5d0bb62206510908e7295cab915035b3d99a271a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
593
sce
M_Ex_3_4.sce
clc //Chapter3: Modulation //Example3.4, page no 138 //Given Ebb=2e3//DC plate supply Ecc=-500//DC grid bias Ib=67e-3//DC plate current Ic=30e-3//DC grid current Egm=750//RF peak grid voltage Pout=75//RF Power output Ma=0.75//Depth of modulation Paf=(Ma^2*Ebb*Ib)/(2*1)//modulating power required from the audio source Pdc=Ebb*Ib//Power supplied by DC source Zm=Ebb^2/Pdc//Modulator Impedance Pd=Pdc+Paf-Pout//Plate dissipation mprintf('modulating power required from the audio source\n is:%f watts\n Modulator Impedance is:%f ohm\n Plate dissipation is:%f watts',Paf,Zm,Pd)
0e7e08cc7b49f9f513e9741bbc3a3136bc8203fe
449d555969bfd7befe906877abab098c6e63a0e8
/61/CH15/EX15.8/ex15_8.sce
7824d37799c3c6ae487188507d04b9b59ff4a998
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
212
sce
ex15_8.sce
//ex15.8 R4=12*10^3; C1=0.22*10^-6; R7=R4; C2=C1; R6=3.3*10^3; Q=10; f0=1/(2*%pi*R7*C2); R5=(3*Q-1)*R6; disp(f0,'center frequency in hertz') disp(R5,'R5 in ohms') disp('Nearest value is 100 kilo-ohms')
27f2149ba012aaba0095f36a9bb4447da8bceeb3
449d555969bfd7befe906877abab098c6e63a0e8
/866/CH12/EX12.5/12_5.sce
287d5efe1ade809223843f20e4bc657a60341f21
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
162
sce
12_5.sce
clc d=400 //mm m=15 ASs=120 //N/mm^2 ASc=6.5 //N/mm^2 BM=40*10^3 //Nm n=d/(ASs/(ASc*m) +1 ) As=BM*10^3/(ASs*(d-n/3)) printf("required area= %f mm^2",As)
083f309eebef1e376e70062236d97501e3bccd16
e806e966b06a53388fb300d89534354b222c2cad
/macros/getrotationmatrix2d.sci
f1cc44fcf0792783498ac36f65cf0be143839352
[]
no_license
gursimarsingh/FOSSEE_Image_Processing_Toolbox
76c9d524193ade302c48efe11936fe640f4de200
a6df67e8bcd5159cde27556f4f6a315f8dc2215f
refs/heads/master
2021-01-22T02:08:45.870957
2017-01-15T21:26:17
2017-01-15T21:26:17
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
171
sci
getrotationmatrix2d.sci
function [out]=getrotationmatrix2d(Point2fcenter, doubleangle, doublescale) out=opencv_getrotationmatrix2d(Point2fcenter, doubleangle, doublescale); endfunction;
0f390535d21fb4645c78c52d3885ca714831e18a
449d555969bfd7befe906877abab098c6e63a0e8
/3809/CH6/EX6.7/EX6_7.sce
fba76de47fe64be7aaac49b0b9fea6a2b8340f83
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
575
sce
EX6_7.sce
//Chapter 6, Example 6.7 clc //Initialisation pi=3.14 //pi f=50 //frequency in hertz L=400*10**-3 //inductance in hemry C=50*10**-6 //capacitance in farad R=200 //resistance in ohm //Calculation w=2*pi*f //angular frequency Xl=w*L //inductive reactance Xc=1/(w*C) //Capacitive Reactance X=Xl-Xc //Complex part //Results printf("Complex Impedance = %d + j %d Ohm",R, round(X))
6ca30db7441b82b231ad270529bd351af26c1af7
449d555969bfd7befe906877abab098c6e63a0e8
/55/CH5/EX5.6/5ex6.sci
423bd6f4db4cdaa8613969f924614826e0267b21
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
141
sci
5ex6.sci
a=[7,-4,5]; b=[3,2,-1]'; k=a*b; disp(k,'product of a and b is;') p=[6,-1,8,3]; q=[4,-9,-2,5]'; l=p*q; disp(l,'product of p and q is:')
6c8b3132793c7943ea1f032d42d1868a6c60d822
449d555969bfd7befe906877abab098c6e63a0e8
/2522/CH9/EX9.1/exm9_1.sce
48860f84f326aa3a9560136c0bb48a141d9f6c9d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,105
sce
exm9_1.sce
// page no 283 // example no 9.1 // PUSH POP AND DELAY INSTRUCTIONS clc; printf('LXI SP,2099H \n \n'); // the stack pointer is located at 2099H. printf('LXI H,42F2H \n '); printf('H--> 42 L-->F2 \n \n'); printf('PUSH H \n'); // sends the data of HL register pair in the stack. // stack pointer is decremented by one to 2098H and the contents of the H register are copied to memory location 2098H printf('2098H--> 42 \n'); // stack pointer is again decremented by one to 2097H and the contents of the L register are copied to memory location 2097H printf('2097H--> F2 \n \n'); printf('Delay Counter \n \n'); n=hex2dec(['42F2']); for i=1:n // DELAY LOOP { } end printf(' POP H \n'); // sends the data in the stack back to the HL register pair. // the contents of the top of the stack are copied to L register and the stack pointer is incremented by one to 2098H printf('L--> F2H \n'); // the contents of the current location of stack are copied to H register and the stack pointer is again incremented by one to 2099H. printf('H--> 42H \n');
513b8a56a163002ad807d2293e026a1f4a666de9
449d555969bfd7befe906877abab098c6e63a0e8
/1055/CH4/EX4.4/ch4_4.sce
f9e195f67902b8e8cd0daf9726f3282bfe5d4b5c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
527
sce
ch4_4.sce
//To calculate the voltage across each load impedence and current in the nuetral clear clc; IR=(400)/((sqrt(3)*(6.3+%i*9))); IY=231*(cosd(-120) + %i*sind(-120))/8.3; IB=231*(cosd(120) + %i*sind(120))/(6.3-%i*8); In=abs((IR +IY +IB));//Neutral current mprintf("Neutral current =%.2f amps\n",In); VR=abs(IR*(6+ %i*9)); VY=abs(IY*(8)); VB=abs(IB*(6-%i*8)); mprintf("Voltage across Phase R =%.1f volts \n",VR); mprintf("Voltage across Phase Y =%.2f volts \n",VY); mprintf("Voltage across Phase B =%.0f volts \n",VB);
6fe9db04586ceaf187d1fbd63b46e554895b1b27
fe48ae0c518509ac5c57688957075e939956f2b1
/Complex in polar form.sce
995d259b729b324bc444006417b0b4405a7ef136
[]
no_license
dibakardhar/Scilab-Notes
d8161939a96b5d9f89106440059b6aaa717f5d79
6bc6a6caa5120a4c7a20f15430860e5b51e8014e
refs/heads/main
2023-07-09T18:48:56.525225
2021-08-15T16:32:36
2021-08-15T16:32:36
396,415,364
1
0
null
null
null
null
UTF-8
Scilab
false
false
222
sce
Complex in polar form.sce
x=input("Enter the value of x:") y=input("Enter the value of y:") n=input("Enter the order:") z=x+y*%i r=sqrt(x*x+y*y) q=atan(y/x) k=0:(n-1) j=%i*((q+2*%pi*k)/n) m=exp(j) z1=r^(1/n)*m disp(z1,"Roots of z are:")
10297cc802030e4eb3fba44e2952e6bd905b2d0a
449d555969bfd7befe906877abab098c6e63a0e8
/1646/CH16/EX16.10/Ch16Ex10.sce
efdd61bcfa5e31c1aa8bafa77784b6865ce6cb2c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
498
sce
Ch16Ex10.sce
// Scilab Code Ex16.10 : Page-824 (2011) clc; clear; a = 2.5, b = 2.5, c = 1.8; // Lattice parameter of tetragonal crystal, angstrom h = 1; k = 1; l = 1; // Miller Indices for planes in a tetragonal crystal d_hkl = 1/sqrt((h/a)^2+(k/b)^2+(l/c)^2); // The interplanar spacing for tetragonal crystals, m printf("\nThe interplanar spacing between consecutive (111) planes = %4.2f angstrom", d_hkl); // Result // The interplanar spacing between consecutive (111) planes = 1.26 angstrom
9c3db298ac32e7fd08f228674ad091a60aec564b
a4bbc60bcc82ee6212825ce21fc9e4fa7b04e870
/Bioinformatics_3k/4uzd/tests/1A26.tst
a518bee60a7998afdee36de3dfdb2cc38410a840
[]
no_license
Luksys5/LT_programos
3a7cabb6c5e8a23a856983c1938d2d492cddf916
959ab74029df334767fcad84adc46ae36cf7cdf1
refs/heads/master
2021-01-19T19:33:11.505596
2017-03-12T18:08:14
2017-03-12T18:08:14
16,478,166
0
1
null
null
null
null
UTF-8
Scilab
false
false
14,782
tst
1A26.tst
VDWCONT 3.032 3.04 -0.0079 1A26.cif A O ASP 147 C O HOH . VDWCONT 3.032 3.04 -0.0079 1A26.cif C O HOH . A O ASP 147 VDWCONT 3.0347 3.04 -0.0052 1A26.cif A O ASP 117 C O HOH . VDWCONT 3.0347 3.04 -0.0052 1A26.cif C O HOH . A O ASP 117 VDWCONT 3.036 3.04 -0.0039 1A26.cif C O HOH . C O HOH . VDWCONT 3.036 3.04 -0.0039 1A26.cif C O HOH . C O HOH . VDWCONT 3.0365 3.04 -0.0034 1A26.cif A O ASP 25 A O SER 28 VDWCONT 3.0365 3.04 -0.0034 1A26.cif A O SER 28 A O ASP 25 VDWCONT 3.0412 3.04 0.0012 1A26.cif A O GLY 223 C O HOH . VDWCONT 3.0412 3.04 0.0012 1A26.cif C O HOH . A O GLY 223 VDWCONT 3.0445 3.04 0.0045 1A26.cif A O TYR 104 A O TYR 84 VDWCONT 3.0445 3.04 0.0045 1A26.cif A O TYR 84 A O TYR 104 VDWCONT 3.0463 3.04 0.0063 1A26.cif A O LEU 224 C O HOH . VDWCONT 3.0463 3.04 0.0063 1A26.cif C O HOH . A O LEU 224 VDWCONT 3.047 3.04 0.007 1A26.cif B O CNA . B O CNA . VDWCONT 3.047 3.04 0.007 1A26.cif B O CNA . B O CNA . VDWCONT 3.0481 3.04 0.0081 1A26.cif A O GLY 71 A O SER 72 VDWCONT 3.0481 3.04 0.0081 1A26.cif A O SER 72 A O GLY 71 VDWCONT 3.0602 3.07 -0.0097 1A26.cif A N LYS 108 A O ILE 105 VDWCONT 3.0602 3.07 -0.0097 1A26.cif A O ILE 105 A N LYS 108 VDWCONT 3.0603 3.07 -0.0096 1A26.cif A N THR 306 A O THR 306 VDWCONT 3.0603 3.07 -0.0096 1A26.cif A O THR 306 A N THR 306 VDWCONT 3.0604 3.07 -0.0095 1A26.cif A N ASP 113 A O GLN 110 VDWCONT 3.0604 3.07 -0.0095 1A26.cif A O GLN 110 A N ASP 113 VDWCONT 3.063 3.07 -0.0069 1A26.cif A N VAL 34 A O LYS 31 VDWCONT 3.063 3.07 -0.0069 1A26.cif A O LYS 31 A N VAL 34 VDWCONT 3.0648 3.07 -0.0051 1A26.cif A N PHE 354 A O PRO 262 VDWCONT 3.0648 3.07 -0.0051 1A26.cif A O PRO 262 A N PHE 354 VDWCONT 3.0658 3.07 -0.0041 1A26.cif A N ILE 16 A O LYS 14 VDWCONT 3.0658 3.07 -0.0041 1A26.cif A O LYS 14 A N ILE 16 VDWCONT 3.0672 3.07 -0.0027 1A26.cif A N LYS 296 A O TYR 277 VDWCONT 3.0672 3.07 -0.0027 1A26.cif A O TYR 277 A N LYS 296 VDWCONT 3.0677 3.07 -0.0022 1A26.cif A N SER 68 A O GLN 64 VDWCONT 3.0677 3.07 -0.0022 1A26.cif A O GLN 64 A N SER 68 VDWCONT 3.0685 3.07 -0.0014 1A26.cif A N PHE 198 A O LYS 196 VDWCONT 3.0685 3.07 -0.0014 1A26.cif A O LYS 196 A N PHE 198 VDWCONT 3.0691 3.07 -0.0008 1A26.cif A N CYS 255 A O ALA 252 VDWCONT 3.0691 3.07 -0.0008 1A26.cif A O ALA 252 A N CYS 255 VDWCONT 3.0694 3.07 -0.0005 1A26.cif A N SER 249 A O MET 247 VDWCONT 3.0694 3.07 -0.0005 1A26.cif A O MET 247 A N SER 249 VDWCONT 3.0698 3.07 -0.0001 1A26.cif A N ALA 56 A O GLN 52 VDWCONT 3.0698 3.07 -0.0001 1A26.cif A O GLN 52 A N ALA 56 VDWCONT 3.071 3.07 0.001 1A26.cif A N ASP 261 A O SER 258 VDWCONT 3.071 3.07 0.001 1A26.cif A O SER 258 A N ASP 261 VDWCONT 3.0724 3.07 0.0024 1A26.cif A N SER 55 A O ARG 51 VDWCONT 3.0724 3.07 0.0024 1A26.cif A O ARG 51 A N SER 55 VDWCONT 3.0726 3.07 0.0026 1A26.cif A N MET 247 A O ASP 246 VDWCONT 3.0726 3.07 0.0026 1A26.cif A O ASP 246 A N MET 247 VDWCONT 3.07 3.07 0 1A26.cif A N GLY 92 A O ASP 90 VDWCONT 3.07 3.07 0 1A26.cif A O ASP 90 A N GLY 92 VDWCONT 3.0735 3.07 0.0035 1A26.cif A N GLN 222 A O SER 221 VDWCONT 3.0735 3.07 0.0035 1A26.cif A O SER 221 A N GLN 222 VDWCONT 3.0737 3.07 0.0037 1A26.cif A N ALA 342 A O ASP 340 VDWCONT 3.0737 3.07 0.0037 1A26.cif A O ASP 340 A N ALA 342 VDWCONT 3.0761 3.07 0.0061 1A26.cif A N LYS 21 A O GLN 17 VDWCONT 3.0761 3.07 0.0061 1A26.cif A O GLN 17 A N LYS 21 VDWCONT 3.0776 3.07 0.0076 1A26.cif A N LYS 300 A O LEU 332 VDWCONT 3.0776 3.07 0.0076 1A26.cif A O LEU 332 A N LYS 300 VDWCONT 3.0786 3.07 0.0086 1A26.cif A N PHE 24 A O ILE 20 VDWCONT 3.0786 3.07 0.0086 1A26.cif A O ILE 20 A N PHE 24 VDWCONT 3.0788 3.07 0.0088 1A26.cif A N LYS 108 A O TYR 104 VDWCONT 3.0788 3.07 0.0088 1A26.cif A O TYR 104 A N LYS 108 VDWCONT 3.2102 3.22 -0.0097 1A26.cif A C ASP 131 A O ASP 131 VDWCONT 3.2102 3.22 -0.0097 1A26.cif A O ASP 131 A C ASP 131 VDWCONT 3.2104 3.22 -0.0095 1A26.cif A C LEU 201 A O LEU 201 VDWCONT 3.2104 3.22 -0.0095 1A26.cif A O LEU 201 A C LEU 201 VDWCONT 3.211 3.22 -0.0089 1A26.cif A C VAL 248 A O VAL 165 VDWCONT 3.211 3.22 -0.0089 1A26.cif A O VAL 165 A C VAL 248 VDWCONT 3.2123 3.22 -0.0076 1A26.cif A C GLN 41 A O GLN 41 VDWCONT 3.2123 3.22 -0.0076 1A26.cif A O GLN 41 A C GLN 41 VDWCONT 3.2124 3.22 -0.0075 1A26.cif A C ASN 114 A O ASN 114 VDWCONT 3.2124 3.22 -0.0075 1A26.cif A O ASN 114 A C ASN 114 VDWCONT 3.2127 3.22 -0.0072 1A26.cif A C ILE 16 A O PRO 15 VDWCONT 3.2127 3.22 -0.0072 1A26.cif A O PRO 15 A C ILE 16 VDWCONT 3.2138 3.22 -0.0061 1A26.cif A C LEU 318 A O GLY 319 VDWCONT 3.2138 3.22 -0.0061 1A26.cif A O GLY 319 A C LEU 318 VDWCONT 3.2139 3.22 -0.006 1A26.cif A C ASP 135 A O ASP 135 VDWCONT 3.2139 3.22 -0.006 1A26.cif A O ASP 135 A C ASP 135 VDWCONT 3.214 3.22 -0.0059 1A26.cif A C ASN 114 A O ASP 113 VDWCONT 3.214 3.22 -0.0059 1A26.cif A C ASP 135 C O HOH . VDWCONT 3.214 3.22 -0.0059 1A26.cif A C GLY 223 A O LEU 224 VDWCONT 3.214 3.22 -0.0059 1A26.cif A O ASP 113 A C ASN 114 VDWCONT 3.214 3.22 -0.0059 1A26.cif A O LEU 224 A C GLY 223 VDWCONT 3.214 3.22 -0.0059 1A26.cif C O HOH . A C ASP 135 VDWCONT 3.2154 3.22 -0.0045 1A26.cif A C GLN 200 A O LEU 201 VDWCONT 3.2154 3.22 -0.0045 1A26.cif A O LEU 201 A C GLN 200 VDWCONT 3.2155 3.22 -0.0044 1A26.cif A C SER 249 A O SER 249 VDWCONT 3.2155 3.22 -0.0044 1A26.cif A C TYR 84 A O TYR 84 VDWCONT 3.2155 3.22 -0.0044 1A26.cif A O SER 249 A C SER 249 VDWCONT 3.2155 3.22 -0.0044 1A26.cif A O TYR 84 A C TYR 84 VDWCONT 3.2157 3.22 -0.0042 1A26.cif A C GLY 71 A O GLY 70 VDWCONT 3.2157 3.22 -0.0042 1A26.cif A O GLY 70 A C GLY 71 VDWCONT 3.2158 3.22 -0.0041 1A26.cif A C ILE 285 A O SER 283 VDWCONT 3.2158 3.22 -0.0041 1A26.cif A O SER 283 A C ILE 285 VDWCONT 3.2161 3.22 -0.0038 1A26.cif A C LEU 45 C O HOH . VDWCONT 3.2161 3.22 -0.0038 1A26.cif C O HOH . A C LEU 45 VDWCONT 3.2166 3.22 -0.0033 1A26.cif A C ASP 304 A O THR 306 VDWCONT 3.2166 3.22 -0.0033 1A26.cif A O THR 306 A C ASP 304 VDWCONT 3.2167 3.22 -0.0032 1A26.cif A C MET 237 A O MET 237 VDWCONT 3.2167 3.22 -0.0032 1A26.cif A O MET 237 A C MET 237 VDWCONT 3.2174 3.22 -0.0025 1A26.cif A C VAL 120 A O VAL 120 VDWCONT 3.2174 3.22 -0.0025 1A26.cif A O VAL 120 A C VAL 120 VDWCONT 3.2178 3.22 -0.0021 1A26.cif A C GLY 319 A O ASN 320 VDWCONT 3.2178 3.22 -0.0021 1A26.cif A O ASN 320 A C GLY 319 VDWCONT 3.218 3.22 -0.0019 1A26.cif A C HIS 293 A O LEU 273 VDWCONT 3.218 3.22 -0.0019 1A26.cif A C VAL 67 A O VAL 67 VDWCONT 3.218 3.22 -0.0019 1A26.cif A O LEU 273 A C HIS 293 VDWCONT 3.218 3.22 -0.0019 1A26.cif A O VAL 67 A C VAL 67 VDWCONT 3.2184 3.22 -0.0015 1A26.cif A C THR 85 A O THR 85 VDWCONT 3.2184 3.22 -0.0015 1A26.cif A O THR 85 A C THR 85 VDWCONT 3.2185 3.22 -0.0014 1A26.cif A C TYR 164 A O LEU 206 VDWCONT 3.2185 3.22 -0.0014 1A26.cif A O LEU 206 A C TYR 164 VDWCONT 3.2188 3.22 -0.0011 1A26.cif A C LYS 357 A O LYS 357 VDWCONT 3.2188 3.22 -0.0011 1A26.cif A O LYS 357 A C LYS 357 VDWCONT 3.2196 3.22 -0.0003 1A26.cif A C ALA 260 A O ALA 260 VDWCONT 3.2196 3.22 -0.0003 1A26.cif A O ALA 260 A C ALA 260 VDWCONT 3.2201 3.22 0.0001 1A26.cif A C ALA 66 A O ALA 66 VDWCONT 3.2201 3.22 0.0001 1A26.cif A O ALA 66 A C ALA 66 VDWCONT 3.2205 3.22 0.0005 1A26.cif A C ILE 139 A O ASP 135 VDWCONT 3.2205 3.22 0.0005 1A26.cif A O ASP 135 A C ILE 139 VDWCONT 3.2219 3.22 0.0019 1A26.cif A C TYR 348 A O TYR 348 VDWCONT 3.2219 3.22 0.0019 1A26.cif A O TYR 348 A C TYR 348 VDWCONT 3.2221 3.22 0.0021 1A26.cif A C PRO 305 A O ASP 304 VDWCONT 3.2221 3.22 0.0021 1A26.cif A O ASP 304 A C PRO 305 VDWCONT 3.2226 3.22 0.0026 1A26.cif A C ASP 312 A O ASP 312 VDWCONT 3.2226 3.22 0.0026 1A26.cif A O ASP 312 A C ASP 312 VDWCONT 3.22 3.22 0 1A26.cif A C TYR 195 A O GLU 270 VDWCONT 3.22 3.22 0 1A26.cif A O GLU 270 A C TYR 195 VDWCONT 3.2242 3.22 0.0042 1A26.cif A C ILE 59 A O ILE 59 VDWCONT 3.2242 3.22 0.0042 1A26.cif A C THR 286 A O THR 286 VDWCONT 3.2242 3.22 0.0042 1A26.cif A O ILE 59 A C ILE 59 VDWCONT 3.2242 3.22 0.0042 1A26.cif A O THR 286 A C THR 286 VDWCONT 3.2249 3.22 0.0049 1A26.cif A C ALA 227 A O TYR 236 VDWCONT 3.2249 3.22 0.0049 1A26.cif A O TYR 236 A C ALA 227 VDWCONT 3.2254 3.22 0.0054 1A26.cif A C ASN 281 A O ASN 281 VDWCONT 3.2254 3.22 0.0054 1A26.cif A O ASN 281 A C ASN 281 VDWCONT 3.2257 3.22 0.0057 1A26.cif A C ALA 56 A O ILE 53 VDWCONT 3.2257 3.22 0.0057 1A26.cif A O ILE 53 A C ALA 56 VDWCONT 3.226 3.22 0.006 1A26.cif A C ILE 87 A O TYR 84 VDWCONT 3.226 3.22 0.006 1A26.cif A O TYR 84 A C ILE 87 VDWCONT 3.2267 3.22 0.0067 1A26.cif A C ALA 252 A O ALA 252 VDWCONT 3.2267 3.22 0.0067 1A26.cif A O ALA 252 A C ALA 252 VDWCONT 3.2278 3.22 0.0078 1A26.cif A C VAL 233 A O VAL 233 VDWCONT 3.2278 3.22 0.0078 1A26.cif A O VAL 233 A C VAL 233 VDWCONT 3.2279 3.22 0.0079 1A26.cif A C GLN 259 A O GLN 259 VDWCONT 3.2279 3.22 0.0079 1A26.cif A O GLN 259 A C GLN 259 VDWCONT 3.2281 3.22 0.0081 1A26.cif A C ILE 59 A O ALA 56 VDWCONT 3.2281 3.22 0.0081 1A26.cif A C TYR 333 A O TYR 333 VDWCONT 3.2281 3.22 0.0081 1A26.cif A O ALA 56 A C ILE 59 VDWCONT 3.2281 3.22 0.0081 1A26.cif A O TYR 333 A C TYR 333 VDWCONT 3.228 3.22 0.008 1A26.cif A C VAL 165 A O ILE 161 VDWCONT 3.228 3.22 0.008 1A26.cif A O ILE 161 A C VAL 165 VDWCONT 3.2294 3.22 0.0094 1A26.cif A C ASN 203 A O ASN 203 VDWCONT 3.2294 3.22 0.0094 1A26.cif A O ASN 203 A C ASN 203 VDWCONT 3.2401 3.25 -0.0098 1A26.cif A C LEU 115 A N ASP 117 VDWCONT 3.2401 3.25 -0.0098 1A26.cif A N ASP 117 A C LEU 115 VDWCONT 3.2408 3.25 -0.0091 1A26.cif A C ALA 32 A N VAL 34 VDWCONT 3.2408 3.25 -0.0091 1A26.cif A N VAL 34 A C ALA 32 VDWCONT 3.2429 3.25 -0.007 1A26.cif A C LYS 108 A N GLN 110 VDWCONT 3.2429 3.25 -0.007 1A26.cif A C PHE 24 A N PHE 24 VDWCONT 3.2429 3.25 -0.007 1A26.cif A N GLN 110 A C LYS 108 VDWCONT 3.2429 3.25 -0.007 1A26.cif A N PHE 24 A C PHE 24 VDWCONT 3.24 3.25 -0.0099 1A26.cif A C ILE 160 A N LYS 162 VDWCONT 3.24 3.25 -0.0099 1A26.cif A C PRO 305 A N ALA 307 VDWCONT 3.24 3.25 -0.0099 1A26.cif A N ALA 307 A C PRO 305 VDWCONT 3.24 3.25 -0.0099 1A26.cif A N LYS 162 A C ILE 160 VDWCONT 3.2433 3.25 -0.0066 1A26.cif A C VAL 26 A N GLU 27 VDWCONT 3.2433 3.25 -0.0066 1A26.cif A N GLU 27 A C VAL 26 VDWCONT 3.2435 3.25 -0.0064 1A26.cif A C VAL 63 A N VAL 63 VDWCONT 3.2435 3.25 -0.0064 1A26.cif A N VAL 63 A C VAL 63 VDWCONT 3.2437 3.25 -0.0062 1A26.cif A C GLU 27 A N SER 28 VDWCONT 3.2437 3.25 -0.0062 1A26.cif A N SER 28 A C GLU 27 VDWCONT 3.2451 3.25 -0.0048 1A26.cif A C VAL 233 A N THR 234 VDWCONT 3.2451 3.25 -0.0048 1A26.cif A N THR 234 A C VAL 233 VDWCONT 3.2468 3.25 -0.0031 1A26.cif A C ASP 312 A N VAL 314 VDWCONT 3.2468 3.25 -0.0031 1A26.cif A N VAL 314 A C ASP 312 VDWCONT 3.251 3.25 0.001 1A26.cif A C GLU 27 A N MET 29 VDWCONT 3.251 3.25 0.001 1A26.cif A N MET 29 A C GLU 27 VDWCONT 3.2513 3.25 0.0013 1A26.cif A C GLU 73 A N SER 74 VDWCONT 3.2513 3.25 0.0013 1A26.cif A N SER 74 A C GLU 73 VDWCONT 3.2543 3.25 0.0043 1A26.cif A C ILE 105 A N ALA 107 VDWCONT 3.2543 3.25 0.0043 1A26.cif A N ALA 107 A C ILE 105 VDWCONT 3.2551 3.25 0.0051 1A26.cif A C SER 28 A N MET 29 VDWCONT 3.2551 3.25 0.0051 1A26.cif A N MET 29 A C SER 28 VDWCONT 3.255 3.25 0.005 1A26.cif A C ALA 107 A N VAL 109 VDWCONT 3.255 3.25 0.005 1A26.cif A N VAL 109 A C ALA 107 VDWCONT 3.2558 3.25 0.0058 1A26.cif A C LEU 220 A N SER 221 VDWCONT 3.2558 3.25 0.0058 1A26.cif A N SER 221 A C LEU 220 VDWCONT 3.2565 3.25 0.0065 1A26.cif A C LEU 79 A N ASN 81 VDWCONT 3.2565 3.25 0.0065 1A26.cif A N ASN 81 A C LEU 79 VDWCONT 3.2571 3.25 0.0071 1A26.cif A C PHE 244 A N PHE 244 VDWCONT 3.2571 3.25 0.0071 1A26.cif A N PHE 244 A C PHE 244 VDWCONT 3.2582 3.25 0.0082 1A26.cif A C GLU 156 A N ALA 158 VDWCONT 3.2582 3.25 0.0082 1A26.cif A N ALA 158 A C GLU 156 VDWCONT 3.258 3.25 0.008 1A26.cif A C GLN 41 A N LYS 42 VDWCONT 3.258 3.25 0.008 1A26.cif A N LYS 42 A C GLN 41 VDWCONT 3.2584 3.25 0.0084 1A26.cif A C LYS 287 A N LEU 288 VDWCONT 3.2584 3.25 0.0084 1A26.cif A N LEU 288 A C LYS 287 VDWCONT 3.2585 3.25 0.0085 1A26.cif A C TYR 104 A N ILE 105 VDWCONT 3.2585 3.25 0.0085 1A26.cif A N ILE 105 A C TYR 104 VDWCONT 3.2591 3.25 0.0091 1A26.cif A C PRO 229 A N ALA 231 VDWCONT 3.2591 3.25 0.0091 1A26.cif A N ALA 231 A C PRO 229 VDWCONT 3.3907 3.4 -0.0092 1A26.cif A C ALA 245 A C ASP 246 VDWCONT 3.3907 3.4 -0.0092 1A26.cif A C ASP 246 A C ALA 245 VDWCONT 3.3913 3.4 -0.0086 1A26.cif A C LYS 11 A C SER 10 VDWCONT 3.3913 3.4 -0.0086 1A26.cif A C SER 10 A C LYS 11 VDWCONT 3.3915 3.4 -0.0084 1A26.cif A C ASP 328 A C THR 329 VDWCONT 3.3915 3.4 -0.0084 1A26.cif A C THR 329 A C ASP 328 VDWCONT 3.3926 3.4 -0.0073 1A26.cif A C GLY 241 A C ILE 242 VDWCONT 3.3926 3.4 -0.0073 1A26.cif A C ILE 242 A C GLY 241 VDWCONT 3.3938 3.4 -0.0061 1A26.cif A C PRO 97 A C PRO 97 VDWCONT 3.3938 3.4 -0.0061 1A26.cif A C PRO 97 A C PRO 97 VDWCONT 3.3943 3.4 -0.0056 1A26.cif A C THR 308 A C THR 309 VDWCONT 3.3943 3.4 -0.0056 1A26.cif A C THR 309 A C THR 308 VDWCONT 3.394 3.4 -0.0059 1A26.cif A C PHE 184 A C PHE 184 VDWCONT 3.394 3.4 -0.0059 1A26.cif A C PHE 184 A C PHE 184 VDWCONT 3.3979 3.4 -0.002 1A26.cif A C ASN 327 A C ILE 326 VDWCONT 3.3979 3.4 -0.002 1A26.cif A C ILE 326 A C ASN 327 VDWCONT 3.3981 3.4 -0.0018 1A26.cif A C LEU 267 A C LEU 268 VDWCONT 3.3981 3.4 -0.0018 1A26.cif A C LEU 268 A C LEU 267 VDWCONT 3.398 3.4 -0.0019 1A26.cif A C LYS 347 A C TYR 348 VDWCONT 3.398 3.4 -0.0019 1A26.cif A C TYR 348 A C LYS 347 VDWCONT 3.3986 3.4 -0.0013 1A26.cif A C ILE 23 A C PHE 24 VDWCONT 3.3986 3.4 -0.0013 1A26.cif A C PHE 24 A C ILE 23 VDWCONT 3.3999 3.4 0 1A26.cif A C LEU 178 A C LYS 179 VDWCONT 3.3999 3.4 0 1A26.cif A C LYS 179 A C LEU 178 VDWCONT 3.4014 3.4 0.0014 1A26.cif A C ILE 337 A C VAL 338 VDWCONT 3.4014 3.4 0.0014 1A26.cif A C VAL 338 A C ILE 337 VDWCONT 3.4019 3.4 0.0019 1A26.cif A C LYS 296 A C LYS 296 VDWCONT 3.4019 3.4 0.0019 1A26.cif A C LYS 296 A C LYS 296 VDWCONT 3.4025 3.4 0.0025 1A26.cif A C MET 237 B C CNA . VDWCONT 3.4025 3.4 0.0025 1A26.cif B C CNA . A C MET 237 VDWCONT 3.4027 3.4 0.0027 1A26.cif A C LEU 178 A C LYS 179 VDWCONT 3.4027 3.4 0.0027 1A26.cif A C LYS 179 A C LEU 178 VDWCONT 3.4036 3.4 0.0036 1A26.cif A C LYS 42 A C MET 43 VDWCONT 3.4036 3.4 0.0036 1A26.cif A C MET 43 A C LYS 42 VDWCONT 3.4043 3.4 0.0043 1A26.cif A C GLU 230 A C GLU 230 VDWCONT 3.4043 3.4 0.0043 1A26.cif A C GLU 230 A C GLU 230 VDWCONT 3.4045 3.4 0.0045 1A26.cif A C ASP 261 A C PRO 262 VDWCONT 3.4045 3.4 0.0045 1A26.cif A C PRO 262 A C ASP 261 VDWCONT 3.4047 3.4 0.0047 1A26.cif A C LEU 332 A C TYR 333 VDWCONT 3.4047 3.4 0.0047 1A26.cif A C TYR 333 A C LEU 332 VDWCONT 3.405 3.4 0.005 1A26.cif A C ARG 204 A C GLN 205 VDWCONT 3.405 3.4 0.005 1A26.cif A C GLN 205 A C ARG 204 VDWCONT 3.4075 3.4 0.0075 1A26.cif A C TRP 208 A C TRP 208 VDWCONT 3.4075 3.4 0.0075 1A26.cif A C TRP 208 A C TRP 208 VDWCONT 3.408 3.4 0.008 1A26.cif A C LEU 298 A C LYS 296 VDWCONT 3.408 3.4 0.008 1A26.cif A C LYS 296 A C LEU 298 VDWCONT 3.4095 3.4 0.0095 1A26.cif A C PRO 317 A C PRO 317 VDWCONT 3.4095 3.4 0.0095 1A26.cif A C PRO 317 A C PRO 317
0cc97ce2d32c3b846325fd85c80dead486c1af86
e8dbcf469ba8a31d6926ba791ebc5dcccd50282b
/css/Scripts/Funciones/get_religion.tst
8f57add9004d425680bef3efaac2241d7c2702ef
[]
no_license
bryanjimenezchacon/bryanjimenezchacon.github.io
5f2a0f1dbfbc584a65dece48f98b1c13d755512f
7062d1860934808265c05491007c83f69da1112a
refs/heads/master
2021-01-23T17:20:11.542585
2015-10-10T05:52:52
2015-10-10T05:52:52
41,244,377
2
0
null
2015-08-26T15:46:04
2015-08-23T09:52:06
JavaScript
UTF-8
Scilab
false
false
171
tst
get_religion.tst
PL/SQL Developer Test script 3.0 4 begin -- Call the function :result := get_religion(preligion_id => :preligion_id); end; 2 result 1 Panteismo 5 preligion_id 1 1 4 0
46100f614cf9e7e75712aefc887e82452ecbb39d
449d555969bfd7befe906877abab098c6e63a0e8
/2870/CH8/EX8.12/Ex8_12.sce
b4feb243792439bd7a76d879d72e2566879728cf
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
359
sce
Ex8_12.sce
clc;clear; //Example 8.12 //given data m=2; T0=70+460;//in R P1=20; T1=70+460;//in R T2=130+460;//in R //constants used Cv=0.172;//in Btu/lbm - F //calculations Xdestroyed=T0*m*Cv*log(T2/T1); disp(Xdestroyed,'exergy destroyed in Btu'); Wrev=integrate('(1-T0/T)*m*Cv','T',T1,T2); Wrev=round(Wrev); disp(Wrev,'the reversible work in Btu')
7575eb2e8708d3e6a3ec56414b10920162ae7bae
449d555969bfd7befe906877abab098c6e63a0e8
/1439/CH6/EX6.4/6_4.sce
d2f86a61f5d28cada01f60005dd3fc9a3dc9a8a6
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
252
sce
6_4.sce
clc //initialisation of variables y1= 32.47*10^-4 y2= 34.71*10^-4 x1= 1.625 x2= 1.107 R= 1.987 //cal mole^-1 K^-1 //CALCULATIONS slope= (x2-x1)/(y2-y1) Hvap= -slope*2.303*R //RESULTS printf ('Heat of vapourization= %.f cal mole^-1',Hvap)
0b59757a03474693124992d8fd2212f15f027f65
449d555969bfd7befe906877abab098c6e63a0e8
/964/CH15/EX15.1/15_1.sce
57a5b950c95d004cd9462e784b9a60c0b8bfc0db
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
507
sce
15_1.sce
clc; clear; regular=[7 10 9 150]; premium=[11 8 6 175]; res_avail=[77 80]; //total profit(to be maximized)=z=150*x1+175*x2 //total gas used=7*x1+11*x2 (has to be less than 77 m^3/week) //similarly other constraints are developed disp("Maximize z=150*x1+175*x2") disp("subject to") disp("7*x1+11*x2<=77 (Material constraint)") disp("10*x1+8*x2<=80 (Time constraint)") disp("x1<=9 (Regular storage constraint)") disp("x2<=6 (Premium storage constraint)") disp("x1,x2>=0 (Positivity constraint)")
91c12864bf8a63ef02951d4201a89835f18326f0
449d555969bfd7befe906877abab098c6e63a0e8
/632/CH12/EX12.1/example12_1.sce
c6af8f7c6d27f4c18b0acd0e235ce6c377b9079d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
612
sce
example12_1.sce
//clc() N = 100;//mol gas mixture burned //CO(g) + 1/2 O2(g) = CO2 - Hr1 = - 282.91kJ/mol //H2(g) + 1/2 O2(g) = H2O - Hr2 = - 241.83kJ/mol Hr1 = - 282.91;//kJ/mol Hr2 = - 241.83;//kJ/mol Nco1 = 20; Nh21 = 30; Nn21 = 50; Htotal = Nco1*Hr1 + Nh21*Hr2; disp("kJ",-Htotal,"the amount of heat liberated on the complete combustion of 100mol of the gas mixture = ") Ncoreac = Nco1 * 0.9; Nh2reac = Nh21 * 0.8; Htotal1 = Ncoreac*Hr1 + Nh2reac*Hr2; disp("kJ",-Htotal1,"the amount of heat liberated if only 90% of CO and 80% of H2 react of 100mol of the gas mixture = ")
7f0786ed1ca7b78bbe226c0a79ba1e38a9dec8f5
6813325b126713766d9778d7665c10b5ba67227b
/Chapter6/Ch_6_Eg_6.19.sce
46d945780cb7055a683420a8944b008d705b746c
[]
no_license
arvindrachna/Introduction_to_Scilab
955b2063b3faa33a855d18ac41ed7e0e3ab6bd1f
9ca5d6be99e0536ba1c08a7a1bf4ba64620ec140
refs/heads/master
2020-03-15T19:26:52.964755
2018-05-31T04:49:57
2018-05-31T04:49:57
132,308,878
1
0
null
null
null
null
UTF-8
Scilab
false
false
299
sce
Ch_6_Eg_6.19.sce
// A program to read data from a string. mprintf("\nEnter a string in the format Name:ABC,ID:01,Age:20,Weight:50.35kg"); s=mscanf("%s"); [n,Name,ID,Age,Weight]=msscanf(s,"Name:%3s,ID:%d,Age:%d,Weight:%fkg"); disp(Weight,Age,ID,n); A=msscanf(s,"Name:%3s,ID:%d,Age:%d,Weight:%fkg"); disp(A);
65f1e505d85dc54a202de45619b6cf71d5d2c083
449d555969bfd7befe906877abab098c6e63a0e8
/2219/CH9/EX9.6/Ex9_6.sce
04ed7d169b24cd18f4fd67360e6cdbe768b85d64
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,018
sce
Ex9_6.sce
// Chapter 9 example 6 //------------------------------------------------------------------------------ clc; clear; // Given Data Vs = 330; // velocity of sound in m/s NM = 1.85*(5/18) // 1NM equivalent in m/s V1 = 0.5; // velocity of first aircraft in mach V2 = 400; // velocity of second aircraft in NM/hr theta = 30; // angle with radial axis in degrees lamda = 3*10^-2; // wavelength in m // Calculations v1 = V1*Vs // velocity of first aircraft in m/s fd1 = (2*v1)/lamda // doppler freq. v2 = V2*NM*cos(30*(%pi/180)) // velocity of second aircraft in m/s fd2 = (2*v2)/lamda // doppler freq dd = fd2 - fd1 // doppler difference Tl = 1/dd // look time in s // Output mprintf('Required minimum look time = %3.2f ms',Tl/10^-3); mprintf('\n Note: Cos(30) value is taken as 0.5 in textbook'); //------------------------------------------------------------------------------
25f550c34656ea914425d7d669461ef6bfafc893
3e5f48beb8d918ce886ffe48f120a181840d28b5
/Algebra Linear Algoritmica/paraboloide.sce
24b8d942de77b45ce14348f4096f2c0d48a5b88d
[ "MIT" ]
permissive
elvisigkeit/graduate-stuff
dd0e11dd5c7765adc77835f4ba96b53d7d25717c
700c8e97cefffcb48dccccdefefb3a470df29f1f
refs/heads/master
2023-05-31T05:25:36.381690
2021-06-17T01:53:38
2021-06-17T01:53:38
212,691,118
0
0
null
null
null
null
UTF-8
Scilab
false
false
428
sce
paraboloide.sce
clear //Definida positiva //A = [2, 0; 0, 2] //Definida negativa //A = [-4, 1; 2, -5] //Semidefinida positiva //A = [2, 2; 1, 1] //Semidefinida negativa //A = -1*[2, 2; 1, 1] //Indefinida //A = [-4, 2; 0, 7] A = -1*[2, 2; 1, 1] b = [1; 1] c = 3 x = -4:0.1:4 y = -4:0.1:4 cx = length(x) cy = length(y) for i = 1:cx for j = 1:cy v = [x(i); y(j)] Z(i, j) = v'*A*v + b'*v + c end end surf(x, y, Z)