problem
stringlengths
2
5.64k
solution
stringlengths
2
13.5k
answer
stringlengths
1
43
problem_type
stringclasses
8 values
question_type
stringclasses
4 values
problem_is_valid
stringclasses
1 value
solution_is_valid
stringclasses
1 value
source
stringclasses
6 values
synthetic
bool
1 class
1.009. $$ \frac{0.4+8\left(5-0.8 \cdot \frac{5}{8}\right)-5: 2 \frac{1}{2}}{\left(1 \frac{7}{8} \cdot 8-\left(8.9-2.6: \frac{2}{3}\right)\right) \cdot 34 \frac{2}{5}} \cdot 90 $$
Solution. $$ \begin{aligned} & \frac{0.4+8\left(5-0.8 \cdot \frac{5}{8}\right)-5: 2 \frac{1}{2}}{\left(1 \frac{7}{8} \cdot 8-\left(8.9-2.6: \frac{2}{3}\right)\right) \cdot 34 \frac{2}{5}} \cdot 90=\frac{\left(0.4+40-4-5 \cdot \frac{2}{5}\right) \cdot 90}{\left(\frac{15}{8} \cdot 8-\frac{89}{10}+\frac{13}{5} \cdot \frac{3}{2}\right) \cdot \frac{172}{5}}= \\ & =\frac{34.4 \cdot 90}{\left(\frac{150}{10}-\frac{89}{10}+\frac{39}{10}\right) \cdot \frac{172}{5}}=\frac{344 \cdot 9}{2 \cdot 172}=9 . \end{aligned} $$ Answer: 9.
9
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.010. $\frac{\left(5 \frac{4}{45}-4 \frac{1}{6}\right): 5 \frac{8}{15}}{\left(4 \frac{2}{3}+0.75\right) \cdot 3 \frac{9}{13}} \cdot 34 \frac{2}{7}+\frac{0.3: 0.01}{70}+\frac{2}{7}$.
## Solution. $$ \begin{aligned} & \frac{\left(5 \frac{4}{45}-4 \frac{1}{6}\right): 5 \frac{8}{15}}{\left(4 \frac{2}{3}+0.75\right) \cdot 3 \frac{9}{13}} \cdot 34 \frac{2}{7}+\frac{0.3: 0.01}{70}+\frac{2}{7}=\frac{\left(\frac{229}{45}-\frac{25}{6}\right): \frac{83}{15}}{\left(\frac{14}{3}+\frac{3}{4}\right) \cdot \frac{48}{13}} \cdot \frac{240}{7}+\frac{30}{70}+\frac{2}{7}= \\ & =\frac{\frac{93}{90} \cdot \frac{15}{83}}{\frac{65}{12} \cdot \frac{48}{13}} \cdot \frac{240}{7}+\frac{5}{7}=\frac{1}{6 \cdot 20} \cdot \frac{240}{7}+\frac{5}{7}=\frac{2}{7}+\frac{5}{7}=1 . \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.011. $\frac{\left(\frac{3}{5}+0.425-0.005\right): 0.1}{30.5+\frac{1}{6}+3 \frac{1}{3}}+\frac{6 \frac{3}{4}+5 \frac{1}{2}}{26: 3 \frac{5}{7}}-0.05$.
## Solution. $$ \frac{\left(\frac{3}{5}+0.425-0.005\right): 0.1}{30.5+\frac{1}{6}+3 \frac{1}{3}}+\frac{6 \frac{3}{4}+5 \frac{1}{2}}{26: 3 \frac{5}{7}}-0.05= $$ $=\frac{(0.6+0.42) \cdot 10}{\frac{61}{2}+\frac{1}{6}+\frac{10}{3}}+\frac{12 \frac{1}{4} \cdot 26}{26 \cdot 7}-0.05=$ $=\frac{10.2}{34}+\frac{7}{4}-\frac{1}{20}=\frac{3}{10}+\frac{7}{4}-\frac{1}{20}=2$. Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.012. $\frac{3 \frac{1}{3} \cdot 1.9+19.5: 4 \frac{1}{2}}{\frac{62}{75}-0.16}: \frac{3.5+4 \frac{2}{3}+2 \frac{2}{15}}{0.5\left(1 \frac{1}{20}+4.1\right)}$.
## Solution. $\frac{3 \frac{1}{3} \cdot 1.9 + 19.5 : 4 \frac{1}{2}}{\frac{62}{75} - 0.16} : \frac{3.5 + 4 \frac{2}{3} + 2 \frac{2}{15}}{0.5 \left(1 \frac{1}{20} + 4.1\right)} = \frac{\frac{10}{3} \cdot \frac{19}{10} + \frac{39}{2} \cdot \frac{2}{9}}{\frac{62}{75} - \frac{4}{25}} \cdot \frac{\frac{1}{2} \left(\frac{21}{20} + \frac{41}{10}\right)}{\frac{7}{2} + \frac{14}{3} + \frac{32}{15}}=$ $= \frac{\frac{19}{3} + \frac{13}{3}}{\frac{2}{3}} \cdot \frac{\frac{103}{40}}{\frac{103}{10}} = \frac{16}{4} = 4$. Answer: 4.
4
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.014. $\frac{\left(4.5 \cdot 1 \frac{2}{3}-6.75\right) \cdot \frac{2}{3}}{\left(3 \frac{1}{3} \cdot 0.3+5 \frac{1}{3} \cdot \frac{1}{8}\right): 2 \frac{2}{3}}+\frac{1 \frac{4}{11} \cdot 0.22: 0.3-0.96}{\left(0.2-\frac{3}{40}\right) \cdot 1.6}$.
## Solution. $$ \begin{aligned} & \frac{\left(4.5 \cdot 1 \frac{2}{3}-6.75\right) \cdot \frac{2}{3}}{\left(3 \frac{1}{3} \cdot 0.3+5 \frac{1}{3} \cdot \frac{1}{8}\right): 2 \frac{2}{3}}+\frac{1 \frac{4}{11} \cdot 0.22: 0.3-0.96}{\left(0.2-\frac{3}{40}\right) \cdot 1.6}=\frac{\left(\frac{9}{2} \cdot \frac{5}{3}-\frac{27}{4}\right) \cdot \frac{2}{3}}{\left(\frac{10}{3} \cdot \frac{3}{10}+\frac{16}{3} \cdot \frac{1}{8}\right) \cdot \frac{3}{8}}+ \\ & +\frac{\frac{15}{11} \cdot \frac{11}{50} \cdot \frac{10}{3}-\frac{24}{25}}{\left(\frac{1}{5}-\frac{3}{40}\right) \cdot \frac{8}{5}}=\frac{\left(\frac{30}{4}-\frac{27}{4}\right) \cdot \frac{2}{3}}{\left(1+\frac{2}{3}\right) \cdot \frac{3}{8}}+\frac{1-\frac{24}{25}}{\frac{1}{8} \cdot \frac{8}{5}}=\frac{1}{2} \cdot \frac{8}{5}+\frac{1}{5}=1 . \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.016. $\left(16 \frac{1}{2}-13 \frac{7}{9}\right) \cdot \frac{18}{33}+2.2\left(\frac{8}{33}-\frac{1}{11}\right)+\frac{2}{11}$.
## Solution. $$ \begin{aligned} & \left(16 \frac{1}{2}-13 \frac{7}{9}\right) \cdot \frac{18}{33}+2.2\left(\frac{8}{33}-\frac{1}{11}\right)+\frac{2}{11}=\left(\frac{33}{2}-\frac{124}{9}\right) \cdot \frac{6}{11}+ \\ & +\frac{22}{10}\left(\frac{8}{33}-\frac{3}{33}\right)+\frac{2}{11}=\frac{49}{18} \cdot \frac{6}{11}+\frac{1}{3}+\frac{2}{11}=\frac{49}{33}+\frac{17}{33}=2 \end{aligned} $$ Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.017. $\frac{0.128: 3.2+0.86}{\frac{5}{6} \cdot 1.2+0.8} \cdot \frac{\left(1 \frac{32}{63}-\frac{13}{21}\right) \cdot 3.6}{0.505 \cdot \frac{2}{5}-0.002}$.
## Solution. $$ \begin{aligned} & \frac{0.128: 3.2+0.86}{\frac{5}{6} \cdot 1.2+0.8} \cdot \frac{\left(1 \frac{32}{63}-\frac{13}{21}\right) \cdot 3.6}{0.505 \cdot \frac{2}{5}-0.002}=\frac{0.04+0.86}{1+0.8} \cdot \frac{\left(\frac{95}{63}-\frac{39}{63}\right) \cdot \frac{18}{5}}{0.202-0.002}= \\ & =\frac{9}{18} \cdot \frac{8}{9} \cdot \frac{18}{0.2 \cdot 5}=8 \end{aligned} $$ Answer: 8.
8
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.018. $\frac{3 \frac{1}{3}: 10+0.175: 0.35}{1.75-1 \frac{11}{17} \cdot \frac{51}{56}}-\frac{\left(\frac{11}{18}-\frac{1}{15}\right): 1.4}{\left(0.5-\frac{1}{9}\right) \cdot 3}$.
Solution. $$ \begin{aligned} & \frac{3 \frac{1}{3}: 10+0.175: 0.35}{1.75-1 \frac{11}{17} \cdot \frac{51}{56}}-\frac{\left(\frac{11}{18}-\frac{1}{15}\right): 1.4}{\left(0.5-\frac{1}{9}\right) \cdot 3}=\frac{\frac{1}{3}+\frac{1}{2}}{\frac{7}{4}-\frac{28}{17} \cdot \frac{51}{56}}-\frac{\frac{49}{90} \cdot \frac{5}{7}}{\frac{7}{18} \cdot 3}= \\ & =\frac{5}{6\left(\frac{7}{4}-\frac{3}{2}\right)}-\frac{7 \cdot 18}{18 \cdot 7 \cdot 3}=\frac{10}{3}-\frac{1}{3}=3 . \end{aligned} $$ Answer: 3.
3
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.019. $\frac{0.125: 0.25+1 \frac{9}{16}: 2.5}{(10-22: 2.3) \cdot 0.46+1.6}+\left(\frac{17}{20}+1.9\right) \cdot 0.5$.
## Solution. $$ \begin{aligned} & \frac{0.125: 0.25+1 \frac{9}{16}: 2.5}{(10-22: 2.3): 0.46+1.6}+\left(\frac{17}{20}+1.9\right) \cdot 0.5=\frac{\frac{1}{2}+\frac{5}{8}}{\left(10-\frac{220}{23}\right) \cdot \frac{23}{50}+\frac{8}{5}}+\frac{17}{40}+\frac{19}{20}= \\ & =\frac{\frac{9}{8}}{\frac{1}{5}+\frac{8}{5}}+\frac{17}{40}+\frac{38}{40}=\frac{5}{8}+\frac{11}{8}=2 \end{aligned} $$ Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.020. $\left(\left(1 \frac{1}{7}-\frac{23}{49}\right): \frac{22}{147}-\left(0.6: 3 \frac{3}{4}\right) \cdot 2 \frac{1}{2}+3.75: 1 \frac{1}{2}\right): 2.2$.
## Solution. $$ \begin{aligned} & \left(\left(1 \frac{1}{7}-\frac{23}{49}\right): \frac{22}{147}-\left(0.6: 3 \frac{3}{4}\right) \cdot 2 \frac{1}{2}+3.75: 1 \frac{1}{2}\right): 2.2= \\ & =\left(\left(\frac{8}{7}-\frac{23}{49}\right) \frac{147}{22}-0.16 \cdot 2.5+2.5\right): 2.2=\left(\frac{33}{49} \cdot \frac{147}{22}-0.4+2.5\right): 2.2= \\ & =(4.5-0.4+2.5) \cdot \frac{10}{22}=3 \end{aligned} $$ Answer: 3.
3
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.022. $\frac{0.5+\frac{1}{4}+\frac{1}{6}+0.125}{\frac{1}{3}+0.4+\frac{14}{15}}+\frac{(3.75-0.625) \frac{48}{125}}{12.8 \cdot 0.25}$.
Solution. $\frac{0.5+\frac{1}{4}+\frac{1}{6}+0.125}{\frac{1}{3}+0.4+\frac{14}{15}}+\frac{(3.75-0.625) \frac{48}{125}}{12.8 \cdot 0.25}=\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}}{\frac{1}{3}+\frac{2}{5}+\frac{14}{15}}+\frac{3.125 \cdot 48}{3.2 \cdot 125}=$ $=\frac{25}{24} \cdot \frac{3}{5}+\frac{1.2}{3.2}=0.625+0.375=1$. Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.024. $\frac{0.725+0.6+\frac{7}{40}+\frac{11}{20}}{0.128 \cdot 6 \frac{1}{4}-0.0345: \frac{3}{25}} \cdot 0.25$.
## Solution. $$ \begin{aligned} & \frac{0.725+0.6+\frac{7}{40}+\frac{11}{20}}{0.128 \cdot 6 \frac{1}{4}-0.0345: \frac{3}{25}} \cdot 0.25=\frac{1.325+\frac{29}{40}}{0.128 \cdot 6.25-0.0345: 0.12} \cdot 0.25= \\ & =\frac{1.325+0.725}{0.8-0.2875} \cdot 0.25=\frac{2.05}{0.5125} \cdot 0.25=1 \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.025. $\left((520 \cdot 0.43): 0.26-217 \cdot 2 \frac{3}{7}\right)-\left(31.5: 12 \frac{3}{5}+114 \cdot 2 \frac{1}{3}+61 \frac{1}{2}\right)$.
Solution. $$ \begin{aligned} & \left((520 \cdot 0.43): 0.26-217 \cdot 2 \frac{3}{7}\right)-\left(31.5: 12 \frac{3}{5}+114 \cdot 2 \frac{1}{3}+61 \frac{1}{2}\right)= \\ & =\left(223.6: 0.26-217 \cdot \frac{17}{7}\right)-\left(\frac{63}{2} \cdot \frac{5}{63}+114 \cdot \frac{7}{3}+\frac{123}{2}\right)= \\ & =(860-527)-\left(\frac{5}{2}+266+\frac{123}{2}\right)=333-330=3 \end{aligned} $$ Answer: 3.
3
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.026. $\frac{(3.4-1.275) \cdot \frac{16}{17}}{\frac{5}{18} \cdot\left(1 \frac{7}{85}+6 \frac{2}{17}\right)}+0.5\left(2+\frac{12.5}{5.75+\frac{1}{2}}\right)$.
Solution. $$ \begin{aligned} & \frac{(3.4-1.275) \cdot \frac{16}{17}}{\frac{5}{18} \cdot\left(1 \frac{7}{85}+6 \frac{2}{17}\right)}+0.5\left(2+\frac{12.5}{5.75+\frac{1}{2}}\right)=\frac{2.125 \cdot \frac{16}{17}}{\frac{5}{18}\left(\frac{92}{85}+\frac{104}{17}\right)}+\frac{1}{2}\left(2+\frac{12.5}{6.25}\right)= \\ & =\frac{\frac{17}{8} \cdot \frac{16}{17}}{\frac{5}{18} \cdot \frac{612}{85}}+1+1=1+2=3 \end{aligned} $$ Answer: 3.
3
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.027. $\left(\frac{3.75+2 \frac{1}{2}}{2 \frac{1}{2}-1.875}-\frac{2 \frac{3}{4}+1.5}{2.75-1 \frac{1}{2}}\right) \cdot \frac{10}{11}$.
Solution. $\left(\frac{3.75+2 \frac{1}{2}}{2 \frac{1}{2}-1.875}-\frac{2 \frac{3}{4}+1.5}{2.75-1 \frac{1}{2}}\right) \cdot \frac{10}{11}=\left(\frac{3.75+2.5}{2.5-1.875}-\frac{2.75+1.5}{2.75-1.5}\right) \cdot \frac{10}{11}=$ $=\left(\frac{6.25}{0.625}-\frac{4.25}{1.25}\right) \cdot \frac{10}{11}=\left(10-\frac{17}{5}\right) \cdot \frac{10}{11}=\frac{33}{5} \cdot \frac{10}{11}=6$. Answer: 6.
6
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.028. $((21.85: 43.7+8.5: 3.4): 4.5): 1 \frac{2}{5}+1 \frac{11}{21}$.
## Solution. $$ \begin{aligned} & ((21.85: 43.7+8.5: 3.4): 4.5): 1 \frac{2}{5}+1 \frac{11}{21}=\left((0.5+2.5): 4 \frac{1}{2}\right): \frac{7}{5}+\frac{32}{21}= \\ & =\left(3 \cdot \frac{2}{9}\right) \cdot \frac{5}{7}+\frac{32}{21}=\frac{10}{21}+\frac{32}{21}=\frac{42}{21}=2 \end{aligned} $$ Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.029. $\left(1 \frac{2}{5}+3.5: 1 \frac{1}{4}\right): 2 \frac{2}{5}+3.4: 2 \frac{1}{8}-0.35$.
## Solution. $$ \begin{aligned} & \left(1 \frac{2}{5}+3.5: 1 \frac{1}{4}\right): 2 \frac{2}{5}+3.4: 2 \frac{1}{8}-0.35= \\ & =(1.4+3.5: 1.25): 2.4+3.4: 2.125-0.35=(1.4+2.8): 2.4+ \\ & +1.6-0.35=4.2: 2.4+1.25=1.75+1.25=3 \end{aligned} $$ Answer: 3.
3
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.032. $\frac{\left(3^{-1}-\sqrt{1 \frac{7}{9}}\right)^{-2}: 0.25}{\frac{37}{300}: 0.0925}+12.5 \cdot 0.64$.
## Solution. $$ \begin{aligned} & \frac{\left(3^{-1}-\sqrt{1 \frac{7}{9}}\right)^{-2}: 0.25}{\frac{37}{300}: 0.0925}+12.5 \cdot 0.64=\frac{\left(\frac{1}{3}-\sqrt{\frac{16}{9}}\right)^{-2} \cdot 4}{\frac{37}{300} \cdot \frac{400}{37}}+8= \\ & =\frac{\left(\frac{1}{3}-\frac{4}{3}\right)^{-2} \cdot 4}{\frac{4}{3}}+8=3(-1)^{-2}+8=3+8=11 \end{aligned} $$ Answer: 11.
11
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.033. $\frac{\left(\frac{5}{8}+2 \frac{17}{24}\right): 2.5}{\left(1.3+\frac{23}{30}+\frac{4}{11}\right) \cdot \frac{110}{401}} \cdot 0.5$.
## Solution. $\frac{\left(\frac{5}{8}+2 \frac{17}{24}\right): 2.5}{\left(1.3+\frac{23}{30}+\frac{4}{11}\right) \cdot \frac{110}{401}} \cdot 0.5=\frac{\left(\frac{5}{8}+\frac{65}{24}\right) \cdot \frac{2}{5} \cdot \frac{1}{2}}{\left(\frac{13}{10}+\frac{23}{30}+\frac{4}{11}\right) \cdot \frac{110}{401}}=\frac{\frac{10}{3} \cdot \frac{1}{5}}{\frac{401}{165} \cdot \frac{110}{401}}=\frac{2}{3}: \frac{2}{3}=1$. Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.039. $\left(\frac{(3.2-1.7): 0.003}{\left(\frac{29}{35}-\frac{3}{7}\right) \cdot 4: 0.2}-\frac{\left(1 \frac{13}{20}-1.5\right) \cdot 1.5}{\left(2.44+1 \frac{14}{25}\right) \cdot \frac{1}{8}}\right): 62 \frac{1}{20}+1.364: 0.124$.
Solution. $$ \begin{aligned} & \left(\frac{(3.2-1.7): 0.003}{\left(\frac{29}{35}-\frac{3}{7}\right) \cdot 4: 0.2}-\frac{\left(1 \frac{13}{20}-1.5\right) \cdot 1.5}{\left(2.44+1 \frac{14}{25}\right) \cdot \frac{1}{8}}\right): 62 \frac{1}{20}+1.364: 0.124= \\ & =\left(\frac{1.5: 0.003}{\frac{14}{35} \cdot 4 \cdot 5}-\frac{\frac{3}{20} \cdot \frac{3}{2}}{4 \cdot \frac{1}{8}}\right): \frac{1241}{20}+11=\left(\frac{500}{8}-\frac{9}{40} \cdot 2\right) \cdot \frac{20}{1241}+11= \\ & =\left(\frac{125}{2}-\frac{9}{20}\right) \cdot \frac{20}{1241}+11=\frac{1241}{20} \cdot \frac{20}{1241}+11=12 \end{aligned} $$ Answer: 12.
12
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.041. $\frac{\left(4-3.5 \cdot\left(2 \frac{1}{7}-1 \frac{1}{5}\right)\right): 0.16}{X}=\frac{3 \frac{2}{7}-\frac{3}{14}: \frac{1}{6}}{41 \frac{23}{84}-40 \frac{49}{60}}$.
## Solution. $$ \begin{aligned} & X=\frac{\left(4-3.5 \cdot\left(2 \frac{1}{7}-1 \frac{1}{5}\right)\right): 0.16 \cdot\left(41 \frac{23}{84}-40 \frac{49}{60}\right)}{3 \frac{2}{7}-\frac{3}{14}: \frac{1}{6}}= \\ & =\frac{\left(4-3.5 \cdot\left(\frac{15}{7}-\frac{6}{5}\right)\right): 0.16 \cdot \frac{16}{35}}{\frac{23}{7} \cdot \frac{9}{7}}=\frac{\left(4-\frac{7}{2} \cdot \frac{33}{35}\right): \frac{4}{25} \cdot \frac{16}{35}}{2} \\ & =\frac{\left(4-\frac{33}{10}\right): \frac{4}{25} \cdot \frac{16}{35}}{2}=\frac{\frac{7}{10} \cdot \frac{25}{4} \cdot \frac{16}{35}}{2}=1 \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.043. $\frac{0.125 X}{\left(\frac{19}{24}-\frac{21}{40}\right) \cdot 8 \frac{7}{16}}=\frac{\left(1 \frac{28}{63}-\frac{17}{21}\right) \cdot 0.7}{0.675 \cdot 2.4-0.02}$.
Solution. $X=\frac{\left(1 \frac{28}{63}-\frac{17}{21}\right) \cdot 0.7 \cdot\left(\frac{19}{24}-\frac{21}{40}\right) \cdot 8 \frac{7}{16}}{(0.675 \cdot 2.4-0.02) \cdot 0.125}=\frac{\left(\frac{91}{63}-\frac{17}{21}\right) \cdot \frac{7}{10} \cdot \frac{4}{15} \cdot \frac{135}{16}}{(1.62-0.02) \cdot 0.125}=$ $=\frac{\frac{40}{63} \cdot \frac{63}{40}}{1.6 \cdot 0.125}=\frac{1}{0.2} 5$. Answer: 5.
5
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.046. $$ \frac{\sqrt{6.3 \cdot 1.7} \cdot\left(\sqrt{\frac{6.3}{1.7}}-\sqrt{\frac{1.7}{6.3}}\right)}{\sqrt{(6.3+1.7)^{2}-4 \cdot 6.3 \cdot 1.7}} $$
Solution. $$ \begin{aligned} & \frac{\sqrt{6.3 \cdot 1.7} \cdot\left(\sqrt{\frac{6.3}{1.7}}-\sqrt{\frac{1.7}{6.3}}\right)}{\sqrt{(6.3+1.7)^{2}-4 \cdot 6.3 \cdot 1.7}}=\frac{\sqrt{6.3 \cdot 1.7} \cdot\left(\sqrt{\frac{6.3}{1.7}}-\sqrt{\frac{1.7}{6.3}}\right)}{\sqrt{6.3^{2}+2 \cdot 6.3 \cdot 1.7+1.7^{2}-4 \cdot 6.3 \cdot 1.7}}= \\ & =\frac{\sqrt{6.3 \cdot 1.7} \cdot \frac{\sqrt{6.3^{2}}-\sqrt{1.7^{2}}}{\sqrt{6.3 \cdot 1.7}}}{\sqrt{6.3^{2}-2 \cdot 6.3 \cdot 1.7+1.7^{2}}}=\frac{6.3-1.7}{\sqrt{(6.3-1.7)^{2}}}=\frac{6.3-1.7}{6.3-1.7}=1 \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.047. $\left(\frac{\sqrt{561^{2}-459^{2}}}{4 \frac{2}{7} \cdot 0.15+4 \frac{2}{7}: \frac{20}{3}}+4 \sqrt{10}\right): \frac{1}{3} \sqrt{40}$.
Solution. $$ \begin{aligned} & \left(\frac{\sqrt{561^{2}-459^{2}}}{4 \frac{2}{7} \cdot 0.15+4 \frac{2}{7} : \frac{20}{3}}+4 \sqrt{10}\right): \frac{1}{3} \sqrt{40}=\left(\frac{\sqrt{(561+459)(561-459)}}{\frac{30}{7} \cdot \frac{3}{20}+\frac{30}{7} \cdot \frac{3}{20}}+4 \sqrt{10}\right) \times \\ & \times \frac{3}{2 \sqrt{10}}=\left(\frac{\sqrt{1020 \cdot 102}}{\frac{9}{7}}+4 \sqrt{10}\right) \cdot \frac{3}{2 \sqrt{10}}=\frac{7 \sqrt{102^{2} \cdot 10}+36 \sqrt{10}}{9} \cdot \frac{3}{2 \sqrt{10}}= \\ & =\frac{714 \sqrt{10}+36 \sqrt{10}}{9} \cdot \frac{3}{2 \sqrt{10}}=\frac{750 \sqrt{10}}{9} \cdot \frac{3}{2 \sqrt{10}}=\frac{375}{3}=125 . \end{aligned} $$ Answer: 125.
125
Algebra
math-word-problem
Yes
Yes
olympiads
false
1.049. $\frac{2^{-2}+5^{0}}{(0.5)^{-2}-5(-2)^{-2}+\left(\frac{2}{3}\right)^{-2}}+4.75$.
Solution. $$ \begin{aligned} & \frac{2^{-2}+5^{0}}{(0.5)^{-2}-5(-2)^{-2}+\left(\frac{2}{3}\right)^{-2}}+4.75=\frac{\frac{1}{2^{2}}+1}{-\frac{1}{(0.5)^{2}}-\frac{5}{(-2)^{-2}}+\left(\frac{3}{2}\right)^{2}}+4.75= \\ & =\frac{\frac{1}{4}+1}{\frac{1}{0.25}-\frac{5}{4}+\frac{9}{4}}+4.75=\frac{-\frac{4}{4}}{4+1}+4.75=\frac{1}{4}+4 \frac{3}{4}=5 . \end{aligned} $$ Answer: 5.
5
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.019. $\frac{\left(x^{2}-y^{2}\right)(\sqrt[3]{x}+\sqrt[3]{y})}{\sqrt[3]{x^{5}}+\sqrt[3]{x^{2} y^{3}}-\sqrt[3]{x^{3} y^{2}}-\sqrt[3]{y^{5}}}-\left(\sqrt[3]{x y}+\sqrt[3]{y^{2}}\right) x=64$.
Solution. $$ \begin{aligned} & \text { Domain: } z=\sqrt[3]{x^{5}}+\sqrt[3]{x^{2} y^{3}}-\sqrt[3]{x^{3} y^{2}}-\sqrt[3]{y^{5}} \neq 0 \\ & \frac{\left(x^{2}-y^{2}\right)(\sqrt[3]{x}+\sqrt[3]{y})}{\sqrt[3]{x^{5}}+\sqrt[3]{x^{2} y^{3}}-\sqrt[3]{x^{3} y^{2}}-\sqrt[3]{y^{5}}}-\left(\sqrt[3]{x y}+\sqrt[3]{y^{2}}\right)= \\ & =\frac{(x-y)(x+y)(\sqrt[3]{x}+\sqrt[3]{y})}{\sqrt[3]{x^{2}}\left(\sqrt[3]{x^{3}}+\sqrt[3]{y^{3}}\right)-\sqrt[3]{y^{2}}\left(\sqrt[3]{x^{3}}+\sqrt[3]{y^{3}}\right)}-\left(\sqrt[3]{x y}+\sqrt[3]{y^{2}}\right)= \\ & =\frac{(x-y)(x+y)(\sqrt[3]{x}+\sqrt[3]{y})}{\sqrt[3]{x^{2}}(x+y)-\sqrt[3]{y^{2}}(x+y)}-\left(\sqrt[3]{x y}+\sqrt[3]{y^{2}}\right)= \\ & =\frac{(x-y)(x+y)(\sqrt[3]{x}+\sqrt[3]{y})}{(x+y)\left(\sqrt[3]{x^{2}}-\sqrt[3]{y^{2}}\right)}-\left(\sqrt[3]{x y}+\sqrt[3]{y^{2}}\right)= \\ & =\frac{(x-y)(\sqrt[3]{x}+\sqrt[3]{y})}{(\sqrt[3]{x}-\sqrt[3]{y})(\sqrt[3]{x}+\sqrt[3]{y})}-\left(\sqrt[3]{x y}+\sqrt[3]{y^{2}}\right)= \\ & =\frac{x-y}{\sqrt[3]{x}-\sqrt[3]{y}}-\left(\sqrt[3]{x y}+\sqrt[3]{y^{2}}\right)=\frac{(\sqrt[3]{x})^{3}-(\sqrt[3]{y})^{3}}{\sqrt[3]{x}-\sqrt[3]{y}}-\sqrt[3]{x y}-\sqrt[3]{y^{2}}= \end{aligned} $$ $$ \begin{aligned} & =\frac{(\sqrt[3]{x}-\sqrt[3]{y})\left(\sqrt[3]{x^{2}}+\sqrt[3]{x y}+\sqrt[3]{y^{2}}\right)}{\sqrt[3]{x}-\sqrt[3]{y}}-\sqrt[3]{x y}-\sqrt[3]{y^{2}}= \\ & =\sqrt[3]{x^{2}}+\sqrt[3]{x y}+\sqrt[3]{y^{2}}-\sqrt[3]{x y}-\sqrt[3]{y^{2}}=\sqrt[3]{x^{2}}=\sqrt[3]{64^{2}}= \\ & =\sqrt[3]{4^{3 \cdot 2}}=4^{2}=16 \end{aligned} $$ Answer: 16.
16
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.025. $\frac{a^{3}-a-2 b-b^{2} / a}{\left(1-\sqrt{\frac{1}{a}+\frac{b}{a^{2}}}\right) \cdot(a+\sqrt{a+b})}:\left(\frac{a^{3}+a^{2}+a b+a^{2} b}{a^{2}-b^{2}}+\frac{b}{a-b}\right) ;$ $a=23 ; b=22$.
Solution. $$ \begin{aligned} & \frac{a^{3}-a-2 b-b^{2} / a}{\left(1-\sqrt{\frac{1}{a}+\frac{b}{a^{2}}}\right) \cdot(a+\sqrt{a+b})}:\left(\frac{a^{3}+a^{2}+a b+a^{2} b}{a^{2}-b^{2}}+\frac{b}{a-b}\right)= \\ & =\frac{\frac{a^{4}-a^{2}-2 a b-b^{2}}{a}}{\left(1-\sqrt{\frac{a+b}{a^{2}}}\right) \cdot(a+\sqrt{a+b})}:\left(\frac{a^{2}(a+1)+a b(a+1)}{(a-b)(a+b)}+\frac{b}{a-b}\right)= \\ & =\frac{a^{4}-\left(a^{2}+2 a b+b^{2}\right)}{(a-\sqrt{a+b})(a+\sqrt{a+b})}:\left(\frac{a(a+1)(a+b)}{(a-b)(a+b)}+\frac{b}{a-b}\right)= \\ & =\frac{a^{4}-(a+b)^{2}}{a^{2}-a-b}:\left(\frac{a(a+1)}{a-b}+\frac{b}{a-b}\right)= \\ & =\frac{\left(a^{2}-a-b\right)\left(a^{2}+a+b\right)}{a^{2}-a-b}: \frac{a^{2}+a+b}{a-b}= \\ & =\frac{\left(a^{2}+a+b\right)(a-b)}{a^{2}+a+b}=a-b=23-22=1 \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.030. $\sqrt{\frac{\sqrt{2}}{a}+\frac{a}{\sqrt{2}}+2}-\frac{a \sqrt[4]{2}-2 \sqrt{a}}{a \sqrt{2 a}-\sqrt[4]{8 a^{4}}}$. 2.030. $\sqrt{\frac{\sqrt{2}}{a}+\frac{a}{\sqrt{2}}+2}-\frac{a \sqrt[4]{2}-2 \sqrt{a}}{a \sqrt{2 a}-\sqrt[4]{8 a^{4}}}$. (Note: The original text and the translation are identical as the expression is already in a mathematical form that does not require translation.)
Solution. Domain of definition: $\left\{\begin{array}{l}a>0, \\ a \neq \sqrt{2} .\end{array}\right.$ $$ \sqrt{\frac{\sqrt{2}}{a}+\frac{a}{\sqrt{2}}+2}-\frac{a^{2} \sqrt[4]{2}-2 \sqrt{a}}{a \sqrt{2 a}-\sqrt[4]{8 a^{4}}}=\sqrt{\frac{a^{2}+2 a \sqrt{2}+(\sqrt{2})^{2}}{a \sqrt{2}}}- $$ $$ \begin{aligned} & -\frac{a^{2} \cdot 2^{1 / 4}-2 \cdot a^{1 / 2}}{a^{3 / 2} \cdot 2^{1 / 2}-2^{3 / 4} \cdot a}=\frac{\sqrt{(a+\sqrt{2})^{2}}}{\sqrt{a \sqrt{2}}}-\frac{2^{1 / 4} \cdot a^{1 / 2} \cdot\left(a^{3 / 2}-2^{3 / 4}\right)}{2^{1 / 2} \cdot a \cdot\left(a^{1 / 2}-2^{1 / 4}\right)}= \\ & =\frac{a+\sqrt{2}}{a^{1 / 2} \cdot 2^{1 / 4}}-\frac{2^{1 / 4} \cdot a^{1 / 2} \cdot\left(\left(a^{1 / 2}\right)^{3}-\left(2^{1 / 4}\right)^{3}\right)}{2^{1 / 2} \cdot a \cdot\left(a^{1 / 2}-2^{1 / 4}\right)}=\frac{a+2^{1 / 2}}{a^{1 / 2} \cdot 2^{1 / 4}}- \\ & -\frac{\left(a^{1 / 2}-2^{1 / 4}\right)\left(a+2^{1 / 4} \cdot a^{1 / 2}+2^{1 / 2}\right)}{a^{1 / 2} \cdot 2^{1 / 4} \cdot\left(a^{1 / 2}-2^{1 / 4}\right)}=\frac{a+2^{1 / 2}}{a^{1 / 2} \cdot 2^{1 / 4}}-\frac{a+2^{1 / 4} \cdot a^{1 / 2}+2^{1 / 2}}{a^{1 / 2} \cdot 2^{1 / 4}}= \\ & =\frac{a+2^{1 / 2}-a-2^{1 / 4} \cdot a^{1 / 2}-2^{1 / 2}}{a^{1 / 2} \cdot 2^{1 / 4}}=\frac{-2^{1 / 4} \cdot a^{1 / 2}}{a^{1 / 2} \cdot 2^{1 / 4}}=-1 \end{aligned} $$ Answer: -1.
-1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.039. $\frac{9 b^{4 / 3}-\frac{a^{3 / 2}}{b^{2}}}{\sqrt{a^{3 / 2} b^{-2}+6 a^{3 / 4} b^{-1 / 3}+9 b^{4 / 3}}} \cdot \frac{b^{2}}{a^{3 / 4}-3 b^{5 / 3}} ; \quad b=4$.
Solution. $$ \begin{aligned} & \frac{9 b^{4 / 3}-\frac{a^{3 / 2}}{b^{2}}}{\sqrt{a^{3 / 2} b^{-2}+6 a^{3 / 4} b^{-1 / 3}+9 b^{4 / 3}}} \cdot \frac{b^{2}}{a^{3 / 4}-3 b^{5 / 3}}=\frac{\frac{9 b^{4 / 3} \cdot b^{2}-a^{3 / 2}}{b^{2}}}{\sqrt{\frac{a^{3 / 2}}{b^{2}}+\frac{6 a^{3 / 4}}{b^{+1 / 3}}+9 b^{4 / 3}}} \times \\ & \times \frac{b^{2}}{a^{3 / 4}-3 b^{5 / 3}}=\frac{9 b^{10 / 3}-a^{3 / 2}}{\sqrt{\frac{a^{3 / 2}+6 a^{3 / 4} b^{5 / 3}+9 b^{10 / 3}}{b^{2}}} \cdot\left(a^{3 / 4}-3 b^{5 / 3}\right)}= \\ & =\frac{-\left(\left(a^{3 / 4}\right)^{2}-\left(3 b^{5 / 3}\right)^{2}\right)}{\sqrt{\frac{\left(a^{3 / 4}\right)^{2}+6 a^{3 / 4} b^{5 / 3}+\left(3 b^{5 / 3}\right)^{2}}{b^{2}}} \cdot\left(a^{3 / 4}-3 b^{5 / 3}\right)}= \\ & =\frac{-\left(a^{3 / 4}-3 b^{5 / 3}\right)\left(a^{3 / 4}+3 b^{5 / 3}\right)}{\frac{\sqrt{\left(a^{3 / 4}+3 b^{5 / 3}\right)^{2}}}{b} \cdot\left(a^{3 / 4}-3 b^{5 / 3}\right)}=\frac{-\left(a^{3 / 4}+3 b^{5 / 3}\right) b}{a^{3 / 4}+3 b^{5 / 3}}=-b=-4 . \end{aligned} $$ Answer: -4.
-4
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.044. $\left(\frac{\sqrt{x-a}}{\sqrt{x+a}+\sqrt{x-a}}+\frac{x-a}{\sqrt{x^{2}-a^{2}}-x+a}\right): \sqrt{\frac{x^{2}}{a^{2}}-1} ; x>a>0$. 2.044. $\left(\frac{\sqrt{x-a}}{\sqrt{x+a}+\sqrt{x-a}}+\frac{x-a}{\sqrt{x^{2}-a^{2}}-x+a}\right): \sqrt{\frac{x^{2}}{a^{2}}-1} ; x>a>0$.
Solution. $$ \begin{aligned} & \left(\frac{\sqrt{x-a}}{\sqrt{x+a}+\sqrt{x-a}}+\frac{x-a}{\sqrt{x^{2}-a^{2}}-x+a}\right): \sqrt{\frac{x^{2}}{a^{2}}-1}= \\ & =\left(\frac{\sqrt{x-a}}{\sqrt{x+a}+\sqrt{x-a}}+\frac{(\sqrt{x-a})^{2}}{\sqrt{x-a}(\sqrt{x+a}-\sqrt{x-a})}\right): \sqrt{\frac{x^{2}-a^{2}}{a^{2}}}= \\ & =\left(\frac{\sqrt{x-a}}{\sqrt{x+a}+\sqrt{x-a}}+\frac{\sqrt{x-a}}{\sqrt{x+a}-\sqrt{x-a}}\right) \cdot \frac{a}{\sqrt{x^{2}-a^{2}}}= \\ & =\frac{\sqrt{x-a}(\sqrt{x+a}-\sqrt{x-a})+\sqrt{x-a}(\sqrt{x+a}+\sqrt{x-a})}{(\sqrt{x+a}+\sqrt{x-a})(\sqrt{x+a}-\sqrt{x-a})} \cdot \frac{a}{\sqrt{x^{2}-a^{2}}}= \\ & =\frac{\sqrt{x^{2}-a^{2}}-x+a+\sqrt{x^{2}-a^{2}}+x-a}{x+a-x+a} \cdot \frac{a}{\sqrt{x^{2}-a^{2}}}=\frac{2 \sqrt{x^{2}-a^{2}} \cdot a}{2 a \sqrt{x^{2}-a^{2}}}=1 . \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.046. $\frac{\sqrt{1-x^{2}}-1}{x} \cdot\left(\frac{1-x}{\sqrt{1-x^{2}}+x-1}+\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}\right)$
## Solution. Domain of definition: $\left\{\begin{array}{l}x \neq 0, \\ -1 \leq x<1 .\end{array}\right.$ $$ \begin{aligned} & \frac{\sqrt{1-x^{2}}-1}{x} \cdot\left(\frac{1-x}{\sqrt{1-x^{2}}+x-1}+\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}\right)=\frac{\sqrt{1-x^{2}}-1}{x} \times \\ & \times\left(\frac{(\sqrt{1-x})^{2}}{\sqrt{1-x}(\sqrt{1+x}-\sqrt{1-x})}+\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}\right)=\frac{\sqrt{1-x^{2}}-1}{x} \times \end{aligned} $$ $$ \begin{aligned} & \times\left(\frac{\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}\right)=\frac{\sqrt{1-x^{2}}-1}{x} \cdot \frac{\sqrt{1-x}+\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}= \end{aligned} $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_fa9db84b44b98ec0a5c7g-068.jpg?height=138&width=752&top_left_y=227&top_left_x=144) $$ \begin{aligned} & =\frac{\sqrt{1-x^{2}}-1}{x} \cdot \frac{1-x+2 \sqrt{1-x^{2}}+1+x}{1+x-1+x}=\frac{\sqrt{1-x^{2}}-1}{x} \cdot \frac{2\left(\sqrt{1-x^{2}}+1\right)}{2 x}= \\ & =\frac{\left(\sqrt{1-x^{2}}-1\right)\left(\sqrt{1-x^{2}}+1\right)}{x^{2}}=\frac{1-x^{2}-1}{x^{2}}=\frac{-x^{2}}{x^{2}}=-1 \end{aligned} $$ Answer: -1 .
-1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.051. $\frac{\left(a^{2}-b^{2}\right)\left(a^{2}+\sqrt[3]{b^{2}}+a \sqrt[3]{b}\right)}{a \sqrt[3]{b}+a \sqrt{a}-b \sqrt[3]{b}-\sqrt{a b^{2}}}: \frac{a^{3}-b}{a \sqrt[3]{b}-\sqrt[6]{a^{3} b^{2}}-\sqrt[3]{b^{2}}+a \sqrt{a}} ;$ $$ a=4.91 ; b=0.09 $$
Solution. $$ \begin{aligned} & \frac{\left(a^{2}-b^{2}\right)\left(a^{2}+\sqrt[3]{b^{2}}+a \sqrt[3]{b}\right)}{a \sqrt[3]{b}+a \sqrt{a}-b \sqrt[3]{b}-\sqrt{a b^{2}}}: \frac{a^{3}-b}{a \sqrt[3]{b}-\sqrt[6]{a^{3} b^{2}}-\sqrt[3]{b^{2}}+a \sqrt{a}}= \\ & =\frac{(a-b)(a+b)\left(a^{2}+a \sqrt[3]{b}+\sqrt[3]{b^{2}}\right)}{a(\sqrt{a}+\sqrt[3]{b})-b(\sqrt{a}+\sqrt[3]{b})}: \frac{a^{3}-b}{a(\sqrt{a}+\sqrt[3]{b})-\sqrt[3]{b}(\sqrt{a}+\sqrt[3]{b})}= \\ & =\frac{(a-b)(a+b)\left(a^{2}+a \sqrt[3]{b}+\sqrt[3]{b^{2}}\right)}{(\sqrt{a}+\sqrt[3]{b})(a-b)}: \frac{a^{3}-(\sqrt[3]{b})^{3}}{(\sqrt{a}+\sqrt[3]{b})(a-\sqrt[3]{b})}= \end{aligned} $$ $$ \begin{aligned} & =\frac{(a+b)\left(a^{2}+a \sqrt[3]{b}+\sqrt[3]{b^{2}}\right)}{\sqrt{a}+\sqrt[3]{b}} \cdot \frac{(\sqrt{a}+\sqrt[3]{b})(a-\sqrt[3]{b})}{(a-\sqrt[3]{b})\left(a^{2}+a \sqrt[3]{b}+\sqrt[3]{b^{2}}\right)}= \\ & =a+b=4.91+0.09=5 \end{aligned} $$ Answer: 5.
5
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.054. $\frac{3 a^{2}+2 a x-x^{2}}{(3 x+a)(a+x)}-2+10 \cdot \frac{a x-3 x^{2}}{a^{2}-9 x^{2}}$.
Solution. Domain of definition: $\left\{\begin{array}{l}x \neq \pm \frac{a}{3}, \\ x \neq-a .\end{array}\right.$ $$ \begin{aligned} & \frac{3 a^{2}+2 a x-x^{2}}{(3 x+a)(a+x)}-2+10 \cdot \frac{a x-3 x^{2}}{a^{2}-9 x^{2}}=\frac{-(x+a)(x-3 a)}{(3 x+a)(a+x)}-2+ \\ & +10 \cdot \frac{x(a-3 x)}{(a-3 x)(a+3 x)}=\frac{-x+3 a}{3 x+a}-2+\frac{10 x}{3 x+a}= \\ & =\frac{-x+3 a-6 x-2 a+10 x}{3 x+a}=\frac{3 x+a}{3 x+a}=1 . \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.058. $\left(\left(\frac{1}{a}+\frac{1}{b+c}\right):\left(\frac{1}{a}-\frac{1}{b+c}\right)\right):\left(1+\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)$; $$ a=1 \frac{33}{40} ; b=0.625 ; c=3.2 $$
Solution. $$ \begin{aligned} & \left(\left(\frac{1}{a}+\frac{1}{b+c}\right):\left(\frac{1}{a}-\frac{1}{b+c}\right):\left(1+\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)=\right. \\ & =\left(\frac{a+b+c}{a(b+c)}: \frac{-a+b+c}{a(b+c)}\right): \frac{2 b c+b^{2}+c^{2}-a^{2}}{2 b c}= \\ & =\left(\frac{a+b+c}{a(b+c)} \cdot \frac{a(b+c)}{-a+b+c}\right): \frac{\left(b^{2}+2 b c+c^{2}\right)-a^{2}}{2 b c}= \\ & =\frac{a+b+c}{-a+b+c} \cdot \frac{2 b c}{(b+c)^{2}-a^{2}}=\frac{2(a+b+c) b c}{(-a+b+c)(b+c-a)(b+c+a)}= \\ & =\frac{2 b c}{(-a+b+c)^{2}}=\frac{2 \cdot 0.625 \cdot 3.2}{\left(-1 \frac{33}{40}+0.625+3.2\right)^{2}}=\frac{4}{(-1.825+3.825)^{2}}=\frac{4}{4}=1 \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.068. $\frac{\left(\frac{1}{a}+\frac{1}{b}-\frac{2 c}{a b}\right)(a+b+2 c)}{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{2}{a b}-\frac{4 c^{2}}{a^{2} b^{2}}} ; \quad a=7.4 ; b=\frac{5}{37}$.
Solution. $$ \begin{aligned} & \frac{\left(\frac{1}{a}+\frac{1}{b}-\frac{2 c}{a b}\right)(a+b+2 c)}{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{2}{a b}-\frac{4 c^{2}}{a^{2} b^{2}}}=\frac{\frac{a+b-2 c}{a b} \cdot(a+b+2 c)}{\frac{a^{2}+2 a b+b^{2}-4 c^{2}}{a^{2} b^{2}}}= \\ & =\frac{\frac{(a+b-2 c)(a+b+2 c)}{a b}}{\frac{(a+b)^{2}-(2 c)^{2}}{a^{2} b^{2}}}=\frac{(a+b-2 c)(a+b+2 c) a^{2} b^{2}}{\left((a+b)^{2}-(2 c)^{2}\right) a b}= \\ & =\frac{(a+b-2 c)(a+b+2 c) a b}{(a+b-2 c)(a+b+2 c)}=a b=7.4 \cdot \frac{5}{37}=\frac{37}{5} \cdot \frac{5}{37}=1 \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.073. $\frac{\sqrt{5-2 \sqrt{6}}}{(\sqrt[4]{3}+\sqrt[4]{2})(\sqrt[4]{3}-\sqrt[4]{2})}$.
Solution. $$ \begin{aligned} & \frac{\sqrt{5-2 \sqrt{6}}}{(\sqrt[4]{3}+\sqrt[4]{2})(\sqrt[4]{3}-\sqrt[4]{2})}=\frac{\sqrt{3-2 \sqrt{3 \cdot 2}+2}}{(\sqrt[4]{3})^{2}-(\sqrt[4]{2})^{2}}= \\ & =\frac{\sqrt{(\sqrt{3})^{2}-2 \sqrt{3} \cdot \sqrt{2}+(\sqrt{2})^{2}}}{\sqrt{3}-\sqrt{2}}= \\ & =\frac{\sqrt{(\sqrt{3}-\sqrt{2})^{2}}}{\sqrt{3}-\sqrt{2}}=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}=1 . \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.078. $\left(\frac{1}{t^{2}+3 t+2}+\frac{2 t}{t^{2}+4 t+3}+\frac{1}{t^{2}+5 t+6}\right)^{2} \cdot \frac{(t-3)^{2}+12 t}{2}$.
Solution. Domain of definition: $\left\{\begin{array}{l}t \neq-3, \\ t \neq-2, \\ t \neq-1 .\end{array}\right.$ $$ \begin{aligned} & \left(\frac{1}{t^{2}+3 t+2}+\frac{2 t}{t^{2}+4 t+3}+\frac{1}{t^{2}+5 t+6}\right)^{2} \cdot \frac{(t-3)^{2}+12 t}{2}= \\ & =\left(\frac{1}{(t+2)(t+1)}+\frac{2 t}{(t+3)(t+1)}+\frac{1}{(t+3)(t+2)}\right)^{2} \cdot \frac{t^{2}-6 t+9+12 t}{2}= \\ & =\left(\frac{t+3+2 t(t+2)+t+1}{(t+1)(t+2)(t+3)}\right)^{2} \cdot \frac{t^{2}+6 t+9}{2}=\left(\frac{2(t+2)+2 t(t+2)}{(t+1)(t+2)(t+3)}\right)^{2} \cdot \frac{(t+3)^{2}}{2}= \\ & =\frac{(2(t+2)(t+1))^{2}(t+3)^{2}}{2((t+1)(t+2)(t+3))^{2}}=\frac{4(t+2)^{2}(t+1)^{2}(t+3)^{2}}{2(t+2)^{2}(t+1)^{2}(t+3)^{2}}=2 \end{aligned} $$ Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.084. $\left(\frac{2-b}{b-1}+2 \cdot \frac{a-1}{a-2}\right):\left(b \cdot \frac{a-1}{b-1}+a \cdot \frac{2-b}{a-2}\right)$; $a=\sqrt{2}+0.8 ; b=\sqrt{2}-0.2$.
Solution. $$ \begin{aligned} & \left(\frac{2-b}{b-1}+2 \cdot \frac{a-1}{a-2}\right):\left(b \cdot \frac{a-1}{b-1}+a \cdot \frac{2-b}{a-2}\right)=\frac{(2-b)(a-2)+2(a-1)(b-1)}{(b-1)(a-2)} \\ & \frac{b(a-1)(a-2)+a(2-b)(b-1)}{(b-1)(a-2)}=\frac{a b-2}{(b-1)(a-2)} \cdot \frac{(b-1)(a-2)}{a^{2} b-a b^{2}-2 a+2 b}= \\ & =\frac{a b-2}{a b(a-b)-2(a-b)}=\frac{a b-2}{(a-b)(a b-2)}=\frac{1}{a-b}=\frac{1}{\sqrt{2}+0.8-\sqrt{2}+0.2}=1 . \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.105. $\left(\frac{1+\sqrt{1-x}}{1-x+\sqrt{1-x}}+\frac{1-\sqrt{1+x}}{1+x-\sqrt{1+x}}\right)^{2} \cdot \frac{x^{2}-1}{2}-\sqrt{1-x^{2}}$.
Solution. Domain of definition: $\left\{\begin{array}{l}-1<x<1, \\ x \neq 0 .\end{array}\right.$ $$ \begin{aligned} & \left(\frac{1+\sqrt{1-x}}{1-x+\sqrt{1-x}}+\frac{1-\sqrt{1+x}}{1+x-\sqrt{1+x}}\right)^{2} \cdot \frac{x^{2}-1}{2}-\sqrt{1-x^{2}}= \\ & \left.\left.=\left(\frac{1+\sqrt{1-x}}{\sqrt{1-x}(\sqrt{1-x}+1}\right)+\frac{1-\sqrt{1+x}}{\sqrt{1+x}(\sqrt{1+x}-1}\right)\right)^{2} \cdot \frac{x^{2}-1}{2}-\sqrt{1-x^{2}}= \\ & =\left(\frac{1}{\sqrt{1-x}}-\frac{1}{\sqrt{1+x}}\right)^{2} \cdot \frac{x^{2}-1}{2}-\sqrt{1-x^{2}}= \\ & =\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1-x^{2}}}\right)^{2} \cdot \frac{x^{2}-1}{2}-\sqrt{1-x^{2}}= \\ & =\frac{1+x-2 \sqrt{1-x^{2}}+1-x}{1-x^{2}} \cdot \frac{x^{2}-1}{2}-\sqrt{1-x^{2}}= \\ & =\frac{2\left(1-\sqrt{1-x^{2}}\right)}{1-x^{2}} \cdot \frac{x^{2}-1}{2}-\sqrt{1-x^{2}}= \\ & =-1+\sqrt{1-x^{2}}-\sqrt{1-x^{2}}=-1 \end{aligned} $$ Answer: -1 .
-1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.109. $\left(-4 a^{3} \sqrt{\frac{\sqrt{a x}}{a^{2}}}\right)^{3}+\left(-10 a \sqrt{x} \cdot \sqrt{(a x)^{-1}}\right)^{2}+\left(-2\left(\sqrt[3]{a^{4} \sqrt{\frac{x}{a}}}\right)^{2}\right)^{3} ;$ $$ a=3 \frac{4}{7} ; x=0.28 $$
## Solution. $$ \begin{aligned} & \left(-4 a^{3} \sqrt{\frac{\sqrt{a x}}{a^{2}}}\right)^{3}+\left(-10 a \sqrt{x} \cdot \sqrt{(a x)^{-1}}\right)^{2}+\left(-2\left(\sqrt[3]{a \sqrt{\frac{x}{a}}}\right)^{2}\right)^{3}= \\ & =\frac{-64 a^{3} \sqrt{a x}}{a^{2}}+\frac{100 a^{2} x}{a x}-\frac{8 a^{2} \sqrt{x}}{\sqrt{a}}=-64 a \sqrt{a x}+100 a-8 a \sqrt{a x}= \\ & =100 a-72 a \sqrt{a x}=100 \cdot 3 \frac{4}{7}-72 \cdot 3 \frac{4}{7} \cdot \sqrt{3 \frac{4}{7} \cdot 0.28}= \\ & =100 \cdot \frac{25}{7}-72 \cdot \frac{25}{7} \cdot \sqrt{\frac{25}{7} \cdot \frac{7}{25}}=\frac{2500}{7}-\frac{1800}{7}=\frac{700}{7}=100 \end{aligned} $$ Answer: 100.
100
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.123. $2 \sqrt{40 \sqrt{12}}+3 \sqrt{5 \sqrt{48}}-2 \sqrt[4]{75}-4 \sqrt{15 \sqrt{27}}$.
Solution. $$ \begin{aligned} & 2 \sqrt{40 \sqrt{12}}+3 \sqrt{5 \sqrt{48}}-2 \sqrt[4]{75}-4 \sqrt{15 \sqrt{27}}= \\ & =2 \sqrt{40 \sqrt{4 \cdot 3}}+3 \sqrt{5 \sqrt{16 \cdot 3}}-2 \sqrt[4]{25 \cdot 3}-4 \sqrt{15 \sqrt{9 \cdot 3}}= \\ & =2 \sqrt{40 \cdot 2 \sqrt{3}}+3 \sqrt{5 \cdot 4 \sqrt{3}}-2 \sqrt{\sqrt{25 \cdot 3}}-4 \sqrt{15 \cdot 3 \sqrt{3}}= \\ & =2 \sqrt{80 \sqrt{3}}+3 \cdot 2 \sqrt{5 \sqrt{3}}-2 \sqrt{5 \sqrt{3}}-4 \sqrt{45 \sqrt{3}}= \\ & =2 \sqrt{16 \cdot 5 \sqrt{3}}+6 \sqrt{5 \sqrt{3}}-2 \sqrt{5 \sqrt{3}}-4 \sqrt{9 \cdot 5 \sqrt{3}}= \\ & =2 \cdot 4 \sqrt{5 \sqrt{3}}+6 \sqrt{5 \sqrt{3}}-2 \sqrt{5 \sqrt{3}}-4 \cdot 3 \sqrt{5 \sqrt{3}}= \\ & =8 \sqrt{5 \sqrt{3}}+6 \sqrt{5 \sqrt{3}}-2 \sqrt{5 \sqrt{3}}-12 \sqrt{5 \sqrt{3}}=14 \sqrt{5 \sqrt{3}}-14 \sqrt{5 \sqrt{3}}=0 . \end{aligned} $$ Answer: 0.
0
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.126. $(4+\sqrt{15})(\sqrt{10}-\sqrt{6}) \cdot \sqrt{4-\sqrt{15}}=2$.
## Решение. Возведем обе части равенства в квадрат. Тогда $$ \begin{aligned} & (4+\sqrt{15})^{2}(\sqrt{10}-\sqrt{6})^{2}(4-\sqrt{15})=4 \\ & (4+\sqrt{15})(4-\sqrt{15})(4+\sqrt{15})(10-2 \sqrt{60}+6)=4 \\ & \left(4^{2}-(\sqrt{15})^{2}\right)(4+\sqrt{15})(16-2 \sqrt{60})=4 \\ & (16-15)(4+\sqrt{15}) \cdot 2 \cdot(8-\sqrt{60})=4, \quad(4+\sqrt{15})(8-\sqrt{4 \cdot 15})=2, \\ & (4+\sqrt{15})(8-2 \sqrt{15})=2, \quad(4+\sqrt{15}) \cdot 2 \cdot(4-\sqrt{15})=2, \\ & (4+\sqrt{15})(4-\sqrt{15})=1, \quad 4^{2}-(\sqrt{15})^{2}=1, \quad 16-15=1, \quad 1=1 \end{aligned} $$
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.127. $\sqrt{3-\sqrt{5}} \cdot(3+\sqrt{5}) \cdot(\sqrt{10}-\sqrt{2})=8$.
## Solution. Let's square both sides of the equation. Then $$ (\sqrt{3-\sqrt{5}})^{2}(3+\sqrt{5})^{2}(\sqrt{2}(\sqrt{5}-1))^{2}=64 $$ $(3-\sqrt{5})(3+\sqrt{5})^{2} \cdot 2(\sqrt{5}-1)^{2}=64$, $(3-\sqrt{5})(3+\sqrt{5})(3+\sqrt{5})(5-2 \sqrt{5}+1)=32$, $\left(3^{2}-(\sqrt{5})^{2}\right)(3+\sqrt{5})(6-2 \sqrt{5})=32$, $(9-5)(3+\sqrt{5}) \cdot 2 \cdot(3-\sqrt{5})=32,8(3+\sqrt{5})(3-\sqrt{5})=32$, $8\left(3^{2}-(\sqrt{5})^{2}\right)=32, \quad 8(9-5)=32, \quad 8 \cdot 4=32, \quad 32=32$.
32
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.129. $\frac{25 \cdot \sqrt[4]{2}+2 \sqrt{5}}{\sqrt{250}+5 \sqrt[4]{8}}-\sqrt{\frac{\sqrt{2}}{5}+\frac{5}{\sqrt{2}}+2}=-1$.
## Solution. Let's set $$ X=\frac{25 \cdot \sqrt[4]{2}+2 \sqrt{5}}{\sqrt{250}+5 \sqrt[4]{8}}=\frac{\sqrt[4]{5^{8} \cdot 2}+\sqrt[4]{5^{2} \cdot 2^{4}}}{\sqrt[4]{5^{6} \cdot 2^{2}}+\sqrt[4]{5^{4} \cdot 2^{3}}}=\frac{\sqrt[4]{5^{2} \cdot 2}\left(\sqrt[4]{5^{6}}+\sqrt[4]{2^{3}}\right)}{\sqrt[4]{5^{2} \cdot 2} \cdot \sqrt[4]{5^{2} \cdot 2}\left(\sqrt[4]{5^{2}}+\sqrt[4]{2}\right)}= $$ $$ \begin{aligned} & =\frac{\left(\sqrt[4]{5^{2}}\right)^{3}+(\sqrt[4]{2})^{3}}{\sqrt[4]{5^{2} \cdot 2}\left(\sqrt[4]{5^{2}}+\sqrt[4]{2}\right)}=\frac{\left(\sqrt[4]{5^{2}}+\sqrt[4]{2}\right)\left(\left(\sqrt[4]{5^{2}}\right)^{2}-\sqrt[4]{5^{2} \cdot 2}+(\sqrt[4]{2})^{2}\right)}{\sqrt[4]{5^{2} \cdot 2}\left(\sqrt[4]{5^{2}}+\sqrt[4]{2}\right)}= \\ & =\frac{\sqrt[4]{5^{4}}-\sqrt[4]{5^{2} \cdot 2}+\sqrt[4]{2^{2}}}{\sqrt[4]{5^{2} \cdot 2}} \end{aligned} $$ $Y=\sqrt{\frac{\sqrt{2}}{5}+\frac{5}{\sqrt{2}}+2}=\sqrt{\frac{2+2 \cdot 5 \sqrt{2}+25}{5 \sqrt{2}}}=\sqrt{\frac{(5+\sqrt{2})^{2}}{\sqrt{5^{2} \cdot 2}}}=\frac{5+\sqrt{2}}{\sqrt[4]{5^{2} \cdot 2}}$. ## Conclusion $$ \begin{aligned} & X-Y=\frac{5-\sqrt[4]{5^{2} \cdot 2}+\sqrt{2}}{\sqrt[4]{5^{2} \cdot 2}}-\frac{5+\sqrt{2}}{\sqrt[4]{5^{2} \cdot 2}}=\frac{5-\sqrt[4]{5^{2} \cdot 2}+\sqrt{2}-5-\sqrt{2}}{\sqrt[4]{5^{2} \cdot 2}}= \\ & =\frac{-\sqrt[4]{5^{2} \cdot 2}}{\sqrt[4]{5^{2} \cdot 2}}=-1 \end{aligned} $$ We obtained $-1=-1$.
-1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.130. $\frac{\sqrt{\sqrt[4]{27}+\sqrt{\sqrt{3}-1}}-\sqrt{\sqrt[4]{27}-\sqrt{\sqrt{3}-1}}}{\sqrt{\sqrt[4]{27}-\sqrt{2 \sqrt{3}}+1}}=\sqrt{2}$.
## Решение. Возведем обе части равенства в квадрат. Тогда ![](https://cdn.mathpix.com/cropped/2024_05_22_fa9db84b44b98ec0a5c7g-119.jpg?height=166&width=1090&top_left_y=1369&top_left_x=91) $$ \begin{aligned} & \frac{2 \sqrt[4]{27}-2 \sqrt{(\sqrt[4]{27})^{2}-(\sqrt{\sqrt{3}-1})^{2}}}{\sqrt[4]{27}-\sqrt{2 \sqrt{3}+1}}=2, \frac{\sqrt[4]{27}-\sqrt{\sqrt{27}-\sqrt{3}+1}}{\sqrt[4]{27}-\sqrt{2 \sqrt{3}+1}}=1 \end{aligned} $$ $\frac{\sqrt[4]{27}-\sqrt{3 \sqrt{3}-\sqrt{3}+1}}{\sqrt[4]{27}-\sqrt{2 \sqrt{3}+1}}=1, \quad \frac{\sqrt[4]{27}-\sqrt{2 \sqrt{3}+1}}{\sqrt[4]{27}-\sqrt{2 \sqrt{3}+1}}=1, \quad 1=1$.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.135. $\frac{x^{3}-a^{-2 / 3} \cdot b^{-1}\left(a^{2}+b^{2}\right) x+b^{1 / 2}}{b^{3 / 2} \cdot x^{2}} ; x=a^{2 / 3} b^{-1 / 2}$.
## Solution. Domain of definition: $\left\{\begin{array}{l}a \neq 0, \\ b \neq 0 .\end{array}\right.$ $$ \begin{aligned} & \frac{\left(a^{2 / 3} b^{-1 / 2}\right)^{3}-a^{2 / 3} \cdot b^{-1}\left(a^{2}+b^{2}\right)^{2 / 3} b^{-1 / 2}+b^{1 / 2}}{b^{3 / 2} \cdot\left(a^{2 / 3} b^{-1 / 2}\right)^{2}}= \\ & =\frac{a^{2} b^{-3 / 2}-a^{0} b^{-3 / 2}\left(a^{2}+b^{2}\right)+b^{1 / 2}}{b^{3 / 2} a^{4 / 3} b^{-1}}= \\ & =\frac{\frac{a^{2}}{b^{3 / 2}}-\frac{a^{2}+b^{2}}{b^{3 / 2}}+b^{1 / 2}}{b^{1 / 2} a^{4 / 3}}=\frac{\frac{a^{2}-a^{2}-b^{2}+b^{2}}{b^{3 / 2}}}{b^{1 / 2} a^{4 / 3}}=0 \end{aligned} $$ Answer: 0.
0
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.136. $\frac{1-b}{\sqrt{b}} \cdot x^{2}-2 x+\sqrt{b} ; \quad x=\frac{\sqrt{b}}{1-\sqrt{b}}$. 2.136. $\frac{1-b}{\sqrt{b}} \cdot x^{2}-2 x+\sqrt{b} ; \quad x=\frac{\sqrt{b}}{1-\sqrt{b}}$.
## Solution. Domain of definition: $0<b \neq 1$. $$ \begin{aligned} & \frac{1-b}{\sqrt{b}} \cdot\left(\frac{\sqrt{b}}{1-\sqrt{b}}\right)^{2}-2 \cdot \frac{\sqrt{b}}{1-\sqrt{b}}+\sqrt{b}=\frac{(1-\sqrt{b})(1+\sqrt{b})}{\sqrt{b}} \cdot \frac{b}{(1-\sqrt{b})^{2}}-\frac{2 \sqrt{b}}{1-\sqrt{b}}+ \\ & +\sqrt{b}=\frac{(1+\sqrt{b}) \sqrt{b}}{1-\sqrt{b}}-\frac{2 \sqrt{b}}{1-\sqrt{b}}+\sqrt{b}=\frac{\sqrt{b}+b}{1-\sqrt{b}}-\frac{2 \sqrt{b}}{1-\sqrt{b}}+\sqrt{b}= \\ & =\frac{\sqrt{b}+b-2 \sqrt{b}+\sqrt{b}-b}{1-\sqrt{b}}=0 . \end{aligned} $$ Answer: 0.
0
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.141. $\frac{(1-y)(y+2)}{y^{2}(y+1)^{2}} ; \quad y=\frac{\sqrt{3}-1}{2}$.
Solution. $$ \begin{aligned} & \frac{\left(1-\frac{\sqrt{3}-1}{2}\right) \cdot\left(\frac{\sqrt{3}-1}{2}+2\right)}{\left(\frac{\sqrt{3}-1}{2}\right)^{2} \cdot\left(\frac{\sqrt{3}-1}{2}+1\right)^{2}}=\frac{-\left(\frac{\sqrt{3}-1}{2}-1\right) \cdot\left(\frac{\sqrt{3}-1}{2}+2\right)}{\left(\frac{\sqrt{3}-1}{2} \cdot\left(\frac{\sqrt{3}-1}{2}+1\right)\right)^{2}}= \\ & =-\frac{\left(\frac{\sqrt{3}-1}{2}\right)^{2}+\frac{\sqrt{3}-1}{2}-2}{\left(\left(\frac{\sqrt{3}-1}{2}\right)^{2}+\frac{\sqrt{3}-1}{2}\right)^{2}}=-\frac{\frac{4-2 \sqrt{3}}{4}+\frac{\sqrt{3}-1}{2}-2}{\left(\frac{4-2 \sqrt{3}}{4}+\frac{\sqrt{3}-1}{2}\right)^{2}}= \\ & =-\frac{\frac{2-\sqrt{3}}{2}+\frac{\sqrt{3}-1}{2}-2}{\left(\frac{2-\sqrt{3}}{2}+\frac{\sqrt{3}-1}{2}\right)^{2}}=-\frac{\frac{2-\sqrt{3}+\sqrt{3}-1}{2}-2}{\left(\frac{2-\sqrt{3}+\sqrt{3}-1}{2}\right)^{2}}=6 . \end{aligned} $$ Answer: 6.
6
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.145. $\frac{1-a x}{1+a x} \cdot \sqrt{\frac{1+b x}{1-b x}} ; \quad x=\frac{1}{a} \cdot \sqrt{\frac{2 a-b}{b}} ; \quad 0<\frac{b}{2}<a<b$.
Solution. $\frac{1-a \cdot \frac{1}{a} \cdot \sqrt{\frac{2 a-b}{b}}}{1+a \cdot \frac{1}{a} \cdot \sqrt{\frac{2 a-b}{b}}} \cdot \sqrt{\frac{1+b \cdot \frac{1}{a} \cdot \sqrt{\frac{2 a-b}{b}}}{1-b \cdot \frac{1}{a} \cdot \sqrt{\frac{2 a-b}{b}}}}=\frac{1-\sqrt{\frac{2 a-b}{b}}}{1+\sqrt{\frac{2 a-b}{b}}} \times$ $$ \begin{aligned} & \times \sqrt{\frac{1+\frac{1}{a} \cdot \sqrt{\frac{b^{2}(2 a-b)}{b}}}{1-\frac{1}{a} \cdot \sqrt{\frac{b^{2}(2 a-b)}{b}}}}=\frac{1-\frac{\sqrt{2 a-b}}{\sqrt{b}}}{1+\frac{\sqrt{2 a-b}}{\sqrt{b}}} \cdot \sqrt{\frac{\frac{a+\sqrt{b(2 a-b)}}{a}}{\frac{a-\sqrt{b(2 a-b)}}{a}}}=\frac{\sqrt{b}-\sqrt{2 a-b}}{\sqrt{b}+\sqrt{2 a-b}} \times \\ & \times \sqrt{\frac{a+\sqrt{b(2 a-b)}}{a-\sqrt{b(2 a-b)}}}=\frac{(\sqrt{b}-\sqrt{2 a-b})(\sqrt{b}-\sqrt{2 a-b})}{(\sqrt{b}+\sqrt{2 a-b})(\sqrt{b}-\sqrt{2 a-b})} \times \\ & \times \sqrt{\frac{(a+\sqrt{b(2 a-b)})(a+\sqrt{b(2 a-b)})}{(a-\sqrt{b(2 a-b)})(a+\sqrt{b(2 a-b)})}}=\frac{b-2 \sqrt{b(2 a-b)}+2 a-b}{b-2 a+b} \times \\ & \times \sqrt{\frac{(a+\sqrt{b(2 a-b)})^{2}}{a^{2}-b(2 a-b)}}=\frac{2 a-2 \sqrt{b(2 a-b)}}{2 b-2 a} \cdot \sqrt{\frac{(a+\sqrt{b(2 a-b)})^{2}}{a^{2}-2 a b+b^{2}}}= \\ & =\frac{a-\sqrt{b(2 a-b)}}{b-a} \cdot \sqrt{\left(\frac{a+\sqrt{b(2 a-b)}}{a-b}\right)^{2}}=\frac{a-\sqrt{b(2 a-b)}}{b-a} \cdot \frac{a+\sqrt{b(2 a-b)}}{b-a}= \\ & =\frac{a^{2}-b(2 a-b)}{(b-a)^{2}}=\frac{a^{2}-2 a b+b^{2}}{(b-a)^{2}}=\frac{(b-a)^{2}}{(b-a)^{2}}=1 \text {. } \end{aligned} $$ Answer: 1. Rationalize the denominator of the fraction (2.146-2.151):
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.154. What is the value of $\sqrt{25-x^{2}}+\sqrt{15-x^{2}}$, given that the difference $\sqrt{25-x^{2}}-\sqrt{15-x^{2}}=2$ (the value of $x$ does not need to be found)?
Solution. Domain of definition: $\left\{\begin{array}{l}25-x^{2} \geq 0, \\ 15-x^{2} \geq 0\end{array} \Leftrightarrow-\sqrt{15} \leq x \leq \sqrt{15}\right.$. Multiplying both sides of the equation by $\sqrt{25-x^{2}}+\sqrt{15-x^{2}}$, we have $$ \begin{aligned} & \left(\sqrt{25-x^{2}}-\sqrt{15-x^{2}}\right)\left(\sqrt{25-x^{2}}+\sqrt{15-x^{2}}\right)= \\ & =2\left(\sqrt{25-x^{2}}+\sqrt{15-x^{2}}\right) \Leftrightarrow \\ & \Leftrightarrow 25-x^{2}-15+x^{2}=2\left(\sqrt{25-x^{2}}+\sqrt{15-x^{2}}\right) \end{aligned} $$ from which $\sqrt{25-x^{2}}+\sqrt{15-x^{2}}=5$. Answer: 5.
5
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.156. Calculate the sum of the cubes of two numbers if their sum and product are 11 and 21, respectively.
Solution. Let $a+b=11$ and $a b=21$. Then $$ \begin{aligned} & a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)=(a+b)\left((a+b)^{2}-3 a b\right)=11\left(11^{2}-3 \cdot 21\right)= \\ & =11(121-63)=638 \end{aligned} $$ Answer: 638.
638
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.040. $\frac{1-\cos 4 \alpha}{\cos ^{-2} 2 \alpha-1}+\frac{1+\cos 4 \alpha}{\sin ^{-2} 2 \alpha-1}=2$.
Solution. $$ \begin{aligned} & \frac{1-\cos 4 \alpha}{\cos ^{-2} 2 \alpha-1}+\frac{1+\cos 4 \alpha}{\sin ^{-2} 2 \alpha-1}=\frac{1-\cos 4 \alpha}{\frac{1}{\cos ^{2} 2 \alpha}-1}+\frac{1+\cos 4 \alpha}{\frac{1}{\sin ^{2} 2 \alpha}-1}= \\ & =\frac{(1-\cos 4 \alpha) \cos ^{2} 2 \alpha}{1-\cos ^{2} 2 \alpha}+\frac{(1+\cos 4 \alpha) \sin ^{2} 2 \alpha}{1-\sin ^{2} 2 \alpha}=\frac{(1-\cos 4 \alpha) \cos ^{2} 2 \alpha}{\sin ^{2} 2 \alpha}+ \\ & +\frac{(1+\cos 4 \alpha) \sin ^{2} 2 \alpha}{\cos ^{2} 2 \alpha}=\frac{\left(1-\left(1-\sin ^{2} 2 \alpha\right) \cos ^{2} 2 \alpha\right.}{\sin ^{2} 2 \alpha}+\frac{\left(1+2 \cos ^{2} 2 \alpha-1\right) \sin ^{2} 2 \alpha}{\cos ^{2} 2 \alpha}= \\ & =\frac{2 \sin ^{2} 2 \alpha \cos ^{2} 2 \alpha}{\sin ^{2} 2 \alpha}+\frac{2 \cos ^{2} 2 \alpha \sin ^{2} 2 \alpha}{\cos ^{2} 2 \alpha}=2 \cos ^{2} 2 \alpha+2 \sin ^{2} 2 \alpha= \\ & =2\left(\cos ^{2} 2 \alpha+\sin ^{2} 2 \alpha\right)=2 . \end{aligned} $$ The identity is proven.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.081. $\sin ^{2}\left(\alpha-\frac{3 \pi}{2}\right)\left(1-\operatorname{tg}^{2} \alpha\right) \operatorname{tg}\left(\frac{\pi}{4}+\alpha\right) \cos ^{-2}\left(\frac{\pi}{4}-\alpha\right)$.
Solution. $$ \begin{aligned} & \sin ^{2}\left(\alpha-\frac{3 \pi}{2}\right)\left(1-\operatorname{tg}^{2} \alpha\right) \operatorname{tg}\left(\frac{\pi}{4}+\alpha\right) \cos ^{-2}\left(\frac{\pi}{4}-\alpha\right)= \\ & =\left(\sin \left(\frac{3}{2} \pi-\alpha\right)\right)^{2}\left(1-\operatorname{tg}^{2} \alpha\right) \operatorname{tg}\left(\frac{\pi}{4}+\alpha\right) \cdot \frac{1}{\cos ^{2}\left(\frac{\pi}{4}-\alpha\right)}= \\ & =\cos ^{2} \alpha\left(1-\frac{1-\cos 2 \alpha}{1+\cos 2 \alpha}\right) \cdot \frac{1-\cos \left(\frac{\pi}{2}+2 \alpha\right)}{\sin \left(\frac{\pi}{2}+2 \alpha\right)} \cdot \frac{1}{\frac{1+\cos \left(\frac{\pi}{2}-2 \alpha\right)}{2}}= \\ & =\frac{1+\cos 2 \alpha}{2} \cdot \frac{1+\cos 2 \alpha-1+\cos 2 \alpha}{1+\cos 2 \alpha} \cdot \frac{1+\sin 2 \alpha}{\cos 2 \alpha} \cdot \frac{2}{1+\sin 2 \alpha}=2 \end{aligned} $$ Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.088. $\frac{\operatorname{ctg}\left(270^{\circ}-\alpha\right)}{1-\operatorname{tg}^{2}\left(\alpha-180^{\circ}\right)} \cdot \frac{\operatorname{ctg}^{2}\left(360^{\circ}-\alpha\right)-1}{\operatorname{ctg}\left(180^{\circ}+\alpha\right)}$.
## Solution. $\frac{\operatorname{ctg}\left(270^{\circ}-\alpha\right)}{1-\operatorname{tg}^{2}\left(\alpha-180^{\circ}\right)} \cdot \frac{\operatorname{ctg}^{2}\left(360^{\circ}-\alpha\right)-1}{\operatorname{ctg}\left(180^{\circ}+\alpha\right)}=\frac{\operatorname{tg} \alpha}{1-\operatorname{tg}^{2} \alpha} \cdot \frac{\operatorname{ctg}^{2} \alpha-1}{\operatorname{ctg} \alpha}=\frac{2 \operatorname{tg} \alpha}{1-\operatorname{tg}^{2} \alpha} \times$ $\times \frac{\operatorname{ctg}^{2} \alpha-1}{2 \operatorname{ctg} \alpha}=\operatorname{tg} 2 \alpha \operatorname{ctg} 2 \alpha=1$. Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.098. $\sin \left(2 \alpha-\frac{3}{2} \pi\right)+\cos \left(2 \alpha-\frac{8}{3} \pi\right)+\cos \left(\frac{2}{3} \pi+2 \alpha\right)$.
## Solution. Let $$ \begin{aligned} & X=\sin \left(2 \alpha-\frac{3}{2} \pi\right)+\cos \left(2 \alpha-\frac{8}{3} \pi\right)+\cos \left(\frac{2}{3} \pi+2 \alpha\right)= \\ & =-\sin \left(\frac{3}{2} \pi-2 \alpha\right)+\cos \left(\frac{8}{3} \pi-2 \alpha\right)+\cos \left(\frac{2}{3} \pi+2 \alpha\right) \\ & -\sin \left(\frac{3}{2} \pi-2 \alpha\right)=\cos 2 \alpha \\ & \cos \left(\frac{8}{3} \pi-2 \alpha\right)=\cos \left(\frac{9 \pi-\pi}{3}-2 \alpha\right)=\cos \left(3 \pi-\left(\frac{\pi}{3}+2 \alpha\right)\right)= \\ & =-\cos \left(\frac{\pi}{3}+2 \alpha\right)=-\cos \frac{\pi}{3} \cos 2 \alpha+\sin \frac{\pi}{3} \sin 2 \alpha=-\frac{1}{2} \cos 2 \alpha+\frac{\sqrt{3}}{2} \sin 2 \alpha \end{aligned} $$ $$ \cos \left(\frac{2}{3} \pi+2 \alpha\right)=\cos \frac{2}{3} \pi \cos 2 \alpha-\sin \frac{2}{3} \pi \sin 2 \alpha=-\frac{1}{2} \cos 2 \alpha-\frac{\sqrt{3}}{2} \sin 2 \alpha $$ $$ X=\cos 2 \alpha-\frac{1}{2} \cos 2 \alpha+\frac{\sqrt{3}}{2} \sin 2 \alpha-\frac{1}{2} \cos 2 \alpha-\frac{\sqrt{3}}{2} \sin 2 \alpha=0 $$ Answer: 0.
0
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.105. $\frac{\sin 6 \alpha}{\sin 2 \alpha}+\frac{\cos (6 \alpha-\pi)}{\cos 2 \alpha}$.
## Solution. $\frac{\sin 6 \alpha}{\sin 2 \alpha}+\frac{\cos (6 \alpha-\pi)}{\cos 2 \alpha}=\frac{\sin 6 \alpha}{\sin 2 \alpha}+\frac{\cos (\pi-6 \alpha)}{\cos 2 \alpha}=\frac{\sin 6 \alpha}{\sin 2 \alpha}+\frac{\cos 6 \alpha}{\cos 2 \alpha}=$ $=\frac{\sin 6 \alpha \cos 2 \alpha-\cos 6 \alpha \sin 2 \alpha}{\sin 2 \alpha \cos 2 \alpha}=\frac{\sin 4 \alpha}{\sin 2 \alpha \cos 2 \alpha}=\frac{2 \sin 4 \alpha}{2 \sin 2 \alpha \cos 2 \alpha}=$ $=\frac{2 \sin 4 \alpha}{\sin 4 \alpha}=2$. Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.148. $\left(\sin 160^{\circ}+\sin 40^{\circ}\right)\left(\sin 140^{\circ}+\sin 20^{\circ}\right)+\left(\sin 50^{\circ}-\sin 70^{\circ}\right) \times$ $$ \times\left(\sin 130^{\circ}-\sin 110^{\circ}\right)=1 $$
Solution. $\left(\sin 160^{\circ}+\sin 40^{\circ}\right)\left(\sin 140^{\circ}+\sin 20^{\circ}\right)+\left(\sin 50^{\circ}-\sin 70^{\circ}\right)\left(\sin 130^{\circ}-\sin 110^{\circ}\right)=$ $$ \begin{aligned} & =\left(\sin \left(180^{\circ}-20^{\circ}\right)+\sin 40^{\circ}\right)\left(\sin \left(180^{\circ}-40^{\circ}\right)+\sin 20^{\circ}\right)+ \\ & +\left(\sin 50^{\circ}-\sin 70^{\circ}\right)\left(\sin \left(180^{\circ}-50^{\circ}\right)-\sin \left(180^{\circ}-70^{\circ}\right)\right)= \\ & =\left(\sin 20^{\circ}+\sin 40^{\circ}\right)\left(\sin 40^{\circ}+\sin 20^{\circ}\right)+\left(\sin 50^{\circ}-\sin 70^{\circ}\right)\left(\sin 50^{\circ}-\sin 70^{\circ}\right)= \\ & =\left(\sin 20^{\circ}+\sin 40^{\circ}\right)^{2}+\left(\sin 50^{\circ}-\sin 70^{\circ}\right)^{2}=\left(2 \sin 30^{\circ} \cos 10^{\circ}\right)^{2}+ \\ & +\left(2 \cos 60^{\circ} \sin 10^{\circ}\right)^{2}=\left(2 \cdot \frac{1}{2} \cos 10^{\circ}\right)^{2}+\left(2 \cdot \frac{1}{2} \sin 10^{\circ}\right)^{2}=\cos ^{2} 10^{\circ}+\sin ^{2} 10^{\circ}=1 \end{aligned} $$ The equality holds.
1
Algebra
proof
Yes
Yes
olympiads
false
3.153. $\sin ^{2} \frac{\pi}{8}+\cos ^{2} \frac{3 \pi}{8}+\sin ^{2} \frac{5 \pi}{8}+\cos ^{2} \frac{7 \pi}{8}$.
Solution. $$ \begin{aligned} & \sin ^{2} \frac{\pi}{8}+\cos ^{2} \frac{3 \pi}{8}+\sin ^{2} \frac{5 \pi}{8}+\cos ^{2} \frac{7 \pi}{8}= \\ & =\frac{1-\cos \frac{\pi}{4}}{2}+\frac{1+\cos \frac{3 \pi}{4}}{2}+\frac{1-\cos \frac{5 \pi}{4}}{2}+\frac{1+\cos \frac{7 \pi}{4}}{2}= \end{aligned} $$ $$ \begin{aligned} & =\frac{4-\cos \frac{\pi}{4}+\cos \frac{4 \pi-\pi}{4}-\cos \frac{4 \pi+\pi}{4}+\cos \frac{8 \pi-\pi}{4}}{2}= \\ & =\frac{4-\cos \frac{\pi}{4}+\cos \left(\pi-\frac{\pi}{4}\right)-\cos \left(\pi+\frac{\pi}{4}\right)+\cos \left(2 \pi-\frac{\pi}{4}\right)}{2}= \\ & =\frac{4-\cos \frac{\pi}{4}-\cos \frac{\pi}{4}+\cos \frac{\pi}{4}+\cos \frac{\pi}{4}}{2}=\frac{4}{2}=2 \end{aligned} $$ Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.154. $\operatorname{tg} 435^{\circ}+\operatorname{tg} 375^{\circ}$. Translate the above text into English, please retain the original text's line breaks and format, and output the translation result directly. 3.154. $\operatorname{tan} 435^{\circ}+\operatorname{tan} 375^{\circ}$.
## Solution. $$ \begin{aligned} & \tan 435^{\circ}+\tan 375^{\circ}=\tan\left(450^{\circ}-15^{\circ}\right)+\tan\left(360^{\circ}+15^{\circ}\right)= \\ & =\cot 15^{\circ}+\tan 15^{\circ}=\frac{\cos 15^{\circ}}{\sin 15^{\circ}}+\frac{\sin 15^{\circ}}{\cos 15^{\circ}}=\frac{\cos ^{2} 15^{\circ}+\sin ^{2} 15^{\circ}}{\sin 15^{\circ} \cos 15^{\circ}}= \\ & =\frac{1}{\sin 15^{\circ} \cos 15^{\circ}}=\frac{2}{2 \sin 15^{\circ} \cos 15^{\circ}}=\frac{2}{\sin 30^{\circ}}=\frac{2}{\frac{1}{2}}=4 \end{aligned} $$ Answer: 4.
4
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.177. Calculate $(1+\operatorname{ctg} \alpha)(1+\operatorname{ctg} \beta)$, if $\alpha+\beta=\frac{3 \pi}{4}$.
Solution. $$ \begin{aligned} & (1+\operatorname{ctg} \alpha)(1+\operatorname{ctg} \beta)=\left(1+\frac{\cos \alpha}{\sin \alpha}\right)\left(1+\frac{\cos \beta}{\sin \beta}\right)=\frac{\sin \alpha+\cos \alpha}{\sin \alpha} \times \\ & \times \frac{\sin \beta+\cos \beta}{\sin \beta}=\frac{\cos \alpha \cos \beta+\sin \alpha \sin \beta+\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\sin \alpha \sin \beta}= \\ & =\frac{\cos (\alpha-\beta)+\sin (\alpha+\beta)}{\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta))}=\frac{2\left(\cos (\alpha-\beta)+\frac{\sqrt{2}}{2}\right)}{\cos (\alpha-\beta)+\frac{\sqrt{2}}{2}}=2 \end{aligned} $$ Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.178. Calculate $(1+\operatorname{tg} \alpha)(1+\operatorname{tg} \beta)$, if $\alpha+\beta=\frac{\pi}{4}$.
Solution. $$ (1+\operatorname{tg} \alpha)(1+\operatorname{tg} \beta)=\left(1+\frac{\sin \alpha}{\cos \alpha}\right)\left(1+\frac{\sin \beta}{\cos \beta}\right)=\frac{\cos \alpha+\sin \alpha}{\cos \alpha} \times $$ $$ \begin{aligned} & \times \frac{\cos \beta+\sin \beta}{\cos \beta}=\frac{\cos \alpha \cos \beta+\sin \alpha \sin \beta+\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\cos \alpha \cos \beta}= \\ & =\frac{\cos (\alpha-\beta)+\sin (\alpha+\beta)}{\frac{1}{2}(\cos (\alpha-\beta)+\cos (\alpha+\beta))}=\frac{2\left(\cos (\alpha-\beta)+\frac{\sqrt{2}}{2}\right)}{\cos (\alpha-\beta)+\frac{\sqrt{2}}{2}}=2 \end{aligned} $$ Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
4.003. In a shooting competition, for each miss in a series of 25 shots, the shooter received penalty points: for the first miss - one penalty point, and for each subsequent miss - half a point more than for the previous one. How many times did the shooter hit the target, having received 7 penalty points?
Solution. Let $a_{1}=1$ be the first term of the arithmetic progression, $d=\frac{1}{2}$ be its common difference, and $S_{n}=7$ be the sum of the first $n$ terms of this progression, where $n$ is the number of terms. Using formula (4.5), we have $$ \frac{2+(n-1) \cdot \frac{1}{2}}{2} \cdot n=7, n^{2}+3 n-28=0 $$ from which $n_{1}=-7$ (not suitable); $n_{2}=4$. Therefore: the shooter hit the target 21 times. Answer: 21 times.
21
Algebra
math-word-problem
Yes
Yes
olympiads
false
4.012. The sum of the third and ninth terms of an arithmetic progression is 8. Find the sum of the first 11 terms of this progression.
Solution. From the condition, we have $a_{3}+a_{9}=8$. Using formula (4.1), we get $a_{1}+2 d+a_{1}+8 d=8, 2 a_{1}+10 d=8$, and using formula (4.5), we find $S_{11}=\frac{2 a_{1}+10 d}{2} \cdot 11=44$. Answer: 44.
44
Algebra
math-word-problem
Yes
Yes
olympiads
false
4.013. The sum of the first three terms of an increasing arithmetic progression is 15. If 1 is subtracted from the first two terms of this progression, and 1 is added to the third term, the resulting three numbers will form a geometric progression. Find the sum of the first 10 terms of the arithmetic progression.
## Solution. From the condition, we have: $a_{1}-1, a_{1}+d-1, a_{1}+2 d+1 \cdots$ - three consecutive terms of a geometric progression. Using formula (4.5), we find $S_{3}=\frac{2 a_{1}+2 d}{2} \cdot 3=15$ or $a_{1}+d=5$. Using formula (4.7), we get $\left(a_{1}+d-1\right)^{2}=\left(a_{1}-1\right)\left(a_{1}+2 d+1\right)$. Substituting the value $a_{1}=5-d$ into this equation, we obtain $16=(4-d)(6+d), d^{2}+2 d-8=0$. From this, $d_{1}=-4$, $d_{2}=2$. Then $a_{1}^{\prime}=9, a_{2}^{\prime}=5, a_{3}^{\prime}=1 ; a_{1}^{\prime \prime}=3, a_{2}^{\prime \prime}=5, a_{3}^{\prime \prime}=7$. Considering that by the condition $a_{1}<a_{2}<a_{3}$, we get $a_{1}=3, d=2$. Then $$ S_{10}=\frac{2 \cdot 3+2 \cdot 9}{2} \cdot 10=120 $$ Answer: 120.
120
Algebra
math-word-problem
Yes
Yes
olympiads
false
4.015. Calculate $$ \left(1+3^{2}+5^{2}+\ldots+(2 n-1)^{2}+\ldots+199^{2}\right)-\left(2^{2}+4^{2}+6^{2}+(2 n)^{2}+\ldots+200^{2}\right) $$
## Solution. From the condition we have $$ \begin{aligned} & 1+3^{2}+5^{2}+\ldots+(2 n-1)^{2}+\ldots+199^{2}-2^{2}-4^{2}-6^{2}-(2 n)^{2}-\ldots-200^{2}= \\ & =(1-2)^{2}+\left(3^{2}-4^{2}\right)+\left(5^{2}-6^{2}\right)+\ldots+\left((2 n-1)^{2}-(2 n)^{2}\right)+\ldots+\left(199^{2}-200^{2}\right)= \\ & =(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+\ldots+(2 n-1-2 n)(2 n-1+2 n)+ \\ & +\ldots+(199-200)(199+200)=-3-7-11-\ldots-(4 n-1)-\ldots-399 \end{aligned} $$ From here, \(a_{1}=-3, d=-4, a_{n}=-399\). Using the formulas (4.4) and \(n=\frac{a_{n}-a_{1}}{d}+1\), we get $$ S_{n}=\frac{-3-399}{2}\left(\frac{-399+3}{-4}+1\right)=-20100 $$ Answer: -20100.
-20100
Algebra
math-word-problem
Yes
Yes
olympiads
false
4.018. The denominator of the geometric progression is $1 / 3$, the fourth term of this progression is $1 / 54$, and the sum of all its terms is 121/162. Find the number of terms in the progression.
Solution. From the condition we have $\left\{\begin{array}{l}b_{4}=\frac{1}{54}, \\ S_{n}=\frac{121}{162}\end{array}\right.$. Using formulas (4.6) and (4.11), we get $$ \begin{aligned} & b_{4}=b_{1} q^{3}=b_{1}\left(\frac{1}{3}\right)^{3} ; \frac{b_{1}}{27}=\frac{1}{54}, b_{1}=\frac{1}{2} ; \\ & S_{n}=\frac{b_{1}\left(1-q^{n}\right)}{1-q} ; \frac{\frac{1}{2}\left(1-\left(\frac{1}{3}\right)^{n}\right)}{1-\frac{1}{3}}=\frac{121}{162} \Rightarrow 243\left(3^{n}-1\right)=242 \cdot 3^{n} \Rightarrow \\ & \Rightarrow 3^{n}=243, n=5 \end{aligned} $$ Answer: $n=5$.
5
Algebra
math-word-problem
Yes
Yes
olympiads
false
4.028. Find the number of terms in a finite geometric progression, where the first, second, and last terms are 3, 12, and 3072, respectively.
Solution. From the condition we have $b_{1}=3, b_{2}=12, \ldots, b_{n}=3072$. By formula (4.6) we get $$ \left\{\begin{array} { l } { b _ { 1 } = 3 , } \\ { b _ { 1 } q = 1 2 , } \\ { b _ { 1 } q ^ { n - 1 } = 3 0 7 2 } \end{array} \Leftrightarrow \left\{\begin{array}{l} b_{1}=3, \\ q=4, \\ 4^{n-1}=1024 \end{array} \Rightarrow 4^{n-1}=4^{5} \Leftrightarrow n-1=5 \Rightarrow n=6\right.\right. $$ Answer: 6.
6
Algebra
math-word-problem
Yes
Yes
olympiads
false
4.029. Find the sum of all positive even two-digit numbers that are divisible by 3.
## Solution. From the condition, we have $a_{1}=12, a_{n}=96, d=12$. Using formulas (4.4) and (4.5), we get $$ n=\frac{a_{n}-a_{1}}{d}+1 ; n=\frac{96-12}{6}+1=15, S_{n}=\frac{12+96}{2} \cdot 15=810 \text {. } $$ Answer: 810.
810
Number Theory
math-word-problem
Yes
Yes
olympiads
false
4.031. It is known that the interior angles of a certain convex polygon, the smallest of which is $120^{\circ}$, form an arithmetic progression with a difference of $5^{\circ}$. Determine the number of sides of the polygon.
Solution. From the condition, we have $a_{1}=120^{\circ}, d=5^{\circ}$. Using the formulas for the sum of terms of an arithmetic progression (4.5) and the sum of the interior angles of an $n$-sided polygon $S_{n}=180^{\circ}(n-2)$, we get $$ \frac{240^{\circ}+(n-1) 5^{\circ}}{2} \cdot n=180^{\circ}(n-2), n^{2}-25 n+144=0 \Rightarrow $$ $\Rightarrow n_{1}=9, n_{2}=16$ (the latter does not fit, as in this case $\Rightarrow a_{16}=120^{\circ}+5^{\circ} \cdot 15=195^{\circ}$, while the interior angle of a convex $n$-sided polygon is always less than $\left.180^{\circ}\right)$. Answer: 9.
9
Geometry
math-word-problem
Yes
Yes
olympiads
false
6.012. $(x-1)\left(x^{2}-3\right)+(2 x-1)\left(x^{2}+2\right)=3$.
Solution. Domain of definition: $x \in R$. ## We have $$ \begin{aligned} & x^{3}-x^{2}-3 x+3+2 x^{3}-x^{2}+4 x-2=3 \Leftrightarrow \\ & \Leftrightarrow 3 x^{3}-2 x^{2}+x-2=0 \Leftrightarrow 3 x^{3}-3 x^{2}+x^{2}-x+2 x-2=0 \Leftrightarrow \\ & \Leftrightarrow 3 x^{2}(x-1)+x(x-1)+2(x-1)=0 \Leftrightarrow(x-1)\left(3 x^{2}+x+2\right)=0 \\ & x-1=0, x_{1}=1 \text { or } 3 x^{2}+x+2=0, x_{2,3} \in \varnothing(D<0) \end{aligned} $$ Answer: $x=1$.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.014. $\frac{4}{x^{2}+4}+\frac{5}{x^{2}+5}=2$.
## Solution. Domain: $x \in R$. $\frac{2 x^{4}+9 x^{2}}{\left(x^{2}+4\right)\left(x^{2}+5\right)}=0 \Leftrightarrow 2 x^{4}+9 x^{2}=0 \Leftrightarrow x^{2}\left(2 x^{2}+9\right)=0$, $x^{2}=0, x_{1}=0$ or $2 x^{2}+9=0, x_{2,3} \in \varnothing$. Answer: $x=0$.
0
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.031. $\sqrt{3 x+4}+\sqrt{x-4}=2 \sqrt{x}$.
## Solution. Domain of definition: $3 x+4 \geq 0, x-4 \geq 0, x \geq 0 \Rightarrow x \geq 4$. Squaring both sides of the equation, we get $$ \begin{aligned} & 3 x+4+2 \sqrt{(3 x+4)(x-4)}+x-4=4 x \Leftrightarrow \\ & \Leftrightarrow 2 \sqrt{(3 x+4)(x-4)}=0 \end{aligned} $$ Squaring again, we get: $(3 x+4)(x-4)=0$. From this, we have $3 x+4=0$ or $x-4=0, x_{1}=-\frac{4}{3}, x_{2}=4 ; x_{1}=-\frac{4}{3}$ does not satisfy the domain of definition. Checking $x=4$ by direct substitution into the original equation, we get: Answer: $x=4$.
4
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.032. $\sqrt{x+\sqrt{x+11}}+\sqrt{x-\sqrt{x+11}}=4$. 6.032. $\sqrt{x+\sqrt{x+11}}+\sqrt{x-\sqrt{x+11}}=4$.
Solution. Let $\sqrt{x+11}=y \geq 0$ or $x+11=y^{2}$, i.e., $x=y^{2}-11$. Then $$ \sqrt{y^{2}+y-11}+\sqrt{y^{2}-y-11}=4 \text { or } \sqrt{y^{2}+y-11}=4-\sqrt{y^{2}-y-11} $$ Squaring both sides of the equation, we get $$ y^{2}+y-11=16-8 \sqrt{y^{2}-y-11}+y^{2}-y-11, 8 \sqrt{y^{2}-y-11}=16-2 y $$ or $4 \sqrt{y^{2}-y-11}=8-y$. Squaring both sides of the equation again, we find $$ \begin{aligned} & 16 y^{2}-16 y-176=64-16 y+y^{2}, 0<y \leq 8 \Rightarrow \\ & \Rightarrow\left\{\begin{array}{l} 15 y^{2}=240, \\ 0<y \leq 8 \end{array} \text { or } y=4 .\right. \end{aligned} $$ From this, we get $\sqrt{x+11}=4$ or $x+11=16, x=5$. Checking, we confirm that this is a root of the original equation. Answer: $x=5$.
5
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.034. $1+\sqrt{1+x \sqrt{x^{2}-24}}=x$. 6.034. $1+\sqrt{1+x \sqrt{x^{2}-24}}=x$.
Solution. Write the equation as $\sqrt{1+x \sqrt{x^{2}-24}}=x-1$. Squaring both sides of the equation, we get $$ \begin{aligned} & \left\{\begin{array} { l } { 1 + x \sqrt { x ^ { 2 } - 2 4 } = x ^ { 2 } - 2 x + 1 , } \\ { x - 1 \geq 0 } \end{array} \Leftrightarrow \left\{\begin{array}{l} x \sqrt{x^{2}-24}=x^{2}-2 x, \\ x \geq 1 \end{array}\right.\right. \\ & \Leftrightarrow\left\{\begin{array}{l} \sqrt{x^{2}-24}=x-2, \\ x \geq 1 \end{array}\right. \\ & \Rightarrow x^{2}-24=x^{2}-4 x+4 \text { or } 4 x=28 ; x=7 . \end{aligned} $$ Checking $x=7$ by direct substitution into the original equation, we have: Answer: $x=7$.
7
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.037. $\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt{x}}=2$.
Solution. Domain of definition: $x \geq 0$. Raising both sides of the equation to the third power, we get $$ \begin{aligned} & 1+\sqrt{x}+3 \sqrt[3]{(1+\sqrt{x})^{2}(1-\sqrt{x})}+3 \sqrt[3]{(1+\sqrt{x})(1-\sqrt{x})^{2}}+1-\sqrt{x}=8 \Leftrightarrow \\ & \Leftrightarrow 3 \sqrt[3]{(1+\sqrt{x})^{2}(1-\sqrt{x})}+3 \sqrt[3]{(1+\sqrt{x})(1-\sqrt{x})^{2}}=6 \Leftrightarrow \\ & \Leftrightarrow 3 \sqrt[3]{(1+\sqrt{x})(1-\sqrt{x})}(\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt{x}})=6 \end{aligned} $$ Since $\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt{x}}=2$, the equation becomes: $3 \sqrt[3]{(1+\sqrt{x})(1-\sqrt{x})} \cdot 2=6 \Leftrightarrow \sqrt[3]{(1+\sqrt{x})(1-\sqrt{x})}=1 \Leftrightarrow \sqrt[3]{1-x}=1 \Leftrightarrow$ $\Leftrightarrow 1-x=1, x=0$. Answer: $x=0$.
0
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.040. $\sqrt[3]{24+\sqrt{x}}-\sqrt[3]{5+\sqrt{x}}=1$. Translate the above text into English, please retain the original text's line breaks and format, and output the translation result directly. 6.040. $\sqrt[3]{24+\sqrt{x}}-\sqrt[3]{5+\sqrt{x}}=1$.
## Solution. Domain of definition: $x \geq 0$. Raising both sides of the equation to the third power, we get $$ \begin{aligned} & 24+\sqrt{x}-3 \sqrt[3]{(24+\sqrt{x})^{2}(5+\sqrt{x})}+3 \sqrt[3]{(24+\sqrt{x})(5+\sqrt{x})^{2}}-5-\sqrt{x}=1 \Leftrightarrow \\ & \Leftrightarrow-3 \sqrt[3]{(24+\sqrt{x})}(5+\sqrt{x})(\sqrt[3]{24+\sqrt{x}}-\sqrt[3]{5+\sqrt{x}})=-18 \end{aligned} $$ Since $\sqrt[3]{24+\sqrt{x}}-\sqrt[3]{5+\sqrt{x}}=1$ by the condition, we obtain $\sqrt[3]{(24+\sqrt{x})}(5+\sqrt{x})=6 \Leftrightarrow(24+\sqrt{x})(5+\sqrt{x})=216$, $(\sqrt{x})^{2}+29 \sqrt{x}-96=0$. From which $\sqrt{x}=3, \sqrt{x}=-3$ (not suitable). Therefore, $x=9$. Answer: $x=9$.
9
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.049. $\sqrt{x^{3}+8}+\sqrt[4]{x^{3}+8}=6$. 6.049. $\sqrt{x^{3}+8}+\sqrt[4]{x^{3}+8}=6$.
## Solution. Domain of definition: $x^{3}+8 \geq 0 \Leftrightarrow x^{3} \geq-8 \Leftrightarrow x \geq-2$. Let $\sqrt[4]{x^{3}+8}=y, y>0$, and the equation becomes $y^{2}+y=6 \Leftrightarrow$ $\Leftrightarrow y^{2}+y-6=0$, from which $y_{1}=-3, y_{2}=2 ; y_{1}=-3$ is not suitable. Then $\sqrt[4]{x^{3}+8}=2, x^{3}+8=16, x^{3}=8, x=2$. Answer: $x=2$.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.052. $$ \frac{1}{x-\sqrt{x^{2}-x}}-\frac{1}{x+\sqrt{x^{2}-x}}=\sqrt{3} $$
## Solution. Domain of definition: $\left\{\begin{array}{l}x^{2}-x \geq 0, \\ x \neq 0\end{array} \Leftrightarrow\left\{\begin{array}{l}x(x-1) \geq 0, \\ x \neq 0\end{array} \Leftrightarrow x \in(-\infty ; 0) \cup[1 ;+\infty)\right.\right.$. From the condition we get $$ \begin{aligned} & \frac{x+\sqrt{x^{2}-x}-x+\sqrt{x^{2}-x}}{x^{2}-x^{2}+x}=\sqrt{3} \Leftrightarrow \frac{2 \sqrt{x^{2}-x}}{x}=\sqrt{3} \Leftrightarrow \\ & \Leftrightarrow \frac{2 \sqrt{x} \sqrt{x-1}}{x}=\sqrt{3} \Leftrightarrow \frac{2 \sqrt{x-1}}{\sqrt{x}}=\sqrt{3}(x \neq 0) \end{aligned} $$ Squaring both sides of the equation, we get $\frac{4 x-4}{x}=3$ or $x=4$. By verification, we confirm that $x=4$ is a root of the last equation with radicals. Answer: $x=4$.
4
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.053. $\frac{\sqrt[3]{x^{4}}-1}{\sqrt[3]{x^{2}}-1}-\frac{\sqrt[3]{x^{2}}-1}{\sqrt[3]{x}+1}=4$
## Solution. Domain of definition: $x \neq \pm 1$. Let $\sqrt[3]{x}=y, y \neq \pm 1$. The equation in terms of $y$ becomes $$ \begin{aligned} & \frac{y^{4}-1}{y^{2}-1}-\frac{y^{2}-1}{y+1}=4 \Leftrightarrow \frac{\left(y^{2}-1\right)\left(y^{2}+1\right)}{y^{2}-1}-\frac{(y-1)(y+1)}{y+1}=4 \Leftrightarrow \\ & \Leftrightarrow y^{2}+1-y+1=4 \Leftrightarrow y^{2}-y-2=0 \end{aligned} $$ from which we find $y_{1}=-1, y_{2}=2$. Then $\sqrt[3]{x}=-1, x_{1}=-1$, or $\sqrt[3]{x}=2$, $x_{2}=8 ; x_{1}=-1$ does not satisfy the domain of definition. Answer: $x=8$.
8
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.054. $\sqrt{5+\sqrt[3]{x}}+\sqrt{5-\sqrt[3]{x}}=\sqrt[3]{x}$.
Solution. Domain of definition: $\left\{\begin{array}{l}5+\sqrt[3]{x} \geq 0 \\ 5-\sqrt[3]{x} \geq 0\end{array} \Leftrightarrow -125 \leq x \leq 125\right.$. By squaring both sides of the equation, we get the equation $$ \begin{aligned} & 5+\sqrt[3]{x}+2 \sqrt{(5+\sqrt[3]{x})(5-\sqrt[3]{x})}+5-\sqrt[3]{x}=\sqrt[3]{x^{2}} \Leftrightarrow \\ & \Leftrightarrow 2 \sqrt{25-\sqrt[3]{x^{2}}}=\sqrt[3]{x^{2}}-10 \Rightarrow 100-4 \sqrt[3]{x^{2}}=\sqrt[3]{x^{4}}-20 \sqrt[3]{x^{2}}+100 \Leftrightarrow \\ & \Leftrightarrow \sqrt[3]{x^{4}}-16 \sqrt[3]{x^{2}}=0 \Leftrightarrow \sqrt[3]{x^{2}}\left(\sqrt[3]{x^{2}}-16\right)=0 \end{aligned} $$ from which $\sqrt[3]{x^{2}}=0, x_{1}=0$, or $\sqrt[3]{x^{2}}-16=0, \sqrt[3]{x^{2}}=16, x_{2}=64$. Upon verification, $x_{1}=0$ does not satisfy the original equation. Answer: $x=64$.
64
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.055. $\sqrt{x \sqrt[5]{x}}+\sqrt[5]{x \sqrt{x}}=56$. 6.055. $\sqrt{x \sqrt[5]{x}}+\sqrt[5]{x \sqrt{x}}=56$.
## Solution. Domain of definition: $x \geq 0$. From the condition we have $$ x^{\frac{6}{10}}-x^{\frac{3}{10}}=56 \Leftrightarrow\left(x^{\frac{3}{10}}\right)^{2}-x^{\frac{3}{10}}-56=0 $$ Let $x^{\frac{3}{10}}=y \geq 0$. The equation in terms of $y$ becomes $y^{2}-y-56=0$, from which $y_{1}=-7$ or $y_{2}=8 ; y_{1}=-7<0$ is not valid. Therefore, $x^{\frac{3}{10}}=8$. Hence, $x=8^{\frac{10}{3}}, x=\left(2^{3}\right)^{\frac{10}{3}}, x=2^{10}=1024$. Answer: $x=1024$.
1024
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.058. $\sqrt[3]{\frac{5-x}{x+3}}+\sqrt[7]{\frac{x+3}{5-x}}=2$.
Solution. Domain of definition: $\left\{\begin{array}{l}x \neq-3, \\ x \neq 5\end{array}\right.$ Let $\sqrt[7]{\frac{5-x}{x+3}}=z, z \neq 0$. The equation in terms of $z$ becomes $z+\frac{1}{z}=2 \Leftrightarrow z^{2}-2 z+1=0 \Leftrightarrow(z-1)^{2}=0 \Leftrightarrow z-1=0, z=1$. Then $\sqrt[7]{\frac{5-x}{x+3}}=1 \Leftrightarrow \frac{5-x}{x+3}=1 ; x=1$. Answer: $x=1$.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.061. $2 \sqrt[3]{x}+5 \sqrt[6]{x}-18=0$.
## Solution. Domain of definition: $x \geq 0$. Let $\sqrt[6]{x}=y \geq 0$. The equation in terms of $y$ becomes $2 y^{2}+5 y-18=0$, from which we find $y_{1}=-\frac{9}{2}, y_{2}=2 ; y_{1}=-\frac{9}{2}<0$ is not valid. Then $\sqrt[6]{x}=2, x=2^{6}=64$. Answer: $x=64$.
64
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.063. $\frac{\sqrt{x}+\sqrt[3]{x}}{\sqrt{x}-\sqrt[3]{x}}=3$.
## Solution. Domain of definition: $0<x \neq 1$. Rewrite the equation as $$ \frac{\sqrt[6]{x^{3}}+\sqrt[6]{x^{2}}}{\sqrt[6]{x^{3}}-\sqrt[6]{x^{2}}}=3 \Leftrightarrow \frac{\sqrt[6]{x^{3}}(\sqrt[6]{x}+1)}{\sqrt[6]{x^{3}}(\sqrt[6]{x}-1)}=3 \Leftrightarrow \frac{\sqrt[6]{x}+1}{\sqrt[6]{x}-1}=3 \Leftrightarrow $$ $$ \begin{aligned} & \Leftrightarrow \frac{\sqrt[6]{x}+1}{\sqrt[6]{x}-1}-3=0, x \neq 1 \Leftrightarrow \frac{\sqrt[6]{x}+1-3 \sqrt[6]{x}+3}{\sqrt[6]{x}-1}=0 \Leftrightarrow \\ & \Leftrightarrow-2 \sqrt[6]{x}+4=0 \Leftrightarrow \sqrt[6]{x}=2, x=2^{6}=64 \end{aligned} $$ Answer: $x=64$.
64
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.064. $\sqrt{x+2}+\sqrt{3 x+8}=\sqrt{2 x+6}$. 6.064. $\sqrt{x+2}+\sqrt{3 x+8}=\sqrt{2 x+6}$.
Solution. Domain of definition: $\left\{\begin{array}{l}x+2 \geq 0, \\ 3 x+8 \geq 0, \\ 2 x+6 \geq 0\end{array} \Leftrightarrow x \geq-2\right.$. Write the equation in the form $\sqrt{x+2}-\sqrt{2 x+6}=-\sqrt{3 x+8}$ and square both sides: $$ \begin{aligned} & x+2-2 \sqrt{(x+2)(2 x+6)}+2 x+6=3 x+8 \Leftrightarrow \\ & \Leftrightarrow \sqrt{(x+2)(2 x+6)}=0 \end{aligned} $$ from which $x+2=0, x_{1}=-2$, or $2 x+6=0, x_{2}=-3$ - does not satisfy the domain of definition. By checking, we confirm that $x=-2$ is a root of the given equation. Answer: $x=-2$.
-2
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.065. $\sqrt{2 x+5}+\sqrt{5 x+6}=\sqrt{12 x+25}$.
Solution. Domain of definition: $\left\{\begin{array}{l}2 x+5 \geq 0, \\ 5 x+6 \geq 0, \\ 12 x+25 \geq 0\end{array} \Leftrightarrow x \geq-\frac{6}{5}\right.$. By squaring both sides of the equation, we have $$ \begin{aligned} & 2 x+5+2 \sqrt{(2 x+5)(5 x+6)}+5 x+6=12 x+25 \Leftrightarrow \\ & \Leftrightarrow 2 \sqrt{(2 x+5)(5 x+6)}=5 x+14 \Rightarrow \\ & \Rightarrow 4(2 x+5)(5 x+6)=25 x^{2}+140 x+196 \Leftrightarrow 15 x^{2}+8 x-76=0 \end{aligned} $$ from which $x_{1}=-\frac{38}{15}, x_{2}=2 ; x_{1}=-\frac{38}{15}$ does not satisfy the domain of definition. By checking, we confirm that $x=2$ is a root of the equation. Answer: $x=2$.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.126. For what integer value of $k$ is one of the roots of the equation $4 x^{2}-(3 k+2) x+\left(k^{2}-1\right)=0$ three times smaller than the other?
Solution. From the condition, by Vieta's theorem, we have ![](https://cdn.mathpix.com/cropped/2024_05_22_fa9db84b44b98ec0a5c7g-338.jpg?height=326&width=956&top_left_y=913&top_left_x=152) where $k \in \mathbb{Z}$. From this, $37 k^{2}-36 k-76=0, k_{1}=2, k_{2}=-\frac{38}{37} \notin \mathbb{Z}$ (does not fit). Answer: $k=2$.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.129. For what value of $a$ do the equations $x^{2}+a x+8=0$ and $x^{2}+x+a=0$ have a common root?
## Solution. Let $x_{1}$ be the common root, then $$ \left\{\begin{array}{l} x_{1}^{2}+a x_{1}+8=0, \\ x_{1}^{2}+x_{1}+a=0 \end{array} \Rightarrow a x_{1}-x_{1}+8-a=0, x_{1}=\frac{a-8}{a-1}\right. $$ From the second equation of the system, we have $$ \begin{aligned} & \left(\frac{a-8}{a-1}\right)^{2}+\left(\frac{a-8}{a-1}\right)+a=0, \frac{a^{3}-24 a+72}{(a-1)^{2}}=0 \Leftrightarrow\left\{\begin{array}{l} a^{3}-24 a+72=0, \\ a \neq 1, \end{array}\right. \\ & a^{3}+216-216-24 a+72=0,\left(a^{3}+216\right)-24 a-144=0, \\ & \left(a^{3}+6^{3}\right)-24(a+6)=0 \\ & (a+6)\left(a^{2}-6 a+36\right)-24(a+6)=0 \\ & (a+6)\left(a^{2}-6 a+12\right)=0 \end{aligned} $$ from which $a=-6$. For the quadratic equation, $D<0, \varnothing$. Answer: $a=-6$.
-6
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.130. In the equation $x^{2}-2 x+c=0$, determine the value of $c$ for which its roots $x_{1}$ and $x_{2}$ satisfy the condition $7 x_{2}-4 x_{1}=47$.
Solution. From the condition by Vieta's theorem we have $\left\{\begin{array}{l}x_{1}+x_{2}=2, \\ x_{1} \cdot x_{2}=c, \\ 7 x_{2}-4 x_{1}=47 .\end{array}\right.$ From here, $x_{2}=2-x_{1}$ and we obtain $$ \left\{\begin{array} { l } { x _ { 1 } ( 2 - x _ { 1 } ) = c } \\ { 7 ( 2 - x _ { 1 } ) - 4 x _ { 1 } = 4 7 } \end{array} \Leftrightarrow \left\{\begin{array}{l} x_{1}\left(2-x_{1}\right)=c \\ x_{1}=-3 \end{array}\right.\right. $$ Thus, $c=-15$. Answer: $c=-15$.
-15
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.131. Without solving the equation $x^{2}-(2 a+1) x+a^{2}+2=0$, find the value of $a$ for which one of the roots is twice the other.
Solution. From the condition, by Vieta's theorem, we have $$ \left\{\begin{array} { l } { x _ { 1 } + x _ { 2 } = 2 a + 1 , } \\ { x _ { 1 } \cdot x _ { 2 } = a ^ { 2 } + 2 , } \\ { x _ { 2 } = 2 x _ { 1 } } \end{array} \Leftrightarrow \left\{\begin{array} { l } { 3 x _ { 1 } = 2 a + 1 , } \\ { 2 x _ { 1 } ^ { 2 } = a ^ { 2 } + 2 } \\ { x _ { 2 } = 2 x _ { 1 } } \end{array} \Leftrightarrow \left\{\begin{array}{l} x_{1}=\frac{2 a+1}{3} \\ x_{1}^{2}=\frac{a^{2}+2}{2} \\ x_{2}=2 x_{1} \end{array}\right.\right.\right. $$ From here, $$ \begin{aligned} & \left(\frac{2 a+1}{3}\right)^{2}=\frac{a^{2}+2}{2} \Leftrightarrow \frac{4 a^{2}+4 a+1}{9}=\frac{a^{2}+2}{2} \Leftrightarrow \\ & \Leftrightarrow a^{2}-8 a+16=0 \Leftrightarrow(a-4)^{2}=0 \end{aligned} $$ Thus, $a=4$. Answer: $a=4$.
4
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.134. For what integer value of $b$ do the equations $2 x^{2}+(3 b-1) x-3=0$ and $6 x^{2}-(2 b-3) x-1=0$ have a common root?
Solution. Let $x_{1}$ be the common root. Then $$ \begin{aligned} & \left\{\begin{array} { l } { 2 x _ { 1 } ^ { 2 } + ( 3 b - 1 ) x _ { 1 } - 3 = 0 , } \\ { 6 x _ { 1 } ^ { 2 } - ( 2 b - 3 ) x _ { 1 } - 1 = 0 } \end{array} \Leftrightarrow \left\{\begin{array}{l} 6 x^{2}+(9 b-3) x-9=0, \\ 6 x^{2}-(2 b-3) x_{1}-1=0 \end{array}\right.\right. \\ & \Leftrightarrow(9 b-3) x+(2 b-3) x-9+1=0, \quad x=\frac{8}{11 b-6} . \end{aligned} $$ From the first equation we have $2\left(\frac{8}{11 b-6}\right)^{2}+(3 b-1)\left(\frac{8}{11 b-6}\right)-3=0,99 b^{2}-164 b-68=0$, $b_{1}=-\frac{34}{99}, b_{2}=2$ $b_{1}=-\frac{34}{99}$ is not an integer value. Answer: $b=2$.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
7.001. $\sqrt{25^{\frac{1}{\log _{6} 5}}+49^{\frac{1}{\log _{8} 7}}}$
## Solution. $$ \begin{aligned} & \sqrt{\frac{1}{25^{\log _{6} 5}}+49^{\frac{1}{\log _{8} 7}}}=\sqrt{5^{2 \log _{5} 6}+7^{2 \log _{7} 8}}=\sqrt{5^{\log _{5} 6^{2}}+7^{\log _{7} 8^{2}}}= \\ & =\sqrt{6^{2}+8^{2}}=10 \end{aligned} $$ Answer: 10.
10
Algebra
math-word-problem
Yes
Yes
olympiads
false
7.002. $81^{\frac{1}{\log _{5} 3}}+27^{\log _{9} 36}+3^{\frac{4}{\log _{7} 9}}$.
Solution. $81^{\frac{1}{\log _{5} 3}}+27^{\log _{9} 36}+3^{\frac{4}{\log _{7} 9}}=3^{4 \log _{3} 5}+3^{\frac{3}{2^{2} \log _{3} 36}}+3^{\frac{4}{2} \log _{3} 7}=5^{4}+36^{\frac{3}{2}}+49=$ $=625+216+49=890$. Answer: 890.
890
Algebra
math-word-problem
Yes
Yes
olympiads
false
7.003. $-\log _{2} \log _{2} \sqrt{\sqrt[4]{2}}$. Translate the above text into English, keeping the original text's line breaks and format, and output the translation result directly. 7.003. $-\log _{2} \log _{2} \sqrt{\sqrt[4]{2}}$.
Solution. $$ -\log _{2} \log _{2} \sqrt{\sqrt[4]{2}}=-\log _{2} \log _{2} 2^{\frac{1}{8}}=-\log _{2} \frac{1}{8} \log _{2} 2=-\log _{2} 2^{-3}=3 $$ Answer: 3.
3
Algebra
math-word-problem
Yes
Yes
olympiads
false
7.004. $-\log _{3} \log _{3} \sqrt[3]{\sqrt[3]{3}}$. 7.004. $-\log _{3} \log _{3} \sqrt[3]{\sqrt[3]{3}}$.
## Solution. $-\log _{3} \log _{3} \sqrt[3]{\sqrt[3]{3}}=-\log _{3} \log _{3} 3^{\frac{1}{9}}=-\log _{3} \frac{1}{9} \log _{3} 3=-\log _{3} 3^{-2}=2$. Answer: 2. ![](https://cdn.mathpix.com/cropped/2024_05_22_fa9db84b44b98ec0a5c7g-351.jpg?height=252&width=684&top_left_y=416&top_left_x=74) ## Solution. ![](https://cdn.mathpix.com/cropped/2024_05_22_fa9db84b44b98ec0a5c7g-351.jpg?height=240&width=596&top_left_y=782&top_left_x=76) $=\frac{\left(\left(3^{3}\right)^{\log _{3} 2}+5^{\log _{5} 27^{2}}\right)\left(\left(9^{2}\right)^{\log _{9} 4}-\left(2^{3}\right)^{\log _{2} 23^{2}}\right)}{3+5^{\log _{5} 24^{2}} \cdot 3}=$ $=\frac{\left(3^{\log _{3} 2^{3}}+5^{\log _{5} 7}\right)\left(9^{\log _{9} 4^{2}}-2^{\log _{2} 3^{3}}\right)}{3+5^{\log _{5} 4} \cdot 3}=\frac{\left(2^{3}+7\right)\left(4^{2}-3^{3}\right)}{3+4 \cdot 3}=$ $=\frac{15 \cdot(-11)}{15}=-11$. Answer: -11.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
7.007. $\left(81^{\frac{1}{4}-\frac{1}{\log _{9} 4}}+25^{\log _{125} 8}\right) \cdot 49^{\log _{7} 2}$.
Solution. $$ \begin{aligned} & \left(81^{\frac{1}{4}-\frac{1}{2} \log _{9} 4}+25^{\log _{125} 8}\right) \cdot 49^{\log _{7} 2}=\left(\frac{81^{\frac{1}{4}}}{\left(9^{2}\right)^{\frac{1}{2} \log _{9} 4}}+5^{2 \log _{5} 32^{3}}\right) \cdot 7^{2 \log _{7} 2}= \\ & =\left(\frac{3}{4}+4\right) \cdot 4=19 \end{aligned} $$ Answer: 19.
19
Algebra
math-word-problem
Yes
Yes
olympiads
false
7.008. $\frac{81^{\frac{1}{\log _{5} 9}}+3^{\frac{3}{\log _{\sqrt{6}} 3}}}{409} \cdot\left((\sqrt{7})^{\frac{2}{\log _{25} 7}}-125^{\log _{25} 6}\right)$
## Решение. $$ \frac{81^{\frac{1}{\log _{5} 9}}+3^{\frac{3}{\log _{\sqrt{6}}}}}{409} \cdot\left((\sqrt{7})^{\frac{2}{\log _{25} 7}}-125^{\log _{25} 6}\right)= $$ $=\frac{9^{2 \log _{9} 5}+3^{3 \log _{3} \sqrt{6}}}{409} \cdot\left(\left(7^{\frac{1}{2}}\right)^{2 \log _{7} 25}-5^{3 \log _{5} 26}\right)=\frac{9^{\log _{9} 5^{2}}+3^{\log _{3}(\sqrt{6})}}{409} \times$ $\times\left(7^{\log _{7} 25}-5^{\log _{5} 6^{\frac{3}{2}}}\right)=\frac{\left(25+6^{\frac{3}{2}}\right)\left(25-6^{\frac{3}{2}}\right)}{409}=\frac{625-216}{409}=1$. Omвem: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
7.009. $\left(N^{\frac{1}{\log _{2} N}} \cdot N^{\frac{1}{\log _{4} N}} \cdot N^{\frac{1}{\log _{8} N}} \cdots N^{\frac{1}{\log _{64} N}}\right)^{\frac{1}{15}}$ (the bases of the logarithms are consecutive natural powers of the number 2).
## Solution. $$ \begin{aligned} & \left(N^{\frac{1}{\log _{2} N}} \cdot N^{\frac{1}{\log _{4} N}} \cdot N^{\frac{1}{\log _{8} N}} \cdots N^{\frac{1}{\log _{512} N}}\right)^{\frac{1}{15}}= \\ & =\left(N^{\log _{N} 2} \cdot N^{\log _{N} 4} \cdot N^{\log _{N} 8} \cdots N^{\log _{N} 512}\right)^{\frac{1}{15}}= \\ & =(2 \cdot 4 \cdot 8 \cdots 512)^{\frac{1}{15}}=\left(2^{1} \cdot 2^{2} \cdot 2^{3} \cdots 2^{9}\right)^{\frac{1}{15}}=\left(2^{1+2+3+\ldots+9}\right)^{\frac{1}{15}} \end{aligned} $$ The expression $S_{n}=1+2+3+\ldots+9$ is the sum of the terms of an arithmetic progression, where $a_{1}=1, d=1, a_{n}=9, n=9$. Then $S_{n}=\frac{a_{1}+a_{n}}{2} n=$ $=\frac{1+9}{2} \cdot 9=45$. Therefore, $\left(2^{45}\right)^{\frac{1}{15}}=2^{3}=8$. Answer: 8.
8
Algebra
math-word-problem
Yes
Yes
olympiads
false
7.021. $3 \log _{5} 2+2-x=\log _{5}\left(3^{x}-5^{2-x}\right)$. 7.021. $3 \log _{5} 2+2-x=\log _{5}\left(3^{x}-5^{2-x}\right)$.
Solution. Domain of definition: $3^{x}-5^{2-x}>0$. $\log _{5} 8+2 \log _{5} 5-\log _{5}\left(3^{x}-25 \cdot 5^{-x}\right)=x \Leftrightarrow \log _{5} \frac{8 \cdot 25}{3^{x}-25 \cdot 5^{-x}}=x$, from which $\frac{200}{3^{x}-25 \cdot 5^{-x}}=5^{x} \Leftrightarrow 15^{x}=15^{2}$. Therefore, $x=2$. Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
7.028. $5^{2\left(\log _{5} 2+x\right)}-2=5^{x+\log _{5} 2}$.
## Solution. $\left(5^{x+\log _{5} 2}\right)^{2}-5^{x+\log _{5} 2}-2=0$; solving this equation as a quadratic equation in terms of $5^{x+\log _{5} 2}$, we find $5^{x+\log _{5} 2}=-1$ and $5^{x+\log _{5} 2}=2 ; 5^{x+\log _{5} 2}=-1$ has no solutions. Thus, $$ 5^{x+\log _{5} 2}=2 \Rightarrow \log _{5} 5^{x+\log _{5} 2}=\log _{5} 2, x+\log _{5} 2=\log _{5} 2 $$ from which $x=0$. Answer: 0.
0
Algebra
math-word-problem
Yes
Yes
olympiads
false