hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
4d7f114e68131c13a4cb1a17e92d1704deb5cf0d
349
agda
Agda
Chapter1/#9.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
Chapter1/#9.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
Chapter1/#9.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
module #9 where {- Define the type family Fin : N → U mentioned at the end of §1.3, and the dependent function fmax : ∏(n:N) Fin(n + 1) mentioned in §1.4. -} open import Data.Nat data Fin : ℕ → Set where FZ : {n : ℕ} → Fin (suc n) FS : {n : ℕ} → Fin n → Fin (suc n) fmax : (n : ℕ) → Fin (n + 1) fmax zero = FZ fmax (suc n) = FS (fmax n)
20.529412
84
0.570201
fbc43fc9f2459bfecfdfeb5430f78d9033bc69d6
1,664
agda
Agda
src/Subset.agda
acallesalda/setform
4ab3c1a8bfd679cb3ced25500aa8103cb6c4b1f4
[ "MIT" ]
3
2019-08-02T23:13:13.000Z
2022-01-06T20:04:13.000Z
src/Subset.agda
acallesalda/setform
4ab3c1a8bfd679cb3ced25500aa8103cb6c4b1f4
[ "MIT" ]
null
null
null
src/Subset.agda
acallesalda/setform
4ab3c1a8bfd679cb3ced25500aa8103cb6c4b1f4
[ "MIT" ]
null
null
null
-- Properties involving susbets and membership -- between sets. module Subset where open import Logic open import ZAxioms memberEq : (x y z : 𝓢) → x ∈ y ∧ y ≡ z → x ∈ z memberEq x y z (x₁ , x₂) = subs _ x₂ x₁ -- Theorem 1, p. 21 (Suppes 1960) notInEmpty : ∀ x → x ∉ ∅ notInEmpty x h = (proj₂ _ empt) x h prop-∅ : (x A : 𝓢) → x ∈ A → A ≢ ∅ prop-∅ x A x∈A h = notInEmpty x (subs _ h x∈A) prop₂-∅ : (x : 𝓢) → ∃ (λ y → y ∈ x) → x ≢ ∅ prop₂-∅ x h₁ h₂ = cont _ (h₂ , prop-∅ _ _ aux-p) where aux : 𝓢 aux = proj₁ h₁ aux-p : aux ∈ x aux-p = proj₂ _ h₁ -- Theorem 3, p. 22 (Suppes 1960) subsetOfItself : ∀ {x} → x ⊆ x subsetOfItself _ t∈x = t∈x -- Theorem 4, p. 22 (Suppes 1960) equalitySubset : (x y : 𝓢) → x ⊆ y ∧ y ⊆ x → x ≡ y equalitySubset x y (x⊆y , y⊆x) = ext x y ((x⊆y x) , (y⊆x x)) -- Theorem 6, p. 23 (Suppes 1960) trans-⊆ : (x y z : 𝓢) → x ⊆ y ∧ y ⊆ z → x ⊆ z trans-⊆ x y z (x⊆y , y⊆z) t t∈x = y⊆z t (x⊆y t t∈x) -- Theorem 7, p. 23 (Suppes 1960) notContainedInItself : ∀ {x} → ¬ (x ⊂ x) notContainedInItself (_ , x≢x) = x≢x refl -- Theorem 8, p. 23 (Suppes 1960) nonSymmetry-⊂ : (x y : 𝓢) (p : x ⊂ y) → ¬ (y ⊂ x) nonSymmetry-⊂ x y (x⊆y , x≢y) (y⊆x , _) = x≢y (equalitySubset x y (x⊆y , y⊆x)) -- Theorem 10, p. 23 (Suppes 1960) ⊂→⊆ : ∀ {x y} → x ⊂ y → x ⊆ y ⊂→⊆ (x⊆y , _) z z∈x = x⊆y z z∈x prop-⊆ : (x A B : 𝓢) → x ∈ A → A ⊆ B → x ∈ B prop-⊆ x A B x₁ x₂ = i x₁ where i : x ∈ A → x ∈ B i = x₂ _ -- References -- -- Suppes, Patrick (1960). Axiomatic Set Theory. -- The University Series in Undergraduate Mathematics. -- D. Van Nostrand Company, inc. -- -- Enderton, Herbert B. (1977). Elements of Set Theory. -- Academic Press Inc.
24.835821
78
0.545673
1d0db41ef171ee0a6250ca7dff9a47d2d8348a1a
12,948
agda
Agda
LibraBFT/Impl/Handle/Properties.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
LibraBFT/Impl/Handle/Properties.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
LibraBFT/Impl/Handle/Properties.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} -- This module provides some scaffolding to define the handlers for our fake/simple "implementation" -- and connect them to the interface of the SystemModel. open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.ByteString open import LibraBFT.Base.Encode open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Hash open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.Consensus.RoundManager.Properties open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Util.Util open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters open EpochConfig open import LibraBFT.Yasm.Types open import LibraBFT.Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms PeerCanSignForPK (λ {st} {part} {pk} → PeerCanSignForPK-stable {st} {part} {pk}) module LibraBFT.Impl.Handle.Properties where open import LibraBFT.Impl.Consensus.RoundManager open import LibraBFT.Impl.Handle -- This proof is complete except for pieces that are directly about the handlers. Our -- fake/simple handler does not yet obey the needed properties, so we can't finish this yet. impl-sps-avp : StepPeerState-AllValidParts -- In our fake/simple implementation, init and handling V and C msgs do not send any messages impl-sps-avp _ hpk (step-init _) m∈outs part⊂m ver = ⊥-elim (¬Any[] m∈outs) impl-sps-avp _ hpk (step-msg {sndr , V vm} _ _) m∈outs _ _ = ⊥-elim (¬Any[] m∈outs) impl-sps-avp _ hpk (step-msg {sndr , C cm} _ _) m∈outs _ _ = ⊥-elim (¬Any[] m∈outs) -- These aren't true yet, because processProposalMsgM sends fake votes that don't follow the rules for ValidPartForPK impl-sps-avp preach hpk (step-msg {sndr , P pm} m∈pool ps≡) m∈outs v⊂m ver ¬init with m∈outs -- Handler sends at most one vote, so it can't be "there" ...| there {xs = xs} imp = ⊥-elim (¬Any[] imp) ...| here refl with v⊂m ...| vote∈qc vs∈qc rbld≈ qc∈m with qc∈m ...| xxx = {!x!} -- We will prove that votes represented in the SyncInfo of a -- proposal message were sent before, so these will be inj₂. -- This will be based on an invariant of the implementation, for -- example that the QCs included in the SyncInfo of a VoteMsg have -- been sent before. We will need to use hash injectivity and -- signature injectivity to ensure a different vote was not sent -- previously with the same signature. impl-sps-avp {pk = pk} {α = α} {st = st} preach hpk (step-msg {sndr , P pm} m∈pool ps≡) m∈outs v⊂m ver ¬init | here refl | vote∈vm {si} with MsgWithSig∈? {pk} {ver-signature ver} {msgPool st} ...| yes msg∈ = inj₂ msg∈ ...| no msg∉ = inj₁ ( mkPCS4PK {! !} {!!} (inGenInfo refl) {!!} {!!} {!!} -- The implementation will need to provide evidence that the peer is a member of -- the epoch of the message it's sending and that it is assigned pk for that epoch. , msg∉) open Structural impl-sps-avp ----- Properties that bridge the system model gap to the handler ----- msgsToSendWereSent1 : ∀ {pid ts pm vm} {st : RoundManager} → send (V vm) ∈ proj₂ (peerStep pid (P pm) ts st) → ∃[ αs ] (SendVote vm αs ∈ LBFT-outs (handle pid (P pm) ts) st) msgsToSendWereSent1 {pid} {ts} {pm} {vm} {st} send∈acts with send∈acts -- The fake handler sends only to node 0 (fakeAuthor), so this doesn't -- need to be very general yet. -- TODO-1: generalize this proof so it will work when the set of recipients is -- not hard coded. -- The system model allows any message sent to be received by any peer (so the list of -- recipients it essentially ignored), meaning that our safety proofs will be for a slightly -- stronger model. Progress proofs will require knowledge of recipients, though, so we will -- keep the implementation model faithful to the implementation. ...| here refl = fakeAuthor ∷ [] , here refl -- This captures which kinds of messages are sent by handling which kind of message. It will -- require additional disjuncts when we implement processVote. msgsToSendWereSent : ∀ {pid nm m} {st : RoundManager} → send m ∈ proj₂ (peerStepWrapper pid nm st) → send m ∈ proj₂ (peerStep pid nm 0 st) × ∃[ vm ] ∃[ pm ] (m ≡ V vm × nm ≡ P pm) msgsToSendWereSent {pid} {nm = nm} {m} {st} m∈outs with nm ...| C _ = ⊥-elim (¬Any[] m∈outs) ...| V _ = ⊥-elim (¬Any[] m∈outs) ...| P pm with m∈outs ...| here v∈outs with m ...| P _ = ⊥-elim (P≢V (action-send-injective v∈outs)) ...| C _ = ⊥-elim (C≢V (action-send-injective v∈outs)) ...| V vm rewrite sym v∈outs = here refl , vm , pm , refl , refl proposalHandlerSentVote : ∀ {pid ts pm vm} {st : RoundManager} → send (V vm) ∈ proj₂ (peerStepWrapper pid (P pm) st) → ∃[ αs ] (SendVote vm αs ∈ LBFT-outs (handle pid (P pm) ts) st) proposalHandlerSentVote {pid} {ts} {pm} {vm} {st} m∈outs with msgsToSendWereSent {pid} {P pm} {st = st} m∈outs ...| send∈ , vm , pm' , refl , refl with msgsToSendWereSent1 {pid} {ts} {pm'} {st = st} send∈ ...| αs , sv = αs , sv ----- Properties that relate handler to system state ----- data _∈RoundManager_ (qc : QuorumCert) (rm : RoundManager) : Set where inHQC : qc ≡ ₋rmHighestQC rm → qc ∈RoundManager rm inHCC : qc ≡ ₋rmHighestCommitQC rm → qc ∈RoundManager rm postulate -- TODO-2: this will be proved for the implementation, confirming that honest -- participants only store QCs comprising votes that have actually been sent. -- Votes stored in highesQuorumCert and highestCommitCert were sent before. -- Note that some implementations might not ensure this, but LibraBFT does -- because even the leader of the next round sends its own vote to itself, -- as opposed to using it to construct a QC using its own unsent vote. qcVotesSentB4 : ∀{pid qc vs pk}{st : SystemState} → ReachableSystemState st → initialised st pid ≡ initd → qc ∈RoundManager (peerStates st pid) → vs ∈ qcVotes qc → ¬ (∈GenInfo (proj₂ vs)) → MsgWithSig∈ pk (proj₂ vs) (msgPool st) -- We can prove this easily because we don't yet do epoch changes, -- so only the initial EC is relevant. Later, this will require us to use the fact that -- epoch changes require proof of committing an epoch-changing transaction. availEpochsConsistent : ∀{pid pid' v v' pk}{st : SystemState} → ReachableSystemState st → (pkvpf : PeerCanSignForPK st v pid pk) → (pkvpf' : PeerCanSignForPK st v' pid' pk) → PeerCanSignForPK.𝓔 pkvpf ≡ PeerCanSignForPK.𝓔 pkvpf' availEpochsConsistent r (mkPCS4PK _ _ (inGenInfo refl) _ _ _) (mkPCS4PK _ _ (inGenInfo refl) _ _ _) = refl -- Always true, so far, as no epoch changes. noEpochIdChangeYet : ∀ {pre : SystemState}{pid}{ppre ppost msgs} → ReachableSystemState pre → ppre ≡ peerStates pre pid → StepPeerState pid (msgPool pre) (initialised pre) ppre (ppost , msgs) → initialised pre pid ≡ initd → (₋rmEC ppre) ^∙ rmEpoch ≡ (₋rmEC ppost) ^∙ rmEpoch noEpochIdChangeYet _ ppre≡ (step-init uni) ini = ⊥-elim (uninitd≢initd (trans (sym uni) ini)) noEpochIdChangeYet _ ppre≡ (step-msg {(_ , m)} _ _) ini with m ...| P p = refl ...| V v = refl ...| C c = refl open SyncInfo -- QCs in VoteMsg come from RoundManager VoteMsgQCsFromRoundManager : ∀ {pid s' outs pk}{pre : SystemState} → ReachableSystemState pre -- For any honest call to /handle/ or /init/, → (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs)) → ∀{v vm qc} → Meta-Honest-PK pk -- For every vote v represented in a message output by the call → v ⊂Msg (V vm) → send (V vm) ∈ outs → qc QC∈SyncInfo (vm ^∙ vmSyncInfo) → qc ∈RoundManager (peerStates pre pid) VoteMsgQCsFromRoundManager r (step-init _) _ _ () VoteMsgQCsFromRoundManager {pid} {pre = pre} r (step-msg {_ , P pm} m∈pool pinit) {v} {vm} hpk v⊂m m∈outs qc∈m with peerStates pre pid ...| rm with proposalHandlerSentVote {pid} {0} {pm} {vm} {rm} m∈outs ...| _ , v∈outs with qc∈m ...| withVoteSIHighQC refl = inHQC (cong ₋siHighestQuorumCert (procPMCerts≡ {0} {pm} {rm} v∈outs)) VoteMsgQCsFromRoundManager {pid} {pre = pre} r (step-msg {_ , P pm} m∈pool pinit) {v} {vm1} hpk v⊂m m∈outs qc∈m | rm | _ , v∈outs | withVoteSIHighCC hqcIsJust with cong ₋siHighestCommitCert (procPMCerts≡ {0} {pm} {rm} v∈outs) ...| refl with (rm ^∙ rmHighestQC) ≟QC (rm ^∙ rmHighestCommitQC) ...| true because (ofʸ refl) = ⊥-elim (maybe-⊥ hqcIsJust refl) ...| false because _ = inHCC (just-injective (sym hqcIsJust)) newVoteSameEpochGreaterRound : ∀ {pre : SystemState}{pid s' outs v m pk} → ReachableSystemState pre → StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs) → ¬ (∈GenInfo (₋vSignature v)) → Meta-Honest-PK pk → v ⊂Msg m → send m ∈ outs → (sig : WithVerSig pk v) → ¬ MsgWithSig∈ pk (ver-signature sig) (msgPool pre) → v ^∙ vEpoch ≡ (₋rmEC (peerStates pre pid)) ^∙ rmEpoch × suc ((₋rmEC (peerStates pre pid)) ^∙ rmLastVotedRound) ≡ v ^∙ vRound -- New vote for higher round than last voted × v ^∙ vRound ≡ ((₋rmEC s') ^∙ rmLastVotedRound) -- Last voted round is round of new vote newVoteSameEpochGreaterRound {pre = pre} {pid} {v = v} {m} {pk} r (step-msg {(_ , P pm)} msg∈pool pinit) ¬init hpk v⊂m m∈outs sig vnew rewrite pinit with msgsToSendWereSent {pid} {P pm} {m} {peerStates pre pid} m∈outs ...| _ , vm , _ , refl , refl with proposalHandlerSentVote {pid} {0} {pm} {vm} {peerStates pre pid} m∈outs ...| _ , v∈outs rewrite SendVote-inj-v (Any-singleton⁻ v∈outs) | SendVote-inj-si (Any-singleton⁻ v∈outs) with v⊂m -- Rebuilding keeps the same signature, and the SyncInfo included with the -- VoteMsg sent comprises QCs from the peer's state. Votes represented in -- those QCS have signatures that have been sent before, contradicting the -- assumption that v's signature has not been sent before. ...| vote∈vm {si} = refl , refl , refl ...| vote∈qc {vs = vs} {qc} vs∈qc v≈rbld (inV qc∈m) rewrite cong ₋vSignature v≈rbld | procPMCerts≡ {0} {pm} {peerStates pre pid} {vm} v∈outs with qcVotesSentB4 r pinit (VoteMsgQCsFromRoundManager r (step-msg msg∈pool pinit) hpk v⊂m (here refl) qc∈m) vs∈qc ¬init ...| sentb4 = ⊥-elim (vnew sentb4) -- We resist the temptation to combine this with the noEpochChangeYet because in future there will be epoch changes lastVoteRound-mono : ∀ {pre : SystemState}{pid}{ppre ppost msgs} → ReachableSystemState pre → ppre ≡ peerStates pre pid → StepPeerState pid (msgPool pre) (initialised pre) ppre (ppost , msgs) → initialised pre pid ≡ initd → (₋rmEC ppre) ^∙ rmEpoch ≡ (₋rmEC ppost) ^∙ rmEpoch → (₋rmEC ppre) ^∙ rmLastVotedRound ≤ (₋rmEC ppost) ^∙ rmLastVotedRound lastVoteRound-mono _ ppre≡ (step-init uni) ini = ⊥-elim (uninitd≢initd (trans (sym uni) ini)) lastVoteRound-mono _ ppre≡ (step-msg {(_ , m)} _ _) _ with m ...| P p = const (≤-step (≤-reflexive refl)) ...| V v = const (≤-reflexive refl) ...| C c = const (≤-reflexive refl) postulate -- TODO-1: prove it ¬genVotesRound≢0 : ∀ {pk sig}{st : SystemState} → ReachableSystemState st → Meta-Honest-PK pk → (mws : MsgWithSig∈ pk sig (msgPool st)) → ¬ (∈GenInfo sig) → (msgPart mws) ^∙ vRound ≢ 0
52
147
0.60658
105f8c2c9617253bab2eb82db3d3e97aa504b00b
579
agda
Agda
lib/types/FundamentalGroupoid.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
lib/types/FundamentalGroupoid.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/FundamentalGroupoid.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Truncation open import lib.types.Groupoid open import lib.types.PathSet module lib.types.FundamentalGroupoid {i} (A : Type i) where fundamental-groupoid : Groupoid fundamental-groupoid = record { El = A ; Arr = _=₀_ {A = A} ; Arr-level = λ _ _ → Trunc-level ; groupoid-struct = record { id = idp₀ ; inv = !₀ ; comp = _∙₀_ ; unit-l = ∙₀-unit-l ; unit-r = ∙₀-unit-r ; assoc = ∙₀-assoc ; inv-l = !₀-inv-l ; inv-r = !₀-inv-r } }
22.269231
59
0.569948
50c5caa452df11c3c6670e8b51749163b3876b38
112
agda
Agda
Cubical/HITs/Ints/IsoInt.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/IsoInt.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/IsoInt.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.Ints.IsoInt where open import Cubical.HITs.Ints.IsoInt.Base public
18.666667
48
0.75
0e3686e5f8340df0a230d8c0eb3c39bf966149e9
18,467
agda
Agda
Cubical/Foundations/GroupoidLaws.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Foundations/GroupoidLaws.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Foundations/GroupoidLaws.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
{- This file proves the higher groupoid structure of types for homogeneous and heterogeneous paths -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.GroupoidLaws where open import Cubical.Foundations.Prelude private variable ℓ : Level A : Type ℓ x y z w v : A _⁻¹ : (x ≡ y) → (y ≡ x) x≡y ⁻¹ = sym x≡y infix 40 _⁻¹ -- homogeneous groupoid laws symInvo : (p : x ≡ y) → p ≡ p ⁻¹ ⁻¹ symInvo p = refl rUnit : (p : x ≡ y) → p ≡ p ∙ refl rUnit p j i = compPath-filler p refl j i -- The filler of left unit: lUnit-filler p = -- PathP (λ i → PathP (λ j → PathP (λ k → A) x (p (~ j ∨ i))) -- (refl i) (λ j → compPath-filler refl p i j)) (λ k i → (p (~ k ∧ i ))) (lUnit p) lUnit-filler : {x y : A} (p : x ≡ y) → I → I → I → A lUnit-filler {x = x} p j k i = hfill (λ j → λ { (i = i0) → x ; (i = i1) → p (~ k ∨ j ) ; (k = i0) → p i -- ; (k = i1) → compPath-filler refl p j i }) (inS (p (~ k ∧ i ))) j lUnit : (p : x ≡ y) → p ≡ refl ∙ p lUnit p j i = lUnit-filler p i1 j i symRefl : refl {x = x} ≡ refl ⁻¹ symRefl i = refl compPathRefl : refl {x = x} ≡ refl ∙ refl compPathRefl = rUnit refl -- The filler of right cancellation: rCancel-filler p = -- PathP (λ i → PathP (λ j → PathP (λ k → A) x (p (~ j ∧ ~ i))) -- (λ j → compPath-filler p (p ⁻¹) i j) (refl i)) (λ j i → (p (i ∧ ~ j))) (rCancel p) rCancel-filler : ∀ {x y : A} (p : x ≡ y) → (k j i : I) → A rCancel-filler {x = x} p k j i = hfill (λ k → λ { (i = i0) → x ; (i = i1) → p (~ k ∧ ~ j) -- ; (j = i0) → compPath-filler p (p ⁻¹) k i ; (j = i1) → x }) (inS (p (i ∧ ~ j))) k rCancel : (p : x ≡ y) → p ∙ p ⁻¹ ≡ refl rCancel {x = x} p j i = rCancel-filler p i1 j i rCancel-filler' : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) → (i j k : I) → A rCancel-filler' {x = x} {y} p i j k = hfill (λ i → λ { (j = i1) → p (~ i ∧ k) ; (k = i0) → x ; (k = i1) → p (~ i) }) (inS (p k)) (~ i) rCancel' : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) → p ∙ p ⁻¹ ≡ refl rCancel' p j k = rCancel-filler' p i0 j k lCancel : (p : x ≡ y) → p ⁻¹ ∙ p ≡ refl lCancel p = rCancel (p ⁻¹) assoc : (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) → p ∙ q ∙ r ≡ (p ∙ q) ∙ r assoc p q r k = (compPath-filler p q k) ∙ compPath-filler' q r (~ k) -- heterogeneous groupoid laws symInvoP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → symInvo (λ i → A i) j i) x y) p (symP (symP p)) symInvoP p = refl rUnitP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → rUnit (λ i → A i) j i) x y) p (compPathP p refl) rUnitP p j i = compPathP-filler p refl j i lUnitP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → lUnit (λ i → A i) j i) x y) p (compPathP refl p) lUnitP {A = A} {x = x} p k i = comp (λ j → lUnit-filler (λ i → A i) j k i) (λ j → λ { (i = i0) → x ; (i = i1) → p (~ k ∨ j ) ; (k = i0) → p i }) (p (~ k ∧ i )) rCancelP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → rCancel (λ i → A i) j i) x x) (compPathP p (symP p)) refl rCancelP {A = A} {x = x} p j i = comp (λ k → rCancel-filler (λ i → A i) k j i) (λ k → λ { (i = i0) → x ; (i = i1) → p (~ k ∧ ~ j) ; (j = i1) → x }) (p (i ∧ ~ j)) lCancelP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → lCancel (λ i → A i) j i) y y) (compPathP (symP p) p) refl lCancelP p = rCancelP (symP p) assocP : {A : I → Type ℓ} {x : A i0} {y : A i1} {B_i1 : Type ℓ} {B : (A i1) ≡ B_i1} {z : B i1} {C_i1 : Type ℓ} {C : (B i1) ≡ C_i1} {w : C i1} (p : PathP A x y) (q : PathP (λ i → B i) y z) (r : PathP (λ i → C i) z w) → PathP (λ j → PathP (λ i → assoc (λ i → A i) B C j i) x w) (compPathP p (compPathP q r)) (compPathP (compPathP p q) r) assocP {A = A} {B = B} {C = C} p q r k i = comp (\ j' → hfill (λ j → λ { (i = i0) → A i0 ; (i = i1) → compPath-filler' (λ i₁ → B i₁) (λ i₁ → C i₁) (~ k) j }) (inS (compPath-filler (λ i₁ → A i₁) (λ i₁ → B i₁) k i)) j') (λ j → λ { (i = i0) → p i0 ; (i = i1) → comp (\ j' → hfill ((λ l → λ { (j = i0) → B k ; (j = i1) → C l ; (k = i1) → C (j ∧ l) })) (inS (B ( j ∨ k)) ) j') (λ l → λ { (j = i0) → q k ; (j = i1) → r l ; (k = i1) → r (j ∧ l) }) (q (j ∨ k)) }) (compPathP-filler p q k i) -- Loic's code below -- some exchange law for doubleCompPath and refl invSides-filler : {x y z : A} (p : x ≡ y) (q : x ≡ z) → Square p (sym q) q (sym p) invSides-filler {x = x} p q i j = hcomp (λ k → λ { (i = i0) → p (k ∧ j) ; (i = i1) → q (~ j ∧ k) ; (j = i0) → q (i ∧ k) ; (j = i1) → p (~ i ∧ k)}) x leftright : {ℓ : Level} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) → (refl ∙∙ p ∙∙ q) ≡ (p ∙∙ q ∙∙ refl) leftright p q i j = hcomp (λ t → λ { (j = i0) → p (i ∧ (~ t)) ; (j = i1) → q (t ∨ i) }) (invSides-filler q (sym p) (~ i) j) -- equating doubleCompPath and a succession of two compPath split-leftright : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ (refl ∙∙ (p ∙∙ q ∙∙ refl) ∙∙ r) split-leftright p q r j i = hcomp (λ t → λ { (i = i0) → p (~ j ∧ ~ t) ; (i = i1) → r t }) (doubleCompPath-filler p q refl j i) split-leftright' : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ (p ∙∙ (refl ∙∙ q ∙∙ r) ∙∙ refl) split-leftright' p q r j i = hcomp (λ t → λ { (i = i0) → p (~ t) ; (i = i1) → r (j ∨ t) }) (doubleCompPath-filler refl q r j i) doubleCompPath-elim : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ (p ∙ q) ∙ r doubleCompPath-elim p q r = (split-leftright p q r) ∙ (λ i → (leftright p q (~ i)) ∙ r) doubleCompPath-elim' : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ p ∙ (q ∙ r) doubleCompPath-elim' p q r = (split-leftright' p q r) ∙ (sym (leftright p (q ∙ r))) cong-∙ : ∀ {B : Type ℓ} (f : A → B) (p : x ≡ y) (q : y ≡ z) → cong f (p ∙ q) ≡ (cong f p) ∙ (cong f q) cong-∙ f p q j i = hcomp (λ k → λ { (j = i0) → f (compPath-filler p q k i) ; (i = i0) → f (p i0) ; (i = i1) → f (q k) }) (f (p i)) cong-∙∙ : ∀ {B : Type ℓ} (f : A → B) (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → cong f (p ∙∙ q ∙∙ r) ≡ (cong f p) ∙∙ (cong f q) ∙∙ (cong f r) cong-∙∙ f p q r j i = hcomp (λ k → λ { (j = i0) → f (doubleCompPath-filler p q r k i) ; (i = i0) → f (p (~ k)) ; (i = i1) → f (r k) }) (f (q i)) hcomp-unique : ∀ {ℓ} {A : Type ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) → (h2 : ∀ i → A [ (φ ∨ ~ i) ↦ (\ { (φ = i1) → u i 1=1; (i = i0) → outS u0}) ]) → (hcomp u (outS u0) ≡ outS (h2 i1)) [ φ ↦ (\ { (φ = i1) → (\ i → u i1 1=1)}) ] hcomp-unique {φ = φ} u u0 h2 = inS (\ i → hcomp (\ k → \ { (φ = i1) → u k 1=1 ; (i = i1) → outS (h2 k) }) (outS u0)) lid-unique : ∀ {ℓ} {A : Type ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) → (h1 h2 : ∀ i → A [ (φ ∨ ~ i) ↦ (\ { (φ = i1) → u i 1=1; (i = i0) → outS u0}) ]) → (outS (h1 i1) ≡ outS (h2 i1)) [ φ ↦ (\ { (φ = i1) → (\ i → u i1 1=1)}) ] lid-unique {φ = φ} u u0 h1 h2 = inS (\ i → hcomp (\ k → \ { (φ = i1) → u k 1=1 ; (i = i0) → outS (h1 k) ; (i = i1) → outS (h2 k) }) (outS u0)) transp-hcomp : ∀ {ℓ} (φ : I) {A' : Type ℓ} (A : (i : I) → Type ℓ [ φ ↦ (λ _ → A') ]) (let B = \ (i : I) → outS (A i)) → ∀ {ψ} (u : I → Partial ψ (B i0)) → (u0 : B i0 [ ψ ↦ u i0 ]) → (transp (\ i → B i) φ (hcomp u (outS u0)) ≡ hcomp (\ i o → transp (\ i → B i) φ (u i o)) (transp (\ i → B i) φ (outS u0))) [ ψ ↦ (\ { (ψ = i1) → (\ i → transp (\ i → B i) φ (u i1 1=1))}) ] transp-hcomp φ A u u0 = inS (sym (outS (hcomp-unique ((\ i o → transp (\ i → B i) φ (u i o))) (inS (transp (\ i → B i) φ (outS u0))) \ i → inS (transp (\ i → B i) φ (hfill u u0 i))))) where B = \ (i : I) → outS (A i) hcomp-cong : ∀ {ℓ} {A : Type ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) → (u' : I → Partial φ A) → (u0' : A [ φ ↦ u' i0 ]) → (ueq : ∀ i → PartialP φ (\ o → u i o ≡ u' i o)) → (outS u0 ≡ outS u0') [ φ ↦ (\ { (φ = i1) → ueq i0 1=1}) ] → (hcomp u (outS u0) ≡ hcomp u' (outS u0')) [ φ ↦ (\ { (φ = i1) → ueq i1 1=1 }) ] hcomp-cong u u0 u' u0' ueq 0eq = inS (\ j → hcomp (\ i o → ueq i o j) (outS 0eq j)) congFunct-filler : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {x y z : A} (f : A → B) (p : x ≡ y) (q : y ≡ z) → I → I → I → B congFunct-filler {x = x} f p q i j z = hfill (λ k → λ { (i = i0) → f x ; (i = i1) → f (q k) ; (j = i0) → f (compPath-filler p q k i)}) (inS (f (p i))) z congFunct : ∀ {ℓ} {B : Type ℓ} (f : A → B) (p : x ≡ y) (q : y ≡ z) → cong f (p ∙ q) ≡ cong f p ∙ cong f q congFunct f p q j i = congFunct-filler f p q i j i1 -- congFunct for dependent types congFunct-dep : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} {x y z : A} (f : (a : A) → B a) (p : x ≡ y) (q : y ≡ z) → PathP (λ i → PathP (λ j → B (compPath-filler p q i j)) (f x) (f (q i))) (cong f p) (cong f (p ∙ q)) congFunct-dep {B = B} {x = x} f p q i j = f (compPath-filler p q i j) cong₂Funct : ∀ {ℓ ℓ'} {A : Type ℓ} {x y : A} {B : Type ℓ'} (f : A → A → B) → (p : x ≡ y) → {u v : A} (q : u ≡ v) → cong₂ f p q ≡ cong (λ x → f x u) p ∙ cong (f y) q cong₂Funct {x = x} {y = y} f p {u = u} {v = v} q j i = hcomp (λ k → λ { (i = i0) → f x u ; (i = i1) → f y (q k) ; (j = i0) → f (p i) (q (i ∧ k))}) (f (p i) u) symDistr-filler : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) → I → I → I → A symDistr-filler {A = A} {z = z} p q i j k = hfill (λ k → λ { (i = i0) → q (k ∨ j) ; (i = i1) → p (~ k ∧ j) }) (inS (invSides-filler q (sym p) i j)) k symDistr : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) → sym (p ∙ q) ≡ sym q ∙ sym p symDistr p q i j = symDistr-filler p q j i i1 -- we can not write hcomp-isEquiv : {ϕ : I} → (p : I → Partial ϕ A) → isEquiv (λ (a : A [ ϕ ↦ p i0 ]) → hcomp p a) -- due to size issues. But what we can write (compare to hfill) is: hcomp-equivFillerSub : {ϕ : I} → (p : I → Partial ϕ A) → (a : A [ ϕ ↦ p i0 ]) → (i : I) → A [ ϕ ∨ i ∨ ~ i ↦ (λ { (i = i0) → outS a ; (i = i1) → hcomp (λ i → p (~ i)) (hcomp p (outS a)) ; (ϕ = i1) → p i0 1=1 }) ] hcomp-equivFillerSub {ϕ = ϕ} p a i = inS (hcomp (λ k → λ { (i = i1) → hfill (λ j → p (~ j)) (inS (hcomp p (outS a))) k ; (i = i0) → outS a ; (ϕ = i1) → p (~ k ∧ i) 1=1 }) (hfill p a i)) hcomp-equivFiller : {ϕ : I} → (p : I → Partial ϕ A) → (a : A [ ϕ ↦ p i0 ]) → (i : I) → A hcomp-equivFiller p a i = outS (hcomp-equivFillerSub p a i) pentagonIdentity : (p : x ≡ y) → (q : y ≡ z) → (r : z ≡ w) → (s : w ≡ v) → (assoc p q (r ∙ s) ∙ assoc (p ∙ q) r s) ≡ cong (p ∙_) (assoc q r s) ∙∙ assoc p (q ∙ r) s ∙∙ cong (_∙ s) (assoc p q r) pentagonIdentity {x = x} {y} p q r s = (λ i → (λ j → cong (p ∙_) (assoc q r s) (i ∧ j)) ∙∙ (λ j → lemma₀₀ i j ∙ lemma₀₁ i j) ∙∙ (λ j → lemma₁₀ i j ∙ lemma₁₁ i j) ) where lemma₀₀ : ( i j : I) → _ ≡ _ lemma₀₀ i j i₁ = hcomp (λ k → λ { (j = i0) → p i₁ ; (i₁ = i0) → x ; (i₁ = i1) → hcomp (λ k₁ → λ { (i = i0) → (q (j ∧ k)) ; (k = i0) → y ; (j = i0) → y ; (j = i1)(k = i1) → r (k₁ ∧ i)}) (q (j ∧ k)) }) (p i₁) lemma₀₁ : ( i j : I) → hcomp (λ k → λ {(i = i0) → q j ; (j = i0) → y ; (j = i1) → r (k ∧ i) }) (q j) ≡ _ lemma₀₁ i j i₁ = (hcomp (λ k → λ { (j = i1) → hcomp (λ k₁ → λ { (i₁ = i0) → r i ; (k = i0) → r i ; (i = i1) → s (k₁ ∧ k ∧ i₁) ; (i₁ = i1)(k = i1) → s k₁ }) (r ((i₁ ∧ k) ∨ i)) ; (i₁ = i0) → compPath-filler q r i j ; (i₁ = i1) → hcomp (λ k₁ → λ { (k = i0) → r i ; (k = i1) → s k₁ ; (i = i1) → s (k ∧ k₁)}) (r (i ∨ k))}) (hfill (λ k → λ { (j = i1) → r k ; (i₁ = i1) → r k ; (i₁ = i0)(j = i0) → y }) (inS (q (i₁ ∨ j))) i)) lemma₁₁ : ( i j : I) → (r (i ∨ j)) ≡ _ lemma₁₁ i j i₁ = hcomp (λ k → λ { (i = i1) → s (i₁ ∧ k) ; (j = i1) → s (i₁ ∧ k) ; (i₁ = i0) → r (i ∨ j) ; (i₁ = i1) → s k }) (r (i ∨ j ∨ i₁)) lemma₁₀-back : I → I → I → _ lemma₁₀-back i j i₁ = hcomp (λ k → λ { (i₁ = i0) → x ; (i₁ = i1) → hcomp (λ k₁ → λ { (k = i0) → q (j ∨ ~ i) ; (k = i1) → r (k₁ ∧ j) ; (j = i0) → q (k ∨ ~ i) ; (j = i1) → r (k₁ ∧ k) ; (i = i0) → r (k ∧ j ∧ k₁) }) (q (k ∨ j ∨ ~ i)) ; (i = i0)(j = i0) → (p ∙ q) i₁ }) (hcomp (λ k → λ { (i₁ = i0) → x ; (i₁ = i1) → q ((j ∨ ~ i ) ∧ k) ; (j = i0)(i = i1) → p i₁ }) (p i₁)) lemma₁₀-front : I → I → I → _ lemma₁₀-front i j i₁ = (((λ _ → x) ∙∙ compPath-filler p q j ∙∙ (λ i₁ → hcomp (λ k → λ { (i₁ = i0) → q j ; (i₁ = i1) → r (k ∧ (j ∨ i)) ; (j = i0)(i = i0) → q i₁ ; (j = i1) → r (i₁ ∧ k) }) (q (j ∨ i₁)) )) i₁) compPath-filler-in-filler : (p : _ ≡ y) → (q : _ ≡ _ ) → _≡_ {A = Square (p ∙ q) (p ∙ q) (λ _ → x) (λ _ → z)} (λ i j → hcomp (λ i₂ → λ { (j = i0) → x ; (j = i1) → q (i₂ ∨ ~ i) ; (i = i0) → (p ∙ q) j }) (compPath-filler p q (~ i) j)) (λ _ → p ∙ q) compPath-filler-in-filler p q z i j = hcomp (λ k → λ { (j = i0) → p i0 ; (j = i1) → q (k ∨ ~ i ∧ ~ z) ; (i = i0) → hcomp (λ i₂ → λ { (j = i0) → p i0 ;(j = i1) → q ((k ∨ ~ z) ∧ i₂) ;(z = i1) (k = i0) → p j }) (p j) ; (i = i1) → compPath-filler p (λ i₁ → q (k ∧ i₁)) k j ; (z = i0) → hfill ((λ i₂ → λ { (j = i0) → p i0 ; (j = i1) → q (i₂ ∨ ~ i) ; (i = i0) → (p ∙ q) j })) (inS ((compPath-filler p q (~ i) j))) k ; (z = i1) → compPath-filler p q k j }) (compPath-filler p q (~ i ∧ ~ z) j) cube-comp₋₀₋ : (c : I → I → I → A) → {a' : Square _ _ _ _} → (λ i i₁ → c i i0 i₁) ≡ a' → (I → I → I → A) cube-comp₋₀₋ c p i j k = hcomp (λ l → λ { (i = i0) → c i0 j k ;(i = i1) → c i1 j k ;(j = i0) → p l i k ;(j = i1) → c i i1 k ;(k = i0) → c i j i0 ;(k = i1) → c i j i1 }) (c i j k) cube-comp₀₋₋ : (c : I → I → I → A) → {a' : Square _ _ _ _} → (λ i i₁ → c i0 i i₁) ≡ a' → (I → I → I → A) cube-comp₀₋₋ c p i j k = hcomp (λ l → λ { (i = i0) → p l j k ;(i = i1) → c i1 j k ;(j = i0) → c i i0 k ;(j = i1) → c i i1 k ;(k = i0) → c i j i0 ;(k = i1) → c i j i1 }) (c i j k) lemma₁₀-back' : _ lemma₁₀-back' k j i₁ = (cube-comp₋₀₋ (lemma₁₀-back) (compPath-filler-in-filler p q)) k j i₁ lemma₁₀ : ( i j : I) → _ ≡ _ lemma₁₀ i j i₁ = (cube-comp₀₋₋ lemma₁₀-front (sym lemma₁₀-back')) i j i₁
38.553236
139
0.332756
1c48e9d8a81ff42ddb14d3da4ccb6ca351f7ca1b
5,777
agda
Agda
Type/Size/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Type/Size/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Type/Size/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Type.Size.Proofs where import Lvl open import Data open import Data.Proofs open import Functional open import Function.Equals open import Function.Inverseᵣ open import Function.Inverse open import Function.Proofs open import Logic open import Logic.IntroInstances open import Logic.Propositional open import Logic.Predicate open import Structure.Setoid open import Structure.Function open import Structure.Function.Domain open import Structure.Function.Domain.Proofs open import Structure.Relator.Equivalence open import Structure.Relator.Ordering open import Structure.Relator.Properties open import Type import Type.Size private variable ℓ ℓ₁ ℓ₂ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ : Lvl.Level private variable T A B C : Type{ℓ} module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where open Type.Size [≼]-maximum : (_≼_ T (T → T) ⦃ [⊜]-equiv ⦄) [≼]-maximum = [∃]-intro(const) ⦃ intro(proof) ⦄ where proof : ∀{x y} → (const(x) ⊜ const(y)) → (x ≡ y) proof{x}{y} (intro fneq) = fneq{x} [≍]-reflexivity-raw : (T ≍ T) [≍]-reflexivity-raw = [∃]-intro(id) ⦃ id-bijective ⦄ [≼]-reflexivity-raw : (T ≼ T) [≼]-reflexivity-raw = [∃]-intro(id) ⦃ id-injective ⦄ [≽]-reflexivity-raw : (T ≽ T) [≽]-reflexivity-raw = [∃]-intro(id) ⦃ id-surjective ⦄ [≼]-minimum-raw : ⦃ equiv-empty : Equiv{ℓₑ₁}(Empty{ℓ}) ⦄ → (_≼_ Empty ⦃ equiv-empty ⦄ T) [≼]-minimum-raw = [∃]-intro(empty) ⦃ empty-injective ⦄ -- TODO: Impossible because there are no functions of type (T → ⊥)? -- instance -- [≽]-minimum : Weak.Properties.Maximum(_≽_ {ℓ})(Empty) -- Weak.Properties.Maximum.proof([≽]-minimum) {T} {} module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ where open Type.Size [≍]-to-[≼] : (A ≍ B) → (A ≼ B) [≍]-to-[≼] ([∃]-intro(f) ⦃ f-bijective ⦄) = ([∃]-intro(f) ⦃ bijective-to-injective(f) ⦃ f-bijective ⦄ ⦄) [≍]-to-[≽] : (A ≍ B) → (A ≽ B) [≍]-to-[≽] ([∃]-intro(f) ⦃ f-bijective ⦄) = ([∃]-intro(f) ⦃ bijective-to-surjective(f) ⦃ f-bijective ⦄ ⦄) [≽]-to-[≼] : (ab@([∃]-intro f) : (A ≽ B)) → ⦃ func : Function(f) ⦄ ⦃ inv-func : Function(invᵣ-surjective f) ⦄ → (B ≼ A) [≽]-to-[≼] ([∃]-intro(f) ⦃ f-surjective ⦄) ⦃ inv-func ⦄ = [∃]-intro(invᵣ f ⦃ surjective-to-invertibleᵣ ⦄) ⦃ inverseᵣ-injective{f = f} ⦃ [∧]-elimᵣ([∃]-proof surjective-to-invertibleᵣ) ⦄ ⦄ {-[≼]-to-[≽] : (A ≼ B) → (B ≽ A) [≼]-to-[≽] ([∃]-intro(f) ⦃ f-injective ⦄) = {![∃]-intro()!} -} [≍]-symmetry-raw : (ab@([∃]-intro f) : (A ≍ B)) → ⦃ func : Function(f) ⦄ → (B ≍ A) [≍]-symmetry-raw ([∃]-intro(f) ⦃ f-bijective ⦄) = [∃]-intro(inv f ⦃ bijective-to-invertible ⦄) ⦃ inv-bijective{f = f} ⦃ inver = bijective-to-invertible ⦄ ⦄ module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ ⦃ equiv-C : Equiv{ℓₑ₃}(C) ⦄ where open Type.Size [≍]-transitivity-raw : (ab@([∃]-intro f) : (A ≍ B)) ⦃ func-f : Function(f) ⦄ → (bc@([∃]-intro g) : (B ≍ C)) ⦃ func-g : Function(g) ⦄ → (A ≍ C) [≍]-transitivity-raw ([∃]-intro(f) ⦃ f-bijective ⦄) ([∃]-intro(g) ⦃ g-bijective ⦄) = [∃]-intro(g ∘ f) ⦃ [∘]-bijective {f = g} {g = f} ⦃ g-bijective ⦄ ⦃ f-bijective ⦄ ⦄ [≼]-transitivity-raw : (A ≼ B) → (B ≼ C) → (A ≼ C) [≼]-transitivity-raw ([∃]-intro(f) ⦃ f-injective ⦄) ([∃]-intro(g) ⦃ g-injective ⦄) = [∃]-intro(g ∘ f) ⦃ [∘]-injective {f = g}{g = f} ⦃ g-injective ⦄ ⦃ f-injective ⦄ ⦄ [≽]-transitivity-raw : (A ≽ B) → (([∃]-intro g) : (B ≽ C)) ⦃ func-g : Function(g) ⦄ → (A ≽ C) [≽]-transitivity-raw ([∃]-intro(f) ⦃ f-surjective ⦄) ([∃]-intro(g) ⦃ g-surjective ⦄) = [∃]-intro(g ∘ f) ⦃ [∘]-surjective {f = g} {g = f} ⦃ g-surjective ⦄ ⦃ f-surjective ⦄ ⦄ module _ where open import Relator.Equals renaming (_≡_ to _≡ₑ_) open import Relator.Equals.Proofs private _≍_ : ∀{ℓ₁ ℓ₂} → (A : Type{ℓ₁}) → (B : Type{ℓ₂}) → Stmt _≍_ A B = Type.Size._≍_ A B _≼_ : ∀{ℓ₁ ℓ₂} → (A : Type{ℓ₁}) → (B : Type{ℓ₂}) → Stmt _≼_ A B = Type.Size._≼_ A B _≽_ : ∀{ℓ₁ ℓ₂} → (A : Type{ℓ₁}) → (B : Type{ℓ₂}) → Stmt _≽_ A B = Type.Size._≽_ A B _≭_ : ∀{ℓ₁ ℓ₂} → (A : Type{ℓ₁}) → (B : Type{ℓ₂}) → Stmt _≭_ A B = Type.Size._≭_ A B _≺_ : ∀{ℓ₁ ℓ₂} → (A : Type{ℓ₁}) → (B : Type{ℓ₂}) → Stmt _≺_ A B = Type.Size._≺_ A B _≻_ : ∀{ℓ₁ ℓ₂} → (A : Type{ℓ₁}) → (B : Type{ℓ₂}) → Stmt _≻_ A B = Type.Size._≻_ A B module _ {ℓ} where instance [≍]-reflexivity : Reflexivity(_≍_ {ℓ}) [≍]-reflexivity = intro [≍]-reflexivity-raw instance [≍]-symmetry : Symmetry(_≍_ {ℓ}) [≍]-symmetry = intro(f ↦ [≍]-symmetry-raw f) instance [≍]-transitivity : Transitivity(_≍_ {ℓ}) [≍]-transitivity = intro(f ↦ g ↦ [≍]-transitivity-raw f g) instance [≍]-equivalence : Equivalence(_≍_ {ℓ}) [≍]-equivalence = intro instance [≼]-reflexivity : Reflexivity(_≼_ {ℓ}) [≼]-reflexivity = intro [≼]-reflexivity-raw instance [≼]-transitivity : Transitivity(_≼_ {ℓ}) [≼]-transitivity = intro [≼]-transitivity-raw instance [≽]-reflexivity : Reflexivity(_≽_ {ℓ}) [≽]-reflexivity = intro [≽]-reflexivity-raw instance [≽]-transitivity : Transitivity(_≽_ {ℓ}) [≽]-transitivity = intro(p ↦ q ↦ [≽]-transitivity-raw p q) instance [≼]-minimum : Weak.Properties.LE.Minimum(_≼_ {ℓ})(Empty) Weak.Properties.Extremumₗ.proof [≼]-minimum = [≼]-minimum-raw -- TODO: Impossible because there are no functions of type (T → ⊥)? -- instance -- [≽]-minimum : Weak.Properties.Maximum(_≽_ {ℓ})(Empty) -- Weak.Properties.Maximum.proof([≽]-minimum) {T} {} -- TODO: Remove this and the similar one in the other module. A more general variant is defined in Relator.Equals.Proofs module _ {A : Type{ℓ}} {B : Type{ℓ}} where [≡]-to-[≍] : (A ≡ₑ B) → (A ≍ B) [≡]-to-[≍] [≡]-intro = reflexivity(_≍_)
36.10625
188
0.564134
0e03ede06225d7057f62b521f788d825b823b2d5
430
agda
Agda
test/Common/MAlonzo.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Common/MAlonzo.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Common/MAlonzo.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
module Common.MAlonzo where open import Common.Prelude hiding (putStrLn) open import Common.Coinduction {-# FOREIGN GHC import qualified Data.Text.IO #-} postulate putStrLn : ∞ String → IO Unit {-# COMPILE GHC putStrLn = Data.Text.IO.putStrLn #-} main = putStrLn (♯ "This is a dummy main routine.") mainPrint : String → _ mainPrint s = putStrLn (♯ s) mainPrintNat : Nat → _ mainPrintNat n = putStrLn (♯ (natToString n))
20.47619
52
0.713953
120227048b7f3309dcacc92c994095b4006b6ce9
319
agda
Agda
notes/thesis/report/CombiningProofs/CommDisjunction.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/thesis/report/CombiningProofs/CommDisjunction.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/thesis/report/CombiningProofs/CommDisjunction.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module CombiningProofs.CommDisjunction where open import Common.FOL.FOL postulate A B : Set ∨-comm : A ∨ B → B ∨ A {-# ATP prove ∨-comm #-}
22.785714
44
0.554859
50929eca1d6b85e2437e0e55941884f581f6690c
368
agda
Agda
test/succeed/SizeSucMonotone.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/SizeSucMonotone.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/SizeSucMonotone.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- Andreas, 2012-09-24 Ensure that size successor is monotone {-# OPTIONS --sized-types #-} module SizeSucMonotone where open import Common.Size data Bool : Set where true false : Bool -- T should be monotone in its second arg T : Bool → Size → Set T true i = Size< i T false i = Size< (↑ i) test : {x : Bool}{i : Size}{j : Size< i} → T x j → T x i test h = h
20.444444
61
0.646739
39c2a0f1de8bc4c184a47475c0076a4870c4ad89
912
agda
Agda
test/Succeed/Issue292-17.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue292-17.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue292-17.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2011-09-15 by Nisse -- {-# OPTIONS -v tc.lhs.unify:15 #-} module Issue292-17 where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ postulate I : Set U : I → Set El : ∀ {i} → U i → Set mutual infixl 5 _▻_ data Ctxt : Set where _▻_ : (Γ : Ctxt) (σ : Type Γ) → Ctxt Type : Ctxt → Set Type Γ = Σ I (λ i → Env Γ → U i) Env : Ctxt → Set Env (Γ ▻ σ) = Σ (Env Γ) λ γ → El (proj₂ σ γ) postulate Γ : Ctxt σ : Type Γ data D : Type (Γ ▻ σ) → Set where d : (τ : Type Γ) → D (proj₁ τ , λ γ → proj₂ τ (proj₁ γ)) record [D] : Set where constructor [d] field τ : Type (Γ ▻ σ) x : D τ Foo : {τ₁ τ₂ : Type Γ} → [d] (proj₁ τ₁ , λ γ → proj₂ τ₁ (proj₁ γ)) (d τ₁) ≡ [d] (proj₁ τ₂ , λ γ → proj₂ τ₂ (proj₁ γ)) (d τ₂) → Set₁ Foo refl = Set
17.538462
58
0.509868
a1198d33ac792382ab9ff29c87e0478dc6b035d9
8,177
agda
Agda
Cubical/Algebra/Ring/Base.agda
jespercockx/cubical
94b474af2909727d04706d562d949928c19faf7b
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/Base.agda
jespercockx/cubical
94b474af2909727d04706d562d949928c19faf7b
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/Base.agda
jespercockx/cubical
94b474af2909727d04706d562d949928c19faf7b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.Ring.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Reflection.RecordEquiv open Iso private variable ℓ ℓ' : Level record IsRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor isring field +IsAbGroup : IsAbGroup 0r _+_ -_ ·IsMonoid : IsMonoid 1r _·_ dist : (x y z : R) → (x · (y + z) ≡ (x · y) + (x · z)) × ((x + y) · z ≡ (x · z) + (y · z)) -- This is in the Agda stdlib, but it's redundant -- zero : (x : R) → (x · 0r ≡ 0r) × (0r · x ≡ 0r) open IsAbGroup +IsAbGroup public renaming ( assoc to +Assoc ; identity to +Identity ; lid to +Lid ; rid to +Rid ; inverse to +Inv ; invl to +Linv ; invr to +Rinv ; comm to +Comm ; isSemigroup to +IsSemigroup ; isMonoid to +IsMonoid ; isGroup to +IsGroup ) open IsMonoid ·IsMonoid public renaming ( assoc to ·Assoc ; identity to ·Identity ; lid to ·Lid ; rid to ·Rid ; isSemigroup to ·IsSemigroup ) hiding ( is-set ) -- We only want to export one proof of this ·Rdist+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z) ·Rdist+ x y z = dist x y z .fst ·Ldist+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z) ·Ldist+ x y z = dist x y z .snd record RingStr (A : Type ℓ) : Type (ℓ-suc ℓ) where constructor ringstr field 0r : A 1r : A _+_ : A → A → A _·_ : A → A → A -_ : A → A isRing : IsRing 0r 1r _+_ _·_ -_ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsRing isRing public Ring : ∀ ℓ → Type (ℓ-suc ℓ) Ring ℓ = TypeWithStr ℓ RingStr isSetRing : (R : Ring ℓ) → isSet ⟨ R ⟩ isSetRing R = R .snd .RingStr.isRing .IsRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set makeIsRing : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R} (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (r+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-lid : (x : R) → 1r · x ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)) → IsRing 0r 1r _+_ _·_ -_ makeIsRing is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ = isring (makeIsAbGroup is-setR assoc +-rid +-rinv +-comm) (makeIsMonoid is-setR ·-assoc ·-rid ·-lid) λ x y z → ·-rdist-+ x y z , ·-ldist-+ x y z makeRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-lid : (x : R) → 1r · x ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)) → Ring ℓ makeRing 0r 1r _+_ _·_ -_ is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ = _ , ringstr 0r 1r _+_ _·_ -_ (makeIsRing is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ ) record IsRingHom {A : Type ℓ} {B : Type ℓ'} (R : RingStr A) (f : A → B) (S : RingStr B) : Type (ℓ-max ℓ ℓ') where -- Shorter qualified names private module R = RingStr R module S = RingStr S field pres0 : f R.0r ≡ S.0r pres1 : f R.1r ≡ S.1r pres+ : (x y : A) → f (x R.+ y) ≡ f x S.+ f y pres· : (x y : A) → f (x R.· y) ≡ f x S.· f y pres- : (x : A) → f (R.- x) ≡ S.- (f x) unquoteDecl IsRingHomIsoΣ = declareRecordIsoΣ IsRingHomIsoΣ (quote IsRingHom) RingHom : (R : Ring ℓ) (S : Ring ℓ') → Type (ℓ-max ℓ ℓ') RingHom R S = Σ[ f ∈ (⟨ R ⟩ → ⟨ S ⟩) ] IsRingHom (R .snd) f (S .snd) IsRingEquiv : {A : Type ℓ} {B : Type ℓ'} (M : RingStr A) (e : A ≃ B) (N : RingStr B) → Type (ℓ-max ℓ ℓ') IsRingEquiv M e N = IsRingHom M (e .fst) N RingEquiv : (R : Ring ℓ) (S : Ring ℓ') → Type (ℓ-max ℓ ℓ') RingEquiv R S = Σ[ e ∈ (⟨ R ⟩ ≃ ⟨ S ⟩) ] IsRingEquiv (R .snd) e (S .snd) _$_ : {R S : Ring ℓ} → (φ : RingHom R S) → (x : ⟨ R ⟩) → ⟨ S ⟩ φ $ x = φ .fst x isPropIsRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) → isProp (IsRing 0r 1r _+_ _·_ -_) isPropIsRing 0r 1r _+_ _·_ -_ (isring RG RM RD) (isring SG SM SD) = λ i → isring (isPropIsAbGroup _ _ _ RG SG i) (isPropIsMonoid _ _ RM SM i) (isPropDistr RD SD i) where isSetR : isSet _ isSetR = RM .IsMonoid.isSemigroup .IsSemigroup.is-set isPropDistr : isProp ((x y z : _) → ((x · (y + z)) ≡ ((x · y) + (x · z))) × (((x + y) · z) ≡ ((x · z) + (y · z)))) isPropDistr = isPropΠ3 λ _ _ _ → isProp× (isSetR _ _) (isSetR _ _) isPropIsRingHom : {A : Type ℓ} {B : Type ℓ'} (R : RingStr A) (f : A → B) (S : RingStr B) → isProp (IsRingHom R f S) isPropIsRingHom R f S = isOfHLevelRetractFromIso 1 IsRingHomIsoΣ (isProp× (isSetRing (_ , S) _ _) (isProp× (isSetRing (_ , S) _ _) (isProp× (isPropΠ2 λ _ _ → isSetRing (_ , S) _ _) (isProp× (isPropΠ2 λ _ _ → isSetRing (_ , S) _ _) (isPropΠ λ _ → isSetRing (_ , S) _ _))))) 𝒮ᴰ-Ring : DUARel (𝒮-Univ ℓ) RingStr ℓ 𝒮ᴰ-Ring = 𝒮ᴰ-Record (𝒮-Univ _) IsRingEquiv (fields: data[ 0r ∣ null ∣ pres0 ] data[ 1r ∣ null ∣ pres1 ] data[ _+_ ∣ bin ∣ pres+ ] data[ _·_ ∣ bin ∣ pres· ] data[ -_ ∣ un ∣ pres- ] prop[ isRing ∣ (λ _ _ → isPropIsRing _ _ _ _ _) ]) where open RingStr open IsRingHom -- faster with some sharing null = autoDUARel (𝒮-Univ _) (λ A → A) un = autoDUARel (𝒮-Univ _) (λ A → A → A) bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A) RingPath : (R S : Ring ℓ) → RingEquiv R S ≃ (R ≡ S) RingPath = ∫ 𝒮ᴰ-Ring .UARel.ua -- Rings have an abelian group and a monoid Ring→AbGroup : Ring ℓ → AbGroup ℓ Ring→AbGroup (A , ringstr _ _ _ _ _ R) = A , abgroupstr _ _ _ (IsRing.+IsAbGroup R) Ring→Group : Ring ℓ → Group ℓ Ring→Group = AbGroup→Group ∘ Ring→AbGroup Ring→Monoid : Ring ℓ → Monoid ℓ Ring→Monoid (A , ringstr _ _ _ _ _ R) = monoid _ _ _ (IsRing.·IsMonoid R) -- Smart constructor for ring homomorphisms -- that infers the other equations from pres1, pres+, and pres· module _ {R : Ring ℓ} {S : Ring ℓ'} {f : ⟨ R ⟩ → ⟨ S ⟩} where private module R = RingStr (R .snd) module S = RingStr (S .snd) module _ (p1 : f R.1r ≡ S.1r) (p+ : (x y : ⟨ R ⟩) → f (x R.+ y) ≡ f x S.+ f y) (p· : (x y : ⟨ R ⟩) → f (x R.· y) ≡ f x S.· f y) where open IsRingHom private isGHom : IsGroupHom (Ring→Group R .snd) f (Ring→Group S .snd) isGHom = makeIsGroupHom p+ makeIsRingHom : IsRingHom (R .snd) f (S .snd) makeIsRingHom .pres0 = isGHom .IsGroupHom.pres1 makeIsRingHom .pres1 = p1 makeIsRingHom .pres+ = p+ makeIsRingHom .pres· = p· makeIsRingHom .pres- = isGHom .IsGroupHom.presinv
32.839357
101
0.517305
c5945ede4389948ed9282c37f21a1d5c65c68528
1,563
agda
Agda
Univalence/Obsolete/PiLevel1Alternative.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Univalence/Obsolete/PiLevel1Alternative.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Univalence/Obsolete/PiLevel1Alternative.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} module PiLevel1Alternative where open import Relation.Binary.PropositionalEquality open import Data.Nat open import Data.Vec open import FinVec open F open import ConcretePermutation ------------------------------------------------------------------------------ -- Equivalences between permutations -- Objects are level 0 permutations ⟷ -- Morphisms are equivalences between these permutations factorial : ℕ → ℕ factorial 0 = 1 factorial (suc n) = n * factorial n record EquivBetweenPerm {values : ℕ} {size : ℕ} (p₁ p₂ : CPerm values size) : Set where constructor ebp module p₁ = CPerm p₁ module p₂ = CPerm p₂ field -- first we have a permutation on the underlying finite sets π : FinVec values size πᵒ : FinVec size values αp : π ∘̂ πᵒ ≡ F.1C βp : πᵒ ∘̂ π ≡ F.1C -- then we have a permutation on these maps are consistent with p₁.π, p₂.π, etc. ππ : Vec (FinVec values size) (factorial size) -- ??? NO -- and so on -- and apply {-- Ex: the two underlying permutations p₁ and p₂ are: values = {A,B,C} size = 3 p₁.π = { A <=> C, B <=> A, C <=> B } represented as {C,A,B} p₂.π = { A <=> C, B <=> A, C <=> B } represented as {C,A,B} one equivalence between these permutations is 'id'; another has: π = { A <=> B, B <=> C, C <=> A } ππ = { (A <=> C) <=> (B <=> A), (B <=> A) <=> (C <=> B), (C <=> B) <=> (A <=> C) } represented as p₁.πᵒ ??? --} ------------------------------------------------------------------------------
28.418182
88
0.537428
2f4d8611d38cf2c388a2b0a08339dec3e55c45e2
137
agda
Agda
tests/beyond/evenodd.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
3
2015-08-10T15:33:56.000Z
2018-12-06T17:24:25.000Z
tests/beyond/evenodd.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
null
null
null
tests/beyond/evenodd.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
null
null
null
module evenodd where mutual data Even : Set where Z : Even S : Odd -> Even data Odd : Set where S' : Even -> Odd
12.454545
23
0.554745
a13d289d0f5e798882535afc7d1ee0079ba26988
8,226
agda
Agda
Groups/Actions/OrbitStabiliser.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Groups/Actions/OrbitStabiliser.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Groups/Actions/OrbitStabiliser.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Functions open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Numbers.Naturals.Naturals open import Sets.FinSet open import Groups.Definition open import Groups.Lemmas open import Groups.Groups open import Groups.Actions.Definition open import Groups.Actions.Stabiliser open import Groups.Groups2 open import Sets.EquivalenceRelations module Groups.Actions.OrbitStabiliser where orbitStabiliserEquivRel1 : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (action : GroupAction G T) (x : B) → Rel A orbitStabiliserEquivRel1 {T = T} action x g1 g2 = Setoid._∼_ T (GroupAction.action action g1 x) (GroupAction.action action g2 x) orbitStabiliserEquivRel2 : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (action : GroupAction G T) (x : B) → Rel A orbitStabiliserEquivRel2 {T = T} {_+_ = _+_} {G = G} action x g1 g2 = Setoid._∼_ T (GroupAction.action action ((Group.inverse G g2) + g1) x) x osEquivRel1Equiv : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (action : GroupAction G T) (x : B) → Equivalence (orbitStabiliserEquivRel1 action x) Equivalence.reflexive (osEquivRel1Equiv {T = T} action x) {a} = Equivalence.reflexive (Setoid.eq T) Equivalence.symmetric (osEquivRel1Equiv {T = T} action x) {a} {b} = Equivalence.symmetric (Setoid.eq T) Equivalence.transitive (osEquivRel1Equiv {T = T} action x) {a} {b} {c} = Equivalence.transitive (Setoid.eq T) osEquivRel2Equiv : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (action : GroupAction G T) (x : B) → Equivalence (orbitStabiliserEquivRel2 action x) Equivalence.reflexive (osEquivRel2Equiv {T = T} {G = G} action x) = transitive (GroupAction.actionWellDefined1 action (Group.invLeft G)) (GroupAction.identityAction action) where open Equivalence (Setoid.eq T) Equivalence.symmetric (osEquivRel2Equiv {S = S} {T = T} {_+_ = _+_} {G = G} gAction x) {b} {c} b=c = need where open Equivalence (Setoid.eq T) open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; transitive to transitiveS ; reflexive to reflexiveS) open Setoid T open GroupAction gAction open Group G have : action ((inverse c) + b) x ∼ x have = b=c p : action (inverse (inverse b + c)) x ∼ x p = transitive (actionWellDefined1 (transitiveS (invContravariant G) (Group.+WellDefined G reflexiveS (invInv G)))) have q : action ((inverse b) + c) (action (inverse (inverse b + c)) x) ∼ action ((inverse b) + c) x q = actionWellDefined2 p r : action (((inverse b) + c) + (inverse (inverse b + c))) x ∼ action ((inverse b) + c) x r = transitive associativeAction q s : action identity x ∼ action ((inverse b) + c) x s = transitive (actionWellDefined1 (symmetricS invRight)) r need : action ((inverse b) + c) x ∼ x need = symmetric (transitive (symmetric identityAction) s) Equivalence.transitive (osEquivRel2Equiv {S = S} {T = T} {_+_ = _+_} {G = G} gAction x) {a} {b} {c} a=b b=c = need where open Equivalence (Setoid.eq T) open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; reflexive to reflexiveS ; transitive to transitiveS) open Setoid T open GroupAction gAction open Group G have1 : action ((inverse c) + b) x ∼ x have1 = b=c have2 : action ((inverse b) + a) x ∼ x have2 = a=b p : action ((inverse c) + b) (action (inverse b + a) x) ∼ x p = transitive (actionWellDefined2 have2) have1 q : action ((inverse c + b) + (inverse b + a)) x ∼ x q = transitive associativeAction p need : action ((inverse c) + a) x ∼ x need = transitive (actionWellDefined1 (transitiveS (+WellDefined reflexiveS (transitiveS (symmetricS identLeft) (+WellDefined (symmetricS invRight) reflexiveS))) (fourWayAssoc G))) q osEquivRelsEqual' : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (action : GroupAction G T) (x : B) {g h : A} → (orbitStabiliserEquivRel2 action x) g h → (orbitStabiliserEquivRel1 action x) g h osEquivRelsEqual' {S = S} {T = T} {_+_ = _+_} {G = G} action x {g} {h} g=h = need where open Setoid T open Group G open Equivalence eq open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; transitive to transitiveS) have : (GroupAction.action action ((inverse h) + g) x) ∼ x have = g=h p : (GroupAction.action action (inverse h) (GroupAction.action action g x)) ∼ x p = transitive (symmetric (GroupAction.associativeAction action)) have q : (GroupAction.action action h (GroupAction.action action (inverse h) (GroupAction.action action g x))) ∼ GroupAction.action action h x q = GroupAction.actionWellDefined2 action p r : (GroupAction.action action (h + inverse h) (GroupAction.action action g x)) ∼ GroupAction.action action h x r = transitive (GroupAction.associativeAction action) q s : (GroupAction.action action identity (GroupAction.action action g x)) ∼ GroupAction.action action h x s = transitive (GroupAction.actionWellDefined1 action (symmetricS (Group.invRight G))) r need : (GroupAction.action action g x) ∼ (GroupAction.action action h x) need = transitive (symmetric (GroupAction.identityAction action)) s osEquivRelsEqual : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (action : GroupAction G T) (x : B) {g h : A} → (orbitStabiliserEquivRel1 action x) g h → (orbitStabiliserEquivRel2 action x) g h osEquivRelsEqual {T = T} {_+_ = _+_} {G = G} action x {g} {h} g=h = need where open Setoid T open Group G open Equivalence eq have : (GroupAction.action action g x) ∼ (GroupAction.action action h x) have = g=h p : GroupAction.action action (inverse h) (GroupAction.action action g x) ∼ GroupAction.action action (inverse h) (GroupAction.action action h x) p = GroupAction.actionWellDefined2 action have need : (GroupAction.action action ((inverse h) + g) x) ∼ x need = transitive (GroupAction.associativeAction action) (transitive p (transitive (symmetric (GroupAction.associativeAction action)) (transitive (GroupAction.actionWellDefined1 action (Group.invLeft G)) (GroupAction.identityAction action)))) orbitStabiliserBijection : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (action : GroupAction G T) (x : B) → A → ((Stabiliser action x) && Orbit action x) orbitStabiliserBijection action x g = stab {!GroupAction.action action ? ?!} {!!} ,, orbitElt g where osBijWellDefined : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (action : GroupAction G T) (x : B) → {r s : A} → (Setoid._∼_ S r s) → Setoid._∼_ (directSumSetoid (stabiliserSetoid action x) (orbitSetoid action x)) (orbitStabiliserBijection action x r) (orbitStabiliserBijection action x s) _&&_.fst (osBijWellDefined action x r~s) = {!!} _&&_.snd (osBijWellDefined action x r~s) = GroupAction.actionWellDefined1 action r~s orbitStabiliserTheorem : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (action : GroupAction G T) (x : B) → SetoidBijection S (directSumSetoid (stabiliserSetoid action x) (orbitSetoid action x)) (orbitStabiliserBijection action x) SetoidInjection.+WellDefined (SetoidBijection.inj (orbitStabiliserTheorem {S = S} action x)) = osBijWellDefined action x SetoidInjection.injective (SetoidBijection.inj (orbitStabiliserTheorem {S = S} action x)) {g} {h} (fst ,, gx=hx) = {!!} SetoidSurjection.+WellDefined (SetoidBijection.surj (orbitStabiliserTheorem action x)) = osBijWellDefined action x SetoidSurjection.surjective (SetoidBijection.surj (orbitStabiliserTheorem action x)) {stab g gx=x ,, orbitElt h} = h , ({!!} ,, {!!})
70.307692
364
0.671043
0e231e5071df3b7b561665d616316d3e6d9bbd24
934
agda
Agda
agda/Data/Nat/Base.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
4
2021-01-05T14:07:44.000Z
2021-01-05T15:32:14.000Z
agda/Data/Nat/Base.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Data/Nat/Base.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
1
2021-01-05T14:05:30.000Z
2021-01-05T14:05:30.000Z
{-# OPTIONS --cubical --safe #-} module Data.Nat.Base where open import Agda.Builtin.Nat public using (_+_; _*_; zero; suc) renaming (Nat to ℕ; _-_ to _∸_) import Agda.Builtin.Nat as Nat open import Level open import Data.Bool data Ordering : ℕ → ℕ → Type₀ where less : ∀ m k → Ordering m (suc (m + k)) equal : ∀ m → Ordering m m greater : ∀ m k → Ordering (suc (m + k)) m compare : ∀ m n → Ordering m n compare zero zero = equal zero compare (suc m) zero = greater zero m compare zero (suc n) = less zero n compare (suc m) (suc n) with compare m n ... | less m k = less (suc m) k ... | equal m = equal (suc m) ... | greater n k = greater (suc n) k nonZero : ℕ → Bool nonZero (suc _) = true nonZero zero = false _÷_ : (n m : ℕ) → { m≢0 : T (nonZero m) } → ℕ _÷_ n (suc m) = Nat.div-helper 0 m n m rem : (n m : ℕ) → { m≢0 : T (nonZero m) } → ℕ rem n (suc m) = Nat.mod-helper 0 m n m
25.944444
45
0.583512
121568bb204132ab3fa7bc08e0f216b2da6e095e
16,246
agda
Agda
src/Colimit/Sequential.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Colimit/Sequential.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Colimit/Sequential.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Sequential colimits ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} -- The definition of sequential colimits and the statement of the -- non-dependent universal property are based on those in van Doorn's -- "Constructing the Propositional Truncation using Non-recursive -- HITs". -- The module is parametrised by a notion of equality. The higher -- constructor of the HIT defining sequential colimits uses path -- equality, but the supplied notion of equality is used for many -- other things. import Equality.Path as P module Colimit.Sequential {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Prelude open import Bijection equality-with-J using (_↔_) import Colimit.Sequential.Erased eq as E import Colimit.Sequential.Very-erased eq as VE open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) import Equivalence P.equality-with-J as PEq open import Function-universe equality-with-J hiding (id; _∘_) private variable a b p q : Level A B : Type a P : A → Type p n : ℕ e x : A ------------------------------------------------------------------------ -- The type -- Sequential colimits. data Colimit (P : ℕ → Type p) (step : ∀ {n} → P n → P (suc n)) : Type p where ∣_∣ : P n → Colimit P step ∣∣≡∣∣ᴾ : (x : P n) → ∣ step x ∣ P.≡ ∣ x ∣ -- A variant of ∣∣≡∣∣ᴾ. ∣∣≡∣∣ : {step : ∀ {n} → P n → P (suc n)} (x : P n) → _≡_ {A = Colimit P step} ∣ step x ∣ ∣ x ∣ ∣∣≡∣∣ x = _↔_.from ≡↔≡ (∣∣≡∣∣ᴾ x) ------------------------------------------------------------------------ -- Eliminators -- A dependent eliminator, expressed using paths. record Elimᴾ {P : ℕ → Type p} {step : ∀ {n} → P n → P (suc n)} (Q : Colimit P step → Type q) : Type (p ⊔ q) where no-eta-equality field ∣∣ʳ : (x : P n) → Q ∣ x ∣ ∣∣≡∣∣ʳ : (x : P n) → P.[ (λ i → Q (∣∣≡∣∣ᴾ x i)) ] ∣∣ʳ (step x) ≡ ∣∣ʳ x open Elimᴾ public elimᴾ : {step : ∀ {n} → P n → P (suc n)} {Q : Colimit P step → Type q} → Elimᴾ Q → (x : Colimit P step) → Q x elimᴾ {P = P} {step = step} {Q = Q} e = helper where module E′ = Elimᴾ e helper : (x : Colimit P step) → Q x helper ∣ x ∣ = E′.∣∣ʳ x helper (∣∣≡∣∣ᴾ x i) = E′.∣∣≡∣∣ʳ x i -- A non-dependent eliminator, expressed using paths. record Recᴾ (P : ℕ → Type p) (step : ∀ {n} → P n → P (suc n)) (B : Type b) : Type (p ⊔ b) where no-eta-equality field ∣∣ʳ : P n → B ∣∣≡∣∣ʳ : (x : P n) → ∣∣ʳ (step x) P.≡ ∣∣ʳ x open Recᴾ public recᴾ : {step : ∀ {n} → P n → P (suc n)} → Recᴾ P step B → Colimit P step → B recᴾ r = elimᴾ λ where .∣∣ʳ → R.∣∣ʳ .∣∣≡∣∣ʳ → R.∣∣≡∣∣ʳ where module R = Recᴾ r -- A dependent eliminator. record Elim {P : ℕ → Type p} {step : ∀ {n} → P n → P (suc n)} (Q : Colimit P step → Type q) : Type (p ⊔ q) where no-eta-equality field ∣∣ʳ : (x : P n) → Q ∣ x ∣ ∣∣≡∣∣ʳ : (x : P n) → subst Q (∣∣≡∣∣ x) (∣∣ʳ (step x)) ≡ ∣∣ʳ x open Elim public elim : {step : ∀ {n} → P n → P (suc n)} {Q : Colimit P step → Type q} → Elim Q → (x : Colimit P step) → Q x elim e = elimᴾ λ where .∣∣ʳ → E′.∣∣ʳ .∣∣≡∣∣ʳ x → subst≡→[]≡ (E′.∣∣≡∣∣ʳ x) where module E′ = Elim e -- A "computation" rule. elim-∣∣≡∣∣ : dcong (elim e) (∣∣≡∣∣ x) ≡ Elim.∣∣≡∣∣ʳ e x elim-∣∣≡∣∣ = dcong-subst≡→[]≡ (refl _) -- A non-dependent eliminator. record Rec (P : ℕ → Type p) (step : ∀ {n} → P n → P (suc n)) (B : Type b) : Type (p ⊔ b) where no-eta-equality field ∣∣ʳ : P n → B ∣∣≡∣∣ʳ : (x : P n) → ∣∣ʳ (step x) ≡ ∣∣ʳ x open Rec public rec : {step : ∀ {n} → P n → P (suc n)} → Rec P step B → Colimit P step → B rec r = recᴾ λ where .∣∣ʳ → R.∣∣ʳ .∣∣≡∣∣ʳ x → _↔_.to ≡↔≡ (R.∣∣≡∣∣ʳ x) where module R = Rec r -- A "computation" rule. rec-∣∣≡∣∣ : {step : ∀ {n} → P n → P (suc n)} {r : Rec P step B} {x : P n} → cong (rec r) (∣∣≡∣∣ x) ≡ Rec.∣∣≡∣∣ʳ r x rec-∣∣≡∣∣ = cong-≡↔≡ (refl _) ------------------------------------------------------------------------ -- The universal property -- The universal property of the sequential colimit. universal-property : {step : ∀ {n} → P n → P (suc n)} → (Colimit P step → B) ≃ (∃ λ (f : ∀ n → P n → B) → ∀ n x → f (suc n) (step x) ≡ f n x) universal-property {P = P} {B = B} {step = step} = Eq.↔→≃ to from to∘from from∘to where to : (Colimit P step → B) → ∃ λ (f : ∀ n → P n → B) → ∀ n x → f (suc n) (step x) ≡ f n x to h = (λ _ → h ∘ ∣_∣) , (λ _ x → h ∣ step x ∣ ≡⟨ cong h (∣∣≡∣∣ x) ⟩∎ h ∣ x ∣ ∎) from : (∃ λ (f : ∀ n → P n → B) → ∀ n x → f (suc n) (step x) ≡ f n x) → Colimit P step → B from (f , g) = rec λ where .∣∣ʳ → f _ .∣∣≡∣∣ʳ → g _ to∘from : ∀ p → to (from p) ≡ p to∘from (f , g) = cong (f ,_) $ ⟨ext⟩ λ n → ⟨ext⟩ λ x → cong (rec _) (∣∣≡∣∣ x) ≡⟨ rec-∣∣≡∣∣ ⟩∎ g n x ∎ from∘to : ∀ h → from (to h) ≡ h from∘to h = ⟨ext⟩ $ elim λ where .∣∣ʳ _ → refl _ .∣∣≡∣∣ʳ x → subst (λ z → from (to h) z ≡ h z) (∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (from (to h)) (∣∣≡∣∣ x))) (trans (refl _) (cong h (∣∣≡∣∣ x))) ≡⟨ cong₂ (λ p q → trans (sym p) q) rec-∣∣≡∣∣ (trans-reflˡ _) ⟩ trans (sym (cong h (∣∣≡∣∣ x))) (cong h (∣∣≡∣∣ x)) ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎ -- A dependently typed variant of the sequential colimit's universal -- property. universal-property-Π : {step : ∀ {n} → P n → P (suc n)} → {Q : Colimit P step → Type q} → ((x : Colimit P step) → Q x) ≃ (∃ λ (f : ∀ n (x : P n) → Q ∣ x ∣) → ∀ n x → subst Q (∣∣≡∣∣ x) (f (suc n) (step x)) ≡ f n x) universal-property-Π {P = P} {step = step} {Q = Q} = Eq.↔→≃ to from to∘from from∘to where to : ((x : Colimit P step) → Q x) → ∃ λ (f : ∀ n (x : P n) → Q ∣ x ∣) → ∀ n x → subst Q (∣∣≡∣∣ x) (f (suc n) (step x)) ≡ f n x to h = (λ _ → h ∘ ∣_∣) , (λ _ x → subst Q (∣∣≡∣∣ x) (h ∣ step x ∣) ≡⟨ dcong h (∣∣≡∣∣ x) ⟩∎ h ∣ x ∣ ∎) from : (∃ λ (f : ∀ n (x : P n) → Q ∣ x ∣) → ∀ n x → subst Q (∣∣≡∣∣ x) (f (suc n) (step x)) ≡ f n x) → (x : Colimit P step) → Q x from (f , g) = elim λ where .∣∣ʳ → f _ .∣∣≡∣∣ʳ → g _ to∘from : ∀ p → to (from p) ≡ p to∘from (f , g) = cong (f ,_) $ ⟨ext⟩ λ n → ⟨ext⟩ λ x → dcong (elim _) (∣∣≡∣∣ x) ≡⟨ elim-∣∣≡∣∣ ⟩∎ g n x ∎ from∘to : ∀ h → from (to h) ≡ h from∘to h = ⟨ext⟩ $ elim λ where .∣∣ʳ _ → refl _ .∣∣≡∣∣ʳ x → subst (λ z → from (to h) z ≡ h z) (∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-dcong ⟩ trans (sym (dcong (from (to h)) (∣∣≡∣∣ x))) (trans (cong (subst Q (∣∣≡∣∣ x)) (refl _)) (dcong h (∣∣≡∣∣ x))) ≡⟨ cong₂ (λ p q → trans (sym p) q) elim-∣∣≡∣∣ (trans (cong (flip trans _) $ cong-refl _) $ trans-reflˡ _) ⟩ trans (sym (dcong h (∣∣≡∣∣ x))) (dcong h (∣∣≡∣∣ x)) ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎ ------------------------------------------------------------------------ -- Some conversion functions -- E.Colimitᴱ P step implies Colimit P step. Colimitᴱ→Colimit : {step : ∀ {n} → P n → P (suc n)} → E.Colimitᴱ P step → Colimit P step Colimitᴱ→Colimit = E.rec λ where .E.∣∣ʳ → ∣_∣ .E.∣∣≡∣∣ʳ → ∣∣≡∣∣ -- In erased contexts E.Colimitᴱ P step is equivalent to -- Colimit P step. @0 Colimitᴱ≃Colimit : {step : ∀ {n} → P n → P (suc n)} → E.Colimitᴱ P step ≃ Colimit P step Colimitᴱ≃Colimit = Eq.↔→≃ Colimitᴱ→Colimit Colimit→Colimitᴱ (elim λ @0 where .∣∣ʳ _ → refl _ .∣∣≡∣∣ʳ x → subst (λ x → Colimitᴱ→Colimit (Colimit→Colimitᴱ x) ≡ x) (∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (Colimitᴱ→Colimit ∘ Colimit→Colimitᴱ) (∣∣≡∣∣ x))) (trans (refl _) (cong id (∣∣≡∣∣ x))) ≡⟨ cong₂ (trans ∘ sym) (trans (sym $ cong-∘ _ _ _) $ trans (cong (cong Colimitᴱ→Colimit) rec-∣∣≡∣∣) $ E.rec-∣∣≡∣∣) (trans (trans-reflˡ _) $ sym $ cong-id _) ⟩ trans (sym (∣∣≡∣∣ x)) (∣∣≡∣∣ x) ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎) (E.elim λ where .E.∣∣ʳ _ → refl _ .E.∣∣≡∣∣ʳ x → subst (λ x → Colimit→Colimitᴱ (Colimitᴱ→Colimit x) ≡ x) (E.∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (Colimit→Colimitᴱ ∘ Colimitᴱ→Colimit) (E.∣∣≡∣∣ x))) (trans (refl _) (cong id (E.∣∣≡∣∣ x))) ≡⟨ cong₂ (trans ∘ sym) (trans (sym $ cong-∘ _ _ _) $ trans (cong (cong Colimit→Colimitᴱ) E.rec-∣∣≡∣∣) $ rec-∣∣≡∣∣) (trans (trans-reflˡ _) $ sym $ cong-id _) ⟩ trans (sym (E.∣∣≡∣∣ x)) (E.∣∣≡∣∣ x) ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎) where Colimit→Colimitᴱ = rec λ @0 where .∣∣ʳ → E.∣_∣ .∣∣≡∣∣ʳ → E.∣∣≡∣∣ -- Some instances of VE.Colimitᴱ can be converted to instances of -- Colimit. Note that P₀ and P₊ target the same universe. Very-Colimitᴱ→Colimit : {P₀ : Type p} {P₊ : ℕ → Type p} {step₀ : P₀ → P₊ zero} → {step₊ : ∀ {n} → P₊ n → P₊ (suc n)} → VE.Colimitᴱ P₀ P₊ step₀ step₊ → Colimit (ℕ-rec P₀ (λ n _ → P₊ n)) (λ {n} → ℕ-rec {P = λ n → ℕ-rec P₀ (λ n _ → P₊ n) n → P₊ n} step₀ (λ _ _ → step₊) n) Very-Colimitᴱ→Colimit = VE.rec λ where .VE.∣∣₀ʳ → ∣_∣ {n = 0} .VE.∣∣₊ʳ → ∣_∣ .VE.∣∣₊≡∣∣₀ʳ → ∣∣≡∣∣ .VE.∣∣₊≡∣∣₊ʳ → ∣∣≡∣∣ -- In erased contexts there are equivalences between some instances of -- VE.Colimitᴱ and some instances of Colimit. @0 Very-Colimitᴱ≃Colimit : {P₀ : Type p} {P₊ : ℕ → Type p} {step₀ : P₀ → P₊ zero} → {step₊ : ∀ {n} → P₊ n → P₊ (suc n)} → VE.Colimitᴱ P₀ P₊ step₀ step₊ ≃ Colimit (ℕ-rec P₀ (λ n _ → P₊ n)) (λ {n} → ℕ-rec {P = λ n → ℕ-rec P₀ (λ n _ → P₊ n) n → P₊ n} step₀ (λ _ _ → step₊) n) Very-Colimitᴱ≃Colimit = Eq.↔→≃ Very-Colimitᴱ→Colimit Colimit→Colimitᴱ (elim λ @0 where .∣∣ʳ {n = zero} _ → refl _ .∣∣ʳ {n = suc _} _ → refl _ .∣∣≡∣∣ʳ {n = zero} x → subst (λ x → Very-Colimitᴱ→Colimit (Colimit→Colimitᴱ x) ≡ x) (∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (Very-Colimitᴱ→Colimit ∘ Colimit→Colimitᴱ) (∣∣≡∣∣ x))) (trans (refl _) (cong id (∣∣≡∣∣ x))) ≡⟨ cong₂ (trans ∘ sym) (trans (sym $ cong-∘ _ _ _) $ trans (cong (cong Very-Colimitᴱ→Colimit) rec-∣∣≡∣∣) $ VE.rec-∣∣₊≡∣∣₀) (trans (trans-reflˡ _) $ sym $ cong-id _) ⟩ trans (sym (∣∣≡∣∣ x)) (∣∣≡∣∣ x) ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎ .∣∣≡∣∣ʳ {n = suc _} x → subst (λ x → Very-Colimitᴱ→Colimit (Colimit→Colimitᴱ x) ≡ x) (∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (Very-Colimitᴱ→Colimit ∘ Colimit→Colimitᴱ) (∣∣≡∣∣ x))) (trans (refl _) (cong id (∣∣≡∣∣ x))) ≡⟨ cong₂ (trans ∘ sym) (trans (sym $ cong-∘ _ _ _) $ trans (cong (cong Very-Colimitᴱ→Colimit) rec-∣∣≡∣∣) $ VE.rec-∣∣₊≡∣∣₊) (trans (trans-reflˡ _) $ sym $ cong-id _) ⟩ trans (sym (∣∣≡∣∣ x)) (∣∣≡∣∣ x) ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎) (VE.elim λ where .VE.∣∣₀ʳ _ → refl _ .VE.∣∣₊ʳ _ → refl _ .VE.∣∣₊≡∣∣₀ʳ x → subst (λ x → Colimit→Colimitᴱ (Very-Colimitᴱ→Colimit x) ≡ x) (VE.∣∣₊≡∣∣₀ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (Colimit→Colimitᴱ ∘ Very-Colimitᴱ→Colimit) (VE.∣∣₊≡∣∣₀ x))) (trans (refl _) (cong id (VE.∣∣₊≡∣∣₀ x))) ≡⟨ cong₂ (trans ∘ sym) (trans (sym $ cong-∘ _ _ _) $ trans (cong (cong Colimit→Colimitᴱ) VE.rec-∣∣₊≡∣∣₀) $ rec-∣∣≡∣∣) (trans (trans-reflˡ _) $ sym $ cong-id _) ⟩ trans (sym (VE.∣∣₊≡∣∣₀ x)) (VE.∣∣₊≡∣∣₀ x) ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎ .VE.∣∣₊≡∣∣₊ʳ x → subst (λ x → Colimit→Colimitᴱ (Very-Colimitᴱ→Colimit x) ≡ x) (VE.∣∣₊≡∣∣₊ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (Colimit→Colimitᴱ ∘ Very-Colimitᴱ→Colimit) (VE.∣∣₊≡∣∣₊ x))) (trans (refl _) (cong id (VE.∣∣₊≡∣∣₊ x))) ≡⟨ cong₂ (trans ∘ sym) (trans (sym $ cong-∘ _ _ _) $ trans (cong (cong Colimit→Colimitᴱ) VE.rec-∣∣₊≡∣∣₊) $ rec-∣∣≡∣∣) (trans (trans-reflˡ _) $ sym $ cong-id _) ⟩ trans (sym (VE.∣∣₊≡∣∣₊ x)) (VE.∣∣₊≡∣∣₊ x) ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎) where Colimit→Colimitᴱ = rec λ @0 where .∣∣ʳ {n = zero} → VE.∣_∣₀ .∣∣ʳ {n = suc _} → VE.∣_∣₊ .∣∣≡∣∣ʳ {n = zero} → VE.∣∣₊≡∣∣₀ .∣∣≡∣∣ʳ {n = suc _} → VE.∣∣₊≡∣∣₊
37.51963
128
0.363351
2f871417d2c65c970799fb154750787dae3bf5f2
262
agda
Agda
Algebra/Group.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
1
2019-10-07T17:36:42.000Z
2019-10-07T17:36:42.000Z
Algebra/Group.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
null
null
null
Algebra/Group.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
null
null
null
-- Copyright: (c) 2016 Ertugrul Söylemez -- License: BSD3 -- Maintainer: Ertugrul Söylemez <esz@posteo.de> module Algebra.Group where open import Algebra.Group.Group public open import Algebra.Group.Monoid public open import Algebra.Group.Semigroup public
26.2
48
0.782443
c5e04b557d286db9b83119f96cf1a2cb4ace1bef
1,778
agda
Agda
probability/Listy.agda
oisdk/prob-presentation
880217ca51ab62f6feee58ccacdb39bfade43101
[ "MIT" ]
null
null
null
probability/Listy.agda
oisdk/prob-presentation
880217ca51ab62f6feee58ccacdb39bfade43101
[ "MIT" ]
null
null
null
probability/Listy.agda
oisdk/prob-presentation
880217ca51ab62f6feee58ccacdb39bfade43101
[ "MIT" ]
null
null
null
module Listy where open import Measure open import Data.List as List using (List; []; _∷_) open import Data.Product using (_,_; _×_; proj₁; proj₂) open import Data.Nat as ℕ using (ℕ; suc; zero) open import Function record Prob (A : Set) : Set where constructor weighted field runProb : List (A × ℙ) open Prob open import Category.Monad monad : RawMonad Prob monad = record { return = λ x → weighted ((x , fromNat 1) ∷ []) ; _>>=_ = bind } where import Data.List.Categorical open RawMonad Data.List.Categorical.monad bind : {A B : Set} → Prob A → (A → Prob B) → Prob B bind xs f = weighted do (x , xp) ← runProb xs (y , yp) ← runProb (f x) return (y , xp * yp) support : {A : Set} → Prob A → List A support = List.map proj₁ ∘ runProb expect : {A : Set} → (A → ℙ) → Prob A → ℙ expect p = List.foldl (λ ys y → ys + (p (proj₁ y) * (proj₂ y)) ) (fromNat 0) ∘ runProb open import Data.Bool using (Bool; if_then_else_) probOf : {A : Set} → (A → Bool) → Prob A → ℙ probOf p = expect (λ x → if p x then fromNat 1 else fromNat 0) uniform : {A : Set} → List A → Prob A uniform [] = weighted [] uniform (x ∷ xs) = weighted (List.map (flip _,_ p) (x ∷ xs)) where p : ℙ p = 1 ?÷ (suc (List.length xs)) open import Data.Fin as Fin using (Fin) enumerate : (n : ℕ) → List (Fin n) enumerate zero = [] enumerate (suc n) = Fin.zero ∷ List.map Fin.suc (enumerate n) module Die where die : Prob (Fin 6) die = uniform (enumerate 6) open RawMonad monad pairadice : Prob ℕ pairadice = do x ← die y ← die return (suc (Fin.toℕ x) ℕ.+ suc (Fin.toℕ y)) open import Data.String using (String) open import Relation.Nullary.Decidable using (⌊_⌋) example : String example = show (probOf (λ x → ⌊ x ℕ.≟ 7 ⌋) Die.pairadice)
24.027027
86
0.624297
31527d4fb3b4e104e35d07233140df9a6ea2ea06
14,808
agda
Agda
BTA3_polybta-review.agda
luminousfennell/polybta
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
[ "BSD-3-Clause" ]
1
2019-10-15T04:35:29.000Z
2019-10-15T04:35:29.000Z
BTA3_polybta-review.agda
luminousfennell/polybta
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
[ "BSD-3-Clause" ]
null
null
null
BTA3_polybta-review.agda
luminousfennell/polybta
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
[ "BSD-3-Clause" ]
1
2019-10-15T09:01:37.000Z
2019-10-15T09:01:37.000Z
module BTA3 where open import Data.Nat open import Data.Bool open import Data.List -- Binding times data BT : Set where S : BT D : BT -- defining a data type [BT],where two members are -- [S] standing for "static" and [D] standing for dynamic. -- ``subsumption'' binding times; static can be treated as dynamic, -- but not vice versa _≼_ : BT → BT → Bool _≼_ D S = false _≼_ _ _ = true -- note that the above function can also be specified as follows, -- _≼_ : BT → BT → Bool -- D ≼ S = false -- _ ≼ _ = true -- note that the function [≼] specifies that a "static",S, can be treated -- as a "dynamic",D, and not the other way round -- since in Agda, pattern matching is conducted in a sequencial fashion, -- the above specification makes sure that it returns [false] when the -- first argument is [D] and the second [S] and returns [true] in all -- the other three cases. -- BEGIN: stuff that is also in the standard library -- Standard propositional equality, see also Relation.Binary.PropositionalEquality data _==_ {A : Set} (x : A) : A → Set where refl : x == x -- [_==_] defines an equality proposition -- it takes two identical elements of one type as arguments and gives one -- evidence,[refl],for the proposition -- subst lemma subst : {A B : Set}{x x' : A} {C : A → B} → x == x' → C x == C x' subst{A}{B}{x}{.x} refl = refl -- or being defined in the following manner... -- my_subst : {A B : Set}{x x' : A}{C : A → B} → x == x' → C x == C x' -- my_subst refl = refl -- the above function further helps to construct evidence for equality -- proposition -- it says that if two elements are identical then two new elements obtained -- by applying the former to a function should also be identical record True : Set where data False : Set where -- note that the above is regarding two simple proposition [True] and [False] -- regarding [True], -- it is defined as empty record with a single element of type [True],[record{}] -- the trick here is that the type checker knows this and fills in any implicit -- arguments of [True] with this element -- another way of defining [True] as follows, -- record True : Set where -- trivial : True -- trivial = _ -- regarding [False], -- it is defined as a proposition without any evidence corresponding well to -- what a [False] proposition really means isTrue : Bool → Set isTrue true = True isTrue false = False -- note the isTrue b,given b as boolean, is the type of proof that b is equal to -- true since if it is the case, [isTrue b] returns type [True] where its -- evidence is automatically filled in by the type checker while if it is not -- the case there is no way to supply for the evidence due to the way how -- [false] is constructed -- END standard library ---------------------- -- Sublists ---------------------- data _cx-≤_ {A : Set} : List A → List A → Set where cxle-eq : (l : List A) → l cx-≤ l cxle-lt : ∀ {l₁ l₂} x → l₁ cx-≤ l₂ → l₁ cx-≤ (x ∷ l₂) lem-cx-≤-trans : {A : Set} → {l₁ : List A} {l₂ : List A} {l₃ : List A} → l₁ cx-≤ l₂ → l₂ cx-≤ l₃ → l₁ cx-≤ l₃ lem-cx-≤-trans le1 (cxle-eq l) = le1 lem-cx-≤-trans (cxle-eq l) (cxle-lt x e) = cxle-lt x e lem-cx-≤-trans (cxle-lt x e) (cxle-lt x' e') = cxle-lt x' (lem-cx-≤-trans (cxle-lt x e) e') _cxle-∷_ : {A : Set} (x : A) (l : List A) → l cx-≤ (x ∷ l) x cxle-∷ l = cxle-lt x (cxle-eq l) data _⊆_ {A : Set} : List A → List A → Set where refl-⊆ : ∀ {l} → l ⊆ l step-⊆ : ∀ {l} x l₁ l₂ → l ⊆ (l₁ ++ l₂) → l ⊆ (l₁ ++ (x ∷ l₂)) lem-⊆-trans : {A : Set} → {l₁ : List A} {l₂ : List A} {l₃ : List A} → l₁ ⊆ l₂ → l₂ ⊆ l₃ → l₁ ⊆ l₃ lem-⊆-trans e (refl-⊆ {l}) = e lem-⊆-trans (refl-⊆ {l}) (step-⊆ x l₁ l₂ e) = step-⊆ x l₁ l₂ e lem-⊆-trans (step-⊆ x l₁ l₂ e) (step-⊆ x' l₁' l₂' e') = step-⊆ x' l₁' l₂' (lem-⊆-trans (step-⊆ x l₁ l₂ e) e') -- data _≤1_ {A : Set} : List A → List A → Set where -- cxle1-eq : (l : List A) → l ≤1 l -- cxle1-lt : ∀ x (l : List A) → l ≤1 (x ∷ l) -- data _?∷_ {A : Set} (x : A): List A → Set where -- yes∷ : (l : List A) → x ?∷ (x ∷ l) -- no∷ : (l : List A) → x ?∷ l -- getList : ∀ {A} {x : A} {l : List A} → x ?∷ l → List A -- getList {x = x} (yes∷ l) = x ∷ l -- getList {_} {_} {l} (no∷ .l) = l -- end sublists -- some lemmas about BT subsumption lem-bt≼S : {bt : BT} → isTrue (bt ≼ S) → bt == S lem-bt≼S {S} bt≼S = refl lem-bt≼S {D} () -- which can also be defined as follows, -- my_lem-bt≼S : {bt : BT} → isTrue (bt ≼ S) → bt == S -- my_lem-bt≼S {S} _ = refl -- my_lem-bt≼S {D} () lem-D≼bt : {bt : BT} → isTrue (D ≼ bt) → bt == D lem-D≼bt {S} () lem-D≼bt {D} D≼bt = refl -- Types of the calculus mutual -- s ^ BT data AType : Set where Ann : BT → SType → AType -- int | t -> t data SType : Set where SInt : SType SFun : AType → AType → SType -- aux definitions ATInt : BT → AType ATInt bt = Ann bt SInt ATFun : BT → AType → AType → AType ATFun bt at1 at2 = Ann bt (SFun at1 at2) -- note that the above function labels a ground type with annotations [S] or -- [D],sort of a labelling function -- projection: get the BT from a type btof : AType → BT btof (Ann bt _) = bt -- a related function which takes an annotated type as argument and returns -- the annotation of that type -- "constraint on types: functions have to be at least as dynamic as their component" should be corrected as follows, -- arguments of function should be as dynamic as the function data wft : AType → Set where wf-int : ∀ {bt} → wft (Ann bt SInt) wf-fun : ∀ {bt at1 at2} → wft at1 → wft at2 → isTrue (bt ≼ btof at1) → isTrue (bt ≼ btof at2) → wft (Ann bt (SFun at1 at2)) -- the above proposition specifies a set of well-formed [AType]s, -- any annotated [SInt]s are well-formed, wft (Ann bt SInt) forall bt ∈ BT -- in case of functional type with annotation, the following two criteria have -- to be satisfied to be a well form, -- a. each of its arguments is well-formed -- b. the annotation of the function and the annotations of its arguments must -- satisfy [_≼_] relation -- for instance, the functional type defined above is well-formed while -- the following is not, -- Ann D ( -- SFun (Ann S SInt) (Ann D SInt) -- ) -- in conclusion,for functional type with annotation to be well-formed, -- each of its arguments annotations has to be [D] when that of the function -- is [D] while there is no constraint upon the annotations of its arguments -- when that of the function is [S] lem-force-bt : ∀ {bt at} → isTrue (bt ≼ btof at) → D == bt → D == btof at lem-force-bt {S} bt≼at () lem-force-bt {D} {Ann S y'} () D=bt lem-force-bt {D} {Ann D y'} bt≼at D=bt = refl -- note the above function takes an element[bt] of type [BT] and a type with -- annotation, -- if both -- a. the type is at least as dynamic as [bt] -- b. [bt == D] -- then we know that the annotation of the type must be [D] as well -- and the function in that case returns evidence for that -- Low-level types; types wihtout binding information data Type : Set where TInt : Type TFun : Type → Type → Type -- translation from ATypes to low-level types mutual strip : AType → Type strip (Ann _ σ) = strip' σ strip' : SType → Type strip' SInt = TInt strip' (SFun y y') = TFun (strip y) (strip y') -- note that the above function [strip] converts a type with annotation [AType] -- to a low-level type [Type], -- for instance, -- strip (Ann D SInt) -- = strip' SInt -- = TInt -- strip (Ann S -- SFun (Ann S SInt) (Ann D SInt) -- ) -- = strip' (SFun (Ann S SInt) (Ann D SInt)) -- = TFun (strip (Ann S SInt)) (strip (Ann D SInt)) -- = TFun (strip' SInt) (strip' SInt) -- = TFun TInt TInt^ -- More general purpose definitions (should also be in standard library) -- list membership infix 4 _∈_ data _∈_ {A : Set} : A → List A → Set where hd : ∀ {x xs} → x ∈ (x ∷ xs) tl : ∀ {x y xs} → x ∈ xs → x ∈ (y ∷ xs) -- note the above proposition gives us two constructors for getting -- evidences for an element being a member of one list -- end general purpose definitions -- Typing context Ctx = List Type --data Exp' (Γ Γ' : Ctx) : Type → Set where -- EVar' : -- Typed expression data Exp (Γ : Ctx) : Type → Set where -- [EVar] corresponds to the bounded variables in [AExp] EVar : ∀ {τ} → τ ∈ Γ → Exp Γ τ EInt : ℕ → Exp Γ TInt EFun : ∀ {τ₁ τ₂} → Exp (τ₂ ∷ Γ) τ₁ → Exp Γ (TFun τ₂ τ₁) EApp : ∀ {τ₁ τ₂} → Exp Γ (TFun τ₂ τ₁) → Exp Γ τ₂ → Exp Γ τ₁ -- one additional term, count_tl : ∀ {τ Γ Γ'} → τ ∈ Γ → Γ cx-≤ Γ' → τ ∈ Γ' count_tl x (cxle-eq Γ) = x count_tl x (cxle-lt T e) = tl (count_tl x e) data _cx=≤_ {A : Set} : List A → List A → Set where cxle-peq : ∀ {l₁ l₂} { x } → l₁ cx-≤ l₂ → (x ∷ l₁) cx=≤ (x ∷ l₂) cxle-plt : ∀ {l₁ l₂} { x } → l₁ cx=≤ l₂ → (x ∷ l₁) cx=≤ (x ∷ l₂) get_cx-≤ : ∀{Γ₁ Γ₂ Γ₃ Γ₄} → Γ₁ cx=≤ Γ₂ → Γ₃ cx-≤ Γ₄ get_cx-≤ (cxle-plt e) = get_cx-≤ e get_cx-≤ (cxle-peq e) = e _id≤Bid_ : ∀{τ Γ Γ'} → τ ∈ Γ → Γ cx=≤ Γ' → Bool (tl x) id≤Bid (cxle-plt e) = x id≤Bid e hd id≤Bid e = true (tl x) id≤Bid (cxle-peq e) = false lem-x-weakening : ∀{τ Γ Γ'} → (x : τ ∈ Γ) → (e : Γ cx=≤ Γ') → isTrue (x id≤Bid e) → τ ∈ Γ' lem-x-weakening = {!!} lem-Exp-weakening' : ∀ {τ₂ τ₁ Γ Γ'} → Exp (τ₂ ∷ Γ) τ₁ → (τ₂ ∷ Γ) cx=≤ (τ₂ ∷ Γ') → Exp (τ₂ ∷ Γ') τ₁ lem-Exp-weakening' (EVar x) e with x id≤Bid e lem-Exp-weakening' (EVar x) e | true = EVar (lem-x-weakening x e _ ) lem-Exp-weakening' (EVar x) e | false = EVar (count_tl x (get_cx-≤ e)) lem-Exp-weakening' (EInt n) e = EInt n lem-Exp-weakening' (EFun t) e = EFun (lem-Exp-weakening' t (cxle-plt e)) lem-Exp-weakening' (EApp t1 t2) e = EApp (lem-Exp-weakening' t1 e) (lem-Exp-weakening' t2 e) lem-Exp-weakening : ∀ {τ Γ Γ'} → Exp Γ τ → Γ cx-≤ Γ' → Exp Γ' τ lem-Exp-weakening t (cxle-eq Γ) = t lem-Exp-weakening (EInt n) e = EInt n lem-Exp-weakening (EVar x) e = EVar (count_tl x e) lem-Exp-weakening (EFun t) (cxle-lt T e) = EFun (lem-Exp-weakening' t (cxle-peq (cxle-lt T e))) lem-Exp-weakening (EApp t1 t2) e = EApp (lem-Exp-weakening t1 e) (lem-Exp-weakening t2 e) -- typed annotated expressions ACtx = List AType data AExp (Δ : ACtx) : AType → Set where AVar : ∀ {α} → α ∈ Δ → AExp Δ α AInt : (bt : BT) → ℕ → AExp Δ (ATInt bt) AFun : ∀ {α₁ α₂} (bt : BT) → wft (ATFun bt α₂ α₁) → AExp (α₂ ∷ Δ) α₁ → AExp Δ (ATFun bt α₂ α₁) AApp : ∀ {α₁ α₂} (bt : BT) → wft (ATFun bt α₂ α₁) → AExp Δ (ATFun bt α₂ α₁) → AExp Δ α₂ → AExp Δ α₁ -- PT: why wft in the AApp case? everything in Δ should be wft! -- stripping of contexts residual : ACtx → Ctx residual [] = [] residual (Ann S _ ∷ xs) = residual xs residual (Ann D σ ∷ xs) = strip' σ ∷ residual xs -- ``semantic domain'' for partially evaluated AExp-terms: -- - AExp-terms of dynamic type evaluate to Exp-terms -- - AExp-terms of static type evaluate to agda terms, where SFun -- are functions and SInt are natural numbers mutual impTA : Ctx → AType → Set impTA Γ (Ann S σ) = impTA' Γ σ impTA Γ (Ann D σ) = Exp Γ (strip' σ) impTA' : Ctx → SType → Set impTA' Γ SInt = ℕ -- impTA' Γ (SFun y y') = impTA Γ y → impTA Γ y' impTA' Γ (SFun y y') = ∀ {Γ'} → Γ cx-≤ Γ' → (impTA Γ' y → impTA Γ' y') {- assumption: Γ binds all dynamic variables Γ = f:Int -> Int λ_ x. f @_ x : Int_ -> Int_ ImpTA Γ (Int_ -> Int_) = Exp Γ ℕ -> Exp Γ ℕ f : Int_ ->_ Int_ ImpTA Γ (Int_ ->_ Int_) = Exp Γ (Int -> Int) -} lem-impTA-weakening : ∀ {α Γ Γ'} → impTA Γ α → Γ cx-≤ Γ' → impTA Γ' α lem-impTA-weakening {Ann S SInt} v _ = v lem-impTA-weakening {Ann S (SFun x x₁)} f prf = λ prf' → f (lem-cx-≤-trans prf prf') lem-impTA-weakening {Ann D x₁} v prf = lem-Exp-weakening v prf -- mutual -- impTA-try : Ctx → AType → Set -- impTA-try Γ (Ann S σ) = impTA-try' Γ σ -- impTA-try Γ (Ann D σ) = Exp Γ (strip' σ) -- impTA-try' : Ctx → SType → Set -- impTA-try' Γ SInt = ℕ -- impTA-try' Γ (SFun y y') = impTA-try Γ y → impTA-try Γ y' -- lem-impTA-try-weakening : ∀ {α Γ Γ'} → -- impTA-try Γ α → -- Γ cx-≤ Γ' → -- impTA-try Γ' α -- lem-impTA-try-weakening {Ann S SInt} v _ = v -- lem-impTA-try-weakening {Ann S (SFun α x₁)} {Γ} {Γ'} f prf = {! λ (v : impTA-try Γ' α) → f v!} -- lem-impTA-try-weakening {Ann D x₁} v prf = lem-Exp-weakening v prf data AEnv : Ctx → ACtx → Set where env[] : ∀ {Γ} → AEnv Γ [] envS:: : ∀ {Γ Δ} {α} → impTA Γ α → AEnv Γ Δ → AEnv Γ (α ∷ Δ) envD:: : ∀ {Γ Δ} → (σ : SType) → impTA (strip' σ ∷ Γ) (Ann D σ) → AEnv Γ Δ → AEnv (strip' σ ∷ Γ) (Ann D σ ∷ Δ) lem-AEnv-weakening : ∀ {Γ Γ' Δ} → AEnv Γ Δ → Γ cx-≤ Γ' → AEnv Γ' Δ lem-AEnv-weakening env[] prf = env[] lem-AEnv-weakening (envS:: {α = α} x env) prf = envS:: (lem-impTA-weakening {α} x prf) (lem-AEnv-weakening env prf) lem-AEnv-weakening (envD:: {Γ} σ x env) prf = envS:: (lem-impTA-weakening {Ann D σ} x prf) (lem-AEnv-weakening env (lem-cx-≤-trans (cxle-lt (strip' σ) (cxle-eq Γ)) prf)) -- non-primitive recursion... this should be fixable by extending Γ in the middle, rather than in the end lookup : ∀ {Γ Δ α} → AEnv Γ Δ → (o : α ∈ Δ ) → impTA Γ α lookup env[] () lookup (envS:: x env) hd = x lookup (envS:: x env) (tl idx) = lookup env idx lookup (envD:: σ x env) hd = x lookup {α = α} (envD:: {Γ} σ x env) (tl idx) = lem-impTA-weakening {α} (lookup env idx) (strip' σ cxle-∷ Γ) data IsDynamic : AType → Set where is-dyn : ∀ σ → IsDynamic (Ann D σ) lem-IsDynamic-by-wf : ∀ α → isTrue (D ≼ btof α) → IsDynamic α lem-IsDynamic-by-wf (Ann S σ) () lem-IsDynamic-by-wf (Ann D σ) _ = is-dyn σ -- TODO: Do we need additional assurance in the type signature (or as -- an aux. lemma) that Γ is the residue of Δ? pe : ∀ {Δ Γ α} → AEnv Γ Δ → AExp Δ α → impTA Γ α pe env (AVar idx) = lookup env idx pe env (AInt S i) = i pe env (AInt D i) = EInt i pe {Γ = Γ} env (AFun {α₁} {α₂} S prf exp) = λ {Γ'} (prf₁ : Γ cx-≤ Γ') (v : impTA Γ' α₂) → pe (envS:: v (lem-AEnv-weakening env prf₁)) exp pe env (AFun {α₁} {α₂} D (wf-fun _ _ prf-2 prf-1) e) with lem-IsDynamic-by-wf α₁ prf-1 | lem-IsDynamic-by-wf α₂ prf-2 pe {Γ = Γ} env (AFun {.(Ann D σ₁)} {.(Ann D σ₂)} D (wf-fun _ _ prf-1 prf-2) e) | is-dyn σ₁ | is-dyn σ₂ = EFun (pe (envD:: σ₂ (EVar hd) env) e) pe {Γ = Γ} env (AApp S _ f e) = (pe env f (cxle-eq Γ)) (pe env e) pe env (AApp {α₁} {α₂} D (wf-fun _ _ prf-2 prf-1) f e) with lem-IsDynamic-by-wf α₁ prf-1 | lem-IsDynamic-by-wf α₂ prf-2 pe env (AApp {.(Ann D σ₁)}{.(Ann D σ₂)} D (wf-fun _ _ prf-2 prf-1) f e) | is-dyn σ₁ | is-dyn σ₂ = EApp (pe env f) (pe env e) -- construct an Exp-application using the proof that argument and results are dynamic and thus pe yields Exp-terms for them
34.842353
276
0.595286
4ded3fd061f5569bbdbf29406a245efb5d3eb371
711
agda
Agda
test/Succeed/HITs.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/HITs.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/HITs.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical #-} open import Agda.Builtin.Cubical.Path data PushOut {A B C : Set} (f : C → A) (g : C → B) : Set where inl : A → PushOut f g inr : B → PushOut f g push : ∀ c → inl (f c) ≡ inr (g c) squash : ∀ a b → a ≡ b data ∥_∥₀ (A : Set) : Set where ∣_∣ : A → ∥ A ∥₀ squash : ∀ (x y : ∥ A ∥₀) → (p q : x ≡ y) → p ≡ q data Segment : Set where start end : Segment line : start ≡ end -- prop truncation data ∥_∥ (A : Set) : Set where ∣_∣ : A → ∥ A ∥ squash : ∀ (x y : ∥ A ∥) → x ≡ y elim : ∀ {A : Set} (P : Set) → ((x y : P) → x ≡ y) → (A → P) → ∥ A ∥ → P elim P Pprop f ∣ x ∣ = f x elim P Pprop f (squash x y i) = Pprop (elim P Pprop f x) (elim P Pprop f y) i
27.346154
77
0.481013
395e53f50b32727b1c14f996cd245d0aa596b17c
1,041
agda
Agda
examples/outdated-and-incorrect/clowns/Clowns.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/clowns/Clowns.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/clowns/Clowns.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --no-positivity-check #-} module Clowns where import Equality import Isomorphism import Derivative import ChainRule open import Sets open import Functor open import Zipper open import Dissect open Functor.Recursive open Functor.Semantics -- Natural numbers NatF : U NatF = K [1] + Id Nat : Set Nat = μ NatF zero : Nat zero = inn (inl <>) suc : Nat -> Nat suc n = inn (inr n) plus : Nat -> Nat -> Nat plus n m = fold NatF φ n where φ : ⟦ NatF ⟧ Nat -> Nat φ (inl <>) = m φ (inr z) = suc z -- Lists ListF : (A : Set) -> U ListF A = K [1] + K A × Id List' : (A : Set) -> Set List' A = μ (ListF A) nil : {A : Set} -> List' A nil = inn (inl <>) cons : {A : Set} -> A -> List' A -> List' A cons x xs = inn (inr < x , xs >) sum : List' Nat -> Nat sum = fold (ListF Nat) φ where φ : ⟦ ListF Nat ⟧ Nat -> Nat φ (inl <>) = zero φ (inr < n , m >) = plus n m TreeF : U TreeF = K [1] + Id × Id Tree : Set Tree = μ TreeF leaf : Tree leaf = inn (inl <>) node : Tree -> Tree -> Tree node l r = inn (inr < l , r >)
15.537313
43
0.577329
0e11ca6abdd9f2076214feeb5e3c88ae1064f8a9
3,155
agda
Agda
examples/outdated-and-incorrect/iird/IID.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/outdated-and-incorrect/iird/IID.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/iird/IID.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- The simpler case of index inductive definitions. (no induction-recursion) module IID where open import LF -- A code for an IID -- I - index set -- E = I for general IIDs -- E = One for restricted IIDs data OP (I : Set)(E : Set) : Set1 where ι : E -> OP I E σ : (A : Set)(γ : A -> OP I E) -> OP I E δ : (A : Set)(i : A -> I)(γ : OP I E) -> OP I E -- The type of constructor arguments. Parameterised over -- U - the inductive type -- This is the F of the simple polynomial type μF Args : {I : Set}{E : Set} -> OP I E -> (U : I -> Set) -> Set Args (ι e) U = One Args (σ A γ) U = A × \a -> Args (γ a) U Args (δ A i γ) U = ((a : A) -> U (i a)) × \_ -> Args γ U -- Computing the index index : {I : Set}{E : Set}(γ : OP I E)(U : I -> Set) -> Args γ U -> E index (ι e) U _ = e index (σ A γ) U a = index (γ (π₀ a)) U (π₁ a) index (δ A i γ) U a = index γ U (π₁ a) -- The assumptions of a particular inductive occurrence in a value. IndArg : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) -> Args γ U -> Set IndArg (ι e) U _ = Zero IndArg (σ A γ) U a = IndArg (γ (π₀ a)) U (π₁ a) IndArg (δ A i γ) U a = A + IndArg γ U (π₁ a) -- Given the assumptions of an inductive occurence in a value we can compute -- its index. IndIndex : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) -> (a : Args γ U) -> IndArg γ U a -> I IndIndex (ι e) U _ () IndIndex (σ A γ) U arg c = IndIndex (γ (π₀ arg)) U (π₁ arg) c IndIndex (δ A i γ) U arg (inl a) = i a IndIndex (δ A i γ) U arg (inr a) = IndIndex γ U (π₁ arg) a -- Given the assumptions of an inductive occurrence in a value we can compute -- its value. Ind : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) -> (a : Args γ U)(v : IndArg γ U a) -> U (IndIndex γ U a v) Ind (ι e) U _ () Ind (σ A γ) U arg c = Ind (γ (π₀ arg)) U (π₁ arg) c Ind (δ A i γ) U arg (inl a) = (π₀ arg) a Ind (δ A i γ) U arg (inr a) = Ind γ U (π₁ arg) a -- The type of induction hypotheses. Basically -- forall assumptions, the predicate holds for an inductive occurrence with -- those assumptions IndHyp : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) -> (F : (i : I) -> U i -> Set)(a : Args γ U) -> Set IndHyp γ U F a = (v : IndArg γ U a) -> F (IndIndex γ U a v) (Ind γ U a v) IndHyp₁ : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) -> (F : (i : I) -> U i -> Set1)(a : Args γ U) -> Set1 IndHyp₁ γ U F a = (v : IndArg γ U a) -> F (IndIndex γ U a v) (Ind γ U a v) -- If we can prove a predicate F for any values, we can construct the inductive -- hypotheses for a given value. -- Termination note: g will only be applied to values smaller than a induction : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) (F : (i : I) -> U i -> Set) (g : (i : I)(u : U i) -> F i u) (a : Args γ U) -> IndHyp γ U F a induction γ U F g a = \hyp -> g (IndIndex γ U a hyp) (Ind γ U a hyp) induction₁ : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) (F : (i : I) -> U i -> Set1) (g : (i : I)(u : U i) -> F i u) (a : Args γ U) -> IndHyp₁ γ U F a induction₁ γ U F g a = \hyp -> g (IndIndex γ U a hyp) (Ind γ U a hyp)
34.67033
79
0.532488
1d0ec9e540ec12cb1679035cdcd9d6ba9b5a46d4
4,868
agda
Agda
prototyping/Luau/Type.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
1
2021-11-06T08:03:00.000Z
2021-11-06T08:03:00.000Z
prototyping/Luau/Type.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
prototyping/Luau/Type.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
module Luau.Type where open import FFI.Data.Maybe using (Maybe; just; nothing; just-inv) open import Agda.Builtin.Equality using (_≡_; refl) open import Properties.Dec using (Dec; yes; no) open import Properties.Equality using (cong) open import FFI.Data.Maybe using (Maybe; just; nothing) data Type : Set where nil : Type _⇒_ : Type → Type → Type never : Type unknown : Type boolean : Type number : Type string : Type _∪_ : Type → Type → Type _∩_ : Type → Type → Type data Scalar : Type → Set where number : Scalar number boolean : Scalar boolean string : Scalar string nil : Scalar nil skalar = number ∪ (string ∪ (nil ∪ boolean)) lhs : Type → Type lhs (T ⇒ _) = T lhs (T ∪ _) = T lhs (T ∩ _) = T lhs nil = nil lhs never = never lhs unknown = unknown lhs number = number lhs boolean = boolean lhs string = string rhs : Type → Type rhs (_ ⇒ T) = T rhs (_ ∪ T) = T rhs (_ ∩ T) = T rhs nil = nil rhs never = never rhs unknown = unknown rhs number = number rhs boolean = boolean rhs string = string _≡ᵀ_ : ∀ (T U : Type) → Dec(T ≡ U) nil ≡ᵀ nil = yes refl nil ≡ᵀ (S ⇒ T) = no (λ ()) nil ≡ᵀ never = no (λ ()) nil ≡ᵀ unknown = no (λ ()) nil ≡ᵀ number = no (λ ()) nil ≡ᵀ boolean = no (λ ()) nil ≡ᵀ (S ∪ T) = no (λ ()) nil ≡ᵀ (S ∩ T) = no (λ ()) nil ≡ᵀ string = no (λ ()) (S ⇒ T) ≡ᵀ string = no (λ ()) never ≡ᵀ string = no (λ ()) unknown ≡ᵀ string = no (λ ()) boolean ≡ᵀ string = no (λ ()) number ≡ᵀ string = no (λ ()) (S ∪ T) ≡ᵀ string = no (λ ()) (S ∩ T) ≡ᵀ string = no (λ ()) (S ⇒ T) ≡ᵀ nil = no (λ ()) (S ⇒ T) ≡ᵀ (U ⇒ V) with (S ≡ᵀ U) | (T ≡ᵀ V) (S ⇒ T) ≡ᵀ (S ⇒ T) | yes refl | yes refl = yes refl (S ⇒ T) ≡ᵀ (U ⇒ V) | _ | no p = no (λ q → p (cong rhs q)) (S ⇒ T) ≡ᵀ (U ⇒ V) | no p | _ = no (λ q → p (cong lhs q)) (S ⇒ T) ≡ᵀ never = no (λ ()) (S ⇒ T) ≡ᵀ unknown = no (λ ()) (S ⇒ T) ≡ᵀ number = no (λ ()) (S ⇒ T) ≡ᵀ boolean = no (λ ()) (S ⇒ T) ≡ᵀ (U ∪ V) = no (λ ()) (S ⇒ T) ≡ᵀ (U ∩ V) = no (λ ()) never ≡ᵀ nil = no (λ ()) never ≡ᵀ (U ⇒ V) = no (λ ()) never ≡ᵀ never = yes refl never ≡ᵀ unknown = no (λ ()) never ≡ᵀ number = no (λ ()) never ≡ᵀ boolean = no (λ ()) never ≡ᵀ (U ∪ V) = no (λ ()) never ≡ᵀ (U ∩ V) = no (λ ()) unknown ≡ᵀ nil = no (λ ()) unknown ≡ᵀ (U ⇒ V) = no (λ ()) unknown ≡ᵀ never = no (λ ()) unknown ≡ᵀ unknown = yes refl unknown ≡ᵀ number = no (λ ()) unknown ≡ᵀ boolean = no (λ ()) unknown ≡ᵀ (U ∪ V) = no (λ ()) unknown ≡ᵀ (U ∩ V) = no (λ ()) number ≡ᵀ nil = no (λ ()) number ≡ᵀ (T ⇒ U) = no (λ ()) number ≡ᵀ never = no (λ ()) number ≡ᵀ unknown = no (λ ()) number ≡ᵀ number = yes refl number ≡ᵀ boolean = no (λ ()) number ≡ᵀ (T ∪ U) = no (λ ()) number ≡ᵀ (T ∩ U) = no (λ ()) boolean ≡ᵀ nil = no (λ ()) boolean ≡ᵀ (T ⇒ U) = no (λ ()) boolean ≡ᵀ never = no (λ ()) boolean ≡ᵀ unknown = no (λ ()) boolean ≡ᵀ boolean = yes refl boolean ≡ᵀ number = no (λ ()) boolean ≡ᵀ (T ∪ U) = no (λ ()) boolean ≡ᵀ (T ∩ U) = no (λ ()) string ≡ᵀ nil = no (λ ()) string ≡ᵀ (x ⇒ x₁) = no (λ ()) string ≡ᵀ never = no (λ ()) string ≡ᵀ unknown = no (λ ()) string ≡ᵀ boolean = no (λ ()) string ≡ᵀ number = no (λ ()) string ≡ᵀ string = yes refl string ≡ᵀ (U ∪ V) = no (λ ()) string ≡ᵀ (U ∩ V) = no (λ ()) (S ∪ T) ≡ᵀ nil = no (λ ()) (S ∪ T) ≡ᵀ (U ⇒ V) = no (λ ()) (S ∪ T) ≡ᵀ never = no (λ ()) (S ∪ T) ≡ᵀ unknown = no (λ ()) (S ∪ T) ≡ᵀ number = no (λ ()) (S ∪ T) ≡ᵀ boolean = no (λ ()) (S ∪ T) ≡ᵀ (U ∪ V) with (S ≡ᵀ U) | (T ≡ᵀ V) (S ∪ T) ≡ᵀ (S ∪ T) | yes refl | yes refl = yes refl (S ∪ T) ≡ᵀ (U ∪ V) | _ | no p = no (λ q → p (cong rhs q)) (S ∪ T) ≡ᵀ (U ∪ V) | no p | _ = no (λ q → p (cong lhs q)) (S ∪ T) ≡ᵀ (U ∩ V) = no (λ ()) (S ∩ T) ≡ᵀ nil = no (λ ()) (S ∩ T) ≡ᵀ (U ⇒ V) = no (λ ()) (S ∩ T) ≡ᵀ never = no (λ ()) (S ∩ T) ≡ᵀ unknown = no (λ ()) (S ∩ T) ≡ᵀ number = no (λ ()) (S ∩ T) ≡ᵀ boolean = no (λ ()) (S ∩ T) ≡ᵀ (U ∪ V) = no (λ ()) (S ∩ T) ≡ᵀ (U ∩ V) with (S ≡ᵀ U) | (T ≡ᵀ V) (S ∩ T) ≡ᵀ (U ∩ V) | yes refl | yes refl = yes refl (S ∩ T) ≡ᵀ (U ∩ V) | _ | no p = no (λ q → p (cong rhs q)) (S ∩ T) ≡ᵀ (U ∩ V) | no p | _ = no (λ q → p (cong lhs q)) _≡ᴹᵀ_ : ∀ (T U : Maybe Type) → Dec(T ≡ U) nothing ≡ᴹᵀ nothing = yes refl nothing ≡ᴹᵀ just U = no (λ ()) just T ≡ᴹᵀ nothing = no (λ ()) just T ≡ᴹᵀ just U with T ≡ᵀ U (just T ≡ᴹᵀ just T) | yes refl = yes refl (just T ≡ᴹᵀ just U) | no p = no (λ q → p (just-inv q)) optional : Type → Type optional nil = nil optional (T ∪ nil) = (T ∪ nil) optional T = (T ∪ nil) normalizeOptional : Type → Type normalizeOptional (S ∪ T) with normalizeOptional S | normalizeOptional T normalizeOptional (S ∪ T) | (S′ ∪ nil) | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil normalizeOptional (S ∪ T) | S′ | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil normalizeOptional (S ∪ T) | (S′ ∪ nil) | T′ = (S′ ∪ T′) ∪ nil normalizeOptional (S ∪ T) | S′ | nil = optional S′ normalizeOptional (S ∪ T) | nil | T′ = optional T′ normalizeOptional (S ∪ T) | S′ | T′ = S′ ∪ T′ normalizeOptional T = T
29.50303
72
0.511915
0bdc025f0aa6908f5f01889326d8f81365e1b1ee
282
agda
Agda
Chunk.agda
righ1113/Agda
9117b6bec9880d8c0a5d6ee4399fd841c3544d84
[ "MIT" ]
null
null
null
Chunk.agda
righ1113/Agda
9117b6bec9880d8c0a5d6ee4399fd841c3544d84
[ "MIT" ]
null
null
null
Chunk.agda
righ1113/Agda
9117b6bec9880d8c0a5d6ee4399fd841c3544d84
[ "MIT" ]
null
null
null
module Chunk where open import Codata.Stream using (chunksOf; iterate; take) open import Data.Nat using (ℕ; suc) open import Data.Vec using (Vec; []; _∷_) -- mylist 3 = [[1,2,3],[4,5,6],[7,8,9]] myVec : (n : ℕ) → Vec (Vec ℕ n) n myVec n = take n (chunksOf n (iterate suc 1))
18.8
57
0.631206
1273b3c086e308284d8da8fe3ca6a537611c67f0
313
agda
Agda
test/fail/CoinductiveConstructorsAndLet.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/fail/CoinductiveConstructorsAndLet.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/CoinductiveConstructorsAndLet.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module CoinductiveConstructorsAndLet where open import Imports.Coinduction data D : Set where foo : D → ∞ D foo x = let y = x in ♯ y -- CoinductiveConstructorsAndLet.agda:9,24-25 -- Panic: thing out of context ([CtxId 1] is not a sub context of -- [CtxId 3]) -- when checking that the expression y has type D
22.357143
65
0.722045
505c6632e632e2513f305b8cb99f782a6bbf17ac
30,430
agda
Agda
Agda/06-equivalences.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
Agda/06-equivalences.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
Agda/06-equivalences.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --exact-split #-} module 06-equivalences where import 06-universes open 06-universes public -- Section 6.1 Homotopies _~_ : {i j : Level} {A : UU i} {B : A → UU j} (f g : (x : A) → B x) → UU (i ⊔ j) f ~ g = (x : _) → Id (f x) (g x) htpy-refl : {i j : Level} {A : UU i} {B : A → UU j} {f : (x : A) → B x} → f ~ f htpy-refl x = refl {- Most of the time we get by with htpy-refl. However, sometimes Agda wants us to specify the implicit argument. The it is easier to call htpy-refl' than to use Agda's {f = ?} notation. -} htpy-refl' : {i j : Level} {A : UU i} {B : A → UU j} (f : (x : A) → B x) → f ~ f htpy-refl' f = htpy-refl htpy-inv : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} → (f ~ g) → (g ~ f) htpy-inv H x = inv (H x) _∙h_ : {i j : Level} {A : UU i} {B : A → UU j} {f g h : (x : A) → B x} → (f ~ g) → (g ~ h) → (f ~ h) _∙h_ H K x = (H x) ∙ (K x) htpy-concat : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} → (f ~ g) → (h : (x : A) → B x) → (g ~ h) → (f ~ h) htpy-concat H h K x = concat (H x) (h x) (K x) htpy-assoc : {i j : Level} {A : UU i} {B : A → UU j} {f g h k : (x : A) → B x} → (H : f ~ g) → (K : g ~ h) → (L : h ~ k) → ((H ∙h K) ∙h L) ~ (H ∙h (K ∙h L)) htpy-assoc H K L x = assoc (H x) (K x) (L x) htpy-left-unit : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} {H : f ~ g} → (htpy-refl ∙h H) ~ H htpy-left-unit x = left-unit htpy-right-unit : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} {H : f ~ g} → (H ∙h htpy-refl) ~ H htpy-right-unit x = right-unit htpy-left-inv : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} (H : f ~ g) → ((htpy-inv H) ∙h H) ~ htpy-refl htpy-left-inv H x = left-inv (H x) htpy-right-inv : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} (H : f ~ g) → (H ∙h (htpy-inv H)) ~ htpy-refl htpy-right-inv H x = right-inv (H x) htpy-left-whisk : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} (h : B → C) {f g : A → B} → (f ~ g) → ((h ∘ f) ~ (h ∘ g)) htpy-left-whisk h H x = ap h (H x) _·l_ = htpy-left-whisk htpy-right-whisk : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} {g h : B → C} (H : g ~ h) (f : A → B) → ((g ∘ f) ~ (h ∘ f)) htpy-right-whisk H f x = H (f x) _·r_ = htpy-right-whisk -- Section 6.2 Bi-invertible maps sec : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) sec {i} {j} {A} {B} f = Σ (B → A) (λ g → (f ∘ g) ~ id) retr : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) retr {i} {j} {A} {B} f = Σ (B → A) (λ g → (g ∘ f) ~ id) _retract-of_ : {i j : Level} → UU i → UU j → UU (i ⊔ j) A retract-of B = Σ (A → B) retr is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) is-equiv f = sec f × retr f _≃_ : {i j : Level} (A : UU i) (B : UU j) → UU (i ⊔ j) A ≃ B = Σ (A → B) (λ f → is-equiv f) map-equiv : {i j : Level} {A : UU i} {B : UU j} → (A ≃ B) → (A → B) map-equiv e = pr1 e is-equiv-map-equiv : {i j : Level} {A : UU i} {B : UU j} (e : A ≃ B) → is-equiv (map-equiv e) is-equiv-map-equiv e = pr2 e has-inverse : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) has-inverse {i} {j} {A} {B} f = Σ (B → A) (λ g → ((f ∘ g) ~ id) × ((g ∘ f) ~ id)) abstract is-equiv-has-inverse' : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → has-inverse f → is-equiv f is-equiv-has-inverse' (pair g (pair H K)) = pair (pair g H) (pair g K) abstract is-equiv-has-inverse : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (g : B → A) (H : (f ∘ g) ~ id) (K : (g ∘ f) ~ id) → is-equiv f is-equiv-has-inverse g H K = is-equiv-has-inverse' (pair g (pair H K)) {- We now show that if f is an equivalence, then it has an inverse. -} htpy-section-retraction : { i j : Level} {A : UU i} {B : UU j} {f : A → B} ( is-equiv-f : is-equiv f) → ( (pr1 (pr1 is-equiv-f))) ~ (pr1 (pr2 is-equiv-f)) htpy-section-retraction {i} {j} {A} {B} {f} (pair (pair g G) (pair h H)) = (htpy-inv (H ·r g)) ∙h (h ·l G) has-inverse-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → has-inverse f has-inverse-is-equiv {i} {j} {A} {B} {f} (pair (pair g G) (pair h H)) = let is-equiv-f = pair (pair g G) (pair h H) in pair g (pair G (((htpy-section-retraction is-equiv-f) ·r f) ∙h H)) inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → B → A inv-is-equiv is-equiv-f = pr1 (has-inverse-is-equiv is-equiv-f) issec-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (is-equiv-f : is-equiv f) → (f ∘ (inv-is-equiv is-equiv-f)) ~ id issec-inv-is-equiv is-equiv-f = pr1 (pr2 (has-inverse-is-equiv is-equiv-f)) isretr-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (is-equiv-f : is-equiv f) → ((inv-is-equiv is-equiv-f) ∘ f) ~ id isretr-inv-is-equiv is-equiv-f = pr2 (pr2 (has-inverse-is-equiv is-equiv-f)) abstract is-equiv-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (is-equiv-f : is-equiv f) → is-equiv (inv-is-equiv is-equiv-f) is-equiv-inv-is-equiv {i} {j} {A} {B} {f} is-equiv-f = is-equiv-has-inverse f ( isretr-inv-is-equiv is-equiv-f) ( issec-inv-is-equiv is-equiv-f) inv-map-equiv : {i j : Level} {A : UU i} {B : UU j} → (A ≃ B) → (B → A) inv-map-equiv e = inv-is-equiv (is-equiv-map-equiv e) abstract is-equiv-inv-map-equiv : {i j : Level} {A : UU i} {B : UU j} (e : A ≃ B) → is-equiv (inv-map-equiv e) is-equiv-inv-map-equiv e = is-equiv-inv-is-equiv (is-equiv-map-equiv e) inv-equiv : {i j : Level} {A : UU i} {B : UU j} → (A ≃ B) → (B ≃ A) inv-equiv e = pair (inv-map-equiv e) (is-equiv-inv-map-equiv e) is-equiv-id : {i : Level} (A : UU i) → is-equiv (id {i} {A}) is-equiv-id A = pair (pair id htpy-refl) (pair id htpy-refl) equiv-id : {i : Level} (A : UU i) → A ≃ A equiv-id A = pair id (is-equiv-id A) inv-Π-swap : {i j k : Level} {A : UU i} {B : UU j} (C : A → B → UU k) → ((y : B) (x : A) → C x y) → ((x : A) (y : B) → C x y) inv-Π-swap C g x y = g y x abstract is-equiv-Π-swap : {i j k : Level} {A : UU i} {B : UU j} (C : A → B → UU k) → is-equiv (Π-swap {i} {j} {k} {A} {B} {C}) is-equiv-Π-swap C = is-equiv-has-inverse ( inv-Π-swap C) ( htpy-refl) ( htpy-refl) -- Section 6.3 The identity type of a Σ-type Eq-Σ : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → UU (i ⊔ j) Eq-Σ {B = B} s t = Σ (Id (pr1 s) (pr1 t)) (λ α → Id (tr B α (pr2 s)) (pr2 t)) reflexive-Eq-Σ : {i j : Level} {A : UU i} {B : A → UU j} (s : Σ A B) → Eq-Σ s s reflexive-Eq-Σ (pair a b) = pair refl refl pair-eq : {i j : Level} {A : UU i} {B : A → UU j} {s t : Σ A B} → (Id s t) → Eq-Σ s t pair-eq {s = s} refl = reflexive-Eq-Σ s eq-pair : {i j : Level} {A : UU i} {B : A → UU j} {s t : Σ A B} → (α : Id (pr1 s) (pr1 t)) → Id (tr B α (pr2 s)) (pr2 t) → Id s t eq-pair {B = B} {pair x y} {pair .x .y} refl refl = refl eq-pair' : {i j : Level} {A : UU i} {B : A → UU j} {s t : Σ A B} → Eq-Σ s t → Id s t eq-pair' (pair α β) = eq-pair α β isretr-pair-eq : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → ((pair-eq {s = s} {t}) ∘ (eq-pair' {s = s} {t})) ~ id {A = Eq-Σ s t} isretr-pair-eq (pair x y) (pair .x .y) (pair refl refl) = refl issec-pair-eq : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → ((eq-pair' {s = s} {t}) ∘ (pair-eq {s = s} {t})) ~ id issec-pair-eq (pair x y) .(pair x y) refl = refl abstract is-equiv-eq-pair : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → is-equiv (eq-pair' {s = s} {t}) is-equiv-eq-pair s t = is-equiv-has-inverse ( pair-eq) ( issec-pair-eq s t) ( isretr-pair-eq s t) abstract is-equiv-pair-eq : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → is-equiv (pair-eq {s = s} {t}) is-equiv-pair-eq s t = is-equiv-has-inverse ( eq-pair') ( isretr-pair-eq s t) ( issec-pair-eq s t) η-pair : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (t : Σ A B) → Id (pair (pr1 t) (pr2 t)) t η-pair t = eq-pair refl refl {- We also define a function eq-pair-triv, which is like eq-pair but simplified for the case where B is just a type. -} Eq-prod : {i j : Level} {A : UU i} {B : UU j} (s t : A × B) → UU (i ⊔ j) Eq-prod s t = (Id (pr1 s) (pr1 t)) × (Id (pr2 s) (pr2 t)) eq-pair-triv' : {i j : Level} {A : UU i} {B : UU j} (s t : prod A B) → Eq-prod s t → Id s t eq-pair-triv' (pair x y) (pair .x .y) (pair refl refl) = refl eq-pair-triv : {i j : Level} {A : UU i} {B : UU j} {s t : prod A B} → Eq-prod s t → Id s t eq-pair-triv {s = s} {t} = eq-pair-triv' s t {- Ideally, we would use the 3-for-2 property of equivalences to show that eq-pair-triv is an equivalence, using that eq-pair is an equivalence. Indeed, there is an equivalence (Id x x') × (Id y y') → Σ (Id x x') (λ p → Id (tr (λ x → B) p y) y'). However, to show that this map is an equivalence we either give a direct proof (in which case we might as well have given a direct proof that eq-pair-triv is an equivalence), or we use the fact that it is the induced map on total spaces of a fiberwise equivalence (the topic of Lecture 8). Thus it seems that a direct proof showing that eq-pair-triv is an equivalence is quickest for now. -} pair-eq-triv' : {i j : Level} {A : UU i} {B : UU j} (s t : prod A B) → Id s t → Eq-prod s t pair-eq-triv' s t α = pair (ap pr1 α) (ap pr2 α) isretr-pair-eq-triv' : {i j : Level} {A : UU i} {B : UU j} (s t : prod A B) → ((pair-eq-triv' s t) ∘ (eq-pair-triv' s t)) ~ id isretr-pair-eq-triv' (pair x y) (pair .x .y) (pair refl refl) = refl issec-pair-eq-triv' : {i j : Level} {A : UU i} {B : UU j} (s t : prod A B) → ((eq-pair-triv' s t) ∘ (pair-eq-triv' s t)) ~ id issec-pair-eq-triv' (pair x y) (pair .x .y) refl = refl abstract is-equiv-eq-pair-triv' : {i j : Level} {A : UU i} {B : UU j} (s t : prod A B) → is-equiv (eq-pair-triv' s t) is-equiv-eq-pair-triv' s t = is-equiv-has-inverse ( pair-eq-triv' s t) ( issec-pair-eq-triv' s t) ( isretr-pair-eq-triv' s t) -- Exercises -- Exercise 6.1 element : {i : Level} {A : UU i} → A → unit → A element a star = a htpy-element-constant : {i : Level} {A : UU i} (a : A) → (element a) ~ (const unit A a) htpy-element-constant a star = refl -- Exercise 6.2 ap-const : {i j : Level} {A : UU i} {B : UU j} (b : B) (x y : A) → (ap (const A B b) {x} {y}) ~ const (Id x y) (Id b b) refl ap-const b x .x refl = refl -- Exercise 6.3 inv-inv : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (inv (inv p)) p inv-inv refl = refl abstract is-equiv-inv : {i : Level} {A : UU i} (x y : A) → is-equiv (λ (p : Id x y) → inv p) is-equiv-inv x y = is-equiv-has-inverse inv inv-inv inv-inv equiv-inv : {i : Level} {A : UU i} (x y : A) → (Id x y) ≃ (Id y x) equiv-inv x y = pair inv (is-equiv-inv x y) inv-concat : {i : Level} {A : UU i} {x y : A} (p : Id x y) (z : A) → (Id x z) → (Id y z) inv-concat p = concat (inv p) isretr-inv-concat : {i : Level} {A : UU i} {x y : A} (p : Id x y) (z : A) → ((inv-concat p z) ∘ (concat p z)) ~ id isretr-inv-concat refl z q = refl issec-inv-concat : {i : Level} {A : UU i} {x y : A} (p : Id x y) (z : A) → ((concat p z) ∘ (inv-concat p z)) ~ id issec-inv-concat refl z refl = refl abstract is-equiv-concat : {i : Level} {A : UU i} {x y : A} (p : Id x y) (z : A) → is-equiv (concat p z) is-equiv-concat p z = is-equiv-has-inverse ( inv-concat p z) ( issec-inv-concat p z) ( isretr-inv-concat p z) equiv-concat : {i : Level} {A : UU i} {x y : A} (p : Id x y) (z : A) → Id y z ≃ Id x z equiv-concat p z = pair (concat p z) (is-equiv-concat p z) concat' : {i : Level} {A : UU i} (x : A) {y z : A} → Id y z → Id x y → Id x z concat' x q p = p ∙ q inv-concat' : {i : Level} {A : UU i} (x : A) {y z : A} → Id y z → Id x z → Id x y inv-concat' x q = concat' x (inv q) isretr-inv-concat' : {i : Level} {A : UU i} (x : A) {y z : A} (q : Id y z) → ((inv-concat' x q) ∘ (concat' x q)) ~ id isretr-inv-concat' x refl refl = refl issec-inv-concat' : {i : Level} {A : UU i} (x : A) {y z : A} (q : Id y z) → ((concat' x q) ∘ (inv-concat' x q)) ~ id issec-inv-concat' x refl refl = refl abstract is-equiv-concat' : {i : Level} {A : UU i} (x : A) {y z : A} (q : Id y z) → is-equiv (concat' x q) is-equiv-concat' x q = is-equiv-has-inverse ( inv-concat' x q) ( issec-inv-concat' x q) ( isretr-inv-concat' x q) equiv-concat' : {i : Level} {A : UU i} (x : A) {y z : A} (q : Id y z) → Id x y ≃ Id x z equiv-concat' x q = pair (concat' x q) (is-equiv-concat' x q) inv-tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} → Id x y → B y → B x inv-tr B p = tr B (inv p) isretr-inv-tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) → ((inv-tr B p ) ∘ (tr B p)) ~ id isretr-inv-tr B refl b = refl issec-inv-tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) → ((tr B p) ∘ (inv-tr B p)) ~ id issec-inv-tr B refl b = refl abstract is-equiv-tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) → is-equiv (tr B p) is-equiv-tr B p = is-equiv-has-inverse ( inv-tr B p) ( issec-inv-tr B p) ( isretr-inv-tr B p) equiv-tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) → (B x) ≃ (B y) equiv-tr B p = pair (tr B p) (is-equiv-tr B p) -- Exercise 6.4 abstract is-equiv-htpy : {i j : Level} {A : UU i} {B : UU j} {f : A → B} (g : A → B) → f ~ g → is-equiv g → is-equiv f is-equiv-htpy g H (pair (pair gs issec) (pair gr isretr)) = pair ( pair gs ((H ·r gs) ∙h issec)) ( pair gr ((gr ·l H) ∙h isretr)) abstract is-equiv-htpy' : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {g : A → B} → f ~ g → is-equiv f → is-equiv g is-equiv-htpy' f H = is-equiv-htpy f (htpy-inv H) htpy-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f f' : A → B} (H : f ~ f') → (is-equiv-f : is-equiv f) (is-equiv-f' : is-equiv f') → (inv-is-equiv is-equiv-f) ~ (inv-is-equiv is-equiv-f') htpy-inv-is-equiv H is-equiv-f is-equiv-f' b = ( inv (isretr-inv-is-equiv is-equiv-f' (inv-is-equiv is-equiv-f b))) ∙ ( ap (inv-is-equiv is-equiv-f') ( ( inv (H (inv-is-equiv is-equiv-f b))) ∙ ( issec-inv-is-equiv is-equiv-f b))) -- Exercise 6.5 {- Exercise 6.5 (a) asks to show that, given a commuting triangle f ~ g ∘ h and a section s of h, we get a new commuting triangle g ~ f ∘ s. Moreover, under the same assumptions it follows that f has a section if and only if g has a section. -} triangle-section : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) (S : sec h) → g ~ (f ∘ (pr1 S)) triangle-section f g h H (pair s issec) = htpy-inv (( H ·r s) ∙h (g ·l issec)) section-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → sec h → sec f → sec g section-comp f g h H sec-h sec-f = pair (h ∘ (pr1 sec-f)) ((htpy-inv (H ·r (pr1 sec-f))) ∙h (pr2 sec-f)) section-comp' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → sec h → sec g → sec f section-comp' f g h H sec-h sec-g = pair ( (pr1 sec-h) ∘ (pr1 sec-g)) ( ( H ·r ((pr1 sec-h) ∘ (pr1 sec-g))) ∙h ( ( g ·l ((pr2 sec-h) ·r (pr1 sec-g))) ∙h ((pr2 sec-g)))) {- Exercise 6.5 (b) is dual to exercise 5.5 (a). It asks to show that, given a commuting triangle f ~ g ∘ h and a retraction r of g, we get a new commuting triangle h ~ r ∘ f. Moreover, under these assumptions it also follows that f has a retraction if and only if h has a retraction. -} triangle-retraction : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) (R : retr g) → h ~ ((pr1 R) ∘ f) triangle-retraction f g h H (pair r isretr) = htpy-inv (( r ·l H) ∙h (isretr ·r h)) retraction-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → retr g → retr f → retr h retraction-comp f g h H retr-g retr-f = pair ( (pr1 retr-f) ∘ g) ( (htpy-inv ((pr1 retr-f) ·l H)) ∙h (pr2 retr-f)) retraction-comp' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → retr g → retr h → retr f retraction-comp' f g h H retr-g retr-h = pair ( (pr1 retr-h) ∘ (pr1 retr-g)) ( ( ((pr1 retr-h) ∘ (pr1 retr-g)) ·l H) ∙h ( ((pr1 retr-h) ·l ((pr2 retr-g) ·r h)) ∙h (pr2 retr-h))) {- In Exercise 6.5 (c) we use the constructions of parts (a) and (b) to derive the 3-for-2 property of equivalences. -} abstract is-equiv-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-equiv h → is-equiv g → is-equiv f is-equiv-comp f g h H (pair sec-h retr-h) (pair sec-g retr-g) = pair ( section-comp' f g h H sec-h sec-g) ( retraction-comp' f g h H retr-g retr-h) abstract is-equiv-comp' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (g : B → X) (h : A → B) → is-equiv h → is-equiv g → is-equiv (g ∘ h) is-equiv-comp' g h = is-equiv-comp (g ∘ h) g h htpy-refl equiv-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} → (B ≃ X) → (A ≃ B) → (A ≃ X) equiv-comp g h = pair ((pr1 g) ∘ (pr1 h)) (is-equiv-comp' (pr1 g) (pr1 h) (pr2 h) (pr2 g)) _∘e_ : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} → (B ≃ X) → (A ≃ B) → (A ≃ X) _∘e_ = equiv-comp abstract is-equiv-left-factor : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-equiv f → is-equiv h → is-equiv g is-equiv-left-factor f g h H ( pair sec-f retr-f) ( pair (pair sh sh-issec) retr-h) = pair ( section-comp f g h H (pair sh sh-issec) sec-f) ( retraction-comp' g f sh ( triangle-section f g h H (pair sh sh-issec)) ( retr-f) ( pair h sh-issec)) abstract is-equiv-left-factor' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (g : B → X) (h : A → B) → is-equiv (g ∘ h) → is-equiv h → is-equiv g is-equiv-left-factor' g h = is-equiv-left-factor (g ∘ h) g h htpy-refl abstract is-equiv-right-factor : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-equiv g → is-equiv f → is-equiv h is-equiv-right-factor f g h H ( pair sec-g (pair rg rg-isretr)) ( pair sec-f retr-f) = pair ( section-comp' h rg f ( triangle-retraction f g h H (pair rg rg-isretr)) ( sec-f) ( pair g rg-isretr)) ( retraction-comp f g h H (pair rg rg-isretr) retr-f) abstract is-equiv-right-factor' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (g : B → X) (h : A → B) → is-equiv g → is-equiv (g ∘ h) → is-equiv h is-equiv-right-factor' g h = is-equiv-right-factor (g ∘ h) g h htpy-refl -- Exercise 6.6 {- In this exercise we show that the negation function on the booleans is an equivalence. Moreover, we show that any constant function on the booleans is not an equivalence. -} neg-neg-𝟚 : (neg-𝟚 ∘ neg-𝟚) ~ id neg-neg-𝟚 true = refl neg-neg-𝟚 false = refl abstract is-equiv-neg-𝟚 : is-equiv neg-𝟚 is-equiv-neg-𝟚 = is-equiv-has-inverse neg-𝟚 neg-neg-𝟚 neg-neg-𝟚 equiv-neg-𝟚 : bool ≃ bool equiv-neg-𝟚 = pair neg-𝟚 is-equiv-neg-𝟚 abstract not-true-is-false : ¬ (Id true false) not-true-is-false p = tr (Eq-𝟚 true) p (reflexive-Eq-𝟚 true) abstract not-equiv-const : (b : bool) → ¬ (is-equiv (const bool bool b)) not-equiv-const true (pair (pair s issec) (pair r isretr)) = not-true-is-false (issec false) not-equiv-const false (pair (pair s issec) (pair r isretr)) = not-true-is-false (inv (issec true)) -- Exercise 6.7 is-equiv-succ-ℤ : is-equiv succ-ℤ is-equiv-succ-ℤ = is-equiv-has-inverse pred-ℤ right-inverse-pred-ℤ left-inverse-pred-ℤ equiv-succ-ℤ : ℤ ≃ ℤ equiv-succ-ℤ = pair succ-ℤ is-equiv-succ-ℤ -- Exercise 6.8 {- In this exercise we construct an equivalence from A + B to B + A, showing that the coproduct is commutative. -} swap-coprod : {i j : Level} (A : UU i) (B : UU j) → coprod A B → coprod B A swap-coprod A B (inl x) = inr x swap-coprod A B (inr x) = inl x swap-swap-coprod : {i j : Level} (A : UU i) (B : UU j) → ((swap-coprod B A) ∘ (swap-coprod A B)) ~ id swap-swap-coprod A B (inl x) = refl swap-swap-coprod A B (inr x) = refl abstract is-equiv-swap-coprod : {i j : Level} (A : UU i) (B : UU j) → is-equiv (swap-coprod A B) is-equiv-swap-coprod A B = is-equiv-has-inverse ( swap-coprod B A) ( swap-swap-coprod B A) ( swap-swap-coprod A B) equiv-swap-coprod : {i j : Level} (A : UU i) (B : UU j) → coprod A B ≃ coprod B A equiv-swap-coprod A B = pair (swap-coprod A B) (is-equiv-swap-coprod A B) swap-prod : {i j : Level} (A : UU i) (B : UU j) → prod A B → prod B A swap-prod A B t = pair (pr2 t) (pr1 t) swap-swap-prod : {i j : Level} (A : UU i) (B : UU j) → ((swap-prod B A) ∘ (swap-prod A B)) ~ id swap-swap-prod A B (pair x y) = refl abstract is-equiv-swap-prod : {i j : Level} (A : UU i) (B : UU j) → is-equiv (swap-prod A B) is-equiv-swap-prod A B = is-equiv-has-inverse ( swap-prod B A) ( swap-swap-prod B A) ( swap-swap-prod A B) equiv-swap-prod : {i j : Level} (A : UU i) (B : UU j) → (A × B) ≃ (B × A) equiv-swap-prod A B = pair (swap-prod A B) (is-equiv-swap-prod A B) -- Exercise 6.9 {- In this exercise we show that if A is a retract of B, then so are its identity types. -} ap-retraction : {i j : Level} {A : UU i} {B : UU j} (i : A → B) (r : B → A) (H : (r ∘ i) ~ id) (x y : A) → Id (i x) (i y) → Id x y ap-retraction i r H x y p = ( inv (H x)) ∙ ((ap r p) ∙ (H y)) isretr-ap-retraction : {i j : Level} {A : UU i} {B : UU j} (i : A → B) (r : B → A) (H : (r ∘ i) ~ id) (x y : A) → ((ap-retraction i r H x y) ∘ (ap i {x} {y})) ~ id isretr-ap-retraction i r H x .x refl = left-inv (H x) retr-ap : {i j : Level} {A : UU i} {B : UU j} (i : A → B) → retr i → (x y : A) → retr (ap i {x} {y}) retr-ap i (pair r H) x y = pair (ap-retraction i r H x y) (isretr-ap-retraction i r H x y) Id-retract-of-Id : {i j : Level} {A : UU i} {B : UU j} (R : A retract-of B) → (x y : A) → (Id x y) retract-of (Id (pr1 R x) (pr1 R y)) Id-retract-of-Id (pair i (pair r H)) x y = pair ( ap i {x} {y}) ( retr-ap i (pair r H) x y) -- Exercise 6.10 Σ-assoc : {i j k : Level} (A : UU i) (B : A → UU j) (C : (Σ A B) → UU k) → Σ (Σ A B) C → Σ A (λ x → Σ (B x) (λ y → C (pair x y))) Σ-assoc A B C (pair (pair x y) z) = pair x (pair y z) Σ-assoc' : {i j k : Level} (A : UU i) (B : A → UU j) (C : (Σ A B) → UU k) → Σ A (λ x → Σ (B x) (λ y → C (pair x y))) → Σ (Σ A B) C Σ-assoc' A B C t = pair (pair (pr1 t) (pr1 (pr2 t))) (pr2 (pr2 t)) Σ-assoc-assoc : {i j k : Level} (A : UU i) (B : A → UU j) (C : (Σ A B) → UU k) → ((Σ-assoc' A B C) ∘ (Σ-assoc A B C)) ~ id Σ-assoc-assoc A B C (pair (pair x y) z) = refl Σ-assoc-assoc' : {i j k : Level} (A : UU i) (B : A → UU j) (C : (Σ A B) → UU k) → ((Σ-assoc A B C) ∘ (Σ-assoc' A B C)) ~ id Σ-assoc-assoc' A B C (pair x (pair y z)) = refl abstract is-equiv-Σ-assoc : {i j k : Level} (A : UU i) (B : A → UU j) (C : (Σ A B) → UU k) → is-equiv (Σ-assoc A B C) is-equiv-Σ-assoc A B C = is-equiv-has-inverse ( Σ-assoc' A B C) ( Σ-assoc-assoc' A B C) ( Σ-assoc-assoc A B C) equiv-Σ-assoc : {i j k : Level} (A : UU i) (B : A → UU j) (C : (Σ A B) → UU k) → Σ (Σ A B) C ≃ Σ A (λ x → Σ (B x) (λ y → C (pair x y))) equiv-Σ-assoc A B C = pair (Σ-assoc A B C) (is-equiv-Σ-assoc A B C) -- Exercise 6.11 Σ-swap : {i j k : Level} (A : UU i) (B : UU j) (C : A → B → UU k) → Σ A (λ x → Σ B (C x)) → Σ B (λ y → Σ A (λ x → C x y)) Σ-swap A B C t = pair (pr1 (pr2 t)) (pair (pr1 t) (pr2 (pr2 t))) Σ-swap' : {i j k : Level} (A : UU i) (B : UU j) (C : A → B → UU k) → Σ B (λ y → Σ A (λ x → C x y)) → Σ A (λ x → Σ B (C x)) Σ-swap' A B C = Σ-swap B A (λ y x → C x y) Σ-swap-swap : {i j k : Level} (A : UU i) (B : UU j) (C : A → B → UU k) → ((Σ-swap' A B C) ∘ (Σ-swap A B C)) ~ id Σ-swap-swap A B C (pair x (pair y z)) = refl abstract is-equiv-Σ-swap : {i j k : Level} (A : UU i) (B : UU j) (C : A → B → UU k) → is-equiv (Σ-swap A B C) is-equiv-Σ-swap A B C = is-equiv-has-inverse ( Σ-swap' A B C) ( Σ-swap-swap B A (λ y x → C x y)) ( Σ-swap-swap A B C) -- Exercise 6.12 abstract is-equiv-add-ℤ-right : (x : ℤ) → is-equiv (add-ℤ x) is-equiv-add-ℤ-right x = is-equiv-has-inverse ( add-ℤ (neg-ℤ x)) ( λ y → ( inv (associative-add-ℤ x (neg-ℤ x) y)) ∙ ( ap (λ t → add-ℤ t y) (right-inverse-law-add-ℤ x))) ( λ y → ( inv (associative-add-ℤ (neg-ℤ x) x y)) ∙ ( ap (λ t → add-ℤ t y) (left-inverse-law-add-ℤ x))) abstract is-equiv-add-ℤ-left : (y : ℤ) → is-equiv (λ x → add-ℤ x y) is-equiv-add-ℤ-left y = is-equiv-htpy (add-ℤ y) ( λ x → commutative-add-ℤ x y) ( is-equiv-add-ℤ-right y) -- Exercise 6.13 {- We construct the functoriality of coproducts. -} functor-coprod : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} → (A → A') → (B → B') → coprod A B → coprod A' B' functor-coprod f g (inl x) = inl (f x) functor-coprod f g (inr y) = inr (g y) htpy-functor-coprod : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} {f f' : A → A'} (H : f ~ f') {g g' : B → B'} (K : g ~ g') → (functor-coprod f g) ~ (functor-coprod f' g') htpy-functor-coprod H K (inl x) = ap inl (H x) htpy-functor-coprod H K (inr y) = ap inr (K y) id-functor-coprod : {l1 l2 : Level} (A : UU l1) (B : UU l2) → (functor-coprod (id {A = A}) (id {A = B})) ~ id id-functor-coprod A B (inl x) = refl id-functor-coprod A B (inr x) = refl compose-functor-coprod : {l1 l2 l1' l2' l1'' l2'' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} {A'' : UU l1''} {B'' : UU l2''} (f : A → A') (f' : A' → A'') (g : B → B') (g' : B' → B'') → (functor-coprod (f' ∘ f) (g' ∘ g)) ~ ((functor-coprod f' g') ∘ (functor-coprod f g)) compose-functor-coprod f f' g g' (inl x) = refl compose-functor-coprod f f' g g' (inr y) = refl abstract is-equiv-functor-coprod : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} {f : A → A'} {g : B → B'} → is-equiv f → is-equiv g → is-equiv (functor-coprod f g) is-equiv-functor-coprod {A = A} {B = B} {A' = A'} {B' = B'} {f = f} {g = g} (pair (pair sf issec-sf) (pair rf isretr-rf)) (pair (pair sg issec-sg) (pair rg isretr-rg)) = pair ( pair ( functor-coprod sf sg) ( ( ( htpy-inv (compose-functor-coprod sf f sg g)) ∙h ( htpy-functor-coprod issec-sf issec-sg)) ∙h ( id-functor-coprod A' B'))) ( pair ( functor-coprod rf rg) ( ( ( htpy-inv (compose-functor-coprod f rf g rg)) ∙h ( htpy-functor-coprod isretr-rf isretr-rg)) ∙h ( id-functor-coprod A B))) equiv-functor-coprod : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} → (A ≃ A') → (B ≃ B') → ((coprod A B) ≃ (coprod A' B')) equiv-functor-coprod (pair e is-equiv-e) (pair f is-equiv-f) = pair ( functor-coprod e f) ( is-equiv-functor-coprod is-equiv-e is-equiv-f) -- Extra material abstract is-equiv-inv-con : {i : Level} {A : UU i} {x y z : A} (p : Id x y) (q : Id y z) (r : Id x z) → is-equiv (inv-con p q r) is-equiv-inv-con refl q r = is-equiv-id (Id q r) equiv-inv-con : {i : Level} {A : UU i} {x y z : A} (p : Id x y) (q : Id y z) (r : Id x z) → Id (p ∙ q) r ≃ Id q ((inv p) ∙ r) equiv-inv-con p q r = pair (inv-con p q r) (is-equiv-inv-con p q r) abstract is-equiv-con-inv : {i : Level} {A : UU i} {x y z : A} (p : Id x y) (q : Id y z) (r : Id x z) → is-equiv (con-inv p q r) is-equiv-con-inv p refl r = is-equiv-comp' ( concat' p (inv right-unit)) ( concat (inv right-unit) r) ( is-equiv-concat (inv right-unit) r) ( is-equiv-concat' p (inv right-unit)) equiv-con-inv : {i : Level} {A : UU i} {x y z : A} (p : Id x y) (q : Id y z) (r : Id x z) → Id (p ∙ q) r ≃ Id p (r ∙ (inv q)) equiv-con-inv p q r = pair (con-inv p q r) (is-equiv-con-inv p q r) htpy-inv-con : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} → (H : f ~ g) (K : g ~ h) (L : f ~ h) → (H ∙h K) ~ L → K ~ ((htpy-inv H) ∙h L) htpy-inv-con H K L M x = inv-con (H x) (K x) (L x) (M x) htpy-con-inv : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} → (H : f ~ g) (K : g ~ h) (L : f ~ h) → (H ∙h K) ~ L → H ~ (L ∙h (htpy-inv K)) htpy-con-inv H K L M x = con-inv (H x) (K x) (L x) (M x) htpy-ap-concat : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} → (H : f ~ g) (K K' : g ~ h) → K ~ K' → (H ∙h K) ~ (H ∙h K') htpy-ap-concat {g = g} {h} H K K' L x = ap (concat (H x) (h x)) (L x) htpy-ap-concat' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} → (H H' : f ~ g) (K : g ~ h) → H ~ H' → (H ∙h K) ~ (H' ∙h K) htpy-ap-concat' H H' K L x = ap (concat' _ (K x)) (L x) htpy-distributive-inv-concat : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} → (H : f ~ g) (K : g ~ h) → (htpy-inv (H ∙h K)) ~ ((htpy-inv K) ∙h (htpy-inv H)) htpy-distributive-inv-concat H K x = distributive-inv-concat (H x) (K x) htpy-ap-inv : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : (x : A) → B x} → {H H' : f ~ g} → H ~ H' → (htpy-inv H) ~ (htpy-inv H') htpy-ap-inv K x = ap inv (K x) htpy-left-whisk-htpy-inv : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {f f' : A → B} (g : B → C) (H : f ~ f') → (g ·l (htpy-inv H)) ~ htpy-inv (g ·l H) htpy-left-whisk-htpy-inv g H x = ap-inv g (H x) htpy-right-whisk-htpy-inv : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {g g' : B → C} (H : g ~ g') (f : A → B) → ((htpy-inv H) ·r f) ~ (htpy-inv (H ·r f)) htpy-right-whisk-htpy-inv H f = htpy-refl
31.56639
80
0.508939
3185bc2787be2ef0f43ad002925d8dbdfba414cc
5,408
agda
Agda
Cubical/Structures/Relational/Maybe.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Structures/Relational/Maybe.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Structures/Relational/Maybe.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- Maybe structure: X ↦ Maybe (S X) -} {-# OPTIONS --no-exact-split --safe #-} module Cubical.Structures.Relational.Maybe where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Foundations.RelationalStructure open import Cubical.Data.Unit open import Cubical.Data.Empty open import Cubical.Data.Maybe open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as Trunc open import Cubical.HITs.SetQuotients open import Cubical.Structures.Maybe private variable ℓ ℓ₁ ℓ₁' ℓ₁'' : Level -- Structured relations MaybeRelStr : {S : Type ℓ → Type ℓ₁} {ℓ₁' : Level} → StrRel S ℓ₁' → StrRel (λ X → Maybe (S X)) ℓ₁' MaybeRelStr ρ R = MaybeRel (ρ R) maybeSuitableRel : {S : Type ℓ → Type ℓ₁} {ρ : StrRel S ℓ₁'} → SuitableStrRel S ρ → SuitableStrRel (MaybeStructure S) (MaybeRelStr ρ) maybeSuitableRel θ .quo (X , nothing) R _ .fst = nothing , _ maybeSuitableRel θ .quo (X , nothing) R _ .snd (nothing , _) = refl maybeSuitableRel θ .quo (X , just s) R c .fst = just (θ .quo (X , s) R c .fst .fst) , θ .quo (X , s) R c .fst .snd maybeSuitableRel θ .quo (X , just s) R c .snd (just s' , r) = cong (λ {(t , r') → just t , r'}) (θ .quo (X , s) R c .snd (s' , r)) maybeSuitableRel θ .symmetric R {nothing} {nothing} r = _ maybeSuitableRel θ .symmetric R {just s} {just t} r = θ .symmetric R r maybeSuitableRel θ .transitive R R' {nothing} {nothing} {nothing} r r' = _ maybeSuitableRel θ .transitive R R' {just s} {just t} {just u} r r' = θ .transitive R R' r r' maybeSuitableRel θ .set setX = isOfHLevelMaybe 0 (θ .set setX) maybeSuitableRel θ .prop propR nothing nothing = isOfHLevelLift 1 isPropUnit maybeSuitableRel θ .prop propR nothing (just y) = isOfHLevelLift 1 isProp⊥ maybeSuitableRel θ .prop propR (just x) nothing = isOfHLevelLift 1 isProp⊥ maybeSuitableRel θ .prop propR (just x) (just y) = θ .prop propR x y maybeRelMatchesEquiv : {S : Type ℓ → Type ℓ₁} (ρ : StrRel S ℓ₁') {ι : StrEquiv S ℓ₁''} → StrRelMatchesEquiv ρ ι → StrRelMatchesEquiv (MaybeRelStr ρ) (MaybeEquivStr ι) maybeRelMatchesEquiv ρ μ (X , nothing) (Y , nothing) _ = Lift≃Lift (idEquiv _) maybeRelMatchesEquiv ρ μ (X , nothing) (Y , just y) _ = Lift≃Lift (idEquiv _) maybeRelMatchesEquiv ρ μ (X , just x) (Y , nothing) _ = Lift≃Lift (idEquiv _) maybeRelMatchesEquiv ρ μ (X , just x) (Y , just y) = μ (X , x) (Y , y) maybeRelAction : {S : Type ℓ → Type ℓ₁} {ρ : StrRel S ℓ₁'} → StrRelAction ρ → StrRelAction (MaybeRelStr ρ) maybeRelAction α .actStr f = map-Maybe (α .actStr f) maybeRelAction α .actStrId s = funExt⁻ (cong map-Maybe (funExt (α .actStrId))) s ∙ map-Maybe-id s maybeRelAction α .actRel h nothing nothing = _ maybeRelAction α .actRel h (just s) (just t) r = α .actRel h s t r maybePositiveRel : {S : Type ℓ → Type ℓ₁} {ρ : StrRel S ℓ₁'} {θ : SuitableStrRel S ρ} → PositiveStrRel θ → PositiveStrRel (maybeSuitableRel θ) maybePositiveRel σ .act = maybeRelAction (σ .act) maybePositiveRel σ .reflexive nothing = _ maybePositiveRel σ .reflexive (just s) = σ .reflexive s maybePositiveRel σ .detransitive R R' {nothing} {nothing} r = ∣ nothing , _ , _ ∣₁ maybePositiveRel σ .detransitive R R' {just s} {just u} rr' = Trunc.map (λ {(t , r , r') → just t , r , r'}) (σ .detransitive R R' rr') maybePositiveRel {S = S} {ρ = ρ} {θ = θ} σ .quo {X} R = subst isEquiv (funExt (elimProp (λ _ → maybeSuitableRel θ .set squash/ _ _) (λ {nothing → refl; (just _) → refl}))) (compEquiv (isoToEquiv isom) (congMaybeEquiv (_ , σ .quo R)) .snd) where fwd : Maybe (S X) / MaybeRel (ρ (R .fst .fst)) → Maybe (S X / ρ (R .fst .fst)) fwd [ nothing ] = nothing fwd [ just s ] = just [ s ] fwd (eq/ nothing nothing r i) = nothing fwd (eq/ (just s) (just t) r i) = just (eq/ s t r i) fwd (squash/ _ _ p q i j) = isOfHLevelMaybe 0 squash/ _ _ (cong fwd p) (cong fwd q) i j bwd : Maybe (S X / ρ (R .fst .fst)) → Maybe (S X) / MaybeRel (ρ (R .fst .fst)) bwd nothing = [ nothing ] bwd (just [ s ]) = [ just s ] bwd (just (eq/ s t r i)) = eq/ (just s) (just t) r i bwd (just (squash/ _ _ p q i j)) = squash/ _ _ (cong (bwd ∘ just) p) (cong (bwd ∘ just) q) i j open Iso isom : Iso (Maybe (S X) / MaybeRel (ρ (R .fst .fst))) (Maybe (S X / ρ (R .fst .fst))) isom .fun = fwd isom .inv = bwd isom .rightInv nothing = refl isom .rightInv (just x) = elimProp {P = λ x → fwd (bwd (just x)) ≡ just x} (λ _ → isOfHLevelMaybe 0 squash/ _ _) (λ _ → refl) x isom .leftInv = elimProp (λ _ → squash/ _ _) (λ {nothing → refl; (just _) → refl}) maybeRelMatchesTransp : {S : Type ℓ → Type ℓ₁} (ρ : StrRel S ℓ₁') (α : EquivAction S) → StrRelMatchesEquiv ρ (EquivAction→StrEquiv α) → StrRelMatchesEquiv (MaybeRelStr ρ) (EquivAction→StrEquiv (maybeEquivAction α)) maybeRelMatchesTransp _ _ μ (X , nothing) (Y , nothing) _ = isContr→Equiv (isOfHLevelLift 0 isContrUnit) isContr-nothing≡nothing maybeRelMatchesTransp _ _ μ (X , nothing) (Y , just y) _ = uninhabEquiv lower ¬nothing≡just maybeRelMatchesTransp _ _ μ (X , just x) (Y , nothing) _ = uninhabEquiv lower ¬just≡nothing maybeRelMatchesTransp _ _ μ (X , just x) (Y , just y) e = compEquiv (μ (X , x) (Y , y) e) (_ , isEmbedding-just _ _)
42.25
93
0.664386
0bf1638b20ea29811aaac2c81688919d45921705
208
agda
Agda
test/Succeed/Issue4006.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4006.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4006.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
data I : Set where i : I variable x : I abstract data D : I → Set where d : D i accepted : {x : I} → D x → Set₁ accepted {x = i} d = Set rejected : D x → Set₁ rejected {x = i} d = Set
11.555556
33
0.519231
06edca09ccb86e4c1781107c3498239b51163964
10,452
agda
Agda
test/asset/agda-stdlib-1.0/Data/Sum/Relation/Binary/LeftOrder.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Sum/Relation/Binary/LeftOrder.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Sum/Relation/Binary/LeftOrder.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Sums of binary relations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Sum.Relation.Binary.LeftOrder where open import Data.Sum as Sum open import Data.Sum.Relation.Binary.Pointwise as PW using (Pointwise; inj₁; inj₂) open import Data.Product open import Data.Empty open import Function open import Level open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) ---------------------------------------------------------------------- -- Definition infixr 1 _⊎-<_ data _⊎-<_ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂} {ℓ₁ ℓ₂} (_∼₁_ : Rel A₁ ℓ₁) (_∼₂_ : Rel A₂ ℓ₂) : Rel (A₁ ⊎ A₂) (a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂) where ₁∼₂ : ∀ {x y} → (_∼₁_ ⊎-< _∼₂_) (inj₁ x) (inj₂ y) ₁∼₁ : ∀ {x y} (x∼₁y : x ∼₁ y) → (_∼₁_ ⊎-< _∼₂_) (inj₁ x) (inj₁ y) ₂∼₂ : ∀ {x y} (x∼₂y : x ∼₂ y) → (_∼₁_ ⊎-< _∼₂_) (inj₂ x) (inj₂ y) ---------------------------------------------------------------------- -- Some properties which are preserved by _⊎-<_ module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂} {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} where drop-inj₁ : ∀ {x y} → (∼₁ ⊎-< ∼₂) (inj₁ x) (inj₁ y) → ∼₁ x y drop-inj₁ (₁∼₁ x∼₁y) = x∼₁y drop-inj₂ : ∀ {x y} → (∼₁ ⊎-< ∼₂) (inj₂ x) (inj₂ y) → ∼₂ x y drop-inj₂ (₂∼₂ x∼₂y) = x∼₂y ⊎-<-refl : Reflexive ∼₁ → Reflexive ∼₂ → Reflexive (∼₁ ⊎-< ∼₂) ⊎-<-refl refl₁ refl₂ {inj₁ x} = ₁∼₁ refl₁ ⊎-<-refl refl₁ refl₂ {inj₂ y} = ₂∼₂ refl₂ ⊎-<-transitive : Transitive ∼₁ → Transitive ∼₂ → Transitive (∼₁ ⊎-< ∼₂) ⊎-<-transitive trans₁ trans₂ ₁∼₂ (₂∼₂ x∼₂y) = ₁∼₂ ⊎-<-transitive trans₁ trans₂ (₁∼₁ x∼₁y) ₁∼₂ = ₁∼₂ ⊎-<-transitive trans₁ trans₂ (₁∼₁ x∼₁y) (₁∼₁ x∼₁y₁) = ₁∼₁ (trans₁ x∼₁y x∼₁y₁) ⊎-<-transitive trans₁ trans₂ (₂∼₂ x∼₂y) (₂∼₂ x∼₂y₁) = ₂∼₂ (trans₂ x∼₂y x∼₂y₁) ⊎-<-asymmetric : Asymmetric ∼₁ → Asymmetric ∼₂ → Asymmetric (∼₁ ⊎-< ∼₂) ⊎-<-asymmetric asym₁ asym₂ ₁∼₂ () ⊎-<-asymmetric asym₁ asym₂ (₁∼₁ x∼₁y) (₁∼₁ x∼₁y₁) = asym₁ x∼₁y x∼₁y₁ ⊎-<-asymmetric asym₁ asym₂ (₂∼₂ x∼₂y) (₂∼₂ x∼₂y₁) = asym₂ x∼₂y x∼₂y₁ ⊎-<-total : Total ∼₁ → Total ∼₂ → Total (∼₁ ⊎-< ∼₂) ⊎-<-total total₁ total₂ = total where total : Total (_ ⊎-< _) total (inj₁ x) (inj₁ y) = Sum.map ₁∼₁ ₁∼₁ $ total₁ x y total (inj₁ x) (inj₂ y) = inj₁ ₁∼₂ total (inj₂ x) (inj₁ y) = inj₂ ₁∼₂ total (inj₂ x) (inj₂ y) = Sum.map ₂∼₂ ₂∼₂ $ total₂ x y ⊎-<-decidable : Decidable ∼₁ → Decidable ∼₂ → Decidable (∼₁ ⊎-< ∼₂) ⊎-<-decidable dec₁ dec₂ (inj₁ x) (inj₁ y) = Dec.map′ ₁∼₁ drop-inj₁ (dec₁ x y) ⊎-<-decidable dec₁ dec₂ (inj₁ x) (inj₂ y) = yes ₁∼₂ ⊎-<-decidable dec₁ dec₂ (inj₂ x) (inj₁ y) = no λ() ⊎-<-decidable dec₁ dec₂ (inj₂ x) (inj₂ y) = Dec.map′ ₂∼₂ drop-inj₂ (dec₂ x y) module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂} {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {≈₁ : Rel A₁ ℓ₂} {ℓ₃ ℓ₄} {∼₂ : Rel A₂ ℓ₃} {≈₂ : Rel A₂ ℓ₄} where ⊎-<-reflexive : ≈₁ ⇒ ∼₁ → ≈₂ ⇒ ∼₂ → (Pointwise ≈₁ ≈₂) ⇒ (∼₁ ⊎-< ∼₂) ⊎-<-reflexive refl₁ refl₂ (inj₁ x) = ₁∼₁ (refl₁ x) ⊎-<-reflexive refl₁ refl₂ (inj₂ x) = ₂∼₂ (refl₂ x) ⊎-<-irreflexive : Irreflexive ≈₁ ∼₁ → Irreflexive ≈₂ ∼₂ → Irreflexive (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-irreflexive irrefl₁ irrefl₂ (inj₁ x) (₁∼₁ x∼₁y) = irrefl₁ x x∼₁y ⊎-<-irreflexive irrefl₁ irrefl₂ (inj₂ x) (₂∼₂ x∼₂y) = irrefl₂ x x∼₂y ⊎-<-antisymmetric : Antisymmetric ≈₁ ∼₁ → Antisymmetric ≈₂ ∼₂ → Antisymmetric (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-antisymmetric antisym₁ antisym₂ (₁∼₁ x∼₁y) (₁∼₁ x∼₁y₁) = inj₁ (antisym₁ x∼₁y x∼₁y₁) ⊎-<-antisymmetric antisym₁ antisym₂ (₂∼₂ x∼₂y) (₂∼₂ x∼₂y₁) = inj₂ (antisym₂ x∼₂y x∼₂y₁) -- Remove in Agda 2.6.0? ⊎-<-antisymmetric antisym₁ antisym₂ ₁∼₂ () ⊎-<-respectsʳ : ∼₁ Respectsʳ ≈₁ → ∼₂ Respectsʳ ≈₂ → (∼₁ ⊎-< ∼₂) Respectsʳ (Pointwise ≈₁ ≈₂) ⊎-<-respectsʳ resp₁ resp₂ (inj₁ x₁) (₁∼₁ x∼₁y) = ₁∼₁ (resp₁ x₁ x∼₁y) ⊎-<-respectsʳ resp₁ resp₂ (inj₂ x₁) ₁∼₂ = ₁∼₂ ⊎-<-respectsʳ resp₁ resp₂ (inj₂ x₁) (₂∼₂ x∼₂y) = ₂∼₂ (resp₂ x₁ x∼₂y) ⊎-<-respectsˡ : ∼₁ Respectsˡ ≈₁ → ∼₂ Respectsˡ ≈₂ → (∼₁ ⊎-< ∼₂) Respectsˡ (Pointwise ≈₁ ≈₂) ⊎-<-respectsˡ resp₁ resp₂ (inj₁ x) ₁∼₂ = ₁∼₂ ⊎-<-respectsˡ resp₁ resp₂ (inj₁ x) (₁∼₁ x∼₁y) = ₁∼₁ (resp₁ x x∼₁y) ⊎-<-respectsˡ resp₁ resp₂ (inj₂ x) (₂∼₂ x∼₂y) = ₂∼₂ (resp₂ x x∼₂y) ⊎-<-respects₂ : ∼₁ Respects₂ ≈₁ → ∼₂ Respects₂ ≈₂ → (∼₁ ⊎-< ∼₂) Respects₂ (Pointwise ≈₁ ≈₂) ⊎-<-respects₂ (r₁ , l₁) (r₂ , l₂) = ⊎-<-respectsʳ r₁ r₂ , ⊎-<-respectsˡ l₁ l₂ ⊎-<-trichotomous : Trichotomous ≈₁ ∼₁ → Trichotomous ≈₂ ∼₂ → Trichotomous (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-trichotomous tri₁ tri₂ (inj₁ x) (inj₂ y) = tri< ₁∼₂ (λ()) (λ()) ⊎-<-trichotomous tri₁ tri₂ (inj₂ x) (inj₁ y) = tri> (λ()) (λ()) ₁∼₂ ⊎-<-trichotomous tri₁ tri₂ (inj₁ x) (inj₁ y) with tri₁ x y ... | tri< x<y x≉y x≯y = tri< (₁∼₁ x<y) (x≉y ∘ PW.drop-inj₁) (x≯y ∘ drop-inj₁) ... | tri≈ x≮y x≈y x≯y = tri≈ (x≮y ∘ drop-inj₁) (inj₁ x≈y) (x≯y ∘ drop-inj₁) ... | tri> x≮y x≉y x>y = tri> (x≮y ∘ drop-inj₁) (x≉y ∘ PW.drop-inj₁) (₁∼₁ x>y) ⊎-<-trichotomous tri₁ tri₂ (inj₂ x) (inj₂ y) with tri₂ x y ... | tri< x<y x≉y x≯y = tri< (₂∼₂ x<y) (x≉y ∘ PW.drop-inj₂) (x≯y ∘ drop-inj₂) ... | tri≈ x≮y x≈y x≯y = tri≈ (x≮y ∘ drop-inj₂) (inj₂ x≈y) (x≯y ∘ drop-inj₂) ... | tri> x≮y x≉y x>y = tri> (x≮y ∘ drop-inj₂) (x≉y ∘ PW.drop-inj₂) (₂∼₂ x>y) ---------------------------------------------------------------------- -- Some collections of properties which are preserved module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂} {ℓ₁ ℓ₂} {≈₁ : Rel A₁ ℓ₁} {∼₁ : Rel A₁ ℓ₂} {ℓ₃ ℓ₄} {≈₂ : Rel A₂ ℓ₃} {∼₂ : Rel A₂ ℓ₄} where ⊎-<-isPreorder : IsPreorder ≈₁ ∼₁ → IsPreorder ≈₂ ∼₂ → IsPreorder (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-isPreorder pre₁ pre₂ = record { isEquivalence = PW.⊎-isEquivalence (isEquivalence pre₁) (isEquivalence pre₂) ; reflexive = ⊎-<-reflexive (reflexive pre₁) (reflexive pre₂) ; trans = ⊎-<-transitive (trans pre₁) (trans pre₂) } where open IsPreorder ⊎-<-isPartialOrder : IsPartialOrder ≈₁ ∼₁ → IsPartialOrder ≈₂ ∼₂ → IsPartialOrder (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-isPartialOrder po₁ po₂ = record { isPreorder = ⊎-<-isPreorder (isPreorder po₁) (isPreorder po₂) ; antisym = ⊎-<-antisymmetric (antisym po₁) (antisym po₂) } where open IsPartialOrder ⊎-<-isStrictPartialOrder : IsStrictPartialOrder ≈₁ ∼₁ → IsStrictPartialOrder ≈₂ ∼₂ → IsStrictPartialOrder (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-isStrictPartialOrder spo₁ spo₂ = record { isEquivalence = PW.⊎-isEquivalence (isEquivalence spo₁) (isEquivalence spo₂) ; irrefl = ⊎-<-irreflexive (irrefl spo₁) (irrefl spo₂) ; trans = ⊎-<-transitive (trans spo₁) (trans spo₂) ; <-resp-≈ = ⊎-<-respects₂ (<-resp-≈ spo₁) (<-resp-≈ spo₂) } where open IsStrictPartialOrder ⊎-<-isTotalOrder : IsTotalOrder ≈₁ ∼₁ → IsTotalOrder ≈₂ ∼₂ → IsTotalOrder (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-isTotalOrder to₁ to₂ = record { isPartialOrder = ⊎-<-isPartialOrder (isPartialOrder to₁) (isPartialOrder to₂) ; total = ⊎-<-total (total to₁) (total to₂) } where open IsTotalOrder ⊎-<-isDecTotalOrder : IsDecTotalOrder ≈₁ ∼₁ → IsDecTotalOrder ≈₂ ∼₂ → IsDecTotalOrder (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-isDecTotalOrder to₁ to₂ = record { isTotalOrder = ⊎-<-isTotalOrder (isTotalOrder to₁) (isTotalOrder to₂) ; _≟_ = PW.⊎-decidable (_≟_ to₁) (_≟_ to₂) ; _≤?_ = ⊎-<-decidable (_≤?_ to₁) (_≤?_ to₂) } where open IsDecTotalOrder ⊎-<-isStrictTotalOrder : IsStrictTotalOrder ≈₁ ∼₁ → IsStrictTotalOrder ≈₂ ∼₂ → IsStrictTotalOrder (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-isStrictTotalOrder sto₁ sto₂ = record { isEquivalence = PW.⊎-isEquivalence (isEquivalence sto₁) (isEquivalence sto₂) ; trans = ⊎-<-transitive (trans sto₁) (trans sto₂) ; compare = ⊎-<-trichotomous (compare sto₁) (compare sto₂) } where open IsStrictTotalOrder ------------------------------------------------------------------------ -- "Packages" can also be combined. module _ {a b c d e f} where ⊎-<-preorder : Preorder a b c → Preorder d e f → Preorder _ _ _ ⊎-<-preorder p₁ p₂ = record { isPreorder = ⊎-<-isPreorder (isPreorder p₁) (isPreorder p₂) } where open Preorder ⊎-<-poset : Poset a b c → Poset a b c → Poset _ _ _ ⊎-<-poset po₁ po₂ = record { isPartialOrder = ⊎-<-isPartialOrder (isPartialOrder po₁) (isPartialOrder po₂) } where open Poset ⊎-<-strictPartialOrder : StrictPartialOrder a b c → StrictPartialOrder d e f → StrictPartialOrder _ _ _ ⊎-<-strictPartialOrder spo₁ spo₂ = record { isStrictPartialOrder = ⊎-<-isStrictPartialOrder (isStrictPartialOrder spo₁) (isStrictPartialOrder spo₂) } where open StrictPartialOrder ⊎-<-totalOrder : TotalOrder a b c → TotalOrder d e f → TotalOrder _ _ _ ⊎-<-totalOrder to₁ to₂ = record { isTotalOrder = ⊎-<-isTotalOrder (isTotalOrder to₁) (isTotalOrder to₂) } where open TotalOrder ⊎-<-decTotalOrder : DecTotalOrder a b c → DecTotalOrder d e f → DecTotalOrder _ _ _ ⊎-<-decTotalOrder to₁ to₂ = record { isDecTotalOrder = ⊎-<-isDecTotalOrder (isDecTotalOrder to₁) (isDecTotalOrder to₂) } where open DecTotalOrder ⊎-<-strictTotalOrder : StrictTotalOrder a b c → StrictTotalOrder a b c → StrictTotalOrder _ _ _ ⊎-<-strictTotalOrder sto₁ sto₂ = record { isStrictTotalOrder = ⊎-<-isStrictTotalOrder (isStrictTotalOrder sto₁) (isStrictTotalOrder sto₂) } where open StrictTotalOrder
42.315789
101
0.534443
234a220077aeb28ce83826a09c6b768281c6fea8
3,624
agda
Agda
theorems/cohomology/ChainComplex.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/cohomology/ChainComplex.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/cohomology/ChainComplex.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import groups.KernelImage open import groups.KernelImageEmap module cohomology.ChainComplex where record ChainComplex i : Type (lsucc i) where field head : AbGroup i chain : ℕ → AbGroup i augment : AbGroup.grp (chain 0) →ᴳ AbGroup.grp head boundary : ∀ n → (AbGroup.grp (chain (S n)) →ᴳ AbGroup.grp (chain n)) record CochainComplex i : Type (lsucc i) where field head : AbGroup i cochain : ℕ → AbGroup i augment : AbGroup.grp head →ᴳ AbGroup.grp (cochain 0) coboundary : ∀ n → (AbGroup.grp (cochain n) →ᴳ AbGroup.grp (cochain (S n))) record CochainComplexEquiv {i₀ i₁} (cc₀ : CochainComplex i₀) (cc₁ : CochainComplex i₁) : Type (lmax i₀ i₁) where private module cc₀ = CochainComplex cc₀ module cc₁ = CochainComplex cc₁ field head : AbGroup.grp cc₀.head ≃ᴳ AbGroup.grp cc₁.head cochain : (n : ℕ) → AbGroup.grp (cc₀.cochain n) ≃ᴳ AbGroup.grp (cc₁.cochain n) augment : CommSquareᴳ cc₀.augment cc₁.augment (–>ᴳ head) (–>ᴳ (cochain 0)) coboundary : ∀ n → CommSquareᴳ (cc₀.coboundary n) (cc₁.coboundary n) (–>ᴳ (cochain n)) (–>ᴳ (cochain (S n))) homology-group : ∀ {i} → ChainComplex i → (n : ℤ) → Group i homology-group cc (pos 0) = Ker/Im cc.augment (cc.boundary 0) (snd (cc.chain 0)) where module cc = ChainComplex cc homology-group cc (pos (S n)) = Ker/Im (cc.boundary n) (cc.boundary (S n)) (snd (cc.chain (S n))) where module cc = ChainComplex cc homology-group {i} cc (negsucc _) = Lift-group {j = i} Unit-group cohomology-group : ∀ {i} → CochainComplex i → (n : ℤ) → Group i cohomology-group cc (pos 0) = Ker/Im (cc.coboundary 0) cc.augment (snd (cc.cochain 0)) where module cc = CochainComplex cc cohomology-group cc (pos (S n)) = Ker/Im (cc.coboundary (S n)) (cc.coboundary n) (snd (cc.cochain (S n))) where module cc = CochainComplex cc cohomology-group {i} cc (negsucc _) = Lift-group {j = i} Unit-group cohomology-group-emap : ∀ {i₀ i₁} {cc₀ : CochainComplex i₀} {cc₁ : CochainComplex i₁} → CochainComplexEquiv cc₀ cc₁ → (n : ℤ) → cohomology-group cc₀ n ≃ᴳ cohomology-group cc₁ n cohomology-group-emap {cc₀ = cc₀} {cc₁} cc= (pos 0) = Ker/Im-emap (snd (cc₀.cochain 0)) (snd (cc₁.cochain 0)) (cc=.coboundary 0) cc=.augment (snd cc=.head) (snd (cc=.cochain 0)) (snd (cc=.cochain 1)) where module cc₀ = CochainComplex cc₀ module cc₁ = CochainComplex cc₁ module cc= = CochainComplexEquiv cc= cohomology-group-emap {cc₀ = cc₀} {cc₁} cc= (pos (S n)) = Ker/Im-emap (snd (cc₀.cochain (S n))) (snd (cc₁.cochain (S n))) (cc=.coboundary (S n)) (cc=.coboundary n) (snd (cc=.cochain n)) (snd (cc=.cochain (S n))) (snd (cc=.cochain (S (S n)))) where module cc₀ = CochainComplex cc₀ module cc₁ = CochainComplex cc₁ module cc= = CochainComplexEquiv cc= cohomology-group-emap _ (negsucc _) = lift-iso ∘eᴳ lower-iso complex-dualize : ∀ {i j} → ChainComplex i → AbGroup j → CochainComplex (lmax i j) complex-dualize {i} {j} cc G = record {M} where module cc = ChainComplex cc module M where head : AbGroup (lmax i j) head = hom-abgroup (AbGroup.grp cc.head) G cochain : ℕ → AbGroup (lmax i j) cochain n = hom-abgroup (AbGroup.grp (cc.chain n)) G augment : AbGroup.grp head →ᴳ AbGroup.grp (cochain 0) augment = pre∘ᴳ-hom G cc.augment coboundary : ∀ n → (AbGroup.grp (cochain n) →ᴳ AbGroup.grp (cochain (S n))) coboundary n = pre∘ᴳ-hom G (cc.boundary n)
43.142857
107
0.634382
109c648d922e007db8b82e530fcc154a68dd0486
3,498
agda
Agda
Cubical/Foundations/Embedding.agda
jonsterling/cubical-1
794b550f40562e025b5570badd78fdc2e6597779
[ "MIT" ]
null
null
null
Cubical/Foundations/Embedding.agda
jonsterling/cubical-1
794b550f40562e025b5570badd78fdc2e6597779
[ "MIT" ]
null
null
null
Cubical/Foundations/Embedding.agda
jonsterling/cubical-1
794b550f40562e025b5570badd78fdc2e6597779
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Embedding where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Isomorphism private variable ℓ : Level A B : Type ℓ f : A → B w x : A y z : B -- Embeddings are generalizations of injections. The usual -- definition of injection as: -- -- f x ≡ f y → x ≡ y -- -- is not well-behaved with higher h-levels, while embeddings -- are. isEmbedding : (A → B) → Type _ isEmbedding f = ∀ w x → isEquiv {A = w ≡ x} (cong f) isEmbeddingIsProp : isProp (isEmbedding f) isEmbeddingIsProp {f = f} = propPi λ w → propPi λ x → isPropIsEquiv (cong f) -- If A and B are h-sets, then injective functions between -- them are embeddings. -- -- Note: It doesn't appear to be possible to omit either of -- the `isSet` hypotheses. injEmbedding : {f : A → B} → isSet A → isSet B → (∀{w x} → f w ≡ f x → w ≡ x) → isEmbedding f injEmbedding {f = f} iSA iSB inj w x = isoToIsEquiv (iso (cong f) inj sect retr) where sect : section (cong f) inj sect p = iSB (f w) (f x) _ p retr : retract (cong f) inj retr p = iSA w x _ p private lemma₀ : (p : y ≡ z) → fiber f y ≡ fiber f z lemma₀ {f = f} p = λ i → fiber f (p i) lemma₁ : isEmbedding f → ∀ x → isContr (fiber f (f x)) lemma₁ {f = f} iE x = value , path where value : fiber f (f x) value = (x , refl) path : ∀(fi : fiber f (f x)) → value ≡ fi path (w , p) i = case equiv-proof (iE w x) p of λ { ((q , sq) , _) → hfill (λ j → λ { (i = i0) → (x , refl) ; (i = i1) → (w , sq j) }) (inS (q (~ i) , λ j → f (q (~ i ∨ j)))) i1 } -- If `f` is an embedding, we'd expect the fibers of `f` to be -- propositions, like an injective function. hasPropFibers : (A → B) → Type _ hasPropFibers f = ∀ y → isProp (fiber f y) hasPropFibersIsProp : isProp (hasPropFibers f) hasPropFibersIsProp = propPi (λ _ → isPropIsProp) isEmbedding→hasPropFibers : isEmbedding f → hasPropFibers f isEmbedding→hasPropFibers iE y (x , p) = subst (λ f → isProp f) (lemma₀ p) (isContr→isProp (lemma₁ iE x)) (x , p) private fibCong→PathP : {f : A → B} → (p : f w ≡ f x) → (fi : fiber (cong f) p) → PathP (λ i → fiber f (p i)) (w , refl) (x , refl) fibCong→PathP p (q , r) i = q i , λ j → r j i PathP→fibCong : {f : A → B} → (p : f w ≡ f x) → (pp : PathP (λ i → fiber f (p i)) (w , refl) (x , refl)) → fiber (cong f) p PathP→fibCong p pp = (λ i → fst (pp i)) , (λ j i → snd (pp i) j) PathP≡fibCong : {f : A → B} → (p : f w ≡ f x) → PathP (λ i → fiber f (p i)) (w , refl) (x , refl) ≡ fiber (cong f) p PathP≡fibCong p = isoToPath (iso (PathP→fibCong p) (fibCong→PathP p) (λ _ → refl) (λ _ → refl)) hasPropFibers→isEmbedding : hasPropFibers f → isEmbedding f hasPropFibers→isEmbedding {f = f} iP w x .equiv-proof p = subst isContr (PathP≡fibCong p) (isProp→isContrPathP (λ i → iP (p i)) fw fx) where fw : fiber f (f w) fw = (w , refl) fx : fiber f (f x) fx = (x , refl) isEmbedding≡hasPropFibers : isEmbedding f ≡ hasPropFibers f isEmbedding≡hasPropFibers = isoToPath (iso isEmbedding→hasPropFibers hasPropFibers→isEmbedding (λ _ → hasPropFibersIsProp _ _) (λ _ → isEmbeddingIsProp _ _))
27.984
81
0.592338
df304e1d5f8786c271161f4f8117c2dc807d6937
976
agda
Agda
agda-stdlib/src/Data/Fin/Subset/Induction.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Fin/Subset/Induction.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Fin/Subset/Induction.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Induction over Subset ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Fin.Subset.Induction where open import Data.Nat.Base using (ℕ) open import Data.Nat.Induction using (<-wellFounded) open import Data.Fin.Subset using (Subset; _⊂_; ∣_∣) open import Data.Fin.Subset.Properties open import Induction open import Induction.WellFounded as WF ------------------------------------------------------------------------ -- Re-export accessability open WF public using (Acc; acc) ------------------------------------------------------------------------ -- Complete induction based on _⊂_ ⊂-Rec : ∀ {n ℓ} → RecStruct (Subset n) ℓ ℓ ⊂-Rec = WfRec _⊂_ ⊂-wellFounded : ∀ {n} → WellFounded (_⊂_ {n}) ⊂-wellFounded {n} = Subrelation.wellFounded p⊂q⇒∣p∣<∣q∣ (InverseImage.wellFounded ∣_∣ <-wellFounded)
31.483871
100
0.498975
2f657fd873efee8d1aa5e836d8beb1fd3755a41a
667
agda
Agda
Fields/Orders/Partial/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Fields/Orders/Partial/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Fields/Orders/Partial/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Rings.Definition open import Rings.Orders.Partial.Definition open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Functions.Definition open import Fields.Fields open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.Orders.Partial.Definition {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) where open Ring R record PartiallyOrderedField {p} {_<_ : Rel {_} {p} A} (pOrder : SetoidPartialOrder S _<_) : Set (lsuc (m ⊔ n ⊔ p)) where field oRing : PartiallyOrderedRing R pOrder
35.105263
161
0.692654
1d7f2cfb5c99a798a37ee2d65aa63298db1d097d
765
agda
Agda
src/fot/GroupTheory/Base/Consistency/Axioms.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/GroupTheory/Base/Consistency/Axioms.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/GroupTheory/Base/Consistency/Axioms.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Test the consistency of GroupTheory.Base ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- In the module GroupTheory.Base we declare Agda postulates as FOL -- axioms. We test if it is possible to prove an unprovable theorem -- from these axioms. module GroupTheory.Base.Consistency.Axioms where open import GroupTheory.Base ------------------------------------------------------------------------------ postulate impossible : (d e : G) → d ≡ e {-# ATP prove impossible #-}
34.772727
78
0.452288
3963edfcfe73bf98c6e1f0906f68473485cbe9c5
11,110
agda
Agda
BLAS.agda
ashinkarov/agda-array
584fedb30552f820c0668cedae53ec3d926860b5
[ "0BSD" ]
6
2020-05-09T13:53:46.000Z
2021-06-15T14:21:32.000Z
BLAS.agda
ashinkarov/agda-array
584fedb30552f820c0668cedae53ec3d926860b5
[ "0BSD" ]
null
null
null
BLAS.agda
ashinkarov/agda-array
584fedb30552f820c0668cedae53ec3d926860b5
[ "0BSD" ]
1
2020-10-12T07:19:48.000Z
2020-10-12T07:19:48.000Z
{-# OPTIONS --rewriting #-} open import Array open import Array.APL using (reduce-1d) open import Data.Nat as N open import Data.Nat.Properties open import Data.Vec as V hiding (_>>=_; _++_) open import Data.Fin using (Fin; zero; suc; raise; inject+; #_) open import Relation.Binary.PropositionalEquality open import Data.Product open import Function open import Relation.Nullary open import Relation.Nullary.Decidable sum-1d : ∀ {n} → Ar ℕ 1 (n ∷ []) → ℕ sum-1d v = reduce-1d v _+_ 0 zipw : ∀ {a}{X : Set a}{d s} → (X → X → X) → Ar X d s → Ar X d s → Ar X d s zipw _⊕_ (imap a) (imap b) = imap λ iv → a iv ⊕ b iv hd : ∀ {n s : ℕ}{ss : Vec ℕ n} → Ix (suc n) (s ∷ ss) → Fin s hd ix = ix-lookup ix zero vec-mat-mul : ∀ {n m} → Ar ℕ 2 (m ∷ n ∷ []) → Ar ℕ 1 (n ∷ []) → Ar ℕ 1 (m ∷ []) vec-mat-mul (imap a) b = imap λ iv → sum-1d (zipw _*_ (imap λ jv → a (iv ix++ jv)) b) twice : ∀ {n} → (M : Ar ℕ 2 (n ∷ n ∷ [])) → (V : Ar ℕ 1 (n ∷ [])) → Ar ℕ 1 (n ∷ []) twice m v = vec-mat-mul m (vec-mat-mul m v) sum-2d : ∀ {m n} → Ar ℕ 2 (m ∷ n ∷ []) → ℕ sum-2d (imap a) = sum-1d (imap λ i → sum-1d (imap λ j → a $ i ix++ j)) _+'_ : ∀ {m n} → Fin (1 + m) → Fin (1 + n) → Fin (1 + m + n) _+'_ {m} {n} zero j = subst Fin (+-suc m n) (raise m j) _+'_ {suc m} {n} (suc i) j = suc (i +' j) _+''_ : ∀ {m n} → Fin m → Fin n → Fin (m + n ∸ 1) _+''_ {suc m} {suc n} zero j = raise m j _+''_ {suc (suc m)} {suc n} (suc i) j = suc (i +'' j) _ix+2_ : ∀ {m n k p} → Ix 2 (m ∷ n ∷ []) → Ix 2 (k ∷ p ∷ []) → Ix 2 (m + k ∸ 1 ∷ n + p ∸ 1 ∷ []) (x₁ ∷ x₂ ∷ []) ix+2 (y₁ ∷ y₂ ∷ []) = x₁ +'' y₁ ∷ (x₂ +'' y₂) ∷ [] conv-2 : ∀ {m n k p} → Ar ℕ 2 (m + k ∷ n + p ∷ []) → Ar ℕ 2 (k ∷ p ∷ []) → Ar ℕ 2 (1 + m ∷ 1 + n ∷ []) conv-2 {k = k} {p} (imap a) (imap w) = imap (λ iv → sum-2d {m = k} {n = p} (imap λ ov → w ov * a (iv ix+2 ov))) iterate-1 : ∀ {a}{X : Set a}{n} → (Fin n → X) → (X → X → X) → X → X iterate-1 {n = zero} f _⊕_ neut = neut iterate-1 {n = suc n} f _⊕_ neut = f zero ⊕ iterate-1 (f ∘ suc) _⊕_ neut red-iter : ∀ {a}{X : Set a}{n} → (f : Ix 1 (n ∷ []) → X) → (op : X → X → X) → (neut : X) → reduce-1d (imap f) op neut ≡ iterate-1 (λ i → f (i ∷ [])) op neut red-iter {n = zero} f op neut = refl red-iter {n = suc n} f op neut = cong (λ x → op _ x) (red-iter (λ iv → f (suc (hd iv) ∷ [])) op neut) {-# BUILTIN REWRITE _≡_ #-} {-# REWRITE red-iter #-} thm : ∀ {n} → (m : Ar ℕ 2 (n ∷ n ∷ [])) → (v : Ar _ _ (n ∷ [])) → ∀ iv → unimap (twice m v) iv ≡ {!!} thm (imap m) (imap v) (i ∷ []) = {!!} {- -- Reflection business open import Reflection open import Data.List hiding (_++_) open import Data.Bool open import Data.Maybe hiding (_>>=_) open import Data.Unit defToTerm : Name → Definition → List (Arg Term) → Term defToTerm _ (function cs) as = pat-lam cs as defToTerm _ (constructor′ d) as = con d as defToTerm _ _ _ = unknown derefImmediate : Term → TC Term derefImmediate (def f args) = getDefinition f >>= λ f' → return (defToTerm f f' args) derefImmediate x = return x --reflectTerm : TC Term --reflectTerm = (getType (quote f)) >>= λ ty → quoteTC f >>= derefImmediate >>= λ x → checkType x ty macro reflect : Term → Term → TC ⊤ reflect f a = derefImmediate f -- (quoteTerm f) >>= quoteTC >>= unify a reflect-ty : Name → Type → TC ⊤ reflect-ty f a = getType f >>= quoteTC >>= unify a r : Term r = reflect twice open import Data.String open import Data.Nat.Show as Ns open import Data.List as L using (List) data Prog : Set where ok : String → Prog error : String → Prog record State : Set where inductive constructor st field vars : List String defs : List $ String × String cons : List (String × ((List $ Arg Term) → Prog)) var-lkup : State → ℕ → Prog var-lkup s n = hlpr (State.vars s) n where hlpr : _ → _ → _ hlpr [] n = error $ "Variable not found" hlpr (x ∷ l) zero = ok x hlpr (x ∷ l) (suc n) = hlpr l n def-lkup : State → String → Prog def-lkup ss s = hlpr (State.defs ss) s where hlpr : _ → _ → _ hlpr [] s = error $ "Definition `" ++ s ++ "' not found" hlpr ((k , v) ∷ dfs) s with k ≈? s ... | yes p = ok v ... | no ¬p = hlpr dfs s cons-cont : State → String → List (Arg Term) → Prog cons-cont ss s args = {!!} {-hlpr (State.cons ss) s args where hlpr : _ → _ → _ → _ hlpr [] s _ = error $ "Constructor `" ++ s ++ "' not found" hlpr ((k , f) ∷ cs) s args with k ≈? s ... | yes p = f args ... | no ¬p = hlpr cs s args -} infixl 5 _#_ _#_ : Prog → Prog → Prog ok x # ok y = ok $ x ++ y error x # _ = error x _ # error y = error y l→s : List String → String l→s [] = "" l→s (x ∷ l) = x ++ " " ++ l→s l comp-arglist-mask : State → List (Arg Term) → List Bool → Prog comp-arglist : State → List (Arg Term) → Prog comp-clauses : State → List Clause → Prog _at_ : ∀ {a}{X : Set a} → List X → ℕ → Maybe X [] at idx = nothing (x ∷ a) at zero = just x (x ∷ a) at suc idx = a at idx unmaybe : ∀ {a}{X : Set a} → List (Maybe X) → Maybe (List X) unmaybe [] = just [] unmaybe (nothing ∷ xs) = nothing unmaybe (just x ∷ xs) with unmaybe xs unmaybe (just x ∷ xs) | nothing = nothing unmaybe (just x ∷ xs) | just xs' = just $ x ∷ xs' filter-idx : ∀ {a}{X : Set a} → List X → List ℕ → Maybe (List X) filter-idx xs idxs = unmaybe $ L.map (xs at_) idxs _!!_ : ∀ {a}{X : Set a} → (xs : List X) → Fin (L.length xs) → X [] !! () (x ∷ xs) !! zero = x (x ∷ xs) !! suc i = xs !! i mk-mask : (n : ℕ) → List (Fin n) → List Bool mk-mask n xs = V.toList $ go (V.replicate {n = n} false) xs where go : _ → _ → _ go e [] = e go e (x ∷ xs) = go (updateAt x (λ _ → true) e) xs compile : State → Term → Prog compile s (var x args) = ok "V(" # var-lkup s x # ok " " # comp-arglist s args # ok ")" compile s (con c args) with (showName c) compile s (con c args) | "Data.Vec.Base.Vec.[]" = ok "nil" compile s (con c args) | "Array.Base.Ix.[]" = ok "nil" compile s (con c args) | "Data.Vec.Base.Vec._∷_" = ok "(cons " # comp-arglist-mask s args (mk-mask 5 $ # 3 ∷ # 4 ∷ []) # ok ")" compile s (con c args) | "Array.Base.Ix._∷_" = ok "(cons " # comp-arglist-mask s args (mk-mask 5 $ # 3 ∷ # 4 ∷ []) # ok ")" compile s (con c args) | _ = ok ("C(" ++ showName c ++ " ") # comp-arglist s args # ok ")" compile s (def f args) with def-lkup s $ showName f ... | error _ = ok "D(" # ok (showName f) # ok " " # comp-arglist s args ... | d = ok "D(" # d # ok " " # comp-arglist s args # ok ")" compile s (lam v (abs w x)) = ok ("(\\ " ++ w ++ " -> ") # compile (record s {vars = (w ∷ State.vars s)}) x # ok ")" compile s (pat-lam cs []) = ok "PAT-LAM (cl = " # comp-clauses s cs # ok ")" --(args = " # comp-arglist s args # ok ")" compile s (pat-lam cs _) = error "PAT-LAM: I don't know what args to pat-lam are" compile s (pi a b) = ok "PI TYPE" compile s (sort _) = ok "SORT" compile s (lit x) = ok $ showLiteral x compile s (meta x x₁) = ok "META" compile s unknown = ok "_" -- "UNKNOWN" comp-arglist s [] = ok "" comp-arglist s (arg i x ∷ l) = compile s x # ok " " # comp-arglist s l comp-arglist-mask s [] [] = ok "" comp-arglist-mask s [] (x ∷ mask) = error "Incorrect argument mask" comp-arglist-mask s (x ∷ args) [] = error "Incorrect argument mask" comp-arglist-mask s (x ∷ args) (false ∷ mask) = comp-arglist-mask s args mask comp-arglist-mask s (arg i x ∷ args) (true ∷ mask) = compile s x # ok " " # comp-arglist-mask s args mask comp-pats : List (Arg Pattern) → List String comp-pats [] = [] comp-pats (vArg (var x) ∷ l) = x ∷ comp-pats l comp-pats (vArg _ ∷ l) = "_" ∷ comp-pats l comp-pats (_ ∷ l) = "_" ∷ comp-pats l comp-clauses s [] = ok "" comp-clauses s (clause ps t ∷ cs) = let vars = comp-pats ps in ok ("pats = " ++ l→s vars) # compile (record s {vars = (L.reverse vars L.++ State.vars s)}) t comp-clauses s (absurd-clause ps ∷ cs) = error "absurd clause found" test : ∀ {n} (m : Ix 2 (n ∷ n ∷ []) → ℕ) (v : Ix 1 (n ∷ []) → ℕ) (i : Fin n) → ℕ test m v i = iterate-1 (λ i₁ → m (i ∷ i₁ ∷ []) * iterate-1 (λ i₂ → m (i₁ ∷ i₂ ∷ []) * v (i₂ ∷ [])) _+_ 0) _+_ 0 bltin-defs : List $ String × String bltin-defs = ("Agda.Builtin.Nat.Nat" , "nat") ∷ ("Agda.Builtin.Nat._+_" , "plus") ∷ ("Agda.Builtin.Nat._*_" , "mult") ∷ ("Agda.Primitive.lzero" , "tt") ∷ ("BLAS.iterate-1" , "for-loop-acc") ∷ [] bltin-cons : List (String × (List (Arg Term) → Prog)) bltin-cons = ("Data.Vec.Base.Vec.[]" , λ _ → ok "nil") ∷ ("Array.Base.Ix.[]" , λ _ → ok "nil") ∷ ("Array.Base.Ix._∷_" , λ args → {!!}) ∷ [] ct = compile (st [] bltin-defs []) (reflect test) foo : ∀ {n : ℕ} (a b : ℕ) → ℕ foo x = _+ x cr = compile (st [] bltin-defs []) (reflect foo) cconv = compile (st [] bltin-defs []) (reflect conv-2) -} --t : Term --t = reflect-ty (thm) -- PAT-LAM (cl = pats = _ m v i D(BLAS.iterate-1 D(Agda.Primitive.lzero ) D(Agda.Builtin.Nat.Nat ) V(i ) -- (\\ i₁ -> D(Agda.Builtin.Nat._*_ -- V(v C(Array.Base.Ix._∷_ 1 C(Data.Vec.Base.Vec._∷_ UNKNOWN UNKNOWN 0 V(i ) C(Data.Vec.Base.Vec.[] UNKNOWN UNKNOWN ) ) -- V(i ) -- V(_ ) -- C(Array.Base.Ix._∷_ 0 C(Data.Vec.Base.Vec.[] UNKNOWN UNKNOWN ) V(i ) V(i₁ ) C(Array.Base.Ix.[] ) ) ) ) -- D(BLAS.iterate-1 D(Agda.Primitive.lzero ) D(Agda.Builtin.Nat.Nat ) V(i ) -- (\\ i₂ -> D(Agda.Builtin.Nat._*_ -- V(v C(Array.Base.Ix._∷_ 1 C(Data.Vec.Base.Vec._∷_ UNKNOWN UNKNOWN 0 V(i ) C(Data.Vec.Base.Vec.[] UNKNOWN UNKNOWN ) ) -- V(i ) -- V(i₁ ) -- C(Array.Base.Ix._∷_ 0 C(Data.Vec.Base.Vec.[] UNKNOWN UNKNOWN ) -- V(i ) V(i₂ ) C(Array.Base.Ix.[] ) ) ) ) -- V(m C(Array.Base.Ix._∷_ 0 C(Data.Vec.Base.Vec.[] UNKNOWN UNKNOWN ) V(i ) V(i₂ ) C(Array.Base.Ix.[] ) ) ) )) -- D(Agda.Builtin.Nat._+_ ) 0 ) )) -- D(Agda.Builtin.Nat._+_ ) 0 )) (args = ) --compld _ m v i = D(for-loop-acc D(tt ) D(nat ) V(_ ) -- (\\ i₁ -> D(mult V(m (cons V(i ) (cons V(i₁ ) nil ) ) ) -- D(for-loop-acc D(tt ) D(nat ) V(_ ) -- (\\ i₂ -> D(mult V(m (cons V(i₁ ) (cons V(i₂ ) nil ) ) ) -- V(v (cons V(i₂ ) nil ) ) )) -- D(plus ) 0 ) )) -- D(plus ) 0 ) -- A * v = { i → Σ Aᵢ×v } -- A * A * v = { i → Σ Aᵢ×v }
35.608974
155
0.488569
2f3d8f69983ebbbfdb77b9f330f74d67ccb09bd3
4,344
agda
Agda
Ex3Lec.agda
clarkdm/CS410
523a8749f49c914bcd28402116dcbe79a78dbbf4
[ "CC0-1.0" ]
null
null
null
Ex3Lec.agda
clarkdm/CS410
523a8749f49c914bcd28402116dcbe79a78dbbf4
[ "CC0-1.0" ]
null
null
null
Ex3Lec.agda
clarkdm/CS410
523a8749f49c914bcd28402116dcbe79a78dbbf4
[ "CC0-1.0" ]
null
null
null
module Ex3Lec where ---------------------------------------------------------------------------- -- EXERCISE 3 -- MONADS FOR HUTTON'S RAZOR -- -- VALUE: 15% -- DEADLINE: 5pm, Friday 20 November (week 9) -- -- DON'T SUBMIT, COMMIT! -- -- The purpose of this exercise is to introduce you to some useful -- mathematical structures and build good tools for working with -- vectors ---------------------------------------------------------------------------- open import CS410-Prelude open import CS410-Monoid open import CS410-Nat open import CS410-Vec open import CS410-Functor -- HINT: your tasks are heralded with the eminently searchable tag, "???" ---------------------------------------------------------------------------- -- HUTTON'S RAZOR ---------------------------------------------------------------------------- HVal : Set -- the set of *values* for Hutton's Razor HVal = Two + Nat -- Booleans or natural numbers foo : HVal foo = tt , ff goo : HVal goo = ff , 42 data HExp (X : Set) : Set where var : X -> HExp X -- variables val : HVal -> HExp X -- values _+H_ _>=H_ : (e1 e2 : HExp X) -> HExp X -- addition, comparison ifH_then_else_ : (e1 e2 e3 : HExp X) -> HExp X -- conditional _>=2_ : Nat -> Nat -> Two x >=2 zero = tt zero >=2 suc _ = ff suc m >=2 suc n = m >=2 n ---------------------------------------------------------------------------- -- ??? 3.1 the HExp syntax-with-substitution monad (score: ? / 2) ---------------------------------------------------------------------------- -- Show that HExp is a monad, where the "bind" operation performs -- simultaneous substitution (transforming all the variables in a term). hExpMonad : Monad HExp hExpMonad = record { return = {!!} ; _>>=_ = {!!} } ---------------------------------------------------------------------------- -- ??? 3.2 the error management monad (score: ? / 1) ---------------------------------------------------------------------------- -- show that "+ E" is monadic, generalising the "Maybe" monad by allowing -- some sort of error report errorMonad : (E : Set) -> Monad \ V -> V + E -- "value or error" errorMonad E = {!!} ---------------------------------------------------------------------------- -- ??? 3.3 the environment monad transformer (score: ? / 1) ---------------------------------------------------------------------------- -- show that "+ E" is monadic, generalising the "Maybe" monad by allowing -- some sort of error report envMonad : (G : Set){M : Set -> Set} -> Monad M -> Monad \ V -> G -> M V -- "computation in an environment" envMonad G MM = {!!} where open Monad MM ---------------------------------------------------------------------------- -- ??? 3.4 interpreting Hutton's Razor (score: ? / 3) ---------------------------------------------------------------------------- -- Implement an interpreter for Hutton's Razor. -- You will need to construct a type to represent possible run-time errors. -- Ensure that addition and comparison act on numbers, not Booleans. -- Ensure that the condition in an "if" is a Boolean, not a number. data InterpretError : Set where -- helpful things to build Env : Set -> Set -- an environment for a given set of variables Env X = X -> HVal Compute : Set{- variables -} -> Set{- values -} -> Set Compute X V = Env X -> V + InterpretError -- how to compute a V computeMonad : {X : Set} -> Monad (Compute X) computeMonad = {!!} -- build this from the above parts -- This operation should explain how to get the value of a variable -- from the environment. varVal : {X : Set} -> X -> Compute X HVal varVal x = {!!} -- These operations should ensure that you get the sort of value -- that you want, in order to ensure that you don't do bogus -- computation. mustBeNat : {X : Set} -> HVal -> Compute X Nat mustBeNat v = {!!} mustBeTwo : {X : Set} -> HVal -> Compute X Two mustBeTwo v = {!!} -- Now, you're ready to go. Don't introduce the environent explicitly. -- Use the monad to thread it. interpret : {X : Set} -> HExp X -> Compute X HVal interpret {X} = go where open Monad (envMonad (Env X) (errorMonad InterpretError)) go : HExp X -> Env X -> HVal + InterpretError go t = {!!}
33.674419
77
0.494015
31b185c8a2eb857236d9c0a567722d1f15470a0c
11,864
agda
Agda
Cubical/Algebra/Group/MorphismProperties.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/MorphismProperties.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/MorphismProperties.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.MorphismProperties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Foundations.SIP open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.GroupoidLaws open import Cubical.Functions.Embedding open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Pointed open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphism private variable ℓ ℓ' ℓ'' : Level open Iso open GroupStr open GroupHom isPropIsGroupHom : (G : Group {ℓ}) (H : Group {ℓ'}) {f : ⟨ G ⟩ → ⟨ H ⟩} → isProp (isGroupHom G H f) isPropIsGroupHom G H {f} = isPropΠ2 λ a b → GroupStr.is-set (snd H) _ _ isSetGroupHom : {G : Group {ℓ}} {H : Group {ℓ'}} → isSet (GroupHom G H) isSetGroupHom {G = G} {H = H} = isOfHLevelRespectEquiv 2 equiv (isSetΣ (isSetΠ λ _ → is-set (snd H)) λ _ → isProp→isSet (isPropIsGroupHom G H)) where equiv : (Σ[ g ∈ (⟨ G ⟩ → ⟨ H ⟩) ] (isGroupHom G H g)) ≃ (GroupHom G H) equiv = isoToEquiv (iso (λ (g , m) → grouphom g m) (λ hom → fun hom , isHom hom) (λ _ → refl) λ _ → refl) -- Morphism composition isGroupHomComp : {F : Group {ℓ}} {G : Group {ℓ'}} {H : Group {ℓ''}} → (f : GroupHom F G) → (g : GroupHom G H) → isGroupHom F H (fun g ∘ fun f) isGroupHomComp f g x y = cong (fun g) (isHom f _ _) ∙ isHom g _ _ compGroupHom : {F : Group {ℓ}} {G : Group {ℓ'}} {H : Group {ℓ''}} → GroupHom F G → GroupHom G H → GroupHom F H fun (compGroupHom f g) = fun g ∘ fun f isHom (compGroupHom f g) = isGroupHomComp f g open GroupEquiv compGroupEquiv : {F : Group {ℓ}} {G : Group {ℓ'}} {H : Group {ℓ''}} → GroupEquiv F G → GroupEquiv G H → GroupEquiv F H eq (compGroupEquiv f g) = compEquiv (eq f) (eq g) isHom (compGroupEquiv f g) = isHom (compGroupHom (hom f) (hom g)) idGroupEquiv : (G : Group {ℓ}) → GroupEquiv G G eq (idGroupEquiv G) = idEquiv ⟨ G ⟩ isHom (idGroupEquiv G) = λ _ _ → refl -- Isomorphism inversion isGroupHomInv : {G : Group {ℓ}} {H : Group {ℓ'}} (f : GroupEquiv G H) → isGroupHom H G (invEq (GroupEquiv.eq f)) isGroupHomInv {G = G} {H = H} f h h' = isInj-f _ _ ( f' (g (h ⋆² h')) ≡⟨ retEq (eq f) _ ⟩ (h ⋆² h') ≡⟨ sym (cong₂ _⋆²_ (retEq (eq f) h) (retEq (eq f) h')) ⟩ (f' (g h) ⋆² f' (g h')) ≡⟨ sym (isHom (hom f) _ _) ⟩ f' (g h ⋆¹ g h') ∎) where f' = fst (eq f) _⋆¹_ = _+_ (snd G) _⋆²_ = _+_ (snd H) g = invEq (eq f) isInj-f : (x y : ⟨ G ⟩) → f' x ≡ f' y → x ≡ y isInj-f x y = invEq (_ , isEquiv→isEmbedding (snd (eq f)) x y) invGroupEquiv : {G : Group {ℓ}} {H : Group {ℓ'}} → GroupEquiv G H → GroupEquiv H G eq (invGroupEquiv f) = invEquiv (eq f) isHom (invGroupEquiv f) = isGroupHomInv f dirProdEquiv : ∀ {ℓ ℓ' ℓ'' ℓ'''} {A : Group {ℓ}} {B : Group {ℓ'}} {C : Group {ℓ''}} {D : Group {ℓ'''}} → GroupEquiv A C → GroupEquiv B D → GroupEquiv (dirProd A B) (dirProd C D) eq (dirProdEquiv eq1 eq2) = ≃-× (eq eq1) (eq eq2) isHom (dirProdEquiv eq1 eq2) = isHom (×hom (GroupEquiv.hom eq1) (GroupEquiv.hom eq2)) groupHomEq : {G : Group {ℓ}} {H : Group {ℓ'}} {f g : GroupHom G H} → (fun f ≡ fun g) → f ≡ g fun (groupHomEq p i) = p i isHom (groupHomEq {G = G} {H = H} {f = f} {g = g} p i) = p-hom i where p-hom : PathP (λ i → isGroupHom G H (p i)) (isHom f) (isHom g) p-hom = toPathP (isPropIsGroupHom G H _ _) groupEquivEq : {G : Group {ℓ}} {H : Group {ℓ'}} {f g : GroupEquiv G H} → (eq f ≡ eq g) → f ≡ g eq (groupEquivEq {G = G} {H = H} {f} {g} p i) = p i isHom (groupEquivEq {G = G} {H = H} {f} {g} p i) = p-hom i where p-hom : PathP (λ i → isGroupHom G H (p i .fst)) (isHom f) (isHom g) p-hom = toPathP (isPropIsGroupHom G H _ _) module GroupΣTheory {ℓ} where RawGroupStructure : Type ℓ → Type ℓ RawGroupStructure = SemigroupΣTheory.RawSemigroupStructure RawGroupEquivStr : StrEquiv RawGroupStructure _ RawGroupEquivStr = SemigroupΣTheory.RawSemigroupEquivStr rawGroupUnivalentStr : UnivalentStr RawGroupStructure _ rawGroupUnivalentStr = SemigroupΣTheory.rawSemigroupUnivalentStr -- The neutral element and the inverse function will be derived from the -- axioms, instead of being defined in the RawGroupStructure in order -- to have that group equivalences are equivalences that preserves -- multiplication (so we don't have to show that they also preserve inversion -- and neutral element, although they will preserve them). GroupAxioms : (G : Type ℓ) → RawGroupStructure G → Type ℓ GroupAxioms G _·_ = IsSemigroup _·_ × (Σ[ e ∈ G ] ((x : G) → (x · e ≡ x) × (e · x ≡ x)) × ((x : G) → Σ[ x' ∈ G ] (x · x' ≡ e) × (x' · x ≡ e))) GroupStructure : Type ℓ → Type ℓ GroupStructure = AxiomsStructure RawGroupStructure GroupAxioms GroupΣ : Type (ℓ-suc ℓ) GroupΣ = TypeWithStr ℓ GroupStructure -- Structured equivalences for groups are those for monoids (but different axioms) GroupEquivStr : StrEquiv GroupStructure ℓ GroupEquivStr = AxiomsEquivStr RawGroupEquivStr GroupAxioms open MonoidTheory isSetGroupΣ : (G : GroupΣ) → isSet _ isSetGroupΣ (_ , _ , (isSemigroup-G , _ , _)) = IsSemigroup.is-set isSemigroup-G isPropGroupAxioms : (G : Type ℓ) → (s : RawGroupStructure G) → isProp (GroupAxioms G s) isPropGroupAxioms G _+_ = isPropΣ (isPropIsSemigroup _) γ where γ : (h : IsSemigroup _+_) → isProp (Σ[ e ∈ G ] ((x : G) → (x + e ≡ x) × (e + x ≡ x)) × ((x : G) → Σ[ x' ∈ G ] (x + x' ≡ e) × (x' + x ≡ e))) γ h (e , P , _) (e' , Q , _) = Σ≡Prop (λ x → isPropΣ (isPropΠ λ _ → isProp× ((IsSemigroup.is-set h) _ _) ((IsSemigroup.is-set h) _ _)) (β x)) (sym (fst (Q e)) ∙ snd (P e')) where β : (e : G) → ((x : G) → (x + e ≡ x) × (e + x ≡ x)) → isProp ((x : G) → Σ[ x' ∈ G ] (x + x' ≡ e) × (x' + x ≡ e)) β e He = isPropΠ λ { x (x' , _ , P) (x'' , Q , _) → Σ≡Prop (λ _ → isProp× ((IsSemigroup.is-set h) _ _) ((IsSemigroup.is-set h) _ _)) (inv-lemma ℳ x x' x'' P Q) } where ℳ : Monoid ℳ = makeMonoid e _+_ (IsSemigroup.is-set h) (IsSemigroup.assoc h) (λ x → He x .fst) (λ x → He x .snd) Group→GroupΣ : Group → GroupΣ Group→GroupΣ (G , GS) = _ , _ , (isSemigroup GS , _ , identity GS , λ x → (- GS) x , inverse GS x) GroupΣ→Group : GroupΣ → Group GroupΣ→Group (G , _ , SG , _ , H0g , invertible ) = group _ _ _ (λ x → invertible x .fst) (isgroup (ismonoid SG H0g) λ x → invertible x .snd) GroupIsoGroupΣ : Iso Group GroupΣ GroupIsoGroupΣ = iso Group→GroupΣ GroupΣ→Group (λ _ → refl) (λ _ → refl) groupUnivalentStr : UnivalentStr GroupStructure GroupEquivStr groupUnivalentStr = axiomsUnivalentStr _ isPropGroupAxioms rawGroupUnivalentStr GroupΣPath : (G H : GroupΣ) → (G ≃[ GroupEquivStr ] H) ≃ (G ≡ H) GroupΣPath = SIP groupUnivalentStr GroupEquivΣ : (G H : Group) → Type ℓ GroupEquivΣ G H = Group→GroupΣ G ≃[ GroupEquivStr ] Group→GroupΣ H GroupIsoΣPath : {G H : Group} → Iso (GroupEquiv G H) (GroupEquivΣ G H) fun GroupIsoΣPath f = (eq f) , isHom f inv GroupIsoΣPath (e , h) = groupequiv e h rightInv GroupIsoΣPath _ = refl leftInv GroupIsoΣPath _ = refl GroupPath : (G H : Group) → (GroupEquiv G H) ≃ (G ≡ H) GroupPath G H = GroupEquiv G H ≃⟨ isoToEquiv GroupIsoΣPath ⟩ GroupEquivΣ G H ≃⟨ GroupΣPath _ _ ⟩ Group→GroupΣ G ≡ Group→GroupΣ H ≃⟨ isoToEquiv (invIso (congIso GroupIsoGroupΣ)) ⟩ G ≡ H ■ RawGroupΣ : Type (ℓ-suc ℓ) RawGroupΣ = TypeWithStr ℓ RawGroupStructure Group→RawGroupΣ : Group → RawGroupΣ Group→RawGroupΣ (G , GS) = G , _+_ GS InducedGroup : (G : Group) (H : RawGroupΣ) (e : ⟨ G ⟩ ≃ H .fst) → RawGroupEquivStr (Group→RawGroupΣ G) H e → Group InducedGroup G H e r = GroupΣ→Group (transferAxioms rawGroupUnivalentStr (Group→GroupΣ G) H (e , r)) InducedGroupPath : (G : Group {ℓ}) (H : RawGroupΣ) (e : ⟨ G ⟩ ≃ H .fst) (E : RawGroupEquivStr (Group→RawGroupΣ G) H e) → G ≡ InducedGroup G H e E InducedGroupPath G H e E = GroupPath G (InducedGroup G H e E) .fst (groupequiv e E) -- Extract the characterization of equality of groups GroupPath : (G H : Group {ℓ}) → (GroupEquiv G H) ≃ (G ≡ H) GroupPath = GroupΣTheory.GroupPath InducedGroup : (G : Group {ℓ}) (H : GroupΣTheory.RawGroupΣ) (e : ⟨ G ⟩ ≃ H .fst) → GroupΣTheory.RawGroupEquivStr (GroupΣTheory.Group→RawGroupΣ G) H e → Group InducedGroup = GroupΣTheory.InducedGroup InducedGroupPath : (G : Group {ℓ}) (H : GroupΣTheory.RawGroupΣ) (e : ⟨ G ⟩ ≃ H .fst) (E : GroupΣTheory.RawGroupEquivStr (GroupΣTheory.Group→RawGroupΣ G) H e) → G ≡ InducedGroup G H e E InducedGroupPath = GroupΣTheory.InducedGroupPath uaGroup : {G H : Group {ℓ}} → GroupEquiv G H → G ≡ H uaGroup {G = G} {H = H} = equivFun (GroupPath G H) carac-uaGroup : {G H : Group {ℓ}} (f : GroupEquiv G H) → cong ⟨_⟩ (uaGroup f) ≡ ua (GroupEquiv.eq f) carac-uaGroup f = ua (eq f) ∙ refl ≡⟨ sym (rUnit _) ⟩ ua (eq f) ∎ -- Group-ua functoriality Group≡ : (G H : Group {ℓ}) → ( Σ[ p ∈ ⟨ G ⟩ ≡ ⟨ H ⟩ ] Σ[ q ∈ PathP (λ i → p i) (0g (snd G)) (0g (snd H)) ] Σ[ r ∈ PathP (λ i → p i → p i → p i) (_+_ (snd G)) (_+_ (snd H)) ] Σ[ s ∈ PathP (λ i → p i → p i) (- snd G) (- snd H) ] PathP (λ i → IsGroup (q i) (r i) (s i)) (isGroup (snd G)) (isGroup (snd H))) ≃ (G ≡ H) Group≡ G H = isoToEquiv theIso where theIso : Iso _ _ fun theIso (p , q , r , s , t) i = p i , groupstr (q i) (r i) (s i) (t i) inv theIso x = cong ⟨_⟩ x , cong (0g ∘ snd) x , cong (_+_ ∘ snd) x , cong (-_ ∘ snd) x , cong (isGroup ∘ snd) x rightInv theIso _ = refl leftInv theIso _ = refl caracGroup≡ : {G H : Group {ℓ}} (p q : G ≡ H) → cong ⟨_⟩ p ≡ cong ⟨_⟩ q → p ≡ q caracGroup≡ {G = G} {H = H} p q P = sym (transportTransport⁻ (ua (Group≡ G H)) p) ∙∙ cong (transport (ua (Group≡ G H))) helper ∙∙ transportTransport⁻ (ua (Group≡ G H)) q where helper : transport (sym (ua (Group≡ G H))) p ≡ transport (sym (ua (Group≡ G H))) q helper = Σ≡Prop (λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd H)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd H)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set (snd H)) _ _) λ _ → isOfHLevelPathP 1 (isPropIsGroup _ _ _) _ _) (transportRefl (cong ⟨_⟩ p) ∙ P ∙ sym (transportRefl (cong ⟨_⟩ q))) uaGroupId : (G : Group {ℓ}) → uaGroup (idGroupEquiv G) ≡ refl uaGroupId G = caracGroup≡ _ _ (carac-uaGroup (idGroupEquiv G) ∙ uaIdEquiv) uaCompGroupEquiv : {F G H : Group {ℓ}} (f : GroupEquiv F G) (g : GroupEquiv G H) → uaGroup (compGroupEquiv f g) ≡ uaGroup f ∙ uaGroup g uaCompGroupEquiv f g = caracGroup≡ _ _ ( cong ⟨_⟩ (uaGroup (compGroupEquiv f g)) ≡⟨ carac-uaGroup (compGroupEquiv f g) ⟩ ua (eq (compGroupEquiv f g)) ≡⟨ uaCompEquiv _ _ ⟩ ua (eq f) ∙ ua (eq g) ≡⟨ cong (_∙ ua (eq g)) (sym (carac-uaGroup f)) ⟩ cong ⟨_⟩ (uaGroup f) ∙ ua (eq g) ≡⟨ cong (cong ⟨_⟩ (uaGroup f) ∙_) (sym (carac-uaGroup g)) ⟩ cong ⟨_⟩ (uaGroup f) ∙ cong ⟨_⟩ (uaGroup g) ≡⟨ sym (cong-∙ ⟨_⟩ (uaGroup f) (uaGroup g)) ⟩ cong ⟨_⟩ (uaGroup f ∙ uaGroup g) ∎) where open GroupEquiv
42.070922
149
0.600135
d0af7257e32b10848d04ecb3f0fdadf348b9f207
404
agda
Agda
stdlib-exts/Data/Vec/Exts.agda
WhatisRT/meta-cedille
62fa6f36e4555360d94041113749bbb6d291691c
[ "MIT" ]
35
2019-06-13T07:44:50.000Z
2021-10-12T22:59:10.000Z
stdlib-exts/Data/Vec/Exts.agda
WhatisRT/meta-cedille
62fa6f36e4555360d94041113749bbb6d291691c
[ "MIT" ]
10
2019-06-13T17:44:43.000Z
2020-04-25T15:29:17.000Z
stdlib-exts/Data/Vec/Exts.agda
WhatisRT/meta-cedille
62fa6f36e4555360d94041113749bbb6d291691c
[ "MIT" ]
2
2019-06-27T23:12:48.000Z
2021-10-20T10:46:20.000Z
module Data.Vec.Exts where open import Data.Fin open import Data.Maybe open import Data.Nat open import Data.Vec using (Vec; []; _∷_) open import Relation.Nullary open import Relation.Unary open import Data.Vec.Relation.Unary.Any findIndex : {n : ℕ} {A : Set} {P : A -> Set} -> Decidable P -> Vec A n -> Maybe (Fin n) findIndex P? xs with any? P? xs ... | yes ix = just (index ix) ... | no _ = nothing
26.933333
87
0.680693
12dfbaef6f703c7485e9f11ff3aa1d8d49e7b16d
1,080
agda
Agda
agda-stdlib/src/Codata/Conat/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Codata/Conat/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Codata/Conat/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties for Conats ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Conat.Properties where open import Size open import Data.Nat.Base using (ℕ; zero; suc) open import Codata.Thunk open import Codata.Conat open import Codata.Conat.Bisimilarity open import Function open import Relation.Nullary open import Relation.Nullary.Decidable using (map′) open import Relation.Binary private variable i : Size 0∸m≈0 : ∀ m → i ⊢ zero ∸ m ≈ zero 0∸m≈0 zero = refl 0∸m≈0 (suc m) = 0∸m≈0 m sℕ≤s⁻¹ : ∀ {m n} → suc m ℕ≤ suc n → m ℕ≤ n .force sℕ≤s⁻¹ (sℕ≤s p) = p _ℕ≤?_ : Decidable _ℕ≤_ zero ℕ≤? n = yes zℕ≤n suc m ℕ≤? zero = no (λ ()) suc m ℕ≤? suc n = map′ sℕ≤s sℕ≤s⁻¹ (m ℕ≤? n .force) 0ℕ+-identity : ∀ {n} → i ⊢ 0 ℕ+ n ≈ n 0ℕ+-identity = refl +ℕ0-identity : ∀ {n} → i ⊢ n +ℕ 0 ≈ n +ℕ0-identity {n = zero} = zero +ℕ0-identity {n = suc n} = suc λ where .force → +ℕ0-identity
25.116279
72
0.548148
4a3e1bbe23385d1d1181721ce5116d801f9123df
4,656
agda
Agda
ch8.agda
asajeffrey/tapl
de2ae6c24d001b85a5032c9e06cc731557dbc5e5
[ "CC0-1.0" ]
3
2021-03-12T22:44:19.000Z
2021-03-15T12:09:59.000Z
ch8.agda
asajeffrey/tapl
de2ae6c24d001b85a5032c9e06cc731557dbc5e5
[ "CC0-1.0" ]
null
null
null
ch8.agda
asajeffrey/tapl
de2ae6c24d001b85a5032c9e06cc731557dbc5e5
[ "CC0-1.0" ]
null
null
null
open import prelude -- Copied pretty much verbatim data Term : Set where true : Term false : Term if_then_else_end : Term → Term → Term → Term zero : Term succ : Term → Term iszero : Term → Term data NValue : Term → Set where zero : NValue zero succ : ∀ {t} → NValue(t) → NValue(succ t) data Value : Term → Set where true : Value true false : Value false nv : ∀ {t} → NValue(t) → Value(t) data _⟶_ : Term → Term → Set where E─IfTrue : ∀ {t₂ t₃} → ----------------------------------- if true then t₂ else t₃ end ⟶ t₂ E─IfFalse : ∀ {t₂ t₃} → ----------------------------------- if false then t₂ else t₃ end ⟶ t₃ E─IfCong : ∀ {t₁ t₁′ t₂ t₃} → (t₁ ⟶ t₁′) → ---------------------------------------------------------- (if t₁ then t₂ else t₃ end ⟶ if t₁′ then t₂ else t₃ end) E─SuccCong : ∀ {t₁ t₁′} → (t₁ ⟶ t₁′) → ---------------------- (succ t₁ ⟶ succ t₁′) E─IsZero : ---------------------- (iszero zero ⟶ true) E─IsSucc : ∀ {n} → -------------------------- (iszero (succ n) ⟶ false) E─IsCong : ∀ {t₁ t₁′} → (t₁ ⟶ t₁′) → -------------------------- (iszero t₁ ⟶ iszero t₁′) data Redex : Term → Set where redex : ∀ {t t′} → t ⟶ t′ → -------- Redex(t) -- Types data Type : Set where bool : Type nat : Type data _∈_ : Term → Type → Set where T-True : ----------- true ∈ bool T-False : ----------- false ∈ bool T-If : ∀ {t₁ t₂ t₃ T} → t₁ ∈ bool → t₂ ∈ T → t₃ ∈ T → ----------------------------- if t₁ then t₂ else t₃ end ∈ T T-Zero : ---------- zero ∈ nat T-Succ : ∀ {t₁} → t₁ ∈ nat → ------------- succ t₁ ∈ nat T-IsZero : ∀ {t₁} → t₁ ∈ nat → ------------- iszero t₁ ∈ bool -- Proving that well-typed terms stay well-typed preservation : ∀ {t t′ T} → (t ∈ T) → (t ⟶ t′) → (t′ ∈ T) preservation (T-If p₁ p₂ p₃) E─IfTrue = p₂ preservation (T-If p₁ p₂ p₃) E─IfFalse = p₃ preservation (T-If p₁ p₂ p₃) (E─IfCong q) = T-If (preservation p₁ q) p₂ p₃ preservation (T-Succ p) (E─SuccCong q) = T-Succ (preservation p q) preservation (T-IsZero p) E─IsZero = T-True preservation (T-IsZero p) E─IsSucc = T-False preservation (T-IsZero p) (E─IsCong q) = T-IsZero (preservation p q) -- Proving that every term is a value or a redex data ValueOrRedex : Term → Set where value : ∀ {t} → (Value(t)) → --------------- ValueOrRedex(t) redex : ∀ {t t′} → t ⟶ t′ → --------------- ValueOrRedex(t) progress : ∀ {t T} → (t ∈ T) → ValueOrRedex(t) progress T-True = value true progress T-False = value false progress (T-If p₁ p₂ p₃) = helper (progress p₁) p₁ where helper : ∀ {t₀ t₁ t₂} → ValueOrRedex(t₀) → t₀ ∈ bool → ValueOrRedex(if t₀ then t₁ else t₂ end) helper (value true) p = redex E─IfTrue helper (value false) p = redex E─IfFalse helper (redex r) p = redex (E─IfCong r) helper (value (nv ())) T-True helper (value (nv ())) T-False helper (value (nv ())) (T-If p p₁ p₂) progress T-Zero = value (nv zero) progress (T-Succ p) = helper (progress p) p where helper : ∀ {t₀} → ValueOrRedex(t₀) → t₀ ∈ nat → ValueOrRedex(succ t₀) helper (value (nv n)) p = value (nv (succ n)) helper (redex r) p = redex (E─SuccCong r) progress (T-IsZero p) = helper (progress p) p where helper : ∀ {t₀} → ValueOrRedex(t₀) → t₀ ∈ nat → ValueOrRedex(iszero t₀) helper (value (nv zero)) p = redex E─IsZero helper (value (nv (succ x))) p = redex E─IsSucc helper (redex r) p = redex (E─IsCong r) -- Interpreter data _⟶*_ : Term → Term → Set where done : ∀ {t} → -------- t ⟶* t redex : ∀ {t t′ t″} → t ⟶ t′ → t′ ⟶* t″ → ---------- t ⟶* t″ -- An interpreter result data Result : Term → Set where result : ∀ {t t′} → t ⟶* t′ → Value(t′) → --------- Result(t) -- The interpreter just calls `progress` until it is a value. -- This might bot terminate! {-# NON_TERMINATING #-} interp : ∀ {t T} → (t ∈ T) → Result(t) interp p = helper₂ p (progress p) where helper₁ : ∀ {t t′} → (t ⟶ t′) → Result(t′) → Result(t) helper₁ r (result s v) = result (redex r s) v helper₂ : ∀ {t T} → (t ∈ T) → ValueOrRedex(t) → Result(t) helper₂ p (value v) = result done v helper₂ p (redex r) = helper₁ r (interp (preservation p r)) ex = if (iszero zero) then (succ zero) else (zero) end exNat : (ex ∈ nat) exNat = T-If (T-IsZero T-Zero) (T-Succ T-Zero) T-Zero -- Normalize (C-N) interp exNat -- result -- (redex (E─IfCong E─IsZero) -- (redex E─IfTrue -- done)) -- (nv (succ zero))
21.163636
96
0.512027
a13a7276b51490574be95051b83fdaba23d70c9e
83
agda
Agda
test/Succeed/Issue3439.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3439.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3439.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --type-in-type #-} open import Agda.Primitive test : Set test = Setω
11.857143
30
0.662651
fb91aca8fa584f55c1fab9aba88e246b328db318
746
agda
Agda
test/Succeed/Issue2484-9.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2484-9.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2484-9.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --sized-types #-} module _ (_ : Set) where open import Agda.Builtin.Size postulate I : Set record ∃ (B : I → Set) : Set where constructor _,_ field proj₁ : I proj₂ : B proj₁ module M (_ : Set₁) where mutual data P (i : Size) (x y : I) : Set where ⟨_⟩ : ∃ (Q i x) → P i x y record Q (i : Size) (x y : I) : Set where coinductive field force : {j : Size< i} → P j x y open M Set postulate map : (B : I → Set) → (∀ x → B x → B x) → ∃ B → ∃ B lemma : ∀ x y i → Q i x y → Q i x y p : ∀ x i → P i x x q′ : ∀ x i → ∃ λ y → Q i x y q : ∀ x i → Q i x x q′ x i = x , q x i p x i = ⟨ map _ (λ y → lemma x y _) (q′ x i) ⟩ Q.force (q x i) {j} = p _ _
18.195122
60
0.458445
1ce9ee734008c3190da53b165acb57e914051470
1,411
agda
Agda
agda-stdlib/src/Data/Fin/Substitution/List.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Fin/Substitution/List.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Fin/Substitution/List.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Application of substitutions to lists, along with various lemmas ------------------------------------------------------------------------ -- This module illustrates how Data.Fin.Substitution.Lemmas.AppLemmas -- can be used. {-# OPTIONS --without-K --safe #-} open import Data.Fin.Substitution.Lemmas open import Data.Nat.Base using (ℕ) module Data.Fin.Substitution.List {ℓ} {T : ℕ → Set ℓ} (lemmas₄ : Lemmas₄ T) where open import Data.List.Base open import Data.List.Properties open import Data.Fin.Substitution import Function as Fun open import Relation.Binary.PropositionalEquality open ≡-Reasoning private open module L = Lemmas₄ lemmas₄ using (_/_; id; _⊙_) infixl 8 _//_ _//_ : ∀ {m n} → List (T m) → Sub T m n → List (T n) ts // ρ = map (λ σ → σ / ρ) ts appLemmas : AppLemmas (λ n → List (T n)) T appLemmas = record { application = record { _/_ = _//_ } ; lemmas₄ = lemmas₄ ; id-vanishes = λ ts → begin ts // id ≡⟨ map-cong L.id-vanishes ts ⟩ map Fun.id ts ≡⟨ map-id ts ⟩ ts ∎ ; /-⊙ = λ {_ _ _ ρ₁ ρ₂} ts → begin ts // ρ₁ ⊙ ρ₂ ≡⟨ map-cong L./-⊙ ts ⟩ map (λ σ → σ / ρ₁ / ρ₂) ts ≡⟨ map-compose ts ⟩ ts // ρ₁ // ρ₂ ∎ } open AppLemmas appLemmas public hiding (_/_) renaming (_/✶_ to _//✶_)
29.395833
81
0.54713
1db0bdc8478cdb2e2fe60699328d63ca48c729be
1,389
agda
Agda
Mockingbird/Forest/Base.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
1
2022-02-28T23:44:42.000Z
2022-02-28T23:44:42.000Z
Mockingbird/Forest/Base.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
null
null
null
Mockingbird/Forest/Base.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
null
null
null
module Mockingbird.Forest.Base where open import Algebra using (Op₂; Congruent₂; LeftCongruent; RightCongruent) open import Level using (_⊔_) renaming (suc to lsuc) open import Relation.Binary using (Rel; IsEquivalence; Setoid) open import Relation.Nullary using (¬_) record IsForest {b ℓ} (Bird : Set b) (_≈_ : Rel Bird ℓ) (_∙_ : Op₂ Bird) : Set (b ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ cong : Congruent₂ _≈_ _∙_ open IsEquivalence isEquivalence public setoid : Setoid b ℓ setoid = record { isEquivalence = isEquivalence } congˡ : LeftCongruent _≈_ _∙_ congˡ A≈B = cong refl A≈B congʳ : RightCongruent _≈_ _∙_ congʳ A≈B = cong A≈B refl record Forest {b ℓ} : Set (lsuc (b ⊔ ℓ)) where infix 4 _≈_ infixl 6 _∙_ field Bird : Set b _≈_ : Rel Bird ℓ _∙_ : Op₂ Bird isForest : IsForest Bird _≈_ _∙_ _≉_ : Rel Bird ℓ x ≉ y = ¬ (x ≈ y) open IsForest isForest public import Relation.Binary.Reasoning.Base.Single _≈_ refl trans as Base open Base using (begin_; _∎) public infixr 2 _≈⟨⟩_ step-≈ step-≈˘ _≈⟨⟩_ : ∀ x {y} → x Base.IsRelatedTo y → x Base.IsRelatedTo y _ ≈⟨⟩ x≈y = x≈y step-≈ = Base.step-∼ syntax step-≈ x y≈z x≈y = x ≈⟨ x≈y ⟩ y≈z step-≈˘ : ∀ x {y z} → y Base.IsRelatedTo z → y ≈ x → x Base.IsRelatedTo z step-≈˘ x y∼z y≈x = x ≈⟨ sym y≈x ⟩ y∼z syntax step-≈˘ x y≈z y≈x = x ≈˘⟨ y≈x ⟩ y≈z
26.207547
92
0.634269
4df67933ac16d89064b44ba83ae4c5b647b1f0c2
568
agda
Agda
slides/agda/half.agda
JLimperg/msc-thesis
a6b4cf13104112c76a07d17a9dd18f3d3589d449
[ "MIT" ]
1
2019-12-14T01:30:46.000Z
2019-12-14T01:30:46.000Z
slides/agda/half.agda
JLimperg/msc-thesis
a6b4cf13104112c76a07d17a9dd18f3d3589d449
[ "MIT" ]
null
null
null
slides/agda/half.agda
JLimperg/msc-thesis
a6b4cf13104112c76a07d17a9dd18f3d3589d449
[ "MIT" ]
null
null
null
module half where open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) open import Size data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} half : ℕ → ℕ half zero = zero half (suc zero) = zero half (suc (suc i)) = suc (half i) _ : half 5 ≡ 2 _ = refl data ℕₛ (n : Size) : Set where zero : ℕₛ n suc : (m : Size< n) → ℕₛ m → ℕₛ n _ : ∀ {n} → ℕₛ n _ = zero _ : ∀ {n} (m : Size< n) → ℕₛ m → ℕₛ n _ = suc halfₛ : ∀ n → ℕₛ n → ℕₛ n halfₛ n zero = zero halfₛ n (suc m zero) = zero halfₛ n (suc m (suc k i)) = suc k (halfₛ k i)
16.228571
68
0.573944
4acdfbf4bdb7fa829ed701d6eb8ad00e06224b59
32
agda
Agda
test/interaction/Issue2728-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue2728-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue2728-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
F : {_ : Set₁} → Set₁ F {A} = A
10.666667
21
0.40625
0e13f9904479df9fdcfede37bdf4beb17f711efc
3,121
agda
Agda
test/Succeed/Issue1795.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1795.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1795.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-01-22 -- special size checking j : Size< i |- j : Size< ↑ j -- was missing from checkInternal -- {-# OPTIONS -v tc.polarity:10 #-} -- {-# OPTIONS -v tc.with.type:50 #-} -- {-# OPTIONS -v tc.check.internal:30 -v tc.infer.internal:30 #-} {-# OPTIONS --sized-types #-} open import Common.Unit open import Common.Size postulate axiom : Unit anything : ∀{A : Set} → A -- An inductive-coinductive unit type. mutual record IC i : Set where coinductive field force : ∀(j : Size< i) → IC' j data IC' i : Set where cons : (xs : IC i) → IC' i -- necessary -- The recursive identity on IC. mutual idIC : ∀ i (p : IC i) → IC i IC.force (idIC i p) j = idIC' (↑ j) j (IC.force p j) -- (↑ j) is triggering the error -- if we write i here, things work idIC' : ∀ i (j : Size< i) (p : IC' j) → IC' j idIC' i j (cons p) = cons (idIC j p) -- An inhabitant defined using with. -- some : ∀ i → IC i -- IC.force (some i) j with axiom -- with is necessary here! -- ... | unit = cons (some j) some : ∀ i → IC i some' : ∀ i (j : Size< i) (u : Unit) → IC' j IC.force (some i) j = some' i j axiom some' i j unit = cons (some j) -- A coindutive predicate with non-linear use of size i. mutual -- use of i in IC i is necessary, works with IC ∞ record All i (s : IC i) : Set where coinductive field force : ∀(j : Size< i) → All' j (IC.force s j) data All' i : (s : IC' i) → Set where -- With abstracted type is well-formed. -- This means the type-checker can deal with it. Test : Set₄ Test = (w : Set₃) (i : Size) (j : Size< i) → All' j (idIC' (↑ j) j (some' i j axiom)) -- Agda claims: With abstracted type is ill-formed. -- This means that checkInternal cannot deal with it. test : ∀ i → All i (idIC i (some i)) All.force (test i) j with Set₂ -- any with expression does it here ... | w = anything -- i !=< ↑ j of type Size -- when checking that the type -- (w : Set₃) (i : Size) (j : Size< i) → -- All' j (idIC' (↑ j) j (some' i j axiom)) -- of the generated with function is well-formed {- candidate type: (w : Set₃) (i : Size) (j : Size< i) → All' j (idIC' (↑ j) j (some' i j axiom)) candidate type: El {_getSort = Type (Max [ClosedLevel 4]), unEl = Pi []r(El {_getSort = Type (Max [ClosedLevel 4]), unEl = Sort (Type (Max [ClosedLevel 3]))}) (Abs "w" El {_getSort = Type (Max []), unEl = Pi []r(El {_getSort = SizeUniv, unEl = Def Common.Size.Size []}) (Abs "i" El {_getSort = Type (Max []), unEl = Pi []r(El {_getSort = SizeUniv, unEl = Def Common.Size.Size<_ [Apply []?(Var 0 [])]}) (Abs "j" El {_getSort = Type (Max []), unEl = Def Issue1795.All' [Apply []r(Var 0 []),Apply []r( Def Issue1795.idIC' [Apply []r(Def Common.Size.↑_ [Apply []r(Var 0 [])]),Apply []r(Var 0 []),Apply []r( Def Issue1795.some' [Apply []r(Var 1 []),Apply []r(Var 0 []),Apply []r( Def Issue1795.axiom [])])])]})})})} Last words: type t = (j : Size< (↑ j)) → IC' j → IC' j self = idIC' (↑ j) eliminated by e = $ j checking internal j : Size< (↑ j) checking spine ( j : Size< i ) [] : Size< (↑ j) -}
28.117117
107
0.575457
1ce8a992e827c3307cf980c7fff3cc5d25fda75c
689
agda
Agda
test/Succeed/Issue4016.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Issue4016.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue4016.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2019-08-20, issue #4016 -- Debug printing should not crash Agda even if there are -- __IMPOSSIBLE__s buried inside values that get printed. {-# OPTIONS -v scope.decl.trace:80 #-} -- KEEP! -- The following is some random code (see issue #4010) -- that happened to trigger an internal error with verbosity 80. open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.List data D : Set where c : D module M where private unquoteDecl g = do ty ← quoteTC D _ ← declareDef (arg (arg-info visible relevant) g) ty qc ← quoteTC c defineFun g (clause [] qc ∷ []) -- Should print lots of debug stuff and succeed.
23.758621
64
0.683599
39715b7dc66fea0d5c2af1fc96e7b58c7e16ca2c
1,989
agda
Agda
Categories/Object/Products/Properties.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Object/Products/Properties.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Object/Products/Properties.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category module Categories.Object.Products.Properties {o ℓ e} (C : Category o ℓ e) where open Category C open import Level import Categories.Object.Terminal open Categories.Object.Terminal C import Categories.Object.BinaryProducts open Categories.Object.BinaryProducts C import Categories.Object.Products open Categories.Object.Products C import Categories.Morphisms open Categories.Morphisms C module Properties (P : Products) where open Products P open Terminal terminal open BinaryProducts binary open HomReasoning open Equiv unitˡ : ∀ {X} → (⊤ × X) ≅ X unitˡ {X} = record { f = π₂ ; g = ⟨ ! , id {X} ⟩ ; iso = record { isoˡ = begin ⟨ ! , id {X} ⟩ ∘ π₂ ↓⟨ ⟨⟩∘ ⟩ ⟨ ! ∘ π₂ , id ∘ π₂ ⟩ ↓⟨ ⟨⟩-cong₂ (!-unique₂ (! ∘ π₂) π₁) (identityˡ) ⟩ ⟨ π₁ , π₂ ⟩ ↓⟨ η ⟩ id ∎ ; isoʳ = commute₂ } } .unitˡ-natural : ∀ {X Y} {f : X ⇒ Y} → ⟨ ! , id {Y} ⟩ ∘ f ≡ second f ∘ ⟨ ! , id {X} ⟩ unitˡ-natural {f = f} = begin ⟨ ! , id ⟩ ∘ f ↓⟨ ⟨⟩∘ ⟩ ⟨ ! ∘ f , id ∘ f ⟩ ↑⟨ ⟨⟩-cong₂ (!-unique (! ∘ f)) (id-comm {f = f}) ⟩ ⟨ ! , f ∘ id ⟩ ↑⟨ second∘⟨⟩ ⟩ second f ∘ ⟨ ! , id ⟩ ∎ unitʳ : ∀ {X} → (X × ⊤) ≅ X unitʳ {X} = record { f = π₁ ; g = ⟨ id {X} , ! ⟩ ; iso = record { isoˡ = begin ⟨ id {X} , ! ⟩ ∘ π₁ ↓⟨ ⟨⟩∘ ⟩ ⟨ id ∘ π₁ , ! ∘ π₁ ⟩ ↓⟨ ⟨⟩-cong₂ (identityˡ) (!-unique₂ (! ∘ π₁) π₂) ⟩ ⟨ π₁ , π₂ ⟩ ↓⟨ η ⟩ id ∎ ; isoʳ = commute₁ } } .unitʳ-natural : ∀ {X Y} {f : X ⇒ Y} → ⟨ id , ! ⟩ ∘ f ≡ first f ∘ ⟨ id , ! ⟩ unitʳ-natural {f = f} = begin ⟨ id , ! ⟩ ∘ f ↓⟨ ⟨⟩∘ ⟩ ⟨ id ∘ f , ! ∘ f ⟩ ↑⟨ ⟨⟩-cong₂ (id-comm {f = f}) (!-unique (! ∘ f)) ⟩ ⟨ f ∘ id , ! ⟩ ↑⟨ first∘⟨⟩ ⟩ first f ∘ ⟨ id , ! ⟩ ∎
21.387097
87
0.441428
df2d19e5b9551849f6f131bada2e62bad3a605ed
311
agda
Agda
test/Common/Bool.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
7
2018-11-05T22:13:36.000Z
2018-11-06T16:38:43.000Z
test/Common/Bool.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
16
2018-10-08T00:32:04.000Z
2019-09-08T13:47:04.000Z
test/Common/Bool.agda
xekoukou/agda-ocaml
026a8f8473ab91f99c3f6545728e71fa847d2720
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
module Common.Bool where open import Agda.Builtin.Bool public not : Bool -> Bool not true = false not false = true notnot : Bool -> Bool notnot true = not (not true) notnot false = not (not false) if_then_else_ : ∀ {a} {A : Set a} → Bool → A → A → A if true then t else f = t if false then t else f = f
18.294118
52
0.655949
4d9d1b83fdfebe0c2bcc6f881c5b3103d75b4819
2,538
agda
Agda
HoTT/Identity/Identity.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
HoTT/Identity/Identity.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
HoTT/Identity/Identity.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Identity open import HoTT.Equivalence open import HoTT.Homotopy module HoTT.Identity.Identity where ap⁻¹ : ∀ {i j} {A : 𝒰 i} {B : 𝒰 j} ((f , _) : A ≃ B) {a a' : A} → f a == f a' → a == a' ap⁻¹ e {a} {a'} p = η a ⁻¹ ∙ ap g p ∙ η a' where open Iso (eqv→iso e) -- Theorem 2.11.1 ap≃ : ∀ {i j} {A : 𝒰 i} {B : 𝒰 j} → ((f , _) : A ≃ B) → (a a' : A) → (a == a') ≃ (f a == f a') ap≃ e a a' = iso→eqv iso where open Iso (eqv→iso e) iso : Iso _ _ Iso.f iso = ap f Iso.g iso = ap⁻¹ e Iso.η iso p = η a ⁻¹ ∙ ap g (ap f p) ∙ η a' =⟨ _ ∙ₗ ap-∘ g f p ⁻¹ ∙ᵣ _ ⟩ η a ⁻¹ ∙ ap (g ∘ f) p ∙ η a' =⟨ assoc ⁻¹ ⟩ η a ⁻¹ ∙ (ap (g ∘ f) p ∙ η a') =⟨ pivotₗ (~-natural-id η p) ⁻¹ ⟩ p ∎ where open =-Reasoning Iso.ε iso q = ap f (η a ⁻¹ ∙ ap g q ∙ η a') =⟨ pivotₗ (~-natural (ε ∘ f) _) ⟩ ε (f a) ⁻¹ ∙ (ap (f ∘ g ∘ f) _ ∙ ε (f a')) =⟨ _ ∙ₗ (ap-∘ f (g ∘ f) _ ∙ᵣ _) ⟩ ε (f a) ⁻¹ ∙ (ap f (ap (g ∘ f) _) ∙ ε (f a')) =⟨ ap (λ p → _ ∙ (ap f p ∙ _)) inner ⟩ ε (f a) ⁻¹ ∙ (ap f (ap g q) ∙ ε (f a')) =⟨ _ ∙ₗ (ap-∘ f g q ⁻¹ ∙ᵣ _) ⟩ ε (f a) ⁻¹ ∙ (ap (f ∘ g) q ∙ ε (f a')) =⟨ pivotₗ (~-natural-id ε q) ⁻¹ ⟩ q ∎ where open =-Reasoning inner : ap (g ∘ f) (η a ⁻¹ ∙ ap g q ∙ η a') == ap g q inner = ap (g ∘ f) (η a ⁻¹ ∙ ap g q ∙ η a') =⟨ pivotᵣ (~-natural-id η _ ⁻¹) ⟩ η a ∙ (η a ⁻¹ ∙ ap g q ∙ η a') ∙ η a' ⁻¹ =⟨ assoc ∙ᵣ η a' ⁻¹ ⟩ η a ∙ (η a ⁻¹ ∙ ap g q) ∙ η a' ∙ η a' ⁻¹ =⟨ assoc ∙ᵣ _ ∙ᵣ _ ⟩ η a ∙ η a ⁻¹ ∙ ap g q ∙ η a' ∙ η a' ⁻¹ =⟨ invᵣ ∙ᵣ _ ∙ᵣ _ ∙ᵣ _ ⟩ refl ∙ ap g q ∙ η a' ∙ η a' ⁻¹ =⟨ unitₗ ⁻¹ ∙ᵣ _ ∙ᵣ _ ⟩ ap g q ∙ η a' ∙ η a' ⁻¹ =⟨ assoc ⁻¹ ⟩ ap g q ∙ (η a' ∙ η a' ⁻¹) =⟨ _ ∙ₗ invᵣ ⟩ ap g q ∙ refl =⟨ unitᵣ ⁻¹ ⟩ ap g q ∎ -- Theorem 2.11.3 =-transport : ∀ {i j} {A : 𝒰 i} {B : 𝒰 j} {a a' : A} (f g : A → B) (p : a == a') (q : f a == g a) → transport (λ x → f x == g x) p q == ap f p ⁻¹ ∙ q ∙ ap g p =-transport _ _ refl q rewrite q = refl module _ {i} {A : 𝒰 i} {x₁ x₂ : A} (a : A) (p : x₁ == x₂) where =-transportₗ : (q : a == x₁) → transport (a ==_) p q == q ∙ p =-transportₗ q rewrite p = unitᵣ =-transportᵣ : (q : x₁ == a) → transport (_== a) p q == p ⁻¹ ∙ q =-transportᵣ q rewrite p = unitₗ
40.285714
88
0.384161
069b71991e55c1635416a9fd452e9fee82bd9c43
18
agda
Agda
test/Fail/Issue3257.tex.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3257.tex.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3257.tex.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate A : Set
9
17
0.722222
0e6476d713e1243440cc9f72bb425596232443c5
872
agda
Agda
test/Succeed/Issue2223b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2223b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2223b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --allow-unsolved-metas #-} module _ where open import Agda.Primitive postulate Applicative : ∀ {a b} (F : Set a → Set b) → Set (lsuc a ⊔ b) record Traversable {a} (T : Set a) : Set (lsuc a) where constructor mkTrav field traverse : ∀ {F} {{AppF : Applicative F}} → T → F T -- unsolved metas in type of F postulate V : ∀ {a} → Set a travV : ∀ {a} {F : Set a → Set a} {{AppF : Applicative F}} → V → F V module M (a : Level) where TravV : Traversable {a} V TravV = mkTrav travV postulate a : Level F : Set → Set instance AppF : Applicative F mapM : V → F V mapM = Traversable.traverse (M.TravV _) -- Here we try to cast (TypeChecking.Constraints.castConstraintToCurrentContext) -- a level constraint from M talking about the local (a : Level) to the top-level -- (empty) context. This ought not result in an __IMPOSSIBLE__.
28.129032
83
0.651376
2f659f9f7b704ecc8f29f829849db43816d8dd60
2,105
agda
Agda
agda-stdlib/src/Data/List/Membership/Setoid.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Membership/Setoid.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Membership/Setoid.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- List membership and some related definitions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.List.Membership.Setoid {c ℓ} (S : Setoid c ℓ) where open import Function using (_∘_; id; flip) open import Data.Fin.Base using (Fin; zero; suc) open import Data.List.Base as List using (List; []; _∷_; length; lookup) open import Data.List.Relation.Unary.Any using (Any; index; map; here; there) open import Data.Product as Prod using (∃; _×_; _,_) open import Relation.Unary using (Pred) open import Relation.Nullary using (¬_) open Setoid S renaming (Carrier to A) ------------------------------------------------------------------------ -- Definitions infix 4 _∈_ _∉_ _∈_ : A → List A → Set _ x ∈ xs = Any (x ≈_) xs _∉_ : A → List A → Set _ x ∉ xs = ¬ x ∈ xs ------------------------------------------------------------------------ -- Operations open Data.List.Relation.Unary.Any using (_∷=_; _─_) public mapWith∈ : ∀ {b} {B : Set b} (xs : List A) → (∀ {x} → x ∈ xs → B) → List B mapWith∈ [] f = [] mapWith∈ (x ∷ xs) f = f (here refl) ∷ mapWith∈ xs (f ∘ there) ------------------------------------------------------------------------ -- Finding and losing witnesses module _ {p} {P : Pred A p} where find : ∀ {xs} → Any P xs → ∃ λ x → x ∈ xs × P x find (here px) = (_ , here refl , px) find (there pxs) = Prod.map id (Prod.map there id) (find pxs) lose : P Respects _≈_ → ∀ {x xs} → x ∈ xs → P x → Any P xs lose resp x∈xs px = map (flip resp px) x∈xs ------------------------------------------------------------------------ -- DEPRECATED ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.16 map-with-∈ = mapWith∈ {-# WARNING_ON_USAGE map-with-∈ "Warning: map-with-∈ was deprecated in v0.16. Please use mapWith∈ instead." #-}
30.071429
72
0.47886
1ddd0d61d0e0cbda35f7aed838ce4f4cdb4759a9
1,033
agda
Agda
src/fot/FOTC/Data/Nat/Divisibility/NotBy0.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Data/Nat/Divisibility/NotBy0.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Data/Nat/Divisibility/NotBy0.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- The relation of divisibility on partial natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Nat.Divisibility.NotBy0 where open import FOTC.Base open import FOTC.Data.Nat infix 4 _∣_ ------------------------------------------------------------------------------ -- The relation of divisibility (the symbol is '\mid' not '|') -- -- (See documentation in FOTC.Data.Nat.Divisibility.By0) -- -- In our definition 0∤0, which is used to prove properties of the gcd -- as it is in GHC ≤ 7.0.4, where gcd 0 0 = undefined (see -- http://hackage.haskell.org/trac/ghc/ticket/3304). -- Note that @k@ should be a total natural number. _∣_ : D → D → Set m ∣ n = (m ≢ zero) ∧ (∃[ k ] N k ∧ n ≡ k * m) {-# ATP definition _∣_ #-}
34.433333
78
0.483059
12ce1bff91403f44c554e62ec6e5c7ac557d4a46
19,888
agda
Agda
Cubical/Algebra/CommAlgebra/Instances/FreeCommAlgebra.agda
mzeuner/cubical
63c770b381039c0132c17d7913f4566b35984701
[ "MIT" ]
null
null
null
Cubical/Algebra/CommAlgebra/Instances/FreeCommAlgebra.agda
mzeuner/cubical
63c770b381039c0132c17d7913f4566b35984701
[ "MIT" ]
null
null
null
Cubical/Algebra/CommAlgebra/Instances/FreeCommAlgebra.agda
mzeuner/cubical
63c770b381039c0132c17d7913f4566b35984701
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.Instances.FreeCommAlgebra where {- The free commutative algebra over a commutative ring, or in other words the ring of polynomials with coefficients in a given ring. Note that this is a constructive definition, which entails that polynomials cannot be represented by lists of coefficients, where the last one is non-zero. For rings with decidable equality, that is still possible. I learned about this (and other) definition(s) from David Jaz Myers. You can watch him talk about these things here: https://www.youtube.com/watch?v=VNp-f_9MnVk This file contains * the definition of the free commutative algebra on a type I over a commutative ring R as a HIT (let us call that R[I]) * a prove that the construction is an commutative R-algebra * definitions of the induced maps appearing in the universal property of R[I], that is: * for any map I → A, where A is a commutative R-algebra, the induced algebra homomorphism R[I] → A ('inducedHom') * for any hom R[I] → A, the 'restricttion to variables' I → A ('evaluateAt') * a proof that the two constructions are inverse to each other ('homRetrievable' and 'mapRetrievable') * a proof, that the corresponding pointwise equivalence of functors is natural ('naturalR', 'naturalL') -} open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.Function hiding (const) open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring using () open import Cubical.Algebra.CommAlgebra open import Cubical.Algebra.Algebra open import Cubical.HITs.SetTruncation private variable ℓ ℓ' ℓ'' : Level module Construction (R : CommRing ℓ) where open CommRingStr (snd R) using (1r; 0r) renaming (_+_ to _+r_; _·_ to _·r_) data R[_] (I : Type ℓ') : Type (ℓ-max ℓ ℓ') where var : I → R[ I ] const : ⟨ R ⟩ → R[ I ] _+_ : R[ I ] → R[ I ] → R[ I ] -_ : R[ I ] → R[ I ] _·_ : R[ I ] → R[ I ] → R[ I ] -- \cdot +-assoc : (x y z : R[ I ]) → x + (y + z) ≡ (x + y) + z +-rid : (x : R[ I ]) → x + (const 0r) ≡ x +-rinv : (x : R[ I ]) → x + (- x) ≡ (const 0r) +-comm : (x y : R[ I ]) → x + y ≡ y + x ·-assoc : (x y z : R[ I ]) → x · (y · z) ≡ (x · y) · z ·-lid : (x : R[ I ]) → (const 1r) · x ≡ x ·-comm : (x y : R[ I ]) → x · y ≡ y · x ldist : (x y z : R[ I ]) → (x + y) · z ≡ (x · z) + (y · z) +HomConst : (s t : ⟨ R ⟩) → const (s +r t) ≡ const s + const t ·HomConst : (s t : ⟨ R ⟩) → const (s ·r t) ≡ (const s) · (const t) 0-trunc : (x y : R[ I ]) (p q : x ≡ y) → p ≡ q _⋆_ : {I : Type ℓ'} → ⟨ R ⟩ → R[ I ] → R[ I ] r ⋆ x = const r · x ⋆-assoc : {I : Type ℓ'} → (s t : ⟨ R ⟩) (x : R[ I ]) → (s ·r t) ⋆ x ≡ s ⋆ (t ⋆ x) ⋆-assoc s t x = const (s ·r t) · x ≡⟨ cong (λ u → u · x) (·HomConst _ _) ⟩ (const s · const t) · x ≡⟨ sym (·-assoc _ _ _) ⟩ const s · (const t · x) ≡⟨ refl ⟩ s ⋆ (t ⋆ x) ∎ ⋆-ldist-+ : {I : Type ℓ'} → (s t : ⟨ R ⟩) (x : R[ I ]) → (s +r t) ⋆ x ≡ (s ⋆ x) + (t ⋆ x) ⋆-ldist-+ s t x = (s +r t) ⋆ x ≡⟨ cong (λ u → u · x) (+HomConst _ _) ⟩ (const s + const t) · x ≡⟨ ldist _ _ _ ⟩ (s ⋆ x) + (t ⋆ x) ∎ ⋆-rdist-+ : {I : Type ℓ'} → (s : ⟨ R ⟩) (x y : R[ I ]) → s ⋆ (x + y) ≡ (s ⋆ x) + (s ⋆ y) ⋆-rdist-+ s x y = const s · (x + y) ≡⟨ ·-comm _ _ ⟩ (x + y) · const s ≡⟨ ldist _ _ _ ⟩ (x · const s) + (y · const s) ≡⟨ cong (λ u → u + (y · const s)) (·-comm _ _) ⟩ (s ⋆ x) + (y · const s) ≡⟨ cong (λ u → (s ⋆ x) + u) (·-comm _ _) ⟩ (s ⋆ x) + (s ⋆ y) ∎ ⋆-assoc-· : {I : Type ℓ'} → (s : ⟨ R ⟩) (x y : R[ I ]) → (s ⋆ x) · y ≡ s ⋆ (x · y) ⋆-assoc-· s x y = (s ⋆ x) · y ≡⟨ sym (·-assoc _ _ _) ⟩ s ⋆ (x · y) ∎ 0a : {I : Type ℓ'} → R[ I ] 0a = (const 0r) 1a : {I : Type ℓ'} → R[ I ] 1a = (const 1r) isCommAlgebra : {I : Type ℓ'} → IsCommAlgebra R {A = R[ I ]} 0a 1a _+_ _·_ -_ _⋆_ isCommAlgebra = makeIsCommAlgebra 0-trunc +-assoc +-rid +-rinv +-comm ·-assoc ·-lid ldist ·-comm ⋆-assoc ⋆-ldist-+ ⋆-rdist-+ ·-lid ⋆-assoc-· _[_] : (R : CommRing ℓ) (I : Type ℓ') → CommAlgebra R (ℓ-max ℓ ℓ') (R [ I ]) = R[ I ] , commalgebrastr 0a 1a _+_ _·_ -_ _⋆_ isCommAlgebra where open Construction R module Theory {R : CommRing ℓ} {I : Type ℓ'} where open CommRingStr (snd R) using (0r; 1r) renaming (_·_ to _·r_; _+_ to _+r_; ·-comm to ·r-comm; ·Rid to ·r-rid) module _ (A : CommAlgebra R ℓ'') (φ : I → ⟨ A ⟩) where open CommAlgebraStr (A .snd) open AlgebraTheory (CommRing→Ring R) (CommAlgebra→Algebra A) open Construction using (var; const) renaming (_+_ to _+c_; -_ to -c_; _·_ to _·c_) imageOf0Works : 0r ⋆ 1a ≡ 0a imageOf0Works = 0-actsNullifying 1a imageOf1Works : 1r ⋆ 1a ≡ 1a imageOf1Works = ⋆-lid 1a inducedMap : ⟨ R [ I ] ⟩ → ⟨ A ⟩ inducedMap (var x) = φ x inducedMap (const r) = r ⋆ 1a inducedMap (P +c Q) = (inducedMap P) + (inducedMap Q) inducedMap (-c P) = - inducedMap P inducedMap (Construction.+-assoc P Q S i) = +-assoc (inducedMap P) (inducedMap Q) (inducedMap S) i inducedMap (Construction.+-rid P i) = let eq : (inducedMap P) + (inducedMap (const 0r)) ≡ (inducedMap P) eq = (inducedMap P) + (inducedMap (const 0r)) ≡⟨ refl ⟩ (inducedMap P) + (0r ⋆ 1a) ≡⟨ cong (λ u → (inducedMap P) + u) (imageOf0Works) ⟩ (inducedMap P) + 0a ≡⟨ +-rid _ ⟩ (inducedMap P) ∎ in eq i inducedMap (Construction.+-rinv P i) = let eq : (inducedMap P - inducedMap P) ≡ (inducedMap (const 0r)) eq = (inducedMap P - inducedMap P) ≡⟨ +-rinv _ ⟩ 0a ≡⟨ sym imageOf0Works ⟩ (inducedMap (const 0r))∎ in eq i inducedMap (Construction.+-comm P Q i) = +-comm (inducedMap P) (inducedMap Q) i inducedMap (P ·c Q) = inducedMap P · inducedMap Q inducedMap (Construction.·-assoc P Q S i) = ·Assoc (inducedMap P) (inducedMap Q) (inducedMap S) i inducedMap (Construction.·-lid P i) = let eq = inducedMap (const 1r) · inducedMap P ≡⟨ cong (λ u → u · inducedMap P) imageOf1Works ⟩ 1a · inducedMap P ≡⟨ ·Lid (inducedMap P) ⟩ inducedMap P ∎ in eq i inducedMap (Construction.·-comm P Q i) = ·-comm (inducedMap P) (inducedMap Q) i inducedMap (Construction.ldist P Q S i) = ·Ldist+ (inducedMap P) (inducedMap Q) (inducedMap S) i inducedMap (Construction.+HomConst s t i) = ⋆-ldist s t 1a i inducedMap (Construction.·HomConst s t i) = let eq = (s ·r t) ⋆ 1a ≡⟨ cong (λ u → u ⋆ 1a) (·r-comm _ _) ⟩ (t ·r s) ⋆ 1a ≡⟨ ⋆-assoc t s 1a ⟩ t ⋆ (s ⋆ 1a) ≡⟨ cong (λ u → t ⋆ u) (sym (·Rid _)) ⟩ t ⋆ ((s ⋆ 1a) · 1a) ≡⟨ ⋆-rassoc t (s ⋆ 1a) 1a ⟩ (s ⋆ 1a) · (t ⋆ 1a) ∎ in eq i inducedMap (Construction.0-trunc P Q p q i j) = isSetAlgebra (CommAlgebra→Algebra A) (inducedMap P) (inducedMap Q) (cong _ p) (cong _ q) i j module _ where open IsAlgebraHom inducedHom : AlgebraHom (CommAlgebra→Algebra (R [ I ])) (CommAlgebra→Algebra A) inducedHom .fst = inducedMap inducedHom .snd .pres0 = 0-actsNullifying _ inducedHom .snd .pres1 = imageOf1Works inducedHom .snd .pres+ x y = refl inducedHom .snd .pres· x y = refl inducedHom .snd .pres- x = refl inducedHom .snd .pres⋆ r x = (r ⋆ 1a) · inducedMap x ≡⟨ ⋆-lassoc r 1a (inducedMap x) ⟩ r ⋆ (1a · inducedMap x) ≡⟨ cong (λ u → r ⋆ u) (·Lid (inducedMap x)) ⟩ r ⋆ inducedMap x ∎ module _ (A : CommAlgebra R ℓ'') where open CommAlgebraStr (A .snd) open AlgebraTheory (CommRing→Ring R) (CommAlgebra→Algebra A) open Construction using (var; const) renaming (_+_ to _+c_; -_ to -c_; _·_ to _·c_) Hom = AlgebraHom (CommAlgebra→Algebra (R [ I ])) (CommAlgebra→Algebra A) open IsAlgebraHom evaluateAt : Hom → I → ⟨ A ⟩ evaluateAt φ x = φ .fst (var x) mapRetrievable : ∀ (φ : I → ⟨ A ⟩) → evaluateAt (inducedHom A φ) ≡ φ mapRetrievable φ = refl proveEq : ∀ {X : Type ℓ''} (isSetX : isSet X) (f g : ⟨ R [ I ] ⟩ → X) → (var-eq : (x : I) → f (var x) ≡ g (var x)) → (const-eq : (r : ⟨ R ⟩) → f (const r) ≡ g (const r)) → (+-eq : (x y : ⟨ R [ I ] ⟩) → (eq-x : f x ≡ g x) → (eq-y : f y ≡ g y) → f (x +c y) ≡ g (x +c y)) → (·-eq : (x y : ⟨ R [ I ] ⟩) → (eq-x : f x ≡ g x) → (eq-y : f y ≡ g y) → f (x ·c y) ≡ g (x ·c y)) → (-eq : (x : ⟨ R [ I ] ⟩) → (eq-x : f x ≡ g x) → f (-c x) ≡ g (-c x)) → f ≡ g proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (var x) = var-eq x i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (const x) = const-eq x i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (x +c y) = +-eq x y (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i y) i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (-c x) = -eq x ((λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x)) i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (x ·c y) = ·-eq x y (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i y) i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+-assoc x y z j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x +c (y +c z)) ≡ g (x +c (y +c z)) a₀₋ = +-eq _ _ (rec x) (+-eq _ _ (rec y) (rec z)) a₁₋ : f ((x +c y) +c z) ≡ g ((x +c y) +c z) a₁₋ = +-eq _ _ (+-eq _ _ (rec x) (rec y)) (rec z) a₋₀ : f (x +c (y +c z)) ≡ f ((x +c y) +c z) a₋₀ = cong f (Construction.+-assoc x y z) a₋₁ : g (x +c (y +c z)) ≡ g ((x +c y) +c z) a₋₁ = cong g (Construction.+-assoc x y z) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+-rid x j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x +c (const 0r)) ≡ g (x +c (const 0r)) a₀₋ = +-eq _ _ (rec x) (const-eq 0r) a₁₋ : f x ≡ g x a₁₋ = rec x a₋₀ : f (x +c (const 0r)) ≡ f x a₋₀ = cong f (Construction.+-rid x) a₋₁ : g (x +c (const 0r)) ≡ g x a₋₁ = cong g (Construction.+-rid x) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+-rinv x j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x +c (-c x)) ≡ g (x +c (-c x)) a₀₋ = +-eq x (-c x) (rec x) (-eq x (rec x)) a₁₋ : f (const 0r) ≡ g (const 0r) a₁₋ = const-eq 0r a₋₀ : f (x +c (-c x)) ≡ f (const 0r) a₋₀ = cong f (Construction.+-rinv x) a₋₁ : g (x +c (-c x)) ≡ g (const 0r) a₋₁ = cong g (Construction.+-rinv x) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+-comm x y j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x +c y) ≡ g (x +c y) a₀₋ = +-eq x y (rec x) (rec y) a₁₋ : f (y +c x) ≡ g (y +c x) a₁₋ = +-eq y x (rec y) (rec x) a₋₀ : f (x +c y) ≡ f (y +c x) a₋₀ = cong f (Construction.+-comm x y) a₋₁ : g (x +c y) ≡ g (y +c x) a₋₁ = cong g (Construction.+-comm x y) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.·-assoc x y z j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x ·c (y ·c z)) ≡ g (x ·c (y ·c z)) a₀₋ = ·-eq _ _ (rec x) (·-eq _ _ (rec y) (rec z)) a₁₋ : f ((x ·c y) ·c z) ≡ g ((x ·c y) ·c z) a₁₋ = ·-eq _ _ (·-eq _ _ (rec x) (rec y)) (rec z) a₋₀ : f (x ·c (y ·c z)) ≡ f ((x ·c y) ·c z) a₋₀ = cong f (Construction.·-assoc x y z) a₋₁ : g (x ·c (y ·c z)) ≡ g ((x ·c y) ·c z) a₋₁ = cong g (Construction.·-assoc x y z) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.·-lid x j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f ((const 1r) ·c x) ≡ g ((const 1r) ·c x) a₀₋ = ·-eq _ _ (const-eq 1r) (rec x) a₁₋ : f x ≡ g x a₁₋ = rec x a₋₀ : f ((const 1r) ·c x) ≡ f x a₋₀ = cong f (Construction.·-lid x) a₋₁ : g ((const 1r) ·c x) ≡ g x a₋₁ = cong g (Construction.·-lid x) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.·-comm x y j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x ·c y) ≡ g (x ·c y) a₀₋ = ·-eq _ _ (rec x) (rec y) a₁₋ : f (y ·c x) ≡ g (y ·c x) a₁₋ = ·-eq _ _ (rec y) (rec x) a₋₀ : f (x ·c y) ≡ f (y ·c x) a₋₀ = cong f (Construction.·-comm x y) a₋₁ : g (x ·c y) ≡ g (y ·c x) a₋₁ = cong g (Construction.·-comm x y) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.ldist x y z j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f ((x +c y) ·c z) ≡ g ((x +c y) ·c z) a₀₋ = ·-eq (x +c y) z (+-eq _ _ (rec x) (rec y)) (rec z) a₁₋ : f ((x ·c z) +c (y ·c z)) ≡ g ((x ·c z) +c (y ·c z)) a₁₋ = +-eq _ _ (·-eq _ _ (rec x) (rec z)) (·-eq _ _ (rec y) (rec z)) a₋₀ : f ((x +c y) ·c z) ≡ f ((x ·c z) +c (y ·c z)) a₋₀ = cong f (Construction.ldist x y z) a₋₁ : g ((x +c y) ·c z) ≡ g ((x ·c z) +c (y ·c z)) a₋₁ = cong g (Construction.ldist x y z) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+HomConst s t j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (const (s +r t)) ≡ g (const (s +r t)) a₀₋ = const-eq (s +r t) a₁₋ : f (const s +c const t) ≡ g (const s +c const t) a₁₋ = +-eq _ _ (const-eq s) (const-eq t) a₋₀ : f (const (s +r t)) ≡ f (const s +c const t) a₋₀ = cong f (Construction.+HomConst s t) a₋₁ : g (const (s +r t)) ≡ g (const s +c const t) a₋₁ = cong g (Construction.+HomConst s t) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.·HomConst s t j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (const (s ·r t)) ≡ g (const (s ·r t)) a₀₋ = const-eq (s ·r t) a₁₋ : f (const s ·c const t) ≡ g (const s ·c const t) a₁₋ = ·-eq _ _ (const-eq s) (const-eq t) a₋₀ : f (const (s ·r t)) ≡ f (const s ·c const t) a₋₀ = cong f (Construction.·HomConst s t) a₋₁ : g (const (s ·r t)) ≡ g (const s ·c const t) a₋₁ = cong g (Construction.·HomConst s t) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.0-trunc x y p q j k) = let P : (x : ⟨ R [ I ] ⟩) → f x ≡ g x P x i = proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x Q : (x : ⟨ R [ I ] ⟩) → f x ≡ g x Q x i = proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x in isOfHLevel→isOfHLevelDep 2 (λ z → isProp→isSet (isSetX (f z) (g z))) _ _ (cong P p) (cong Q q) (Construction.0-trunc x y p q) j k i homRetrievable : ∀ (f : Hom) → inducedMap A (evaluateAt f) ≡ fst f homRetrievable f = proveEq (isSetAlgebra (CommAlgebra→Algebra A)) (inducedMap A (evaluateAt f)) (λ x → f $a x) (λ x → refl) (λ r → r ⋆ 1a ≡⟨ cong (λ u → r ⋆ u) (sym f.pres1) ⟩ r ⋆ (f $a (const 1r)) ≡⟨ sym (f.pres⋆ r _) ⟩ f $a (const r ·c const 1r) ≡⟨ cong (λ u → f $a u) (sym (Construction.·HomConst r 1r)) ⟩ f $a (const (r ·r 1r)) ≡⟨ cong (λ u → f $a (const u)) (·r-rid r) ⟩ f $a (const r) ∎) (λ x y eq-x eq-y → ι (x +c y) ≡⟨ refl ⟩ (ι x + ι y) ≡⟨ cong (λ u → u + ι y) eq-x ⟩ ((f $a x) + ι y) ≡⟨ cong (λ u → (f $a x) + u) eq-y ⟩ ((f $a x) + (f $a y)) ≡⟨ sym (f.pres+ _ _) ⟩ (f $a (x +c y)) ∎) (λ x y eq-x eq-y → ι (x ·c y) ≡⟨ refl ⟩ ι x · ι y ≡⟨ cong (λ u → u · ι y) eq-x ⟩ (f $a x) · (ι y) ≡⟨ cong (λ u → (f $a x) · u) eq-y ⟩ (f $a x) · (f $a y) ≡⟨ sym (f.pres· _ _) ⟩ f $a (x ·c y) ∎) (λ x eq-x → ι (-c x) ≡⟨ refl ⟩ - ι x ≡⟨ cong (λ u → - u) eq-x ⟩ - (f $a x) ≡⟨ sym (f.pres- x) ⟩ f $a (-c x) ∎) where ι = inducedMap A (evaluateAt f) module f = IsAlgebraHom (f .snd) evaluateAt : {R : CommRing ℓ} {I : Type ℓ'} (A : CommAlgebra R ℓ'') (f : AlgebraHom (CommAlgebra→Algebra (R [ I ])) (CommAlgebra→Algebra A)) → (I → ⟨ A ⟩) evaluateAt A f x = f $a (Construction.var x) inducedHom : {R : CommRing ℓ} {I : Type ℓ'} (A : CommAlgebra R ℓ'') (φ : I → ⟨ A ⟩) → AlgebraHom (CommAlgebra→Algebra (R [ I ])) (CommAlgebra→Algebra A) inducedHom A φ = Theory.inducedHom A φ module _ {R : CommRing ℓ} {A B : CommAlgebra R ℓ''} where A′ = CommAlgebra→Algebra A B′ = CommAlgebra→Algebra B R′ = (CommRing→Ring R) ν : AlgebraHom A′ B′ → (⟨ A ⟩ → ⟨ B ⟩) ν φ = φ .fst {- Hom(R[I],A) → (I → A) ↓ ↓ Hom(R[I],B) → (I → B) -} naturalR : {I : Type ℓ'} (ψ : AlgebraHom A′ B′) (f : AlgebraHom (CommAlgebra→Algebra (R [ I ])) A′) → (ν ψ) ∘ evaluateAt A f ≡ evaluateAt B (ψ ∘a f) naturalR ψ f = refl {- Hom(R[I],A) → (I → A) ↓ ↓ Hom(R[J],A) → (J → A) -} naturalL : {I J : Type ℓ'} (φ : J → I) (f : AlgebraHom (CommAlgebra→Algebra (R [ I ])) A′) → (evaluateAt A f) ∘ φ ≡ evaluateAt A (f ∘a (inducedHom (R [ I ]) (λ x → Construction.var (φ x)))) naturalL φ f = refl
43.614035
102
0.467971
5055488a510cda76c23416681e539a520e766b96
236
agda
Agda
test/Fail/Issue373.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue373.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue373.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue373 where data Nat : Set where zero : Nat suc : (n : Nat) → Nat {-# BUILTIN NATURAL Nat #-} {-# FOREIGN GHC data Nat = Zero | Suc Nat #-} {-# COMPILE GHC Nat = data Nat (Zero | Suc) #-} -- should fail when compiling
21.454545
77
0.614407
0b457a4a9dccd9bd48a1fdd509ed44d43555aeed
736
agda
Agda
test/succeed/Issue1136.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue1136.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/Issue1136.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- Andreas, 2014-05-20 Triggered by Andrea Vezzosi & NAD {-# OPTIONS --copatterns #-} -- {-# OPTIONS -v tc.conv.coerce:10 #-} open import Common.Size Size≤ : Size → Set Size≤ i = Size< ↑ i postulate Dom : Size → Set mapDom : ∀ i (j : Size≤ i) → Dom i → Dom j record ∞Dom i : Set where field force : ∀ (j : Size< i) → Dom j ∞mapDom : ∀ i (j : Size≤ i) → ∞Dom i → ∞Dom j ∞Dom.force (∞mapDom i j x) k = mapDom k k (∞Dom.force x k) -- The second k on the rhs has type -- k : Size< j -- and should have type -- k : Size≤ k = Size< ↑ k -- Since j <= ↑ k does not hold (we have only k < j), -- we cannot do the usual subtyping Size< j <= Size≤ k, -- but we have to use the "singleton type property" -- k : Size< ↑ k
24.533333
58
0.580163
fbaf3bb592fa76b0d48c2901503c515b4aaae46d
5,495
agda
Agda
src/Prelude.agda
mietek/nbe-correctness
54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5
[ "X11" ]
3
2017-03-23T06:25:23.000Z
2017-03-23T18:51:34.000Z
src/Prelude.agda
mietek/nbe-correctness
54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5
[ "X11" ]
null
null
null
src/Prelude.agda
mietek/nbe-correctness
54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5
[ "X11" ]
null
null
null
module Prelude where open import Agda.Primitive public using (_⊔_) renaming (lsuc to ↑_) -- Built-in implication. id : ∀ {ℓ} {X : Set ℓ} → X → X id x = x const : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → X → Y → X const x y = x flip : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → (X → Y → Z) → Y → X → Z flip P y x = P x y ap : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → (X → Y → Z) → (X → Y) → X → Z ap f g x = f x (g x) infixr 9 _∘_ _∘_ : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → (Y → Z) → (X → Y) → X → Z f ∘ g = λ x → f (g x) refl→ : ∀ {ℓ} {X : Set ℓ} → X → X refl→ = id trans→ : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → (X → Y) → (Y → Z) → X → Z trans→ = flip _∘_ -- Built-in verum. open import Agda.Builtin.Unit public using (⊤) renaming (tt to ∙) -- Falsum. data ⊥ : Set where {-# HASKELL data AgdaEmpty #-} {-# COMPILED_DATA ⊥ MAlonzo.Code.Data.Empty.AgdaEmpty #-} elim⊥ : ∀ {ℓ} {X : Set ℓ} → ⊥ → X elim⊥ () -- Negation. infix 3 ¬_ ¬_ : ∀ {ℓ} → Set ℓ → Set ℓ ¬ X = X → ⊥ _↯_ : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → X → ¬ X → Y p ↯ ¬p = elim⊥ (¬p p) -- Built-in equality. open import Agda.Builtin.Equality public using (_≡_ ; refl) infix 4 _≢_ _≢_ : ∀ {ℓ} {X : Set ℓ} → X → X → Set ℓ x ≢ x′ = ¬ (x ≡ x′) trans : ∀ {ℓ} {X : Set ℓ} {x x′ x″ : X} → x ≡ x′ → x′ ≡ x″ → x ≡ x″ trans refl refl = refl sym : ∀ {ℓ} {X : Set ℓ} {x x′ : X} → x ≡ x′ → x′ ≡ x sym refl = refl subst : ∀ {ℓ ℓ′} {X : Set ℓ} → (P : X → Set ℓ′) → ∀ {x x′} → x ≡ x′ → P x → P x′ subst P refl p = p cong : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → (f : X → Y) → ∀ {x x′} → x ≡ x′ → f x ≡ f x′ cong f refl = refl cong² : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → (f : X → Y → Z) → ∀ {x x′ y y′} → x ≡ x′ → y ≡ y′ → f x y ≡ f x′ y′ cong² f refl refl = refl cong³ : ∀ {ℓ ℓ′ ℓ″ ℓ‴} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} {A : Set ℓ‴} → (f : X → Y → Z → A) → ∀ {x x′ y y′ z z′} → x ≡ x′ → y ≡ y′ → z ≡ z′ → f x y z ≡ f x′ y′ z′ cong³ f refl refl refl = refl -- Equational reasoning with built-in equality. module ≡-Reasoning {ℓ} {X : Set ℓ} where infix 1 begin_ begin_ : ∀ {x x′ : X} → x ≡ x′ → x ≡ x′ begin p = p infixr 2 _≡⟨⟩_ _≡⟨⟩_ : ∀ (x {x′} : X) → x ≡ x′ → x ≡ x′ x ≡⟨⟩ p = p infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : ∀ (x {x′ x″} : X) → x ≡ x′ → x′ ≡ x″ → x ≡ x″ x ≡⟨ p ⟩ q = trans p q infix 3 _∎ _∎ : ∀ (x : X) → x ≡ x x ∎ = refl open ≡-Reasoning public -- Constructive existence. infixl 5 _,_ record Σ {ℓ ℓ′} (X : Set ℓ) (Y : X → Set ℓ′) : Set (ℓ ⊔ ℓ′) where constructor _,_ field π₁ : X π₂ : Y π₁ open Σ public -- Conjunction. infixr 2 _∧_ _∧_ : ∀ {ℓ ℓ′} → Set ℓ → Set ℓ′ → Set (ℓ ⊔ ℓ′) X ∧ Y = Σ X (λ x → Y) -- Disjunction. infixr 1 _∨_ data _∨_ {ℓ ℓ′} (X : Set ℓ) (Y : Set ℓ′) : Set (ℓ ⊔ ℓ′) where ι₁ : X → X ∨ Y ι₂ : Y → X ∨ Y {-# HASKELL type AgdaEither _ _ x y = Either x y #-} {-# COMPILED_DATA _∨_ MAlonzo.Code.Data.Sum.AgdaEither Left Right #-} elim∨ : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → X ∨ Y → (X → Z) → (Y → Z) → Z elim∨ (ι₁ x) f g = f x elim∨ (ι₂ y) f g = g y -- Equivalence. infix 3 _↔_ _↔_ : ∀ {ℓ ℓ′} → (X : Set ℓ) (Y : Set ℓ′) → Set (ℓ ⊔ ℓ′) X ↔ Y = (X → Y) ∧ (Y → X) infix 3 _↮_ _↮_ : ∀ {ℓ ℓ′} → (X : Set ℓ) (Y : Set ℓ′) → Set (ℓ ⊔ ℓ′) X ↮ Y = ¬ (X ↔ Y) refl↔ : ∀ {ℓ} {X : Set ℓ} → X ↔ X refl↔ = refl→ , refl→ trans↔ : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → X ↔ Y → Y ↔ Z → X ↔ Z trans↔ (P , Q) (P′ , Q′) = trans→ P P′ , trans→ Q′ Q sym↔ : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → X ↔ Y → Y ↔ X sym↔ (P , Q) = Q , P antisym→ : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → ((X → Y) ∧ (Y → X)) ≡ (X ↔ Y) antisym→ = refl ≡→↔ : ∀ {ℓ} {X Y : Set ℓ} → X ≡ Y → X ↔ Y ≡→↔ refl = refl↔ -- Equational reasoning with equivalence. module ↔-Reasoning where infix 1 begin↔_ begin↔_ : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → X ↔ Y → X ↔ Y begin↔ P = P infixr 2 _↔⟨⟩_ _↔⟨⟩_ : ∀ {ℓ ℓ′} → (X : Set ℓ) → {Y : Set ℓ′} → X ↔ Y → X ↔ Y X ↔⟨⟩ P = P infixr 2 _≡→↔⟨⟩_ _≡→↔⟨⟩_ : ∀ {ℓ} → (X : Set ℓ) → {Y : Set ℓ} → X ≡ Y → X ↔ Y X ≡→↔⟨⟩ P = ≡→↔ P infixr 2 _↔⟨_⟩_ _↔⟨_⟩_ : ∀ {ℓ ℓ′ ℓ″} → (X : Set ℓ) → {Y : Set ℓ′} {Z : Set ℓ″} → X ↔ Y → Y ↔ Z → X ↔ Z X ↔⟨ P ⟩ Q = trans↔ P Q infix 3 _∎↔ _∎↔ : ∀ {ℓ} → (X : Set ℓ) → X ↔ X X ∎↔ = refl↔ open ↔-Reasoning public -- Booleans. open import Agda.Builtin.Bool public using (Bool ; false ; true) elimBool : ∀ {ℓ} {X : Set ℓ} → Bool → X → X → X elimBool false z s = z elimBool true z s = s -- Conditionals. data Maybe {ℓ} (X : Set ℓ) : Set ℓ where nothing : Maybe X just : X → Maybe X {-# HASKELL type AgdaMaybe _ x = Maybe x #-} {-# COMPILED_DATA Maybe MAlonzo.Code.Data.Maybe.Base.AgdaMaybe Just Nothing #-} elimMaybe : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → Maybe X → Y → (X → Y) → Y elimMaybe nothing z f = z elimMaybe (just x) z f = f x -- Naturals. open import Agda.Builtin.Nat public using (Nat ; zero ; suc) elimNat : ∀ {ℓ} {X : Set ℓ} → Nat → X → (Nat → X → X) → X elimNat zero z f = z elimNat (suc n) z f = f n (elimNat n z f) -- Decidability. data Dec {ℓ} (X : Set ℓ) : Set ℓ where yes : X → Dec X no : ¬ X → Dec X mapDec : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → (X → Y) → (Y → X) → Dec X → Dec Y mapDec f g (yes x) = yes (f x) mapDec f g (no ¬x) = no (λ y → g y ↯ ¬x) ⌊_⌋Dec : ∀ {ℓ} {X : Set ℓ} → Dec X → Bool ⌊ yes x ⌋Dec = true ⌊ no ¬x ⌋Dec = false
21.29845
79
0.44859
063fc54551fc842bfb86123ee862607ad8fa9b10
1,147
agda
Agda
test/Succeed/Issue5075.agda
sseefried/agda
6b13364d36eeb60d8ec15eaf8effe23c73401900
[ "BSD-2-Clause" ]
1
2022-02-05T01:20:23.000Z
2022-02-05T01:20:23.000Z
test/Succeed/Issue5075.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Succeed/Issue5075.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
null
null
null
open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.Sigma open import Agda.Builtin.List open import Agda.Builtin.Unit open import Agda.Builtin.Nat map : {A B : Set} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs reverseAcc : {A : Set} → List A → List A → List A reverseAcc [] ys = ys reverseAcc (x ∷ xs) ys = reverseAcc xs (x ∷ ys) reverse : {A : Set} → List A → List A reverse xs = reverseAcc xs [] data Vec (A : Set) : Nat → Set where _∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n) postulate replicate : ∀ {A : Set} {n} → A → Vec A n zipWith : ∀ {A B C : Set} {n} → (A → B → C) → Vec A n → Vec B n → Vec C n macro rtest : Name → Term → TC ⊤ rtest f a = do (function (clause tel _ t ∷ [])) ← withReconstructed (getDefinition f) where _ → typeError (strErr "ERROR" ∷ []) t ← inContext (reverse tel) (normalise t) quoteTC t >>= unify a transp : ∀ m n → Vec (Vec Nat n) m → Vec (Vec Nat m) n transp .(suc m) n (_∷_ {m} x xs) = zipWith {Nat} {Vec Nat m} {Vec Nat (suc m)} {n} (_∷_ {Nat} {m}) x (transp _ n xs) test : Term test = rtest transp
30.184211
116
0.584133
0bb1c5b6a558342774c31c950dbb259ef587b759
131
agda
Agda
propositional-equality.agda
guilhermehas/Equality
e1104012d85d2072318656f6c6d31acff75c9460
[ "MIT" ]
1
2021-10-01T06:04:21.000Z
2021-10-01T06:04:21.000Z
propositional-equality.agda
guilhermehas/Equality
e1104012d85d2072318656f6c6d31acff75c9460
[ "MIT" ]
null
null
null
propositional-equality.agda
guilhermehas/Equality
e1104012d85d2072318656f6c6d31acff75c9460
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical #-} module propositional-equality where open import Cubical.Foundations.Prelude open import Agda.Primitive
18.714286
39
0.793893
a14c0d99017f4aaf667b7d87a8858f1d05699085
1,798
agda
Agda
Types.agda
danelahman/higher-order-aeff-agda
b41df71f4456666aab4bd14e13d285c31af80ff6
[ "MIT" ]
2
2021-08-17T15:00:34.000Z
2022-02-05T18:50:26.000Z
Types.agda
danelahman/modal-aeff-agda
b41df71f4456666aab4bd14e13d285c31af80ff6
[ "MIT" ]
null
null
null
Types.agda
danelahman/modal-aeff-agda
b41df71f4456666aab4bd14e13d285c31af80ff6
[ "MIT" ]
null
null
null
open import Data.Empty open import Data.Product open import Data.Unit open import Relation.Binary.PropositionalEquality hiding ([_] ; Extensionality) open import Relation.Nullary open import Relation.Nullary.Negation open import EffectAnnotations module Types where -- BASE TYPES postulate BType : Set -- VALUE AND COMPUTATION TYPES mutual data VType : Set where `` : BType → VType 𝟙 : VType _⇒_ : VType → CType → VType ⟨_⟩ : VType → VType □ : VType → VType data CType : Set where _!_ : VType → O × I → CType infix 30 _⇒_ infix 30 _!_ -- MOBILE TYPES mobile : VType → Set mobile (`` A) = ⊤ mobile 𝟙 = ⊤ mobile (X ⇒ C) = ⊥ mobile ⟨ X ⟩ = ⊥ mobile (□ X) = ⊤ -- PROCESS TYPES data PTypeShape : Set where _!_ : VType → I → PTypeShape _∥_ : PTypeShape → PTypeShape → PTypeShape data PType : O → Set where _‼_,_ : (X : VType) → (o : O) → (i : I) → --------------- PType o _∥_ : {o o' : O} → (PP : PType o) → (QQ : PType o') → --------------------------- PType (o ∪ₒ o') -- ACTION OF INTERRUPTS ON PROCESS TYPES _↓ₚₚ_ : (op : Σₛ) → {o : O} → PType o → Σ[ o' ∈ O ] PType o' op ↓ₚₚ (X ‼ o , i) with op ↓ₑ (o , i) ... | (o' , i') = o' , (X ‼ o' , i') op ↓ₚₚ (PP ∥ QQ) with op ↓ₚₚ PP | op ↓ₚₚ QQ ... | (o'' , PP') | (o''' , QQ') = (o'' ∪ₒ o''') , (PP' ∥ QQ') _↓ₚ_ : (op : Σₛ) → {o : O} → (PP : PType o) → PType (proj₁ (op ↓ₚₚ PP)) op ↓ₚ PP = proj₂ (op ↓ₚₚ PP) -- ACTION OF INTERRUPTS ON PROCESS TYPES PRESERVES SIGNAL ANNOTATIONS ↓ₚₚ-⊑ₒ : {op : Σₛ} {o : O} → (PP : PType o) → ---------------------- o ⊑ₒ proj₁ (op ↓ₚₚ PP) ↓ₚₚ-⊑ₒ (X ‼ o , i) = ↓ₑ-⊑ₒ ↓ₚₚ-⊑ₒ (PP ∥ QQ) = ∪ₒ-fun (↓ₚₚ-⊑ₒ PP) (↓ₚₚ-⊑ₒ QQ)
18.536082
79
0.497219
df1a2e05e4d48050ab3a43b8003bdbfa4df8a10b
1,525
agda
Agda
lib/Explore/Two.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
2
2016-06-05T09:25:32.000Z
2017-06-28T19:19:29.000Z
lib/Explore/Two.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
1
2019-03-16T14:24:04.000Z
2019-03-16T14:24:04.000Z
lib/Explore/Two.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} open import Type open import Type.Identities open import Level.NP open import Data.Two open import Function open import Function.Extensionality open import Data.Product open import Data.Sum open import Data.Fin open import Relation.Binary.PropositionalEquality.NP using (_≡_; refl; !_; _∙_) open import Relation.Binary.Sum open import HoTT open import Explore.Sum open import Explore.Core open import Explore.Properties open import Explore.Explorable module Explore.Two where module _ {ℓ} where 𝟚ᵉ : Explore ℓ 𝟚 𝟚ᵉ _ _∙_ f = f 0₂ ∙ f 1₂ 𝟚ⁱ : ∀ {p} → ExploreInd p 𝟚ᵉ 𝟚ⁱ _ _ _P∙_ Pf = Pf 0₂ P∙ Pf 1₂ module _ {ℓ₁ ℓ₂ ℓᵣ} {R : 𝟚 → 𝟚 → ★₀} {r0 : R 0₂ 0₂}{r1 : R 1₂ 1₂} where ⟦𝟚ᵉ⟧ : ⟦Explore⟧ {ℓ₁} {ℓ₂} ℓᵣ R 𝟚ᵉ 𝟚ᵉ ⟦𝟚ᵉ⟧ _ _ _∙ᵣ_ fᵣ = fᵣ r0 ∙ᵣ fᵣ r1 module 𝟚ⁱ = FromExploreInd 𝟚ⁱ open 𝟚ⁱ public using () renaming (sum to 𝟚ˢ ;product to 𝟚ᵖ ;reify to 𝟚ʳ ;unfocus to 𝟚ᵘ ) module _ {ℓ} where module _ {{_ : UA}}{{_ : FunExt}} where Σᵉ𝟚-ok : Adequate-Σ {ℓ} (Σᵉ 𝟚ᵉ) Σᵉ𝟚-ok _ = ! Σ𝟚-⊎ Πᵉ𝟚-ok : Adequate-Π {ℓ} (Πᵉ 𝟚ᵉ) Πᵉ𝟚-ok _ = ! Π𝟚-× 𝟚ˡ : Lookup {ℓ} 𝟚ᵉ 𝟚ˡ = proj 𝟚ᶠ : Focus {ℓ} 𝟚ᵉ 𝟚ᶠ (0₂ , x) = inj₁ x 𝟚ᶠ (1₂ , x) = inj₂ x explore𝟚 = 𝟚ᵉ explore𝟚-ind = 𝟚ⁱ lookup𝟚 = 𝟚ˡ reify𝟚 = 𝟚ʳ focus𝟚 = 𝟚ᶠ unfocus𝟚 = 𝟚ᵘ sum𝟚 = 𝟚ˢ module _ {{_ : UA}}{{_ : FunExt}} where open Adequacy _≡_ 𝟚ˢ-ok : Adequate-sum 𝟚ˢ 𝟚ˢ-ok f = ! (Σ𝟚-⊎ ∙ Fin-⊎-+)
22.101449
79
0.592787
10309dc1d6ce8c224a45e22f9ef04076d939fc21
3,163
agda
Agda
old/Metalogic/Metalogic/Classical/Propositional/TruthSemanticsModel.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
old/Metalogic/Metalogic/Classical/Propositional/TruthSemanticsModel.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
old/Metalogic/Metalogic/Classical/Propositional/TruthSemanticsModel.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Metalogic.Classical.Propositional.TruthSemanticsModel {ℓ} (Proposition : Set(ℓ)) where import Lvl open import Data.Boolean open import Data open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Metalogic.Classical.Propositional.Syntax{ℓ} (Proposition) renaming ( ⊤ to ⊤ₗ ; ⊥ to ⊥ₗ ; ¬_ to ¬ₗ_ ; _∧_ to _∧ₗ_ ; _∨_ to _∨ₗ_ ; _⇒_ to _⇒ₗ_ ) open import Relator.Equals open import Relator.Equals.Proofs open import Sets.BoolSet -- A model decides whether a proposition is true or false -- Also known as Interpretation, Structure, Model record Model : Set(ℓ) where field interpretProp : Proposition → Bool -- TODO: Can this be called a "theory" of propositional logic? So that instances of the type Semantics is the "models" of logic? -- TODO: Now, all the metalogic depends on booleans, which may not be satisfactory module _ where import Data.Boolean.Operators open Data.Boolean.Operators.Logic satisfaction : Model → Formula → Bool satisfaction(𝔐)(• prop) = Model.interpretProp(𝔐) (prop) satisfaction(𝔐)(⊤ₗ) = 𝑇 satisfaction(𝔐)(⊥ₗ) = 𝐹 satisfaction(𝔐)(¬ₗ φ) = ¬(satisfaction(𝔐)(φ)) satisfaction(𝔐)(φ₁ ∧ₗ φ₂) = (satisfaction(𝔐)(φ₁)) ∧ (satisfaction(𝔐)(φ₂)) satisfaction(𝔐)(φ₁ ∨ₗ φ₂) = (satisfaction(𝔐)(φ₁)) ∨ (satisfaction(𝔐)(φ₂)) satisfaction(𝔐)(φ₁ ⇒ₗ φ₂) = ¬(satisfaction(𝔐)(φ₁)) ∨ (satisfaction(𝔐)(φ₂)) -- Syntactic details with the relation symbol record SatisfactionRelation {ℓ₁}{ℓ₂} (Obj : Set(ℓ) → Set(ℓ₁)) : Set(Lvl.𝐒(ℓ Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂)) where field _⊧_ : Model → Obj(Formula) → Set(ℓ₂) open SatisfactionRelation ⦃ ... ⦄ public instance -- Satisfaction for a single formula formula-satisfaction-relation : SatisfactionRelation(id) formula-satisfaction-relation = record{_⊧_ = \𝔐 φ → satisfaction(𝔐)(φ) ≡ 𝑇} instance -- Satisfaction for a list of formulas list-satisfaction-relation : SatisfactionRelation(BoolSet{ℓ}) list-satisfaction-relation = record{_⊧_ = \𝔐 Γ → (∀{γ} → (γ ∈ Γ) → satisfaction(𝔐)(γ) ≡ 𝑇)} -- Entailment data _⊨_ (Γ : BoolSet{ℓ}(Formula)) (φ : Formula) : Set(ℓ) where [⊨]-intro : (∀{𝔐} → (𝔐 ⊧ Γ) → (𝔐 ⊧ φ)) → (Γ ⊨ φ) _⊭_ : BoolSet{ℓ}(Formula) → Formula → Set(ℓ) _⊭_ Γ φ = (_⊨_ Γ φ) → Empty{ℓ} -- Validity valid : Formula → Set(ℓ) valid = (∅ ⊨_) module Theorems where [⊤]-entailment : (∅ ⊨ ⊤ₗ) [⊤]-entailment = [⊨]-intro(const [≡]-intro) -- ∅ ⊨ ⊤ₗ -- ∀{𝔐} → (𝔐 ⊧ ∅) → (𝔐 ⊧ ⊤ₗ) -- ∀{𝔐} → (𝔐 ⊧ ∅) → (satisfaction(𝔐)(⊤ₗ) ≡ 𝑇) -- ∀{𝔐} → (∀{γ} → (γ ∈ ∅) → satisfaction(𝔐)(γ) ≡ 𝑇) → (satisfaction(𝔐)(⊤ₗ) ≡ 𝑇) -- [∧]-entailment : ∀{φ₁ φ₂} → ([ φ₁ ⊰ φ₂ ] ⊨ (φ₁ ∧ₗ φ₂)) -- [∧]-entailment{φ₁}{φ₂} = [⊨]-intro ([∈]-proof ↦ congruence₁-op(_∧_) ([∈]-proof (use)) ([∈]-proof (skip use))) -- [ φ₁ ⊰ φ₂ ] ⊨ (φ₁ ∧ φ₂) -- ∀{𝔐} → (𝔐 ⊧ [ φ₁ ⊰ φ₂ ]) → (𝔐 ⊧ (φ₁ ∧ φ₂)) -- ∀{𝔐} → (𝔐 ⊧ [ φ₁ ⊰ φ₂ ]) → (satisfaction(𝔐)(φ₁ ∧ₗ φ₂) ≡ 𝑇) -- ∀{𝔐} → (𝔐 ⊧ [ φ₁ ⊰ φ₂ ]) → (satisfaction(𝔐)(φ₁) ∧ satisfaction(𝔐)(φ₂) ≡ 𝑇) -- ∀{𝔐} → (∀{γ} → (γ ∈ [ φ₁ ⊰ φ₂ ]) → satisfaction(𝔐)(γ) ≡ 𝑇) → (satisfaction(𝔐)(φ₁) ∧ satisfaction(𝔐)(φ₂) ≡ 𝑇)
38.108434
128
0.595005
1c8b9dd2f9fcfbbcf4fa77093b1ac839bd473a35
878
agda
Agda
test/Succeed/Issue392.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue392.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue392.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2011-09-11 module Issue392 where import Common.Irrelevance -- Create an irrelevant record R1 (all fields irrelevant). record R1 : Set1 where field .f1 : Set {- module R1 .(r : R1) where .f1 : Set -- = R1.f1 r -} -- Create an irrelevant instance f2 of R1. record R2 : Set2 where field .f2 : R1 f3 : Set -- This succeeds even though f2 is irrelevant. open R1 f2 public {- A more realistic use would be s.th. like record IsEquivalence {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) : Set (a ⊔ ℓ) where field .refl : Reflexive _≈_ .sym : Symmetric _≈_ .trans : Transitive _≈_ record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ .isEquivalence : IsEquivalence _≈_ open IsEquivalence isEquivalence public -}
20.904762
58
0.593394
0e7c880b2195c173b2dd94e89882c8a0904aaa73
1,195
agda
Agda
src/data/lib/prim/Agda/Builtin/Nat.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Nat.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Nat.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
module Agda.Builtin.Nat where open import Agda.Builtin.Bool data Nat : Set where zero : Nat suc : (n : Nat) → Nat {-# BUILTIN NATURAL Nat #-} infix 4 _==_ _<_ infixl 6 _+_ _-_ infixl 7 _*_ _+_ : Nat → Nat → Nat zero + m = m suc n + m = suc (n + m) {-# BUILTIN NATPLUS _+_ #-} _-_ : Nat → Nat → Nat n - zero = n zero - suc m = zero suc n - suc m = n - m {-# BUILTIN NATMINUS _-_ #-} _*_ : Nat → Nat → Nat zero * m = zero suc n * m = m + n * m {-# BUILTIN NATTIMES _*_ #-} _==_ : Nat → Nat → Bool zero == zero = true suc n == suc m = n == m _ == _ = false {-# BUILTIN NATEQUALS _==_ #-} _<_ : Nat → Nat → Bool _ < zero = false zero < suc _ = true suc n < suc m = n < m {-# BUILTIN NATLESS _<_ #-} div-helper : Nat → Nat → Nat → Nat → Nat div-helper k m zero j = k div-helper k m (suc n) zero = div-helper (suc k) m n m div-helper k m (suc n) (suc j) = div-helper k m n j {-# BUILTIN NATDIVSUCAUX div-helper #-} mod-helper : Nat → Nat → Nat → Nat → Nat mod-helper k m zero j = k mod-helper k m (suc n) zero = mod-helper 0 m n m mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j {-# BUILTIN NATMODSUCAUX mod-helper #-}
19.274194
57
0.555649
397ad41ce2041452a91be7be93f037d82355eaac
6,070
agda
Agda
src/Categories/Diagram/Coend/Properties.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Diagram/Coend/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Diagram/Coend/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Diagram.Coend.Properties where open import Categories.Category.Core using (Category) open import Categories.Category.Product import Categories.Category.Construction.Cowedges as Cowedges open import Categories.Category.Construction.Functors open import Categories.Category.Equivalence open import Categories.Category.Equivalence.Preserves open import Categories.Diagram.Coend open import Categories.Diagram.Colimit open import Categories.Diagram.Cowedge open import Categories.Diagram.Cowedge.Properties open import Categories.Functor using (Functor) open import Categories.Functor.Bifunctor using (Bifunctor) open import Categories.Functor.Instance.Twisted import Categories.Morphism as M open import Categories.NaturalTransformation hiding (id) open import Categories.NaturalTransformation.Dinatural open import Categories.Object.Initial as Initial import Categories.Morphism.Reasoning as MR open import Level open import Data.Product using (Σ; _,_) open import Function using (_$_) module _ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where open Cowedges F -- Being a Coend is the same as being an Initial object in the category of Cowedges Coend⇒Initial : Coend F → Initial Cowedges Coend⇒Initial c = record { ⊥ = cowedge ; ⊥-is-initial = record { ! = λ {A} → record { u = factor A ; commute = universal } ; !-unique = λ {A} f → unique {A} (Cowedge-Morphism.commute f) } } where open Coend c Initial⇒Coend : Initial Cowedges → Coend F Initial⇒Coend i = record { cowedge = ⊥ ; factor = λ W → u {W₂ = W} ! ; universal = commute ! ; unique = λ {_} {g} x → !-unique (record { u = g ; commute = x }) } where open Initial.Initial i open Cowedge-Morphism private variable o ℓ e : Level C D E : Category o ℓ e module _ (F : Functor E (Functors (Product (Category.op C) C) D)) where private module C = Category C module D = Category D module E = Category E module NT = NaturalTransformation open D open HomReasoning open MR D open Functor F open Coend hiding (E) open NT using (η) CoendF : (∀ X → Coend (F₀ X)) → Functor E D CoendF coend = record { F₀ = λ X → Coend.E (coend X) ; F₁ = F₁′ ; identity = λ {A} → unique (coend A) (id-comm-sym ○ ∘-resp-≈ʳ (⟺ identity)) ; homomorphism = λ {A B C} {f g} → unique (coend A) $ λ {Z} → begin (F₁′ g ∘ F₁′ f) ∘ dinatural.α (coend A) Z ≈⟨ pullʳ (universal (coend A)) ⟩ (F₁′ g ∘ (dinatural.α (coend B) Z ∘ η (F₁ f) (Z , Z) ) ) ≈⟨ pullˡ (universal (coend B)) ⟩ ((dinatural.α (coend C) Z ∘ η (F₁ g) (Z , Z)) ∘ η (F₁ f) (Z , Z)) ≈˘⟨ pushʳ homomorphism ⟩ dinatural.α (coend C) Z ∘ η (F₁ (g E.∘ f)) (Z , Z) ∎ ; F-resp-≈ = λ {A B f g} eq → unique (coend A) $ λ {Z} → begin F₁′ g ∘ dinatural.α (coend A) Z ≈⟨ universal (coend A) ⟩ dinatural.α (coend B) Z ∘ η (F₁ g) (Z , Z) ≈˘⟨ refl⟩∘⟨ F-resp-≈ eq ⟩ dinatural.α (coend B) Z ∘ η (F₁ f) (Z , Z) ∎ } where F₁′ : ∀ {X Y} → X E.⇒ Y → Coend.E (coend X) ⇒ Coend.E (coend Y) F₁′ {X} {Y} f = factor (coend X) $ record { E = Coend.E (coend Y) ; dinatural = dinatural (coend Y) ∘> F₁ f } -- A Natural Transformation between two functors induces an arrow between the -- (object part of) the respective coends. module _ {P Q : Functor (Product (Category.op C) C) D} (P⇒Q : NaturalTransformation P Q) where open Coend renaming (E to coend) open Category D coend-η : {cp : Coend P} {cq : Coend Q} → coend cp ⇒ coend cq coend-η {cp} {cq} = factor cp ((record { E = Coend.E cq ; dinatural = dtHelper record { α = λ c → dinatural.α cq c ∘ η (c , c) ; commute = λ {C} {C′} f → begin id ∘ (αq C ∘ η (C , C)) ∘ P.₁ (f , C.id) ≈⟨ pushʳ assoc ⟩ (id ∘ αq C) ∘ (η (C , C) ∘ P.₁ (f , C.id)) ≈⟨ refl⟩∘⟨ nt.commute (f , C.id) ⟩ (id ∘ αq C) ∘ (Q.₁ (f , C.id) ∘ η (C′ , C)) ≈⟨ pullˡ assoc ⟩ (id ∘ αq C ∘ Q.₁ (f , C.id)) ∘ η (C′ , C) ≈⟨ αq-comm f ⟩∘⟨refl ⟩ (id ∘ αq C′ ∘ Q.₁ (C.id , f)) ∘ η (C′ , C) ≈⟨ pushˡ sym-assoc ⟩ (id ∘ αq C′) ∘ Q.₁ (C.id , f) ∘ η (C′ , C) ≈⟨ refl⟩∘⟨ nt.sym-commute (C.id , f) ⟩ (id ∘ αq C′) ∘ η (C′ , C′) ∘ P.₁ (C.id , f) ≈⟨ pullʳ sym-assoc ⟩ id ∘ (αq C′ ∘ η (C′ , C′)) ∘ P.₁ (C.id , f) ∎ } })) where module nt = NaturalTransformation P⇒Q open nt using (η) open HomReasoning module C = Category C module P = Functor P module Q = Functor Q open DinaturalTransformation (dinatural cp) renaming (α to αp; commute to αp-comm) open DinaturalTransformation (dinatural cq) renaming (α to αq; commute to αq-comm) open Cowedge open MR D module _ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where private Eq = CoconesTwist≅Cowedges F module O = M D open M (Cowedges.Cowedges F) open Functor open StrongEquivalence Eq renaming (F to F⇒) -- Coends and Colimits are equivalent, in the category Cowedge F Coend-as-Colimit : (coend : Coend F) → (cl : Colimit (Twist′ C D F)) → Coend.cowedge coend ≅ F₀ F⇒ (Colimit.initial.⊥ cl) Coend-as-Colimit coend cl = Initial.up-to-iso (Cowedges.Cowedges F) (Coend⇒Initial F coend) (pres-Initial Eq initial) where open Colimit cl -- Which then induces that the objects, in D, are also equivalent. Coend-as-Colimit-on-Obj : (coend : Coend F) → (cl : Colimit (Twist′ C D F)) → Coend.E coend O.≅ Colimit.coapex cl Coend-as-Colimit-on-Obj coend cl = record { from = Cowedge-Morphism.u (M._≅_.from X≅Y) ; to = Cowedge-Morphism.u (M._≅_.to X≅Y) ; iso = record { isoˡ = M._≅_.isoˡ X≅Y ; isoʳ = M._≅_.isoʳ X≅Y } } where X≅Y = Coend-as-Colimit coend cl open Category D
38.176101
123
0.592092
3117120599021e1e8a249c22b785f6f122f102b7
2,409
agda
Agda
container/m/extensionality.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
27
2015-04-14T15:47:03.000Z
2022-01-09T07:26:57.000Z
src/container/m/extensionality.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T14:32:16.000Z
2016-10-26T11:57:26.000Z
src/container/m/extensionality.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T12:17:00.000Z
2019-05-04T19:31:00.000Z
module container.m.extensionality where open import sum open import equality open import container.core open import container.fixpoint open import container.equality open import container.m.core module Extensionality {li la lb}(c : Container li la lb) where private module C where open Definition c public fp : Fixpoint c _ fp = fix M fixpoint open Fixpoint fp public using (head; tail) module S where open Equality c C.fp using (equality) open Equality c C.fp public using (substX) open Definition equality public fp : Fixpoint equality _ fp = fix M fixpoint open Fixpoint fp public using (head; tail) open C -- bisimilarity relation _≡M_ : ∀ {i}(u v : M i) → Set _ u ≡M v = S.M (_ , u , v) reflM : ∀ {i}{u : M i} → u ≡M u reflM = S.inf refl (λ b → ♯ reflM) private -- total space of bisimilarity E : ∀ i → Set _ E i = Σ (M i × M i) (uncurry _≡M_) f : E →ⁱ F E f i ((xs , ys) , bisim) = head xs , (λ b → (( tail xs b , S.substX (S.head bisim) b (tail ys (subst B (S.head bisim) b))) , S.tail bisim b)) π₁ : E →ⁱ M π₁ i ((xs , _), _) = xs π₁-mor : ∀ {i} (e : E i) → out i (π₁ i e) ≡ imap π₁ i (f i e) π₁-mor ((xs , ys) , p) = refl π₂ : E →ⁱ M π₂ _ ((_ , ys), _) = ys π₂-mor : ∀ {i} (e : E i) → out i (π₂ i e) ≡ imap π₂ i (f i e) π₂-mor {i} ((xs , ys) , bisim) = lem (S.head bisim) (tail ys) where lem : {a a' : A i}(p : a ≡ a') → (f : (b' : B a') → M (r b')) → _≡_ {A = F M i} (a' , f) (a , λ b → S.substX p b (f (subst B p b))) lem refl f = refl equal-π : ∀ {i}(e : E i) → π₁ i e ≡ π₂ i e equal-π e = unfold-η f π₁ π₁-mor e · sym (unfold-η f π₂ π₂-mor e) abstract mext₀ : ∀ {i} {xs ys : M i} → xs ≡M ys → xs ≡ ys mext₀ p = equal-π (_ , p) mext-inv : ∀ {i}{xs ys : M i} → xs ≡ ys → xs ≡M ys mext-inv refl = reflM mext : ∀ {i} {xs ys : M i} → xs ≡M ys → xs ≡ ys mext p = mext₀ p · sym (mext₀ reflM) mext-id : ∀ {i}{u : M i} → mext (reflM {u = u}) ≡ refl mext-id = left-inverse (mext₀ reflM) mext-retraction : ∀ {i}{xs ys : M i}(p : xs ≡ ys) → mext (mext-inv p) ≡ p mext-retraction refl = left-inverse (mext₀ reflM)
25.62766
69
0.499792
1c3fd1a8ceed5b3964db37a029e0905358c9373a
16,114
agda
Agda
src/Delay-monad/Sized/Bisimilarity.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
src/Delay-monad/Sized/Bisimilarity.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
src/Delay-monad/Sized/Bisimilarity.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A combined definition of strong and weak bisimilarity and -- expansion, along with various properties ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Delay-monad.Sized.Bisimilarity where open import Equality.Propositional as E using (_≡_) open import Logical-equivalence using (_⇔_) open import Prelude open import Prelude.Size open import Function-universe E.equality-with-J hiding (_∘_; Kind) open import Delay-monad.Sized open import Delay-monad.Bisimilarity.Kind ------------------------------------------------------------------------ -- The code below is defined for a fixed type family A module _ {a} {A : Size → Type a} where ---------------------------------------------------------------------- -- The relations mutual -- A combined definition of all three relations. The definition -- uses mixed induction and coinduction. -- -- Note that this type is not defined in the same way as Delay. -- One might argue that the now constructor should have the -- following type, using a /sized/ identity type Id: -- -- now : ∀ {x y} → -- Id (A ∞) i x y → -- [ i ] now x ∼ now y infix 4 [_]_⟨_⟩_ [_]_⟨_⟩′_ data [_]_⟨_⟩_ (i : Size) : Delay A ∞ → Kind → Delay A ∞ → Type a where now : ∀ {k x} → [ i ] now x ⟨ k ⟩ now x later : ∀ {k x₁ x₂} → [ i ] force x₁ ⟨ k ⟩′ force x₂ → [ i ] later x₁ ⟨ k ⟩ later x₂ laterˡ : ∀ {k x₁ x₂} → [ i ] force x₁ ⟨ other k ⟩ x₂ → [ i ] later x₁ ⟨ other k ⟩ x₂ laterʳ : ∀ {x₁ x₂} → [ i ] x₁ ⟨ other weak ⟩ force x₂ → [ i ] x₁ ⟨ other weak ⟩ later x₂ record [_]_⟨_⟩′_ (i : Size) (x₁ : Delay A ∞) (k : Kind) (x₂ : Delay A ∞) : Type a where coinductive field force : {j : Size< i} → [ j ] x₁ ⟨ k ⟩ x₂ open [_]_⟨_⟩′_ public -- Strong bisimilarity. infix 4 [_]_∼_ [_]_∼′_ _∼_ _∼′_ [_]_∼_ : Size → Delay A ∞ → Delay A ∞ → Type a [_]_∼_ = [_]_⟨ strong ⟩_ [_]_∼′_ : Size → Delay A ∞ → Delay A ∞ → Type a [_]_∼′_ = [_]_⟨ strong ⟩′_ _∼_ : Delay A ∞ → Delay A ∞ → Type a _∼_ = [ ∞ ]_∼_ _∼′_ : Delay A ∞ → Delay A ∞ → Type a _∼′_ = [ ∞ ]_∼′_ -- Expansion. infix 4 [_]_≳_ [_]_≳′_ _≳_ _≳′_ [_]_≳_ : Size → Delay A ∞ → Delay A ∞ → Type a [_]_≳_ = [_]_⟨ other expansion ⟩_ [_]_≳′_ : Size → Delay A ∞ → Delay A ∞ → Type a [_]_≳′_ = [_]_⟨ other expansion ⟩′_ _≳_ : Delay A ∞ → Delay A ∞ → Type a _≳_ = [ ∞ ]_≳_ _≳′_ : Delay A ∞ → Delay A ∞ → Type a _≳′_ = [ ∞ ]_≳′_ -- The converse of expansion. infix 4 [_]_≲_ [_]_≲′_ _≲_ _≲′_ [_]_≲_ : Size → Delay A ∞ → Delay A ∞ → Type a [_]_≲_ i = flip [ i ]_⟨ other expansion ⟩_ [_]_≲′_ : Size → Delay A ∞ → Delay A ∞ → Type a [_]_≲′_ i = flip [ i ]_⟨ other expansion ⟩′_ _≲_ : Delay A ∞ → Delay A ∞ → Type a _≲_ = [ ∞ ]_≲_ _≲′_ : Delay A ∞ → Delay A ∞ → Type a _≲′_ = [ ∞ ]_≲′_ -- Weak bisimilarity. infix 4 [_]_≈_ [_]_≈′_ _≈_ _≈′_ [_]_≈_ : Size → Delay A ∞ → Delay A ∞ → Type a [_]_≈_ = [_]_⟨ other weak ⟩_ [_]_≈′_ : Size → Delay A ∞ → Delay A ∞ → Type a [_]_≈′_ = [_]_⟨ other weak ⟩′_ _≈_ : Delay A ∞ → Delay A ∞ → Type a _≈_ = [ ∞ ]_≈_ _≈′_ : Delay A ∞ → Delay A ∞ → Type a _≈′_ = [ ∞ ]_≈′_ ---------------------------------------------------------------------- -- Conversions -- Strong bisimilarity is contained in the other relations (and -- itself). ∼→ : ∀ {k i x y} → [ i ] x ∼ y → [ i ] x ⟨ k ⟩ y ∼→ now = now ∼→ (later p) = later λ { .force → ∼→ (force p) } -- Expansion is contained in weak bisimilarity (and expansion). ≳→ : ∀ {k i x y} → [ i ] x ≳ y → [ i ] x ⟨ other k ⟩ y ≳→ now = now ≳→ (later p) = later λ { .force → ≳→ (force p) } ≳→ (laterˡ p) = laterˡ (≳→ p) -- In some cases weak bisimilarity is contained in expansion (and -- itself). ≈→-now : ∀ {k i x y} → [ i ] x ≈ now y → [ i ] x ⟨ other k ⟩ now y ≈→-now now = now ≈→-now (laterˡ p) = laterˡ (≈→-now p) -- In some cases all three relations are contained in strong -- bisimilarity. →∼-neverˡ : ∀ {k i x} → [ i ] never ⟨ k ⟩ x → [ i ] never ∼ x →∼-neverˡ (later p) = later λ { .force → →∼-neverˡ (force p) } →∼-neverˡ (laterˡ p) = →∼-neverˡ p →∼-neverˡ (laterʳ p) = later λ { .force → →∼-neverˡ p } →∼-neverʳ : ∀ {k i x} → [ i ] x ⟨ k ⟩ never → [ i ] x ∼ never →∼-neverʳ (later p) = later λ { .force → →∼-neverʳ (force p) } →∼-neverʳ (laterˡ p) = later λ { .force → →∼-neverʳ p } →∼-neverʳ (laterʳ p) = →∼-neverʳ p ---------------------------------------------------------------------- -- Removing later constructors -- Later constructors can sometimes be removed. drop-laterʳ : ∀ {k i} {j : Size< i} {x y} → [ i ] x ⟨ other k ⟩ y → [ j ] x ⟨ other k ⟩ drop-later y drop-laterʳ now = now drop-laterʳ (later p) = laterˡ (force p) drop-laterʳ (laterʳ p) = p drop-laterʳ (laterˡ p) = laterˡ (drop-laterʳ p) drop-laterˡ : ∀ {i} {j : Size< i} {x y} → [ i ] x ≈ y → [ j ] drop-later x ≈ y drop-laterˡ now = now drop-laterˡ (later p) = laterʳ (force p) drop-laterˡ (laterʳ p) = laterʳ (drop-laterˡ p) drop-laterˡ (laterˡ p) = p drop-laterˡʳ : ∀ {k i} {j : Size< i} {x y} → [ i ] x ⟨ k ⟩ y → [ j ] drop-later x ⟨ k ⟩ drop-later y drop-laterˡʳ now = now drop-laterˡʳ (later p) = force p drop-laterˡʳ (laterʳ p) = drop-laterˡ p drop-laterˡʳ (laterˡ p) = drop-laterʳ p -- Special cases of the functions above. laterʳ⁻¹ : ∀ {k i} {j : Size< i} {x y} → [ i ] x ⟨ other k ⟩ later y → [ j ] x ⟨ other k ⟩ force y laterʳ⁻¹ = drop-laterʳ laterˡ⁻¹ : ∀ {i} {j : Size< i} {x y} → [ i ] later x ≈ y → [ j ] force x ≈ y laterˡ⁻¹ = drop-laterˡ later⁻¹ : ∀ {k i} {j : Size< i} {x y} → [ i ] later x ⟨ k ⟩ later y → [ j ] force x ⟨ k ⟩ force y later⁻¹ = drop-laterˡʳ -- The following size-preserving variant of laterʳ⁻¹ and laterˡ⁻¹ -- can be defined. -- -- Several other variants cannot be defined if ∀ i → A i is -- inhabited, see Delay-monad.Bisimilarity.Sized.Negative. laterˡʳ⁻¹ : ∀ {k i x y} → [ i ] later x ⟨ other k ⟩ force y → [ i ] force x ⟨ other k ⟩ later y → [ i ] force x ⟨ other k ⟩ force y laterˡʳ⁻¹ {k} {i} p q = laterˡʳ⁻¹′ p q E.refl E.refl where laterˡʳ⁻¹″ : ∀ {x′ y′ x y} → ({j : Size< i} → [ j ] x′ ⟨ other k ⟩ force y) → ({j : Size< i} → [ j ] force x ⟨ other k ⟩ y′) → x′ ≡ later x → y′ ≡ later y → [ i ] later x ⟨ other k ⟩ later y laterˡʳ⁻¹″ p q E.refl E.refl = later λ { .force → laterˡʳ⁻¹ p q } laterˡʳ⁻¹′ : ∀ {x′ y′ x y} → [ i ] later x ⟨ other k ⟩ y′ → [ i ] x′ ⟨ other k ⟩ later y → force x ≡ x′ → force y ≡ y′ → [ i ] x′ ⟨ other k ⟩ y′ laterˡʳ⁻¹′ (later p) (later q) ≡x′ ≡y′ = laterˡʳ⁻¹″ (force p) (force q) ≡x′ ≡y′ laterˡʳ⁻¹′ (laterʳ p) (later q) ≡x′ ≡y′ = laterˡʳ⁻¹″ (λ { {_} → laterˡ⁻¹ p }) (force q) ≡x′ ≡y′ laterˡʳ⁻¹′ (later p) (laterˡ q) ≡x′ ≡y′ = laterˡʳ⁻¹″ (force p) (λ { {_} → laterʳ⁻¹ q }) ≡x′ ≡y′ laterˡʳ⁻¹′ (laterʳ p) (laterˡ q) ≡x′ ≡y′ = laterˡʳ⁻¹″ (λ { {_} → laterˡ⁻¹ p }) (λ { {_} → laterʳ⁻¹ q }) ≡x′ ≡y′ laterˡʳ⁻¹′ (laterˡ p) _ E.refl E.refl = p laterˡʳ⁻¹′ _ (laterʳ q) E.refl ≡y′ = E.subst ([ i ] _ ⟨ _ ⟩_) ≡y′ q ---------------------------------------------------------------------- -- Reflexivity, symmetry/antisymmetry, transitivity -- All three relations are reflexive. reflexive : ∀ {k i} x → [ i ] x ⟨ k ⟩ x reflexive (now _) = now reflexive (later x) = later λ { .force → reflexive (force x) } -- Strong and weak bisimilarity are symmetric. symmetric : ∀ {k i x y} {¬≳ : if k ≟-Kind other expansion then ⊥ else ⊤} → [ i ] x ⟨ k ⟩ y → [ i ] y ⟨ k ⟩ x symmetric now = now symmetric (laterˡ {k = weak} p) = laterʳ (symmetric p) symmetric (laterʳ p) = laterˡ (symmetric p) symmetric {¬≳ = ¬≳} (later p) = later λ { .force → symmetric {¬≳ = ¬≳} (force p) } symmetric {¬≳ = ()} (laterˡ {k = expansion} _) -- Some special cases of symmetry hold for expansion. symmetric-neverˡ : ∀ {i x} → [ i ] never ≳ x → [ i ] x ≳ never symmetric-neverˡ = ∼→ ∘ symmetric ∘ →∼-neverˡ symmetric-neverʳ : ∀ {i x} → [ i ] x ≳ never → [ i ] never ≳ x symmetric-neverʳ = ∼→ ∘ symmetric ∘ →∼-neverʳ -- The expansion relation is antisymmetric (up to weak -- bisimilarity). antisymmetric-≳ : ∀ {i x y} → [ i ] x ≳ y → [ i ] y ≳ x → [ i ] x ≈ y antisymmetric-≳ p _ = ≳→ p -- Several more or less size-preserving variants of transitivity. -- -- Many size-preserving variants cannot be defined if ∀ i → A i is -- inhabited, see Delay-monad.Sized.Bisimilarity.Negative. transitive-∼ʳ : ∀ {k i x y z} {¬≈ : if k ≟-Kind other weak then ⊥ else ⊤} → [ i ] x ⟨ k ⟩ y → [ i ] y ∼ z → [ i ] x ⟨ k ⟩ z transitive-∼ʳ now now = now transitive-∼ʳ {¬≈ = ¬≈} (laterˡ p) q = laterˡ (transitive-∼ʳ {¬≈ = ¬≈} p q) transitive-∼ʳ {¬≈ = ()} (laterʳ _) _ transitive-∼ʳ {¬≈ = ¬≈} (later p) (later q) = later λ { .force → transitive-∼ʳ {¬≈ = ¬≈} (force p) (force q) } transitive-∼ˡ : ∀ {k i x y z} → x ∼ y → [ i ] y ⟨ k ⟩ z → [ i ] x ⟨ k ⟩ z transitive-∼ˡ now now = now transitive-∼ˡ (later p) (later q) = later λ { .force → transitive-∼ˡ (force p) (force q) } transitive-∼ˡ (later p) (laterˡ q) = laterˡ (transitive-∼ˡ (force p) q) transitive-∼ˡ p (laterʳ q) = laterʳ (transitive-∼ˡ p q) transitive-∞∼ʳ : ∀ {k i x y z} → [ i ] x ⟨ k ⟩ y → y ∼ z → [ i ] x ⟨ k ⟩ z transitive-∞∼ʳ now now = now transitive-∞∼ʳ (later p) (later q) = later λ { .force → transitive-∞∼ʳ (force p) (force q) } transitive-∞∼ʳ (laterˡ p) q = laterˡ (transitive-∞∼ʳ p q) transitive-∞∼ʳ (laterʳ p) (later q) = laterʳ (transitive-∞∼ʳ p (force q)) transitive-≳ˡ : ∀ {k i x y z} → x ≳ y → [ i ] y ⟨ other k ⟩ z → [ i ] x ⟨ other k ⟩ z transitive-≳ˡ now now = now transitive-≳ˡ (later p) (later q) = later λ { .force → transitive-≳ˡ (force p) (force q) } transitive-≳ˡ (later p) (laterˡ q) = laterˡ (transitive-≳ˡ (force p) q) transitive-≳ˡ (laterˡ p) q = laterˡ (transitive-≳ˡ p q) transitive-≳ˡ p (laterʳ q) = laterʳ (transitive-≳ˡ p q) transitive-≈≲ : ∀ {i x y z} → [ i ] x ≈ y → y ≲ z → [ i ] x ≈ z transitive-≈≲ p q = symmetric (transitive-≳ˡ q (symmetric p)) transitive-≈-now : ∀ {i x′ y z} → let x = now x′ in [ i ] x ≈ y → y ≈ z → [ i ] x ≈ z transitive-≈-now now now = now transitive-≈-now (laterʳ p) q = transitive-≈-now p (laterˡ⁻¹ q) transitive-≈-now p (laterʳ q) = laterʳ (transitive-≈-now p q) mutual transitive-≈-later : ∀ {i x′ y z} → let x = later x′ in x ≈ y → y ≈ z → [ i ] x ≈ z transitive-≈-later p (later q) = later λ { .force → transitive-≈ (later⁻¹ p) (force q) } transitive-≈-later p (laterʳ q) = laterʳ (transitive-≈-later p q) transitive-≈-later p (laterˡ q) = transitive-≈ (laterʳ⁻¹ p) q transitive-≈-later (laterˡ p) q = laterˡ (transitive-≈ p q) transitive-≈ : ∀ {i x y z} → x ≈ y → y ≈ z → [ i ] x ≈ z transitive-≈ {x = now x} p q = transitive-≈-now p q transitive-≈ {x = later x} p q = transitive-≈-later p q -- Equational reasoning combinators. infix -1 _∎ finally finally-≳ finally-≈ infixr -2 step-∼ˡ step-∼∼ step-≳∼ step-≈∼ step-?∼ step-≳ˡ step-≈ _≳⟨⟩_ step-≡ˡ _∼⟨⟩_ _∎ : ∀ {k i} x → [ i ] x ⟨ k ⟩ x _∎ = reflexive finally : ∀ {k i} x y → [ i ] x ⟨ k ⟩ y → [ i ] x ⟨ k ⟩ y finally _ _ x?y = x?y syntax finally x y x≈y = x ?⟨ x≈y ⟩∎ y ∎ finally-≳ : ∀ {i} x y → [ i ] x ≳ y → [ i ] x ≳ y finally-≳ _ _ x≳y = x≳y syntax finally-≳ x y x≳y = x ≳⟨ x≳y ⟩∎ y ∎ finally-≈ : ∀ {i} x y → [ i ] x ≈ y → [ i ] x ≈ y finally-≈ _ _ x≈y = x≈y syntax finally-≈ x y x≈y = x ≈⟨ x≈y ⟩∎ y ∎ step-∼ˡ : ∀ {k i} x {y z} → [ i ] y ⟨ k ⟩ z → x ∼ y → [ i ] x ⟨ k ⟩ z step-∼ˡ _ y⟨⟩z x∼y = transitive-∼ˡ x∼y y⟨⟩z syntax step-∼ˡ x y⟨⟩z x∼y = x ∼⟨ x∼y ⟩ y⟨⟩z step-∼∼ : ∀ {i} x {y z} → [ i ] y ∼ z → [ i ] x ∼ y → [ i ] x ∼ z step-∼∼ _ y∼z x∼y = transitive-∼ʳ x∼y y∼z syntax step-∼∼ x y∼z x∼y = x ∼⟨ x∼y ⟩∼ y∼z step-≳∼ : ∀ {i} x {y z} → [ i ] y ∼ z → [ i ] x ≳ y → [ i ] x ≳ z step-≳∼ _ y∼z x≳y = transitive-∼ʳ x≳y y∼z syntax step-≳∼ x y∼z x≳y = x ≳⟨ x≳y ⟩∼ y∼z step-≈∼ : ∀ {k i} x {y z} → y ∼ z → [ i ] x ⟨ k ⟩ y → [ i ] x ⟨ k ⟩ z step-≈∼ _ y∼z x≈y = transitive-∞∼ʳ x≈y y∼z syntax step-≈∼ x y∼z x≈y = x ≈⟨ x≈y ⟩∼ y∼z step-?∼ : ∀ {k i} x {y z} → y ∼ z → [ i ] x ⟨ k ⟩ y → [ i ] x ⟨ k ⟩ z step-?∼ _ y∼z x?y = transitive-∞∼ʳ x?y y∼z syntax step-?∼ x y∼z x?y = x ?⟨ x?y ⟩∼ y∼z step-≳ˡ : ∀ {k i} x {y z} → [ i ] y ⟨ other k ⟩ z → x ≳ y → [ i ] x ⟨ other k ⟩ z step-≳ˡ _ y≳≈z x≳y = transitive-≳ˡ x≳y y≳≈z syntax step-≳ˡ x y≳≈z x≳y = x ≳⟨ x≳y ⟩ y≳≈z step-≈ : ∀ {i} x {y z} → y ≈ z → x ≈ y → [ i ] x ≈ z step-≈ _ y≈z x≈y = transitive-≈ x≈y y≈z syntax step-≈ x y≈z x≈y = x ≈⟨ x≈y ⟩ y≈z _≳⟨⟩_ : ∀ {k i} x {y} → [ i ] drop-later x ⟨ other k ⟩ y → [ i ] x ⟨ other k ⟩ y now _ ≳⟨⟩ p = p later _ ≳⟨⟩ p = laterˡ p step-≡ˡ : ∀ {k i} x {y z} → [ i ] y ⟨ k ⟩ z → x ≡ y → [ i ] x ⟨ k ⟩ z step-≡ˡ _ y⟨⟩z E.refl = y⟨⟩z syntax step-≡ˡ x y⟨⟩z x≡y = x ≡⟨ x≡y ⟩ y⟨⟩z _∼⟨⟩_ : ∀ {k i} x {y} → [ i ] x ⟨ k ⟩ y → [ i ] x ⟨ k ⟩ y _ ∼⟨⟩ x≈y = x≈y ---------------------------------------------------------------------- -- Some results related to negation -- The computation never is not related to now x. never≉now : ∀ {k i x} → ¬ [ i ] never ⟨ k ⟩ now x never≉now (laterˡ p) = never≉now p -- The computation now x is not related to never. now≉never : ∀ {k i x} → ¬ [ i ] now x ⟨ k ⟩ never now≉never (laterʳ p) = now≉never p -- If A ∞ is uninhabited, then the three relations defined above are -- trivial. uninhabited→trivial : ∀ {k i} → ¬ A ∞ → ∀ x y → [ i ] x ⟨ k ⟩ y uninhabited→trivial ¬A (now x) _ = ⊥-elim (¬A x) uninhabited→trivial ¬A (later x) (now y) = ⊥-elim (¬A y) uninhabited→trivial ¬A (later x) (later y) = later λ { .force → uninhabited→trivial ¬A (force x) (force y) } -- Expansion and weak bisimilarity are not pointwise propositional. ¬-≳≈-propositional : ∀ {k} → ¬ (∀ {x y} → E.Is-proposition ([ ∞ ] x ⟨ other k ⟩ y)) ¬-≳≈-propositional {k} = (∀ {x y} → E.Is-proposition ([ ∞ ] x ⟨ other k ⟩ y)) ↝⟨ (λ prop → prop {x = never} {y = never}) ⟩ E.Is-proposition ([ ∞ ] never ⟨ other k ⟩ never) ↝⟨ (λ irr → irr _ _) ⟩ proof₁ ≡ proof₂ ↝⟨ (λ ()) ⟩□ ⊥₀ □ where proof₁ : ∀ {i} → [ i ] never ⟨ other k ⟩ never proof₁ = later λ { .force → proof₁ } proof₂ : ∀ {i} → [ i ] never ⟨ other k ⟩ never proof₂ = laterˡ proof₁ ------------------------------------------------------------------------ -- A statement of extensionality for strong bisimilarity -- A statement of extensionality: strongly bisimilar computations are -- equal. Extensionality : (ℓ : Level) → Type (lsuc ℓ) Extensionality a = {A : Size → Type a} {x y : Delay A ∞} → x ∼ y → x ≡ y
32.885714
121
0.464503
1cdb93a454c94804223ccc66ec278e301323c23c
402
agda
Agda
test/Fail/Issue1976.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1976.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1976.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-12-31, issue #1976 raised by nad -- Check for correct parameters in projection pattern -- {-# OPTIONS -v tc.lhs.split:40 #-} postulate A B : Set module M (_ : Set) where record R : Set₂ where field F : Set₁ open R public open M A wrong : M.R B F wrong = Set -- Expected error: -- A != B of type Set -- when checking that the clause F wrong = Set has type M.R B
16.08
61
0.639303
a1af26bf6d0878b4a3a2c8eb5ed5e8e7acade38e
520
agda
Agda
src/data/lib/prim/Agda/Builtin/List.agda
zliu41/agda
73405f70bced057d24dd4bf122d53f9548544aba
[ "BSD-3-Clause" ]
1
2020-04-26T09:35:17.000Z
2020-04-26T09:35:17.000Z
src/data/lib/prim/Agda/Builtin/List.agda
zliu41/agda
73405f70bced057d24dd4bf122d53f9548544aba
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/List.agda
zliu41/agda
73405f70bced057d24dd4bf122d53f9548544aba
[ "BSD-3-Clause" ]
1
2021-04-18T13:34:07.000Z
2021-04-18T13:34:07.000Z
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness --no-subtyping #-} module Agda.Builtin.List where infixr 5 _∷_ data List {a} (A : Set a) : Set a where [] : List A _∷_ : (x : A) (xs : List A) → List A {-# BUILTIN LIST List #-} {-# COMPILE JS List = function(x,v) { if (x.length < 1) { return v["[]"](); } else { return v["_∷_"](x[0], x.slice(1)); } } #-} {-# COMPILE JS [] = Array() #-} {-# COMPILE JS _∷_ = function (x) { return function(y) { return Array(x).concat(y); }; } #-}
28.888889
92
0.536538
3191cde2fb31aeca4020c9c90388c0db212df6fb
970
agda
Agda
Cubical/Relation/Binary/Raw/Construct/Always.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Raw/Construct/Always.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Raw/Construct/Always.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Raw.Construct.Always where open import Cubical.Core.Everything open import Cubical.Relation.Binary.Raw open import Cubical.Relation.Binary.Raw.Construct.Constant using (Const) open import Cubical.Data.Unit.Polymorphic ------------------------------------------------------------------------ -- Definition Always : ∀ {a b ℓ} {A : Type a} {B : Type b} → RawREL A B ℓ Always = Const ⊤ ------------------------------------------------------------------------ -- Properties module _ {a} (A : Type a) ℓ where reflexive : Reflexive {A = A} {ℓ = ℓ} Always reflexive = _ symmetric : Symmetric {A = A} {ℓ = ℓ} Always symmetric _ = _ transitive : Transitive {A = A} {ℓ = ℓ} Always transitive _ _ = _ isEquivalence : IsEquivalence {ℓ = ℓ} {A} Always isEquivalence = record {} equivalence : Equivalence A ℓ equivalence = record { isEquivalence = isEquivalence }
26.216216
72
0.582474
fba9200511ce140fbf8d41d782724efc1a30857f
615
agda
Agda
test/succeed/RewriteAndWhere.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/succeed/RewriteAndWhere.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
test/succeed/RewriteAndWhere.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
module RewriteAndWhere where open import Common.Equality sym : {A : Set}{a b : A} → a ≡ b → b ≡ a sym refl = refl data ℕ : Set where zero : ℕ good : (a b : ℕ) → a ≡ b → b ≡ a good a b eq with a | eq ... | .b | refl = foo where foo : b ≡ b foo = refl mutual aux : (a b : ℕ)(w : ℕ) → w ≡ b → b ≡ w aux a b .b refl = foo where foo : b ≡ b foo = refl good₂ : (a b : ℕ) → a ≡ b → b ≡ a good₂ a b eq = aux a b a eq bad : (a b : ℕ) → a ≡ b → b ≡ a bad a b eq rewrite eq = foo where foo : b ≡ b foo rewrite sym eq = bar where bar : a ≡ a bar = refl
16.621622
40
0.479675
3159287729235ebbe5a1dc33490e5fdd2c8f6d80
554
agda
Agda
examples/outdated-and-incorrect/clowns/Derivative.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/outdated-and-incorrect/clowns/Derivative.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/clowns/Derivative.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Derivative where open import Sets open import Functor import Isomorphism ∂ : U -> U ∂ (K A) = K [0] ∂ Id = K [1] ∂ (F + G) = ∂ F + ∂ G ∂ (F × G) = ∂ F × G + F × ∂ G open Semantics -- Plugging a hole plug-∂ : {X : Set}(F : U) -> ⟦ ∂ F ⟧ X -> X -> ⟦ F ⟧ X plug-∂ (K _) () x plug-∂ Id <> x = x plug-∂ (F + G) (inl c) x = inl (plug-∂ F c x) plug-∂ (F + G) (inr c) x = inr (plug-∂ G c x) plug-∂ (F × G) (inl < c , g >) x = < plug-∂ F c x , g > plug-∂ (F × G) (inr < f , c >) x = < f , plug-∂ G c x >
22.16
57
0.409747
dc4e0198522b7723157fe9303e35c9d38eb6263a
1,705
agda
Agda
test/Succeed/Issue1944-Stream.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1944-Stream.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1944-Stream.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- AIM XXIII, Andreas, 2016-04-24 -- Overloaded projections and projection patterns -- {-# OPTIONS -v tc.proj.amb:30 #-} -- {-# OPTIONS -v tc.lhs.split:20 #-} module _ where import Common.Level open import Common.Prelude hiding (map) open import Common.Equality module M (A : Set) where record Stream : Set where coinductive field head : A tail : Stream open M using (Stream) open module S = M.Stream public -- This is a bit trickier for overloading projections -- as it has a parameter with is of a record type -- with the same projections. record _≈_ {A : Set}(s t : Stream A) : Set where coinductive field head : head s ≡ head t tail : tail s ≈ tail t open module B = _≈_ public ≈refl : ∀{A} {s : Stream A} → s ≈ s head ≈refl = refl tail ≈refl = ≈refl ≈sym : ∀{A} {s t : Stream A} → s ≈ t → t ≈ s head (≈sym p) = sym (head p) tail (≈sym p) = ≈sym (tail p) module N (A : Set) (s : Stream A) where open module SS = Stream s public myhead : A myhead = SS.head -- cannot use ambiguous head here map : {A B : Set} → (A → B) → Stream A → Stream B head (map f s) = f (head s) tail (map f s) = map f (tail s) map_id : {A : Set}(s : Stream A) → map (λ x → x) s ≈ s head (map_id s) = refl tail (map_id s) = map_id (tail s) repeat : {A : Set}(a : A) → Stream A head (repeat a) = a tail (repeat a) = repeat a repeat₂ : {A : Set}(a₁ a₂ : A) → Stream A ( (head (repeat₂ a₁ a₂))) = a₁ (head (tail (repeat₂ a₁ a₂))) = a₂ (tail (tail (repeat₂ a₁ a₂))) = repeat₂ a₁ a₂ repeat≈repeat₂ : {A : Set}(a : A) → repeat a ≈ repeat₂ a a ( (head (repeat≈repeat₂ a))) = refl (head (tail (repeat≈repeat₂ a))) = refl (tail (tail (repeat≈repeat₂ a))) = repeat≈repeat₂ a
25.073529
58
0.615836
0bde5648dec6b172e5436317f52e91bdef90d587
130
agda
Agda
test/interaction/Issue4954-2.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue4954-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue4954-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical #-} F : Set → Set F A = A record R : Set₁ where field A : Set r : Set → R r A = λ where .R.A → A
10
25
0.5
1dc933b43e2ab6d8fcd7f4f35c22045a194272d9
4,060
agda
Agda
GSeTT/Rules.agda
thibautbenjamin/catt-formalization
3a02010a869697f4833c9bc6047d66ca27b87cf2
[ "MIT" ]
null
null
null
GSeTT/Rules.agda
thibautbenjamin/catt-formalization
3a02010a869697f4833c9bc6047d66ca27b87cf2
[ "MIT" ]
null
null
null
GSeTT/Rules.agda
thibautbenjamin/catt-formalization
3a02010a869697f4833c9bc6047d66ca27b87cf2
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting --without-K #-} open import Agda.Primitive open import Prelude open import GSeTT.Syntax {- Typing Rules and basic syntactic properties for the type theory for globular sets -} module GSeTT.Rules where {- Well-formedness statements ≡ inference rules -} data _⊢C : Pre-Ctx → Set₁ data _⊢T_ : Pre-Ctx → Pre-Ty → Set₁ data _⊢t_#_ : Pre-Ctx → Pre-Tm → Pre-Ty → Set₁ data _⊢S_>_ : Pre-Ctx → Pre-Sub → Pre-Ctx → Set₁ data _⊢C where ec : nil ⊢C cc : ∀ {Γ x A} → Γ ⊢C → Γ ⊢T A → x == length Γ → (Γ :: (x , A)) ⊢C data _⊢T_ where ob : ∀ {Γ} → Γ ⊢C → Γ ⊢T ∗ ar : ∀ {Γ A t u} → Γ ⊢t t # A → Γ ⊢t u # A → Γ ⊢T ⇒ A t u data _⊢t_#_ where var : ∀ {Γ x A} → Γ ⊢C → x # A ∈ Γ → Γ ⊢t (Var x) # A data _⊢S_>_ where es : ∀ {Δ} → Δ ⊢C → Δ ⊢S nil > nil sc : ∀ {Δ Γ γ x y A t} → Δ ⊢S γ > Γ → (Γ :: (x , A)) ⊢C → (Δ ⊢t t # (A [ γ ]Pre-Ty)) → x == y → Δ ⊢S (γ :: (y , t)) > (Γ :: (x , A)) {- Weakening admissibility -} wkT : ∀ {Γ A y B} → Γ ⊢T A → (Γ :: (y , B)) ⊢C → (Γ :: (y , B)) ⊢T A wkt : ∀ {Γ A t y B} → Γ ⊢t t # A → (Γ :: (y , B)) ⊢C → (Γ :: (y , B)) ⊢t t # A wkT (ob _) Γ,y:B⊢ = ob Γ,y:B⊢ wkT (ar Γ⊢t:A Γ⊢u:A) Γ,y:B⊢ = ar (wkt Γ⊢t:A Γ,y:B⊢) (wkt Γ⊢u:A Γ,y:B⊢) wkt (var Γ⊢C x∈Γ) Γ,y:B⊢ = var Γ,y:B⊢ (inl x∈Γ) wkS : ∀ {Δ Γ γ y B} → Δ ⊢S γ > Γ → (Δ :: (y , B)) ⊢C → (Δ :: (y , B)) ⊢S γ > Γ wkS (es _) Δ,y:B⊢ = es Δ,y:B⊢ wkS (sc Δ⊢γ:Γ Γ,x:A⊢ Δ⊢t:A[γ] idp) Δ,y:B⊢ = sc (wkS Δ⊢γ:Γ Δ,y:B⊢) Γ,x:A⊢ (wkt Δ⊢t:A[γ] Δ,y:B⊢) idp {- Consistency : all objects appearing in derivable judgments are derivable -} Γ⊢A→Γ⊢ : ∀ {Γ A} → Γ ⊢T A → Γ ⊢C Γ⊢t:A→Γ⊢ : ∀ {Γ A t} → Γ ⊢t t # A → Γ ⊢C Γ⊢A→Γ⊢ (ob Γ⊢) = Γ⊢ Γ⊢A→Γ⊢ (ar Γ⊢t:A Γ⊢u:A) = Γ⊢t:A→Γ⊢ Γ⊢t:A Γ⊢t:A→Γ⊢ (var Γ⊢ _) = Γ⊢ Δ⊢γ:Γ→Γ⊢ : ∀ {Δ Γ γ} → Δ ⊢S γ > Γ → Γ ⊢C Δ⊢γ:Γ→Γ⊢ (es Δ⊢) = ec Δ⊢γ:Γ→Γ⊢ (sc Δ⊢γ:Γ Γ,x:A⊢ Δ⊢t:A[γ] idp) = Γ,x:A⊢ Δ⊢γ:Γ→Δ⊢ : ∀ {Δ Γ γ} → Δ ⊢S γ > Γ → Δ ⊢C Δ⊢γ:Γ→Δ⊢ (es Δ⊢) = Δ⊢ Δ⊢γ:Γ→Δ⊢ (sc Δ⊢γ:Γ Γ,x:A⊢ Δ⊢t:A[γ] idp) = Δ⊢γ:Γ→Δ⊢ Δ⊢γ:Γ Γ,x:A⊢→Γ,x:A⊢A : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → (Γ :: (x , A)) ⊢T A Γ,x:A⊢→Γ,x:A⊢A Γ,x:A⊢@(cc Γ⊢ Γ⊢A idp) = wkT Γ⊢A Γ,x:A⊢ Γ,x:A⊢→Γ,x:A⊢x:A : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → (Γ :: (x , A)) ⊢t (Var x) # A Γ,x:A⊢→Γ,x:A⊢x:A Γ,x:A⊢ = var Γ,x:A⊢ (inr (idp , idp)) Γ,x:A⊢→Γ⊢ : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → Γ ⊢C Γ,x:A⊢→Γ⊢ (cc Γ⊢ _ _) = Γ⊢ Γ⊢t:A→Γ⊢A : ∀ {Γ A t} → Γ ⊢t t # A → Γ ⊢T A Γ⊢t:A→Γ⊢A (var Γ,x:A⊢@(cc Γ⊢ Γ⊢A idp) (inl y∈Γ)) = wkT (Γ⊢t:A→Γ⊢A (var Γ⊢ y∈Γ)) Γ,x:A⊢ Γ⊢t:A→Γ⊢A (var Γ,x:A⊢@(cc _ _ idp) (inr (idp , idp))) = Γ,x:A⊢→Γ,x:A⊢A Γ,x:A⊢ Γ⊢src : ∀ {Γ A t u} → Γ ⊢T ⇒ A t u → Γ ⊢t t # A Γ⊢src (ar Γ⊢t Γ⊢u) = Γ⊢t Γ⊢tgt : ∀ {Γ A t u} → Γ ⊢T ⇒ A t u → Γ ⊢t u # A Γ⊢tgt (ar Γ⊢t Γ⊢u) = Γ⊢u {- Cut-admissibility -} -- notational shortcut : if A = B a term of type A is also of type B trT : ∀ {Γ A B t} → A == B → Γ ⊢t t # A → Γ ⊢t t # B trT idp Γ⊢t:A = Γ⊢t:A n∉Γ : ∀ {Γ A n} → Γ ⊢C → (length Γ ≤ n) → ¬ (n # A ∈ Γ) n∉Γ (cc Γ⊢ _ _) l+1≤n (inl n∈Γ) = n∉Γ Γ⊢ (Sn≤m→n≤m l+1≤n) n∈Γ n∉Γ (cc Γ⊢ _ idp) Sn≤n (inr (idp , idp)) = Sn≰n _ Sn≤n lΓ∉Γ : ∀ {Γ A} → Γ ⊢C → ¬ ((length Γ) # A ∈ Γ) lΓ∉Γ Γ⊢ = n∉Γ Γ⊢ (n≤n _) Γ+⊢l : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → x == length Γ Γ+⊢l (cc _ _ idp) = idp {- action on weakened types and terms -} wk[]T : ∀ {Γ Δ γ x u A B} → Γ ⊢T A → Δ ⊢S (γ :: (x , u)) > (Γ :: (x , B)) → (A [ (γ :: (x , u)) ]Pre-Ty) == (A [ γ ]Pre-Ty) wk[]t : ∀ {Γ Δ γ x u A t B} → Γ ⊢t t # A → Δ ⊢S (γ :: (x , u)) > (Γ :: (x , B)) → (t [ (γ :: (x , u)) ]Pre-Tm) == (t [ γ ]Pre-Tm) wk[]T (ob Γ⊢) _ = idp wk[]T (ar Γ⊢t:A Γ⊢u:A) Δ⊢γ+:Γ+ = ⇒= (wk[]T (Γ⊢t:A→Γ⊢A Γ⊢t:A) Δ⊢γ+:Γ+) (wk[]t Γ⊢t:A Δ⊢γ+:Γ+) (wk[]t Γ⊢u:A Δ⊢γ+:Γ+) wk[]t {x = x} (var {x = y} Γ⊢ y∈Γ) Δ⊢γ+:Γ+ with (eqdecℕ y x) wk[]t {x = x} (var {x = y} Γ⊢ y∈Γ) Δ⊢γ+:Γ+ | inr _ = idp wk[]t (var {Γ = Γ} Γ⊢ x∈Γ) Δ⊢γ+:Γ+ | inl idp = ⊥-elim (lΓ∉Γ Γ⊢ (transport {B = λ n → n # _ ∈ Γ} (Γ+⊢l (Δ⊢γ:Γ→Γ⊢ Δ⊢γ+:Γ+)) x∈Γ)) dim[] : ∀ (A : Pre-Ty) (γ : Pre-Sub) → dim (A [ γ ]Pre-Ty) == dim A dim[] ∗ γ = idp dim[] (⇒ A x x₁) γ = S= (dim[] A γ)
37.247706
136
0.422906
a10908419d42e3f3f77ce9b9b38af6f675337ab6
196
agda
Agda
test/Succeed/AbsurdPattern.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/AbsurdPattern.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/AbsurdPattern.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Pattern matching on a (decidably) empty type allows you to omit the -- right-hand side. module AbsurdPattern where data Empty : Set where elim-Empty : {A : Set} -> Empty -> A elim-Empty ()
17.818182
70
0.693878
200d8f3f53894bac975413cd00b6cd1bc44a706a
1,194
agda
Agda
Categories/Fibration.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Fibration.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Fibration.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} module Categories.Fibration where open import Level hiding (lift) open import Data.Product open import Categories.Category open import Categories.Functor hiding (_∘_; _≡_) open import Categories.Morphism.Cartesian import Categories.Morphisms as Morphisms record CartesianLifting {o₀ ℓ₀ e₀} {o₁ ℓ₁ e₁} {E : Category o₀ ℓ₀ e₀} {B : Category o₁ ℓ₁ e₁} (p : Functor E B) {a e} (f : B [ a , Functor.F₀ p e ]) : Set (o₀ ⊔ ℓ₀ ⊔ e₀ ⊔ o₁ ⊔ ℓ₁ ⊔ e₁) where private module E = Category E private module B = Category B open B using (_∘_; _≡_) open Functor p renaming (F₀ to p₀; F₁ to p₁) open Morphisms B field e′ : E.Obj φ : E [ e′ , e ] proof : ∃ \ (h : a ≅ p₀ e′) → f ∘ _≅_.g h ≡ p₁ φ φ-cartesian : Cartesian p φ record Fibration {o₀ ℓ₀ e₀} {o₁ ℓ₁ e₁} (E : Category o₀ ℓ₀ e₀) (B : Category o₁ ℓ₁ e₁) : Set (o₀ ⊔ ℓ₀ ⊔ e₀ ⊔ o₁ ⊔ ℓ₁ ⊔ e₁) where private module E = Category E private module B = Category B open B using (_∘_; _≡_) field p : Functor E B open Functor p renaming (F₀ to p₀; F₁ to p₁) open Morphisms B field lift : ∀ {a} e → (f : B [ a , p₀ e ]) → CartesianLifting p f
27.767442
128
0.622278
0ed03b0e3c0b242114cdef79a211fa8589861966
2,074
agda
Agda
TD6/List.agda
erwinkn/program-eq-proof
9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23
[ "MIT" ]
null
null
null
TD6/List.agda
erwinkn/program-eq-proof
9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23
[ "MIT" ]
null
null
null
TD6/List.agda
erwinkn/program-eq-proof
9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23
[ "MIT" ]
null
null
null
{- --- 4. Lists --- -} data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A infixr 5 _∷_ open import Data.Nat open import Relation.Binary.PropositionalEquality {- 4.1 Length -} length : {A : Set} → List A → ℕ length [] = 0 length (x ∷ l) = 1 + (length l) {- 4.2 List reversal -} concat : {A : Set} → List A → List A → List A concat [] l = l concat (x ∷ k) l = x ∷ (concat k l) concat-length : {A : Set} → (k l : List A) → length (concat k l) ≡ (length k) + (length l) concat-length [] l = refl concat-length (x ∷ k) l rewrite concat-length k l = refl concat-assoc : {A : Set} → (j k l : List A) → concat (concat j k) l ≡ concat j (concat k l) concat-assoc [] k l = refl concat-assoc (x ∷ j) k l rewrite concat-assoc j k l = refl {- 4.3 List reversal -} snoc : {A : Set} → A -> List A → List A snoc a [] = a ∷ [] snoc a (x ∷ l) = x ∷ (snoc a l) rev : {A : Set} → List A → List A rev [] = [] rev (x ∷ l) = snoc x (rev l) snoc-length : {A : Set} → (a : A) → (l : List A) → length (snoc a l) ≡ suc (length l) snoc-length a [] = refl snoc-length a (x ∷ l) rewrite snoc-length a l = refl rev-length : {A : Set} → (l : List A) → (length (rev l)) ≡ (length l) rev-length [] = refl rev-length (x ∷ l) rewrite snoc-length x (rev l) | rev-length l = refl snoc-rev : {A : Set} → (a : A) → (l : List A) → rev (snoc a l) ≡ a ∷ (rev l) snoc-rev a [] = refl snoc-rev a (x ∷ l) rewrite snoc-rev a l = refl double-rev : {A : Set} → (l : List A) → rev (rev l) ≡ l double-rev [] = refl double-rev (x ∷ l) rewrite snoc-rev x (rev l) | double-rev l = refl {- 4.4 Filtering -} open import Data.Bool filter : {A : Set} → (p : A → Bool) → (l : List A) → List A filter p [] = [] filter p (x ∷ l) with p x filter p (x ∷ l) | false = filter p l filter p (x ∷ l) | true = x ∷ (filter p l) empty-list : {A : Set} → (l : List A) → filter (λ _ → false) l ≡ [] empty-list [] = refl empty-list (x ∷ l) = empty-list l identity-list : {A : Set} → (l : List A) → filter (λ _ → true) l ≡ l identity-list [] = refl identity-list (x ∷ l) rewrite identity-list l = refl
26.935065
91
0.559788
066c62821371906dbe8851610c0af2eddfe23c29
26,447
agda
Agda
src/Equivalence/Path-split.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Equivalence/Path-split.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Equivalence/Path-split.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Some alternative definitions of the concept of being an equivalence ------------------------------------------------------------------------ -- Partly based on the blog post "Universal properties without -- function extensionality" by Mike Shulman -- (https://homotopytypetheory.org/2014/11/02/universal-properties-without-function-extensionality/), -- and the corresponding code in the Coq HoTT library -- (https://github.com/HoTT/HoTT). {-# OPTIONS --without-K --safe #-} open import Equality module Equivalence.Path-split {e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where open Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection eq as B using (_↔_) open import Embedding eq using (Embedding) open import Equality.Decision-procedures eq open import Equivalence eq as Eq using (_≃_; Is-equivalence) open import Equivalence.Erased.Basics eq using (Is-equivalenceᴱ) open import Function-universe eq as F hiding (id; _∘_) open import H-level eq as H-level open import H-level.Closure eq open import Surjection eq using (Split-surjective; _↠_) private variable a b c d p : Level A B : Type a x y : A f : A → B k : Kind n : ℕ ------------------------------------------------------------------------ -- Path-split -- An alternative definition of "Is-equivalence". Path-split : {A : Type a} {B : Type b} → ℕ → (A → B) → Type (a ⊔ b) Path-split zero f = ↑ _ ⊤ Path-split (suc n) f = Split-surjective f × (∀ x y → Path-split n (cong {x = x} {y = y} f)) private -- A lemma. eq→emb : Is-equivalence f → Is-equivalence (cong {x = x} {y = y} f) eq→emb eq = Embedding.is-embedding (from-isomorphism Eq.⟨ _ , eq ⟩) _ _ -- Equivalences are path-split. Is-equivalence→Path-split : Is-equivalence f → Path-split n f Is-equivalence→Path-split {n = zero} eq = _ Is-equivalence→Path-split {n = suc n} eq = _≃_.split-surjective Eq.⟨ _ , eq ⟩ , λ x y → Is-equivalence→Path-split (eq→emb eq) private -- Path-split n f holds, for n ≥ 2, iff f is an equivalence. Path-split⇔Is-equivalence : Path-split (2 + n) f ⇔ Is-equivalence f Path-split⇔Is-equivalence {f = f} = record { to = λ (s , p) → let inv = proj₁ ∘ s is-inv = proj₂ ∘ s in _≃_.is-equivalence $ Eq.↔⇒≃ (record { surjection = record { right-inverse-of = is-inv } ; left-inverse-of = λ x → $⟨ is-inv (f x) ⟩ f (inv (f x)) ≡ f x ↝⟨ proj₁ ∘ proj₁ (p _ _) ⟩ inv (f x) ≡ x □ }) ; from = Is-equivalence→Path-split } -- If f is an equivalence, then Split-surjective f is contractible -- (assuming extensionality). Split-surjective-contractible-for-equivalences : ∀ {a b} {A : Type a} {B : Type b} {f : A → B} → Extensionality b (a ⊔ b) → Is-equivalence f → Contractible (Split-surjective f) Split-surjective-contractible-for-equivalences {A = A} {B = B} {f = f} ext eq = propositional⇒inhabited⇒contractible (Π-closure ext 1 λ y → let surj : (∃ λ x → x ≡ _≃_.from A≃B y) ↠ (∃ λ x → f x ≡ y) surj = ∃-cong λ x → x ≡ _≃_.from A≃B y ↔⟨ inverse $ Eq.≃-≡ A≃B ⟩ f x ≡ f (_≃_.from A≃B y) ↝⟨ ≡⇒↝ _ $ cong (_ ≡_) $ _≃_.right-inverse-of A≃B _ ⟩□ f x ≡ y □ in H-level.respects-surjection surj 1 $ mono₁ 0 $ singleton-contractible _) (_≃_.split-surjective A≃B) where A≃B : A ≃ B A≃B = Eq.⟨ _ , eq ⟩ -- If f is an equivalence, then Path-split n f is contractible -- (assuming extensionality). Path-split-contractible-for-equivalences : {A : Type a} {B : Type b} {f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → Is-equivalence f → Contractible (Path-split n f) Path-split-contractible-for-equivalences {n = zero} _ _ = ↑-closure 0 $ ⊤-contractible Path-split-contractible-for-equivalences {a = a} {b = b} {n = suc n} {A = A} {B = B} {f = f} ext eq = ×-closure 0 (Split-surjective-contractible-for-equivalences (lower-extensionality a lzero ext) eq) (Π-closure (lower-extensionality b lzero ext) 0 λ _ → Π-closure (lower-extensionality b lzero ext) 0 λ _ → Path-split-contractible-for-equivalences ext (eq→emb eq)) -- Path-split n is pointwise propositional for n ≥ 2 (assuming -- extensionality). Path-split-propositional : {A : Type a} {B : Type b} {f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → Is-proposition (Path-split (2 + n) f) Path-split-propositional ext = [inhabited⇒contractible]⇒propositional λ p → Path-split-contractible-for-equivalences ext $ _⇔_.to Path-split⇔Is-equivalence p -- There is a bijection between Path-split n f, for n ≥ 2, and -- Is-equivalence f (assuming extensionality). Path-split↔Is-equivalence : {A : Type a} {B : Type b} {f : A → B} → Path-split (2 + n) f ↝[ a ⊔ b ∣ a ⊔ b ] Is-equivalence f Path-split↔Is-equivalence = generalise-ext?-prop Path-split⇔Is-equivalence Path-split-propositional (λ ext → Eq.propositional ext _) -- Another alternative definition of "Is-equivalence". Path-split-∞ : {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b) Path-split-∞ f = ∀ n → Path-split n f -- Path-split-∞ is pointwise propositional (assuming extensionality). Path-split-∞-propositional : {A : Type a} {B : Type b} {f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → Is-proposition (Path-split-∞ f) Path-split-∞-propositional ext = [inhabited⇒contractible]⇒propositional λ p → Π-closure (lower-extensionality _ lzero ext) 0 λ _ → Path-split-contractible-for-equivalences ext $ _⇔_.to Path-split⇔Is-equivalence (p 2) -- There is a bijection between Path-split-∞ f and Is-equivalence f -- (assuming extensionality). Path-split-∞↔Is-equivalence : {A : Type a} {B : Type b} {f : A → B} → Path-split-∞ f ↝[ a ⊔ b ∣ a ⊔ b ] Is-equivalence f Path-split-∞↔Is-equivalence = generalise-ext?-prop (record { to = λ p → _⇔_.to Path-split⇔Is-equivalence (p 2) ; from = λ eq _ → Is-equivalence→Path-split eq }) Path-split-∞-propositional (λ ext → Eq.propositional ext _) -- A preservation lemma for Path-split. Path-split-cong : {A : Type a} {B : Type b} {C : Type c} {D : Type d} {f : A → B} {g : C → D} → Extensionality? k (a ⊔ b ⊔ c ⊔ d) (a ⊔ b ⊔ c ⊔ d) → (A≃C : A ≃ C) (B≃D : B ≃ D) → (∀ x → g (_≃_.to A≃C x) ≡ _≃_.to B≃D (f x)) → ∀ n → Path-split n f ↝[ k ] Path-split n g Path-split-cong {a = a} {b = b} {c = c} {d = d} {k = k} {f = f} {g = g} ext A≃C B≃D hyp = λ where zero → ↑ _ ⊤ ↔⟨ B.↑↔ ⟩ ⊤ ↔⟨ inverse B.↑↔ ⟩□ ↑ _ ⊤ □ (suc n) → (Split-surjective f ↔⟨⟩ (∀ y → ∃ λ x → f x ≡ y) ↝⟨ (Π-cong (lower-extensionality? k (a ⊔ c) lzero ext) B≃D λ y → Σ-cong A≃C λ x → (f x ≡ y) ↔⟨ inverse $ Eq.≃-≡ B≃D ⟩ (_≃_.to B≃D (f x) ≡ _≃_.to B≃D y) ↝⟨ ≡⇒↝ _ $ cong (_≡ _) $ sym $ hyp x ⟩□ (g (_≃_.to A≃C x) ≡ _≃_.to B≃D y) □) ⟩ (∀ y → ∃ λ x → g x ≡ y) ↔⟨⟩ Split-surjective g □) ×-cong (Π-cong (lower-extensionality? k (b ⊔ d) lzero ext) A≃C λ x → Π-cong (lower-extensionality? k (b ⊔ d) lzero ext) A≃C λ y → Path-split-cong ext (x ≡ y ↝⟨ inverse $ Eq.≃-≡ A≃C ⟩□ _≃_.to A≃C x ≡ _≃_.to A≃C y □) (f x ≡ f y ↝⟨ inverse $ Eq.≃-≡ B≃D ⟩ _≃_.to B≃D (f x) ≡ _≃_.to B≃D (f y) ↝⟨ ≡⇒↝ _ $ cong₂ _≡_ (sym $ hyp x) (sym $ hyp y) ⟩□ g (_≃_.to A≃C x) ≡ g (_≃_.to A≃C y) □) (λ x≡y → cong g (cong (_≃_.to A≃C) x≡y) ≡⟨ cong-∘ _ _ _ ⟩ cong (g ∘ _≃_.to A≃C) x≡y ≡⟨ elim¹ (λ {y} x≡y → cong (g ∘ _≃_.to A≃C) x≡y ≡ trans (trans (hyp x) (cong (_≃_.to B≃D ∘ f) x≡y)) (sym $ hyp y)) ( cong (g ∘ _≃_.to A≃C) (refl _) ≡⟨ cong-refl _ ⟩ refl _ ≡⟨ sym $ trans-symʳ _ ⟩ trans (hyp x) (sym $ hyp x) ≡⟨ cong (flip trans _) $ trans (sym $ trans-reflʳ _) $ cong (trans _) $ sym $ cong-refl _ ⟩∎ trans (trans (hyp x) (cong (_≃_.to B≃D ∘ f) (refl _))) (sym $ hyp x) ∎) _ ⟩ trans (trans (hyp x) (cong (_≃_.to B≃D ∘ f) x≡y)) (sym $ hyp y) ≡⟨ trans (cong (flip trans _) $ sym $ subst-trans _) $ trans-subst ⟩ subst (_ ≡_) (sym $ hyp y) (subst (_≡ _) (sym $ hyp x) (cong (_≃_.to B≃D ∘ f) x≡y)) ≡⟨ trans (cong (subst _ _) $ subst-in-terms-of-≡⇒↝ equivalence _ _ _) $ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩ _≃_.to (≡⇒↝ _ (cong (_ ≡_) (sym $ hyp y))) (_≃_.to (≡⇒↝ _ (cong (_≡ _) (sym $ hyp x))) (cong (_≃_.to B≃D ∘ f) x≡y)) ≡⟨ cong (_$ cong (_≃_.to B≃D ∘ f) x≡y) $ sym $ ≡⇒↝-trans equivalence ⟩ _≃_.to (≡⇒↝ _ $ trans (cong (_≡ _) (sym $ hyp x)) (cong (_ ≡_) (sym $ hyp y))) (cong (_≃_.to B≃D ∘ f) x≡y) ≡⟨⟩ _≃_.to (≡⇒↝ _ $ cong₂ _≡_ (sym $ hyp x) (sym $ hyp y)) (cong (_≃_.to B≃D ∘ f) x≡y) ≡⟨ cong (_≃_.to (≡⇒↝ _ _)) $ sym $ cong-∘ _ _ _ ⟩∎ _≃_.to (≡⇒↝ _ $ cong₂ _≡_ (sym $ hyp x) (sym $ hyp y)) (cong (_≃_.to B≃D) (cong f x≡y)) ∎) n) ------------------------------------------------------------------------ -- Extendable along -- Is-[ n ]-extendable-along-[ f ] P means that P is n-extendable -- along f. Is-[_]-extendable-along-[_] : {A : Type a} {B : Type b} → ℕ → (A → B) → (B → Type c) → Type (a ⊔ b ⊔ c) Is-[ zero ]-extendable-along-[ f ] P = ↑ _ ⊤ Is-[ suc n ]-extendable-along-[ f ] P = ((g : ∀ x → P (f x)) → ∃ λ (h : ∀ x → P x) → ∀ x → h (f x) ≡ g x) × ((g h : ∀ x → P x) → Is-[ n ]-extendable-along-[ f ] (λ x → g x ≡ h x)) -- Is-∞-extendable-along-[ f ] P means that P is ∞-extendable along f. Is-∞-extendable-along-[_] : {A : Type a} {B : Type b} → (A → B) → (B → Type c) → Type (a ⊔ b ⊔ c) Is-∞-extendable-along-[ f ] P = ∀ n → Is-[ n ]-extendable-along-[ f ] P -- In the presence of extensionality Is-[_]-extendable-along-[_] can -- be expressed using Path-split. Is-extendable-along≃Path-split : {A : Type a} {B : Type b} {P : B → Type p} {f : A → B} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → ∀ n → Is-[ n ]-extendable-along-[ f ] P ≃ Path-split n (λ (g : ∀ x → P x) → g ∘ f) Is-extendable-along≃Path-split {a = a} {b = b} {p = p} {f = f} ext = λ where zero → Eq.id (suc n) → (∀-cong (lower-extensionality b lzero ext) λ g → ∃-cong λ h → (∀ x → h (f x) ≡ g x) ↝⟨ Eq.extensionality-isomorphism (lower-extensionality (b ⊔ p) (a ⊔ b) ext) ⟩□ h ∘ f ≡ g □) ×-cong (∀-cong (lower-extensionality a lzero ext) λ g → ∀-cong (lower-extensionality a lzero ext) λ h → Is-[ n ]-extendable-along-[ f ] (λ x → g x ≡ h x) ↝⟨ Is-extendable-along≃Path-split ext n ⟩ Path-split n (_∘ f) ↝⟨ Path-split-cong ext (Eq.extensionality-isomorphism ext₁) (Eq.extensionality-isomorphism ext₂) (λ eq → cong (_∘ f) (apply-ext (Eq.good-ext ext₁) eq) ≡⟨ Eq.cong-pre-∘-good-ext ext₂ ext₁ _ ⟩∎ apply-ext (Eq.good-ext ext₂) (eq ∘ f) ∎) n ⟩□ Path-split n (cong (_∘ f)) □) where ext₁ = lower-extensionality (a ⊔ p) (a ⊔ b) ext ext₂ = lower-extensionality (b ⊔ p) (a ⊔ b) ext -- In the presence of extensionality Is-∞-extendable-along-[_] can -- be expressed using Path-split-∞. Is-∞-extendable-along≃Path-split-∞ : {A : Type a} {B : Type b} {P : B → Type p} {f : A → B} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → Is-∞-extendable-along-[ f ] P ≃ Path-split-∞ (λ (g : ∀ x → P x) → g ∘ f) Is-∞-extendable-along≃Path-split-∞ ext = ∀-cong (lower-extensionality _ lzero ext) $ Is-extendable-along≃Path-split ext -- Is-[ 2 + n ]-extendable-along-[ f ] P is propositional (assuming -- extensionality). Is-extendable-along-propositional : {A : Type a} {B : Type b} {P : B → Type p} {f : A → B} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → Is-proposition (Is-[ 2 + n ]-extendable-along-[ f ] P) Is-extendable-along-propositional ext = H-level-cong _ 1 (inverse $ Is-extendable-along≃Path-split ext _) $ Path-split-propositional ext -- Is-∞-extendable-along-[ f ] P is propositional (assuming -- extensionality). Is-∞-extendable-along-propositional : {A : Type a} {B : Type b} {P : B → Type p} {f : A → B} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → Is-proposition (Is-∞-extendable-along-[ f ] P) Is-∞-extendable-along-propositional ext = H-level-cong _ 1 (inverse $ Is-∞-extendable-along≃Path-split-∞ ext) $ Path-split-∞-propositional ext -- In the presence of extensionality Is-∞-extendable-along-[_] can be -- expressed using Is-equivalence. Is-∞-extendable-along≃Is-equivalence : {A : Type a} {B : Type b} {P : B → Type p} {f : A → B} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → Is-∞-extendable-along-[ f ] P ≃ Is-equivalence (λ (g : ∀ x → P x) → g ∘ f) Is-∞-extendable-along≃Is-equivalence {P = P} {f = f} ext = Is-∞-extendable-along-[ f ] P ↝⟨ Is-∞-extendable-along≃Path-split-∞ ext ⟩ Path-split-∞ (_∘ f) ↝⟨ Path-split-∞↔Is-equivalence ext ⟩□ Is-equivalence (_∘ f) □ -- The definitions below are not taken directly from "Universal -- properties without function extensionality". -- A type B is P-null for a predicate P of type A → Type p if the -- function const of type B → P x → B is an equivalence for each x. -- -- This definition is based on one from "Modalities in Homotopy Type -- Theory" by Rijke, Shulman and Spitters. _-Null_ : {A : Type a} → (A → Type p) → Type b → Type (a ⊔ b ⊔ p) P -Null B = ∀ x → Is-equivalence (const ⦂ (B → P x → B)) -- A variant of _-Null_ with erased proofs. _-Nullᴱ_ : {A : Type a} → (A → Type p) → Type b → Type (a ⊔ b ⊔ p) P -Nullᴱ B = ∀ x → Is-equivalenceᴱ (const ⦂ (B → P x → B)) -- Is-∞-extendable-along-[_] can sometimes be replaced by -- Is-equivalence const. Is-∞-extendable-along≃Is-equivalence-const : {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → Is-∞-extendable-along-[ (λ (_ : A) → lift tt) ] (λ (_ : ↑ a ⊤) → B) ≃ Is-equivalence (const ⦂ (B → A → B)) Is-∞-extendable-along≃Is-equivalence-const {a = a} {A = A} {B = B} ext = Is-∞-extendable-along-[ (λ _ → lift tt) ] (λ (_ : ↑ a ⊤) → B) ↝⟨ Is-∞-extendable-along≃Is-equivalence ext ⟩ Is-equivalence (_∘ (λ _ → lift tt) ⦂ ((↑ a ⊤ → B) → (A → B))) ↝⟨ inverse $ Is-equivalence≃Is-equivalence-∘ʳ (_≃_.is-equivalence $ Eq.↔→≃ (_$ lift tt) const refl refl) ext ⟩□ Is-equivalence (const ⦂ (B → A → B)) □ -- A corollary of Is-∞-extendable-along≃Is-equivalence-const. Π-Is-∞-extendable-along≃Null : {A : Type a} {P : A → Type p} {B : Type b} → Extensionality (a ⊔ b ⊔ p) (b ⊔ p) → (∀ x → Is-∞-extendable-along-[ (λ (_ : P x) → lift tt) ] (λ (_ : ↑ p ⊤) → B)) ≃ P -Null B Π-Is-∞-extendable-along≃Null {a = a} {p = p} {b = b} ext = ∀-cong (lower-extensionality (b ⊔ p) lzero ext) λ _ → Is-∞-extendable-along≃Is-equivalence-const (lower-extensionality a lzero ext) private -- If const is an equivalence from Bool to B → Bool, then B is not -- not inhabited (assuming extensionality). Is-equivalence-const→¬¬ : {B : Type b} → Extensionality b lzero → Is-equivalence (const ⦂ (Bool → B → Bool)) → ¬ ¬ B Is-equivalence-const→¬¬ {B = B} ext = curry (Is-equivalence (const ⦂ (Bool → B → Bool)) × ¬ B →⟨ Σ-map Eq.⟨ _ ,_⟩ (Eq.↔⇒≃ ∘ inverse ∘ B.⊥↔uninhabited) ⟩ Bool ≃ (B → Bool) × B ≃ ⊥ →⟨ (λ (≃B→ , B≃) → →-cong ext B≃ F.id F.∘ ≃B→) ⟩ Bool ≃ (⊥ → Bool) →⟨ Π⊥↔⊤ ext F.∘_ ⟩ Bool ≃ ⊤ →⟨ (λ eq → _≃_.to (Eq.≃-≡ eq) (refl _)) ⟩ true ≡ false →⟨ Bool.true≢false ⟩□ ⊥ □) -- If const is an equivalence from Bool to B → Bool, and equality is -- decidable for B, then B is a proposition. Is-equivalence-const→Decidable-equality→Is-proposition : Is-equivalence (const ⦂ (Bool → B → Bool)) → Decidable-equality B → Is-proposition B Is-equivalence-const→Decidable-equality→Is-proposition {B = B} eq _≟_ x y = x≡y where lemma : (f g : B → Bool) → f ≢ g → (h : B → Bool) → f ≡ h ⊎ g ≡ h lemma = $⟨ helper ⟩ ((x y : Bool) → x ≢ y → (z : Bool) → x ≡ z ⊎ y ≡ z) →⟨ (Π-cong _ equiv λ x → Π-cong _ equiv λ y → →-cong-→ (→-cong-→ (_≃_.from (Eq.≃-≡ equiv)) id) $ Π-cong _ equiv λ z → _≃_.from (Eq.≃-≡ equiv ⊎-cong Eq.≃-≡ equiv)) ⟩□ ((f g : B → Bool) → f ≢ g → (h : B → Bool) → f ≡ h ⊎ g ≡ h) □ where equiv : Bool ≃ (B → Bool) equiv = Eq.⟨ _ , eq ⟩ true≡⊎false≡ : (b : Bool) → true ≡ b ⊎ false ≡ b true≡⊎false≡ true = inj₁ (refl _) true≡⊎false≡ false = inj₂ (refl _) helper : (x y : Bool) → x ≢ y → (z : Bool) → x ≡ z ⊎ y ≡ z helper true true t≢t = ⊥-elim $ t≢t (refl _) helper true false _ = true≡⊎false≡ helper false true _ = _↔_.to ⊎-comm ∘ true≡⊎false≡ helper false false f≢f = ⊥-elim $ f≢f (refl _) f₁ f₂ f₃ : B → Bool f₁ _ = true f₂ _ = false f₃ z = if x ≟ z then true else false f₁≢f₂ : f₁ ≢ f₂ f₁≢f₂ f₁≡f₂ = Bool.true≢false $ cong (_$ x) f₁≡f₂ f₁≡f₃→x≡y : f₁ ≡ f₃ → x ≡ y f₁≡f₃→x≡y f₁≡f₃ = helper (x ≟ y) (cong (_$ y) f₁≡f₃) where helper : (d : Dec (x ≡ y)) → true ≡ if d then true else false → x ≡ y helper (yes x≡y) _ = x≡y helper (no _) true≡false = ⊥-elim $ Bool.true≢false true≡false f₂≢f₃ : f₂ ≢ f₃ f₂≢f₃ = f₂ ≡ f₃ →⟨ cong (_$ x) ⟩ false ≡ if x ≟ x then true else false →⟨ flip trans (helper (x ≟ x)) ⟩ false ≡ true →⟨ Bool.true≢false ∘ sym ⟩□ ⊥ □ where helper : (d : Dec (x ≡ x)) → if d then true else false ≡ true helper (yes _) = refl _ helper (no x≢x) = ⊥-elim $ x≢x $ refl _ f₁≡⊎f₂≡ : (f : B → Bool) → f₁ ≡ f ⊎ f₂ ≡ f f₁≡⊎f₂≡ = lemma f₁ f₂ f₁≢f₂ x≡y : x ≡ y x≡y with f₁≡⊎f₂≡ f₃ … | inj₁ f₁≡f₃ = f₁≡f₃→x≡y f₁≡f₃ … | inj₂ f₂≡f₃ = ⊥-elim $ f₂≢f₃ f₂≡f₃ -- If f is an equivalence, then n-extendability along f is -- contractible (assuming extensionality). Is-extendable-along-contractible-for-equivalences : {A : Type a} {B : Type b} {f : A → B} {P : B → Type p} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → Is-equivalence f → ∀ n → Contractible (Is-[ n ]-extendable-along-[ f ] P) Is-extendable-along-contractible-for-equivalences _ _ zero = ↑-closure 0 ⊤-contractible Is-extendable-along-contractible-for-equivalences {a = a} {b = b} {p = p} {f = f} {P = P} ext eq (suc n) = ×-closure 0 (Π-closure (lower-extensionality b lzero ext) 0 λ g → $⟨ singleton-contractible _ ⟩ Contractible (∃ λ h → h ≡ subst P (inv _) ∘ g ∘ f⁻¹) ↝⟨ H-level-cong _ 0 (lemma g) ⦂ (_ → _) ⟩□ Contractible (∃ λ h → ∀ x → h (f x) ≡ g x) □) (Π-closure (lower-extensionality a lzero ext) 0 λ _ → Π-closure (lower-extensionality a lzero ext) 0 λ _ → Is-extendable-along-contractible-for-equivalences ext eq n) where f⁻¹ = _≃_.from Eq.⟨ _ , eq ⟩ inv = _≃_.left-inverse-of (inverse Eq.⟨ _ , eq ⟩) lemma : ∀ _ → _ ≃ _ lemma g = (∃ λ h → h ≡ subst P (inv _) ∘ g ∘ f⁻¹) ↔⟨ (∃-cong λ h → inverse $ ∘from≡↔≡∘to′ (lower-extensionality p (a ⊔ b) ext) (inverse Eq.⟨ _ , eq ⟩)) ⟩ (∃ λ h → h ∘ f ≡ g) ↝⟨ (∃-cong λ _ → inverse $ Eq.extensionality-isomorphism (lower-extensionality (b ⊔ p) (a ⊔ b) ext)) ⟩□ (∃ λ h → ∀ x → h (f x) ≡ g x) □ -- If f is an equivalence, then ∞-extendability along f is -- contractible (assuming extensionality). Is-∞-extendable-along-contractible-for-equivalences : {A : Type a} {B : Type b} {f : A → B} {P : B → Type p} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → Is-equivalence f → Contractible (Is-∞-extendable-along-[ f ] P) Is-∞-extendable-along-contractible-for-equivalences ext eq = Π-closure (lower-extensionality _ lzero ext) 0 λ n → Is-extendable-along-contractible-for-equivalences ext eq n ------------------------------------------------------------------------ -- Alternatives to Is-[_]-extendable-along-[_] and -- Is-∞-extendable-along-[_] -- A variant of Is-[_]-extendable-along-[_]. Is-[_]-extendable-along-const-tt-[_] : ℕ → Type a → Type b → Type (a ⊔ b) Is-[ zero ]-extendable-along-const-tt-[ A ] B = ↑ _ ⊤ Is-[ suc n ]-extendable-along-const-tt-[ A ] B = ((g : A → B) → ∃ λ (x : B) → ∀ y → x ≡ g y) × ((x y : B) → Is-[ n ]-extendable-along-const-tt-[ A ] (x ≡ y)) -- A variant of Is-∞-extendable-along-[_]. Is-∞-extendable-along-const-tt-[_] : Type a → Type b → Type (a ⊔ b) Is-∞-extendable-along-const-tt-[ A ] B = ∀ n → Is-[ n ]-extendable-along-const-tt-[ A ] B -- In some cases Is-[_]-extendable-along-[_] and -- Is-∞-extendable-along-[_] can be replaced by the variants. ≃Is-extendable-along-const-tt : {A : Type a} {B : Type b} → Extensionality? k (a ⊔ b) (a ⊔ b) → ∀ n → Is-[ n ]-extendable-along-[ (λ (_ : A) → lift tt) ] (λ (_ : ↑ a ⊤) → B) ↝[ k ] Is-[ n ]-extendable-along-const-tt-[ A ] B ≃Is-extendable-along-const-tt _ zero = F.id ≃Is-extendable-along-const-tt {a = a} {k = k} ext (suc n) = (∀-cong ext λ _ → Σ-cong (Eq.↔→≃ (_$ lift tt) const refl refl) λ _ → F.id) ×-cong Π-cong ext′ (Eq.↔→≃ (_$ lift tt) const refl refl) λ _ → Π-cong ext′ (Eq.↔→≃ (_$ lift tt) const refl refl) λ _ → ≃Is-extendable-along-const-tt ext n where ext′ = lower-extensionality? k a lzero ext ≃Is-∞-extendable-along-const-tt : {A : Type a} {B : Type b} → Extensionality? k (a ⊔ b) (a ⊔ b) → Is-∞-extendable-along-[ (λ (_ : A) → lift tt) ] (λ (_ : ↑ a ⊤) → B) ↝[ k ] Is-∞-extendable-along-const-tt-[ A ] B ≃Is-∞-extendable-along-const-tt {k = k} ext = ∀-cong (lower-extensionality? k _ lzero ext) λ n → ≃Is-extendable-along-const-tt ext n -- Preservation lemmas for Is-[_]-extendable-along-[_] and -- Is-∞-extendable-along-[_]. Is-extendable-along-const-tt-cong : {A : Type a} {B : Type b} {C : Type c} → Extensionality? k (a ⊔ b ⊔ c) (a ⊔ b ⊔ c) → (A≃B : A ≃ B) (A→≃B→ : {C : Type c} → (A → C) ≃ (B → C)) → ({C : Type c} (f : A → C) (x : A) → _≃_.to A→≃B→ f (_≃_.to A≃B x) ≡ f x) → ∀ n → Is-[ n ]-extendable-along-const-tt-[ A ] C ↝[ k ] Is-[ n ]-extendable-along-const-tt-[ B ] C Is-extendable-along-const-tt-cong _ _ _ _ zero = ↑ _ ⊤ ↔⟨ B.↑↔ ⟩ ⊤ ↔⟨ inverse B.↑↔ ⟩□ ↑ _ ⊤ □ Is-extendable-along-const-tt-cong {a = a} {b = b} {c = c} {k = k} ext A≃B A→≃B→ hyp (suc n) = (Π-cong ext A→≃B→ λ g → ∃-cong λ x → Π-cong (lower-extensionality? k c (a ⊔ b) ext) A≃B λ y → x ≡ g y ↝⟨ ≡⇒↝ _ $ cong (_ ≡_) $ sym $ hyp g y ⟩□ x ≡ _≃_.to A→≃B→ g (_≃_.to A≃B y) □) ×-cong (∀-cong (lower-extensionality? k (a ⊔ b) lzero ext) λ x → ∀-cong (lower-extensionality? k (a ⊔ b) lzero ext) λ y → Is-extendable-along-const-tt-cong ext A≃B A→≃B→ hyp n) Is-∞-extendable-along-const-tt-cong : {A : Type a} {B : Type b} {C : Type c} → Extensionality? k (a ⊔ b ⊔ c) (a ⊔ b ⊔ c) → (A≃B : A ≃ B) (A→≃B→ : {C : Type c} → (A → C) ≃ (B → C)) → ({C : Type c} (f : A → C) (x : A) → _≃_.to A→≃B→ f (_≃_.to A≃B x) ≡ f x) → Is-∞-extendable-along-const-tt-[ A ] C ↝[ k ] Is-∞-extendable-along-const-tt-[ B ] C Is-∞-extendable-along-const-tt-cong {k = k} ext A≃B A→≃B→ hyp = ∀-cong (lower-extensionality? k _ lzero ext) λ n → Is-extendable-along-const-tt-cong ext A≃B A→≃B→ hyp n
39.414307
135
0.479449
06f71e99950b70a4f45a9fb8ca5b93982607fe9c
2,900
agda
Agda
src/index.agda
JLimperg/msc-thesis-code
104cddc6b65386c7e121c13db417aebfd4b7a863
[ "MIT" ]
5
2021-04-13T21:31:17.000Z
2021-06-26T06:37:31.000Z
src/index.agda
JLimperg/msc-thesis-code
104cddc6b65386c7e121c13db417aebfd4b7a863
[ "MIT" ]
null
null
null
src/index.agda
JLimperg/msc-thesis-code
104cddc6b65386c7e121c13db417aebfd4b7a863
[ "MIT" ]
null
null
null
-- # A Reflexive Graph Model of Sized Types -- This is the formalisation of my M.Sc. thesis, available at -- https://limperg.de/paper/msc-thesis/ -- I define λST, a simply typed lambda calculus extended with sized types. I -- then give a reflexive graph model of λST which incorporates a notion of size -- irrelevance. This document lists all modules belonging to the development, -- roughly in dependency order. module index where -- ## Object Language -- The following modules define the syntax and type system of λST. -- Sizes, size contexts, size comparison. import Source.Size -- First formulation of size substitutions. import Source.Size.Substitution.Canonical -- Second formulation of size substitutions. import Source.Size.Substitution.Universe -- An abstraction for things which size substitutions can be applied to. import Source.Size.Substitution.Theory -- Types. import Source.Type -- Terms. import Source.Term -- ## Model -- The following modules define the reflexive graph model of λST. -- Propositional reflexive graphs and their morphisms. import Model.RGraph -- Model of sizes, size contexts, size comparison. import Model.Size -- Families of propositional reflexive graphs (PRGraph families) and their -- morphisms. import Model.Type.Core -- The terminal PRGraph family. import Model.Terminal -- Binary products of PRGraph families. import Model.Product -- Exponentials of PRGraph families (model of the function space). import Model.Exponential -- Model of size quantification. import Model.Quantification -- Model of the natural number type. import Model.Nat -- Model of the stream type. import Model.Stream -- Model of types and type contexts. import Model.Type -- Model of terms. import Model.Term -- ## Utility Library -- The following modules contain utility code. The majority of this is an -- implementation of (parts of) Homotopy Type Theory. import Util.Data.Product import Util.HoTT.Equiv import Util.HoTT.Equiv.Core import Util.HoTT.Equiv.Induction import Util.HoTT.FunctionalExtensionality import Util.HoTT.HLevel import Util.HoTT.HLevel.Core import Util.HoTT.Homotopy import Util.HoTT.Section import Util.HoTT.Singleton import Util.HoTT.Univalence import Util.HoTT.Univalence.Axiom import Util.HoTT.Univalence.Beta import Util.HoTT.Univalence.ContrFormulation import Util.HoTT.Univalence.Statement import Util.Induction.WellFounded import Util.Prelude import Util.Relation.Binary.Closure.SymmetricTransitive import Util.Relation.Binary.LogicalEquivalence import Util.Relation.Binary.PropositionalEquality import Util.Vec -- ## Miscellaneous -- Some terms of λST and their typing derivations. import Source.Examples -- Experiments with a hypothetical Agda without the ∞ < ∞ rule. import irreflexive-lt -- Ordinals as defined in the HoTT book. import Ordinal.HoTT -- Plump ordinals as presented by Shulman. import Ordinal.Shulman
24.576271
79
0.788276
fb5a7b23dce6c8349960d76ddfb4d12f26541821
743
agda
Agda
test/Fail/Issue295.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue295.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue295.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v tc.with:50 #-} module Issue295 where data ⊥ : Set where data Arr : Set where _⟶_ : ⊥ → ⊥ → Arr _﹔_ : Arr → Arr → Arr (a ⟶ b)﹔(c ⟶ d) with b ... | () data Fun : Arr → Set where ∙ : ∀ a b c d → Fun (a ⟶ b) → Fun (c ⟶ d) → Fun ((a ⟶ b)﹔(c ⟶ d)) f : ∀ a b c d e f → Fun (a ⟶ b) → Fun (c ⟶ d) → Fun (e ⟶ f) f a b c d e f F G = ∙ a b c d F G -- The problem does not appear to be restricted to the pretty-printer. -- With -v10 I get the following output: -- -- compareTerm (a ⟶ b) ﹔ (b ⟶ c) == a ⟶ c : Arr -- { compareAtom -- compareAtom (b ⟶ a) ﹔ (c ⟶ b) | b == a ⟶ c : Arr -- /tmp/Bug.agda:16,15-28 -- (b ⟶ a) ﹔ (c ⟶ b) | b != a ⟶ c of type Arr -- when checking that the expression ∙ a b b c F G has type -- Fun (a ⟶ c)
25.62069
70
0.508748
c5699424064ae764646e525fe6ffe22214328478
1,950
agda
Agda
theorems/cw/cohomology/HigherCohomologyGroupsOnDiag.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cw/cohomology/HigherCohomologyGroupsOnDiag.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cw/cohomology/HigherCohomologyGroupsOnDiag.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory open import groups.ExactSequence open import groups.Exactness open import groups.HomSequence open import groups.KernelImageUniqueFactorization import cw.cohomology.GridPtdMap as GPM open import cw.CW module cw.cohomology.HigherCohomologyGroupsOnDiag {i} (OT : OrdinaryTheory i) {n} (⊙skel : ⊙Skeleton {i} (S (S n))) (ac : ⊙has-cells-with-choice 0 ⊙skel i) where private n≤SSn : n ≤ S (S n) n≤SSn = lteSR lteS ⊙skel₋₁ = ⊙cw-init ⊙skel ac₋₁ = ⊙init-has-cells-with-choice ⊙skel ac ⊙skel₋₂ = ⊙cw-take n≤SSn ⊙skel ac₋₂ = ⊙take-has-cells-with-choice n≤SSn ⊙skel ac open OrdinaryTheory OT open import cw.cohomology.Descending OT open import cw.cohomology.WedgeOfCells OT open import cw.cohomology.HigherCoboundary OT ⊙skel open import cw.cohomology.HigherCoboundaryGrid OT ⊙skel ac {- Coker ≃ C(X₂/X₀) ≃ C(X) ^ | | C(X₁/X₀) WoC WoC := Wedges of Cells -} private C-apex : Group i C-apex = C (ℕ-to-ℤ (S (S n))) (⊙Cofiber (⊙cw-incl-tail n≤SSn ⊙skel)) open import cohomology.LongExactSequence cohomology-theory (ℕ-to-ℤ (S n)) (⊙cw-incl-tail n≤SSn ⊙skel) C-apex-iso-C-cw : C-apex ≃ᴳ C (ℕ-to-ℤ (S (S n))) ⊙⟦ ⊙skel ⟧ C-apex-iso-C-cw = Exact2.G-trivial-and-L-trivial-implies-H-iso-K (exact-seq-index 1 C-cofiber-exact-seq) (exact-seq-index 2 C-cofiber-exact-seq) (C-cw-at-higher ⊙skel₋₂ ltS ac₋₂) (C-cw-at-higher ⊙skel₋₂ (ltSR ltS) ac₋₂) open import groups.KernelImage (cst-hom {H = Lift-group {j = i} Unit-group}) cw-co∂-last (CXₙ/Xₙ₋₁-is-abelian ⊙skel (ℕ-to-ℤ (S (S n)))) open import groups.KernelCstImage (Lift-group {j = i} Unit-group) cw-co∂-last (CXₙ/Xₙ₋₁-is-abelian ⊙skel (ℕ-to-ℤ (S (S n)))) C-cw-iso-ker/im : C (ℕ-to-ℤ (S (S n))) ⊙⟦ ⊙skel ⟧ ≃ᴳ Ker/Im C-cw-iso-ker/im = (C-apex-iso-C-cw ∘eᴳ Coker-cw-co∂-last ∘eᴳ Ker-cst-quot-Im) ⁻¹ᴳ
29.545455
88
0.651282
20a7871deb90eb4ecbe4247aaee222e84e9a3c82
1,237
agda
Agda
src/Tactic/Reflection/Telescope.agda
lclem/agda-prelude
75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6
[ "MIT" ]
null
null
null
src/Tactic/Reflection/Telescope.agda
lclem/agda-prelude
75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6
[ "MIT" ]
null
null
null
src/Tactic/Reflection/Telescope.agda
lclem/agda-prelude
75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6
[ "MIT" ]
null
null
null
module Tactic.Reflection.Telescope where open import Prelude hiding (abs) open import Builtin.Reflection open import Tactic.Reflection.DeBruijn Telescope = List (Arg Type) telView : Type → Telescope × Type telView (pi a (abs _ b)) = first (_∷_ a) (telView b) telView a = [] , a visibleArity : Type → Nat visibleArity = length ∘ filter isVisible ∘ fst ∘ telView telPi : Telescope → Type → Type telPi tel b = foldr (λ a b → pi a (abs "_" b)) b tel arity : Name → TC Nat arity f = length ∘ fst ∘ telView <$> getType f argTel : Name → TC Telescope argTel f = fst ∘ telView <$> getType f telePat : Telescope → List (Arg Pattern) telePat = map (var "_" <$_) private teleArgs′ : Nat → List (Arg Type) → List (Arg Term) teleArgs′ (suc n) (a ∷ Γ) = (var n [] <$ a) ∷ teleArgs′ n Γ teleArgs′ _ _ = [] teleArgs : Telescope → List (Arg Term) teleArgs Γ = teleArgs′ (length Γ) Γ conParams : Name → TC Nat conParams c = caseM getDefinition c of λ { (data-cons d) → getParameters d ; _ → pure 0 } conPat : Name → TC Pattern conPat c = do np ← conParams c con c ∘ telePat ∘ drop np <$> argTel c conTerm : Name → TC Term conTerm c = do np ← conParams c con c ∘ teleArgs ∘ drop np <$> argTel c
23.788462
61
0.641876
4d04760abadabadf249cb8c67524c9d5fbfc5028
221
agda
Agda
test/Common/Nat.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Common/Nat.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Common/Nat.agda
antoinevanmuylder/agda
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --cubical-compatible #-} module Common.Nat where open import Agda.Builtin.Nat public using ( Nat; zero; suc; _+_; _*_ ) renaming ( _-_ to _∸_ ) pred : Nat → Nat pred zero = zero pred (suc n) = n
17
39
0.624434
1dbaa30924a3c02e202f4a3b6d7c83b8c0334272
1,616
agda
Agda
src/Web/Semantic/DL/Category/Properties/Tensor/RespectsEquiv.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
9
2015-09-13T17:46:41.000Z
2020-03-14T14:21:08.000Z
src/Web/Semantic/DL/Category/Properties/Tensor/RespectsEquiv.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
4
2018-11-14T02:32:28.000Z
2021-01-04T20:57:19.000Z
src/Web/Semantic/DL/Category/Properties/Tensor/RespectsEquiv.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
3
2017-12-03T14:52:09.000Z
2022-03-12T11:40:03.000Z
open import Data.Product using ( _,_ ) open import Data.Sum using ( inj₁ ; inj₂ ) open import Web.Semantic.DL.ABox.Interp using ( _*_ ) open import Web.Semantic.DL.ABox.Model using ( *-resp-⟨ABox⟩ ) open import Web.Semantic.DL.Category.Object using ( Object ; iface ) open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; _≣_ ; _⊑_ ; _,_ ) open import Web.Semantic.DL.Category.Tensor using ( _⟨⊗⟩_ ) open import Web.Semantic.DL.Category.Properties.Tensor.Lemmas using ( tensor-up ; tensor-down ; tensor-resp-⊨b ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ) open import Web.Semantic.Util using ( inode ; up ; down ) module Web.Semantic.DL.Category.Properties.Tensor.RespectsEquiv {Σ : Signature} {S T : TBox Σ} where tensor-resp-⊑ : ∀ {A₁ A₂ B₁ B₂ : Object S T} (F₁ G₁ : A₁ ⇒ B₁) (F₂ G₂ : A₂ ⇒ B₂) → (F₁ ⊑ G₁) → (F₂ ⊑ G₂) → (F₁ ⟨⊗⟩ F₂ ⊑ G₁ ⟨⊗⟩ G₂) tensor-resp-⊑ {A₁} {A₂} F₁ G₁ F₂ G₂ F₁⊑G₁ F₂⊑G₂ I (I⊨ST , (I⊨A₁ , I⊨A₂)) I⊨F₁F₂ = tensor-resp-⊨b G₁ G₂ I (F₁⊑G₁ (up * I) (I⊨ST , *-resp-⟨ABox⟩ inj₁ (inode * I) (iface A₁) I⊨A₁) (tensor-up F₁ F₂ I I⊨F₁F₂)) (F₂⊑G₂ (down * I) (I⊨ST , *-resp-⟨ABox⟩ inj₂ (inode * I) (iface A₂) I⊨A₂) (tensor-down F₁ F₂ I I⊨F₁F₂)) tensor-resp-≣ : ∀ {A₁ A₂ B₁ B₂ : Object S T} {F₁ G₁ : A₁ ⇒ B₁} {F₂ G₂ : A₂ ⇒ B₂} → (F₁ ≣ G₁) → (F₂ ≣ G₂) → (F₁ ⟨⊗⟩ F₂ ≣ G₁ ⟨⊗⟩ G₂) tensor-resp-≣ {A₁} {A₂} {B₁} {B₂} {F₁} {G₁} {F₂} {G₂} (F₁⊑G₁ , G₁⊑F₁) (F₂⊑G₂ , G₂⊑F₂) = ( tensor-resp-⊑ F₁ G₁ F₂ G₂ F₁⊑G₁ F₂⊑G₂ , tensor-resp-⊑ G₁ F₁ G₂ F₂ G₁⊑F₁ G₂⊑F₂ )
43.675676
77
0.598391
317e0fb8ac6aac5c63c2bfe2e2394b6605b1fad5
2,968
agda
Agda
Cubical/Categories/Monoidal/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Categories/Monoidal/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Categories/Monoidal/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
-- Monoidal categories {-# OPTIONS --safe #-} module Cubical.Categories.Monoidal.Base where open import Cubical.Categories.Category.Base open import Cubical.Categories.Constructions.BinProduct open import Cubical.Categories.Functor.Base open import Cubical.Categories.Functor.BinProduct open import Cubical.Categories.Morphism open import Cubical.Categories.NaturalTransformation.Base open import Cubical.Foundations.Prelude module _ {ℓ ℓ' : Level} (C : Category ℓ ℓ') where open Category C record TensorStr : Type (ℓ-max ℓ ℓ') where field ─⊗─ : Functor (C × C) C unit : ob open Functor -- Useful tensor product notation _⊗_ : ob → ob → ob x ⊗ y = ─⊗─ .F-ob (x , y) _⊗ₕ_ : ∀ {x y z w} → Hom[ x , y ] → Hom[ z , w ] → Hom[ x ⊗ z , y ⊗ w ] f ⊗ₕ g = ─⊗─ .F-hom (f , g) record StrictMonStr : Type (ℓ-max ℓ ℓ') where field tenstr : TensorStr open TensorStr tenstr public field -- Axioms - strict assoc : ∀ x y z → x ⊗ (y ⊗ z) ≡ (x ⊗ y) ⊗ z idl : ∀ x → unit ⊗ x ≡ x idr : ∀ x → x ⊗ unit ≡ x record MonoidalStr : Type (ℓ-max ℓ ℓ') where field tenstr : TensorStr open TensorStr tenstr public private -- Private names to make the axioms below look nice x⊗[y⊗z] : Functor (C × C × C) C x⊗[y⊗z] = ─⊗─ ∘F (𝟙⟨ C ⟩ ×F ─⊗─) [x⊗y]⊗z : Functor (C × C × C) C [x⊗y]⊗z = ─⊗─ ∘F (─⊗─ ×F 𝟙⟨ C ⟩) ∘F (×C-assoc C C C) x = 𝟙⟨ C ⟩ 1⊗x = ─⊗─ ∘F (rinj C C unit) x⊗1 = ─⊗─ ∘F (linj C C unit) field -- "Axioms" - up to natural isomorphism α : x⊗[y⊗z] ≅ᶜ [x⊗y]⊗z η : 1⊗x ≅ᶜ x ρ : x⊗1 ≅ᶜ x open NatIso -- More nice notations α⟨_,_,_⟩ : (x y z : ob) → Hom[ x ⊗ (y ⊗ z) , (x ⊗ y) ⊗ z ] α⟨ x , y , z ⟩ = α .trans ⟦ ( x , y , z ) ⟧ η⟨_⟩ : (x : ob) → Hom[ unit ⊗ x , x ] η⟨ x ⟩ = η .trans ⟦ x ⟧ ρ⟨_⟩ : (x : ob) → Hom[ x ⊗ unit , x ] ρ⟨ x ⟩ = ρ .trans ⟦ x ⟧ field -- Coherence conditions pentagon : ∀ w x y z → id ⊗ₕ α⟨ x , y , z ⟩ ⋆ α⟨ w , x ⊗ y , z ⟩ ⋆ α⟨ w , x , y ⟩ ⊗ₕ id ≡ α⟨ w , x , y ⊗ z ⟩ ⋆ α⟨ w ⊗ x , y , z ⟩ triangle : ∀ x y → α⟨ x , unit , y ⟩ ⋆ ρ⟨ x ⟩ ⊗ₕ id ≡ id ⊗ₕ η⟨ y ⟩ open isIso -- Inverses of α, η, ρ for convenience α⁻¹⟨_,_,_⟩ : (x y z : ob) → Hom[ (x ⊗ y) ⊗ z , x ⊗ (y ⊗ z) ] α⁻¹⟨ x , y , z ⟩ = α .nIso (x , y , z) .inv η⁻¹⟨_⟩ : (x : ob) → Hom[ x , unit ⊗ x ] η⁻¹⟨ x ⟩ = η .nIso (x) .inv ρ⁻¹⟨_⟩ : (x : ob) → Hom[ x , x ⊗ unit ] ρ⁻¹⟨ x ⟩ = ρ .nIso (x) .inv record StrictMonCategory ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field C : Category ℓ ℓ' sms : StrictMonStr C open Category C public open StrictMonStr sms public record MonoidalCategory ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field C : Category ℓ ℓ' monstr : MonoidalStr C open Category C public open MonoidalStr monstr public
24.528926
76
0.502358
0634e9170bbde22552080142c2de5f54104a8f16
1,475
agda
Agda
src/LibraBFT/Impl/Consensus/Properties/MetricsSafetyRules.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Consensus/Properties/MetricsSafetyRules.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Consensus/Properties/MetricsSafetyRules.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
open import LibraBFT.Impl.Consensus.MetricsSafetyRules open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.Impl.Properties.Util open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochIndep open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Prelude hiding (_++_) module LibraBFT.Impl.Consensus.Properties.MetricsSafetyRules where open Invariants module performInitializeSpec (safetyRules : SafetyRules) (storage : PersistentLivenessStorage) where record ContractOk (sr : SafetyRules) : Set where constructor mkContractOk field srPres : Preserves SafetyRulesInv safetyRules sr lvNothing : sr ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVote ≡ nothing open ContractOk Contract : EitherD-Post ErrLog SafetyRules Contract (Left _) = ⊤ Contract (Right sr) = ContractOk sr module _ (sri : SafetyRulesInv safetyRules) (lvNothing : safetyRules ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVote ≡ nothing) where -- TODO-2: Requires refinement postulate contract' : EitherD-weakestPre (performInitialize-ed-abs safetyRules storage) Contract contract : Contract (performInitialize-abs safetyRules storage) contract rewrite performInitialize-abs-≡ safetyRules storage = EitherD-contract (performInitialize-ed-abs safetyRules storage) Contract contract'
36.875
98
0.757966
12c9f0f81952b1e529e328547dcc99c2dfa69f3d
1,180
agda
Agda
theorems/cohomology/Sphere.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cohomology/Sphere.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cohomology/Sphere.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory module cohomology.Sphere {i} (OT : OrdinaryTheory i) where open OrdinaryTheory OT C-Sphere-≠-is-trivial : (n : ℤ) (m : ℕ) → (n ≠ ℕ-to-ℤ m) → is-trivialᴳ (C n (⊙Lift (⊙Sphere m))) C-Sphere-≠-is-trivial n O n≠0 = C-dimension n≠0 C-Sphere-≠-is-trivial n (S m) n≠Sm = iso-preserves'-trivial (C n (⊙Lift (⊙Sphere (S m))) ≃ᴳ⟨ C-emap n $ ⊙Susp-Lift-econv (⊙Sphere m) ⟩ C n (⊙Susp (⊙Lift (⊙Sphere m))) ≃ᴳ⟨ transportᴳ-iso (λ n → C n (⊙Susp (⊙Lift (⊙Sphere m)))) (succ-pred n) ⁻¹ᴳ ⟩ C (succ (pred n)) (⊙Susp (⊙Lift (⊙Sphere m))) ≃ᴳ⟨ C-Susp (pred n) (⊙Lift (⊙Sphere m)) ⟩ C (pred n) (⊙Lift (⊙Sphere m)) ≃ᴳ∎) (C-Sphere-≠-is-trivial (pred n) m (pred-≠ n≠Sm)) C-Sphere-diag : (m : ℕ) → C (ℕ-to-ℤ m) (⊙Lift (⊙Sphere m)) ≃ᴳ C 0 (⊙Lift ⊙S⁰) C-Sphere-diag O = idiso _ C-Sphere-diag (S m) = C (ℕ-to-ℤ (S m)) (⊙Lift (⊙Sphere (S m))) ≃ᴳ⟨ C-emap (ℕ-to-ℤ (S m)) (⊙Susp-Lift-econv (⊙Sphere m)) ⟩ C (ℕ-to-ℤ (S m)) (⊙Susp (⊙Lift (⊙Sphere m))) ≃ᴳ⟨ C-Susp (ℕ-to-ℤ m) (⊙Lift (⊙Sphere m)) ⟩ C (ℕ-to-ℤ m) (⊙Lift (⊙Sphere m)) ≃ᴳ⟨ C-Sphere-diag m ⟩ C 0 (⊙Lift ⊙S⁰) ≃ᴳ∎
33.714286
82
0.551695
1865bbbe83213ebca933c206674009ecd0e4fa35
2,449
agda
Agda
src/VL.agda
shinji-kono/zf-in-agda
031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0
[ "MIT" ]
5
2019-10-02T13:46:23.000Z
2021-01-10T13:27:48.000Z
src/VL.agda
shinji-kono/zf-in-agda
031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0
[ "MIT" ]
null
null
null
src/VL.agda
shinji-kono/zf-in-agda
031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0
[ "MIT" ]
null
null
null
open import Level open import Ordinals module VL {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) import BAlgbra open BAlgbra O open inOrdinal O import OrdUtil import ODUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O open OD O open OD.OD open ODAxiom odAxiom -- import ODC open _∧_ open _∨_ open Bool open HOD -- The cumulative hierarchy -- V 0 := ∅ -- V α + 1 := P ( V α ) -- V α := ⋃ { V β | β < α } V : ( β : Ordinal ) → HOD V β = TransFinite V1 β where V1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD V1 x V0 with trio< x o∅ V1 x V0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) V1 x V0 | tri≈ ¬a refl ¬c = Ord o∅ V1 x V0 | tri> ¬a ¬b c with Oprev-p x V1 x V0 | tri> ¬a ¬b c | yes p = Power ( V0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) V1 x V0 | tri> ¬a ¬b c | no ¬p = record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (V0 y lt) x ) } ; odmax = x; <odmax = λ {x} lt → proj1 lt } -- -- L ⊆ HOD ⊆ V -- -- HOD=V : (x : HOD) → V (odmax x) ∋ x -- HOD=V x = {!!} -- -- Definition for Power Set -- record Definitions : Set (suc n) where field Definition : HOD → HOD open Definitions Df : Definitions → (x : HOD) → HOD Df D x = Power x ∩ Definition D x -- The constructible Sets -- L 0 := ∅ -- L α + 1 := Df (L α) -- Definable Power Set -- V α := ⋃ { L β | β < α } L : ( β : Ordinal ) → Definitions → HOD L β D = TransFinite L1 β where L1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD L1 x L0 with trio< x o∅ L1 x L0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) L1 x L0 | tri≈ ¬a refl ¬c = Ord o∅ L1 x L0 | tri> ¬a ¬b c with Oprev-p x L1 x L0 | tri> ¬a ¬b c | yes p = Df D ( L0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) L1 x L0 | tri> ¬a ¬b c | no ¬p = record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (L0 y lt) x ) } ; odmax = x; <odmax = λ {x} lt → proj1 lt } V=L0 : Set (suc n) V=L0 = (x : Ordinal) → V x ≡ L x record { Definition = λ y → y }
28.149425
138
0.561862
c5e69fcd18d870b66c4ac5b9826aa86745db1b5f
452
agda
Agda
test/Succeed/Issue1791.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1791.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1791.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-01-21, issue 1791 -- With-clause stripping for copatterns with "polymorphic" field. -- {-# OPTIONS -v tc.with.strip:60 #-} postulate anything : ∀{A : Set} → A record Wrap (A : Set) : Set where field unwrap : A record Pointed (M : Set → Set) : Set₁ where field point : ∀{A} → M A -- field type starts with hidden quantifier! test : Pointed Wrap Wrap.unwrap (Pointed.point test) with Set₂ ... | _ = anything -- should succeed
23.789474
72
0.665929
4da4acae750527734c63676a9279a39a11989513
197
agda
Agda
Cubical/Codata/M/AsLimit/M.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Codata/M/AsLimit/M.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/Codata/M/AsLimit/M.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --guardedness --safe #-} module Cubical.Codata.M.AsLimit.M where open import Cubical.Codata.M.AsLimit.M.Base public open import Cubical.Codata.M.AsLimit.M.Properties public
28.142857
56
0.771574
c59c6b555d4a5193022caf272e767e5f3d03a924
2,884
agda
Agda
Equivalence.agda
NAMEhzj/Divide-and-Conquer-in-Agda
99bd3a5e772563153d78f61c1bbca48d7809ff48
[ "MIT" ]
null
null
null
Equivalence.agda
NAMEhzj/Divide-and-Conquer-in-Agda
99bd3a5e772563153d78f61c1bbca48d7809ff48
[ "MIT" ]
null
null
null
Equivalence.agda
NAMEhzj/Divide-and-Conquer-in-Agda
99bd3a5e772563153d78f61c1bbca48d7809ff48
[ "MIT" ]
null
null
null
{-# OPTIONS --no-universe-polymorphism #-} open import Relation.Binary.Core open import Function module Equivalence where infixr 5 _⇔_ record _⇔_ (A B : Set) : Set where field to : A → B from : B → A infixr 3 _↔_ record _↔_ (A B : Set) : Set where field to : A → B from : B → A from-to : ∀ a → from (to a) ≡ a to-from : ∀ b → to (from b) ≡ b infixr 3 _=⟨_⟩_ _=⟨_⟩_ : {A : Set} (x : A) { y z : A} → x ≡ y → y ≡ z → x ≡ z _=⟨_⟩_ _ refl refl = refl =sym : {A : Set} {x y : A} → x ≡ y → y ≡ x =sym refl = refl infixr 5 _under_ _under_ : {A B : Set} → {x y : A} → x ≡ y → (f : A → B) → f x ≡ f y _under_ refl f = refl infixr 4 _□= _□= : {A : Set} → (x : A) → x ≡ x _□= x = refl ⇔sym : {A B : Set} → A ⇔ B → B ⇔ A ⇔sym p = record {to = _⇔_.from p ; from = _⇔_.to p } infixr 4 _□⇔ _□⇔ : (A : Set) → A ⇔ A _□⇔ A = record {to = λ x → x; from = λ x → x} infixr 3 _⇔⟨_⟩_ _⇔⟨_⟩_ : (A : Set) {B C : Set} → A ⇔ B → B ⇔ C → A ⇔ C _⇔⟨_⟩_ A {B} {C} AisB BisC = record {to = (_⇔_.to BisC) ∘ (_⇔_.to AisB); from = (_⇔_.from AisB) ∘ (_⇔_.from BisC) } ↔sym : {A B : Set} → A ↔ B → B ↔ A ↔sym p = record {to = _↔_.from p ; from = _↔_.to p ; from-to = _↔_.to-from p ; to-from = _↔_.from-to p } infixr 4 _□↔ _□↔ : (A : Set) → A ↔ A _□↔ A = record {to = λ x → x; from = λ x → x; from-to = λ a → refl; to-from = λ b → refl} infixr 3 _↔⟨_⟩_ _↔⟨_⟩_ : (A : Set) {B C : Set} → A ↔ B → B ↔ C → A ↔ C _↔⟨_⟩_ A {B} {C} AisB BisC = record {to = to₂ ∘ to₁ ; from = from₁ ∘ from₂ ; from-to = λ a → (from₁ ∘ from₂ ∘ to₂ ∘ to₁) a =⟨ from-to₂ (to₁ a) under from₁ ⟩ from₁ (to₁ a) =⟨ from-to₁ a ⟩ a □= ; to-from = λ c → (to₂ ∘ to₁ ∘ from₁ ∘ from₂) c =⟨ to-from₁ (from₂ c) under to₂ ⟩ to₂ (from₂ c) =⟨ to-from₂ c ⟩ c □= } where to₁ = _↔_.to AisB to₂ = _↔_.to BisC from₁ = _↔_.from AisB from₂ = _↔_.from BisC from-to₁ = _↔_.from-to AisB from-to₂ = _↔_.from-to BisC to-from₁ = _↔_.to-from AisB to-from₂ = _↔_.to-from BisC
28.554455
117
0.34258
fbd7e480fc6820cc5cb8583e06706e481d86c9d4
373
agda
Agda
test/Fail/Issue1266a.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1266a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1266a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2014-09-02 -- Up to today, there was no implementation of shadowing local variables -- (e.g., λ-bound variables) by local imports. -- {-# OPTIONS -v scope.locals:10 #-} module _ where module M where A = Set1 test : (A : Set) → let open M in A test A = Set -- The A exported by M is in competition with the local A. -- Ambiguous name should be reported.
20.722222
72
0.678284
12e994adc9b111fdb1c589955d26f81c357e2ce0
10,189
agda
Agda
core/lib/types/Paths.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/types/Paths.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/types/Paths.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics module lib.types.Paths where {- ! is an equivalence and works on ≠ -} module _ {i} {A : Type i} {x y : A} where !-equiv : (x == y) ≃ (y == x) !-equiv = equiv ! ! !-! !-! ≠-inv : (x ≠ y) → (y ≠ x) ≠-inv x≠y y=x = x≠y (! y=x) {- Pre- and post- concatenation are equivalences -} module _ {i} {A : Type i} {x y z : A} where pre∙-is-equiv : (p : x == y) → is-equiv (λ (q : y == z) → p ∙ q) pre∙-is-equiv p = is-eq (λ q → p ∙ q) (λ r → ! p ∙ r) f-g g-f where f-g : ∀ r → p ∙ ! p ∙ r == r f-g r = ! (∙-assoc p (! p) r) ∙ ap (λ s → s ∙ r) (!-inv-r p) g-f : ∀ q → ! p ∙ p ∙ q == q g-f q = ! (∙-assoc (! p) p q) ∙ ap (λ s → s ∙ q) (!-inv-l p) pre∙-equiv : (p : x == y) → (y == z) ≃ (x == z) pre∙-equiv p = ((λ q → p ∙ q) , pre∙-is-equiv p) post∙-is-equiv : (p : y == z) → is-equiv (λ (q : x == y) → q ∙ p) post∙-is-equiv p = is-eq (λ q → q ∙ p) (λ r → r ∙ ! p) f-g g-f where f-g : ∀ r → (r ∙ ! p) ∙ p == r f-g r = ∙-assoc r (! p) p ∙ ap (λ s → r ∙ s) (!-inv-l p) ∙ ∙-unit-r r g-f : ∀ q → (q ∙ p) ∙ ! p == q g-f q = ∙-assoc q p (! p) ∙ ap (λ s → q ∙ s) (!-inv-r p) ∙ ∙-unit-r q post∙-equiv : (p : y == z) → (x == y) ≃ (x == z) post∙-equiv p = ((λ q → q ∙ p) , post∙-is-equiv p) pre∙'-is-equiv : (p : x == y) → is-equiv (λ (q : y == z) → p ∙' q) pre∙'-is-equiv p = is-eq (λ q → p ∙' q) (λ r → ! p ∙' r) f-g g-f where f-g : ∀ r → p ∙' ! p ∙' r == r f-g r = ! (∙'-assoc p (! p) r) ∙ ap (λ s → s ∙' r) (!-inv'-r p) ∙ ∙'-unit-l r g-f : ∀ q → ! p ∙' p ∙' q == q g-f q = ! (∙'-assoc (! p) p q) ∙ ap (λ s → s ∙' q) (!-inv'-l p) ∙ ∙'-unit-l q pre∙'-equiv : (p : x == y) → (y == z) ≃ (x == z) pre∙'-equiv p = ((λ q → p ∙' q) , pre∙'-is-equiv p) post∙'-is-equiv : (p : y == z) → is-equiv (λ (q : x == y) → q ∙' p) post∙'-is-equiv p = is-eq (λ q → q ∙' p) (λ r → r ∙' ! p) f-g g-f where f-g : ∀ r → (r ∙' ! p) ∙' p == r f-g r = ∙'-assoc r (! p) p ∙ ap (λ s → r ∙' s) (!-inv'-l p) g-f : ∀ q → (q ∙' p) ∙' ! p == q g-f q = ∙'-assoc q p (! p) ∙ ap (λ s → q ∙' s) (!-inv'-r p) post∙'-equiv : (p : y == z) → (x == y) ≃ (x == z) post∙'-equiv p = ((λ q → q ∙' p) , post∙'-is-equiv p) module _ {i j} {A : Type i} {B : Type j} {f : A → B} {x y : A} {b : B} where ↓-app=cst-in : {p : x == y} {u : f x == b} {v : f y == b} → u == (ap f p ∙ v) → (u == v [ (λ x → f x == b) ↓ p ]) ↓-app=cst-in {p = idp} q = q ↓-app=cst-out : {p : x == y} {u : f x == b} {v : f y == b} → (u == v [ (λ x → f x == b) ↓ p ]) → u == (ap f p ∙ v) ↓-app=cst-out {p = idp} r = r ↓-app=cst-β : {p : x == y} {u : f x == b} {v : f y == b} → (q : u == (ap f p ∙ v)) → ↓-app=cst-out {p = p} (↓-app=cst-in q) == q ↓-app=cst-β {p = idp} q = idp ↓-app=cst-η : {p : x == y} {u : f x == b} {v : f y == b} → (q : u == v [ (λ x → f x == b) ↓ p ]) → ↓-app=cst-in (↓-app=cst-out q) == q ↓-app=cst-η {p = idp} q = idp ↓-app=cst-econv : {p : x == y} {u : f x == b} {v : f y == b} → (u == (ap f p ∙ v)) ≃ (u == v [ (λ x → f x == b) ↓ p ]) ↓-app=cst-econv {p = p} = equiv ↓-app=cst-in ↓-app=cst-out (↓-app=cst-η {p = p}) (↓-app=cst-β {p = p}) ↓-cst=app-in : {p : x == y} {u : b == f x} {v : b == f y} → (u ∙' ap f p) == v → (u == v [ (λ x → b == f x) ↓ p ]) ↓-cst=app-in {p = idp} q = q ↓-cst=app-out : {p : x == y} {u : b == f x} {v : b == f y} → (u == v [ (λ x → b == f x) ↓ p ]) → (u ∙' ap f p) == v ↓-cst=app-out {p = idp} r = r ↓-cst=app-econv : {p : x == y} {u : b == f x} {v : b == f y} → ((u ∙' ap f p) == v) ≃ (u == v [ (λ x → b == f x) ↓ p ]) ↓-cst=app-econv {p = idp} = equiv ↓-cst=app-in ↓-cst=app-out (λ _ → idp) (λ _ → idp) {- alternative versions -} module _ {i j} {A : Type i} {B : Type j} {f : A → B} {x y : A} {b : B} where ↓-app=cst-in' : {p : x == y} {u : f x == b} {v : f y == b} → u == (ap f p ∙' v) → (u == v [ (λ x → f x == b) ↓ p ]) ↓-app=cst-in' {p = idp} {v = idp} q = q ↓-app=cst-out' : {p : x == y} {u : f x == b} {v : f y == b} → (u == v [ (λ x → f x == b) ↓ p ]) → u == (ap f p ∙' v) ↓-app=cst-out' {p = idp} {v = idp} r = r ↓-app=cst-β' : {p : x == y} {u : f x == b} {v : f y == b} → (q : u == (ap f p ∙' v)) → ↓-app=cst-out' {p = p} {v = v} (↓-app=cst-in' q) == q ↓-app=cst-β' {p = idp} {v = idp} q = idp ↓-app=cst-η' : {p : x == y} {u : f x == b} {v : f y == b} → (q : u == v [ (λ x → f x == b) ↓ p ]) → ↓-app=cst-in' (↓-app=cst-out' q) == q ↓-app=cst-η' {p = idp} {v = idp} q = idp ↓-cst=app-in' : {p : x == y} {u : b == f x} {v : b == f y} → (u ∙ ap f p) == v → (u == v [ (λ x → b == f x) ↓ p ]) ↓-cst=app-in' {p = idp} {u = idp} q = q ↓-cst=app-out' : {p : x == y} {u : b == f x} {v : b == f y} → (u == v [ (λ x → b == f x) ↓ p ]) → (u ∙ ap f p) == v ↓-cst=app-out' {p = idp} {u = idp} r = r module _ {i} {A : Type i} where ↓-app=idf-in : {f : A → A} {x y : A} {p : x == y} {u : f x == x} {v : f y == y} → u ∙' p == ap f p ∙ v → u == v [ (λ z → f z == z) ↓ p ] ↓-app=idf-in {p = idp} q = q ↓-app=idf-out : {f : A → A} {x y : A} {p : x == y} {u : f x == x} {v : f y == y} → u == v [ (λ z → f z == z) ↓ p ] → u ∙' p == ap f p ∙ v ↓-app=idf-out {p = idp} q = q ↓-cst=idf-in : {a : A} {x y : A} {p : x == y} {u : a == x} {v : a == y} → (u ∙' p) == v → (u == v [ (λ x → a == x) ↓ p ]) ↓-cst=idf-in {p = idp} q = q ↓-cst=idf-in' : {a : A} {x y : A} {p : x == y} {u : a == x} {v : a == y} → (u ∙ p) == v → (u == v [ (λ x → a == x) ↓ p ]) ↓-cst=idf-in' {p = idp} q = ! (∙-unit-r _) ∙ q ↓-idf=cst-in : {a : A} {x y : A} {p : x == y} {u : x == a} {v : y == a} → u == p ∙ v → (u == v [ (λ x → x == a) ↓ p ]) ↓-idf=cst-in {p = idp} q = q ↓-idf=cst-out : {a : A} {x y : A} {p : x == y} {u : x == a} {v : y == a} → (u == v [ (λ x → x == a) ↓ p ]) → u == p ∙ v ↓-idf=cst-out {p = idp} q = q ↓-idf=cst-in' : {a : A} {x y : A} {p : x == y} {u : x == a} {v : y == a} → u == p ∙' v → (u == v [ (λ x → x == a) ↓ p ]) ↓-idf=cst-in' {p = idp} q = q ∙ ∙'-unit-l _ ↓-idf=idf-in' : {x y : A} {p : x == y} {u : x == x} {v : y == y} → u ∙ p == p ∙' v → (u == v [ (λ x → x == x) ↓ p ]) ↓-idf=idf-in' {p = idp} q = ! (∙-unit-r _) ∙ q ∙ ∙'-unit-l _ ↓-idf=idf-out' : {x y : A} {p : x == y} {u : x == x} {v : y == y} → (u == v [ (λ x → x == x) ↓ p ]) → u ∙ p == p ∙' v ↓-idf=idf-out' {p = idp} q = ∙-unit-r _ ∙ q ∙ ! (∙'-unit-l _) {- Nondependent identity type -} ↓-='-in : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B} {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u ∙' ap g p) == (ap f p ∙ v) → (u == v [ (λ x → f x == g x) ↓ p ]) ↓-='-in {p = idp} q = q ↓-='-out : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B} {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u == v [ (λ x → f x == g x) ↓ p ]) → (u ∙' ap g p) == (ap f p ∙ v) ↓-='-out {p = idp} q = q ↓-='-in' : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B} {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u ∙ ap g p) == (ap f p ∙' v) → (u == v [ (λ x → f x == g x) ↓ p ]) ↓-='-in' {p = idp} q = ! (∙-unit-r _) ∙ q ∙ (∙'-unit-l _) ↓-='-out' : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B} {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u == v [ (λ x → f x == g x) ↓ p ]) → (u ∙ ap g p) == (ap f p ∙' v) ↓-='-out' {p = idp} q = (∙-unit-r _) ∙ q ∙ ! (∙'-unit-l _) {- Identity type where the type is dependent -} ↓-=-in : ∀ {i j} {A : Type i} {B : A → Type j} {f g : Π A B} {x y : A} {p : x == y} {u : g x == f x} {v : g y == f y} → (u ◃ apd f p) == (apd g p ▹ v) → (u == v [ (λ x → g x == f x) ↓ p ]) ↓-=-in {B = B} {p = idp} {u} {v} q = ! (◃idp {B = B} u) ∙ q ∙ idp▹ {B = B} v ↓-=-out : ∀ {i j} {A : Type i} {B : A → Type j} {f g : Π A B} {x y : A} {p : x == y} {u : g x == f x} {v : g y == f y} → (u == v [ (λ x → g x == f x) ↓ p ]) → (u ◃ apd f p) == (apd g p ▹ v) ↓-=-out {B = B} {p = idp} {u} {v} q = (◃idp {B = B} u) ∙ q ∙ ! (idp▹ {B = B} v) -- Dependent path in a type of the form [λ x → g (f x) == x] module _ {i j} {A : Type i} {B : Type j} (g : B → A) (f : A → B) where ↓-∘=idf-in' : {x y : A} {p : x == y} {u : g (f x) == x} {v : g (f y) == y} → ((ap g (ap f p) ∙' v) == (u ∙ p)) → (u == v [ (λ x → g (f x) == x) ↓ p ]) ↓-∘=idf-in' {p = idp} q = ! (∙-unit-r _) ∙ (! q) ∙ (∙'-unit-l _) -- WIP, derive it from more primitive principles -- ↓-∘=id-in f g {p = p} {u} {v} q = -- ↓-=-in (u ◃ apd (λ x → g (f x)) p =⟨ apd-∘ f g p |in-ctx (λ t → u ◃ t) ⟩ -- u ◃ ↓-apd-out _ f p (apdd g p (apd f p)) =⟨ apdd-cst (λ _ b → g b) p (ap f p) (! (apd-nd f p)) |in-ctx (λ t → u ◃ ↓-apd-out _ f p t) ⟩ -- u ◃ ↓-apd-out _ f p (apd (λ t → g (π₂ t)) (pair= p (apd f p))) =⟨ apd-∘ π₂ g (pair= p (apd f p)) |in-ctx (λ t → u ◃ ↓-apd-out _ f p t) ⟩ -- u ◃ ↓-apd-out _ f p (↓-apd-out _ π₂ (pair= p (apd f p)) (apdd g (pair= p (apd f p)) (apd π₂ (pair= p (apd f p))))) =⟨ {!!} ⟩ -- apd (λ x → x) p ▹ v ∎) -- module _ {i j} {A : Type i} {B : Type j} {x y z : A → B} where -- lhs : -- {a a' : A} {p : a == a'} {q : x a == y a} {q' : x a' == y a'} -- {r : y a == z a} {r' : y a' == z a'} -- (α : q == q' [ (λ a → x a == y a) ↓ p ]) -- (β : r ∙ ap z p == ap y p ∙' r') -- → (q ∙' r) ∙ ap z p == ap x p ∙' q' ∙' r' -- lhs = -- (q ∙' r) ∙ ap z p =⟨ ? ⟩ -- assoc -- q ∙' (r ∙ ap z p) =⟨ ? ⟩ -- β -- q ∙' (ap y p ∙' r') =⟨ ? ⟩ -- assoc -- (q ∙' ap y p) ∙' r' =⟨ ? ⟩ -- ∙ = ∙' -- (q ∙ ap y p) ∙' r' =⟨ ? ⟩ -- α -- (ap x p ∙' q') ∙' r' =⟨ ? ⟩ -- assoc -- ap x p ∙' q' ∙' r' ∎ -- thing : -- {a a' : A} {p : a == a'} {q : x a == y a} {q' : x a' == y a'} -- {r : y a == z a} {r' : y a' == z a'} -- (α : q == q' [ (λ a → x a == y a) ↓ p ]) -- (β : r ∙ ap z p == ap y p ∙' r') -- → (_∙'2ᵈ_ {r = r} {r' = r'} α (↓-='-in' β) == ↓-='-in' {!!}) -- thing = {!!}
37.459559
147
0.333693
1d04ed093bcafae099408ffeb6c0dee3a873086e
1,694
agda
Agda
Fields/Orders/Total/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Fields/Orders/Total/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Fields/Orders/Total/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import Fields.Fields open import Fields.Orders.Total.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Sets.EquivalenceRelations open import LogicalFormulae open import Groups.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.Orders.Total.Lemmas {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {F : Field R} {p : _} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} {oR : PartiallyOrderedRing R pOrder} (oF : TotallyOrderedField F oR) where open Ring R open Group additiveGroup open Setoid S open Equivalence eq open Field F open TotallyOrderedField oF open TotallyOrderedRing oRing open PartiallyOrderedRing oR open SetoidTotalOrder total open SetoidPartialOrder pOrder open import Rings.InitialRing R open import Rings.Orders.Total.Lemmas oRing open import Rings.Orders.Partial.Lemmas oR open import Rings.Lemmas R open import Groups.Lemmas additiveGroup charNotN : (n : ℕ) → fromN (succ n) ∼ 0R → False charNotN n pr = irreflexive (<WellDefined reflexive pr t) where t : 0R < fromN (succ n) t = fromNPreservesOrder (0<1 (Field.nontrivial F)) (succIsPositive n) charNot2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False charNot2 pr = charNotN 1 (transitive (transitive +Associative identRight) pr)
36.826087
290
0.75915
590f3bf8c87c2595d9fe2789b13273163ad79795
3,970
agda
Agda
Categories/Category/Monoidal/Braided/Properties.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Monoidal/Braided/Properties.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Monoidal/Braided/Properties.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category) open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Braided using (Braided) module Categories.Category.Monoidal.Braided.Properties {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (BM : Braided M) where open import Data.Product using (_,_) open import Categories.Category.Monoidal.Properties M open import Categories.Category.Monoidal.Reasoning M open import Categories.Category.Monoidal.Utilities M open import Categories.Functor using (Functor) open import Categories.Morphism.Reasoning C hiding (push-eq) open import Categories.NaturalTransformation.NaturalIsomorphism.Properties using (push-eq) open Category C open Braided BM open Commutation private variable X Y Z : Obj -- A shorthand for the braiding B : ∀ {X Y} → X ⊗₀ Y ⇒ Y ⊗₀ X B {X} {Y} = braiding.⇒.η (X , Y) -- It's easier to prove the following lemma, which is the desired -- coherence theorem moduolo application of the |-⊗ unit| functor. -- Because |-⊗ unit| is equivalent to the identity functor, the -- lemma and the theorem are equivalent. -- The following diagram illustrates the hexagon that we are -- operating on. The main outer hexagon is hexagon₁, the braiding -- coherence, instantiated with X, 1 and 1 (Here we denote the unit -- by 1 for brevity). -- In the middle are X1 and 1X along with morphisms towards them. -- The lower hexagon (given by the double lines) commutes and is -- an intermediary in the final proof. It is there to effectively -- get rid of the top half of the main hexagon. -- The rest of the proof is isolating the bottom left triangle -- which represents our desired identity. It is doing that by -- proving that the pentagon to the right of it commutes. -- The pentagon commuting is, in turn, proved by gluing the -- rightmost "square" onto the middle triangle. -- -- -- ┌─────> X(11) ─────────> (11)X ──────┐ -- ┌┘ α │ B │ α └┐ -- ┌┘ │id⊗λ │λ⊗id └┐ -- ┌┘ V V V -- (X1)1 ═══════> X1 ════════════> 1X <══════ 1(1X) -- ╚╗ ρ⊗id Λ <───┐ B λ Λ -- ╚╗ │λ⊗id └────────┐ ╔╝ -- ╚╗ │ λ └┐ ╔╝ -- ╚═════> (1X)1 ═════════> 1(X1) ═════╝ -- B⊗id α id⊗B braiding-coherence⊗unit : [ (X ⊗₀ unit) ⊗₀ unit ⇒ X ⊗₀ unit ]⟨ B ⊗₁ id ⇒⟨ (unit ⊗₀ X) ⊗₀ unit ⟩ unitorˡ.from ⊗₁ id ≈ unitorʳ.from ⊗₁ id ⟩ braiding-coherence⊗unit = cancel-fromˡ braiding.FX≅GX ( begin B ∘ unitorˡ.from ⊗₁ id ∘ B ⊗₁ id ≈⟨ pullˡ (⟺ (glue◽◃ unitorˡ-commute-from coherence₁)) ⟩ (unitorˡ.from ∘ id ⊗₁ B ∘ associator.from) ∘ B ⊗₁ id ≈⟨ assoc²' ⟩ unitorˡ.from ∘ id ⊗₁ B ∘ associator.from ∘ B ⊗₁ id ≈⟨ refl⟩∘⟨ hexagon₁ ⟩ unitorˡ.from ∘ associator.from ∘ B ∘ associator.from ≈⟨ pullˡ coherence₁ ⟩ unitorˡ.from ⊗₁ id ∘ B ∘ associator.from ≈˘⟨ pushˡ (braiding.⇒.commute _) ⟩ (B ∘ id ⊗₁ unitorˡ.from) ∘ associator.from ≈⟨ pullʳ triangle ⟩ B ∘ unitorʳ.from ⊗₁ id ∎) -- The desired theorem follows from |braiding-coherence⊗unit| by -- translating it along the right unitor (which is a natural iso). braiding-coherence : [ X ⊗₀ unit ⇒ X ]⟨ B ⇒⟨ unit ⊗₀ X ⟩ unitorˡ.from ≈ unitorʳ.from ⟩ braiding-coherence = push-eq unitorʳ-naturalIsomorphism (begin (unitorˡ.from ∘ B) ⊗₁ id ≈⟨ homomorphism ⟩ (unitorˡ.from ⊗₁ id) ∘ (B ⊗₁ id) ≈⟨ braiding-coherence⊗unit ⟩ unitorʳ.from ⊗₁ id ∎) where open Functor (-⊗ unit)
42.688172
124
0.559698
c57ff3179387b73111589c536d3e7ac5da346a83
6,903
agda
Agda
completeness.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
1
2019-12-19T23:42:31.000Z
2019-12-19T23:42:31.000Z
completeness.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
null
null
null
completeness.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
null
null
null
open import Nat open import Prelude open import List open import contexts open import core module completeness where -- any hole is new to a complete expression e-complete-hnn : ∀{e u} → e ecomplete → hole-name-new e u e-complete-hnn (ECFix cmp) = HNNFix (e-complete-hnn cmp) e-complete-hnn ECVar = HNNVar e-complete-hnn (ECAp cmp1 cmp2) = HNNAp (e-complete-hnn cmp1) (e-complete-hnn cmp2) e-complete-hnn ECUnit = HNNUnit e-complete-hnn (ECPair cmp cmp₁) = HNNPair (e-complete-hnn cmp) (e-complete-hnn cmp₁) e-complete-hnn (ECFst cmp) = HNNFst (e-complete-hnn cmp) e-complete-hnn (ECSnd cmp) = HNNSnd (e-complete-hnn cmp) e-complete-hnn (ECCtor cmp) = HNNCtor (e-complete-hnn cmp) e-complete-hnn (ECCase cmp h) = HNNCase (e-complete-hnn cmp) λ i<∥rules∥ → e-complete-hnn (h i<∥rules∥) e-complete-hnn (ECAsrt cmp1 cmp2) = HNNAsrt (e-complete-hnn cmp1) (e-complete-hnn cmp2) {- TODO : probably delete e-hnn-complete : ∀{e} → (∀{u} → hole-name-new e u) → e ecomplete e-hnn-complete hnn∀ = {!!} -} -- a complete expression is holes-disjoint to all expressions e-complete-disjoint : ∀{e1 e2} → e1 ecomplete → holes-disjoint e1 e2 e-complete-disjoint (ECFix cmp) = HDFix (e-complete-disjoint cmp) e-complete-disjoint ECVar = HDVar e-complete-disjoint (ECAp cmp1 cmp2) = HDAp (e-complete-disjoint cmp1) (e-complete-disjoint cmp2) e-complete-disjoint ECUnit = HDUnit e-complete-disjoint (ECPair cmp cmp₁) = HDPair (e-complete-disjoint cmp) (e-complete-disjoint cmp₁) e-complete-disjoint (ECFst cmp) = HDFst (e-complete-disjoint cmp) e-complete-disjoint (ECSnd cmp) = HDSnd (e-complete-disjoint cmp) e-complete-disjoint (ECCtor cmp) = HDCtor (e-complete-disjoint cmp) e-complete-disjoint (ECCase cmp h) = HDCase (e-complete-disjoint cmp) λ i<∥rules∥ → e-complete-disjoint (h i<∥rules∥) e-complete-disjoint (ECAsrt cmp1 cmp2) = HDAsrt (e-complete-disjoint cmp1) (e-complete-disjoint cmp2) -- TODO a holes-disjoint-sym check - very involved but arguably pretty important -- TODO we should generalize this, to a theorem that says that if a hole name is new in -- e, then it is new in r and k {- TODO} -- if e evals to r, and e is complete, then r is complete eval-completeness : ∀{Δ Σ' Γ E e r τ k} → E env-complete → Δ , Σ' , Γ ⊢ E → Δ , Σ' , Γ ⊢ e :: τ → E ⊢ e ⇒ r ⊣ k → e ecomplete → r rcomplete eval-completeness Ecmp Γ⊢E (TALam _ _) EFun (ECLam ecmp) = RCLam Ecmp ecmp eval-completeness Ecmp Γ⊢E (TAFix _ _ _) EFix (ECFix ecmp) = RCFix Ecmp ecmp eval-completeness (ENVC Ecmp) Γ⊢E (TAVar _) (EVar h) ECVar = Ecmp h eval-completeness Ecmp Γ⊢E (TAApp _ ta-f ta-arg) (EApp {Ef = Ef} {x} {r2 = r2} CF∞ eval-f eval-arg eval-ef) (ECAp cmp-f cmp-arg) with eval-completeness Ecmp Γ⊢E ta-f eval-f cmp-f | preservation Γ⊢E ta-f eval-f ... | RCLam (ENVC Efcmp) efcmp | TALam Γ'⊢Ef (TALam _ ta-ef) = eval-completeness (ENVC env-cmp) (EnvInd Γ'⊢Ef (preservation Γ⊢E ta-arg eval-arg)) ta-ef eval-ef efcmp where env-cmp : ∀{x' rx'} → (x' , rx') ∈ (Ef ,, (x , r2)) → rx' rcomplete env-cmp {x'} {rx'} h with ctx-split {Γ = Ef} h env-cmp {x'} {rx'} h | Inl (_ , x'∈Ef) = Efcmp x'∈Ef env-cmp {x'} {rx'} h | Inr (_ , rx'==r2) rewrite rx'==r2 = eval-completeness Ecmp Γ⊢E ta-arg eval-arg cmp-arg eval-completeness Ecmp Γ⊢E (TAApp _ ta-f ta-arg) (EAppFix {Ef = Ef} {f} {x} {ef} {r2 = r2} CF∞ h eval-f eval-arg eval-ef) (ECAp cmp-f cmp-arg) rewrite h with eval-completeness Ecmp Γ⊢E ta-f eval-f cmp-f | preservation Γ⊢E ta-f eval-f ... | RCFix (ENVC Efcmp) efcmp | TAFix Γ'⊢Ef (TAFix _ _ ta-ef) = eval-completeness (ENVC new-Ef+-cmp) new-ctxcons ta-ef eval-ef efcmp where new-ctxcons = EnvInd (EnvInd Γ'⊢Ef (preservation Γ⊢E ta-f eval-f)) (preservation Γ⊢E ta-arg eval-arg) new-Ef-cmp : ∀{x' rx'} → (x' , rx') ∈ (Ef ,, (f , [ Ef ]fix f ⦇·λ x => ef ·⦈)) → rx' rcomplete new-Ef-cmp {x'} {rx'} h with ctx-split {Γ = Ef} h new-Ef-cmp {x'} {rx'} h | Inl (_ , x'∈Ef) = Efcmp x'∈Ef new-Ef-cmp {x'} {rx'} h | Inr (_ , rx'==r2) rewrite rx'==r2 = RCFix (ENVC Efcmp) efcmp new-Ef+-cmp : ∀{x' rx'} → (x' , rx') ∈ (Ef ,, (f , [ Ef ]fix f ⦇·λ x => ef ·⦈) ,, (x , r2)) → rx' rcomplete new-Ef+-cmp {x'} {rx'} h with ctx-split {Γ = Ef ,, (f , [ Ef ]fix f ⦇·λ x => ef ·⦈)} h new-Ef+-cmp {x'} {rx'} h | Inl (_ , x'∈Ef+) = new-Ef-cmp x'∈Ef+ new-Ef+-cmp {x'} {rx'} h | Inr (_ , rx'==r2) rewrite rx'==r2 = eval-completeness Ecmp Γ⊢E ta-arg eval-arg cmp-arg eval-completeness Ecmp Γ⊢E (TAApp _ ta1 ta2) (EAppUnfinished eval1 _ _ eval2) (ECAp ecmp1 ecmp2) = RCAp (eval-completeness Ecmp Γ⊢E ta1 eval1 ecmp1) (eval-completeness Ecmp Γ⊢E ta2 eval2 ecmp2) eval-completeness Ecmp Γ⊢E (TATpl ∥es∥==∥τs∥ _ tas) (ETuple ∥es∥==∥rs∥ ∥es∥==∥ks∥ evals) (ECTpl cmps) = RCTpl λ {i} rs[i] → let _ , es[i] = ∥l1∥==∥l2∥→l1[i]→l2[i] (! ∥es∥==∥rs∥) rs[i] _ , ks[i] = ∥l1∥==∥l2∥→l1[i]→l2[i] ∥es∥==∥ks∥ es[i] _ , τs[i] = ∥l1∥==∥l2∥→l1[i]→l2[i] ∥es∥==∥τs∥ es[i] in eval-completeness Ecmp Γ⊢E (tas es[i] τs[i]) (evals es[i] rs[i] ks[i]) (cmps es[i]) eval-completeness Ecmp Γ⊢E (TAGet ∥rs⊫=∥τs∥ i<∥τs∥ ta) (EGet _ i<∥rs∥ eval) (ECGet ecmp) with eval-completeness Ecmp Γ⊢E ta eval ecmp ... | RCTpl h = h i<∥rs∥ eval-completeness Ecmp Γ⊢E (TAGet _ i<∥τs∥ ta) (EGetUnfinished eval _) (ECGet ecmp) = RCGet (eval-completeness Ecmp Γ⊢E ta eval ecmp) eval-completeness Ecmp Γ⊢E (TACtor _ _ ta) (ECtor eval) (ECCtor ecmp) = RCCtor (eval-completeness Ecmp Γ⊢E ta eval ecmp) eval-completeness {Σ' = Σ'} (ENVC Ecmp) Γ⊢E (TACase d∈Σ'1 ta h1 h2) (EMatch {E = E} {xc = xc} {r' = r'} CF∞ form eval eval-ec) (ECCase ecmp rules-cmp) with h2 form ... | _ , _ , _ , _ , c∈cctx1 , ta-ec with preservation Γ⊢E ta eval ... | TACtor {cctx = cctx} d∈Σ' c∈cctx ta-r' rewrite ctxunicity {Γ = π1 Σ'} d∈Σ'1 d∈Σ' | ctxunicity {Γ = cctx} c∈cctx1 c∈cctx = eval-completeness (ENVC new-E-cmp) (EnvInd Γ⊢E ta-r') ta-ec eval-ec (rules-cmp form) where new-E-cmp : ∀{x' rx'} → (x' , rx') ∈ (E ,, (xc , r')) → rx' rcomplete new-E-cmp {x'} {rx'} x'∈E+ with ctx-split {Γ = E} x'∈E+ ... | Inl (_ , x'∈E) = Ecmp x'∈E ... | Inr (_ , rx'==r') rewrite rx'==r' with eval-completeness (ENVC Ecmp) Γ⊢E ta eval ecmp ... | RCCtor r'cmp = r'cmp eval-completeness Ecmp Γ⊢E (TACase _ ta _ _) (EMatchUnfinished eval _) (ECCase ecmp rulescmp) = RCCase Ecmp (eval-completeness Ecmp Γ⊢E ta eval ecmp) rulescmp eval-completeness Ecmp Γ⊢E (TAHole _) EHole () eval-completeness Ecmp Γ⊢E (TAPF _) EPF (ECPF pf-cmp) = RCPF pf-cmp eval-completeness Ecmp Γ⊢E (TAAsrt _ _ _) (EAsrt _ _ _) (ECAsrt _ _) = RCTpl (λ ()) -}
58.008403
152
0.60423