hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
39ab03b9e8d049b3e7158a5936781b2fb9ee678c
2,600
agda
Agda
src/Bf/Ip.agda
mietek/formal-logic
2dd761bfa96ccda089888e8defa6814776fa2922
[ "X11" ]
26
2015-08-31T09:49:52.000Z
2021-11-13T12:37:44.000Z
src/Bf/Ip.agda
mietek/formal-logic
2dd761bfa96ccda089888e8defa6814776fa2922
[ "X11" ]
null
null
null
src/Bf/Ip.agda
mietek/formal-logic
2dd761bfa96ccda089888e8defa6814776fa2922
[ "X11" ]
null
null
null
-- Intuitionistic propositional logic, de Bruijn approach, final encoding module Bf.Ip where open import Lib using (List; _,_; LMem; lzero; lsuc) -- Types infixl 2 _&&_ infixl 1 _||_ infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty _&&_ : Ty -> Ty -> Ty _||_ : Ty -> Ty -> Ty FALSE : Ty infixr 0 _<=>_ _<=>_ : Ty -> Ty -> Ty a <=> b = (a => b) && (b => a) NOT : Ty -> Ty NOT a = a => FALSE TRUE : Ty TRUE = FALSE => FALSE -- Context and truth judgement Cx : Set Cx = List Ty isTrue : Ty -> Cx -> Set isTrue a tc = LMem a tc -- Terms TmRepr : Set1 TmRepr = Cx -> Ty -> Set module ArrMp where record Tm (tr : TmRepr) : Set1 where infixl 1 _$_ infixr 0 lam=>_ field var : forall {tc a} -> isTrue a tc -> tr tc a lam=>_ : forall {tc a b} -> tr (tc , a) b -> tr tc (a => b) _$_ : forall {tc a b} -> tr tc (a => b) -> tr tc a -> tr tc b v0 : forall {tc a} -> tr (tc , a) a v0 = var lzero v1 : forall {tc a b} -> tr (tc , a , b) a v1 = var (lsuc lzero) v2 : forall {tc a b c} -> tr (tc , a , b , c) a v2 = var (lsuc (lsuc lzero)) open Tm {{...}} public module Mp where record Tm (tr : TmRepr) : Set1 where field pair' : forall {tc a b} -> tr tc a -> tr tc b -> tr tc (a && b) fst : forall {tc a b} -> tr tc (a && b) -> tr tc a snd : forall {tc a b} -> tr tc (a && b) -> tr tc b left : forall {tc a b} -> tr tc a -> tr tc (a || b) right : forall {tc a b} -> tr tc b -> tr tc (a || b) case' : forall {tc a b c} -> tr tc (a || b) -> tr (tc , a) c -> tr (tc , b) c -> tr tc c isArrMp : ArrMp.Tm tr open ArrMp.Tm isArrMp public syntax pair' x y = [ x , y ] syntax case' xy x y = case xy => x => y open Tm {{...}} public module Ip where record Tm (tr : TmRepr) : Set1 where field abort : forall {tc a} -> tr tc FALSE -> tr tc a isMp : Mp.Tm tr open Mp.Tm isMp public open Tm {{...}} public Thm : Ty -> Set1 Thm a = forall {tr tc} {{_ : Tm tr}} -> tr tc a open Ip public -- Example theorems t1 : forall {a b} -> Thm (a => NOT a => b) t1 = lam=> lam=> abort (v0 $ v1) t2 : forall {a b} -> Thm (NOT a => a => b) t2 = lam=> lam=> abort (v1 $ v0) t3 : forall {a} -> Thm (a => NOT (NOT a)) t3 = lam=> lam=> v0 $ v1 t4 : forall {a} -> Thm (NOT a <=> NOT (NOT (NOT a))) t4 = [ lam=> lam=> v0 $ v1 , lam=> lam=> v1 $ (lam=> v0 $ v1) ]
21.848739
94
0.474231
5936c9983e2e992a50da077df72aef4d04d1ff1b
373
agda
Agda
test/Succeed/Issue3167prop.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3167prop.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3167prop.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2018-09-12, issue #3167-2: --(no-)prop option -- -- A local --prop option should override a global --no-prop flag. -- Issue3167prop.flags has --no-prop. {-# OPTIONS --prop #-} -- The following depends on Prop enabled data _≡_ {a} {A : Prop a} (x : A) : A → Prop a where refl : x ≡ x data P : Prop where a b : P test : (x y : P) → x ≡ y test x y = refl
20.722222
65
0.595174
0bff0edbec1f7053d3cd246d508e9d065a052118
1,852
agda
Agda
src/Categories/NaturalTransformation/Extranatural.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/NaturalTransformation/Extranatural.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/NaturalTransformation/Extranatural.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.NaturalTransformation.Extranatural where -- Although there is a notion of Extranatural in Categories.NaturalTransformation.Dinatural, -- it isn't the most general form, thus the need for this as well. open import Level open import Data.Product open import Relation.Binary using (Rel; IsEquivalence; Setoid) open import Categories.Category open import Categories.NaturalTransformation as NT hiding (_∘ʳ_) open import Categories.Functor open import Categories.Functor.Construction.Constant open import Categories.Category.Product import Categories.Morphism.Reasoning as MR private variable o₁ o₂ o₃ o₄ ℓ₁ ℓ₂ ℓ₃ ℓ₄ e₁ e₂ e₃ e₄ : Level record ExtranaturalTransformation {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂} {C : Category o₃ ℓ₃ e₃} {D : Category o₄ ℓ₄ e₄} (P : Functor (Product A (Product (Category.op B) B)) D) (Q : Functor (Product A (Product (Category.op C) C)) D) : Set (o₁ ⊔ o₂ ⊔ o₃ ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄ ⊔ e₄) where private module A = Category A module B = Category B module C = Category C module D = Category D module P = Functor P module Q = Functor Q open D hiding (op) open Commutation D field α : ∀ a b c → D [ P.₀ (a , (b , b)) , Q.₀ (a , (c , c)) ] commute : ∀ {a a′ b b′ c c′} (f : A [ a , a′ ]) (g : B [ b , b′ ]) (h : C [ c , c′ ]) → [ P.₀ (a , (b′ , b) ) ⇒ Q.₀ (a′ , (c , c′)) ]⟨ P.₁ (f , B.id , g) ⇒⟨ P.₀ (a′ , (b′ , b′)) ⟩ α a′ b′ c ⇒⟨ Q.₀ (a′ , (c , c)) ⟩ Q.₁ (A.id , C.id , h) ≈ P.₁ (A.id , g , B.id) ⇒⟨ P.₀ (a , (b , b)) ⟩ α a b c′ ⇒⟨ Q.₀ (a , (c′ , c′)) ⟩ Q.₁ (f , h , C.id) ⟩
34.943396
112
0.535097
2f459349f165c31bc28425cb1a8661090ae603fd
13,213
agda
Agda
complexity/Bounding.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
2
2016-04-26T20:22:22.000Z
2019-08-08T12:27:18.000Z
complexity/Bounding.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
1
2020-03-23T08:39:04.000Z
2020-05-12T00:32:45.000Z
complexity/Bounding.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
null
null
null
{- PROOF OF BOUNDING THEOREM -} open import Preliminaries open import Source open import Complexity open import Translation open import Bounding-Lemmas module Bounding where boundingRec : ∀ {τ} (v : [] Source.|- nat) (val-v : val v) (e0 : [] Source.|- τ) (e1 : (nat :: susp τ :: []) Source.|- τ) (E : [] Complexity.|- nat) (E0 : [] Complexity.|- || τ ||) (E1 : (nat :: || τ || :: []) Complexity.|- || τ ||) → valBound v val-v E → expBound e0 E0 → ((v' : [] Source.|- nat) (val-v' : val v') (E' : [] Complexity.|- nat) → valBound v' val-v' E' → (r : [] Source.|- susp τ) (val-r : val r) (R : [] Complexity.|- || τ ||) → valBound r val-r R → expBound (Source.subst e1 (Source.lem4 v' r)) (Complexity.subst E1 (Complexity.lem4 E' R))) → ((vbranch : [] Source.|- τ) (val-vbranch : val vbranch) (nbranch : Cost) → evals-rec-branch e0 e1 v vbranch nbranch → (plusC 1C (interp-Cost nbranch) ≤s l-proj (rec E (1C +C E0) (1C +C E1)) × (valBound vbranch val-vbranch (r-proj (rec E (1C +C E0) (1C +C E1)))))) boundingRec .z z-isval e0 e1 E E0 E1 vbound e0bound e1bound vbranch val-vbranch nbranch (evals-rec-z evals-branch) = (cong-+ refl-s (fst usee0bound ) trans l-proj-s) trans cong-lproj (rec-steps-z trans cong-rec vbound) , weakeningVal' val-vbranch (snd usee0bound) (r-proj-s trans cong-rproj (rec-steps-z trans (cong-rec (vbound)))) where usee0bound = (e0bound vbranch val-vbranch nbranch evals-branch) boundingRec .(suc v') (suc-isval v' val-v') e0 e1 E E0 E1 (E' , v'bound , sucE'≤E) e0bound e1bound vbranch val-vbranch nbranch (evals-rec-s evals-branch) = (cong-+ refl-s (fst usee1bound) trans l-proj-s) trans cong-lproj (rec-steps-s trans cong-rec sucE'≤E) , weakeningVal' val-vbranch (snd usee1bound) (r-proj-s trans cong-rproj (rec-steps-s trans cong-rec sucE'≤E)) where IH = boundingRec v' val-v' e0 e1 E' E0 E1 v'bound e0bound e1bound usee1bound = e1bound v' val-v' E' v'bound (delay (rec v' e0 e1)) (delay-isval _) (rec E' (1C +C E0) (1C +C E1) ) (λ { vr vvr ._ (rec-evals{n1 = n1} {n2 = n2} D D') → let useIH = IH vr vvr n2 (transport (λ H → evals-rec-branch e0 e1 H vr n2) (! (fst (val-evals-inversion val-v' D))) D') in (cong-+ (Eq0C-≤0 (snd (val-evals-inversion val-v' D))) refl-s trans +-unit-l) trans fst useIH , snd useIH } ) vbranch val-vbranch nbranch evals-branch boundingListRec : ∀ {τ τ'} (v : [] Source.|- list τ') (vv : val v) (e0 : [] Source.|- τ) (e1 : τ' :: list τ' :: susp τ :: [] Source.|- τ) (E : [] Complexity.|- list ⟨⟨ τ' ⟩⟩) (E0 : [] Complexity.|- || τ ||) (E1 : ⟨⟨ τ' ⟩⟩ :: list ⟨⟨ τ' ⟩⟩ :: || τ || :: [] Complexity.|- || τ ||) → valBound v vv E → expBound e0 E0 → ((h' : [] Source.|- τ') (vh' : val h') (H' : [] Complexity.|- ⟨⟨ τ' ⟩⟩) → valBound h' vh' H' → (v' : [] Source.|- list τ') (vv' : val v') (V' : [] Complexity.|- list ⟨⟨ τ' ⟩⟩) → valBound v' vv' V' → (r : [] Source.|- susp τ) (vr : val r) (R : [] Complexity.|- || τ ||) → valBound r vr R → expBound (Source.subst e1 (Source.lem5 h' v' r)) (Complexity.subst E1 (Complexity.lem5 H' V' R))) → (vbranch : [] Source.|- τ) (vvbranch : val vbranch) (nbranch : Cost) → evals-listrec-branch e0 e1 v vbranch nbranch → plusC 1C (interp-Cost nbranch) ≤s l-proj (listrec E (1C +C E0) (1C +C E1)) × valBound vbranch vvbranch (r-proj (listrec E (1C +C E0) (1C +C E1))) boundingListRec .nil nil-isval e0 e1 E E0 E1 vbv e0b e1b vbranch vvbranch n (evals-listrec-nil evals-branch) = ((cong-+ refl-s (fst usee0bound) trans l-proj-s) trans cong-lproj (listrec-steps-nil trans cong-listrec vbv)) , weakeningVal' vvbranch (snd usee0bound) (r-proj-s trans cong-rproj (listrec-steps-nil trans cong-listrec vbv)) where usee0bound = e0b vbranch vvbranch n evals-branch boundingListRec .(x ::s xs) (cons-isval x xs vv vv₁) e0 e1 E E0 E1 (h' , t' , (vbxh' , vbxst') , h'::t'≤sE) e0b e1b vbranch vvbranch nbranch (evals-listrec-cons evals-branch) = (cong-+ refl-s (fst usee1bound) trans l-proj-s) trans cong-lproj (listrec-steps-cons trans cong-listrec h'::t'≤sE) , weakeningVal' vvbranch (snd usee1bound) (r-proj-s trans cong-rproj (listrec-steps-cons trans cong-listrec h'::t'≤sE)) where IH = boundingListRec xs vv₁ e0 e1 t' E0 E1 vbxst' e0b e1b usee1bound = e1b x vv h' vbxh' xs vv₁ t' vbxst' (delay (listrec xs e0 e1)) (delay-isval _) (listrec t' (1C +C E0) (1C +C E1)) (λ { vr vvr ._ (listrec-evals {_} {n2} D D') → let useIH = IH vr vvr n2 (transport (λ H → evals-listrec-branch e0 e1 H vr n2) (! (fst (val-evals-inversion vv₁ D))) D') in (cong-+ (Eq0C-≤0 (snd (val-evals-inversion vv₁ D))) refl-s trans +-unit-l) trans fst useIH , snd useIH } ) vbranch vvbranch nbranch evals-branch bounding : ∀{Γ τ} → (e : Γ Source.|- τ) → (Θ : Source.sctx [] Γ) → (a : substVal Θ) → (Θ' : Complexity.sctx [] ⟨⟨ Γ ⟩⟩c) → substBound Θ a Θ' → expBound (Source.subst e Θ) (Complexity.subst || e ||e Θ') bounding unit Θ a Θ' sb unit unit-isval 0c unit-evals = l-proj-s , <> bounding (var x) Θ a Θ' sb v vv c evals = inv1 (a x) evals trans l-proj-s , weakeningVal' vv (transport-valBound (inv2 (a x) evals) (val-hprop (transport val (inv2 (a x) evals) (a x)) vv) _ (sb x)) r-proj-s bounding z Θ a Θ' sb .z z-isval .0c z-evals = l-proj-s , r-proj-s bounding (suc e) Θ a Θ' sb .(suc e₁) (suc-isval e₁ vv) n (s-evals evals) = fst IH trans l-proj-s , (r-proj (Complexity.subst || e ||e Θ')) , (snd IH) , r-proj-s where IH = (bounding e Θ a Θ' sb _ vv _ evals) bounding (rec e e₁ e₂) Θ a Θ' sb e' val-e' ._ (rec-evals {v = v} arg-evals branch-evals) = cong-+ (fst IH1) (fst lemma) trans l-proj-s , weakeningVal' val-e' (snd lemma) r-proj-s where IH1 = bounding e Θ a Θ' sb _ (evals-val arg-evals) _ arg-evals lemma = boundingRec v (evals-val arg-evals) _ (Source.subst e₂ (Source.s-extend (Source.s-extend Θ))) _ _ (Complexity.subst || e₂ ||e (Complexity.s-extend (Complexity.s-extend Θ'))) (snd IH1) (bounding e₁ Θ a Θ' sb ) (λ v' valv' E' valBoundv' r valr R valBoundR v'' valv'' c'' evals-rec → let IH3 = (bounding e₂ (Source.lem4' Θ v' r) (extend-substVal2 a valv' valr) (Complexity.lem4' Θ' E' R) (extend-substBound2 sb valBoundv' valBoundR) v'' valv'' c'' (transport (λ x → evals x v'' c'') (Source.subst-compose4 Θ v' r e₂) evals-rec)) in (fst IH3 trans cong-refl (ap l-proj (! (Complexity.subst-compose4 Θ' E' R || e₂ ||e))) , weakeningVal' valv'' (snd IH3) (cong-rproj (cong-refl (! (Complexity.subst-compose4 Θ' E' R || e₂ ||e)))))) e' val-e' _ branch-evals bounding {τ = ρ ->s τ} (lam e) Θ a Θ' sb .(lam (Source.subst e (Source.s-extend Θ))) (lam-isval .(Source.subst e (Source.s-extend Θ))) .0c lam-evals = l-proj-s , (λ v₁ vv₁ E1 valbound1 v vv n body-evals → let IH = bounding e (Source.lem3' Θ v₁) (extend-substVal a vv₁) (Complexity.lem3' Θ' E1) (extend-substBound sb valbound1) v vv n (transport (λ x → evals x v n) (Source.subst-compose Θ v₁ e) body-evals) in fst IH trans cong-lproj (cong-refl (! (Complexity.subst-compose Θ' E1 || e ||e)) trans lam-s trans cong-app r-proj-s) , weakeningVal' vv (snd IH) (cong-rproj (cong-refl (! (Complexity.subst-compose Θ' E1 || e ||e)) trans lam-s trans cong-app r-proj-s))) bounding (app e1 e2) Θ a Θ' sb v val-v .((n0 +c n1) +c n) (app-evals {n0} {n1} {n} {τ2} {τ} {.(Source.subst e1 Θ)} {e1'} {.(Source.subst e2 Θ)} {v2} e1-evals e2-evals subst-evals) = cong-+ (cong-+ (fst IH1) (fst IH2)) (fst IH1a) trans l-proj-s , weakeningVal' val-v (snd IH1a) r-proj-s where IH1 = (bounding e1 Θ a Θ' sb (lam e1') (lam-isval e1') n0 e1-evals) v2-val = evals-val e2-evals IH2 = (bounding e2 Θ a Θ' sb v2 v2-val n1 e2-evals) IH1a = snd IH1 v2 v2-val (r-proj (Complexity.subst || e2 ||e Θ')) (snd IH2) v val-v n subst-evals bounding {Γ} {τ1 ×s τ2} (prod e1 e2) Θ a Θ' sb .(prod e3 e4) (pair-isval e3 e4 val-e3 val-e4) .(n1 +c n2) (pair-evals {n1} {n2} evals-c1 evals-c2) = cong-+ (fst IH1) (fst IH2) trans l-proj-s , weakeningVal' val-e3 (snd IH1) (l-proj-s trans cong-lproj r-proj-s) , weakeningVal' val-e4 (snd IH2) (r-proj-s trans cong-rproj r-proj-s) where IH1 = (bounding e1 Θ a Θ' sb _ val-e3 _ evals-c1) IH2 = (bounding e2 Θ a Θ' sb _ val-e4 _ evals-c2) bounding (delay e) Θ a Θ' sb .(delay (Source.subst e Θ)) (delay-isval .(Source.subst e Θ)) .0c delay-evals = l-proj-s , (λ v₁ vv n x → let IH = bounding e Θ a Θ' sb v₁ vv n x in fst IH trans cong-lproj (r-proj-s trans refl-s) , weakeningVal' vv (snd IH) (cong-rproj r-proj-s)) bounding (force e) Θ a Θ' sb v vv ._ (force-evals {n1} {n2} {τ} {e'} {.v} {.(Source.subst e Θ)} evals evals₁) = (cong-+ (fst IH) (fst (snd IH v vv n2 evals₁)) trans l-proj-s) , weakeningVal' vv (snd (snd IH v vv n2 evals₁)) r-proj-s where IH = (bounding e Θ a Θ' sb _ (delay-isval e') n1 evals) bounding {Γ} {τ} (split e0 e1) Θ a Θ' sb e' val-e' .(n1 +c n2) (split-evals {n1} {n2} {.τ} {τ1} {τ2} {.(Source.subst e0 Θ)} {v1} {v2} evals-in-c0 evals-in-c1) with evals-val evals-in-c0 | (bounding e0 Θ a Θ' sb (prod v1 v2) (evals-val evals-in-c0) _ evals-in-c0) ... | pair-isval ._ ._ val-v1 val-v2 | (IH11 , vb1 , vb2) = cong-+ IH11 (fst IH2) trans cong-+ refl-s (cong-lproj (cong-refl (! (Complexity.subst-compose3 Θ' || e1 ||e (l-proj (r-proj || e0 ||e)) (r-proj (r-proj || e0 ||e)))))) trans l-proj-s , weakeningVal' val-e' (snd IH2) (cong-rproj (cong-refl (! (Complexity.subst-compose3 Θ' || e1 ||e (l-proj (r-proj || e0 ||e)) (r-proj (r-proj || e0 ||e))))) trans r-proj-s) where IH2 = bounding e1 (Source.lem4' Θ v1 v2) (extend-substVal2 a val-v1 val-v2) (Complexity.lem4' Θ' (l-proj (r-proj (Complexity.subst || e0 ||e Θ'))) (r-proj (r-proj (Complexity.subst || e0 ||e Θ')))) (extend-substBound2 sb vb1 vb2) e' val-e' n2 (transport (λ x → evals x e' n2) (Source.subst-compose3 Θ e1 v1 v2) evals-in-c1) bounding nil Θ a Θ' sb .nil nil-isval .0c nil-evals = l-proj-s , r-proj-s bounding (e ::s e₁) Θ a Θ' sb .(x ::s xs) (cons-isval x xs vv vv₁) ._ (cons-evals evals evals₁) = (cong-+ (fst IH1) (fst IH2) trans l-proj-s) , (r-proj (Complexity.subst || e ||e Θ')) , r-proj (Complexity.subst || e₁ ||e Θ') , ((snd IH1 , snd IH2) , r-proj-s) where IH1 = (bounding e Θ a Θ' sb _ vv _ evals) IH2 = (bounding e₁ Θ a Θ' sb _ vv₁ _ evals₁) bounding (listrec e e₁ e₂) Θ a Θ' sb v vv ._ (listrec-evals {v = k} arg-evals branch-evals) = (cong-+ (fst IH1) (fst lemma) trans l-proj-s) , weakeningVal' vv (snd lemma) r-proj-s where IH1 = bounding e Θ a Θ' sb _ (evals-val arg-evals) _ arg-evals lemma = boundingListRec k (evals-val arg-evals) _ (Source.subst e₂ (Source.s-extend (Source.s-extend (Source.s-extend Θ)))) _ _ (Complexity.subst || e₂ ||e (Complexity.s-extend (Complexity.s-extend (Complexity.s-extend Θ')))) (snd IH1) (bounding e₁ Θ a Θ' sb) (λ h' vh' H' vbh'H' v' vv' V' vbv'V' r vr R vbrR v₁ vv₁ n x₂ → let IH3 = bounding e₂ (Source.lem5' Θ h' v' r) (extend-substVal3 a vh' vv' vr) (Complexity.lem5' Θ' H' V' R) (extend-substBound3 sb vbh'H' vbv'V' vbrR) v₁ vv₁ n (transport (λ x → evals x v₁ n) (Source.subst-compose5 Θ e₂ h' v' r) x₂) in fst IH3 trans cong-refl (ap l-proj (! (Complexity.subst-compose5 Θ' || e₂ ||e H' V' R))) , weakeningVal' vv₁ (snd IH3) (cong-rproj (cong-refl (! (Complexity.subst-compose5 Θ' || e₂ ||e H' V' R))))) v vv _ branch-evals bounding true Θ a Θ' sb .true true-isval .0c true-evals = l-proj-s , r-proj-s bounding false Θ a Θ' sb .false false-isval .0c false-evals = l-proj-s , r-proj-s
73.815642
264
0.539998
31780aa8594519227d4dba85bff914ea6d41ecd4
1,085
agda
Agda
src/Types/Tail.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
1
2022-02-13T05:43:25.000Z
2022-02-13T05:43:25.000Z
src/Types/Tail.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
null
null
null
src/Types/Tail.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
1
2019-12-07T16:12:50.000Z
2019-12-07T16:12:50.000Z
module Types.Tail where open import Data.Nat open import Data.Fin open import Function using (_∘_) open import Types.Direction -- session types restricted to tail recursion -- can be recognized by type of TChan constructor data Type : Set data SType (n : ℕ) : Set data GType (n : ℕ) : Set data Type where TUnit TInt : Type TPair : (t₁ t₂ : Type) → Type TChan : (s : SType 0) → Type data SType n where gdd : (g : GType n) → SType n rec : (g : GType (suc n)) → SType n var : (x : Fin n) → SType n data GType n where transmit : (d : Dir) (t : Type) (s : SType n) → GType n choice : (d : Dir) (m : ℕ) (alt : Fin m → SType n) → GType n end : GType n private variable n : ℕ -- naive definition of duality for tail recursive session types -- message types are ignored as they are closed dualS : SType n → SType n dualG : GType n → GType n dualS (gdd g) = gdd (dualG g) dualS (rec g) = rec (dualG g) dualS (var x) = var x dualG (transmit d t s) = transmit (dual-dir d) t (dualS s) dualG (choice d m alt) = choice (dual-dir d) m (dualS ∘ alt) dualG end = end
23.085106
63
0.648848
12d4a8b4fb3fb2172921abbc077b8fe513f52b17
733
agda
Agda
old/Sets/BoolSet/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
old/Sets/BoolSet/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
old/Sets/BoolSet/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Sets.BoolSet.Proofs{ℓ₁} where open import Data.Boolean open import Data.Boolean.Proofs open import Functional open import Logic.Propositional open import Sets.BoolSet{ℓ₁} open import Type module _ {ℓ₂}{T : Type{ℓ₂}} where [∈]-in-[∪] : ∀{a : T}{S₁ S₂ : BoolSet(T)} → (a ∈ S₁) → (a ∈ (S₁ ∪ S₂)) [∈]-in-[∪] proof-a = [∨]-introₗ-[𝑇] proof-a [∈]-in-[∩] : ∀{a : T}{S₁ S₂ : BoolSet(T)} → (a ∈ S₁) → (a ∈ S₂) → (a ∈ (S₁ ∩ S₂)) [∈]-in-[∩] proof-a₁ proof-a₂ = [∧]-intro-[𝑇] proof-a₁ proof-a₂ [∈]-in-[∖] : ∀{a : T}{S₁ S₂ : BoolSet(T)} → (a ∈ S₁) → (a ∉ S₂) → (a ∈ (S₁ ∖ S₂)) [∈]-in-[∖] proof-a₁ proof-a₂ = [∧]-intro-[𝑇] proof-a₁ proof-a₂ [∈]-in-[∁] : ∀{a : T}{S : BoolSet(T)} → (a ∉ S) → (a ∈ (∁ S)) [∈]-in-[∁] = id
33.318182
83
0.51296
dcde4577f44d923b283aef830559819ce4c89ef4
480
agda
Agda
test/Fail/NonCopatternInstance.agda
jespercockx/agda2hs
703c66db29023f5538eaa841f38dc34e89473a3e
[ "MIT" ]
55
2020-10-20T13:36:25.000Z
2022-03-26T21:57:56.000Z
test/Fail/NonCopatternInstance.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
63
2020-10-22T05:19:27.000Z
2022-02-25T15:47:30.000Z
test/Fail/NonCopatternInstance.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
18
2020-10-21T22:19:09.000Z
2022-03-12T11:42:52.000Z
module Fail.NonCopatternInstance where record HasId (a : Set) : Set where field id : a → a open HasId ⦃ ... ⦄ {-# COMPILE AGDA2HS HasId class #-} data Unit : Set where MkUnit : Unit {-# COMPILE AGDA2HS Unit #-} instance UnitHasId : HasId Unit UnitHasId = r -- NOT CORRECT where r = record {id = λ x → x} -- UnitHasId .id x = x -- CORRECT -- UnitHasId = record {id = λ x → x} -- CORRECT {-# COMPILE AGDA2HS UnitHasId #-}
20
50
0.577083
a10aa65adb85fc8eceededf07f600b745b8a6e21
403
agda
Agda
test/fail/Test1.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
test/fail/Test1.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
test/fail/Test1.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Base module test.fail.Test1 where module _ where private data #I-aux : Type₀ where #zero : #I-aux #one : #I-aux data #I : Type₀ where #i : #I-aux → (Unit → Unit) → #I I : Type₀ I = #I zero : I zero = #i #zero _ one : I one = #i #one _ postulate seg : zero == one absurd : zero ≠ one absurd () -- fails
13
38
0.533499
c5377cf237faa5689a72495ec211827055529fe5
826
agda
Agda
Cubical/Algebra/RingSolver/RawRing.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/RawRing.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/RawRing.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.RingSolver.RawRing where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Data.Nat using (ℕ) open import Cubical.Algebra.RingSolver.AlmostRing hiding (⟨_⟩) private variable ℓ : Level record RawRing : Type (ℓ-suc ℓ) where constructor rawring field Carrier : Type ℓ 0r : Carrier 1r : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier infixl 8 _·_ infixl 7 -_ infixl 6 _+_ ⟨_⟩ : RawRing → Type ℓ ⟨_⟩ = RawRing.Carrier AlmostRing→RawRing : AlmostRing {ℓ} → RawRing {ℓ} AlmostRing→RawRing (almostring Carrier 0r 1r _+_ _·_ -_ isAlmostRing) = rawring Carrier 0r 1r _+_ _·_ -_
22.944444
71
0.659806
0b578fff56a0b1d61154d340c78690c42a980f2a
6,941
agda
Agda
Cubical/Algebra/RingSolver/Solver.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/RingSolver/Solver.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/RingSolver/Solver.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.RingSolver.Solver where open import Cubical.Foundations.Prelude open import Cubical.Data.FinData open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Nat.Order using (zero-≤) open import Cubical.Data.Vec.Base open import Cubical.Algebra.RingSolver.AlmostRing open import Cubical.Algebra.RingSolver.RawRing renaming (⟨_⟩ to ⟨_⟩ᵣ) open import Cubical.Algebra.RingSolver.RingExpression open import Cubical.Algebra.RingSolver.HornerForms open import Cubical.Algebra.RingSolver.EvaluationHomomorphism private variable ℓ : Level module EqualityToNormalform (R : AlmostRing ℓ) where νR = AlmostRing→RawRing R open AlmostRing R open Theory R open Eval νR open IteratedHornerOperations νR open HomomorphismProperties R normalize : (n : ℕ) → Expr ⟨ R ⟩ n → IteratedHornerForms νR n normalize n (K r) = Constant n νR r normalize n (∣ k) = Variable n νR k normalize n (x ⊕ y) = (normalize n x) +ₕ (normalize n y) normalize n (x ⊗ y) = (normalize n x) ·ₕ (normalize n y) normalize n (⊝ x) = -ₕ (normalize n x) isEqualToNormalform : (n : ℕ) (e : Expr ⟨ R ⟩ n) (xs : Vec ⟨ R ⟩ n) → eval n (normalize n e) xs ≡ ⟦ e ⟧ xs isEqualToNormalform ℕ.zero (K r) [] = refl isEqualToNormalform (ℕ.suc n) (K r) (x ∷ xs) = eval (ℕ.suc n) (Constant (ℕ.suc n) νR r) (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc n) (0ₕ ·X+ Constant n νR r) (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc n) 0ₕ (x ∷ xs) · x + eval n (Constant n νR r) xs ≡⟨ cong (λ u → u · x + eval n (Constant n νR r) xs) (eval0H _ (x ∷ xs)) ⟩ 0r · x + eval n (Constant n νR r) xs ≡⟨ cong (λ u → u + eval n (Constant n νR r) xs) (0LeftAnnihilates _) ⟩ 0r + eval n (Constant n νR r) xs ≡⟨ +Lid _ ⟩ eval n (Constant n νR r) xs ≡⟨ isEqualToNormalform n (K r) xs ⟩ r ∎ isEqualToNormalform (ℕ.suc n) (∣ zero) (x ∷ xs) = eval (ℕ.suc n) (1ₕ ·X+ 0ₕ) (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc n) 1ₕ (x ∷ xs) · x + eval n 0ₕ xs ≡⟨ cong (λ u → u · x + eval n 0ₕ xs) (eval1ₕ _ (x ∷ xs)) ⟩ 1r · x + eval n 0ₕ xs ≡⟨ cong (λ u → 1r · x + u ) (eval0H _ xs) ⟩ 1r · x + 0r ≡⟨ +Rid _ ⟩ 1r · x ≡⟨ ·Lid _ ⟩ x ∎ isEqualToNormalform (ℕ.suc n) (∣ (suc k)) (x ∷ xs) = eval (ℕ.suc n) (0ₕ ·X+ Variable n νR k) (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc n) 0ₕ (x ∷ xs) · x + eval n (Variable n νR k) xs ≡⟨ cong (λ u → u · x + eval n (Variable n νR k) xs) (eval0H _ (x ∷ xs)) ⟩ 0r · x + eval n (Variable n νR k) xs ≡⟨ cong (λ u → u + eval n (Variable n νR k) xs) (0LeftAnnihilates _) ⟩ 0r + eval n (Variable n νR k) xs ≡⟨ +Lid _ ⟩ eval n (Variable n νR k) xs ≡⟨ isEqualToNormalform n (∣ k) xs ⟩ ⟦ ∣ (suc k) ⟧ (x ∷ xs) ∎ isEqualToNormalform ℕ.zero (⊝ e) [] = eval ℕ.zero (-ₕ (normalize ℕ.zero e)) [] ≡⟨ -evalDist ℕ.zero (normalize ℕ.zero e) [] ⟩ - eval ℕ.zero (normalize ℕ.zero e) [] ≡⟨ cong -_ (isEqualToNormalform ℕ.zero e [] ) ⟩ - ⟦ e ⟧ [] ∎ isEqualToNormalform (ℕ.suc n) (⊝ e) (x ∷ xs) = eval (ℕ.suc n) (-ₕ (normalize (ℕ.suc n) e)) (x ∷ xs) ≡⟨ -evalDist (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs) ⟩ - eval (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs) ≡⟨ cong -_ (isEqualToNormalform (ℕ.suc n) e (x ∷ xs) ) ⟩ - ⟦ e ⟧ (x ∷ xs) ∎ isEqualToNormalform ℕ.zero (e ⊕ e₁) [] = eval ℕ.zero (normalize ℕ.zero e +ₕ normalize ℕ.zero e₁) [] ≡⟨ +Homeval ℕ.zero (normalize ℕ.zero e) _ [] ⟩ eval ℕ.zero (normalize ℕ.zero e) [] + eval ℕ.zero (normalize ℕ.zero e₁) [] ≡⟨ cong (λ u → u + eval ℕ.zero (normalize ℕ.zero e₁) []) (isEqualToNormalform ℕ.zero e []) ⟩ ⟦ e ⟧ [] + eval ℕ.zero (normalize ℕ.zero e₁) [] ≡⟨ cong (λ u → ⟦ e ⟧ [] + u) (isEqualToNormalform ℕ.zero e₁ []) ⟩ ⟦ e ⟧ [] + ⟦ e₁ ⟧ [] ∎ isEqualToNormalform (ℕ.suc n) (e ⊕ e₁) (x ∷ xs) = eval (ℕ.suc n) (normalize (ℕ.suc n) e +ₕ normalize (ℕ.suc n) e₁) (x ∷ xs) ≡⟨ +Homeval (ℕ.suc n) (normalize (ℕ.suc n) e) _ (x ∷ xs) ⟩ eval (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs) + eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs) ≡⟨ cong (λ u → u + eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs)) (isEqualToNormalform (ℕ.suc n) e (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) + eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs) ≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) + u) (isEqualToNormalform (ℕ.suc n) e₁ (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) + ⟦ e₁ ⟧ (x ∷ xs) ∎ isEqualToNormalform ℕ.zero (e ⊗ e₁) [] = eval ℕ.zero (normalize ℕ.zero e ·ₕ normalize ℕ.zero e₁) [] ≡⟨ ·Homeval ℕ.zero (normalize ℕ.zero e) _ [] ⟩ eval ℕ.zero (normalize ℕ.zero e) [] · eval ℕ.zero (normalize ℕ.zero e₁) [] ≡⟨ cong (λ u → u · eval ℕ.zero (normalize ℕ.zero e₁) []) (isEqualToNormalform ℕ.zero e []) ⟩ ⟦ e ⟧ [] · eval ℕ.zero (normalize ℕ.zero e₁) [] ≡⟨ cong (λ u → ⟦ e ⟧ [] · u) (isEqualToNormalform ℕ.zero e₁ []) ⟩ ⟦ e ⟧ [] · ⟦ e₁ ⟧ [] ∎ isEqualToNormalform (ℕ.suc n) (e ⊗ e₁) (x ∷ xs) = eval (ℕ.suc n) (normalize (ℕ.suc n) e ·ₕ normalize (ℕ.suc n) e₁) (x ∷ xs) ≡⟨ ·Homeval (ℕ.suc n) (normalize (ℕ.suc n) e) _ (x ∷ xs) ⟩ eval (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs) · eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs) ≡⟨ cong (λ u → u · eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs)) (isEqualToNormalform (ℕ.suc n) e (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) · eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs) ≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) · u) (isEqualToNormalform (ℕ.suc n) e₁ (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) · ⟦ e₁ ⟧ (x ∷ xs) ∎ solve : {n : ℕ} (e₁ e₂ : Expr ⟨ R ⟩ n) (xs : Vec ⟨ R ⟩ n) (p : eval n (normalize n e₁) xs ≡ eval n (normalize n e₂) xs) → ⟦ e₁ ⟧ xs ≡ ⟦ e₂ ⟧ xs solve e₁ e₂ xs p = ⟦ e₁ ⟧ xs ≡⟨ sym (isEqualToNormalform _ e₁ xs) ⟩ eval _ (normalize _ e₁) xs ≡⟨ p ⟩ eval _ (normalize _ e₂) xs ≡⟨ isEqualToNormalform _ e₂ xs ⟩ ⟦ e₂ ⟧ xs ∎
45.966887
93
0.464342
1248d8d1221ce56e3885b6fdb304cf0183e75db3
2,140
agda
Agda
benchmark/misc/UniversePolymorphicFunctor.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
benchmark/misc/UniversePolymorphicFunctor.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
benchmark/misc/UniversePolymorphicFunctor.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --universe-polymorphism #-} module UniversePolymorphicFunctor where open import Agda.Primitive renaming (lsuc to suc) record IsEquivalence {a ℓ} {A : Set a} (_≈_ : A → A → Set ℓ) : Set (a ⊔ ℓ) where field refl : ∀ {x} → x ≈ x sym : ∀ {i j} → i ≈ j → j ≈ i trans : ∀ {i j k} → i ≈ j → j ≈ k → i ≈ k record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where infix 4 _≈_ field Carrier : Set c _≈_ : Carrier → Carrier → Set ℓ isEquivalence : IsEquivalence _≈_ open IsEquivalence isEquivalence public infixr 0 _⟶_ record _⟶_ {f₁ f₂ t₁ t₂} (From : Setoid f₁ f₂) (To : Setoid t₁ t₂) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where infixl 5 _⟨$⟩_ field _⟨$⟩_ : Setoid.Carrier From → Setoid.Carrier To cong : ∀ {x y} → Setoid._≈_ From x y → Setoid._≈_ To (_⟨$⟩_ x) (_⟨$⟩_ y) open _⟶_ public id : ∀ {a₁ a₂} {A : Setoid a₁ a₂} → A ⟶ A id = record { _⟨$⟩_ = λ x → x; cong = λ x≈y → x≈y } infixr 9 _∘_ _∘_ : ∀ {a₁ a₂} {A : Setoid a₁ a₂} {b₁ b₂} {B : Setoid b₁ b₂} {c₁ c₂} {C : Setoid c₁ c₂} → B ⟶ C → A ⟶ B → A ⟶ C f ∘ g = record { _⟨$⟩_ = λ x → f ⟨$⟩ (g ⟨$⟩ x) ; cong = λ x≈y → cong f (cong g x≈y) } _⇨_ : ∀ {f₁ f₂ t₁ t₂} → Setoid f₁ f₂ → Setoid t₁ t₂ → Setoid _ _ From ⇨ To = record { Carrier = From ⟶ To ; _≈_ = λ f g → ∀ {x y} → x ≈₁ y → f ⟨$⟩ x ≈₂ g ⟨$⟩ y ; isEquivalence = record { refl = λ {f} → cong f ; sym = λ f∼g x∼y → To.sym (f∼g (From.sym x∼y)) ; trans = λ f∼g g∼h x∼y → To.trans (f∼g From.refl) (g∼h x∼y) } } where open module From = Setoid From using () renaming (_≈_ to _≈₁_) open module To = Setoid To using () renaming (_≈_ to _≈₂_) record Functor {f₁ f₂ f₃ f₄} (F : Setoid f₁ f₂ → Setoid f₃ f₄) : Set (suc (f₁ ⊔ f₂) ⊔ f₃ ⊔ f₄) where field map : ∀ {A B} → (A ⇨ B) ⟶ (F A ⇨ F B) identity : ∀ {A} → let open Setoid (F A ⇨ F A) in map ⟨$⟩ id ≈ id composition : ∀ {A B C} (f : B ⟶ C) (g : A ⟶ B) → let open Setoid (F A ⇨ F C) in map ⟨$⟩ (f ∘ g) ≈ (map ⟨$⟩ f) ∘ (map ⟨$⟩ g)
27.792208
67
0.484112
2f6d897a3efe833ae07ea31277d5c32903b3e304
287
agda
Agda
src/Categories/Functor/Presheaf.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Functor/Presheaf.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Functor/Presheaf.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Presheaf where open import Categories.Category open import Categories.Functor Presheaf : ∀ {o ℓ e} {o′ ℓ′ e′} (C : Category o ℓ e) (V : Category o′ ℓ′ e′) → Set _ Presheaf C V = Functor C.op V where module C = Category C
26.090909
84
0.675958
31670ca7b32664780b6dcdc87c801330413c1b95
2,602
agda
Agda
experiments/Explore/Universe/Logical.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
2
2016-06-05T09:25:32.000Z
2017-06-28T19:19:29.000Z
experiments/Explore/Universe/Logical.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
1
2019-03-16T14:24:04.000Z
2019-03-16T14:24:04.000Z
experiments/Explore/Universe/Logical.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
null
null
null
open import Level.NP open import Type open import Relation.Binary.Logical open import Relation.Binary.PropositionalEquality module Explore.Universe.Logical (X : ★) where open import Explore.Universe.Type open import Explore.Universe X open import Explore.Core module From⟦X⟧ (⟦X⟧ : ⟦★₀⟧ X X) where -- TODO _⟦≃⟧_ : (⟦Rel⟧ ⟦★₀⟧) ₀ _≃_ _≃_ data ⟦U⟧ : ⟦★₁⟧ U U ⟦El⟧ : (⟦U⟧ ⟦→⟧ ⟦★₀⟧) El El data ⟦U⟧ where ⟦𝟘ᵁ⟧ : ⟦U⟧ 𝟘ᵁ 𝟘ᵁ ⟦𝟙ᵁ⟧ : ⟦U⟧ 𝟙ᵁ 𝟙ᵁ ⟦𝟚ᵁ⟧ : ⟦U⟧ 𝟚ᵁ 𝟚ᵁ _⟦×ᵁ⟧_ : ⟦Op₂⟧ {_} {_} {₁} ⟦U⟧ _×ᵁ_ _×ᵁ_ _⟦⊎ᵁ⟧_ : ⟦Op₂⟧ {_} {_} {₁} ⟦U⟧ _⊎ᵁ_ _⊎ᵁ_ ⟦Σᵁ⟧ : (⟨ u ∶ ⟦U⟧ ⟩⟦→⟧ (⟦El⟧ u ⟦→⟧ ⟦U⟧) ⟦→⟧ ⟦U⟧) Σᵁ Σᵁ ⟦Xᵁ⟧ : ⟦U⟧ Xᵁ Xᵁ -- ⟦≃ᵁ⟧ : (⟨ u ∶ ⟦U⟧ ⟩⟦→⟧ (⟨ A ∶ ⟦★₀⟧ ⟩⟦→⟧ ⟦El⟧ u ⟦≃⟧ A ⟦→⟧ ⟦U⟧)) ≃ᵁ ≃ᵁ ⟦El⟧ ⟦𝟘ᵁ⟧ = _≡_ ⟦El⟧ ⟦𝟙ᵁ⟧ = _≡_ ⟦El⟧ ⟦𝟚ᵁ⟧ = _≡_ ⟦El⟧ (u₀ ⟦×ᵁ⟧ u₁) = ⟦El⟧ u₀ ⟦×⟧ ⟦El⟧ u₁ ⟦El⟧ (u₀ ⟦⊎ᵁ⟧ u₁) = ⟦El⟧ u₀ ⟦⊎⟧ ⟦El⟧ u₁ ⟦El⟧ (⟦Σᵁ⟧ u f) = ⟦Σ⟧ (⟦El⟧ u) λ x → ⟦El⟧ (f x) ⟦El⟧ ⟦Xᵁ⟧ = ⟦X⟧ -- ⟦El⟧ (⟦≃ᵁ⟧ u A e) = A module From⟦Xᵉ⟧ {⟦X⟧ : ⟦★₀⟧ X X} {ℓ₀ ℓ₁} ℓᵣ {Xᵉ : Explore X} (⟦Xᵉ⟧ : ⟦Explore⟧ {ℓ₀} {ℓ₁} ℓᵣ ⟦X⟧ Xᵉ Xᵉ) where open From⟦X⟧ ⟦X⟧ public ⟦explore⟧ : ∀ {u₀ u₁} (u : ⟦U⟧ u₀ u₁) → ⟦Explore⟧ {ℓ₀} {ℓ₁} ℓᵣ (⟦El⟧ u) (explore u₀) (explore u₁) ⟦explore⟧ ⟦𝟘ᵁ⟧ = ⟦𝟘ᵉ⟧ {ℓ₀} {ℓ₁} {ℓᵣ} ⟦explore⟧ ⟦𝟙ᵁ⟧ = ⟦𝟙ᵉ⟧ {ℓ₀} {ℓ₁} {ℓᵣ} {_≡_} {refl} ⟦explore⟧ ⟦𝟚ᵁ⟧ = ⟦𝟚ᵉ⟧ {ℓ₀} {ℓ₁} {ℓᵣ} {_≡_} {refl} {refl} ⟦explore⟧ (u₀ ⟦×ᵁ⟧ u₁) = ⟦explore×⟧ {ℓ₀} {ℓ₁} {ℓᵣ} (⟦explore⟧ u₀) (⟦explore⟧ u₁) ⟦explore⟧ (u₀ ⟦⊎ᵁ⟧ u₁) = ⟦explore⊎⟧ {ℓ₀} {ℓ₁} {ℓᵣ} (⟦explore⟧ u₀) (⟦explore⟧ u₁) ⟦explore⟧ (⟦Σᵁ⟧ u f) = ⟦exploreΣ⟧ {ℓ₀} {ℓ₁} {ℓᵣ} (⟦explore⟧ u) (⟦explore⟧ ∘ f) ⟦explore⟧ ⟦Xᵁ⟧ = ⟦Xᵉ⟧ -- ⟦explore⟧ (⟦≃ᵁ⟧ u A e) = {!⟦explore-iso⟧ e!} {- ⟦U⟧-sound : ∀ {{_ : FunExt}} {x y} → ⟦U⟧ x y → x ≡ y ⟦U⟧-refl : ∀ x → ⟦U⟧ x x {- ⟦El⟧-refl : ∀ x → {!⟦El⟧ x x!} ⟦El⟧-refl = {!!} -} ⟦U⟧-sound ⟦𝟘ᵁ⟧ = refl ⟦U⟧-sound ⟦𝟙ᵁ⟧ = refl ⟦U⟧-sound ⟦𝟚ᵁ⟧ = refl ⟦U⟧-sound (u ⟦×ᵁ⟧ u₁) = ap₂ _×ᵁ_ (⟦U⟧-sound u) (⟦U⟧-sound u₁) ⟦U⟧-sound (u ⟦⊎ᵁ⟧ u₁) = ap₂ _⊎ᵁ_ (⟦U⟧-sound u) (⟦U⟧-sound u₁) ⟦U⟧-sound (⟦Σᵁ⟧ {u₀} {u₁} u {f₀} {f₁} fᵣ) = apd₂ Σᵁ (⟦U⟧-sound u) (tr-→ El (const U) (⟦U⟧-sound u) f₀ ∙ λ= (λ A → ap (λ z → z (f₀ (tr El (! ⟦U⟧-sound u) A))) (tr-const (⟦U⟧-sound u)) ∙ ⟦U⟧-sound (fᵣ {!!}))) -- (λ= (λ y → let foo = xᵣ {{!!}} {y} {!xᵣ!} in {!tr-→ El (const U) (⟦U⟧-sound u)!})) ⟦U⟧-refl 𝟘ᵁ = ⟦𝟘ᵁ⟧ ⟦U⟧-refl 𝟙ᵁ = ⟦𝟙ᵁ⟧ ⟦U⟧-refl 𝟚ᵁ = ⟦𝟚ᵁ⟧ ⟦U⟧-refl (x ×ᵁ x₁) = ⟦U⟧-refl x ⟦×ᵁ⟧ ⟦U⟧-refl x₁ ⟦U⟧-refl (x ⊎ᵁ x₁) = ⟦U⟧-refl x ⟦⊎ᵁ⟧ ⟦U⟧-refl x₁ ⟦U⟧-refl (Σᵁ x f) = ⟦Σᵁ⟧ (⟦U⟧-refl x) (λ y → {!⟦U⟧-refl ?!}) -}
32.936709
292
0.445427
0689104c28a440e5e8224b4a42b4cbd15fd72e7b
845
agda
Agda
Cubical/Displayed/Constant.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Displayed/Constant.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Displayed/Constant.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{- Functions building DUARels on constant families -} {-# OPTIONS --safe #-} module Cubical.Displayed.Constant where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Displayed.Base open import Cubical.Displayed.Subst private variable ℓ ℓA ℓA' ℓP ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓ≅B' ℓC ℓ≅C : Level -- constant DUARel module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : Type ℓB} (𝒮-B : UARel B ℓ≅B) where open UARel 𝒮-B open DUARel 𝒮ᴰ-const : DUARel 𝒮-A (λ _ → B) ℓ≅B 𝒮ᴰ-const ._≅ᴰ⟨_⟩_ b _ b' = b ≅ b' 𝒮ᴰ-const .uaᴰ b p b' = ua b b' -- SubstRel for an arbitrary constant family module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) (B : Type ℓB) where open SubstRel 𝒮ˢ-const : SubstRel 𝒮-A (λ _ → B) 𝒮ˢ-const .SubstRel.act _ = idEquiv B 𝒮ˢ-const .SubstRel.uaˢ p b = transportRefl b
21.125
62
0.661538
2fd2e7f30d78e8ce0bd3af64d30d8e70212c54f4
786
agda
Agda
Cubical/Categories/Sets.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/Categories/Sets.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Categories/Sets.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Sets where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Categories.Category module _ ℓ where SET : Precategory (ℓ-suc ℓ) ℓ SET .ob = Σ (Type ℓ) isSet SET .hom (A , _) (B , _) = A → B SET .idn _ = λ x → x SET .seq f g = λ x → g (f x) SET .seq-λ f = refl SET .seq-ρ f = refl SET .seq-α f g h = refl module _ {ℓ} where isSetExpIdeal : {A B : Type ℓ} → isSet B → isSet (A → B) isSetExpIdeal B/set = isSetΠ λ _ → B/set isSetLift : {A : Type ℓ} → isSet A → isSet (Lift {ℓ} {ℓ-suc ℓ} A) isSetLift = isOfHLevelLift 2 instance SET-category : isCategory (SET ℓ) SET-category .homIsSet {_} {B , B/set} = isSetExpIdeal B/set
27.103448
67
0.637405
1cba3acd85a88fcc3a852119c172041325616fe8
3,809
agda
Agda
Categories/Monoidal/Traced.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Monoidal/Traced.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Monoidal/Traced.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} module Categories.Monoidal.Traced where open import Level open import Data.Product open import Data.Fin open import Categories.Category open import Categories.Monoidal open import Categories.Functor hiding (id; _∘_; identityʳ; assoc) open import Categories.Monoidal.Braided open import Categories.Monoidal.Helpers open import Categories.Monoidal.Braided.Helpers open import Categories.Monoidal.Symmetric open import Categories.NaturalIsomorphism open import Categories.NaturalTransformation hiding (id) ------------------------------------------------------------------------------ -- Helpers unary : ∀ {o ℓ e} → (C : Category o ℓ e) → (A : Category.Obj C) → Fin 1 → Category.Obj C unary C A zero = A unary C A (suc ()) binary : ∀ {o ℓ e} → (C : Category o ℓ e) → (A B : Category.Obj C) → Fin 2 → Category.Obj C binary C A B zero = A binary C A B (suc zero) = B binary C A B (suc (suc ())) ternary : ∀ {o ℓ e} → (C : Category o ℓ e) → (A X Y : Category.Obj C) → Fin 3 → Category.Obj C ternary C A X Y zero = A ternary C A X Y (suc zero) = X ternary C A X Y (suc (suc zero)) = Y ternary C A X Y (suc (suc (suc ()))) ------------------------------------------------------------------------------ -- Def from http://ncatlab.org/nlab/show/traced+monoidal+category -- -- A symmetric monoidal category (C,⊗,1,b) (where b is the symmetry) is -- said to be traced if it is equipped with a natural family of functions -- -- TrXA,B:C(A⊗X,B⊗X)→C(A,B) -- satisfying three axioms: -- -- Vanishing: Tr1A,B(f)=f (for all f:A→B) and -- TrX⊗YA,B=TrXA,B(TrYA⊗X,B⊗X(f)) (for all f:A⊗X⊗Y→B⊗X⊗Y) -- -- Superposing: TrXC⊗A,C⊗B(idC⊗f)=idC⊗TrXA,B(f) (for all f:A⊗X→B⊗X) -- -- Yanking: TrXX,X(bX,X)=idX record Traced {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} {B : Braided M} (S : Symmetric B) : Set (o ⊔ ℓ ⊔ e) where private module C = Category C open C using (Obj; id; _∘_) private module M = Monoidal M open M using (⊗; identityʳ; assoc) renaming (id to 𝟙) private module F = Functor ⊗ open F using () renaming (F₀ to ⊗ₒ; F₁ to ⊗ₘ) private module NIʳ = NaturalIsomorphism identityʳ open NaturalTransformation NIʳ.F⇒G renaming (η to ηidr⇒) open NaturalTransformation NIʳ.F⇐G renaming (η to ηidr⇐) private module NIassoc = NaturalIsomorphism assoc open NaturalTransformation NIassoc.F⇒G renaming (η to ηassoc⇒) open NaturalTransformation NIassoc.F⇐G renaming (η to ηassoc⇐) private module B = Braided B open B using (braid) private module NIbraid = NaturalIsomorphism braid open NaturalTransformation NIbraid.F⇒G renaming (η to ηbraid⇒) field trace : ∀ {X A B} → C [ ⊗ₒ (A , X) , ⊗ₒ (B , X) ] → C [ A , B ] vanish_id : ∀ {A B f} → C [ trace {𝟙} {A} {B} f ≡ (ηidr⇒ (unary C B) ∘ f ∘ ηidr⇐ (unary C A)) ] vanish_⊗ : ∀ {X Y A B f} → C [ trace {⊗ₒ (X , Y)} {A} {B} f ≡ trace {X} {A} {B} (trace {Y} {⊗ₒ (A , X)} {⊗ₒ (B , X)} ((ηassoc⇐ (ternary C B X Y)) ∘ f ∘ (ηassoc⇒ (ternary C A X Y)))) ] superpose : ∀ {X Y A B} {f : C [ ⊗ₒ (A , X) , ⊗ₒ (B , X) ]} → C [ trace {X} {⊗ₒ (Y , A)} {⊗ₒ (Y , B)} (ηassoc⇐ (ternary C Y B X) ∘ ⊗ₘ (id , f) ∘ ηassoc⇒ (ternary C Y A X)) ≡ ⊗ₘ (id , (trace {X} {A} {B} f)) ] yank : ∀ {X} → C [ trace {X} {X} {X} (ηbraid⇒ (binary C X X)) ≡ id ] ------------------------------------------------------------------------------
32.555556
91
0.515358
1c2001fa30b4cd625d686f2d8f4d3fe24d15feb6
781
agda
Agda
Cubical/Data/NatMinusOne/Base.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Data/NatMinusOne/Base.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Data/NatMinusOne/Base.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Data.NatMinusOne.Base where open import Cubical.Core.Primitives open import Cubical.Data.Nat open import Cubical.Data.Empty record ℕ₋₁ : Type₀ where constructor -1+_ field n : ℕ pattern neg1 = -1+ zero pattern ℕ→ℕ₋₁ n = -1+ (suc n) 1+_ : ℕ₋₁ → ℕ 1+_ (-1+ n) = n suc₋₁ : ℕ₋₁ → ℕ₋₁ suc₋₁ (-1+ n) = -1+ (suc n) -- Natural number and negative integer literals for ℕ₋₁ open import Cubical.Data.Nat.Literals public instance fromNatℕ₋₁ : HasFromNat ℕ₋₁ fromNatℕ₋₁ = record { Constraint = λ _ → Unit ; fromNat = ℕ→ℕ₋₁ } instance fromNegℕ₋₁ : HasFromNeg ℕ₋₁ fromNegℕ₋₁ = record { Constraint = λ { (suc (suc _)) → ⊥ ; _ → Unit } ; fromNeg = λ { zero → 0 ; (suc zero) → neg1 } }
22.970588
71
0.627401
4ab42b9967b32c404280999f067e5a8d33e82142
6,808
agda
Agda
Cubical/Structures/Relational/Function.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Structures/Relational/Function.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Structures/Relational/Function.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{- Index a structure T a positive structure S: X ↦ S X → T X -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Relational.Function where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.RelationalStructure open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Sigma open import Cubical.Relation.Binary.Base open import Cubical.Relation.ZigZag.Base open import Cubical.HITs.SetQuotients open import Cubical.HITs.PropositionalTruncation as Trunc open import Cubical.Structures.Function private variable ℓ ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓ₂' ℓ₂'' : Level FunctionRelStr : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} → StrRel S ℓ₁' → StrRel T ℓ₂' → StrRel (FunctionStructure S T) (ℓ-max ℓ₁ (ℓ-max ℓ₁' ℓ₂')) FunctionRelStr ρ₁ ρ₂ R f g = ∀ {x y} → ρ₁ R x y → ρ₂ R (f x) (g y) open isEquivRel private composeWith[_] : {A : Type ℓ} (R : EquivPropRel A ℓ) → compPropRel (R .fst) (quotientPropRel (R .fst .fst)) .fst ≡ graphRel [_] composeWith[_] R = funExt₂ λ a t → hPropExt squash (squash/ _ _) (Trunc.rec (squash/ _ _) (λ {(b , r , p) → eq/ a b r ∙ p })) (λ p → ∣ a , R .snd .reflexive a , p ∣) [_]∙[_]⁻¹ : {A : Type ℓ} (R : EquivPropRel A ℓ) → compPropRel (quotientPropRel (R .fst .fst)) (invPropRel (quotientPropRel (R .fst .fst))) .fst ≡ R .fst .fst [_]∙[_]⁻¹ R = funExt₂ λ a b → hPropExt squash (R .fst .snd a b) (Trunc.rec (R .fst .snd a b) (λ {(c , p , q) → effective (R .fst .snd) (R .snd) a b (p ∙ sym q)})) (λ r → ∣ _ , eq/ a b r , refl ∣) functionSuitableRel : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} {ρ₁ : StrRel S ℓ₁'} {ρ₂ : StrRel T ℓ₂'} (θ₁ : SuitableStrRel S ρ₁) → PositiveStrRel θ₁ → SuitableStrRel T ρ₂ → SuitableStrRel (FunctionStructure S T) (FunctionRelStr ρ₁ ρ₂) functionSuitableRel {S = S} {T = T} {ρ₁ = ρ₁} {ρ₂} θ₁ σ₁ θ₂ .quo (X , f) R h = final where ref : (s : S X) → ρ₁ (R .fst .fst) s s ref = posRelReflexive σ₁ R [f] : S X / ρ₁ (R .fst .fst) → T (X / R .fst .fst) [f] [ s ] = θ₂ .quo (X , f s) R (h (ref s)) .fst .fst [f] (eq/ s₀ s₁ r i) = cong fst (θ₂ .quo (X , f s₀) R (h (ref s₀)) .snd ( [f] [ s₁ ] , subst (λ R' → ρ₂ R' (f s₀) ([f] [ s₁ ])) (composeWith[_] R) (θ₂ .transitive (R .fst) (quotientPropRel (R .fst .fst)) (h r) (θ₂ .quo (X , f s₁) R (h (ref s₁)) .fst .snd)) )) i [f] (squash/ _ _ p q j i) = θ₂ .set squash/ _ _ (cong [f] p) (cong [f] q) j i relLemma : (s : S X) (t : S X) → ρ₁ (graphRel [_]) s (funIsEq (σ₁ .quo R) [ t ]) → ρ₂ (graphRel [_]) (f s) ([f] [ t ]) relLemma s t r = subst (λ R' → ρ₂ R' (f s) ([f] [ t ])) (composeWith[_] R) (θ₂ .transitive (R .fst) (quotientPropRel (R .fst .fst)) (h r') (θ₂ .quo (X , f t) R (h (ref t)) .fst .snd)) where r' : ρ₁ (R .fst .fst) s t r' = subst (λ R' → ρ₁ R' s t) ([_]∙[_]⁻¹ R) (θ₁ .transitive (quotientPropRel (R .fst .fst)) (invPropRel (quotientPropRel (R .fst .fst))) r (θ₁ .symmetric (quotientPropRel (R .fst .fst)) (subst (λ t' → ρ₁ (graphRel [_]) t' (funIsEq (σ₁ .quo R) [ t ])) (σ₁ .act .actStrId t) (σ₁ .act .actRel eq/ t t (ref t))))) quoRelLemma : (s : S X) (t : S X / ρ₁ (R .fst .fst)) → ρ₁ (graphRel [_]) s (funIsEq (σ₁ .quo R) t) → ρ₂ (graphRel [_]) (f s) ([f] t) quoRelLemma s = elimProp (λ _ → isPropΠ λ _ → θ₂ .prop (λ _ _ → squash/ _ _) _ _) (relLemma s) final : Σ (Σ _ _) _ final .fst .fst = [f] ∘ invIsEq (σ₁ .quo R) final .fst .snd {s} {t} r = quoRelLemma s (invIsEq (σ₁ .quo R) t) (subst (ρ₁ (graphRel [_]) s) (sym (secIsEq (σ₁ .quo R) t)) r) final .snd (f' , c) = Σ≡Prop (λ _ → isPropImplicitΠ λ s → isPropImplicitΠ λ t → isPropΠ λ _ → θ₂ .prop (λ _ _ → squash/ _ _) _ _) (funExt λ s → contractorLemma (invIsEq (σ₁ .quo R) s) ∙ cong f' (secIsEq (σ₁ .quo R) s)) where contractorLemma : (s : S X / ρ₁ (R .fst .fst)) → [f] s ≡ f' (funIsEq (σ₁ .quo R) s) contractorLemma = elimProp (λ _ → θ₂ .set squash/ _ _) (λ s → cong fst (θ₂ .quo (X , f s) R (h (ref s)) .snd ( f' (funIsEq (σ₁ .quo R) [ s ]) , c (subst (λ s' → ρ₁ (graphRel [_]) s' (funIsEq (σ₁ .quo R) [ s ])) (σ₁ .act .actStrId s) (σ₁ .act .actRel eq/ s s (ref s))) ))) functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .symmetric R h r = θ₂ .symmetric R (h (θ₁ .symmetric (invPropRel R) r)) functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .transitive R R' h h' rr' = Trunc.rec (θ₂ .prop (λ _ _ → squash) _ _) (λ {(_ , r , r') → θ₂ .transitive R R' (h r) (h' r')}) (σ .detransitive R R' rr') functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .set setX = isSetΠ λ _ → θ₂ .set setX functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .prop propR f g = isPropImplicitΠ λ _ → isPropImplicitΠ λ _ → isPropΠ λ _ → θ₂ .prop propR _ _ functionRelMatchesEquiv : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} (ρ₁ : StrRel S ℓ₁') {ι₁ : StrEquiv S ℓ₁''} (ρ₂ : StrRel T ℓ₂') {ι₂ : StrEquiv T ℓ₂''} → StrRelMatchesEquiv ρ₁ ι₁ → StrRelMatchesEquiv ρ₂ ι₂ → StrRelMatchesEquiv (FunctionRelStr ρ₁ ρ₂) (FunctionEquivStr ι₁ ι₂) functionRelMatchesEquiv ρ₁ ρ₂ μ₁ μ₂ (X , f) (Y , g) e = equivImplicitΠCod (equivImplicitΠCod (equiv→ (μ₁ _ _ e) (μ₂ _ _ e))) functionRelMatchesEquiv+ : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} (ρ₁ : StrRel S ℓ₁') (α₁ : EquivAction S) (ρ₂ : StrRel T ℓ₂') (ι₂ : StrEquiv T ℓ₂'') → StrRelMatchesEquiv ρ₁ (EquivAction→StrEquiv α₁) → StrRelMatchesEquiv ρ₂ ι₂ → StrRelMatchesEquiv (FunctionRelStr ρ₁ ρ₂) (FunctionEquivStr+ α₁ ι₂) functionRelMatchesEquiv+ ρ₁ α₁ ρ₂ ι₂ μ₁ μ₂ (X , f) (Y , g) e = compEquiv (functionRelMatchesEquiv ρ₁ ρ₂ μ₁ μ₂ (X , f) (Y , g) e) (isoToEquiv isom) where open Iso isom : Iso (FunctionEquivStr (EquivAction→StrEquiv α₁) ι₂ (X , f) (Y , g) e) (FunctionEquivStr+ α₁ ι₂ (X , f) (Y , g) e) isom .fun h s = h refl isom .inv k {x} = J (λ y _ → ι₂ (X , f x) (Y , g y) e) (k x) isom .rightInv k i x = JRefl (λ y _ → ι₂ (X , f x) (Y , g y) e) (k x) i isom .leftInv h = implicitFunExt λ {x} → implicitFunExt λ {y} → funExt λ p → J (λ y p → isom .inv (isom .fun h) p ≡ h p) (funExt⁻ (isom .rightInv (isom .fun h)) x) p
35.458333
99
0.559048
31eb389fd2228102386c8345f88a758f1c696bbc
1,378
agda
Agda
src/fot/Agsy/PA/Inductive/Properties.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/Agsy/PA/Inductive/Properties.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/Agsy/PA/Inductive/Properties.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Inductive PA arithmetic properties using Agsy ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Tested with the development version of the Agda standard library on -- 02 February 2012. module Agsy.PA.Inductive.Properties where open import Data.Nat renaming ( suc to succ ) open import Relation.Binary.PropositionalEquality open ≡-Reasoning ------------------------------------------------------------------------------ +-rightIdentity : ∀ n → n + zero ≡ n -- via Agsy {-c} +-rightIdentity zero = refl +-rightIdentity (succ n) = cong succ (+-rightIdentity n) +-assoc : ∀ m n o → m + n + o ≡ m + (n + o) -- via Agsy {-c} +-assoc zero n o = refl +-assoc (succ m) n o = cong succ (+-assoc m n o) x+Sy≡S[x+y] : ∀ m n → m + succ n ≡ succ (m + n) -- via Agsy {-c} x+Sy≡S[x+y] zero n = refl x+Sy≡S[x+y] (succ m) n = cong succ (x+Sy≡S[x+y] m n) +-comm : ∀ m n → m + n ≡ n + m -- via Agsy {-c -m} +-comm zero n = sym (+-rightIdentity n) +-comm (succ m) n = begin succ (m + n) ≡⟨ cong succ (+-comm m n) ⟩ succ (n + m) ≡⟨ sym (x+Sy≡S[x+y] n m) ⟩ n + succ m ∎
32.809524
78
0.469521
10a1329f956c46b9f869e80b40aa2f6ec4547c83
1,336
agda
Agda
Cubical/Codata/Conat/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Codata/Conat/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Codata/Conat/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{- Conatural numbers (Tesla Ice Zhang, Feb. 2019) This file defines: - A coinductive natural number representation which is dual to the inductive version (zero | suc Nat → Nat) of natural numbers. - Trivial operations (succ, pred) and the pattern synonyms on conaturals. While this definition can be seen as a coinductive wrapper of an inductive datatype, another way of definition is to define an inductive datatype that wraps a coinductive thunk of Nat. The standard library uses the second approach: https://github.com/agda/agda-stdlib/blob/master/src/Codata/Conat.agda The first approach is chosen to exploit guarded recursion and to avoid the use of Sized Types. -} {-# OPTIONS --cubical --safe --guardedness #-} module Cubical.Codata.Conat.Base where open import Cubical.Data.Unit open import Cubical.Data.Sum open import Cubical.Core.Everything record Conat : Type₀ Conat′ = Unit ⊎ Conat record Conat where coinductive constructor conat′ field force : Conat′ open Conat public pattern zero = inl tt pattern suc n = inr n conat : Conat′ → Conat force (conat a) = a succ : Conat → Conat force (succ a) = suc a succ′ : Conat′ → Conat′ succ′ n = suc λ where .force → n pred′ : Conat′ → Conat′ pred′ zero = zero pred′ (suc x) = force x pred′′ : Conat′ → Conat force (pred′′ zero) = zero pred′′ (suc x) = x
23.857143
78
0.732036
1ce6e83b8061d8b8ac47432bece93aae5534b573
757
agda
Agda
src/fot/FOTC/Program/Mirror/Mirror.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/Mirror/Mirror.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/Mirror/Mirror.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- The mirror function: A function with higher-order recursion ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Mirror.Mirror where open import FOTC.Base open import FOTC.Data.List open import FOTC.Program.Mirror.Type ------------------------------------------------------------------------------ -- The mirror function. postulate mirror : D mirror-eq : ∀ d ts → mirror · node d ts ≡ node d (reverse (map mirror ts)) {-# ATP axiom mirror-eq #-}
34.409091
78
0.437252
39ca73c4ec5187b3f7a2c42478363b3e8121562b
1,380
agda
Agda
test/Succeed/Issue4480.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4480.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4480.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --irrelevant-projections #-} data _≡_ {A : Set} : A → A → Set where refl : (x : A) → x ≡ x module Erased where record Erased (A : Set) : Set where constructor [_] field @0 erased : A open Erased record _↔_ (A B : Set) : Set where field to : A → B from : B → A to∘from : ∀ x → to (from x) ≡ x from∘to : ∀ x → from (to x) ≡ x postulate A : Set P : (B : Set) → (Erased A → B) → Set p : (B : Set) (f : Erased A ↔ B) → P B (_↔_.to f) fails : P (Erased (Erased A)) (λ (x : Erased A) → [ x ]) fails = p _ (record { from = λ ([ x ]) → [ erased x ] ; to∘from = refl ; from∘to = λ _ → refl _ }) module Irrelevant where record Irrelevant (A : Set) : Set where constructor [_] field .irr : A open Irrelevant record _↔_ (A B : Set) : Set where field to : A → B from : B → A to∘from : ∀ x → to (from x) ≡ x from∘to : ∀ x → from (to x) ≡ x postulate A : Set P : (B : Set) → (Irrelevant A → B) → Set p : (B : Set) (f : Irrelevant A ↔ B) → P B (_↔_.to f) fails : P (Irrelevant (Irrelevant A)) (λ (x : Irrelevant A) → [ x ]) fails = p _ (record { from = λ ([ x ]) → [ irr x ] ; to∘from = refl ; from∘to = λ _ → refl _ })
21.904762
70
0.45
1ddb6cec0f558e4f4c7c063bd6be0670872532f6
1,871
agda
Agda
04-cubical-type-theory/material/ExerciseSession3.agda
HoTT/EPIT-2020
0502db788d6d2b3950e44f362cdb7d4da3ebce82
[ "MIT" ]
97
2021-03-19T14:13:37.000Z
2022-03-15T13:58:25.000Z
04-cubical-type-theory/material/ExerciseSession3.agda
HoTT/EPIT-2020
0502db788d6d2b3950e44f362cdb7d4da3ebce82
[ "MIT" ]
2
2021-03-31T18:27:23.000Z
2021-04-13T09:03:56.000Z
04-cubical-type-theory/material/ExerciseSession3.agda
HoTT/EPIT-2020
0502db788d6d2b3950e44f362cdb7d4da3ebce82
[ "MIT" ]
14
2021-03-19T12:36:53.000Z
2022-03-22T19:37:21.000Z
-- Exercises for session 3 -- -- If unsure which exercises to do start with those marked with * -- {-# OPTIONS --cubical --allow-unsolved-metas #-} module ExerciseSession3 where open import Part1 open import Part2 open import Part3 open import Part4 open import ExerciseSession1 hiding (B) open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Int hiding (neg) -- Exercise* 1: prove associativity of _++_ for FMSet. -- (hint: mimic the proof of unitr-++) -- Exercise 2: define the integers as a HIT with a pos and neg -- constructor each taking a natural number as well as a path -- constructor equating pos 0 and neg 0. -- Exercise 3 (a little longer, but not very hard): prove that the -- above definition of the integers is equal to the ones in -- Cubical.Data.Int. Deduce that they form a set. -- Exercise* 4: we can define the notion of a surjection as: isSurjection : (A → B) → Type _ isSurjection {A = A} {B = B} f = (b : B) → ∃ A (λ a → f a ≡ b) -- The exercise is now to: -- -- a) prove that being a surjection is a proposition -- -- b) prove that the inclusion ∣_∣ : A → ∥ A ∥ is surjective -- (hint: use rec for ∥_∥) -- Exercise* 5: define intLoop : ℤ → ΩS¹ intLoop = {!!} -- which given +n return loop^n and given -n returns loop^-n. Then -- prove that: windingIntLoop : (n : ℤ) → winding (intLoop n) ≡ n windingIntLoop = {!!} -- (The other direction is much more difficult and relies on the -- encode-decode method. See Egbert's course on Friday!) -- Exercise 6 (harder): the suspension of a type can be defined as data Susp (A : Type ℓ) : Type ℓ where north : Susp A south : Susp A merid : (a : A) → north ≡ south -- Prove that the circle is equal to the suspension of Bool S¹≡SuspBool : S¹ ≡ Susp Bool S¹≡SuspBool = {!!} -- Hint: define maps back and forth and prove that they cancel.
27.514706
66
0.691074
d0d3ec84d8dd932fa3415ab7cd65dc85b61712e0
569
agda
Agda
test/Succeed/Issue137.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue137.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue137.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --no-termination-check #-} module Issue137 where record Foo : Set1 where field foo : {x : Set} → Set record Bar : Set1 where field bar : Foo record Baz (P : Bar) : Set1 where field baz : Set postulate P : Bar Q : Baz P f : Baz.baz Q → Set f r with f r f r | A = A -- The bug was: -- Issue137.agda:22,1-12 -- Set should be a function type, but it isn't -- when checking that the expression λ x → Foo.foo (Bar.bar P) {x} has -- type Set -- If the field foo is replaced by -- foo : (x : Set) → Set -- then the code type checks.
16.735294
70
0.615114
c54372827314c06ff97ce104d13cb1090188eb74
511
agda
Agda
test/interaction/Highlighting.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/interaction/Highlighting.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/interaction/Highlighting.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
module Highlighting where Set-one : Set₂ Set-one = Set₁ record R (A : Set) : Set-one where constructor con field X : Set F : Set → Set → Set F A B = B field P : F A X → Set -- highlighting of non-terminating definition Q : F A X → Set Q = Q postulate P : _ open import Highlighting.M data D (A : Set) : Set-one where d : let X = D in X A postulate _+_ _×_ : Set → Set → Set infixl 4 _×_ _+_ -- Issue #2140: the operators should be highlighted also in the -- fixity declaration.
15.96875
65
0.634051
31e668bd477dd58fa43206f549c16c14559afe6d
97
agda
Agda
test/Common/Unit.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
7
2018-11-05T22:13:36.000Z
2018-11-06T16:38:43.000Z
test/Common/Unit.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
16
2018-10-08T00:32:04.000Z
2019-09-08T13:47:04.000Z
test/Common/Unit.agda
xekoukou/agda-ocaml
026a8f8473ab91f99c3f6545728e71fa847d2720
[ "BSD-3-Clause" ]
1
2022-03-12T11:39:14.000Z
2022-03-12T11:39:14.000Z
module Common.Unit where open import Agda.Builtin.Unit public renaming (⊤ to Unit; tt to unit)
19.4
69
0.762887
fbdc3decb6a0f0ace2b0fc213cef153328aea65c
164
agda
Agda
test/Fail/Issue5448-2.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Fail/Issue5448-2.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Fail/Issue5448-2.agda
antoinevanmuylder/agda
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --cubical-compatible #-} open import Agda.Builtin.Equality subst : {@0 A : Set} {x y : A} (@0 P : A → Set) → x ≡ y → P x → P y subst P refl p = p
18.222222
38
0.54878
a1f4d2f1fa29b4385c7178576122f8828abdcdba
72
agda
Agda
test/Fail/Sections-5.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Sections-5.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Sections-5.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Common.Prelude test : Nat → Nat test = _Common.Prelude.+ 2
14.4
26
0.722222
39aa050e2aee60fa568df23914c3818d193f3bae
223
agda
Agda
test/Fail/RewriteConstructorParsNotGeneral.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/RewriteConstructorParsNotGeneral.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/RewriteConstructorParsNotGeneral.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting #-} open import Agda.Builtin.Bool open import Agda.Builtin.Equality {-# BUILTIN REWRITE _≡_ #-} data D (A : Set) : Set where c c' : D A postulate rew : c {Bool} ≡ c' {Bool} {-# REWRITE rew #-}
17.153846
36
0.623318
2fd9458b0f60fe475fe6857c0ec27dd12f08e07c
3,172
agda
Agda
src/Impure/LFRef/Eval.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Impure/LFRef/Eval.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Impure/LFRef/Eval.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
module Impure.LFRef.Eval where open import Prelude open import Data.Fin using (fromℕ≤) open import Data.List hiding ([_]) open import Data.List.All open import Data.List.Any open import Data.Vec hiding (map; _∷ʳ_) open import Data.Maybe hiding (All; Any) open import Extensions.List as L open import Impure.LFRef.Syntax hiding (subst) open import Impure.LFRef.Welltyped -- machine configuration: expression to reduce and a store Config : Set Config = Exp 0 × Store !load : ∀ {i} → (μ : Store) → i < length μ → Term 0 !load {i = i} [] () !load {i = zero} (x ∷ μ) (s≤s p) = proj₁ x !load {i = suc i} (x ∷ μ) (s≤s p) = !load μ p !store : ∀ {i e} → (μ : Store) → i < length μ → Val e → Store !store [] () v !store {i = zero} (x ∷ μ) (s≤s p) v = (, v) ∷ μ !store {i = suc i} (x ∷ μ) (s≤s p) v = (, v) ∷ (!store μ p v) !call : ∀ {n m} → Exp m → (l : List (Term n)) → length l ≡ m → Exp n !call e ts p = e exp/ subst (Vec _) p (fromList ts) -- small steps for expressions infix 1 _⊢_≻_ data _⊢_≻_ (𝕊 : Sig) : (t t' : Config) → Set where funapp-β : ∀ {fn ts μ φ} → (Sig.funs 𝕊) L.[ fn ]= φ → (p : length ts ≡ Fun.m φ) → ------------------------- 𝕊 ⊢ fn ·★ ts , μ ≻ (!call (Fun.body φ) ts p) , μ ref-val : ∀ {t μ} → (v : Val t) → ---------------------------------------------------- 𝕊 ⊢ ref (tm t) , μ ≻ (tm (loc (length μ))) , (μ ∷ʳ (, v)) ≔-val : ∀ {i e μ} → (p : i < length μ) → (v : Val e) → -------------------------------------------- 𝕊 ⊢ (tm (loc i)) ≔ (tm e) , μ ≻ (tm unit) , (μ L.[ fromℕ≤ p ]≔ (, v)) !-val : ∀ {i μ} → (p : i < length μ) → ----------------------------------------- 𝕊 ⊢ ! (tm (loc i)) , μ ≻ tm (!load μ p) , μ ref-clos : ∀ {e e' μ μ'} → 𝕊 ⊢ e , μ ≻ e' , μ' → --------------------------- 𝕊 ⊢ ref e , μ ≻ ref e' , μ' !-clos : ∀ {e e' μ μ'} → 𝕊 ⊢ e , μ ≻ e' , μ' → ----------------------- 𝕊 ⊢ ! e , μ ≻ ! e' , μ' ≔-clos₁ : ∀ {x x' e μ μ'} → 𝕊 ⊢ x , μ ≻ x' , μ' → -------------------------- 𝕊 ⊢ x ≔ e , μ ≻ x' ≔ e , μ' ≔-clos₂ : ∀ {x e e' μ μ'} → ExpVal x → 𝕊 ⊢ e , μ ≻ e' , μ' → -------------------------- 𝕊 ⊢ x ≔ e , μ ≻ x ≔ e' , μ' infix 1 _⊢_≻ₛ_ data _⊢_≻ₛ_ (𝕊 : Sig) : (t t' : SeqExp 0 × Store) → Set where -- reductions lett-β : ∀ {t e μ} → ---------------------------------------------- 𝕊 ⊢ (lett (tm t) e) , μ ≻ₛ (e seq/ (sub t)) , μ -- contextual closure ret-clos : ∀ {e μ e' μ'} → 𝕊 ⊢ e , μ ≻ e' , μ' → ------------------------------------- 𝕊 ⊢ (ret e) , μ ≻ₛ (ret e') , μ' lett-clos : ∀ {x e x' μ μ'} → 𝕊 ⊢ x , μ ≻ x' , μ' → ------------------------------------- 𝕊 ⊢ (lett x e) , μ ≻ₛ (lett x' e) , μ' -- reflexive-transitive closure of ≻ open import Data.Star infix 1 _⊢_≻⋆_ _⊢_≻⋆_ : (Sig) → (c c' : SeqExp 0 × Store) → Set 𝕊 ⊢ c ≻⋆ c' = Star (_⊢_≻ₛ_ 𝕊) c c'
30.5
79
0.365385
10cd888130166c22318e7abe37e44f4f68601f1e
1,199
agda
Agda
src/agda/FRP/JS/Bool.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
63
2015-04-20T21:47:00.000Z
2022-02-28T09:46:14.000Z
src/agda/FRP/JS/Bool.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
null
null
null
src/agda/FRP/JS/Bool.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
7
2016-11-07T21:50:58.000Z
2022-03-12T11:39:38.000Z
module FRP.JS.Bool where open import FRP.JS.Primitive public using ( Bool ; true ; false ) not : Bool → Bool not true = false not false = true {-# COMPILED_JS not function(x) { return !x; } #-} _≟_ : Bool → Bool → Bool true ≟ b = b false ≟ b = not b {-# COMPILED_JS _≟_ function(x) { return function(y) { return x === y; }; } #-} if_then_else_ : ∀ {α} {A : Set α} → Bool → A → A → A if true then t else f = t if false then t else f = f {-# COMPILED_JS if_then_else_ function(a) { return function(A) { return function(x) { if (x) { return function(t) { return function(f) { return t; }; }; } else { return function(t) { return function(f) { return f; }; }; } }; }; } #-} _∧_ : Bool → Bool → Bool true ∧ b = b false ∧ b = false {-# COMPILED_JS _∧_ function(x) { return function(y) { return x && y; }; } #-} _∨_ : Bool → Bool → Bool true ∨ b = true false ∨ b = b {-# COMPILED_JS _∨_ function(x) { return function(y) { return x || y; }; } #-} _xor_ : Bool → Bool → Bool true xor b = not b false xor b = b _≠_ = _xor_ {-# COMPILED_JS _xor_ function(x) { return function(y) { return x !== y; }; } #-} {-# COMPILED_JS _≠_ function(x) { return function(y) { return x !== y; }; } #-}
26.065217
85
0.586322
594d7c8583c31d61c0025526a41773954111726f
640
agda
Agda
test/Compiler/simple/VecReverseErased.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
test/Compiler/simple/VecReverseErased.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
test/Compiler/simple/VecReverseErased.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
module _ where open import Common.Prelude data Vec (A : Set) : Nat → Set where [] : Vec A 0 _∷_ : ∀ {@0 n} → A → Vec A n → Vec A (suc n) sum : ∀ {@0 n} → Vec Nat n → Nat sum (x ∷ xs) = x + sum xs sum [] = 0 foldl : ∀ {A} {B : Nat → Set} → (∀ {@0 n} → B n → A → B (suc n)) → B 0 → ∀ {@0 n} → Vec A n → B n foldl {B = B} f z (x ∷ xs) = foldl {B = λ n → B (suc n)} f (f z x) xs foldl f z [] = z reverse : ∀ {A} {@0 n} → Vec A n → Vec A n reverse = foldl {B = Vec _} (λ xs x → x ∷ xs) [] downFrom : ∀ n → Vec Nat n downFrom zero = [] downFrom (suc n) = n ∷ downFrom n main : IO Unit main = printNat (sum (reverse (downFrom 100000)))
24.615385
97
0.50625
2f0be843553a02d4f246095c24489a5a0f433539
849
agda
Agda
archive/agda-2/Oscar/Data/Term/Core.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-2/Oscar/Data/Term/Core.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-2/Oscar/Data/Term/Core.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Oscar.Data.Term.Substitution.Core {𝔣} (FunctionName : Set 𝔣) where open import Oscar.Data.Term.Core FunctionName open import Oscar.Data.Term.Substitution.Core.bootstrap FunctionName public hiding (_◃Term_; _◃VecTerm_) open import Oscar.Data.Nat.Core open import Oscar.Data.Fin.Core open import Oscar.Data.Vec.Core open import Oscar.Data.Equality.Core open import Oscar.Data.Product.Core open import Oscar.Function open import Oscar.Level ⊸-Property : {ℓ : Level} → ℕ → Set (lsuc ℓ ⊔ 𝔣) ⊸-Property {ℓ} m = ∀ {n} → m ⊸ n → Set ℓ _≐_ : {m n : ℕ} → m ⊸ n → m ⊸ n → Set 𝔣 f ≐ g = ∀ x → f x ≡ g x ⊸-Extensional : {ℓ : Level} {m : ℕ} → ⊸-Property {ℓ} m → Set (ℓ ⊔ 𝔣) ⊸-Extensional P = ∀ {m f g} → f ≐ g → P {m} f → P g ⊸-ExtentionalProperty : {ℓ : Level} → ℕ → Set (lsuc ℓ ⊔ 𝔣) ⊸-ExtentionalProperty {ℓ} m = Σ (⊸-Property {ℓ} m) ⊸-Extensional
33.96
104
0.6596
5909ec3e723ad7c5287c22ffe2ff9bda01100461
994
agda
Agda
agda-stdlib/src/Data/List/Membership/Propositional/Properties/WithK.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Membership/Propositional/Properties/WithK.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Membership/Propositional/Properties/WithK.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to propositional list membership, that rely on -- the K rule ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Data.List.Membership.Propositional.Properties.WithK where open import Data.List.Base open import Data.List.Relation.Unary.Unique.Propositional open import Data.List.Membership.Propositional import Data.List.Membership.Setoid.Properties as Membershipₛ open import Relation.Unary using (Irrelevant) open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Binary.PropositionalEquality.WithK ------------------------------------------------------------------------ -- Irrelevance unique⇒irrelevant : ∀ {a} {A : Set a} {xs : List A} → Unique xs → Irrelevant (_∈ xs) unique⇒irrelevant = Membershipₛ.unique⇒irrelevant (P.setoid _) ≡-irrelevant
38.230769
75
0.593561
dff214e975cae5f935d7c19b2ac44f99536b2965
12,724
agda
Agda
Univalence/2DTypes.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Univalence/2DTypes.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Univalence/2DTypes.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} module 2DTypes where -- open import Level renaming (zero to lzero) open import Relation.Binary.PropositionalEquality open import Data.Unit open import Data.Sum open import Data.Empty using (⊥; ⊥-elim) open import Data.Product open import Function using (_∘_) open import Relation.Binary using (Setoid) open import Data.Nat using (ℕ) renaming (suc to ℕsuc; _+_ to _ℕ+_; _*_ to _ℕ*_) open import Data.Fin using (Fin; zero; suc) open import Data.Vec using (Vec; lookup; _∷_; []; zipWith) open import Data.Integer hiding (suc) open import VectorLemmas using (_!!_) open import PiU open import PiLevel0 hiding (!!) open import PiEquiv open import PiLevel1 open import Equiv open import EquivEquiv using (_≋_; module _≋_) open import Categories.Category open import Categories.Groupoid open import Categories.Equivalence.Strong -- This exists somewhere, but I can't find it ⊎-inj : ∀ {ℓ} {A B : Set ℓ} {a : A} {b : B} → inj₁ a ≡ inj₂ b → ⊥ ⊎-inj () -- should probably make this level-polymorphic record Typ : Set where constructor typ field carr : U len : ℕ -- number of non-trivial automorphisms auto : Vec (carr ⟷ carr) (ℕsuc len) -- the real magic goes here -- normally the stuff below is "global", but here -- we attach it to a type. id : id⟷ ⇔ (auto !! zero) _⊙_ : Fin (ℕsuc len) → Fin (ℕsuc len) → Fin (ℕsuc len) coh : ∀ (i j : Fin (ℕsuc len)) → -- note the flip !!! ((auto !! i) ◎ (auto !! j) ⇔ (auto !! (j ⊙ i))) -- to get groupoid, we need inverse knowledge, do later open Typ -- The above 'induces' a groupoid structure, which -- we need to show in detail. -- First, a useful container for the info we need: record Hm (t : Typ) (a b : ⟦ carr t ⟧) : Set where constructor hm field eq : carr t ⟷ carr t good : Σ (Fin (ℕsuc (len t))) (λ n → eq ⇔ (auto t !! n)) fwd : proj₁ (c2equiv eq) a ≡ b bwd : isqinv.g (proj₂ (c2equiv eq)) b ≡ a -- note how (auto t) is not actually used! -- also: not sure e₁ and e₂ always used coherently, as types are not enough -- to decide which one to use... induceCat : Typ → Category _ _ _ induceCat t = record { Obj = ⟦ carr t ⟧ ; _⇒_ = Hm t ; _≡_ = λ { (hm e₁ g₁ _ _) → λ { (hm e₂ g₂ _ _) → e₁ ⇔ e₂} } ; id = hm id⟷ (zero , id t) refl refl ; _∘_ = λ { {A} {B} {C} (hm e₁ (n₁ , p₁) fwd₁ bwd₁) (hm e₂ (n₂ , p₂) fwd₂ bwd₂) → let pf₁ = (begin ( proj₁ (c2equiv e₁ ● c2equiv e₂) A ≡⟨ β₁ A ⟩ (proj₁ (c2equiv e₁) ∘ (proj₁ (c2equiv e₂))) A ≡⟨ cong (proj₁ (c2equiv e₁)) fwd₂ ⟩ proj₁ (c2equiv e₁) B ≡⟨ fwd₁ ⟩ C ∎ )) -- same as above (in opposite direction), just compressed pf₂ = trans (β₂ C) (trans (cong (isqinv.g (proj₂ (c2equiv e₂))) bwd₁) bwd₂) n₃ = _⊙_ t n₁ n₂ compos = n₃ , trans⇔ (p₂ ⊡ p₁) (coh t n₂ n₁) in hm (e₂ ◎ e₁) compos pf₁ pf₂ } ; assoc = assoc◎l ; identityˡ = idr◎l ; identityʳ = idl◎l ; equiv = record { refl = id⇔ ; sym = 2! ; trans = trans⇔ } ; ∘-resp-≡ = λ f g → g ⊡ f } where open Typ open ≡-Reasoning {- -- to get the Groupoid structure, there is stuff in the type that is -- missing; see the hole. induceG : (t : Typ) → Groupoid (induceCat t) induceG t = record { _⁻¹ = λ { {A} {B} (hm e g fw bw) → hm (! e) {!!} (trans (f≡ (!≡sym≃ e) B) bw) (trans (g≡ (!≡sym≃ e) A) fw) } ; iso = record { isoˡ = linv◎l ; isoʳ = rinv◎l } } where open _≋_ -} -- some useful functions for defining the type 1T private mult : Fin 1 → Fin 1 → Fin 1 mult zero zero = zero mult _ (suc ()) mult (suc ()) _ triv : Vec (ONE ⟷ ONE) 1 triv = id⟷ ∷ [] mult-coh : ∀ (i j : Fin 1) → ((triv !! i) ◎ (triv !! j) ⇔ (triv !! (mult j i))) mult-coh zero zero = idl◎l -- note how this is non-trivial! mult-coh _ (suc ()) mult-coh (suc ()) _ 1T : Typ 1T = record { carr = ONE ; len = 0 ; auto = triv ; id = id⇔ ; _⊙_ = mult ; coh = mult-coh } BOOL : U BOOL = PLUS ONE ONE -- some useful functions for defining the type 1T′ private mult′ : Fin 2 → Fin 2 → Fin 2 mult′ zero zero = zero mult′ zero (suc zero) = suc zero mult′ _ (suc (suc ())) mult′ (suc zero) zero = suc zero mult′ (suc zero) (suc zero) = zero mult′ (suc (suc ())) _ sw : Vec (BOOL ⟷ BOOL) 2 sw = id⟷ ∷ swap₊ ∷ [] sw-coh : ∀ (i j : Fin 2) → ((sw !! i) ◎ (sw !! j) ⇔ (sw !! (mult′ j i))) sw-coh zero zero = idl◎l sw-coh zero (suc zero) = idl◎l sw-coh _ (suc (suc ())) sw-coh (suc zero) zero = idr◎l sw-coh (suc zero) (suc zero) = linv◎l sw-coh (suc (suc ())) _ 1T′ : Typ 1T′ = record { carr = BOOL ; len = 1 ; auto = sw ; id = id⇔ ; _⊙_ = mult′ ; coh = sw-coh } -- useful utilities private collapse : ⊤ ⊎ ⊤ → ⊤ collapse (inj₁ a) = a collapse (inj₂ b) = b collapse-coh : ∀ {A B : ⊤ ⊎ ⊤} → collapse A ≡ collapse B collapse-coh {inj₁ tt} {inj₁ tt} = refl collapse-coh {inj₁ tt} {inj₂ tt} = refl collapse-coh {inj₂ tt} {inj₁ tt} = refl collapse-coh {inj₂ tt} {inj₂ tt} = refl -- let's do it on categories only. -- The important thing here is that we only have -- access to id⟷ and (auto 1T′) as things of type -- (carr 1T′ ⟷ carr 1T′). 1T≃1T′ : StrongEquivalence (induceCat 1T) (induceCat 1T′) 1T≃1T′ = record -- from 1T to 1T′, we really do want to map down to id⟷ onto inj₁ { F = record { F₀ = inj₁ ; F₁ = λ { {tt} {tt} (hm e g fwd bwd) → hm id⟷ (zero , id⇔) refl refl} ; identity = id⇔ ; homomorphism = idl◎r ; F-resp-≡ = λ _ → id⇔ } -- and here, everything should be collapsed ; G = record { F₀ = collapse ; F₁ = λ { {A} {B} (hm e g fwd bwd) → hm id⟷ (zero , id⇔) (collapse-coh {A} {B}) (collapse-coh {B} {A})} ; identity = id⇔ ; homomorphism = idl◎r ; F-resp-≡ = λ _ → id⇔ } -- and here is where (auto 1T′) is needed, else this is false!! ; weak-inverse = record { F∘G≅id = record { F⇒G = record { η = λ { (inj₁ a) → hm id⟷ (zero , id⇔) refl refl; (inj₂ b) → hm swap₊ (suc zero , id⇔) refl refl } ; commute = λ { {inj₁ tt} {inj₁ tt} (hm c (zero , x) _ _) → trans⇔ idl◎l (trans⇔ (2! x) idl◎r) ; {inj₁ tt} {inj₁ tt} (hm c (suc zero , x) a b) → ⊥-elim (⊎-inj ( trans (sym a) ( trans (sym (lemma0 c (inj₁ tt))) (≋⇒≡ x (inj₁ tt))))) ; {inj₁ tt} {inj₁ tt} (hm c (suc (suc ()), _) _ _); {inj₁ tt} {inj₂ tt} (hm c (zero , x) a b) → ⊥-elim (⊎-inj ( trans (sym (≋⇒≡ x (inj₁ tt))) ( trans (lemma0 c (inj₁ tt)) a ) ) ); {inj₁ tt} {inj₂ tt} (hm c (suc zero , x) _ _) → trans⇔ idl◎l (trans⇔ (2! x) idl◎r) ; {inj₁ tt} {inj₂ tt} (hm c (suc (suc ()), _) _ _); {inj₂ tt} {inj₁ tt} (hm c (zero , x) a b) → ⊥-elim (⊎-inj ( trans (sym a) ( trans (sym (lemma0 c (inj₂ tt))) (≋⇒≡ x (inj₂ tt)) ) ) ); {inj₂ tt} {inj₁ tt} (hm c (suc (suc ()), _) _ _); {inj₂ tt} {inj₂ tt} (hm c (zero , x) _ _) → trans⇔ idl◎l (trans⇔ idr◎r (id⇔ ⊡ (2! x))); {inj₂ tt} {inj₁ tt} (hm c (suc zero , x) _ _) → trans⇔ idl◎l (trans⇔ linv◎r (id⇔ ⊡ (2! x))); {inj₂ tt} {inj₂ tt} (hm c (suc zero , x) a b) → ⊥-elim (⊎-inj ( trans (sym (≋⇒≡ x (inj₂ tt))) ( trans (lemma0 c (inj₂ tt)) a) ) ) ; {inj₂ tt} {inj₂ tt} (hm c (suc (suc ()), _) _ _) } } ; F⇐G = record { η = λ { (inj₁ a) → hm id⟷ (zero , id⇔) refl refl; (inj₂ b) → hm swap₊ ((suc zero , id⇔)) refl refl } ; commute = λ { {inj₁ tt} {inj₁ tt} (hm a (zero , e) c d) → e ⊡ id⇔ ; {inj₁ tt} {inj₂ tt} (hm a (zero , e) c d) → {!!} ; {inj₂ tt} {inj₁ tt} (hm a (zero , e) c d) → {!!} ; {inj₂ tt} {inj₂ tt} (hm a (zero , e) c d) → trans⇔ (e ⊡ id⇔) (trans⇔ idl◎l idr◎r) ; {inj₁ tt} {inj₁ tt} (hm a (suc zero , e) c d) → {!!} ; {inj₁ tt} {inj₂ tt} (hm a (suc zero , e) c d) → {!!} ; {inj₂ tt} {inj₁ tt} (hm a (suc zero , e) c d) → {!!} ; {inj₂ tt} {inj₂ tt} (hm a (suc zero , e) c d) → {!!} ; (hm a (suc (suc ()) , _) _ _) } } ; iso = λ { (inj₁ tt) → record { isoˡ = idl◎l ; isoʳ = idl◎l }; (inj₂ tt) → record { isoˡ = linv◎l ; isoʳ = linv◎l } } } ; G∘F≅id = record { F⇒G = record { η = λ {tt → hm id⟷ (zero , id⇔) refl refl} ; commute = λ { {tt} {tt} (hm eq (zero , e) _ _) → id⇔ ⊡ (2! e) ; {tt} {tt} (hm eq (suc () , _) _ _) } } ; F⇐G = record { η = λ {tt → hm id⟷ (zero , id⇔) refl refl} ; commute = λ { {tt} {tt} (hm c (zero , e) _ _) → e ⊡ id⇔ ; {tt} {tt} (hm c (suc () , _) _ _) } } ; iso = λ {tt → record { isoˡ = linv◎l ; isoʳ = linv◎l } } } } } -- And so 1T′ is equivalent to 1T. This can be interpreted to mean -- that swap₊ (perhaps more precisely, id⟷ ∷ swap₊ ∷ [] ) is the -- representation of a 'negative type'. --------------- -- Cardinality function card : Typ → ℤ card (typ carr len _ _ _ _) = (+ size carr) - (+ len) -- check card-1T : card 1T ≡ + 1 card-1T = refl card-1T′ : card 1T′ ≡ + 1 card-1T′ = refl -------------- -- Conjecture... -- to make this work, we're going to postulate another loop -- and that it is idempotent: postulate loop : ZERO ⟷ ZERO idemp : loop ◎ loop ⇔ loop private cc : Fin 2 → Fin 2 → Fin 2 cc zero zero = zero cc zero (suc zero) = suc zero cc (suc zero) zero = suc zero cc (suc zero) (suc zero) = suc zero cc (suc (suc ())) _ cc _ (suc (suc ())) two-loops : Vec (ZERO ⟷ ZERO) 2 two-loops = id⟷ ∷ loop ∷ [] tl-coh : ∀ (i j : Fin 2) → ((two-loops !! i) ◎ (two-loops !! j) ⇔ (two-loops !! (cc j i))) tl-coh zero zero = idl◎l tl-coh zero (suc zero) = idl◎l tl-coh (suc zero) zero = idr◎l tl-coh (suc zero) (suc zero) = {!idemp!} tl-coh (suc (suc ())) _ tl-coh _ (suc (suc ())) -1T : Typ -1T = typ ZERO 1 two-loops id⇔ cc tl-coh card--1T : card -1T ≡ -[1+ 0 ] -- indeed -1 ... card--1T = refl {-- Here is my current thinking: * A type is a package of: - a carrier (that comes with the trivial automorphism) - a collection of non-trivial automorphisms that have a groupoid structure Let’s denote this package by ‘R A (Auto A)' * The collection of non-trivial automorphisms could very well be missing (i.e., empty) and we then recover plain sets like Bool etc. * Now here is the interesting bit: the carrier itself could be missing, i.e., a parameter. In that case we get something like: A -> R A (Auto A) That thing could be treated as outside the universe of types but we are proposing to enlarge the universe of type to also include it as a fractional type. Of course we need a way to combine such a fractional type with a carrier to get a regular type so we need another operation _[_] to do the instantiation. * So to revise, a type is: T ::= R A (Auto A) | /\ A . T | T[A] To make sure this behaves like fractional types, we want /\ A. T and T[A] to behave like a product. It is a product of course but a dependent one. --} -- Parameterized type -- Frac supposed to 1/t -- instantiate Frac with u to get u/t -- make sure t/t is 1 -- define eta and epsilon and check axioms {-- Syntax of types --} Auto : (u : U) → Set Auto u = Σ[ n ∈ ℕ ] (Vec (u ⟷ u) n) trivA : (u : U) → Auto u trivA u = (1 , id⟷ ∷ []) data T : (u₁ : U) → {u₂ : U} → Auto u₂ → Set where UT : (u : U) → T u (trivA u) -- regular sets FT : (u₁ u₂ : U) → (auto₂ : Auto u₂) → T u₁ auto₂ -- Regular sets ZT : T ZERO (trivA ZERO) ZT = UT ZERO OT : T ONE (trivA ONE) OT = UT ONE -- one third 2U : U 2U = PLUS ONE ONE 3U : U 3U = PLUS ONE (PLUS ONE ONE) 3T : T 3U (trivA 3U) 3T = UT 3U -- could add the remaining two but these are sufficient I think all3A : Auto 3U all3A = (4 , id⟷ ∷ (id⟷ ⊕ swap₊) ∷ (assocl₊ ◎ (swap₊ ⊕ id⟷) ◎ assocr₊) ∷ ((id⟷ ⊕ swap₊) ◎ (assocl₊ ◎ (swap₊ ⊕ id⟷) ◎ assocr₊) ◎ (id⟷ ⊕ swap₊)) ∷ []) 1/3T : T ONE all3A 1/3T = FT ONE 3U all3A -- notice that a/b + c/b = (a+c) / b -- So 1/3T + 1/3T is 2/3T : T 2U all3A 2/3T = FT 2U 3U all3A -- one more 3/3T : T 3U all3A 3/3T = FT 3U 3U all3A -- Now eta applied to 3/3T should match the carrier with the autos and produce the plain OT
29.798595
95
0.525071
2ffdbe6b618fb95ecc544c51bbc5664e30831fff
82,593
agda
Agda
src/Univalence-axiom/Isomorphism-is-equality/Simple.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Univalence-axiom/Isomorphism-is-equality/Simple.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Univalence-axiom/Isomorphism-is-equality/Simple.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A class of algebraic structures, based on non-recursive simple -- types, satisfies the property that isomorphic instances of a -- structure are equal (assuming univalence) ------------------------------------------------------------------------ -- In fact, isomorphism and equality are basically the same thing, and -- the main theorem can be instantiated with several different -- "universes", not only the one based on simple types. -- This module has been developed in collaboration with Thierry -- Coquand. {-# OPTIONS --without-K --safe #-} open import Equality module Univalence-axiom.Isomorphism-is-equality.Simple {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq as B using (_↔_) open Derived-definitions-and-properties eq renaming (lower-extensionality to lower-ext) open import Equality.Decidable-UIP eq open import Equality.Decision-procedures eq open import Equivalence eq as Eq using (_≃_) open import Function-universe eq hiding (id) renaming (_∘_ to _⊚_) open import H-level eq open import H-level.Closure eq open import Injection eq using (Injective) open import Logical-equivalence using (_⇔_; module _⇔_) open import Nat eq open import Preimage eq open import Prelude as P hiding (id) open import Univalence-axiom eq ------------------------------------------------------------------------ -- Universes with some extra stuff -- A record type packing up some assumptions. record Assumptions : Type₃ where field -- Univalence at three different levels. univ : Univalence (# 0) univ₁ : Univalence (# 1) univ₂ : Univalence (# 2) abstract -- Extensionality. ext : ∀ {ℓ} → Extensionality ℓ (# 1) ext = dependent-extensionality univ₂ univ₁ ext₁ : Extensionality (# 1) (# 1) ext₁ = ext -- Universes with some extra stuff. record Universe : Type₃ where -- Parameters. field -- Codes for something. U : Type₂ -- Interpretation of codes. El : U → Type₁ → Type₁ -- El a, seen as a predicate, respects equivalences. resp : ∀ a {B C} → B ≃ C → El a B → El a C -- The resp function respects identities (assuming univalence). resp-id : Assumptions → ∀ a {B} (x : El a B) → resp a Eq.id x ≡ x -- Derived definitions. -- A predicate that specifies what it means for an equivalence to be -- an isomorphism between two elements. Is-isomorphism : ∀ a {B C} → B ≃ C → El a B → El a C → Type₁ Is-isomorphism a eq x y = resp a eq x ≡ y -- An alternative definition of Is-isomorphism, defined using -- univalence. Is-isomorphism′ : Assumptions → ∀ a {B C} → B ≃ C → El a B → El a C → Type₁ Is-isomorphism′ ass a eq x y = subst (El a) (≃⇒≡ univ₁ eq) x ≡ y where open Assumptions ass -- Every element is isomorphic to itself, transported along the -- isomorphism. isomorphic-to-itself : (ass : Assumptions) → let open Assumptions ass in ∀ a {B C} (eq : B ≃ C) x → Is-isomorphism a eq x (subst (El a) (≃⇒≡ univ₁ eq) x) isomorphic-to-itself ass a eq x = transport-theorem (El a) (resp a) (resp-id ass a) univ₁ eq x where open Assumptions ass -- Is-isomorphism and Is-isomorphism′ are isomorphic (assuming -- univalence). isomorphism-definitions-isomorphic : (ass : Assumptions) → ∀ a {B C} (eq : B ≃ C) {x y} → Is-isomorphism a eq x y ↔ Is-isomorphism′ ass a eq x y isomorphism-definitions-isomorphic ass a eq {x} {y} = Is-isomorphism a eq x y ↝⟨ ≡⇒↝ _ $ cong (λ z → z ≡ y) $ isomorphic-to-itself ass a eq x ⟩□ Is-isomorphism′ ass a eq x y □ ------------------------------------------------------------------------ -- A universe-indexed family of classes of structures module Class (Univ : Universe) where open Universe Univ -- Codes for structures. Code : Type₃ Code = -- A code. Σ U λ a → -- A proposition. (C : Type₁) → El a C → Σ Type₁ λ P → -- The proposition should be propositional (assuming -- univalence). Assumptions → Is-proposition P -- Interpretation of the codes. The elements of "Instance c" are -- instances of the structure encoded by c. Instance : Code → Type₂ Instance (a , P) = -- A carrier type. Σ Type₁ λ C → -- An element. Σ (El a C) λ x → -- The element should satisfy the proposition. proj₁ (P C x) -- The carrier type. Carrier : ∀ c → Instance c → Type₁ Carrier _ X = proj₁ X -- The "element". element : ∀ c (X : Instance c) → El (proj₁ c) (Carrier c X) element _ X = proj₁ (proj₂ X) abstract -- One can prove that two instances of a structure are equal by -- proving that the carrier types and "elements" (suitably -- transported) are equal (assuming univalence). equality-pair-lemma : Assumptions → ∀ c {X Y : Instance c} → (X ≡ Y) ↔ ∃ λ (eq : Carrier c X ≡ Carrier c Y) → subst (El (proj₁ c)) eq (element c X) ≡ element c Y equality-pair-lemma ass (a , P) {C , x , p} {D , y , q} = ((C , x , p) ≡ (D , y , q)) ↔⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ Σ-assoc ⟩ (((C , x) , p) ≡ ((D , y) , q)) ↝⟨ inverse $ ignore-propositional-component (proj₂ (P D y) ass) ⟩ ((C , x) ≡ (D , y)) ↝⟨ inverse B.Σ-≡,≡↔≡ ⟩□ (∃ λ (eq : C ≡ D) → subst (El a) eq x ≡ y) □ -- Structure isomorphisms. Isomorphic : ∀ c → Instance c → Instance c → Type₁ Isomorphic (a , _) (C , x , _) (D , y , _) = Σ (C ≃ D) λ eq → Is-isomorphism a eq x y -- The type of isomorphisms between two instances of a structure -- is isomorphic to the type of equalities between the same -- instances (assuming univalence). -- -- In short, isomorphism is isomorphic to equality. isomorphism-is-equality : Assumptions → ∀ c X Y → Isomorphic c X Y ↔ (X ≡ Y) isomorphism-is-equality ass (a , P) (C , x , p) (D , y , q) = (∃ λ (eq : C ≃ D) → resp a eq x ≡ y) ↝⟨ ∃-cong (λ eq → isomorphism-definitions-isomorphic ass a eq) ⟩ (∃ λ (eq : C ≃ D) → subst (El a) (≃⇒≡ univ₁ eq) x ≡ y) ↝⟨ inverse $ Σ-cong (≡≃≃ univ₁) (λ eq → ≡⇒↝ _ $ sym $ cong (λ eq → subst (El a) eq x ≡ y) (_≃_.left-inverse-of (≡≃≃ univ₁) eq)) ⟩ (∃ λ (eq : C ≡ D) → subst (El a) eq x ≡ y) ↝⟨ inverse $ equality-pair-lemma ass c ⟩□ (X ≡ Y) □ where open Assumptions ass c : Code c = a , P X : Instance c X = C , x , p Y : Instance c Y = D , y , q abstract -- The type of (lifted) isomorphisms between two instances of a -- structure is equal to the type of equalities between the same -- instances (assuming univalence). -- -- In short, isomorphism is equal to equality. isomorphic≡≡ : Assumptions → ∀ c {X Y} → ↑ (# 2) (Isomorphic c X Y) ≡ (X ≡ Y) isomorphic≡≡ ass c {X} {Y} = ≃⇒≡ univ₂ $ Eq.↔⇒≃ ( ↑ _ (Isomorphic c X Y) ↝⟨ B.↑↔ ⟩ Isomorphic c X Y ↝⟨ isomorphism-is-equality ass c X Y ⟩□ (X ≡ Y) □) where open Assumptions ass -- The "first part" of the from component of -- isomorphism-is-equality is equal to a simple function. proj₁-from-isomorphism-is-equality : ∀ ass c X Y → proj₁ ∘ _↔_.from (isomorphism-is-equality ass c X Y) ≡ elim (λ {X Y} _ → proj₁ X ≃ proj₁ Y) (λ _ → Eq.id) proj₁-from-isomorphism-is-equality ass _ _ _ = apply-ext ext λ eq → ≡⇒≃ (proj₁ (Σ-≡,≡←≡ (proj₁ (Σ-≡,≡←≡ (cong (λ { (x , (y , z)) → (x , y) , z }) eq))))) ≡⟨ cong (≡⇒≃ ∘ proj₁ ∘ Σ-≡,≡←≡) $ proj₁-Σ-≡,≡←≡ _ ⟩ ≡⇒≃ (proj₁ (Σ-≡,≡←≡ (cong proj₁ (cong (λ { (x , (y , z)) → (x , y) , z }) eq)))) ≡⟨ cong (≡⇒≃ ∘ proj₁ ∘ Σ-≡,≡←≡) $ cong-∘ proj₁ (λ { (x , (y , z)) → (x , y) , z }) _ ⟩ ≡⇒≃ (proj₁ (Σ-≡,≡←≡ (cong (λ { (x , (y , z)) → x , y }) eq))) ≡⟨ cong ≡⇒≃ $ proj₁-Σ-≡,≡←≡ _ ⟩ ≡⇒≃ (cong proj₁ (cong (λ { (x , (y , z)) → x , y }) eq)) ≡⟨ cong ≡⇒≃ $ cong-∘ proj₁ (λ { (x , (y , z)) → x , y }) eq ⟩ ≡⇒≃ (cong proj₁ eq) ≡⟨ elim-cong _≃_ proj₁ _ ⟩∎ elim (λ {X Y} _ → proj₁ X ≃ proj₁ Y) (λ _ → Eq.id) eq ∎ where open Assumptions ass -- In fact, the entire from component of isomorphism-is-equality -- is equal to a simple function. -- -- The proof of this lemma is somewhat complicated. A much shorter -- proof can be constructed if El (proj₁ c) (proj₁ J) is a set -- (see -- Structure-identity-principle.from-isomorphism-is-equality′). from-isomorphism-is-equality : ∀ ass c X Y → _↔_.from (isomorphism-is-equality ass c X Y) ≡ elim (λ {X Y} _ → Isomorphic c X Y) (λ { (_ , x , _) → Eq.id , resp-id ass (proj₁ c) x }) from-isomorphism-is-equality ass (a , P) (C , x , p) _ = apply-ext ext (elim¹ (λ eq → Σ-map ≡⇒≃ f (Σ-≡,≡←≡ (proj₁ (Σ-≡,≡←≡ (cong (λ { (C , (x , p)) → (C , x) , p }) eq)))) ≡ elim (λ {X Y} _ → Isomorphic (a , P) X Y) (λ { (_ , x , _) → Eq.id , resp-id ass a x }) eq) (Σ-map ≡⇒≃ f (Σ-≡,≡←≡ (proj₁ (Σ-≡,≡←≡ (cong (_↔_.to Σ-assoc) (refl (C , x , p)))))) ≡⟨ cong (Σ-map ≡⇒≃ f ∘ Σ-≡,≡←≡ ∘ proj₁ ∘ Σ-≡,≡←≡) $ cong-refl _ ⟩ Σ-map ≡⇒≃ f (Σ-≡,≡←≡ (proj₁ (Σ-≡,≡←≡ (refl ((C , x) , p))))) ≡⟨ cong (Σ-map ≡⇒≃ f ∘ Σ-≡,≡←≡ ∘ proj₁) Σ-≡,≡←≡-refl ⟩ Σ-map ≡⇒≃ f (Σ-≡,≡←≡ (refl (C , x))) ≡⟨ cong (Σ-map ≡⇒≃ f) Σ-≡,≡←≡-refl ⟩ (≡⇒≃ (refl C) , f (subst-refl (El a) x)) ≡⟨ Σ-≡,≡→≡ ≡⇒≃-refl lemma₄ ⟩ (Eq.id , resp-id ass a x) ≡⟨ sym $ elim-refl (λ {X Y} _ → Isomorphic (a , P) X Y) _ ⟩∎ elim (λ {X Y} _ → Isomorphic (a , P) X Y) (λ { (_ , x , _) → Eq.id , resp-id ass a x }) (refl (C , x , p)) ∎)) where open Assumptions ass f : ∀ {D} {y : El a D} {eq : C ≡ D} → subst (El a) eq x ≡ y → resp a (≡⇒≃ eq) x ≡ y f {y = y} {eq} eq′ = _↔_.from (≡⇒↝ _ $ cong (λ z → z ≡ y) $ transport-theorem (El a) (resp a) (resp-id ass a) univ₁ (≡⇒≃ eq) x) (_↔_.to (≡⇒↝ _ $ sym $ cong (λ eq → subst (El a) eq x ≡ y) (_≃_.left-inverse-of (≡≃≃ univ₁) eq)) eq′) lemma₁ : ∀ {ℓ} {A B C : Type ℓ} {x} (eq₁ : B ≡ A) (eq₂ : C ≡ B) → _↔_.from (≡⇒↝ _ eq₂) (_↔_.to (≡⇒↝ _ (sym eq₁)) x) ≡ _↔_.to (≡⇒↝ _ (sym (trans eq₂ eq₁))) x lemma₁ {x = x} eq₁ eq₂ = _↔_.from (≡⇒↝ _ eq₂) (_↔_.to (≡⇒↝ _ (sym eq₁)) x) ≡⟨ sym $ cong (λ f → f (_↔_.to (≡⇒↝ _ (sym eq₁)) x)) $ ≡⇒↝-sym bijection ⟩ _↔_.to (≡⇒↝ _ (sym eq₂)) (_↔_.to (≡⇒↝ _ (sym eq₁)) x) ≡⟨ sym $ cong (λ f → f x) $ ≡⇒↝-trans bijection ⟩ _↔_.to (≡⇒↝ _ (trans (sym eq₁) (sym eq₂))) x ≡⟨ sym $ cong (λ eq → _↔_.to (≡⇒↝ _ eq) x) $ sym-trans _ _ ⟩∎ _↔_.to (≡⇒↝ _ (sym (trans eq₂ eq₁))) x ∎ lemma₂ : ∀ {a} {A : Type a} {x y z : A} (x≡y : x ≡ y) (y≡z : y ≡ z) → _↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) (sym x≡y))) y≡z ≡ trans x≡y y≡z lemma₂ {y = y} {z} x≡y y≡z = elim₁ (λ x≡y → _↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) (sym x≡y))) y≡z ≡ trans x≡y y≡z) (_↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) (sym (refl y)))) y≡z ≡⟨ cong (λ eq → _↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) eq)) y≡z) sym-refl ⟩ _↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) (refl y))) y≡z ≡⟨ cong (λ eq → _↔_.to (≡⇒↝ _ eq) y≡z) $ cong-refl (λ x → x ≡ z) ⟩ _↔_.to (≡⇒↝ _ (refl (y ≡ z))) y≡z ≡⟨ cong (λ f → _↔_.to f y≡z) ≡⇒↝-refl ⟩ y≡z ≡⟨ sym $ trans-reflˡ _ ⟩∎ trans (refl y) y≡z ∎) x≡y lemma₃ : sym (trans (cong (λ z → z ≡ x) $ transport-theorem (El a) (resp a) (resp-id ass a) univ₁ (≡⇒≃ (refl C)) x) (cong (λ eq → subst (El a) eq x ≡ x) (_≃_.left-inverse-of (≡≃≃ univ₁) (refl C)))) ≡ cong (λ z → z ≡ x) (sym $ trans (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) (sym $ subst-refl (El a) x)) lemma₃ = sym (trans (cong (λ z → z ≡ x) _) (cong (λ eq → subst (El a) eq x ≡ x) _)) ≡⟨ cong (λ eq → sym (trans (cong (λ z → z ≡ x) (transport-theorem (El a) (resp a) (resp-id ass a) univ₁ (≡⇒≃ (refl C)) x)) eq)) $ sym $ cong-∘ (λ z → z ≡ x) (λ eq → subst (El a) eq x) _ ⟩ sym (trans (cong (λ z → z ≡ x) _) (cong (λ z → z ≡ x) (cong (λ eq → subst (El a) eq x) _))) ≡⟨ cong sym $ sym $ cong-trans (λ z → z ≡ x) _ _ ⟩ sym (cong (λ z → z ≡ x) (trans _ (cong (λ eq → subst (El a) eq x) _))) ≡⟨ sym $ cong-sym (λ z → z ≡ x) _ ⟩ cong (λ z → z ≡ x) (sym $ trans (transport-theorem (El a) (resp a) (resp-id ass a) univ₁ (≡⇒≃ (refl C)) x) (cong (λ eq → subst (El a) eq x) _)) ≡⟨ cong (λ eq → cong (λ z → z ≡ x) (sym $ trans eq (cong (λ eq → subst (El a) eq x) (_≃_.left-inverse-of (≡≃≃ univ₁) (refl C))))) (transport-theorem-≡⇒≃-refl (El a) (resp a) (resp-id ass a) univ₁ _) ⟩ cong (λ z → z ≡ x) (sym $ trans (trans (trans (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) (sym $ subst-refl (El a) x)) (sym $ cong (λ eq → subst (El a) eq x) (_≃_.left-inverse-of (≡≃≃ univ₁) (refl C)))) (cong (λ eq → subst (El a) eq x) (_≃_.left-inverse-of (≡≃≃ univ₁) (refl C)))) ≡⟨ cong (cong (λ z → z ≡ x) ∘ sym) $ trans-[trans-sym]- _ _ ⟩∎ cong (λ z → z ≡ x) (sym $ trans (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) (sym $ subst-refl (El a) x)) ∎ lemma₄ : subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl (f (subst-refl (El a) x)) ≡ resp-id ass a x lemma₄ = subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl (f (subst-refl (El a) x)) ≡⟨ cong (subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl) $ lemma₁ _ _ ⟩ subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl (_↔_.to (≡⇒↝ _ (sym (trans (cong (λ z → z ≡ x) $ transport-theorem (El a) (resp a) (resp-id ass a) univ₁ (≡⇒≃ (refl C)) x) (cong (λ eq → subst (El a) eq x ≡ x) (_≃_.left-inverse-of (≡≃≃ univ₁) (refl C)))))) (subst-refl (El a) x)) ≡⟨ cong (λ eq → subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl (_↔_.to (≡⇒↝ _ eq) (subst-refl (El a) x))) lemma₃ ⟩ subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl (_↔_.to (≡⇒↝ _ (cong (λ z → z ≡ x) $ sym (trans (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) (sym $ subst-refl (El a) x)))) (subst-refl (El a) x)) ≡⟨ cong (subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl) $ lemma₂ _ _ ⟩ subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl (trans (trans (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) (sym $ subst-refl (El a) x)) (subst-refl (El a) x)) ≡⟨ cong (λ eq → subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl eq) (trans-[trans-sym]- _ _) ⟩ subst (λ eq → resp a eq x ≡ x) ≡⇒≃-refl (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) ≡⟨ subst-∘ (λ z → z ≡ x) (λ eq → resp a eq x) _ ⟩ subst (λ z → z ≡ x) (cong (λ eq → resp a eq x) ≡⇒≃-refl) (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) ≡⟨ cong (λ eq → subst (λ z → z ≡ x) eq (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x))) $ sym $ sym-sym _ ⟩ subst (λ z → z ≡ x) (sym $ sym $ cong (λ eq → resp a eq x) ≡⇒≃-refl) (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) ≡⟨ subst-trans (sym $ cong (λ eq → resp a eq x) ≡⇒≃-refl) ⟩ trans (sym $ cong (λ eq → resp a eq x) ≡⇒≃-refl) (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) ≡⟨ sym $ trans-assoc _ _ _ ⟩ trans (trans (sym $ cong (λ eq → resp a eq x) ≡⇒≃-refl) (cong (λ eq → resp a eq x) ≡⇒≃-refl)) (resp-id ass a x) ≡⟨ cong (λ eq → trans eq _) $ trans-symˡ _ ⟩ trans (refl (resp a Eq.id x)) (resp-id ass a x) ≡⟨ trans-reflˡ _ ⟩∎ resp-id ass a x ∎ ------------------------------------------------------------------------ -- A universe of non-recursive, simple types -- Codes for types. infixr 20 _⊗_ infixr 15 _⊕_ infixr 10 _⇾_ data U : Type₂ where id type : U k : Type₁ → U _⇾_ _⊗_ _⊕_ : U → U → U -- Interpretation of types. El : U → Type₁ → Type₁ El id C = C El type C = Type El (k A) C = A El (a ⇾ b) C = El a C → El b C El (a ⊗ b) C = El a C × El b C El (a ⊕ b) C = El a C ⊎ El b C -- El a preserves logical equivalences. cast : ∀ a {B C} → B ⇔ C → El a B ⇔ El a C cast id eq = eq cast type eq = Logical-equivalence.id cast (k A) eq = Logical-equivalence.id cast (a ⇾ b) eq = →-cong _ (cast a eq) (cast b eq) cast (a ⊗ b) eq = cast a eq ×-cong cast b eq cast (a ⊕ b) eq = cast a eq ⊎-cong cast b eq -- El a respects equivalences. resp : ∀ a {B C} → B ≃ C → El a B → El a C resp a eq = _⇔_.to (cast a (_≃_.logical-equivalence eq)) resp⁻¹ : ∀ a {B C} → B ≃ C → El a C → El a B resp⁻¹ a eq = _⇔_.from (cast a (_≃_.logical-equivalence eq)) abstract -- The cast function respects identities (assuming extensionality). cast-id : Extensionality (# 1) (# 1) → ∀ a {B} → cast a (Logical-equivalence.id {A = B}) ≡ Logical-equivalence.id cast-id ext id = refl _ cast-id ext type = refl _ cast-id ext (k A) = refl _ cast-id ext (a ⇾ b) = cong₂ (→-cong _) (cast-id ext a) (cast-id ext b) cast-id ext (a ⊗ b) = cong₂ _×-cong_ (cast-id ext a) (cast-id ext b) cast-id ext (a ⊕ b) = cast a Logical-equivalence.id ⊎-cong cast b Logical-equivalence.id ≡⟨ cong₂ _⊎-cong_ (cast-id ext a) (cast-id ext b) ⟩ Logical-equivalence.id ⊎-cong Logical-equivalence.id ≡⟨ cong₂ (λ f g → record { to = f; from = g }) (apply-ext ext [ refl ∘ inj₁ , refl ∘ inj₂ ]) (apply-ext ext [ refl ∘ inj₁ , refl ∘ inj₂ ]) ⟩∎ Logical-equivalence.id ∎ resp-id : Extensionality (# 1) (# 1) → ∀ a {B} x → resp a (Eq.id {A = B}) x ≡ x resp-id ext a x = cong (λ eq → _⇔_.to eq x) $ cast-id ext a -- The universe above is a "universe with some extra stuff". simple : Universe simple = record { U = U ; El = El ; resp = resp ; resp-id = resp-id ∘ Assumptions.ext₁ } -- Let us use this universe below. open Universe simple using (Is-isomorphism) open Class simple -- An alternative definition of "being an isomorphism". -- -- This definition is in bijective correspondence with Is-isomorphism -- (see below). Is-isomorphism′ : ∀ a {B C} → B ≃ C → El a B → El a C → Type₁ Is-isomorphism′ id eq = λ x y → _≃_.to eq x ≡ y Is-isomorphism′ type eq = λ X Y → ↑ _ (X ≃ Y) Is-isomorphism′ (k A) eq = λ x y → x ≡ y Is-isomorphism′ (a ⇾ b) eq = Is-isomorphism′ a eq →-rel Is-isomorphism′ b eq Is-isomorphism′ (a ⊗ b) eq = Is-isomorphism′ a eq ×-rel Is-isomorphism′ b eq Is-isomorphism′ (a ⊕ b) eq = Is-isomorphism′ a eq ⊎-rel Is-isomorphism′ b eq -- An alternative definition of Isomorphic, using Is-isomorphism′ -- instead of Is-isomorphism. Isomorphic′ : ∀ c → Instance c → Instance c → Type₁ Isomorphic′ (a , _) (C , x , _) (D , y , _) = Σ (C ≃ D) λ eq → Is-isomorphism′ a eq x y -- El a preserves equivalences (assuming extensionality). -- -- Note that _≃_.logical-equivalence (cast≃ ext a eq) is -- (definitionally) equal to cast a (_≃_.logical-equivalence eq); this -- property is used below. cast≃ : Extensionality (# 1) (# 1) → ∀ a {B C} → B ≃ C → El a B ≃ El a C cast≃ ext a {B} {C} B≃C = Eq.↔⇒≃ record { surjection = record { logical-equivalence = cast a B⇔C ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where B⇔C = _≃_.logical-equivalence B≃C cst : ∀ a → El a B ≃ El a C cst id = B≃C cst type = Eq.id cst (k A) = Eq.id cst (a ⇾ b) = →-cong ext (cst a) (cst b) cst (a ⊗ b) = cst a ×-cong cst b cst (a ⊕ b) = cst a ⊎-cong cst b abstract -- The projection _≃_.logical-equivalence is homomorphic with -- respect to cast a/cst a. casts-related : ∀ a → cast a (_≃_.logical-equivalence B≃C) ≡ _≃_.logical-equivalence (cst a) casts-related id = refl _ casts-related type = refl _ casts-related (k A) = refl _ casts-related (a ⇾ b) = cong₂ (→-cong _) (casts-related a) (casts-related b) casts-related (a ⊗ b) = cong₂ _×-cong_ (casts-related a) (casts-related b) casts-related (a ⊕ b) = cong₂ _⊎-cong_ (casts-related a) (casts-related b) to∘from : ∀ x → _⇔_.to (cast a B⇔C) (_⇔_.from (cast a B⇔C) x) ≡ x to∘from x = _⇔_.to (cast a B⇔C) (_⇔_.from (cast a B⇔C) x) ≡⟨ cong₂ (λ f g → f (g x)) (cong _⇔_.to $ casts-related a) (cong _⇔_.from $ casts-related a) ⟩ _≃_.to (cst a) (_≃_.from (cst a) x) ≡⟨ _≃_.right-inverse-of (cst a) x ⟩∎ x ∎ from∘to : ∀ x → _⇔_.from (cast a B⇔C) (_⇔_.to (cast a B⇔C) x) ≡ x from∘to x = _⇔_.from (cast a B⇔C) (_⇔_.to (cast a B⇔C) x) ≡⟨ cong₂ (λ f g → f (g x)) (cong _⇔_.from $ casts-related a) (cong _⇔_.to $ casts-related a) ⟩ _≃_.from (cst a) (_≃_.to (cst a) x) ≡⟨ _≃_.left-inverse-of (cst a) x ⟩∎ x ∎ private logical-equivalence-cast≃ : (ext : Extensionality (# 1) (# 1)) → ∀ a {B C} (eq : B ≃ C) → _≃_.logical-equivalence (cast≃ ext a eq) ≡ cast a (_≃_.logical-equivalence eq) logical-equivalence-cast≃ _ _ _ = refl _ -- Alternative, shorter definition of cast≃, based on univalence. -- -- This proof does not (at the time of writing) have the property that -- _≃_.logical-equivalence (cast≃′ ass a eq) is definitionally equal -- to cast a (_≃_.logical-equivalence eq). cast≃′ : Assumptions → ∀ a {B C} → B ≃ C → El a B ≃ El a C cast≃′ ass a eq = Eq.⟨ resp a eq , resp-is-equivalence (El a) (resp a) (resp-id ext₁ a) univ₁ eq ⟩ where open Assumptions ass abstract -- The two definitions of "being an isomorphism" are "isomorphic" -- (in bijective correspondence), assuming univalence. is-isomorphism-isomorphic : Assumptions → ∀ a {B C x y} (eq : B ≃ C) → Is-isomorphism a eq x y ↔ Is-isomorphism′ a eq x y is-isomorphism-isomorphic ass id {x = x} {y} eq = (_≃_.to eq x ≡ y) □ is-isomorphism-isomorphic ass type {x = X} {Y} eq = (X ≡ Y) ↔⟨ ≡≃≃ univ ⟩ (X ≃ Y) ↝⟨ inverse B.↑↔ ⟩□ ↑ _ (X ≃ Y) □ where open Assumptions ass is-isomorphism-isomorphic ass (k A) {x = x} {y} eq = (x ≡ y) □ is-isomorphism-isomorphic ass (a ⇾ b) {x = f} {g} eq = (resp b eq ∘ f ∘ resp⁻¹ a eq ≡ g) ↝⟨ ∘from≡↔≡∘to ext₁ (cast≃ ext₁ a eq) ⟩ (resp b eq ∘ f ≡ g ∘ resp a eq) ↔⟨ inverse $ Eq.extensionality-isomorphism ext₁ ⟩ (∀ x → resp b eq (f x) ≡ g (resp a eq x)) ↝⟨ ∀-cong ext₁ (λ x → ∀-intro (λ y _ → resp b eq (f x) ≡ g y) ext₁) ⟩ (∀ x y → resp a eq x ≡ y → resp b eq (f x) ≡ g y) ↝⟨ ∀-cong ext₁ (λ _ → ∀-cong ext₁ λ _ → →-cong ext₁ (is-isomorphism-isomorphic ass a eq) (is-isomorphism-isomorphic ass b eq)) ⟩□ (∀ x y → Is-isomorphism′ a eq x y → Is-isomorphism′ b eq (f x) (g y)) □ where open Assumptions ass is-isomorphism-isomorphic ass (a ⊗ b) {x = x , u} {y , v} eq = ((resp a eq x , resp b eq u) ≡ (y , v)) ↝⟨ inverse ≡×≡↔≡ ⟩ (resp a eq x ≡ y × resp b eq u ≡ v) ↝⟨ is-isomorphism-isomorphic ass a eq ×-cong is-isomorphism-isomorphic ass b eq ⟩□ Is-isomorphism′ a eq x y × Is-isomorphism′ b eq u v □ where open Assumptions ass is-isomorphism-isomorphic ass (a ⊕ b) {x = inj₁ x} {inj₁ y} eq = (inj₁ (resp a eq x) ≡ inj₁ y) ↝⟨ inverse B.≡↔inj₁≡inj₁ ⟩ (resp a eq x ≡ y) ↝⟨ is-isomorphism-isomorphic ass a eq ⟩□ Is-isomorphism′ a eq x y □ where open Assumptions ass is-isomorphism-isomorphic ass (a ⊕ b) {x = inj₂ x} {inj₂ y} eq = (inj₂ (resp b eq x) ≡ inj₂ y) ↝⟨ inverse B.≡↔inj₂≡inj₂ ⟩ (resp b eq x ≡ y) ↝⟨ is-isomorphism-isomorphic ass b eq ⟩□ Is-isomorphism′ b eq x y □ where open Assumptions ass is-isomorphism-isomorphic ass (a ⊕ b) {x = inj₁ x} {inj₂ y} eq = (inj₁ _ ≡ inj₂ _) ↝⟨ inverse $ B.⊥↔uninhabited ⊎.inj₁≢inj₂ ⟩□ ⊥ □ is-isomorphism-isomorphic ass (a ⊕ b) {x = inj₂ x} {inj₁ y} eq = (inj₂ _ ≡ inj₁ _) ↝⟨ inverse $ B.⊥↔uninhabited (⊎.inj₁≢inj₂ ∘ sym) ⟩□ ⊥ □ -- The two definitions of isomorphism are "isomorphic" (in bijective -- correspondence), assuming univalence. isomorphic-isomorphic : Assumptions → ∀ c X Y → Isomorphic c X Y ↔ Isomorphic′ c X Y isomorphic-isomorphic ass (a , _) (C , x , _) (D , y , _) = Σ (C ≃ D) (λ eq → Is-isomorphism a eq x y) ↝⟨ ∃-cong (λ eq → is-isomorphism-isomorphic ass a eq) ⟩ Σ (C ≃ D) (λ eq → Is-isomorphism′ a eq x y) □ ------------------------------------------------------------------------ -- An example: monoids monoid : Code monoid = -- Binary operation. (id ⇾ id ⇾ id) ⊗ -- Identity. id , λ { C (_∙_ , e) → -- The carrier type is a set. (Is-set C × -- Left and right identity laws. (∀ x → (e ∙ x) ≡ x) × (∀ x → (x ∙ e) ≡ x) × -- Associativity. (∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z))) , -- The laws are propositional (assuming extensionality). λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (C-set , _) → ×-closure 1 (H-level-propositional ext₁ 2) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set))) }} -- The interpretation of the code is reasonable. Instance-monoid : Instance monoid ≡ Σ Type₁ λ C → Σ ((C → C → C) × C) λ { (_∙_ , e) → Is-set C × (∀ x → (e ∙ x) ≡ x) × (∀ x → (x ∙ e) ≡ x) × (∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z)) } Instance-monoid = refl _ -- The notion of isomorphism that we get is also reasonable. Isomorphic-monoid : ∀ {C₁ _∙₁_ e₁ laws₁ C₂ _∙₂_ e₂ laws₂} → Isomorphic monoid (C₁ , (_∙₁_ , e₁) , laws₁) (C₂ , (_∙₂_ , e₂) , laws₂) ≡ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ((λ x y → to (from x ∙₁ from y)) , to e₁) ≡ (_∙₂_ , e₂) Isomorphic-monoid = refl _ -- Note that this definition of isomorphism is isomorphic to a more -- standard one (assuming extensionality). Isomorphism-monoid-isomorphic-to-standard : Extensionality (# 1) (# 1) → ∀ {C₁ _∙₁_ e₁ laws₁ C₂ _∙₂_ e₂ laws₂} → Isomorphic monoid (C₁ , (_∙₁_ , e₁) , laws₁) (C₂ , (_∙₂_ , e₂) , laws₂) ↔ Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ x y → to (x ∙₁ y) ≡ (to x ∙₂ to y)) × to e₁ ≡ e₂ Isomorphism-monoid-isomorphic-to-standard ext {C₁} {_∙₁_} {e₁} {laws₁} {C₂} {_∙₂_} {e₂} = (Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ((λ x y → to (from x ∙₁ from y)) , to e₁) ≡ (_∙₂_ , e₂)) ↝⟨ inverse $ Σ-cong (Eq.↔↔≃ ext (proj₁ laws₁)) (λ _ → _ □) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ((λ x y → to (from x ∙₁ from y)) , to e₁) ≡ (_∙₂_ , e₂)) ↝⟨ inverse $ ∃-cong (λ _ → ≡×≡↔≡) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (λ x y → to (from x ∙₁ from y)) ≡ _∙₂_ × to e₁ ≡ e₂) ↔⟨ inverse $ ∃-cong (λ _ → Eq.extensionality-isomorphism ext ×-cong (_ □)) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ x → (λ y → to (from x ∙₁ from y)) ≡ _∙₂_ x) × to e₁ ≡ e₂) ↔⟨ inverse $ ∃-cong (λ _ → ∀-cong ext (λ _ → Eq.extensionality-isomorphism ext) ×-cong (_ □)) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ x y → to (from x ∙₁ from y) ≡ (x ∙₂ y)) × to e₁ ≡ e₂) ↔⟨ inverse $ ∃-cong (λ eq → Π-cong ext (Eq.↔⇒≃ eq) (λ x → Π-cong ext (Eq.↔⇒≃ eq) (λ y → ≡⇒≃ $ sym $ cong₂ (λ u v → _↔_.to eq (u ∙₁ v) ≡ (_↔_.to eq x ∙₂ _↔_.to eq y)) (_↔_.left-inverse-of eq x) (_↔_.left-inverse-of eq y))) ×-cong (_ □)) ⟩□ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ x y → to (x ∙₁ y) ≡ (to x ∙₂ to y)) × to e₁ ≡ e₂) □ ------------------------------------------------------------------------ -- An example: posets poset : Code poset = -- The ordering relation. (id ⇾ id ⇾ type) , λ C _≤_ → -- The carrier type is a set. (Is-set C × -- The ordering relation is (pointwise) propositional. (∀ x y → Is-proposition (x ≤ y)) × -- Reflexivity. (∀ x → x ≤ x) × -- Transitivity. (∀ x y z → x ≤ y → y ≤ z → x ≤ z) × -- Antisymmetry. (∀ x y → x ≤ y → y ≤ x → x ≡ y)) , λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (C-set , ≤-prop , _) → ×-closure 1 (H-level-propositional ext₁ 2) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure (lower-ext (# 0) _ ext₁) 1 λ _ → H-level-propositional (lower-ext _ _ ext₁) 1) (×-closure 1 (Π-closure (lower-ext (# 0) _ ext₁) 1 λ _ → ≤-prop _ _) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure (lower-ext (# 0) _ ext₁) 1 λ _ → Π-closure (lower-ext _ _ ext₁) 1 λ _ → Π-closure (lower-ext _ _ ext₁) 1 λ _ → ≤-prop _ _) (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → C-set)))) } -- The interpretation of the code is reasonable. (Except, perhaps, -- that the carrier type lives in Type₁ but the codomain of the -- ordering relation is Type. In the corresponding example in -- Univalence-axiom.Isomorphism-is-equality.Simple.Variant the carrier -- type lives in Type.) Instance-poset : Instance poset ≡ Σ Type₁ λ C → Σ (C → C → Type) λ _≤_ → Is-set C × (∀ x y → Is-proposition (x ≤ y)) × (∀ x → x ≤ x) × (∀ x y z → x ≤ y → y ≤ z → x ≤ z) × (∀ x y → x ≤ y → y ≤ x → x ≡ y) Instance-poset = refl _ -- The notion of isomorphism that we get is also reasonable. It is the -- usual notion of "order isomorphism", with two (main) differences: -- -- * Equivalences are used instead of bijections. However, -- equivalences and bijections coincide for sets (assuming -- extensionality). -- -- * We use equality, (λ a b → from a ≤₁ from b) ≡ _≤₂_, instead of -- "iff", ∀ a b → (a ≤₁ b) ⇔ (to a ≤₂ to b). However, the ordering -- relation is pointwise propositional, so these two expressions are -- equal (assuming univalence). Isomorphic-poset : ∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} → Isomorphic poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂) ≡ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in (λ a b → from a ≤₁ from b) ≡ _≤₂_ Isomorphic-poset = refl _ -- We can prove that this notion of isomorphism is isomorphic to the -- usual notion of order isomorphism (assuming univalence). Isomorphism-poset-isomorphic-to-order-isomorphism : Assumptions → ∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} → Isomorphic poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂) ↔ Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ x y → (x ≤₁ y) ⇔ (to x ≤₂ to y) Isomorphism-poset-isomorphic-to-order-isomorphism ass {C₁} {_≤₁_} {laws₁} {C₂} {_≤₂_} {laws₂} = (Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in (λ a b → from a ≤₁ from b) ≡ _≤₂_) ↝⟨ inverse $ Σ-cong (Eq.↔↔≃ ext₁ (proj₁ laws₁)) (λ _ → _ □) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (λ a b → from a ≤₁ from b) ≡ _≤₂_) ↔⟨ inverse $ ∃-cong (λ _ → Eq.extensionality-isomorphism ext₁) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ a → (λ b → from a ≤₁ from b) ≡ _≤₂_ a)) ↔⟨ inverse $ ∃-cong (λ _ → ∀-cong ext₁ λ _ → Eq.extensionality-isomorphism ext₁) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ a b → (from a ≤₁ from b) ≡ (a ≤₂ b))) ↔⟨ inverse $ ∃-cong (λ eq → Π-cong ext₁ (Eq.↔⇒≃ eq) λ a → Π-cong ext₁ (Eq.↔⇒≃ eq) λ b → ≡⇒≃ $ sym $ cong₂ (λ x y → (x ≤₁ y) ≡ (_↔_.to eq a ≤₂ _↔_.to eq b)) (_↔_.left-inverse-of eq a) (_↔_.left-inverse-of eq b)) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ a b → (a ≤₁ b) ≡ (to a ≤₂ to b))) ↔⟨ ∃-cong (λ _ → ∀-cong ext₁ λ _ → ∀-cong ext₁ λ _ → ≡≃≃ univ) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ a b → (a ≤₁ b) ≃ (to a ≤₂ to b))) ↝⟨ inverse $ ∃-cong (λ _ → ∀-cong ext₁ λ _ → ∀-cong (lower-ext (# 0) _ ext₁) λ _ → Eq.⇔↔≃ (lower-ext _ _ ext₁) (proj₁ (proj₂ laws₁) _ _) (proj₁ (proj₂ laws₂) _ _)) ⟩□ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ a b → (a ≤₁ b) ⇔ (to a ≤₂ to b))) □ where open Assumptions ass -- The previous lemma implies that we can prove that the notion of -- isomorphism that we get is /equal/ to the usual notion of order -- isomorphism (assuming univalence). Isomorphism-poset-equal-to-order-isomorphism : Assumptions → ∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} → Isomorphic poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂) ≡ Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ x y → (x ≤₁ y) ⇔ (to x ≤₂ to y) Isomorphism-poset-equal-to-order-isomorphism ass {laws₁ = laws₁} {laws₂ = laws₂} = ≃⇒≡ univ₁ $ Eq.↔⇒≃ $ Isomorphism-poset-isomorphic-to-order-isomorphism ass {laws₁ = laws₁} {laws₂ = laws₂} where open Assumptions ass -- The notion of isomorphism that we get if we use Is-isomorphism′ -- instead of Is-isomorphism is also reasonable. Isomorphic′-poset : ∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} → Isomorphic′ poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂) ≡ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ∀ a b → to a ≡ b → ∀ c d → to c ≡ d → ↑ _ ((a ≤₁ c) ≃ (b ≤₂ d)) Isomorphic′-poset = refl _ -- If we had defined isomorphism using Is-isomorphism′ instead of -- Is-isomorphism, then we could have proved -- Isomorphism-poset-isomorphic-to-order-isomorphism without assuming -- univalence, but instead assuming extensionality. Isomorphism′-poset-isomorphic-to-order-isomorphism : Extensionality (# 1) (# 1) → ∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} → Isomorphic′ poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂) ↔ Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ x y → (x ≤₁ y) ⇔ (to x ≤₂ to y) Isomorphism′-poset-isomorphic-to-order-isomorphism ext {C₁} {_≤₁_} {laws₁} {C₂} {_≤₂_} {laws₂} = (Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ∀ a b → to a ≡ b → ∀ c d → to c ≡ d → ↑ _ ((a ≤₁ c) ≃ (b ≤₂ d))) ↝⟨ inverse $ Σ-cong (Eq.↔↔≃ ext (proj₁ laws₁)) (λ _ → _ □) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ a b → to a ≡ b → ∀ c d → to c ≡ d → ↑ _ ((a ≤₁ c) ≃ (b ≤₂ d))) ↝⟨ inverse $ ∃-cong (λ _ → ∀-cong ext λ _ → ∀-intro (λ _ _ → _) ext) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ a c d → to c ≡ d → ↑ _ ((a ≤₁ c) ≃ (to a ≤₂ d))) ↝⟨ inverse $ ∃-cong (λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-intro (λ _ _ → _) ext) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ a c → ↑ _ ((a ≤₁ c) ≃ (to a ≤₂ to c))) ↝⟨ ∃-cong (λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → B.↑↔) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ a c → (a ≤₁ c) ≃ (to a ≤₂ to c)) ↝⟨ inverse $ ∃-cong (λ _ → ∀-cong ext λ _ → ∀-cong (lower-ext (# 0) _ ext) λ _ → Eq.⇔↔≃ (lower-ext _ _ ext) (proj₁ (proj₂ laws₁) _ _) (proj₁ (proj₂ laws₂) _ _)) ⟩□ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ a c → (a ≤₁ c) ⇔ (to a ≤₂ to c)) □ ------------------------------------------------------------------------ -- An example: discrete fields private -- Some lemmas used below. 0* : {C : Type₁} (_+_ : C → C → C) (0# : C) (_*_ : C → C → C) (1# : C) (-_ : C → C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → ∀ x → (0# * x) ≡ 0# 0* _+_ 0# _*_ 1# -_ +-assoc +-comm *-comm *+ +0 *1 +- x = (0# * x) ≡⟨ sym $ +0 _ ⟩ ((0# * x) + 0#) ≡⟨ cong (_+_ _) $ sym $ +- _ ⟩ ((0# * x) + (x + (- x))) ≡⟨ +-assoc _ _ _ ⟩ (((0# * x) + x) + (- x)) ≡⟨ cong (λ y → y + _) lemma ⟩ (x + (- x)) ≡⟨ +- x ⟩∎ 0# ∎ where lemma = ((0# * x) + x) ≡⟨ cong (_+_ _) $ sym $ *1 _ ⟩ ((0# * x) + (x * 1#)) ≡⟨ cong (λ y → y + (x * 1#)) $ *-comm _ _ ⟩ ((x * 0#) + (x * 1#)) ≡⟨ sym $ *+ _ _ _ ⟩ (x * (0# + 1#)) ≡⟨ cong (_*_ _) $ +-comm _ _ ⟩ (x * (1# + 0#)) ≡⟨ cong (_*_ _) $ +0 _ ⟩ (x * 1#) ≡⟨ *1 _ ⟩∎ x ∎ dec-lemma₁ : {C : Type₁} (_+_ : C → C → C) (0# : C) (-_ : C → C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → (∀ x → Dec (x ≡ 0#)) → Decidable (_≡_ {A = C}) dec-lemma₁ _+_ 0# -_ +-assoc +-comm +0 +- dec-0 x y = ⊎-map (λ x-y≡0 → x ≡⟨ sym $ +0 _ ⟩ (x + 0#) ≡⟨ cong (_+_ _) $ sym $ +- _ ⟩ (x + (y + (- y))) ≡⟨ cong (_+_ _) $ +-comm _ _ ⟩ (x + ((- y) + y)) ≡⟨ +-assoc _ _ _ ⟩ ((x + (- y)) + y) ≡⟨ cong (λ x → x + _) x-y≡0 ⟩ (0# + y) ≡⟨ +-comm _ _ ⟩ (y + 0#) ≡⟨ +0 _ ⟩∎ y ∎) (λ x-y≢0 x≡y → x-y≢0 ((x + (- y)) ≡⟨ cong (_+_ _ ∘ -_) $ sym x≡y ⟩ (x + (- x)) ≡⟨ +- _ ⟩∎ 0# ∎)) (dec-0 (x + (- y))) dec-lemma₂ : {C : Type₁} (_+_ : C → C → C) (0# : C) (_*_ : C → C → C) (1# : C) (-_ : C → C) → (_⁻¹ : C → ↑ (# 1) ⊤ ⊎ C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → 0# ≢ 1# → (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) → (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#) → Decidable (_≡_ {A = C}) dec-lemma₂ _+_ 0# _*_ 1# -_ _⁻¹ +-assoc +-comm *-comm *+ +0 *1 +- 0≢1 ⁻¹₁ ⁻¹₂ = dec-lemma₁ _+_ 0# -_ +-assoc +-comm +0 +- dec-0 where dec-0 : ∀ z → Dec (z ≡ 0#) dec-0 z with z ⁻¹ | ⁻¹₁ z | ⁻¹₂ z ... | inj₁ _ | hyp | _ = inj₁ (hyp (refl _)) ... | inj₂ z⁻¹ | _ | hyp = inj₂ (λ z≡0 → 0≢1 (0# ≡⟨ sym $ 0* _+_ 0# _*_ 1# -_ +-assoc +-comm *-comm *+ +0 *1 +- _ ⟩ (0# * z⁻¹) ≡⟨ cong (λ x → x * _) $ sym z≡0 ⟩ (z * z⁻¹) ≡⟨ hyp z⁻¹ (refl _) ⟩∎ 1# ∎)) dec-lemma₃ : {C : Type₁} (_+_ : C → C → C) (0# : C) (-_ : C → C) → (_*_ : C → C → C) (1# : C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → (∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#)) → Decidable (_≡_ {A = C}) dec-lemma₃ _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +- inv-xor = dec-lemma₁ _+_ 0# -_ +-assoc +-comm +0 +- (λ x → [ inj₂ ∘ proj₂ , inj₁ ∘ proj₂ ] (inv-xor x)) *-injective : {C : Type₁} (_*_ : C → C → C) (1# : C) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x → (x * 1#) ≡ x) → ∀ x → ∃ (λ y → (x * y) ≡ 1#) → Injective (_*_ x) *-injective _*_ 1# *-assoc *-comm *1 x (x⁻¹ , xx⁻¹≡1) {y₁} {y₂} xy₁≡xy₂ = y₁ ≡⟨ lemma y₁ ⟩ (x⁻¹ * (x * y₁)) ≡⟨ cong (_*_ x⁻¹) xy₁≡xy₂ ⟩ (x⁻¹ * (x * y₂)) ≡⟨ sym $ lemma y₂ ⟩∎ y₂ ∎ where lemma : ∀ y → y ≡ (x⁻¹ * (x * y)) lemma y = y ≡⟨ sym $ *1 _ ⟩ (y * 1#) ≡⟨ *-comm _ _ ⟩ (1# * y) ≡⟨ cong (λ x → x * y) $ sym xx⁻¹≡1 ⟩ ((x * x⁻¹) * y) ≡⟨ cong (λ x → x * y) $ *-comm _ _ ⟩ ((x⁻¹ * x) * y) ≡⟨ sym $ *-assoc _ _ _ ⟩∎ (x⁻¹ * (x * y)) ∎ inverse-propositional : {C : Type₁} (_*_ : C → C → C) (1# : C) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x → (x * 1#) ≡ x) → Is-set C → ∀ x → Is-proposition (∃ λ y → (x * y) ≡ 1#) inverse-propositional _*_ 1# *-assoc *-comm *1 C-set x = [inhabited⇒+]⇒+ 0 λ { inv → injection⁻¹-propositional (record { to = _*_ x ; injective = *-injective _*_ 1# *-assoc *-comm *1 x inv }) C-set 1# } proposition-lemma₁ : Extensionality (# 1) (# 1) → {C : Type₁} (0# : C) (_*_ : C → C → C) (1# : C) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x → (x * 1#) ≡ x) → Is-proposition (((x y : C) → x ≡ y ⊎ x ≢ y) × (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#)) proposition-lemma₁ ext 0# _*_ 1# *-assoc *-comm *1 = [inhabited⇒+]⇒+ 0 λ { (dec , _) → let C-set = decidable⇒set dec in ×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Dec-closure-propositional (lower-ext (# 0) _ ext) C-set) (Π-closure ext 1 λ x → Π-closure ext 1 λ _ → inverse-propositional _*_ 1# *-assoc *-comm *1 C-set x) } proposition-lemma₂ : Extensionality (# 1) (# 1) → {C : Type₁} (_+_ : C → C → C) (0# : C) (-_ : C → C) → (_*_ : C → C → C) (1# : C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → Is-proposition (∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#)) proposition-lemma₂ ext _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +- = [inhabited⇒+]⇒+ 0 λ inv-xor → let C-set = decidable⇒set $ dec-lemma₃ _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +- inv-xor in Π-closure ext 1 λ x → Xor-closure-propositional (lower-ext (# 0) _ ext) (inverse-propositional _*_ 1# *-assoc *-comm *1 C-set x) C-set proposition-lemma₃ : Extensionality (# 1) (# 1) → {C : Type₁} (_+_ : C → C → C) (0# : C) (_*_ : C → C → C) (1# : C) → (-_ : C → C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → 0# ≢ 1# → Is-proposition (Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ → (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)) proposition-lemma₃ ext {C} _+_ 0# _*_ 1# -_ +-assoc *-assoc +-comm *-comm *+ +0 *1 +- 0≢1 (inv , inv₁ , inv₂) (inv′ , inv₁′ , inv₂′) = _↔_.to (ignore-propositional-component (×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → C-set) (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → C-set))) (apply-ext ext inv≡inv′) where C-set : Is-set C C-set = decidable⇒set $ dec-lemma₂ _+_ 0# _*_ 1# -_ inv +-assoc +-comm *-comm *+ +0 *1 +- 0≢1 inv₁ inv₂ 01-lemma : ∀ x y → x ≡ 0# → (x * y) ≡ 1# → ⊥ 01-lemma x y x≡0 xy≡1 = 0≢1 ( 0# ≡⟨ sym $ 0* _+_ 0# _*_ 1# -_ +-assoc +-comm *-comm *+ +0 *1 +- _ ⟩ (0# * y) ≡⟨ cong (λ x → x * _) $ sym x≡0 ⟩ (x * y) ≡⟨ xy≡1 ⟩∎ 1# ∎) inv≡inv′ : ∀ x → inv x ≡ inv′ x inv≡inv′ x with inv x | inv₁ x | inv₂ x | inv′ x | inv₁′ x | inv₂′ x ... | inj₁ _ | _ | _ | inj₁ _ | _ | _ = refl _ ... | inj₂ x⁻¹ | _ | hyp | inj₁ _ | hyp′ | _ = ⊥-elim $ 01-lemma x x⁻¹ (hyp′ (refl _)) (hyp x⁻¹ (refl _)) ... | inj₁ _ | hyp | _ | inj₂ x⁻¹ | _ | hyp′ = ⊥-elim $ 01-lemma x x⁻¹ (hyp (refl _)) (hyp′ x⁻¹ (refl _)) ... | inj₂ x⁻¹ | _ | hyp | inj₂ x⁻¹′ | _ | hyp′ = cong inj₂ $ *-injective _*_ 1# *-assoc *-comm *1 x (x⁻¹ , hyp x⁻¹ (refl _)) ((x * x⁻¹) ≡⟨ hyp x⁻¹ (refl _) ⟩ 1# ≡⟨ sym $ hyp′ x⁻¹′ (refl _) ⟩∎ (x * x⁻¹′) ∎) -- Discrete fields. discrete-field : Code discrete-field = -- Addition. (id ⇾ id ⇾ id) ⊗ -- Zero. id ⊗ -- Multiplication. (id ⇾ id ⇾ id) ⊗ -- One. id ⊗ -- Minus. (id ⇾ id) ⊗ -- Multiplicative inverse (a partial operation). (id ⇾ k (↑ _ ⊤) ⊕ id) , λ { C (_+_ , 0# , _*_ , 1# , -_ , _⁻¹) → (-- Associativity. (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × -- Commutativity. (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × -- Distributivity. (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × -- Identity laws. (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × -- Additive inverse law. (∀ x → (x + (- x)) ≡ 0#) × -- Zero and one are distinct. 0# ≢ 1# × -- Multiplicative inverse laws. (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)) , λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (+-assoc , _ , +-comm , *-comm , *+ , +0 , *1 , +- , 0≢1 , ⁻¹₁ , ⁻¹₂) → let C-set : Is-set C C-set = decidable⇒set $ dec-lemma₂ _+_ 0# _*_ 1# -_ _⁻¹ +-assoc +-comm *-comm *+ +0 *1 +- 0≢1 ⁻¹₁ ⁻¹₂ in ×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure (lower-ext (# 0) (# 1) ext₁) 1 λ _ → ⊥-propositional) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set)))))))))) }} -- The interpretation of the code is reasonable. Instance-discrete-field : Instance discrete-field ≡ Σ Type₁ λ C → Σ ((C → C → C) × C × (C → C → C) × C × (C → C) × (C → ↑ _ ⊤ ⊎ C)) λ { (_+_ , 0# , _*_ , 1# , -_ , _⁻¹) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × (∀ x → (x + (- x)) ≡ 0#) × 0# ≢ 1# × (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#) } Instance-discrete-field = refl _ -- The notion of isomorphism that we get is reasonable. Isomorphic-discrete-field : ∀ {C₁ _+₁_ 0₁ _*₁_ 1₁ -₁_ _⁻¹₁ laws₁ C₂ _+₂_ 0₂ _*₂_ 1₂ -₂_ _⁻¹₂ laws₂} → Isomorphic discrete-field (C₁ , (_+₁_ , 0₁ , _*₁_ , 1₁ , -₁_ , _⁻¹₁) , laws₁) (C₂ , (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_ , _⁻¹₂) , laws₂) ≡ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ((λ x y → to (from x +₁ from y)) , to 0₁ , (λ x y → to (from x *₁ from y)) , to 1₁ , (λ x → to (-₁ from x)) , (λ x → ⊎-map P.id to (from x ⁻¹₁))) ≡ (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_ , _⁻¹₂) Isomorphic-discrete-field = refl _ -- The definitions of discrete field introduced below do not have an -- inverse operator in their signature, so the derived notion of -- isomorphism is perhaps not obviously identical to the one above. -- However, the two notions of isomorphism are isomorphic (assuming -- extensionality). Isomorphic-discrete-field-isomorphic-to-one-without-⁻¹ : Extensionality (# 1) (# 1) → ∀ {C₁ _+₁_ 0₁ _*₁_ 1₁ -₁_ _⁻¹₁ laws₁ C₂ _+₂_ 0₂ _*₂_ 1₂ -₂_ _⁻¹₂ laws₂} → Isomorphic discrete-field (C₁ , (_+₁_ , 0₁ , _*₁_ , 1₁ , -₁_ , _⁻¹₁) , laws₁) (C₂ , (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_ , _⁻¹₂) , laws₂) ↔ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ((λ x y → to (from x +₁ from y)) , to 0₁ , (λ x y → to (from x *₁ from y)) , to 1₁ , (λ x → to (-₁ from x))) ≡ (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_) Isomorphic-discrete-field-isomorphic-to-one-without-⁻¹ ext {C₁} {_+₁_} {0₁} {_*₁_} {1₁} { -₁_} {_⁻¹₁} {_ , _ , _ , _ , _ , _ , _ , _ , _ , ⁻¹₁₁ , ⁻¹₁₂} {C₂} {_+₂_} {0₂} {_*₂_} {1₂} { -₂_} {_⁻¹₂} {+₂-assoc , *₂-assoc , +₂-comm , *₂-comm , *₂+₂ , +₂0₂ , *₂1₂ , +₂-₂ , 0₂≢1₂ , ⁻¹₂₁ , ⁻¹₂₂} = ∃-cong λ eq → let open _≃_ eq in (((λ x y → to (from x +₁ from y)) , to 0₁ , (λ x y → to (from x *₁ from y)) , to 1₁ , (λ x → to (-₁ from x)) , (λ x → ⊎-map P.id to (from x ⁻¹₁))) ≡ (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_ , _⁻¹₂)) ↝⟨ inverse (≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡))))) ⟩ ((λ x y → to (from x +₁ from y)) ≡ _+₂_ × to 0₁ ≡ 0₂ × (λ x y → to (from x *₁ from y)) ≡ _*₂_ × to 1₁ ≡ 1₂ × (λ x → to (-₁ from x)) ≡ -₂_ × (λ x → ⊎-map P.id to (from x ⁻¹₁)) ≡ _⁻¹₂) ↝⟨ (∃-cong λ _ → ∃-cong λ 0-homo → ∃-cong λ *-homo → ∃-cong λ 1-homo → ∃-cong λ _ → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible ⁻¹-set (⁻¹-homo eq 0-homo *-homo 1-homo)) ⟩ ((λ x y → to (from x +₁ from y)) ≡ _+₂_ × to 0₁ ≡ 0₂ × (λ x y → to (from x *₁ from y)) ≡ _*₂_ × to 1₁ ≡ 1₂ × (λ x → to (-₁ from x)) ≡ -₂_ × ⊤) ↝⟨ (_ □) ×-cong (_ □) ×-cong (_ □) ×-cong (_ □) ×-cong ×-right-identity ⟩ ((λ x y → to (from x +₁ from y)) ≡ _+₂_ × to 0₁ ≡ 0₂ × (λ x y → to (from x *₁ from y)) ≡ _*₂_ × to 1₁ ≡ 1₂ × (λ x → to (-₁ from x)) ≡ -₂_) ↝⟨ ≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡))) ⟩ (((λ x y → to (from x +₁ from y)) , to 0₁ , (λ x y → to (from x *₁ from y)) , to 1₁ , (λ x → to (-₁ from x))) ≡ (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_)) □ where ⁻¹-set : Is-set (C₂ → ↑ _ ⊤ ⊎ C₂) ⁻¹-set = Π-closure ext 2 λ _ → ⊎-closure 0 (↑-closure 2 (mono (≤-step (≤-step ≤-refl)) ⊤-contractible)) (decidable⇒set $ dec-lemma₂ _+₂_ 0₂ _*₂_ 1₂ -₂_ _⁻¹₂ +₂-assoc +₂-comm *₂-comm *₂+₂ +₂0₂ *₂1₂ +₂-₂ 0₂≢1₂ ⁻¹₂₁ ⁻¹₂₂) ⁻¹-homo : (eq : C₁ ≃ C₂) → let open _≃_ eq in to 0₁ ≡ 0₂ → (λ x y → to (from x *₁ from y)) ≡ _*₂_ → to 1₁ ≡ 1₂ → (λ x → ⊎-map P.id to (from x ⁻¹₁)) ≡ _⁻¹₂ ⁻¹-homo eq 0-homo *-homo 1-homo = cong proj₁ $ proposition-lemma₃ ext _+₂_ 0₂ _*₂_ 1₂ -₂_ +₂-assoc *₂-assoc +₂-comm *₂-comm *₂+₂ +₂0₂ *₂1₂ +₂-₂ 0₂≢1₂ ( (λ x → ⊎-map P.id to (from x ⁻¹₁)) , (λ x x⁻¹₁≡₁ → let lemma = (from x ⁻¹₁) ≡⟨ [_,_] {C = λ z → z ≡ ⊎-map P.id from (⊎-map P.id to z)} (λ _ → refl _) (λ _ → cong inj₂ $ sym $ left-inverse-of _) (from x ⁻¹₁) ⟩ ⊎-map P.id from (⊎-map P.id to (from x ⁻¹₁)) ≡⟨ cong (⊎-map P.id from) x⁻¹₁≡₁ ⟩∎ inj₁ (lift tt) ∎ in x ≡⟨ sym $ right-inverse-of x ⟩ to (from x) ≡⟨ cong to (⁻¹₁₁ (from x) lemma) ⟩ to 0₁ ≡⟨ 0-homo ⟩∎ 0₂ ∎) , (λ x y x⁻¹₁≡y → let lemma = (from x ⁻¹₁) ≡⟨ [_,_] {C = λ z → z ≡ ⊎-map P.id from (⊎-map P.id to z)} (λ _ → refl _) (λ _ → cong inj₂ $ sym $ left-inverse-of _) (from x ⁻¹₁) ⟩ ⊎-map P.id from (⊎-map P.id to (from x ⁻¹₁)) ≡⟨ cong (⊎-map P.id from) x⁻¹₁≡y ⟩∎ inj₂ (from y) ∎ in (x *₂ y) ≡⟨ sym $ cong (λ _*_ → x * y) *-homo ⟩ to (from x *₁ from y) ≡⟨ cong to $ ⁻¹₁₂ (from x) (from y) lemma ⟩ to 1₁ ≡⟨ 1-homo ⟩∎ 1₂ ∎) ) (_⁻¹₂ , ⁻¹₂₁ , ⁻¹₂₂) where open _≃_ eq -- In "Varieties of Constructive Mathematics" Bridges and Richman -- define a discrete field as a commutative ring with 1, decidable -- equality, and satisfying the property that non-zero elements are -- invertible. What follows is—assuming that I interpreted the -- informal definition correctly—an encoding of this definition, -- restricted so that the discrete fields are non-trivial, and using -- equality as the equality relation, and denial inequality as the -- inequality relation. discrete-field-à-la-Bridges-and-Richman : Code discrete-field-à-la-Bridges-and-Richman = -- Addition. (id ⇾ id ⇾ id) ⊗ -- Zero. id ⊗ -- Multiplication. (id ⇾ id ⇾ id) ⊗ -- One. id ⊗ -- Minus. (id ⇾ id) , λ { C (_+_ , 0# , _*_ , 1# , -_) → (-- Associativity. (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × -- Commutativity. (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × -- Distributivity. (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × -- Identity laws. (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × -- Additive inverse law. (∀ x → (x + (- x)) ≡ 0#) × -- Zero and one are distinct. 0# ≢ 1# × -- Decidable equality. ((x y : C) → x ≡ y ⊎ x ≢ y) × -- Non-zero elements are invertible. (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#)) , λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (_ , *-assoc , _ , *-comm , _ , _ , *1 , _ , _ , dec , _) → let C-set : Is-set C C-set = decidable⇒set dec in ×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure (lower-ext (# 0) (# 1) ext₁) 1 λ _ → ⊥-propositional) (proposition-lemma₁ ext₁ 0# _*_ 1# *-assoc *-comm *1))))))))) }} -- The two discrete field definitions above are isomorphic (assuming -- extensionality). Instance-discrete-field-isomorphic-to-Bridges-and-Richman's : Extensionality (# 1) (# 1) → Instance discrete-field ↔ Instance discrete-field-à-la-Bridges-and-Richman Instance-discrete-field-isomorphic-to-Bridges-and-Richman's ext = ∃-cong λ C → (Σ ((C → C → C) × C × (C → C → C) × C × (C → C) × (C → ↑ _ ⊤ ⊎ C)) λ { (_+_ , 0# , _*_ , 1# , -_ , _⁻¹) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × (∀ x → (x + (- x)) ≡ 0#) × 0# ≢ 1# × (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)}) ↝⟨ lemma₁ _ _ _ _ _ _ _ ⟩ (Σ ((C → C → C) × C × (C → C → C) × C × (C → C)) λ { (_+_ , 0# , _*_ , 1# , -_) → Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × (∀ x → (x + (- x)) ≡ 0#) × 0# ≢ 1# × (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)}) ↝⟨ ∃-cong (λ _ → lemma₂ _ _ _ _ _ _ _ _ _ _ _) ⟩ (Σ (((C → C → C) × C × (C → C → C) × C × (C → C))) λ { (_+_ , 0# , _*_ , 1# , -_) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × (∀ x → (x + (- x)) ≡ 0#) × 0# ≢ 1# × Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ → (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#) }) ↝⟨ (∃-cong λ { (_+_ , 0# , _*_ , 1# , -_) → ∃-cong λ +-assoc → ∃-cong λ *-assoc → ∃-cong λ +-comm → ∃-cong λ *-comm → ∃-cong λ *+ → ∃-cong λ +0 → ∃-cong λ *1 → ∃-cong λ +- → ∃-cong λ 0≢1 → main-lemma C _+_ 0# _*_ 1# -_ +-assoc *-assoc +-comm *-comm *+ +0 *1 +- 0≢1 }) ⟩□ (Σ ((C → C → C) × C × (C → C → C) × C × (C → C)) λ { (_+_ , 0# , _*_ , 1# , -_) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × (∀ x → (x + (- x)) ≡ 0#) × 0# ≢ 1# × ((x y : C) → x ≡ y ⊎ x ≢ y) × (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#) }) □ where main-lemma : (C : Type₁) (_+_ : C → C → C) (0# : C) (_*_ : C → C → C) (1# : C) (-_ : C → C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → 0# ≢ 1# → (Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ → (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)) ↔ (((x y : C) → x ≡ y ⊎ x ≢ y) × (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#)) main-lemma C _+_ 0# _*_ 1# -_ +-assoc *-assoc +-comm *-comm *+ +0 *1 +- 0≢1 = _≃_.bijection $ Eq.⇔→≃ (proposition-lemma₃ ext _+_ 0# _*_ 1# -_ +-assoc *-assoc +-comm *-comm *+ +0 *1 +- 0≢1) (proposition-lemma₁ ext 0# _*_ 1# *-assoc *-comm *1) to from where To = (((x y : C) → x ≡ y ⊎ x ≢ y) × (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#)) From = Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ → (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#) to : From → To to (_⁻¹ , ⁻¹₁ , ⁻¹₂) = (dec , inv) where dec : Decidable (_≡_ {A = C}) dec = dec-lemma₂ _+_ 0# _*_ 1# -_ _⁻¹ +-assoc +-comm *-comm *+ +0 *1 +- 0≢1 ⁻¹₁ ⁻¹₂ inv : ∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1# inv x x≢0 with x ⁻¹ | ⁻¹₁ x | ⁻¹₂ x ... | inj₁ _ | hyp | _ = ⊥-elim $ x≢0 (hyp (refl _)) ... | inj₂ y | _ | hyp = y , hyp y (refl _) from : To → From from (dec , inv) = (_⁻¹ , ⁻¹₁ , ⁻¹₂) where _⁻¹ : C → ↑ _ ⊤ ⊎ C x ⁻¹ = ⊎-map (λ _ → _) (proj₁ ∘ inv x) (dec x 0#) ⁻¹₁ : ∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0# ⁻¹₁ x x⁻¹≡₁ with dec x 0# ... | inj₁ x≡0 = x≡0 ... | inj₂ x≢0 = ⊥-elim $ ⊎.inj₁≢inj₂ (sym x⁻¹≡₁) ⁻¹₂ : ∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1# ⁻¹₂ x y x⁻¹≡y with dec x 0# ... | inj₁ x≡0 = ⊥-elim $ ⊎.inj₁≢inj₂ x⁻¹≡y ... | inj₂ x≢0 = (x * y) ≡⟨ cong (_*_ _) $ sym $ ⊎.cancel-inj₂ x⁻¹≡y ⟩ (x * proj₁ (inv x x≢0)) ≡⟨ proj₂ (inv x x≢0) ⟩∎ 1# ∎ lemma₁ : (A B C D E F : Type₁) (G : A × B × C × D × E × F → Type₁) → Σ (A × B × C × D × E × F) G ↔ Σ (A × B × C × D × E) λ { (a , b , c , d , e) → Σ F λ f → G (a , b , c , d , e , f) } lemma₁ A B C D E F G = Σ (A × B × C × D × E × F) G ↝⟨ Σ-cong (×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc) (λ _ → _ □) ⟩ (Σ (((((A × B) × C) × D) × E) × F) λ { (((((a , b) , c) , d) , e) , f) → G (a , b , c , d , e , f) }) ↝⟨ inverse Σ-assoc ⟩ (Σ ((((A × B) × C) × D) × E) λ { ((((a , b) , c) , d) , e) → Σ F λ f → G (a , b , c , d , e , f) }) ↝⟨ Σ-cong (inverse (×-assoc ⊚ ×-assoc ⊚ ×-assoc)) (λ _ → _ □) ⟩□ (Σ (A × B × C × D × E) λ { (a , b , c , d , e) → Σ F λ f → G (a , b , c , d , e , f) }) □ lemma₂ : (A B C D E F G H I J : Type₁) (K : A → Type₁) → (Σ A λ x → B × C × D × E × F × G × H × I × J × K x) ↔ (B × C × D × E × F × G × H × I × J × Σ A K) lemma₂ A B C D E F G H I J K = (Σ A λ x → B × C × D × E × F × G × H × I × J × K x) ↝⟨ ∃-cong (λ _ → ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc) ⟩ (Σ A λ x → ((((((((B × C) × D) × E) × F) × G) × H) × I) × J) × K x) ↝⟨ ∃-comm ⟩ (((((((((B × C) × D) × E) × F) × G) × H) × I) × J) × Σ A K) ↝⟨ inverse (×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc) ⟩□ (B × C × D × E × F × G × H × I × J × Σ A K) □ -- nLab defines a discrete field as a commutative ring satisfying the -- property that "an element is invertible xor it equals zero" -- (http://ncatlab.org/nlab/show/field). This definition can also be -- encoded in our framework (assuming that I interpreted the informal -- definitions correctly). discrete-field-à-la-nLab : Code discrete-field-à-la-nLab = -- Addition. (id ⇾ id ⇾ id) ⊗ -- Zero. id ⊗ -- Multiplication. (id ⇾ id ⇾ id) ⊗ -- One. id ⊗ -- Minus. (id ⇾ id) , λ { C (_+_ , 0# , _*_ , 1# , -_) → (-- Associativity. (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × -- Commutativity. (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × -- Distributivity. (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × -- Identity laws. (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × -- Additive inverse law. (∀ x → (x + (- x)) ≡ 0#) × -- An element is invertible xor it equals zero. (∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#))) , λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (+-assoc , *-assoc , +-comm , *-comm , _ , +0 , *1 , +- , inv-xor) → let C-set : Is-set C C-set = decidable⇒set $ dec-lemma₃ _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +- inv-xor in ×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (proposition-lemma₂ ext₁ _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +-)))))))) }} -- nLab's definition of discrete fields is isomorphic to the variant -- of Bridges and Richman's definition given above (assuming -- extensionality, and assuming that I interpreted the informal -- definitions correctly). nLab's-isomorphic-to-Bridges-and-Richman's : Extensionality (# 1) (# 1) → Instance discrete-field-à-la-nLab ↔ Instance discrete-field-à-la-Bridges-and-Richman nLab's-isomorphic-to-Bridges-and-Richman's ext = ∃-cong λ C → ∃-cong λ { (_+_ , 0# , _*_ , 1# , -_) → ∃-cong λ +-assoc → ∃-cong λ *-assoc → ∃-cong λ +-comm → ∃-cong λ *-comm → ∃-cong λ *+ → ∃-cong λ +0 → ∃-cong λ *1 → ∃-cong λ +- → main-lemma C _+_ 0# _*_ 1# -_ +-assoc *-assoc +-comm *-comm *+ +0 *1 +- } where main-lemma : (C : Type₁) (_+_ : C → C → C) (0# : C) (_*_ : C → C → C) (1# : C) (-_ : C → C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → (∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#)) ↔ (0# ≢ 1# × ((x y : C) → x ≡ y ⊎ x ≢ y) × (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#)) main-lemma C _+_ 0# _*_ 1# -_ +-assoc *-assoc +-comm *-comm *+ +0 *1 +- = _≃_.bijection $ Eq.⇔→≃ (proposition-lemma₂ ext _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +-) (×-closure 1 (¬-propositional (lower-ext (# 0) _ ext)) (proposition-lemma₁ ext 0# _*_ 1# *-assoc *-comm *1)) to from where To = 0# ≢ 1# × ((x y : C) → x ≡ y ⊎ x ≢ y) × (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#) From = ∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#) to : From → To to inv-xor = (0≢1 , dec , inv) where 0≢1 : 0# ≢ 1# 0≢1 0≡1 = [ (λ { (_ , 1≢0) → 1≢0 (sym 0≡1) }) , (λ { (∄y[1y≡1] , _) → ∄y[1y≡1] (1# , *1 1#) }) ] (inv-xor 1#) dec : Decidable (_≡_ {A = C}) dec = dec-lemma₃ _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +- inv-xor inv : ∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1# inv x x≢0 = [ proj₁ , (λ { (_ , x≡0) → ⊥-elim (x≢0 x≡0) }) ] (inv-xor x) from : To → From from (0≢1 , dec , inv) x = [ (λ x≡0 → inj₂ ( (λ { (y , xy≡1) → 0≢1 (0# ≡⟨ sym $ 0* _+_ 0# _*_ 1# -_ +-assoc +-comm *-comm *+ +0 *1 +- y ⟩ (0# * y) ≡⟨ cong (λ x → x * y) $ sym x≡0 ⟩ (x * y) ≡⟨ xy≡1 ⟩∎ 1# ∎) }) , x≡0 )) , (λ x≢0 → inj₁ (inv x x≢0 , x≢0)) ] (dec x 0#) ------------------------------------------------------------------------ -- An example: vector spaces over discrete fields -- Vector spaces over a particular discrete field. vector-space : Instance discrete-field → Code vector-space (F , (_+F_ , _ , _*F_ , 1F , _ , _) , _) = -- Addition. (id ⇾ id ⇾ id) ⊗ -- Scalar multiplication. (k F ⇾ id ⇾ id) ⊗ -- Zero vector. id ⊗ -- Additive inverse. (id ⇾ id) , λ { V (_+_ , _*_ , 0V , -_) → -- The carrier type is a set. (Is-set V × -- Associativity. (∀ u v w → (u + (v + w)) ≡ ((u + v) + w)) × (∀ x y v → (x * (y * v)) ≡ ((x *F y) * v)) × -- Commutativity. (∀ u v → (u + v) ≡ (v + u)) × -- Distributivity. (∀ x u v → (x * (u + v)) ≡ ((x * u) + (x * v))) × (∀ x y v → ((x +F y) * v) ≡ ((x * v) + (y * v))) × -- Identity laws. (∀ v → (v + 0V) ≡ v) × (∀ v → (1F * v) ≡ v) × -- Inverse law. (∀ v → (v + (- v)) ≡ 0V)) , λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (V-set , _) → ×-closure 1 (H-level-propositional ext₁ 2) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → V-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → V-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → V-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → V-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → V-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → V-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → V-set) (Π-closure ext₁ 1 λ _ → V-set)))))))) }} -- The interpretation of the code is reasonable. Instance-vector-space : ∀ {F _+F_ 0F _*F_ 1F -F_ _⁻¹F laws} → Instance (vector-space (F , (_+F_ , 0F , _*F_ , 1F , -F_ , _⁻¹F) , laws)) ≡ Σ Type₁ λ V → Σ ((V → V → V) × (F → V → V) × V × (V → V)) λ { (_+_ , _*_ , 0V , -_) → Is-set V × (∀ u v w → (u + (v + w)) ≡ ((u + v) + w)) × (∀ x y v → (x * (y * v)) ≡ ((x *F y) * v)) × (∀ u v → (u + v) ≡ (v + u)) × (∀ x u v → (x * (u + v)) ≡ ((x * u) + (x * v))) × (∀ x y v → ((x +F y) * v) ≡ ((x * v) + (y * v))) × (∀ v → (v + 0V) ≡ v) × (∀ v → (1F * v) ≡ v) × (∀ v → (v + (- v)) ≡ 0V) } Instance-vector-space = refl _ -- The notion of isomorphism that we get is also reasonable. Isomorphic-vector-space : ∀ {F V₁ _+₁_ _*₁_ 0₁ -₁_ laws₁ V₂ _+₂_ _*₂_ 0₂ -₂_ laws₂} → Isomorphic (vector-space F) (V₁ , (_+₁_ , _*₁_ , 0₁ , -₁_) , laws₁) (V₂ , (_+₂_ , _*₂_ , 0₂ , -₂_) , laws₂) ≡ Σ (V₁ ≃ V₂) λ eq → let open _≃_ eq in ((λ u v → to (from u +₁ from v)) , (λ x v → to (x *₁ from v)) , to 0₁ , (λ x → to (-₁ from x))) ≡ (_+₂_ , _*₂_ , 0₂ , -₂_) Isomorphic-vector-space = refl _ ------------------------------------------------------------------------ -- An example: sets equipped with fixpoint operators set-with-fixpoint-operator : Code set-with-fixpoint-operator = (id ⇾ id) ⇾ id , λ C fix → -- The carrier type is a set. (Is-set C × -- The fixpoint operator property. (∀ f → f (fix f) ≡ fix f)) , λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (C-set , _) → ×-closure 1 (H-level-propositional ext₁ 2) (Π-closure ext₁ 1 λ _ → C-set) } -- Some unfolding lemmas. Instance-set-with-fixpoint-operator : Instance set-with-fixpoint-operator ≡ Σ Type₁ λ C → Σ ((C → C) → C) λ fix → Is-set C × (∀ f → f (fix f) ≡ fix f) Instance-set-with-fixpoint-operator = refl _ Isomorphic-set-with-fixpoint-operator : ∀ {C₁ fix₁ laws₁ C₂ fix₂ laws₂} → Isomorphic set-with-fixpoint-operator (C₁ , fix₁ , laws₁) (C₂ , fix₂ , laws₂) ≡ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in (λ f → to (fix₁ (λ x → from (f (to x))))) ≡ fix₂ Isomorphic-set-with-fixpoint-operator = refl _ Isomorphic′-set-with-fixpoint-operator : ∀ {C₁ fix₁ laws₁ C₂ fix₂ laws₂} → Isomorphic′ set-with-fixpoint-operator (C₁ , fix₁ , laws₁) (C₂ , fix₂ , laws₂) ≡ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ∀ f g → (∀ x y → to x ≡ y → to (f x) ≡ g y) → to (fix₁ f) ≡ fix₂ g Isomorphic′-set-with-fixpoint-operator = refl _
37.713699
146
0.388834
0b22925f499fce80d5a9947a18605f00f3752354
7,806
agda
Agda
Cubical/Foundations/Equiv/Properties.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Foundations/Equiv/Properties.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Foundations/Equiv/Properties.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
{- A couple of general facts about equivalences: - if f is an equivalence then (cong f) is an equivalence ([equivCong]) - if f is an equivalence then pre- and postcomposition with f are equivalences ([preCompEquiv], [postCompEquiv]) - if f is an equivalence then (Σ[ g ] section f g) and (Σ[ g ] retract f g) are contractible ([isContr-section], [isContr-retract]) - isHAEquiv is a proposition [isPropIsHAEquiv] (these are not in 'Equiv.agda' because they need Univalence.agda (which imports Equiv.agda)) -} {-# OPTIONS --safe #-} module Cubical.Foundations.Equiv.Properties where open import Cubical.Core.Everything open import Cubical.Data.Sigma open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.HLevels open import Cubical.Functions.FunExtEquiv private variable ℓ ℓ′ : Level A B C : Type ℓ isEquivInvEquiv : isEquiv (λ (e : A ≃ B) → invEquiv e) isEquivInvEquiv = isoToIsEquiv goal where open Iso goal : Iso (A ≃ B) (B ≃ A) goal .fun = invEquiv goal .inv = invEquiv goal .rightInv g = equivEq refl goal .leftInv f = equivEq refl invEquivEquiv : (A ≃ B) ≃ (B ≃ A) invEquivEquiv = _ , isEquivInvEquiv isEquivCong : {x y : A} (e : A ≃ B) → isEquiv (λ (p : x ≡ y) → cong (equivFun e) p) isEquivCong e = isoToIsEquiv (congIso (equivToIso e)) congEquiv : {x y : A} (e : A ≃ B) → (x ≡ y) ≃ (equivFun e x ≡ equivFun e y) congEquiv e = isoToEquiv (congIso (equivToIso e)) equivAdjointEquiv : (e : A ≃ B) → ∀ {a b} → (a ≡ invEq e b) ≃ (equivFun e a ≡ b) equivAdjointEquiv e = compEquiv (congEquiv e) (compPathrEquiv (retEq e _)) invEq≡→equivFun≡ : (e : A ≃ B) → ∀ {a b} → invEq e b ≡ a → equivFun e a ≡ b invEq≡→equivFun≡ e = equivFun (equivAdjointEquiv e) ∘ sym isEquivPreComp : (e : A ≃ B) → isEquiv (λ (φ : B → C) → φ ∘ equivFun e) isEquivPreComp e = snd (equiv→ (invEquiv e) (idEquiv _)) preCompEquiv : (e : A ≃ B) → (B → C) ≃ (A → C) preCompEquiv e = (λ φ → φ ∘ fst e) , isEquivPreComp e isEquivPostComp : (e : A ≃ B) → isEquiv (λ (φ : C → A) → e .fst ∘ φ) isEquivPostComp e = snd (equivΠCod (λ _ → e)) postCompEquiv : (e : A ≃ B) → (C → A) ≃ (C → B) postCompEquiv e = _ , isEquivPostComp e -- see also: equivΠCod for a dependent version of postCompEquiv hasSection : (A → B) → Type _ hasSection {A = A} {B = B} f = Σ[ g ∈ (B → A) ] section f g hasRetract : (A → B) → Type _ hasRetract {A = A} {B = B} f = Σ[ g ∈ (B → A) ] retract f g isEquiv→isContrHasSection : {f : A → B} → isEquiv f → isContr (hasSection f) fst (isEquiv→isContrHasSection isEq) = invIsEq isEq , secIsEq isEq snd (isEquiv→isContrHasSection isEq) (f , ε) i = (λ b → fst (p b i)) , (λ b → snd (p b i)) where p : ∀ b → (invIsEq isEq b , secIsEq isEq b) ≡ (f b , ε b) p b = isEq .equiv-proof b .snd (f b , ε b) isEquiv→hasSection : {f : A → B} → isEquiv f → hasSection f isEquiv→hasSection = fst ∘ isEquiv→isContrHasSection isContr-hasSection : (e : A ≃ B) → isContr (hasSection (fst e)) isContr-hasSection e = isEquiv→isContrHasSection (snd e) isEquiv→isContrHasRetract : {f : A → B} → isEquiv f → isContr (hasRetract f) fst (isEquiv→isContrHasRetract isEq) = invIsEq isEq , retIsEq isEq snd (isEquiv→isContrHasRetract {f = f} isEq) (g , η) = λ i → (λ b → p b i) , (λ a → q a i) where p : ∀ b → invIsEq isEq b ≡ g b p b = sym (η (invIsEq isEq b)) ∙' cong g (secIsEq isEq b) -- one square from the definition of invIsEq ieSq : ∀ a → Square (cong g (secIsEq isEq (f a))) refl (cong (g ∘ f) (retIsEq isEq a)) refl ieSq a k j = g (commSqIsEq isEq a k j) -- one square from η ηSq : ∀ a → Square (η (invIsEq isEq (f a))) (η a) (cong (g ∘ f) (retIsEq isEq a)) (retIsEq isEq a) ηSq a i j = η (retIsEq isEq a i) j -- and one last square from the definition of p pSq : ∀ b → Square (η (invIsEq isEq b)) refl (cong g (secIsEq isEq b)) (p b) pSq b i j = compPath'-filler (sym (η (invIsEq isEq b))) (cong g (secIsEq isEq b)) j i q : ∀ a → Square (retIsEq isEq a) (η a) (p (f a)) refl q a i j = hcomp (λ k → λ { (i = i0) → ηSq a j k ; (i = i1) → η a (j ∧ k) ; (j = i0) → pSq (f a) i k ; (j = i1) → η a k }) (ieSq a j i) isEquiv→hasRetract : {f : A → B} → isEquiv f → hasRetract f isEquiv→hasRetract = fst ∘ isEquiv→isContrHasRetract isContr-hasRetract : (e : A ≃ B) → isContr (hasRetract (fst e)) isContr-hasRetract e = isEquiv→isContrHasRetract (snd e) cong≃ : (F : Type ℓ → Type ℓ′) → (A ≃ B) → F A ≃ F B cong≃ F e = pathToEquiv (cong F (ua e)) cong≃-char : (F : Type ℓ → Type ℓ′) {A B : Type ℓ} (e : A ≃ B) → ua (cong≃ F e) ≡ cong F (ua e) cong≃-char F e = ua-pathToEquiv (cong F (ua e)) cong≃-idEquiv : (F : Type ℓ → Type ℓ′) (A : Type ℓ) → cong≃ F (idEquiv A) ≡ idEquiv (F A) cong≃-idEquiv F A = cong≃ F (idEquiv A) ≡⟨ cong (λ p → pathToEquiv (cong F p)) uaIdEquiv ⟩ pathToEquiv refl ≡⟨ pathToEquivRefl ⟩ idEquiv (F A) ∎ isPropIsHAEquiv : {f : A → B} → isProp (isHAEquiv f) isPropIsHAEquiv {f = f} ishaef = goal ishaef where equivF : isEquiv f equivF = isHAEquiv→isEquiv ishaef rCoh1 : (sec : hasSection f) → Type _ rCoh1 (g , ε) = Σ[ η ∈ retract f g ] ∀ x → cong f (η x) ≡ ε (f x) rCoh2 : (sec : hasSection f) → Type _ rCoh2 (g , ε) = Σ[ η ∈ retract f g ] ∀ x → Square (ε (f x)) refl (cong f (η x)) refl rCoh3 : (sec : hasSection f) → Type _ rCoh3 (g , ε) = ∀ x → Σ[ ηx ∈ g (f x) ≡ x ] Square (ε (f x)) refl (cong f ηx) refl rCoh4 : (sec : hasSection f) → Type _ rCoh4 (g , ε) = ∀ x → Path (fiber f (f x)) (g (f x) , ε (f x)) (x , refl) characterization : isHAEquiv f ≃ Σ _ rCoh4 characterization = isHAEquiv f -- first convert between Σ and record ≃⟨ isoToEquiv (iso (λ e → (e .g , e .rinv) , (e .linv , e .com)) (λ e → record { g = e .fst .fst ; rinv = e .fst .snd ; linv = e .snd .fst ; com = e .snd .snd }) (λ _ → refl) λ _ → refl) ⟩ Σ _ rCoh1 -- secondly, convert the path into a dependent path for later convenience ≃⟨ Σ-cong-equiv-snd (λ s → Σ-cong-equiv-snd λ η → equivΠCod λ x → compEquiv (flipSquareEquiv {a₀₀ = f x}) (invEquiv slideSquareEquiv)) ⟩ Σ _ rCoh2 ≃⟨ Σ-cong-equiv-snd (λ s → invEquiv Σ-Π-≃) ⟩ Σ _ rCoh3 ≃⟨ Σ-cong-equiv-snd (λ s → equivΠCod λ x → ΣPath≃PathΣ) ⟩ Σ _ rCoh4 ■ where open isHAEquiv goal : isProp (isHAEquiv f) goal = subst isProp (sym (ua characterization)) (isPropΣ (isContr→isProp (isEquiv→isContrHasSection equivF)) λ s → isPropΠ λ x → isProp→isSet (isContr→isProp (equivF .equiv-proof (f x))) _ _) -- composition on the right induces an equivalence of path types compr≡Equiv : {A : Type ℓ} {a b c : A} (p q : a ≡ b) (r : b ≡ c) → (p ≡ q) ≃ (p ∙ r ≡ q ∙ r) compr≡Equiv p q r = congEquiv ((λ s → s ∙ r) , compPathr-isEquiv r) -- composition on the left induces an equivalence of path types compl≡Equiv : {A : Type ℓ} {a b c : A} (p : a ≡ b) (q r : b ≡ c) → (q ≡ r) ≃ (p ∙ q ≡ p ∙ r) compl≡Equiv p q r = congEquiv ((λ s → p ∙ s) , (compPathl-isEquiv p))
41.084211
131
0.570074
06b3b5abbf0b6e4c2bcee55dffe30643a77848bf
2,568
agda
Agda
test/asset/agda-stdlib-1.0/Data/Nat/InfinitelyOften.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Nat/InfinitelyOften.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Nat/InfinitelyOften.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Definition of and lemmas related to "true infinitely often" ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.InfinitelyOften where open import Category.Monad using (RawMonad) open import Level using (0ℓ) open import Data.Empty using (⊥-elim) open import Data.Nat open import Data.Nat.Properties open import Data.Product as Prod hiding (map) open import Data.Sum hiding (map) open import Function open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation using (¬¬-Monad; call/cc) open import Relation.Unary using (Pred; _∪_; _⊆_) open RawMonad (¬¬-Monad {p = 0ℓ}) -- Only true finitely often. Fin : ∀ {ℓ} → Pred ℕ ℓ → Set ℓ Fin P = ∃ λ i → ∀ j → i ≤ j → ¬ P j -- A non-constructive definition of "true infinitely often". Inf : ∀ {ℓ} → Pred ℕ ℓ → Set ℓ Inf P = ¬ Fin P -- Fin is preserved by binary sums. _∪-Fin_ : ∀ {ℓp ℓq P Q} → Fin {ℓp} P → Fin {ℓq} Q → Fin (P ∪ Q) _∪-Fin_ {P = P} {Q} (i , ¬p) (j , ¬q) = (i ⊔ j , helper) where open ≤-Reasoning helper : ∀ k → i ⊔ j ≤ k → ¬ (P ∪ Q) k helper k i⊔j≤k (inj₁ p) = ¬p k (begin i ≤⟨ m≤m⊔n i j ⟩ i ⊔ j ≤⟨ i⊔j≤k ⟩ k ∎) p helper k i⊔j≤k (inj₂ q) = ¬q k (begin j ≤⟨ m≤m⊔n j i ⟩ j ⊔ i ≡⟨ ⊔-comm j i ⟩ i ⊔ j ≤⟨ i⊔j≤k ⟩ k ∎) q -- Inf commutes with binary sums (in the double-negation monad). commutes-with-∪ : ∀ {P Q} → Inf (P ∪ Q) → ¬ ¬ (Inf P ⊎ Inf Q) commutes-with-∪ p∪q = call/cc λ ¬[p⊎q] → (λ ¬p ¬q → ⊥-elim (p∪q (¬p ∪-Fin ¬q))) <$> ¬[p⊎q] ∘ inj₁ ⊛ ¬[p⊎q] ∘ inj₂ -- Inf is functorial. map : ∀ {ℓp ℓq P Q} → P ⊆ Q → Inf {ℓp} P → Inf {ℓq} Q map P⊆Q ¬fin = ¬fin ∘ Prod.map id (λ fin j i≤j → fin j i≤j ∘ P⊆Q) -- Inf is upwards closed. up : ∀ {ℓ P} n → Inf {ℓ} P → Inf (P ∘ _+_ n) up zero = id up {P = P} (suc n) = up n ∘ up₁ where up₁ : Inf P → Inf (P ∘ suc) up₁ ¬fin (i , fin) = ¬fin (suc i , helper) where helper : ∀ j → 1 + i ≤ j → ¬ P j helper ._ (s≤s i≤j) = fin _ i≤j -- A witness. witness : ∀ {ℓ P} → Inf {ℓ} P → ¬ ¬ ∃ P witness ¬fin ¬p = ¬fin (0 , λ i _ Pi → ¬p (i , Pi)) -- Two different witnesses. twoDifferentWitnesses : ∀ {P} → Inf P → ¬ ¬ ∃₂ λ m n → m ≢ n × P m × P n twoDifferentWitnesses inf = witness inf >>= λ w₁ → witness (up (1 + proj₁ w₁) inf) >>= λ w₂ → return (_ , _ , m≢1+m+n (proj₁ w₁) , proj₂ w₁ , proj₂ w₂)
28.21978
72
0.521807
1d1f25799c68247df75d6352405790149776c4df
521
agda
Agda
Cubical/Data/Sum/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Sum/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Sum/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Sum.Base where open import Cubical.Core.Everything private variable ℓ ℓ' : Level A B C D : Type ℓ data _⊎_ (A : Type ℓ)(B : Type ℓ') : Type (ℓ-max ℓ ℓ') where inl : A → A ⊎ B inr : B → A ⊎ B elim-⊎ : {C : A ⊎ B → Type ℓ} → ((a : A) → C (inl a)) → ((b : B) → C (inr b)) → (x : A ⊎ B) → C x elim-⊎ f _ (inl x) = f x elim-⊎ _ g (inr y) = g y map-⊎ : (A → C) → (B → D) → A ⊎ B → C ⊎ D map-⊎ f _ (inl x) = inl (f x) map-⊎ _ g (inr y) = inr (g y)
22.652174
78
0.476008
0b3c84ad9b409d3f9033c713da6b0db852c9914a
837
agda
Agda
Experiment/SumFin.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
3
2020-04-07T17:49:42.000Z
2020-04-21T00:03:43.000Z
Experiment/SumFin.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
Experiment/SumFin.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Experiment.SumFin where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Nat open import Data.Nat.Properties open import Relation.Binary.PropositionalEquality private variable k : ℕ Fin : ℕ → Set Fin zero = ⊥ Fin (suc n) = ⊤ ⊎ (Fin n) pattern fzero = inj₁ tt pattern fsuc n = inj₂ n finj : Fin k → Fin (suc k) finj {suc k} fzero = fzero finj {suc k} (fsuc n) = fsuc (finj {k} n) toℕ : Fin k → ℕ toℕ {suc k} (inj₁ tt) = zero toℕ {suc k} (inj₂ x) = suc (toℕ {k} x) toℕ-injective : {m n : Fin k} → toℕ m ≡ toℕ n → m ≡ n toℕ-injective {suc k} {fzero} {fzero} _ = refl toℕ-injective {suc k} {fzero} {fsuc x} () toℕ-injective {suc k} {fsuc m} {fzero} () toℕ-injective {suc k} {fsuc m} {fsuc x} p = cong fsuc (toℕ-injective (suc-injective p))
22.621622
87
0.642772
4d7a74e49829f5f5f17b69a7960cc4fac8cb5197
356
agda
Agda
test/Succeed/Issue1954b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1954b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1954b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-05-04, issue 1954 module _ where module P (A : Set) where record R : Set where field f : A open module Q A = P A module M (A : Set) (r : R A) where open R A r public -- Parameter A should be hidden in R.f works : ∀{A} → R A → A works r = R.f r -- Record value should not be hidden in M.f test : ∀{A} → R A → A test r = M.f r
16.952381
43
0.601124
0b1eb9d01bcab29d59583a06eed7ddb31502a2a0
476
agda
Agda
gen/templates/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
gen/templates/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
gen/templates/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
{- This second-order signature was created from the following second-order syntax description: $sig_string -} module ${syn_name}.Signature where open import SOAS.Context $type_decl $derived_ty_ops open import SOAS.Syntax.Signature $type public open import SOAS.Syntax.Build $type public -- Operator symbols data ${sig}ₒ : Set where $operator_decl -- Term signature ${sig}:Sig : Signature ${sig}ₒ ${sig}:Sig = sig λ { $sig_decl } open Signature ${sig}:Sig public
17
91
0.741597
31ebb03ba6e664548815b83a99426e8a3b517f04
815
agda
Agda
src/fot/FOTC/Program/Nest/Nest.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/Nest/Nest.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/Nest/Nest.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Simple example of a nested recursive function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From: Ana Bove and Venanzio Capretta. Nested general recursion and -- partiality in type theory. Vol. 2152 of LNCS. 2001. module FOTC.Program.Nest.Nest where open import FOTC.Base ------------------------------------------------------------------------------ -- The nest function. postulate nest : D → D nest-0 : nest zero ≡ zero nest-S : ∀ n → nest (succ₁ n) ≡ nest (nest n) {-# ATP axioms nest-0 nest-S #-}
33.958333
78
0.431902
dc43761bd416e78413502225df9f20bd79763eb0
1,645
agda
Agda
src/MultiSorted/UniversalModel.agda
cilinder/formaltt
0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb
[ "MIT" ]
21
2021-02-16T14:07:06.000Z
2021-11-19T15:50:08.000Z
src/MultiSorted/UniversalModel.agda
andrejbauer/formaltt
2aaf850bb1a262681c5a232cdefae312f921b9d4
[ "MIT" ]
1
2021-04-30T14:18:25.000Z
2021-05-14T16:15:17.000Z
src/MultiSorted/UniversalModel.agda
andrejbauer/formaltt
2aaf850bb1a262681c5a232cdefae312f921b9d4
[ "MIT" ]
6
2021-02-16T13:43:07.000Z
2021-05-24T02:51:43.000Z
import Relation.Binary.Reasoning.Setoid as SetoidR open import MultiSorted.AlgebraicTheory import MultiSorted.Interpretation as Interpretation import MultiSorted.Model as Model import MultiSorted.UniversalInterpretation as UniversalInterpretation import MultiSorted.Substitution as Substitution import MultiSorted.SyntacticCategory as SyntacticCategory module MultiSorted.UniversalModel {ℓt} {𝓈 ℴ} {Σ : Signature {𝓈} {ℴ}} (T : Theory ℓt Σ) where open Theory T open Substitution T open UniversalInterpretation T open Interpretation.Interpretation ℐ open SyntacticCategory T 𝒰 : Model.Is-Model T ℐ 𝒰 = record { model-eq = λ ε var-var → let open SetoidR (eq-setoid (ax-ctx ε) (sort-of (ctx-slot (ax-sort ε)) var-var)) in begin interp-term (ax-lhs ε) var-var ≈⟨ interp-term-self (ax-lhs ε) var-var ⟩ ax-lhs ε ≈⟨ id-action ⟩ ax-lhs ε [ id-s ]s ≈⟨ eq-axiom ε id-s ⟩ ax-rhs ε [ id-s ]s ≈˘⟨ id-action ⟩ ax-rhs ε ≈˘⟨ interp-term-self (ax-rhs ε) var-var ⟩ interp-term (ax-rhs ε) var-var ∎ } -- The universal model is universal universality : ∀ (ε : Equation Σ) → ⊨ ε → ⊢ ε universality ε p = let open Equation in let open SetoidR (eq-setoid (eq-ctx ε) (eq-sort ε)) in (begin eq-lhs ε ≈˘⟨ interp-term-self (eq-lhs ε) var-var ⟩ interp-term (eq-lhs ε) var-var ≈⟨ p var-var ⟩ interp-term (eq-rhs ε) var-var ≈⟨ interp-term-self (eq-rhs ε) var-var ⟩ eq-rhs ε ∎)
35
106
0.597568
59564f6359f177955b4b237ae33d1c9476262f8b
642
agda
Agda
agda/Relation/Nullary/Decidable/Logic.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
4
2021-01-05T14:07:44.000Z
2021-01-05T15:32:14.000Z
agda/Relation/Nullary/Decidable/Logic.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Relation/Nullary/Decidable/Logic.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
1
2021-01-05T14:05:30.000Z
2021-01-05T14:05:30.000Z
{-# OPTIONS --cubical --safe --postfix-projections #-} module Relation.Nullary.Decidable.Logic where open import Prelude open import Data.Sum infixl 7 _&&_ _&&_ : Dec A → Dec B → Dec (A × B) (x && y) .does = x .does and y .does (yes x && yes y) .why = ofʸ (x , y) (yes x && no y) .why = ofⁿ (y ∘ snd) (no x && y) .why = ofⁿ (x ∘ fst) infixl 6 _||_ _||_ : Dec A → Dec B → Dec (A ⊎ B) (x || y) .does = x .does or y .does (yes x || y) .why = ofʸ (inl x) (no x || yes y) .why = ofʸ (inr y) (no x || no y) .why = ofⁿ (either x y) ! : Dec A → Dec (¬ A) ! x .does = not (x .does) ! (yes x) .why = ofⁿ (λ z → z x) ! (no x) .why = ofʸ x
24.692308
54
0.528037
5973ad731e0c257e36eca2547cc29a424c9dac72
167
agda
Agda
test/Fail/NoParseForApplication.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/NoParseForApplication.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/NoParseForApplication.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Operators used in the wrong way. module NoParseForApplication where postulate X : Set _! : X -> X right : X -> X right x = x ! wrong : X -> X wrong x = ! x
11.928571
35
0.610778
23f5c4bf83c3b43e462cb2ad794135f9d28c0a87
4,810
agda
Agda
Numeral/Finite/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Numeral/Finite/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Numeral/Finite/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Numeral.Finite.Proofs where import Lvl open import Data open import Data.Boolean.Stmt open import Functional open import Logic.Classical open import Logic.Propositional open import Logic.Propositional.Theorems open import Logic.Predicate open import Numeral.Finite import Numeral.Finite.Oper.Comparisons as 𝕟 open import Numeral.Natural hiding (𝐏) open import Numeral.Natural.Function open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Decidable open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Function.Domain open import Syntax.Number open import Type.Properties.Decidable open import Type.Properties.Decidable.Proofs private variable N : ℕ bounded : ∀{N : ℕ}{n : 𝕟(𝐒(N))} → (𝕟-to-ℕ(n) < 𝐒(N)) bounded{_} {𝟎} = [≤]-with-[𝐒] ⦃ [≤]-minimum ⦄ bounded{𝐒(N)}{𝐒(n)} = [≤]-with-[𝐒] ⦃ bounded{N}{n} ⦄ ℕ-to-𝕟-eq : ∀{M N n} ⦃ nM : IsTrue(n <? M) ⦄ ⦃ nN : IsTrue(n <? N) ⦄ → IsTrue(ℕ-to-𝕟 n {n = M} ⦃ nM ⦄ 𝕟.≡? ℕ-to-𝕟 n {n = N} ⦃ nN ⦄) ℕ-to-𝕟-eq {𝐒 M} {𝐒 N} {𝟎} = [⊤]-intro ℕ-to-𝕟-eq {𝐒 M} {𝐒 N} {𝐒 n} = ℕ-to-𝕟-eq {M} {N} {n} 𝕟-to-ℕ-preserve-eq : ∀{M N}{m : 𝕟(M)}{n : 𝕟(N)} → IsTrue(m 𝕟.≡? n) → (𝕟-to-ℕ m ≡ 𝕟-to-ℕ n) 𝕟-to-ℕ-preserve-eq {𝐒 M} {𝐒 N} {𝟎} {𝟎} [⊤]-intro = [≡]-intro 𝕟-to-ℕ-preserve-eq {𝐒 M} {𝐒 N} {𝐒 m} {𝐒 n} = [≡]-with(𝐒) ∘ 𝕟-to-ℕ-preserve-eq {M} {N} {m} {n} 𝕟-to-ℕ-preserve-gt : ∀{M N}{m : 𝕟(M)}{n : 𝕟(N)} → IsTrue(m 𝕟.>? n) → (𝕟-to-ℕ m > 𝕟-to-ℕ n) 𝕟-to-ℕ-preserve-gt {𝐒 M} {𝐒 N} {𝐒 m} {𝟎} [⊤]-intro = [≤]-with-[𝐒] ⦃ [≤]-minimum ⦄ 𝕟-to-ℕ-preserve-gt {𝐒 M} {𝐒 N} {𝐒 m} {𝐒 n} x = [≤]-with-[𝐒] ⦃ 𝕟-to-ℕ-preserve-gt {M} {N} {m} {n} x ⦄ 𝕟-to-ℕ-preserve-lt : ∀{M N}{m : 𝕟(M)}{n : 𝕟(N)} → IsTrue(m 𝕟.<? n) → (𝕟-to-ℕ m < 𝕟-to-ℕ n) 𝕟-to-ℕ-preserve-lt {𝐒 M} {𝐒 N} {𝟎} {𝐒 n} [⊤]-intro = [≤]-with-[𝐒] ⦃ [≤]-minimum ⦄ 𝕟-to-ℕ-preserve-lt {𝐒 M} {𝐒 N} {𝐒 m} {𝐒 n} x = [≤]-with-[𝐒] ⦃ 𝕟-to-ℕ-preserve-lt {M} {N} {m} {n} x ⦄ 𝕟-to-ℕ-preserve-ge : ∀{M N}{m : 𝕟(M)}{n : 𝕟(N)} → IsTrue(m 𝕟.≥? n) → (𝕟-to-ℕ m ≥ 𝕟-to-ℕ n) 𝕟-to-ℕ-preserve-ge {𝐒 M} {𝐒 N} {𝟎} {𝟎} [⊤]-intro = [≤]-minimum 𝕟-to-ℕ-preserve-ge {𝐒 M} {𝐒 N} {𝐒 n} {𝟎} [⊤]-intro = [≤]-minimum 𝕟-to-ℕ-preserve-ge {𝐒 M} {𝐒 N} {𝐒 m} {𝐒 n} x = [≤]-with-[𝐒] ⦃ 𝕟-to-ℕ-preserve-ge {M} {N} {m} {n} x ⦄ 𝕟-to-ℕ-preserve-le : ∀{M N}{m : 𝕟(M)}{n : 𝕟(N)} → IsTrue(m 𝕟.≤? n) → (𝕟-to-ℕ m ≤ 𝕟-to-ℕ n) 𝕟-to-ℕ-preserve-le {𝐒 M} {𝐒 N} {𝟎} {𝟎} [⊤]-intro = [≤]-minimum 𝕟-to-ℕ-preserve-le {𝐒 M} {𝐒 N} {𝟎} {𝐒 n} [⊤]-intro = [≤]-minimum 𝕟-to-ℕ-preserve-le {𝐒 M} {𝐒 N} {𝐒 m} {𝐒 n} x = [≤]-with-[𝐒] ⦃ 𝕟-to-ℕ-preserve-le {M} {N} {m} {n} x ⦄ 𝕟-to-ℕ-preserve-ne : ∀{M N}{m : 𝕟(M)}{n : 𝕟(N)} → IsTrue(m 𝕟.≢? n) → (𝕟-to-ℕ m ≢ 𝕟-to-ℕ n) 𝕟-to-ℕ-preserve-ne {𝐒 M} {𝐒 N} {𝟎} {𝐒 n} _ () 𝕟-to-ℕ-preserve-ne {𝐒 M} {𝐒 N} {𝐒 m} {𝟎} _ () 𝕟-to-ℕ-preserve-ne {𝐒 M} {𝐒 N} {𝐒 m} {𝐒 n} x p = 𝕟-to-ℕ-preserve-ne {M} {N} {m} {n} x (injective(𝐒) p) congruence-ℕ-to-𝕟 : ∀ ⦃ pos : IsTrue(positive? N) ⦄ {x} ⦃ px : IsTrue(x <? N) ⦄ {y} ⦃ py : IsTrue(y <? N) ⦄ → (x ≡ y) → (ℕ-to-𝕟 x {N} ⦃ px ⦄ ≡ ℕ-to-𝕟 y ⦃ py ⦄) congruence-ℕ-to-𝕟 [≡]-intro = [≡]-intro 𝕟-ℕ-inverse : ∀{N n} ⦃ nN : IsTrue(n <? N) ⦄ → (𝕟-to-ℕ {n = N}(ℕ-to-𝕟 n) ≡ n) 𝕟-ℕ-inverse {𝐒 N}{𝟎} = [≡]-intro 𝕟-ℕ-inverse {𝐒 N}{𝐒 n} = [≡]-with(𝐒) (𝕟-ℕ-inverse {N}{n}) ℕ-𝕟-inverse : ∀{N}{n : 𝕟(𝐒(N))} → (ℕ-to-𝕟(𝕟-to-ℕ n) ⦃ [↔]-to-[→] decider-true (bounded{n = n}) ⦄ ≡ n) ℕ-𝕟-inverse {𝟎} {𝟎} = [≡]-intro ℕ-𝕟-inverse {𝐒 N} {𝟎} = [≡]-intro ℕ-𝕟-inverse {𝐒 N} {𝐒 n} = [≡]-with(𝐒) (ℕ-𝕟-inverse{N}{n}) instance [<]-of-𝕟-to-ℕ : ∀{N : ℕ}{n : 𝕟(N)} → (𝕟-to-ℕ (n) < N) [<]-of-𝕟-to-ℕ {𝟎} {()} [<]-of-𝕟-to-ℕ {𝐒 N} {𝟎} = [≤]-with-[𝐒] [<]-of-𝕟-to-ℕ {𝐒 N} {𝐒 n} = [≤]-with-[𝐒] ⦃ [<]-of-𝕟-to-ℕ {N} {n} ⦄ instance [𝐒]-injective : ∀{N : ℕ} → Injective(𝕟.𝐒{N}) Injective.proof [𝐒]-injective [≡]-intro = [≡]-intro [≡][≡?]-equivalence : ∀{n}{i j : 𝕟(n)} → (i ≡ j) ↔ IsTrue(i 𝕟.≡? j) [≡][≡?]-equivalence {𝐒 n} {𝟎} {𝟎} = [↔]-intro (const [≡]-intro) (const [⊤]-intro) [≡][≡?]-equivalence {𝐒 n} {𝟎} {𝐒 j} = [↔]-intro (\()) (\()) [≡][≡?]-equivalence {𝐒 n} {𝐒 i} {𝟎} = [↔]-intro (\()) (\()) [≡][≡?]-equivalence {𝐒 n} {𝐒 i} {𝐒 j} = [∧]-map ([≡]-with(𝐒) ∘_) (_∘ injective(𝐒)) ([≡][≡?]-equivalence {n} {i} {j}) instance [≡][𝕟]-decider : ∀{n} → Decider(2)(_≡_ {T = 𝕟(n)})(𝕟._≡?_) [≡][𝕟]-decider {𝐒 n} {𝟎} {𝟎} = true [≡]-intro [≡][𝕟]-decider {𝐒 n} {𝟎} {𝐒 y} = false \() [≡][𝕟]-decider {𝐒 n} {𝐒 x} {𝟎} = false \() [≡][𝕟]-decider {𝐒 n} {𝐒 x} {𝐒 y} = step{f = id} (true ∘ [≡]-with(𝐒)) (false ∘ contrapositiveᵣ(injective(𝐒))) ([≡][𝕟]-decider {n} {x} {y}) maximum-0 : (maximum{N} ≡ 𝟎) → (N ≡ 𝟎) maximum-0 {𝟎} _ = [≡]-intro
47.156863
159
0.519335
d06853dd4776bde3ea063ccc401550b4372f4e59
557
agda
Agda
agda-stdlib/src/Relation/Binary/SetoidReasoning.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Relation/Binary/SetoidReasoning.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Relation/Binary/SetoidReasoning.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use the -- Relation.Binary.Reasoning.MultiSetoid module directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.SetoidReasoning where open import Relation.Binary.Reasoning.MultiSetoid public {-# WARNING_ON_IMPORT "Relation.Binary.SetoidReasoning was deprecated in v1.0. Use Relation.Binary.Reasoning.MultiSetoid instead." #-}
30.944444
72
0.576302
0b90162dee8368233fccfe1f80f25f2da88cf519
2,228
agda
Agda
src/LibraBFT/Impl/Consensus/ConsensusTypes/BlockRetrieval.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Consensus/ConsensusTypes/BlockRetrieval.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Consensus/ConsensusTypes/BlockRetrieval.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block import LibraBFT.Impl.Consensus.ConsensusTypes.BlockData as BlockData import LibraBFT.Impl.Consensus.ConsensusTypes.QuorumCert as QuorumCert import LibraBFT.Impl.Types.BlockInfo as BlockInfo import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.Impl.OBM.Crypto hiding (verify) open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.Impl.OBM.Rust.RustTypes open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.PKCS hiding (verify) open import Util.Prelude open import Util.Hash ------------------------------------------------------------------------------ open import Data.String using (String) module LibraBFT.Impl.Consensus.ConsensusTypes.BlockRetrieval where verify : BlockRetrievalResponse → HashValue → U64 → ValidatorVerifier → Either ErrLog Unit verify self blockId numBlocks sigVerifier = grd‖ self ^∙ brpStatus /= BRSSucceeded ≔ Left fakeErr -- here ["/= BRSSucceeded"] ‖ length (self ^∙ brpBlocks) /= numBlocks ≔ Left fakeErr -- here ["not enough blocks returned", show (self^.brpBlocks), show numBlocks] ‖ otherwise≔ verifyBlocks (self ^∙ brpBlocks) where here' : List String → List String here' t = "BlockRetrieval" ∷ "verify" ∷ t verifyBlock : HashValue → Block → Either ErrLog HashValue verifyBlocks : List Block → Either ErrLog Unit verifyBlocks blks = foldM_ verifyBlock blockId blks verifyBlock expectedId block = do Block.validateSignature block sigVerifier Block.verifyWellFormed block lcheck (block ^∙ bId == expectedId) (here' ("blocks do not form a chain" ∷ [])) -- lsHV (block^.bId), lsHV expectedId pure (block ^∙ bParentId)
43.686275
111
0.687163
59a29a71e95fbb904f02f90252ff3d9203d481ed
3,626
agda
Agda
src/prototyping/subst/Subst.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
src/prototyping/subst/Subst.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
src/prototyping/subst/Subst.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module Subst where import Level postulate Ty : Set data Cxt : Set where ε : Cxt _,_ : (Γ : Cxt) (A : Ty) → Cxt _++_ : Cxt → Cxt → Cxt Γ ++ ε = Γ Γ ++ (Δ , A) = (Γ ++ Δ) , A data Tm : Cxt → Ty → Set where vz : ∀ {Γ A} → Tm (Γ , A) A other : ∀ {Γ A} → Tm Γ A data _≡_ {a}{A : Set a}(x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} {-# BUILTIN REFL refl #-} data Sub : Cxt → Cxt → Set where _∷_ : ∀ {Γ Δ A} → Tm Γ A → Sub Γ Δ → Sub Γ (Δ , A) lift : ∀ {Γ Δ} Ψ → Sub Γ Δ → Sub (Γ ++ Ψ) (Δ ++ Ψ) wk : ∀ {Γ Δ} Ψ → Sub Γ Δ → Sub (Γ ++ Ψ) Δ id : ∀ {Γ} → Sub Γ Γ ∅ : ∀ {Γ} → Sub Γ ε assoc : ∀ {Γ Δ} Ψ → (Γ ++ (Δ ++ Ψ)) ≡ ((Γ ++ Δ) ++ Ψ) assoc ε = refl assoc {Γ}{Δ} (Ψ , A) rewrite assoc {Γ} {Δ} Ψ = refl ε++ : ∀ Γ → (ε ++ Γ) ≡ Γ ε++ ε = refl ε++ (Γ , A) rewrite ε++ Γ = refl postulate apply : ∀ {Γ Δ A} → Sub Γ Δ → Tm Δ A → Tm Γ A sym : ∀ {A : Set}{x y : A} → x ≡ y → y ≡ x sym refl = refl cast : ∀ {Γ₁ Γ₂ Δ₁ Δ₂} → Γ₁ ≡ Γ₂ → Δ₁ ≡ Δ₂ → Sub Γ₁ Δ₁ → Sub Γ₂ Δ₂ cast refl refl ρ = ρ inj : ∀ {Γ Δ A B} → (Γ , A) ≡ (Δ , B) → Γ ≡ Δ inj refl = refl injT : ∀ {Γ Δ A B} → (Γ , A) ≡ (Δ , B) → A ≡ B injT refl = refl drop : ∀ {Γ Δ ΔΨ} Ψ → Sub Γ ΔΨ → ΔΨ ≡ (Δ ++ Ψ) → Sub Γ Δ drop Ψ id refl = wk Ψ id drop Ψ (wk Δ ρ) refl = wk Δ (drop Ψ ρ refl) drop Ψ (lift ε ρ) refl = drop Ψ ρ refl drop ε ρ refl = ρ drop (Ψ , A) (x ∷ ρ) refl = drop Ψ ρ refl drop {Δ = Δ} (Ψ , A) (lift {Γ = Γ}{Δ = Σ} (Θ , A′) ρ) eq = wk (ε , A′) (drop Ψ (lift Θ ρ) (inj eq)) drop (Ψ , A) ∅ () wkS : ∀ {Γ Δ} Ψ → Sub Γ Δ → Sub (Γ ++ Ψ) Δ wkS ε ρ = ρ wkS Ψ (x ∷ ρ) = (apply (wk Ψ id) x) ∷ wkS Ψ ρ wkS Ψ (lift Ψ₁ ρ) = wk Ψ (lift Ψ₁ ρ) wkS Ψ (wk Ψ₁ ρ) = cast (assoc Ψ) refl (wkS (Ψ₁ ++ Ψ) ρ) wkS Ψ id = wk Ψ id wkS Ψ ∅ = ∅ liftS : ∀ {Γ Δ} Ψ → Sub Γ Δ → Sub (Γ ++ Ψ) (Δ ++ Ψ) liftS Ψ (x ∷ ρ) = lift Ψ (x ∷ ρ) liftS Ψ (lift Ψ₁ ρ) = cast (assoc Ψ) (assoc Ψ) (liftS (Ψ₁ ++ Ψ) ρ) liftS Ψ (wk Ψ₁ ρ) = lift Ψ (wk Ψ₁ ρ) liftS Ψ id = id liftS Ψ ∅ = lift Ψ ∅ data _×_ A B : Set where _,_ : A → B → A × B split : ∀ {Γ Δ ΔΨ} Ψ → Sub Γ ΔΨ → ΔΨ ≡ (Δ ++ Ψ) → Sub Γ Δ × Sub Γ Ψ split {Γ} ε ρ refl = ρ , ∅ split (Ψ , A) (x ∷ ρ) refl with split Ψ ρ refl ... | σ , δ = σ , (x ∷ δ) split Ψ (lift ε ρ) eq = split Ψ ρ eq split (Ψ , A) (lift (Ψ₁ , A₁) ρ) eq with split Ψ (lift Ψ₁ ρ) (inj eq) | injT eq split (Ψ , A) (lift (Ψ₁ , .A) ρ) eq | σ , δ | refl = wk (ε , A) σ , lift (ε , A) δ split Ψ (wk Ψ₁ ρ) eq with split Ψ ρ eq ... | σ , δ = wk Ψ₁ σ , wk Ψ₁ δ split {Δ = Δ} Ψ id refl = wk Ψ id , cast refl (ε++ Ψ) (lift {Γ = Δ} Ψ ∅) split (Ψ , A) ∅ () _<>_ : ∀ {Γ Δ Ψ} → Sub Γ Ψ → Sub Γ Δ → Sub Γ (Δ ++ Ψ) (x ∷ ρ) <> σ = x ∷ (ρ <> σ) lift Ψ ρ <> σ = {!!} wk Ψ₁ ρ <> σ = {!!} -- _<>_ {Ψ = Ψ} id (_∷_ {Δ = Δ}{A = A} x σ) = cast refl (assoc {_}{ε , A} Ψ) -- (_<>_ {Ψ = (ε , A) ++ Ψ} {!!} σ) id <> lift Ψ σ = {!!} id <> wk Ψ σ = {!!} id <> id = {!!} _<>_ {Ψ = Ψ} id ∅ = cast (ε++ Ψ) refl id _<>_ {Ψ = ε} id σ = {!!} _<>_ {Ψ = Ψ , A} id σ = vz ∷ (_<>_ {Ψ = Ψ} (wk (ε , A) id) σ) ∅ <> σ = σ comp : ∀ {Γ Δ Δ′ Ψ} → Sub Γ Δ → Sub Δ′ Ψ → Δ ≡ Δ′ → Sub Γ Ψ comp ρ id refl = ρ comp ρ (wk Δ σ) refl = comp (drop Δ ρ refl) σ refl comp ρ (x ∷ σ) refl = apply ρ x ∷ comp ρ σ refl comp ρ (lift ε σ) refl = comp ρ σ refl comp ρ (lift Ψ σ) refl with split Ψ ρ refl ... | ρ₁ , ρ₂ = ρ₂ <> comp ρ₁ σ refl comp {Γ} ∅ σ refl = cast (ε++ Γ) refl (wk Γ σ) -- comp (u ∷ ρ) (lift (Ψ , A) σ) eq -- with injT eq -- ... | refl = u ∷ comp ρ (lift Ψ σ) (inj eq) -- comp ρ (lift (Ψ , A) σ) eq = -- apply (cast refl eq ρ) vz ∷ -- comp ρ (wk (ε , A) (lift Ψ σ)) eq comp ρ ∅ refl = ∅ _∘_ : ∀ {Γ Δ Ψ} → Sub Γ Δ → Sub Δ Ψ → Sub Γ Ψ ρ ∘ σ = comp ρ σ refl
27.892308
79
0.460011
12e8fd52b5f666df0bc951791f61662297b9e65e
5,477
agda
Agda
Categories/Functor/Slice.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Functor/Slice.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Functor/Slice.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Functor.Slice {o ℓ e} (C : Category o ℓ e) where open import Data.Product using (_,_) open import Categories.Adjoint open import Categories.Category.CartesianClosed open import Categories.Category.CartesianClosed.Locally open import Categories.Functor open import Categories.Functor.Properties open import Categories.Morphism.Reasoning C open import Categories.NaturalTransformation import Categories.Category.Slice as S import Categories.Diagram.Pullback as P import Categories.Category.Construction.Pullbacks as Pbs open Category C open HomReasoning module _ {A : Obj} where open S.SliceObj open S.Slice⇒ Base-F : ∀ {o′ ℓ′ e′} {D : Category o′ ℓ′ e′} (F : Functor C D) → Functor (S.Slice C A) (S.Slice D (Functor.F₀ F A)) Base-F {D = D} F = record { F₀ = λ { (S.sliceobj arr) → S.sliceobj (F₁ arr) } ; F₁ = λ { (S.slicearr △) → S.slicearr ([ F ]-resp-∘ △) } ; identity = identity ; homomorphism = homomorphism ; F-resp-≈ = F-resp-≈ } where module D = Category D open Functor F open S C Forgetful : Functor (Slice A) C Forgetful = record { F₀ = λ X → Y X ; F₁ = λ f → h f ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ eq → eq } BaseChange! : ∀ {B} (f : B ⇒ A) → Functor (Slice B) (Slice A) BaseChange! f = record { F₀ = λ X → sliceobj (f ∘ arr X) ; F₁ = λ g → slicearr (pullʳ (△ g)) ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ eq → eq } module _ (pullbacks : ∀ {X Y Z} (h : X ⇒ Z) (i : Y ⇒ Z) → P.Pullback C h i) where private open P C module pullbacks {X Y Z} h i = Pullback (pullbacks {X} {Y} {Z} h i) open pullbacks BaseChange* : ∀ {B} (f : B ⇒ A) → Functor (Slice A) (Slice B) BaseChange* f = record { F₀ = λ X → sliceobj (p₂ (arr X) f) ; F₁ = λ {X Y} g → slicearr {h = Pullback.p₂ (unglue (pullbacks (arr Y) f) (Pullback-resp-≈ (pullbacks (arr X) f) (△ g) refl))} (p₂∘universal≈h₂ (arr Y) f) ; identity = λ {X} → ⟺ (unique (arr X) f id-comm identityʳ) ; homomorphism = λ {X Y Z} {h i} → unique-diagram (arr Z) f (p₁∘universal≈h₁ (arr Z) f ○ assoc ○ ⟺ (pullʳ (p₁∘universal≈h₁ (arr Y) f)) ○ ⟺ (pullˡ (p₁∘universal≈h₁ (arr Z) f))) (p₂∘universal≈h₂ (arr Z) f ○ ⟺ (p₂∘universal≈h₂ (arr Y) f) ○ ⟺ (pullˡ (p₂∘universal≈h₂ (arr Z) f))) ; F-resp-≈ = λ {X Y} eq″ → unique (arr Y) f (p₁∘universal≈h₁ (arr Y) f ○ ∘-resp-≈ˡ eq″) (p₂∘universal≈h₂ (arr Y) f) } !⊣* : ∀ {B} (f : B ⇒ A) → BaseChange! f ⊣ BaseChange* f !⊣* f = record { unit = ntHelper record { η = λ X → slicearr (p₂∘universal≈h₂ (f ∘ arr X) f {eq = identityʳ}) ; commute = λ {X Y} g → unique-diagram (f ∘ arr Y) f (cancelˡ (p₁∘universal≈h₁ (f ∘ arr Y) f) ○ ⟺ (cancelʳ (p₁∘universal≈h₁ (f ∘ arr X) f)) ○ pushˡ (⟺ (p₁∘universal≈h₁ (f ∘ arr Y) f))) (pullˡ (p₂∘universal≈h₂ (f ∘ arr Y) f) ○ △ g ○ ⟺ (p₂∘universal≈h₂ (f ∘ arr X) f) ○ pushˡ (⟺ (p₂∘universal≈h₂ (f ∘ arr Y) f))) } ; counit = ntHelper record { η = λ X → slicearr (pullbacks.commute (arr X) f) ; commute = λ {X Y} g → p₁∘universal≈h₁ (arr Y) f } ; zig = λ {X} → p₁∘universal≈h₁ (f ∘ arr X) f ; zag = λ {Y} → unique-diagram (arr Y) f (pullˡ (p₁∘universal≈h₁ (arr Y) f) ○ pullʳ (p₁∘universal≈h₁ (f ∘ pullbacks.p₂ (arr Y) f) f)) (pullˡ (p₂∘universal≈h₂ (arr Y) f) ○ p₂∘universal≈h₂ (f ∘ pullbacks.p₂ (arr Y) f) f ○ ⟺ identityʳ) } pullback-functorial : ∀ {B} (f : B ⇒ A) → Functor (Slice A) C pullback-functorial f = record { F₀ = λ X → p.P X ; F₁ = λ f → p⇒ _ _ f ; identity = λ {X} → sym (p.unique X id-comm id-comm) ; homomorphism = λ {_ Y Z} → p.unique-diagram Z (p.p₁∘universal≈h₁ Z ○ ⟺ identityˡ ○ ⟺ (pullʳ (p.p₁∘universal≈h₁ Y)) ○ ⟺ (pullˡ (p.p₁∘universal≈h₁ Z))) (p.p₂∘universal≈h₂ Z ○ assoc ○ ⟺ (pullʳ (p.p₂∘universal≈h₂ Y)) ○ ⟺ (pullˡ (p.p₂∘universal≈h₂ Z))) ; F-resp-≈ = λ {_ B} {h i} eq → p.unique-diagram B (p.p₁∘universal≈h₁ B ○ ⟺ (p.p₁∘universal≈h₁ B)) (p.p₂∘universal≈h₂ B ○ ∘-resp-≈ˡ eq ○ ⟺ (p.p₂∘universal≈h₂ B)) } where p : ∀ X → Pullback f (arr X) p X = pullbacks f (arr X) module p X = Pullback (p X) p⇒ : ∀ X Y (g : Slice⇒ X Y) → p.P X ⇒ p.P Y p⇒ X Y g = Pbs.Pullback⇒.pbarr pX⇒pY where pX : Pbs.PullbackObj C A pX = record { pullback = p X } pY : Pbs.PullbackObj C A pY = record { pullback = p Y } pX⇒pY : Pbs.Pullback⇒ C A pX pY pX⇒pY = record { mor₁ = Category.id C ; mor₂ = h g ; commute₁ = identityʳ ; commute₂ = △ g }
43.468254
181
0.486215
a1dee943e5374dafd507fd50c5c2f23fae2420f2
6,531
agda
Agda
Cubical/Algebra/Matrix.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Algebra/Matrix.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/Algebra/Matrix.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Algebra.Matrix where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat hiding (_+_) open import Cubical.Data.Vec open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Structures.CommRing private variable ℓ : Level A : Type ℓ -- Equivalence between Vec matrix and Fin function matrix FinMatrix : (A : Type ℓ) (m n : ℕ) → Type ℓ FinMatrix A m n = FinVec (FinVec A n) m VecMatrix : (A : Type ℓ) (m n : ℕ) → Type ℓ VecMatrix A m n = Vec (Vec A n) m FinMatrix→VecMatrix : {m n : ℕ} → FinMatrix A m n → VecMatrix A m n FinMatrix→VecMatrix M = FinVec→Vec (λ fm → FinVec→Vec (λ fn → M fm fn)) VecMatrix→FinMatrix : {m n : ℕ} → VecMatrix A m n → FinMatrix A m n VecMatrix→FinMatrix M fn fm = lookup fm (lookup fn M) FinMatrix→VecMatrix→FinMatrix : {m n : ℕ} (M : FinMatrix A m n) → VecMatrix→FinMatrix (FinMatrix→VecMatrix M) ≡ M FinMatrix→VecMatrix→FinMatrix {m = zero} M = funExt λ f → ⊥.rec (¬Fin0 f) FinMatrix→VecMatrix→FinMatrix {n = zero} M = funExt₂ λ _ f → ⊥.rec (¬Fin0 f) FinMatrix→VecMatrix→FinMatrix {m = suc m} {n = suc n} M = funExt₂ goal where goal : (fm : Fin (suc m)) (fn : Fin (suc n)) → VecMatrix→FinMatrix (_ ∷ FinMatrix→VecMatrix (λ z → M (suc z))) fm fn ≡ M fm fn goal zero zero = refl goal zero (suc fn) i = FinVec→Vec→FinVec (λ z → M zero (suc z)) i fn goal (suc fm) fn i = FinMatrix→VecMatrix→FinMatrix (λ z → M (suc z)) i fm fn VecMatrix→FinMatrix→VecMatrix : {m n : ℕ} (M : VecMatrix A m n) → FinMatrix→VecMatrix (VecMatrix→FinMatrix M) ≡ M VecMatrix→FinMatrix→VecMatrix {m = zero} [] = refl VecMatrix→FinMatrix→VecMatrix {m = suc m} (M ∷ MS) i = Vec→FinVec→Vec M i ∷ VecMatrix→FinMatrix→VecMatrix MS i FinMatrixIsoVecMatrix : (A : Type ℓ) (m n : ℕ) → Iso (FinMatrix A m n) (VecMatrix A m n) FinMatrixIsoVecMatrix A m n = iso FinMatrix→VecMatrix VecMatrix→FinMatrix VecMatrix→FinMatrix→VecMatrix FinMatrix→VecMatrix→FinMatrix FinMatrix≃VecMatrix : {m n : ℕ} → FinMatrix A m n ≃ VecMatrix A m n FinMatrix≃VecMatrix {_} {A} {m} {n} = isoToEquiv (FinMatrixIsoVecMatrix A m n) FinMatrix≡VecMatrix : (A : Type ℓ) (m n : ℕ) → FinMatrix A m n ≡ VecMatrix A m n FinMatrix≡VecMatrix _ _ _ = ua FinMatrix≃VecMatrix -- We could have constructed the above Path as follows, but that -- doesn't reduce as nicely as ua isn't on the toplevel: -- -- FinMatrix≡VecMatrix : (A : Type ℓ) (m n : ℕ) → FinMatrix A m n ≡ VecMatrix A m n -- FinMatrix≡VecMatrix A m n i = FinVec≡Vec (FinVec≡Vec A n i) m i -- Experiment using addition. Transport commutativity from one -- representation to the the other and relate the transported -- operation with a more direct definition. module _ (R : CommRing {ℓ}) where open commring-·syntax R addFinMatrix : ∀ {m n} → FinMatrix ⟨ R ⟩ m n → FinMatrix ⟨ R ⟩ m n → FinMatrix ⟨ R ⟩ m n addFinMatrix M N = λ k l → M k l + N k l addFinMatrixComm : ∀ {m n} → (M N : FinMatrix ⟨ R ⟩ m n) → addFinMatrix M N ≡ addFinMatrix N M addFinMatrixComm M N i k l = commring+-comm R (M k l) (N k l) i addVecMatrix : ∀ {m n} → VecMatrix ⟨ R ⟩ m n → VecMatrix ⟨ R ⟩ m n → VecMatrix ⟨ R ⟩ m n addVecMatrix {m} {n} = transport (λ i → FinMatrix≡VecMatrix ⟨ R ⟩ m n i → FinMatrix≡VecMatrix ⟨ R ⟩ m n i → FinMatrix≡VecMatrix ⟨ R ⟩ m n i) addFinMatrix addMatrixPath : ∀ {m n} → PathP (λ i → FinMatrix≡VecMatrix ⟨ R ⟩ m n i → FinMatrix≡VecMatrix ⟨ R ⟩ m n i → FinMatrix≡VecMatrix ⟨ R ⟩ m n i) addFinMatrix addVecMatrix addMatrixPath {m} {n} i = transp (λ j → FinMatrix≡VecMatrix ⟨ R ⟩ m n (i ∧ j) → FinMatrix≡VecMatrix ⟨ R ⟩ m n (i ∧ j) → FinMatrix≡VecMatrix ⟨ R ⟩ m n (i ∧ j)) (~ i) addFinMatrix addVecMatrixComm : ∀ {m n} → (M N : VecMatrix ⟨ R ⟩ m n) → addVecMatrix M N ≡ addVecMatrix N M addVecMatrixComm {m} {n} = transport (λ i → (M N : FinMatrix≡VecMatrix ⟨ R ⟩ m n i) → addMatrixPath i M N ≡ addMatrixPath i N M) addFinMatrixComm -- More direct definition of addition for VecMatrix: addVec : ∀ {m} → Vec ⟨ R ⟩ m → Vec ⟨ R ⟩ m → Vec ⟨ R ⟩ m addVec [] [] = [] addVec (x ∷ xs) (y ∷ ys) = x + y ∷ addVec xs ys addVecLem : ∀ {m} → (M N : Vec ⟨ R ⟩ m) → FinVec→Vec (λ l → lookup l M + lookup l N) ≡ addVec M N addVecLem {zero} [] [] = refl addVecLem {suc m} (x ∷ xs) (y ∷ ys) = cong (λ zs → x + y ∷ zs) (addVecLem xs ys) addVecMatrix' : ∀ {m n} → VecMatrix ⟨ R ⟩ m n → VecMatrix ⟨ R ⟩ m n → VecMatrix ⟨ R ⟩ m n addVecMatrix' [] [] = [] addVecMatrix' (M ∷ MS) (N ∷ NS) = addVec M N ∷ addVecMatrix' MS NS -- The key lemma relating addVecMatrix and addVecMatrix' addVecMatrixEq : ∀ {m n} → (M N : VecMatrix ⟨ R ⟩ m n) → addVecMatrix M N ≡ addVecMatrix' M N addVecMatrixEq {zero} {n} [] [] j = transp (λ i → Vec (Vec ⟨ R ⟩ n) 0) j [] addVecMatrixEq {suc m} {n} (M ∷ MS) (N ∷ NS) = addVecMatrix (M ∷ MS) (N ∷ NS) ≡⟨ transportUAop₂ FinMatrix≃VecMatrix addFinMatrix (M ∷ MS) (N ∷ NS) ⟩ FinVec→Vec (λ l → lookup l M + lookup l N) ∷ _ ≡⟨ (λ i → addVecLem M N i ∷ FinMatrix→VecMatrix (λ k l → lookup l (lookup k MS) + lookup l (lookup k NS))) ⟩ addVec M N ∷ _ ≡⟨ cong (λ X → addVec M N ∷ X) (sym (transportUAop₂ FinMatrix≃VecMatrix addFinMatrix MS NS) ∙ addVecMatrixEq MS NS) ⟩ addVec M N ∷ addVecMatrix' MS NS ∎ -- By binary funext we get an equality as functions addVecMatrixEqFun : ∀ {m} {n} → addVecMatrix {m} {n} ≡ addVecMatrix' addVecMatrixEqFun i M N = addVecMatrixEq M N i -- We then directly get the properties about addVecMatrix' addVecMatrixComm' : ∀ {m n} → (M N : VecMatrix ⟨ R ⟩ m n) → addVecMatrix' M N ≡ addVecMatrix' N M addVecMatrixComm' M N = sym (addVecMatrixEq M N) ∙∙ addVecMatrixComm M N ∙∙ addVecMatrixEq N M -- TODO: prove more properties about addition of matrices for both -- FinMatrix and VecMatrix -- TODO: define multiplication of matrices and do the same kind of -- reasoning as we did for addition
44.732877
123
0.614913
120d854e6656ddba8e65afe476a6736c14b8edde
18,919
agda
Agda
STLC.agda
pedagand/typechecker-evolution
f807a85ccd570905d3dd834b5966efcf6f215e64
[ "MIT" ]
43
2018-02-14T20:50:21.000Z
2022-02-09T11:13:36.000Z
STLC.agda
pedagand/typechecker-evolution
f807a85ccd570905d3dd834b5966efcf6f215e64
[ "MIT" ]
null
null
null
STLC.agda
pedagand/typechecker-evolution
f807a85ccd570905d3dd834b5966efcf6f215e64
[ "MIT" ]
null
null
null
-- Type-checker for the simply-typed lambda calculus -- -- Where we make sure that failing to typecheck a term is justified by -- an "ill-typing judgment", which erases to the original term. open import Data.Empty open import Data.Unit hiding (_≟_) open import Data.List hiding ([_]) open import Data.Nat hiding (_*_ ; _+_ ; _≟_) open import Data.Product open import Relation.Nullary open import Relation.Binary hiding (_⇒_) open import Relation.Binary.PropositionalEquality hiding ([_]) infix 5 _⊢?_∋_ infix 5 _⊢?_∈ infix 19 _↪_ infixr 30 _+_ infixr 35 _*_ infixr 40 _⇒_ infix 50 _∈_ infix 50 _∈ infix 50 _∋_ infixl 150 _▹_ -- * Types data type : Set where unit nat : type _*_ _+_ _⇒_ : (A B : type) → type bool : type bool = unit + unit -- TODO: automate this definition using reflection of Agda in Agda -- see https://github.com/UlfNorell/agda-prelude/blob/master/src/Tactic/Deriving/Eq.agda _≟_ : Decidable {A = type} _≡_ unit ≟ unit = yes refl nat ≟ nat = yes refl (A₁ + B₁) ≟ (A₂ + B₂) with A₁ ≟ A₂ | B₁ ≟ B₂ ... | yes refl | yes refl = yes refl ... | yes refl | no ¬p = no (λ { refl → ¬p refl }) ... | no ¬p | _ = no (λ { refl → ¬p refl }) (A₁ ⇒ B₁) ≟ (A₂ ⇒ B₂) with A₁ ≟ A₂ | B₁ ≟ B₂ ... | yes refl | yes refl = yes refl ... | yes _ | no ¬p = no λ { refl → ¬p refl } ... | no ¬p | _ = no λ { refl → ¬p refl } (A₁ * B₁) ≟ (A₂ * B₂) with A₁ ≟ A₂ | B₁ ≟ B₂ ... | yes refl | yes refl = yes refl ... | yes _ | no ¬p = no λ { refl → ¬p refl } ... | no ¬p | q₂ = no λ { refl → ¬p refl } unit ≟ (_ ⇒ _) = no λ {()} unit ≟ (_ * _) = no λ {()} unit ≟ nat = no λ {()} unit ≟ (_ + _) = no λ {()} nat ≟ (_ ⇒ _) = no λ {()} nat ≟ (_ * _) = no λ {()} nat ≟ unit = no λ {()} nat ≟ (_ + _) = no λ {()} (_ + _) ≟ (_ ⇒ _) = no λ {()} (_ + _) ≟ (_ * _) = no λ {()} (_ + _) ≟ nat = no λ {()} (_ + _) ≟ unit = no λ {()} (_ ⇒ _) ≟ unit = no λ {()} (_ ⇒ _) ≟ nat = no λ {()} (_ ⇒ _) ≟ (_ * _) = no λ {()} (_ ⇒ _) ≟ (_ + _) = no λ {()} (_ * _) ≟ unit = no λ {()} (_ * _) ≟ nat = no λ {()} (_ * _) ≟ (_ ⇒ _) = no λ {()} (_ * _) ≟ (_ + _) = no λ {()} -- * Syntax of terms data dir : Set where ⇑ ⇓ : dir data can (T : Set) : Set where tt : can T pair : (t₁ t₂ : T) → can T lam : (b : T) → can T ze : can T su : (t : T) → can T inj₁ inj₂ : (t : T) → can T data elim (T : Set) : dir → Set where apply : (s : T) → elim T ⇑ fst snd : elim T ⇑ split : (c₁ c₂ : T) → elim T ⇓ data term : dir → Set where C : (c : can (term ⇓)) → term ⇓ inv : (t : term ⇑) → term ⇓ var : (k : ℕ) → term ⇑ _#_ : ∀ {d} → (n : term ⇑)(args : elim (term ⇓) d) → term d [_:∋:_] : (T : type)(t : term ⇓) → term ⇑ pattern Ctt = C tt pattern Cze = C ze pattern Csu x = C (su x) pattern Cpair x y = C (pair x y) pattern Clam b = C (lam b) pattern Cinj₁ x = C (inj₁ x) pattern Cinj₂ x = C (inj₂ x) -- ** Tests true : term ⇓ true = Cinj₁ Ctt false : term ⇓ false = Cinj₂ Ctt t1 : term ⇓ t1 = inv ([ nat ⇒ nat :∋: Clam {- x -} (inv (var {- x -} 0)) ] # apply (Csu (Csu Cze))) t2 : term ⇓ t2 = Clam {-x-} (var {- x -} 0 # split true false) -- * Type system context = List type pattern _▹_ Γ T = T ∷ Γ pattern ε = [] data _∈_ (T : type) : context → Set where here : ∀ {Γ} → --------- T ∈ Γ ▹ T there : ∀ {Γ T'} → T ∈ Γ → ---------- T ∈ Γ ▹ T' mutual data _C⊢[_]_ : context → dir → type → Set where lam : ∀ {Γ A B} → Γ ▹ A ⊢[ ⇓ ] B → --------------- Γ C⊢[ ⇓ ] A ⇒ B tt : ∀ {Γ} → -------------- Γ C⊢[ ⇓ ] unit ze : ∀ {Γ} → ------------- Γ C⊢[ ⇓ ] nat su : ∀ {Γ} → Γ ⊢[ ⇓ ] nat → ------------- Γ C⊢[ ⇓ ] nat inj₁ : ∀ {Γ A B} → Γ ⊢[ ⇓ ] A → --------------- Γ C⊢[ ⇓ ] A + B inj₂ : ∀ {Γ A B} → Γ ⊢[ ⇓ ] B → --------------- Γ C⊢[ ⇓ ] A + B pair : ∀ {Γ A B} → Γ ⊢[ ⇓ ] A → Γ ⊢[ ⇓ ] B → --------------- Γ C⊢[ ⇓ ] A * B data _E⊢[_]_↝_ : context → dir → type → type → Set where apply : ∀ {Γ A B} → Γ ⊢[ ⇓ ] A → ------------------- Γ E⊢[ ⇑ ] A ⇒ B ↝ B fst : ∀ {Γ A B} → ------------------- Γ E⊢[ ⇑ ] A * B ↝ A snd : ∀ {Γ A B} → ------------------- Γ E⊢[ ⇑ ] A * B ↝ B iter : ∀ {Γ A} → Γ ▹ A ⊢[ ⇓ ] A → Γ ⊢[ ⇓ ] A → ----------------- Γ E⊢[ ⇓ ] nat ↝ A case : ∀ {Γ A B C} → Γ ▹ A ⊢[ ⇓ ] C → Γ ▹ B ⊢[ ⇓ ] C → ------------------- Γ E⊢[ ⇓ ] A + B ↝ C data _⊢[_]_ : context → dir → type → Set where C : ∀ {Γ d T} → Γ C⊢[ d ] T → ----------- Γ ⊢[ d ] T inv : ∀ {Γ T} → Γ ⊢[ ⇑ ] T → ---------- Γ ⊢[ ⇓ ] T var : ∀ {Γ T} → T ∈ Γ → ---------- Γ ⊢[ ⇑ ] T _#_ : ∀ {Γ d I O} → Γ ⊢[ ⇑ ] I → Γ E⊢[ d ] I ↝ O → --------------- Γ ⊢[ d ] O [_:∋:_by_] : ∀ {Γ A} → (B : type) → Γ ⊢[ ⇓ ] B → A ≡ B → ------------------------------- Γ ⊢[ ⇑ ] A -- ** Tests ⊢true : [] ⊢[ ⇓ ] bool ⊢true = C (inj₁ (C tt)) ⊢false : [] ⊢[ ⇓ ] bool ⊢false = C (inj₂ (C tt)) ⊢t1 : [] ⊢[ ⇓ ] nat ⊢t1 = inv ([ (nat ⇒ nat) :∋: (C (lam (inv (var here)))) by refl ] # (apply (C (su (C (su (C ze))))))) -- * Relating typing and terms record _↪_ (S T : Set) : Set where field ⌊_⌋ : S → T open _↪_ {{...}} public instance VarRaw : ∀ {T Γ} → T ∈ Γ ↪ ℕ ⌊_⌋ {{ VarRaw }} here = zero ⌊_⌋ {{ VarRaw }} (there x) = suc ⌊ x ⌋ OTermRaw : ∀ {Γ T d} → Γ ⊢[ d ] T ↪ term d ⌊_⌋ {{OTermRaw}} (C (lam b)) = C (lam ⌊ b ⌋) ⌊_⌋ {{OTermRaw}} (C tt) = C tt ⌊_⌋ {{OTermRaw}} (C ze) = C ze ⌊_⌋ {{OTermRaw}} (C (su t)) = C (su ⌊ t ⌋) ⌊_⌋ {{OTermRaw}} (C (inj₁ t)) = C (inj₁ ⌊ t ⌋) ⌊_⌋ {{OTermRaw}} (C (inj₂ t)) = C (inj₂ ⌊ t ⌋) ⌊_⌋ {{OTermRaw}} (C (pair t₁ t₂)) = C (pair ⌊ t₁ ⌋ ⌊ t₂ ⌋) ⌊_⌋ {{OTermRaw}} (inv t) = inv ⌊ t ⌋ ⌊_⌋ {{OTermRaw}} (var x) = var ⌊ x ⌋ ⌊_⌋ {{OTermRaw}} (f # (apply s)) = ⌊ f ⌋ # apply ⌊ s ⌋ ⌊_⌋ {{OTermRaw}} (p # fst) = ⌊ p ⌋ # fst ⌊_⌋ {{OTermRaw}} (p # snd) = ⌊ p ⌋ # snd ⌊_⌋ {{OTermRaw}} (t # case x y) = ⌊ t ⌋ # split ⌊ x ⌋ ⌊ y ⌋ ⌊_⌋ {{OTermRaw}} (t # iter fs fz) = ⌊ t ⌋ # split ⌊ fs ⌋ ⌊ fz ⌋ ⌊_⌋ {{OTermRaw}} [ T :∋: t by refl ] = [ T :∋: ⌊ t ⌋ ] data _⊢_∋_ (Γ : context)(T : type){d} : term d → Set where well-typed : (Δ : Γ ⊢[ d ] T ) → Γ ⊢ T ∋ ⌊ Δ ⌋ -- TODO: one could prove that `Γ ⊢ T ∋ t` is H-prop when `t : term ⇓`, ie. we have -- lemma-proof-irr : ∀ {Γ T}{t : term ⇓} → ∀ (pf₁ pf₂ : Γ ⊢ T ∋ t) → → pf₁ ≅ pf₂ -- but this requires proving that `⌊_⌋` is injective. -- TODO: conversely, one should be able to prove that `Γ ⊢ T ∋ t` is -- equivalent to `type` when `t : term ⇑` but I haven't tried. -- ** Tests bool∋true : [] ⊢ bool ∋ true bool∋true = well-typed ⊢true bool∋false : [] ⊢ bool ∋ false bool∋false = well-typed ⊢false nat∋t1 : [] ⊢ nat ∋ t1 nat∋t1 = well-typed ⊢t1 -- * Ill-type system data Canonical {X} : type → can X → Set where can-unit-tt : Canonical unit tt can-nat-ze : Canonical nat ze can-nat-su : ∀ {a} → Canonical nat (su a) can-sum-inj₁ : ∀ {A B a} → Canonical (A + B) (inj₁ a) can-sum-inj₂ : ∀ {A B b} → Canonical (A + B) (inj₂ b) can-prod-pair : ∀ {A B a b} → Canonical (A * B) (pair a b) data IsProduct : type → Set where is-product : ∀ {A B} → IsProduct (A * B) data IsArrow : type → Set where is-arrow : ∀ {A B} → IsArrow (A ⇒ B) data IsSplit : type → Set where is-split-nat : IsSplit nat is-split-sum : ∀ {A B} → IsSplit (A + B) mtype : dir → Set mtype ⇑ = ⊤ mtype ⇓ = type data _B⊬[_]_ (Γ : context) : (d : dir) → mtype d → Set where not-canonical : ∀ {c : can (term ⇓)}{T} → ¬ Canonical T c → --------------- Γ B⊬[ ⇓ ] T unsafe-inv : ∀ {A B} → Γ ⊢[ ⇑ ] A → A ≢ B → ------------------- Γ B⊬[ ⇓ ] B bad-split : ∀ {A B}{c₁ c₂ : term ⇓} → Γ ⊢[ ⇑ ] A → ¬ IsSplit A → ------------------------- Γ B⊬[ ⇓ ] B out-of-scope : ∀ {x : ℕ} → x ≥ length Γ → ------------ Γ B⊬[ ⇑ ] _ bad-function : ∀ {T}{s : term ⇓} → Γ ⊢[ ⇑ ] T → ¬ IsArrow T → ------------------------ Γ B⊬[ ⇑ ] _ bad-fst : ∀ {T} → Γ ⊢[ ⇑ ] T → ¬ IsProduct T → -------------------------- Γ B⊬[ ⇑ ] _ bad-snd : ∀ {T} → Γ ⊢[ ⇑ ] T → ¬ IsProduct T → -------------------------- Γ B⊬[ ⇑ ] _ -- TODO: automate this "trisection & free monad" construction by meta-programming -- see: "The gentle art of levitation", Chapman et al. for the free monad -- see: "Clowns to the left of me, jokers to the right", McBride for the dissection mutual data _C⊬[_]_ : context → (d : dir) → mtype d → Set where lam : ∀ {Γ A B} → Γ ▹ A ⊬[ ⇓ ] B → Γ C⊬[ ⇓ ] A ⇒ B su : ∀ {Γ} → Γ ⊬[ ⇓ ] nat → Γ C⊬[ ⇓ ] nat inj₁ : ∀ {Γ A B} → Γ ⊬[ ⇓ ] A → Γ C⊬[ ⇓ ] A + B inj₂ : ∀ {Γ A B} → Γ ⊬[ ⇓ ] B → Γ C⊬[ ⇓ ] A + B pair₁ : ∀ {Γ A B} → Γ ⊬[ ⇓ ] A → term ⇓ → Γ C⊬[ ⇓ ] A * B pair₂ : ∀ {Γ A B} → Γ ⊢[ ⇓ ] A → Γ ⊬[ ⇓ ] B → Γ C⊬[ ⇓ ] A * B data _E⊬[_]_↝_ : context → (d : dir) → type → mtype d → Set where apply : ∀ {Γ A B} → Γ ⊬[ ⇓ ] A → Γ E⊬[ ⇑ ] A ⇒ B ↝ _ iter₁ : ∀ {Γ T} → Γ ▹ T ⊬[ ⇓ ] T → term ⇓ → Γ E⊬[ ⇓ ] nat ↝ T iter₂ : ∀ {Γ T} → Γ ▹ T ⊢[ ⇓ ] T → Γ ⊬[ ⇓ ] T → Γ E⊬[ ⇓ ] nat ↝ T case₁ : ∀ {Γ A B C} → Γ ▹ A ⊬[ ⇓ ] C → term ⇓ → Γ E⊬[ ⇓ ] A + B ↝ C case₂ : ∀ {Γ A B C} → Γ ▹ A ⊢[ ⇓ ] C → Γ ▹ B ⊬[ ⇓ ] C → Γ E⊬[ ⇓ ] A + B ↝ C data _⊬[_]_ : context → (d : dir) → mtype d → Set where because : ∀ {Γ d T} → Γ B⊬[ d ] T → Γ ⊬[ d ] T C : ∀ {Γ d T} → Γ C⊬[ d ] T → Γ ⊬[ d ] T inv : ∀ {Γ T} → Γ ⊬[ ⇑ ] _ → Γ ⊬[ ⇓ ] T _#₁_ : ∀ {Γ d T} → Γ ⊬[ ⇑ ] _ → elim (term ⇓) d → Γ ⊬[ d ] T _#₂_ : ∀ {Γ d I O} → Γ ⊢[ ⇑ ] I → Γ E⊬[ d ] I ↝ O → Γ ⊬[ d ] O [_:∋:_] : ∀ {Γ} → (T : type) → Γ ⊬[ ⇓ ] T → Γ ⊬[ ⇑ ] _ instance BTermRaw : ∀ {Γ d T} → Γ B⊬[ d ] T ↪ term d ⌊_⌋ {{BTermRaw}} (not-canonical {c} x) = C c ⌊_⌋ {{BTermRaw}} (unsafe-inv q _) = inv ⌊ q ⌋ ⌊_⌋ {{BTermRaw}} (bad-split {c₁ = c₁} {c₂} t _) = ⌊ t ⌋ # split c₁ c₂ ⌊_⌋ {{BTermRaw}} (out-of-scope {x} _) = var x ⌊_⌋ {{BTermRaw}} (bad-function {s = s} f _) = ⌊ f ⌋ # apply s ⌊_⌋ {{BTermRaw}} (bad-fst p _) = ⌊ p ⌋ # fst ⌊_⌋ {{BTermRaw}} (bad-snd p _) = ⌊ p ⌋ # snd ETermRaw : ∀ {Γ d T} → Γ ⊬[ d ] T ↪ term d ⌊_⌋ {{ETermRaw}} (because e) = ⌊ e ⌋ ⌊_⌋ {{ETermRaw}} (C (lam b)) = C (lam ⌊ b ⌋) ⌊_⌋ {{ETermRaw}} (C (su t)) = C (su ⌊ t ⌋) ⌊_⌋ {{ETermRaw}} (C (inj₁ t)) = C (inj₁ ⌊ t ⌋) ⌊_⌋ {{ETermRaw}} (C (inj₂ t)) = C (inj₂ ⌊ t ⌋) ⌊_⌋ {{ETermRaw}} (C (pair₁ t₁ t₂)) = C (pair ⌊ t₁ ⌋ t₂) ⌊_⌋ {{ETermRaw}} (C (pair₂ t₁ t₂)) = C (pair ⌊ t₁ ⌋ ⌊ t₂ ⌋) ⌊_⌋ {{ETermRaw}} (inv t) = inv ⌊ t ⌋ ⌊_⌋ {{ETermRaw}} [ T :∋: t ] = [ T :∋: ⌊ t ⌋ ] ⌊_⌋ {{ETermRaw}} (t #₁ e) = ⌊ t ⌋ # e ⌊_⌋ {{ETermRaw}} (t #₂ apply x) = ⌊ t ⌋ # apply ⌊ x ⌋ ⌊_⌋ {{ETermRaw}} (t #₂ iter₁ fs fz) = ⌊ t ⌋ # split ⌊ fs ⌋ fz ⌊_⌋ {{ETermRaw}} (t #₂ iter₂ fs fz) = ⌊ t ⌋ # split ⌊ fs ⌋ ⌊ fz ⌋ ⌊_⌋ {{ETermRaw}} (t #₂ case₁ cX cY) = ⌊ t ⌋ # split ⌊ cX ⌋ cY ⌊_⌋ {{ETermRaw}} (t #₂ case₂ cX cY) = ⌊ t ⌋ # split ⌊ cX ⌋ ⌊ cY ⌋ -- * Type-checking -- ** View on variable lookup data _∈-view_ : ℕ → context → Set where yes : ∀ {T Γ} → (x : T ∈ Γ) → ⌊ x ⌋ ∈-view Γ no : ∀ {Γ n} → n ≥ length Γ → n ∈-view Γ _∈?_ : ∀ n Γ → n ∈-view Γ _ ∈? ε = no z≤n zero ∈? Γ ▹ T = yes here suc n ∈? Γ ▹ T with n ∈? Γ ... | yes t = yes (there t) ... | no q = no (s≤s q) -- ** View on typing data Dir : dir → Set where _∈ : term ⇑ → Dir ⇑ _∋_ : type → term ⇓ → Dir ⇓ instance DirRaw : ∀ {Γ d T} → Γ ⊢[ d ] T ↪ Dir d ⌊_⌋ {{DirRaw {d = ⇑}}} e = ⌊ e ⌋ ∈ ⌊_⌋ {{DirRaw {d = ⇓}{T}}} e = T ∋ ⌊ e ⌋ EDirRaw : ∀ {Γ d T} → Γ ⊬[ d ] T ↪ Dir d ⌊_⌋ {{EDirRaw {d = ⇑}}} e = ⌊ e ⌋ ∈ ⌊_⌋ {{EDirRaw {d = ⇓}{T}}} e = T ∋ ⌊ e ⌋ data _⊢[_]-view_ (Γ : context)(d : dir) : Dir d → Set where yes : ∀ {T} (Δ : Γ ⊢[ d ] T) → Γ ⊢[ d ]-view ⌊ Δ ⌋ no : ∀ {T} (¬Δ : Γ ⊬[ d ] T) → Γ ⊢[ d ]-view ⌊ ¬Δ ⌋ isYes : ∀ {Γ T t} → Γ ⊢[ ⇓ ]-view T ∋ t → Set isYes (yes Δ) = ⊤ isYes (no ¬Δ) = ⊥ lemma : ∀ {Γ T t} → (pf : Γ ⊢[ ⇓ ]-view T ∋ t) → isYes pf → Γ ⊢ T ∋ t lemma (yes Δ) tt = well-typed Δ lemma (no _) () -- XXX: Mutually-recursive to please the termination checker _⊢?_∋_ : (Γ : context)(T : type)(t : term ⇓) → Γ ⊢[ ⇓ ]-view T ∋ t _⊢?_∈ : (Γ : context)(t : term ⇑) → Γ ⊢[ ⇑ ]-view t ∈ _⊢?_∋C_ : (Γ : context)(T : type)(t : can (term ⇓)) → Γ ⊢[ ⇓ ]-view T ∋ C t _!_∋_⊢?_∋#_ : (Γ : context)(I : type)(Δt : Γ ⊢[ ⇑ ] I)(T : type)(e : elim (term ⇓) ⇓) → Γ ⊢[ ⇓ ]-view T ∋ (⌊ Δt ⌋ # e) _!_∋_⊢?_∈# : (Γ : context)(T : type)(Δt : Γ ⊢[ ⇑ ] T)(e : elim (term ⇓) ⇑) → Γ ⊢[ ⇑ ]-view (⌊ Δt ⌋ # e) ∈ Γ ⊢? T ∋ C t = Γ ⊢? T ∋C t Γ ⊢? T ∋ inv t with Γ ⊢? t ∈ ... | no ¬Δ = no (inv ¬Δ) ... | yes {T'} Δ with T' ≟ T ... | yes refl = yes (inv Δ) ... | no ¬p = no (because (unsafe-inv Δ ¬p)) Γ ⊢? A ∋ t # e with Γ ⊢? t ∈ ... | no ¬Δt = no (¬Δt #₁ e) ... | yes {T} Δt = Γ ! T ∋ Δt ⊢? A ∋# e Γ ⊢? var k ∈ with k ∈? Γ ... | yes x = yes (var x) ... | no ¬q = no (because (out-of-scope ¬q)) Γ ⊢? t # e ∈ with Γ ⊢? t ∈ ... | no ¬Δt = no (¬Δt #₁ e) ... | yes {T} Δt = Γ ! T ∋ Δt ⊢? e ∈# Γ ⊢? [ T :∋: t ] ∈ with Γ ⊢? T ∋ t ... | yes Δt = yes [ T :∋: Δt by refl ] ... | no ¬Δt = no [ T :∋: ¬Δt ] Γ ⊢? unit ∋C tt = yes (C tt) Γ ⊢? unit ∋C pair _ _ = no (because (not-canonical (λ {()}))) Γ ⊢? unit ∋C lam _ = no (because (not-canonical (λ {()}))) Γ ⊢? unit ∋C ze = no (because (not-canonical (λ {()}))) Γ ⊢? unit ∋C su _ = no (because (not-canonical (λ {()}))) Γ ⊢? unit ∋C inj₁ _ = no (because (not-canonical (λ {()}))) Γ ⊢? unit ∋C inj₂ _ = no (because (not-canonical (λ {()}))) Γ ⊢? A * B ∋C pair t₁ t₂ with Γ ⊢? A ∋ t₁ | Γ ⊢? B ∋ t₂ ... | yes Δ₁ | yes Δ₂ = yes (C (pair Δ₁ Δ₂)) ... | yes Δ₁ | no ¬Δ₂ = no (C (pair₂ Δ₁ ¬Δ₂)) ... | no ¬Δ₁ | _ = no (C (pair₁ ¬Δ₁ t₂)) Γ ⊢? A * B ∋C tt = no (because (not-canonical (λ {()}))) Γ ⊢? A * B ∋C lam _ = no (because (not-canonical (λ {()}))) Γ ⊢? A * B ∋C ze = no (because (not-canonical (λ {()}))) Γ ⊢? A * B ∋C su _ = no (because (not-canonical (λ {()}))) Γ ⊢? A * B ∋C inj₁ _ = no (because (not-canonical (λ {()}))) Γ ⊢? A * B ∋C inj₂ _ = no (because (not-canonical (λ {()}))) Γ ⊢? A ⇒ B ∋C lam b with Γ ▹ A ⊢? B ∋ b ... | yes Δ = yes (C (lam Δ)) ... | no ¬Δ = no (C (lam ¬Δ)) Γ ⊢? A ⇒ B ∋C tt = no (because (not-canonical (λ {()}))) Γ ⊢? A ⇒ B ∋C ze = no (because (not-canonical (λ {()}))) Γ ⊢? A ⇒ B ∋C su x = no (because (not-canonical (λ {()}))) Γ ⊢? A ⇒ B ∋C pair _ _ = no (because (not-canonical (λ {()}))) Γ ⊢? A ⇒ B ∋C inj₁ _ = no (because (not-canonical (λ {()}))) Γ ⊢? A ⇒ B ∋C inj₂ _ = no (because (not-canonical (λ {()}))) Γ ⊢? nat ∋C ze = yes (C ze) Γ ⊢? nat ∋C su n with Γ ⊢? nat ∋ n ... | yes Δ = yes (C (su Δ)) ... | no ¬Δ = no (C (su ¬Δ)) Γ ⊢? nat ∋C tt = no (because (not-canonical (λ {()}))) Γ ⊢? nat ∋C pair _ _ = no (because (not-canonical (λ {()}))) Γ ⊢? nat ∋C lam _ = no (because (not-canonical (λ {()}))) Γ ⊢? nat ∋C inj₁ _ = no (because (not-canonical (λ {()}))) Γ ⊢? nat ∋C inj₂ _ = no (because (not-canonical (λ {()}))) Γ ⊢? A + B ∋C inj₁ t with Γ ⊢? A ∋ t ... | yes Δ = yes (C (inj₁ Δ)) ... | no ¬Δ = no (C (inj₁ ¬Δ)) Γ ⊢? A + B ∋C inj₂ t with Γ ⊢? B ∋ t ... | yes Δ = yes (C (inj₂ Δ)) ... | no ¬Δ = no (C (inj₂ ¬Δ)) Γ ⊢? A + B ∋C tt = no (because (not-canonical (λ {()}))) Γ ⊢? A + B ∋C pair _ _ = no (because (not-canonical (λ {()}))) Γ ⊢? A + B ∋C lam _ = no (because (not-canonical (λ {()}))) Γ ⊢? A + B ∋C ze = no (because (not-canonical (λ {()}))) Γ ⊢? A + B ∋C su _ = no (because (not-canonical (λ {()}))) Γ ! nat ∋ Δt ⊢? A ∋# split fs fz with Γ ▹ A ⊢? A ∋ fs | Γ ⊢? A ∋ fz ... | yes Δfs | yes Δfz = yes (Δt # iter Δfs Δfz) ... | yes Δfs | no ¬Δfz = no (Δt #₂ iter₂ Δfs ¬Δfz) ... | no ¬Δfs | _ = no (Δt #₂ iter₁ ¬Δfs fz) Γ ! X + Y ∋ Δt ⊢? A ∋# split cX cY with (X ∷ Γ) ⊢? A ∋ cX | (Y ∷ Γ) ⊢? A ∋ cY ... | yes ΔcX | yes ΔcY = yes (Δt # case ΔcX ΔcY) ... | yes ΔcX | no ¬ΔcY = no (Δt #₂ case₂ ΔcX ¬ΔcY) ... | no ¬ΔcX | _ = no (Δt #₂ case₁ ¬ΔcX cY) Γ ! unit ∋ Δt ⊢? A ∋# split _ _ = no (because (bad-split Δt (λ {()}))) Γ ! _ ⇒ _ ∋ Δt ⊢? A ∋# split _ _ = no (because (bad-split Δt (λ {()}))) Γ ! _ * _ ∋ Δt ⊢? A ∋# split _ _ = no (because (bad-split Δt (λ {()}))) Γ ! A ⇒ B ∋ Δf ⊢? apply s ∈# with Γ ⊢? A ∋ s ... | yes Δs = yes (Δf # apply Δs) ... | no ¬Δs = no (Δf #₂ apply ¬Δs) Γ ! unit ∋ Δf ⊢? apply _ ∈# = no (because (bad-function Δf λ {()})) Γ ! nat ∋ Δf ⊢? apply _ ∈# = no (because (bad-function Δf λ {()})) Γ ! _ + _ ∋ Δf ⊢? apply _ ∈# = no (because (bad-function Δf λ {()})) Γ ! _ * _ ∋ Δf ⊢? apply _ ∈# = no (because (bad-function Δf λ {()})) Γ ! A * B ∋ Δp ⊢? fst ∈# = yes (Δp # fst) Γ ! unit ∋ Δp ⊢? fst ∈# = no (because (bad-fst Δp (λ {()}))) Γ ! nat ∋ Δp ⊢? fst ∈# = no (because (bad-fst Δp (λ {()}))) Γ ! _ + _ ∋ Δp ⊢? fst ∈# = no (because (bad-fst Δp (λ {()}))) Γ ! _ ⇒ _ ∋ Δp ⊢? fst ∈# = no (because (bad-fst Δp (λ {()}))) Γ ! A * B ∋ Δp ⊢? snd ∈# = yes (Δp # snd) Γ ! unit ∋ Δp ⊢? snd ∈# = no (because (bad-snd Δp (λ {()}))) Γ ! nat ∋ Δp ⊢? snd ∈# = no (because (bad-snd Δp (λ {()}))) Γ ! _ + _ ∋ Δp ⊢? snd ∈# = no (because (bad-snd Δp (λ {()}))) Γ ! _ ⇒ _ ∋ Δp ⊢? snd ∈# = no (because (bad-snd Δp (λ {()}))) -- ** Tests nat∋t1' : [] ⊢ nat ∋ t1 nat∋t1' = lemma ([] ⊢? nat ∋ t1) tt T1 : type T1 = nat ⇒ (unit + unit) T2 : type T2 = (nat + unit) ⇒ (unit + unit) T1∋t2 : [] ⊢ T1 ∋ t2 T1∋t2 = lemma ([] ⊢? T1 ∋ t2) tt T2∋t2 : [] ⊢ T2 ∋ t2 T2∋t2 = lemma ([] ⊢? T2 ∋ t2) tt
30.173844
119
0.395528
06c7fadd3ef81d1470777d01096fc58874fb5d8b
903
agda
Agda
src/fot/PA/Inductive/PropertiesByInductionATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/PA/Inductive/PropertiesByInductionATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/PA/Inductive/PropertiesByInductionATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Inductive PA properties using the induction principle ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PA.Inductive.PropertiesByInductionATP where open import PA.Inductive.Base open import PA.Inductive.PropertiesByInduction ------------------------------------------------------------------------------ +-comm : ∀ m n → m + n ≡ n + m +-comm m n = ℕ-ind A A0 is m where A : ℕ → Set A i = i + n ≡ n + i {-# ATP definition A #-} A0 : A zero A0 = sym (+-rightIdentity n) postulate is : ∀ i → A i → A (succ i) -- TODO (21 November 2014). See Apia issue 16 -- {-# ATP prove is x+Sy≡S[x+y] #-}
30.1
78
0.431894
3134eb8f6dd35543661c04ac03824708d25bf2a2
162
agda
Agda
src/data/lib/prim/Agda/Builtin/Unit.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Unit.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Unit.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module Agda.Builtin.Unit where record ⊤ : Set where instance constructor tt {-# BUILTIN UNIT ⊤ #-} {-# COMPILED_DATA ⊤ () () #-}
16.2
30
0.617284
4a03bce441942d977b4fb675b1b8a4b44115dde1
1,072
agda
Agda
test/interaction/Issue2095.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/interaction/Issue2095.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/interaction/Issue2095.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2016-07-13, issue reported by Mietek Bak -- {-# OPTIONS -v tc.size:20 #-} -- {-# OPTIONS -v tc.meta.assign:30 #-} open import Agda.Builtin.Size data Cx (U : Set) : Set where ⌀ : Cx U _,_ : Cx U → U → Cx U data _∈_ {U : Set} (A : U) : Cx U → Set where top : ∀ {Γ} → A ∈ (Γ , A) pop : ∀ {C Γ} → A ∈ Γ → A ∈ (Γ , C) infixr 3 _⊃_ data Ty : Set where ι : Ty _⊃_ : Ty → Ty → Ty infix 1 _⊢⟨_⟩_ data _⊢⟨_⟩_ (Γ : Cx Ty) : Size → Ty → Set where var : ∀ {m A} → A ∈ Γ → Γ ⊢⟨ m ⟩ A lam : ∀ {m A B} {m′ : Size< m} → Γ , A ⊢⟨ m′ ⟩ B → Γ ⊢⟨ m ⟩ A ⊃ B app : ∀ {m A B} {m′ m″ : Size< m} → Γ ⊢⟨ m′ ⟩ A ⊃ B → Γ ⊢⟨ m″ ⟩ A → Γ ⊢⟨ m ⟩ B works : ∀ {m A B Γ} → Γ ⊢⟨ ↑ ↑ ↑ ↑ m ⟩ (A ⊃ A ⊃ B) ⊃ A ⊃ B works = lam (lam (app (app (var (pop top)) (var top)) (var top))) test : ∀ {m A B Γ} → Γ ⊢⟨ {!↑ ↑ ↑ ↑ m!} ⟩ (A ⊃ A ⊃ B) ⊃ A ⊃ B test = lam (lam (app (app (var (pop top)) (var top)) (var top))) -- This interaction meta should be solvable with -- ↑ ↑ ↑ ↑ m -- Give should succeed. -- The problem was: premature instantiation to ∞.
28.972973
80
0.460821
12a20b0914bfda7ffb30e44f540951b0f4131aa3
11,796
agda
Agda
Cubical/ZCohomology/Groups/Wedge.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/ZCohomology/Groups/Wedge.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Groups/Wedge.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Groups.Wedge where open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws renaming (assoc to assoc∙) open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.Nat open import Cubical.Data.Int hiding (_+_) open import Cubical.Data.Sigma open import Cubical.Algebra.Group open import Cubical.Algebra.Group.DirProd open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.HITs.SetTruncation as ST open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.HITs.Truncation as T open import Cubical.HITs.Susp open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.HITs.Wedge open import Cubical.HITs.Pushout open import Cubical.Homotopy.Connected open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Sn open IsGroupHom open Iso {- This module proves that Hⁿ(A ⋁ B) ≅ Hⁿ(A) × Hⁿ(B) for n ≥ 1 directly (rather than by means of Mayer-Vietoris). It also proves that Ĥⁿ(A ⋁ B) ≅ Ĥ⁰(A) × Ĥ⁰(B) (reduced groups) Proof sketch for n ≥ 1: Any ∣ f ∣₂ ∈ Hⁿ(A ⋁ B) is uniquely characterised by a pair of functions f₁ : A → Kₙ f₂ : B → Kₙ together with a path p : f₁ (pt A) ≡ f₂ (pt B) The map F : Hⁿ(A ⋁ B) → Hⁿ(A) × Hⁿ(B) simply forgets about p, i.e.: F(∣ f ∣₂) := (∣ f₁ ∣₂ , ∣ f₂ ∣₂) The construction of its inverse is defined by F⁻(∣ f₁ ∣₂ , ∣ f₂ ∣₂) := ∣ f₁∨f₂ ∣₂ where f₁∨f₂ : A ⋁ B → Kₙ is defined inductively by f₁∨f₂ (inl x) := f₁ x + f₂ (pt B) f₁∨f₂ (inr x) := f₁ (pt B) + f₂ x cong f₁∨f₂ (push tt) := refl (this is the map wedgeFun⁻ below) The fact that F and F⁻ cancel out is a proposition and we may thus assume for any ∣ f ∣₂ ∈ Hⁿ(A ⋁ B) and its corresponding f₁ that f₁ (pt A) = f₂ (pt B) = 0 (*) and f (inl (pt A)) = 0 (**) The fact that F(F⁻(∣ f₁ ∣₂ , ∣ f₂ ∣₂)) = ∣ f₁ ∣₂ , ∣ f₂ ∣₂) follows immediately from (*) The other way is slightly trickier. We need to construct paths Pₗ(x) : f (inl (x)) + f (inr (pt B)) ---> f (inl (x)) Pᵣ(x) : f (inl (pt A)) + f (inr (x)) ---> f (inr (x)) Together with a filler of the following square cong f (push tt) -----------------> ^ ^ | | | | Pₗ(pr A) | | Pᵣ(pt B) | | | | | | -----------------> refl The square is filled by first constructing Pₗ by f (inl (x)) + f (inr (pt B)) ---[cong f (push tt)⁻¹]---> f (inl (x)) + f (inl (pt A)) ---[(**)]---> f (inl (x)) + 0 ---[right-unit]---> f (inl (x)) and then Pᵣ by f (inl (pt A)) + f (inr (x)) ---[(**)⁻¹]---> 0 + f (inr (x)) ---[left-unit]---> f (inr (x)) and finally by using the fact that the group laws for Kₙ are refl at its base point. -} module _ {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') where private wedgeFun⁻ : ∀ n → (f : typ A → coHomK (suc n)) (g : typ B → coHomK (suc n)) → ((A ⋁ B) → coHomK (suc n)) wedgeFun⁻ n f g (inl x) = f x +ₖ g (pt B) wedgeFun⁻ n f g (inr x) = f (pt A) +ₖ g x wedgeFun⁻ n f g (push a i) = f (pt A) +ₖ g (pt B) Hⁿ-⋁ : (n : ℕ) → GroupIso (coHomGr (suc n) (A ⋁ B)) (×coHomGr (suc n) (typ A) (typ B)) fun (fst (Hⁿ-⋁ zero)) = ST.elim (λ _ → isSet× isSetSetTrunc isSetSetTrunc) λ f → ∣ (λ x → f (inl x)) ∣₂ , ∣ (λ x → f (inr x)) ∣₂ inv (fst (Hⁿ-⋁ zero)) = uncurry (ST.elim2 (λ _ _ → isSetSetTrunc) λ f g → ∣ wedgeFun⁻ 0 f g ∣₂) rightInv (fst (Hⁿ-⋁ zero)) = uncurry (coHomPointedElim _ (pt A) (λ _ → isPropΠ λ _ → isSet× isSetSetTrunc isSetSetTrunc _ _) λ f fId → coHomPointedElim _ (pt B) (λ _ → isSet× isSetSetTrunc isSetSetTrunc _ _) λ g gId → ΣPathP ((cong ∣_∣₂ (funExt (λ x → cong (f x +ₖ_) gId ∙ rUnitₖ 1 (f x)))) , cong ∣_∣₂ (funExt (λ x → cong (_+ₖ g x) fId ∙ lUnitₖ 1 (g x))))) leftInv (fst (Hⁿ-⋁ zero)) = ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) (λ f → PT.rec (isSetSetTrunc _ _) (λ fId → cong ∣_∣₂ (sym fId)) (helper f _ refl)) where helper : (f : A ⋁ B → coHomK 1) (x : coHomK 1) → f (inl (pt A)) ≡ x → ∥ f ≡ wedgeFun⁻ 0 (λ x → f (inl x)) (λ x → f (inr x)) ∥₁ helper f = T.elim (λ _ → isProp→isOfHLevelSuc 2 (isPropΠ λ _ → isPropPropTrunc)) (sphereElim 0 (λ _ → isPropΠ λ _ → isPropPropTrunc) λ inlId → ∣ funExt (λ { (inl x) → sym (rUnitₖ 1 (f (inl x))) ∙∙ cong ((f (inl x)) +ₖ_) (sym inlId) ∙∙ cong ((f (inl x)) +ₖ_) (cong f (push tt)) ; (inr x) → sym (lUnitₖ 1 (f (inr x))) ∙ cong (_+ₖ (f (inr x))) (sym inlId) ; (push tt i) j → helper2 (f (inl (pt A))) (sym (inlId)) (f (inr (pt B))) (cong f (push tt)) j i} ) ∣₁) where helper2 : (x : coHomK 1) (r : ∣ base ∣ ≡ x) (y : coHomK 1) (p : x ≡ y) → PathP (λ j → ((sym (rUnitₖ 1 x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j ≡ (sym (lUnitₖ 1 y) ∙ cong (_+ₖ y) r) j) p refl helper2 x = J (λ x r → (y : coHomK 1) (p : x ≡ y) → PathP (λ j → ((sym (rUnitₖ 1 x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j ≡ (sym (lUnitₖ 1 y) ∙ cong (_+ₖ y) r) j) p refl) λ y → J (λ y p → PathP (λ j → ((sym (rUnitₖ 1 ∣ base ∣) ∙∙ refl ∙∙ cong (∣ base ∣ +ₖ_) p)) j ≡ (sym (lUnitₖ 1 y) ∙ refl) j) p refl) λ i _ → (refl ∙ (λ _ → 0ₖ 1)) i snd (Hⁿ-⋁ zero) = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _) λ _ _ → refl) fun (fst (Hⁿ-⋁ (suc n))) = ST.elim (λ _ → isSet× isSetSetTrunc isSetSetTrunc) λ f → ∣ (λ x → f (inl x)) ∣₂ , ∣ (λ x → f (inr x)) ∣₂ inv (fst (Hⁿ-⋁ (suc n))) = uncurry (ST.elim2 (λ _ _ → isSetSetTrunc) λ f g → ∣ wedgeFun⁻ (suc n) f g ∣₂) rightInv (fst (Hⁿ-⋁ (suc n))) = uncurry (coHomPointedElim _ (pt A) (λ _ → isPropΠ λ _ → isSet× isSetSetTrunc isSetSetTrunc _ _) λ f fId → coHomPointedElim _ (pt B) (λ _ → isSet× isSetSetTrunc isSetSetTrunc _ _) λ g gId → ΣPathP ((cong ∣_∣₂ (funExt (λ x → cong (f x +ₖ_) gId ∙ rUnitₖ (2 + n) (f x)))) , cong ∣_∣₂ (funExt (λ x → cong (_+ₖ g x) fId ∙ lUnitₖ (2 + n) (g x))))) leftInv (fst (Hⁿ-⋁ (suc n))) = ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) (λ f → PT.rec (isSetSetTrunc _ _) (λ fId → cong ∣_∣₂ (sym fId)) (helper f _ refl)) where helper : (f : A ⋁ B → coHomK (2 + n)) (x : coHomK (2 + n)) → f (inl (pt A)) ≡ x → ∥ f ≡ wedgeFun⁻ (suc n) (λ x → f (inl x)) (λ x → f (inr x)) ∥₁ helper f = T.elim (λ _ → isProp→isOfHLevelSuc (3 + n) (isPropΠ λ _ → isPropPropTrunc)) (sphereToPropElim (suc n) (λ _ → isPropΠ λ _ → isPropPropTrunc) λ inlId → (∣ funExt (λ { (inl x) → sym (rUnitₖ (2 + n) (f (inl x))) ∙∙ cong ((f (inl x)) +ₖ_) (sym inlId) ∙∙ cong ((f (inl x)) +ₖ_) (cong f (push tt)) ; (inr x) → sym (lUnitₖ (2 + n) (f (inr x))) ∙ cong (_+ₖ (f (inr x))) (sym inlId) ; (push tt i) j → helper2 (f (inl (pt A))) (sym (inlId)) (f (inr (pt B))) (cong f (push tt)) j i}) ∣₁)) where helper2 : (x : coHomK (2 + n)) (r : ∣ north ∣ ≡ x) (y : coHomK (2 + n)) (p : x ≡ y) → PathP (λ j → ((sym (rUnitₖ (2 + n) x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j ≡ (sym (lUnitₖ (2 + n) y) ∙ cong (_+ₖ y) r) j) p refl helper2 x = J (λ x r → (y : coHomK (2 + n)) (p : x ≡ y) → PathP (λ j → ((sym (rUnitₖ (2 + n) x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j ≡ (sym (lUnitₖ (2 + n) y) ∙ cong (_+ₖ y) r) j) p refl) λ y → J (λ y p → PathP (λ j → ((sym (rUnitₖ (2 + n) ∣ north ∣) ∙∙ refl ∙∙ cong (∣ north ∣ +ₖ_) p)) j ≡ (sym (lUnitₖ (2 + n) y) ∙ refl) j) p refl) λ i j → ((λ _ → ∣ north ∣) ∙ refl) i snd (Hⁿ-⋁ (suc n)) = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _) λ _ _ → refl) H⁰Red-⋁ : GroupIso (coHomRedGrDir 0 (A ⋁ B , inl (pt A))) (DirProd (coHomRedGrDir 0 A) (coHomRedGrDir 0 B)) fun (fst H⁰Red-⋁) = ST.rec (isSet× isSetSetTrunc isSetSetTrunc) λ {(f , p) → ∣ (f ∘ inl) , p ∣₂ , ∣ (f ∘ inr) , cong f (sym (push tt)) ∙ p ∣₂} inv (fst H⁰Red-⋁) = uncurry (ST.rec2 isSetSetTrunc λ {(f , p) (g , q) → ∣ (λ {(inl a) → f a ; (inr b) → g b ; (push tt i) → (p ∙ sym q) i}) , p ∣₂}) rightInv (fst H⁰Red-⋁) = uncurry (ST.elim2 (λ _ _ → isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _) λ {(_ , _) (_ , _) → ΣPathP (cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) refl) , cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) refl))}) leftInv (fst H⁰Red-⋁) = ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) λ {(f , p) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) (funExt λ {(inl a) → refl ; (inr b) → refl ; (push tt i) j → (cong (p ∙_) (symDistr (cong f (sym (push tt))) p) ∙∙ assoc∙ p (sym p) (cong f (push tt)) ∙∙ cong (_∙ (cong f (push tt))) (rCancel p) ∙ sym (lUnit (cong f (push tt)))) j i}))} -- Alt. use isOfHLevel→isOfHLevelDep snd H⁰Red-⋁ = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _) λ {(f , p) (g , q) → ΣPathP (cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) refl) , cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) refl))}) wedgeConnected : ((x : typ A) → ∥ pt A ≡ x ∥₁) → ((x : typ B) → ∥ pt B ≡ x ∥₁) → (x : A ⋁ B) → ∥ inl (pt A) ≡ x ∥₁ wedgeConnected conA conB = PushoutToProp (λ _ → isPropPropTrunc) (λ a → PT.rec isPropPropTrunc (λ p → ∣ cong inl p ∣₁) (conA a)) λ b → PT.rec isPropPropTrunc (λ p → ∣ push tt ∙ cong inr p ∣₁) (conB b)
46.809524
121
0.4588
06c77964f41f5c7ff53662f4636e836f7716df12
74,932
agda
Agda
src/Category.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Category.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Category.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- 1-categories ------------------------------------------------------------------------ -- The code is based on the presentation in the HoTT book (but might -- not follow it exactly). {-# OPTIONS --without-K --safe #-} open import Equality module Category {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq as Bijection using (_↔_) open Derived-definitions-and-properties eq open import Equivalence eq as Eq using (_≃_; ⟨_,_⟩; module _≃_; Is-equivalence) open import Function-universe eq as F hiding (id) renaming (_∘_ to _⊚_) open import H-level eq open import H-level.Closure eq open import Logical-equivalence using (module _⇔_) import Nat eq as Nat open import Prelude as P hiding (id; Unit) open import Univalence-axiom eq ------------------------------------------------------------------------ -- Precategories -- This definition of precategories takes the type of objects as a -- parameter. Precategory-with-Obj : ∀ {ℓ₁} → Type ℓ₁ → (ℓ₂ : Level) → Type (ℓ₁ ⊔ lsuc ℓ₂) Precategory-with-Obj Obj ℓ₂ = -- Morphisms (a /set/). ∃ λ (HOM : Obj → Obj → Set ℓ₂) → let Hom = λ X Y → proj₁ (HOM X Y) in -- Identity. ∃ λ (id : ∀ {X} → Hom X X) → -- Composition. ∃ λ (_∙_ : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z) → -- Identity laws. (∀ {X Y} {f : Hom X Y} → (id ∙ f) ≡ f) × (∀ {X Y} {f : Hom X Y} → (f ∙ id) ≡ f) × -- Associativity. (∀ {X Y Z U} {f : Hom X Y} {g : Hom Y Z} {h : Hom Z U} → (h ∙ (g ∙ f)) ≡ ((h ∙ g) ∙ f)) -- Precategories. Precategory′ : (ℓ₁ ℓ₂ : Level) → Type (lsuc (ℓ₁ ⊔ ℓ₂)) Precategory′ ℓ₁ ℓ₂ = -- Objects. ∃ λ (Obj : Type ℓ₁) → Precategory-with-Obj Obj ℓ₂ -- A wrapper. record Precategory (ℓ₁ ℓ₂ : Level) : Type (lsuc (ℓ₁ ⊔ ℓ₂)) where field precategory : Precategory′ ℓ₁ ℓ₂ -- Objects. Obj : Type ℓ₁ Obj = proj₁ precategory -- Morphisms. HOM : Obj → Obj → Set ℓ₂ HOM = proj₁ (proj₂ precategory) -- The morphism type family. Hom : Obj → Obj → Type ℓ₂ Hom X Y = proj₁ (HOM X Y) -- The morphism types are sets. Hom-is-set : ∀ {X Y} → Is-set (Hom X Y) Hom-is-set = proj₂ (HOM _ _) -- Identity. id : ∀ {X} → Hom X X id = proj₁ (proj₂ (proj₂ precategory)) -- Composition. infixr 10 _∙_ _∙_ : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z _∙_ = proj₁ (proj₂ (proj₂ (proj₂ precategory))) -- The left identity law. left-identity : ∀ {X Y} {f : Hom X Y} → id ∙ f ≡ f left-identity = proj₁ (proj₂ (proj₂ (proj₂ (proj₂ precategory)))) -- The right identity law. right-identity : ∀ {X Y} {f : Hom X Y} → f ∙ id ≡ f right-identity = proj₁ (proj₂ (proj₂ (proj₂ (proj₂ (proj₂ precategory))))) -- The associativity law. assoc : ∀ {X Y Z U} {f : Hom X Y} {g : Hom Y Z} {h : Hom Z U} → h ∙ (g ∙ f) ≡ (h ∙ g) ∙ f assoc = proj₂ (proj₂ (proj₂ (proj₂ (proj₂ (proj₂ precategory))))) -- Isomorphisms. Is-isomorphism : ∀ {X Y} → Hom X Y → Type ℓ₂ Is-isomorphism f = ∃ λ g → (f ∙ g ≡ id) × (g ∙ f ≡ id) infix 4 _≅_ _≅_ : Obj → Obj → Type ℓ₂ X ≅ Y = ∃ λ (f : Hom X Y) → Is-isomorphism f -- Some projections. infix 15 _¹ _⁻¹ _¹⁻¹ _⁻¹¹ _¹ : ∀ {X Y} → X ≅ Y → Hom X Y f ¹ = proj₁ f _⁻¹ : ∀ {X Y} → X ≅ Y → Hom Y X f ⁻¹ = proj₁ (proj₂ f) _¹⁻¹ : ∀ {X Y} (f : X ≅ Y) → f ¹ ∙ f ⁻¹ ≡ id f ¹⁻¹ = proj₁ (proj₂ (proj₂ f)) _⁻¹¹ : ∀ {X Y} (f : X ≅ Y) → f ⁻¹ ∙ f ¹ ≡ id f ⁻¹¹ = proj₂ (proj₂ (proj₂ f)) abstract -- "Is-isomorphism f" is a proposition. Is-isomorphism-propositional : ∀ {X Y} (f : Hom X Y) → Is-proposition (Is-isomorphism f) Is-isomorphism-propositional f (g , fg , gf) (g′ , fg′ , g′f) = Σ-≡,≡→≡ (g ≡⟨ sym left-identity ⟩ id ∙ g ≡⟨ cong (λ h → h ∙ g) $ sym g′f ⟩ (g′ ∙ f) ∙ g ≡⟨ sym assoc ⟩ g′ ∙ (f ∙ g) ≡⟨ cong (_∙_ g′) fg ⟩ g′ ∙ id ≡⟨ right-identity ⟩∎ g′ ∎) (Σ-≡,≡→≡ (Hom-is-set _ _) (Hom-is-set _ _)) -- Isomorphism equality is equivalent to "forward morphism" -- equality. ≡≃≡¹ : ∀ {X Y} {f g : X ≅ Y} → (f ≡ g) ≃ (f ¹ ≡ g ¹) ≡≃≡¹ {f = f} {g} = (f ≡ g) ↔⟨ inverse $ ignore-propositional-component $ Is-isomorphism-propositional _ ⟩□ (f ¹ ≡ g ¹) □ -- The type of isomorphisms (between two objects) is a set. ≅-set : ∀ {X Y} → Is-set (X ≅ Y) ≅-set = Σ-closure 2 Hom-is-set (λ _ → mono₁ 1 $ Is-isomorphism-propositional _) -- Identity isomorphism. id≅ : ∀ {X} → X ≅ X id≅ = id , id , left-identity , right-identity -- Composition of isomorphisms. infixr 10 _∙≅_ _∙≅_ : ∀ {X Y Z} → Y ≅ Z → X ≅ Y → X ≅ Z f ∙≅ g = (f ¹ ∙ g ¹) , (g ⁻¹ ∙ f ⁻¹) , fg f g , gf f g where abstract fg : ∀ {X Y Z} (f : Y ≅ Z) (g : X ≅ Y) → (f ¹ ∙ g ¹) ∙ (g ⁻¹ ∙ f ⁻¹) ≡ id fg f g = (f ¹ ∙ g ¹) ∙ (g ⁻¹ ∙ f ⁻¹) ≡⟨ sym assoc ⟩ f ¹ ∙ (g ¹ ∙ (g ⁻¹ ∙ f ⁻¹)) ≡⟨ cong (_∙_ (f ¹)) assoc ⟩ f ¹ ∙ ((g ¹ ∙ g ⁻¹) ∙ f ⁻¹) ≡⟨ cong (λ h → f ¹ ∙ (h ∙ f ⁻¹)) $ g ¹⁻¹ ⟩ f ¹ ∙ (id ∙ f ⁻¹) ≡⟨ cong (_∙_ (f ¹)) left-identity ⟩ f ¹ ∙ f ⁻¹ ≡⟨ f ¹⁻¹ ⟩∎ id ∎ gf : ∀ {X Y Z} (f : Y ≅ Z) (g : X ≅ Y) → (g ⁻¹ ∙ f ⁻¹) ∙ (f ¹ ∙ g ¹) ≡ id gf f g = (g ⁻¹ ∙ f ⁻¹) ∙ (f ¹ ∙ g ¹) ≡⟨ sym assoc ⟩ g ⁻¹ ∙ (f ⁻¹ ∙ (f ¹ ∙ g ¹)) ≡⟨ cong (_∙_ (g ⁻¹)) assoc ⟩ g ⁻¹ ∙ ((f ⁻¹ ∙ f ¹) ∙ g ¹) ≡⟨ cong (λ h → g ⁻¹ ∙ (h ∙ g ¹)) $ f ⁻¹¹ ⟩ g ⁻¹ ∙ (id ∙ g ¹) ≡⟨ cong (_∙_ (g ⁻¹)) left-identity ⟩ g ⁻¹ ∙ g ¹ ≡⟨ g ⁻¹¹ ⟩∎ id ∎ -- The inverse of an isomorphism. infix 15 _⁻¹≅ _⁻¹≅ : ∀ {X Y} → X ≅ Y → Y ≅ X f ⁻¹≅ = f ⁻¹ , f ¹ , f ⁻¹¹ , f ¹⁻¹ -- Isomorphisms form a precategory. precategory-≅ : Precategory ℓ₁ ℓ₂ precategory-≅ = record { precategory = Obj , (λ X Y → (X ≅ Y) , ≅-set) , id≅ , _∙≅_ , _≃_.from ≡≃≡¹ left-identity , _≃_.from ≡≃≡¹ right-identity , _≃_.from ≡≃≡¹ assoc } -- Equal objects are isomorphic. ≡→≅ : ∀ {X Y} → X ≡ Y → X ≅ Y ≡→≅ = elim (λ {X Y} _ → X ≅ Y) (λ _ → id≅) -- "Computation rule" for ≡→≅. ≡→≅-refl : ∀ {X} → ≡→≅ (refl X) ≡ id≅ ≡→≅-refl = elim-refl (λ {X Y} _ → X ≅ Y) _ -- Rearrangement lemma for ≡→≅. ≡→≅-¹ : ∀ {X Y} (X≡Y : X ≡ Y) → ≡→≅ X≡Y ¹ ≡ elim (λ {X Y} _ → Hom X Y) (λ _ → id) X≡Y ≡→≅-¹ {X} = elim¹ (λ X≡Y → ≡→≅ X≡Y ¹ ≡ elim (λ {X Y} _ → Hom X Y) (λ _ → id) X≡Y) (≡→≅ (refl X) ¹ ≡⟨ cong _¹ ≡→≅-refl ⟩ id≅ ¹ ≡⟨⟩ id ≡⟨ sym $ elim-refl (λ {X Y} _ → Hom X Y) _ ⟩∎ elim (λ {X Y} _ → Hom X Y) (λ _ → id) (refl X) ∎) -- A lemma that can be used to prove that ≡→≅ is an equivalence. ≡→≅-equivalence-lemma : ∀ {X} → (≡≃≅ : ∀ {Y} → (X ≡ Y) ≃ (X ≅ Y)) → _≃_.to ≡≃≅ (refl X) ¹ ≡ id → ∀ {Y} → Is-equivalence (≡→≅ {X = X} {Y = Y}) ≡→≅-equivalence-lemma {X} ≡≃≅ ≡≃≅-refl {Y} = Eq.respects-extensional-equality (elim¹ (λ X≡Y → _≃_.to ≡≃≅ X≡Y ≡ ≡→≅ X≡Y) (_≃_.to ≡≃≅ (refl X) ≡⟨ _≃_.from ≡≃≡¹ ≡≃≅-refl ⟩ id≅ ≡⟨ sym ≡→≅-refl ⟩∎ ≡→≅ (refl X) ∎)) (_≃_.is-equivalence ≡≃≅) -- An example: sets and functions. (Defined using extensionality.) precategory-Set : (ℓ : Level) → Extensionality ℓ ℓ → Precategory (lsuc ℓ) ℓ precategory-Set ℓ ext = record { precategory = -- Objects: sets. Set ℓ , -- Morphisms: functions. (λ { (A , A-set) (B , B-set) → (A → B) , Π-closure ext 2 (λ _ → B-set) }) , -- Identity. P.id , -- Composition. (λ f g → f ∘ g) , -- Laws. refl _ , refl _ , refl _ } -- Isomorphisms in this category are equivalent to equivalences -- (assuming extensionality). ≃≃≅-Set : (ℓ : Level) (ext : Extensionality ℓ ℓ) → let open Precategory (precategory-Set ℓ ext) in (X Y : Obj) → (⌞ X ⌟ ≃ ⌞ Y ⌟) ≃ (X ≅ Y) ≃≃≅-Set ℓ ext X Y = Eq.↔⇒≃ record { surjection = record { logical-equivalence = record { to = λ X≃Y → _≃_.to X≃Y , _≃_.from X≃Y , apply-ext ext (_≃_.right-inverse-of X≃Y) , apply-ext ext (_≃_.left-inverse-of X≃Y) ; from = λ X≅Y → Eq.↔⇒≃ record { surjection = record { logical-equivalence = record { to = proj₁ X≅Y ; from = proj₁ (proj₂ X≅Y) } ; right-inverse-of = λ x → cong (_$ x) $ proj₁ (proj₂ (proj₂ X≅Y)) } ; left-inverse-of = λ x → cong (_$ x) $ proj₂ (proj₂ (proj₂ X≅Y)) } } ; right-inverse-of = λ X≅Y → _≃_.from (≡≃≡¹ {X = X} {Y = Y}) (refl (proj₁ X≅Y)) } ; left-inverse-of = λ X≃Y → Eq.lift-equality ext (refl (_≃_.to X≃Y)) } where open Precategory (precategory-Set ℓ ext) using (≡≃≡¹) -- Equality characterisation lemma for Precategory′. equality-characterisation-Precategory′ : ∀ {ℓ₁ ℓ₂} {C D : Precategory′ ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ lsuc ℓ₂) → Univalence ℓ₁ → Univalence ℓ₂ → let module C = Precategory (record { precategory = C }) module D = Precategory (record { precategory = D }) in (∃ λ (eqO : C.Obj ≃ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃ D.Hom X Y) → (∀ X → _≃_.to (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → _≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f) (_≃_.from (eqH X Y) g)) ≡ f D.∙ g)) ↔ C ≡ D equality-characterisation-Precategory′ {ℓ₁} {ℓ₂} {C} {D} ext univ₁ univ₂ = (∃ λ (eqO : C.Obj ≃ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃ D.Hom X Y) → (∀ X → _≃_.to (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → _≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f) (_≃_.from (eqH X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ _ → inverse $ Σ-cong (∀-cong ext₁₁₂₊ λ _ → ∀-cong ext₁₂₊ λ _ → ≡≃≃ univ₂) (λ _ → F.id)) ⟩ (∃ λ (eqO : C.Obj ≃ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≡ D.Hom X Y) → (∀ X → ≡⇒→ (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH X Z) (C._∙_ (≡⇒← (eqH Y Z) f) (≡⇒← (eqH X Y) g)) ≡ f D.∙ g)) ↝⟨ inverse $ Σ-cong (≡≃≃ univ₁) (λ _ → F.id) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (≡⇒← eqO X) (≡⇒← eqO Y) ≡ D.Hom X Y) → (∀ X → ≡⇒→ (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH X Z) (C._∙_ (≡⇒← (eqH Y Z) f) (≡⇒← (eqH X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ _ → inverse $ Σ-cong (∀-cong ext₁₁₂₊ λ _ → ∀-cong ext₁₂₊ λ _ → inverse $ ignore-propositional-component $ H-level-propositional ext₂₂ 2) (λ _ → F.id)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : ∀ X Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y) ≡ D.HOM X Y) → let eqH′ = λ X Y → proj₁ (Σ-≡,≡←≡ (eqH X Y)) in (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → ≡⇒↝ _ $ cong (λ (eqH′ : ∀ _ _ → _) → (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z f g → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) (apply-ext ext₁₁₂₊ λ _ → apply-ext ext₁₂₊ λ _ → proj₁-Σ-≡,≡←≡ _)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : ∀ X Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y) ≡ D.HOM X Y) → let eqH′ = λ X Y → cong proj₁ (eqH X Y) in (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ _ → inverse $ Σ-cong (∀-cong ext₁₁₂₊ λ _ → inverse $ Eq.extensionality-isomorphism ext₁₂₊) (λ _ → F.id)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : ∀ X → (λ Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y)) ≡ D.HOM X) → let eqH′ = λ X Y → cong proj₁ (ext⁻¹ (eqH X) Y) in (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ _ → inverse $ Σ-cong (inverse $ Eq.extensionality-isomorphism ext₁₁₂₊) (λ _ → F.id)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : (λ X Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y)) ≡ D.HOM) → let eqH′ = λ X Y → cong proj₁ (ext⁻¹ (ext⁻¹ eqH X) Y) in (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ eqO → inverse $ Σ-cong (inverse $ ≡⇒↝ equivalence (HOM-lemma eqO)) (λ _ → F.id)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) → let eqH′ = λ X Y → cong proj₁ (ext⁻¹ (ext⁻¹ (≡⇒← (HOM-lemma eqO) eqH) X) Y) in (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ eqO → ∃-cong λ eqH → ≡⇒↝ _ $ cong (λ (eqH′ : ∀ _ _ → _) → (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z f g → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) (apply-ext ext₁₁₂₊ λ X → apply-ext ext₁₂₊ λ Y → cong proj₁ (ext⁻¹ (ext⁻¹ (≡⇒← (HOM-lemma eqO) eqH) X) Y) ≡⟨⟩ cong proj₁ (cong (_$ Y) (cong (_$ X) (≡⇒← (HOM-lemma eqO) eqH))) ≡⟨ cong (cong _) $ cong-∘ _ _ _ ⟩ cong proj₁ (cong (λ f → f X Y) (≡⇒← (HOM-lemma eqO) eqH)) ≡⟨ cong-∘ _ _ _ ⟩∎ cong (λ F → ⌞ F X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH) ∎)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) → let eqH′ = λ X Y → cong (λ F → ⌞ F X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH) in (∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → ≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g)) ↝⟨ ∃-cong (λ eqO → ∃-cong λ eqH → (∀-cong ext₁₂ λ _ → ≡⇒↝ _ $ cong (_≡ _) P-lemma) ×-cong (∀-cong ext₁₁₂ λ X → ∀-cong ext₁₁₂ λ Y → ∀-cong ext₁₂ λ Z → ∀-cong ext₂₂ λ f → ∀-cong ext₂₂ λ g → ≡⇒↝ _ $ cong (_≡ _) Q-lemma)) ⟩ (∃ λ (eqO : C.Obj ≡ D.Obj) → ∃ λ (eqH : subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) → (∀ X → subst₂ (uncurry P) eqO eqH C.id {X = X} ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → subst₂ (uncurry Q) eqO eqH C._∙_ f g ≡ f D.∙ g)) ↝⟨ Σ-assoc ⟩ (∃ λ (eq : ∃ λ (eqO : C.Obj ≡ D.Obj) → subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) → (∀ X → subst (uncurry P) (uncurry Σ-≡,≡→≡ eq) C.id {X = X} ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → subst (uncurry Q) (uncurry Σ-≡,≡→≡ eq) C._∙_ f g ≡ f D.∙ g)) ↝⟨ Σ-cong Bijection.Σ-≡,≡↔≡ (λ _ → F.id) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → (∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → subst (uncurry Q) eq C._∙_ f g ≡ f D.∙ g)) ↔⟨ ∃-cong (λ _ → ∃-cong λ _ → ∀-cong ext₁₁₂ λ _ → ∀-cong ext₁₁₂ λ _ → ∀-cong ext₁₂ λ _ → ∀-cong ext₂₂ λ _ → Eq.extensionality-isomorphism ext₂₂) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → (∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) → subst (uncurry Q) eq C._∙_ {X = X} f ≡ D._∙_ f)) ↔⟨ ∃-cong (λ _ → ∃-cong λ _ → ∀-cong ext₁₁₂ λ _ → ∀-cong ext₁₁₂ λ _ → ∀-cong ext₁₂ λ _ → Eq.extensionality-isomorphism ext₂₂) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → (∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id) × (∀ X Y Z → subst (uncurry Q) eq C._∙_ {X = X} {Y = Y} {Z = Z} ≡ D._∙_)) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → ∀-cong ext₁₁₂ λ _ → ∀-cong ext₁₁₂ λ _ → implicit-extensionality-isomorphism ext₁₂) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → (∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id) × (∀ X Y → (λ {_} → subst (uncurry Q) eq C._∙_ {X = X} {Y = Y}) ≡ D._∙_)) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → ∀-cong ext₁₁₂ λ _ → implicit-extensionality-isomorphism ext₁₁₂) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → (∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id) × (∀ X → (λ {_ _} → subst (uncurry Q) eq C._∙_ {X = X}) ≡ D._∙_)) ↝⟨ ∃-cong (λ _ → implicit-extensionality-isomorphism ext₁₂ ×-cong implicit-extensionality-isomorphism ext₁₁₂) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → (λ {_} → subst (uncurry P) eq (λ {_} → C.id)) ≡ (λ {_} → D.id) × (λ {_ _ _} → subst (uncurry Q) eq (λ {_ _ _} → C._∙_)) ≡ (λ {_ _ _} → D._∙_)) ↝⟨ ∃-cong (λ _ → ≡×≡↔≡) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → ( (λ {_} → subst (uncurry P) eq (λ {_} → C.id)) , (λ {_ _ _} → subst (uncurry Q) eq (λ {_ _ _} → C._∙_)) ) ≡ ((λ {_} → D.id) , λ {_ _ _} → D._∙_)) ↝⟨ ∃-cong (λ _ → ≡⇒↝ _ $ cong (_≡ _) $ sym $ push-subst-, _ _) ⟩ (∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) → subst _ eq ((λ {_} → C.id) , λ {_ _ _} → C._∙_) ≡ ((λ {_} → D.id) , λ {_ _ _} → D._∙_)) ↝⟨ Bijection.Σ-≡,≡↔≡ ⟩ ((C.Obj , C.HOM) , (λ {_} → C.id) , λ {_ _ _} → C._∙_) ≡ ((D.Obj , D.HOM) , (λ {_} → D.id) , λ {_ _ _} → D._∙_) ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ Σ-assoc) ⟩ (C.Obj , C.HOM , (λ {_} → C.id) , λ {_ _ _} → C._∙_) ≡ (D.Obj , D.HOM , (λ {_} → D.id) , λ {_ _ _} → D._∙_) ↝⟨ ignore-propositional-component ( ×-closure 1 (implicit-Π-closure ext₁₁₂ 1 λ _ → implicit-Π-closure ext₁₂ 1 λ _ → implicit-Π-closure ext₂₂ 1 λ _ → D.Hom-is-set) $ ×-closure 1 (implicit-Π-closure ext₁₁₂ 1 λ _ → implicit-Π-closure ext₁₂ 1 λ _ → implicit-Π-closure ext₂₂ 1 λ _ → D.Hom-is-set) (implicit-Π-closure ext₁₁₂ 1 λ _ → implicit-Π-closure ext₁₁₂ 1 λ _ → implicit-Π-closure ext₁₁₂ 1 λ _ → implicit-Π-closure ext₁₂ 1 λ _ → implicit-Π-closure ext₂₂ 1 λ _ → implicit-Π-closure ext₂₂ 1 λ _ → implicit-Π-closure ext₂₂ 1 λ _ → D.Hom-is-set)) ⟩ ((C.Obj , C.HOM , (λ {_} → C.id) , λ {_ _ _} → C._∙_) , _) ≡ ((D.Obj , D.HOM , (λ {_} → D.id) , λ {_ _ _} → D._∙_) , _) ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ rearrange) ⟩□ C ≡ D □ where module C = Precategory (record { precategory = C }) module D = Precategory (record { precategory = D }) ext₁₁₂₊ : Extensionality ℓ₁ (ℓ₁ ⊔ lsuc ℓ₂) ext₁₁₂₊ = lower-extensionality ℓ₂ lzero ext ext₁₁₂ : Extensionality ℓ₁ (ℓ₁ ⊔ ℓ₂) ext₁₁₂ = lower-extensionality ℓ₂ (lsuc ℓ₂) ext ext₁₂₊ : Extensionality ℓ₁ (lsuc ℓ₂) ext₁₂₊ = lower-extensionality ℓ₂ ℓ₁ ext ext₁₂ : Extensionality ℓ₁ ℓ₂ ext₁₂ = lower-extensionality ℓ₂ _ ext ext₂₂ : Extensionality ℓ₂ ℓ₂ ext₂₂ = lower-extensionality ℓ₁ _ ext rearrange : ∀ {a b c d e} {A : Type a} {B : A → Type b} {C : (a : A) → B a → Type c} {D : (a : A) (b : B a) → C a b → Type d} {E : (a : A) (b : B a) (c : C a b) → D a b c → Type e} → (∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (c : C a b) → ∃ λ (d : D a b c) → E a b c d) ↔ (∃ λ (p : ∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (c : C a b) → D a b c) → E (proj₁ p) (proj₁ (proj₂ p)) (proj₁ (proj₂ (proj₂ p))) (proj₂ (proj₂ (proj₂ p)))) rearrange {A = A} {B} {C} {D} {E} = (∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (c : C a b) → ∃ λ (d : D a b c) → E a b c d) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → Σ-assoc) ⟩ (∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (p : ∃ λ (c : C a b) → D a b c) → E a b (proj₁ p) (proj₂ p)) ↝⟨ ∃-cong (λ _ → Σ-assoc) ⟩ (∃ λ (a : A) → ∃ λ (p : ∃ λ (b : B a) → ∃ λ (c : C a b) → D a b c) → E a (proj₁ p) (proj₁ (proj₂ p)) (proj₂ (proj₂ p))) ↝⟨ Σ-assoc ⟩□ (∃ λ (p : ∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (c : C a b) → D a b c) → E (proj₁ p) (proj₁ (proj₂ p)) (proj₁ (proj₂ (proj₂ p))) (proj₂ (proj₂ (proj₂ p)))) □ ≡⇒←-subst : {C D : Type ℓ₁} {H : C → C → Set ℓ₂} (eqO : C ≡ D) → (λ X Y → H (≡⇒← eqO X) (≡⇒← eqO Y)) ≡ subst (λ Obj → Obj → Obj → Set _) eqO H ≡⇒←-subst {C} {H = H} eqO = elim¹ (λ eqO → (λ X Y → H (≡⇒← eqO X) (≡⇒← eqO Y)) ≡ subst (λ Obj → Obj → Obj → Set _) eqO H) ((λ X Y → H (≡⇒← (refl C) X) (≡⇒← (refl C) Y)) ≡⟨ cong (λ f X Y → H (f X) (f Y)) ≡⇒←-refl ⟩ H ≡⟨ sym $ subst-refl _ _ ⟩∎ subst (λ Obj → Obj → Obj → Set _) (refl C) H ∎) eqO ≡⇒←-subst-refl : {C : Type ℓ₁} {H : C → C → Set ℓ₂} → _ ≡⇒←-subst-refl {C} {H} = ≡⇒←-subst {H = H} (refl C) ≡⟨ elim¹-refl _ _ ⟩∎ trans (cong (λ f X Y → H (f X) (f Y)) ≡⇒←-refl) (sym $ subst-refl _ _) ∎ HOM-lemma : (eqO : C.Obj ≡ D.Obj) → ((λ X Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y)) ≡ D.HOM) ≡ (subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) HOM-lemma eqO = cong (_≡ _) (≡⇒←-subst eqO) ≡⇒→-lemma : ∀ {eqO eqH X Y} {f : C.Hom (≡⇒← eqO X) (≡⇒← eqO Y)} → _ ≡⇒→-lemma {eqO} {eqH} {X} {Y} {f} = ≡⇒→ (cong (λ H → ⌞ H X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH)) f ≡⟨ sym $ subst-in-terms-of-≡⇒↝ equivalence (≡⇒← (HOM-lemma eqO) eqH) (λ H → ⌞ H X Y ⌟) _ ⟩ subst (λ H → ⌞ H X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq _) $ sym $ subst-in-terms-of-inverse∘≡⇒↝ equivalence (≡⇒←-subst eqO) (_≡ _) _ ⟩ subst (λ H → ⌞ H X Y ⌟) (subst (_≡ _) (sym $ ≡⇒←-subst eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq _) $ subst-trans (≡⇒←-subst eqO) ⟩ subst (λ H → ⌞ H X Y ⌟) (trans (≡⇒←-subst eqO) eqH) f ≡⟨ sym $ subst-subst _ _ _ _ ⟩∎ subst (λ H → ⌞ H X Y ⌟) eqH (subst (λ H → ⌞ H X Y ⌟) (≡⇒←-subst eqO) f) ∎ ≡⇒←-lemma : ∀ {eqO eqH X Y} {f : D.Hom X Y} → _ ≡⇒←-lemma {eqO} {eqH} {X} {Y} {f} = ≡⇒← (cong (λ H → ⌞ H X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH)) f ≡⟨ sym $ subst-in-terms-of-inverse∘≡⇒↝ equivalence (≡⇒← (HOM-lemma eqO) eqH) (λ H → ⌞ H X Y ⌟) _ ⟩ subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒← (HOM-lemma eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) (sym eq) _) $ sym $ subst-in-terms-of-inverse∘≡⇒↝ equivalence (≡⇒←-subst eqO) (_≡ _) _ ⟩ subst (λ H → ⌞ H X Y ⌟) (sym $ subst (_≡ _) (sym $ ≡⇒←-subst eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) (sym eq) _) $ subst-trans (≡⇒←-subst eqO) ⟩ subst (λ H → ⌞ H X Y ⌟) (sym $ trans (≡⇒←-subst eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq _) $ sym-trans (≡⇒←-subst eqO) eqH ⟩ subst (λ H → ⌞ H X Y ⌟) (trans (sym eqH) (sym $ ≡⇒←-subst eqO)) f ≡⟨ sym $ subst-subst _ _ _ _ ⟩∎ subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ∎ expand-≡⇒←-subst : ∀ {C : Type ℓ₁} {X Y} {F G : C → C → Set ℓ₂} {eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) (refl C) F ≡ G} {f : ⌞ F (≡⇒← (refl C) X) (≡⇒← (refl C) Y) ⌟} → _ expand-≡⇒←-subst {C} {X} {Y} {F} {eqH = eqH} {f} = subst (λ H → ⌞ H X Y ⌟) eqH (subst (λ H → ⌞ H X Y ⌟) (≡⇒←-subst (refl C)) f) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eqH $ subst (λ H → ⌞ H X Y ⌟) eq f) ≡⇒←-subst-refl ⟩ subst (λ H → ⌞ H X Y ⌟) eqH (subst (λ H → ⌞ H X Y ⌟) (trans (cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl) (sym $ subst-refl _ _)) f) ≡⟨ cong (subst (λ H → ⌞ H X Y ⌟) eqH) $ sym $ subst-subst _ _ _ _ ⟩ subst (λ H → ⌞ H X Y ⌟) eqH (subst (λ H → ⌞ H X Y ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl) f)) ≡⟨ cong (λ f → subst (λ H → ⌞ H X Y ⌟) eqH $ subst (λ H → ⌞ H X Y ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) f) $ sym $ subst-∘ (λ H → ⌞ H X Y ⌟) (λ f X Y → F (f X) (f Y)) ≡⇒←-refl ⟩∎ subst (λ H → ⌞ H X Y ⌟) eqH (subst (λ H → ⌞ H X Y ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ f → ⌞ F (f X) (f Y) ⌟) ≡⇒←-refl f)) ∎ expand-sym-≡⇒←-subst : ∀ {C : Type ℓ₁} {X Y} {F G : C → C → Set ℓ₂} {eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) (refl C) F ≡ G} {f : ⌞ G X Y ⌟} → _ expand-sym-≡⇒←-subst {C} {X} {Y} {F} {eqH = eqH} {f} = subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst (refl C)) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) (sym eq) $ subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⇒←-subst-refl ⟩ subst (λ H → ⌞ H X Y ⌟) (sym $ trans (cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl) (sym $ subst-refl _ _)) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq $ subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) $ sym-trans (cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl) _ ⟩ subst (λ H → ⌞ H X Y ⌟) (trans (sym $ sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (sym $ cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl)) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) (trans eq (sym $ cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl)) $ subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) $ sym-sym _ ⟩ subst (λ H → ⌞ H X Y ⌟) (trans (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (sym $ cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl)) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⟨ sym $ subst-subst _ _ _ _ ⟩ subst (λ H → ⌞ H X Y ⌟) (sym $ cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f)) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq $ subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) $ subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) $ sym $ cong-sym (λ f X Y → F (f X) (f Y)) ≡⇒←-refl ⟩ subst (λ H → ⌞ H X Y ⌟) (cong (λ f X Y → F (f X) (f Y)) $ sym ≡⇒←-refl) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f)) ≡⟨ sym $ subst-∘ _ _ _ ⟩∎ subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym ≡⇒←-refl) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) f)) ∎ subst-Σ-≡,≡→≡ : ∀ {C : Type ℓ₁} {F G : C → C → Set ℓ₂} {eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) (refl C) F ≡ G} {P : (Obj : Type ℓ₁) (HOM : Obj → Obj → Set ℓ₂) → Type (ℓ₁ ⊔ ℓ₂)} → _ subst-Σ-≡,≡→≡ {C} {F} {eqH = eqH} {P} = subst (P C) eqH ∘ subst (P C) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) F) ≡⟨ apply-ext (lower-extensionality lzero (lsuc ℓ₂) ext) (λ _ → subst-subst (P C) _ _ _) ⟩ subst (P C) (trans (sym $ subst-refl _ _) eqH) ≡⟨ apply-ext (lower-extensionality lzero (lsuc ℓ₂) ext) (λ _ → subst-∘ (uncurry P) (C ,_) _) ⟩ subst (uncurry P) (cong (C ,_) (trans (sym $ subst-refl _ _) eqH)) ≡⟨ cong (subst (uncurry P)) $ sym $ Σ-≡,≡→≡-reflˡ eqH ⟩∎ subst (uncurry P) (Σ-≡,≡→≡ (refl C) eqH) ∎ P = λ Obj (HOM : Obj → Obj → Set _) → ∀ {X} → ⌞ HOM X X ⌟ abstract P-lemma : ∀ {eqO eqH X} → ≡⇒→ (cong (λ H → ⌞ H X X ⌟) (≡⇒← (HOM-lemma eqO) eqH)) C.id ≡ subst₂ (uncurry P) eqO eqH C.id {X = X} P-lemma {eqO} {eqH} {X} = ≡⇒→ (cong (λ H → ⌞ H X X ⌟) (≡⇒← (HOM-lemma eqO) eqH)) C.id ≡⟨ ≡⇒→-lemma ⟩ subst (λ H → ⌞ H X X ⌟) eqH (subst (λ H → ⌞ H X X ⌟) (≡⇒←-subst eqO) (C.id {X = ≡⇒← eqO X})) ≡⟨ elim (λ eqO → ∀ {X F G} (eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) eqO F ≡ G) (id : ∀ X → ⌞ F X X ⌟) → subst (λ H → ⌞ H X X ⌟) eqH (subst (λ H → ⌞ H X X ⌟) (≡⇒←-subst eqO) (id (≡⇒← eqO X))) ≡ subst (uncurry P) (Σ-≡,≡→≡ eqO eqH) (λ {X} → id X)) (λ C {X F G} eqH id → subst (λ H → ⌞ H X X ⌟) eqH (subst (λ H → ⌞ H X X ⌟) (≡⇒←-subst (refl C)) (id (≡⇒← (refl C) X))) ≡⟨ expand-≡⇒←-subst ⟩ subst (λ H → ⌞ H X X ⌟) eqH (subst (λ H → ⌞ H X X ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ f → ⌞ F (f X) (f X) ⌟) ≡⇒←-refl (id (≡⇒← (refl C) X)))) ≡⟨ cong (λ f → subst (λ H → ⌞ H X X ⌟) eqH (subst (λ H → ⌞ H X X ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) f)) $ dcong (λ f → id (f X)) ≡⇒←-refl ⟩ subst (λ H → ⌞ H X X ⌟) eqH (subst (λ H → ⌞ H X X ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) F) (id X)) ≡⟨ cong (subst (λ H → ⌞ H X X ⌟) eqH) $ push-subst-implicit-application _ _ ⟩ subst (λ H → ⌞ H X X ⌟) eqH (subst (P C) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) F) (λ {X} → id X) {X = X}) ≡⟨ push-subst-implicit-application _ _ ⟩ subst (P C) eqH (subst (P C) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) F) (λ {X} → id X)) {X = X} ≡⟨ cong (λ (f : P C F → P C G) → f _) subst-Σ-≡,≡→≡ ⟩∎ subst (uncurry P) (Σ-≡,≡→≡ (refl C) eqH) (λ {X} → id X) ∎) eqO eqH (λ _ → C.id) ⟩ subst (uncurry P) (Σ-≡,≡→≡ eqO eqH) (λ {X} → C.id {X = X}) {X = X} ≡⟨⟩ subst₂ (uncurry P) eqO eqH C.id ∎ Q = λ Obj (HOM : Obj → Obj → Set _) → ∀ {X Y Z} → ⌞ HOM Y Z ⌟ → ⌞ HOM X Y ⌟ → ⌞ HOM X Z ⌟ push-Q : {C : Type ℓ₁} {X Y Z : C} {F G : C → C → Set ℓ₂} {c : (X Y Z : C) → ⌞ F Y Z ⌟ → ⌞ F X Y ⌟ → ⌞ F X Z ⌟} {F≡G : F ≡ G} {f : ⌞ G Y Z ⌟} {g : ⌞ G X Y ⌟} → subst (λ H → ⌞ H X Z ⌟) F≡G (c X Y Z (subst (λ H → ⌞ H Y Z ⌟) (sym F≡G) f) (subst (λ H → ⌞ H X Y ⌟) (sym F≡G) g)) ≡ subst (Q C) F≡G (c _ _ _) f g push-Q {C} {X} {Y} {Z} {c = c} {F≡G} {f} {g} = subst (λ H → ⌞ H X Z ⌟) F≡G (c X Y Z (subst (λ H → ⌞ H Y Z ⌟) (sym F≡G) f) (subst (λ H → ⌞ H X Y ⌟) (sym F≡G) g)) ≡⟨ sym subst-→ ⟩ subst (λ H → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) F≡G (c X Y Z (subst (λ H → ⌞ H Y Z ⌟) (sym F≡G) f)) g ≡⟨ cong (_$ g) $ sym subst-→ ⟩ subst (λ H → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) F≡G (c X Y Z) f g ≡⟨ cong (λ h → h f g) $ push-subst-implicit-application _ (λ H Z → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) ⟩ subst (λ H → ∀ {Z} → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) F≡G (c X Y _) f g ≡⟨ cong (λ h → h {Z = Z} f g) $ push-subst-implicit-application F≡G (λ H Y → ∀ {Z} → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) ⟩ subst (λ H → ∀ {Y Z} → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) F≡G (c X _ _) f g ≡⟨ cong (λ h → h {Y = Y} {Z = Z} f g) $ push-subst-implicit-application F≡G (λ H X → ∀ {Y Z} → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) ⟩∎ subst (Q C) F≡G (c _ _ _) f g ∎ abstract Q-lemma : ∀ {eqO eqH X Y Z f g} → let eqH′ = λ X Y → cong (λ H → ⌞ H X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH) in ≡⇒→ (eqH′ X Z) (≡⇒← (eqH′ Y Z) f C.∙ ≡⇒← (eqH′ X Y) g) ≡ subst₂ (uncurry Q) eqO eqH C._∙_ f g Q-lemma {eqO} {eqH} {X} {Y} {Z} {f} {g} = let eqH′ = λ X Y → cong (λ F → ⌞ F X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH) in ≡⇒→ (eqH′ X Z) (≡⇒← (eqH′ Y Z) f C.∙ ≡⇒← (eqH′ X Y) g) ≡⟨ cong₂ (λ f g → ≡⇒→ (eqH′ X Z) (f C.∙ g)) ≡⇒←-lemma ≡⇒←-lemma ⟩ ≡⇒→ (eqH′ X Z) (subst (λ H → ⌞ H Y Z ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f) C.∙ subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)) ≡⟨ ≡⇒→-lemma ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst eqO) (subst (λ H → ⌞ H Y Z ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f) C.∙ subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))) ≡⟨ elim (λ eqO → ∀ {X Y Z F G} (eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) eqO F ≡ G) (comp : ∀ X Y Z → ⌞ F Y Z ⌟ → ⌞ F X Y ⌟ → ⌞ F X Z ⌟) (f : ⌞ G Y Z ⌟) (g : ⌞ G X Y ⌟) → subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst eqO) (comp (≡⇒← eqO X) (≡⇒← eqO Y) (≡⇒← eqO Z) (subst (λ H → ⌞ H Y Z ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)) (subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst eqO) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))) ≡ subst (uncurry Q) (Σ-≡,≡→≡ eqO eqH) (λ {X Y Z} → comp X Y Z) f g) (λ C {X Y Z F G} eqH comp f g → subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst (refl C)) (comp (≡⇒← (refl C) X) (≡⇒← (refl C) Y) (≡⇒← (refl C) Z) (subst (λ H → ⌞ H Y Z ⌟) (sym $ ≡⇒←-subst (refl C)) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)) (subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst (refl C)) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))) ≡⟨ cong₂ (λ f g → subst (λ H → ⌞ H X Z ⌟) eqH $ subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst (refl C)) $ comp (≡⇒← (refl C) X) (≡⇒← (refl C) Y) (≡⇒← (refl C) Z) f g) expand-sym-≡⇒←-subst expand-sym-≡⇒←-subst ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst (refl C)) (comp (≡⇒← (refl C) X) (≡⇒← (refl C) Y) (≡⇒← (refl C) Z) (subst (λ f → ⌞ F (f Y) (f Z) ⌟) (sym ≡⇒←-refl) (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))) (subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym ≡⇒←-refl) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))) ≡⟨ expand-≡⇒←-subst ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ f → ⌞ F (f X) (f Z) ⌟) ≡⇒←-refl (comp (≡⇒← (refl C) X) (≡⇒← (refl C) Y) (≡⇒← (refl C) Z) (subst (λ f → ⌞ F (f Y) (f Z) ⌟) (sym ≡⇒←-refl) (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))) (subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym ≡⇒←-refl) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))))) ≡⟨ cong (subst (λ H → ⌞ H X Z ⌟) eqH ∘ subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)) $ dcong′ (λ h eq → comp (h X) (h Y) (h Z) (subst (λ f → ⌞ F (f Y) (f Z) ⌟) (sym eq) (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))) (subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym eq) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))) _ ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z (subst (λ f → ⌞ F (f Y) (f Z) ⌟) (sym (refl P.id)) (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))) (subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym (refl P.id)) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))) ≡⟨ cong₂ (λ p q → subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z (subst (λ f → ⌞ F (f Y) (f Z) ⌟) p (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))) (subst (λ f → ⌞ F (f X) (f Y) ⌟) q (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))))) (sym-refl {x = P.id}) (sym-refl {x = P.id}) ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z (subst (λ f → ⌞ F (f Y) (f Z) ⌟) (refl P.id) (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))) (subst (λ f → ⌞ F (f X) (f Y) ⌟) (refl P.id) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))) ≡⟨ cong₂ (λ f g → subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z f g))) (subst-refl _ _) (subst-refl _ _) ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z (subst (λ H → ⌞ H Y Z ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)) (subst (λ H → ⌞ H X Y ⌟) (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))) ≡⟨ sym $ cong₂ (λ p q → subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z (subst (λ H → ⌞ H Y Z ⌟) p (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)) (subst (λ H → ⌞ H X Y ⌟) q (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))) (sym-sym (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)) (sym-sym (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)) ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (λ H → ⌞ H X Z ⌟) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (comp X Y Z (subst (λ H → ⌞ H Y Z ⌟) (sym $ sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)) (subst (λ H → ⌞ H X Y ⌟) (sym $ sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))) ≡⟨ cong (subst (λ H → ⌞ H X Z ⌟) eqH) push-Q ⟩ subst (λ H → ⌞ H X Z ⌟) eqH (subst (Q C) (sym $ subst-refl _ _) (λ {X Y Z} → comp X Y Z) (subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f) (subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)) ≡⟨ push-Q ⟩ subst (Q C) eqH (subst (Q C) (sym $ subst-refl _ _) (λ {X Y Z} → comp X Y Z)) f g ≡⟨ cong (λ (h : Q C F → Q C G) → h _ _ _) subst-Σ-≡,≡→≡ ⟩∎ subst (uncurry Q) (Σ-≡,≡→≡ (refl C) eqH) (λ {X Y Z} → comp X Y Z) f g ∎) eqO eqH (λ _ _ _ → C._∙_) f g ⟩ subst (uncurry Q) (Σ-≡,≡→≡ eqO eqH) C._∙_ f g ≡⟨⟩ subst₂ (uncurry Q) eqO eqH C._∙_ f g ∎ -- Equality characterisation lemma for Precategory. equality-characterisation-Precategory : ∀ {ℓ₁ ℓ₂} {C D : Precategory ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ lsuc ℓ₂) → Univalence ℓ₁ → Univalence ℓ₂ → let module C = Precategory C module D = Precategory D in (∃ λ (eqO : C.Obj ≃ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃ D.Hom X Y) → (∀ X → _≃_.to (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → _≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f) (_≃_.from (eqH X Y) g)) ≡ f D.∙ g)) ↔ C ≡ D equality-characterisation-Precategory {ℓ₁} {ℓ₂} {C} {D} ext univ₁ univ₂ = _ ↝⟨ equality-characterisation-Precategory′ ext univ₁ univ₂ ⟩ C.precategory ≡ D.precategory ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ rearrange) ⟩□ C ≡ D □ where module C = Precategory C module D = Precategory D rearrange : Precategory ℓ₁ ℓ₂ ↔ Precategory′ ℓ₁ ℓ₂ rearrange = record { surjection = record { logical-equivalence = record { to = Precategory.precategory ; from = λ C → record { precategory = C } } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } -- Lifts a precategory's object type. lift-precategory-Obj : ∀ {ℓ₁} ℓ₁′ {ℓ₂} → Precategory ℓ₁ ℓ₂ → Precategory (ℓ₁ ⊔ ℓ₁′) ℓ₂ lift-precategory-Obj ℓ₁′ C .Precategory.precategory = ↑ ℓ₁′ C.Obj , (λ (lift A) (lift B) → C.HOM A B) , C.id , C._∙_ , C.left-identity , C.right-identity , C.assoc where module C = Precategory C -- Lifts a precategory's morphism type family. lift-precategory-Hom : ∀ {ℓ₁ ℓ₂} ℓ₂′ → Precategory ℓ₁ ℓ₂ → Precategory ℓ₁ (ℓ₂ ⊔ ℓ₂′) lift-precategory-Hom ℓ₂′ C .Precategory.precategory = C.Obj , (λ A B → ↑ ℓ₂′ (C.Hom A B) , ↑-closure 2 C.Hom-is-set) , lift C.id , (λ (lift f) (lift g) → lift (f C.∙ g)) , cong lift C.left-identity , cong lift C.right-identity , cong lift C.assoc where module C = Precategory C ------------------------------------------------------------------------ -- Categories Category′ : (ℓ₁ ℓ₂ : Level) → Type (lsuc (ℓ₁ ⊔ ℓ₂)) Category′ ℓ₁ ℓ₂ = -- A precategory. ∃ λ (C : Precategory ℓ₁ ℓ₂) → -- The function ≡→≅ is an equivalence (for each pair of objects). ∀ {X Y} → Is-equivalence (Precategory.≡→≅ C {X = X} {Y = Y}) -- A wrapper. record Category (ℓ₁ ℓ₂ : Level) : Type (lsuc (ℓ₁ ⊔ ℓ₂)) where field category : Category′ ℓ₁ ℓ₂ -- Precategory. precategory : Precategory ℓ₁ ℓ₂ precategory = proj₁ category open Precategory precategory public hiding (precategory) -- The function ≡→≅ is an equivalence (for each pair of objects). ≡→≅-equivalence : ∀ {X Y} → Is-equivalence (≡→≅ {X = X} {Y = Y}) ≡→≅-equivalence = proj₂ category ≡≃≅ : ∀ {X Y} → (X ≡ Y) ≃ (X ≅ Y) ≡≃≅ = ⟨ _ , ≡→≅-equivalence ⟩ ≅→≡ : ∀ {X Y} → X ≅ Y → X ≡ Y ≅→≡ = _≃_.from ≡≃≅ -- "Computation rule" for ≅→≡. ≅→≡-refl : ∀ {X} → ≅→≡ id≅ ≡ refl X ≅→≡-refl {X} = ≅→≡ id≅ ≡⟨ cong ≅→≡ $ sym ≡→≅-refl ⟩ ≅→≡ (≡→≅ (refl X)) ≡⟨ _≃_.left-inverse-of ≡≃≅ _ ⟩∎ refl X ∎ -- Obj has h-level 3. Obj-3 : H-level 3 Obj Obj-3 = respects-surjection (_≃_.surjection (Eq.inverse ≡≃≅)) 2 ≅-set -- Isomorphisms form a category. category-≅ : Category ℓ₁ ℓ₂ category-≅ = record { category = precategory-≅ , is-equiv } where module P≅ = Precategory precategory-≅ abstract is-equiv : ∀ {X Y} → Is-equivalence (P≅.≡→≅ {X = X} {Y = Y}) is-equiv = _⇔_.from (Is-equivalence≃Is-equivalence-CP _) λ (X≅Y , X≅Y-iso) → Σ-map (Σ-map P.id (λ {X≡Y} ≡→≅[X≡Y]≡X≅Y → elim (λ {X Y} X≡Y → (X≅Y : X ≅ Y) (X≅Y-iso : P≅.Is-isomorphism X≅Y) → ≡→≅ X≡Y ≡ X≅Y → P≅.≡→≅ X≡Y ≡ (X≅Y , X≅Y-iso)) (λ X X≅X X≅X-iso ≡→≅[refl]≡X≅X → P≅.≡→≅ (refl X) ≡⟨ P≅.≡→≅-refl ⟩ P≅.id≅ ≡⟨ Σ-≡,≡→≡ (id≅ ≡⟨ sym ≡→≅-refl ⟩ ≡→≅ (refl X) ≡⟨ ≡→≅[refl]≡X≅X ⟩∎ X≅X ∎) (P≅.Is-isomorphism-propositional _ _ _) ⟩∎ (X≅X , X≅X-iso) ∎) X≡Y X≅Y X≅Y-iso ≡→≅[X≡Y]≡X≅Y)) (λ { {X≡Y , _} ∀y→≡y → λ { (X≡Y′ , ≡→≅[X≡Y′]≡X≅Y) → let lemma = ≡→≅ X≡Y′ ≡⟨ elim (λ X≡Y′ → ≡→≅ X≡Y′ ≡ proj₁ (P≅.≡→≅ X≡Y′)) (λ X → ≡→≅ (refl X) ≡⟨ ≡→≅-refl ⟩ id≅ ≡⟨ cong proj₁ $ sym P≅.≡→≅-refl ⟩∎ proj₁ (P≅.≡→≅ (refl X)) ∎) X≡Y′ ⟩ proj₁ (P≅.≡→≅ X≡Y′) ≡⟨ cong proj₁ ≡→≅[X≡Y′]≡X≅Y ⟩∎ X≅Y ∎ in (X≡Y , _) ≡⟨ Σ-≡,≡→≡ (cong proj₁ (∀y→≡y (X≡Y′ , lemma))) (P≅.≅-set _ _) ⟩∎ (X≡Y′ , _) ∎ } }) $ _⇔_.to (Is-equivalence≃Is-equivalence-CP _) ≡→≅-equivalence X≅Y -- Some equality rearrangement lemmas. Hom-, : ∀ {X X′ Y Y′} {f : Hom X Y} (p : X ≡ X′) (q : Y ≡ Y′) → subst (uncurry Hom) (cong₂ _,_ p q) f ≡ ≡→≅ q ¹ ∙ f ∙ ≡→≅ p ⁻¹ Hom-, p q = elim (λ p → ∀ q → ∀ {f} → subst (uncurry Hom) (cong₂ _,_ p q) f ≡ ≡→≅ q ¹ ∙ f ∙ ≡→≅ p ⁻¹) (λ X q → elim (λ q → ∀ {f} → subst (uncurry Hom) (cong₂ _,_ (refl X) q) f ≡ ≡→≅ q ¹ ∙ f ∙ ≡→≅ (refl X) ⁻¹) (λ Y {f} → subst (uncurry Hom) (cong₂ _,_ (refl X) (refl Y)) f ≡⟨ cong (λ eq → subst (uncurry Hom) eq f) $ cong₂-refl _,_ ⟩ subst (uncurry Hom) (refl (X , Y)) f ≡⟨ subst-refl (uncurry Hom) _ ⟩ f ≡⟨ sym left-identity ⟩ id ∙ f ≡⟨ cong (λ g → g ¹ ∙ f) $ sym ≡→≅-refl ⟩ ≡→≅ (refl Y) ¹ ∙ f ≡⟨ sym right-identity ⟩ (≡→≅ (refl Y) ¹ ∙ f) ∙ id ≡⟨ sym assoc ⟩ ≡→≅ (refl Y) ¹ ∙ f ∙ id ≡⟨ cong (λ g → ≡→≅ (refl Y) ¹ ∙ f ∙ g ⁻¹) $ sym ≡→≅-refl ⟩∎ ≡→≅ (refl Y) ¹ ∙ f ∙ ≡→≅ (refl X) ⁻¹ ∎) q) p q ≡→≅-trans : ∀ {X Y Z} (p : X ≡ Y) (q : Y ≡ Z) → ≡→≅ (trans p q) ≡ ≡→≅ q ∙≅ ≡→≅ p ≡→≅-trans {X} = elim¹ (λ p → ∀ q → ≡→≅ (trans p q) ≡ ≡→≅ q ∙≅ ≡→≅ p) (elim¹ (λ q → ≡→≅ (trans (refl X) q) ≡ ≡→≅ q ∙≅ ≡→≅ (refl X)) (≡→≅ (trans (refl X) (refl X)) ≡⟨ cong ≡→≅ trans-refl-refl ⟩ ≡→≅ (refl X) ≡⟨ ≡→≅-refl ⟩ id≅ ≡⟨ sym $ Precategory.left-identity precategory-≅ ⟩ id≅ ∙≅ id≅ ≡⟨ sym $ cong₂ _∙≅_ ≡→≅-refl ≡→≅-refl ⟩∎ ≡→≅ (refl X) ∙≅ ≡→≅ (refl X) ∎)) -- Equality of categories is isomorphic to equality of the underlying -- precategories (assuming extensionality). ≡↔precategory≡precategory′ : ∀ {ℓ₁ ℓ₂} {C D : Category′ ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) → C ≡ D ↔ proj₁ C ≡ proj₁ D ≡↔precategory≡precategory′ {ℓ₂ = ℓ₂} ext = inverse $ ignore-propositional-component (implicit-Π-closure (lower-extensionality ℓ₂ lzero ext) 1 λ _ → implicit-Π-closure (lower-extensionality ℓ₂ lzero ext) 1 λ _ → Eq.propositional ext _) -- Equality of categories is isomorphic to equality of the underlying -- precategories (assuming extensionality). ≡↔precategory≡precategory : ∀ {ℓ₁ ℓ₂} {C D : Category ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) → C ≡ D ↔ Category.precategory C ≡ Category.precategory D ≡↔precategory≡precategory {C = C} {D = D} ext = C ≡ D ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ rearrange) ⟩ C.category ≡ D.category ↝⟨ ≡↔precategory≡precategory′ ext ⟩□ C.precategory ≡ D.precategory □ where module C = Category C module D = Category D rearrange : Category′ _ _ ↔ Category _ _ rearrange = record { surjection = record { logical-equivalence = record { to = λ C → record { category = C } ; from = Category.category } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } -- Equality characterisation lemma for Category′. equality-characterisation-Category′ : ∀ {ℓ₁ ℓ₂} {C D : Category′ ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ lsuc ℓ₂) → Univalence ℓ₁ → Univalence ℓ₂ → let module C = Category (record { category = C }) module D = Category (record { category = D }) in (∃ λ (eqO : C.Obj ≃ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃ D.Hom X Y) → (∀ X → _≃_.to (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → _≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f) (_≃_.from (eqH X Y) g)) ≡ f D.∙ g)) ↔ C ≡ D equality-characterisation-Category′ {ℓ₂ = ℓ₂} {C} {D} ext univ₁ univ₂ = _ ↝⟨ equality-characterisation-Precategory ext univ₁ univ₂ ⟩ C.precategory ≡ D.precategory ↝⟨ inverse $ ≡↔precategory≡precategory′ (lower-extensionality lzero (lsuc ℓ₂) ext) ⟩□ C ≡ D □ where module C = Category (record { category = C }) module D = Category (record { category = D }) -- Equality characterisation lemma for Category. equality-characterisation-Category : ∀ {ℓ₁ ℓ₂} {C D : Category ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ lsuc ℓ₂) → Univalence ℓ₁ → Univalence ℓ₂ → let module C = Category C module D = Category D in (∃ λ (eqO : C.Obj ≃ D.Obj) → ∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃ D.Hom X Y) → (∀ X → _≃_.to (eqH X X) C.id ≡ D.id) × (∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) → _≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f) (_≃_.from (eqH X Y) g)) ≡ f D.∙ g)) ↔ C ≡ D equality-characterisation-Category {ℓ₂ = ℓ₂} {C} {D} ext univ₁ univ₂ = _ ↝⟨ equality-characterisation-Precategory ext univ₁ univ₂ ⟩ C.precategory ≡ D.precategory ↝⟨ inverse $ ≡↔precategory≡precategory (lower-extensionality lzero (lsuc ℓ₂) ext) ⟩□ C ≡ D □ where module C = Category C module D = Category D -- A lemma that can be used to turn a precategory into a category. precategory-to-category : ∀ {c₁ c₂} (C : Precategory c₁ c₂) → let open Precategory C in (≡≃≅ : ∀ {X Y} → (X ≡ Y) ≃ (X ≅ Y)) → (∀ {X} → _≃_.to ≡≃≅ (refl X) ¹ ≡ id) → Category c₁ c₂ precategory-to-category C ≡≃≅ ≡≃≅-refl = record { category = C , Precategory.≡→≅-equivalence-lemma C ≡≃≅ ≡≃≅-refl } -- A variant of the previous lemma for precategories with Set c₁ as -- the type of objects. (The lemma is defined using extensionality and -- univalence for sets.) precategory-with-Set-to-category : ∀ {c₁ c₂} → Extensionality c₁ c₁ → ((A B : Set c₁) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) → (C : Precategory-with-Obj (Set c₁) c₂) → let open Precategory (record { precategory = _ , C }) in (≃≃≅ : ∀ X Y → (⌞ X ⌟ ≃ ⌞ Y ⌟) ≃ (X ≅ Y)) → (∀ X → _≃_.to (≃≃≅ X X) Eq.id ¹ ≡ id) → Category (lsuc c₁) c₂ precategory-with-Set-to-category ext univ C ≃≃≅ ≃≃≅-id = precategory-to-category C′ ≡≃≅ ≡≃≅-refl where C′ = record { precategory = _ , C } open Precategory C′ -- _≡_ and _≅_ are pointwise equivalent… cong-⌞⌟ : {X Y : Obj} → (X ≡ Y) ≃ (⌞ X ⌟ ≡ ⌞ Y ⌟) cong-⌞⌟ = Eq.↔⇒≃ $ inverse $ ignore-propositional-component (H-level-propositional ext 2) ≡≃≅ : ∀ {X Y} → (X ≡ Y) ≃ (X ≅ Y) ≡≃≅ {X} {Y} = ≃≃≅ X Y ⊚ ≡≃≃ (univ X Y) ⊚ cong-⌞⌟ -- …and the proof maps reflexivity to the identity isomorphism. ≡≃≅-refl : ∀ {X} → _¹ {X = X} {Y = X} (_≃_.to ≡≃≅ (refl X)) ≡ id ≡≃≅-refl {X} = cong (_¹ {X = X} {Y = X}) ( _≃_.to (≃≃≅ X X) (≡⇒≃ (proj₁ (Σ-≡,≡←≡ (refl X)))) ≡⟨ cong (_≃_.to (≃≃≅ X X) ∘ ≡⇒≃ ∘ proj₁) Σ-≡,≡←≡-refl ⟩ _≃_.to (≃≃≅ X X) (≡⇒≃ (refl ⌞ X ⌟)) ≡⟨ cong (_≃_.to (≃≃≅ X X)) ≡⇒≃-refl ⟩ _≃_.to (≃≃≅ X X) Eq.id ≡⟨ _≃_.from (≡≃≡¹ {X = X} {Y = X}) $ ≃≃≅-id X ⟩∎ id≅ ∎) -- An example: sets and functions. (Defined using extensionality and -- univalence for sets.) category-Set : (ℓ : Level) → Extensionality ℓ ℓ → ((A B : Set ℓ) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) → Category (lsuc ℓ) ℓ category-Set ℓ ext univ = precategory-with-Set-to-category ext univ (proj₂ precategory) (≃≃≅-Set ℓ ext) (λ _ → refl P.id) where C = precategory-Set ℓ ext open Precategory C -- An example: sets and bijections. (Defined using extensionality and -- univalence for sets.) category-Set-≅ : (ℓ : Level) → Extensionality ℓ ℓ → ((A B : Set ℓ) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) → Category (lsuc ℓ) ℓ category-Set-≅ ℓ ext univ = Category.category-≅ (category-Set ℓ ext univ) private -- The objects are sets. Obj-category-Set-≅ : ∀ ℓ (ext : Extensionality ℓ ℓ) (univ : (A B : Set ℓ) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) → Category.Obj (category-Set-≅ ℓ ext univ) ≡ Set ℓ Obj-category-Set-≅ _ _ _ = refl _ -- The morphisms are bijections. Hom-category-Set-≅ : ∀ ℓ (ext : Extensionality ℓ ℓ) (univ : (A B : Set ℓ) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) → Category.Hom (category-Set-≅ ℓ ext univ) ≡ Category._≅_ (category-Set ℓ ext univ) Hom-category-Set-≅ _ _ _ = refl _ -- A trivial category (with a singleton type of objects and singleton -- homsets). Unit : ∀ ℓ₁ ℓ₂ → Category ℓ₁ ℓ₂ Unit ℓ₁ ℓ₂ = precategory-to-category record { precategory = ↑ ℓ₁ ⊤ , (λ _ _ → ↑ ℓ₂ ⊤ , ↑⊤-set) , _ , _ , refl _ , refl _ , refl _ } (λ {x y} → x ≡ y ↔⟨ ≡↔⊤ ⟩ ⊤ ↔⟨ inverse ≡↔⊤ ⟩ lift tt ≡ lift tt ↔⟨ inverse $ drop-⊤-left-Σ ≡↔⊤ ⟩ lift tt ≡ lift tt × lift tt ≡ lift tt ↔⟨ inverse $ drop-⊤-left-Σ Bijection.↑↔ ⟩ ↑ ℓ₂ ⊤ × lift tt ≡ lift tt × lift tt ≡ lift tt ↔⟨ inverse $ drop-⊤-left-Σ Bijection.↑↔ ⟩□ ↑ ℓ₂ ⊤ × ↑ ℓ₂ ⊤ × lift tt ≡ lift tt × lift tt ≡ lift tt □) (refl _) where ↑⊤-set : ∀ {ℓ} → Is-set (↑ ℓ ⊤) ↑⊤-set = mono (Nat.zero≤ 2) (↑-closure 0 ⊤-contractible) ≡↔⊤ : ∀ {ℓ} {x y : ↑ ℓ ⊤} → (x ≡ y) ↔ ⊤ ≡↔⊤ = _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible ↑⊤-set (refl _) -- An "empty" category, without objects. Empty : ∀ ℓ₁ ℓ₂ → Category ℓ₁ ℓ₂ Empty ℓ₁ ℓ₂ = precategory-to-category record { precategory = ⊥ , ⊥-elim , (λ {x} → ⊥-elim x) , (λ {x} → ⊥-elim x) , (λ {x} → ⊥-elim x) , (λ {x} → ⊥-elim x) , (λ {x} → ⊥-elim x) } (λ {x} → ⊥-elim x) (λ {x} → ⊥-elim x) -- Lifts a category's object type. lift-category-Obj : ∀ {ℓ₁} ℓ₁′ {ℓ₂} → Category ℓ₁ ℓ₂ → Category (ℓ₁ ⊔ ℓ₁′) ℓ₂ lift-category-Obj ℓ₁′ C .Category.category = C′ , ≡→≅-equivalence where C′ = lift-precategory-Obj ℓ₁′ (Category.precategory C) module C = Category C module C′ = Precategory C′ ≡→≅-equivalence : {X Y : Precategory.Obj C′} → Is-equivalence (C′.≡→≅ {X = X} {Y = Y}) ≡→≅-equivalence {X = X} {Y = Y} = _≃_.is-equivalence $ Eq.with-other-function (X ≡ Y ↝⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ Bijection.↑↔ ⟩ lower X ≡ lower Y ↝⟨ Eq.⟨ _ , C.≡→≅-equivalence ⟩ ⟩ lower X C.≅ lower Y ↔⟨⟩ X C′.≅ Y □) C′.≡→≅ (elim (λ X≡Y → C.≡→≅ (cong lower X≡Y) ≡ C′.≡→≅ X≡Y) (λ X → C.≡→≅ (cong lower (refl X)) ≡⟨ cong C.≡→≅ $ cong-refl lower ⟩ C.≡→≅ (refl (lower X)) ≡⟨ C.≡→≅-refl ⟩ C.id≅ ≡⟨⟩ C′.id≅ ≡⟨ sym C′.≡→≅-refl ⟩∎ C′.≡→≅ (refl X) ∎)) -- Lifts a category's morphism type family. lift-category-Hom : ∀ {ℓ₁ ℓ₂} ℓ₂′ → Category ℓ₁ ℓ₂ → Category ℓ₁ (ℓ₂ ⊔ ℓ₂′) lift-category-Hom ℓ₂′ C .Category.category = C′ , ≡→≅-equivalence where C′ = lift-precategory-Hom ℓ₂′ (Category.precategory C) module C = Category C module C′ = Precategory C′ ≡→≅-equivalence : {X Y : Precategory.Obj C′} → Is-equivalence (C′.≡→≅ {X = X} {Y = Y}) ≡→≅-equivalence {X = X} {Y = Y} = _≃_.is-equivalence $ Eq.with-other-function (X ≡ Y ↝⟨ Eq.⟨ _ , C.≡→≅-equivalence ⟩ ⟩ X C.≅ Y ↝⟨ equiv ⟩□ X C′.≅ Y □) C′.≡→≅ (elim (λ X≡Y → _≃_.to equiv (C.≡→≅ X≡Y) ≡ C′.≡→≅ X≡Y) (λ X → _≃_.to equiv (C.≡→≅ (refl X)) ≡⟨ cong (_≃_.to equiv) C.≡→≅-refl ⟩ _≃_.to equiv C.id≅ ≡⟨ _≃_.from C′.≡≃≡¹ (refl _) ⟩ C′.id≅ ≡⟨ sym C′.≡→≅-refl ⟩∎ C′.≡→≅ (refl X) ∎)) where equiv : ∀ {X Y} → (X C.≅ Y) ≃ (X C′.≅ Y) equiv = Σ-cong (inverse Bijection.↑↔) λ _ → Σ-cong (inverse Bijection.↑↔) λ _ → (Eq.≃-≡ $ Eq.↔⇒≃ Bijection.↑↔) ×-cong (Eq.≃-≡ $ Eq.↔⇒≃ Bijection.↑↔)
47.515536
148
0.327003
20308bfeefe1e36e9f868aeb4ff805ab85930c1b
515
agda
Agda
test/Succeed/OverloadedString.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/OverloadedString.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/OverloadedString.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where open import Common.Prelude open import Common.String record IsString {a} (A : Set a) : Set a where field fromString : String → A open IsString {{...}} public {-# BUILTIN FROMSTRING fromString #-} instance StringIsString : IsString String StringIsString = record { fromString = λ s → s } ListIsString : IsString (List Char) ListIsString = record { fromString = stringToList } foo : List Char foo = "foo" open import Common.Equality thm : "foo" ≡ 'f' ∷ 'o' ∷ 'o' ∷ [] thm = refl
18.392857
53
0.673786
2f27cab5b76333f2659af032f70239ec8ad794d6
791
agda
Agda
test/Succeed/Issue162.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue162.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue162.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Now you don't need a mutual keyword anymore! module Issue162 where data Odd : Set data Even : Set where zero : Even suc : Odd → Even data Odd where suc : Even → Odd -- This means you can have all kinds of things in -- mutual blocks. -- Like postulates _o+e_ : Odd → Even → Odd _e+e_ : Even → Even → Even zero e+e m = m suc n e+e m = suc (n o+e m) postulate todo : Even suc n o+e m = suc todo -- Or modules _e+o_ : Even → Odd → Odd _o+o_ : Odd → Odd → Even suc n o+o m = suc (n e+o m) module Helper where f : Even → Odd → Odd f zero m = m f (suc n) m = suc (n o+o m) n e+o m = Helper.f n m -- Multiplication just for the sake of it _o*o_ : Odd → Odd → Odd _e*o_ : Even → Odd → Even zero e*o m = zero suc n e*o m = m o+o (n o*o m) suc n o*o m = m o+e (n e*o m)
17.577778
49
0.603034
39474b0e0b7eb93a72acf328c6303c8420bcee65
1,124
agda
Agda
test/Fail/Issue4283.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue4283.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue4283.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
--{-# OPTIONS -vtc:50 #-} {-# OPTIONS --double-check #-} open import Agda.Primitive postulate Id : (l : Level) (A : Set l) → A → A → Set l postulate w/e : (l : Level) (A : Set l) → A data Box l (A : Set l) : Set l where box : A → Box l A unbox : (l : Level) (A : Set l) → Box l A → A unbox l A (box x) = x record R l (A : Set l) : Set l where --no-eta-equality -- ^ works if eta is disabled field boxed : Box l A refl : Id l A (w/e l A) (w/e l A) postulate El : (l : Level) (A : Set l) → A → A trans : (l : Level) (A : Set l) (x : A) → Id l A (w/e l A) (w/e l A) → Id l A (w/e l A) (w/e l A) → Id l A (w/e l A) (w/e l A) cong : (l : Level) (A : Set l) (f : A → A) (x y : A) → Id l A x y → Id l A (f x) (f y) module _ (l : Level) (BADNESS : Set) (A : Set l) (r : R l A) where open R r x = w/e l A p = trans l A (unbox l A boxed) refl refl lemma = El l (Id l (Id l A x x) p p) (cong l _ (λ p → trans l A (unbox l A boxed) p _) refl refl (w/e l (Id l (Id l A x x) refl refl))) -- ^ works if definition of lemma is removed test = λ _ → unbox _ _ boxed
26.761905
128
0.508007
c51e0156c7be482697f590c2a0db2d98b37f0ae6
940
agda
Agda
proofs/AKS/Unsafe.agda
mckeankylej/thesis
ddad4c0d5f384a0219b2177461a68dae06952dde
[ "MIT" ]
1
2020-12-01T22:38:27.000Z
2020-12-01T22:38:27.000Z
proofs/AKS/Unsafe.agda
mckeankylej/thesis
ddad4c0d5f384a0219b2177461a68dae06952dde
[ "MIT" ]
null
null
null
proofs/AKS/Unsafe.agda
mckeankylej/thesis
ddad4c0d5f384a0219b2177461a68dae06952dde
[ "MIT" ]
null
null
null
{-# OPTIONS --with-K #-} open import Axiom.Extensionality.Propositional using (Extensionality) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary using (Irrelevant) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_) open import Relation.Binary.PropositionalEquality.WithK using (≡-erase) -- acursed and unmentionable -- turn back traveller module AKS.Unsafe where open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe) public postulate TODO : ∀ {a} {A : Set a} → A BOTTOM : ∀ {a} {A : Set a} → A .irrelevance : ∀ {a} {A : Set a} -> .A -> A ≡-recomp : ∀ {a} {A : Set a} {x y : A} → .(x ≡ y) → x ≡ y fun-ext : ∀ {ℓ₁ ℓ₂} → Extensionality ℓ₁ ℓ₂ ≡-recomputable : ∀ {a} {A : Set a} {x y : A} → .(x ≡ y) → x ≡ y ≡-recomputable x≡y = ≡-erase (≡-recomp x≡y) ≢-irrelevant : ∀ {a} {A : Set a} → Irrelevant {A = A} _≢_ ≢-irrelevant {x} {y} [x≉y]₁ [x≉y]₂ = trustMe
34.814815
80
0.652128
dcf58ec8c796fc35403e8bd6ff989282b3d03938
183
agda
Agda
test/Fail/Issue952-unnamed.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue952-unnamed.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue952-unnamed.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where -- Should not be able to give by name id : {_ = A : Set} → A → A id x = x works : (X : Set) → X → X works X = id {X} fails : (X : Set) → X → X fails X = id {A = X}
14.076923
37
0.508197
4a432d8ac95ab13f98f714be6830204e8460a6bf
4,899
agda
Agda
Cubical/Data/Maybe/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Maybe/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Maybe/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Maybe.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Embedding open import Cubical.Data.Empty open import Cubical.Data.Unit open import Cubical.Data.Nat open import Cubical.Relation.Nullary open import Cubical.Data.Sum open import Cubical.Data.Maybe.Base -- Path space of Maybe type module MaybePath {ℓ} {A : Type ℓ} where Cover : Maybe A → Maybe A → Type ℓ Cover nothing nothing = Lift Unit Cover nothing (just _) = Lift ⊥ Cover (just _) nothing = Lift ⊥ Cover (just a) (just a') = a ≡ a' reflCode : (c : Maybe A) → Cover c c reflCode nothing = lift tt reflCode (just b) = refl encode : ∀ c c' → c ≡ c' → Cover c c' encode c _ = J (λ c' _ → Cover c c') (reflCode c) encodeRefl : ∀ c → encode c c refl ≡ reflCode c encodeRefl c = JRefl (λ c' _ → Cover c c') (reflCode c) decode : ∀ c c' → Cover c c' → c ≡ c' decode nothing nothing _ = refl decode (just _) (just _) p = cong just p decodeRefl : ∀ c → decode c c (reflCode c) ≡ refl decodeRefl nothing = refl decodeRefl (just _) = refl decodeEncode : ∀ c c' → (p : c ≡ c') → decode c c' (encode c c' p) ≡ p decodeEncode c _ = J (λ c' p → decode c c' (encode c c' p) ≡ p) (cong (decode c c) (encodeRefl c) ∙ decodeRefl c) encodeDecode : ∀ c c' → (d : Cover c c') → encode c c' (decode c c' d) ≡ d encodeDecode nothing nothing _ = refl encodeDecode (just a) (just a') = J (λ a' p → encode (just a) (just a') (cong just p) ≡ p) (encodeRefl (just a)) Cover≃Path : ∀ c c' → Cover c c' ≃ (c ≡ c') Cover≃Path c c' = isoToEquiv (iso (decode c c') (encode c c') (decodeEncode c c') (encodeDecode c c')) Cover≡Path : ∀ c c' → Cover c c' ≡ (c ≡ c') Cover≡Path c c' = isoToPath (iso (decode c c') (encode c c') (decodeEncode c c') (encodeDecode c c')) isOfHLevelCover : (n : ℕ) → isOfHLevel (suc (suc n)) A → ∀ c c' → isOfHLevel (suc n) (Cover c c') isOfHLevelCover n p nothing nothing = isOfHLevelLift (suc n) (isOfHLevelUnit (suc n)) isOfHLevelCover n p nothing (just a') = isOfHLevelLift (suc n) (subst (λ m → isOfHLevel m ⊥) (+-comm n 1) (hLevelLift n isProp⊥)) isOfHLevelCover n p (just a) nothing = isOfHLevelLift (suc n) (subst (λ m → isOfHLevel m ⊥) (+-comm n 1) (hLevelLift n isProp⊥)) isOfHLevelCover n p (just a) (just a') = p a a' isOfHLevelMaybe : ∀ {ℓ} (n : ℕ) {A : Type ℓ} → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) (Maybe A) isOfHLevelMaybe n lA c c' = retractIsOfHLevel (suc n) (MaybePath.encode c c') (MaybePath.decode c c') (MaybePath.decodeEncode c c') (MaybePath.isOfHLevelCover n lA c c') private variable ℓ : Level A : Type ℓ fromJust-def : A → Maybe A → A fromJust-def a nothing = a fromJust-def _ (just a) = a just-inj : (x y : A) → just x ≡ just y → x ≡ y just-inj x _ eq = cong (fromJust-def x) eq isEmbedding-just : isEmbedding (just {A = A}) isEmbedding-just w z = MaybePath.Cover≃Path (just w) (just z) .snd ¬nothing≡just : ∀ {x : A} → ¬ (nothing ≡ just x) ¬nothing≡just {A = A} {x = x} p = lower (subst (caseMaybe (Maybe A) (Lift ⊥)) p (just x)) ¬just≡nothing : ∀ {x : A} → ¬ (just x ≡ nothing) ¬just≡nothing {A = A} {x = x} p = lower (subst (caseMaybe (Lift ⊥) (Maybe A)) p (just x)) isProp-x≡nothing : (x : Maybe A) → isProp (x ≡ nothing) isProp-x≡nothing nothing x w = subst isProp (MaybePath.Cover≡Path nothing nothing) (isOfHLevelLift 1 isPropUnit) x w isProp-x≡nothing (just _) p _ = ⊥-elim (¬just≡nothing p) isContr-nothing≡nothing : isContr (nothing {A = A} ≡ nothing) isContr-nothing≡nothing = inhProp→isContr refl (isProp-x≡nothing _) discreteMaybe : Discrete A → Discrete (Maybe A) discreteMaybe eqA nothing nothing = yes refl discreteMaybe eqA nothing (just a') = no ¬nothing≡just discreteMaybe eqA (just a) nothing = no ¬just≡nothing discreteMaybe eqA (just a) (just a') with eqA a a' ... | yes p = yes (cong just p) ... | no ¬p = no (λ p → ¬p (just-inj _ _ p)) module SumUnit where Maybe→SumUnit : Maybe A → Unit ⊎ A Maybe→SumUnit nothing = inl tt Maybe→SumUnit (just a) = inr a SumUnit→Maybe : Unit ⊎ A → Maybe A SumUnit→Maybe (inl _) = nothing SumUnit→Maybe (inr a) = just a Maybe→SumUnit→Maybe : (x : Maybe A) → SumUnit→Maybe (Maybe→SumUnit x) ≡ x Maybe→SumUnit→Maybe nothing = refl Maybe→SumUnit→Maybe (just _) = refl SumUnit→Maybe→SumUnit : (x : Unit ⊎ A) → Maybe→SumUnit (SumUnit→Maybe x) ≡ x SumUnit→Maybe→SumUnit (inl _) = refl SumUnit→Maybe→SumUnit (inr _) = refl Maybe≡SumUnit : Maybe A ≡ Unit ⊎ A Maybe≡SumUnit = isoToPath (iso SumUnit.Maybe→SumUnit SumUnit.SumUnit→Maybe SumUnit.SumUnit→Maybe→SumUnit SumUnit.Maybe→SumUnit→Maybe)
35.759124
133
0.650133
2fc383355c263ede33aaea9002d08bcab97be395
290
agda
Agda
prototyping/Luau/Addr/ToString.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
1
2021-11-06T08:03:00.000Z
2021-11-06T08:03:00.000Z
prototyping/Luau/Addr/ToString.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
prototyping/Luau/Addr/ToString.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
module Luau.Addr.ToString where open import Agda.Builtin.String using (String; primStringAppend) open import Luau.Addr using (Addr) open import Agda.Builtin.Int using (Int; primShowInteger; pos) addrToString : Addr → String addrToString a = primStringAppend "a" (primShowInteger (pos a))
32.222222
64
0.789655
1d30a84b68747d31150e8a12f396f0b5c161fd48
358
agda
Agda
src/Fragment/Equational/FreeExtension.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
18
2021-06-15T15:45:39.000Z
2022-01-17T17:26:09.000Z
src/Fragment/Equational/FreeExtension.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
1
2021-06-16T09:44:31.000Z
2021-06-16T10:24:15.000Z
src/Fragment/Equational/FreeExtension.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
3
2021-06-15T15:34:50.000Z
2021-06-16T08:04:31.000Z
{-# OPTIONS --without-K --exact-split --safe #-} open import Fragment.Equational.Theory module Fragment.Equational.FreeExtension (Θ : Theory) where open import Fragment.Equational.FreeExtension.Base Θ public open import Fragment.Equational.FreeExtension.Synthetic Θ using (SynFrex) public open import Fragment.Equational.FreeExtension.Properties Θ public
35.8
80
0.812849
50897da48e4aca86bb43f22165320f9975904490
589
agda
Agda
test/Succeed/Issue658.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue658.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue658.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2012-05-24, issue reported by Nisse {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v tc.meta:50 #-} module Issue658 where import Common.Level postulate A : Set P : A → Set Q : (x : A) → P x → Set p : (x : A) → P x record R : Set where field a : A r : R r = {!!} postulate q : Q (R.a r) (p (R.a r)) -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/MetaVars.hs:101 -- The internal error was cause by eta-expanding the frozen meta. -- Eta-expansion of frozen metas is now allowed.
20.310345
68
0.63837
59b44d99837bdbe86131fac7298e6c56609323f8
3,615
agda
Agda
Languages/SDE.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
Languages/SDE.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
Languages/SDE.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
{-# OPTIONS --copatterns --sized-types #-} open import Size open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality as P open ≡-Reasoning open import Algebra.Structures using (IsCommutativeSemiring; IsCommutativeMonoid) open import Data.Nat open import Data.Nat.Properties using (isCommutativeSemiring) open import Stream open ∼ˢ∞-Reasoning ⟦_⟧ : ℕ → Str ℕ hd (⟦ n ⟧) = n tl (⟦ n ⟧) = ⟦ 0 ⟧ _⊕_ : ∀{i} → Str {i} ℕ → Str {i} ℕ → Str {i} ℕ hd (s ⊕ t) = (hd s) + (hd t) tl (s ⊕ t) = (tl s) ⊕ (tl t) _×_ : ∀{i} → Str {i} ℕ → Str {i} ℕ → Str {i} ℕ hd (s × t) = hd s * hd t tl (s × t)= ((tl s) × t) ⊕ (⟦ hd s ⟧ × (tl t)) comm-* : ∀ m n → m * n ≡ n * m comm-* = IsCommutativeMonoid.comm (IsCommutativeSemiring.*-isCommutativeMonoid isCommutativeSemiring) comm-+ : ∀ m n → m + n ≡ n + m comm-+ = IsCommutativeMonoid.comm (IsCommutativeSemiring.+-isCommutativeMonoid isCommutativeSemiring) Bisim = _∼ˢ_ {- mutual comm-× : ∀{i} → (s t : Str {i} ℕ) → Bisim {ℕ} {i} (s × t) (t × s) hd≡ (comm-× s t) = comm-* (hd s) (hd t) tl∼ (comm-× s t) = lem-comm-× s t lem-comm-× : ∀{i} → ∀{j : Size< i} → (s t : Str {i} ℕ) → Bisim {ℕ} {j} ((tl s × t) ⊕ (⟦ hd s ⟧ × tl t)) ((tl t × s) ⊕ (⟦ hd t ⟧ × tl s)) hd≡ (lem-comm-× {i} {j} s t) = begin hd s' * hd t + hd s * hd t' ≡⟨ comm-+ (hd s' * hd t) (hd s * hd t') ⟩ hd s * hd t' + hd s' * hd t ≡⟨ cong (λ x → x + hd s' * hd t) (comm-* (hd s) (hd t')) ⟩ hd t' * hd s + hd s' * hd t ≡⟨ cong (λ x → hd t' * hd s + x) (comm-* (hd s') (hd t)) ⟩ hd t' * hd s + hd t * hd s' ∎ where s' = tl s {j} t' = tl t {j} tl∼ (lem-comm-× {i} {j} s t) {k} = lem {k} where s' = tl s {j} t' = tl t {j} lem : ∀{k : Size< j} → Bisim {ℕ} {k} (((tl s' × t) ⊕ (⟦ hd s' ⟧ × t')) ⊕ ((⟦ 0 ⟧ × t') ⊕ (⟦ hd s ⟧ × tl t'))) (((tl t' × s) ⊕ (⟦ hd t' ⟧ × s')) ⊕ ((⟦ 0 ⟧ × s') ⊕ (⟦ hd t ⟧ × tl s'))) lem = {!!} where s'' = tl s' {k} t'' = tl t' {k} -} zero-⊕-unit-l : (s : Str ℕ) → (⟦ 0 ⟧ ⊕ s) ∼ˢ∞ s hd≡∞ (zero-⊕-unit-l s) = refl tl∼∞ (zero-⊕-unit-l s) = zero-⊕-unit-l (tl s) zero-⊕-unit-r : (s : Str ℕ) → (s ⊕ ⟦ 0 ⟧) ∼ˢ∞ s hd≡∞ (zero-⊕-unit-r s) = comm-+ (hd s) 0 tl∼∞ (zero-⊕-unit-r s) = zero-⊕-unit-r (tl s) zero-×-annihil-l : (s : Str ℕ) → (⟦ 0 ⟧ × s) ∼ˢ∞ ⟦ 0 ⟧ hd≡∞ (zero-×-annihil-l s) = refl tl∼∞ (zero-×-annihil-l s) = beginˢ∞ tl (⟦ 0 ⟧ × s) ∼ˢ∞⟨ s-bisim∞-refl ⟩ (⟦ 0 ⟧ × s) ⊕ (⟦ 0 ⟧ × tl s) ∼ˢ∞⟨ {!!} ⟩ tl (⟦ 0 ⟧) ∎ˢ∞ mutual comm-× : (s t : Str ℕ) → (s × t) ∼ˢ∞ (t × s) hd≡∞ (comm-× s t) = comm-* (hd s) (hd t) tl∼∞ (comm-× s t) = lem-comm-× s t lem-comm-× : (s t : Str ℕ) → ((tl s × t) ⊕ (⟦ hd s ⟧ × tl t)) ∼ˢ∞ ((tl t × s) ⊕ (⟦ hd t ⟧ × tl s)) hd≡∞ (lem-comm-× s t) = begin hd s' * hd t + hd s * hd t' ≡⟨ comm-+ (hd s' * hd t) (hd s * hd t') ⟩ hd s * hd t' + hd s' * hd t ≡⟨ cong (λ x → x + hd s' * hd t) (comm-* (hd s) (hd t')) ⟩ hd t' * hd s + hd s' * hd t ≡⟨ cong (λ x → hd t' * hd s + x) (comm-* (hd s') (hd t)) ⟩ hd t' * hd s + hd t * hd s' ∎ where s' = tl s t' = tl t tl∼∞ (lem-comm-× s t) = lem where s' = tl s t' = tl t lem : (((tl s' × t) ⊕ (⟦ hd s' ⟧ × t')) ⊕ ((⟦ 0 ⟧ × t') ⊕ (⟦ hd s ⟧ × tl t'))) ∼ˢ∞ (((tl t' × s) ⊕ (⟦ hd t' ⟧ × s')) ⊕ ((⟦ 0 ⟧ × s') ⊕ (⟦ hd t ⟧ × tl s'))) lem = {!!} where s'' = tl s' t'' = tl t'
27.59542
84
0.410235
dcb7202a9eb33588897003fa6fc0432ec641b3b0
2,557
agda
Agda
src/CF/Transform/Hoist.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
6
2020-10-07T14:07:17.000Z
2021-02-28T21:49:08.000Z
src/CF/Transform/Hoist.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
null
null
null
src/CF/Transform/Hoist.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
1
2021-12-28T17:37:15.000Z
2021-12-28T17:37:15.000Z
{- MJ where variable declarations have been hoisted to the top of a block -} module CF.Transform.Hoist where open import Level open import Function using (_∘_) open import Data.List open import Data.List.Properties open import Data.Unit open import Data.Product open import Relation.Unary hiding (_⊢_) open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Ternary.Core open import Relation.Ternary.Structures open import Relation.Ternary.Structures.Syntax open import Relation.Ternary.Monad open import Relation.Ternary.Monad.Weakening open import Relation.Ternary.Structures.Syntax open import CF.Types open import CF.Contexts.Lexical open import CF.Syntax as Src hiding (Stmt; Block; Statement; var) public open import CF.Syntax.Hoisted as Hoisted open import Relation.Ternary.Construct.List.Overlapping Ty open import Relation.Ternary.Data.Bigstar pattern _⍮⟨_⟩_ s σ b = cons (s ∙⟨ σ ⟩ b) hoist-binder : ∀ {P : Pred Ctx 0ℓ} {Γ} → ∀[ (Γ ⊢ P) ⇒ ◇ (Vars Γ ✴ P) ] hoist-binder px = pack (⊢-zip (∙-copy _) (binders ∙⟨ ∙-idˡ ⟩ px)) -- A typed hoisting transformation for statement blocks {-# TERMINATING #-} mutual {- Hoist local variables from blocks -} hoist : ∀[ Src.Block r ⇒ ◇ (Block r) ] hoist Src.emp = do return nil hoist (ss Src.⍮⟨ σ ⟩ b) = do b ∙⟨ σ ⟩ s ← translate ss &⟨ Src.Block _ # ∙-comm σ ⟩ b s ∙⟨ σ ⟩ b ← hoist b &⟨ Hoisted.Stmt _ # ∙-comm σ ⟩ s return (s ⍮⟨ σ ⟩ b) hoist (e Src.≔⟨ σ ⟩ Γ⊢b) = do e×v ∙⟨ σ ⟩ b ← ✴-assocₗ ⟨$⟩ (hoist-binder Γ⊢b &⟨ Src.Exp _ # σ ⟩ e) (e ∙⟨ σ₁ ⟩ v) ∙⟨ σ₂ ⟩ b' ← hoist b &⟨ _ ✴ _ # σ ⟩ e×v return (Hoisted.asgn (v ∙⟨ ∙-comm σ₁ ⟩ e) ⍮⟨ σ₂ ⟩ b') {- Hoist local variables from statements -} translate : ∀[ Src.Stmt r ⇒ ◇ (Stmt r) ] translate (Src.asgn x) = do return (Hoisted.asgn x) translate (Src.run e) = do return (Hoisted.run e) translate (Src.while (e ∙⟨ σ ⟩ body)) = do e ∙⟨ σ ⟩ body' ← translate body &⟨ Src.Exp _ # σ ⟩ e return (Hoisted.while (e ∙⟨ σ ⟩ body')) translate (Src.ifthenelse e×s₁×s₂) = do let (s₁ ∙⟨ σ ⟩ s₂×e) = ✴-rotateₗ e×s₁×s₂ s₂ ∙⟨ σ ⟩ e×s₁ ← ✴-assocᵣ ⟨$⟩ (translate s₁ &⟨ _ ✴ _ # ∙-comm σ ⟩ s₂×e) e×s₁×s₂ ← ✴-assocᵣ ⟨$⟩ (translate s₂ &⟨ _ ✴ _ # ∙-comm σ ⟩ e×s₁) return (Hoisted.ifthenelse e×s₁×s₂) translate (Src.block bl) = do bl' ← hoist bl return (Hoisted.block bl')
35.513889
94
0.593664
1d8edc582eb544c7e0e84684c1992e5aff0f07dd
302
agda
Agda
test/Fail/Issue1322.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1322.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1322.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where data _==_ {A : Set} (a : A) : A → Set where refl : a == a data ⊥ : Set where data ℕ : Set where zero : ℕ suc : ℕ → ℕ it : ∀ {a} {A : Set a} ⦃ x : A ⦄ → A it ⦃ x ⦄ = x f : (n : ℕ) ⦃ p : n == zero → ⊥ ⦄ → ℕ f n = n h : (n : ℕ) ⦃ q : n == zero → ⊥ ⦄ → ℕ h n ⦃ q ⦄ = f n ⦃ it ⦄
14.380952
43
0.39404
a1f5899de0b40d5eca96a559c5c78db707816c32
3,769
agda
Agda
theorems/cw/cohomology/ReconstructedFirstCohomologyGroup.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cw/cohomology/ReconstructedFirstCohomologyGroup.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cw/cohomology/ReconstructedFirstCohomologyGroup.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.ChainComplex open import cohomology.Theory open import groups.KernelImage open import cw.CW module cw.cohomology.ReconstructedFirstCohomologyGroup {i : ULevel} (OT : OrdinaryTheory i) where open OrdinaryTheory OT import cw.cohomology.TipCoboundary OT as TC import cw.cohomology.HigherCoboundary OT as HC import cw.cohomology.TipAndAugment OT as TAA open import cw.cohomology.WedgeOfCells OT open import cw.cohomology.Descending OT open import cw.cohomology.ReconstructedCochainComplex OT import cw.cohomology.FirstCohomologyGroup OT as FCG import cw.cohomology.FirstCohomologyGroupOnDiag OT as FCGD import cw.cohomology.CohomologyGroupsTooHigh OT as CGTH private ≤-dec-has-all-paths : {m n : ℕ} → has-all-paths (Dec (m ≤ n)) ≤-dec-has-all-paths = prop-has-all-paths (Dec-level ≤-is-prop) private abstract first-cohomology-group-descend : ∀ {n} (⊙skel : ⊙Skeleton {i} (3 + n)) → cohomology-group (cochain-complex ⊙skel) 1 == cohomology-group (cochain-complex (⊙cw-init ⊙skel)) 1 first-cohomology-group-descend {n = O} ⊙skel = ap2 (λ δ₁ δ₂ → Ker/Im δ₂ δ₁ (CXₙ/Xₙ₋₁-is-abelian (⊙cw-take (lteSR lteS) ⊙skel) 1)) (coboundary-first-template-descend-from-far {n = 2} ⊙skel (ltSR ltS) ltS) (coboundary-higher-template-descend-from-one-above ⊙skel) first-cohomology-group-descend {n = S n} ⊙skel -- n = S n = ap2 (λ δ₁ δ₂ → Ker/Im δ₂ δ₁ (CXₙ/Xₙ₋₁-is-abelian (⊙cw-take (≤-+-l 1 (lteSR $ lteSR $ inr (O<S n))) ⊙skel) 1)) (coboundary-first-template-descend-from-far {n = 3 + n} ⊙skel (ltSR (ltSR (O<S n))) (<-+-l 1 (ltSR (O<S n)))) (coboundary-higher-template-descend-from-far {n = 3 + n} ⊙skel (<-+-l 1 (ltSR (O<S n))) (<-+-l 2 (O<S n))) first-cohomology-group-β : ∀ (⊙skel : ⊙Skeleton {i} 2) → cohomology-group (cochain-complex ⊙skel) 1 == Ker/Im (HC.cw-co∂-last ⊙skel) (TC.cw-co∂-head (⊙cw-init ⊙skel)) (CXₙ/Xₙ₋₁-is-abelian (⊙cw-init ⊙skel) 1) first-cohomology-group-β ⊙skel = ap2 (λ δ₁ δ₂ → Ker/Im δ₂ δ₁ (CXₙ/Xₙ₋₁-is-abelian (⊙cw-init ⊙skel) 1)) ( coboundary-first-template-descend-from-two ⊙skel ∙ coboundary-first-template-β (⊙cw-init ⊙skel)) (coboundary-higher-template-β ⊙skel) first-cohomology-group-β-one-below : ∀ (⊙skel : ⊙Skeleton {i} 1) → cohomology-group (cochain-complex ⊙skel) 1 == Ker/Im (cst-hom {H = Lift-group {j = i} Unit-group}) (TC.cw-co∂-head ⊙skel) (CXₙ/Xₙ₋₁-is-abelian ⊙skel 1) first-cohomology-group-β-one-below ⊙skel = ap (λ δ₁ → Ker/Im (cst-hom {H = Lift-group {j = i} Unit-group}) δ₁ (CXₙ/Xₙ₋₁-is-abelian ⊙skel 1)) (coboundary-first-template-β ⊙skel) abstract first-cohomology-group : ∀ {n} (⊙skel : ⊙Skeleton {i} n) → ⊙has-cells-with-choice 0 ⊙skel i → C 1 ⊙⟦ ⊙skel ⟧ ≃ᴳ cohomology-group (cochain-complex ⊙skel) 1 first-cohomology-group {n = 0} ⊙skel ac = CGTH.C-cw-iso-ker/im 1 ltS (TAA.C2×CX₀ ⊙skel 0) ⊙skel ac first-cohomology-group {n = 1} ⊙skel ac = coe!ᴳ-iso (first-cohomology-group-β-one-below ⊙skel) ∘eᴳ FCGD.C-cw-iso-ker/im ⊙skel ac first-cohomology-group {n = 2} ⊙skel ac = coe!ᴳ-iso (first-cohomology-group-β ⊙skel) ∘eᴳ FCG.C-cw-iso-ker/im ⊙skel ac first-cohomology-group {n = S (S (S n))} ⊙skel ac = coe!ᴳ-iso (first-cohomology-group-descend ⊙skel) ∘eᴳ first-cohomology-group (⊙cw-init ⊙skel) (⊙init-has-cells-with-choice ⊙skel ac) ∘eᴳ C-cw-descend-at-lower ⊙skel (<-+-l 1 (O<S n)) ac
46.530864
122
0.614221
502bd5777ce4691db5f0bc463f8e08cf9f5c2850
296
agda
Agda
test/Fail/BadCon.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/BadCon.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/BadCon.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module BadCon where data D : Set where d : D data E : Set where d : E postulate F : D -> Set test : (x : D) -> F x test = d -- Bad error (unbound de Bruijn index): -- the constructor d does not construct an element of F @0 -- when checking that the expression d has type (x : D) → F x
16.444444
61
0.631757
069eae8cbf9a15a8634833ffa63c90b09e571278
208
agda
Agda
test/interaction/Issue1073.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1073.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1073.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ (A : Set) (Sing : A → Set) (F : (a : A) → Sing a → Set) where test : {a : A} → Sing a → Set test s = F {!!} s -- WAS: C-c C-s inserts a, which produces a scope error -- Instead, it should insert _
26
70
0.5625
0edd4a6467da331450fdcab3375adbb0e1288760
5,173
agda
Agda
src/LibraBFT/Abstract/RecordChain/Assumptions.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Abstract/RecordChain/Assumptions.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Abstract/RecordChain/Assumptions.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Abstract.Types.EpochConfig open import Util.Lemmas open import Util.Prelude open WithAbsVote -- Here we establish the properties necessary to achieve consensus -- just like we see them on paper: stating facts about the state of -- the system and reasoning about which QC's exist in the system. -- This module is a stepping stone to the properties we want; -- you should probably not be importing it directly, see 'LibraBFT.Abstract.Properties' -- instead. -- -- The module 'LibraBFT.Abstract.Properties' proves that the invariants -- presented here can be obtained from reasoning about sent votes, -- which provides a much easier-to-prove interface to an implementation. module LibraBFT.Abstract.RecordChain.Assumptions (UID : Set) (_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) (NodeId : Set) (𝓔 : EpochConfig UID NodeId) (𝓥 : VoteEvidence UID NodeId 𝓔) where open import LibraBFT.Abstract.Types UID NodeId 𝓔 open import LibraBFT.Abstract.System UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.Records UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.Records.Extends UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.RecordChain UID _≟UID_ NodeId 𝓔 𝓥 open EpochConfig 𝓔 module _ {ℓ}(InSys : Record → Set ℓ) where -- Another important predicate of a "valid" RecordStoreState is the fact -- that α's n-th vote is always the same. VotesOnlyOnceRule : Set ℓ VotesOnlyOnceRule -- Given an honest α = (α : Member) → Meta-Honest-Member α -- For all system states where q and q' exist, → ∀{q q'} → (q∈𝓢 : InSys (Q q)) → (q'∈𝓢 : InSys (Q q')) -- such that α voted for q and q'; if α says it's the same vote, then it's the same vote. → (v : α ∈QC q)(v' : α ∈QC q') → abs-vRound (∈QC-Vote q v) ≡ abs-vRound (∈QC-Vote q' v') ----------------- → ∈QC-Vote q v ≡ ∈QC-Vote q' v' module _ {ℓ}(InSys : Record → Set ℓ) where -- The preferred-round rule (aka locked-round-rule) is a critical -- aspect of LibraBFT's correctness. It states that an honest node α will cast -- votes for blocks b only if prevRound(b) ≥ preferred_round(α), where preferred_round(α) -- is defined as $max { round b | b is the head of a 2-chain }$. -- -- Operationally, α can ensure it obeys this rule as follows: it keeps a counter -- preferred_round, initialized at 0 and, whenever α receives a QC q that forms a -- 2-chain: -- -- Fig1 -- -- I ← ⋯ ← b₁ ← q₁ ← b ← q -- ⌞₋₋₋₋₋₋₋₋₋₋₋₋₋₋₋₋₋⌟ -- 2-chain -- -- it checks whether round(b₁) , which is the head of the 2-chain above, -- is greater than its previously known preferred_round; if so, α updates -- it. Note that α doesn't need to cast a vote in q, above, to have its -- preferred_round updated. All that matters is that α has seen q. -- -- We are encoding the rules governing Libra nodes as invariants in the -- state of other nodes. Hence, the PreferredRoundRule below states an invariant -- on the state of β, if α respects the preferred-round-rule. -- -- Let the state of β be as below, such that α did cast votes for q -- and q' in that order (α is honest here!): -- -- -- Fig2 -- 3-chain -- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ -- | 2-chain | α knows of the 2-chain because -- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ | it voted at the 3-chain. -- I ← ⋯ ← b₂ ← q₂ ← b₁ ← q₁ ← b ← q -- ↖ -- ⋯ ← b₁' ← q₁' ← b' ← q' -- -- Then, since α is honest and follows the preferred-round rule, we know that -- round(b₂) ≤ round(b₁') because, by seeing that α voted on q, we know that α -- has seen the 2-chain above, hence, α's preferred_round was at least round(b₂) at -- the time α cast its vote for b. -- -- After casting a vote for b, α cast a vote for b', which means that α must have -- checked that round(b₂) ≤ prevRound(b'), as stated by the preferred round rule. -- -- The invariant below states that, since α is honest, we can trust that these -- checks have been performed and we can infer this information solely -- by seeing α has knowledge of the 2-chain in Fig2 above. -- open All-InSys-props InSys PreferredRoundRule : Set ℓ PreferredRoundRule = ∀(α : Member) → Meta-Honest-Member α → ∀{q q'} → {rc : RecordChain (Q q)} → All-InSys rc → {n : ℕ}(c3 : 𝕂-chain Contig (3 + n) rc) → (v : α ∈QC q) -- α knows of the 2-chain because it voted on the tail of the 3-chain! → {rc' : RecordChain (Q q')} → All-InSys rc' → (v' : α ∈QC q') → abs-vRound (∈QC-Vote q v) < abs-vRound (∈QC-Vote q' v') → NonInjective-≡-pred (InSys ∘ B) bId ⊎ (getRound (kchainBlock (suc (suc zero)) c3) ≤ prevRound rc')
43.470588
111
0.619756
1042d936021b1bbbe59051aac054b78ace259a47
3,342
agda
Agda
vendor/stdlib/src/Data/Rational.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Data/Rational.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Data/Rational.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Rational numbers ------------------------------------------------------------------------ module Data.Rational where open import Data.Bool.Properties open import Data.Function open import Data.Integer hiding (suc) renaming (_*_ to _ℤ*_) open import Data.Integer.Divisibility as ℤDiv using (Coprime) import Data.Integer.Properties as ℤ open import Data.Nat.Divisibility as ℕDiv using (_∣_) import Data.Nat.Coprimality as C open import Data.Nat as ℕ renaming (_*_ to _ℕ*_) open import Relation.Nullary.Decidable open import Relation.Binary open import Relation.Binary.PropositionalEquality as PropEq open ≡-Reasoning ------------------------------------------------------------------------ -- The definition -- Rational numbers in reduced form. record ℚ : Set where field numerator : ℤ denominator-1 : ℕ isCoprime : True (C.coprime? ∣ numerator ∣ (suc denominator-1)) denominator : ℤ denominator = + suc denominator-1 coprime : Coprime numerator denominator coprime = witnessToTruth isCoprime -- Constructs rational numbers. The arguments have to be in reduced -- form. infixl 7 _÷_ _÷_ : (numerator : ℤ) (denominator : ℕ) {coprime : True (C.coprime? ∣ numerator ∣ denominator)} {≢0 : False (ℕ._≟_ denominator 0)} → ℚ (n ÷ zero) {≢0 = ()} (n ÷ suc d) {c} = record { numerator = n; denominator-1 = d; isCoprime = c } private -- Note that the implicit arguments do not need to be given for -- concrete inputs: 0/1 : ℚ 0/1 = + 0 ÷ 1 -½ : ℚ -½ = - + 1 ÷ 2 ------------------------------------------------------------------------ -- Equality -- Equality of rational numbers. infix 4 _≃_ _≃_ : Rel ℚ p ≃ q = P.numerator ℤ* Q.denominator ≡ Q.numerator ℤ* P.denominator where module P = ℚ p; module Q = ℚ q -- _≃_ coincides with propositional equality. ≡⇒≃ : _≡_ ⇒ _≃_ ≡⇒≃ refl = refl ≃⇒≡ : _≃_ ⇒ _≡_ ≃⇒≡ {p} {q} = helper P.numerator P.denominator-1 P.isCoprime Q.numerator Q.denominator-1 Q.isCoprime where module P = ℚ p; module Q = ℚ q helper : ∀ n₁ d₁ c₁ n₂ d₂ c₂ → n₁ ℤ* + suc d₂ ≡ n₂ ℤ* + suc d₁ → (n₁ ÷ suc d₁) {c₁} ≡ (n₂ ÷ suc d₂) {c₂} helper n₁ d₁ c₁ n₂ d₂ c₂ eq with Poset.antisym ℕDiv.poset 1+d₁∣1+d₂ 1+d₂∣1+d₁ where 1+d₁∣1+d₂ : suc d₁ ∣ suc d₂ 1+d₁∣1+d₂ = ℤDiv.coprime-divisor (+ suc d₁) n₁ (+ suc d₂) (C.sym $ witnessToTruth c₁) $ ℕDiv.divides ∣ n₂ ∣ (begin ∣ n₁ ℤ* + suc d₂ ∣ ≡⟨ cong ∣_∣ eq ⟩ ∣ n₂ ℤ* + suc d₁ ∣ ≡⟨ ℤ.abs-*-commute n₂ (+ suc d₁) ⟩ ∣ n₂ ∣ ℕ* suc d₁ ∎) 1+d₂∣1+d₁ : suc d₂ ∣ suc d₁ 1+d₂∣1+d₁ = ℤDiv.coprime-divisor (+ suc d₂) n₂ (+ suc d₁) (C.sym $ witnessToTruth c₂) $ ℕDiv.divides ∣ n₁ ∣ (begin ∣ n₂ ℤ* + suc d₁ ∣ ≡⟨ cong ∣_∣ (PropEq.sym eq) ⟩ ∣ n₁ ℤ* + suc d₂ ∣ ≡⟨ ℤ.abs-*-commute n₁ (+ suc d₂) ⟩ ∣ n₁ ∣ ℕ* suc d₂ ∎) helper n₁ d c₁ n₂ .d c₂ eq | refl with ℤ.cancel-*-right n₁ n₂ (+ suc d) (λ ()) eq helper n d c₁ .n .d c₂ eq | refl | refl with proof-irrelevance c₁ c₂ helper n d c .n .d .c eq | refl | refl | refl = refl
30.381818
74
0.524536
12e684f3fff7f439754eb17c8abe02355c5b65d7
520
agda
Agda
test/Fail/Issue610-module.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue610-module.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue610-module.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2016-02-11, bug reported by sanzhiyan module Issue610-module where import Common.Level open import Common.Equality data ⊥ : Set where record ⊤ : Set where data A : Set₁ where set : .Set → A module M .(x : Set) where .out : Set out = x .ack : A → Set ack (set x) = M.out x hah : set ⊤ ≡ set ⊥ hah = refl -- SHOULD FAIL .moo' : ⊥ moo' = subst (λ x → x) (cong ack hah) _ -- SHOULD FAIL .moo : ⊥ moo with cong ack hah moo | q = subst (λ x → x) q _ baa : .⊥ → ⊥ baa () yoink : ⊥ yoink = baa moo
13.333333
49
0.6
20c84a399c3db027ad9ab04b826f561740178291
743
agda
Agda
Prelude/BooleanAlgebra.agda
bbarenblat/B
c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec
[ "Apache-2.0" ]
1
2017-06-30T15:59:38.000Z
2017-06-30T15:59:38.000Z
Prelude/BooleanAlgebra.agda
bbarenblat/B
c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec
[ "Apache-2.0" ]
null
null
null
Prelude/BooleanAlgebra.agda
bbarenblat/B
c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec
[ "Apache-2.0" ]
null
null
null
{- Copyright © 2015 Benjamin Barenblat Licensed under the Apache License, Version 2.0 (the ‘License’); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an ‘AS IS’ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} module B.Prelude.BooleanAlgebra where import Algebra open Algebra using (BooleanAlgebra) public open Algebra.BooleanAlgebra ⦃...⦄ using (_∧_; _∨_; ¬_; ⊤; ⊥) public
32.304348
79
0.765814
3904f5ce86bb956ba9ff41aeddeca02e73c174df
730
agda
Agda
test/Succeed/Issue2384.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue2384.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue2384.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --show-implicit #-} open import Agda.Builtin.Nat renaming (Nat to ℕ) open import Agda.Builtin.Equality postulate funext : {X : Set} {Y : X → Set} {f g : (x : X) → Y x} → (∀ x → f x ≡ g x) → f ≡ g _::_ : {X : ℕ → Set} → X 0 → ((n : ℕ) → X (suc n)) → ((n : ℕ) → X n) (x :: α) 0 = x (x :: α) (suc n) = α n hd : {X : ℕ → Set} → ((n : ℕ) → X n) → X 0 hd α = α 0 tl : {X : ℕ → Set} → ((n : ℕ) → X n) → ((n : ℕ) → X (suc n)) tl α n = α(suc n) -- Needed to add the implicit arguments for funext in Agda 2.5.2: hd-tl-eta : (X : ℕ → Set) {α : (n : ℕ) → X n} → (hd α :: tl α) ≡ α hd-tl-eta X {α} = funext {Y = _} lemma where lemma : ∀ {α} → ∀ i → _::_ {_} (hd α) (tl α) i ≡ α i lemma 0 = refl lemma (suc i) = refl
28.076923
84
0.468493
a1dac2b07ca3548ef5ce326e422b3535c597850d
1,382
agda
Agda
Cubical/HITs/Localization/Base.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/HITs/Localization/Base.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/HITs/Localization/Base.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Localization.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv.PathSplit open isPathSplitEquiv module _ {ℓα ℓs ℓt} {A : Type ℓα} {S : A → Type ℓs} {T : A → Type ℓt} where isLocal : ∀ (F : ∀ α → S α → T α) {ℓ} (X : Type ℓ) → Type _ isLocal F X = ∀ α → isPathSplitEquiv (λ (g : T α → X) → g ∘ F α) data Localize (F : ∀ α → S α → T α) {ℓ} (X : Type ℓ) : Type (ℓ-max ℓ (ℓ-max ℓα (ℓ-max ℓs ℓt))) where ∣_∣ : X → Localize F X -- (_∘ F α) : (T α → Localize F X) → (S α → Localize F X) is a path-split equivalence ∀ α ext : ∀ α → (S α → Localize F X) → (T α → Localize F X) isExt : ∀ α (f : S α → Localize F X) (s : S α) → ext α f (F α s) ≡ f s ≡ext : ∀ α (g h : T α → Localize F X) → ((s : S α) → g (F α s) ≡ h (F α s)) → ((t : T α) → g t ≡ h t) ≡isExt : ∀ α g h (p : (s : S α) → g (F α s) ≡ h (F α s)) (s : S α) → ≡ext α g h p (F α s) ≡ p s isLocal-Localize : ∀ (F : ∀ α → S α → T α) {ℓ} (X : Type ℓ) → isLocal F (Localize F X) fst (sec (isLocal-Localize F X α)) f t = ext α f t snd (sec (isLocal-Localize F X α)) f i s = isExt α f s i fst (secCong (isLocal-Localize F X α) g h) p i t = ≡ext α g h (funExt⁻ p) t i snd (secCong (isLocal-Localize F X α) g h) p i j t = ≡isExt α g h (funExt⁻ p) t i j
51.185185
107
0.542692
fb0762af21cf302ffe9d3c4e833231eaaa6d45fc
6,936
agda
Agda
formalization/Context.agda
ishantheperson/Obsidian
b5fc75b137cf86251c03709c58f940286d730e86
[ "BSD-3-Clause" ]
79
2017-08-19T16:24:10.000Z
2022-03-27T10:34:28.000Z
formalization/Context.agda
ishantheperson/Obsidian
b5fc75b137cf86251c03709c58f940286d730e86
[ "BSD-3-Clause" ]
259
2017-08-18T19:50:41.000Z
2022-03-29T18:20:05.000Z
formalization/Context.agda
ishantheperson/Obsidian
b5fc75b137cf86251c03709c58f940286d730e86
[ "BSD-3-Clause" ]
11
2018-05-24T08:20:52.000Z
2021-06-09T18:40:19.000Z
-- Adapted from Wadler: https://plfa.github.io/Lambda/ module Context (A : Set) where open import Prelude open import Data.Nat open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym) open import Data.Maybe open import Data.Product using (_×_; proj₁; proj₂; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Relation.Nullary.Decidable open import Relation.Nullary using (Dec; yes; no) open import Data.Empty import Data.Nat.Properties infixl 5 _,_⦂_ -- Internal type of contexts data ctx : Set where ∅ : ctx _,_⦂_ : ctx → ℕ → A → ctx infix 4 _∋_⦂_ data _∋_⦂_ : ctx → ℕ → A → Set where Z : ∀ {Γ : ctx} → ∀ {x : ℕ} → ∀ {a : A} ------------------ → Γ , x ⦂ a ∋ x ⦂ a S : ∀ {Γ x y a b} → x ≢ y → Γ ∋ x ⦂ a ------------------ → Γ , y ⦂ b ∋ x ⦂ a lookup : ctx → ℕ → Maybe A lookup ∅ _ = nothing lookup (Γ , x ⦂ t) y with compare x y ... | equal _ = just t ... | _ = lookup Γ x data _∈dom_ : ℕ → ctx → Set where inDom : ∀ {x Γ a} → Γ ∋ x ⦂ a ------------- → x ∈dom Γ data _∉dom_ : ℕ → ctx → Set where notInEmpty : ∀ {x} ---------- → x ∉dom ∅ notInNonempty : ∀ {x x' Γ T} → x ≢ x' → x ∉dom Γ -------------------- → x ∉dom (Γ , x' ⦂ T) irrelevantExtensionsOK : ∀ {Γ : ctx} → ∀ {x y t t'} → Γ ∋ x ⦂ t → x ≢ y → Γ , y ⦂ t' ∋ x ⦂ t irrelevantExtensionsOK {Γ} {x} {y} {t} cont@(Z {Γ₀} {x} {t}) neq = S neq cont irrelevantExtensionsOK (S neq' rest) neq = S neq (irrelevantExtensionsOK rest neq') irrelevantReductionsOK : ∀ {Γ : ctx} → ∀ {x y t t'} → Γ , x ⦂ t ∋ y ⦂ t' → y ≢ x → Γ ∋ y ⦂ t' -- ⊥-elim (!neq (Relation.Binary.PropositionalEquality.sym x x)) irrelevantReductionsOK {Γ} {x} {y} {t} {t'} z@(Z {Γ} {x} {t}) neq = let s : x ≡ x s = refl bot = neq s in Data.Empty.⊥-elim bot irrelevantReductionsOK {Γ} {x} {y} {t} {t'} (S x₁ qq) neq = qq irrelevantReductionsInValuesOK : ∀ {Γ : ctx} → ∀ {x y t t'} → Γ , x ⦂ t ∋ y ⦂ t' → t ≢ t' → Γ ∋ y ⦂ t' irrelevantReductionsInValuesOK {Γ} {x} {.x} {t} {.t} Z tNeqt' = ⊥-elim (tNeqt' refl) irrelevantReductionsInValuesOK {Γ} {x} {y} {t} {t'} (S yNeqx yt'InΓ') tNeqt' = yt'InΓ' ∈domExcludedMiddle : ∀ {Γ x} → x ∉dom Γ → Relation.Nullary.¬ (x ∈dom Γ) ∈domExcludedMiddle {.∅} {x} notInEmpty (inDom ()) ∈domExcludedMiddle {.(_ , _ ⦂ _)} {x} (notInNonempty xNeqx' xNotInΓ) (inDom n) = let rest = ∈domExcludedMiddle xNotInΓ xInΓ = irrelevantReductionsOK n xNeqx' in rest (inDom xInΓ) ∉domPreservation : ∀ {x x' Γ T T'} → x ∉dom (Γ , x' ⦂ T) --------------------- → x ∉dom (Γ , x' ⦂ T') ∉domPreservation {x} {x'} {Γ} {T} {T'} (notInNonempty xNeqX' xNotInDom) = notInNonempty xNeqX' xNotInDom ∉domGreaterThan : ∀ {Γ x} → (∀ x' → x' ∈dom Γ → x' < x) → x ∉dom Γ ∉domGreaterThan {∅} {x} xBigger = notInEmpty ∉domGreaterThan {Γ , x' ⦂ t} {x} xBigger = notInNonempty x≢x' (∉domGreaterThan rest) -- (∉domGreaterThan (λ x'' → λ x''InΓ → xBigger x'' (inDom {!!}))) where x'<x = xBigger x' (inDom Z) x≢x' : x ≢ x' x≢x' = ≢-sym (Data.Nat.Properties.<⇒≢ x'<x) rest : (x'' : ℕ) → x'' ∈dom Γ → x'' < x rest x'' (inDom x''InΓ) with x' ≟ x'' ... | yes x'≡x'' rewrite x'≡x'' = xBigger x'' (inDom Z) ... | no x'≢x'' = xBigger x'' (inDom (S (≢-sym x'≢x'') x''InΓ)) fresh : (Γ : ctx) → ∃[ x ] (x ∉dom Γ × (∀ x' → x' ∈dom Γ → x' < x)) fresh ∅ = ⟨ zero , ⟨ notInEmpty , xBigger ⟩ ⟩ where xBigger : (∀ x' → x' ∈dom ∅ → x' < zero) xBigger x' (inDom ()) fresh (Γ , x ⦂ t) = ⟨ x' , ⟨ x'IsFresh , x'Bigger ⟩ ⟩ where freshInRest = fresh Γ biggerThanRest = suc (proj₁ freshInRest) x' = biggerThanRest ⊔ (suc x) -- bigger than both everything in Γ and x. freshInRestBigger = proj₂ (proj₂ freshInRest) x'Bigger : (x'' : ℕ) → (x'' ∈dom (Γ , x ⦂ t)) → x'' < x' x'Bigger x'' (inDom x''InΓ') with x ≟ x'' ... | yes x≡x'' rewrite x≡x'' = s≤s (Data.Nat.Properties.n≤m⊔n (proj₁ (fresh Γ)) x'') -- s≤s (Data.Nat.Properties.<⇒≤ x''<oldFresh) ... | no x≢x'' = let x''<oldFresh = freshInRestBigger x'' (inDom (irrelevantReductionsOK x''InΓ' (≢-sym x≢x'')) ) x''≤oldFresh = (Data.Nat.Properties.<⇒≤ x''<oldFresh) in s≤s ( Data.Nat.Properties.m≤n⇒m≤n⊔o x x''≤oldFresh) -- s≤s (Data.Nat.Properties.<⇒≤ x''<oldFresh) x'IsFresh : x' ∉dom (Γ , x ⦂ t) x'IsFresh = ∉domGreaterThan x'Bigger -- Removing elements from a context _#_ : ctx → ℕ → ctx ∅ # x = ∅ (Γ , x' ⦂ T) # x with compare x x' ... | equal _ = Γ ... | _ = (Γ # x) , x' ⦂ T contextLookupUnique : ∀ {Γ : ctx} → ∀ {x t t'} → Γ ∋ x ⦂ t → Γ ∋ x ⦂ t' → t ≡ t' contextLookupUnique z1@Z z2@Z = refl contextLookupUnique z1@Z s2@(S {Γ} {x} {y} {a} {b} neq xHasTypeT') = Data.Empty.⊥-elim (neq refl) contextLookupUnique (S neq xHasTypeT) Z = Data.Empty.⊥-elim (neq refl) contextLookupUnique (S x₁ xHasTypeT) (S x₂ xHasTypeT') = contextLookupUnique xHasTypeT xHasTypeT' contextLookupNeq : ∀ {Γ : ctx} → ∀ {x x' t t'} → Γ , x ⦂ t ∋ x' ⦂ t' → t ≢ t' → x ≢ x' contextLookupNeq Z tNeq = Data.Empty.⊥-elim (tNeq refl) contextLookupNeq (S xNeq x'InΓ) tNeq = λ xEq → xNeq (sym xEq) lookupWeakening : ∀ {Γ : ctx} → ∀ {x x' t t'} → Γ ∋ x ⦂ t → ∃[ T ] ((Γ , x' ⦂ t') ∋ x ⦂ T) lookupWeakening {Γ} {x} {x'} {t} {t'} Γcontainment with x ≟ x' ... | yes refl = ⟨ t' , Z {Γ = Γ} {x = x'} {a = t'} ⟩ ... | no neq = ⟨ t , S neq Γcontainment ⟩ ∉dom-≢ : {Γ : ctx} → ∀ {x x' t} → x ∉dom (Γ , x' ⦂ t) → x ≢ x' ∉dom-≢ {Γ} {x} {x'} {t} (notInNonempty xNeqx' xNotInΓ') xEqx' = xNeqx' xEqx'
33.669903
115
0.425317
a11d9a533a97ed788d4d4ff5cf4eec3d24f72d7e
2,301
agda
Agda
src/Data/QuadTree/Implementation/PublicFunctions.agda
JonathanBrouwer/research-project
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
[ "Unlicense" ]
1
2021-05-25T09:10:20.000Z
2021-05-25T09:10:20.000Z
src/Data/QuadTree/Implementation/PublicFunctions.agda
JonathanBrouwer/research-project
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
[ "Unlicense" ]
null
null
null
src/Data/QuadTree/Implementation/PublicFunctions.agda
JonathanBrouwer/research-project
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
[ "Unlicense" ]
null
null
null
module Data.QuadTree.Implementation.PublicFunctions where open import Haskell.Prelude renaming (zero to Z; suc to S) open import Data.Lens.Lens open import Data.Logic open import Data.QuadTree.Implementation.PropDepthRelation open import Data.QuadTree.Implementation.Definition open import Data.QuadTree.Implementation.ValidTypes open import Data.QuadTree.Implementation.QuadrantLenses open import Data.QuadTree.Implementation.DataLenses open import Data.QuadTree.Implementation.SafeFunctions {-# FOREIGN AGDA2HS {-# LANGUAGE Safe #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE Rank2Types #-} import Data.Nat import Data.Lens.Lens import Data.Logic import Data.QuadTree.Implementation.Definition import Data.QuadTree.Implementation.ValidTypes import Data.QuadTree.Implementation.QuadrantLenses import Data.QuadTree.Implementation.DataLenses import Data.QuadTree.Implementation.SafeFunctions #-} ---- Unsafe functions (Original) makeTree : {t : Set} {{eqT : Eq t}} -> (size : Nat × Nat) -> t -> QuadTree t makeTree size v = qtFromSafe $ makeTreeSafe size v {-# COMPILE AGDA2HS makeTree #-} getLocation : {t : Set} {{eqT : Eq t}} -> (loc : Nat × Nat) -> {dep : Nat} -> (qt : QuadTree t) -> {.(IsTrue (isInsideQuadTree loc qt))} -> {.(IsTrue (isValid dep (treeToQuadrant qt)))} -> {.(IsTrue (dep == maxDepth qt))} -> t getLocation loc qt {inside} {p} {q} = getLocationSafe loc (maxDepth qt) (qtToSafe qt {p} {q}) {inside} {-# COMPILE AGDA2HS getLocation #-} setLocation : {t : Set} {{eqT : Eq t}} -> (loc : Nat × Nat) -> t -> {dep : Nat} -> (qt : QuadTree t) -> {.(IsTrue (isInsideQuadTree loc qt))} -> {.(IsTrue (isValid dep (treeToQuadrant qt)))} -> {.(IsTrue (dep == maxDepth qt))} -> QuadTree t setLocation loc v qt {inside} {p} {q} = qtFromSafe $ setLocationSafe loc (maxDepth qt) v (qtToSafe qt {p} {q}) {inside} {-# COMPILE AGDA2HS setLocation #-} mapLocation : {t : Set} {{eqT : Eq t}} -> (loc : Nat × Nat) -> (t -> t) -> {dep : Nat} -> (qt : QuadTree t) -> {.(IsTrue (isInsideQuadTree loc qt))} -> {.(IsTrue (isValid dep (treeToQuadrant qt)))} -> {.(IsTrue (dep == maxDepth qt))} -> QuadTree t mapLocation loc f qt {inside} {p} {q} = qtFromSafe $ mapLocationSafe loc (maxDepth qt) f (qtToSafe qt {p} {q}) {inside} {-# COMPILE AGDA2HS mapLocation #-}
39
119
0.687527
cb8b43a1f4cda6c5779b06097abeea695bd04f7b
895
agda
Agda
test/Fail/Issue3577.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3577.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3577.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical --safe #-} module Issue3577 where open import Agda.Primitive.Cubical renaming (primTransp to transp; primHComp to hcomp) open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Sigma open import Agda.Builtin.Cubical.Sub renaming (primSubOut to ouc; Sub to _[_↦_]) refl : ∀ {l} {A : Set l} {x : A} → x ≡ x refl {x = x} = \ _ → x ptType : Set₁ ptType = Σ Set (λ A → A) data Susp' (A : ptType) : Set where susp* : Susp' A -- Non-computation of transp on non-HIT's hcomp testTr : {A' : ptType} (ψ : I) (A : I → ptType [ ψ ↦ (\ _ → A') ]) {φ : I} (u : ∀ i → Partial φ (Susp' (ouc (A i0)))) (u0 : Susp' (ouc (A i0)) [ φ ↦ u i0 ]) → transp (\ i -> Susp' (ouc (A i))) ψ (hcomp u (ouc u0)) ≡ hcomp (λ j .o → transp (λ i → Susp' (ouc (A i))) ψ (u j o)) (transp (λ i → Susp' (ouc (A i))) ψ (ouc u0)) testTr ψ A u u0 = refl
33.148148
116
0.560894
12c64dd0dfcda61c012d301515563a0e4f00c25a
11,832
agda
Agda
Lang/Reflection.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Lang/Reflection.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Lang/Reflection.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
-- A modified copy of "agda/src/data/lib/prim/Agda/Builtin/Reflection.agda" from the Agda repository (https://github.com/agda/agda.git) at 2020-05-12 04:05 (commit bc8feec71e61a4c4369aa0ee93b77bf027c0f7f1). -- The names here must be redefined because this project binds its custom builtin data types. module Lang.Reflection where open import Data.Boolean open import Data.List open import Data open import Float import Lvl open import FFI.MachineWord open import Numeral.Natural open import String -- open import Agda.Builtin.Int open import Type.Dependent open import Type -- Names -- postulate Name : TYPE {-# BUILTIN QNAME Name #-} primitive primQNameEquality : Name → Name → Bool primQNameLess : Name → Name → Bool primShowQName : Name → String -- Fixity -- data Associativity : TYPE where left-assoc : Associativity right-assoc : Associativity non-assoc : Associativity data Precedence : TYPE where related : Float → Precedence unrelated : Precedence data Fixity : TYPE where fixity : Associativity → Precedence → Fixity {-# BUILTIN ASSOC Associativity #-} {-# BUILTIN ASSOCLEFT left-assoc #-} {-# BUILTIN ASSOCRIGHT right-assoc #-} {-# BUILTIN ASSOCNON non-assoc #-} {-# BUILTIN PRECEDENCE Precedence #-} {-# BUILTIN PRECRELATED related #-} {-# BUILTIN PRECUNRELATED unrelated #-} {-# BUILTIN FIXITY Fixity #-} {-# BUILTIN FIXITYFIXITY fixity #-} {-# COMPILE GHC Associativity = data MAlonzo.RTE.Assoc (MAlonzo.RTE.LeftAssoc | MAlonzo.RTE.RightAssoc | MAlonzo.RTE.NonAssoc) #-} {-# COMPILE GHC Precedence = data MAlonzo.RTE.Precedence (MAlonzo.RTE.Related | MAlonzo.RTE.Unrelated) #-} {-# COMPILE GHC Fixity = data MAlonzo.RTE.Fixity (MAlonzo.RTE.Fixity) #-} {-# COMPILE JS Associativity = function (x,v) { return v[x](); } #-} {-# COMPILE JS left-assoc = "left-assoc" #-} {-# COMPILE JS right-assoc = "right-assoc" #-} {-# COMPILE JS non-assoc = "non-assoc" #-} {-# COMPILE JS Precedence = function (x,v) { if (x === "unrelated") { return v[x](); } else { return v["related"](x); }} #-} {-# COMPILE JS related = function(x) { return x; } #-} {-# COMPILE JS unrelated = "unrelated" #-} {-# COMPILE JS Fixity = function (x,v) { return v["fixity"](x["assoc"], x["prec"]); } #-} {-# COMPILE JS fixity = function (x) { return function (y) { return { "assoc": x, "prec": y}; }; } #-} primitive primQNameFixity : Name → Fixity primQNameToWord64s : Name → Σ Word64 (λ _ → Word64) -- Metavariables -- postulate Meta : TYPE {-# BUILTIN AGDAMETA Meta #-} primitive primMetaEquality : Meta → Meta → Bool primMetaLess : Meta → Meta → Bool primShowMeta : Meta → String primMetaToNat : Meta → ℕ -- Arguments -- -- Arguments can be (visible), {hidden}, or {{instance}}. data Visibility : TYPE where visible hidden instance′ : Visibility {-# BUILTIN HIDING Visibility #-} {-# BUILTIN VISIBLE visible #-} {-# BUILTIN HIDDEN hidden #-} {-# BUILTIN INSTANCE instance′ #-} -- Arguments can be relevant or irrelevant. data Relevance : TYPE where relevant irrelevant : Relevance {-# BUILTIN RELEVANCE Relevance #-} {-# BUILTIN RELEVANT relevant #-} {-# BUILTIN IRRELEVANT irrelevant #-} data ArgInfo : TYPE where arg-info : (v : Visibility) (r : Relevance) → ArgInfo data Arg {a} (A : TYPE a) : TYPE a where arg : (i : ArgInfo) (x : A) → Arg A {-# BUILTIN ARGINFO ArgInfo #-} {-# BUILTIN ARGARGINFO arg-info #-} {-# BUILTIN ARG Arg #-} {-# BUILTIN ARGARG arg #-} -- Name abstraction -- data Abs {a} (A : TYPE a) : TYPE a where abs : (s : String) (x : A) → Abs A {-# BUILTIN ABS Abs #-} {-# BUILTIN ABSABS abs #-} -- Literals -- data Literal : TYPE where nat : (n : ℕ) → Literal word64 : (n : Word64) → Literal float : (x : Float) → Literal char : (c : Char) → Literal string : (s : String) → Literal name : (x : Name) → Literal meta : (x : Meta) → Literal {-# BUILTIN AGDALITERAL Literal #-} {-# BUILTIN AGDALITNAT nat #-} {-# BUILTIN AGDALITWORD64 word64 #-} {-# BUILTIN AGDALITFLOAT float #-} {-# BUILTIN AGDALITCHAR char #-} {-# BUILTIN AGDALITSTRING string #-} {-# BUILTIN AGDALITQNAME name #-} {-# BUILTIN AGDALITMETA meta #-} -- Patterns -- data Pattern : TYPE where con : (c : Name) (ps : List (Arg Pattern)) → Pattern dot : Pattern var : (s : String) → Pattern lit : (l : Literal) → Pattern proj : (f : Name) → Pattern absurd : Pattern {-# BUILTIN AGDAPATTERN Pattern #-} {-# BUILTIN AGDAPATCON con #-} {-# BUILTIN AGDAPATLIT lit #-} {-# BUILTIN AGDAPATPROJ proj #-} {-# BUILTIN AGDAPATABSURD absurd #-} -- Terms -- data Sort : TYPE data Clause : TYPE data Term : TYPE TypeTerm = Term data Term where var : (x : ℕ) (args : List (Arg Term)) → Term con : (c : Name) (args : List (Arg Term)) → Term def : (f : Name) (args : List (Arg Term)) → Term lam : (v : Visibility) (t : Abs Term) → Term pat-lam : (cs : List Clause) (args : List (Arg Term)) → Term pi : (a : Arg TypeTerm) (b : Abs TypeTerm) → Term agda-sort : (s : Sort) → Term lit : (l : Literal) → Term meta : (x : Meta) → List (Arg Term) → Term unknown : Term data Sort where set : (t : Term) → Sort lit : (n : ℕ) → Sort unknown : Sort data Clause where clause : (ps : List (Arg Pattern)) (t : Term) → Clause absurd-clause : (ps : List (Arg Pattern)) → Clause {-# BUILTIN AGDASORT Sort #-} {-# BUILTIN AGDATERM Term #-} {-# BUILTIN AGDACLAUSE Clause #-} {-# BUILTIN AGDATERMVAR var #-} {-# BUILTIN AGDATERMCON con #-} {-# BUILTIN AGDATERMDEF def #-} {-# BUILTIN AGDATERMMETA meta #-} {-# BUILTIN AGDATERMLAM lam #-} {-# BUILTIN AGDATERMEXTLAM pat-lam #-} {-# BUILTIN AGDATERMPI pi #-} {-# BUILTIN AGDATERMSORT agda-sort #-} {-# BUILTIN AGDATERMLIT lit #-} {-# BUILTIN AGDATERMUNSUPPORTED unknown #-} {-# BUILTIN AGDASORTSET set #-} {-# BUILTIN AGDASORTLIT lit #-} {-# BUILTIN AGDASORTUNSUPPORTED unknown #-} -- Definitions -- data Definition : TYPE where function : (cs : List Clause) → Definition data-type : (pars : ℕ) (cs : List Name) → Definition record-type : (c : Name) (fs : List (Arg Name)) → Definition data-cons : (d : Name) → Definition axiom : Definition prim-fun : Definition {-# BUILTIN AGDADEFINITION Definition #-} {-# BUILTIN AGDADEFINITIONFUNDEF function #-} {-# BUILTIN AGDADEFINITIONDATADEF data-type #-} {-# BUILTIN AGDADEFINITIONRECORDDEF record-type #-} {-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR data-cons #-} {-# BUILTIN AGDADEFINITIONPOSTULATE axiom #-} {-# BUILTIN AGDADEFINITIONPRIMITIVE prim-fun #-} -- Errors -- data ErrorPart : TYPE where strErr : String → ErrorPart termErr : Term → ErrorPart nameErr : Name → ErrorPart {-# BUILTIN AGDAERRORPART ErrorPart #-} {-# BUILTIN AGDAERRORPARTSTRING strErr #-} {-# BUILTIN AGDAERRORPARTTERM termErr #-} {-# BUILTIN AGDAERRORPARTNAME nameErr #-} -- TC monad -- postulate TC : ∀ {a} → TYPE a → TYPE a returnTC : ∀ {a} {A : TYPE a} → A → TC A bindTC : ∀ {a b} {A : TYPE a} {B : TYPE b} → TC A → (A → TC B) → TC B unify : Term → Term → TC(Unit{Lvl.𝟎}) typeError : ∀ {a} {A : TYPE a} → List ErrorPart → TC A inferType : Term → TC TypeTerm checkType : Term → TypeTerm → TC Term normalise : Term → TC Term reduce : Term → TC Term catchTC : ∀ {a} {A : TYPE a} → TC A → TC A → TC A quoteTC : ∀ {a} {A : TYPE a} → A → TC Term unquoteTC : ∀ {a} {A : TYPE a} → Term → TC A quoteωTC : ∀ {A : Typeω} → A → TC Term getContext : TC (List (Arg TypeTerm)) extendContext : ∀ {a} {A : TYPE a} → Arg TypeTerm → TC A → TC A inContext : ∀ {a} {A : TYPE a} → List (Arg TypeTerm) → TC A → TC A freshName : String → TC Name declareDef : Arg Name → TypeTerm → TC(Unit{Lvl.𝟎}) declarePostulate : Arg Name → TypeTerm → TC(Unit{Lvl.𝟎}) defineFun : Name → List Clause → TC(Unit{Lvl.𝟎}) getType : Name → TC TypeTerm getDefinition : Name → TC Definition blockOnMeta : ∀ {a} {A : TYPE a} → Meta → TC A commitTC : TC(Unit{Lvl.𝟎}) isMacro : Name → TC Bool -- If the argument is 'true' makes the following primitives also normalise -- their results: inferType, checkType, quoteTC, getType, and getContext withNormalisation : ∀ {a} {A : TYPE a} → Bool → TC A → TC A -- Prints the third argument if the corresponding verbosity level is turned -- on (with the -v flag to Agda). debugPrint : String → ℕ → List ErrorPart → TC(Unit{Lvl.𝟎}) -- Fail if the given computation gives rise to new, unsolved -- "blocking" constraints. noConstraints : ∀ {a} {A : TYPE a} → TC A → TC A -- Run the given TC action and return the first component. Resets to -- the old TC state if the second component is 'false', or keep the -- new TC state if it is 'true'. runSpeculative : ∀ {a} {A : TYPE a} → TC (Σ A λ _ → Bool) → TC A {-# BUILTIN AGDATCM TC #-} {-# BUILTIN AGDATCMRETURN returnTC #-} {-# BUILTIN AGDATCMBIND bindTC #-} {-# BUILTIN AGDATCMUNIFY unify #-} {-# BUILTIN AGDATCMTYPEERROR typeError #-} {-# BUILTIN AGDATCMINFERTYPE inferType #-} {-# BUILTIN AGDATCMCHECKTYPE checkType #-} {-# BUILTIN AGDATCMNORMALISE normalise #-} {-# BUILTIN AGDATCMREDUCE reduce #-} {-# BUILTIN AGDATCMCATCHERROR catchTC #-} {-# BUILTIN AGDATCMQUOTETERM quoteTC #-} {-# BUILTIN AGDATCMUNQUOTETERM unquoteTC #-} -- {-# BUILTIN AGDATCMQUOTEOMEGATERM quoteωTC #-} {-# BUILTIN AGDATCMGETCONTEXT getContext #-} {-# BUILTIN AGDATCMEXTENDCONTEXT extendContext #-} {-# BUILTIN AGDATCMINCONTEXT inContext #-} {-# BUILTIN AGDATCMFRESHNAME freshName #-} {-# BUILTIN AGDATCMDECLAREDEF declareDef #-} {-# BUILTIN AGDATCMDECLAREPOSTULATE declarePostulate #-} {-# BUILTIN AGDATCMDEFINEFUN defineFun #-} {-# BUILTIN AGDATCMGETTYPE getType #-} {-# BUILTIN AGDATCMGETDEFINITION getDefinition #-} {-# BUILTIN AGDATCMBLOCKONMETA blockOnMeta #-} {-# BUILTIN AGDATCMCOMMIT commitTC #-} {-# BUILTIN AGDATCMISMACRO isMacro #-} {-# BUILTIN AGDATCMWITHNORMALISATION withNormalisation #-} {-# BUILTIN AGDATCMDEBUGPRINT debugPrint #-} {-# BUILTIN AGDATCMNOCONSTRAINTS noConstraints #-} {-# BUILTIN AGDATCMRUNSPECULATIVE runSpeculative #-} module DoNotation where open import Syntax.Do instance TC-doNotation : ∀{ℓ} → DoNotation{ℓ}(TC) return ⦃ TC-doNotation ⦄ = returnTC _>>=_ ⦃ TC-doNotation ⦄ = bindTC
36.975
206
0.567444
1236419d33305dd973f66dc1ae7acf805f0eb748
798
agda
Agda
test/Succeed/Issue1136.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1136.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue1136.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2014-05-20 Triggered by Andrea Vezzosi & NAD {-# OPTIONS --copatterns #-} -- {-# OPTIONS -v tc.conv.coerce:10 #-} open import Common.Size -- Andreas, 2015-03-16: currently forbidden -- Size≤ : Size → SizeUniv -- Size≤ i = Size< ↑ i postulate Dom : Size → Set mapDom : ∀ i (j : Size< (↑ i)) → Dom i → Dom j record ∞Dom i : Set where field force : ∀ (j : Size< i) → Dom j ∞mapDom : ∀ i (j : Size< (↑ i)) → ∞Dom i → ∞Dom j ∞Dom.force (∞mapDom i j x) k = mapDom k k (∞Dom.force x k) -- The second k on the rhs has type -- k : Size< j -- and should have type -- k : Size≤ k = Size< ↑ k -- Since j <= ↑ k does not hold (we have only k < j), -- we cannot do the usual subtyping Size< j <= Size≤ k, -- but we have to use the "singleton type property" -- k : Size< ↑ k
26.6
58
0.582707
0b6e1d84d9f6757298f1259195d3b4cc9b2884ee
191
agda
Agda
problems/UniverseCollapse/UniverseCollapse.agda
danr/agder
ece25bed081a24f02e9f85056d05933eae2afabf
[ "BSD-3-Clause" ]
1
2021-05-17T12:07:03.000Z
2021-05-17T12:07:03.000Z
problems/UniverseCollapse/UniverseCollapse.agda
danr/agder
ece25bed081a24f02e9f85056d05933eae2afabf
[ "BSD-3-Clause" ]
null
null
null
problems/UniverseCollapse/UniverseCollapse.agda
danr/agder
ece25bed081a24f02e9f85056d05933eae2afabf
[ "BSD-3-Clause" ]
null
null
null
module UniverseCollapse (down : Set₁ -> Set) (up : Set → Set₁) (iso : ∀ {A} → down (up A) → A) (osi : ∀ {A} → up (down A) → A) where anything : (A : Set) → A anything = {!!}
21.222222
41
0.481675
2f62ec66551b714e795413be5fdb93431982dbd6
2,441
agda
Agda
Cubical/Data/Unit/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Data/Unit/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Data/Unit/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Unit.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Unit.Base open import Cubical.Data.Prod.Base open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence isContrUnit : isContr Unit isContrUnit = tt , λ {tt → refl} isPropUnit : isProp Unit isPropUnit _ _ i = tt -- definitionally equal to: isContr→isProp isContrUnit isSetUnit : isSet Unit isSetUnit = isProp→isSet isPropUnit isOfHLevelUnit : (n : HLevel) → isOfHLevel n Unit isOfHLevelUnit n = isContr→isOfHLevel n isContrUnit UnitToTypeIso : ∀ {ℓ} (A : Type ℓ) → Iso (Unit → A) A Iso.fun (UnitToTypeIso A) f = f _ Iso.inv (UnitToTypeIso A) a _ = a Iso.rightInv (UnitToTypeIso A) _ = refl Iso.leftInv (UnitToTypeIso A) _ = refl UnitToTypePath : ∀ {ℓ} (A : Type ℓ) → (Unit → A) ≡ A UnitToTypePath A = isoToPath (UnitToTypeIso A) isContr→Iso2 : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → isContr A → Iso (A → B) B Iso.fun (isContr→Iso2 iscontr) f = f (fst iscontr) Iso.inv (isContr→Iso2 iscontr) b _ = b Iso.rightInv (isContr→Iso2 iscontr) _ = refl Iso.leftInv (isContr→Iso2 iscontr) f = funExt λ x → cong f (snd iscontr x) diagonal-unit : Unit ≡ Unit × Unit diagonal-unit = isoToPath (iso (λ x → tt , tt) (λ x → tt) (λ {(tt , tt) i → tt , tt}) λ {tt i → tt}) fibId : ∀ {ℓ} (A : Type ℓ) → (fiber (λ (x : A) → tt) tt) ≡ A fibId A = isoToPath (iso fst (λ a → a , refl) (λ _ → refl) (λ a i → fst a , isOfHLevelSuc 1 isPropUnit _ _ (snd a) refl i)) isContr→≃Unit : ∀ {ℓ} {A : Type ℓ} → isContr A → A ≃ Unit isContr→≃Unit contr = isoToEquiv (iso (λ _ → tt) (λ _ → fst contr) (λ _ → refl) λ _ → snd contr _) isContr→≡Unit : {A : Type₀} → isContr A → A ≡ Unit isContr→≡Unit contr = ua (isContr→≃Unit contr) isContrUnit* : ∀ {ℓ} → isContr (Unit* {ℓ}) isContrUnit* = tt* , λ _ → refl isPropUnit* : ∀ {ℓ} → isProp (Unit* {ℓ}) isPropUnit* _ _ = refl isOfHLevelUnit* : ∀ {ℓ} (n : HLevel) → isOfHLevel n (Unit* {ℓ}) isOfHLevelUnit* zero = tt* , λ _ → refl isOfHLevelUnit* (suc zero) _ _ = refl isOfHLevelUnit* (suc (suc zero)) _ _ _ _ _ _ = tt* isOfHLevelUnit* (suc (suc (suc n))) = isOfHLevelPlus 3 (isOfHLevelUnit* n)
32.986486
100
0.665711
dc88f5de968228f73873c8ac47c2d53052f680b2
1,149
agda
Agda
src/fot/FOTC/Program/GCD/Total/CorrectnessProofATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/GCD/Total/CorrectnessProofATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/GCD/Total/CorrectnessProofATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- The gcd program is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of the gcd program using -- the Euclid's algorithm. -- N.B This module does not contain combined proofs, but it imports -- modules which contain combined proofs. module FOTC.Program.GCD.Total.CorrectnessProofATP where open import FOTC.Base open import FOTC.Data.Nat.Type open import FOTC.Program.GCD.Total.CommonDivisorATP using ( gcdCD ) open import FOTC.Program.GCD.Total.Definitions using ( gcdSpec ) open import FOTC.Program.GCD.Total.DivisibleATP using ( gcdDivisible ) open import FOTC.Program.GCD.Total.GCD using ( gcd ) ------------------------------------------------------------------------------ -- The gcd is correct. postulate gcdCorrect : ∀ {m n} → N m → N n → gcdSpec m n (gcd m n) {-# ATP prove gcdCorrect gcdCD gcdDivisible #-}
39.62069
78
0.558747
599546155a068df99375d53ad7ae899c6d4f697f
3,297
agda
Agda
020-equivalence.agda
mcmtroffaes/agda-proofs
76fe404b25210258810641cc6807feecf0ff8d6c
[ "MIT" ]
2
2015-08-09T22:51:55.000Z
2016-08-17T16:15:42.000Z
020-equivalence.agda
mcmtroffaes/agda-proofs
76fe404b25210258810641cc6807feecf0ff8d6c
[ "MIT" ]
null
null
null
020-equivalence.agda
mcmtroffaes/agda-proofs
76fe404b25210258810641cc6807feecf0ff8d6c
[ "MIT" ]
null
null
null
module 020-equivalence where -- We need False to represent logical contradiction. open import 010-false-true -- Next, we need to be able to work with equalities. Equalities are -- defined between objects of the same type. Two objects are equal if -- we have a proof of their equality. In Agda, we can represent this -- by means of a function which takes two instances of some type M, -- and maps this to a proof of equality. -- To be a reasonable model for equality, we demand that this function -- has the properties of an equivalence relation: (i) we must have a -- proof that every object r in M equals itself, (ii) given a proof -- that r == s, we must be able to prove that s == r, and (iii) given -- proofs of r == s and s == t, we must be able to prove that r == t. -- A convenient way to store all these properties, goes by means of a -- record, which is in essence a local parametrised module, where the -- parameters and fields correspond to postulates (theorems that can -- be stated without proof), and declarations are theorems derived -- from parameters and fields. A good question is, what should be a -- parameter, and what should be a field? Fields can be considered as -- named parameters, so probably anything that would otherwise not be -- obvious without name should go into a field. -- Here we declare the type and equality function (which maps pairs of -- elements to proofs) as parameters, and the equivalence axioms as -- fields. The parameter M is optional because it can be derived -- unambiguously from the type signature of the equality function. record Equivalence {M : Set} (_==_ : M -> M -> Set) : Set1 where {- axioms -} field refl : ∀ {r} -> (r == r) symm : ∀ {r s} -> (r == s) -> (s == r) trans : ∀ {r s t} -> (r == s) -> (s == t) -> (r == t) -- We have a proof of inequality if we can prove contradiction from -- equality, and this is precisely how we define the inequality -- relation. _!=_ : M -> M -> Set m != n = (m == n) -> False -- Prove transitivity chains. -- (TODO: Use a type dependent function for these chains.) trans3 : ∀ {r s t u} -> (r == s) -> (s == t) -> (t == u) -> (r == u) trans3 p1 p2 p3 = trans (trans p1 p2) p3 trans4 : ∀ {r s t u v} -> (r == s) -> (s == t) -> (t == u) -> (u == v) -> (r == v) trans4 p1 p2 p3 p4 = trans (trans3 p1 p2 p3) p4 trans5 : ∀ {r s t u v w} -> (r == s) -> (s == t) -> (t == u) -> (u == v) -> (v == w) -> (r == w) trans5 p1 p2 p3 p4 p5 = trans (trans4 p1 p2 p3 p4) p5 trans6 : ∀ {r s t u v w x} -> (r == s) -> (s == t) -> (t == u) -> (u == v) -> (v == w) -> (w == x) -> (r == x) trans6 p1 p2 p3 p4 p5 p6 = trans (trans5 p1 p2 p3 p4 p5) p6 -- Now we construct a trivial model of equivalence: two instances of a -- type are equivalent if they reduce to the same normal form. (Note -- that Agda reduces expressions to normal form for us.) data _≡_ {A : Set} : A -> A -> Set where refl : ∀ {r} -> r ≡ r thm-≡-is-equivalence : {A : Set} -> Equivalence {A} _≡_ thm-≡-is-equivalence = record { refl = refl; symm = symm; trans = trans } where symm : ∀ {r s} -> r ≡ s -> s ≡ r symm refl = refl trans : ∀ {r s t} -> r ≡ s -> s ≡ t -> r ≡ t trans refl refl = refl
38.337209
70
0.607825
a1ef269f8f45ff1b14b12150b9f58b50950223a0
1,856
agda
Agda
test/Succeed/PropTests.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2016-03-17T01:45:59.000Z
2016-03-17T01:45:59.000Z
test/Succeed/PropTests.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/PropTests.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --enable-prop #-} open import Agda.Builtin.Nat -- You can define datatypes in Prop, even with multiple constructors. -- However, all constructors are considered (definitionally) equal. data TestProp : Prop where p₁ p₂ : TestProp -- Pattern matching on a datatype in Prop is disallowed unless the -- target type is a Prop: test-case : {P : Prop} (x₁ x₂ : P) → TestProp → P test-case x₁ x₂ p₁ = x₁ test-case x₁ x₂ p₂ = x₂ -- All elements of a Prop are definitionally equal: data _≡Prop_ {A : Prop} (x : A) : A → Set where refl : x ≡Prop x p₁≡p₂ : p₁ ≡Prop p₂ p₁≡p₂ = refl -- A special case are empty types in Prop: these can be eliminated to -- any other type. data ⊥ : Prop where absurd : {A : Set} → ⊥ → A absurd () -- We can also define record types in Prop, such as the unit: record ⊤ : Prop where constructor tt -- We have Prop : Set₀, so we can store predicates in a small datatype: data NatProp : Set₁ where c : (Nat → Prop) → NatProp -- To define more interesting predicates, we need to define them by pattern matching: _≤_ : Nat → Nat → Prop zero ≤ y = ⊤ suc x ≤ suc y = x ≤ y _ ≤ _ = ⊥ -- We can also define the induction principle for predicates defined in this way, -- using the fact that we can eliminate absurd propositions with a () pattern. ≤-ind : (P : (m n : Nat) → Set) → (pzy : (y : Nat) → P zero y) → (pss : (x y : Nat) → P x y → P (suc x) (suc y)) → (m n : Nat) → m ≤ n → P m n ≤-ind P pzy pss zero y pf = pzy y ≤-ind P pzy pss (suc x) (suc y) pf = pss x y (≤-ind P pzy pss x y pf) ≤-ind P pzy pss (suc _) zero () -- We can define equality as a Prop, but (currently) we cannot define -- the corresponding eliminator, so the equality is only useful for -- refuting impossible equations. data _≡P_ {A : Set} (x : A) : A → Prop where refl : x ≡P x 0≢1 : 0 ≡P 1 → ⊥ 0≢1 ()
29.935484
85
0.640086
1d560bec723a29de726e4befd24b5823b5cc1a7f
879
agda
Agda
test/Succeed/Issue1701.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1701.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1701.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-10-26, issue reported by Wolfram Kahl -- {-# OPTIONS -v scope.mod.inst:30 -v tc.mod.check:10 -v tc.mod.apply:80 #-} module _ where module ModParamsRecord (A : Set) where record R (B : Set) : Set where field F : A → B module ModParamsToLoose (A : Set) where open ModParamsRecord module _ (B : Set) (G : A → B) where r : R A B r = record { F = G } module r = R r module ModParamsLost (A : Set) where open ModParamsRecord open ModParamsToLoose A f : (A → A) → A → A f G = S.F where module S = r A G -- expected |S.F : A → A|, -- WAS: but obtained |S.F : (B : Set) (G₁ : A → B) → A → B| -- module S = r -- as expected: |S.F : (B : Set) (G₁ : A → B) → A → B| -- module S = R A (r A G) -- as expected: |S.F : A → A|
29.3
94
0.494881
59c0bbb56927e6daeb82b1e35d535bcbbeec499e
185
agda
Agda
test/Fail/Issue484.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue484.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue484.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- There was a bug where constructors of private datatypes were -- not made private. module Issue484 where module A where private data Foo : Set where foo : Foo foo′ = A.foo
16.818182
63
0.708108
4a86635ab94d49502f36fc6a4c5d13ce248d0168
2,237
agda
Agda
src/Categories/Functor/Instance/UnderlyingQuiver.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Functor/Instance/UnderlyingQuiver.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Functor/Instance/UnderlyingQuiver.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Instance.UnderlyingQuiver where -- The forgetful functor from categories to its underlying quiver -- **except** that this functor only goes from **StrictCats**, -- i.e. where Functor equivalence is propositional equality, not -- NaturalIsomorphism. open import Level using (Level) open import Relation.Binary.PropositionalEquality using (refl) open import Relation.Binary.PropositionalEquality.Subst.Properties using (module Transport) open import Data.Quiver using (Quiver) open import Data.Quiver.Morphism using (Morphism; _≃_) open import Categories.Category.Core using (Category) open import Categories.Category.Instance.Quivers using (Quivers) open import Categories.Category.Instance.StrictCats open import Categories.Functor using (Functor) open import Categories.Functor.Equivalence using (_≡F_) import Categories.Morphism.HeterogeneousIdentity as HId private variable o ℓ e o′ ℓ′ e′ : Level A B : Category o ℓ e Underlying₀ : Category o ℓ e → Quiver o ℓ e Underlying₀ C = record { Category C } Underlying₁ : Functor A B → Morphism (Underlying₀ A) (Underlying₀ B) Underlying₁ F = record { Functor F } private ≡F-resp-≃ : {F G : Functor A B} → F ≡F G → Underlying₁ F ≃ Underlying₁ G ≡F-resp-≃ {B = B} {F} {G} F≈G = record { F₀≡ = λ {X} → eq₀ F≈G X ; F₁≡ = λ {x} {y} {f} → let open Category B using (_∘_) open HId B UB = Underlying₀ B open Transport (Quiver._⇒_ UB) using (_▸_; _◂_) module F = Functor F using (₁) module G = Functor G using (₁) open Quiver.EdgeReasoning (Underlying₀ B) in begin F.₁ f ▸ eq₀ F≈G y ≈⟨ hid-subst-cod (F.₁ f) (eq₀ F≈G y) ⟩ hid (eq₀ F≈G y) ∘ F.₁ f ≈⟨ eq₁ F≈G f ⟩ G.₁ f ∘ hid (eq₀ F≈G x) ≈˘⟨ hid-subst-dom (eq₀ F≈G x) (G.₁ f) ⟩ eq₀ F≈G x ◂ G.₁ f ∎ } where open _≡F_ Underlying : Functor (StrictCats o ℓ e) (Quivers o ℓ e) Underlying = record { F₀ = Underlying₀ ; F₁ = Underlying₁ ; identity = λ {A} → record { F₀≡ = refl ; F₁≡ = Category.Equiv.refl A } ; homomorphism = λ where {Z = Z} → record { F₀≡ = refl ; F₁≡ = Category.Equiv.refl Z } ; F-resp-≈ = ≡F-resp-≃ }
34.953125
88
0.650872
1d731f744940e82a73db64c7f8ba9f65216c96d4
519
agda
Agda
src/Categories/Functor/Profunctor.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Functor/Profunctor.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Functor/Profunctor.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Profunctor where open import Level open import Categories.Category open import Categories.Category.Instance.Setoids open import Categories.Functor.Bifunctor open import Categories.Functor.Hom Profunctor : ∀ {o ℓ e} {o′ ℓ′ e′} → Category o ℓ e → Category o′ ℓ′ e′ → Set _ Profunctor {ℓ = ℓ} {e} {ℓ′ = ℓ′} {e′} C D = Bifunctor (Category.op D) C (Setoids (ℓ ⊔ ℓ′) (e ⊔ e′)) id : ∀ {o ℓ e} → {C : Category o ℓ e} → Profunctor C C id {C = C} = Hom[ C ][-,-]
30.529412
99
0.651252
2f54d639d4022c03d839e9ed5213420afa2c3ac9
568
agda
Agda
test/Succeed/Issue2108.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2108.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2108.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-07-25, issue #2108 -- test case and report by Jesper {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v tc.pos.occ:70 #-} open import Agda.Primitive open import Agda.Builtin.Equality lone = lsuc lzero record Level-zero-or-one : Set where field level : Level is-lower : (level ⊔ lone) ≡ lone open Level-zero-or-one public Coerce : ∀ {a} → a ≡ lone → Set₁ Coerce refl = Set data Test : Set₁ where test : Coerce (is-lower _) → Test -- WAS: -- Meta variable here triggers internal error. -- Should succeed with unsolved metas.
18.933333
46
0.672535
59c773e59d53e8387590990f56436a0b544f63b1
2,133
agda
Agda
trie-core.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
trie-core.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
trie-core.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module trie-core where open import bool open import char open import list open import maybe open import product open import string open import unit open import eq open import nat cal : Set → Set cal A = 𝕃 (char × A) empty-cal : ∀{A : Set} → cal A empty-cal = [] cal-lookup : ∀ {A : Set} → cal A → char → maybe A cal-lookup [] _ = nothing cal-lookup ((c , a) :: l) c' with c =char c' ... | tt = just a ... | ff = cal-lookup l c' cal-insert : ∀ {A : Set} → cal A → char → A → cal A cal-insert [] c a = (c , a) :: [] cal-insert ((c' , a') :: l) c a with c =char c' ... | tt = (c , a) :: l ... | ff = (c' , a') :: (cal-insert l c a) cal-remove : ∀ {A : Set} → cal A → char → cal A cal-remove [] _ = [] cal-remove ((c , a) :: l) c' with c =char c' ... | tt = cal-remove l c' ... | ff = (c , a) :: cal-remove l c' cal-add : ∀{A : Set} → cal A → char → A → cal A cal-add l c a = (c , a) :: l test-cal-insert = cal-insert (('a' , 1) :: ('b' , 2) :: []) 'b' 20 data trie (A : Set) : Set where Node : maybe A → cal (trie A) → trie A empty-trie : ∀{A : Set} → trie A empty-trie = (Node nothing empty-cal) trie-lookup-h : ∀{A : Set} → trie A → 𝕃 char → maybe A trie-lookup-h (Node odata ts) (c :: cs) with cal-lookup ts c trie-lookup-h (Node odata ts) (c :: cs) | nothing = nothing trie-lookup-h (Node odata ts) (c :: cs) | just t = trie-lookup-h t cs trie-lookup-h (Node odata ts) [] = odata trie-insert-h : ∀{A : Set} → trie A → 𝕃 char → A → trie A trie-insert-h (Node odata ts) [] x = (Node (just x) ts) trie-insert-h (Node odata ts) (c :: cs) x with cal-lookup ts c trie-insert-h (Node odata ts) (c :: cs) x | just t = (Node odata (cal-insert ts c (trie-insert-h t cs x))) trie-insert-h (Node odata ts) (c :: cs) x | nothing = (Node odata (cal-add ts c (trie-insert-h empty-trie cs x))) trie-remove-h : ∀{A : Set} → trie A → 𝕃 char → trie A trie-remove-h (Node odata ts) (c :: cs) with cal-lookup ts c trie-remove-h (Node odata ts) (c :: cs) | nothing = Node odata ts trie-remove-h (Node odata ts) (c :: cs) | just t = Node odata (cal-insert ts c (trie-remove-h t cs)) trie-remove-h (Node odata ts) [] = Node nothing ts
31.835821
100
0.583685
dc0d1e4f7bfa81e9e3afcbc2a9ad1afb868ae68c
14,366
agda
Agda
agda/Bundles.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
3
2020-07-31T18:15:26.000Z
2022-02-19T12:15:21.000Z
agda/Bundles.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
agda/Bundles.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts #-} module Bundles where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) private variable ℓ ℓ' ℓ'' : Level open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Structures.CommRing open import Cubical.Relation.Nullary.Base -- ¬_ open import Cubical.Relation.Binary.Base open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim` -- open import Cubical.Structures.Poset open import Cubical.Foundations.Function open import Cubical.Structures.Ring open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_) open import Function.Base using (_∋_) -- open import Function.Reasoning using (∋-syntax) open import Function.Base using (it) -- instance search open import Utils open import MoreLogic open MoreLogic.Reasoning open MoreLogic.Properties open import MoreAlgebra open MoreAlgebra.Definitions open MoreAlgebra.Consequences -- 4.1 Algebraic structure of numbers -- -- Fields have the property that nonzero numbers have a multiplicative inverse, or more precisely, that -- (∀ x : F) x ≠ 0 ⇒ (∃ y : F) x · y = 1. -- -- Remark 4.1.1. -- If we require the collection of numbers to form a set in the sense of Definition 2.5.4, and satisfy the ring axioms, then multiplicative inverses are unique, so that the above is equivalent to the proposition -- (Π x : F) x ≠ 0 ⇒ (Σ y : F) x · y = 1. -- -- Definition 4.1.2. -- A classical field is a set F with points 0, 1 : F, operations +, · : F → F → F, which is a commutative ring with unit, such that -- (∀ x : F) x ≠ 0 ⇒ (∃ y : F) x · y = 1. module ClassicalFieldModule where record IsClassicalField {F : Type ℓ} (0f : F) (1f : F) (_+_ : F → F → F) (_·_ : F → F → F) (-_ : F → F) (_⁻¹ᶠ : (x : F) → {{¬(x ≡ 0f)}} → F) : Type ℓ where constructor isclassicalfield field isCommRing : IsCommRing 0f 1f _+_ _·_ -_ ·-rinv : (x : F) → (p : ¬(x ≡ 0f)) → x · (_⁻¹ᶠ x {{p}}) ≡ 1f ·-linv : (x : F) → (p : ¬(x ≡ 0f)) → (_⁻¹ᶠ x {{p}}) · x ≡ 1f open IsCommRing {0r = 0f} {1r = 1f} isCommRing public record ClassicalField : Type (ℓ-suc ℓ) where field Carrier : Type ℓ 0f : Carrier 1f : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier _⁻¹ᶠ : (x : Carrier) → {{¬(x ≡ 0f)}} → Carrier isClassicalField : IsClassicalField 0f 1f _+_ _·_ -_ _⁻¹ᶠ infix 9 _⁻¹ᶠ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsClassicalField isClassicalField public -- Remark 4.1.3. -- As in the classical case, by proving that additive and multiplicative inverses are unique, we also obtain the negation and division operations. -- -- For the reals, the assumption x ≠ 0 does not give us any information allowing us to bound x away from 0, which we would like in order to compute multiplicative inverses. -- Hence, we give a variation on the denition of fields in which the underlying set comes equipped with an apartness relation #, which satises x # y ⇒ x ≠ y, although the converse implication may not hold. -- This apartness relation allows us to make appropriate error bounds and compute multiplicative inverses based on the assumption x # 0. -- -- NOTE: there is also PropRel in Cubical.Relation.Binary.Base which -- NOTE: one needs these "all-lowercase constructors" to make use of copatterns -- NOTE: see also Relation.Binary.Indexed.Homogeneous.Definitions.html -- NOTE: see also Algebra.Definitions.html -- Definition 4.1.5. -- A constructive field is a set F with points 0, 1 : F, binary operations +, · : F → F → F, and a binary relation # such that -- 1. (F, 0, 1, +, ·) is a commutative ring with unit; -- 2. x : F has a multiplicative inverse iff x # 0; -- 3. + is #-extensional, that is, for all w, x, y, z : F -- w + x # y + z ⇒ w # y ∨ x # z. record IsConstructiveField {F : Type ℓ} (0f : F) (1f : F) (_+_ : F → F → F) (_·_ : F → F → F) (-_ : F → F) (_#_ : hPropRel F F ℓ') (_⁻¹ᶠ : (x : F) → {{[ x # 0f ]}} → F) : Type (ℓ-max ℓ ℓ') where constructor isconstructivefield field isCommRing : IsCommRing 0f 1f _+_ _·_ -_ ·-rinv : ∀ x → (p : [ x # 0f ]) → x · (_⁻¹ᶠ x {{p}}) ≡ 1f ·-linv : ∀ x → (p : [ x # 0f ]) → (_⁻¹ᶠ x {{p}}) · x ≡ 1f ·-inv-back : ∀ x y → (x · y ≡ 1f) → [ x # 0f ] × [ y # 0f ] #-tight : ∀ x y → ¬([ x # y ]) → x ≡ y -- NOTE: the following ⊎ caused trouble two times with resolving ℓ or ℓ' +-#-extensional : ∀ w x y z → [ (w + x) # (y + z) ] → [ (w # y) ⊔ (x # z) ] isApartnessRel : IsApartnessRelᵖ _#_ open IsCommRing {0r = 0f} {1r = 1f} isCommRing public open IsApartnessRelᵖ isApartnessRel public renaming ( isIrrefl to #-irrefl ; isSym to #-sym ; isCotrans to #-cotrans ) record ConstructiveField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where constructor constructivefield field Carrier : Type ℓ 0f : Carrier 1f : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier _#_ : hPropRel Carrier Carrier ℓ' _⁻¹ᶠ : (x : Carrier) → {{[ x # 0f ]}} → Carrier isConstructiveField : IsConstructiveField 0f 1f _+_ _·_ -_ _#_ _⁻¹ᶠ infix 9 _⁻¹ᶠ infixl 7 _·_ infix 6 -_ infixl 5 _+_ infixl 4 _#_ open IsConstructiveField isConstructiveField public -- Definition 4.1.8. -- Let (A, ≤) be a partial order, and let min, max : A → A → A be binary operators on A. We say that (A, ≤, min, max) is a lattice if min computes greatest lower bounds in the sense that for every x, y, z : A, we have -- z ≤ min(x,y) ⇔ z ≤ x ∧ z ≤ y, -- and max computes least upper bounds in the sense that for every x, y, z : A, we have -- max(x,y) ≤ z ⇔ x ≤ z ∧ y ≤ z. record IsLattice {A : Type ℓ} (_≤_ : Rel A A ℓ') (min max : A → A → A) : Type (ℓ-max ℓ ℓ') where constructor islattice field isPartialOrder : IsPartialOrder _≤_ glb : ∀ x y z → z ≤ min x y → z ≤ x × z ≤ y glb-back : ∀ x y z → z ≤ x × z ≤ y → z ≤ min x y lub : ∀ x y z → max x y ≤ z → x ≤ z × y ≤ z lub-back : ∀ x y z → x ≤ z × y ≤ z → max x y ≤ z open IsPartialOrder isPartialOrder public renaming ( isRefl to ≤-refl ; isAntisym to ≤-antisym ; isTrans to ≤-trans ) record Lattice : Type (ℓ-suc (ℓ-max ℓ ℓ')) where constructor lattice field Carrier : Type ℓ _≤_ : Rel Carrier Carrier ℓ' min max : Carrier → Carrier → Carrier isLattice : IsLattice _≤_ min max infixl 4 _≤_ open IsLattice isLattice public -- Remark 4.1.9.2 -- 1. From the fact that (A, ≤, min, max) is a lattice, it does not follow that for every x and y, min(x,y) = x ∨ min(x,y) = y. However, we can characterize min as -- z < min(x,y) ⇔ z < x ∨ z < y -- and similarly for max, see Lemma 6.7.1. -- 2. In a partial order, for two fixed elements a and b, all joins and meets of a, b are equal, so that Lemma 2.6.20 the type of joins and the type of meets are propositions. Hence, providing the maps min and max as in the above definition is equivalent to the showing the existenceof all binary joins and meets. -- -- The following definition is modified from on The Univalent Foundations Program [89, Definition 11.2.7]. -- -- Definition 4.1.10. -- An ordered field is a set F together with constants 0, 1, operations +, ·, min, max, and a binary relation < such that: -- 1. (F, 0, 1, +, ·) is a commutative ring with unit; -- 2. < is a strict [partial] order; -- 3. x : F has a multiplicative inverse iff x # 0, recalling that # is defined as in Lemma 4.1.7; -- 4. ≤, as in Lemma 4.1.7, is antisymmetric, so that (F, ≤) is a partial order; -- 5. (F, ≤, min, max) is a lattice. -- 6. for all x, y, z, w : F: -- x + y < z + w ⇒ x < z ∨ y < w, (†) -- 0 < z ∧ x < y ⇒ x z < y z. (∗) -- Our notion of ordered fields coincides with The Univalent Foundations Program [89, Definition 11.2.7]. -- NOTE: well, the HOTT book definition organizes things slightly different. Why prefer one approach over the other? record IsAlmostOrderedField {F : Type ℓ} (0f 1f : F) (_+_ : F → F → F) (-_ : F → F) (_·_ min max : F → F → F) (_<_ _#_ _≤_ : Rel F F ℓ') (_⁻¹ᶠ : (x : F) → {{x # 0f}} → F) : Type (ℓ-max ℓ ℓ') where field -- 1. isCommRing : IsCommRing 0f 1f _+_ _·_ -_ -- 2. <-isStrictPartialOrder : IsStrictPartialOrder _<_ -- 3. ·-rinv : (x : F) → (p : x # 0f) → x · (_⁻¹ᶠ x {{p}}) ≡ 1f ·-linv : (x : F) → (p : x # 0f) → (_⁻¹ᶠ x {{p}}) · x ≡ 1f ·-inv-back : (x y : F) → (x · y ≡ 1f) → x # 0f × y # 0f -- 4. NOTE: we already have ≤-isPartialOrder in <-isLattice -- ≤-isPartialOrder : IsPartialOrder _≤_ -- 5. ≤-isLattice : IsLattice _≤_ min max open IsCommRing {0r = 0f} {1r = 1f} isCommRing public open IsStrictPartialOrder <-isStrictPartialOrder public renaming ( isIrrefl to <-irrefl ; isTrans to <-trans ; isCotrans to <-cotrans ) open IsLattice ≤-isLattice public record AlmostOrderedField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where constructor orderedfield field Carrier : Type ℓ 0f 1f : Carrier _+_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier _·_ : Carrier → Carrier → Carrier min max : Carrier → Carrier → Carrier _<_ : Rel Carrier Carrier ℓ' <-isProp : ∀ x y → isProp (x < y) _#_ = _#'_ {_<_ = _<_} _≤_ = _≤'_ {_<_ = _<_} field _⁻¹ᶠ : (x : Carrier) → {{x # 0f}} → Carrier isAlmostOrderedField : IsAlmostOrderedField 0f 1f _+_ -_ _·_ min max _<_ _#_ _≤_ _⁻¹ᶠ infix 9 _⁻¹ᶠ infixl 7 _·_ infix 6 -_ infixl 5 _+_ infixl 4 _#_ infixl 4 _≤_ infixl 4 _<_ open IsAlmostOrderedField isAlmostOrderedField public #-isProp : ∀ x y → isProp (x # y) #-isProp = #-from-<-isProp _<_ <-isStrictPartialOrder <-isProp record IsOrderedField {F : Type ℓ} (0f 1f : F) (_+_ : F → F → F) (-_ : F → F) (_·_ min max : F → F → F) (_<_ _#_ _≤_ : Rel F F ℓ') (_⁻¹ᶠ : (x : F) → {{x # 0f}} → F) : Type (ℓ-max ℓ ℓ') where constructor isorderedfield field -- 1. 2. 3. 4. 5. isAlmostOrderedField : IsAlmostOrderedField 0f 1f _+_ -_ _·_ min max _<_ _#_ _≤_ _⁻¹ᶠ -- 6. (†) -- NOTE: this is 'shifted' from the pevious definition of #-extensionality for + .. does the name still fit? +-<-extensional : ∀ w x y z → (x + y) < (z + w) → (x < z) ⊎ (y < w) -- 6. (∗) ·-preserves-< : ∀ x y z → 0f < z → x < y → (x · z) < (y · z) open IsAlmostOrderedField isAlmostOrderedField public record OrderedField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where constructor orderedfield field Carrier : Type ℓ 0f 1f : Carrier _+_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier _·_ : Carrier → Carrier → Carrier min max : Carrier → Carrier → Carrier _<_ : Rel Carrier Carrier ℓ' <-isProp : ∀ x y → isProp (x < y) _#_ = _#'_ {_<_ = _<_} _≤_ = _≤'_ {_<_ = _<_} field _⁻¹ᶠ : (x : Carrier) → {{x # 0f}} → Carrier isOrderedField : IsOrderedField 0f 1f _+_ -_ _·_ min max _<_ _#_ _≤_ _⁻¹ᶠ infix 9 _⁻¹ᶠ infixl 7 _·_ infix 6 -_ infixl 5 _+_ infixl 4 _#_ infixl 4 _≤_ infixl 4 _<_ open IsOrderedField isOrderedField public abstract -- NOTE: there might be some reason not to "do" (or "open") all the theory of a record within that record +-preserves-< : ∀ a b x → a < b → a + x < b + x +-preserves-< a b x a<b = ( a < b ⇒⟨ transport (λ i → sym (fst (+-identity a)) i < sym (fst (+-identity b)) i) ⟩ a + 0f < b + 0f ⇒⟨ transport (λ i → a + sym (+-rinv x) i < b + sym (+-rinv x) i) ⟩ a + (x - x) < b + (x - x) ⇒⟨ transport (λ i → +-assoc a x (- x) i < +-assoc b x (- x) i) ⟩ (a + x) - x < (b + x) - x ⇒⟨ +-<-extensional (- x) (a + x) (- x) (b + x) ⟩ (a + x < b + x) ⊎ (- x < - x) ⇒⟨ (λ{ (inl a+x<b+x) → a+x<b+x -- somehow ⊥-elim needs a hint in the next line ; (inr -x<-x ) → ⊥-elim {A = λ _ → (a + x < b + x)} (<-irrefl (- x) -x<-x) }) ⟩ a + x < b + x ◼) a<b ≤-isPreorder : IsPreorder _≤_ ≤-isPreorder = ≤-isPreorder' {_<_ = _<_} {<-isStrictPartialOrder} -- Definition 4.3.1. -- A morphism from an ordered field (F, 0F , 1F , +F , ·F , minF , maxF , <F ) -- to an ordered field (G, 0G , 1G , +G , ·G , minG , maxG , <G ) -- is a map f : F → G such that -- 1. f is a morphism of rings, -- 2. f reflects < in the sense that for every x, y : F -- f (x) <G f (y) ⇒ x <F y. -- NOTE: see Cubical.Structures.Group.Morphism -- and Cubical.Structures.Group.MorphismProperties -- open import Cubical.Structures.Group.Morphism record IsRingMor {ℓ ℓ'} (F : Ring {ℓ}) (G : Ring {ℓ'}) (f : (Ring.Carrier F) → (Ring.Carrier G)) : Type (ℓ-max ℓ ℓ') where module F = Ring F module G = Ring G field preserves-+ : ∀ a b → f (a F.+ b) ≡ f a G.+ f b preserves-· : ∀ a b → f (a F.· b) ≡ f a G.· f b perserves-1 : f F.1r ≡ G.1r record IsOrderedFieldMor {ℓ ℓ' ℓₚ ℓₚ'} -- NOTE: this is a lot of levels. Can we get rid of some of these? (F : OrderedField {ℓ} {ℓₚ}) (G : OrderedField {ℓ'} {ℓₚ'}) -- (let module F = OrderedField F) -- NOTE: `let` is not allowed in a telescope -- (let module G = OrderedField G) (f : (OrderedField.Carrier F) → (OrderedField.Carrier G)) : Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓₚ ℓₚ')) where module F = OrderedField F module G = OrderedField G field isRingMor : IsRingMor (record {F}) (record {G}) f reflects-< : ∀ x y → f x G.< f y → x F.< y -- NOTE: for more properties, see https://en.wikipedia.org/wiki/Ring_homomorphism#Properties record OrderedFieldMor {ℓ ℓ' ℓₚ ℓₚ'} (F : OrderedField {ℓ} {ℓₚ}) (G : OrderedField {ℓ'} {ℓₚ'}) : Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓₚ ℓₚ')) where constructor orderedfieldmor module F = OrderedField F module G = OrderedField G field fun : F.Carrier → G.Carrier isOrderedFieldMor : IsOrderedFieldMor F G fun -- NOTE: f preserves P: P A ⇒ P (f A) -- f reflects P: P (f A) ⇒ P A -- Remark 4.3.2. The contrapositive of reflecting < means preserving ≤.
40.016713
313
0.59258
5934214346cfbc2e44b59373f9a9ac5c55d3f36a
369
agda
Agda
metatheory/test/Negation.agda
greggdourgarian/plutus
07a2fbef515b988ca3401d38e1464a36ca80b641
[ "Apache-2.0" ]
1
2021-12-11T03:10:00.000Z
2021-12-11T03:10:00.000Z
metatheory/test/Negation.agda
greggdourgarian/plutus
07a2fbef515b988ca3401d38e1464a36ca80b641
[ "Apache-2.0" ]
1
2019-02-06T12:42:31.000Z
2019-02-06T12:42:31.000Z
metatheory/test/Negation.agda
greggdourgarian/plutus
07a2fbef515b988ca3401d38e1464a36ca80b641
[ "Apache-2.0" ]
null
null
null
module test.Negation where open import Type open import Declarative open import Builtin open import Builtin.Constant.Type open import Builtin.Constant.Term Ctx⋆ Kind * # _⊢⋆_ con size⋆ -- plutus/language-plutus-core/test/data/negation.plc open import Declarative.StdLib.Bool negate : ∀{Γ} → Γ ⊢ boolean ⇒ boolean negate {Γ} = ƛ (if ·⋆ boolean · ` Z · false · true)
24.6
62
0.737127
1d91ad458432ea9020ab27bbff423c1be841e269
968
agda
Agda
Rings/Homomorphisms/Image.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Rings/Homomorphisms/Image.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Rings/Homomorphisms/Image.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Homomorphisms.Definition module Rings.Homomorphisms.Image {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_+A_ _*A_ : A → A → A} {_+B_ _*B_ : B → B → B} {R1 : Ring S _+A_ _*A_} {R2 : Ring T _+B_ _*B_} {f : A → B} (hom : RingHom R1 R2 f) where open import Groups.Homomorphisms.Image (RingHom.groupHom hom) open import Rings.Subrings.Definition imageGroupSubring : Subring R2 imageGroupPred Subring.isSubgroup imageGroupSubring = imageGroupSubgroup Subring.containsOne imageGroupSubring = Ring.1R R1 , RingHom.preserves1 hom Subring.closedUnderProduct imageGroupSubring {x} {y} (a , fa=x) (b , fb=y) = (a *A b) , transitive ringHom (Ring.*WellDefined R2 fa=x fb=y) where open Setoid T open Equivalence eq open RingHom hom
42.086957
254
0.71281
10e1d57b88db73e1ee9a79063fe76e53aa2ffdd9
432,294
agda
Agda
agda/Text/Greek/SBLGNT/Rev.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
44
2015-05-29T14:48:51.000Z
2022-03-06T15:41:57.000Z
agda/Text/Greek/SBLGNT/Rev.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
13
2015-05-28T20:04:08.000Z
2020-09-07T11:58:38.000Z
agda/Text/Greek/SBLGNT/Rev.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
5
2015-02-27T22:34:13.000Z
2017-06-11T11:25:09.000Z
module Text.Greek.SBLGNT.Rev where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΑΠΟΚΑΛΥΨΙΣ-ΙΩΑΝΝΟΥ : List (Word) ΑΠΟΚΑΛΥΨΙΣ-ΙΩΑΝΝΟΥ = word (Ἀ ∷ π ∷ ο ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ ψ ∷ ι ∷ ς ∷ []) "Rev.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1" ∷ word (ἣ ∷ ν ∷ []) "Rev.1.1" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.1.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.1.1" ∷ word (ὁ ∷ []) "Rev.1.1" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.1.1" ∷ word (δ ∷ ε ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.1.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.1.1" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.1.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1" ∷ word (ἃ ∷ []) "Rev.1.1" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.1.1" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.1.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.1" ∷ word (τ ∷ ά ∷ χ ∷ ε ∷ ι ∷ []) "Rev.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.1" ∷ word (ἐ ∷ σ ∷ ή ∷ μ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rev.1.1" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.1.1" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.1.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.1.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.1.1" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ῳ ∷ []) "Rev.1.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ῃ ∷ []) "Rev.1.1" ∷ word (ὃ ∷ ς ∷ []) "Rev.1.2" ∷ word (ἐ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.1.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.1.2" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.1.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.2" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.1.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.2" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Rev.1.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.1.2" ∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.1.3" ∷ word (ὁ ∷ []) "Rev.1.3" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Rev.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.3" ∷ word (ο ∷ ἱ ∷ []) "Rev.1.3" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.1.3" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.3" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.1.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.3" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.3" ∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.1.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.1.3" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.1.3" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.1.3" ∷ word (ὁ ∷ []) "Rev.1.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.1.3" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.3" ∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Rev.1.3" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Rev.1.4" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.1.4" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.4" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.1.4" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.1.4" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.4" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.4" ∷ word (Ἀ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Rev.1.4" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.1.4" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Rev.1.4" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.1.4" ∷ word (ὁ ∷ []) "Rev.1.4" ∷ word (ὢ ∷ ν ∷ []) "Rev.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4" ∷ word (ὁ ∷ []) "Rev.1.4" ∷ word (ἦ ∷ ν ∷ []) "Rev.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4" ∷ word (ὁ ∷ []) "Rev.1.4" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.1.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.4" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.4" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.1.4" ∷ word (ἃ ∷ []) "Rev.1.4" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.4" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.1.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.5" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.1.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.5" ∷ word (ὁ ∷ []) "Rev.1.5" ∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Rev.1.5" ∷ word (ὁ ∷ []) "Rev.1.5" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.1.5" ∷ word (ὁ ∷ []) "Rev.1.5" ∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ό ∷ τ ∷ ο ∷ κ ∷ ο ∷ ς ∷ []) "Rev.1.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.5" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.5" ∷ word (ὁ ∷ []) "Rev.1.5" ∷ word (ἄ ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.1.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.5" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.1.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.5" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.1.5" ∷ word (Τ ∷ ῷ ∷ []) "Rev.1.5" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.1.5" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.5" ∷ word (∙λ ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Rev.1.5" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.1.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.1.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.5" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.1.5" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.1.5" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.5" ∷ word (τ ∷ ῷ ∷ []) "Rev.1.5" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.6" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.1.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.1.6" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.1.6" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.1.6" ∷ word (τ ∷ ῷ ∷ []) "Rev.1.6" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.6" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Rev.1.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.1.6" ∷ word (ἡ ∷ []) "Rev.1.6" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.1.6" ∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.6" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.6" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.1.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.6" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.1.6" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.1.6" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.1.7" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.1.7" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.1.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.7" ∷ word (ν ∷ ε ∷ φ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.1.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.7" ∷ word (ὄ ∷ ψ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.1.7" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.1.7" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.1.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.7" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.1.7" ∷ word (ἐ ∷ ξ ∷ ε ∷ κ ∷ έ ∷ ν ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.1.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.7" ∷ word (κ ∷ ό ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.1.7" ∷ word (ἐ ∷ π ∷ []) "Rev.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.1.7" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Rev.1.7" ∷ word (α ∷ ἱ ∷ []) "Rev.1.7" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.1.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.7" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.1.7" ∷ word (ν ∷ α ∷ ί ∷ []) "Rev.1.7" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.1.7" ∷ word (Ἐ ∷ γ ∷ ώ ∷ []) "Rev.1.8" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.1.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.1.8" ∷ word (Ἄ ∷ ∙λ ∷ φ ∷ α ∷ []) "Rev.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.1.8" ∷ word (Ὦ ∷ []) "Rev.1.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.1.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.1.8" ∷ word (ὁ ∷ []) "Rev.1.8" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.1.8" ∷ word (ὁ ∷ []) "Rev.1.8" ∷ word (ὢ ∷ ν ∷ []) "Rev.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.8" ∷ word (ὁ ∷ []) "Rev.1.8" ∷ word (ἦ ∷ ν ∷ []) "Rev.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.8" ∷ word (ὁ ∷ []) "Rev.1.8" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.1.8" ∷ word (ὁ ∷ []) "Rev.1.8" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.1.8" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Rev.1.9" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Rev.1.9" ∷ word (ὁ ∷ []) "Rev.1.9" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Rev.1.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.1.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.9" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.9" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rev.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῇ ∷ []) "Rev.1.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.9" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.9" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.1.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.9" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.9" ∷ word (ν ∷ ή ∷ σ ∷ ῳ ∷ []) "Rev.1.9" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.9" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "Rev.1.9" ∷ word (Π ∷ ά ∷ τ ∷ μ ∷ ῳ ∷ []) "Rev.1.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.1.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.1.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.9" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.1.9" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.9" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.1.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.10" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.1.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.10" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.10" ∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ α ∷ κ ∷ ῇ ∷ []) "Rev.1.10" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Rev.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.10" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.1.10" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Rev.1.10" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.1.10" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.1.10" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.1.10" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.10" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Rev.1.10" ∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.1.11" ∷ word (Ὃ ∷ []) "Rev.1.11" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Rev.1.11" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.1.11" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.1.11" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.11" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Ἔ ∷ φ ∷ ε ∷ σ ∷ ο ∷ ν ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Σ ∷ μ ∷ ύ ∷ ρ ∷ ν ∷ α ∷ ν ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Π ∷ έ ∷ ρ ∷ γ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Θ ∷ υ ∷ ά ∷ τ ∷ ε ∷ ι ∷ ρ ∷ α ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Σ ∷ ά ∷ ρ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ έ ∷ ∙λ ∷ φ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Λ ∷ α ∷ ο ∷ δ ∷ ί ∷ κ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.1.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.1.12" ∷ word (ἐ ∷ π ∷ έ ∷ σ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ α ∷ []) "Rev.1.12" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.1.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.12" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.1.12" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.1.12" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.1.12" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.1.12" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.12" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Rev.1.12" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.1.12" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.12" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Rev.1.12" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.13" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.1.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.13" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.1.13" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.13" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Rev.1.13" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.1.13" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.1.13" ∷ word (π ∷ ο ∷ δ ∷ ή ∷ ρ ∷ η ∷ []) "Rev.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.13" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ ζ ∷ ω ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.1.13" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.13" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.1.13" ∷ word (μ ∷ α ∷ σ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.1.13" ∷ word (ζ ∷ ώ ∷ ν ∷ η ∷ ν ∷ []) "Rev.1.13" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ν ∷ []) "Rev.1.13" ∷ word (ἡ ∷ []) "Rev.1.14" ∷ word (δ ∷ ὲ ∷ []) "Rev.1.14" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "Rev.1.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.14" ∷ word (α ∷ ἱ ∷ []) "Rev.1.14" ∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ ε ∷ ς ∷ []) "Rev.1.14" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ α ∷ ὶ ∷ []) "Rev.1.14" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.14" ∷ word (ἔ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.14" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ό ∷ ν ∷ []) "Rev.1.14" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.14" ∷ word (χ ∷ ι ∷ ώ ∷ ν ∷ []) "Rev.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.14" ∷ word (ο ∷ ἱ ∷ []) "Rev.1.14" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rev.1.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.14" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.14" ∷ word (φ ∷ ∙λ ∷ ὸ ∷ ξ ∷ []) "Rev.1.14" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.1.15" ∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.1.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.15" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ι ∷ []) "Rev.1.15" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ο ∷ ∙λ ∷ ι ∷ β ∷ ά ∷ ν ∷ ῳ ∷ []) "Rev.1.15" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.15" ∷ word (κ ∷ α ∷ μ ∷ ί ∷ ν ∷ ῳ ∷ []) "Rev.1.15" ∷ word (π ∷ ε ∷ π ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.15" ∷ word (ἡ ∷ []) "Rev.1.15" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.1.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.15" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.15" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.1.15" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.1.15" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.16" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.1.16" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.16" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.16" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Rev.1.16" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.1.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.1.16" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.16" ∷ word (ἐ ∷ κ ∷ []) "Rev.1.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16" ∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ α ∷ []) "Rev.1.16" ∷ word (δ ∷ ί ∷ σ ∷ τ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.1.16" ∷ word (ὀ ∷ ξ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.1.16" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.16" ∷ word (ἡ ∷ []) "Rev.1.16" ∷ word (ὄ ∷ ψ ∷ ι ∷ ς ∷ []) "Rev.1.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.16" ∷ word (ὁ ∷ []) "Rev.1.16" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.1.16" ∷ word (φ ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.1.16" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.16" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.16" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "Rev.1.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.1.17" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.1.17" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.1.17" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.1.17" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ []) "Rev.1.17" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.17" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.17" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Rev.1.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.17" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.17" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.17" ∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rev.1.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.17" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὰ ∷ ν ∷ []) "Rev.1.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.17" ∷ word (ἐ ∷ π ∷ []) "Rev.1.17" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Rev.1.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.1.17" ∷ word (Μ ∷ ὴ ∷ []) "Rev.1.17" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Rev.1.17" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Rev.1.17" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.1.17" ∷ word (ὁ ∷ []) "Rev.1.17" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.17" ∷ word (ὁ ∷ []) "Rev.1.17" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18" ∷ word (ὁ ∷ []) "Rev.1.18" ∷ word (ζ ∷ ῶ ∷ ν ∷ []) "Rev.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.1.18" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.1.18" ∷ word (ζ ∷ ῶ ∷ ν ∷ []) "Rev.1.18" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.1.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.18" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.1.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.18" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.1.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.1.18" ∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.1.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.18" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.18" ∷ word (ᾅ ∷ δ ∷ ο ∷ υ ∷ []) "Rev.1.18" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.1.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.1.19" ∷ word (ἃ ∷ []) "Rev.1.19" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.19" ∷ word (ἃ ∷ []) "Rev.1.19" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.19" ∷ word (ἃ ∷ []) "Rev.1.19" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.1.19" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.1.19" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.1.19" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.1.19" ∷ word (τ ∷ ὸ ∷ []) "Rev.1.20" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.1.20" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Rev.1.20" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.1.20" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.1.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.20" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Rev.1.20" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.1.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.20" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.1.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Rev.1.20" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.1.20" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.1.20" ∷ word (ο ∷ ἱ ∷ []) "Rev.1.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.1.20" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.1.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.1.20" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.1.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.20" ∷ word (α ∷ ἱ ∷ []) "Rev.1.20" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ι ∷ []) "Rev.1.20" ∷ word (α ∷ ἱ ∷ []) "Rev.1.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "Rev.1.20" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.1.20" ∷ word (Τ ∷ ῷ ∷ []) "Rev.2.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.1" ∷ word (Ἐ ∷ φ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.2.1" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.1" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.1" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.1" ∷ word (ὁ ∷ []) "Rev.2.1" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.2.1" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.2.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.1" ∷ word (τ ∷ ῇ ∷ []) "Rev.2.1" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Rev.2.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.2.1" ∷ word (ὁ ∷ []) "Rev.2.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.1" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.2.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.2.1" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.2.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ῶ ∷ ν ∷ []) "Rev.2.1" ∷ word (Ο ∷ ἶ ∷ δ ∷ α ∷ []) "Rev.2.2" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.2" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.2" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.2" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ή ∷ ν ∷ []) "Rev.2.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.2" ∷ word (ο ∷ ὐ ∷ []) "Rev.2.2" ∷ word (δ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Rev.2.2" ∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2" ∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ρ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.2.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.2" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.2" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.2" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2" ∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.2.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.2" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.3" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.2.3" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.3" ∷ word (ἐ ∷ β ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.2.3" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.2.3" ∷ word (τ ∷ ὸ ∷ []) "Rev.2.3" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.2.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.3" ∷ word (ο ∷ ὐ ∷ []) "Rev.2.3" ∷ word (κ ∷ ε ∷ κ ∷ ο ∷ π ∷ ί ∷ α ∷ κ ∷ ε ∷ ς ∷ []) "Rev.2.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.4" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.2.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.4" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.2.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.4" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Rev.2.4" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.4" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ ν ∷ []) "Rev.2.4" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ς ∷ []) "Rev.2.4" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ ε ∷ []) "Rev.2.5" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.2.5" ∷ word (π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.2.5" ∷ word (π ∷ έ ∷ π ∷ τ ∷ ω ∷ κ ∷ α ∷ ς ∷ []) "Rev.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.5" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.5" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.5" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.2.5" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.5" ∷ word (π ∷ ο ∷ ί ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.2.5" ∷ word (ε ∷ ἰ ∷ []) "Rev.2.5" ∷ word (δ ∷ ὲ ∷ []) "Rev.2.5" ∷ word (μ ∷ ή ∷ []) "Rev.2.5" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Rev.2.5" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.5" ∷ word (κ ∷ ι ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.2.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.5" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.5" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.2.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.5" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ υ ∷ []) "Rev.2.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.5" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.2.5" ∷ word (μ ∷ ὴ ∷ []) "Rev.2.5" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.2.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.6" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.2.6" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.6" ∷ word (μ ∷ ι ∷ σ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.6" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.6" ∷ word (Ν ∷ ι ∷ κ ∷ ο ∷ ∙λ ∷ α ∷ ϊ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.6" ∷ word (ἃ ∷ []) "Rev.2.6" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.2.6" ∷ word (μ ∷ ι ∷ σ ∷ ῶ ∷ []) "Rev.2.6" ∷ word (ὁ ∷ []) "Rev.2.7" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.7" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.7" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.7" ∷ word (τ ∷ ί ∷ []) "Rev.2.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.2.7" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.7" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.7" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.7" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.7" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.2.7" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.7" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.2.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.7" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.2.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.7" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.2.7" ∷ word (ὅ ∷ []) "Rev.2.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.7" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.7" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ε ∷ ί ∷ σ ∷ ῳ ∷ []) "Rev.2.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.2.7" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.2.8" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.8" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.8" ∷ word (Σ ∷ μ ∷ ύ ∷ ρ ∷ ν ∷ ῃ ∷ []) "Rev.2.8" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.8" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.8" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.8" ∷ word (ὁ ∷ []) "Rev.2.8" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.2.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.8" ∷ word (ὁ ∷ []) "Rev.2.8" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.2.8" ∷ word (ὃ ∷ ς ∷ []) "Rev.2.8" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.2.8" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.2.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.8" ∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.2.8" ∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.2.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.9" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Rev.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.9" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.9" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.2.9" ∷ word (ε ∷ ἶ ∷ []) "Rev.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.9" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.2.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.9" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.2.9" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.9" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rev.2.9" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.9" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.2.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.9" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ὴ ∷ []) "Rev.2.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.9" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.2.9" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Rev.2.10" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Rev.2.10" ∷ word (ἃ ∷ []) "Rev.2.10" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.10" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.2.10" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.2.10" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.2.10" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.2.10" ∷ word (ὁ ∷ []) "Rev.2.10" ∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.2.10" ∷ word (ἐ ∷ ξ ∷ []) "Rev.2.10" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.2.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.2.10" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ ν ∷ []) "Rev.2.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.2.10" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ τ ∷ ε ∷ []) "Rev.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.10" ∷ word (ἕ ∷ ξ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.2.10" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Rev.2.10" ∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.2.10" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.2.10" ∷ word (γ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.2.10" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.2.10" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.2.10" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.10" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.10" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.2.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.10" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.2.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.10" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.2.10" ∷ word (ὁ ∷ []) "Rev.2.11" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.11" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.11" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.11" ∷ word (τ ∷ ί ∷ []) "Rev.2.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.2.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.11" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.11" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.11" ∷ word (ὁ ∷ []) "Rev.2.11" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.2.11" ∷ word (ο ∷ ὐ ∷ []) "Rev.2.11" ∷ word (μ ∷ ὴ ∷ []) "Rev.2.11" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ η ∷ θ ∷ ῇ ∷ []) "Rev.2.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.11" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.11" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.2.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.2.12" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.12" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.12" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.12" ∷ word (Π ∷ ε ∷ ρ ∷ γ ∷ ά ∷ μ ∷ ῳ ∷ []) "Rev.2.12" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.12" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.12" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.12" ∷ word (ὁ ∷ []) "Rev.2.12" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.12" ∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.12" ∷ word (δ ∷ ί ∷ σ ∷ τ ∷ ο ∷ μ ∷ ο ∷ ν ∷ []) "Rev.2.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.12" ∷ word (ὀ ∷ ξ ∷ ε ∷ ῖ ∷ α ∷ ν ∷ []) "Rev.2.12" ∷ word (Ο ∷ ἶ ∷ δ ∷ α ∷ []) "Rev.2.13" ∷ word (π ∷ ο ∷ ῦ ∷ []) "Rev.2.13" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.13" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.2.13" ∷ word (ὁ ∷ []) "Rev.2.13" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.2.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.13" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.13" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.2.13" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.2.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.13" ∷ word (ἠ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.2.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.13" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.13" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.13" ∷ word (Ἀ ∷ ν ∷ τ ∷ ι ∷ π ∷ ᾶ ∷ ς ∷ []) "Rev.2.13" ∷ word (ὁ ∷ []) "Rev.2.13" ∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Rev.2.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13" ∷ word (ὁ ∷ []) "Rev.2.13" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.2.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13" ∷ word (ὃ ∷ ς ∷ []) "Rev.2.13" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.2.13" ∷ word (π ∷ α ∷ ρ ∷ []) "Rev.2.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.2.13" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.2.13" ∷ word (ὁ ∷ []) "Rev.2.13" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.2.13" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.2.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.14" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.2.14" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.14" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.2.14" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ α ∷ []) "Rev.2.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.14" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.14" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.2.14" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.14" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.2.14" ∷ word (Β ∷ α ∷ ∙λ ∷ α ∷ ά ∷ μ ∷ []) "Rev.2.14" ∷ word (ὃ ∷ ς ∷ []) "Rev.2.14" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Rev.2.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.14" ∷ word (Β ∷ α ∷ ∙λ ∷ ὰ ∷ κ ∷ []) "Rev.2.14" ∷ word (β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.14" ∷ word (σ ∷ κ ∷ ά ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.2.14" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.2.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.14" ∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rev.2.14" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rev.2.14" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.14" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ α ∷ []) "Rev.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.14" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.14" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.2.15" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.15" ∷ word (σ ∷ ὺ ∷ []) "Rev.2.15" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.15" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.2.15" ∷ word (Ν ∷ ι ∷ κ ∷ ο ∷ ∙λ ∷ α ∷ ϊ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.15" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Rev.2.15" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.2.16" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.2.16" ∷ word (ε ∷ ἰ ∷ []) "Rev.2.16" ∷ word (δ ∷ ὲ ∷ []) "Rev.2.16" ∷ word (μ ∷ ή ∷ []) "Rev.2.16" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Rev.2.16" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.2.16" ∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.16" ∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ή ∷ σ ∷ ω ∷ []) "Rev.2.16" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.2.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.16" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.16" ∷ word (τ ∷ ῇ ∷ []) "Rev.2.16" ∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rev.2.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.16" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "Rev.2.16" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.16" ∷ word (ὁ ∷ []) "Rev.2.17" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.17" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.17" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.17" ∷ word (τ ∷ ί ∷ []) "Rev.2.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.2.17" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.17" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.17" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.17" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.17" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.2.17" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.17" ∷ word (μ ∷ ά ∷ ν ∷ ν ∷ α ∷ []) "Rev.2.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.17" ∷ word (κ ∷ ε ∷ κ ∷ ρ ∷ υ ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.17" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.17" ∷ word (ψ ∷ ῆ ∷ φ ∷ ο ∷ ν ∷ []) "Rev.2.17" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ ν ∷ []) "Rev.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.2.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.17" ∷ word (ψ ∷ ῆ ∷ φ ∷ ο ∷ ν ∷ []) "Rev.2.17" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.2.17" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.2.17" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.2.17" ∷ word (ὃ ∷ []) "Rev.2.17" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.2.17" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.2.17" ∷ word (ε ∷ ἰ ∷ []) "Rev.2.17" ∷ word (μ ∷ ὴ ∷ []) "Rev.2.17" ∷ word (ὁ ∷ []) "Rev.2.17" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ω ∷ ν ∷ []) "Rev.2.17" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.2.18" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.18" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.18" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.18" ∷ word (Θ ∷ υ ∷ α ∷ τ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.2.18" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.18" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.18" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.18" ∷ word (ὁ ∷ []) "Rev.2.18" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Rev.2.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.18" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.2.18" ∷ word (ὁ ∷ []) "Rev.2.18" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.18" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.2.18" ∷ word (ὡ ∷ ς ∷ []) "Rev.2.18" ∷ word (φ ∷ ∙λ ∷ ό ∷ γ ∷ α ∷ []) "Rev.2.18" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.18" ∷ word (ο ∷ ἱ ∷ []) "Rev.2.18" ∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.2.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.2.18" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ι ∷ []) "Rev.2.18" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ο ∷ ∙λ ∷ ι ∷ β ∷ ά ∷ ν ∷ ῳ ∷ []) "Rev.2.18" ∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.2.19" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.19" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Rev.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ή ∷ ν ∷ []) "Rev.2.19" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.19" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.19" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.19" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ α ∷ []) "Rev.2.19" ∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ α ∷ []) "Rev.2.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.19" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.2.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.20" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.2.20" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.20" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.2.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.20" ∷ word (ἀ ∷ φ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.20" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.2.20" ∷ word (Ἰ ∷ ε ∷ ζ ∷ ά ∷ β ∷ ε ∷ ∙λ ∷ []) "Rev.2.20" ∷ word (ἡ ∷ []) "Rev.2.20" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.2.20" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.2.20" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.20" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "Rev.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.20" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾷ ∷ []) "Rev.2.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.20" ∷ word (ἐ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.20" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.20" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.20" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.20" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ α ∷ []) "Rev.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.21" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "Rev.2.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.2.21" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.2.21" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.2.21" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.2.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.21" ∷ word (ο ∷ ὐ ∷ []) "Rev.2.21" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.2.21" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.2.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.21" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.21" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.2.22" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Rev.2.22" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.2.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.2.22" ∷ word (κ ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Rev.2.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.22" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.22" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.2.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.2.22" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Rev.2.22" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.2.22" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.2.22" ∷ word (μ ∷ ὴ ∷ []) "Rev.2.22" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.2.22" ∷ word (ἐ ∷ κ ∷ []) "Rev.2.22" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.22" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.2.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.23" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Rev.2.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.23" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ῶ ∷ []) "Rev.2.23" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.23" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Rev.2.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.2.23" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.23" ∷ word (α ∷ ἱ ∷ []) "Rev.2.23" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "Rev.2.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.23" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Rev.2.23" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.2.23" ∷ word (ὁ ∷ []) "Rev.2.23" ∷ word (ἐ ∷ ρ ∷ α ∷ υ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.2.23" ∷ word (ν ∷ ε ∷ φ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.23" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.2.23" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rev.2.23" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.23" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.23" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.23" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.2.23" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.2.24" ∷ word (δ ∷ ὲ ∷ []) "Rev.2.24" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Rev.2.24" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.2.24" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.2.24" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.2.24" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.24" ∷ word (Θ ∷ υ ∷ α ∷ τ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.2.24" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rev.2.24" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.24" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.2.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.24" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.2.24" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Rev.2.24" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.2.24" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.24" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Rev.2.24" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.24" ∷ word (β ∷ α ∷ θ ∷ έ ∷ α ∷ []) "Rev.2.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.24" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.2.24" ∷ word (ὡ ∷ ς ∷ []) "Rev.2.24" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.2.24" ∷ word (ο ∷ ὐ ∷ []) "Rev.2.24" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Rev.2.24" ∷ word (ἐ ∷ φ ∷ []) "Rev.2.24" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.2.24" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.2.24" ∷ word (β ∷ ά ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.2.24" ∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.2.25" ∷ word (ὃ ∷ []) "Rev.2.25" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.2.25" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.2.25" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.2.25" ∷ word (ο ∷ ὗ ∷ []) "Rev.2.25" ∷ word (ἂ ∷ ν ∷ []) "Rev.2.25" ∷ word (ἥ ∷ ξ ∷ ω ∷ []) "Rev.2.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.26" ∷ word (ὁ ∷ []) "Rev.2.26" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.2.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.26" ∷ word (ὁ ∷ []) "Rev.2.26" ∷ word (τ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.2.26" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.2.26" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.26" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.26" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.26" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.26" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.26" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.26" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.26" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.2.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.26" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.2.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.27" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.2.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.27" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.27" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.2.27" ∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ᾷ ∷ []) "Rev.2.27" ∷ word (ὡ ∷ ς ∷ []) "Rev.2.27" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.27" ∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ η ∷ []) "Rev.2.27" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.27" ∷ word (κ ∷ ε ∷ ρ ∷ α ∷ μ ∷ ι ∷ κ ∷ ὰ ∷ []) "Rev.2.27" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ ί ∷ β ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.2.27" ∷ word (ὡ ∷ ς ∷ []) "Rev.2.28" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.2.28" ∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ α ∷ []) "Rev.2.28" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rev.2.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.28" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.2.28" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.28" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.28" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.28" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.2.28" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.28" ∷ word (π ∷ ρ ∷ ω ∷ ϊ ∷ ν ∷ ό ∷ ν ∷ []) "Rev.2.28" ∷ word (ὁ ∷ []) "Rev.2.29" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.29" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.29" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.29" ∷ word (τ ∷ ί ∷ []) "Rev.2.29" ∷ word (τ ∷ ὸ ∷ []) "Rev.2.29" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.29" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.29" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.29" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.29" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.3.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.3.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.3.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.1" ∷ word (Σ ∷ ά ∷ ρ ∷ δ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.1" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.3.1" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.3.1" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.3.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.1" ∷ word (ὁ ∷ []) "Rev.3.1" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.1" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.3.1" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.3.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.3.1" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.3.1" ∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.3.1" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.1" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.1" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.1" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.1" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.1" ∷ word (ζ ∷ ῇ ∷ ς ∷ []) "Rev.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.1" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.1" ∷ word (ε ∷ ἶ ∷ []) "Rev.3.1" ∷ word (γ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.3.2" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.3.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.2" ∷ word (σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ σ ∷ ο ∷ ν ∷ []) "Rev.3.2" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.2" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὰ ∷ []) "Rev.3.2" ∷ word (ἃ ∷ []) "Rev.3.2" ∷ word (ἔ ∷ μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.3.2" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.3.2" ∷ word (ο ∷ ὐ ∷ []) "Rev.3.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.3.2" ∷ word (ε ∷ ὕ ∷ ρ ∷ η ∷ κ ∷ ά ∷ []) "Rev.3.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.2" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.2" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.2" ∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.3.2" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.2" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.2" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ ε ∷ []) "Rev.3.3" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.3.3" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Rev.3.3" ∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ α ∷ ς ∷ []) "Rev.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "Rev.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3" ∷ word (τ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ []) "Rev.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.3.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.3.3" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.3.3" ∷ word (μ ∷ ὴ ∷ []) "Rev.3.3" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.3.3" ∷ word (ἥ ∷ ξ ∷ ω ∷ []) "Rev.3.3" ∷ word (ὡ ∷ ς ∷ []) "Rev.3.3" ∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ η ∷ ς ∷ []) "Rev.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3" ∷ word (ο ∷ ὐ ∷ []) "Rev.3.3" ∷ word (μ ∷ ὴ ∷ []) "Rev.3.3" ∷ word (γ ∷ ν ∷ ῷ ∷ ς ∷ []) "Rev.3.3" ∷ word (π ∷ ο ∷ ί ∷ α ∷ ν ∷ []) "Rev.3.3" ∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.3" ∷ word (ἥ ∷ ξ ∷ ω ∷ []) "Rev.3.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.3" ∷ word (σ ∷ έ ∷ []) "Rev.3.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.3.4" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.4" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ α ∷ []) "Rev.3.4" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.3.4" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.4" ∷ word (Σ ∷ ά ∷ ρ ∷ δ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.4" ∷ word (ἃ ∷ []) "Rev.3.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.4" ∷ word (ἐ ∷ μ ∷ ό ∷ ∙λ ∷ υ ∷ ν ∷ α ∷ ν ∷ []) "Rev.3.4" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.4" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Rev.3.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.3.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.4" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.4" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.4" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.4" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.4" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.3.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.4" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ί ∷ []) "Rev.3.4" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.4" ∷ word (ὁ ∷ []) "Rev.3.5" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.3.5" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.3.5" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.3.5" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.5" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.3.5" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.5" ∷ word (ο ∷ ὐ ∷ []) "Rev.3.5" ∷ word (μ ∷ ὴ ∷ []) "Rev.3.5" ∷ word (ἐ ∷ ξ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ω ∷ []) "Rev.3.5" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.5" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.3.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.5" ∷ word (β ∷ ί ∷ β ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.3.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.5" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.5" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.5" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.5" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.3.5" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.5" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.3.5" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5" ∷ word (ὁ ∷ []) "Rev.3.6" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.6" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.3.6" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.3.6" ∷ word (τ ∷ ί ∷ []) "Rev.3.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.6" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.3.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.6" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.3.6" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.3.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.3.7" ∷ word (τ ∷ ῷ ∷ []) "Rev.3.7" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.3.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.7" ∷ word (Φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.3.7" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.3.7" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.3.7" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.3.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.7" ∷ word (ὁ ∷ []) "Rev.3.7" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.3.7" ∷ word (ὁ ∷ []) "Rev.3.7" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.3.7" ∷ word (ὁ ∷ []) "Rev.3.7" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.3.7" ∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.3.7" ∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Rev.3.7" ∷ word (ὁ ∷ []) "Rev.3.7" ∷ word (ἀ ∷ ν ∷ ο ∷ ί ∷ γ ∷ ω ∷ ν ∷ []) "Rev.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.7" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.7" ∷ word (κ ∷ ∙λ ∷ ε ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Rev.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.7" ∷ word (κ ∷ ∙λ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Rev.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.7" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.7" ∷ word (ἀ ∷ ν ∷ ο ∷ ί ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.7" ∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.3.8" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.8" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.8" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.8" ∷ word (δ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "Rev.3.8" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ό ∷ ν ∷ []) "Rev.3.8" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.8" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.8" ∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.3.8" ∷ word (ἣ ∷ ν ∷ []) "Rev.3.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.8" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Rev.3.8" ∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.8" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.3.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.8" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὰ ∷ ν ∷ []) "Rev.3.8" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.8" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.8" ∷ word (ἐ ∷ τ ∷ ή ∷ ρ ∷ η ∷ σ ∷ ά ∷ ς ∷ []) "Rev.3.8" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.3.8" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.8" ∷ word (ἠ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.8" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.3.8" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.8" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.9" ∷ word (δ ∷ ι ∷ δ ∷ ῶ ∷ []) "Rev.3.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.3.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.9" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.3.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.9" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.3.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.3.9" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.3.9" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.9" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.3.9" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rev.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.9" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.3.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.3.9" ∷ word (ψ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.3.9" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.9" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.9" ∷ word (ἥ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.9" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.3.9" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.3.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.9" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.9" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.3.9" ∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ ά ∷ []) "Rev.3.9" ∷ word (σ ∷ ε ∷ []) "Rev.3.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.10" ∷ word (ἐ ∷ τ ∷ ή ∷ ρ ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Rev.3.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.3.10" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.3.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.10" ∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "Rev.3.10" ∷ word (σ ∷ ε ∷ []) "Rev.3.10" ∷ word (τ ∷ η ∷ ρ ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.3.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.3.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.10" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.3.10" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.3.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.3.10" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.3.10" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.10" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.3.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.3.11" ∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.3.11" ∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ε ∷ ι ∷ []) "Rev.3.11" ∷ word (ὃ ∷ []) "Rev.3.11" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.11" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.11" ∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Rev.3.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.3.11" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.3.11" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.11" ∷ word (ὁ ∷ []) "Rev.3.12" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.3.12" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.3.12" ∷ word (σ ∷ τ ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.3.12" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.12" ∷ word (τ ∷ ῷ ∷ []) "Rev.3.12" ∷ word (ν ∷ α ∷ ῷ ∷ []) "Rev.3.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Rev.3.12" ∷ word (ο ∷ ὐ ∷ []) "Rev.3.12" ∷ word (μ ∷ ὴ ∷ []) "Rev.3.12" ∷ word (ἐ ∷ ξ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rev.3.12" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ω ∷ []) "Rev.3.12" ∷ word (ἐ ∷ π ∷ []) "Rev.3.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.3.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.12" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.12" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.12" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.3.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.3.12" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ή ∷ μ ∷ []) "Rev.3.12" ∷ word (ἡ ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.3.12" ∷ word (ἐ ∷ κ ∷ []) "Rev.3.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.3.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.12" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.3.12" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ό ∷ ν ∷ []) "Rev.3.12" ∷ word (ὁ ∷ []) "Rev.3.13" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.13" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.3.13" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.3.13" ∷ word (τ ∷ ί ∷ []) "Rev.3.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.13" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.3.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.13" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.3.13" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.3.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.3.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.3.14" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.3.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.14" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.14" ∷ word (Λ ∷ α ∷ ο ∷ δ ∷ ι ∷ κ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.3.14" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.3.14" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.3.14" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.3.14" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.14" ∷ word (ὁ ∷ []) "Rev.3.14" ∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.3.14" ∷ word (ὁ ∷ []) "Rev.3.14" ∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Rev.3.14" ∷ word (ὁ ∷ []) "Rev.3.14" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.3.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.14" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.3.14" ∷ word (ἡ ∷ []) "Rev.3.14" ∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.3.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.14" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.3.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.14" ∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.3.15" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.15" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.15" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.15" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.15" ∷ word (ψ ∷ υ ∷ χ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.15" ∷ word (ε ∷ ἶ ∷ []) "Rev.3.15" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.15" ∷ word (ζ ∷ ε ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.15" ∷ word (ὄ ∷ φ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.3.15" ∷ word (ψ ∷ υ ∷ χ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.15" ∷ word (ἦ ∷ ς ∷ []) "Rev.3.15" ∷ word (ἢ ∷ []) "Rev.3.15" ∷ word (ζ ∷ ε ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.15" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.3.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.16" ∷ word (χ ∷ ∙λ ∷ ι ∷ α ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.16" ∷ word (ε ∷ ἶ ∷ []) "Rev.3.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.16" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.16" ∷ word (ζ ∷ ε ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.3.16" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.16" ∷ word (ψ ∷ υ ∷ χ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.3.16" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Rev.3.16" ∷ word (σ ∷ ε ∷ []) "Rev.3.16" ∷ word (ἐ ∷ μ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.16" ∷ word (ἐ ∷ κ ∷ []) "Rev.3.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.16" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.16" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.17" ∷ word (Π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ό ∷ ς ∷ []) "Rev.3.17" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ η ∷ κ ∷ α ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Rev.3.17" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.3.17" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.17" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "Rev.3.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.17" ∷ word (σ ∷ ὺ ∷ []) "Rev.3.17" ∷ word (ε ∷ ἶ ∷ []) "Rev.3.17" ∷ word (ὁ ∷ []) "Rev.3.17" ∷ word (τ ∷ α ∷ ∙λ ∷ α ∷ ί ∷ π ∷ ω ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ε ∷ ι ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ὸ ∷ ς ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ό ∷ ς ∷ []) "Rev.3.17" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ω ∷ []) "Rev.3.18" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.3.18" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.18" ∷ word (π ∷ α ∷ ρ ∷ []) "Rev.3.18" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.18" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.3.18" ∷ word (π ∷ ε ∷ π ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.3.18" ∷ word (ἐ ∷ κ ∷ []) "Rev.3.18" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.18" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.18" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Rev.3.18" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὰ ∷ []) "Rev.3.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.18" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.18" ∷ word (μ ∷ ὴ ∷ []) "Rev.3.18" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "Rev.3.18" ∷ word (ἡ ∷ []) "Rev.3.18" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ύ ∷ ν ∷ η ∷ []) "Rev.3.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.18" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.18" ∷ word (κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.18" ∷ word (ἐ ∷ γ ∷ χ ∷ ρ ∷ ῖ ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.18" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.3.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.18" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ῃ ∷ ς ∷ []) "Rev.3.18" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.3.19" ∷ word (ὅ ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.3.19" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.3.19" ∷ word (φ ∷ ι ∷ ∙λ ∷ ῶ ∷ []) "Rev.3.19" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ γ ∷ χ ∷ ω ∷ []) "Rev.3.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.19" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ύ ∷ ω ∷ []) "Rev.3.19" ∷ word (ζ ∷ ή ∷ ∙λ ∷ ε ∷ υ ∷ ε ∷ []) "Rev.3.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.3.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.19" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.3.19" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.20" ∷ word (ἕ ∷ σ ∷ τ ∷ η ∷ κ ∷ α ∷ []) "Rev.3.20" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.3.20" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20" ∷ word (κ ∷ ρ ∷ ο ∷ ύ ∷ ω ∷ []) "Rev.3.20" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rev.3.20" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.3.20" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "Rev.3.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.20" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.3.20" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20" ∷ word (ἀ ∷ ν ∷ ο ∷ ί ∷ ξ ∷ ῃ ∷ []) "Rev.3.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.3.20" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.3.20" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20" ∷ word (δ ∷ ε ∷ ι ∷ π ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.20" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.3.20" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.20" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.20" ∷ word (ὁ ∷ []) "Rev.3.21" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.3.21" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.3.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.3.21" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.21" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.21" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.21" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.21" ∷ word (τ ∷ ῷ ∷ []) "Rev.3.21" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.3.21" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.21" ∷ word (ὡ ∷ ς ∷ []) "Rev.3.21" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.3.21" ∷ word (ἐ ∷ ν ∷ ί ∷ κ ∷ η ∷ σ ∷ α ∷ []) "Rev.3.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.21" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ α ∷ []) "Rev.3.21" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.3.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.21" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.3.21" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.21" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.21" ∷ word (τ ∷ ῷ ∷ []) "Rev.3.21" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.3.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.21" ∷ word (ὁ ∷ []) "Rev.3.22" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.22" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.3.22" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.3.22" ∷ word (τ ∷ ί ∷ []) "Rev.3.22" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.22" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.3.22" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.22" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.3.22" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.3.22" ∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.4.1" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.4.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.1" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.4.1" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ []) "Rev.4.1" ∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.4.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.4.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.4.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.1" ∷ word (ἡ ∷ []) "Rev.4.1" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.4.1" ∷ word (ἡ ∷ []) "Rev.4.1" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Rev.4.1" ∷ word (ἣ ∷ ν ∷ []) "Rev.4.1" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.4.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.4.1" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Rev.4.1" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.4.1" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.4.1" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.4.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.4.1" ∷ word (Ἀ ∷ ν ∷ ά ∷ β ∷ α ∷ []) "Rev.4.1" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Rev.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.1" ∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ω ∷ []) "Rev.4.1" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.4.1" ∷ word (ἃ ∷ []) "Rev.4.1" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.4.1" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.4.1" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.4.1" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.4.1" ∷ word (ε ∷ ὐ ∷ θ ∷ έ ∷ ω ∷ ς ∷ []) "Rev.4.2" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.4.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.4.2" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.4.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.2" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.4.2" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.2" ∷ word (ἔ ∷ κ ∷ ε ∷ ι ∷ τ ∷ ο ∷ []) "Rev.4.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.4.2" ∷ word (τ ∷ ῷ ∷ []) "Rev.4.2" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.4.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.4.2" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.4.2" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.3" ∷ word (ὁ ∷ []) "Rev.4.3" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.3" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.3" ∷ word (ὁ ∷ ρ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.4.3" ∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.4.3" ∷ word (ἰ ∷ ά ∷ σ ∷ π ∷ ι ∷ δ ∷ ι ∷ []) "Rev.4.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.3" ∷ word (σ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ῳ ∷ []) "Rev.4.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.3" ∷ word (ἶ ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.4.3" ∷ word (κ ∷ υ ∷ κ ∷ ∙λ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.3" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.3" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.3" ∷ word (ὁ ∷ ρ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.4.3" ∷ word (σ ∷ μ ∷ α ∷ ρ ∷ α ∷ γ ∷ δ ∷ ί ∷ ν ∷ ῳ ∷ []) "Rev.4.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.4" ∷ word (κ ∷ υ ∷ κ ∷ ∙λ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.4" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.4" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ι ∷ []) "Rev.4.4" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.4.4" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.4" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.4" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.4.4" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.4.4" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4" ∷ word (ἐ ∷ ν ∷ []) "Rev.4.4" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.4.4" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.4.4" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.4.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.4.4" ∷ word (σ ∷ τ ∷ ε ∷ φ ∷ ά ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.4.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.5" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.5" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.4.5" ∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5" ∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.4.5" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.4.5" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.4.5" ∷ word (κ ∷ α ∷ ι ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Rev.4.5" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.5" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.5" ∷ word (ἅ ∷ []) "Rev.4.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.5" ∷ word (τ ∷ ὰ ∷ []) "Rev.4.5" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.4.5" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.4.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.6" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.6" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.4.6" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Rev.4.6" ∷ word (ὑ ∷ α ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ []) "Rev.4.6" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ α ∷ []) "Rev.4.6" ∷ word (κ ∷ ρ ∷ υ ∷ σ ∷ τ ∷ ά ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "Rev.4.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.4.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.4.6" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.4.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.6" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.6" ∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Rev.4.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.6" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.6" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.4.6" ∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.4.6" ∷ word (γ ∷ έ ∷ μ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.4.6" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.4.6" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.6" ∷ word (ὄ ∷ π ∷ ι ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.7" ∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.7" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (∙λ ∷ έ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.7" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (μ ∷ ό ∷ σ ∷ χ ∷ ῳ ∷ []) "Rev.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.7" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.4.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.7" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ὡ ∷ ς ∷ []) "Rev.4.7" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.7" ∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ἀ ∷ ε ∷ τ ∷ ῷ ∷ []) "Rev.4.7" ∷ word (π ∷ ε ∷ τ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.4.8" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.4.8" ∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.4.8" ∷ word (ἓ ∷ ν ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ θ ∷ []) "Rev.4.8" ∷ word (ἓ ∷ ν ∷ []) "Rev.4.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.4.8" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.4.8" ∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Rev.4.8" ∷ word (π ∷ τ ∷ έ ∷ ρ ∷ υ ∷ γ ∷ α ∷ ς ∷ []) "Rev.4.8" ∷ word (ἕ ∷ ξ ∷ []) "Rev.4.8" ∷ word (κ ∷ υ ∷ κ ∷ ∙λ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8" ∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.8" ∷ word (γ ∷ έ ∷ μ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.8" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8" ∷ word (ἀ ∷ ν ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.4.8" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.4.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.4.8" ∷ word (Ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8" ∷ word (ὁ ∷ []) "Rev.4.8" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.4.8" ∷ word (ὁ ∷ []) "Rev.4.8" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.4.8" ∷ word (ὁ ∷ []) "Rev.4.8" ∷ word (ἦ ∷ ν ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8" ∷ word (ὁ ∷ []) "Rev.4.8" ∷ word (ὢ ∷ ν ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8" ∷ word (ὁ ∷ []) "Rev.4.8" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.9" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.4.9" ∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.9" ∷ word (τ ∷ ὰ ∷ []) "Rev.4.9" ∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.4.9" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.4.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.9" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.4.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.9" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Rev.4.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.4.9" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.4.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.4.9" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.4.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.4.9" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.4.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.4.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.9" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.4.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.4.9" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.4.9" ∷ word (π ∷ ε ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.4.10" ∷ word (ο ∷ ἱ ∷ []) "Rev.4.10" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.4.10" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.4.10" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.4.10" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.10" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.10" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.10" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.4.10" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.4.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.4.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.10" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.4.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.4.10" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.4.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.10" ∷ word (β ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.10" ∷ word (σ ∷ τ ∷ ε ∷ φ ∷ ά ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.4.10" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.10" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.4.10" ∷ word (Ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.11" ∷ word (ε ∷ ἶ ∷ []) "Rev.4.11" ∷ word (ὁ ∷ []) "Rev.4.11" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11" ∷ word (ὁ ∷ []) "Rev.4.11" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.4.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.4.11" ∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.4.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.4.11" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.4.11" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.4.11" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.4.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.4.11" ∷ word (σ ∷ ὺ ∷ []) "Rev.4.11" ∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ α ∷ ς ∷ []) "Rev.4.11" ∷ word (τ ∷ ὰ ∷ []) "Rev.4.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.4.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.11" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ ά ∷ []) "Rev.4.11" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.4.11" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11" ∷ word (ἐ ∷ κ ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.4.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.5.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.5.1" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὰ ∷ ν ∷ []) "Rev.5.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.1" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.1" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.1" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.1" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.1" ∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.1" ∷ word (ὄ ∷ π ∷ ι ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.5.1" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.1" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.1" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.2" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.5.2" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.5.2" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.5.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.2" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.5.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.5.2" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Rev.5.2" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.5.2" ∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.2" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.2" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.2" ∷ word (∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.5.2" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.5.2" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ ς ∷ []) "Rev.5.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.5.3" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.5.3" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.3" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.3" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.5.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.5.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.5.3" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.5.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.3" ∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.3" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.3" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.3" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.5.3" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.5.3" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.5.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.4" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.5.4" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rev.5.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Rev.5.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.5.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.5.4" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.5.4" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.5.4" ∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.4" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.4" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.5.4" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.5.4" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.5" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.5.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.5.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.5" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.5.5" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.5.5" ∷ word (Μ ∷ ὴ ∷ []) "Rev.5.5" ∷ word (κ ∷ ∙λ ∷ α ∷ ῖ ∷ ε ∷ []) "Rev.5.5" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.5.5" ∷ word (ἐ ∷ ν ∷ ί ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.5.5" ∷ word (ὁ ∷ []) "Rev.5.5" ∷ word (∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.5.5" ∷ word (ὁ ∷ []) "Rev.5.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.5.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.5" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.5.5" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Rev.5.5" ∷ word (ἡ ∷ []) "Rev.5.5" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "Rev.5.5" ∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Rev.5.5" ∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.5" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.5" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.5" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.5.5" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.5.5" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ ς ∷ []) "Rev.5.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.5.5" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.5.6" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.6" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.5.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.6" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.6" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.6" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.6" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.5.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.6" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.6" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.6" ∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.5.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.5.6" ∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.6" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.5.6" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.5.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.6" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.5.6" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.5.6" ∷ word (ο ∷ ἵ ∷ []) "Rev.5.6" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.5.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.5.6" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.5.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.5.6" ∷ word (ἀ ∷ π ∷ ε ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.5.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.5.6" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.5.6" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.7" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.5.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.7" ∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ ε ∷ ν ∷ []) "Rev.5.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.5.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.7" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Rev.5.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.7" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.7" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.7" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.8" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.5.8" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Rev.5.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.8" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.5.8" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.5.8" ∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.8" ∷ word (ο ∷ ἱ ∷ []) "Rev.5.8" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.5.8" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.5.8" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.5.8" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.8" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.5.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.8" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.5.8" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.5.8" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.5.8" ∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ ν ∷ []) "Rev.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.8" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.5.8" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.5.8" ∷ word (γ ∷ ε ∷ μ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Rev.5.8" ∷ word (θ ∷ υ ∷ μ ∷ ι ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.5.8" ∷ word (α ∷ ἵ ∷ []) "Rev.5.8" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.8" ∷ word (α ∷ ἱ ∷ []) "Rev.5.8" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ὶ ∷ []) "Rev.5.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.8" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9" ∷ word (ᾄ ∷ δ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.9" ∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.5.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.5.9" ∷ word (Ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.5.9" ∷ word (ε ∷ ἶ ∷ []) "Rev.5.9" ∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.5.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.9" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9" ∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.9" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.5.9" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ ς ∷ []) "Rev.5.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.5.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.5.9" ∷ word (ἐ ∷ σ ∷ φ ∷ ά ∷ γ ∷ η ∷ ς ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9" ∷ word (ἠ ∷ γ ∷ ό ∷ ρ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.5.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.9" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.5.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.9" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rev.5.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.5.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.5.9" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rev.5.9" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9" ∷ word (∙λ ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9" ∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.10" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Rev.5.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.5.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.10" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.5.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.5.10" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.5.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.10" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.5.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.10" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.10" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.5.11" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.5.11" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.5.11" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.5.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.5.11" ∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Rev.5.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.11" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.11" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.11" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11" ∷ word (ἦ ∷ ν ∷ []) "Rev.5.11" ∷ word (ὁ ∷ []) "Rev.5.11" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.5.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.5.11" ∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.5.11" ∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.5.11" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.5.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.5.12" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.5.12" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.5.12" ∷ word (Ἄ ∷ ξ ∷ ι ∷ ό ∷ ν ∷ []) "Rev.5.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.5.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.12" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.12" ∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.12" ∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.5.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.5.12" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12" ∷ word (ἰ ∷ σ ∷ χ ∷ ὺ ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.5.13" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ μ ∷ α ∷ []) "Rev.5.13" ∷ word (ὃ ∷ []) "Rev.5.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.13" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.13" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.13" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.5.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.13" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.13" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (τ ∷ ὰ ∷ []) "Rev.5.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.5.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.5.13" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.5.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.5.13" ∷ word (Τ ∷ ῷ ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.5.13" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.13" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.13" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.13" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.5.13" ∷ word (ἡ ∷ []) "Rev.5.13" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (ἡ ∷ []) "Rev.5.13" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (ἡ ∷ []) "Rev.5.13" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.13" ∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.5.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.5.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.5.13" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.5.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.13" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.14" ∷ word (τ ∷ ὰ ∷ []) "Rev.5.14" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.5.14" ∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.5.14" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Rev.5.14" ∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.14" ∷ word (ο ∷ ἱ ∷ []) "Rev.5.14" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.5.14" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.1" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.1" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.6.1" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.6.1" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.6.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.6.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.6.1" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ δ ∷ ω ∷ ν ∷ []) "Rev.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.1" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.1" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.6.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.6.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.1" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.6.1" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.6.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.1" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.6.1" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.6.1" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.6.2" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.2" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ό ∷ ς ∷ []) "Rev.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2" ∷ word (ὁ ∷ []) "Rev.6.2" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.2" ∷ word (ἐ ∷ π ∷ []) "Rev.6.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.6.2" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.6.2" ∷ word (τ ∷ ό ∷ ξ ∷ ο ∷ ν ∷ []) "Rev.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.2" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.6.2" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.6.2" ∷ word (ν ∷ ι ∷ κ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.6.2" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.3" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.3" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.3" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.3" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.6.3" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.3" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.6.3" ∷ word (ζ ∷ ῴ ∷ ο ∷ υ ∷ []) "Rev.6.3" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.3" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.6.4" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.6.4" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.4" ∷ word (π ∷ υ ∷ ρ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.6.4" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.6.4" ∷ word (ἐ ∷ π ∷ []) "Rev.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.6.4" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.4" ∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.6.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.4" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "Rev.6.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.6.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.4" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.6.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.6.4" ∷ word (σ ∷ φ ∷ ά ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.4" ∷ word (μ ∷ ά ∷ χ ∷ α ∷ ι ∷ ρ ∷ α ∷ []) "Rev.6.4" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.6.4" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.5" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.5" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ []) "Rev.6.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.5" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.5" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.5" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.5" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "Rev.6.5" ∷ word (ζ ∷ ῴ ∷ ο ∷ υ ∷ []) "Rev.6.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.5" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.5" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.5" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.6.5" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.5" ∷ word (μ ∷ έ ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.5" ∷ word (ὁ ∷ []) "Rev.6.5" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.5" ∷ word (ἐ ∷ π ∷ []) "Rev.6.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.6.5" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.6.5" ∷ word (ζ ∷ υ ∷ γ ∷ ὸ ∷ ν ∷ []) "Rev.6.5" ∷ word (ἐ ∷ ν ∷ []) "Rev.6.5" ∷ word (τ ∷ ῇ ∷ []) "Rev.6.5" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.6.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.6" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.6.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.6.6" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.6.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.6" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.6.6" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.6.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.6.6" ∷ word (Χ ∷ ο ∷ ῖ ∷ ν ∷ ι ∷ ξ ∷ []) "Rev.6.6" ∷ word (σ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "Rev.6.6" ∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.6.6" ∷ word (χ ∷ ο ∷ ί ∷ ν ∷ ι ∷ κ ∷ ε ∷ ς ∷ []) "Rev.6.6" ∷ word (κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ ν ∷ []) "Rev.6.6" ∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.6.6" ∷ word (ἔ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rev.6.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.6.6" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.6.6" ∷ word (μ ∷ ὴ ∷ []) "Rev.6.6" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.6.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.7" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.7" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.7" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.7" ∷ word (τ ∷ ε ∷ τ ∷ ά ∷ ρ ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.7" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.7" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.6.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.7" ∷ word (τ ∷ ε ∷ τ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.6.7" ∷ word (ζ ∷ ῴ ∷ ο ∷ υ ∷ []) "Rev.6.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.7" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.6.8" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.8" ∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ὁ ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.8" ∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "Rev.6.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.6.8" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.6.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.8" ∷ word (ὁ ∷ []) "Rev.6.8" ∷ word (Θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ὁ ∷ []) "Rev.6.8" ∷ word (ᾅ ∷ δ ∷ η ∷ ς ∷ []) "Rev.6.8" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Rev.6.8" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.6.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.8" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.6.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.6.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.6.8" ∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.6.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.8" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.8" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Rev.6.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.6.8" ∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.6.8" ∷ word (∙λ ∷ ι ∷ μ ∷ ῷ ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.6.8" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rev.6.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.8" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.6.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.8" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.9" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.9" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.9" ∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.9" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.9" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.9" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.6.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.9" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.9" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.6.9" ∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "Rev.6.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.9" ∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.6.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.6.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.6.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.6.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.6.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.9" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.6.9" ∷ word (ἣ ∷ ν ∷ []) "Rev.6.9" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.10" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rev.6.10" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.6.10" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.6.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.6.10" ∷ word (Ἕ ∷ ω ∷ ς ∷ []) "Rev.6.10" ∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Rev.6.10" ∷ word (ὁ ∷ []) "Rev.6.10" ∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ η ∷ ς ∷ []) "Rev.6.10" ∷ word (ὁ ∷ []) "Rev.6.10" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.10" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.6.10" ∷ word (ο ∷ ὐ ∷ []) "Rev.6.10" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ ς ∷ []) "Rev.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.10" ∷ word (ἐ ∷ κ ∷ δ ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.6.10" ∷ word (τ ∷ ὸ ∷ []) "Rev.6.10" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.6.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.6.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.6.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.10" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.6.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.6.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.10" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.11" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rev.6.11" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Rev.6.11" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ []) "Rev.6.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11" ∷ word (ἐ ∷ ρ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.6.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.6.11" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.6.11" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.6.11" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.6.11" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ό ∷ ν ∷ []) "Rev.6.11" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Rev.6.11" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.11" ∷ word (σ ∷ ύ ∷ ν ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.6.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.11" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "Rev.6.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.11" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.6.11" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ έ ∷ ν ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.6.11" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.6.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.12" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.12" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.12" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.12" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.12" ∷ word (ἕ ∷ κ ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.12" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.6.12" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.6.12" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.6.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.12" ∷ word (ὁ ∷ []) "Rev.6.12" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.6.12" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.6.12" ∷ word (μ ∷ έ ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.6.12" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.12" ∷ word (σ ∷ ά ∷ κ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.6.12" ∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.12" ∷ word (ἡ ∷ []) "Rev.6.12" ∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Rev.6.12" ∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "Rev.6.12" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.6.12" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.12" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.6.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.13" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.13" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.6.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.13" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.6.13" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.6.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.6.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.13" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.6.13" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.13" ∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ []) "Rev.6.13" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.6.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.6.13" ∷ word (ὀ ∷ ∙λ ∷ ύ ∷ ν ∷ θ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.6.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.6.13" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rev.6.13" ∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.6.13" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.6.13" ∷ word (σ ∷ ε ∷ ι ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.14" ∷ word (ὁ ∷ []) "Rev.6.14" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.6.14" ∷ word (ἀ ∷ π ∷ ε ∷ χ ∷ ω ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.6.14" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.14" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.6.14" ∷ word (ἑ ∷ ∙λ ∷ ι ∷ σ ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.14" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.6.14" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.14" ∷ word (ν ∷ ῆ ∷ σ ∷ ο ∷ ς ∷ []) "Rev.6.14" ∷ word (ἐ ∷ κ ∷ []) "Rev.6.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.14" ∷ word (τ ∷ ό ∷ π ∷ ω ∷ ν ∷ []) "Rev.6.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.14" ∷ word (ἐ ∷ κ ∷ ι ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.15" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.6.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.15" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.15" ∷ word (μ ∷ ε ∷ γ ∷ ι ∷ σ ∷ τ ∷ ᾶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.15" ∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ρ ∷ χ ∷ ο ∷ ι ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.15" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.15" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.6.15" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.6.15" ∷ word (ἔ ∷ κ ∷ ρ ∷ υ ∷ ψ ∷ α ∷ ν ∷ []) "Rev.6.15" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.6.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.6.15" ∷ word (τ ∷ ὰ ∷ []) "Rev.6.15" ∷ word (σ ∷ π ∷ ή ∷ ∙λ ∷ α ∷ ι ∷ α ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.6.15" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.6.15" ∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.6.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.15" ∷ word (ὀ ∷ ρ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.16" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.16" ∷ word (ὄ ∷ ρ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.6.16" ∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.6.16" ∷ word (Π ∷ έ ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.6.16" ∷ word (ἐ ∷ φ ∷ []) "Rev.6.16" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.6.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16" ∷ word (κ ∷ ρ ∷ ύ ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "Rev.6.16" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.6.16" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.6.16" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.6.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.16" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.6.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.6.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.16" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.6.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.6.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.16" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.6.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.16" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.6.17" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.6.17" ∷ word (ἡ ∷ []) "Rev.6.17" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.6.17" ∷ word (ἡ ∷ []) "Rev.6.17" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.6.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.17" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.6.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.17" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rev.6.17" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Rev.6.17" ∷ word (σ ∷ τ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.6.17" ∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.7.1" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.7.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.7.1" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.1" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ ς ∷ []) "Rev.7.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.1" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.1" ∷ word (γ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Rev.7.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.7.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.1" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.1" ∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.7.1" ∷ word (μ ∷ ὴ ∷ []) "Rev.7.1" ∷ word (π ∷ ν ∷ έ ∷ ῃ ∷ []) "Rev.7.1" ∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Rev.7.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.7.1" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.7.1" ∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.7.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.7.2" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.7.2" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.7.2" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.7.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.7.2" ∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.2" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.7.2" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.7.2" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.7.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.7.2" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.7.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.2" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.7.2" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.7.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.7.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.7.2" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.2" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.7.2" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Rev.7.2" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.7.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.7.2" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.7.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.2" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.7.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.2" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.7.3" ∷ word (Μ ∷ ὴ ∷ []) "Rev.7.3" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Rev.7.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.3" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.7.3" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.3" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.3" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.7.3" ∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Rev.7.3" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.7.3" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rev.7.3" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.3" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.7.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.3" ∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.7.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.3" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.7.4" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.7.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.7.4" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.7.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.4" ∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.7.4" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.7.4" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.7.4" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.7.4" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.4" ∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.4" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rev.7.4" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.4" ∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rev.7.4" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rev.7.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.5" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.5" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Rev.7.5" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.5" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.5" ∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.5" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.5" ∷ word (Ῥ ∷ ο ∷ υ ∷ β ∷ ὴ ∷ ν ∷ []) "Rev.7.5" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.5" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.5" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.5" ∷ word (Γ ∷ ὰ ∷ δ ∷ []) "Rev.7.5" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.5" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.6" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.6" ∷ word (Ἀ ∷ σ ∷ ὴ ∷ ρ ∷ []) "Rev.7.6" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.6" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.6" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.6" ∷ word (Ν ∷ ε ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ ὶ ∷ μ ∷ []) "Rev.7.6" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.6" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.6" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.6" ∷ word (Μ ∷ α ∷ ν ∷ α ∷ σ ∷ σ ∷ ῆ ∷ []) "Rev.7.6" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.6" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.7" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.7" ∷ word (Σ ∷ υ ∷ μ ∷ ε ∷ ὼ ∷ ν ∷ []) "Rev.7.7" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.7" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.7" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.7" ∷ word (Λ ∷ ε ∷ υ ∷ ὶ ∷ []) "Rev.7.7" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.7" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.7" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.7" ∷ word (Ἰ ∷ σ ∷ σ ∷ α ∷ χ ∷ ὰ ∷ ρ ∷ []) "Rev.7.7" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.7" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.8" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.8" ∷ word (Ζ ∷ α ∷ β ∷ ο ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.7.8" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.8" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.8" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.8" ∷ word (Ἰ ∷ ω ∷ σ ∷ ὴ ∷ φ ∷ []) "Rev.7.8" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.8" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.8" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.8" ∷ word (Β ∷ ε ∷ ν ∷ ι ∷ α ∷ μ ∷ ὶ ∷ ν ∷ []) "Rev.7.8" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.8" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.8" ∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.8" ∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.7.9" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.7.9" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.7.9" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.7.9" ∷ word (π ∷ ο ∷ ∙λ ∷ ύ ∷ ς ∷ []) "Rev.7.9" ∷ word (ὃ ∷ ν ∷ []) "Rev.7.9" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.7.9" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.7.9" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.7.9" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.7.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.9" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.7.9" ∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9" ∷ word (∙λ ∷ α ∷ ῶ ∷ ν ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9" ∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "Rev.7.9" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.9" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.9" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.9" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.7.9" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.9" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.7.9" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ά ∷ ς ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9" ∷ word (φ ∷ ο ∷ ί ∷ ν ∷ ι ∷ κ ∷ ε ∷ ς ∷ []) "Rev.7.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.7.9" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.7.9" ∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.7.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.10" ∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "Rev.7.10" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.7.10" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.7.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.10" ∷ word (Ἡ ∷ []) "Rev.7.10" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rev.7.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.10" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.7.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.10" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.7.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.10" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.7.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.10" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.7.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.7.11" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.7.11" ∷ word (ε ∷ ἱ ∷ σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.11" ∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Rev.7.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.11" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.11" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.11" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.7.11" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.11" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.11" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.11" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.11" ∷ word (τ ∷ ὰ ∷ []) "Rev.7.11" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.7.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.11" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.11" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.7.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.12" ∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ []) "Rev.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "Rev.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ []) "Rev.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "Rev.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rev.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (ἰ ∷ σ ∷ χ ∷ ὺ ∷ ς ∷ []) "Rev.7.12" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.12" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.7.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.12" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.7.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.12" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.7.12" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.7.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.7.13" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Rev.7.13" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.7.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.13" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.7.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.7.13" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.7.13" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.7.13" ∷ word (ο ∷ ἱ ∷ []) "Rev.7.13" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.13" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.13" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.7.13" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.13" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὰ ∷ ς ∷ []) "Rev.7.13" ∷ word (τ ∷ ί ∷ ν ∷ ε ∷ ς ∷ []) "Rev.7.13" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.7.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.13" ∷ word (π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.7.13" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Rev.7.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14" ∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ α ∷ []) "Rev.7.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.7.14" ∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ έ ∷ []) "Rev.7.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.7.14" ∷ word (σ ∷ ὺ ∷ []) "Rev.7.14" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "Rev.7.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14" ∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.7.14" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.7.14" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.7.14" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.14" ∷ word (ο ∷ ἱ ∷ []) "Rev.7.14" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.14" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.14" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.7.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.14" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.7.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14" ∷ word (ἔ ∷ π ∷ ∙λ ∷ υ ∷ ν ∷ α ∷ ν ∷ []) "Rev.7.14" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.14" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.7.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ κ ∷ α ∷ ν ∷ α ∷ ν ∷ []) "Rev.7.14" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ ς ∷ []) "Rev.7.14" ∷ word (ἐ ∷ ν ∷ []) "Rev.7.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.14" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.7.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.14" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.7.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Rev.7.15" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.15" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.7.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.15" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.7.15" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.15" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.7.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.7.15" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.15" ∷ word (ν ∷ α ∷ ῷ ∷ []) "Rev.7.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.15" ∷ word (ὁ ∷ []) "Rev.7.15" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.7.15" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.15" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.7.15" ∷ word (ἐ ∷ π ∷ []) "Rev.7.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.7.15" ∷ word (ο ∷ ὐ ∷ []) "Rev.7.16" ∷ word (π ∷ ε ∷ ι ∷ ν ∷ ά ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.16" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.7.16" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.7.16" ∷ word (δ ∷ ι ∷ ψ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.16" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.7.16" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.7.16" ∷ word (μ ∷ ὴ ∷ []) "Rev.7.16" ∷ word (π ∷ έ ∷ σ ∷ ῃ ∷ []) "Rev.7.16" ∷ word (ἐ ∷ π ∷ []) "Rev.7.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.16" ∷ word (ὁ ∷ []) "Rev.7.16" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.7.16" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.7.16" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.7.16" ∷ word (κ ∷ α ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.7.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.7.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.7.17" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.7.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.7.17" ∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Rev.7.17" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.7.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.17" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.17" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.7.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.7.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.17" ∷ word (ὁ ∷ δ ∷ η ∷ γ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.7.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.17" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.7.17" ∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.7.17" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.7.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.17" ∷ word (ἐ ∷ ξ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rev.7.17" ∷ word (ὁ ∷ []) "Rev.7.17" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.7.17" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.7.17" ∷ word (δ ∷ ά ∷ κ ∷ ρ ∷ υ ∷ ο ∷ ν ∷ []) "Rev.7.17" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.17" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.17" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.1" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.8.1" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.8.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.1" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.8.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.1" ∷ word (ἑ ∷ β ∷ δ ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.8.1" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.1" ∷ word (σ ∷ ι ∷ γ ∷ ὴ ∷ []) "Rev.8.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.8.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.8.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.8.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.8.1" ∷ word (ἡ ∷ μ ∷ ι ∷ ώ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.8.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.8.2" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.2" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.8.2" ∷ word (ο ∷ ἳ ∷ []) "Rev.8.2" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.8.2" ∷ word (ἑ ∷ σ ∷ τ ∷ ή ∷ κ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Rev.8.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.2" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.8.2" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.2" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ε ∷ ς ∷ []) "Rev.8.2" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.3" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.3" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.3" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.8.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ά ∷ θ ∷ η ∷ []) "Rev.8.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.3" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.8.3" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.8.3" ∷ word (∙λ ∷ ι ∷ β ∷ α ∷ ν ∷ ω ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.8.3" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.8.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.3" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.8.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.8.3" ∷ word (θ ∷ υ ∷ μ ∷ ι ∷ ά ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.8.3" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.8.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.8.3" ∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.8.3" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.3" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.3" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.8.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.3" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.3" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.3" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.3" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.8.3" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.3" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.3" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.8.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.4" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "Rev.8.4" ∷ word (ὁ ∷ []) "Rev.8.4" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.8.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.4" ∷ word (θ ∷ υ ∷ μ ∷ ι ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.4" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.4" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.8.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.8.4" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.8.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.4" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.8.4" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.8.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ ε ∷ ν ∷ []) "Rev.8.5" ∷ word (ὁ ∷ []) "Rev.8.5" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.8.5" ∷ word (∙λ ∷ ι ∷ β ∷ α ∷ ν ∷ ω ∷ τ ∷ ό ∷ ν ∷ []) "Rev.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (ἐ ∷ γ ∷ έ ∷ μ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.8.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.8.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.5" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.8.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.5" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.8.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.5" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.8.5" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ό ∷ ς ∷ []) "Rev.8.5" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.6" ∷ word (ο ∷ ἱ ∷ []) "Rev.8.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.6" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.8.6" ∷ word (ο ∷ ἱ ∷ []) "Rev.8.6" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.8.6" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.8.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.6" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ α ∷ ς ∷ []) "Rev.8.6" ∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.6" ∷ word (α ∷ ὑ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.8.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.8.6" ∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.8.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (ὁ ∷ []) "Rev.8.7" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.7" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.7" ∷ word (χ ∷ ά ∷ ∙λ ∷ α ∷ ζ ∷ α ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.8.7" ∷ word (μ ∷ ε ∷ μ ∷ ι ∷ γ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.8.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.8.7" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.8.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.7" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.7" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.7" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ κ ∷ ά ∷ η ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.7" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.7" ∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ κ ∷ ά ∷ η ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.8.7" ∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.7" ∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ κ ∷ ά ∷ η ∷ []) "Rev.8.7" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.8" ∷ word (ὁ ∷ []) "Rev.8.8" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.8.8" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.8" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.8" ∷ word (ὡ ∷ ς ∷ []) "Rev.8.8" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.8.8" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.8.8" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.8.8" ∷ word (κ ∷ α ∷ ι ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.8.8" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.8.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.8" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.8" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.8" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.8" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.8.8" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.8.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.9" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ []) "Rev.8.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.9" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.9" ∷ word (κ ∷ τ ∷ ι ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.8.9" ∷ word (τ ∷ ῇ ∷ []) "Rev.8.9" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Rev.8.9" ∷ word (τ ∷ ὰ ∷ []) "Rev.8.9" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.8.9" ∷ word (ψ ∷ υ ∷ χ ∷ ά ∷ ς ∷ []) "Rev.8.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.9" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.9" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ω ∷ ν ∷ []) "Rev.8.9" ∷ word (δ ∷ ι ∷ ε ∷ φ ∷ θ ∷ ά ∷ ρ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.10" ∷ word (ὁ ∷ []) "Rev.8.10" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.10" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.10" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.10" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.8.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.8.10" ∷ word (ἀ ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "Rev.8.10" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.8.10" ∷ word (κ ∷ α ∷ ι ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.8.10" ∷ word (ὡ ∷ ς ∷ []) "Rev.8.10" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ά ∷ ς ∷ []) "Rev.8.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.10" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.10" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.10" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.10" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.8.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.10" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.8.10" ∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.8.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.10" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.11" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.8.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.11" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.8.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.8.11" ∷ word (ὁ ∷ []) "Rev.8.11" ∷ word (Ἄ ∷ ψ ∷ ι ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.8.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.11" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.11" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.11" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.11" ∷ word (ἄ ∷ ψ ∷ ι ∷ ν ∷ θ ∷ ο ∷ ν ∷ []) "Rev.8.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Rev.8.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.11" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.8.11" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.8.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.8.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.11" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.8.11" ∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.12" ∷ word (ὁ ∷ []) "Rev.8.12" ∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.12" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.12" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ή ∷ γ ∷ η ∷ []) "Rev.8.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.12" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.12" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.12" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.12" ∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Rev.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.12" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.12" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.8.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.8.12" ∷ word (σ ∷ κ ∷ ο ∷ τ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.8.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.12" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12" ∷ word (ἡ ∷ []) "Rev.8.12" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.8.12" ∷ word (μ ∷ ὴ ∷ []) "Rev.8.12" ∷ word (φ ∷ ά ∷ ν ∷ ῃ ∷ []) "Rev.8.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.12" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12" ∷ word (ἡ ∷ []) "Rev.8.12" ∷ word (ν ∷ ὺ ∷ ξ ∷ []) "Rev.8.12" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Rev.8.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.13" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.8.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.13" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.8.13" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.8.13" ∷ word (ἀ ∷ ε ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.8.13" ∷ word (π ∷ ε ∷ τ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.8.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.8.13" ∷ word (μ ∷ ε ∷ σ ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.8.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.13" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.8.13" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.8.13" ∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.8.13" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.8.13" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.8.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.8.13" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.8.13" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.13" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.8.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.8.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.13" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ῶ ∷ ν ∷ []) "Rev.8.13" ∷ word (φ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.8.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.13" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Rev.8.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.13" ∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.8.13" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.8.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.13" ∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.13" ∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.8.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.1" ∷ word (ὁ ∷ []) "Rev.9.1" ∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.1" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.9.1" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.9.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.9.1" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.9.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.1" ∷ word (π ∷ ε ∷ π ∷ τ ∷ ω ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Rev.9.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.1" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.9.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.1" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.9.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.9.1" ∷ word (ἡ ∷ []) "Rev.9.1" ∷ word (κ ∷ ∙λ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.9.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.1" ∷ word (φ ∷ ρ ∷ έ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.1" ∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.9.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.9.2" ∷ word (τ ∷ ὸ ∷ []) "Rev.9.2" ∷ word (φ ∷ ρ ∷ έ ∷ α ∷ ρ ∷ []) "Rev.9.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.2" ∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.9.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.2" ∷ word (φ ∷ ρ ∷ έ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ μ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.9.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2" ∷ word (ἐ ∷ σ ∷ κ ∷ ο ∷ τ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.9.2" ∷ word (ὁ ∷ []) "Rev.9.2" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2" ∷ word (ὁ ∷ []) "Rev.9.2" ∷ word (ἀ ∷ ὴ ∷ ρ ∷ []) "Rev.9.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.2" ∷ word (φ ∷ ρ ∷ έ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.3" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.3" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.3" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Rev.9.3" ∷ word (ἀ ∷ κ ∷ ρ ∷ ί ∷ δ ∷ ε ∷ ς ∷ []) "Rev.9.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.3" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.9.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.3" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.9.3" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.3" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.9.3" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.3" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.3" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.9.3" ∷ word (ο ∷ ἱ ∷ []) "Rev.9.3" ∷ word (σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ί ∷ ο ∷ ι ∷ []) "Rev.9.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.9.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.4" ∷ word (ἐ ∷ ρ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.9.4" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.4" ∷ word (μ ∷ ὴ ∷ []) "Rev.9.4" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.4" ∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.4" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.9.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.9.4" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.9.4" ∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.9.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.9.4" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.9.4" ∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.9.4" ∷ word (ε ∷ ἰ ∷ []) "Rev.9.4" ∷ word (μ ∷ ὴ ∷ []) "Rev.9.4" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.4" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.4" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.9.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.9.4" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "Rev.9.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.4" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.9.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.9.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.9.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.4" ∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.5" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.9.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.9.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.5" ∷ word (μ ∷ ὴ ∷ []) "Rev.9.5" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.9.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.9.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.5" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.5" ∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.9.5" ∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Rev.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.5" ∷ word (ὁ ∷ []) "Rev.9.5" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.9.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.5" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.5" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.9.5" ∷ word (σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ί ∷ ο ∷ υ ∷ []) "Rev.9.5" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.9.5" ∷ word (π ∷ α ∷ ί ∷ σ ∷ ῃ ∷ []) "Rev.9.5" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.6" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.6" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.9.6" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Rev.9.6" ∷ word (ζ ∷ η ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.6" ∷ word (ο ∷ ἱ ∷ []) "Rev.9.6" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.9.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.6" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6" ∷ word (ο ∷ ὐ ∷ []) "Rev.9.6" ∷ word (μ ∷ ὴ ∷ []) "Rev.9.6" ∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.6" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.9.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.6" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.9.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6" ∷ word (φ ∷ ε ∷ ύ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.9.6" ∷ word (ὁ ∷ []) "Rev.9.6" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.6" ∷ word (ἀ ∷ π ∷ []) "Rev.9.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.7" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.7" ∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.9.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.7" ∷ word (ἀ ∷ κ ∷ ρ ∷ ί ∷ δ ∷ ω ∷ ν ∷ []) "Rev.9.7" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ α ∷ []) "Rev.9.7" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Rev.9.7" ∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.9.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.7" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.7" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.9.7" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.9.7" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.9.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.7" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.7" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ι ∷ []) "Rev.9.7" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ι ∷ []) "Rev.9.7" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ῷ ∷ []) "Rev.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.7" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.7" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.9.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.7" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.7" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.9.7" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.8" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.9.8" ∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ α ∷ ς ∷ []) "Rev.9.8" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.8" ∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ α ∷ ς ∷ []) "Rev.9.8" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.9.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.8" ∷ word (ο ∷ ἱ ∷ []) "Rev.9.8" ∷ word (ὀ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.9.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.8" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.8" ∷ word (∙λ ∷ ε ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.8" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.9" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.9.9" ∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ ς ∷ []) "Rev.9.9" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.9" ∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ ς ∷ []) "Rev.9.9" ∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.9.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.9" ∷ word (ἡ ∷ []) "Rev.9.9" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.9.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.9" ∷ word (π ∷ τ ∷ ε ∷ ρ ∷ ύ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.9.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.9" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.9" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.9.9" ∷ word (ἁ ∷ ρ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.9" ∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.9" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.9.9" ∷ word (τ ∷ ρ ∷ ε ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.9" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.9.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.10" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ ὰ ∷ ς ∷ []) "Rev.9.10" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Rev.9.10" ∷ word (σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.10" ∷ word (κ ∷ έ ∷ ν ∷ τ ∷ ρ ∷ α ∷ []) "Rev.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.10" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.10" ∷ word (ἡ ∷ []) "Rev.9.10" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.9.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.10" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.9.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.10" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.10" ∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.9.10" ∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Rev.9.10" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.11" ∷ word (ἐ ∷ π ∷ []) "Rev.9.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.11" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Rev.9.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.11" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.9.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.11" ∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.9.11" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.9.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.9.11" ∷ word (Ἑ ∷ β ∷ ρ ∷ α ∷ ϊ ∷ σ ∷ τ ∷ ὶ ∷ []) "Rev.9.11" ∷ word (Ἀ ∷ β ∷ α ∷ δ ∷ δ ∷ ώ ∷ ν ∷ []) "Rev.9.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.11" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.11" ∷ word (τ ∷ ῇ ∷ []) "Rev.9.11" ∷ word (Ἑ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ι ∷ κ ∷ ῇ ∷ []) "Rev.9.11" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.9.11" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.9.11" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ύ ∷ ω ∷ ν ∷ []) "Rev.9.11" ∷ word (Ἡ ∷ []) "Rev.9.12" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.9.12" ∷ word (ἡ ∷ []) "Rev.9.12" ∷ word (μ ∷ ί ∷ α ∷ []) "Rev.9.12" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.9.12" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.9.12" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.12" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.9.12" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.9.12" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.9.12" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.9.12" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.9.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.13" ∷ word (ὁ ∷ []) "Rev.9.13" ∷ word (ἕ ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.13" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.9.13" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.9.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.13" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.9.13" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.9.13" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.9.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.13" ∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.9.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.9.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.9.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.9.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.9.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.9.14" ∷ word (ἕ ∷ κ ∷ τ ∷ ῳ ∷ []) "Rev.9.14" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.9.14" ∷ word (ὁ ∷ []) "Rev.9.14" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.9.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.14" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ α ∷ []) "Rev.9.14" ∷ word (Λ ∷ ῦ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.9.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.14" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.9.14" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.14" ∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.9.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.9.14" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ῷ ∷ []) "Rev.9.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.9.14" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῳ ∷ []) "Rev.9.14" ∷ word (Ε ∷ ὐ ∷ φ ∷ ρ ∷ ά ∷ τ ∷ ῃ ∷ []) "Rev.9.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15" ∷ word (ἐ ∷ ∙λ ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.9.15" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.9.15" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.9.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.9.15" ∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.9.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.15" ∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.9.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.9.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15" ∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ []) "Rev.9.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15" ∷ word (ἐ ∷ ν ∷ ι ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.9.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.15" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.15" ∷ word (τ ∷ ὸ ∷ []) "Rev.9.15" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.15" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.16" ∷ word (ὁ ∷ []) "Rev.9.16" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.9.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.16" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.16" ∷ word (ἱ ∷ π ∷ π ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ []) "Rev.9.16" ∷ word (δ ∷ ι ∷ σ ∷ μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.9.16" ∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.9.16" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.9.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.16" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.9.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.9.17" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.9.17" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.17" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.17" ∷ word (τ ∷ ῇ ∷ []) "Rev.9.17" ∷ word (ὁ ∷ ρ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17" ∷ word (ἐ ∷ π ∷ []) "Rev.9.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.9.17" ∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ ς ∷ []) "Rev.9.17" ∷ word (π ∷ υ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (ὑ ∷ α ∷ κ ∷ ι ∷ ν ∷ θ ∷ ί ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (θ ∷ ε ∷ ι ∷ ώ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (α ∷ ἱ ∷ []) "Rev.9.17" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17" ∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.17" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.17" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (∙λ ∷ ε ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17" ∷ word (σ ∷ τ ∷ ο ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.17" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (θ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.9.17" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.9.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18" ∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.9.18" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῶ ∷ ν ∷ []) "Rev.9.18" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.18" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.18" ∷ word (τ ∷ ὸ ∷ []) "Rev.9.18" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.18" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18" ∷ word (θ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Rev.9.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.9.18" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18" ∷ word (σ ∷ τ ∷ ο ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18" ∷ word (ἡ ∷ []) "Rev.9.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.9.19" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.9.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19" ∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.19" ∷ word (τ ∷ ῷ ∷ []) "Rev.9.19" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.9.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.19" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.19" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19" ∷ word (α ∷ ἱ ∷ []) "Rev.9.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.9.19" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ὶ ∷ []) "Rev.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ α ∷ ι ∷ []) "Rev.9.19" ∷ word (ὄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.19" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "Rev.9.19" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ά ∷ ς ∷ []) "Rev.9.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.19" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.19" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.20" ∷ word (ο ∷ ἱ ∷ []) "Rev.9.20" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.9.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.20" ∷ word (ο ∷ ἳ ∷ []) "Rev.9.20" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.9.20" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.20" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.20" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.20" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.20" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Rev.9.20" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.9.20" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.20" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.9.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.9.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.20" ∷ word (μ ∷ ὴ ∷ []) "Rev.9.20" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Rev.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (ε ∷ ἴ ∷ δ ∷ ω ∷ ∙λ ∷ α ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ []) "Rev.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (ἀ ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ᾶ ∷ []) "Rev.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ᾶ ∷ []) "Rev.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (∙λ ∷ ί ∷ θ ∷ ι ∷ ν ∷ α ∷ []) "Rev.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ι ∷ ν ∷ α ∷ []) "Rev.9.20" ∷ word (ἃ ∷ []) "Rev.9.20" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.20" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.9.20" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.20" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.20" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.9.20" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.20" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.21" ∷ word (ο ∷ ὐ ∷ []) "Rev.9.21" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (φ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Rev.9.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (φ ∷ α ∷ ρ ∷ μ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.9.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.21" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.9.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (κ ∷ ∙λ ∷ ε ∷ μ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.10.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.10.1" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.1" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.1" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.10.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.10.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.10.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.10.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.10.1" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.1" ∷ word (ἡ ∷ []) "Rev.10.1" ∷ word (ἶ ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.10.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.1" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.10.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.10.1" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.10.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.10.1" ∷ word (ὁ ∷ []) "Rev.10.1" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.1" ∷ word (ο ∷ ἱ ∷ []) "Rev.10.1" ∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.10.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.10.1" ∷ word (σ ∷ τ ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.10.1" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.2" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.10.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.2" ∷ word (τ ∷ ῇ ∷ []) "Rev.10.2" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.10.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.2" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ α ∷ ρ ∷ ί ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.2" ∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.10.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.2" ∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rev.10.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.2" ∷ word (π ∷ ό ∷ δ ∷ α ∷ []) "Rev.10.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.2" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὸ ∷ ν ∷ []) "Rev.10.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.2" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.10.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.2" ∷ word (δ ∷ ὲ ∷ []) "Rev.10.2" ∷ word (ε ∷ ὐ ∷ ώ ∷ ν ∷ υ ∷ μ ∷ ο ∷ ν ∷ []) "Rev.10.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.2" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.10.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.3" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.10.3" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.10.3" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.10.3" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Rev.10.3" ∷ word (∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.10.3" ∷ word (μ ∷ υ ∷ κ ∷ ᾶ ∷ τ ∷ α ∷ ι ∷ []) "Rev.10.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.3" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.10.3" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.10.3" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.3" ∷ word (α ∷ ἱ ∷ []) "Rev.10.3" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.10.3" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ὶ ∷ []) "Rev.10.3" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.10.3" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.10.3" ∷ word (φ ∷ ω ∷ ν ∷ ά ∷ ς ∷ []) "Rev.10.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.4" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.10.4" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.4" ∷ word (α ∷ ἱ ∷ []) "Rev.10.4" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.10.4" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.10.4" ∷ word (ἤ ∷ μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.4" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.10.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.4" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.10.4" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.10.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.10.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.4" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.10.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.4" ∷ word (Σ ∷ φ ∷ ρ ∷ ά ∷ γ ∷ ι ∷ σ ∷ ο ∷ ν ∷ []) "Rev.10.4" ∷ word (ἃ ∷ []) "Rev.10.4" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.4" ∷ word (α ∷ ἱ ∷ []) "Rev.10.4" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.10.4" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.10.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.4" ∷ word (μ ∷ ὴ ∷ []) "Rev.10.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rev.10.4" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ῃ ∷ ς ∷ []) "Rev.10.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.5" ∷ word (ὁ ∷ []) "Rev.10.5" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.10.5" ∷ word (ὃ ∷ ν ∷ []) "Rev.10.5" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.10.5" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.10.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.5" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.10.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.5" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.10.5" ∷ word (ἦ ∷ ρ ∷ ε ∷ ν ∷ []) "Rev.10.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.5" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.10.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.5" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὰ ∷ ν ∷ []) "Rev.10.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.10.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.5" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.10.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6" ∷ word (ὤ ∷ μ ∷ ο ∷ σ ∷ ε ∷ ν ∷ []) "Rev.10.6" ∷ word (τ ∷ ῷ ∷ []) "Rev.10.6" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.10.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.10.6" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.10.6" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.10.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.10.6" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.10.6" ∷ word (ὃ ∷ ς ∷ []) "Rev.10.6" ∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.10.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.6" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.10.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.10.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.10.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.6" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.10.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.10.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.10.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.6" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.10.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.10.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.10.6" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.10.6" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rev.10.6" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.10.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.10.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.7" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.10.7" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.10.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.7" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.10.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.7" ∷ word (ἑ ∷ β ∷ δ ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rev.10.7" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.10.7" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.10.7" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῃ ∷ []) "Rev.10.7" ∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.10.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.7" ∷ word (ἐ ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ θ ∷ η ∷ []) "Rev.10.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.10.7" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.10.7" ∷ word (ὡ ∷ ς ∷ []) "Rev.10.7" ∷ word (ε ∷ ὐ ∷ η ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.10.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.10.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.7" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.10.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.10.7" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ς ∷ []) "Rev.10.7" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.10.8" ∷ word (ἡ ∷ []) "Rev.10.8" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.10.8" ∷ word (ἣ ∷ ν ∷ []) "Rev.10.8" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.10.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.10.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.8" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.10.8" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.10.8" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.8" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.10.8" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.10.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.8" ∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Rev.10.8" ∷ word (∙λ ∷ ά ∷ β ∷ ε ∷ []) "Rev.10.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.10.8" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.10.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.10.8" ∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.10.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.8" ∷ word (τ ∷ ῇ ∷ []) "Rev.10.8" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.10.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.8" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.10.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.8" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.10.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.8" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.10.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.8" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.10.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ α ∷ []) "Rev.10.9" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.10.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.9" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.10.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.10.9" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ί ∷ []) "Rev.10.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.10.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.10.9" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ α ∷ ρ ∷ ί ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.10.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.10.9" ∷ word (Λ ∷ ά ∷ β ∷ ε ∷ []) "Rev.10.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ φ ∷ α ∷ γ ∷ ε ∷ []) "Rev.10.9" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.10.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9" ∷ word (π ∷ ι ∷ κ ∷ ρ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.10.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.10.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.9" ∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Rev.10.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.10.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.10.9" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rev.10.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.10.9" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.10.9" ∷ word (γ ∷ ∙λ ∷ υ ∷ κ ∷ ὺ ∷ []) "Rev.10.9" ∷ word (ὡ ∷ ς ∷ []) "Rev.10.9" ∷ word (μ ∷ έ ∷ ∙λ ∷ ι ∷ []) "Rev.10.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Rev.10.10" ∷ word (τ ∷ ὸ ∷ []) "Rev.10.10" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ α ∷ ρ ∷ ί ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.10.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.10" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.10.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.10" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.10.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Rev.10.10" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.10.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10" ∷ word (ἦ ∷ ν ∷ []) "Rev.10.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.10.10" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rev.10.10" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.10.10" ∷ word (ὡ ∷ ς ∷ []) "Rev.10.10" ∷ word (μ ∷ έ ∷ ∙λ ∷ ι ∷ []) "Rev.10.10" ∷ word (γ ∷ ∙λ ∷ υ ∷ κ ∷ ύ ∷ []) "Rev.10.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.10.10" ∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Rev.10.10" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.10.10" ∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.10.10" ∷ word (ἡ ∷ []) "Rev.10.10" ∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ []) "Rev.10.10" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.10.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.10.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.10.11" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.10.11" ∷ word (Δ ∷ ε ∷ ῖ ∷ []) "Rev.10.11" ∷ word (σ ∷ ε ∷ []) "Rev.10.11" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.10.11" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.10.11" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.11" ∷ word (∙λ ∷ α ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.10.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.11" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.10.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.11" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Rev.10.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.11" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.10.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.10.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.1" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.11.1" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.11.1" ∷ word (κ ∷ ά ∷ ∙λ ∷ α ∷ μ ∷ ο ∷ ς ∷ []) "Rev.11.1" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.11.1" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.11.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.11.1" ∷ word (Ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Rev.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.1" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.11.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.1" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.11.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.1" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.1" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2" ∷ word (α ∷ ὐ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.11.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2" ∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.2" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.11.2" ∷ word (ἔ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ []) "Rev.11.2" ∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.2" ∷ word (μ ∷ ὴ ∷ []) "Rev.11.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2" ∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.11.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.11.2" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.11.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.2" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.11.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.2" ∷ word (π ∷ α ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.2" ∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.11.2" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.11.2" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.3" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.11.3" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.3" ∷ word (δ ∷ υ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.11.3" ∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.11.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.11.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.3" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.3" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.3" ∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.3" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.3" ∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.11.3" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.11.3" ∷ word (σ ∷ ά ∷ κ ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.11.3" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.11.4" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.4" ∷ word (α ∷ ἱ ∷ []) "Rev.11.4" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.4" ∷ word (ἐ ∷ ∙λ ∷ α ∷ ῖ ∷ α ∷ ι ∷ []) "Rev.11.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.4" ∷ word (α ∷ ἱ ∷ []) "Rev.11.4" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.4" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ι ∷ []) "Rev.11.4" ∷ word (α ∷ ἱ ∷ []) "Rev.11.4" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.11.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.4" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.11.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.4" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.11.4" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.5" ∷ word (ε ∷ ἴ ∷ []) "Rev.11.5" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.11.5" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.11.5" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.11.5" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.11.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.5" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.5" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Rev.11.5" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.5" ∷ word (ε ∷ ἴ ∷ []) "Rev.11.5" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.11.5" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.11.5" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.11.5" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.11.5" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.5" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.11.6" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.6" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.6" ∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ ι ∷ []) "Rev.11.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.6" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.11.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.11.6" ∷ word (μ ∷ ὴ ∷ []) "Rev.11.6" ∷ word (ὑ ∷ ε ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.11.6" ∷ word (β ∷ ρ ∷ έ ∷ χ ∷ ῃ ∷ []) "Rev.11.6" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.11.6" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.6" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.6" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.6" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.6" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.11.6" ∷ word (σ ∷ τ ∷ ρ ∷ έ ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.11.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rev.11.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.6" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.11.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.6" ∷ word (π ∷ α ∷ τ ∷ ά ∷ ξ ∷ α ∷ ι ∷ []) "Rev.11.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.6" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.11.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.6" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Rev.11.6" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῇ ∷ []) "Rev.11.6" ∷ word (ὁ ∷ σ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Rev.11.6" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.11.6" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.7" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.11.7" ∷ word (τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.7" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.7" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.11.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.7" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.11.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.11.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.7" ∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.11.7" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.11.7" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.7" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.7" ∷ word (ν ∷ ι ∷ κ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.7" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.8" ∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Rev.11.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.8" ∷ word (π ∷ ∙λ ∷ α ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.8" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.11.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.8" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.11.8" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.11.8" ∷ word (κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.8" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ῶ ∷ ς ∷ []) "Rev.11.8" ∷ word (Σ ∷ ό ∷ δ ∷ ο ∷ μ ∷ α ∷ []) "Rev.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.8" ∷ word (Α ∷ ἴ ∷ γ ∷ υ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.11.8" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.8" ∷ word (ὁ ∷ []) "Rev.11.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.11.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.8" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.11.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (∙λ ∷ α ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9" ∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.9" ∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Rev.11.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.9" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9" ∷ word (ἥ ∷ μ ∷ ι ∷ σ ∷ υ ∷ []) "Rev.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9" ∷ word (τ ∷ ὰ ∷ []) "Rev.11.9" ∷ word (π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.11.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.11.9" ∷ word (ἀ ∷ φ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.9" ∷ word (τ ∷ ε ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.9" ∷ word (μ ∷ ν ∷ ῆ ∷ μ ∷ α ∷ []) "Rev.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.10" ∷ word (ο ∷ ἱ ∷ []) "Rev.11.10" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.10" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.11.10" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.10" ∷ word (ἐ ∷ π ∷ []) "Rev.11.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.10" ∷ word (ε ∷ ὐ ∷ φ ∷ ρ ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.10" ∷ word (δ ∷ ῶ ∷ ρ ∷ α ∷ []) "Rev.11.10" ∷ word (π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.11.10" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.11.10" ∷ word (ο ∷ ἱ ∷ []) "Rev.11.10" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.10" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.10" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ά ∷ ν ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.10" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.10" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.11.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.11" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.11.11" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.11.11" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.11.11" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.11" ∷ word (ἥ ∷ μ ∷ ι ∷ σ ∷ υ ∷ []) "Rev.11.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.11.11" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.11.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.11.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.11" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.11" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.11" ∷ word (ἔ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.11" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.11" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.11" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Rev.11.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.11" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ς ∷ []) "Rev.11.11" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.11.11" ∷ word (ἐ ∷ π ∷ έ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.11.11" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.11" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.11" ∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.11.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.12" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.12" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.11.12" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.11.12" ∷ word (ἐ ∷ κ ∷ []) "Rev.11.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.12" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.11.12" ∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.11.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.12" ∷ word (Ἀ ∷ ν ∷ ά ∷ β ∷ α ∷ τ ∷ ε ∷ []) "Rev.11.12" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Rev.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.12" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.12" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.11.12" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.12" ∷ word (τ ∷ ῇ ∷ []) "Rev.11.12" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Rev.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.12" ∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.12" ∷ word (ο ∷ ἱ ∷ []) "Rev.11.12" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.11.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.13" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Rev.11.13" ∷ word (τ ∷ ῇ ∷ []) "Rev.11.13" ∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.11.13" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.11.13" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.11.13" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.13" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rev.11.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.13" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.11.13" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.13" ∷ word (τ ∷ ῷ ∷ []) "Rev.11.13" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ῷ ∷ []) "Rev.11.13" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.11.13" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.11.13" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.11.13" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13" ∷ word (ο ∷ ἱ ∷ []) "Rev.11.13" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.11.13" ∷ word (ἔ ∷ μ ∷ φ ∷ ο ∷ β ∷ ο ∷ ι ∷ []) "Rev.11.13" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Rev.11.13" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.11.13" ∷ word (τ ∷ ῷ ∷ []) "Rev.11.13" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.11.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.13" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.11.13" ∷ word (Ἡ ∷ []) "Rev.11.14" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.11.14" ∷ word (ἡ ∷ []) "Rev.11.14" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.11.14" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.14" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.11.14" ∷ word (ἡ ∷ []) "Rev.11.14" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.11.14" ∷ word (ἡ ∷ []) "Rev.11.14" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ η ∷ []) "Rev.11.14" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.14" ∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.11.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.15" ∷ word (ὁ ∷ []) "Rev.11.15" ∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.11.15" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.11.15" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.15" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.11.15" ∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.11.15" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ []) "Rev.11.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.15" ∷ word (τ ∷ ῷ ∷ []) "Rev.11.15" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.11.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.15" ∷ word (Ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.11.15" ∷ word (ἡ ∷ []) "Rev.11.15" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Rev.11.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.11.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.11.15" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.15" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.11.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.15" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.11.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.15" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.11.15" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.16" ∷ word (ο ∷ ἱ ∷ []) "Rev.11.16" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.11.16" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.11.16" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.11.16" ∷ word (ο ∷ ἱ ∷ []) "Rev.11.16" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.11.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.16" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rev.11.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.16" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.11.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.16" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.16" ∷ word (τ ∷ ὰ ∷ []) "Rev.11.16" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.11.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.16" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.16" ∷ word (τ ∷ ῷ ∷ []) "Rev.11.16" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.11.16" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.17" ∷ word (Ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ μ ∷ έ ∷ ν ∷ []) "Rev.11.17" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.11.17" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.11.17" ∷ word (ὁ ∷ []) "Rev.11.17" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.11.17" ∷ word (ὁ ∷ []) "Rev.11.17" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.11.17" ∷ word (ὁ ∷ []) "Rev.11.17" ∷ word (ὢ ∷ ν ∷ []) "Rev.11.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.17" ∷ word (ὁ ∷ []) "Rev.11.17" ∷ word (ἦ ∷ ν ∷ []) "Rev.11.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.11.17" ∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ α ∷ ς ∷ []) "Rev.11.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.17" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ί ∷ ν ∷ []) "Rev.11.17" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.17" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.11.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.17" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "Rev.11.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (τ ∷ ὰ ∷ []) "Rev.11.18" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.11.18" ∷ word (ὠ ∷ ρ ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.18" ∷ word (ἡ ∷ []) "Rev.11.18" ∷ word (ὀ ∷ ρ ∷ γ ∷ ή ∷ []) "Rev.11.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (ὁ ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.11.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.18" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.11.18" ∷ word (κ ∷ ρ ∷ ι ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.18" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.18" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.18" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.11.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (δ ∷ ι ∷ α ∷ φ ∷ θ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ι ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18" ∷ word (δ ∷ ι ∷ α ∷ φ ∷ θ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.18" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.11.18" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ γ ∷ η ∷ []) "Rev.11.19" ∷ word (ὁ ∷ []) "Rev.11.19" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.11.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.19" ∷ word (ὁ ∷ []) "Rev.11.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.19" ∷ word (τ ∷ ῷ ∷ []) "Rev.11.19" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Rev.11.19" ∷ word (ἡ ∷ []) "Rev.11.19" ∷ word (κ ∷ ι ∷ β ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.11.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.19" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Rev.11.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.19" ∷ word (τ ∷ ῷ ∷ []) "Rev.11.19" ∷ word (ν ∷ α ∷ ῷ ∷ []) "Rev.11.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.11.19" ∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (χ ∷ ά ∷ ∙λ ∷ α ∷ ζ ∷ α ∷ []) "Rev.11.19" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.11.19" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.1" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.12.1" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.12.1" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Rev.12.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.12.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.1" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.12.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.12.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.1" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.1" ∷ word (ἡ ∷ []) "Rev.12.1" ∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Rev.12.1" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.12.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.1" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.12.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.1" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.12.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.1" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ς ∷ []) "Rev.12.1" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.12.1" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.2" ∷ word (γ ∷ α ∷ σ ∷ τ ∷ ρ ∷ ὶ ∷ []) "Rev.12.2" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.12.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.2" ∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Rev.12.2" ∷ word (ὠ ∷ δ ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.12.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.2" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.12.2" ∷ word (τ ∷ ε ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.12.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Rev.12.3" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.12.3" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.12.3" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.3" ∷ word (τ ∷ ῷ ∷ []) "Rev.12.3" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.12.3" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.3" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.12.3" ∷ word (π ∷ υ ∷ ρ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.12.3" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.12.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.12.3" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.12.3" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.3" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.12.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.12.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.3" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.12.3" ∷ word (δ ∷ ι ∷ α ∷ δ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.4" ∷ word (ἡ ∷ []) "Rev.12.4" ∷ word (ο ∷ ὐ ∷ ρ ∷ ὰ ∷ []) "Rev.12.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.4" ∷ word (σ ∷ ύ ∷ ρ ∷ ε ∷ ι ∷ []) "Rev.12.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.12.4" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.12.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.4" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.12.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.4" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.4" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.12.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.12.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.4" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.4" ∷ word (ὁ ∷ []) "Rev.12.4" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.4" ∷ word (ἕ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rev.12.4" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.12.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.4" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.12.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.4" ∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.12.4" ∷ word (τ ∷ ε ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.12.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.4" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.12.4" ∷ word (τ ∷ έ ∷ κ ∷ ῃ ∷ []) "Rev.12.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.12.4" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.4" ∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ ά ∷ γ ∷ ῃ ∷ []) "Rev.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.5" ∷ word (ἔ ∷ τ ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Rev.12.5" ∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Rev.12.5" ∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.5" ∷ word (ὃ ∷ ς ∷ []) "Rev.12.5" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.12.5" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Rev.12.5" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.12.5" ∷ word (τ ∷ ὰ ∷ []) "Rev.12.5" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.12.5" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.5" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.12.5" ∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ᾷ ∷ []) "Rev.12.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.5" ∷ word (ἡ ∷ ρ ∷ π ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Rev.12.5" ∷ word (τ ∷ ὸ ∷ []) "Rev.12.5" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.12.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.5" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.12.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.12.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.5" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.6" ∷ word (ἡ ∷ []) "Rev.12.6" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.12.6" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Rev.12.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.6" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.6" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.12.6" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.12.6" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.12.6" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.12.6" ∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.6" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.12.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.6" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.12.6" ∷ word (τ ∷ ρ ∷ έ ∷ φ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.12.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.12.6" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.12.6" ∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Rev.12.6" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.12.6" ∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.12.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.7" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.12.7" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Rev.12.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.7" ∷ word (τ ∷ ῷ ∷ []) "Rev.12.7" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.7" ∷ word (ὁ ∷ []) "Rev.12.7" ∷ word (Μ ∷ ι ∷ χ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Rev.12.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.7" ∷ word (ο ∷ ἱ ∷ []) "Rev.12.7" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.12.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7" ∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.12.7" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.12.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.7" ∷ word (ὁ ∷ []) "Rev.12.7" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.7" ∷ word (ἐ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.7" ∷ word (ο ∷ ἱ ∷ []) "Rev.12.7" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.12.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.12.8" ∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.12.8" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Rev.12.8" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.12.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.12.8" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.12.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.8" ∷ word (τ ∷ ῷ ∷ []) "Rev.12.8" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.9" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (ὄ ∷ φ ∷ ι ∷ ς ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.12.9" ∷ word (Δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.12.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.12.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.9" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.12.9" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.12.9" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.9" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.12.9" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.12.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.9" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.12.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.9" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.10" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.12.10" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.12.10" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.12.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.12.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.10" ∷ word (Ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "Rev.12.10" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.12.10" ∷ word (ἡ ∷ []) "Rev.12.10" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10" ∷ word (ἡ ∷ []) "Rev.12.10" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10" ∷ word (ἡ ∷ []) "Rev.12.10" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Rev.12.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10" ∷ word (ἡ ∷ []) "Rev.12.10" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.12.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.10" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.10" ∷ word (ὁ ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ τ ∷ ή ∷ γ ∷ ω ∷ ρ ∷ []) "Rev.12.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.10" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Rev.12.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.12.10" ∷ word (ὁ ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.12.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.12.10" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.12.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.12.10" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.12.11" ∷ word (ἐ ∷ ν ∷ ί ∷ κ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.12.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.12.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.12.11" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.12.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.11" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.12.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.12.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.11" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.12.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.11" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Rev.12.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.12.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.11" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.12.11" ∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.11" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.12.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.12.11" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.12.11" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.12.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.12.12" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.12.12" ∷ word (ε ∷ ὐ ∷ φ ∷ ρ ∷ α ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Rev.12.12" ∷ word (ο ∷ ἱ ∷ []) "Rev.12.12" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ὶ ∷ []) "Rev.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.12" ∷ word (ο ∷ ἱ ∷ []) "Rev.12.12" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.12.12" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.12.12" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.12.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.12" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.12" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.12" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ β ∷ η ∷ []) "Rev.12.12" ∷ word (ὁ ∷ []) "Rev.12.12" ∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.12.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.12.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.12.12" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.12.12" ∷ word (θ ∷ υ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.12.12" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.12.12" ∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "Rev.12.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.12" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Rev.12.12" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.12.12" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.12.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.13" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.12.13" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.12.13" ∷ word (ὁ ∷ []) "Rev.12.13" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.13" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.13" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.13" ∷ word (ἐ ∷ δ ∷ ί ∷ ω ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.12.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.13" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.12.13" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.12.13" ∷ word (ἔ ∷ τ ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Rev.12.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.13" ∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ α ∷ []) "Rev.12.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.14" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.14" ∷ word (τ ∷ ῇ ∷ []) "Rev.12.14" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὶ ∷ []) "Rev.12.14" ∷ word (α ∷ ἱ ∷ []) "Rev.12.14" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.12.14" ∷ word (π ∷ τ ∷ έ ∷ ρ ∷ υ ∷ γ ∷ ε ∷ ς ∷ []) "Rev.12.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14" ∷ word (ἀ ∷ ε ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.12.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.14" ∷ word (π ∷ έ ∷ τ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.12.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.14" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.14" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.12.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.14" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.12.14" ∷ word (τ ∷ ρ ∷ έ ∷ φ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.12.14" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.12.14" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.12.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.14" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.12.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.14" ∷ word (ἥ ∷ μ ∷ ι ∷ σ ∷ υ ∷ []) "Rev.12.14" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῦ ∷ []) "Rev.12.14" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.12.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.12.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14" ∷ word (ὄ ∷ φ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.12.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.15" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.12.15" ∷ word (ὁ ∷ []) "Rev.12.15" ∷ word (ὄ ∷ φ ∷ ι ∷ ς ∷ []) "Rev.12.15" ∷ word (ἐ ∷ κ ∷ []) "Rev.12.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.15" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.15" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Rev.12.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.15" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.12.15" ∷ word (ὕ ∷ δ ∷ ω ∷ ρ ∷ []) "Rev.12.15" ∷ word (ὡ ∷ ς ∷ []) "Rev.12.15" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ό ∷ ν ∷ []) "Rev.12.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.12.15" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ο ∷ φ ∷ ό ∷ ρ ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Rev.12.15" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.12.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.16" ∷ word (ἐ ∷ β ∷ ο ∷ ή ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.16" ∷ word (ἡ ∷ []) "Rev.12.16" ∷ word (γ ∷ ῆ ∷ []) "Rev.12.16" ∷ word (τ ∷ ῇ ∷ []) "Rev.12.16" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "Rev.12.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.16" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.12.16" ∷ word (ἡ ∷ []) "Rev.12.16" ∷ word (γ ∷ ῆ ∷ []) "Rev.12.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.12.16" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.12.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.16" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ π ∷ ι ∷ ε ∷ ν ∷ []) "Rev.12.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.16" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.12.16" ∷ word (ὃ ∷ ν ∷ []) "Rev.12.16" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.12.16" ∷ word (ὁ ∷ []) "Rev.12.16" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.16" ∷ word (ἐ ∷ κ ∷ []) "Rev.12.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.16" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.17" ∷ word (ὠ ∷ ρ ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.12.17" ∷ word (ὁ ∷ []) "Rev.12.17" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.17" ∷ word (τ ∷ ῇ ∷ []) "Rev.12.17" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "Rev.12.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.17" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.12.17" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.12.17" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.17" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.12.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.17" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ῶ ∷ ν ∷ []) "Rev.12.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.17" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.17" ∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.12.17" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.12.17" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.12.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.17" ∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.12.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.17" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.12.17" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.12.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ά ∷ θ ∷ η ∷ []) "Rev.12.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.18" ∷ word (ἄ ∷ μ ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.18" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.12.18" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.13.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.13.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.13.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.1" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.13.1" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.1" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.13.1" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.13.1" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.1" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.1" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.13.1" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.1" ∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.13.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.1" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.13.1" ∷ word (δ ∷ ι ∷ α ∷ δ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.1" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.13.1" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.13.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.1" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.1" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.2" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.2" ∷ word (ὃ ∷ []) "Rev.13.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.13.2" ∷ word (ἦ ∷ ν ∷ []) "Rev.13.2" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.2" ∷ word (π ∷ α ∷ ρ ∷ δ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2" ∷ word (ο ∷ ἱ ∷ []) "Rev.13.2" ∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.13.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.13.2" ∷ word (ἄ ∷ ρ ∷ κ ∷ ο ∷ υ ∷ []) "Rev.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.2" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.13.2" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.2" ∷ word (∙λ ∷ έ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.13.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.2" ∷ word (ὁ ∷ []) "Rev.13.2" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.13.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.2" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.13.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.2" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.13.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.3" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.3" ∷ word (ἐ ∷ κ ∷ []) "Rev.13.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.13.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3" ∷ word (ὡ ∷ ς ∷ []) "Rev.13.3" ∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.13.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.3" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rev.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.3" ∷ word (ἡ ∷ []) "Rev.13.3" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ []) "Rev.13.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.13.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ύ ∷ θ ∷ η ∷ []) "Rev.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.3" ∷ word (ἐ ∷ θ ∷ α ∷ υ ∷ μ ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Rev.13.3" ∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "Rev.13.3" ∷ word (ἡ ∷ []) "Rev.13.3" ∷ word (γ ∷ ῆ ∷ []) "Rev.13.3" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Rev.13.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.4" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.13.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.13.4" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.13.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.4" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.4" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.4" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.13.4" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Rev.13.4" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.13.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.4" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.4" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rev.13.4" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Rev.13.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.4" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.13.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.4" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.13.5" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.5" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.5" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.13.5" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ []) "Rev.13.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.5" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.13.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.5" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.5" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.13.5" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.5" ∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.13.5" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.13.5" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.13.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.6" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ []) "Rev.13.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.6" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.6" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.13.6" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.13.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.6" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Rev.13.6" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.6" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.13.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.6" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.13.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.6" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.13.6" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.6" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.13.6" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.7" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.7" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.13.7" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.13.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.7" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7" ∷ word (ν ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.7" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.13.7" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.7" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.7" ∷ word (φ ∷ υ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7" ∷ word (∙λ ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7" ∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7" ∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.8" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.8" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.13.8" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.13.8" ∷ word (ο ∷ ἱ ∷ []) "Rev.13.8" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.13.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.8" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.8" ∷ word (ο ∷ ὗ ∷ []) "Rev.13.8" ∷ word (ο ∷ ὐ ∷ []) "Rev.13.8" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rev.13.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.8" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.13.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.13.8" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.8" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.13.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.8" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.13.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.8" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.8" ∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.13.8" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.13.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.13.8" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.13.8" ∷ word (Ε ∷ ἴ ∷ []) "Rev.13.9" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.9" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.13.9" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.13.9" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.13.9" ∷ word (ε ∷ ἴ ∷ []) "Rev.13.10" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.10" ∷ word (α ∷ ἰ ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ω ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.10" ∷ word (α ∷ ἰ ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ω ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.10" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Rev.13.10" ∷ word (ε ∷ ἴ ∷ []) "Rev.13.10" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.13.10" ∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ ῃ ∷ []) "Rev.13.10" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.13.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.13.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.13.10" ∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ ῃ ∷ []) "Rev.13.10" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.13.10" ∷ word (ὧ ∷ δ ∷ έ ∷ []) "Rev.13.10" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.13.10" ∷ word (ἡ ∷ []) "Rev.13.10" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ []) "Rev.13.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.10" ∷ word (ἡ ∷ []) "Rev.13.10" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.13.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.10" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.13.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.13.11" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.13.11" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.13.11" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.11" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.13.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.13.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.11" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.11" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Rev.13.11" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.11" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.13.11" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ α ∷ []) "Rev.13.11" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.13.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.11" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.13.11" ∷ word (ὡ ∷ ς ∷ []) "Rev.13.11" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.13.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.12" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.13.12" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.12" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.12" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.12" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.12" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.12" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.12" ∷ word (ἐ ∷ ν ∷ []) "Rev.13.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.13.12" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.12" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.12" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.12" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.13.12" ∷ word (ο ∷ ὗ ∷ []) "Rev.13.12" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ύ ∷ θ ∷ η ∷ []) "Rev.13.12" ∷ word (ἡ ∷ []) "Rev.13.12" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ []) "Rev.13.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.13.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.13" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.13" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.13.13" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ []) "Rev.13.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.13" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.13.13" ∷ word (π ∷ ο ∷ ι ∷ ῇ ∷ []) "Rev.13.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.13.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.13" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.13.13" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Rev.13.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.13" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.13.13" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.13" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.13.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.14" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾷ ∷ []) "Rev.13.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.14" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.14" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.13.14" ∷ word (τ ∷ ὰ ∷ []) "Rev.13.14" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.13.14" ∷ word (ἃ ∷ []) "Rev.13.14" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.14" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.14" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.14" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.14" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.13.14" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.13.14" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.14" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.14" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.14" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.13.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.14" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.14" ∷ word (ὃ ∷ ς ∷ []) "Rev.13.14" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.13.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.14" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ ν ∷ []) "Rev.13.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.14" ∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ η ∷ ς ∷ []) "Rev.13.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.14" ∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.13.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.15" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.15" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.13.15" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.13.15" ∷ word (τ ∷ ῇ ∷ []) "Rev.13.15" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.13.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.15" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.15" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.13.15" ∷ word (ἡ ∷ []) "Rev.13.15" ∷ word (ε ∷ ἰ ∷ κ ∷ ὼ ∷ ν ∷ []) "Rev.13.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.15" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.15" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.13.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.15" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rev.13.15" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.13.15" ∷ word (μ ∷ ὴ ∷ []) "Rev.13.15" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.15" ∷ word (τ ∷ ῇ ∷ []) "Rev.13.15" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.13.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.15" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.15" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.16" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.13.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.16" ∷ word (δ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.13.16" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.13.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.16" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.13.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.13.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.16" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Rev.13.16" ∷ word (ἢ ∷ []) "Rev.13.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.16" ∷ word (μ ∷ έ ∷ τ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.13.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.13.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.17" ∷ word (μ ∷ ή ∷ []) "Rev.13.17" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.17" ∷ word (δ ∷ ύ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.13.17" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.17" ∷ word (ἢ ∷ []) "Rev.13.17" ∷ word (π ∷ ω ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.17" ∷ word (ε ∷ ἰ ∷ []) "Rev.13.17" ∷ word (μ ∷ ὴ ∷ []) "Rev.13.17" ∷ word (ὁ ∷ []) "Rev.13.17" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.13.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.17" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.13.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.17" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.13.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.17" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.17" ∷ word (ἢ ∷ []) "Rev.13.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.17" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.13.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.17" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.13.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.17" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Rev.13.18" ∷ word (ἡ ∷ []) "Rev.13.18" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "Rev.13.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.13.18" ∷ word (ὁ ∷ []) "Rev.13.18" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.13.18" ∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.13.18" ∷ word (ψ ∷ η ∷ φ ∷ ι ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.13.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.18" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.13.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.18" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.18" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.13.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.13.18" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.13.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.13.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.18" ∷ word (ὁ ∷ []) "Rev.13.18" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.13.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.18" ∷ word (ἑ ∷ ξ ∷ α ∷ κ ∷ ό ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.13.18" ∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.13.18" ∷ word (ἕ ∷ ξ ∷ []) "Rev.13.18" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.1" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.14.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.1" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.14.1" ∷ word (ἑ ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.14.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.1" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.14.1" ∷ word (Σ ∷ ι ∷ ώ ∷ ν ∷ []) "Rev.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.1" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.14.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.14.1" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.1" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.14.1" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.14.1" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "Rev.14.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.1" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.14.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.1" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.14.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.14.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.1" ∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.2" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.14.2" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.2" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.14.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.14.2" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.2" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.14.2" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.14.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.14.2" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.2" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.14.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.14.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.2" ∷ word (ἡ ∷ []) "Rev.14.2" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.14.2" ∷ word (ἣ ∷ ν ∷ []) "Rev.14.2" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.14.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.14.2" ∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ῳ ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.14.2" ∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ι ∷ ζ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.14.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.2" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.14.2" ∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.14.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3" ∷ word (ᾄ ∷ δ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.3" ∷ word (ὡ ∷ ς ∷ []) "Rev.14.3" ∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.14.3" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.3" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.3" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.3" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.14.3" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.14.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.3" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.14.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.14.3" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.14.3" ∷ word (μ ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.14.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.3" ∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.14.3" ∷ word (ε ∷ ἰ ∷ []) "Rev.14.3" ∷ word (μ ∷ ὴ ∷ []) "Rev.14.3" ∷ word (α ∷ ἱ ∷ []) "Rev.14.3" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.14.3" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.3" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.14.3" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.14.3" ∷ word (ο ∷ ἱ ∷ []) "Rev.14.3" ∷ word (ἠ ∷ γ ∷ ο ∷ ρ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.14.3" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.14.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.3" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.14.4" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.4" ∷ word (ο ∷ ἳ ∷ []) "Rev.14.4" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.14.4" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.14.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.14.4" ∷ word (ἐ ∷ μ ∷ ο ∷ ∙λ ∷ ύ ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.4" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.14.4" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rev.14.4" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.4" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.14.4" ∷ word (ο ∷ ἱ ∷ []) "Rev.14.4" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.4" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.14.4" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.14.4" ∷ word (ἂ ∷ ν ∷ []) "Rev.14.4" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ῃ ∷ []) "Rev.14.4" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.14.4" ∷ word (ἠ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.4" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.14.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.4" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.4" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.14.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.4" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.14.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.4" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.14.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.5" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.5" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.5" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.14.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.5" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.14.5" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.14.5" ∷ word (ψ ∷ ε ∷ ῦ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.14.5" ∷ word (ἄ ∷ μ ∷ ω ∷ μ ∷ ο ∷ ί ∷ []) "Rev.14.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.5" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.6" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.14.6" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.14.6" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.14.6" ∷ word (π ∷ ε ∷ τ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.6" ∷ word (μ ∷ ε ∷ σ ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.14.6" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.6" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.6" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.6" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.14.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.6" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.14.6" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.14.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.6" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.6" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.14.6" ∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.14.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6" ∷ word (φ ∷ υ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.14.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6" ∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6" ∷ word (∙λ ∷ α ∷ ό ∷ ν ∷ []) "Rev.14.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.7" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.7" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.7" ∷ word (Φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Rev.14.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.14.7" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7" ∷ word (δ ∷ ό ∷ τ ∷ ε ∷ []) "Rev.14.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.14.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.14.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.7" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.7" ∷ word (ἡ ∷ []) "Rev.14.7" ∷ word (ὥ ∷ ρ ∷ α ∷ []) "Rev.14.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.7" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.14.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.14.7" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.7" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Rev.14.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.14.7" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.7" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7" ∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.14.7" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.14.7" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.8" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.8" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.14.8" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.8" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.8" ∷ word (Ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.8" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.8" ∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.14.8" ∷ word (ἡ ∷ []) "Rev.14.8" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.14.8" ∷ word (ἣ ∷ []) "Rev.14.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.8" ∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.8" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.8" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.14.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.14.8" ∷ word (π ∷ ε ∷ π ∷ ό ∷ τ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Rev.14.8" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.14.8" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.14.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.9" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.9" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.9" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.14.9" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.14.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.9" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.9" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.9" ∷ word (Ε ∷ ἴ ∷ []) "Rev.14.9" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.14.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.14.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.9" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.14.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.9" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.14.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.9" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Rev.14.9" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.14.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9" ∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.14.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9" ∷ word (ἢ ∷ []) "Rev.14.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.9" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.14.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.14.10" ∷ word (π ∷ ί ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.14.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (κ ∷ ε ∷ κ ∷ ε ∷ ρ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.10" ∷ word (ἀ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.14.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.10" ∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.14.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.10" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.14.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.14.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.10" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.14.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10" ∷ word (θ ∷ ε ∷ ί ∷ ῳ ∷ []) "Rev.14.10" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.10" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.14.10" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.14.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11" ∷ word (ὁ ∷ []) "Rev.14.11" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.14.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.14.11" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.14.11" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.14.11" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.14.11" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.11" ∷ word (ἀ ∷ ν ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.11" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.14.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.14.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.11" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.11" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.14.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11" ∷ word (ε ∷ ἴ ∷ []) "Rev.14.11" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.14.11" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Rev.14.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.11" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.14.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.14.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11" ∷ word (Ὧ ∷ δ ∷ ε ∷ []) "Rev.14.12" ∷ word (ἡ ∷ []) "Rev.14.12" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ []) "Rev.14.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.12" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.14.12" ∷ word (ο ∷ ἱ ∷ []) "Rev.14.12" ∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.12" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.14.12" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.14.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.14.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.12" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.14.12" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.14.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.13" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.14.13" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.14.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.13" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.14.13" ∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.14.13" ∷ word (Γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.14.13" ∷ word (Μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.14.13" ∷ word (ο ∷ ἱ ∷ []) "Rev.14.13" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.14.13" ∷ word (ο ∷ ἱ ∷ []) "Rev.14.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.13" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.14.13" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.13" ∷ word (ἀ ∷ π ∷ []) "Rev.14.13" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "Rev.14.13" ∷ word (ν ∷ α ∷ ί ∷ []) "Rev.14.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.14.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.13" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.14.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.14.13" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.14.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13" ∷ word (κ ∷ ό ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13" ∷ word (τ ∷ ὰ ∷ []) "Rev.14.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.14.13" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.14.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ῖ ∷ []) "Rev.14.13" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.14.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.14" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.14.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.14" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.14.14" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ []) "Rev.14.14" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ []) "Rev.14.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.14" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.14.14" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.14" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.14" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Rev.14.14" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.14.14" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.14.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.14" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.14.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.14" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.14" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.14.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.14" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.14" ∷ word (τ ∷ ῇ ∷ []) "Rev.14.14" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.14.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.14" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.14" ∷ word (ὀ ∷ ξ ∷ ύ ∷ []) "Rev.14.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.15" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.15" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.15" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.15" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.15" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.14.15" ∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "Rev.14.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.15" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.15" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.15" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.15" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.14.15" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.15" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.14.15" ∷ word (Π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.14.15" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.15" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.14.15" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.14.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.15" ∷ word (θ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ ο ∷ ν ∷ []) "Rev.14.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.15" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.15" ∷ word (ἡ ∷ []) "Rev.14.15" ∷ word (ὥ ∷ ρ ∷ α ∷ []) "Rev.14.15" ∷ word (θ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.14.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.15" ∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.14.15" ∷ word (ὁ ∷ []) "Rev.14.15" ∷ word (θ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.14.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.15" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.16" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.14.16" ∷ word (ὁ ∷ []) "Rev.14.16" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.14.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.16" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.14.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.16" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.16" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.14.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.16" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.14.16" ∷ word (ἡ ∷ []) "Rev.14.16" ∷ word (γ ∷ ῆ ∷ []) "Rev.14.16" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.17" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.17" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.17" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.17" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.17" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.14.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.17" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.17" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.17" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.14.17" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.14.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.14.17" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.17" ∷ word (ὀ ∷ ξ ∷ ύ ∷ []) "Rev.14.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.18" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.18" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.18" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.18" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.14.18" ∷ word (ὁ ∷ []) "Rev.14.18" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.14.18" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.14.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.18" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.14.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.18" ∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.18" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.18" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.18" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.18" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.14.18" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.18" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.18" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.18" ∷ word (ὀ ∷ ξ ∷ ὺ ∷ []) "Rev.14.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.18" ∷ word (Π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.14.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.14.18" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.18" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.18" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.18" ∷ word (ὀ ∷ ξ ∷ ὺ ∷ []) "Rev.14.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.18" ∷ word (τ ∷ ρ ∷ ύ ∷ γ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.14.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.14.18" ∷ word (β ∷ ό ∷ τ ∷ ρ ∷ υ ∷ α ∷ ς ∷ []) "Rev.14.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.18" ∷ word (ἀ ∷ μ ∷ π ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.14.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.18" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.18" ∷ word (ἤ ∷ κ ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.18" ∷ word (α ∷ ἱ ∷ []) "Rev.14.18" ∷ word (σ ∷ τ ∷ α ∷ φ ∷ υ ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.14.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.14.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.19" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.14.19" ∷ word (ὁ ∷ []) "Rev.14.19" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.19" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.19" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.14.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.19" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.14.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.19" ∷ word (ἐ ∷ τ ∷ ρ ∷ ύ ∷ γ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.19" ∷ word (ἄ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.14.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.19" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.19" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.14.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.14.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.19" ∷ word (∙λ ∷ η ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.14.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.19" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.14.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.14.19" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.14.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.20" ∷ word (ἐ ∷ π ∷ α ∷ τ ∷ ή ∷ θ ∷ η ∷ []) "Rev.14.20" ∷ word (ἡ ∷ []) "Rev.14.20" ∷ word (∙λ ∷ η ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.14.20" ∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.20" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.14.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.20" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.20" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.14.20" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.20" ∷ word (∙λ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.14.20" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.14.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.20" ∷ word (χ ∷ α ∷ ∙λ ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.14.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.20" ∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.20" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.14.20" ∷ word (σ ∷ τ ∷ α ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.20" ∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.20" ∷ word (ἑ ∷ ξ ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.15.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.15.1" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.15.1" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.15.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.15.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.15.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.15.1" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.1" ∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.15.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.15.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.1" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.1" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.15.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.1" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.15.1" ∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.15.1" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.15.1" ∷ word (ἐ ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ θ ∷ η ∷ []) "Rev.15.1" ∷ word (ὁ ∷ []) "Rev.15.1" ∷ word (θ ∷ υ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.15.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.1" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.15.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.15.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.15.2" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.15.2" ∷ word (ὑ ∷ α ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Rev.15.2" ∷ word (μ ∷ ε ∷ μ ∷ ι ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.15.2" ∷ word (π ∷ υ ∷ ρ ∷ ί ∷ []) "Rev.15.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.15.2" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.15.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.2" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.15.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.15.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.15.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.2" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.15.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.2" ∷ word (ὑ ∷ α ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Rev.15.2" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.2" ∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ ς ∷ []) "Rev.15.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3" ∷ word (ᾄ ∷ δ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.3" ∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.15.3" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Rev.15.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.3" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.15.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.3" ∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.15.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.3" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.15.3" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.15.3" ∷ word (Μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ []) "Rev.15.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3" ∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ τ ∷ ὰ ∷ []) "Rev.15.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.15.3" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.15.3" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.3" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.15.3" ∷ word (ὁ ∷ []) "Rev.15.3" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.15.3" ∷ word (ὁ ∷ []) "Rev.15.3" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.15.3" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ α ∷ ι ∷ []) "Rev.15.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.15.3" ∷ word (α ∷ ἱ ∷ []) "Rev.15.3" ∷ word (ὁ ∷ δ ∷ ο ∷ ί ∷ []) "Rev.15.3" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.3" ∷ word (ὁ ∷ []) "Rev.15.3" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Rev.15.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.3" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.15.3" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rev.15.4" ∷ word (ο ∷ ὐ ∷ []) "Rev.15.4" ∷ word (μ ∷ ὴ ∷ []) "Rev.15.4" ∷ word (φ ∷ ο ∷ β ∷ η ∷ θ ∷ ῇ ∷ []) "Rev.15.4" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.15.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.4" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.15.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.15.4" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.15.4" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.4" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.15.4" ∷ word (ὅ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.15.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.15.4" ∷ word (τ ∷ ὰ ∷ []) "Rev.15.4" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.15.4" ∷ word (ἥ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.4" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ό ∷ ν ∷ []) "Rev.15.4" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.4" ∷ word (τ ∷ ὰ ∷ []) "Rev.15.4" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ ά ∷ []) "Rev.15.4" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.4" ∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.15.4" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.15.5" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.15.5" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.15.5" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.15.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.5" ∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ γ ∷ η ∷ []) "Rev.15.5" ∷ word (ὁ ∷ []) "Rev.15.5" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.15.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.5" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.15.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.5" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.15.5" ∷ word (ἐ ∷ ν ∷ []) "Rev.15.5" ∷ word (τ ∷ ῷ ∷ []) "Rev.15.5" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.15.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.6" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Rev.15.6" ∷ word (ο ∷ ἱ ∷ []) "Rev.15.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.6" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.15.6" ∷ word (ο ∷ ἱ ∷ []) "Rev.15.6" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.15.6" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.15.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.6" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.15.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.6" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.15.6" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.15.6" ∷ word (∙λ ∷ ί ∷ ν ∷ ο ∷ ν ∷ []) "Rev.15.6" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.15.6" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.15.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.6" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ ζ ∷ ω ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.15.6" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Rev.15.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.15.6" ∷ word (σ ∷ τ ∷ ή ∷ θ ∷ η ∷ []) "Rev.15.6" ∷ word (ζ ∷ ώ ∷ ν ∷ α ∷ ς ∷ []) "Rev.15.6" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.15.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.7" ∷ word (ἓ ∷ ν ∷ []) "Rev.15.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.7" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.15.7" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.15.7" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.15.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.15.7" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.7" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.15.7" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.7" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.15.7" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.15.7" ∷ word (γ ∷ ε ∷ μ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Rev.15.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.7" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.15.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.7" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.15.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.15.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.15.7" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.15.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.7" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.15.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.8" ∷ word (ἐ ∷ γ ∷ ε ∷ μ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.15.8" ∷ word (ὁ ∷ []) "Rev.15.8" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.15.8" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.15.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.8" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Rev.15.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.8" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.8" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.15.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.15.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.15.8" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.15.8" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.15.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.15.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.15.8" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.15.8" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.15.8" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.8" ∷ word (α ∷ ἱ ∷ []) "Rev.15.8" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.8" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ὶ ∷ []) "Rev.15.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.8" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.8" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.15.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.1" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.1" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.16.1" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.16.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.1" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.16.1" ∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.16.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.16.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.16.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.16.1" ∷ word (Ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.16.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.1" ∷ word (ἐ ∷ κ ∷ χ ∷ έ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.16.1" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.16.1" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.16.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.1" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.16.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.1" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.16.1" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.2" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.16.2" ∷ word (ὁ ∷ []) "Rev.16.2" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.2" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.2" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.16.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.2" ∷ word (ἕ ∷ ∙λ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.16.2" ∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "Rev.16.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.16.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.2" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.16.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.2" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.16.2" ∷ word (τ ∷ ὸ ∷ []) "Rev.16.2" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.16.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.2" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.2" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.16.2" ∷ word (τ ∷ ῇ ∷ []) "Rev.16.2" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.16.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.2" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.3" ∷ word (ὁ ∷ []) "Rev.16.3" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.16.3" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.3" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.3" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.3" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.3" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.3" ∷ word (ὡ ∷ ς ∷ []) "Rev.16.3" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Rev.16.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.3" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Rev.16.3" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ []) "Rev.16.3" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.16.3" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rev.16.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.16.3" ∷ word (ἐ ∷ ν ∷ []) "Rev.16.3" ∷ word (τ ∷ ῇ ∷ []) "Rev.16.3" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Rev.16.3" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.4" ∷ word (ὁ ∷ []) "Rev.16.4" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.4" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.4" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.4" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.4" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.4" ∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.16.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.4" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.16.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.4" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.4" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.5" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.5" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.16.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.5" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.16.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.5" ∷ word (Δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "Rev.16.5" ∷ word (ε ∷ ἶ ∷ []) "Rev.16.5" ∷ word (ὁ ∷ []) "Rev.16.5" ∷ word (ὢ ∷ ν ∷ []) "Rev.16.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.5" ∷ word (ὁ ∷ []) "Rev.16.5" ∷ word (ἦ ∷ ν ∷ []) "Rev.16.5" ∷ word (ὁ ∷ []) "Rev.16.5" ∷ word (ὅ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.16.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.16.5" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.16.5" ∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ α ∷ ς ∷ []) "Rev.16.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.16.6" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.6" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.16.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.6" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.6" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ α ∷ ν ∷ []) "Rev.16.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.6" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.16.6" ∷ word (δ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ ς ∷ []) "Rev.16.6" ∷ word (π ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.16.6" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ί ∷ []) "Rev.16.6" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.16.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.7" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.7" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.7" ∷ word (Ν ∷ α ∷ ί ∷ []) "Rev.16.7" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.16.7" ∷ word (ὁ ∷ []) "Rev.16.7" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.16.7" ∷ word (ὁ ∷ []) "Rev.16.7" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.16.7" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.16.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.7" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ α ∷ ι ∷ []) "Rev.16.7" ∷ word (α ∷ ἱ ∷ []) "Rev.16.7" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.16.7" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.16.7" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.8" ∷ word (ὁ ∷ []) "Rev.16.8" ∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.8" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.8" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.8" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.8" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.16.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.16.8" ∷ word (κ ∷ α ∷ υ ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.16.8" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.8" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.16.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.16.8" ∷ word (π ∷ υ ∷ ρ ∷ ί ∷ []) "Rev.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.9" ∷ word (ἐ ∷ κ ∷ α ∷ υ ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.16.9" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.16.9" ∷ word (κ ∷ α ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.16.9" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.16.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.9" ∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.16.9" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.16.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.9" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.9" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.16.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.9" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.9" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.16.9" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ς ∷ []) "Rev.16.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.9" ∷ word (ο ∷ ὐ ∷ []) "Rev.16.9" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.9" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.16.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.16.9" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.16.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.10" ∷ word (ὁ ∷ []) "Rev.16.10" ∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.10" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.10" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.10" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.16.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.10" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.10" ∷ word (ἡ ∷ []) "Rev.16.10" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Rev.16.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10" ∷ word (ἐ ∷ σ ∷ κ ∷ ο ∷ τ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.16.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.10" ∷ word (ἐ ∷ μ ∷ α ∷ σ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ []) "Rev.16.10" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.10" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ς ∷ []) "Rev.16.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10" ∷ word (π ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.16.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.11" ∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.11" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.16.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.11" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.16.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (π ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Rev.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (ἑ ∷ ∙λ ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.11" ∷ word (ο ∷ ὐ ∷ []) "Rev.16.11" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.12" ∷ word (ὁ ∷ []) "Rev.16.12" ∷ word (ἕ ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.12" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.12" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.12" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.12" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.16.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.12" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.16.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.12" ∷ word (Ε ∷ ὐ ∷ φ ∷ ρ ∷ ά ∷ τ ∷ η ∷ ν ∷ []) "Rev.16.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.12" ∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.16.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.16.12" ∷ word (ὕ ∷ δ ∷ ω ∷ ρ ∷ []) "Rev.16.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.16.12" ∷ word (ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.16.12" ∷ word (ἡ ∷ []) "Rev.16.12" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ς ∷ []) "Rev.16.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.12" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.16.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.12" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.16.12" ∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.16.12" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.13" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.16.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ο ∷ υ ∷ []) "Rev.16.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.16.13" ∷ word (τ ∷ ρ ∷ ί ∷ α ∷ []) "Rev.16.13" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Rev.16.13" ∷ word (ὡ ∷ ς ∷ []) "Rev.16.13" ∷ word (β ∷ ά ∷ τ ∷ ρ ∷ α ∷ χ ∷ ο ∷ ι ∷ []) "Rev.16.13" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.16.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.16.14" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.16.14" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Rev.16.14" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Rev.16.14" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.16.14" ∷ word (ἃ ∷ []) "Rev.16.14" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.16.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.14" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.16.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.14" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.16.14" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.16.14" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.16.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.14" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.16.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.14" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.16.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.14" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.16.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.14" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.16.14" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.16.15" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.16.15" ∷ word (ὡ ∷ ς ∷ []) "Rev.16.15" ∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ η ∷ ς ∷ []) "Rev.16.15" ∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.16.15" ∷ word (ὁ ∷ []) "Rev.16.15" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.16.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.15" ∷ word (τ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.16.15" ∷ word (τ ∷ ὰ ∷ []) "Rev.16.15" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Rev.16.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.16.15" ∷ word (μ ∷ ὴ ∷ []) "Rev.16.15" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.16.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῇ ∷ []) "Rev.16.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.15" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.16.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.15" ∷ word (ἀ ∷ σ ∷ χ ∷ η ∷ μ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rev.16.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.16" ∷ word (σ ∷ υ ∷ ν ∷ ή ∷ γ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Rev.16.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.16" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.16.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.16" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.16.16" ∷ word (Ἑ ∷ β ∷ ρ ∷ α ∷ ϊ ∷ σ ∷ τ ∷ ὶ ∷ []) "Rev.16.16" ∷ word (Ἁ ∷ ρ ∷ μ ∷ α ∷ γ ∷ ε ∷ δ ∷ ώ ∷ ν ∷ []) "Rev.16.16" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.17" ∷ word (ὁ ∷ []) "Rev.16.17" ∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.16.17" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.17" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.17" ∷ word (ἀ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.16.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.17" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.16.17" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.16.17" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.17" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.17" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.16.17" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.16.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.17" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.16.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.17" ∷ word (Γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Rev.16.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.16.18" ∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18" ∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.16.18" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.18" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.16.18" ∷ word (ο ∷ ἷ ∷ ο ∷ ς ∷ []) "Rev.16.18" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.16.18" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.18" ∷ word (ἀ ∷ φ ∷ []) "Rev.16.18" ∷ word (ο ∷ ὗ ∷ []) "Rev.16.18" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.16.18" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.16.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.18" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.16.18" ∷ word (τ ∷ η ∷ ∙λ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.18" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.16.18" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ []) "Rev.16.18" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.19" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.19" ∷ word (ἡ ∷ []) "Rev.16.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.16.19" ∷ word (ἡ ∷ []) "Rev.16.19" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.19" ∷ word (τ ∷ ρ ∷ ί ∷ α ∷ []) "Rev.16.19" ∷ word (μ ∷ έ ∷ ρ ∷ η ∷ []) "Rev.16.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.19" ∷ word (α ∷ ἱ ∷ []) "Rev.16.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.16.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.19" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.16.19" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.19" ∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.16.19" ∷ word (ἡ ∷ []) "Rev.16.19" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.19" ∷ word (ἐ ∷ μ ∷ ν ∷ ή ∷ σ ∷ θ ∷ η ∷ []) "Rev.16.19" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.16.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.19" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.16.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.16.19" ∷ word (τ ∷ ὸ ∷ []) "Rev.16.19" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.16.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19" ∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.16.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.16.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.19" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.16.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.20" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Rev.16.20" ∷ word (ν ∷ ῆ ∷ σ ∷ ο ∷ ς ∷ []) "Rev.16.20" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Rev.16.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.20" ∷ word (ὄ ∷ ρ ∷ η ∷ []) "Rev.16.20" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.16.20" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.21" ∷ word (χ ∷ ά ∷ ∙λ ∷ α ∷ ζ ∷ α ∷ []) "Rev.16.21" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.21" ∷ word (ὡ ∷ ς ∷ []) "Rev.16.21" ∷ word (τ ∷ α ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ι ∷ α ∷ ί ∷ α ∷ []) "Rev.16.21" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.16.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.21" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.16.21" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.21" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.16.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.21" ∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.21" ∷ word (ο ∷ ἱ ∷ []) "Rev.16.21" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.16.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.21" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.16.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.21" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.16.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.21" ∷ word (χ ∷ α ∷ ∙λ ∷ ά ∷ ζ ∷ η ∷ ς ∷ []) "Rev.16.21" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.16.21" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.21" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Rev.16.21" ∷ word (ἡ ∷ []) "Rev.16.21" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ []) "Rev.16.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.16.21" ∷ word (σ ∷ φ ∷ ό ∷ δ ∷ ρ ∷ α ∷ []) "Rev.16.21" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.17.1" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.17.1" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.17.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.17.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.17.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.1" ∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.1" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.1" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.17.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.1" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.17.1" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.17.1" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.17.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.17.1" ∷ word (Δ ∷ ε ∷ ῦ ∷ ρ ∷ ο ∷ []) "Rev.17.1" ∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ω ∷ []) "Rev.17.1" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.17.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.1" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rev.17.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.1" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ς ∷ []) "Rev.17.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.1" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.17.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.1" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.17.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.1" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.1" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.17.1" ∷ word (μ ∷ ε ∷ θ ∷ []) "Rev.17.2" ∷ word (ἧ ∷ ς ∷ []) "Rev.17.2" ∷ word (ἐ ∷ π ∷ ό ∷ ρ ∷ ν ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.2" ∷ word (ο ∷ ἱ ∷ []) "Rev.17.2" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.2" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.2" ∷ word (ἐ ∷ μ ∷ ε ∷ θ ∷ ύ ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.2" ∷ word (ο ∷ ἱ ∷ []) "Rev.17.2" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.17.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.2" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.17.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.17.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.2" ∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.17.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.2" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.3" ∷ word (ἀ ∷ π ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ έ ∷ ν ∷ []) "Rev.17.3" ∷ word (μ ∷ ε ∷ []) "Rev.17.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.3" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Rev.17.3" ∷ word (ἐ ∷ ν ∷ []) "Rev.17.3" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.17.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.3" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.17.3" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.17.3" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.17.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.3" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.3" ∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.17.3" ∷ word (γ ∷ έ ∷ μ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.17.3" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.3" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.3" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.17.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.17.3" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.3" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.3" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4" ∷ word (ἡ ∷ []) "Rev.17.4" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.17.4" ∷ word (ἦ ∷ ν ∷ []) "Rev.17.4" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.17.4" ∷ word (π ∷ ο ∷ ρ ∷ φ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.17.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4" ∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.17.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4" ∷ word (κ ∷ ε ∷ χ ∷ ρ ∷ υ ∷ σ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.17.4" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ῳ ∷ []) "Rev.17.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4" ∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.17.4" ∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ῳ ∷ []) "Rev.17.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4" ∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Rev.17.4" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.17.4" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.17.4" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.17.4" ∷ word (ἐ ∷ ν ∷ []) "Rev.17.4" ∷ word (τ ∷ ῇ ∷ []) "Rev.17.4" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.17.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.4" ∷ word (γ ∷ έ ∷ μ ∷ ο ∷ ν ∷ []) "Rev.17.4" ∷ word (β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4" ∷ word (τ ∷ ὰ ∷ []) "Rev.17.4" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Rev.17.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.4" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.5" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.5" ∷ word (μ ∷ έ ∷ τ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.17.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.5" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.17.5" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.17.5" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.17.5" ∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.17.5" ∷ word (ἡ ∷ []) "Rev.17.5" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.17.5" ∷ word (ἡ ∷ []) "Rev.17.5" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Rev.17.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.5" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.17.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.5" ∷ word (β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.5" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.6" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.17.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.6" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.17.6" ∷ word (μ ∷ ε ∷ θ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.17.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.6" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.6" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.17.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.17.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.6" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.6" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.17.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.17.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.17.6" ∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ σ ∷ α ∷ []) "Rev.17.6" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Rev.17.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.17.6" ∷ word (θ ∷ α ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.17.6" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.17.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.7" ∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.17.7" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.17.7" ∷ word (ὁ ∷ []) "Rev.17.7" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.17.7" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Rev.17.7" ∷ word (τ ∷ ί ∷ []) "Rev.17.7" ∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.17.7" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.17.7" ∷ word (ἐ ∷ ρ ∷ ῶ ∷ []) "Rev.17.7" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.17.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.7" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.17.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.7" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.17.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.7" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.17.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.7" ∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.7" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.17.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.7" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.7" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.7" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.7" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.17.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.7" ∷ word (τ ∷ ὰ ∷ []) "Rev.17.7" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.7" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.8" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.8" ∷ word (ὃ ∷ []) "Rev.17.8" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.8" ∷ word (ἦ ∷ ν ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.17.8" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.17.8" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Rev.17.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.17.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.8" ∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.8" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.17.8" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8" ∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.8" ∷ word (ο ∷ ἱ ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.17.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.8" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.8" ∷ word (ὧ ∷ ν ∷ []) "Rev.17.8" ∷ word (ο ∷ ὐ ∷ []) "Rev.17.8" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.8" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.17.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.8" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.8" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.17.8" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.17.8" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.17.8" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.8" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.17.8" ∷ word (ἦ ∷ ν ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.17.8" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.8" ∷ word (Ὧ ∷ δ ∷ ε ∷ []) "Rev.17.9" ∷ word (ὁ ∷ []) "Rev.17.9" ∷ word (ν ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.17.9" ∷ word (ὁ ∷ []) "Rev.17.9" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.17.9" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.9" ∷ word (α ∷ ἱ ∷ []) "Rev.17.9" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.9" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.17.9" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.9" ∷ word (ὄ ∷ ρ ∷ η ∷ []) "Rev.17.9" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.17.9" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.17.9" ∷ word (ἡ ∷ []) "Rev.17.9" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.17.9" ∷ word (κ ∷ ά ∷ θ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.9" ∷ word (ἐ ∷ π ∷ []) "Rev.17.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.9" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.9" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.17.9" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.17.10" ∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Rev.17.10" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.10" ∷ word (ὁ ∷ []) "Rev.17.10" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.17.10" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.10" ∷ word (ὁ ∷ []) "Rev.17.10" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.17.10" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Rev.17.10" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.17.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.10" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.17.10" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rev.17.10" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Rev.17.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.17.10" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.17.10" ∷ word (μ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Rev.17.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.11" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.11" ∷ word (ὃ ∷ []) "Rev.17.11" ∷ word (ἦ ∷ ν ∷ []) "Rev.17.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.17.11" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.17.11" ∷ word (ὄ ∷ γ ∷ δ ∷ ο ∷ ό ∷ ς ∷ []) "Rev.17.11" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.17.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.11" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.17.11" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.11" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.17.11" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Rev.17.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.12" ∷ word (τ ∷ ὰ ∷ []) "Rev.17.12" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.12" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.12" ∷ word (ἃ ∷ []) "Rev.17.12" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.12" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.12" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.12" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.12" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.17.12" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.12" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Rev.17.12" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Rev.17.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.17.12" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.12" ∷ word (ὡ ∷ ς ∷ []) "Rev.17.12" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.12" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.12" ∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.17.12" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.12" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.17.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.12" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.17.12" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.17.13" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.13" ∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Rev.17.13" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.13" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.17.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.13" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.13" ∷ word (τ ∷ ῷ ∷ []) "Rev.17.13" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.17.13" ∷ word (δ ∷ ι ∷ δ ∷ ό ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.13" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.17.14" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.17.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.14" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.17.14" ∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.14" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.14" ∷ word (ν ∷ ι ∷ κ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.17.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.17.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.17.14" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.17.14" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.17.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Rev.17.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Rev.17.14" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.17.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14" ∷ word (ο ∷ ἱ ∷ []) "Rev.17.14" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.17.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.17.14" ∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.17.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.17.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.17.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.17.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.17.15" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.17.15" ∷ word (Τ ∷ ὰ ∷ []) "Rev.17.15" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.15" ∷ word (ἃ ∷ []) "Rev.17.15" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.15" ∷ word (ο ∷ ὗ ∷ []) "Rev.17.15" ∷ word (ἡ ∷ []) "Rev.17.15" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ []) "Rev.17.15" ∷ word (κ ∷ ά ∷ θ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.15" ∷ word (∙λ ∷ α ∷ ο ∷ ὶ ∷ []) "Rev.17.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.15" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.17.15" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.17.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.15" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.17.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.15" ∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ι ∷ []) "Rev.17.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16" ∷ word (τ ∷ ὰ ∷ []) "Rev.17.16" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.16" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.16" ∷ word (ἃ ∷ []) "Rev.17.16" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.16" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.16" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.17.16" ∷ word (μ ∷ ι ∷ σ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "Rev.17.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.16" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ν ∷ []) "Rev.17.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16" ∷ word (ἠ ∷ ρ ∷ η ∷ μ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.17.16" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.16" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.17.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ή ∷ ν ∷ []) "Rev.17.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.16" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.17.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.16" ∷ word (φ ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.17.16" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.16" ∷ word (ἐ ∷ ν ∷ []) "Rev.17.16" ∷ word (π ∷ υ ∷ ρ ∷ ί ∷ []) "Rev.17.16" ∷ word (ὁ ∷ []) "Rev.17.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.17.17" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.17.17" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.17.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.17" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.17" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.17" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.17.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.17" ∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Rev.17.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.17.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.17" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.17.17" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.17" ∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Rev.17.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.17" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.17.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.17" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.17" ∷ word (τ ∷ ῷ ∷ []) "Rev.17.17" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.17.17" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.17.17" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.17" ∷ word (ο ∷ ἱ ∷ []) "Rev.17.17" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.17.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.17.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.18" ∷ word (ἡ ∷ []) "Rev.17.18" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.17.18" ∷ word (ἣ ∷ ν ∷ []) "Rev.17.18" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.18" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.18" ∷ word (ἡ ∷ []) "Rev.17.18" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.17.18" ∷ word (ἡ ∷ []) "Rev.17.18" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.17.18" ∷ word (ἡ ∷ []) "Rev.17.18" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.17.18" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.18" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.17.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.18" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.18" ∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.18.1" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.18.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.18.1" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.1" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.18.1" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.1" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.18.1" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.18.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.1" ∷ word (ἡ ∷ []) "Rev.18.1" ∷ word (γ ∷ ῆ ∷ []) "Rev.18.1" ∷ word (ἐ ∷ φ ∷ ω ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.18.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.1" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Rev.18.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.18.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.18.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.2" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ᾷ ∷ []) "Rev.18.2" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.18.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.18.2" ∷ word (Ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.2" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.2" ∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.18.2" ∷ word (ἡ ∷ []) "Rev.18.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.18.2" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ η ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.18.2" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Rev.18.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ []) "Rev.18.2" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.18.2" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.2" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ []) "Rev.18.2" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.18.2" ∷ word (ὀ ∷ ρ ∷ ν ∷ έ ∷ ο ∷ υ ∷ []) "Rev.18.2" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ []) "Rev.18.2" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.18.2" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.18.2" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2" ∷ word (μ ∷ ε ∷ μ ∷ ι ∷ σ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.3" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.3" ∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.3" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.18.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.18.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (π ∷ έ ∷ π ∷ τ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Rev.18.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.3" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.18.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.3" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.3" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.18.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.18.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (ἐ ∷ π ∷ ό ∷ ρ ∷ ν ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.3" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.3" ∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.18.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.18.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.3" ∷ word (σ ∷ τ ∷ ρ ∷ ή ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.18.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.3" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.4" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.18.4" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.18.4" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.18.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.4" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.18.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.4" ∷ word (Ἐ ∷ ξ ∷ έ ∷ ∙λ ∷ θ ∷ α ∷ τ ∷ ε ∷ []) "Rev.18.4" ∷ word (ὁ ∷ []) "Rev.18.4" ∷ word (∙λ ∷ α ∷ ό ∷ ς ∷ []) "Rev.18.4" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.18.4" ∷ word (ἐ ∷ ξ ∷ []) "Rev.18.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.18.4" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.4" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Rev.18.4" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.18.4" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.18.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.18.4" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῶ ∷ ν ∷ []) "Rev.18.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.18.4" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.4" ∷ word (∙λ ∷ ά ∷ β ∷ η ∷ τ ∷ ε ∷ []) "Rev.18.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.5" ∷ word (ἐ ∷ κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.5" ∷ word (α ∷ ἱ ∷ []) "Rev.18.5" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "Rev.18.5" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.18.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.5" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.18.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.5" ∷ word (ἐ ∷ μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.5" ∷ word (ὁ ∷ []) "Rev.18.5" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.18.5" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.5" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.18.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.5" ∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ ο ∷ τ ∷ ε ∷ []) "Rev.18.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.18.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "Rev.18.6" ∷ word (ἀ ∷ π ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.18.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.6" ∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ώ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.18.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.6" ∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ᾶ ∷ []) "Rev.18.6" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.18.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.6" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.18.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.6" ∷ word (τ ∷ ῷ ∷ []) "Rev.18.6" ∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.18.6" ∷ word (ᾧ ∷ []) "Rev.18.6" ∷ word (ἐ ∷ κ ∷ έ ∷ ρ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.6" ∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.18.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.6" ∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.18.6" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Rev.18.7" ∷ word (ἐ ∷ δ ∷ ό ∷ ξ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.7" ∷ word (α ∷ ὑ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.18.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ρ ∷ η ∷ ν ∷ ί ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.7" ∷ word (τ ∷ ο ∷ σ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.18.7" ∷ word (δ ∷ ό ∷ τ ∷ ε ∷ []) "Rev.18.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.7" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.18.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7" ∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.18.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.7" ∷ word (τ ∷ ῇ ∷ []) "Rev.18.7" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Rev.18.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.18.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.7" ∷ word (Κ ∷ ά ∷ θ ∷ η ∷ μ ∷ α ∷ ι ∷ []) "Rev.18.7" ∷ word (β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ι ∷ σ ∷ σ ∷ α ∷ []) "Rev.18.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "Rev.18.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.18.7" ∷ word (ε ∷ ἰ ∷ μ ∷ ί ∷ []) "Rev.18.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7" ∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.18.7" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.7" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.7" ∷ word (ἴ ∷ δ ∷ ω ∷ []) "Rev.18.7" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.18.8" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.18.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.8" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.8" ∷ word (ἥ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.8" ∷ word (α ∷ ἱ ∷ []) "Rev.18.8" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ὶ ∷ []) "Rev.18.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.8" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.8" ∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.18.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.8" ∷ word (∙λ ∷ ι ∷ μ ∷ ό ∷ ς ∷ []) "Rev.18.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.8" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.18.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ υ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.8" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.18.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.18.8" ∷ word (ὁ ∷ []) "Rev.18.8" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.18.8" ∷ word (ὁ ∷ []) "Rev.18.8" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Rev.18.8" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.18.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.9" ∷ word (κ ∷ ∙λ ∷ α ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.9" ∷ word (κ ∷ ό ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.9" ∷ word (ἐ ∷ π ∷ []) "Rev.18.9" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.18.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.9" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.18.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.9" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.18.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.9" ∷ word (σ ∷ τ ∷ ρ ∷ η ∷ ν ∷ ι ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.9" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.18.9" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.9" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.18.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9" ∷ word (π ∷ υ ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.18.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.10" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.10" ∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.18.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.10" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Rev.18.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.10" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.18.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.10" ∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.18.10" ∷ word (ο ∷ ὐ ∷ α ∷ ί ∷ []) "Rev.18.10" ∷ word (ἡ ∷ []) "Rev.18.10" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.10" ∷ word (ἡ ∷ []) "Rev.18.10" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.10" ∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.18.10" ∷ word (ἡ ∷ []) "Rev.18.10" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.10" ∷ word (ἡ ∷ []) "Rev.18.10" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ά ∷ []) "Rev.18.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.10" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.10" ∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.10" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.10" ∷ word (ἡ ∷ []) "Rev.18.10" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ς ∷ []) "Rev.18.10" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.11" ∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.18.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.11" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.11" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.11" ∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.11" ∷ word (ἐ ∷ π ∷ []) "Rev.18.11" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.18.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.11" ∷ word (γ ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.11" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.18.11" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Rev.18.11" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rev.18.11" ∷ word (γ ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.12" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (ἀ ∷ ρ ∷ γ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (β ∷ υ ∷ σ ∷ σ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (π ∷ ο ∷ ρ ∷ φ ∷ ύ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (σ ∷ ι ∷ ρ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (κ ∷ ο ∷ κ ∷ κ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.18.12" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.12" ∷ word (θ ∷ ύ ∷ ϊ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.18.12" ∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "Rev.18.12" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ φ ∷ ά ∷ ν ∷ τ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.18.12" ∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "Rev.18.12" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.12" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (τ ∷ ι ∷ μ ∷ ι ∷ ω ∷ τ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ο ∷ ῦ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (σ ∷ ι ∷ δ ∷ ή ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (μ ∷ α ∷ ρ ∷ μ ∷ ά ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (κ ∷ ι ∷ ν ∷ ν ∷ ά ∷ μ ∷ ω ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (ἄ ∷ μ ∷ ω ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (θ ∷ υ ∷ μ ∷ ι ∷ ά ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (∙λ ∷ ί ∷ β ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (ἔ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (σ ∷ ε ∷ μ ∷ ί ∷ δ ∷ α ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (σ ∷ ῖ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (κ ∷ τ ∷ ή ∷ ν ∷ η ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (ῥ ∷ ε ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (σ ∷ ω ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "Rev.18.13" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14" ∷ word (ἡ ∷ []) "Rev.18.14" ∷ word (ὀ ∷ π ∷ ώ ∷ ρ ∷ α ∷ []) "Rev.18.14" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.14" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.18.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.14" ∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Rev.18.14" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.14" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.14" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.18.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.14" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.14" ∷ word (∙λ ∷ ι ∷ π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rev.18.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.14" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὰ ∷ []) "Rev.18.14" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "Rev.18.14" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.14" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.18.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rev.18.14" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.14" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.14" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rev.18.14" ∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.14" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.15" ∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.18.15" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.18.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.15" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.15" ∷ word (ἀ ∷ π ∷ []) "Rev.18.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.15" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.15" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.15" ∷ word (σ ∷ τ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.18.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.15" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Rev.18.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.15" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.18.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.15" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.15" ∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.16" ∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.18.16" ∷ word (ο ∷ ὐ ∷ α ∷ ί ∷ []) "Rev.18.16" ∷ word (ἡ ∷ []) "Rev.18.16" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.16" ∷ word (ἡ ∷ []) "Rev.18.16" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.16" ∷ word (ἡ ∷ []) "Rev.18.16" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.18.16" ∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16" ∷ word (π ∷ ο ∷ ρ ∷ φ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.18.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16" ∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16" ∷ word (κ ∷ ε ∷ χ ∷ ρ ∷ υ ∷ σ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.18.16" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ῳ ∷ []) "Rev.18.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16" ∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.18.16" ∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ῳ ∷ []) "Rev.18.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16" ∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ ῃ ∷ []) "Rev.18.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.17" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.17" ∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.17" ∷ word (ἠ ∷ ρ ∷ η ∷ μ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.18.17" ∷ word (ὁ ∷ []) "Rev.18.17" ∷ word (τ ∷ ο ∷ σ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.17" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.17" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.17" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.18.17" ∷ word (κ ∷ υ ∷ β ∷ ε ∷ ρ ∷ ν ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Rev.18.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.17" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.18.17" ∷ word (ὁ ∷ []) "Rev.18.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.18.17" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.18.17" ∷ word (π ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.18.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.17" ∷ word (ν ∷ α ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.17" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rev.18.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.18.17" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.17" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.17" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.17" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.17" ∷ word (ἔ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.18" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rev.18.18" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.18" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.18.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.18" ∷ word (π ∷ υ ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.18.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.18" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Rev.18.18" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ α ∷ []) "Rev.18.18" ∷ word (τ ∷ ῇ ∷ []) "Rev.18.18" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.18.18" ∷ word (τ ∷ ῇ ∷ []) "Rev.18.18" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.18.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.19" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.19" ∷ word (χ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.18.19" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.18.19" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.18.19" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.18.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.19" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rev.18.19" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.19" ∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19" ∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.18.19" ∷ word (ο ∷ ὐ ∷ α ∷ ί ∷ []) "Rev.18.19" ∷ word (ἡ ∷ []) "Rev.18.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.19" ∷ word (ἡ ∷ []) "Rev.18.19" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.19" ∷ word (ᾗ ∷ []) "Rev.18.19" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.19" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.19" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.19" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ α ∷ []) "Rev.18.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.19" ∷ word (τ ∷ ῇ ∷ []) "Rev.18.19" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Rev.18.19" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.19" ∷ word (τ ∷ ι ∷ μ ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.19" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.19" ∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.19" ∷ word (ἠ ∷ ρ ∷ η ∷ μ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.18.19" ∷ word (Ε ∷ ὐ ∷ φ ∷ ρ ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.20" ∷ word (ἐ ∷ π ∷ []) "Rev.18.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.20" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ έ ∷ []) "Rev.18.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.20" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.20" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.18.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.20" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.20" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.18.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.20" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.20" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.20" ∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Rev.18.20" ∷ word (ὁ ∷ []) "Rev.18.20" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.18.20" ∷ word (τ ∷ ὸ ∷ []) "Rev.18.20" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rev.18.20" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.18.20" ∷ word (ἐ ∷ ξ ∷ []) "Rev.18.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.21" ∷ word (ἦ ∷ ρ ∷ ε ∷ ν ∷ []) "Rev.18.21" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.18.21" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.18.21" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.18.21" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Rev.18.21" ∷ word (ὡ ∷ ς ∷ []) "Rev.18.21" ∷ word (μ ∷ ύ ∷ ∙λ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.21" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.18.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.21" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.18.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.18.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.18.21" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.21" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.18.21" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.18.21" ∷ word (ὁ ∷ ρ ∷ μ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.18.21" ∷ word (β ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.21" ∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.18.21" ∷ word (ἡ ∷ []) "Rev.18.21" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.21" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.21" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.21" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.21" ∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῇ ∷ []) "Rev.18.21" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.18.22" ∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ῳ ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.18.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22" ∷ word (μ ∷ ο ∷ υ ∷ σ ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.18.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22" ∷ word (α ∷ ὐ ∷ ∙λ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22" ∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.22" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.22" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.22" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.18.22" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.22" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.22" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.18.22" ∷ word (τ ∷ ε ∷ χ ∷ ν ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "Rev.18.22" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rev.18.22" ∷ word (τ ∷ έ ∷ χ ∷ ν ∷ η ∷ ς ∷ []) "Rev.18.22" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.22" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.22" ∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῇ ∷ []) "Rev.18.22" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.22" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.22" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.18.22" ∷ word (μ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.18.22" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.22" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.22" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.18.22" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.22" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.22" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.23" ∷ word (φ ∷ ῶ ∷ ς ∷ []) "Rev.18.23" ∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.23" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.23" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.23" ∷ word (φ ∷ ά ∷ ν ∷ ῃ ∷ []) "Rev.18.23" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.23" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.23" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.23" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.18.23" ∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.18.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.23" ∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ ς ∷ []) "Rev.18.23" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.23" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.23" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.18.23" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.23" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.23" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.23" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.23" ∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ί ∷ []) "Rev.18.23" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.23" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.23" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.23" ∷ word (μ ∷ ε ∷ γ ∷ ι ∷ σ ∷ τ ∷ ᾶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.18.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.23" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.23" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.23" ∷ word (τ ∷ ῇ ∷ []) "Rev.18.23" ∷ word (φ ∷ α ∷ ρ ∷ μ ∷ α ∷ κ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.18.23" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.23" ∷ word (ἐ ∷ π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.23" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.23" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.18.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.24" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.24" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.18.24" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.24" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.18.24" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.18.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.18.24" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.18.24" ∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.18.24" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.18.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.24" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.24" ∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.19.1" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.19.1" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.19.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.19.1" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.1" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.19.1" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.19.1" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Rev.19.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.19.1" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.1" ∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.1" ∷ word (ἡ ∷ []) "Rev.19.1" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rev.19.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.1" ∷ word (ἡ ∷ []) "Rev.19.1" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.19.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.1" ∷ word (ἡ ∷ []) "Rev.19.1" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rev.19.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.19.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.2" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.19.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.2" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ α ∷ ι ∷ []) "Rev.19.2" ∷ word (α ∷ ἱ ∷ []) "Rev.19.2" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.19.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.2" ∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Rev.19.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.2" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ν ∷ []) "Rev.19.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.19.2" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.19.2" ∷ word (ἔ ∷ φ ∷ θ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Rev.19.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.2" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.19.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.2" ∷ word (τ ∷ ῇ ∷ []) "Rev.19.2" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.19.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.19.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.2" ∷ word (ἐ ∷ ξ ∷ ε ∷ δ ∷ ί ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.2" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.2" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.19.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.2" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.19.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.19.2" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.19.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.19.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.3" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.19.3" ∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Rev.19.3" ∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.3" ∷ word (ὁ ∷ []) "Rev.19.3" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.19.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.19.3" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.19.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.3" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.3" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.19.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.3" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.19.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.4" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.4" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.4" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.19.4" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.4" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.19.4" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.19.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.4" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.4" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.19.4" ∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.19.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.4" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.19.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.4" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.19.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.4" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.19.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.19.4" ∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.19.4" ∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.4" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.5" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.19.5" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.19.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.5" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.5" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.19.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.19.5" ∷ word (Α ∷ ἰ ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Rev.19.5" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.5" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.19.5" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.19.5" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.19.5" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.5" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.19.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.5" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.5" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rev.19.5" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.19.5" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.5" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.19.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.5" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.5" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.19.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.6" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.19.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.19.6" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.6" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.19.6" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Rev.19.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.19.6" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.6" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.6" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.19.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.19.6" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.6" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.6" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.19.6" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.6" ∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.6" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.6" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.19.6" ∷ word (ὁ ∷ []) "Rev.19.6" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.19.6" ∷ word (ὁ ∷ []) "Rev.19.6" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.19.6" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rev.19.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.7" ∷ word (ἀ ∷ γ ∷ α ∷ ∙λ ∷ ∙λ ∷ ι ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Rev.19.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.7" ∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rev.19.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.19.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.19.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.7" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.19.7" ∷ word (ὁ ∷ []) "Rev.19.7" ∷ word (γ ∷ ά ∷ μ ∷ ο ∷ ς ∷ []) "Rev.19.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.7" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.19.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.7" ∷ word (ἡ ∷ []) "Rev.19.7" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.19.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.7" ∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.19.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.8" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.19.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.19.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.19.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.19.8" ∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.8" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.19.8" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ό ∷ ν ∷ []) "Rev.19.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.19.8" ∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.8" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.8" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.19.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.19.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.19.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.19.9" ∷ word (Γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.19.9" ∷ word (Μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.19.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.9" ∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.9" ∷ word (γ ∷ ά ∷ μ ∷ ο ∷ υ ∷ []) "Rev.19.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.9" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.19.9" ∷ word (κ ∷ ε ∷ κ ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.19.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.19.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.19.9" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.19.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.19.9" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ο ∷ ὶ ∷ []) "Rev.19.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.9" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.19.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.10" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ []) "Rev.19.10" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.19.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.10" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.19.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.10" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.19.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.19.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.19.10" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.19.10" ∷ word (Ὅ ∷ ρ ∷ α ∷ []) "Rev.19.10" ∷ word (μ ∷ ή ∷ []) "Rev.19.10" ∷ word (σ ∷ ύ ∷ ν ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ ς ∷ []) "Rev.19.10" ∷ word (σ ∷ ο ∷ ύ ∷ []) "Rev.19.10" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.19.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.10" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Rev.19.10" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.19.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.10" ∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.10" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.19.10" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.19.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.10" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.19.10" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.19.10" ∷ word (ἡ ∷ []) "Rev.19.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.19.10" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "Rev.19.10" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.19.10" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.19.10" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.10" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.19.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.10" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.19.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.11" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.19.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.19.11" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.19.11" ∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.19.11" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.19.11" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ό ∷ ς ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11" ∷ word (ὁ ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.19.11" ∷ word (ἐ ∷ π ∷ []) "Rev.19.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.19.11" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.11" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Rev.19.11" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ε ∷ ῖ ∷ []) "Rev.19.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.12" ∷ word (δ ∷ ὲ ∷ []) "Rev.19.12" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rev.19.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.12" ∷ word (φ ∷ ∙λ ∷ ὸ ∷ ξ ∷ []) "Rev.19.12" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.19.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.12" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.12" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.19.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.12" ∷ word (δ ∷ ι ∷ α ∷ δ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Rev.19.12" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.19.12" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.19.12" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.12" ∷ word (ὃ ∷ []) "Rev.19.12" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.19.12" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.19.12" ∷ word (ε ∷ ἰ ∷ []) "Rev.19.12" ∷ word (μ ∷ ὴ ∷ []) "Rev.19.12" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.19.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.13" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.19.13" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.19.13" ∷ word (β ∷ ε ∷ β ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.13" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.19.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.13" ∷ word (κ ∷ έ ∷ κ ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.19.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.13" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.19.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.13" ∷ word (ὁ ∷ []) "Rev.19.13" ∷ word (Λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Rev.19.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.13" ∷ word (Θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.14" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.14" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.14" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.14" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.14" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.19.14" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Rev.19.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.19.14" ∷ word (ἐ ∷ φ ∷ []) "Rev.19.14" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Rev.19.14" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.19.14" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.19.14" ∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.14" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὸ ∷ ν ∷ []) "Rev.19.14" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ό ∷ ν ∷ []) "Rev.19.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.15" ∷ word (ἐ ∷ κ ∷ []) "Rev.19.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.19.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.19.15" ∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ α ∷ []) "Rev.19.15" ∷ word (ὀ ∷ ξ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.19.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.19.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.19.15" ∷ word (π ∷ α ∷ τ ∷ ά ∷ ξ ∷ ῃ ∷ []) "Rev.19.15" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.15" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.19.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.19.15" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.19.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.15" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.19.15" ∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ᾷ ∷ []) "Rev.19.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.19.15" ∷ word (π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ []) "Rev.19.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.15" ∷ word (∙λ ∷ η ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.19.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.15" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.19.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.19.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.16" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.19.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.16" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.19.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.19.16" ∷ word (μ ∷ η ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.19.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.16" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.19.16" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.16" ∷ word (Β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Rev.19.16" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.19.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.16" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.19.16" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.19.16" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.17" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.19.17" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Rev.19.17" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.19.17" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.19.17" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.17" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.17" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.19.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.17" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.19.17" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.19.17" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.19.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.19.17" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ []) "Rev.19.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.19.17" ∷ word (ὀ ∷ ρ ∷ ν ∷ έ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.19.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.19.17" ∷ word (π ∷ ε ∷ τ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.19.17" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.17" ∷ word (μ ∷ ε ∷ σ ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.19.17" ∷ word (Δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Rev.19.17" ∷ word (σ ∷ υ ∷ ν ∷ ά ∷ χ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Rev.19.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.17" ∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.17" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.19.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.19.18" ∷ word (φ ∷ ά ∷ γ ∷ η ∷ τ ∷ ε ∷ []) "Rev.19.18" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18" ∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (ἐ ∷ π ∷ []) "Rev.19.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (τ ∷ ε ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.19.19" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.19" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.19.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.19" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.19.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.19" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.19.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.19" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.19" ∷ word (σ ∷ υ ∷ ν ∷ η ∷ γ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.19.19" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.19.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.19.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.19.19" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.19.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.19" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Rev.19.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.19.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.19.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.20" ∷ word (ἐ ∷ π ∷ ι ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Rev.19.20" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.20" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.19.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.20" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.19.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20" ∷ word (ὁ ∷ []) "Rev.19.20" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Rev.19.20" ∷ word (ὁ ∷ []) "Rev.19.20" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Rev.19.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.20" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.19.20" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.19.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.20" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Rev.19.20" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ά ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.20" ∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.19.20" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.20" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.19.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.19.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.20" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.19.20" ∷ word (τ ∷ ῇ ∷ []) "Rev.19.20" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.19.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.19.20" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.20" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.20" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.19.20" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.20" ∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.19.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.19.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.20" ∷ word (κ ∷ α ∷ ι ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.19.20" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.20" ∷ word (θ ∷ ε ∷ ί ∷ ῳ ∷ []) "Rev.19.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.21" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.21" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.19.21" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.21" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.21" ∷ word (τ ∷ ῇ ∷ []) "Rev.19.21" ∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rev.19.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.21" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Rev.19.21" ∷ word (τ ∷ ῇ ∷ []) "Rev.19.21" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "Rev.19.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.19.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.19.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.21" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.19.21" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.21" ∷ word (ὄ ∷ ρ ∷ ν ∷ ε ∷ α ∷ []) "Rev.19.21" ∷ word (ἐ ∷ χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.19.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.21" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.19.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.21" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.1" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.20.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.20.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.20.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.20.1" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.20.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.1" ∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.20.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.1" ∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.20.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.1" ∷ word (ἅ ∷ ∙λ ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.20.1" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.20.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.1" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.20.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.2" ∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.2" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.20.2" ∷ word (ὁ ∷ []) "Rev.20.2" ∷ word (ὄ ∷ φ ∷ ι ∷ ς ∷ []) "Rev.20.2" ∷ word (ὁ ∷ []) "Rev.20.2" ∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Rev.20.2" ∷ word (ὅ ∷ ς ∷ []) "Rev.20.2" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.20.2" ∷ word (Δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.20.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.2" ∷ word (ὁ ∷ []) "Rev.20.2" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.20.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.2" ∷ word (ἔ ∷ δ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.20.2" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.2" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.3" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.20.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.20.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.3" ∷ word (ἄ ∷ β ∷ υ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.20.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.3" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ ε ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.3" ∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ ά ∷ γ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.3" ∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "Rev.20.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.20.3" ∷ word (μ ∷ ὴ ∷ []) "Rev.20.3" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.20.3" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.20.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.3" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.20.3" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.20.3" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.20.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.3" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.3" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.3" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.20.3" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.20.3" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.20.3" ∷ word (∙λ ∷ υ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.20.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.20.3" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.20.3" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.20.3" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.4" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4" ∷ word (ἐ ∷ π ∷ []) "Rev.20.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rev.20.4" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.20.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.20.4" ∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "Rev.20.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.4" ∷ word (π ∷ ε ∷ π ∷ ε ∷ ∙λ ∷ ε ∷ κ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.20.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.20.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.4" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.20.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.20.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.4" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.20.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.20.4" ∷ word (ο ∷ ὐ ∷ []) "Rev.20.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.20.4" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.20.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.20.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.4" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.20.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.20.4" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Rev.20.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.20.4" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.20.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.20.4" ∷ word (μ ∷ έ ∷ τ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.4" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.20.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.20.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.4" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.4" ∷ word (ο ∷ ἱ ∷ []) "Rev.20.5" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.20.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.5" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.20.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.20.5" ∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.5" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.20.5" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.20.5" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.5" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.5" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.5" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Rev.20.5" ∷ word (ἡ ∷ []) "Rev.20.5" ∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "Rev.20.5" ∷ word (ἡ ∷ []) "Rev.20.5" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Rev.20.5" ∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.20.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.6" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.20.6" ∷ word (ὁ ∷ []) "Rev.20.6" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.20.6" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.20.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.20.6" ∷ word (τ ∷ ῇ ∷ []) "Rev.20.6" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.20.6" ∷ word (τ ∷ ῇ ∷ []) "Rev.20.6" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "Rev.20.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.6" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.20.6" ∷ word (ὁ ∷ []) "Rev.20.6" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.20.6" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.6" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.20.6" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.20.6" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.20.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.20.6" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.6" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.20.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.20.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.6" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.20.6" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.20.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.6" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.7" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.20.7" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.20.7" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.7" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.7" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.7" ∷ word (∙λ ∷ υ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.7" ∷ word (ὁ ∷ []) "Rev.20.7" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.20.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.20.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.7" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῆ ∷ ς ∷ []) "Rev.20.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.8" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.8" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.20.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.8" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.20.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.20.8" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.20.8" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ σ ∷ ι ∷ []) "Rev.20.8" ∷ word (γ ∷ ω ∷ ν ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.20.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.8" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.20.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.8" ∷ word (Γ ∷ ὼ ∷ γ ∷ []) "Rev.20.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.8" ∷ word (Μ ∷ α ∷ γ ∷ ώ ∷ γ ∷ []) "Rev.20.8" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.20.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.8" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.20.8" ∷ word (ὧ ∷ ν ∷ []) "Rev.20.8" ∷ word (ὁ ∷ []) "Rev.20.8" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.20.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.8" ∷ word (ὡ ∷ ς ∷ []) "Rev.20.8" ∷ word (ἡ ∷ []) "Rev.20.8" ∷ word (ἄ ∷ μ ∷ μ ∷ ο ∷ ς ∷ []) "Rev.20.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.8" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.20.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.20.9" ∷ word (π ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.9" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9" ∷ word (ἐ ∷ κ ∷ ύ ∷ κ ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.9" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ μ ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.20.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.9" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.9" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.20.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.9" ∷ word (ἠ ∷ γ ∷ α ∷ π ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ β ∷ η ∷ []) "Rev.20.9" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.20.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.20.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.9" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ φ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Rev.20.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10" ∷ word (ὁ ∷ []) "Rev.20.10" ∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.20.10" ∷ word (ὁ ∷ []) "Rev.20.10" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.20.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.10" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.20.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.10" ∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.10" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.20.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10" ∷ word (θ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Rev.20.10" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.20.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10" ∷ word (τ ∷ ὸ ∷ []) "Rev.20.10" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.20.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10" ∷ word (ὁ ∷ []) "Rev.20.10" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Rev.20.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.10" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.20.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.20.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.10" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.20.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.10" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.20.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.11" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.11" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.20.11" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.20.11" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὸ ∷ ν ∷ []) "Rev.20.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.11" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.20.11" ∷ word (ἐ ∷ π ∷ []) "Rev.20.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.11" ∷ word (ο ∷ ὗ ∷ []) "Rev.20.11" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.20.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.20.11" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Rev.20.11" ∷ word (ἡ ∷ []) "Rev.20.11" ∷ word (γ ∷ ῆ ∷ []) "Rev.20.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.11" ∷ word (ὁ ∷ []) "Rev.20.11" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ς ∷ []) "Rev.20.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.11" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Rev.20.11" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.20.11" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.20.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.12" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.12" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.20.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.12" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.12" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ ς ∷ []) "Rev.20.12" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.20.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.12" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.20.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ α ∷ []) "Rev.20.12" ∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.20.12" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.20.12" ∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ χ ∷ θ ∷ η ∷ []) "Rev.20.12" ∷ word (ὅ ∷ []) "Rev.20.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.20.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.12" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.20.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12" ∷ word (ἐ ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.12" ∷ word (ο ∷ ἱ ∷ []) "Rev.20.12" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.20.12" ∷ word (ἐ ∷ κ ∷ []) "Rev.20.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.12" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.20.12" ∷ word (ἐ ∷ ν ∷ []) "Rev.20.12" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.12" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.20.12" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.20.12" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.12" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.20.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.20.13" ∷ word (ἡ ∷ []) "Rev.20.13" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Rev.20.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.20.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.20.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13" ∷ word (ὁ ∷ []) "Rev.20.13" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13" ∷ word (ὁ ∷ []) "Rev.20.13" ∷ word (ᾅ ∷ δ ∷ η ∷ ς ∷ []) "Rev.20.13" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Rev.20.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.20.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13" ∷ word (ἐ ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.13" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.13" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.20.13" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.13" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.20.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.14" ∷ word (ὁ ∷ []) "Rev.20.14" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.14" ∷ word (ὁ ∷ []) "Rev.20.14" ∷ word (ᾅ ∷ δ ∷ η ∷ ς ∷ []) "Rev.20.14" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.14" ∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.14" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.14" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.14" ∷ word (ὁ ∷ []) "Rev.20.14" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.14" ∷ word (ὁ ∷ []) "Rev.20.14" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.20.14" ∷ word (ἡ ∷ []) "Rev.20.14" ∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ []) "Rev.20.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.14" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.15" ∷ word (ε ∷ ἴ ∷ []) "Rev.20.15" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.20.15" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.20.15" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.20.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.20.15" ∷ word (τ ∷ ῇ ∷ []) "Rev.20.15" ∷ word (β ∷ ί ∷ β ∷ ∙λ ∷ ῳ ∷ []) "Rev.20.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.15" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.20.15" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.20.15" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.20.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.15" ∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.15" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.15" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.21.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.21.1" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.21.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.1" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.21.1" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ή ∷ ν ∷ []) "Rev.21.1" ∷ word (ὁ ∷ []) "Rev.21.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.1" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.21.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.1" ∷ word (ἡ ∷ []) "Rev.21.1" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Rev.21.1" ∷ word (γ ∷ ῆ ∷ []) "Rev.21.1" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ α ∷ ν ∷ []) "Rev.21.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.1" ∷ word (ἡ ∷ []) "Rev.21.1" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Rev.21.1" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.1" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.1" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.21.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.2" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.2" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.21.2" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ὴ ∷ μ ∷ []) "Rev.21.2" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.21.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.21.2" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.21.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.21.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.2" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.21.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.2" ∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.21.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.21.2" ∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ ν ∷ []) "Rev.21.2" ∷ word (κ ∷ ε ∷ κ ∷ ο ∷ σ ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.21.2" ∷ word (τ ∷ ῷ ∷ []) "Rev.21.2" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "Rev.21.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.21.3" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.21.3" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.21.3" ∷ word (ἐ ∷ κ ∷ []) "Rev.21.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.3" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.21.3" ∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.21.3" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.21.3" ∷ word (ἡ ∷ []) "Rev.21.3" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ὴ ∷ []) "Rev.21.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.3" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.21.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.3" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.21.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.21.3" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.21.3" ∷ word (∙λ ∷ α ∷ ο ∷ ὶ ∷ []) "Rev.21.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.21.3" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.21.3" ∷ word (ὁ ∷ []) "Rev.21.3" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.21.3" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.3" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.4" ∷ word (ἐ ∷ ξ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rev.21.4" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.21.4" ∷ word (δ ∷ ά ∷ κ ∷ ρ ∷ υ ∷ ο ∷ ν ∷ []) "Rev.21.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.21.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.4" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.21.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.4" ∷ word (ὁ ∷ []) "Rev.21.4" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.4" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.4" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.21.4" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.21.4" ∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.21.4" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.21.4" ∷ word (κ ∷ ρ ∷ α ∷ υ ∷ γ ∷ ὴ ∷ []) "Rev.21.4" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.21.4" ∷ word (π ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.4" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.4" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.21.4" ∷ word (τ ∷ ὰ ∷ []) "Rev.21.4" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.21.4" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ α ∷ ν ∷ []) "Rev.21.4" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.5" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Rev.21.5" ∷ word (ὁ ∷ []) "Rev.21.5" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.5" ∷ word (τ ∷ ῷ ∷ []) "Rev.21.5" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.21.5" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.21.5" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὰ ∷ []) "Rev.21.5" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Rev.21.5" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.21.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.21.5" ∷ word (Γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.21.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.21.5" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.21.5" ∷ word (ο ∷ ἱ ∷ []) "Rev.21.5" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.21.5" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.21.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.5" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ο ∷ ί ∷ []) "Rev.21.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.6" ∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.21.6" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.21.6" ∷ word (Γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ α ∷ ν ∷ []) "Rev.21.6" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.21.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.6" ∷ word (Ἄ ∷ ∙λ ∷ φ ∷ α ∷ []) "Rev.21.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.6" ∷ word (Ὦ ∷ []) "Rev.21.6" ∷ word (ἡ ∷ []) "Rev.21.6" ∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.21.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.6" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.21.6" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.21.6" ∷ word (τ ∷ ῷ ∷ []) "Rev.21.6" ∷ word (δ ∷ ι ∷ ψ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.21.6" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.21.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.21.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.6" ∷ word (π ∷ η ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.21.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.6" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.6" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.21.6" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ά ∷ ν ∷ []) "Rev.21.6" ∷ word (ὁ ∷ []) "Rev.21.7" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.21.7" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.21.7" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.21.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.7" ∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.21.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.21.7" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.21.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.21.7" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.7" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.21.7" ∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Rev.21.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.8" ∷ word (δ ∷ ὲ ∷ []) "Rev.21.8" ∷ word (δ ∷ ε ∷ ι ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (ἐ ∷ β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (φ ∷ α ∷ ρ ∷ μ ∷ ά ∷ κ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ []) "Rev.21.8" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.8" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ έ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.8" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.21.8" ∷ word (τ ∷ ῇ ∷ []) "Rev.21.8" ∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ ῃ ∷ []) "Rev.21.8" ∷ word (τ ∷ ῇ ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ι ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "Rev.21.8" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (θ ∷ ε ∷ ί ∷ ῳ ∷ []) "Rev.21.8" ∷ word (ὅ ∷ []) "Rev.21.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.8" ∷ word (ὁ ∷ []) "Rev.21.8" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.8" ∷ word (ὁ ∷ []) "Rev.21.8" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.9" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.21.9" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.21.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.21.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.21.9" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.21.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9" ∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.21.9" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.21.9" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.21.9" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.21.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9" ∷ word (γ ∷ ε ∷ μ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.21.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.21.9" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῶ ∷ ν ∷ []) "Rev.21.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9" ∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.21.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.9" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.9" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.9" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.21.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.21.9" ∷ word (Δ ∷ ε ∷ ῦ ∷ ρ ∷ ο ∷ []) "Rev.21.9" ∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ω ∷ []) "Rev.21.9" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.21.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.9" ∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ ν ∷ []) "Rev.21.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.9" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.21.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.9" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.10" ∷ word (ἀ ∷ π ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ έ ∷ ν ∷ []) "Rev.21.10" ∷ word (μ ∷ ε ∷ []) "Rev.21.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.21.10" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.21.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.10" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.10" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.21.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.10" ∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ό ∷ ν ∷ []) "Rev.21.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.10" ∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ ξ ∷ έ ∷ ν ∷ []) "Rev.21.10" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.21.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.10" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.10" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.21.10" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ὴ ∷ μ ∷ []) "Rev.21.10" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.21.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.21.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.21.10" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.10" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.21.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.11" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.21.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.11" ∷ word (ὁ ∷ []) "Rev.21.11" ∷ word (φ ∷ ω ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "Rev.21.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.11" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.21.11" ∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.21.11" ∷ word (τ ∷ ι ∷ μ ∷ ι ∷ ω ∷ τ ∷ ά ∷ τ ∷ ῳ ∷ []) "Rev.21.11" ∷ word (ὡ ∷ ς ∷ []) "Rev.21.11" ∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.21.11" ∷ word (ἰ ∷ ά ∷ σ ∷ π ∷ ι ∷ δ ∷ ι ∷ []) "Rev.21.11" ∷ word (κ ∷ ρ ∷ υ ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.21.11" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.21.12" ∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.12" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.21.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.12" ∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ό ∷ ν ∷ []) "Rev.21.12" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.21.12" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.21.12" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.12" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.12" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.12" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.12" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.12" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.12" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.21.12" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.21.12" ∷ word (ἅ ∷ []) "Rev.21.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.12" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.12" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.21.12" ∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rev.21.12" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rev.21.12" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13" ∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.21.13" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.13" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13" ∷ word (β ∷ ο ∷ ρ ∷ ρ ∷ ᾶ ∷ []) "Rev.21.13" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.13" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13" ∷ word (ν ∷ ό ∷ τ ∷ ο ∷ υ ∷ []) "Rev.21.13" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.13" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13" ∷ word (δ ∷ υ ∷ σ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.21.13" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.14" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.14" ∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.14" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.21.14" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.21.14" ∷ word (θ ∷ ε ∷ μ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.14" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.14" ∷ word (ἐ ∷ π ∷ []) "Rev.21.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.14" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.14" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.21.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.14" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.14" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.21.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.14" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.15" ∷ word (ὁ ∷ []) "Rev.21.15" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.21.15" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.15" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.21.15" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Rev.21.15" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.21.15" ∷ word (κ ∷ ά ∷ ∙λ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Rev.21.15" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.21.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.21.15" ∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.21.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.15" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.21.15" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.21.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.15" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.15" ∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16" ∷ word (ἡ ∷ []) "Rev.21.16" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.21.16" ∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.16" ∷ word (κ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.16" ∷ word (μ ∷ ῆ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.21.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.16" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.21.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.16" ∷ word (π ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16" ∷ word (ἐ ∷ μ ∷ έ ∷ τ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.16" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.16" ∷ word (τ ∷ ῷ ∷ []) "Rev.21.16" ∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ῳ ∷ []) "Rev.21.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.16" ∷ word (σ ∷ τ ∷ α ∷ δ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.16" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.16" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.21.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.16" ∷ word (μ ∷ ῆ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.21.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.16" ∷ word (π ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.16" ∷ word (ὕ ∷ ψ ∷ ο ∷ ς ∷ []) "Rev.21.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.16" ∷ word (ἴ ∷ σ ∷ α ∷ []) "Rev.21.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.21.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.17" ∷ word (ἐ ∷ μ ∷ έ ∷ τ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.17" ∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.17" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.21.17" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.21.17" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.21.17" ∷ word (π ∷ η ∷ χ ∷ ῶ ∷ ν ∷ []) "Rev.21.17" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.21.17" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.21.17" ∷ word (ὅ ∷ []) "Rev.21.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.17" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.21.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.18" ∷ word (ἡ ∷ []) "Rev.21.18" ∷ word (ἐ ∷ ν ∷ δ ∷ ώ ∷ μ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "Rev.21.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.18" ∷ word (τ ∷ ε ∷ ί ∷ χ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.18" ∷ word (ἴ ∷ α ∷ σ ∷ π ∷ ι ∷ ς ∷ []) "Rev.21.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.18" ∷ word (ἡ ∷ []) "Rev.21.18" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.21.18" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.18" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.21.18" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.21.18" ∷ word (ὑ ∷ ά ∷ ∙λ ∷ ῳ ∷ []) "Rev.21.18" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ῷ ∷ []) "Rev.21.18" ∷ word (ο ∷ ἱ ∷ []) "Rev.21.19" ∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.21.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.19" ∷ word (τ ∷ ε ∷ ί ∷ χ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.21.19" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Rev.21.19" ∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.21.19" ∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ῳ ∷ []) "Rev.21.19" ∷ word (κ ∷ ε ∷ κ ∷ ο ∷ σ ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.21.19" ∷ word (ὁ ∷ []) "Rev.21.19" ∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (ὁ ∷ []) "Rev.21.19" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (ἴ ∷ α ∷ σ ∷ π ∷ ι ∷ ς ∷ []) "Rev.21.19" ∷ word (ὁ ∷ []) "Rev.21.19" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (σ ∷ ά ∷ π ∷ φ ∷ ι ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (ὁ ∷ []) "Rev.21.19" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ η ∷ δ ∷ ώ ∷ ν ∷ []) "Rev.21.19" ∷ word (ὁ ∷ []) "Rev.21.19" ∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (σ ∷ μ ∷ ά ∷ ρ ∷ α ∷ γ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (σ ∷ α ∷ ρ ∷ δ ∷ ό ∷ ν ∷ υ ∷ ξ ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (ἕ ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (σ ∷ ά ∷ ρ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ό ∷ ∙λ ∷ ι ∷ θ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (ὄ ∷ γ ∷ δ ∷ ο ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (β ∷ ή ∷ ρ ∷ υ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (ἔ ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (τ ∷ ο ∷ π ∷ ά ∷ ζ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ό ∷ π ∷ ρ ∷ α ∷ σ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (ἑ ∷ ν ∷ δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (ὑ ∷ ά ∷ κ ∷ ι ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (δ ∷ ω ∷ δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (ἀ ∷ μ ∷ έ ∷ θ ∷ υ ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.21" ∷ word (ο ∷ ἱ ∷ []) "Rev.21.21" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.21" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.21" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.21" ∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.21" ∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Rev.21.21" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.21.21" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.21" ∷ word (π ∷ υ ∷ ∙λ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.21.21" ∷ word (ἦ ∷ ν ∷ []) "Rev.21.21" ∷ word (ἐ ∷ ξ ∷ []) "Rev.21.21" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.21.21" ∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "Rev.21.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.21" ∷ word (ἡ ∷ []) "Rev.21.21" ∷ word (π ∷ ∙λ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.21.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.21" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.21.21" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.21" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.21.21" ∷ word (ὡ ∷ ς ∷ []) "Rev.21.21" ∷ word (ὕ ∷ α ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.21.21" ∷ word (δ ∷ ι ∷ α ∷ υ ∷ γ ∷ ή ∷ ς ∷ []) "Rev.21.21" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.22" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.21.22" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.22" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.21.22" ∷ word (ἐ ∷ ν ∷ []) "Rev.21.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.21.22" ∷ word (ὁ ∷ []) "Rev.21.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.22" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.21.22" ∷ word (ὁ ∷ []) "Rev.21.22" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.21.22" ∷ word (ὁ ∷ []) "Rev.21.22" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.21.22" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.21.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.22" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.22" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.23" ∷ word (ἡ ∷ []) "Rev.21.23" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.21.23" ∷ word (ο ∷ ὐ ∷ []) "Rev.21.23" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.21.23" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.21.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.23" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.23" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.21.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.23" ∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Rev.21.23" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.21.23" ∷ word (φ ∷ α ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.21.23" ∷ word (ἡ ∷ []) "Rev.21.23" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.23" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.21.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.23" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.23" ∷ word (ἐ ∷ φ ∷ ώ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.23" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.21.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.23" ∷ word (ὁ ∷ []) "Rev.21.23" ∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.23" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.23" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.24" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.24" ∷ word (τ ∷ ὰ ∷ []) "Rev.21.24" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.21.24" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.21.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.24" ∷ word (φ ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.21.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.24" ∷ word (ο ∷ ἱ ∷ []) "Rev.21.24" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.24" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.21.24" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.24" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.21.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.21.24" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.21.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.25" ∷ word (ο ∷ ἱ ∷ []) "Rev.21.25" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.25" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.25" ∷ word (ο ∷ ὐ ∷ []) "Rev.21.25" ∷ word (μ ∷ ὴ ∷ []) "Rev.21.25" ∷ word (κ ∷ ∙λ ∷ ε ∷ ι ∷ σ ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.25" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.21.25" ∷ word (ν ∷ ὺ ∷ ξ ∷ []) "Rev.21.25" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.25" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.25" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.25" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.21.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.26" ∷ word (ο ∷ ἴ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.26" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.21.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.26" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.21.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.26" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.21.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.21.26" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.21.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.27" ∷ word (ο ∷ ὐ ∷ []) "Rev.21.27" ∷ word (μ ∷ ὴ ∷ []) "Rev.21.27" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rev.21.27" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.21.27" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.21.27" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.21.27" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.21.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.27" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.21.27" ∷ word (β ∷ δ ∷ έ ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "Rev.21.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.27" ∷ word (ψ ∷ ε ∷ ῦ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.21.27" ∷ word (ε ∷ ἰ ∷ []) "Rev.21.27" ∷ word (μ ∷ ὴ ∷ []) "Rev.21.27" ∷ word (ο ∷ ἱ ∷ []) "Rev.21.27" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.21.27" ∷ word (ἐ ∷ ν ∷ []) "Rev.21.27" ∷ word (τ ∷ ῷ ∷ []) "Rev.21.27" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.21.27" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.27" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.21.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.27" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.27" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.22.1" ∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ ξ ∷ έ ∷ ν ∷ []) "Rev.22.1" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.1" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.22.1" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.22.1" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.1" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.22.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.22.1" ∷ word (κ ∷ ρ ∷ ύ ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.1" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.22.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.22.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.1" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.22.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.22.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.1" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.22.2" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.22.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.2" ∷ word (π ∷ ∙λ ∷ α ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.2" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.22.2" ∷ word (ἐ ∷ ν ∷ τ ∷ ε ∷ ῦ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.2" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.22.2" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.2" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.2" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.2" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.22.2" ∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ []) "Rev.22.2" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.22.2" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ι ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.22.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Rev.22.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.2" ∷ word (τ ∷ ὰ ∷ []) "Rev.22.2" ∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Rev.22.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.2" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.22.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.22.2" ∷ word (θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.22.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.2" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.22.3" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ θ ∷ ε ∷ μ ∷ α ∷ []) "Rev.22.3" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.22.3" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.3" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3" ∷ word (ὁ ∷ []) "Rev.22.3" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.22.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.22.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.3" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.3" ∷ word (ἐ ∷ ν ∷ []) "Rev.22.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.22.3" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.3" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.22.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.3" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.22.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.4" ∷ word (ὄ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.4" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.22.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.4" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.22.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.22.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.4" ∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.22.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5" ∷ word (ν ∷ ὺ ∷ ξ ∷ []) "Rev.22.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.22.5" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.5" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.22.5" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.5" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.22.5" ∷ word (φ ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.22.5" ∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.22.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5" ∷ word (φ ∷ ῶ ∷ ς ∷ []) "Rev.22.5" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.22.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.5" ∷ word (ὁ ∷ []) "Rev.22.5" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.5" ∷ word (φ ∷ ω ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Rev.22.5" ∷ word (ἐ ∷ π ∷ []) "Rev.22.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.22.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.22.5" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.5" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.22.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.5" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.22.5" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.22.6" ∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.22.6" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.6" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.22.6" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.6" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.22.6" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.22.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.6" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ο ∷ ί ∷ []) "Rev.22.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.6" ∷ word (ὁ ∷ []) "Rev.22.6" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.6" ∷ word (ὁ ∷ []) "Rev.22.6" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.6" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.22.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.6" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.6" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.22.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.22.6" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.6" ∷ word (δ ∷ ε ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.22.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.22.6" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.22.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.6" ∷ word (ἃ ∷ []) "Rev.22.6" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.22.6" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.22.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.22.6" ∷ word (τ ∷ ά ∷ χ ∷ ε ∷ ι ∷ []) "Rev.22.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.7" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.22.7" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.22.7" ∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.22.7" ∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.7" ∷ word (ὁ ∷ []) "Rev.22.7" ∷ word (τ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.22.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.7" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.7" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.7" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.7" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.7" ∷ word (Κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.22.8" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Rev.22.8" ∷ word (ὁ ∷ []) "Rev.22.8" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ ν ∷ []) "Rev.22.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.8" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ ν ∷ []) "Rev.22.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.8" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.22.8" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.22.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.8" ∷ word (ἔ ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ α ∷ []) "Rev.22.8" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ []) "Rev.22.8" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.22.8" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.22.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.8" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.22.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.8" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.22.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.8" ∷ word (δ ∷ ε ∷ ι ∷ κ ∷ ν ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ό ∷ ς ∷ []) "Rev.22.8" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.22.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.9" ∷ word (Ὅ ∷ ρ ∷ α ∷ []) "Rev.22.9" ∷ word (μ ∷ ή ∷ []) "Rev.22.9" ∷ word (σ ∷ ύ ∷ ν ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ ς ∷ []) "Rev.22.9" ∷ word (σ ∷ ο ∷ ύ ∷ []) "Rev.22.9" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.22.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Rev.22.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.22.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9" ∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.22.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.9" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.9" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.22.9" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.22.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.22.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.22.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.22.10" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.10" ∷ word (Μ ∷ ὴ ∷ []) "Rev.22.10" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.22.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.10" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.10" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.10" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.10" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.10" ∷ word (ὁ ∷ []) "Rev.22.10" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.22.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.22.10" ∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Rev.22.10" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.22.10" ∷ word (ὁ ∷ []) "Rev.22.11" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.22.11" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ η ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.22.11" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.11" ∷ word (ὁ ∷ []) "Rev.22.11" ∷ word (ῥ ∷ υ ∷ π ∷ α ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.22.11" ∷ word (ῥ ∷ υ ∷ π ∷ α ∷ ρ ∷ ε ∷ υ ∷ θ ∷ ή ∷ τ ∷ ω ∷ []) "Rev.22.11" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.11" ∷ word (ὁ ∷ []) "Rev.22.11" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.11" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rev.22.11" ∷ word (π ∷ ο ∷ ι ∷ η ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.22.11" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.11" ∷ word (ὁ ∷ []) "Rev.22.11" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.11" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ θ ∷ ή ∷ τ ∷ ω ∷ []) "Rev.22.11" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.22.12" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.22.12" ∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.22.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.12" ∷ word (ὁ ∷ []) "Rev.22.12" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ό ∷ ς ∷ []) "Rev.22.12" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.22.12" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.22.12" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.22.12" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.22.12" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rev.22.12" ∷ word (ὡ ∷ ς ∷ []) "Rev.22.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.12" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Rev.22.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Rev.22.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.12" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.22.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.13" ∷ word (Ἄ ∷ ∙λ ∷ φ ∷ α ∷ []) "Rev.22.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.13" ∷ word (Ὦ ∷ []) "Rev.22.13" ∷ word (ὁ ∷ []) "Rev.22.13" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.22.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.13" ∷ word (ὁ ∷ []) "Rev.22.13" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.22.13" ∷ word (ἡ ∷ []) "Rev.22.13" ∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.22.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.13" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.22.13" ∷ word (Μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.22.14" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.14" ∷ word (π ∷ ∙λ ∷ ύ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.22.14" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.22.14" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.22.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.22.14" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.14" ∷ word (ἡ ∷ []) "Rev.22.14" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.22.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.22.14" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.14" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.14" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.14" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.22.14" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.14" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.22.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.22.14" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.22.14" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Rev.22.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.15" ∷ word (κ ∷ ύ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.22.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.15" ∷ word (φ ∷ ά ∷ ρ ∷ μ ∷ α ∷ κ ∷ ο ∷ ι ∷ []) "Rev.22.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.15" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.22.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.15" ∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.22.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.15" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ []) "Rev.22.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.22.15" ∷ word (φ ∷ ι ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.22.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.22.15" ∷ word (ψ ∷ ε ∷ ῦ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.22.15" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Rev.22.16" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.22.16" ∷ word (ἔ ∷ π ∷ ε ∷ μ ∷ ψ ∷ α ∷ []) "Rev.22.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.22.16" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ []) "Rev.22.16" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.22.16" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.22.16" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.22.16" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.22.16" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.22.16" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.22.16" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Rev.22.16" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.22.16" ∷ word (ἡ ∷ []) "Rev.22.16" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "Rev.22.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.16" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.22.16" ∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Rev.22.16" ∷ word (ὁ ∷ []) "Rev.22.16" ∷ word (ἀ ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "Rev.22.16" ∷ word (ὁ ∷ []) "Rev.22.16" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.22.16" ∷ word (ὁ ∷ []) "Rev.22.16" ∷ word (π ∷ ρ ∷ ω ∷ ϊ ∷ ν ∷ ό ∷ ς ∷ []) "Rev.22.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.17" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.22.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17" ∷ word (ἡ ∷ []) "Rev.22.17" ∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ []) "Rev.22.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.17" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.22.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17" ∷ word (ὁ ∷ []) "Rev.22.17" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ ν ∷ []) "Rev.22.17" ∷ word (ε ∷ ἰ ∷ π ∷ ά ∷ τ ∷ ω ∷ []) "Rev.22.17" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.22.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17" ∷ word (ὁ ∷ []) "Rev.22.17" ∷ word (δ ∷ ι ∷ ψ ∷ ῶ ∷ ν ∷ []) "Rev.22.17" ∷ word (ἐ ∷ ρ ∷ χ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "Rev.22.17" ∷ word (ὁ ∷ []) "Rev.22.17" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.22.17" ∷ word (∙λ ∷ α ∷ β ∷ έ ∷ τ ∷ ω ∷ []) "Rev.22.17" ∷ word (ὕ ∷ δ ∷ ω ∷ ρ ∷ []) "Rev.22.17" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.17" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ά ∷ ν ∷ []) "Rev.22.17" ∷ word (Μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῶ ∷ []) "Rev.22.18" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.22.18" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Rev.22.18" ∷ word (τ ∷ ῷ ∷ []) "Rev.22.18" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.22.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.18" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.18" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.18" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.18" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.18" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rev.22.18" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.22.18" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ῇ ∷ []) "Rev.22.18" ∷ word (ἐ ∷ π ∷ []) "Rev.22.18" ∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "Rev.22.18" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.22.18" ∷ word (ὁ ∷ []) "Rev.22.18" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.18" ∷ word (ἐ ∷ π ∷ []) "Rev.22.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.22.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.22.18" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.22.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.22.18" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ α ∷ ς ∷ []) "Rev.22.18" ∷ word (ἐ ∷ ν ∷ []) "Rev.22.18" ∷ word (τ ∷ ῷ ∷ []) "Rev.22.18" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.22.18" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Rev.22.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.19" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rev.22.19" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.22.19" ∷ word (ἀ ∷ φ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Rev.22.19" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.22.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ω ∷ ν ∷ []) "Rev.22.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.19" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.19" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ς ∷ []) "Rev.22.19" ∷ word (ἀ ∷ φ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Rev.22.19" ∷ word (ὁ ∷ []) "Rev.22.19" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.19" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.19" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.22.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.19" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.22.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.19" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.22.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.19" ∷ word (ἐ ∷ κ ∷ []) "Rev.22.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.22.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.19" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.22.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.22.19" ∷ word (τ ∷ ῷ ∷ []) "Rev.22.19" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.22.19" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Rev.22.19" ∷ word (Λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.22.20" ∷ word (ὁ ∷ []) "Rev.22.20" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.22.20" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.20" ∷ word (Ν ∷ α ∷ ί ∷ []) "Rev.22.20" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.22.20" ∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.22.20" ∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.22.20" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.22.20" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.22.20" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.22.20" ∷ word (Ἡ ∷ []) "Rev.22.21" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.22.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.21" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.21" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.22.21" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.22.21" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.22.21" ∷ []
43.914466
87
0.336789
3131f70ec47ffca1b404a2229fce54616c1a9d7b
1,457
agda
Agda
formalization/Celeste.agda
brunoczim/Celeste
9f5129d97ee7b89fb8e43136779a78806b7506ab
[ "MIT" ]
1
2020-09-16T17:31:57.000Z
2020-09-16T17:31:57.000Z
formalization/Celeste.agda
brunoczim/Celeste
9f5129d97ee7b89fb8e43136779a78806b7506ab
[ "MIT" ]
null
null
null
formalization/Celeste.agda
brunoczim/Celeste
9f5129d97ee7b89fb8e43136779a78806b7506ab
[ "MIT" ]
null
null
null
module Celeste where open import Data.Nat using (ℕ; _⊔_; zero) open import Data.String using (String) open import Data.Vec using (Vec) open import Data.Unsigned using (Unsigned) open import Data.Signed using (Signed) open import Data.Float using (Float) private variable word-size : ℕ mutual data Type : ℕ → Set where string : Type zero int8 : Type zero uint8 : Type zero int16 : Type zero uint16 : Type zero int32 : Type zero uint32 : Type zero int64 : Type zero uint64 : Type zero int128 : Type zero uint128 : Type zero int-word : Type zero uint-word : Type zero float32 : Type zero float64 : Type zero _×_ : {m n : ℕ} → Type m → Type n → Type (m ⊔ n) _⟶_ : {m n : ℕ} → Type m → Type n → Type (m ⊔ n) data Expr : {n : ℕ} → Type n → Set where str-lit : String → Expr string int8-lit : Signed 8 → Expr int8 uint8-lit : Unsigned 8 → Expr uint8 int16-lit : Signed 16 → Expr int16 uint16-lit : Unsigned 16 → Expr uint16 int32-lit : Signed 32 → Expr int32 uint32-lit : Unsigned 32 → Expr uint32 int64-lit : Signed 64 → Expr int64 uint64-lit : Unsigned 64 → Expr uint64 int128-lit : Signed 128 → Expr int128 uint128-lit : Unsigned 128 → Expr uint128 int-word-lit : Signed word-size → Expr int-word uint-word-lit : Unsigned word-size → Expr uint-word float32-lit : Float → Expr float32 float64-lit : Float → Expr float64
29.14
55
0.643789