hexsha
stringlengths 40
40
| size
int64 3
1.05M
| ext
stringclasses 163
values | lang
stringclasses 53
values | max_stars_repo_path
stringlengths 3
945
| max_stars_repo_name
stringlengths 4
112
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
float64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
945
| max_issues_repo_name
stringlengths 4
113
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
float64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
945
| max_forks_repo_name
stringlengths 4
113
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
float64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 3
1.05M
| avg_line_length
float64 1
966k
| max_line_length
int64 1
977k
| alphanum_fraction
float64 0
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
39ab03b9e8d049b3e7158a5936781b2fb9ee678c
| 2,600
|
agda
|
Agda
|
src/Bf/Ip.agda
|
mietek/formal-logic
|
2dd761bfa96ccda089888e8defa6814776fa2922
|
[
"X11"
] | 26
|
2015-08-31T09:49:52.000Z
|
2021-11-13T12:37:44.000Z
|
src/Bf/Ip.agda
|
mietek/formal-logic
|
2dd761bfa96ccda089888e8defa6814776fa2922
|
[
"X11"
] | null | null | null |
src/Bf/Ip.agda
|
mietek/formal-logic
|
2dd761bfa96ccda089888e8defa6814776fa2922
|
[
"X11"
] | null | null | null |
-- Intuitionistic propositional logic, de Bruijn approach, final encoding
module Bf.Ip where
open import Lib using (List; _,_; LMem; lzero; lsuc)
-- Types
infixl 2 _&&_
infixl 1 _||_
infixr 0 _=>_
data Ty : Set where
UNIT : Ty
_=>_ : Ty -> Ty -> Ty
_&&_ : Ty -> Ty -> Ty
_||_ : Ty -> Ty -> Ty
FALSE : Ty
infixr 0 _<=>_
_<=>_ : Ty -> Ty -> Ty
a <=> b = (a => b) && (b => a)
NOT : Ty -> Ty
NOT a = a => FALSE
TRUE : Ty
TRUE = FALSE => FALSE
-- Context and truth judgement
Cx : Set
Cx = List Ty
isTrue : Ty -> Cx -> Set
isTrue a tc = LMem a tc
-- Terms
TmRepr : Set1
TmRepr = Cx -> Ty -> Set
module ArrMp where
record Tm (tr : TmRepr) : Set1 where
infixl 1 _$_
infixr 0 lam=>_
field
var : forall {tc a} -> isTrue a tc -> tr tc a
lam=>_ : forall {tc a b} -> tr (tc , a) b -> tr tc (a => b)
_$_ : forall {tc a b} -> tr tc (a => b) -> tr tc a -> tr tc b
v0 : forall {tc a} -> tr (tc , a) a
v0 = var lzero
v1 : forall {tc a b} -> tr (tc , a , b) a
v1 = var (lsuc lzero)
v2 : forall {tc a b c} -> tr (tc , a , b , c) a
v2 = var (lsuc (lsuc lzero))
open Tm {{...}} public
module Mp where
record Tm (tr : TmRepr) : Set1 where
field
pair' : forall {tc a b} -> tr tc a -> tr tc b -> tr tc (a && b)
fst : forall {tc a b} -> tr tc (a && b) -> tr tc a
snd : forall {tc a b} -> tr tc (a && b) -> tr tc b
left : forall {tc a b} -> tr tc a -> tr tc (a || b)
right : forall {tc a b} -> tr tc b -> tr tc (a || b)
case' : forall {tc a b c} -> tr tc (a || b) -> tr (tc , a) c -> tr (tc , b) c -> tr tc c
isArrMp : ArrMp.Tm tr
open ArrMp.Tm isArrMp public
syntax pair' x y = [ x , y ]
syntax case' xy x y = case xy => x => y
open Tm {{...}} public
module Ip where
record Tm (tr : TmRepr) : Set1 where
field
abort : forall {tc a} -> tr tc FALSE -> tr tc a
isMp : Mp.Tm tr
open Mp.Tm isMp public
open Tm {{...}} public
Thm : Ty -> Set1
Thm a = forall {tr tc} {{_ : Tm tr}} -> tr tc a
open Ip public
-- Example theorems
t1 : forall {a b} -> Thm (a => NOT a => b)
t1 =
lam=>
lam=> abort (v0 $ v1)
t2 : forall {a b} -> Thm (NOT a => a => b)
t2 =
lam=>
lam=> abort (v1 $ v0)
t3 : forall {a} -> Thm (a => NOT (NOT a))
t3 =
lam=>
lam=> v0 $ v1
t4 : forall {a} -> Thm (NOT a <=> NOT (NOT (NOT a)))
t4 =
[ lam=>
lam=> v0 $ v1
, lam=>
lam=> v1 $ (lam=> v0 $ v1)
]
| 21.848739
| 94
| 0.474231
|
5936c9983e2e992a50da077df72aef4d04d1ff1b
| 373
|
agda
|
Agda
|
test/Succeed/Issue3167prop.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue3167prop.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue3167prop.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2018-09-12, issue #3167-2: --(no-)prop option
--
-- A local --prop option should override a global --no-prop flag.
-- Issue3167prop.flags has --no-prop.
{-# OPTIONS --prop #-}
-- The following depends on Prop enabled
data _≡_ {a} {A : Prop a} (x : A) : A → Prop a where
refl : x ≡ x
data P : Prop where
a b : P
test : (x y : P) → x ≡ y
test x y = refl
| 20.722222
| 65
| 0.595174
|
0bff0edbec1f7053d3cd246d508e9d065a052118
| 1,852
|
agda
|
Agda
|
src/Categories/NaturalTransformation/Extranatural.agda
|
jaykru/agda-categories
|
a4053cf700bcefdf73b857c3352f1eae29382a60
|
[
"MIT"
] | 279
|
2019-06-01T14:36:40.000Z
|
2022-03-22T00:40:14.000Z
|
src/Categories/NaturalTransformation/Extranatural.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 236
|
2019-06-01T14:53:54.000Z
|
2022-03-28T14:31:43.000Z
|
src/Categories/NaturalTransformation/Extranatural.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 64
|
2019-06-02T16:58:15.000Z
|
2022-03-14T02:00:59.000Z
|
{-# OPTIONS --without-K --safe #-}
module Categories.NaturalTransformation.Extranatural where
-- Although there is a notion of Extranatural in Categories.NaturalTransformation.Dinatural,
-- it isn't the most general form, thus the need for this as well.
open import Level
open import Data.Product
open import Relation.Binary using (Rel; IsEquivalence; Setoid)
open import Categories.Category
open import Categories.NaturalTransformation as NT hiding (_∘ʳ_)
open import Categories.Functor
open import Categories.Functor.Construction.Constant
open import Categories.Category.Product
import Categories.Morphism.Reasoning as MR
private
variable
o₁ o₂ o₃ o₄ ℓ₁ ℓ₂ ℓ₃ ℓ₄ e₁ e₂ e₃ e₄ : Level
record ExtranaturalTransformation
{A : Category o₁ ℓ₁ e₁}
{B : Category o₂ ℓ₂ e₂}
{C : Category o₃ ℓ₃ e₃}
{D : Category o₄ ℓ₄ e₄}
(P : Functor (Product A (Product (Category.op B) B)) D)
(Q : Functor (Product A (Product (Category.op C) C)) D) : Set (o₁ ⊔ o₂ ⊔ o₃ ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄ ⊔ e₄) where
private
module A = Category A
module B = Category B
module C = Category C
module D = Category D
module P = Functor P
module Q = Functor Q
open D hiding (op)
open Commutation D
field
α : ∀ a b c → D [ P.₀ (a , (b , b)) , Q.₀ (a , (c , c)) ]
commute : ∀ {a a′ b b′ c c′} (f : A [ a , a′ ]) (g : B [ b , b′ ])
(h : C [ c , c′ ]) →
[ P.₀ (a , (b′ , b) ) ⇒ Q.₀ (a′ , (c , c′)) ]⟨
P.₁ (f , B.id , g) ⇒⟨ P.₀ (a′ , (b′ , b′)) ⟩
α a′ b′ c ⇒⟨ Q.₀ (a′ , (c , c)) ⟩
Q.₁ (A.id , C.id , h)
≈ P.₁ (A.id , g , B.id) ⇒⟨ P.₀ (a , (b , b)) ⟩
α a b c′ ⇒⟨ Q.₀ (a , (c′ , c′)) ⟩
Q.₁ (f , h , C.id)
⟩
| 34.943396
| 112
| 0.535097
|
2f459349f165c31bc28425cb1a8661090ae603fd
| 13,213
|
agda
|
Agda
|
complexity/Bounding.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | 2
|
2016-04-26T20:22:22.000Z
|
2019-08-08T12:27:18.000Z
|
complexity/Bounding.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | 1
|
2020-03-23T08:39:04.000Z
|
2020-05-12T00:32:45.000Z
|
complexity/Bounding.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | null | null | null |
{- PROOF OF BOUNDING THEOREM -}
open import Preliminaries
open import Source
open import Complexity
open import Translation
open import Bounding-Lemmas
module Bounding where
boundingRec : ∀ {τ} (v : [] Source.|- nat) (val-v : val v)
(e0 : [] Source.|- τ)
(e1 : (nat :: susp τ :: []) Source.|- τ)
(E : [] Complexity.|- nat)
(E0 : [] Complexity.|- || τ ||)
(E1 : (nat :: || τ || :: []) Complexity.|- || τ ||)
→ valBound v val-v E → expBound e0 E0
→ ((v' : [] Source.|- nat) (val-v' : val v') (E' : [] Complexity.|- nat) → valBound v' val-v' E'
→ (r : [] Source.|- susp τ) (val-r : val r) (R : [] Complexity.|- || τ ||) → valBound r val-r R
→ expBound (Source.subst e1 (Source.lem4 v' r)) (Complexity.subst E1 (Complexity.lem4 E' R)))
→ ((vbranch : [] Source.|- τ) (val-vbranch : val vbranch) (nbranch : Cost)
→ evals-rec-branch e0 e1 v vbranch nbranch
→ (plusC 1C (interp-Cost nbranch) ≤s l-proj (rec E (1C +C E0) (1C +C E1))
× (valBound vbranch val-vbranch (r-proj (rec E (1C +C E0) (1C +C E1))))))
boundingRec .z z-isval e0 e1 E E0 E1 vbound e0bound e1bound vbranch val-vbranch nbranch (evals-rec-z evals-branch) =
(cong-+ refl-s (fst usee0bound ) trans l-proj-s) trans cong-lproj (rec-steps-z trans cong-rec vbound) ,
weakeningVal' val-vbranch (snd usee0bound) (r-proj-s trans cong-rproj (rec-steps-z trans (cong-rec (vbound))))
where usee0bound = (e0bound vbranch val-vbranch nbranch evals-branch)
boundingRec .(suc v') (suc-isval v' val-v') e0 e1 E E0 E1 (E' , v'bound , sucE'≤E) e0bound e1bound vbranch val-vbranch nbranch (evals-rec-s evals-branch) =
(cong-+ refl-s (fst usee1bound) trans l-proj-s) trans cong-lproj (rec-steps-s trans cong-rec sucE'≤E) ,
weakeningVal' val-vbranch (snd usee1bound) (r-proj-s trans cong-rproj (rec-steps-s trans cong-rec sucE'≤E)) where
IH = boundingRec v' val-v' e0 e1 E' E0 E1 v'bound e0bound e1bound
usee1bound = e1bound v' val-v' E' v'bound
(delay (rec v' e0 e1)) (delay-isval _) (rec E' (1C +C E0) (1C +C E1) )
(λ { vr vvr ._ (rec-evals{n1 = n1} {n2 = n2} D D') →
let useIH = IH vr vvr n2 (transport (λ H → evals-rec-branch e0 e1 H vr n2) (! (fst (val-evals-inversion val-v' D))) D')
in (cong-+ (Eq0C-≤0 (snd (val-evals-inversion val-v' D))) refl-s trans +-unit-l) trans fst useIH , snd useIH } )
vbranch val-vbranch nbranch evals-branch
boundingListRec : ∀ {τ τ'} (v : [] Source.|- list τ') (vv : val v)
(e0 : [] Source.|- τ)
(e1 : τ' :: list τ' :: susp τ :: [] Source.|- τ)
(E : [] Complexity.|- list ⟨⟨ τ' ⟩⟩)
(E0 : [] Complexity.|- || τ ||)
(E1 : ⟨⟨ τ' ⟩⟩ :: list ⟨⟨ τ' ⟩⟩ :: || τ || :: [] Complexity.|- || τ ||)
→ valBound v vv E → expBound e0 E0
→ ((h' : [] Source.|- τ') (vh' : val h') (H' : [] Complexity.|- ⟨⟨ τ' ⟩⟩)
→ valBound h' vh' H'
→ (v' : [] Source.|- list τ') (vv' : val v') (V' : [] Complexity.|- list ⟨⟨ τ' ⟩⟩)
→ valBound v' vv' V'
→ (r : [] Source.|- susp τ) (vr : val r) (R : [] Complexity.|- || τ ||)
→ valBound r vr R
→ expBound (Source.subst e1 (Source.lem5 h' v' r)) (Complexity.subst E1 (Complexity.lem5 H' V' R)))
→ (vbranch : [] Source.|- τ) (vvbranch : val vbranch) (nbranch : Cost)
→ evals-listrec-branch e0 e1 v vbranch nbranch
→ plusC 1C (interp-Cost nbranch) ≤s l-proj (listrec E (1C +C E0) (1C +C E1))
× valBound vbranch vvbranch (r-proj (listrec E (1C +C E0) (1C +C E1)))
boundingListRec .nil nil-isval e0 e1 E E0 E1 vbv e0b e1b vbranch vvbranch n (evals-listrec-nil evals-branch) =
((cong-+ refl-s (fst usee0bound) trans l-proj-s) trans cong-lproj (listrec-steps-nil trans cong-listrec vbv)) ,
weakeningVal' vvbranch (snd usee0bound) (r-proj-s trans cong-rproj (listrec-steps-nil trans cong-listrec vbv))
where usee0bound = e0b vbranch vvbranch n evals-branch
boundingListRec .(x ::s xs) (cons-isval x xs vv vv₁) e0 e1 E E0 E1 (h' , t' , (vbxh' , vbxst') , h'::t'≤sE)
e0b e1b vbranch vvbranch nbranch (evals-listrec-cons evals-branch) =
(cong-+ refl-s (fst usee1bound) trans l-proj-s) trans cong-lproj (listrec-steps-cons trans cong-listrec h'::t'≤sE) ,
weakeningVal' vvbranch (snd usee1bound) (r-proj-s trans cong-rproj (listrec-steps-cons trans cong-listrec h'::t'≤sE))
where
IH = boundingListRec xs vv₁ e0 e1 t' E0 E1 vbxst' e0b e1b
usee1bound = e1b x vv h' vbxh' xs vv₁ t' vbxst'
(delay (listrec xs e0 e1)) (delay-isval _) (listrec t' (1C +C E0) (1C +C E1))
(λ { vr vvr ._ (listrec-evals {_} {n2} D D') →
let useIH = IH vr vvr n2 (transport (λ H → evals-listrec-branch e0 e1 H vr n2) (! (fst (val-evals-inversion vv₁ D))) D')
in (cong-+ (Eq0C-≤0 (snd (val-evals-inversion vv₁ D))) refl-s trans +-unit-l) trans fst useIH , snd useIH } )
vbranch vvbranch nbranch evals-branch
bounding : ∀{Γ τ} → (e : Γ Source.|- τ) → (Θ : Source.sctx [] Γ)
→ (a : substVal Θ)
→ (Θ' : Complexity.sctx [] ⟨⟨ Γ ⟩⟩c)
→ substBound Θ a Θ'
→ expBound (Source.subst e Θ) (Complexity.subst || e ||e Θ')
bounding unit Θ a Θ' sb unit unit-isval 0c unit-evals = l-proj-s , <>
bounding (var x) Θ a Θ' sb v vv c evals =
inv1 (a x) evals trans l-proj-s ,
weakeningVal' vv (transport-valBound (inv2 (a x) evals) (val-hprop (transport val (inv2 (a x) evals) (a x)) vv) _ (sb x)) r-proj-s
bounding z Θ a Θ' sb .z z-isval .0c z-evals = l-proj-s , r-proj-s
bounding (suc e) Θ a Θ' sb .(suc e₁) (suc-isval e₁ vv) n (s-evals evals) =
fst IH trans l-proj-s ,
(r-proj (Complexity.subst || e ||e Θ')) , (snd IH) , r-proj-s
where
IH = (bounding e Θ a Θ' sb _ vv _ evals)
bounding (rec e e₁ e₂) Θ a Θ' sb e' val-e' ._ (rec-evals {v = v} arg-evals branch-evals) =
cong-+ (fst IH1) (fst lemma) trans l-proj-s , weakeningVal' val-e' (snd lemma) r-proj-s
where
IH1 = bounding e Θ a Θ' sb _ (evals-val arg-evals) _ arg-evals
lemma = boundingRec v (evals-val arg-evals) _
(Source.subst e₂ (Source.s-extend (Source.s-extend Θ))) _ _ (Complexity.subst || e₂ ||e (Complexity.s-extend (Complexity.s-extend Θ')))
(snd IH1)
(bounding e₁ Θ a Θ' sb )
(λ v' valv' E' valBoundv' r valr R valBoundR v'' valv'' c'' evals-rec →
let IH3 = (bounding e₂ (Source.lem4' Θ v' r) (extend-substVal2 a valv' valr) (Complexity.lem4' Θ' E' R)
(extend-substBound2 sb valBoundv' valBoundR) v'' valv'' c'' (transport (λ x → evals x v'' c'')
(Source.subst-compose4 Θ v' r e₂) evals-rec))
in (fst IH3 trans cong-refl (ap l-proj (! (Complexity.subst-compose4 Θ' E' R || e₂ ||e))) ,
weakeningVal' valv'' (snd IH3) (cong-rproj (cong-refl (! (Complexity.subst-compose4 Θ' E' R || e₂ ||e))))))
e' val-e' _ branch-evals
bounding {τ = ρ ->s τ} (lam e) Θ a Θ' sb .(lam (Source.subst e (Source.s-extend Θ))) (lam-isval .(Source.subst e (Source.s-extend Θ))) .0c lam-evals =
l-proj-s ,
(λ v₁ vv₁ E1 valbound1 v vv n body-evals →
let IH = bounding e (Source.lem3' Θ v₁) (extend-substVal a vv₁)
(Complexity.lem3' Θ' E1) (extend-substBound sb valbound1)
v vv n (transport (λ x → evals x v n) (Source.subst-compose Θ v₁ e) body-evals)
in
fst IH trans cong-lproj (cong-refl (! (Complexity.subst-compose Θ' E1 || e ||e)) trans lam-s trans cong-app r-proj-s) ,
weakeningVal' vv (snd IH) (cong-rproj (cong-refl (! (Complexity.subst-compose Θ' E1 || e ||e)) trans lam-s trans cong-app r-proj-s)))
bounding (app e1 e2) Θ a Θ' sb v val-v .((n0 +c n1) +c n)
(app-evals {n0} {n1} {n} {τ2} {τ} {.(Source.subst e1 Θ)} {e1'} {.(Source.subst e2 Θ)} {v2} e1-evals e2-evals subst-evals) =
cong-+ (cong-+ (fst IH1) (fst IH2)) (fst IH1a) trans l-proj-s ,
weakeningVal' val-v (snd IH1a) r-proj-s
where
IH1 = (bounding e1 Θ a Θ' sb (lam e1') (lam-isval e1') n0 e1-evals)
v2-val = evals-val e2-evals
IH2 = (bounding e2 Θ a Θ' sb v2 v2-val n1 e2-evals)
IH1a = snd IH1 v2 v2-val (r-proj (Complexity.subst || e2 ||e Θ')) (snd IH2) v val-v n subst-evals
bounding {Γ} {τ1 ×s τ2} (prod e1 e2) Θ a Θ' sb .(prod e3 e4) (pair-isval e3 e4 val-e3 val-e4) .(n1 +c n2) (pair-evals {n1} {n2} evals-c1 evals-c2) =
cong-+ (fst IH1) (fst IH2) trans l-proj-s ,
weakeningVal' val-e3 (snd IH1) (l-proj-s trans cong-lproj r-proj-s) ,
weakeningVal' val-e4 (snd IH2) (r-proj-s trans cong-rproj r-proj-s)
where
IH1 = (bounding e1 Θ a Θ' sb _ val-e3 _ evals-c1)
IH2 = (bounding e2 Θ a Θ' sb _ val-e4 _ evals-c2)
bounding (delay e) Θ a Θ' sb .(delay (Source.subst e Θ)) (delay-isval .(Source.subst e Θ)) .0c delay-evals =
l-proj-s ,
(λ v₁ vv n x →
let IH = bounding e Θ a Θ' sb v₁ vv n x in
fst IH trans cong-lproj (r-proj-s trans refl-s) ,
weakeningVal' vv (snd IH) (cong-rproj r-proj-s))
bounding (force e) Θ a Θ' sb v vv ._ (force-evals {n1} {n2} {τ} {e'} {.v} {.(Source.subst e Θ)} evals evals₁) =
(cong-+ (fst IH) (fst (snd IH v vv n2 evals₁)) trans l-proj-s) ,
weakeningVal' vv (snd (snd IH v vv n2 evals₁)) r-proj-s
where
IH = (bounding e Θ a Θ' sb _ (delay-isval e') n1 evals)
bounding {Γ} {τ} (split e0 e1) Θ a Θ' sb e' val-e' .(n1 +c n2) (split-evals {n1} {n2} {.τ} {τ1} {τ2} {.(Source.subst e0 Θ)} {v1} {v2} evals-in-c0 evals-in-c1) with evals-val evals-in-c0 | (bounding e0 Θ a Θ' sb (prod v1 v2) (evals-val evals-in-c0) _ evals-in-c0)
... | pair-isval ._ ._ val-v1 val-v2 | (IH11 , vb1 , vb2)
= cong-+ IH11 (fst IH2) trans
cong-+ refl-s (cong-lproj (cong-refl (! (Complexity.subst-compose3 Θ' || e1 ||e (l-proj (r-proj || e0 ||e)) (r-proj (r-proj || e0 ||e)))))) trans l-proj-s ,
weakeningVal' val-e' (snd IH2)
(cong-rproj (cong-refl
(! (Complexity.subst-compose3 Θ' || e1 ||e (l-proj (r-proj || e0 ||e)) (r-proj (r-proj || e0 ||e))))) trans r-proj-s) where
IH2 = bounding e1 (Source.lem4' Θ v1 v2)
(extend-substVal2 a val-v1 val-v2)
(Complexity.lem4' Θ' (l-proj (r-proj (Complexity.subst || e0 ||e Θ'))) (r-proj (r-proj (Complexity.subst || e0 ||e Θ'))))
(extend-substBound2 sb vb1 vb2)
e' val-e' n2 (transport (λ x → evals x e' n2) (Source.subst-compose3 Θ e1 v1 v2) evals-in-c1)
bounding nil Θ a Θ' sb .nil nil-isval .0c nil-evals = l-proj-s , r-proj-s
bounding (e ::s e₁) Θ a Θ' sb .(x ::s xs) (cons-isval x xs vv vv₁) ._ (cons-evals evals evals₁) =
(cong-+ (fst IH1) (fst IH2) trans l-proj-s) ,
(r-proj (Complexity.subst || e ||e Θ')) , r-proj (Complexity.subst || e₁ ||e Θ') , ((snd IH1 , snd IH2) , r-proj-s)
where
IH1 = (bounding e Θ a Θ' sb _ vv _ evals)
IH2 = (bounding e₁ Θ a Θ' sb _ vv₁ _ evals₁)
bounding (listrec e e₁ e₂) Θ a Θ' sb v vv ._ (listrec-evals {v = k} arg-evals branch-evals) =
(cong-+ (fst IH1) (fst lemma) trans l-proj-s) , weakeningVal' vv (snd lemma) r-proj-s
where
IH1 = bounding e Θ a Θ' sb _ (evals-val arg-evals) _ arg-evals
lemma = boundingListRec k (evals-val arg-evals) _
(Source.subst e₂ (Source.s-extend (Source.s-extend (Source.s-extend Θ)))) _ _
(Complexity.subst || e₂ ||e (Complexity.s-extend (Complexity.s-extend (Complexity.s-extend Θ'))))
(snd IH1)
(bounding e₁ Θ a Θ' sb)
(λ h' vh' H' vbh'H' v' vv' V' vbv'V' r vr R vbrR v₁ vv₁ n x₂ →
let IH3 = bounding e₂ (Source.lem5' Θ h' v' r) (extend-substVal3 a vh' vv' vr) (Complexity.lem5' Θ' H' V' R)
(extend-substBound3 sb vbh'H' vbv'V' vbrR) v₁ vv₁ n
(transport (λ x → evals x v₁ n) (Source.subst-compose5 Θ e₂ h' v' r) x₂)
in
fst IH3 trans cong-refl (ap l-proj (! (Complexity.subst-compose5 Θ' || e₂ ||e H' V' R))) ,
weakeningVal' vv₁ (snd IH3) (cong-rproj (cong-refl (! (Complexity.subst-compose5 Θ' || e₂ ||e H' V' R)))))
v vv _ branch-evals
bounding true Θ a Θ' sb .true true-isval .0c true-evals = l-proj-s , r-proj-s
bounding false Θ a Θ' sb .false false-isval .0c false-evals = l-proj-s , r-proj-s
| 73.815642
| 264
| 0.539998
|
31780aa8594519227d4dba85bff914ea6d41ecd4
| 1,085
|
agda
|
Agda
|
src/Types/Tail.agda
|
peterthiemann/dual-session
|
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
|
[
"BSD-2-Clause"
] | 1
|
2022-02-13T05:43:25.000Z
|
2022-02-13T05:43:25.000Z
|
src/Types/Tail.agda
|
peterthiemann/dual-session
|
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
|
[
"BSD-2-Clause"
] | null | null | null |
src/Types/Tail.agda
|
peterthiemann/dual-session
|
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
|
[
"BSD-2-Clause"
] | 1
|
2019-12-07T16:12:50.000Z
|
2019-12-07T16:12:50.000Z
|
module Types.Tail where
open import Data.Nat
open import Data.Fin
open import Function using (_∘_)
open import Types.Direction
-- session types restricted to tail recursion
-- can be recognized by type of TChan constructor
data Type : Set
data SType (n : ℕ) : Set
data GType (n : ℕ) : Set
data Type where
TUnit TInt : Type
TPair : (t₁ t₂ : Type) → Type
TChan : (s : SType 0) → Type
data SType n where
gdd : (g : GType n) → SType n
rec : (g : GType (suc n)) → SType n
var : (x : Fin n) → SType n
data GType n where
transmit : (d : Dir) (t : Type) (s : SType n) → GType n
choice : (d : Dir) (m : ℕ) (alt : Fin m → SType n) → GType n
end : GType n
private
variable
n : ℕ
-- naive definition of duality for tail recursive session types
-- message types are ignored as they are closed
dualS : SType n → SType n
dualG : GType n → GType n
dualS (gdd g) = gdd (dualG g)
dualS (rec g) = rec (dualG g)
dualS (var x) = var x
dualG (transmit d t s) = transmit (dual-dir d) t (dualS s)
dualG (choice d m alt) = choice (dual-dir d) m (dualS ∘ alt)
dualG end = end
| 23.085106
| 63
| 0.648848
|
12d4a8b4fb3fb2172921abbc077b8fe513f52b17
| 733
|
agda
|
Agda
|
old/Sets/BoolSet/Proofs.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
old/Sets/BoolSet/Proofs.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
old/Sets/BoolSet/Proofs.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Sets.BoolSet.Proofs{ℓ₁} where
open import Data.Boolean
open import Data.Boolean.Proofs
open import Functional
open import Logic.Propositional
open import Sets.BoolSet{ℓ₁}
open import Type
module _ {ℓ₂}{T : Type{ℓ₂}} where
[∈]-in-[∪] : ∀{a : T}{S₁ S₂ : BoolSet(T)} → (a ∈ S₁) → (a ∈ (S₁ ∪ S₂))
[∈]-in-[∪] proof-a = [∨]-introₗ-[𝑇] proof-a
[∈]-in-[∩] : ∀{a : T}{S₁ S₂ : BoolSet(T)} → (a ∈ S₁) → (a ∈ S₂) → (a ∈ (S₁ ∩ S₂))
[∈]-in-[∩] proof-a₁ proof-a₂ = [∧]-intro-[𝑇] proof-a₁ proof-a₂
[∈]-in-[∖] : ∀{a : T}{S₁ S₂ : BoolSet(T)} → (a ∈ S₁) → (a ∉ S₂) → (a ∈ (S₁ ∖ S₂))
[∈]-in-[∖] proof-a₁ proof-a₂ = [∧]-intro-[𝑇] proof-a₁ proof-a₂
[∈]-in-[∁] : ∀{a : T}{S : BoolSet(T)} → (a ∉ S) → (a ∈ (∁ S))
[∈]-in-[∁] = id
| 33.318182
| 83
| 0.51296
|
dcde4577f44d923b283aef830559819ce4c89ef4
| 480
|
agda
|
Agda
|
test/Fail/NonCopatternInstance.agda
|
jespercockx/agda2hs
|
703c66db29023f5538eaa841f38dc34e89473a3e
|
[
"MIT"
] | 55
|
2020-10-20T13:36:25.000Z
|
2022-03-26T21:57:56.000Z
|
test/Fail/NonCopatternInstance.agda
|
SNU-2D/agda2hs
|
160478a51bc78b0fdab07b968464420439f9fed6
|
[
"MIT"
] | 63
|
2020-10-22T05:19:27.000Z
|
2022-02-25T15:47:30.000Z
|
test/Fail/NonCopatternInstance.agda
|
SNU-2D/agda2hs
|
160478a51bc78b0fdab07b968464420439f9fed6
|
[
"MIT"
] | 18
|
2020-10-21T22:19:09.000Z
|
2022-03-12T11:42:52.000Z
|
module Fail.NonCopatternInstance where
record HasId (a : Set) : Set where
field id : a → a
open HasId ⦃ ... ⦄
{-# COMPILE AGDA2HS HasId class #-}
data Unit : Set where
MkUnit : Unit
{-# COMPILE AGDA2HS Unit #-}
instance
UnitHasId : HasId Unit
UnitHasId = r -- NOT CORRECT
where r = record {id = λ x → x}
-- UnitHasId .id x = x -- CORRECT
-- UnitHasId = record {id = λ x → x} -- CORRECT
{-# COMPILE AGDA2HS UnitHasId #-}
| 20
| 50
| 0.577083
|
a10aa65adb85fc8eceededf07f600b745b8a6e21
| 403
|
agda
|
Agda
|
test/fail/Test1.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 1
|
2021-06-30T00:17:55.000Z
|
2021-06-30T00:17:55.000Z
|
test/fail/Test1.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
test/fail/Test1.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import lib.Base
module test.fail.Test1 where
module _ where
private
data #I-aux : Type₀ where
#zero : #I-aux
#one : #I-aux
data #I : Type₀ where
#i : #I-aux → (Unit → Unit) → #I
I : Type₀
I = #I
zero : I
zero = #i #zero _
one : I
one = #i #one _
postulate
seg : zero == one
absurd : zero ≠ one
absurd () -- fails
| 13
| 38
| 0.533499
|
c5377cf237faa5689a72495ec211827055529fe5
| 826
|
agda
|
Agda
|
Cubical/Algebra/RingSolver/RawRing.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/RingSolver/RawRing.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/RingSolver/RawRing.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.RingSolver.RawRing where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Data.Nat using (ℕ)
open import Cubical.Algebra.RingSolver.AlmostRing hiding (⟨_⟩)
private
variable
ℓ : Level
record RawRing : Type (ℓ-suc ℓ) where
constructor rawring
field
Carrier : Type ℓ
0r : Carrier
1r : Carrier
_+_ : Carrier → Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
infixl 8 _·_
infixl 7 -_
infixl 6 _+_
⟨_⟩ : RawRing → Type ℓ
⟨_⟩ = RawRing.Carrier
AlmostRing→RawRing : AlmostRing {ℓ} → RawRing {ℓ}
AlmostRing→RawRing (almostring Carrier 0r 1r _+_ _·_ -_ isAlmostRing) =
rawring Carrier 0r 1r _+_ _·_ -_
| 22.944444
| 71
| 0.659806
|
0b578fff56a0b1d61154d340c78690c42a980f2a
| 6,941
|
agda
|
Agda
|
Cubical/Algebra/RingSolver/Solver.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Algebra/RingSolver/Solver.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Algebra/RingSolver/Solver.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.RingSolver.Solver where
open import Cubical.Foundations.Prelude
open import Cubical.Data.FinData
open import Cubical.Data.Nat using (ℕ)
open import Cubical.Data.Nat.Order using (zero-≤)
open import Cubical.Data.Vec.Base
open import Cubical.Algebra.RingSolver.AlmostRing
open import Cubical.Algebra.RingSolver.RawRing renaming (⟨_⟩ to ⟨_⟩ᵣ)
open import Cubical.Algebra.RingSolver.RingExpression
open import Cubical.Algebra.RingSolver.HornerForms
open import Cubical.Algebra.RingSolver.EvaluationHomomorphism
private
variable
ℓ : Level
module EqualityToNormalform (R : AlmostRing ℓ) where
νR = AlmostRing→RawRing R
open AlmostRing R
open Theory R
open Eval νR
open IteratedHornerOperations νR
open HomomorphismProperties R
normalize : (n : ℕ) → Expr ⟨ R ⟩ n → IteratedHornerForms νR n
normalize n (K r) = Constant n νR r
normalize n (∣ k) = Variable n νR k
normalize n (x ⊕ y) =
(normalize n x) +ₕ (normalize n y)
normalize n (x ⊗ y) =
(normalize n x) ·ₕ (normalize n y)
normalize n (⊝ x) = -ₕ (normalize n x)
isEqualToNormalform :
(n : ℕ)
(e : Expr ⟨ R ⟩ n) (xs : Vec ⟨ R ⟩ n)
→ eval n (normalize n e) xs ≡ ⟦ e ⟧ xs
isEqualToNormalform ℕ.zero (K r) [] = refl
isEqualToNormalform (ℕ.suc n) (K r) (x ∷ xs) =
eval (ℕ.suc n) (Constant (ℕ.suc n) νR r) (x ∷ xs) ≡⟨ refl ⟩
eval (ℕ.suc n) (0ₕ ·X+ Constant n νR r) (x ∷ xs) ≡⟨ refl ⟩
eval (ℕ.suc n) 0ₕ (x ∷ xs) · x + eval n (Constant n νR r) xs
≡⟨ cong (λ u → u · x + eval n (Constant n νR r) xs) (eval0H _ (x ∷ xs)) ⟩
0r · x + eval n (Constant n νR r) xs
≡⟨ cong (λ u → u + eval n (Constant n νR r) xs) (0LeftAnnihilates _) ⟩
0r + eval n (Constant n νR r) xs ≡⟨ +Lid _ ⟩
eval n (Constant n νR r) xs
≡⟨ isEqualToNormalform n (K r) xs ⟩
r ∎
isEqualToNormalform (ℕ.suc n) (∣ zero) (x ∷ xs) =
eval (ℕ.suc n) (1ₕ ·X+ 0ₕ) (x ∷ xs) ≡⟨ refl ⟩
eval (ℕ.suc n) 1ₕ (x ∷ xs) · x + eval n 0ₕ xs ≡⟨ cong (λ u → u · x + eval n 0ₕ xs)
(eval1ₕ _ (x ∷ xs)) ⟩
1r · x + eval n 0ₕ xs ≡⟨ cong (λ u → 1r · x + u ) (eval0H _ xs) ⟩
1r · x + 0r ≡⟨ +Rid _ ⟩
1r · x ≡⟨ ·Lid _ ⟩
x ∎
isEqualToNormalform (ℕ.suc n) (∣ (suc k)) (x ∷ xs) =
eval (ℕ.suc n) (0ₕ ·X+ Variable n νR k) (x ∷ xs) ≡⟨ refl ⟩
eval (ℕ.suc n) 0ₕ (x ∷ xs) · x + eval n (Variable n νR k) xs
≡⟨ cong (λ u → u · x + eval n (Variable n νR k) xs) (eval0H _ (x ∷ xs)) ⟩
0r · x + eval n (Variable n νR k) xs
≡⟨ cong (λ u → u + eval n (Variable n νR k) xs) (0LeftAnnihilates _) ⟩
0r + eval n (Variable n νR k) xs ≡⟨ +Lid _ ⟩
eval n (Variable n νR k) xs
≡⟨ isEqualToNormalform n (∣ k) xs ⟩
⟦ ∣ (suc k) ⟧ (x ∷ xs) ∎
isEqualToNormalform ℕ.zero (⊝ e) [] =
eval ℕ.zero (-ₕ (normalize ℕ.zero e)) [] ≡⟨ -evalDist ℕ.zero
(normalize ℕ.zero e)
[] ⟩
- eval ℕ.zero (normalize ℕ.zero e) [] ≡⟨ cong -_
(isEqualToNormalform
ℕ.zero e [] ) ⟩
- ⟦ e ⟧ [] ∎
isEqualToNormalform (ℕ.suc n) (⊝ e) (x ∷ xs) =
eval (ℕ.suc n) (-ₕ (normalize (ℕ.suc n) e)) (x ∷ xs) ≡⟨ -evalDist (ℕ.suc n)
(normalize
(ℕ.suc n) e)
(x ∷ xs) ⟩
- eval (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs) ≡⟨ cong -_
(isEqualToNormalform
(ℕ.suc n) e (x ∷ xs) ) ⟩
- ⟦ e ⟧ (x ∷ xs) ∎
isEqualToNormalform ℕ.zero (e ⊕ e₁) [] =
eval ℕ.zero (normalize ℕ.zero e +ₕ normalize ℕ.zero e₁) []
≡⟨ +Homeval ℕ.zero (normalize ℕ.zero e) _ [] ⟩
eval ℕ.zero (normalize ℕ.zero e) []
+ eval ℕ.zero (normalize ℕ.zero e₁) []
≡⟨ cong (λ u → u + eval ℕ.zero (normalize ℕ.zero e₁) [])
(isEqualToNormalform ℕ.zero e []) ⟩
⟦ e ⟧ []
+ eval ℕ.zero (normalize ℕ.zero e₁) []
≡⟨ cong (λ u → ⟦ e ⟧ [] + u) (isEqualToNormalform ℕ.zero e₁ []) ⟩
⟦ e ⟧ [] + ⟦ e₁ ⟧ [] ∎
isEqualToNormalform (ℕ.suc n) (e ⊕ e₁) (x ∷ xs) =
eval (ℕ.suc n) (normalize (ℕ.suc n) e
+ₕ normalize (ℕ.suc n) e₁) (x ∷ xs)
≡⟨ +Homeval (ℕ.suc n) (normalize (ℕ.suc n) e) _ (x ∷ xs) ⟩
eval (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs)
+ eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs)
≡⟨ cong (λ u → u + eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs))
(isEqualToNormalform (ℕ.suc n) e (x ∷ xs)) ⟩
⟦ e ⟧ (x ∷ xs)
+ eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs)
≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) + u)
(isEqualToNormalform (ℕ.suc n) e₁ (x ∷ xs)) ⟩
⟦ e ⟧ (x ∷ xs) + ⟦ e₁ ⟧ (x ∷ xs) ∎
isEqualToNormalform ℕ.zero (e ⊗ e₁) [] =
eval ℕ.zero (normalize ℕ.zero e ·ₕ normalize ℕ.zero e₁) []
≡⟨ ·Homeval ℕ.zero (normalize ℕ.zero e) _ [] ⟩
eval ℕ.zero (normalize ℕ.zero e) []
· eval ℕ.zero (normalize ℕ.zero e₁) []
≡⟨ cong (λ u → u · eval ℕ.zero (normalize ℕ.zero e₁) [])
(isEqualToNormalform ℕ.zero e []) ⟩
⟦ e ⟧ []
· eval ℕ.zero (normalize ℕ.zero e₁) []
≡⟨ cong (λ u → ⟦ e ⟧ [] · u) (isEqualToNormalform ℕ.zero e₁ []) ⟩
⟦ e ⟧ [] · ⟦ e₁ ⟧ [] ∎
isEqualToNormalform (ℕ.suc n) (e ⊗ e₁) (x ∷ xs) =
eval (ℕ.suc n) (normalize (ℕ.suc n) e
·ₕ normalize (ℕ.suc n) e₁) (x ∷ xs)
≡⟨ ·Homeval (ℕ.suc n) (normalize (ℕ.suc n) e) _ (x ∷ xs) ⟩
eval (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs)
· eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs)
≡⟨ cong (λ u → u · eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs))
(isEqualToNormalform (ℕ.suc n) e (x ∷ xs)) ⟩
⟦ e ⟧ (x ∷ xs)
· eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs)
≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) · u)
(isEqualToNormalform (ℕ.suc n) e₁ (x ∷ xs)) ⟩
⟦ e ⟧ (x ∷ xs) · ⟦ e₁ ⟧ (x ∷ xs) ∎
solve :
{n : ℕ} (e₁ e₂ : Expr ⟨ R ⟩ n) (xs : Vec ⟨ R ⟩ n)
(p : eval n (normalize n e₁) xs ≡ eval n (normalize n e₂) xs)
→ ⟦ e₁ ⟧ xs ≡ ⟦ e₂ ⟧ xs
solve e₁ e₂ xs p =
⟦ e₁ ⟧ xs ≡⟨ sym (isEqualToNormalform _ e₁ xs) ⟩
eval _ (normalize _ e₁) xs ≡⟨ p ⟩
eval _ (normalize _ e₂) xs ≡⟨ isEqualToNormalform _ e₂ xs ⟩
⟦ e₂ ⟧ xs ∎
| 45.966887
| 93
| 0.464342
|
1248d8d1221ce56e3885b6fdb304cf0183e75db3
| 2,140
|
agda
|
Agda
|
benchmark/misc/UniversePolymorphicFunctor.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
benchmark/misc/UniversePolymorphicFunctor.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
benchmark/misc/UniversePolymorphicFunctor.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --universe-polymorphism #-}
module UniversePolymorphicFunctor where
open import Agda.Primitive renaming (lsuc to suc)
record IsEquivalence {a ℓ} {A : Set a}
(_≈_ : A → A → Set ℓ) : Set (a ⊔ ℓ) where
field
refl : ∀ {x} → x ≈ x
sym : ∀ {i j} → i ≈ j → j ≈ i
trans : ∀ {i j k} → i ≈ j → j ≈ k → i ≈ k
record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : Set c
_≈_ : Carrier → Carrier → Set ℓ
isEquivalence : IsEquivalence _≈_
open IsEquivalence isEquivalence public
infixr 0 _⟶_
record _⟶_ {f₁ f₂ t₁ t₂}
(From : Setoid f₁ f₂) (To : Setoid t₁ t₂) :
Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where
infixl 5 _⟨$⟩_
field
_⟨$⟩_ : Setoid.Carrier From → Setoid.Carrier To
cong : ∀ {x y} →
Setoid._≈_ From x y → Setoid._≈_ To (_⟨$⟩_ x) (_⟨$⟩_ y)
open _⟶_ public
id : ∀ {a₁ a₂} {A : Setoid a₁ a₂} → A ⟶ A
id = record { _⟨$⟩_ = λ x → x; cong = λ x≈y → x≈y }
infixr 9 _∘_
_∘_ : ∀ {a₁ a₂} {A : Setoid a₁ a₂}
{b₁ b₂} {B : Setoid b₁ b₂}
{c₁ c₂} {C : Setoid c₁ c₂} →
B ⟶ C → A ⟶ B → A ⟶ C
f ∘ g = record
{ _⟨$⟩_ = λ x → f ⟨$⟩ (g ⟨$⟩ x)
; cong = λ x≈y → cong f (cong g x≈y)
}
_⇨_ : ∀ {f₁ f₂ t₁ t₂} → Setoid f₁ f₂ → Setoid t₁ t₂ → Setoid _ _
From ⇨ To = record
{ Carrier = From ⟶ To
; _≈_ = λ f g → ∀ {x y} → x ≈₁ y → f ⟨$⟩ x ≈₂ g ⟨$⟩ y
; isEquivalence = record
{ refl = λ {f} → cong f
; sym = λ f∼g x∼y → To.sym (f∼g (From.sym x∼y))
; trans = λ f∼g g∼h x∼y → To.trans (f∼g From.refl) (g∼h x∼y)
}
}
where
open module From = Setoid From using () renaming (_≈_ to _≈₁_)
open module To = Setoid To using () renaming (_≈_ to _≈₂_)
record Functor {f₁ f₂ f₃ f₄}
(F : Setoid f₁ f₂ → Setoid f₃ f₄) :
Set (suc (f₁ ⊔ f₂) ⊔ f₃ ⊔ f₄) where
field
map : ∀ {A B} → (A ⇨ B) ⟶ (F A ⇨ F B)
identity : ∀ {A} →
let open Setoid (F A ⇨ F A) in
map ⟨$⟩ id ≈ id
composition : ∀ {A B C} (f : B ⟶ C) (g : A ⟶ B) →
let open Setoid (F A ⇨ F C) in
map ⟨$⟩ (f ∘ g) ≈ (map ⟨$⟩ f) ∘ (map ⟨$⟩ g)
| 27.792208
| 67
| 0.484112
|
2f6d897a3efe833ae07ea31277d5c32903b3e304
| 287
|
agda
|
Agda
|
src/Categories/Functor/Presheaf.agda
|
jaykru/agda-categories
|
a4053cf700bcefdf73b857c3352f1eae29382a60
|
[
"MIT"
] | 279
|
2019-06-01T14:36:40.000Z
|
2022-03-22T00:40:14.000Z
|
src/Categories/Functor/Presheaf.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 236
|
2019-06-01T14:53:54.000Z
|
2022-03-28T14:31:43.000Z
|
src/Categories/Functor/Presheaf.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 64
|
2019-06-02T16:58:15.000Z
|
2022-03-14T02:00:59.000Z
|
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Presheaf where
open import Categories.Category
open import Categories.Functor
Presheaf : ∀ {o ℓ e} {o′ ℓ′ e′} (C : Category o ℓ e) (V : Category o′ ℓ′ e′) → Set _
Presheaf C V = Functor C.op V
where module C = Category C
| 26.090909
| 84
| 0.675958
|
31670ca7b32664780b6dcdc87c801330413c1b95
| 2,602
|
agda
|
Agda
|
experiments/Explore/Universe/Logical.agda
|
crypto-agda/explore
|
16bc8333503ff9c00d47d56f4ec6113b9269a43e
|
[
"BSD-3-Clause"
] | 2
|
2016-06-05T09:25:32.000Z
|
2017-06-28T19:19:29.000Z
|
experiments/Explore/Universe/Logical.agda
|
crypto-agda/explore
|
16bc8333503ff9c00d47d56f4ec6113b9269a43e
|
[
"BSD-3-Clause"
] | 1
|
2019-03-16T14:24:04.000Z
|
2019-03-16T14:24:04.000Z
|
experiments/Explore/Universe/Logical.agda
|
crypto-agda/explore
|
16bc8333503ff9c00d47d56f4ec6113b9269a43e
|
[
"BSD-3-Clause"
] | null | null | null |
open import Level.NP
open import Type
open import Relation.Binary.Logical
open import Relation.Binary.PropositionalEquality
module Explore.Universe.Logical (X : ★) where
open import Explore.Universe.Type
open import Explore.Universe X
open import Explore.Core
module From⟦X⟧ (⟦X⟧ : ⟦★₀⟧ X X) where
-- TODO _⟦≃⟧_ : (⟦Rel⟧ ⟦★₀⟧) ₀ _≃_ _≃_
data ⟦U⟧ : ⟦★₁⟧ U U
⟦El⟧ : (⟦U⟧ ⟦→⟧ ⟦★₀⟧) El El
data ⟦U⟧ where
⟦𝟘ᵁ⟧ : ⟦U⟧ 𝟘ᵁ 𝟘ᵁ
⟦𝟙ᵁ⟧ : ⟦U⟧ 𝟙ᵁ 𝟙ᵁ
⟦𝟚ᵁ⟧ : ⟦U⟧ 𝟚ᵁ 𝟚ᵁ
_⟦×ᵁ⟧_ : ⟦Op₂⟧ {_} {_} {₁} ⟦U⟧ _×ᵁ_ _×ᵁ_
_⟦⊎ᵁ⟧_ : ⟦Op₂⟧ {_} {_} {₁} ⟦U⟧ _⊎ᵁ_ _⊎ᵁ_
⟦Σᵁ⟧ : (⟨ u ∶ ⟦U⟧ ⟩⟦→⟧ (⟦El⟧ u ⟦→⟧ ⟦U⟧) ⟦→⟧ ⟦U⟧) Σᵁ Σᵁ
⟦Xᵁ⟧ : ⟦U⟧ Xᵁ Xᵁ
-- ⟦≃ᵁ⟧ : (⟨ u ∶ ⟦U⟧ ⟩⟦→⟧ (⟨ A ∶ ⟦★₀⟧ ⟩⟦→⟧ ⟦El⟧ u ⟦≃⟧ A ⟦→⟧ ⟦U⟧)) ≃ᵁ ≃ᵁ
⟦El⟧ ⟦𝟘ᵁ⟧ = _≡_
⟦El⟧ ⟦𝟙ᵁ⟧ = _≡_
⟦El⟧ ⟦𝟚ᵁ⟧ = _≡_
⟦El⟧ (u₀ ⟦×ᵁ⟧ u₁) = ⟦El⟧ u₀ ⟦×⟧ ⟦El⟧ u₁
⟦El⟧ (u₀ ⟦⊎ᵁ⟧ u₁) = ⟦El⟧ u₀ ⟦⊎⟧ ⟦El⟧ u₁
⟦El⟧ (⟦Σᵁ⟧ u f) = ⟦Σ⟧ (⟦El⟧ u) λ x → ⟦El⟧ (f x)
⟦El⟧ ⟦Xᵁ⟧ = ⟦X⟧
-- ⟦El⟧ (⟦≃ᵁ⟧ u A e) = A
module From⟦Xᵉ⟧
{⟦X⟧ : ⟦★₀⟧ X X}
{ℓ₀ ℓ₁} ℓᵣ
{Xᵉ : Explore X}
(⟦Xᵉ⟧ : ⟦Explore⟧ {ℓ₀} {ℓ₁} ℓᵣ ⟦X⟧ Xᵉ Xᵉ) where
open From⟦X⟧ ⟦X⟧ public
⟦explore⟧ : ∀ {u₀ u₁} (u : ⟦U⟧ u₀ u₁) → ⟦Explore⟧ {ℓ₀} {ℓ₁} ℓᵣ (⟦El⟧ u) (explore u₀) (explore u₁)
⟦explore⟧ ⟦𝟘ᵁ⟧ = ⟦𝟘ᵉ⟧ {ℓ₀} {ℓ₁} {ℓᵣ}
⟦explore⟧ ⟦𝟙ᵁ⟧ = ⟦𝟙ᵉ⟧ {ℓ₀} {ℓ₁} {ℓᵣ} {_≡_} {refl}
⟦explore⟧ ⟦𝟚ᵁ⟧ = ⟦𝟚ᵉ⟧ {ℓ₀} {ℓ₁} {ℓᵣ} {_≡_} {refl} {refl}
⟦explore⟧ (u₀ ⟦×ᵁ⟧ u₁) = ⟦explore×⟧ {ℓ₀} {ℓ₁} {ℓᵣ} (⟦explore⟧ u₀) (⟦explore⟧ u₁)
⟦explore⟧ (u₀ ⟦⊎ᵁ⟧ u₁) = ⟦explore⊎⟧ {ℓ₀} {ℓ₁} {ℓᵣ} (⟦explore⟧ u₀) (⟦explore⟧ u₁)
⟦explore⟧ (⟦Σᵁ⟧ u f) = ⟦exploreΣ⟧ {ℓ₀} {ℓ₁} {ℓᵣ} (⟦explore⟧ u) (⟦explore⟧ ∘ f)
⟦explore⟧ ⟦Xᵁ⟧ = ⟦Xᵉ⟧
-- ⟦explore⟧ (⟦≃ᵁ⟧ u A e) = {!⟦explore-iso⟧ e!}
{-
⟦U⟧-sound : ∀ {{_ : FunExt}} {x y} → ⟦U⟧ x y → x ≡ y
⟦U⟧-refl : ∀ x → ⟦U⟧ x x
{-
⟦El⟧-refl : ∀ x → {!⟦El⟧ x x!}
⟦El⟧-refl = {!!}
-}
⟦U⟧-sound ⟦𝟘ᵁ⟧ = refl
⟦U⟧-sound ⟦𝟙ᵁ⟧ = refl
⟦U⟧-sound ⟦𝟚ᵁ⟧ = refl
⟦U⟧-sound (u ⟦×ᵁ⟧ u₁) = ap₂ _×ᵁ_ (⟦U⟧-sound u) (⟦U⟧-sound u₁)
⟦U⟧-sound (u ⟦⊎ᵁ⟧ u₁) = ap₂ _⊎ᵁ_ (⟦U⟧-sound u) (⟦U⟧-sound u₁)
⟦U⟧-sound (⟦Σᵁ⟧ {u₀} {u₁} u {f₀} {f₁} fᵣ) = apd₂ Σᵁ (⟦U⟧-sound u) (tr-→ El (const U) (⟦U⟧-sound u) f₀ ∙ λ= (λ A → ap (λ z → z (f₀ (tr El (! ⟦U⟧-sound u) A))) (tr-const (⟦U⟧-sound u)) ∙ ⟦U⟧-sound (fᵣ {!!}))) -- (λ= (λ y → let foo = xᵣ {{!!}} {y} {!xᵣ!} in {!tr-→ El (const U) (⟦U⟧-sound u)!}))
⟦U⟧-refl 𝟘ᵁ = ⟦𝟘ᵁ⟧
⟦U⟧-refl 𝟙ᵁ = ⟦𝟙ᵁ⟧
⟦U⟧-refl 𝟚ᵁ = ⟦𝟚ᵁ⟧
⟦U⟧-refl (x ×ᵁ x₁) = ⟦U⟧-refl x ⟦×ᵁ⟧ ⟦U⟧-refl x₁
⟦U⟧-refl (x ⊎ᵁ x₁) = ⟦U⟧-refl x ⟦⊎ᵁ⟧ ⟦U⟧-refl x₁
⟦U⟧-refl (Σᵁ x f) = ⟦Σᵁ⟧ (⟦U⟧-refl x) (λ y → {!⟦U⟧-refl ?!})
-}
| 32.936709
| 292
| 0.445427
|
0689104c28a440e5e8224b4a42b4cbd15fd72e7b
| 845
|
agda
|
Agda
|
Cubical/Displayed/Constant.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Displayed/Constant.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Displayed/Constant.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-
Functions building DUARels on constant families
-}
{-# OPTIONS --safe #-}
module Cubical.Displayed.Constant where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Displayed.Base
open import Cubical.Displayed.Subst
private
variable
ℓ ℓA ℓA' ℓP ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓ≅B' ℓC ℓ≅C : Level
-- constant DUARel
module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A)
{B : Type ℓB} (𝒮-B : UARel B ℓ≅B) where
open UARel 𝒮-B
open DUARel
𝒮ᴰ-const : DUARel 𝒮-A (λ _ → B) ℓ≅B
𝒮ᴰ-const ._≅ᴰ⟨_⟩_ b _ b' = b ≅ b'
𝒮ᴰ-const .uaᴰ b p b' = ua b b'
-- SubstRel for an arbitrary constant family
module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) (B : Type ℓB) where
open SubstRel
𝒮ˢ-const : SubstRel 𝒮-A (λ _ → B)
𝒮ˢ-const .SubstRel.act _ = idEquiv B
𝒮ˢ-const .SubstRel.uaˢ p b = transportRefl b
| 21.125
| 62
| 0.661538
|
2fd2e7f30d78e8ce0bd3af64d30d8e70212c54f4
| 786
|
agda
|
Agda
|
Cubical/Categories/Sets.agda
|
cangiuli/cubical
|
d103ec455d41cccf9b13a4803e7d3cf462e00067
|
[
"MIT"
] | null | null | null |
Cubical/Categories/Sets.agda
|
cangiuli/cubical
|
d103ec455d41cccf9b13a4803e7d3cf462e00067
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/Categories/Sets.agda
|
cangiuli/cubical
|
d103ec455d41cccf9b13a4803e7d3cf462e00067
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Sets where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Categories.Category
module _ ℓ where
SET : Precategory (ℓ-suc ℓ) ℓ
SET .ob = Σ (Type ℓ) isSet
SET .hom (A , _) (B , _) = A → B
SET .idn _ = λ x → x
SET .seq f g = λ x → g (f x)
SET .seq-λ f = refl
SET .seq-ρ f = refl
SET .seq-α f g h = refl
module _ {ℓ} where
isSetExpIdeal : {A B : Type ℓ} → isSet B → isSet (A → B)
isSetExpIdeal B/set = isSetΠ λ _ → B/set
isSetLift : {A : Type ℓ} → isSet A → isSet (Lift {ℓ} {ℓ-suc ℓ} A)
isSetLift = isOfHLevelLift 2
instance
SET-category : isCategory (SET ℓ)
SET-category .homIsSet {_} {B , B/set} = isSetExpIdeal B/set
| 27.103448
| 67
| 0.637405
|
1cba3acd85a88fcc3a852119c172041325616fe8
| 3,809
|
agda
|
Agda
|
Categories/Monoidal/Traced.agda
|
copumpkin/categories
|
36f4181d751e2ecb54db219911d8c69afe8ba892
|
[
"BSD-3-Clause"
] | 98
|
2015-04-15T14:57:33.000Z
|
2022-03-08T05:20:36.000Z
|
Categories/Monoidal/Traced.agda
|
copumpkin/categories
|
36f4181d751e2ecb54db219911d8c69afe8ba892
|
[
"BSD-3-Clause"
] | 19
|
2015-05-23T06:47:10.000Z
|
2019-08-09T16:31:40.000Z
|
Categories/Monoidal/Traced.agda
|
copumpkin/categories
|
36f4181d751e2ecb54db219911d8c69afe8ba892
|
[
"BSD-3-Clause"
] | 23
|
2015-02-05T13:03:09.000Z
|
2021-11-11T13:50:56.000Z
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Monoidal.Traced where
open import Level
open import Data.Product
open import Data.Fin
open import Categories.Category
open import Categories.Monoidal
open import Categories.Functor hiding (id; _∘_; identityʳ; assoc)
open import Categories.Monoidal.Braided
open import Categories.Monoidal.Helpers
open import Categories.Monoidal.Braided.Helpers
open import Categories.Monoidal.Symmetric
open import Categories.NaturalIsomorphism
open import Categories.NaturalTransformation hiding (id)
------------------------------------------------------------------------------
-- Helpers
unary : ∀ {o ℓ e} → (C : Category o ℓ e) → (A : Category.Obj C) →
Fin 1 → Category.Obj C
unary C A zero = A
unary C A (suc ())
binary : ∀ {o ℓ e} → (C : Category o ℓ e) → (A B : Category.Obj C) →
Fin 2 → Category.Obj C
binary C A B zero = A
binary C A B (suc zero) = B
binary C A B (suc (suc ()))
ternary : ∀ {o ℓ e} → (C : Category o ℓ e) → (A X Y : Category.Obj C) →
Fin 3 → Category.Obj C
ternary C A X Y zero = A
ternary C A X Y (suc zero) = X
ternary C A X Y (suc (suc zero)) = Y
ternary C A X Y (suc (suc (suc ())))
------------------------------------------------------------------------------
-- Def from http://ncatlab.org/nlab/show/traced+monoidal+category
--
-- A symmetric monoidal category (C,⊗,1,b) (where b is the symmetry) is
-- said to be traced if it is equipped with a natural family of functions
--
-- TrXA,B:C(A⊗X,B⊗X)→C(A,B)
-- satisfying three axioms:
--
-- Vanishing: Tr1A,B(f)=f (for all f:A→B) and
-- TrX⊗YA,B=TrXA,B(TrYA⊗X,B⊗X(f)) (for all f:A⊗X⊗Y→B⊗X⊗Y)
--
-- Superposing: TrXC⊗A,C⊗B(idC⊗f)=idC⊗TrXA,B(f) (for all f:A⊗X→B⊗X)
--
-- Yanking: TrXX,X(bX,X)=idX
record Traced {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} {B : Braided M}
(S : Symmetric B) : Set (o ⊔ ℓ ⊔ e) where
private module C = Category C
open C using (Obj; id; _∘_)
private module M = Monoidal M
open M using (⊗; identityʳ; assoc) renaming (id to 𝟙)
private module F = Functor ⊗
open F using () renaming (F₀ to ⊗ₒ; F₁ to ⊗ₘ)
private module NIʳ = NaturalIsomorphism identityʳ
open NaturalTransformation NIʳ.F⇒G renaming (η to ηidr⇒)
open NaturalTransformation NIʳ.F⇐G renaming (η to ηidr⇐)
private module NIassoc = NaturalIsomorphism assoc
open NaturalTransformation NIassoc.F⇒G renaming (η to ηassoc⇒)
open NaturalTransformation NIassoc.F⇐G renaming (η to ηassoc⇐)
private module B = Braided B
open B using (braid)
private module NIbraid = NaturalIsomorphism braid
open NaturalTransformation NIbraid.F⇒G renaming (η to ηbraid⇒)
field
trace : ∀ {X A B} → C [ ⊗ₒ (A , X) , ⊗ₒ (B , X) ] → C [ A , B ]
vanish_id : ∀ {A B f} →
C [
trace {𝟙} {A} {B} f
≡
(ηidr⇒ (unary C B) ∘ f ∘ ηidr⇐ (unary C A))
]
vanish_⊗ : ∀ {X Y A B f} →
C [
trace {⊗ₒ (X , Y)} {A} {B} f
≡
trace {X} {A} {B}
(trace {Y} {⊗ₒ (A , X)} {⊗ₒ (B , X)}
((ηassoc⇐ (ternary C B X Y)) ∘ f ∘ (ηassoc⇒ (ternary C A X Y))))
]
superpose : ∀ {X Y A B} {f : C [ ⊗ₒ (A , X) , ⊗ₒ (B , X) ]} →
C [
trace {X} {⊗ₒ (Y , A)} {⊗ₒ (Y , B)}
(ηassoc⇐ (ternary C Y B X) ∘ ⊗ₘ (id , f) ∘ ηassoc⇒ (ternary C Y A X))
≡
⊗ₘ (id , (trace {X} {A} {B} f))
]
yank : ∀ {X} →
C [
trace {X} {X} {X} (ηbraid⇒ (binary C X X))
≡
id
]
------------------------------------------------------------------------------
| 32.555556
| 91
| 0.515358
|
1c2001fa30b4cd625d686f2d8f4d3fe24d15feb6
| 781
|
agda
|
Agda
|
Cubical/Data/NatMinusOne/Base.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | 1
|
2020-03-23T23:52:11.000Z
|
2020-03-23T23:52:11.000Z
|
Cubical/Data/NatMinusOne/Base.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
Cubical/Data/NatMinusOne/Base.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-exact-split --safe #-}
module Cubical.Data.NatMinusOne.Base where
open import Cubical.Core.Primitives
open import Cubical.Data.Nat
open import Cubical.Data.Empty
record ℕ₋₁ : Type₀ where
constructor -1+_
field
n : ℕ
pattern neg1 = -1+ zero
pattern ℕ→ℕ₋₁ n = -1+ (suc n)
1+_ : ℕ₋₁ → ℕ
1+_ (-1+ n) = n
suc₋₁ : ℕ₋₁ → ℕ₋₁
suc₋₁ (-1+ n) = -1+ (suc n)
-- Natural number and negative integer literals for ℕ₋₁
open import Cubical.Data.Nat.Literals public
instance
fromNatℕ₋₁ : HasFromNat ℕ₋₁
fromNatℕ₋₁ = record { Constraint = λ _ → Unit ; fromNat = ℕ→ℕ₋₁ }
instance
fromNegℕ₋₁ : HasFromNeg ℕ₋₁
fromNegℕ₋₁ = record { Constraint = λ { (suc (suc _)) → ⊥ ; _ → Unit }
; fromNeg = λ { zero → 0 ; (suc zero) → neg1 } }
| 22.970588
| 71
| 0.627401
|
4ab42b9967b32c404280999f067e5a8d33e82142
| 6,808
|
agda
|
Agda
|
Cubical/Structures/Relational/Function.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
Cubical/Structures/Relational/Function.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
Cubical/Structures/Relational/Function.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
{-
Index a structure T a positive structure S: X ↦ S X → T X
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.Relational.Function where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.RelationalStructure
open import Cubical.Foundations.Univalence
open import Cubical.Functions.FunExtEquiv
open import Cubical.Data.Sigma
open import Cubical.Relation.Binary.Base
open import Cubical.Relation.ZigZag.Base
open import Cubical.HITs.SetQuotients
open import Cubical.HITs.PropositionalTruncation as Trunc
open import Cubical.Structures.Function
private
variable
ℓ ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓ₂' ℓ₂'' : Level
FunctionRelStr : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂}
→ StrRel S ℓ₁' → StrRel T ℓ₂' → StrRel (FunctionStructure S T) (ℓ-max ℓ₁ (ℓ-max ℓ₁' ℓ₂'))
FunctionRelStr ρ₁ ρ₂ R f g =
∀ {x y} → ρ₁ R x y → ρ₂ R (f x) (g y)
open isEquivRel
private
composeWith[_] : {A : Type ℓ} (R : EquivPropRel A ℓ)
→ compPropRel (R .fst) (quotientPropRel (R .fst .fst)) .fst ≡ graphRel [_]
composeWith[_] R =
funExt₂ λ a t →
hPropExt squash (squash/ _ _)
(Trunc.rec (squash/ _ _) (λ {(b , r , p) → eq/ a b r ∙ p }))
(λ p → ∣ a , R .snd .reflexive a , p ∣)
[_]∙[_]⁻¹ : {A : Type ℓ} (R : EquivPropRel A ℓ)
→ compPropRel (quotientPropRel (R .fst .fst)) (invPropRel (quotientPropRel (R .fst .fst))) .fst
≡ R .fst .fst
[_]∙[_]⁻¹ R =
funExt₂ λ a b →
hPropExt squash (R .fst .snd a b)
(Trunc.rec (R .fst .snd a b)
(λ {(c , p , q) → effective (R .fst .snd) (R .snd) a b (p ∙ sym q)}))
(λ r → ∣ _ , eq/ a b r , refl ∣)
functionSuitableRel : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂}
{ρ₁ : StrRel S ℓ₁'} {ρ₂ : StrRel T ℓ₂'}
(θ₁ : SuitableStrRel S ρ₁)
→ PositiveStrRel θ₁
→ SuitableStrRel T ρ₂
→ SuitableStrRel (FunctionStructure S T) (FunctionRelStr ρ₁ ρ₂)
functionSuitableRel {S = S} {T = T} {ρ₁ = ρ₁} {ρ₂} θ₁ σ₁ θ₂ .quo (X , f) R h =
final
where
ref : (s : S X) → ρ₁ (R .fst .fst) s s
ref = posRelReflexive σ₁ R
[f] : S X / ρ₁ (R .fst .fst) → T (X / R .fst .fst)
[f] [ s ] = θ₂ .quo (X , f s) R (h (ref s)) .fst .fst
[f] (eq/ s₀ s₁ r i) =
cong fst
(θ₂ .quo (X , f s₀) R (h (ref s₀)) .snd
( [f] [ s₁ ]
, subst (λ R' → ρ₂ R' (f s₀) ([f] [ s₁ ]))
(composeWith[_] R)
(θ₂ .transitive (R .fst) (quotientPropRel (R .fst .fst))
(h r)
(θ₂ .quo (X , f s₁) R (h (ref s₁)) .fst .snd))
))
i
[f] (squash/ _ _ p q j i) =
θ₂ .set squash/ _ _ (cong [f] p) (cong [f] q) j i
relLemma : (s : S X) (t : S X)
→ ρ₁ (graphRel [_]) s (funIsEq (σ₁ .quo R) [ t ])
→ ρ₂ (graphRel [_]) (f s) ([f] [ t ])
relLemma s t r =
subst (λ R' → ρ₂ R' (f s) ([f] [ t ]))
(composeWith[_] R)
(θ₂ .transitive (R .fst) (quotientPropRel (R .fst .fst))
(h r')
(θ₂ .quo (X , f t) R (h (ref t)) .fst .snd))
where
r' : ρ₁ (R .fst .fst) s t
r' =
subst (λ R' → ρ₁ R' s t) ([_]∙[_]⁻¹ R)
(θ₁ .transitive
(quotientPropRel (R .fst .fst))
(invPropRel (quotientPropRel (R .fst .fst)))
r
(θ₁ .symmetric (quotientPropRel (R .fst .fst))
(subst
(λ t' → ρ₁ (graphRel [_]) t' (funIsEq (σ₁ .quo R) [ t ]))
(σ₁ .act .actStrId t)
(σ₁ .act .actRel eq/ t t (ref t)))))
quoRelLemma : (s : S X) (t : S X / ρ₁ (R .fst .fst))
→ ρ₁ (graphRel [_]) s (funIsEq (σ₁ .quo R) t)
→ ρ₂ (graphRel [_]) (f s) ([f] t)
quoRelLemma s =
elimProp (λ _ → isPropΠ λ _ → θ₂ .prop (λ _ _ → squash/ _ _) _ _)
(relLemma s)
final : Σ (Σ _ _) _
final .fst .fst = [f] ∘ invIsEq (σ₁ .quo R)
final .fst .snd {s} {t} r =
quoRelLemma s
(invIsEq (σ₁ .quo R) t)
(subst (ρ₁ (graphRel [_]) s) (sym (secIsEq (σ₁ .quo R) t)) r)
final .snd (f' , c) =
Σ≡Prop
(λ _ → isPropImplicitΠ λ s →
isPropImplicitΠ λ t →
isPropΠ λ _ → θ₂ .prop (λ _ _ → squash/ _ _) _ _)
(funExt λ s → contractorLemma (invIsEq (σ₁ .quo R) s) ∙ cong f' (secIsEq (σ₁ .quo R) s))
where
contractorLemma : (s : S X / ρ₁ (R .fst .fst))
→ [f] s ≡ f' (funIsEq (σ₁ .quo R) s)
contractorLemma =
elimProp
(λ _ → θ₂ .set squash/ _ _)
(λ s →
cong fst
(θ₂ .quo (X , f s) R (h (ref s)) .snd
( f' (funIsEq (σ₁ .quo R) [ s ])
, c
(subst
(λ s' → ρ₁ (graphRel [_]) s' (funIsEq (σ₁ .quo R) [ s ]))
(σ₁ .act .actStrId s)
(σ₁ .act .actRel eq/ s s (ref s)))
)))
functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .symmetric R h r =
θ₂ .symmetric R (h (θ₁ .symmetric (invPropRel R) r))
functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .transitive R R' h h' rr' =
Trunc.rec
(θ₂ .prop (λ _ _ → squash) _ _)
(λ {(_ , r , r') → θ₂ .transitive R R' (h r) (h' r')})
(σ .detransitive R R' rr')
functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .set setX =
isSetΠ λ _ → θ₂ .set setX
functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .prop propR f g =
isPropImplicitΠ λ _ →
isPropImplicitΠ λ _ →
isPropΠ λ _ →
θ₂ .prop propR _ _
functionRelMatchesEquiv : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂}
(ρ₁ : StrRel S ℓ₁') {ι₁ : StrEquiv S ℓ₁''}
(ρ₂ : StrRel T ℓ₂') {ι₂ : StrEquiv T ℓ₂''}
→ StrRelMatchesEquiv ρ₁ ι₁
→ StrRelMatchesEquiv ρ₂ ι₂
→ StrRelMatchesEquiv (FunctionRelStr ρ₁ ρ₂) (FunctionEquivStr ι₁ ι₂)
functionRelMatchesEquiv ρ₁ ρ₂ μ₁ μ₂ (X , f) (Y , g) e =
equivImplicitΠCod (equivImplicitΠCod (equiv→ (μ₁ _ _ e) (μ₂ _ _ e)))
functionRelMatchesEquiv+ : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂}
(ρ₁ : StrRel S ℓ₁') (α₁ : EquivAction S)
(ρ₂ : StrRel T ℓ₂') (ι₂ : StrEquiv T ℓ₂'')
→ StrRelMatchesEquiv ρ₁ (EquivAction→StrEquiv α₁)
→ StrRelMatchesEquiv ρ₂ ι₂
→ StrRelMatchesEquiv (FunctionRelStr ρ₁ ρ₂) (FunctionEquivStr+ α₁ ι₂)
functionRelMatchesEquiv+ ρ₁ α₁ ρ₂ ι₂ μ₁ μ₂ (X , f) (Y , g) e =
compEquiv
(functionRelMatchesEquiv ρ₁ ρ₂ μ₁ μ₂ (X , f) (Y , g) e)
(isoToEquiv isom)
where
open Iso
isom : Iso
(FunctionEquivStr (EquivAction→StrEquiv α₁) ι₂ (X , f) (Y , g) e)
(FunctionEquivStr+ α₁ ι₂ (X , f) (Y , g) e)
isom .fun h s = h refl
isom .inv k {x} = J (λ y _ → ι₂ (X , f x) (Y , g y) e) (k x)
isom .rightInv k i x = JRefl (λ y _ → ι₂ (X , f x) (Y , g y) e) (k x) i
isom .leftInv h =
implicitFunExt λ {x} →
implicitFunExt λ {y} →
funExt λ p →
J (λ y p → isom .inv (isom .fun h) p ≡ h p)
(funExt⁻ (isom .rightInv (isom .fun h)) x)
p
| 35.458333
| 99
| 0.559048
|
31eb389fd2228102386c8345f88a758f1c696bbc
| 1,378
|
agda
|
Agda
|
src/fot/Agsy/PA/Inductive/Properties.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
src/fot/Agsy/PA/Inductive/Properties.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
src/fot/Agsy/PA/Inductive/Properties.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- Inductive PA arithmetic properties using Agsy
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Tested with the development version of the Agda standard library on
-- 02 February 2012.
module Agsy.PA.Inductive.Properties where
open import Data.Nat renaming ( suc to succ )
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
------------------------------------------------------------------------------
+-rightIdentity : ∀ n → n + zero ≡ n -- via Agsy {-c}
+-rightIdentity zero = refl
+-rightIdentity (succ n) = cong succ (+-rightIdentity n)
+-assoc : ∀ m n o → m + n + o ≡ m + (n + o) -- via Agsy {-c}
+-assoc zero n o = refl
+-assoc (succ m) n o = cong succ (+-assoc m n o)
x+Sy≡S[x+y] : ∀ m n → m + succ n ≡ succ (m + n) -- via Agsy {-c}
x+Sy≡S[x+y] zero n = refl
x+Sy≡S[x+y] (succ m) n = cong succ (x+Sy≡S[x+y] m n)
+-comm : ∀ m n → m + n ≡ n + m -- via Agsy {-c -m}
+-comm zero n = sym (+-rightIdentity n)
+-comm (succ m) n =
begin
succ (m + n) ≡⟨ cong succ (+-comm m n) ⟩
succ (n + m) ≡⟨ sym (x+Sy≡S[x+y] n m) ⟩
n + succ m
∎
| 32.809524
| 78
| 0.469521
|
10a1329f956c46b9f869e80b40aa2f6ec4547c83
| 1,336
|
agda
|
Agda
|
Cubical/Codata/Conat/Base.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | 1
|
2020-03-23T23:52:11.000Z
|
2020-03-23T23:52:11.000Z
|
Cubical/Codata/Conat/Base.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/Codata/Conat/Base.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
{- Conatural numbers (Tesla Ice Zhang, Feb. 2019)
This file defines:
- A coinductive natural number representation which is dual to
the inductive version (zero | suc Nat → Nat) of natural numbers.
- Trivial operations (succ, pred) and the pattern synonyms on conaturals.
While this definition can be seen as a coinductive wrapper of an inductive
datatype, another way of definition is to define an inductive datatype that
wraps a coinductive thunk of Nat.
The standard library uses the second approach:
https://github.com/agda/agda-stdlib/blob/master/src/Codata/Conat.agda
The first approach is chosen to exploit guarded recursion and to avoid the use
of Sized Types.
-}
{-# OPTIONS --cubical --safe --guardedness #-}
module Cubical.Codata.Conat.Base where
open import Cubical.Data.Unit
open import Cubical.Data.Sum
open import Cubical.Core.Everything
record Conat : Type₀
Conat′ = Unit ⊎ Conat
record Conat where
coinductive
constructor conat′
field force : Conat′
open Conat public
pattern zero = inl tt
pattern suc n = inr n
conat : Conat′ → Conat
force (conat a) = a
succ : Conat → Conat
force (succ a) = suc a
succ′ : Conat′ → Conat′
succ′ n = suc λ where .force → n
pred′ : Conat′ → Conat′
pred′ zero = zero
pred′ (suc x) = force x
pred′′ : Conat′ → Conat
force (pred′′ zero) = zero
pred′′ (suc x) = x
| 23.857143
| 78
| 0.732036
|
1ce6e83b8061d8b8ac47432bece93aae5534b573
| 757
|
agda
|
Agda
|
src/fot/FOTC/Program/Mirror/Mirror.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
src/fot/FOTC/Program/Mirror/Mirror.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
src/fot/FOTC/Program/Mirror/Mirror.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- The mirror function: A function with higher-order recursion
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Mirror.Mirror where
open import FOTC.Base
open import FOTC.Data.List
open import FOTC.Program.Mirror.Type
------------------------------------------------------------------------------
-- The mirror function.
postulate
mirror : D
mirror-eq : ∀ d ts → mirror · node d ts ≡ node d (reverse (map mirror ts))
{-# ATP axiom mirror-eq #-}
| 34.409091
| 78
| 0.437252
|
39ca73c4ec5187b3f7a2c42478363b3e8121562b
| 1,380
|
agda
|
Agda
|
test/Succeed/Issue4480.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue4480.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue4480.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --irrelevant-projections #-}
data _≡_ {A : Set} : A → A → Set where
refl : (x : A) → x ≡ x
module Erased where
record Erased (A : Set) : Set where
constructor [_]
field
@0 erased : A
open Erased
record _↔_ (A B : Set) : Set where
field
to : A → B
from : B → A
to∘from : ∀ x → to (from x) ≡ x
from∘to : ∀ x → from (to x) ≡ x
postulate
A : Set
P : (B : Set) → (Erased A → B) → Set
p : (B : Set) (f : Erased A ↔ B) → P B (_↔_.to f)
fails : P (Erased (Erased A)) (λ (x : Erased A) → [ x ])
fails =
p _ (record
{ from = λ ([ x ]) → [ erased x ]
; to∘from = refl
; from∘to = λ _ → refl _
})
module Irrelevant where
record Irrelevant (A : Set) : Set where
constructor [_]
field
.irr : A
open Irrelevant
record _↔_ (A B : Set) : Set where
field
to : A → B
from : B → A
to∘from : ∀ x → to (from x) ≡ x
from∘to : ∀ x → from (to x) ≡ x
postulate
A : Set
P : (B : Set) → (Irrelevant A → B) → Set
p : (B : Set) (f : Irrelevant A ↔ B) → P B (_↔_.to f)
fails : P (Irrelevant (Irrelevant A)) (λ (x : Irrelevant A) → [ x ])
fails =
p _ (record
{ from = λ ([ x ]) → [ irr x ]
; to∘from = refl
; from∘to = λ _ → refl _
})
| 21.904762
| 70
| 0.45
|
1ddb6cec0f558e4f4c7c063bd6be0670872532f6
| 1,871
|
agda
|
Agda
|
04-cubical-type-theory/material/ExerciseSession3.agda
|
HoTT/EPIT-2020
|
0502db788d6d2b3950e44f362cdb7d4da3ebce82
|
[
"MIT"
] | 97
|
2021-03-19T14:13:37.000Z
|
2022-03-15T13:58:25.000Z
|
04-cubical-type-theory/material/ExerciseSession3.agda
|
HoTT/EPIT-2020
|
0502db788d6d2b3950e44f362cdb7d4da3ebce82
|
[
"MIT"
] | 2
|
2021-03-31T18:27:23.000Z
|
2021-04-13T09:03:56.000Z
|
04-cubical-type-theory/material/ExerciseSession3.agda
|
HoTT/EPIT-2020
|
0502db788d6d2b3950e44f362cdb7d4da3ebce82
|
[
"MIT"
] | 14
|
2021-03-19T12:36:53.000Z
|
2022-03-22T19:37:21.000Z
|
-- Exercises for session 3
--
-- If unsure which exercises to do start with those marked with *
--
{-# OPTIONS --cubical --allow-unsolved-metas #-}
module ExerciseSession3 where
open import Part1
open import Part2
open import Part3
open import Part4
open import ExerciseSession1 hiding (B)
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat
open import Cubical.Data.Int hiding (neg)
-- Exercise* 1: prove associativity of _++_ for FMSet.
-- (hint: mimic the proof of unitr-++)
-- Exercise 2: define the integers as a HIT with a pos and neg
-- constructor each taking a natural number as well as a path
-- constructor equating pos 0 and neg 0.
-- Exercise 3 (a little longer, but not very hard): prove that the
-- above definition of the integers is equal to the ones in
-- Cubical.Data.Int. Deduce that they form a set.
-- Exercise* 4: we can define the notion of a surjection as:
isSurjection : (A → B) → Type _
isSurjection {A = A} {B = B} f = (b : B) → ∃ A (λ a → f a ≡ b)
-- The exercise is now to:
--
-- a) prove that being a surjection is a proposition
--
-- b) prove that the inclusion ∣_∣ : A → ∥ A ∥ is surjective
-- (hint: use rec for ∥_∥)
-- Exercise* 5: define
intLoop : ℤ → ΩS¹
intLoop = {!!}
-- which given +n return loop^n and given -n returns loop^-n. Then
-- prove that:
windingIntLoop : (n : ℤ) → winding (intLoop n) ≡ n
windingIntLoop = {!!}
-- (The other direction is much more difficult and relies on the
-- encode-decode method. See Egbert's course on Friday!)
-- Exercise 6 (harder): the suspension of a type can be defined as
data Susp (A : Type ℓ) : Type ℓ where
north : Susp A
south : Susp A
merid : (a : A) → north ≡ south
-- Prove that the circle is equal to the suspension of Bool
S¹≡SuspBool : S¹ ≡ Susp Bool
S¹≡SuspBool = {!!}
-- Hint: define maps back and forth and prove that they cancel.
| 27.514706
| 66
| 0.691074
|
d0d3ec84d8dd932fa3415ab7cd65dc85b61712e0
| 569
|
agda
|
Agda
|
test/Succeed/Issue137.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue137.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue137.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --no-termination-check #-}
module Issue137 where
record Foo : Set1 where
field
foo : {x : Set} → Set
record Bar : Set1 where
field
bar : Foo
record Baz (P : Bar) : Set1 where
field
baz : Set
postulate
P : Bar
Q : Baz P
f : Baz.baz Q → Set
f r with f r
f r | A = A
-- The bug was:
-- Issue137.agda:22,1-12
-- Set should be a function type, but it isn't
-- when checking that the expression λ x → Foo.foo (Bar.bar P) {x} has
-- type Set
-- If the field foo is replaced by
-- foo : (x : Set) → Set
-- then the code type checks.
| 16.735294
| 70
| 0.615114
|
c54372827314c06ff97ce104d13cb1090188eb74
| 511
|
agda
|
Agda
|
test/interaction/Highlighting.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/interaction/Highlighting.agda
|
Blaisorblade/Agda
|
802a28aa8374f15fe9d011ceb80317fdb1ec0949
|
[
"BSD-3-Clause"
] | null | null | null |
test/interaction/Highlighting.agda
|
Blaisorblade/Agda
|
802a28aa8374f15fe9d011ceb80317fdb1ec0949
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
module Highlighting where
Set-one : Set₂
Set-one = Set₁
record R (A : Set) : Set-one where
constructor con
field X : Set
F : Set → Set → Set
F A B = B
field P : F A X → Set
-- highlighting of non-terminating definition
Q : F A X → Set
Q = Q
postulate P : _
open import Highlighting.M
data D (A : Set) : Set-one where
d : let X = D in X A
postulate _+_ _×_ : Set → Set → Set
infixl 4 _×_ _+_
-- Issue #2140: the operators should be highlighted also in the
-- fixity declaration.
| 15.96875
| 65
| 0.634051
|
31e668bd477dd58fa43206f549c16c14559afe6d
| 97
|
agda
|
Agda
|
test/Common/Unit.agda
|
alex-mckenna/agda
|
78b62cd24bbd570271a7153e44ad280e52ef3e29
|
[
"BSD-3-Clause"
] | 7
|
2018-11-05T22:13:36.000Z
|
2018-11-06T16:38:43.000Z
|
test/Common/Unit.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | 16
|
2018-10-08T00:32:04.000Z
|
2019-09-08T13:47:04.000Z
|
test/Common/Unit.agda
|
xekoukou/agda-ocaml
|
026a8f8473ab91f99c3f6545728e71fa847d2720
|
[
"BSD-3-Clause"
] | 1
|
2022-03-12T11:39:14.000Z
|
2022-03-12T11:39:14.000Z
|
module Common.Unit where
open import Agda.Builtin.Unit public renaming (⊤ to Unit; tt to unit)
| 19.4
| 69
| 0.762887
|
fbdc3decb6a0f0ace2b0fc213cef153328aea65c
| 164
|
agda
|
Agda
|
test/Fail/Issue5448-2.agda
|
favonia/agda
|
8d433b967567c08afe15d04a5cb63b6f6d8884ee
|
[
"BSD-2-Clause"
] | null | null | null |
test/Fail/Issue5448-2.agda
|
favonia/agda
|
8d433b967567c08afe15d04a5cb63b6f6d8884ee
|
[
"BSD-2-Clause"
] | 6
|
2021-10-18T08:12:24.000Z
|
2021-11-24T08:31:10.000Z
|
test/Fail/Issue5448-2.agda
|
antoinevanmuylder/agda
|
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
|
[
"BSD-2-Clause"
] | null | null | null |
{-# OPTIONS --cubical-compatible #-}
open import Agda.Builtin.Equality
subst :
{@0 A : Set} {x y : A}
(@0 P : A → Set) → x ≡ y → P x → P y
subst P refl p = p
| 18.222222
| 38
| 0.54878
|
a1f4d2f1fa29b4385c7178576122f8828abdcdba
| 72
|
agda
|
Agda
|
test/Fail/Sections-5.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Sections-5.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Sections-5.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
open import Common.Prelude
test : Nat → Nat
test = _Common.Prelude.+ 2
| 14.4
| 26
| 0.722222
|
39aa050e2aee60fa568df23914c3818d193f3bae
| 223
|
agda
|
Agda
|
test/Fail/RewriteConstructorParsNotGeneral.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/RewriteConstructorParsNotGeneral.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/RewriteConstructorParsNotGeneral.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --rewriting #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
{-# BUILTIN REWRITE _≡_ #-}
data D (A : Set) : Set where
c c' : D A
postulate rew : c {Bool} ≡ c' {Bool}
{-# REWRITE rew #-}
| 17.153846
| 36
| 0.623318
|
2fd9458b0f60fe475fe6857c0ec27dd12f08e07c
| 3,172
|
agda
|
Agda
|
src/Impure/LFRef/Eval.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | null | null | null |
src/Impure/LFRef/Eval.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | null | null | null |
src/Impure/LFRef/Eval.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | null | null | null |
module Impure.LFRef.Eval where
open import Prelude
open import Data.Fin using (fromℕ≤)
open import Data.List hiding ([_])
open import Data.List.All
open import Data.List.Any
open import Data.Vec hiding (map; _∷ʳ_)
open import Data.Maybe hiding (All; Any)
open import Extensions.List as L
open import Impure.LFRef.Syntax hiding (subst)
open import Impure.LFRef.Welltyped
-- machine configuration: expression to reduce and a store
Config : Set
Config = Exp 0 × Store
!load : ∀ {i} → (μ : Store) → i < length μ → Term 0
!load {i = i} [] ()
!load {i = zero} (x ∷ μ) (s≤s p) = proj₁ x
!load {i = suc i} (x ∷ μ) (s≤s p) = !load μ p
!store : ∀ {i e} → (μ : Store) → i < length μ → Val e → Store
!store [] () v
!store {i = zero} (x ∷ μ) (s≤s p) v = (, v) ∷ μ
!store {i = suc i} (x ∷ μ) (s≤s p) v = (, v) ∷ (!store μ p v)
!call : ∀ {n m} → Exp m → (l : List (Term n)) → length l ≡ m → Exp n
!call e ts p = e exp/ subst (Vec _) p (fromList ts)
-- small steps for expressions
infix 1 _⊢_≻_
data _⊢_≻_ (𝕊 : Sig) : (t t' : Config) → Set where
funapp-β : ∀ {fn ts μ φ} →
(Sig.funs 𝕊) L.[ fn ]= φ →
(p : length ts ≡ Fun.m φ) →
-------------------------
𝕊 ⊢ fn ·★ ts , μ ≻ (!call (Fun.body φ) ts p) , μ
ref-val : ∀ {t μ} →
(v : Val t) →
----------------------------------------------------
𝕊 ⊢ ref (tm t) , μ ≻ (tm (loc (length μ))) , (μ ∷ʳ (, v))
≔-val : ∀ {i e μ} →
(p : i < length μ) →
(v : Val e) →
--------------------------------------------
𝕊 ⊢ (tm (loc i)) ≔ (tm e) , μ ≻ (tm unit) , (μ L.[ fromℕ≤ p ]≔ (, v))
!-val : ∀ {i μ} →
(p : i < length μ) →
-----------------------------------------
𝕊 ⊢ ! (tm (loc i)) , μ ≻ tm (!load μ p) , μ
ref-clos : ∀ {e e' μ μ'} →
𝕊 ⊢ e , μ ≻ e' , μ' →
---------------------------
𝕊 ⊢ ref e , μ ≻ ref e' , μ'
!-clos : ∀ {e e' μ μ'} →
𝕊 ⊢ e , μ ≻ e' , μ' →
-----------------------
𝕊 ⊢ ! e , μ ≻ ! e' , μ'
≔-clos₁ : ∀ {x x' e μ μ'} →
𝕊 ⊢ x , μ ≻ x' , μ' →
--------------------------
𝕊 ⊢ x ≔ e , μ ≻ x' ≔ e , μ'
≔-clos₂ : ∀ {x e e' μ μ'} →
ExpVal x →
𝕊 ⊢ e , μ ≻ e' , μ' →
--------------------------
𝕊 ⊢ x ≔ e , μ ≻ x ≔ e' , μ'
infix 1 _⊢_≻ₛ_
data _⊢_≻ₛ_ (𝕊 : Sig) : (t t' : SeqExp 0 × Store) → Set where
-- reductions
lett-β : ∀ {t e μ} →
----------------------------------------------
𝕊 ⊢ (lett (tm t) e) , μ ≻ₛ (e seq/ (sub t)) , μ
-- contextual closure
ret-clos : ∀ {e μ e' μ'} →
𝕊 ⊢ e , μ ≻ e' , μ' →
-------------------------------------
𝕊 ⊢ (ret e) , μ ≻ₛ (ret e') , μ'
lett-clos : ∀ {x e x' μ μ'} →
𝕊 ⊢ x , μ ≻ x' , μ' →
-------------------------------------
𝕊 ⊢ (lett x e) , μ ≻ₛ (lett x' e) , μ'
-- reflexive-transitive closure of ≻
open import Data.Star
infix 1 _⊢_≻⋆_
_⊢_≻⋆_ : (Sig) → (c c' : SeqExp 0 × Store) → Set
𝕊 ⊢ c ≻⋆ c' = Star (_⊢_≻ₛ_ 𝕊) c c'
| 30.5
| 79
| 0.365385
|
10cd888130166c22318e7abe37e44f4f68601f1e
| 1,199
|
agda
|
Agda
|
src/agda/FRP/JS/Bool.agda
|
agda/agda-frp-js
|
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
|
[
"MIT",
"BSD-3-Clause"
] | 63
|
2015-04-20T21:47:00.000Z
|
2022-02-28T09:46:14.000Z
|
src/agda/FRP/JS/Bool.agda
|
agda/agda-frp-js
|
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
|
[
"MIT",
"BSD-3-Clause"
] | null | null | null |
src/agda/FRP/JS/Bool.agda
|
agda/agda-frp-js
|
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
|
[
"MIT",
"BSD-3-Clause"
] | 7
|
2016-11-07T21:50:58.000Z
|
2022-03-12T11:39:38.000Z
|
module FRP.JS.Bool where
open import FRP.JS.Primitive public using ( Bool ; true ; false )
not : Bool → Bool
not true = false
not false = true
{-# COMPILED_JS not function(x) { return !x; } #-}
_≟_ : Bool → Bool → Bool
true ≟ b = b
false ≟ b = not b
{-# COMPILED_JS _≟_ function(x) { return function(y) { return x === y; }; } #-}
if_then_else_ : ∀ {α} {A : Set α} → Bool → A → A → A
if true then t else f = t
if false then t else f = f
{-# COMPILED_JS if_then_else_ function(a) { return function(A) { return function(x) {
if (x) { return function(t) { return function(f) { return t; }; }; }
else { return function(t) { return function(f) { return f; }; }; }
}; }; } #-}
_∧_ : Bool → Bool → Bool
true ∧ b = b
false ∧ b = false
{-# COMPILED_JS _∧_ function(x) { return function(y) { return x && y; }; } #-}
_∨_ : Bool → Bool → Bool
true ∨ b = true
false ∨ b = b
{-# COMPILED_JS _∨_ function(x) { return function(y) { return x || y; }; } #-}
_xor_ : Bool → Bool → Bool
true xor b = not b
false xor b = b
_≠_ = _xor_
{-# COMPILED_JS _xor_ function(x) { return function(y) { return x !== y; }; } #-}
{-# COMPILED_JS _≠_ function(x) { return function(y) { return x !== y; }; } #-}
| 26.065217
| 85
| 0.586322
|
594d7c8583c31d61c0025526a41773954111726f
| 640
|
agda
|
Agda
|
test/Compiler/simple/VecReverseErased.agda
|
zgrannan/agda
|
5953ce337eb6b77b29ace7180478f49c541aea1c
|
[
"BSD-3-Clause"
] | null | null | null |
test/Compiler/simple/VecReverseErased.agda
|
zgrannan/agda
|
5953ce337eb6b77b29ace7180478f49c541aea1c
|
[
"BSD-3-Clause"
] | null | null | null |
test/Compiler/simple/VecReverseErased.agda
|
zgrannan/agda
|
5953ce337eb6b77b29ace7180478f49c541aea1c
|
[
"BSD-3-Clause"
] | null | null | null |
module _ where
open import Common.Prelude
data Vec (A : Set) : Nat → Set where
[] : Vec A 0
_∷_ : ∀ {@0 n} → A → Vec A n → Vec A (suc n)
sum : ∀ {@0 n} → Vec Nat n → Nat
sum (x ∷ xs) = x + sum xs
sum [] = 0
foldl : ∀ {A} {B : Nat → Set} → (∀ {@0 n} → B n → A → B (suc n)) → B 0 → ∀ {@0 n} → Vec A n → B n
foldl {B = B} f z (x ∷ xs) = foldl {B = λ n → B (suc n)} f (f z x) xs
foldl f z [] = z
reverse : ∀ {A} {@0 n} → Vec A n → Vec A n
reverse = foldl {B = Vec _} (λ xs x → x ∷ xs) []
downFrom : ∀ n → Vec Nat n
downFrom zero = []
downFrom (suc n) = n ∷ downFrom n
main : IO Unit
main = printNat (sum (reverse (downFrom 100000)))
| 24.615385
| 97
| 0.50625
|
2f0be843553a02d4f246095c24489a5a0f433539
| 849
|
agda
|
Agda
|
archive/agda-2/Oscar/Data/Term/Core.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
archive/agda-2/Oscar/Data/Term/Core.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | 1
|
2019-04-29T00:35:04.000Z
|
2019-05-11T23:33:04.000Z
|
archive/agda-2/Oscar/Data/Term/Core.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
module Oscar.Data.Term.Substitution.Core {𝔣} (FunctionName : Set 𝔣) where
open import Oscar.Data.Term.Core FunctionName
open import Oscar.Data.Term.Substitution.Core.bootstrap FunctionName public hiding (_◃Term_; _◃VecTerm_)
open import Oscar.Data.Nat.Core
open import Oscar.Data.Fin.Core
open import Oscar.Data.Vec.Core
open import Oscar.Data.Equality.Core
open import Oscar.Data.Product.Core
open import Oscar.Function
open import Oscar.Level
⊸-Property : {ℓ : Level} → ℕ → Set (lsuc ℓ ⊔ 𝔣)
⊸-Property {ℓ} m = ∀ {n} → m ⊸ n → Set ℓ
_≐_ : {m n : ℕ} → m ⊸ n → m ⊸ n → Set 𝔣
f ≐ g = ∀ x → f x ≡ g x
⊸-Extensional : {ℓ : Level} {m : ℕ} → ⊸-Property {ℓ} m → Set (ℓ ⊔ 𝔣)
⊸-Extensional P = ∀ {m f g} → f ≐ g → P {m} f → P g
⊸-ExtentionalProperty : {ℓ : Level} → ℕ → Set (lsuc ℓ ⊔ 𝔣)
⊸-ExtentionalProperty {ℓ} m = Σ (⊸-Property {ℓ} m) ⊸-Extensional
| 33.96
| 104
| 0.6596
|
5909ec3e723ad7c5287c22ffe2ff9bda01100461
| 994
|
agda
|
Agda
|
agda-stdlib/src/Data/List/Membership/Propositional/Properties/WithK.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Data/List/Membership/Propositional/Properties/WithK.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Data/List/Membership/Propositional/Properties/WithK.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to propositional list membership, that rely on
-- the K rule
------------------------------------------------------------------------
{-# OPTIONS --with-K --safe #-}
module Data.List.Membership.Propositional.Properties.WithK where
open import Data.List.Base
open import Data.List.Relation.Unary.Unique.Propositional
open import Data.List.Membership.Propositional
import Data.List.Membership.Setoid.Properties as Membershipₛ
open import Relation.Unary using (Irrelevant)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Binary.PropositionalEquality.WithK
------------------------------------------------------------------------
-- Irrelevance
unique⇒irrelevant : ∀ {a} {A : Set a} {xs : List A} →
Unique xs → Irrelevant (_∈ xs)
unique⇒irrelevant = Membershipₛ.unique⇒irrelevant (P.setoid _) ≡-irrelevant
| 38.230769
| 75
| 0.593561
|
dff214e975cae5f935d7c19b2ac44f99536b2965
| 12,724
|
agda
|
Agda
|
Univalence/2DTypes.agda
|
JacquesCarette/pi-dual
|
003835484facfde0b770bc2b3d781b42b76184c1
|
[
"BSD-2-Clause"
] | 14
|
2015-08-18T21:40:15.000Z
|
2021-05-05T01:07:57.000Z
|
Univalence/2DTypes.agda
|
JacquesCarette/pi-dual
|
003835484facfde0b770bc2b3d781b42b76184c1
|
[
"BSD-2-Clause"
] | 4
|
2018-06-07T16:27:41.000Z
|
2021-10-29T20:41:23.000Z
|
Univalence/2DTypes.agda
|
JacquesCarette/pi-dual
|
003835484facfde0b770bc2b3d781b42b76184c1
|
[
"BSD-2-Clause"
] | 3
|
2016-05-29T01:56:33.000Z
|
2019-09-10T09:47:13.000Z
|
{-# OPTIONS --without-K #-}
module 2DTypes where
-- open import Level renaming (zero to lzero)
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Sum
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product
open import Function using (_∘_)
open import Relation.Binary using (Setoid)
open import Data.Nat using (ℕ) renaming (suc to ℕsuc; _+_ to _ℕ+_; _*_ to _ℕ*_)
open import Data.Fin using (Fin; zero; suc)
open import Data.Vec using (Vec; lookup; _∷_; []; zipWith)
open import Data.Integer hiding (suc)
open import VectorLemmas using (_!!_)
open import PiU
open import PiLevel0 hiding (!!)
open import PiEquiv
open import PiLevel1
open import Equiv
open import EquivEquiv using (_≋_; module _≋_)
open import Categories.Category
open import Categories.Groupoid
open import Categories.Equivalence.Strong
-- This exists somewhere, but I can't find it
⊎-inj : ∀ {ℓ} {A B : Set ℓ} {a : A} {b : B} → inj₁ a ≡ inj₂ b → ⊥
⊎-inj ()
-- should probably make this level-polymorphic
record Typ : Set where
constructor typ
field
carr : U
len : ℕ -- number of non-trivial automorphisms
auto : Vec (carr ⟷ carr) (ℕsuc len) -- the real magic goes here
-- normally the stuff below is "global", but here
-- we attach it to a type.
id : id⟷ ⇔ (auto !! zero)
_⊙_ : Fin (ℕsuc len) → Fin (ℕsuc len) → Fin (ℕsuc len)
coh : ∀ (i j : Fin (ℕsuc len)) → -- note the flip !!!
((auto !! i) ◎ (auto !! j) ⇔ (auto !! (j ⊙ i)))
-- to get groupoid, we need inverse knowledge, do later
open Typ
-- The above 'induces' a groupoid structure, which
-- we need to show in detail.
-- First, a useful container for the info we need:
record Hm (t : Typ) (a b : ⟦ carr t ⟧) : Set where
constructor hm
field
eq : carr t ⟷ carr t
good : Σ (Fin (ℕsuc (len t))) (λ n → eq ⇔ (auto t !! n))
fwd : proj₁ (c2equiv eq) a ≡ b
bwd : isqinv.g (proj₂ (c2equiv eq)) b ≡ a
-- note how (auto t) is not actually used!
-- also: not sure e₁ and e₂ always used coherently, as types are not enough
-- to decide which one to use...
induceCat : Typ → Category _ _ _
induceCat t = record
{ Obj = ⟦ carr t ⟧
; _⇒_ = Hm t
; _≡_ = λ { (hm e₁ g₁ _ _) → λ { (hm e₂ g₂ _ _) → e₁ ⇔ e₂} }
; id = hm id⟷ (zero , id t) refl refl
; _∘_ = λ { {A} {B} {C} (hm e₁ (n₁ , p₁) fwd₁ bwd₁) (hm e₂ (n₂ , p₂) fwd₂ bwd₂) →
let pf₁ = (begin (
proj₁ (c2equiv e₁ ● c2equiv e₂) A
≡⟨ β₁ A ⟩
(proj₁ (c2equiv e₁) ∘ (proj₁ (c2equiv e₂))) A
≡⟨ cong (proj₁ (c2equiv e₁)) fwd₂ ⟩
proj₁ (c2equiv e₁) B
≡⟨ fwd₁ ⟩
C ∎ ))
-- same as above (in opposite direction), just compressed
pf₂ = trans (β₂ C)
(trans (cong (isqinv.g (proj₂ (c2equiv e₂))) bwd₁)
bwd₂)
n₃ = _⊙_ t n₁ n₂
compos = n₃ , trans⇔ (p₂ ⊡ p₁) (coh t n₂ n₁)
in
hm (e₂ ◎ e₁) compos pf₁ pf₂ }
; assoc = assoc◎l
; identityˡ = idr◎l
; identityʳ = idl◎l
; equiv = record { refl = id⇔ ; sym = 2! ; trans = trans⇔ }
; ∘-resp-≡ = λ f g → g ⊡ f
}
where open Typ
open ≡-Reasoning
{-
-- to get the Groupoid structure, there is stuff in the type that is
-- missing; see the hole.
induceG : (t : Typ) → Groupoid (induceCat t)
induceG t = record
{ _⁻¹ = λ { {A} {B} (hm e g fw bw) →
hm (! e) {!!} (trans (f≡ (!≡sym≃ e) B) bw) (trans (g≡ (!≡sym≃ e) A) fw) }
; iso = record { isoˡ = linv◎l ; isoʳ = rinv◎l }
}
where open _≋_
-}
-- some useful functions for defining the type 1T
private
mult : Fin 1 → Fin 1 → Fin 1
mult zero zero = zero
mult _ (suc ())
mult (suc ()) _
triv : Vec (ONE ⟷ ONE) 1
triv = id⟷ ∷ []
mult-coh : ∀ (i j : Fin 1) →
((triv !! i) ◎ (triv !! j) ⇔ (triv !! (mult j i)))
mult-coh zero zero = idl◎l -- note how this is non-trivial!
mult-coh _ (suc ())
mult-coh (suc ()) _
1T : Typ
1T = record
{ carr = ONE
; len = 0
; auto = triv
; id = id⇔
; _⊙_ = mult
; coh = mult-coh
}
BOOL : U
BOOL = PLUS ONE ONE
-- some useful functions for defining the type 1T′
private
mult′ : Fin 2 → Fin 2 → Fin 2
mult′ zero zero = zero
mult′ zero (suc zero) = suc zero
mult′ _ (suc (suc ()))
mult′ (suc zero) zero = suc zero
mult′ (suc zero) (suc zero) = zero
mult′ (suc (suc ())) _
sw : Vec (BOOL ⟷ BOOL) 2
sw = id⟷ ∷ swap₊ ∷ []
sw-coh : ∀ (i j : Fin 2) →
((sw !! i) ◎ (sw !! j) ⇔ (sw !! (mult′ j i)))
sw-coh zero zero = idl◎l
sw-coh zero (suc zero) = idl◎l
sw-coh _ (suc (suc ()))
sw-coh (suc zero) zero = idr◎l
sw-coh (suc zero) (suc zero) = linv◎l
sw-coh (suc (suc ())) _
1T′ : Typ
1T′ = record
{ carr = BOOL
; len = 1
; auto = sw
; id = id⇔
; _⊙_ = mult′
; coh = sw-coh
}
-- useful utilities
private
collapse : ⊤ ⊎ ⊤ → ⊤
collapse (inj₁ a) = a
collapse (inj₂ b) = b
collapse-coh : ∀ {A B : ⊤ ⊎ ⊤} → collapse A ≡ collapse B
collapse-coh {inj₁ tt} {inj₁ tt} = refl
collapse-coh {inj₁ tt} {inj₂ tt} = refl
collapse-coh {inj₂ tt} {inj₁ tt} = refl
collapse-coh {inj₂ tt} {inj₂ tt} = refl
-- let's do it on categories only.
-- The important thing here is that we only have
-- access to id⟷ and (auto 1T′) as things of type
-- (carr 1T′ ⟷ carr 1T′).
1T≃1T′ : StrongEquivalence (induceCat 1T) (induceCat 1T′)
1T≃1T′ =
record
-- from 1T to 1T′, we really do want to map down to id⟷ onto inj₁
{ F = record
{ F₀ = inj₁
; F₁ = λ { {tt} {tt} (hm e g fwd bwd) → hm id⟷ (zero , id⇔) refl refl}
; identity = id⇔
; homomorphism = idl◎r
; F-resp-≡ = λ _ → id⇔
}
-- and here, everything should be collapsed
; G = record
{ F₀ = collapse
; F₁ = λ { {A} {B} (hm e g fwd bwd) →
hm id⟷ (zero , id⇔) (collapse-coh {A} {B}) (collapse-coh {B} {A})}
; identity = id⇔
; homomorphism = idl◎r
; F-resp-≡ = λ _ → id⇔
}
-- and here is where (auto 1T′) is needed, else this is false!!
; weak-inverse = record
{ F∘G≅id = record
{ F⇒G = record
{ η = λ { (inj₁ a) → hm id⟷ (zero , id⇔) refl refl;
(inj₂ b) → hm swap₊ (suc zero , id⇔) refl refl }
; commute =
λ { {inj₁ tt} {inj₁ tt} (hm c (zero , x) _ _) → trans⇔ idl◎l (trans⇔ (2! x) idl◎r) ;
{inj₁ tt} {inj₁ tt} (hm c (suc zero , x) a b) →
⊥-elim (⊎-inj (
trans (sym a) (
trans (sym (lemma0 c (inj₁ tt)))
(≋⇒≡ x (inj₁ tt))))) ;
{inj₁ tt} {inj₁ tt} (hm c (suc (suc ()), _) _ _);
{inj₁ tt} {inj₂ tt} (hm c (zero , x) a b) →
⊥-elim (⊎-inj (
trans (sym (≋⇒≡ x (inj₁ tt))) (
trans (lemma0 c (inj₁ tt))
a ) ) );
{inj₁ tt} {inj₂ tt} (hm c (suc zero , x) _ _) →
trans⇔ idl◎l (trans⇔ (2! x) idl◎r) ;
{inj₁ tt} {inj₂ tt} (hm c (suc (suc ()), _) _ _);
{inj₂ tt} {inj₁ tt} (hm c (zero , x) a b) →
⊥-elim (⊎-inj (
trans (sym a) (
trans (sym (lemma0 c (inj₂ tt)))
(≋⇒≡ x (inj₂ tt)) ) ) );
{inj₂ tt} {inj₁ tt} (hm c (suc (suc ()), _) _ _);
{inj₂ tt} {inj₂ tt} (hm c (zero , x) _ _) →
trans⇔ idl◎l (trans⇔ idr◎r (id⇔ ⊡ (2! x)));
{inj₂ tt} {inj₁ tt} (hm c (suc zero , x) _ _) →
trans⇔ idl◎l (trans⇔ linv◎r (id⇔ ⊡ (2! x)));
{inj₂ tt} {inj₂ tt} (hm c (suc zero , x) a b) →
⊥-elim (⊎-inj (
trans (sym (≋⇒≡ x (inj₂ tt))) (
trans (lemma0 c (inj₂ tt)) a) ) ) ;
{inj₂ tt} {inj₂ tt} (hm c (suc (suc ()), _) _ _)
}
}
; F⇐G = record
{ η = λ { (inj₁ a) → hm id⟷ (zero , id⇔) refl refl;
(inj₂ b) → hm swap₊ ((suc zero , id⇔)) refl refl }
; commute = λ
{ {inj₁ tt} {inj₁ tt} (hm a (zero , e) c d) → e ⊡ id⇔
; {inj₁ tt} {inj₂ tt} (hm a (zero , e) c d) → {!!}
; {inj₂ tt} {inj₁ tt} (hm a (zero , e) c d) → {!!}
; {inj₂ tt} {inj₂ tt} (hm a (zero , e) c d) → trans⇔ (e ⊡ id⇔) (trans⇔ idl◎l idr◎r)
; {inj₁ tt} {inj₁ tt} (hm a (suc zero , e) c d) → {!!}
; {inj₁ tt} {inj₂ tt} (hm a (suc zero , e) c d) → {!!}
; {inj₂ tt} {inj₁ tt} (hm a (suc zero , e) c d) → {!!}
; {inj₂ tt} {inj₂ tt} (hm a (suc zero , e) c d) → {!!}
; (hm a (suc (suc ()) , _) _ _) }
}
; iso = λ { (inj₁ tt) → record { isoˡ = idl◎l ; isoʳ = idl◎l };
(inj₂ tt) → record { isoˡ = linv◎l ; isoʳ = linv◎l } }
}
; G∘F≅id = record
{ F⇒G = record
{ η = λ {tt → hm id⟷ (zero , id⇔) refl refl}
; commute =
λ { {tt} {tt} (hm eq (zero , e) _ _) → id⇔ ⊡ (2! e)
; {tt} {tt} (hm eq (suc () , _) _ _) }
}
; F⇐G = record
{ η = λ {tt → hm id⟷ (zero , id⇔) refl refl}
; commute =
λ { {tt} {tt} (hm c (zero , e) _ _) → e ⊡ id⇔
; {tt} {tt} (hm c (suc () , _) _ _) }
}
; iso = λ {tt → record { isoˡ = linv◎l ; isoʳ = linv◎l } }
}
}
}
-- And so 1T′ is equivalent to 1T. This can be interpreted to mean
-- that swap₊ (perhaps more precisely, id⟷ ∷ swap₊ ∷ [] ) is the
-- representation of a 'negative type'.
---------------
-- Cardinality function
card : Typ → ℤ
card (typ carr len _ _ _ _) = (+ size carr) - (+ len)
-- check
card-1T : card 1T ≡ + 1
card-1T = refl
card-1T′ : card 1T′ ≡ + 1
card-1T′ = refl
--------------
-- Conjecture...
-- to make this work, we're going to postulate another loop
-- and that it is idempotent:
postulate
loop : ZERO ⟷ ZERO
idemp : loop ◎ loop ⇔ loop
private
cc : Fin 2 → Fin 2 → Fin 2
cc zero zero = zero
cc zero (suc zero) = suc zero
cc (suc zero) zero = suc zero
cc (suc zero) (suc zero) = suc zero
cc (suc (suc ())) _
cc _ (suc (suc ()))
two-loops : Vec (ZERO ⟷ ZERO) 2
two-loops = id⟷ ∷ loop ∷ []
tl-coh : ∀ (i j : Fin 2) →
((two-loops !! i) ◎ (two-loops !! j) ⇔ (two-loops !! (cc j i)))
tl-coh zero zero = idl◎l
tl-coh zero (suc zero) = idl◎l
tl-coh (suc zero) zero = idr◎l
tl-coh (suc zero) (suc zero) = {!idemp!}
tl-coh (suc (suc ())) _
tl-coh _ (suc (suc ()))
-1T : Typ
-1T = typ ZERO 1 two-loops id⇔ cc tl-coh
card--1T : card -1T ≡ -[1+ 0 ] -- indeed -1 ...
card--1T = refl
{--
Here is my current thinking:
* A type is a package of:
- a carrier (that comes with the trivial automorphism)
- a collection of non-trivial automorphisms that have a groupoid structure
Let’s denote this package by ‘R A (Auto A)'
* The collection of non-trivial automorphisms could very well be
missing (i.e., empty) and we then recover plain sets like Bool etc.
* Now here is the interesting bit: the carrier itself could be
missing, i.e., a parameter. In that case we get something like:
A -> R A (Auto A)
That thing could be treated as outside the universe of types but we
are proposing to enlarge the universe of type to also include it as a
fractional type. Of course we need a way to combine such a fractional
type with a carrier to get a regular type so we need another
operation _[_] to do the instantiation.
* So to revise, a type is:
T ::= R A (Auto A) | /\ A . T | T[A]
To make sure this behaves like fractional types, we want /\ A. T and
T[A] to behave like a product. It is a product of course but a
dependent one.
--}
-- Parameterized type
-- Frac supposed to 1/t
-- instantiate Frac with u to get u/t
-- make sure t/t is 1
-- define eta and epsilon and check axioms
{-- Syntax of types --}
Auto : (u : U) → Set
Auto u = Σ[ n ∈ ℕ ] (Vec (u ⟷ u) n)
trivA : (u : U) → Auto u
trivA u = (1 , id⟷ ∷ [])
data T : (u₁ : U) → {u₂ : U} → Auto u₂ → Set where
UT : (u : U) → T u (trivA u) -- regular sets
FT : (u₁ u₂ : U) → (auto₂ : Auto u₂) → T u₁ auto₂
-- Regular sets
ZT : T ZERO (trivA ZERO)
ZT = UT ZERO
OT : T ONE (trivA ONE)
OT = UT ONE
-- one third
2U : U
2U = PLUS ONE ONE
3U : U
3U = PLUS ONE (PLUS ONE ONE)
3T : T 3U (trivA 3U)
3T = UT 3U
-- could add the remaining two but these are sufficient I think
all3A : Auto 3U
all3A = (4 , id⟷ ∷
(id⟷ ⊕ swap₊) ∷
(assocl₊ ◎ (swap₊ ⊕ id⟷) ◎ assocr₊) ∷
((id⟷ ⊕ swap₊) ◎ (assocl₊ ◎ (swap₊ ⊕ id⟷) ◎ assocr₊) ◎ (id⟷ ⊕ swap₊)) ∷
[])
1/3T : T ONE all3A
1/3T = FT ONE 3U all3A
-- notice that a/b + c/b = (a+c) / b
-- So 1/3T + 1/3T is
2/3T : T 2U all3A
2/3T = FT 2U 3U all3A
-- one more
3/3T : T 3U all3A
3/3T = FT 3U 3U all3A
-- Now eta applied to 3/3T should match the carrier with the autos and produce the plain OT
| 29.798595
| 95
| 0.525071
|
2ffdbe6b618fb95ecc544c51bbc5664e30831fff
| 82,593
|
agda
|
Agda
|
src/Univalence-axiom/Isomorphism-is-equality/Simple.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | 3
|
2020-05-21T22:58:50.000Z
|
2021-09-02T17:18:15.000Z
|
src/Univalence-axiom/Isomorphism-is-equality/Simple.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | null | null | null |
src/Univalence-axiom/Isomorphism-is-equality/Simple.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- A class of algebraic structures, based on non-recursive simple
-- types, satisfies the property that isomorphic instances of a
-- structure are equal (assuming univalence)
------------------------------------------------------------------------
-- In fact, isomorphism and equality are basically the same thing, and
-- the main theorem can be instantiated with several different
-- "universes", not only the one based on simple types.
-- This module has been developed in collaboration with Thierry
-- Coquand.
{-# OPTIONS --without-K --safe #-}
open import Equality
module Univalence-axiom.Isomorphism-is-equality.Simple
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open import Bijection eq as B using (_↔_)
open Derived-definitions-and-properties eq
renaming (lower-extensionality to lower-ext)
open import Equality.Decidable-UIP eq
open import Equality.Decision-procedures eq
open import Equivalence eq as Eq using (_≃_)
open import Function-universe eq hiding (id) renaming (_∘_ to _⊚_)
open import H-level eq
open import H-level.Closure eq
open import Injection eq using (Injective)
open import Logical-equivalence using (_⇔_; module _⇔_)
open import Nat eq
open import Preimage eq
open import Prelude as P hiding (id)
open import Univalence-axiom eq
------------------------------------------------------------------------
-- Universes with some extra stuff
-- A record type packing up some assumptions.
record Assumptions : Type₃ where
field
-- Univalence at three different levels.
univ : Univalence (# 0)
univ₁ : Univalence (# 1)
univ₂ : Univalence (# 2)
abstract
-- Extensionality.
ext : ∀ {ℓ} → Extensionality ℓ (# 1)
ext = dependent-extensionality univ₂ univ₁
ext₁ : Extensionality (# 1) (# 1)
ext₁ = ext
-- Universes with some extra stuff.
record Universe : Type₃ where
-- Parameters.
field
-- Codes for something.
U : Type₂
-- Interpretation of codes.
El : U → Type₁ → Type₁
-- El a, seen as a predicate, respects equivalences.
resp : ∀ a {B C} → B ≃ C → El a B → El a C
-- The resp function respects identities (assuming univalence).
resp-id : Assumptions → ∀ a {B} (x : El a B) → resp a Eq.id x ≡ x
-- Derived definitions.
-- A predicate that specifies what it means for an equivalence to be
-- an isomorphism between two elements.
Is-isomorphism : ∀ a {B C} → B ≃ C → El a B → El a C → Type₁
Is-isomorphism a eq x y = resp a eq x ≡ y
-- An alternative definition of Is-isomorphism, defined using
-- univalence.
Is-isomorphism′ : Assumptions →
∀ a {B C} → B ≃ C → El a B → El a C → Type₁
Is-isomorphism′ ass a eq x y = subst (El a) (≃⇒≡ univ₁ eq) x ≡ y
where open Assumptions ass
-- Every element is isomorphic to itself, transported along the
-- isomorphism.
isomorphic-to-itself :
(ass : Assumptions) → let open Assumptions ass in
∀ a {B C} (eq : B ≃ C) x →
Is-isomorphism a eq x (subst (El a) (≃⇒≡ univ₁ eq) x)
isomorphic-to-itself ass a eq x =
transport-theorem (El a) (resp a) (resp-id ass a) univ₁ eq x
where open Assumptions ass
-- Is-isomorphism and Is-isomorphism′ are isomorphic (assuming
-- univalence).
isomorphism-definitions-isomorphic :
(ass : Assumptions) →
∀ a {B C} (eq : B ≃ C) {x y} →
Is-isomorphism a eq x y ↔ Is-isomorphism′ ass a eq x y
isomorphism-definitions-isomorphic ass a eq {x} {y} =
Is-isomorphism a eq x y ↝⟨ ≡⇒↝ _ $ cong (λ z → z ≡ y) $ isomorphic-to-itself ass a eq x ⟩□
Is-isomorphism′ ass a eq x y □
------------------------------------------------------------------------
-- A universe-indexed family of classes of structures
module Class (Univ : Universe) where
open Universe Univ
-- Codes for structures.
Code : Type₃
Code =
-- A code.
Σ U λ a →
-- A proposition.
(C : Type₁) → El a C → Σ Type₁ λ P →
-- The proposition should be propositional (assuming
-- univalence).
Assumptions → Is-proposition P
-- Interpretation of the codes. The elements of "Instance c" are
-- instances of the structure encoded by c.
Instance : Code → Type₂
Instance (a , P) =
-- A carrier type.
Σ Type₁ λ C →
-- An element.
Σ (El a C) λ x →
-- The element should satisfy the proposition.
proj₁ (P C x)
-- The carrier type.
Carrier : ∀ c → Instance c → Type₁
Carrier _ X = proj₁ X
-- The "element".
element : ∀ c (X : Instance c) → El (proj₁ c) (Carrier c X)
element _ X = proj₁ (proj₂ X)
abstract
-- One can prove that two instances of a structure are equal by
-- proving that the carrier types and "elements" (suitably
-- transported) are equal (assuming univalence).
equality-pair-lemma :
Assumptions →
∀ c {X Y : Instance c} →
(X ≡ Y) ↔
∃ λ (eq : Carrier c X ≡ Carrier c Y) →
subst (El (proj₁ c)) eq (element c X) ≡ element c Y
equality-pair-lemma ass (a , P) {C , x , p} {D , y , q} =
((C , x , p) ≡ (D , y , q)) ↔⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ Σ-assoc ⟩
(((C , x) , p) ≡ ((D , y) , q)) ↝⟨ inverse $ ignore-propositional-component (proj₂ (P D y) ass) ⟩
((C , x) ≡ (D , y)) ↝⟨ inverse B.Σ-≡,≡↔≡ ⟩□
(∃ λ (eq : C ≡ D) → subst (El a) eq x ≡ y) □
-- Structure isomorphisms.
Isomorphic : ∀ c → Instance c → Instance c → Type₁
Isomorphic (a , _) (C , x , _) (D , y , _) =
Σ (C ≃ D) λ eq → Is-isomorphism a eq x y
-- The type of isomorphisms between two instances of a structure
-- is isomorphic to the type of equalities between the same
-- instances (assuming univalence).
--
-- In short, isomorphism is isomorphic to equality.
isomorphism-is-equality :
Assumptions →
∀ c X Y → Isomorphic c X Y ↔ (X ≡ Y)
isomorphism-is-equality ass (a , P) (C , x , p) (D , y , q) =
(∃ λ (eq : C ≃ D) → resp a eq x ≡ y) ↝⟨ ∃-cong (λ eq → isomorphism-definitions-isomorphic ass a eq) ⟩
(∃ λ (eq : C ≃ D) → subst (El a) (≃⇒≡ univ₁ eq) x ≡ y) ↝⟨ inverse $
Σ-cong (≡≃≃ univ₁) (λ eq → ≡⇒↝ _ $ sym $
cong (λ eq → subst (El a) eq x ≡ y)
(_≃_.left-inverse-of (≡≃≃ univ₁) eq)) ⟩
(∃ λ (eq : C ≡ D) → subst (El a) eq x ≡ y) ↝⟨ inverse $ equality-pair-lemma ass c ⟩□
(X ≡ Y) □
where
open Assumptions ass
c : Code
c = a , P
X : Instance c
X = C , x , p
Y : Instance c
Y = D , y , q
abstract
-- The type of (lifted) isomorphisms between two instances of a
-- structure is equal to the type of equalities between the same
-- instances (assuming univalence).
--
-- In short, isomorphism is equal to equality.
isomorphic≡≡ :
Assumptions →
∀ c {X Y} → ↑ (# 2) (Isomorphic c X Y) ≡ (X ≡ Y)
isomorphic≡≡ ass c {X} {Y} =
≃⇒≡ univ₂ $ Eq.↔⇒≃ (
↑ _ (Isomorphic c X Y) ↝⟨ B.↑↔ ⟩
Isomorphic c X Y ↝⟨ isomorphism-is-equality ass c X Y ⟩□
(X ≡ Y) □)
where open Assumptions ass
-- The "first part" of the from component of
-- isomorphism-is-equality is equal to a simple function.
proj₁-from-isomorphism-is-equality :
∀ ass c X Y →
proj₁ ∘ _↔_.from (isomorphism-is-equality ass c X Y) ≡
elim (λ {X Y} _ → proj₁ X ≃ proj₁ Y) (λ _ → Eq.id)
proj₁-from-isomorphism-is-equality ass _ _ _ = apply-ext ext λ eq →
≡⇒≃ (proj₁ (Σ-≡,≡←≡ (proj₁ (Σ-≡,≡←≡
(cong (λ { (x , (y , z)) → (x , y) , z }) eq))))) ≡⟨ cong (≡⇒≃ ∘ proj₁ ∘ Σ-≡,≡←≡) $ proj₁-Σ-≡,≡←≡ _ ⟩
≡⇒≃ (proj₁ (Σ-≡,≡←≡ (cong proj₁
(cong (λ { (x , (y , z)) → (x , y) , z }) eq)))) ≡⟨ cong (≡⇒≃ ∘ proj₁ ∘ Σ-≡,≡←≡) $
cong-∘ proj₁ (λ { (x , (y , z)) → (x , y) , z }) _ ⟩
≡⇒≃ (proj₁ (Σ-≡,≡←≡ (cong (λ { (x , (y , z)) → x , y }) eq))) ≡⟨ cong ≡⇒≃ $ proj₁-Σ-≡,≡←≡ _ ⟩
≡⇒≃ (cong proj₁ (cong (λ { (x , (y , z)) → x , y }) eq)) ≡⟨ cong ≡⇒≃ $ cong-∘ proj₁ (λ { (x , (y , z)) → x , y }) eq ⟩
≡⇒≃ (cong proj₁ eq) ≡⟨ elim-cong _≃_ proj₁ _ ⟩∎
elim (λ {X Y} _ → proj₁ X ≃ proj₁ Y) (λ _ → Eq.id) eq ∎
where open Assumptions ass
-- In fact, the entire from component of isomorphism-is-equality
-- is equal to a simple function.
--
-- The proof of this lemma is somewhat complicated. A much shorter
-- proof can be constructed if El (proj₁ c) (proj₁ J) is a set
-- (see
-- Structure-identity-principle.from-isomorphism-is-equality′).
from-isomorphism-is-equality :
∀ ass c X Y →
_↔_.from (isomorphism-is-equality ass c X Y) ≡
elim (λ {X Y} _ → Isomorphic c X Y)
(λ { (_ , x , _) → Eq.id , resp-id ass (proj₁ c) x })
from-isomorphism-is-equality ass (a , P) (C , x , p) _ =
apply-ext ext (elim¹
(λ eq → Σ-map ≡⇒≃ f (Σ-≡,≡←≡ (proj₁ (Σ-≡,≡←≡
(cong (λ { (C , (x , p)) → (C , x) , p }) eq)))) ≡
elim (λ {X Y} _ → Isomorphic (a , P) X Y)
(λ { (_ , x , _) → Eq.id , resp-id ass a x })
eq)
(Σ-map ≡⇒≃ f (Σ-≡,≡←≡ (proj₁ (Σ-≡,≡←≡
(cong (_↔_.to Σ-assoc) (refl (C , x , p)))))) ≡⟨ cong (Σ-map ≡⇒≃ f ∘ Σ-≡,≡←≡ ∘ proj₁ ∘ Σ-≡,≡←≡) $ cong-refl _ ⟩
Σ-map ≡⇒≃ f (Σ-≡,≡←≡ (proj₁ (Σ-≡,≡←≡ (refl ((C , x) , p))))) ≡⟨ cong (Σ-map ≡⇒≃ f ∘ Σ-≡,≡←≡ ∘ proj₁) Σ-≡,≡←≡-refl ⟩
Σ-map ≡⇒≃ f (Σ-≡,≡←≡ (refl (C , x))) ≡⟨ cong (Σ-map ≡⇒≃ f) Σ-≡,≡←≡-refl ⟩
(≡⇒≃ (refl C) , f (subst-refl (El a) x)) ≡⟨ Σ-≡,≡→≡ ≡⇒≃-refl lemma₄ ⟩
(Eq.id , resp-id ass a x) ≡⟨ sym $ elim-refl (λ {X Y} _ → Isomorphic (a , P) X Y) _ ⟩∎
elim (λ {X Y} _ → Isomorphic (a , P) X Y)
(λ { (_ , x , _) → Eq.id , resp-id ass a x })
(refl (C , x , p)) ∎))
where
open Assumptions ass
f : ∀ {D} {y : El a D} {eq : C ≡ D} →
subst (El a) eq x ≡ y →
resp a (≡⇒≃ eq) x ≡ y
f {y = y} {eq} eq′ =
_↔_.from (≡⇒↝ _ $ cong (λ z → z ≡ y) $
transport-theorem (El a) (resp a) (resp-id ass a)
univ₁ (≡⇒≃ eq) x)
(_↔_.to (≡⇒↝ _ $ sym $ cong (λ eq → subst (El a) eq x ≡ y)
(_≃_.left-inverse-of (≡≃≃ univ₁) eq)) eq′)
lemma₁ : ∀ {ℓ} {A B C : Type ℓ} {x} (eq₁ : B ≡ A) (eq₂ : C ≡ B) →
_↔_.from (≡⇒↝ _ eq₂) (_↔_.to (≡⇒↝ _ (sym eq₁)) x) ≡
_↔_.to (≡⇒↝ _ (sym (trans eq₂ eq₁))) x
lemma₁ {x = x} eq₁ eq₂ =
_↔_.from (≡⇒↝ _ eq₂) (_↔_.to (≡⇒↝ _ (sym eq₁)) x) ≡⟨ sym $ cong (λ f → f (_↔_.to (≡⇒↝ _ (sym eq₁)) x)) $ ≡⇒↝-sym bijection ⟩
_↔_.to (≡⇒↝ _ (sym eq₂)) (_↔_.to (≡⇒↝ _ (sym eq₁)) x) ≡⟨ sym $ cong (λ f → f x) $ ≡⇒↝-trans bijection ⟩
_↔_.to (≡⇒↝ _ (trans (sym eq₁) (sym eq₂))) x ≡⟨ sym $ cong (λ eq → _↔_.to (≡⇒↝ _ eq) x) $ sym-trans _ _ ⟩∎
_↔_.to (≡⇒↝ _ (sym (trans eq₂ eq₁))) x ∎
lemma₂ : ∀ {a} {A : Type a} {x y z : A}
(x≡y : x ≡ y) (y≡z : y ≡ z) →
_↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) (sym x≡y))) y≡z ≡
trans x≡y y≡z
lemma₂ {y = y} {z} x≡y y≡z = elim₁
(λ x≡y → _↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) (sym x≡y))) y≡z ≡
trans x≡y y≡z)
(_↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) (sym (refl y)))) y≡z ≡⟨ cong (λ eq → _↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) eq)) y≡z) sym-refl ⟩
_↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) (refl y))) y≡z ≡⟨ cong (λ eq → _↔_.to (≡⇒↝ _ eq) y≡z) $ cong-refl (λ x → x ≡ z) ⟩
_↔_.to (≡⇒↝ _ (refl (y ≡ z))) y≡z ≡⟨ cong (λ f → _↔_.to f y≡z) ≡⇒↝-refl ⟩
y≡z ≡⟨ sym $ trans-reflˡ _ ⟩∎
trans (refl y) y≡z ∎)
x≡y
lemma₃ :
sym (trans (cong (λ z → z ≡ x) $
transport-theorem (El a) (resp a) (resp-id ass a)
univ₁ (≡⇒≃ (refl C)) x)
(cong (λ eq → subst (El a) eq x ≡ x)
(_≃_.left-inverse-of (≡≃≃ univ₁) (refl C)))) ≡
cong (λ z → z ≡ x) (sym $
trans (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl)
(resp-id ass a x))
(sym $ subst-refl (El a) x))
lemma₃ =
sym (trans (cong (λ z → z ≡ x) _)
(cong (λ eq → subst (El a) eq x ≡ x) _)) ≡⟨ cong (λ eq → sym (trans (cong (λ z → z ≡ x)
(transport-theorem (El a) (resp a) (resp-id ass a)
univ₁ (≡⇒≃ (refl C)) x))
eq)) $ sym $
cong-∘ (λ z → z ≡ x) (λ eq → subst (El a) eq x) _ ⟩
sym (trans (cong (λ z → z ≡ x) _)
(cong (λ z → z ≡ x)
(cong (λ eq → subst (El a) eq x) _))) ≡⟨ cong sym $ sym $ cong-trans (λ z → z ≡ x) _ _ ⟩
sym (cong (λ z → z ≡ x)
(trans _ (cong (λ eq → subst (El a) eq x) _))) ≡⟨ sym $ cong-sym (λ z → z ≡ x) _ ⟩
cong (λ z → z ≡ x) (sym $
trans (transport-theorem (El a) (resp a)
(resp-id ass a) univ₁ (≡⇒≃ (refl C)) x)
(cong (λ eq → subst (El a) eq x) _)) ≡⟨ cong (λ eq → cong (λ z → z ≡ x) (sym $
trans eq (cong (λ eq → subst (El a) eq x)
(_≃_.left-inverse-of (≡≃≃ univ₁) (refl C)))))
(transport-theorem-≡⇒≃-refl (El a) (resp a) (resp-id ass a) univ₁ _) ⟩
cong (λ z → z ≡ x) (sym $
trans (trans (trans (trans (cong (λ eq → resp a eq x)
≡⇒≃-refl)
(resp-id ass a x))
(sym $ subst-refl (El a) x))
(sym $ cong (λ eq → subst (El a) eq x)
(_≃_.left-inverse-of
(≡≃≃ univ₁) (refl C))))
(cong (λ eq → subst (El a) eq x)
(_≃_.left-inverse-of (≡≃≃ univ₁) (refl C)))) ≡⟨ cong (cong (λ z → z ≡ x) ∘ sym) $
trans-[trans-sym]- _ _ ⟩∎
cong (λ z → z ≡ x) (sym $
trans (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl)
(resp-id ass a x))
(sym $ subst-refl (El a) x)) ∎
lemma₄ : subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl
(f (subst-refl (El a) x)) ≡
resp-id ass a x
lemma₄ =
subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl
(f (subst-refl (El a) x)) ≡⟨ cong (subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl) $ lemma₁ _ _ ⟩
subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl
(_↔_.to (≡⇒↝ _ (sym (trans (cong (λ z → z ≡ x) $
transport-theorem (El a)
(resp a) (resp-id ass a)
univ₁ (≡⇒≃ (refl C)) x)
(cong (λ eq → subst (El a) eq x ≡ x)
(_≃_.left-inverse-of
(≡≃≃ univ₁) (refl C))))))
(subst-refl (El a) x)) ≡⟨ cong (λ eq → subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl
(_↔_.to (≡⇒↝ _ eq) (subst-refl (El a) x)))
lemma₃ ⟩
subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl
(_↔_.to (≡⇒↝ _
(cong (λ z → z ≡ x) $ sym
(trans (trans (cong (λ eq → resp a eq x)
≡⇒≃-refl)
(resp-id ass a x))
(sym $ subst-refl (El a) x))))
(subst-refl (El a) x)) ≡⟨ cong (subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl) $ lemma₂ _ _ ⟩
subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl
(trans (trans (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl)
(resp-id ass a x))
(sym $ subst-refl (El a) x))
(subst-refl (El a) x)) ≡⟨ cong (λ eq → subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl eq)
(trans-[trans-sym]- _ _) ⟩
subst (λ eq → resp a eq x ≡ x) ≡⇒≃-refl
(trans (cong (λ eq → resp a eq x) ≡⇒≃-refl)
(resp-id ass a x)) ≡⟨ subst-∘ (λ z → z ≡ x) (λ eq → resp a eq x) _ ⟩
subst (λ z → z ≡ x)
(cong (λ eq → resp a eq x) ≡⇒≃-refl)
(trans (cong (λ eq → resp a eq x) ≡⇒≃-refl)
(resp-id ass a x)) ≡⟨ cong (λ eq → subst (λ z → z ≡ x) eq
(trans (cong (λ eq → resp a eq x) ≡⇒≃-refl)
(resp-id ass a x))) $
sym $ sym-sym _ ⟩
subst (λ z → z ≡ x)
(sym $ sym $ cong (λ eq → resp a eq x) ≡⇒≃-refl)
(trans (cong (λ eq → resp a eq x) ≡⇒≃-refl)
(resp-id ass a x)) ≡⟨ subst-trans (sym $ cong (λ eq → resp a eq x) ≡⇒≃-refl) ⟩
trans (sym $ cong (λ eq → resp a eq x) ≡⇒≃-refl)
(trans (cong (λ eq → resp a eq x) ≡⇒≃-refl)
(resp-id ass a x)) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans (sym $ cong (λ eq → resp a eq x) ≡⇒≃-refl)
(cong (λ eq → resp a eq x) ≡⇒≃-refl))
(resp-id ass a x) ≡⟨ cong (λ eq → trans eq _) $ trans-symˡ _ ⟩
trans (refl (resp a Eq.id x)) (resp-id ass a x) ≡⟨ trans-reflˡ _ ⟩∎
resp-id ass a x ∎
------------------------------------------------------------------------
-- A universe of non-recursive, simple types
-- Codes for types.
infixr 20 _⊗_
infixr 15 _⊕_
infixr 10 _⇾_
data U : Type₂ where
id type : U
k : Type₁ → U
_⇾_ _⊗_ _⊕_ : U → U → U
-- Interpretation of types.
El : U → Type₁ → Type₁
El id C = C
El type C = Type
El (k A) C = A
El (a ⇾ b) C = El a C → El b C
El (a ⊗ b) C = El a C × El b C
El (a ⊕ b) C = El a C ⊎ El b C
-- El a preserves logical equivalences.
cast : ∀ a {B C} → B ⇔ C → El a B ⇔ El a C
cast id eq = eq
cast type eq = Logical-equivalence.id
cast (k A) eq = Logical-equivalence.id
cast (a ⇾ b) eq = →-cong _ (cast a eq) (cast b eq)
cast (a ⊗ b) eq = cast a eq ×-cong cast b eq
cast (a ⊕ b) eq = cast a eq ⊎-cong cast b eq
-- El a respects equivalences.
resp : ∀ a {B C} → B ≃ C → El a B → El a C
resp a eq = _⇔_.to (cast a (_≃_.logical-equivalence eq))
resp⁻¹ : ∀ a {B C} → B ≃ C → El a C → El a B
resp⁻¹ a eq = _⇔_.from (cast a (_≃_.logical-equivalence eq))
abstract
-- The cast function respects identities (assuming extensionality).
cast-id : Extensionality (# 1) (# 1) →
∀ a {B} → cast a (Logical-equivalence.id {A = B}) ≡
Logical-equivalence.id
cast-id ext id = refl _
cast-id ext type = refl _
cast-id ext (k A) = refl _
cast-id ext (a ⇾ b) = cong₂ (→-cong _) (cast-id ext a) (cast-id ext b)
cast-id ext (a ⊗ b) = cong₂ _×-cong_ (cast-id ext a) (cast-id ext b)
cast-id ext (a ⊕ b) =
cast a Logical-equivalence.id ⊎-cong cast b Logical-equivalence.id ≡⟨ cong₂ _⊎-cong_ (cast-id ext a) (cast-id ext b) ⟩
Logical-equivalence.id ⊎-cong Logical-equivalence.id ≡⟨ cong₂ (λ f g → record { to = f; from = g })
(apply-ext ext [ refl ∘ inj₁ , refl ∘ inj₂ ])
(apply-ext ext [ refl ∘ inj₁ , refl ∘ inj₂ ]) ⟩∎
Logical-equivalence.id ∎
resp-id : Extensionality (# 1) (# 1) →
∀ a {B} x → resp a (Eq.id {A = B}) x ≡ x
resp-id ext a x = cong (λ eq → _⇔_.to eq x) $ cast-id ext a
-- The universe above is a "universe with some extra stuff".
simple : Universe
simple = record
{ U = U
; El = El
; resp = resp
; resp-id = resp-id ∘ Assumptions.ext₁
}
-- Let us use this universe below.
open Universe simple using (Is-isomorphism)
open Class simple
-- An alternative definition of "being an isomorphism".
--
-- This definition is in bijective correspondence with Is-isomorphism
-- (see below).
Is-isomorphism′ : ∀ a {B C} → B ≃ C → El a B → El a C → Type₁
Is-isomorphism′ id eq = λ x y → _≃_.to eq x ≡ y
Is-isomorphism′ type eq = λ X Y → ↑ _ (X ≃ Y)
Is-isomorphism′ (k A) eq = λ x y → x ≡ y
Is-isomorphism′ (a ⇾ b) eq = Is-isomorphism′ a eq →-rel
Is-isomorphism′ b eq
Is-isomorphism′ (a ⊗ b) eq = Is-isomorphism′ a eq ×-rel
Is-isomorphism′ b eq
Is-isomorphism′ (a ⊕ b) eq = Is-isomorphism′ a eq ⊎-rel
Is-isomorphism′ b eq
-- An alternative definition of Isomorphic, using Is-isomorphism′
-- instead of Is-isomorphism.
Isomorphic′ : ∀ c → Instance c → Instance c → Type₁
Isomorphic′ (a , _) (C , x , _) (D , y , _) =
Σ (C ≃ D) λ eq → Is-isomorphism′ a eq x y
-- El a preserves equivalences (assuming extensionality).
--
-- Note that _≃_.logical-equivalence (cast≃ ext a eq) is
-- (definitionally) equal to cast a (_≃_.logical-equivalence eq); this
-- property is used below.
cast≃ : Extensionality (# 1) (# 1) →
∀ a {B C} → B ≃ C → El a B ≃ El a C
cast≃ ext a {B} {C} B≃C = Eq.↔⇒≃ record
{ surjection = record
{ logical-equivalence = cast a B⇔C
; right-inverse-of = to∘from
}
; left-inverse-of = from∘to
}
where
B⇔C = _≃_.logical-equivalence B≃C
cst : ∀ a → El a B ≃ El a C
cst id = B≃C
cst type = Eq.id
cst (k A) = Eq.id
cst (a ⇾ b) = →-cong ext (cst a) (cst b)
cst (a ⊗ b) = cst a ×-cong cst b
cst (a ⊕ b) = cst a ⊎-cong cst b
abstract
-- The projection _≃_.logical-equivalence is homomorphic with
-- respect to cast a/cst a.
casts-related : ∀ a →
cast a (_≃_.logical-equivalence B≃C) ≡
_≃_.logical-equivalence (cst a)
casts-related id = refl _
casts-related type = refl _
casts-related (k A) = refl _
casts-related (a ⇾ b) = cong₂ (→-cong _) (casts-related a)
(casts-related b)
casts-related (a ⊗ b) = cong₂ _×-cong_ (casts-related a)
(casts-related b)
casts-related (a ⊕ b) = cong₂ _⊎-cong_ (casts-related a)
(casts-related b)
to∘from : ∀ x → _⇔_.to (cast a B⇔C) (_⇔_.from (cast a B⇔C) x) ≡ x
to∘from x =
_⇔_.to (cast a B⇔C) (_⇔_.from (cast a B⇔C) x) ≡⟨ cong₂ (λ f g → f (g x)) (cong _⇔_.to $ casts-related a)
(cong _⇔_.from $ casts-related a) ⟩
_≃_.to (cst a) (_≃_.from (cst a) x) ≡⟨ _≃_.right-inverse-of (cst a) x ⟩∎
x ∎
from∘to : ∀ x → _⇔_.from (cast a B⇔C) (_⇔_.to (cast a B⇔C) x) ≡ x
from∘to x =
_⇔_.from (cast a B⇔C) (_⇔_.to (cast a B⇔C) x) ≡⟨ cong₂ (λ f g → f (g x)) (cong _⇔_.from $ casts-related a)
(cong _⇔_.to $ casts-related a) ⟩
_≃_.from (cst a) (_≃_.to (cst a) x) ≡⟨ _≃_.left-inverse-of (cst a) x ⟩∎
x ∎
private
logical-equivalence-cast≃ :
(ext : Extensionality (# 1) (# 1)) →
∀ a {B C} (eq : B ≃ C) →
_≃_.logical-equivalence (cast≃ ext a eq) ≡
cast a (_≃_.logical-equivalence eq)
logical-equivalence-cast≃ _ _ _ = refl _
-- Alternative, shorter definition of cast≃, based on univalence.
--
-- This proof does not (at the time of writing) have the property that
-- _≃_.logical-equivalence (cast≃′ ass a eq) is definitionally equal
-- to cast a (_≃_.logical-equivalence eq).
cast≃′ : Assumptions → ∀ a {B C} → B ≃ C → El a B ≃ El a C
cast≃′ ass a eq =
Eq.⟨ resp a eq
, resp-is-equivalence (El a) (resp a) (resp-id ext₁ a) univ₁ eq
⟩
where open Assumptions ass
abstract
-- The two definitions of "being an isomorphism" are "isomorphic"
-- (in bijective correspondence), assuming univalence.
is-isomorphism-isomorphic :
Assumptions →
∀ a {B C x y} (eq : B ≃ C) →
Is-isomorphism a eq x y ↔ Is-isomorphism′ a eq x y
is-isomorphism-isomorphic ass id {x = x} {y} eq =
(_≃_.to eq x ≡ y) □
is-isomorphism-isomorphic ass type {x = X} {Y} eq =
(X ≡ Y) ↔⟨ ≡≃≃ univ ⟩
(X ≃ Y) ↝⟨ inverse B.↑↔ ⟩□
↑ _ (X ≃ Y) □
where open Assumptions ass
is-isomorphism-isomorphic ass (k A) {x = x} {y} eq =
(x ≡ y) □
is-isomorphism-isomorphic ass (a ⇾ b) {x = f} {g} eq =
(resp b eq ∘ f ∘ resp⁻¹ a eq ≡ g) ↝⟨ ∘from≡↔≡∘to ext₁ (cast≃ ext₁ a eq) ⟩
(resp b eq ∘ f ≡ g ∘ resp a eq) ↔⟨ inverse $ Eq.extensionality-isomorphism ext₁ ⟩
(∀ x → resp b eq (f x) ≡ g (resp a eq x)) ↝⟨ ∀-cong ext₁ (λ x →
∀-intro (λ y _ → resp b eq (f x) ≡ g y) ext₁) ⟩
(∀ x y → resp a eq x ≡ y → resp b eq (f x) ≡ g y) ↝⟨ ∀-cong ext₁ (λ _ → ∀-cong ext₁ λ _ →
→-cong ext₁ (is-isomorphism-isomorphic ass a eq)
(is-isomorphism-isomorphic ass b eq)) ⟩□
(∀ x y → Is-isomorphism′ a eq x y →
Is-isomorphism′ b eq (f x) (g y)) □
where open Assumptions ass
is-isomorphism-isomorphic ass (a ⊗ b) {x = x , u} {y , v} eq =
((resp a eq x , resp b eq u) ≡ (y , v)) ↝⟨ inverse ≡×≡↔≡ ⟩
(resp a eq x ≡ y × resp b eq u ≡ v) ↝⟨ is-isomorphism-isomorphic ass a eq ×-cong
is-isomorphism-isomorphic ass b eq ⟩□
Is-isomorphism′ a eq x y × Is-isomorphism′ b eq u v □
where open Assumptions ass
is-isomorphism-isomorphic ass (a ⊕ b) {x = inj₁ x} {inj₁ y} eq =
(inj₁ (resp a eq x) ≡ inj₁ y) ↝⟨ inverse B.≡↔inj₁≡inj₁ ⟩
(resp a eq x ≡ y) ↝⟨ is-isomorphism-isomorphic ass a eq ⟩□
Is-isomorphism′ a eq x y □
where open Assumptions ass
is-isomorphism-isomorphic ass (a ⊕ b) {x = inj₂ x} {inj₂ y} eq =
(inj₂ (resp b eq x) ≡ inj₂ y) ↝⟨ inverse B.≡↔inj₂≡inj₂ ⟩
(resp b eq x ≡ y) ↝⟨ is-isomorphism-isomorphic ass b eq ⟩□
Is-isomorphism′ b eq x y □
where open Assumptions ass
is-isomorphism-isomorphic ass (a ⊕ b) {x = inj₁ x} {inj₂ y} eq =
(inj₁ _ ≡ inj₂ _) ↝⟨ inverse $ B.⊥↔uninhabited ⊎.inj₁≢inj₂ ⟩□
⊥ □
is-isomorphism-isomorphic ass (a ⊕ b) {x = inj₂ x} {inj₁ y} eq =
(inj₂ _ ≡ inj₁ _) ↝⟨ inverse $ B.⊥↔uninhabited (⊎.inj₁≢inj₂ ∘ sym) ⟩□
⊥ □
-- The two definitions of isomorphism are "isomorphic" (in bijective
-- correspondence), assuming univalence.
isomorphic-isomorphic :
Assumptions →
∀ c X Y →
Isomorphic c X Y ↔ Isomorphic′ c X Y
isomorphic-isomorphic ass (a , _) (C , x , _) (D , y , _) =
Σ (C ≃ D) (λ eq → Is-isomorphism a eq x y) ↝⟨ ∃-cong (λ eq → is-isomorphism-isomorphic ass a eq) ⟩
Σ (C ≃ D) (λ eq → Is-isomorphism′ a eq x y) □
------------------------------------------------------------------------
-- An example: monoids
monoid : Code
monoid =
-- Binary operation.
(id ⇾ id ⇾ id) ⊗
-- Identity.
id ,
λ { C (_∙_ , e) →
-- The carrier type is a set.
(Is-set C ×
-- Left and right identity laws.
(∀ x → (e ∙ x) ≡ x) ×
(∀ x → (x ∙ e) ≡ x) ×
-- Associativity.
(∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z))) ,
-- The laws are propositional (assuming extensionality).
λ ass → let open Assumptions ass in
[inhabited⇒+]⇒+ 0 λ { (C-set , _) →
×-closure 1 (H-level-propositional ext₁ 2)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
C-set)
(Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set))) }}
-- The interpretation of the code is reasonable.
Instance-monoid :
Instance monoid
≡
Σ Type₁ λ C →
Σ ((C → C → C) × C) λ { (_∙_ , e) →
Is-set C ×
(∀ x → (e ∙ x) ≡ x) ×
(∀ x → (x ∙ e) ≡ x) ×
(∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z)) }
Instance-monoid = refl _
-- The notion of isomorphism that we get is also reasonable.
Isomorphic-monoid :
∀ {C₁ _∙₁_ e₁ laws₁ C₂ _∙₂_ e₂ laws₂} →
Isomorphic monoid (C₁ , (_∙₁_ , e₁) , laws₁)
(C₂ , (_∙₂_ , e₂) , laws₂)
≡
Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in
((λ x y → to (from x ∙₁ from y)) , to e₁) ≡ (_∙₂_ , e₂)
Isomorphic-monoid = refl _
-- Note that this definition of isomorphism is isomorphic to a more
-- standard one (assuming extensionality).
Isomorphism-monoid-isomorphic-to-standard :
Extensionality (# 1) (# 1) →
∀ {C₁ _∙₁_ e₁ laws₁ C₂ _∙₂_ e₂ laws₂} →
Isomorphic monoid (C₁ , (_∙₁_ , e₁) , laws₁)
(C₂ , (_∙₂_ , e₂) , laws₂)
↔
Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
(∀ x y → to (x ∙₁ y) ≡ (to x ∙₂ to y)) ×
to e₁ ≡ e₂
Isomorphism-monoid-isomorphic-to-standard ext
{C₁} {_∙₁_} {e₁} {laws₁} {C₂} {_∙₂_} {e₂} =
(Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in
((λ x y → to (from x ∙₁ from y)) , to e₁) ≡ (_∙₂_ , e₂)) ↝⟨ inverse $ Σ-cong (Eq.↔↔≃ ext (proj₁ laws₁)) (λ _ → _ □) ⟩
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
((λ x y → to (from x ∙₁ from y)) , to e₁) ≡ (_∙₂_ , e₂)) ↝⟨ inverse $ ∃-cong (λ _ → ≡×≡↔≡) ⟩
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
(λ x y → to (from x ∙₁ from y)) ≡ _∙₂_ ×
to e₁ ≡ e₂) ↔⟨ inverse $ ∃-cong (λ _ → Eq.extensionality-isomorphism ext ×-cong (_ □)) ⟩
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
(∀ x → (λ y → to (from x ∙₁ from y)) ≡ _∙₂_ x) ×
to e₁ ≡ e₂) ↔⟨ inverse $ ∃-cong (λ _ →
∀-cong ext (λ _ → Eq.extensionality-isomorphism ext)
×-cong
(_ □)) ⟩
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
(∀ x y → to (from x ∙₁ from y) ≡ (x ∙₂ y)) ×
to e₁ ≡ e₂) ↔⟨ inverse $ ∃-cong (λ eq →
Π-cong ext (Eq.↔⇒≃ eq) (λ x → Π-cong ext (Eq.↔⇒≃ eq) (λ y →
≡⇒≃ $ sym $ cong₂ (λ u v → _↔_.to eq (u ∙₁ v) ≡
(_↔_.to eq x ∙₂ _↔_.to eq y))
(_↔_.left-inverse-of eq x)
(_↔_.left-inverse-of eq y)))
×-cong
(_ □)) ⟩□
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
(∀ x y → to (x ∙₁ y) ≡ (to x ∙₂ to y)) ×
to e₁ ≡ e₂) □
------------------------------------------------------------------------
-- An example: posets
poset : Code
poset =
-- The ordering relation.
(id ⇾ id ⇾ type) ,
λ C _≤_ →
-- The carrier type is a set.
(Is-set C ×
-- The ordering relation is (pointwise) propositional.
(∀ x y → Is-proposition (x ≤ y)) ×
-- Reflexivity.
(∀ x → x ≤ x) ×
-- Transitivity.
(∀ x y z → x ≤ y → y ≤ z → x ≤ z) ×
-- Antisymmetry.
(∀ x y → x ≤ y → y ≤ x → x ≡ y)) ,
λ ass → let open Assumptions ass in
[inhabited⇒+]⇒+ 0 λ { (C-set , ≤-prop , _) →
×-closure 1 (H-level-propositional ext₁ 2)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure (lower-ext (# 0) _ ext₁) 1 λ _ →
H-level-propositional (lower-ext _ _ ext₁) 1)
(×-closure 1 (Π-closure (lower-ext (# 0) _ ext₁) 1 λ _ →
≤-prop _ _)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure (lower-ext (# 0) _ ext₁) 1 λ _ →
Π-closure (lower-ext _ _ ext₁) 1 λ _ →
Π-closure (lower-ext _ _ ext₁) 1 λ _ →
≤-prop _ _)
(Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
C-set)))) }
-- The interpretation of the code is reasonable. (Except, perhaps,
-- that the carrier type lives in Type₁ but the codomain of the
-- ordering relation is Type. In the corresponding example in
-- Univalence-axiom.Isomorphism-is-equality.Simple.Variant the carrier
-- type lives in Type.)
Instance-poset :
Instance poset
≡
Σ Type₁ λ C →
Σ (C → C → Type) λ _≤_ →
Is-set C ×
(∀ x y → Is-proposition (x ≤ y)) ×
(∀ x → x ≤ x) ×
(∀ x y z → x ≤ y → y ≤ z → x ≤ z) ×
(∀ x y → x ≤ y → y ≤ x → x ≡ y)
Instance-poset = refl _
-- The notion of isomorphism that we get is also reasonable. It is the
-- usual notion of "order isomorphism", with two (main) differences:
--
-- * Equivalences are used instead of bijections. However,
-- equivalences and bijections coincide for sets (assuming
-- extensionality).
--
-- * We use equality, (λ a b → from a ≤₁ from b) ≡ _≤₂_, instead of
-- "iff", ∀ a b → (a ≤₁ b) ⇔ (to a ≤₂ to b). However, the ordering
-- relation is pointwise propositional, so these two expressions are
-- equal (assuming univalence).
Isomorphic-poset :
∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} →
Isomorphic poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂)
≡
Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in
(λ a b → from a ≤₁ from b) ≡ _≤₂_
Isomorphic-poset = refl _
-- We can prove that this notion of isomorphism is isomorphic to the
-- usual notion of order isomorphism (assuming univalence).
Isomorphism-poset-isomorphic-to-order-isomorphism :
Assumptions →
∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} →
Isomorphic poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂)
↔
Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
∀ x y → (x ≤₁ y) ⇔ (to x ≤₂ to y)
Isomorphism-poset-isomorphic-to-order-isomorphism ass
{C₁} {_≤₁_} {laws₁} {C₂} {_≤₂_} {laws₂} =
(Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in
(λ a b → from a ≤₁ from b) ≡ _≤₂_) ↝⟨ inverse $ Σ-cong (Eq.↔↔≃ ext₁ (proj₁ laws₁)) (λ _ → _ □) ⟩
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
(λ a b → from a ≤₁ from b) ≡ _≤₂_) ↔⟨ inverse $ ∃-cong (λ _ → Eq.extensionality-isomorphism ext₁) ⟩
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
(∀ a → (λ b → from a ≤₁ from b) ≡ _≤₂_ a)) ↔⟨ inverse $ ∃-cong (λ _ → ∀-cong ext₁ λ _ → Eq.extensionality-isomorphism ext₁) ⟩
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
(∀ a b → (from a ≤₁ from b) ≡ (a ≤₂ b))) ↔⟨ inverse $ ∃-cong (λ eq →
Π-cong ext₁ (Eq.↔⇒≃ eq) λ a → Π-cong ext₁ (Eq.↔⇒≃ eq) λ b →
≡⇒≃ $ sym $ cong₂ (λ x y → (x ≤₁ y) ≡ (_↔_.to eq a ≤₂ _↔_.to eq b))
(_↔_.left-inverse-of eq a)
(_↔_.left-inverse-of eq b)) ⟩
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
(∀ a b → (a ≤₁ b) ≡ (to a ≤₂ to b))) ↔⟨ ∃-cong (λ _ → ∀-cong ext₁ λ _ → ∀-cong ext₁ λ _ → ≡≃≃ univ) ⟩
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
(∀ a b → (a ≤₁ b) ≃ (to a ≤₂ to b))) ↝⟨ inverse $ ∃-cong (λ _ → ∀-cong ext₁ λ _ → ∀-cong (lower-ext (# 0) _ ext₁) λ _ →
Eq.⇔↔≃ (lower-ext _ _ ext₁) (proj₁ (proj₂ laws₁) _ _)
(proj₁ (proj₂ laws₂) _ _)) ⟩□
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
(∀ a b → (a ≤₁ b) ⇔ (to a ≤₂ to b))) □
where open Assumptions ass
-- The previous lemma implies that we can prove that the notion of
-- isomorphism that we get is /equal/ to the usual notion of order
-- isomorphism (assuming univalence).
Isomorphism-poset-equal-to-order-isomorphism :
Assumptions →
∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} →
Isomorphic poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂)
≡
Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
∀ x y → (x ≤₁ y) ⇔ (to x ≤₂ to y)
Isomorphism-poset-equal-to-order-isomorphism ass
{laws₁ = laws₁} {laws₂ = laws₂} =
≃⇒≡ univ₁ $ Eq.↔⇒≃ $
Isomorphism-poset-isomorphic-to-order-isomorphism ass
{laws₁ = laws₁} {laws₂ = laws₂}
where open Assumptions ass
-- The notion of isomorphism that we get if we use Is-isomorphism′
-- instead of Is-isomorphism is also reasonable.
Isomorphic′-poset :
∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} →
Isomorphic′ poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂)
≡
Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in
∀ a b → to a ≡ b → ∀ c d → to c ≡ d → ↑ _ ((a ≤₁ c) ≃ (b ≤₂ d))
Isomorphic′-poset = refl _
-- If we had defined isomorphism using Is-isomorphism′ instead of
-- Is-isomorphism, then we could have proved
-- Isomorphism-poset-isomorphic-to-order-isomorphism without assuming
-- univalence, but instead assuming extensionality.
Isomorphism′-poset-isomorphic-to-order-isomorphism :
Extensionality (# 1) (# 1) →
∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} →
Isomorphic′ poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂)
↔
Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
∀ x y → (x ≤₁ y) ⇔ (to x ≤₂ to y)
Isomorphism′-poset-isomorphic-to-order-isomorphism ext
{C₁} {_≤₁_} {laws₁} {C₂} {_≤₂_} {laws₂} =
(Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in
∀ a b → to a ≡ b → ∀ c d → to c ≡ d → ↑ _ ((a ≤₁ c) ≃ (b ≤₂ d))) ↝⟨ inverse $ Σ-cong (Eq.↔↔≃ ext (proj₁ laws₁)) (λ _ → _ □) ⟩
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
∀ a b → to a ≡ b → ∀ c d → to c ≡ d → ↑ _ ((a ≤₁ c) ≃ (b ≤₂ d))) ↝⟨ inverse $ ∃-cong (λ _ → ∀-cong ext λ _ →
∀-intro (λ _ _ → _) ext) ⟩
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
∀ a c d → to c ≡ d → ↑ _ ((a ≤₁ c) ≃ (to a ≤₂ d))) ↝⟨ inverse $ ∃-cong (λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
∀-intro (λ _ _ → _) ext) ⟩
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
∀ a c → ↑ _ ((a ≤₁ c) ≃ (to a ≤₂ to c))) ↝⟨ ∃-cong (λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
B.↑↔) ⟩
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
∀ a c → (a ≤₁ c) ≃ (to a ≤₂ to c)) ↝⟨ inverse $ ∃-cong (λ _ →
∀-cong ext λ _ → ∀-cong (lower-ext (# 0) _ ext) λ _ →
Eq.⇔↔≃ (lower-ext _ _ ext) (proj₁ (proj₂ laws₁) _ _)
(proj₁ (proj₂ laws₂) _ _)) ⟩□
(Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in
∀ a c → (a ≤₁ c) ⇔ (to a ≤₂ to c)) □
------------------------------------------------------------------------
-- An example: discrete fields
private
-- Some lemmas used below.
0* :
{C : Type₁}
(_+_ : C → C → C)
(0# : C)
(_*_ : C → C → C)
(1# : C)
(-_ : C → C) →
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) →
(∀ x y → (x + y) ≡ (y + x)) →
(∀ x y → (x * y) ≡ (y * x)) →
(∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) →
(∀ x → (x + 0#) ≡ x) →
(∀ x → (x * 1#) ≡ x) →
(∀ x → (x + (- x)) ≡ 0#) →
∀ x → (0# * x) ≡ 0#
0* _+_ 0# _*_ 1# -_ +-assoc +-comm *-comm *+ +0 *1 +- x =
(0# * x) ≡⟨ sym $ +0 _ ⟩
((0# * x) + 0#) ≡⟨ cong (_+_ _) $ sym $ +- _ ⟩
((0# * x) + (x + (- x))) ≡⟨ +-assoc _ _ _ ⟩
(((0# * x) + x) + (- x)) ≡⟨ cong (λ y → y + _) lemma ⟩
(x + (- x)) ≡⟨ +- x ⟩∎
0# ∎
where
lemma =
((0# * x) + x) ≡⟨ cong (_+_ _) $ sym $ *1 _ ⟩
((0# * x) + (x * 1#)) ≡⟨ cong (λ y → y + (x * 1#)) $ *-comm _ _ ⟩
((x * 0#) + (x * 1#)) ≡⟨ sym $ *+ _ _ _ ⟩
(x * (0# + 1#)) ≡⟨ cong (_*_ _) $ +-comm _ _ ⟩
(x * (1# + 0#)) ≡⟨ cong (_*_ _) $ +0 _ ⟩
(x * 1#) ≡⟨ *1 _ ⟩∎
x ∎
dec-lemma₁ :
{C : Type₁}
(_+_ : C → C → C)
(0# : C)
(-_ : C → C) →
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) →
(∀ x y → (x + y) ≡ (y + x)) →
(∀ x → (x + 0#) ≡ x) →
(∀ x → (x + (- x)) ≡ 0#) →
(∀ x → Dec (x ≡ 0#)) →
Decidable (_≡_ {A = C})
dec-lemma₁ _+_ 0# -_ +-assoc +-comm +0 +- dec-0 x y =
⊎-map (λ x-y≡0 → x ≡⟨ sym $ +0 _ ⟩
(x + 0#) ≡⟨ cong (_+_ _) $ sym $ +- _ ⟩
(x + (y + (- y))) ≡⟨ cong (_+_ _) $ +-comm _ _ ⟩
(x + ((- y) + y)) ≡⟨ +-assoc _ _ _ ⟩
((x + (- y)) + y) ≡⟨ cong (λ x → x + _) x-y≡0 ⟩
(0# + y) ≡⟨ +-comm _ _ ⟩
(y + 0#) ≡⟨ +0 _ ⟩∎
y ∎)
(λ x-y≢0 x≡y → x-y≢0 ((x + (- y)) ≡⟨ cong (_+_ _ ∘ -_) $ sym x≡y ⟩
(x + (- x)) ≡⟨ +- _ ⟩∎
0# ∎))
(dec-0 (x + (- y)))
dec-lemma₂ :
{C : Type₁}
(_+_ : C → C → C)
(0# : C)
(_*_ : C → C → C)
(1# : C)
(-_ : C → C) →
(_⁻¹ : C → ↑ (# 1) ⊤ ⊎ C) →
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) →
(∀ x y → (x + y) ≡ (y + x)) →
(∀ x y → (x * y) ≡ (y * x)) →
(∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) →
(∀ x → (x + 0#) ≡ x) →
(∀ x → (x * 1#) ≡ x) →
(∀ x → (x + (- x)) ≡ 0#) →
0# ≢ 1# →
(∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) →
(∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#) →
Decidable (_≡_ {A = C})
dec-lemma₂ _+_ 0# _*_ 1# -_ _⁻¹ +-assoc +-comm *-comm
*+ +0 *1 +- 0≢1 ⁻¹₁ ⁻¹₂ =
dec-lemma₁ _+_ 0# -_ +-assoc +-comm +0 +- dec-0
where
dec-0 : ∀ z → Dec (z ≡ 0#)
dec-0 z with z ⁻¹ | ⁻¹₁ z | ⁻¹₂ z
... | inj₁ _ | hyp | _ = inj₁ (hyp (refl _))
... | inj₂ z⁻¹ | _ | hyp = inj₂ (λ z≡0 →
0≢1 (0# ≡⟨ sym $ 0* _+_ 0# _*_ 1# -_ +-assoc +-comm *-comm *+ +0 *1 +- _ ⟩
(0# * z⁻¹) ≡⟨ cong (λ x → x * _) $ sym z≡0 ⟩
(z * z⁻¹) ≡⟨ hyp z⁻¹ (refl _) ⟩∎
1# ∎))
dec-lemma₃ :
{C : Type₁}
(_+_ : C → C → C)
(0# : C)
(-_ : C → C) →
(_*_ : C → C → C)
(1# : C) →
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) →
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) →
(∀ x y → (x + y) ≡ (y + x)) →
(∀ x y → (x * y) ≡ (y * x)) →
(∀ x → (x + 0#) ≡ x) →
(∀ x → (x * 1#) ≡ x) →
(∀ x → (x + (- x)) ≡ 0#) →
(∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#)) →
Decidable (_≡_ {A = C})
dec-lemma₃ _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +-
inv-xor =
dec-lemma₁ _+_ 0# -_ +-assoc +-comm +0 +-
(λ x → [ inj₂ ∘ proj₂ , inj₁ ∘ proj₂ ] (inv-xor x))
*-injective :
{C : Type₁}
(_*_ : C → C → C)
(1# : C) →
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) →
(∀ x y → (x * y) ≡ (y * x)) →
(∀ x → (x * 1#) ≡ x) →
∀ x → ∃ (λ y → (x * y) ≡ 1#) → Injective (_*_ x)
*-injective _*_ 1# *-assoc *-comm *1 x (x⁻¹ , xx⁻¹≡1)
{y₁} {y₂} xy₁≡xy₂ =
y₁ ≡⟨ lemma y₁ ⟩
(x⁻¹ * (x * y₁)) ≡⟨ cong (_*_ x⁻¹) xy₁≡xy₂ ⟩
(x⁻¹ * (x * y₂)) ≡⟨ sym $ lemma y₂ ⟩∎
y₂ ∎
where
lemma : ∀ y → y ≡ (x⁻¹ * (x * y))
lemma y =
y ≡⟨ sym $ *1 _ ⟩
(y * 1#) ≡⟨ *-comm _ _ ⟩
(1# * y) ≡⟨ cong (λ x → x * y) $ sym xx⁻¹≡1 ⟩
((x * x⁻¹) * y) ≡⟨ cong (λ x → x * y) $ *-comm _ _ ⟩
((x⁻¹ * x) * y) ≡⟨ sym $ *-assoc _ _ _ ⟩∎
(x⁻¹ * (x * y)) ∎
inverse-propositional :
{C : Type₁}
(_*_ : C → C → C)
(1# : C) →
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) →
(∀ x y → (x * y) ≡ (y * x)) →
(∀ x → (x * 1#) ≡ x) →
Is-set C →
∀ x → Is-proposition (∃ λ y → (x * y) ≡ 1#)
inverse-propositional _*_ 1# *-assoc *-comm *1 C-set x =
[inhabited⇒+]⇒+ 0 λ { inv →
injection⁻¹-propositional
(record { to = _*_ x
; injective = *-injective _*_ 1# *-assoc *-comm *1 x inv
})
C-set 1# }
proposition-lemma₁ :
Extensionality (# 1) (# 1) →
{C : Type₁}
(0# : C)
(_*_ : C → C → C)
(1# : C) →
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) →
(∀ x y → (x * y) ≡ (y * x)) →
(∀ x → (x * 1#) ≡ x) →
Is-proposition (((x y : C) → x ≡ y ⊎ x ≢ y) ×
(∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#))
proposition-lemma₁ ext 0# _*_ 1# *-assoc *-comm *1 =
[inhabited⇒+]⇒+ 0 λ { (dec , _) →
let C-set = decidable⇒set dec in
×-closure 1 (Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Dec-closure-propositional (lower-ext (# 0) _ ext)
C-set)
(Π-closure ext 1 λ x →
Π-closure ext 1 λ _ →
inverse-propositional _*_ 1# *-assoc *-comm *1
C-set x) }
proposition-lemma₂ :
Extensionality (# 1) (# 1) →
{C : Type₁}
(_+_ : C → C → C)
(0# : C)
(-_ : C → C) →
(_*_ : C → C → C)
(1# : C) →
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) →
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) →
(∀ x y → (x + y) ≡ (y + x)) →
(∀ x y → (x * y) ≡ (y * x)) →
(∀ x → (x + 0#) ≡ x) →
(∀ x → (x * 1#) ≡ x) →
(∀ x → (x + (- x)) ≡ 0#) →
Is-proposition (∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#))
proposition-lemma₂ ext _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm
+0 *1 +- =
[inhabited⇒+]⇒+ 0 λ inv-xor →
let C-set = decidable⇒set $
dec-lemma₃ _+_ 0# -_ _*_ 1# +-assoc *-assoc
+-comm *-comm +0 *1 +- inv-xor in
Π-closure ext 1 λ x →
Xor-closure-propositional (lower-ext (# 0) _ ext)
(inverse-propositional _*_ 1# *-assoc *-comm *1 C-set x)
C-set
proposition-lemma₃ :
Extensionality (# 1) (# 1) →
{C : Type₁}
(_+_ : C → C → C)
(0# : C)
(_*_ : C → C → C)
(1# : C) →
(-_ : C → C) →
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) →
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) →
(∀ x y → (x + y) ≡ (y + x)) →
(∀ x y → (x * y) ≡ (y * x)) →
(∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) →
(∀ x → (x + 0#) ≡ x) →
(∀ x → (x * 1#) ≡ x) →
(∀ x → (x + (- x)) ≡ 0#) →
0# ≢ 1# →
Is-proposition (Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ →
(∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) ×
(∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#))
proposition-lemma₃ ext {C} _+_ 0# _*_ 1# -_ +-assoc *-assoc
+-comm *-comm *+ +0 *1 +- 0≢1
(inv , inv₁ , inv₂) (inv′ , inv₁′ , inv₂′) =
_↔_.to (ignore-propositional-component
(×-closure 1 (Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
C-set)
(Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
C-set)))
(apply-ext ext inv≡inv′)
where
C-set : Is-set C
C-set = decidable⇒set $
dec-lemma₂ _+_ 0# _*_ 1# -_ inv +-assoc +-comm
*-comm *+ +0 *1 +- 0≢1 inv₁ inv₂
01-lemma : ∀ x y → x ≡ 0# → (x * y) ≡ 1# → ⊥
01-lemma x y x≡0 xy≡1 = 0≢1 (
0# ≡⟨ sym $ 0* _+_ 0# _*_ 1# -_ +-assoc +-comm *-comm *+ +0 *1 +- _ ⟩
(0# * y) ≡⟨ cong (λ x → x * _) $ sym x≡0 ⟩
(x * y) ≡⟨ xy≡1 ⟩∎
1# ∎)
inv≡inv′ : ∀ x → inv x ≡ inv′ x
inv≡inv′ x with inv x | inv₁ x | inv₂ x
| inv′ x | inv₁′ x | inv₂′ x
... | inj₁ _ | _ | _ | inj₁ _ | _ | _ = refl _
... | inj₂ x⁻¹ | _ | hyp | inj₁ _ | hyp′ | _ = ⊥-elim $ 01-lemma x x⁻¹ (hyp′ (refl _)) (hyp x⁻¹ (refl _))
... | inj₁ _ | hyp | _ | inj₂ x⁻¹ | _ | hyp′ = ⊥-elim $ 01-lemma x x⁻¹ (hyp (refl _)) (hyp′ x⁻¹ (refl _))
... | inj₂ x⁻¹ | _ | hyp | inj₂ x⁻¹′ | _ | hyp′ =
cong inj₂ $ *-injective _*_ 1# *-assoc *-comm *1 x
(x⁻¹ , hyp x⁻¹ (refl _))
((x * x⁻¹) ≡⟨ hyp x⁻¹ (refl _) ⟩
1# ≡⟨ sym $ hyp′ x⁻¹′ (refl _) ⟩∎
(x * x⁻¹′) ∎)
-- Discrete fields.
discrete-field : Code
discrete-field =
-- Addition.
(id ⇾ id ⇾ id) ⊗
-- Zero.
id ⊗
-- Multiplication.
(id ⇾ id ⇾ id) ⊗
-- One.
id ⊗
-- Minus.
(id ⇾ id) ⊗
-- Multiplicative inverse (a partial operation).
(id ⇾ k (↑ _ ⊤) ⊕ id) ,
λ { C (_+_ , 0# , _*_ , 1# , -_ , _⁻¹) →
(-- Associativity.
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) ×
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) ×
-- Commutativity.
(∀ x y → (x + y) ≡ (y + x)) ×
(∀ x y → (x * y) ≡ (y * x)) ×
-- Distributivity.
(∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) ×
-- Identity laws.
(∀ x → (x + 0#) ≡ x) ×
(∀ x → (x * 1#) ≡ x) ×
-- Additive inverse law.
(∀ x → (x + (- x)) ≡ 0#) ×
-- Zero and one are distinct.
0# ≢ 1# ×
-- Multiplicative inverse laws.
(∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) ×
(∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)) ,
λ ass → let open Assumptions ass in
[inhabited⇒+]⇒+ 0 λ { (+-assoc , _ , +-comm , *-comm , *+ , +0 ,
*1 , +- , 0≢1 , ⁻¹₁ , ⁻¹₂) →
let C-set : Is-set C
C-set = decidable⇒set $
dec-lemma₂ _+_ 0# _*_ 1# -_ _⁻¹ +-assoc +-comm
*-comm *+ +0 *1 +- 0≢1 ⁻¹₁ ⁻¹₂
in
×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure (lower-ext (# 0) (# 1) ext₁) 1 λ _ →
⊥-propositional)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)))))))))) }}
-- The interpretation of the code is reasonable.
Instance-discrete-field :
Instance discrete-field
≡
Σ Type₁ λ C →
Σ ((C → C → C) × C × (C → C → C) × C × (C → C) × (C → ↑ _ ⊤ ⊎ C))
λ { (_+_ , 0# , _*_ , 1# , -_ , _⁻¹) →
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) ×
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) ×
(∀ x y → (x + y) ≡ (y + x)) ×
(∀ x y → (x * y) ≡ (y * x)) ×
(∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) ×
(∀ x → (x + 0#) ≡ x) ×
(∀ x → (x * 1#) ≡ x) ×
(∀ x → (x + (- x)) ≡ 0#) ×
0# ≢ 1# ×
(∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) ×
(∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#) }
Instance-discrete-field = refl _
-- The notion of isomorphism that we get is reasonable.
Isomorphic-discrete-field :
∀ {C₁ _+₁_ 0₁ _*₁_ 1₁ -₁_ _⁻¹₁ laws₁
C₂ _+₂_ 0₂ _*₂_ 1₂ -₂_ _⁻¹₂ laws₂} →
Isomorphic discrete-field
(C₁ , (_+₁_ , 0₁ , _*₁_ , 1₁ , -₁_ , _⁻¹₁) , laws₁)
(C₂ , (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_ , _⁻¹₂) , laws₂)
≡
Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in
((λ x y → to (from x +₁ from y)) ,
to 0₁ ,
(λ x y → to (from x *₁ from y)) ,
to 1₁ ,
(λ x → to (-₁ from x)) ,
(λ x → ⊎-map P.id to (from x ⁻¹₁))) ≡
(_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_ , _⁻¹₂)
Isomorphic-discrete-field = refl _
-- The definitions of discrete field introduced below do not have an
-- inverse operator in their signature, so the derived notion of
-- isomorphism is perhaps not obviously identical to the one above.
-- However, the two notions of isomorphism are isomorphic (assuming
-- extensionality).
Isomorphic-discrete-field-isomorphic-to-one-without-⁻¹ :
Extensionality (# 1) (# 1) →
∀ {C₁ _+₁_ 0₁ _*₁_ 1₁ -₁_ _⁻¹₁ laws₁
C₂ _+₂_ 0₂ _*₂_ 1₂ -₂_ _⁻¹₂ laws₂} →
Isomorphic discrete-field
(C₁ , (_+₁_ , 0₁ , _*₁_ , 1₁ , -₁_ , _⁻¹₁) , laws₁)
(C₂ , (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_ , _⁻¹₂) , laws₂)
↔
Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in
((λ x y → to (from x +₁ from y)) ,
to 0₁ ,
(λ x y → to (from x *₁ from y)) ,
to 1₁ ,
(λ x → to (-₁ from x))) ≡
(_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_)
Isomorphic-discrete-field-isomorphic-to-one-without-⁻¹ ext
{C₁} {_+₁_} {0₁} {_*₁_} {1₁} { -₁_} {_⁻¹₁}
{_ , _ , _ , _ , _ , _ , _ , _ , _ , ⁻¹₁₁ , ⁻¹₁₂}
{C₂} {_+₂_} {0₂} {_*₂_} {1₂} { -₂_} {_⁻¹₂}
{+₂-assoc , *₂-assoc , +₂-comm , *₂-comm , *₂+₂ , +₂0₂ , *₂1₂ , +₂-₂ ,
0₂≢1₂ , ⁻¹₂₁ , ⁻¹₂₂} =
∃-cong λ eq → let open _≃_ eq in
(((λ x y → to (from x +₁ from y)) ,
to 0₁ ,
(λ x y → to (from x *₁ from y)) ,
to 1₁ ,
(λ x → to (-₁ from x)) ,
(λ x → ⊎-map P.id to (from x ⁻¹₁))) ≡
(_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_ , _⁻¹₂)) ↝⟨ inverse (≡×≡↔≡ ⊚ ((_ □) ×-cong
≡×≡↔≡ ⊚ ((_ □) ×-cong
≡×≡↔≡ ⊚ ((_ □) ×-cong
≡×≡↔≡ ⊚ ((_ □) ×-cong
≡×≡↔≡))))) ⟩
((λ x y → to (from x +₁ from y)) ≡ _+₂_ ×
to 0₁ ≡ 0₂ ×
(λ x y → to (from x *₁ from y)) ≡ _*₂_ ×
to 1₁ ≡ 1₂ ×
(λ x → to (-₁ from x)) ≡ -₂_ ×
(λ x → ⊎-map P.id to (from x ⁻¹₁)) ≡ _⁻¹₂) ↝⟨ (∃-cong λ _ →
∃-cong λ 0-homo →
∃-cong λ *-homo →
∃-cong λ 1-homo →
∃-cong λ _ →
_⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible
⁻¹-set
(⁻¹-homo eq 0-homo *-homo 1-homo)) ⟩
((λ x y → to (from x +₁ from y)) ≡ _+₂_ ×
to 0₁ ≡ 0₂ ×
(λ x y → to (from x *₁ from y)) ≡ _*₂_ ×
to 1₁ ≡ 1₂ ×
(λ x → to (-₁ from x)) ≡ -₂_ ×
⊤) ↝⟨ (_ □) ×-cong (_ □) ×-cong (_ □) ×-cong (_ □) ×-cong ×-right-identity ⟩
((λ x y → to (from x +₁ from y)) ≡ _+₂_ ×
to 0₁ ≡ 0₂ ×
(λ x y → to (from x *₁ from y)) ≡ _*₂_ ×
to 1₁ ≡ 1₂ ×
(λ x → to (-₁ from x)) ≡ -₂_) ↝⟨ ≡×≡↔≡ ⊚ ((_ □) ×-cong
≡×≡↔≡ ⊚ ((_ □) ×-cong
≡×≡↔≡ ⊚ ((_ □) ×-cong
≡×≡↔≡))) ⟩
(((λ x y → to (from x +₁ from y)) ,
to 0₁ ,
(λ x y → to (from x *₁ from y)) ,
to 1₁ ,
(λ x → to (-₁ from x))) ≡
(_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_)) □
where
⁻¹-set : Is-set (C₂ → ↑ _ ⊤ ⊎ C₂)
⁻¹-set =
Π-closure ext 2 λ _ →
⊎-closure 0 (↑-closure 2 (mono (≤-step (≤-step ≤-refl))
⊤-contractible))
(decidable⇒set $
dec-lemma₂ _+₂_ 0₂ _*₂_ 1₂ -₂_ _⁻¹₂ +₂-assoc +₂-comm
*₂-comm *₂+₂ +₂0₂ *₂1₂ +₂-₂ 0₂≢1₂
⁻¹₂₁ ⁻¹₂₂)
⁻¹-homo :
(eq : C₁ ≃ C₂) → let open _≃_ eq in
to 0₁ ≡ 0₂ →
(λ x y → to (from x *₁ from y)) ≡ _*₂_ →
to 1₁ ≡ 1₂ →
(λ x → ⊎-map P.id to (from x ⁻¹₁)) ≡ _⁻¹₂
⁻¹-homo eq 0-homo *-homo 1-homo = cong proj₁ $
proposition-lemma₃
ext _+₂_ 0₂ _*₂_ 1₂ -₂_
+₂-assoc *₂-assoc +₂-comm *₂-comm
*₂+₂ +₂0₂ *₂1₂ +₂-₂ 0₂≢1₂
( (λ x → ⊎-map P.id to (from x ⁻¹₁))
, (λ x x⁻¹₁≡₁ →
let lemma =
(from x ⁻¹₁) ≡⟨ [_,_] {C = λ z → z ≡ ⊎-map P.id from (⊎-map P.id to z)}
(λ _ → refl _)
(λ _ → cong inj₂ $ sym $ left-inverse-of _)
(from x ⁻¹₁) ⟩
⊎-map P.id from (⊎-map P.id to (from x ⁻¹₁)) ≡⟨ cong (⊎-map P.id from) x⁻¹₁≡₁ ⟩∎
inj₁ (lift tt) ∎
in
x ≡⟨ sym $ right-inverse-of x ⟩
to (from x) ≡⟨ cong to (⁻¹₁₁ (from x) lemma) ⟩
to 0₁ ≡⟨ 0-homo ⟩∎
0₂ ∎)
, (λ x y x⁻¹₁≡y →
let lemma =
(from x ⁻¹₁) ≡⟨ [_,_] {C = λ z → z ≡ ⊎-map P.id from (⊎-map P.id to z)}
(λ _ → refl _)
(λ _ → cong inj₂ $ sym $ left-inverse-of _)
(from x ⁻¹₁) ⟩
⊎-map P.id from (⊎-map P.id to (from x ⁻¹₁)) ≡⟨ cong (⊎-map P.id from) x⁻¹₁≡y ⟩∎
inj₂ (from y) ∎
in
(x *₂ y) ≡⟨ sym $ cong (λ _*_ → x * y) *-homo ⟩
to (from x *₁ from y) ≡⟨ cong to $ ⁻¹₁₂ (from x) (from y) lemma ⟩
to 1₁ ≡⟨ 1-homo ⟩∎
1₂ ∎)
)
(_⁻¹₂ , ⁻¹₂₁ , ⁻¹₂₂)
where open _≃_ eq
-- In "Varieties of Constructive Mathematics" Bridges and Richman
-- define a discrete field as a commutative ring with 1, decidable
-- equality, and satisfying the property that non-zero elements are
-- invertible. What follows is—assuming that I interpreted the
-- informal definition correctly—an encoding of this definition,
-- restricted so that the discrete fields are non-trivial, and using
-- equality as the equality relation, and denial inequality as the
-- inequality relation.
discrete-field-à-la-Bridges-and-Richman : Code
discrete-field-à-la-Bridges-and-Richman =
-- Addition.
(id ⇾ id ⇾ id) ⊗
-- Zero.
id ⊗
-- Multiplication.
(id ⇾ id ⇾ id) ⊗
-- One.
id ⊗
-- Minus.
(id ⇾ id) ,
λ { C (_+_ , 0# , _*_ , 1# , -_) →
(-- Associativity.
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) ×
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) ×
-- Commutativity.
(∀ x y → (x + y) ≡ (y + x)) ×
(∀ x y → (x * y) ≡ (y * x)) ×
-- Distributivity.
(∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) ×
-- Identity laws.
(∀ x → (x + 0#) ≡ x) ×
(∀ x → (x * 1#) ≡ x) ×
-- Additive inverse law.
(∀ x → (x + (- x)) ≡ 0#) ×
-- Zero and one are distinct.
0# ≢ 1# ×
-- Decidable equality.
((x y : C) → x ≡ y ⊎ x ≢ y) ×
-- Non-zero elements are invertible.
(∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#)) ,
λ ass → let open Assumptions ass in
[inhabited⇒+]⇒+ 0 λ { (_ , *-assoc , _ , *-comm , _ , _ , *1 ,
_ , _ , dec , _) →
let C-set : Is-set C
C-set = decidable⇒set dec
in
×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure (lower-ext (# 0) (# 1) ext₁) 1 λ _ →
⊥-propositional)
(proposition-lemma₁ ext₁ 0# _*_ 1#
*-assoc *-comm *1))))))))) }}
-- The two discrete field definitions above are isomorphic (assuming
-- extensionality).
Instance-discrete-field-isomorphic-to-Bridges-and-Richman's :
Extensionality (# 1) (# 1) →
Instance discrete-field
↔
Instance discrete-field-à-la-Bridges-and-Richman
Instance-discrete-field-isomorphic-to-Bridges-and-Richman's ext =
∃-cong λ C →
(Σ ((C → C → C) × C × (C → C → C) × C × (C → C) × (C → ↑ _ ⊤ ⊎ C))
λ { (_+_ , 0# , _*_ , 1# , -_ , _⁻¹) →
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) ×
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) ×
(∀ x y → (x + y) ≡ (y + x)) ×
(∀ x y → (x * y) ≡ (y * x)) ×
(∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) ×
(∀ x → (x + 0#) ≡ x) ×
(∀ x → (x * 1#) ≡ x) ×
(∀ x → (x + (- x)) ≡ 0#) ×
0# ≢ 1# ×
(∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) ×
(∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)}) ↝⟨ lemma₁ _ _ _ _ _ _ _ ⟩
(Σ ((C → C → C) × C × (C → C → C) × C × (C → C))
λ { (_+_ , 0# , _*_ , 1# , -_) →
Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ →
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) ×
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) ×
(∀ x y → (x + y) ≡ (y + x)) ×
(∀ x y → (x * y) ≡ (y * x)) ×
(∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) ×
(∀ x → (x + 0#) ≡ x) ×
(∀ x → (x * 1#) ≡ x) ×
(∀ x → (x + (- x)) ≡ 0#) ×
0# ≢ 1# ×
(∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) ×
(∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)}) ↝⟨ ∃-cong (λ _ → lemma₂ _ _ _ _ _ _ _ _ _ _ _) ⟩
(Σ (((C → C → C) × C × (C → C → C) × C × (C → C)))
λ { (_+_ , 0# , _*_ , 1# , -_) →
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) ×
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) ×
(∀ x y → (x + y) ≡ (y + x)) ×
(∀ x y → (x * y) ≡ (y * x)) ×
(∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) ×
(∀ x → (x + 0#) ≡ x) ×
(∀ x → (x * 1#) ≡ x) ×
(∀ x → (x + (- x)) ≡ 0#) ×
0# ≢ 1# ×
Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ →
(∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) ×
(∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#) }) ↝⟨ (∃-cong λ { (_+_ , 0# , _*_ , 1# , -_) →
∃-cong λ +-assoc →
∃-cong λ *-assoc →
∃-cong λ +-comm →
∃-cong λ *-comm →
∃-cong λ *+ →
∃-cong λ +0 →
∃-cong λ *1 →
∃-cong λ +- →
∃-cong λ 0≢1 →
main-lemma C _+_ 0# _*_ 1# -_
+-assoc *-assoc +-comm *-comm *+ +0 *1 +- 0≢1 }) ⟩□
(Σ ((C → C → C) × C × (C → C → C) × C × (C → C))
λ { (_+_ , 0# , _*_ , 1# , -_) →
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) ×
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) ×
(∀ x y → (x + y) ≡ (y + x)) ×
(∀ x y → (x * y) ≡ (y * x)) ×
(∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) ×
(∀ x → (x + 0#) ≡ x) ×
(∀ x → (x * 1#) ≡ x) ×
(∀ x → (x + (- x)) ≡ 0#) ×
0# ≢ 1# ×
((x y : C) → x ≡ y ⊎ x ≢ y) ×
(∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#) }) □
where
main-lemma :
(C : Type₁)
(_+_ : C → C → C)
(0# : C)
(_*_ : C → C → C)
(1# : C)
(-_ : C → C) →
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) →
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) →
(∀ x y → (x + y) ≡ (y + x)) →
(∀ x y → (x * y) ≡ (y * x)) →
(∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) →
(∀ x → (x + 0#) ≡ x) →
(∀ x → (x * 1#) ≡ x) →
(∀ x → (x + (- x)) ≡ 0#) →
0# ≢ 1# →
(Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ →
(∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) ×
(∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#))
↔
(((x y : C) → x ≡ y ⊎ x ≢ y) ×
(∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#))
main-lemma C _+_ 0# _*_ 1# -_
+-assoc *-assoc +-comm *-comm *+ +0 *1 +- 0≢1 =
_≃_.bijection $
Eq.⇔→≃
(proposition-lemma₃ ext _+_ 0# _*_ 1# -_
+-assoc *-assoc +-comm *-comm
*+ +0 *1 +- 0≢1)
(proposition-lemma₁ ext 0# _*_ 1# *-assoc *-comm *1)
to
from
where
To = (((x y : C) → x ≡ y ⊎ x ≢ y) ×
(∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#))
From = Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ →
(∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) ×
(∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)
to : From → To
to (_⁻¹ , ⁻¹₁ , ⁻¹₂) = (dec , inv)
where
dec : Decidable (_≡_ {A = C})
dec = dec-lemma₂ _+_ 0# _*_ 1# -_ _⁻¹ +-assoc +-comm *-comm *+
+0 *1 +- 0≢1 ⁻¹₁ ⁻¹₂
inv : ∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#
inv x x≢0 with x ⁻¹ | ⁻¹₁ x | ⁻¹₂ x
... | inj₁ _ | hyp | _ = ⊥-elim $ x≢0 (hyp (refl _))
... | inj₂ y | _ | hyp = y , hyp y (refl _)
from : To → From
from (dec , inv) = (_⁻¹ , ⁻¹₁ , ⁻¹₂)
where
_⁻¹ : C → ↑ _ ⊤ ⊎ C
x ⁻¹ = ⊎-map (λ _ → _) (proj₁ ∘ inv x) (dec x 0#)
⁻¹₁ : ∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#
⁻¹₁ x x⁻¹≡₁ with dec x 0#
... | inj₁ x≡0 = x≡0
... | inj₂ x≢0 = ⊥-elim $ ⊎.inj₁≢inj₂ (sym x⁻¹≡₁)
⁻¹₂ : ∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#
⁻¹₂ x y x⁻¹≡y with dec x 0#
... | inj₁ x≡0 = ⊥-elim $ ⊎.inj₁≢inj₂ x⁻¹≡y
... | inj₂ x≢0 =
(x * y) ≡⟨ cong (_*_ _) $ sym $ ⊎.cancel-inj₂ x⁻¹≡y ⟩
(x * proj₁ (inv x x≢0)) ≡⟨ proj₂ (inv x x≢0) ⟩∎
1# ∎
lemma₁ : (A B C D E F : Type₁) (G : A × B × C × D × E × F → Type₁) →
Σ (A × B × C × D × E × F) G ↔
Σ (A × B × C × D × E) λ { (a , b , c , d , e) →
Σ F λ f → G (a , b , c , d , e , f) }
lemma₁ A B C D E F G =
Σ (A × B × C × D × E × F) G ↝⟨ Σ-cong (×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc) (λ _ → _ □) ⟩
(Σ (((((A × B) × C) × D) × E) × F)
λ { (((((a , b) , c) , d) , e) , f) →
G (a , b , c , d , e , f) }) ↝⟨ inverse Σ-assoc ⟩
(Σ ((((A × B) × C) × D) × E)
λ { ((((a , b) , c) , d) , e) →
Σ F λ f → G (a , b , c , d , e , f) }) ↝⟨ Σ-cong (inverse (×-assoc ⊚ ×-assoc ⊚ ×-assoc)) (λ _ → _ □) ⟩□
(Σ (A × B × C × D × E) λ { (a , b , c , d , e) →
Σ F λ f → G (a , b , c , d , e , f) }) □
lemma₂ : (A B C D E F G H I J : Type₁) (K : A → Type₁) →
(Σ A λ x → B × C × D × E × F × G × H × I × J × K x) ↔
(B × C × D × E × F × G × H × I × J × Σ A K)
lemma₂ A B C D E F G H I J K =
(Σ A λ x → B × C × D × E × F × G × H × I × J × K x) ↝⟨ ∃-cong (λ _ → ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚
×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc) ⟩
(Σ A λ x → ((((((((B × C) × D) × E) × F) × G) × H) × I) × J) × K x) ↝⟨ ∃-comm ⟩
(((((((((B × C) × D) × E) × F) × G) × H) × I) × J) × Σ A K) ↝⟨ inverse (×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚
×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc) ⟩□
(B × C × D × E × F × G × H × I × J × Σ A K) □
-- nLab defines a discrete field as a commutative ring satisfying the
-- property that "an element is invertible xor it equals zero"
-- (http://ncatlab.org/nlab/show/field). This definition can also be
-- encoded in our framework (assuming that I interpreted the informal
-- definitions correctly).
discrete-field-à-la-nLab : Code
discrete-field-à-la-nLab =
-- Addition.
(id ⇾ id ⇾ id) ⊗
-- Zero.
id ⊗
-- Multiplication.
(id ⇾ id ⇾ id) ⊗
-- One.
id ⊗
-- Minus.
(id ⇾ id) ,
λ { C (_+_ , 0# , _*_ , 1# , -_) →
(-- Associativity.
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) ×
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) ×
-- Commutativity.
(∀ x y → (x + y) ≡ (y + x)) ×
(∀ x y → (x * y) ≡ (y * x)) ×
-- Distributivity.
(∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) ×
-- Identity laws.
(∀ x → (x + 0#) ≡ x) ×
(∀ x → (x * 1#) ≡ x) ×
-- Additive inverse law.
(∀ x → (x + (- x)) ≡ 0#) ×
-- An element is invertible xor it equals zero.
(∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#))) ,
λ ass → let open Assumptions ass in
[inhabited⇒+]⇒+ 0 λ { (+-assoc , *-assoc , +-comm , *-comm , _ ,
+0 , *1 , +- , inv-xor) →
let C-set : Is-set C
C-set = decidable⇒set $
dec-lemma₃ _+_ 0# -_ _*_ 1# +-assoc *-assoc
+-comm *-comm +0 *1 +- inv-xor
in
×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
C-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
C-set)
(proposition-lemma₂ ext₁ _+_ 0# -_ _*_ 1#
+-assoc *-assoc +-comm *-comm
+0 *1 +-)))))))) }}
-- nLab's definition of discrete fields is isomorphic to the variant
-- of Bridges and Richman's definition given above (assuming
-- extensionality, and assuming that I interpreted the informal
-- definitions correctly).
nLab's-isomorphic-to-Bridges-and-Richman's :
Extensionality (# 1) (# 1) →
Instance discrete-field-à-la-nLab
↔
Instance discrete-field-à-la-Bridges-and-Richman
nLab's-isomorphic-to-Bridges-and-Richman's ext =
∃-cong λ C →
∃-cong λ { (_+_ , 0# , _*_ , 1# , -_) →
∃-cong λ +-assoc →
∃-cong λ *-assoc →
∃-cong λ +-comm →
∃-cong λ *-comm →
∃-cong λ *+ →
∃-cong λ +0 →
∃-cong λ *1 →
∃-cong λ +- →
main-lemma C _+_ 0# _*_ 1# -_
+-assoc *-assoc +-comm *-comm *+ +0 *1 +- }
where
main-lemma :
(C : Type₁)
(_+_ : C → C → C)
(0# : C)
(_*_ : C → C → C)
(1# : C)
(-_ : C → C) →
(∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) →
(∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) →
(∀ x y → (x + y) ≡ (y + x)) →
(∀ x y → (x * y) ≡ (y * x)) →
(∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) →
(∀ x → (x + 0#) ≡ x) →
(∀ x → (x * 1#) ≡ x) →
(∀ x → (x + (- x)) ≡ 0#) →
(∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#))
↔
(0# ≢ 1# ×
((x y : C) → x ≡ y ⊎ x ≢ y) ×
(∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#))
main-lemma C _+_ 0# _*_ 1# -_
+-assoc *-assoc +-comm *-comm *+ +0 *1 +- =
_≃_.bijection $
Eq.⇔→≃
(proposition-lemma₂ ext _+_ 0# -_ _*_ 1#
+-assoc *-assoc +-comm *-comm
+0 *1 +-)
(×-closure 1
(¬-propositional (lower-ext (# 0) _ ext))
(proposition-lemma₁ ext 0# _*_ 1# *-assoc
*-comm *1))
to
from
where
To = 0# ≢ 1# ×
((x y : C) → x ≡ y ⊎ x ≢ y) ×
(∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#)
From = ∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#)
to : From → To
to inv-xor = (0≢1 , dec , inv)
where
0≢1 : 0# ≢ 1#
0≢1 0≡1 =
[ (λ { (_ , 1≢0) → 1≢0 (sym 0≡1) })
, (λ { (∄y[1y≡1] , _) → ∄y[1y≡1] (1# , *1 1#) })
] (inv-xor 1#)
dec : Decidable (_≡_ {A = C})
dec = dec-lemma₃ _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm
+0 *1 +- inv-xor
inv : ∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#
inv x x≢0 =
[ proj₁
, (λ { (_ , x≡0) → ⊥-elim (x≢0 x≡0) })
] (inv-xor x)
from : To → From
from (0≢1 , dec , inv) x =
[ (λ x≡0 → inj₂ ( (λ { (y , xy≡1) → 0≢1 (0# ≡⟨ sym $ 0* _+_ 0# _*_ 1# -_ +-assoc +-comm *-comm *+ +0 *1 +- y ⟩
(0# * y) ≡⟨ cong (λ x → x * y) $ sym x≡0 ⟩
(x * y) ≡⟨ xy≡1 ⟩∎
1# ∎) })
, x≡0
))
, (λ x≢0 → inj₁ (inv x x≢0 , x≢0))
] (dec x 0#)
------------------------------------------------------------------------
-- An example: vector spaces over discrete fields
-- Vector spaces over a particular discrete field.
vector-space : Instance discrete-field → Code
vector-space (F , (_+F_ , _ , _*F_ , 1F , _ , _) , _) =
-- Addition.
(id ⇾ id ⇾ id) ⊗
-- Scalar multiplication.
(k F ⇾ id ⇾ id) ⊗
-- Zero vector.
id ⊗
-- Additive inverse.
(id ⇾ id) ,
λ { V (_+_ , _*_ , 0V , -_) →
-- The carrier type is a set.
(Is-set V ×
-- Associativity.
(∀ u v w → (u + (v + w)) ≡ ((u + v) + w)) ×
(∀ x y v → (x * (y * v)) ≡ ((x *F y) * v)) ×
-- Commutativity.
(∀ u v → (u + v) ≡ (v + u)) ×
-- Distributivity.
(∀ x u v → (x * (u + v)) ≡ ((x * u) + (x * v))) ×
(∀ x y v → ((x +F y) * v) ≡ ((x * v) + (y * v))) ×
-- Identity laws.
(∀ v → (v + 0V) ≡ v) ×
(∀ v → (1F * v) ≡ v) ×
-- Inverse law.
(∀ v → (v + (- v)) ≡ 0V)) ,
λ ass → let open Assumptions ass in
[inhabited⇒+]⇒+ 0 λ { (V-set , _) →
×-closure 1 (H-level-propositional ext₁ 2)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
V-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
V-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
V-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
V-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
Π-closure ext₁ 1 λ _ →
V-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
V-set)
(×-closure 1 (Π-closure ext₁ 1 λ _ →
V-set)
(Π-closure ext₁ 1 λ _ →
V-set)))))))) }}
-- The interpretation of the code is reasonable.
Instance-vector-space :
∀ {F _+F_ 0F _*F_ 1F -F_ _⁻¹F laws} →
Instance (vector-space
(F , (_+F_ , 0F , _*F_ , 1F , -F_ , _⁻¹F) , laws))
≡
Σ Type₁ λ V →
Σ ((V → V → V) × (F → V → V) × V × (V → V))
λ { (_+_ , _*_ , 0V , -_) →
Is-set V ×
(∀ u v w → (u + (v + w)) ≡ ((u + v) + w)) ×
(∀ x y v → (x * (y * v)) ≡ ((x *F y) * v)) ×
(∀ u v → (u + v) ≡ (v + u)) ×
(∀ x u v → (x * (u + v)) ≡ ((x * u) + (x * v))) ×
(∀ x y v → ((x +F y) * v) ≡ ((x * v) + (y * v))) ×
(∀ v → (v + 0V) ≡ v) ×
(∀ v → (1F * v) ≡ v) ×
(∀ v → (v + (- v)) ≡ 0V) }
Instance-vector-space = refl _
-- The notion of isomorphism that we get is also reasonable.
Isomorphic-vector-space :
∀ {F V₁ _+₁_ _*₁_ 0₁ -₁_ laws₁
V₂ _+₂_ _*₂_ 0₂ -₂_ laws₂} →
Isomorphic (vector-space F)
(V₁ , (_+₁_ , _*₁_ , 0₁ , -₁_) , laws₁)
(V₂ , (_+₂_ , _*₂_ , 0₂ , -₂_) , laws₂)
≡
Σ (V₁ ≃ V₂) λ eq → let open _≃_ eq in
((λ u v → to (from u +₁ from v)) ,
(λ x v → to (x *₁ from v)) ,
to 0₁ ,
(λ x → to (-₁ from x))) ≡
(_+₂_ , _*₂_ , 0₂ , -₂_)
Isomorphic-vector-space = refl _
------------------------------------------------------------------------
-- An example: sets equipped with fixpoint operators
set-with-fixpoint-operator : Code
set-with-fixpoint-operator =
(id ⇾ id) ⇾ id ,
λ C fix →
-- The carrier type is a set.
(Is-set C ×
-- The fixpoint operator property.
(∀ f → f (fix f) ≡ fix f)) ,
λ ass → let open Assumptions ass in
[inhabited⇒+]⇒+ 0 λ { (C-set , _) →
×-closure 1 (H-level-propositional ext₁ 2)
(Π-closure ext₁ 1 λ _ →
C-set) }
-- Some unfolding lemmas.
Instance-set-with-fixpoint-operator :
Instance set-with-fixpoint-operator
≡
Σ Type₁ λ C →
Σ ((C → C) → C) λ fix →
Is-set C ×
(∀ f → f (fix f) ≡ fix f)
Instance-set-with-fixpoint-operator = refl _
Isomorphic-set-with-fixpoint-operator :
∀ {C₁ fix₁ laws₁ C₂ fix₂ laws₂} →
Isomorphic set-with-fixpoint-operator
(C₁ , fix₁ , laws₁) (C₂ , fix₂ , laws₂)
≡
Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in
(λ f → to (fix₁ (λ x → from (f (to x))))) ≡ fix₂
Isomorphic-set-with-fixpoint-operator = refl _
Isomorphic′-set-with-fixpoint-operator :
∀ {C₁ fix₁ laws₁ C₂ fix₂ laws₂} →
Isomorphic′ set-with-fixpoint-operator
(C₁ , fix₁ , laws₁) (C₂ , fix₂ , laws₂)
≡
Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in
∀ f g →
(∀ x y → to x ≡ y → to (f x) ≡ g y) →
to (fix₁ f) ≡ fix₂ g
Isomorphic′-set-with-fixpoint-operator = refl _
| 37.713699
| 146
| 0.388834
|
0b22925f499fce80d5a9947a18605f00f3752354
| 7,806
|
agda
|
Agda
|
Cubical/Foundations/Equiv/Properties.agda
|
maxdore/cubical
|
ef62b84397396d48135d73ba7400b71c721ddc94
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/Equiv/Properties.agda
|
maxdore/cubical
|
ef62b84397396d48135d73ba7400b71c721ddc94
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/Equiv/Properties.agda
|
maxdore/cubical
|
ef62b84397396d48135d73ba7400b71c721ddc94
|
[
"MIT"
] | null | null | null |
{-
A couple of general facts about equivalences:
- if f is an equivalence then (cong f) is an equivalence ([equivCong])
- if f is an equivalence then pre- and postcomposition with f are equivalences ([preCompEquiv], [postCompEquiv])
- if f is an equivalence then (Σ[ g ] section f g) and (Σ[ g ] retract f g) are contractible ([isContr-section], [isContr-retract])
- isHAEquiv is a proposition [isPropIsHAEquiv]
(these are not in 'Equiv.agda' because they need Univalence.agda (which imports Equiv.agda))
-}
{-# OPTIONS --safe #-}
module Cubical.Foundations.Equiv.Properties where
open import Cubical.Core.Everything
open import Cubical.Data.Sigma
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Path
open import Cubical.Foundations.HLevels
open import Cubical.Functions.FunExtEquiv
private
variable
ℓ ℓ′ : Level
A B C : Type ℓ
isEquivInvEquiv : isEquiv (λ (e : A ≃ B) → invEquiv e)
isEquivInvEquiv = isoToIsEquiv goal where
open Iso
goal : Iso (A ≃ B) (B ≃ A)
goal .fun = invEquiv
goal .inv = invEquiv
goal .rightInv g = equivEq refl
goal .leftInv f = equivEq refl
invEquivEquiv : (A ≃ B) ≃ (B ≃ A)
invEquivEquiv = _ , isEquivInvEquiv
isEquivCong : {x y : A} (e : A ≃ B) → isEquiv (λ (p : x ≡ y) → cong (equivFun e) p)
isEquivCong e = isoToIsEquiv (congIso (equivToIso e))
congEquiv : {x y : A} (e : A ≃ B) → (x ≡ y) ≃ (equivFun e x ≡ equivFun e y)
congEquiv e = isoToEquiv (congIso (equivToIso e))
equivAdjointEquiv : (e : A ≃ B) → ∀ {a b} → (a ≡ invEq e b) ≃ (equivFun e a ≡ b)
equivAdjointEquiv e = compEquiv (congEquiv e) (compPathrEquiv (retEq e _))
invEq≡→equivFun≡ : (e : A ≃ B) → ∀ {a b} → invEq e b ≡ a → equivFun e a ≡ b
invEq≡→equivFun≡ e = equivFun (equivAdjointEquiv e) ∘ sym
isEquivPreComp : (e : A ≃ B) → isEquiv (λ (φ : B → C) → φ ∘ equivFun e)
isEquivPreComp e = snd (equiv→ (invEquiv e) (idEquiv _))
preCompEquiv : (e : A ≃ B) → (B → C) ≃ (A → C)
preCompEquiv e = (λ φ → φ ∘ fst e) , isEquivPreComp e
isEquivPostComp : (e : A ≃ B) → isEquiv (λ (φ : C → A) → e .fst ∘ φ)
isEquivPostComp e = snd (equivΠCod (λ _ → e))
postCompEquiv : (e : A ≃ B) → (C → A) ≃ (C → B)
postCompEquiv e = _ , isEquivPostComp e
-- see also: equivΠCod for a dependent version of postCompEquiv
hasSection : (A → B) → Type _
hasSection {A = A} {B = B} f = Σ[ g ∈ (B → A) ] section f g
hasRetract : (A → B) → Type _
hasRetract {A = A} {B = B} f = Σ[ g ∈ (B → A) ] retract f g
isEquiv→isContrHasSection : {f : A → B} → isEquiv f → isContr (hasSection f)
fst (isEquiv→isContrHasSection isEq) = invIsEq isEq , secIsEq isEq
snd (isEquiv→isContrHasSection isEq) (f , ε) i = (λ b → fst (p b i)) , (λ b → snd (p b i))
where p : ∀ b → (invIsEq isEq b , secIsEq isEq b) ≡ (f b , ε b)
p b = isEq .equiv-proof b .snd (f b , ε b)
isEquiv→hasSection : {f : A → B} → isEquiv f → hasSection f
isEquiv→hasSection = fst ∘ isEquiv→isContrHasSection
isContr-hasSection : (e : A ≃ B) → isContr (hasSection (fst e))
isContr-hasSection e = isEquiv→isContrHasSection (snd e)
isEquiv→isContrHasRetract : {f : A → B} → isEquiv f → isContr (hasRetract f)
fst (isEquiv→isContrHasRetract isEq) = invIsEq isEq , retIsEq isEq
snd (isEquiv→isContrHasRetract {f = f} isEq) (g , η) =
λ i → (λ b → p b i) , (λ a → q a i)
where p : ∀ b → invIsEq isEq b ≡ g b
p b = sym (η (invIsEq isEq b)) ∙' cong g (secIsEq isEq b)
-- one square from the definition of invIsEq
ieSq : ∀ a → Square (cong g (secIsEq isEq (f a)))
refl
(cong (g ∘ f) (retIsEq isEq a))
refl
ieSq a k j = g (commSqIsEq isEq a k j)
-- one square from η
ηSq : ∀ a → Square (η (invIsEq isEq (f a)))
(η a)
(cong (g ∘ f) (retIsEq isEq a))
(retIsEq isEq a)
ηSq a i j = η (retIsEq isEq a i) j
-- and one last square from the definition of p
pSq : ∀ b → Square (η (invIsEq isEq b))
refl
(cong g (secIsEq isEq b))
(p b)
pSq b i j = compPath'-filler (sym (η (invIsEq isEq b))) (cong g (secIsEq isEq b)) j i
q : ∀ a → Square (retIsEq isEq a) (η a) (p (f a)) refl
q a i j = hcomp (λ k → λ { (i = i0) → ηSq a j k
; (i = i1) → η a (j ∧ k)
; (j = i0) → pSq (f a) i k
; (j = i1) → η a k
})
(ieSq a j i)
isEquiv→hasRetract : {f : A → B} → isEquiv f → hasRetract f
isEquiv→hasRetract = fst ∘ isEquiv→isContrHasRetract
isContr-hasRetract : (e : A ≃ B) → isContr (hasRetract (fst e))
isContr-hasRetract e = isEquiv→isContrHasRetract (snd e)
cong≃ : (F : Type ℓ → Type ℓ′) → (A ≃ B) → F A ≃ F B
cong≃ F e = pathToEquiv (cong F (ua e))
cong≃-char : (F : Type ℓ → Type ℓ′) {A B : Type ℓ} (e : A ≃ B) → ua (cong≃ F e) ≡ cong F (ua e)
cong≃-char F e = ua-pathToEquiv (cong F (ua e))
cong≃-idEquiv : (F : Type ℓ → Type ℓ′) (A : Type ℓ) → cong≃ F (idEquiv A) ≡ idEquiv (F A)
cong≃-idEquiv F A = cong≃ F (idEquiv A) ≡⟨ cong (λ p → pathToEquiv (cong F p)) uaIdEquiv ⟩
pathToEquiv refl ≡⟨ pathToEquivRefl ⟩
idEquiv (F A) ∎
isPropIsHAEquiv : {f : A → B} → isProp (isHAEquiv f)
isPropIsHAEquiv {f = f} ishaef = goal ishaef where
equivF : isEquiv f
equivF = isHAEquiv→isEquiv ishaef
rCoh1 : (sec : hasSection f) → Type _
rCoh1 (g , ε) = Σ[ η ∈ retract f g ] ∀ x → cong f (η x) ≡ ε (f x)
rCoh2 : (sec : hasSection f) → Type _
rCoh2 (g , ε) = Σ[ η ∈ retract f g ] ∀ x → Square (ε (f x)) refl (cong f (η x)) refl
rCoh3 : (sec : hasSection f) → Type _
rCoh3 (g , ε) = ∀ x → Σ[ ηx ∈ g (f x) ≡ x ] Square (ε (f x)) refl (cong f ηx) refl
rCoh4 : (sec : hasSection f) → Type _
rCoh4 (g , ε) = ∀ x → Path (fiber f (f x)) (g (f x) , ε (f x)) (x , refl)
characterization : isHAEquiv f ≃ Σ _ rCoh4
characterization =
isHAEquiv f
-- first convert between Σ and record
≃⟨ isoToEquiv (iso (λ e → (e .g , e .rinv) , (e .linv , e .com))
(λ e → record { g = e .fst .fst ; rinv = e .fst .snd
; linv = e .snd .fst ; com = e .snd .snd })
(λ _ → refl) λ _ → refl) ⟩
Σ _ rCoh1
-- secondly, convert the path into a dependent path for later convenience
≃⟨ Σ-cong-equiv-snd (λ s → Σ-cong-equiv-snd
λ η → equivΠCod
λ x → compEquiv (flipSquareEquiv {a₀₀ = f x}) (invEquiv slideSquareEquiv)) ⟩
Σ _ rCoh2
≃⟨ Σ-cong-equiv-snd (λ s → invEquiv Σ-Π-≃) ⟩
Σ _ rCoh3
≃⟨ Σ-cong-equiv-snd (λ s → equivΠCod λ x → ΣPath≃PathΣ) ⟩
Σ _ rCoh4
■
where open isHAEquiv
goal : isProp (isHAEquiv f)
goal = subst isProp (sym (ua characterization))
(isPropΣ (isContr→isProp (isEquiv→isContrHasSection equivF))
λ s → isPropΠ λ x → isProp→isSet (isContr→isProp (equivF .equiv-proof (f x))) _ _)
-- composition on the right induces an equivalence of path types
compr≡Equiv : {A : Type ℓ} {a b c : A} (p q : a ≡ b) (r : b ≡ c) → (p ≡ q) ≃ (p ∙ r ≡ q ∙ r)
compr≡Equiv p q r = congEquiv ((λ s → s ∙ r) , compPathr-isEquiv r)
-- composition on the left induces an equivalence of path types
compl≡Equiv : {A : Type ℓ} {a b c : A} (p : a ≡ b) (q r : b ≡ c) → (q ≡ r) ≃ (p ∙ q ≡ p ∙ r)
compl≡Equiv p q r = congEquiv ((λ s → p ∙ s) , (compPathl-isEquiv p))
| 41.084211
| 131
| 0.570074
|
06b3b5abbf0b6e4c2bcee55dffe30643a77848bf
| 2,568
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Data/Nat/InfinitelyOften.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/Nat/InfinitelyOften.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/Nat/InfinitelyOften.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Definition of and lemmas related to "true infinitely often"
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Nat.InfinitelyOften where
open import Category.Monad using (RawMonad)
open import Level using (0ℓ)
open import Data.Empty using (⊥-elim)
open import Data.Nat
open import Data.Nat.Properties
open import Data.Product as Prod hiding (map)
open import Data.Sum hiding (map)
open import Function
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using (¬¬-Monad; call/cc)
open import Relation.Unary using (Pred; _∪_; _⊆_)
open RawMonad (¬¬-Monad {p = 0ℓ})
-- Only true finitely often.
Fin : ∀ {ℓ} → Pred ℕ ℓ → Set ℓ
Fin P = ∃ λ i → ∀ j → i ≤ j → ¬ P j
-- A non-constructive definition of "true infinitely often".
Inf : ∀ {ℓ} → Pred ℕ ℓ → Set ℓ
Inf P = ¬ Fin P
-- Fin is preserved by binary sums.
_∪-Fin_ : ∀ {ℓp ℓq P Q} → Fin {ℓp} P → Fin {ℓq} Q → Fin (P ∪ Q)
_∪-Fin_ {P = P} {Q} (i , ¬p) (j , ¬q) = (i ⊔ j , helper)
where
open ≤-Reasoning
helper : ∀ k → i ⊔ j ≤ k → ¬ (P ∪ Q) k
helper k i⊔j≤k (inj₁ p) = ¬p k (begin
i ≤⟨ m≤m⊔n i j ⟩
i ⊔ j ≤⟨ i⊔j≤k ⟩
k ∎) p
helper k i⊔j≤k (inj₂ q) = ¬q k (begin
j ≤⟨ m≤m⊔n j i ⟩
j ⊔ i ≡⟨ ⊔-comm j i ⟩
i ⊔ j ≤⟨ i⊔j≤k ⟩
k ∎) q
-- Inf commutes with binary sums (in the double-negation monad).
commutes-with-∪ : ∀ {P Q} → Inf (P ∪ Q) → ¬ ¬ (Inf P ⊎ Inf Q)
commutes-with-∪ p∪q =
call/cc λ ¬[p⊎q] →
(λ ¬p ¬q → ⊥-elim (p∪q (¬p ∪-Fin ¬q)))
<$> ¬[p⊎q] ∘ inj₁ ⊛ ¬[p⊎q] ∘ inj₂
-- Inf is functorial.
map : ∀ {ℓp ℓq P Q} → P ⊆ Q → Inf {ℓp} P → Inf {ℓq} Q
map P⊆Q ¬fin = ¬fin ∘ Prod.map id (λ fin j i≤j → fin j i≤j ∘ P⊆Q)
-- Inf is upwards closed.
up : ∀ {ℓ P} n → Inf {ℓ} P → Inf (P ∘ _+_ n)
up zero = id
up {P = P} (suc n) = up n ∘ up₁
where
up₁ : Inf P → Inf (P ∘ suc)
up₁ ¬fin (i , fin) = ¬fin (suc i , helper)
where
helper : ∀ j → 1 + i ≤ j → ¬ P j
helper ._ (s≤s i≤j) = fin _ i≤j
-- A witness.
witness : ∀ {ℓ P} → Inf {ℓ} P → ¬ ¬ ∃ P
witness ¬fin ¬p = ¬fin (0 , λ i _ Pi → ¬p (i , Pi))
-- Two different witnesses.
twoDifferentWitnesses
: ∀ {P} → Inf P → ¬ ¬ ∃₂ λ m n → m ≢ n × P m × P n
twoDifferentWitnesses inf =
witness inf >>= λ w₁ →
witness (up (1 + proj₁ w₁) inf) >>= λ w₂ →
return (_ , _ , m≢1+m+n (proj₁ w₁) , proj₂ w₁ , proj₂ w₂)
| 28.21978
| 72
| 0.521807
|
1d1f25799c68247df75d6352405790149776c4df
| 521
|
agda
|
Agda
|
Cubical/Data/Sum/Base.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/Data/Sum/Base.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/Data/Sum/Base.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Sum.Base where
open import Cubical.Core.Everything
private
variable
ℓ ℓ' : Level
A B C D : Type ℓ
data _⊎_ (A : Type ℓ)(B : Type ℓ') : Type (ℓ-max ℓ ℓ') where
inl : A → A ⊎ B
inr : B → A ⊎ B
elim-⊎ : {C : A ⊎ B → Type ℓ} → ((a : A) → C (inl a)) → ((b : B) → C (inr b))
→ (x : A ⊎ B) → C x
elim-⊎ f _ (inl x) = f x
elim-⊎ _ g (inr y) = g y
map-⊎ : (A → C) → (B → D) → A ⊎ B → C ⊎ D
map-⊎ f _ (inl x) = inl (f x)
map-⊎ _ g (inr y) = inr (g y)
| 22.652174
| 78
| 0.476008
|
0b3c84ad9b409d3f9033c713da6b0db852c9914a
| 837
|
agda
|
Agda
|
Experiment/SumFin.agda
|
rei1024/agda-misc
|
37200ea91d34a6603d395d8ac81294068303f577
|
[
"MIT"
] | 3
|
2020-04-07T17:49:42.000Z
|
2020-04-21T00:03:43.000Z
|
Experiment/SumFin.agda
|
rei1024/agda-misc
|
37200ea91d34a6603d395d8ac81294068303f577
|
[
"MIT"
] | null | null | null |
Experiment/SumFin.agda
|
rei1024/agda-misc
|
37200ea91d34a6603d395d8ac81294068303f577
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
module Experiment.SumFin where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Nat
open import Data.Nat.Properties
open import Relation.Binary.PropositionalEquality
private
variable
k : ℕ
Fin : ℕ → Set
Fin zero = ⊥
Fin (suc n) = ⊤ ⊎ (Fin n)
pattern fzero = inj₁ tt
pattern fsuc n = inj₂ n
finj : Fin k → Fin (suc k)
finj {suc k} fzero = fzero
finj {suc k} (fsuc n) = fsuc (finj {k} n)
toℕ : Fin k → ℕ
toℕ {suc k} (inj₁ tt) = zero
toℕ {suc k} (inj₂ x) = suc (toℕ {k} x)
toℕ-injective : {m n : Fin k} → toℕ m ≡ toℕ n → m ≡ n
toℕ-injective {suc k} {fzero} {fzero} _ = refl
toℕ-injective {suc k} {fzero} {fsuc x} ()
toℕ-injective {suc k} {fsuc m} {fzero} ()
toℕ-injective {suc k} {fsuc m} {fsuc x} p = cong fsuc (toℕ-injective (suc-injective p))
| 22.621622
| 87
| 0.642772
|
4d7a74e49829f5f5f17b69a7960cc4fac8cb5197
| 356
|
agda
|
Agda
|
test/Succeed/Issue1954b.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue1954b.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue1954b.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2016-05-04, issue 1954
module _ where
module P (A : Set) where
record R : Set where
field f : A
open module Q A = P A
module M (A : Set) (r : R A) where
open R A r public
-- Parameter A should be hidden in R.f
works : ∀{A} → R A → A
works r = R.f r
-- Record value should not be hidden in M.f
test : ∀{A} → R A → A
test r = M.f r
| 16.952381
| 43
| 0.601124
|
0b1eb9d01bcab29d59583a06eed7ddb31502a2a0
| 476
|
agda
|
Agda
|
gen/templates/Signature.agda
|
JoeyEremondi/agda-soas
|
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
|
[
"MIT"
] | 39
|
2021-11-09T20:39:55.000Z
|
2022-03-19T17:33:12.000Z
|
gen/templates/Signature.agda
|
JoeyEremondi/agda-soas
|
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
|
[
"MIT"
] | 1
|
2021-11-21T12:19:32.000Z
|
2021-11-21T12:19:32.000Z
|
gen/templates/Signature.agda
|
JoeyEremondi/agda-soas
|
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
|
[
"MIT"
] | 4
|
2021-11-09T20:39:59.000Z
|
2022-01-24T12:49:17.000Z
|
{-
This second-order signature was created from the following second-order syntax description:
$sig_string
-}
module ${syn_name}.Signature where
open import SOAS.Context
$type_decl
$derived_ty_ops
open import SOAS.Syntax.Signature $type public
open import SOAS.Syntax.Build $type public
-- Operator symbols
data ${sig}ₒ : Set where
$operator_decl
-- Term signature
${sig}:Sig : Signature ${sig}ₒ
${sig}:Sig = sig λ
{ $sig_decl
}
open Signature ${sig}:Sig public
| 17
| 91
| 0.741597
|
31ebb03ba6e664548815b83a99426e8a3b517f04
| 815
|
agda
|
Agda
|
src/fot/FOTC/Program/Nest/Nest.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
src/fot/FOTC/Program/Nest/Nest.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
src/fot/FOTC/Program/Nest/Nest.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- Simple example of a nested recursive function
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- From: Ana Bove and Venanzio Capretta. Nested general recursion and
-- partiality in type theory. Vol. 2152 of LNCS. 2001.
module FOTC.Program.Nest.Nest where
open import FOTC.Base
------------------------------------------------------------------------------
-- The nest function.
postulate
nest : D → D
nest-0 : nest zero ≡ zero
nest-S : ∀ n → nest (succ₁ n) ≡ nest (nest n)
{-# ATP axioms nest-0 nest-S #-}
| 33.958333
| 78
| 0.431902
|
dc43761bd416e78413502225df9f20bd79763eb0
| 1,645
|
agda
|
Agda
|
src/MultiSorted/UniversalModel.agda
|
cilinder/formaltt
|
0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb
|
[
"MIT"
] | 21
|
2021-02-16T14:07:06.000Z
|
2021-11-19T15:50:08.000Z
|
src/MultiSorted/UniversalModel.agda
|
andrejbauer/formaltt
|
2aaf850bb1a262681c5a232cdefae312f921b9d4
|
[
"MIT"
] | 1
|
2021-04-30T14:18:25.000Z
|
2021-05-14T16:15:17.000Z
|
src/MultiSorted/UniversalModel.agda
|
andrejbauer/formaltt
|
2aaf850bb1a262681c5a232cdefae312f921b9d4
|
[
"MIT"
] | 6
|
2021-02-16T13:43:07.000Z
|
2021-05-24T02:51:43.000Z
|
import Relation.Binary.Reasoning.Setoid as SetoidR
open import MultiSorted.AlgebraicTheory
import MultiSorted.Interpretation as Interpretation
import MultiSorted.Model as Model
import MultiSorted.UniversalInterpretation as UniversalInterpretation
import MultiSorted.Substitution as Substitution
import MultiSorted.SyntacticCategory as SyntacticCategory
module MultiSorted.UniversalModel
{ℓt}
{𝓈 ℴ}
{Σ : Signature {𝓈} {ℴ}}
(T : Theory ℓt Σ) where
open Theory T
open Substitution T
open UniversalInterpretation T
open Interpretation.Interpretation ℐ
open SyntacticCategory T
𝒰 : Model.Is-Model T ℐ
𝒰 =
record
{ model-eq = λ ε var-var →
let open SetoidR (eq-setoid (ax-ctx ε) (sort-of (ctx-slot (ax-sort ε)) var-var)) in
begin
interp-term (ax-lhs ε) var-var ≈⟨ interp-term-self (ax-lhs ε) var-var ⟩
ax-lhs ε ≈⟨ id-action ⟩
ax-lhs ε [ id-s ]s ≈⟨ eq-axiom ε id-s ⟩
ax-rhs ε [ id-s ]s ≈˘⟨ id-action ⟩
ax-rhs ε ≈˘⟨ interp-term-self (ax-rhs ε) var-var ⟩
interp-term (ax-rhs ε) var-var ∎
}
-- The universal model is universal
universality : ∀ (ε : Equation Σ) → ⊨ ε → ⊢ ε
universality ε p =
let open Equation in
let open SetoidR (eq-setoid (eq-ctx ε) (eq-sort ε)) in
(begin
eq-lhs ε ≈˘⟨ interp-term-self (eq-lhs ε) var-var ⟩
interp-term (eq-lhs ε) var-var ≈⟨ p var-var ⟩
interp-term (eq-rhs ε) var-var ≈⟨ interp-term-self (eq-rhs ε) var-var ⟩
eq-rhs ε ∎)
| 35
| 106
| 0.597568
|
59564f6359f177955b4b237ae33d1c9476262f8b
| 642
|
agda
|
Agda
|
agda/Relation/Nullary/Decidable/Logic.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 4
|
2021-01-05T14:07:44.000Z
|
2021-01-05T15:32:14.000Z
|
agda/Relation/Nullary/Decidable/Logic.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | null | null | null |
agda/Relation/Nullary/Decidable/Logic.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 1
|
2021-01-05T14:05:30.000Z
|
2021-01-05T14:05:30.000Z
|
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Relation.Nullary.Decidable.Logic where
open import Prelude
open import Data.Sum
infixl 7 _&&_
_&&_ : Dec A → Dec B → Dec (A × B)
(x && y) .does = x .does and y .does
(yes x && yes y) .why = ofʸ (x , y)
(yes x && no y) .why = ofⁿ (y ∘ snd)
(no x && y) .why = ofⁿ (x ∘ fst)
infixl 6 _||_
_||_ : Dec A → Dec B → Dec (A ⊎ B)
(x || y) .does = x .does or y .does
(yes x || y) .why = ofʸ (inl x)
(no x || yes y) .why = ofʸ (inr y)
(no x || no y) .why = ofⁿ (either x y)
! : Dec A → Dec (¬ A)
! x .does = not (x .does)
! (yes x) .why = ofⁿ (λ z → z x)
! (no x) .why = ofʸ x
| 24.692308
| 54
| 0.528037
|
5973ad731e0c257e36eca2547cc29a424c9dac72
| 167
|
agda
|
Agda
|
test/Fail/NoParseForApplication.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/NoParseForApplication.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/NoParseForApplication.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Operators used in the wrong way.
module NoParseForApplication where
postulate
X : Set
_! : X -> X
right : X -> X
right x = x !
wrong : X -> X
wrong x = ! x
| 11.928571
| 35
| 0.610778
|
23f5c4bf83c3b43e462cb2ad794135f9d28c0a87
| 4,810
|
agda
|
Agda
|
Numeral/Finite/Proofs.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Numeral/Finite/Proofs.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Numeral/Finite/Proofs.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Numeral.Finite.Proofs where
import Lvl
open import Data
open import Data.Boolean.Stmt
open import Functional
open import Logic.Classical
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Logic.Predicate
open import Numeral.Finite
import Numeral.Finite.Oper.Comparisons as 𝕟
open import Numeral.Natural hiding (𝐏)
open import Numeral.Natural.Function
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.Comparisons
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Decidable
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Function.Domain
open import Syntax.Number
open import Type.Properties.Decidable
open import Type.Properties.Decidable.Proofs
private variable N : ℕ
bounded : ∀{N : ℕ}{n : 𝕟(𝐒(N))} → (𝕟-to-ℕ(n) < 𝐒(N))
bounded{_} {𝟎} = [≤]-with-[𝐒] ⦃ [≤]-minimum ⦄
bounded{𝐒(N)}{𝐒(n)} = [≤]-with-[𝐒] ⦃ bounded{N}{n} ⦄
ℕ-to-𝕟-eq : ∀{M N n} ⦃ nM : IsTrue(n <? M) ⦄ ⦃ nN : IsTrue(n <? N) ⦄ → IsTrue(ℕ-to-𝕟 n {n = M} ⦃ nM ⦄ 𝕟.≡? ℕ-to-𝕟 n {n = N} ⦃ nN ⦄)
ℕ-to-𝕟-eq {𝐒 M} {𝐒 N} {𝟎} = [⊤]-intro
ℕ-to-𝕟-eq {𝐒 M} {𝐒 N} {𝐒 n} = ℕ-to-𝕟-eq {M} {N} {n}
𝕟-to-ℕ-preserve-eq : ∀{M N}{m : 𝕟(M)}{n : 𝕟(N)} → IsTrue(m 𝕟.≡? n) → (𝕟-to-ℕ m ≡ 𝕟-to-ℕ n)
𝕟-to-ℕ-preserve-eq {𝐒 M} {𝐒 N} {𝟎} {𝟎} [⊤]-intro = [≡]-intro
𝕟-to-ℕ-preserve-eq {𝐒 M} {𝐒 N} {𝐒 m} {𝐒 n} = [≡]-with(𝐒) ∘ 𝕟-to-ℕ-preserve-eq {M} {N} {m} {n}
𝕟-to-ℕ-preserve-gt : ∀{M N}{m : 𝕟(M)}{n : 𝕟(N)} → IsTrue(m 𝕟.>? n) → (𝕟-to-ℕ m > 𝕟-to-ℕ n)
𝕟-to-ℕ-preserve-gt {𝐒 M} {𝐒 N} {𝐒 m} {𝟎} [⊤]-intro = [≤]-with-[𝐒] ⦃ [≤]-minimum ⦄
𝕟-to-ℕ-preserve-gt {𝐒 M} {𝐒 N} {𝐒 m} {𝐒 n} x = [≤]-with-[𝐒] ⦃ 𝕟-to-ℕ-preserve-gt {M} {N} {m} {n} x ⦄
𝕟-to-ℕ-preserve-lt : ∀{M N}{m : 𝕟(M)}{n : 𝕟(N)} → IsTrue(m 𝕟.<? n) → (𝕟-to-ℕ m < 𝕟-to-ℕ n)
𝕟-to-ℕ-preserve-lt {𝐒 M} {𝐒 N} {𝟎} {𝐒 n} [⊤]-intro = [≤]-with-[𝐒] ⦃ [≤]-minimum ⦄
𝕟-to-ℕ-preserve-lt {𝐒 M} {𝐒 N} {𝐒 m} {𝐒 n} x = [≤]-with-[𝐒] ⦃ 𝕟-to-ℕ-preserve-lt {M} {N} {m} {n} x ⦄
𝕟-to-ℕ-preserve-ge : ∀{M N}{m : 𝕟(M)}{n : 𝕟(N)} → IsTrue(m 𝕟.≥? n) → (𝕟-to-ℕ m ≥ 𝕟-to-ℕ n)
𝕟-to-ℕ-preserve-ge {𝐒 M} {𝐒 N} {𝟎} {𝟎} [⊤]-intro = [≤]-minimum
𝕟-to-ℕ-preserve-ge {𝐒 M} {𝐒 N} {𝐒 n} {𝟎} [⊤]-intro = [≤]-minimum
𝕟-to-ℕ-preserve-ge {𝐒 M} {𝐒 N} {𝐒 m} {𝐒 n} x = [≤]-with-[𝐒] ⦃ 𝕟-to-ℕ-preserve-ge {M} {N} {m} {n} x ⦄
𝕟-to-ℕ-preserve-le : ∀{M N}{m : 𝕟(M)}{n : 𝕟(N)} → IsTrue(m 𝕟.≤? n) → (𝕟-to-ℕ m ≤ 𝕟-to-ℕ n)
𝕟-to-ℕ-preserve-le {𝐒 M} {𝐒 N} {𝟎} {𝟎} [⊤]-intro = [≤]-minimum
𝕟-to-ℕ-preserve-le {𝐒 M} {𝐒 N} {𝟎} {𝐒 n} [⊤]-intro = [≤]-minimum
𝕟-to-ℕ-preserve-le {𝐒 M} {𝐒 N} {𝐒 m} {𝐒 n} x = [≤]-with-[𝐒] ⦃ 𝕟-to-ℕ-preserve-le {M} {N} {m} {n} x ⦄
𝕟-to-ℕ-preserve-ne : ∀{M N}{m : 𝕟(M)}{n : 𝕟(N)} → IsTrue(m 𝕟.≢? n) → (𝕟-to-ℕ m ≢ 𝕟-to-ℕ n)
𝕟-to-ℕ-preserve-ne {𝐒 M} {𝐒 N} {𝟎} {𝐒 n} _ ()
𝕟-to-ℕ-preserve-ne {𝐒 M} {𝐒 N} {𝐒 m} {𝟎} _ ()
𝕟-to-ℕ-preserve-ne {𝐒 M} {𝐒 N} {𝐒 m} {𝐒 n} x p = 𝕟-to-ℕ-preserve-ne {M} {N} {m} {n} x (injective(𝐒) p)
congruence-ℕ-to-𝕟 : ∀ ⦃ pos : IsTrue(positive? N) ⦄ {x} ⦃ px : IsTrue(x <? N) ⦄ {y} ⦃ py : IsTrue(y <? N) ⦄ → (x ≡ y) → (ℕ-to-𝕟 x {N} ⦃ px ⦄ ≡ ℕ-to-𝕟 y ⦃ py ⦄)
congruence-ℕ-to-𝕟 [≡]-intro = [≡]-intro
𝕟-ℕ-inverse : ∀{N n} ⦃ nN : IsTrue(n <? N) ⦄ → (𝕟-to-ℕ {n = N}(ℕ-to-𝕟 n) ≡ n)
𝕟-ℕ-inverse {𝐒 N}{𝟎} = [≡]-intro
𝕟-ℕ-inverse {𝐒 N}{𝐒 n} = [≡]-with(𝐒) (𝕟-ℕ-inverse {N}{n})
ℕ-𝕟-inverse : ∀{N}{n : 𝕟(𝐒(N))} → (ℕ-to-𝕟(𝕟-to-ℕ n) ⦃ [↔]-to-[→] decider-true (bounded{n = n}) ⦄ ≡ n)
ℕ-𝕟-inverse {𝟎} {𝟎} = [≡]-intro
ℕ-𝕟-inverse {𝐒 N} {𝟎} = [≡]-intro
ℕ-𝕟-inverse {𝐒 N} {𝐒 n} = [≡]-with(𝐒) (ℕ-𝕟-inverse{N}{n})
instance
[<]-of-𝕟-to-ℕ : ∀{N : ℕ}{n : 𝕟(N)} → (𝕟-to-ℕ (n) < N)
[<]-of-𝕟-to-ℕ {𝟎} {()}
[<]-of-𝕟-to-ℕ {𝐒 N} {𝟎} = [≤]-with-[𝐒]
[<]-of-𝕟-to-ℕ {𝐒 N} {𝐒 n} = [≤]-with-[𝐒] ⦃ [<]-of-𝕟-to-ℕ {N} {n} ⦄
instance
[𝐒]-injective : ∀{N : ℕ} → Injective(𝕟.𝐒{N})
Injective.proof [𝐒]-injective [≡]-intro = [≡]-intro
[≡][≡?]-equivalence : ∀{n}{i j : 𝕟(n)} → (i ≡ j) ↔ IsTrue(i 𝕟.≡? j)
[≡][≡?]-equivalence {𝐒 n} {𝟎} {𝟎} = [↔]-intro (const [≡]-intro) (const [⊤]-intro)
[≡][≡?]-equivalence {𝐒 n} {𝟎} {𝐒 j} = [↔]-intro (\()) (\())
[≡][≡?]-equivalence {𝐒 n} {𝐒 i} {𝟎} = [↔]-intro (\()) (\())
[≡][≡?]-equivalence {𝐒 n} {𝐒 i} {𝐒 j} = [∧]-map ([≡]-with(𝐒) ∘_) (_∘ injective(𝐒)) ([≡][≡?]-equivalence {n} {i} {j})
instance
[≡][𝕟]-decider : ∀{n} → Decider(2)(_≡_ {T = 𝕟(n)})(𝕟._≡?_)
[≡][𝕟]-decider {𝐒 n} {𝟎} {𝟎} = true [≡]-intro
[≡][𝕟]-decider {𝐒 n} {𝟎} {𝐒 y} = false \()
[≡][𝕟]-decider {𝐒 n} {𝐒 x} {𝟎} = false \()
[≡][𝕟]-decider {𝐒 n} {𝐒 x} {𝐒 y} = step{f = id} (true ∘ [≡]-with(𝐒)) (false ∘ contrapositiveᵣ(injective(𝐒))) ([≡][𝕟]-decider {n} {x} {y})
maximum-0 : (maximum{N} ≡ 𝟎) → (N ≡ 𝟎)
maximum-0 {𝟎} _ = [≡]-intro
| 47.156863
| 159
| 0.519335
|
d06853dd4776bde3ea063ccc401550b4372f4e59
| 557
|
agda
|
Agda
|
agda-stdlib/src/Relation/Binary/SetoidReasoning.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Relation/Binary/SetoidReasoning.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Relation/Binary/SetoidReasoning.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use the
-- Relation.Binary.Reasoning.MultiSetoid module directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.SetoidReasoning where
open import Relation.Binary.Reasoning.MultiSetoid public
{-# WARNING_ON_IMPORT
"Relation.Binary.SetoidReasoning was deprecated in v1.0.
Use Relation.Binary.Reasoning.MultiSetoid instead."
#-}
| 30.944444
| 72
| 0.576302
|
0b90162dee8368233fccfe1f80f25f2da88cf519
| 2,228
|
agda
|
Agda
|
src/LibraBFT/Impl/Consensus/ConsensusTypes/BlockRetrieval.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
src/LibraBFT/Impl/Consensus/ConsensusTypes/BlockRetrieval.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
src/LibraBFT/Impl/Consensus/ConsensusTypes/BlockRetrieval.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block
import LibraBFT.Impl.Consensus.ConsensusTypes.BlockData as BlockData
import LibraBFT.Impl.Consensus.ConsensusTypes.QuorumCert as QuorumCert
import LibraBFT.Impl.Types.BlockInfo as BlockInfo
import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier
open import LibraBFT.Impl.OBM.Crypto hiding (verify)
open import LibraBFT.Impl.OBM.Logging.Logging
open import LibraBFT.Impl.OBM.Rust.RustTypes
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
open import Util.PKCS hiding (verify)
open import Util.Prelude
open import Util.Hash
------------------------------------------------------------------------------
open import Data.String using (String)
module LibraBFT.Impl.Consensus.ConsensusTypes.BlockRetrieval where
verify : BlockRetrievalResponse → HashValue → U64 → ValidatorVerifier → Either ErrLog Unit
verify self blockId numBlocks sigVerifier =
grd‖ self ^∙ brpStatus /= BRSSucceeded ≔
Left fakeErr -- here ["/= BRSSucceeded"]
‖ length (self ^∙ brpBlocks) /= numBlocks ≔
Left fakeErr -- here ["not enough blocks returned", show (self^.brpBlocks), show numBlocks]
‖ otherwise≔
verifyBlocks (self ^∙ brpBlocks)
where
here' : List String → List String
here' t = "BlockRetrieval" ∷ "verify" ∷ t
verifyBlock : HashValue → Block → Either ErrLog HashValue
verifyBlocks : List Block → Either ErrLog Unit
verifyBlocks blks = foldM_ verifyBlock blockId blks
verifyBlock expectedId block = do
Block.validateSignature block sigVerifier
Block.verifyWellFormed block
lcheck (block ^∙ bId == expectedId)
(here' ("blocks do not form a chain" ∷ [])) -- lsHV (block^.bId), lsHV expectedId
pure (block ^∙ bParentId)
| 43.686275
| 111
| 0.687163
|
59a29a71e95fbb904f02f90252ff3d9203d481ed
| 3,626
|
agda
|
Agda
|
src/prototyping/subst/Subst.agda
|
dagit/agda
|
4383a3d20328a6c43689161496cee8eb479aca08
|
[
"MIT"
] | 1
|
2019-11-27T07:26:06.000Z
|
2019-11-27T07:26:06.000Z
|
src/prototyping/subst/Subst.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
src/prototyping/subst/Subst.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
module Subst where
import Level
postulate Ty : Set
data Cxt : Set where
ε : Cxt
_,_ : (Γ : Cxt) (A : Ty) → Cxt
_++_ : Cxt → Cxt → Cxt
Γ ++ ε = Γ
Γ ++ (Δ , A) = (Γ ++ Δ) , A
data Tm : Cxt → Ty → Set where
vz : ∀ {Γ A} → Tm (Γ , A) A
other : ∀ {Γ A} → Tm Γ A
data _≡_ {a}{A : Set a}(x : A) : A → Set a where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REFL refl #-}
data Sub : Cxt → Cxt → Set where
_∷_ : ∀ {Γ Δ A} → Tm Γ A → Sub Γ Δ → Sub Γ (Δ , A)
lift : ∀ {Γ Δ} Ψ → Sub Γ Δ → Sub (Γ ++ Ψ) (Δ ++ Ψ)
wk : ∀ {Γ Δ} Ψ → Sub Γ Δ → Sub (Γ ++ Ψ) Δ
id : ∀ {Γ} → Sub Γ Γ
∅ : ∀ {Γ} → Sub Γ ε
assoc : ∀ {Γ Δ} Ψ → (Γ ++ (Δ ++ Ψ)) ≡ ((Γ ++ Δ) ++ Ψ)
assoc ε = refl
assoc {Γ}{Δ} (Ψ , A) rewrite assoc {Γ} {Δ} Ψ = refl
ε++ : ∀ Γ → (ε ++ Γ) ≡ Γ
ε++ ε = refl
ε++ (Γ , A) rewrite ε++ Γ = refl
postulate
apply : ∀ {Γ Δ A} → Sub Γ Δ → Tm Δ A → Tm Γ A
sym : ∀ {A : Set}{x y : A} → x ≡ y → y ≡ x
sym refl = refl
cast : ∀ {Γ₁ Γ₂ Δ₁ Δ₂} → Γ₁ ≡ Γ₂ → Δ₁ ≡ Δ₂ → Sub Γ₁ Δ₁ → Sub Γ₂ Δ₂
cast refl refl ρ = ρ
inj : ∀ {Γ Δ A B} → (Γ , A) ≡ (Δ , B) → Γ ≡ Δ
inj refl = refl
injT : ∀ {Γ Δ A B} → (Γ , A) ≡ (Δ , B) → A ≡ B
injT refl = refl
drop : ∀ {Γ Δ ΔΨ} Ψ → Sub Γ ΔΨ → ΔΨ ≡ (Δ ++ Ψ) → Sub Γ Δ
drop Ψ id refl = wk Ψ id
drop Ψ (wk Δ ρ) refl = wk Δ (drop Ψ ρ refl)
drop Ψ (lift ε ρ) refl = drop Ψ ρ refl
drop ε ρ refl = ρ
drop (Ψ , A) (x ∷ ρ) refl = drop Ψ ρ refl
drop {Δ = Δ} (Ψ , A) (lift {Γ = Γ}{Δ = Σ} (Θ , A′) ρ) eq =
wk (ε , A′) (drop Ψ (lift Θ ρ) (inj eq))
drop (Ψ , A) ∅ ()
wkS : ∀ {Γ Δ} Ψ → Sub Γ Δ → Sub (Γ ++ Ψ) Δ
wkS ε ρ = ρ
wkS Ψ (x ∷ ρ) = (apply (wk Ψ id) x) ∷ wkS Ψ ρ
wkS Ψ (lift Ψ₁ ρ) = wk Ψ (lift Ψ₁ ρ)
wkS Ψ (wk Ψ₁ ρ) = cast (assoc Ψ) refl (wkS (Ψ₁ ++ Ψ) ρ)
wkS Ψ id = wk Ψ id
wkS Ψ ∅ = ∅
liftS : ∀ {Γ Δ} Ψ → Sub Γ Δ → Sub (Γ ++ Ψ) (Δ ++ Ψ)
liftS Ψ (x ∷ ρ) = lift Ψ (x ∷ ρ)
liftS Ψ (lift Ψ₁ ρ) = cast (assoc Ψ) (assoc Ψ) (liftS (Ψ₁ ++ Ψ) ρ)
liftS Ψ (wk Ψ₁ ρ) = lift Ψ (wk Ψ₁ ρ)
liftS Ψ id = id
liftS Ψ ∅ = lift Ψ ∅
data _×_ A B : Set where
_,_ : A → B → A × B
split : ∀ {Γ Δ ΔΨ} Ψ → Sub Γ ΔΨ → ΔΨ ≡ (Δ ++ Ψ) → Sub Γ Δ × Sub Γ Ψ
split {Γ} ε ρ refl = ρ , ∅
split (Ψ , A) (x ∷ ρ) refl with split Ψ ρ refl
... | σ , δ = σ , (x ∷ δ)
split Ψ (lift ε ρ) eq = split Ψ ρ eq
split (Ψ , A) (lift (Ψ₁ , A₁) ρ) eq with split Ψ (lift Ψ₁ ρ) (inj eq) | injT eq
split (Ψ , A) (lift (Ψ₁ , .A) ρ) eq | σ , δ | refl =
wk (ε , A) σ , lift (ε , A) δ
split Ψ (wk Ψ₁ ρ) eq with split Ψ ρ eq
... | σ , δ = wk Ψ₁ σ , wk Ψ₁ δ
split {Δ = Δ} Ψ id refl = wk Ψ id , cast refl (ε++ Ψ) (lift {Γ = Δ} Ψ ∅)
split (Ψ , A) ∅ ()
_<>_ : ∀ {Γ Δ Ψ} → Sub Γ Ψ → Sub Γ Δ → Sub Γ (Δ ++ Ψ)
(x ∷ ρ) <> σ = x ∷ (ρ <> σ)
lift Ψ ρ <> σ = {!!}
wk Ψ₁ ρ <> σ = {!!}
-- _<>_ {Ψ = Ψ} id (_∷_ {Δ = Δ}{A = A} x σ) = cast refl (assoc {_}{ε , A} Ψ)
-- (_<>_ {Ψ = (ε , A) ++ Ψ} {!!} σ)
id <> lift Ψ σ = {!!}
id <> wk Ψ σ = {!!}
id <> id = {!!}
_<>_ {Ψ = Ψ} id ∅ = cast (ε++ Ψ) refl id
_<>_ {Ψ = ε} id σ = {!!}
_<>_ {Ψ = Ψ , A} id σ = vz ∷ (_<>_ {Ψ = Ψ} (wk (ε , A) id) σ)
∅ <> σ = σ
comp : ∀ {Γ Δ Δ′ Ψ} → Sub Γ Δ → Sub Δ′ Ψ → Δ ≡ Δ′ → Sub Γ Ψ
comp ρ id refl = ρ
comp ρ (wk Δ σ) refl = comp (drop Δ ρ refl) σ refl
comp ρ (x ∷ σ) refl = apply ρ x ∷ comp ρ σ refl
comp ρ (lift ε σ) refl = comp ρ σ refl
comp ρ (lift Ψ σ) refl with split Ψ ρ refl
... | ρ₁ , ρ₂ = ρ₂ <> comp ρ₁ σ refl
comp {Γ} ∅ σ refl = cast (ε++ Γ) refl (wk Γ σ)
-- comp (u ∷ ρ) (lift (Ψ , A) σ) eq
-- with injT eq
-- ... | refl = u ∷ comp ρ (lift Ψ σ) (inj eq)
-- comp ρ (lift (Ψ , A) σ) eq =
-- apply (cast refl eq ρ) vz ∷
-- comp ρ (wk (ε , A) (lift Ψ σ)) eq
comp ρ ∅ refl = ∅
_∘_ : ∀ {Γ Δ Ψ} → Sub Γ Δ → Sub Δ Ψ → Sub Γ Ψ
ρ ∘ σ = comp ρ σ refl
| 27.892308
| 79
| 0.460011
|
12e8fd52b5f666df0bc951791f61662297b9e65e
| 5,477
|
agda
|
Agda
|
Categories/Functor/Slice.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
Categories/Functor/Slice.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
Categories/Functor/Slice.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Functor.Slice {o ℓ e} (C : Category o ℓ e) where
open import Data.Product using (_,_)
open import Categories.Adjoint
open import Categories.Category.CartesianClosed
open import Categories.Category.CartesianClosed.Locally
open import Categories.Functor
open import Categories.Functor.Properties
open import Categories.Morphism.Reasoning C
open import Categories.NaturalTransformation
import Categories.Category.Slice as S
import Categories.Diagram.Pullback as P
import Categories.Category.Construction.Pullbacks as Pbs
open Category C
open HomReasoning
module _ {A : Obj} where
open S.SliceObj
open S.Slice⇒
Base-F : ∀ {o′ ℓ′ e′} {D : Category o′ ℓ′ e′} (F : Functor C D) → Functor (S.Slice C A) (S.Slice D (Functor.F₀ F A))
Base-F {D = D} F = record
{ F₀ = λ { (S.sliceobj arr) → S.sliceobj (F₁ arr) }
; F₁ = λ { (S.slicearr △) → S.slicearr ([ F ]-resp-∘ △) }
; identity = identity
; homomorphism = homomorphism
; F-resp-≈ = F-resp-≈
}
where module D = Category D
open Functor F
open S C
Forgetful : Functor (Slice A) C
Forgetful = record
{ F₀ = λ X → Y X
; F₁ = λ f → h f
; identity = refl
; homomorphism = refl
; F-resp-≈ = λ eq → eq
}
BaseChange! : ∀ {B} (f : B ⇒ A) → Functor (Slice B) (Slice A)
BaseChange! f = record
{ F₀ = λ X → sliceobj (f ∘ arr X)
; F₁ = λ g → slicearr (pullʳ (△ g))
; identity = refl
; homomorphism = refl
; F-resp-≈ = λ eq → eq
}
module _ (pullbacks : ∀ {X Y Z} (h : X ⇒ Z) (i : Y ⇒ Z) → P.Pullback C h i) where
private
open P C
module pullbacks {X Y Z} h i = Pullback (pullbacks {X} {Y} {Z} h i)
open pullbacks
BaseChange* : ∀ {B} (f : B ⇒ A) → Functor (Slice A) (Slice B)
BaseChange* f = record
{ F₀ = λ X → sliceobj (p₂ (arr X) f)
; F₁ = λ {X Y} g → slicearr {h = Pullback.p₂ (unglue (pullbacks (arr Y) f)
(Pullback-resp-≈ (pullbacks (arr X) f) (△ g) refl))}
(p₂∘universal≈h₂ (arr Y) f)
; identity = λ {X} → ⟺ (unique (arr X) f id-comm identityʳ)
; homomorphism = λ {X Y Z} {h i} → unique-diagram (arr Z) f (p₁∘universal≈h₁ (arr Z) f ○ assoc ○ ⟺ (pullʳ (p₁∘universal≈h₁ (arr Y) f)) ○ ⟺ (pullˡ (p₁∘universal≈h₁ (arr Z) f)))
(p₂∘universal≈h₂ (arr Z) f ○ ⟺ (p₂∘universal≈h₂ (arr Y) f) ○ ⟺ (pullˡ (p₂∘universal≈h₂ (arr Z) f)))
; F-resp-≈ = λ {X Y} eq″ → unique (arr Y) f (p₁∘universal≈h₁ (arr Y) f ○ ∘-resp-≈ˡ eq″) (p₂∘universal≈h₂ (arr Y) f)
}
!⊣* : ∀ {B} (f : B ⇒ A) → BaseChange! f ⊣ BaseChange* f
!⊣* f = record
{ unit = ntHelper record
{ η = λ X → slicearr (p₂∘universal≈h₂ (f ∘ arr X) f {eq = identityʳ})
; commute = λ {X Y} g → unique-diagram (f ∘ arr Y) f
(cancelˡ (p₁∘universal≈h₁ (f ∘ arr Y) f) ○ ⟺ (cancelʳ (p₁∘universal≈h₁ (f ∘ arr X) f)) ○ pushˡ (⟺ (p₁∘universal≈h₁ (f ∘ arr Y) f)))
(pullˡ (p₂∘universal≈h₂ (f ∘ arr Y) f) ○ △ g ○ ⟺ (p₂∘universal≈h₂ (f ∘ arr X) f) ○ pushˡ (⟺ (p₂∘universal≈h₂ (f ∘ arr Y) f)))
}
; counit = ntHelper record
{ η = λ X → slicearr (pullbacks.commute (arr X) f)
; commute = λ {X Y} g → p₁∘universal≈h₁ (arr Y) f
}
; zig = λ {X} → p₁∘universal≈h₁ (f ∘ arr X) f
; zag = λ {Y} → unique-diagram (arr Y) f
(pullˡ (p₁∘universal≈h₁ (arr Y) f) ○ pullʳ (p₁∘universal≈h₁ (f ∘ pullbacks.p₂ (arr Y) f) f))
(pullˡ (p₂∘universal≈h₂ (arr Y) f) ○ p₂∘universal≈h₂ (f ∘ pullbacks.p₂ (arr Y) f) f ○ ⟺ identityʳ)
}
pullback-functorial : ∀ {B} (f : B ⇒ A) → Functor (Slice A) C
pullback-functorial f = record
{ F₀ = λ X → p.P X
; F₁ = λ f → p⇒ _ _ f
; identity = λ {X} → sym (p.unique X id-comm id-comm)
; homomorphism = λ {_ Y Z} →
p.unique-diagram Z (p.p₁∘universal≈h₁ Z ○ ⟺ identityˡ ○ ⟺ (pullʳ (p.p₁∘universal≈h₁ Y)) ○ ⟺ (pullˡ (p.p₁∘universal≈h₁ Z)))
(p.p₂∘universal≈h₂ Z ○ assoc ○ ⟺ (pullʳ (p.p₂∘universal≈h₂ Y)) ○ ⟺ (pullˡ (p.p₂∘universal≈h₂ Z)))
; F-resp-≈ = λ {_ B} {h i} eq →
p.unique-diagram B (p.p₁∘universal≈h₁ B ○ ⟺ (p.p₁∘universal≈h₁ B))
(p.p₂∘universal≈h₂ B ○ ∘-resp-≈ˡ eq ○ ⟺ (p.p₂∘universal≈h₂ B))
}
where p : ∀ X → Pullback f (arr X)
p X = pullbacks f (arr X)
module p X = Pullback (p X)
p⇒ : ∀ X Y (g : Slice⇒ X Y) → p.P X ⇒ p.P Y
p⇒ X Y g = Pbs.Pullback⇒.pbarr pX⇒pY
where pX : Pbs.PullbackObj C A
pX = record { pullback = p X }
pY : Pbs.PullbackObj C A
pY = record { pullback = p Y }
pX⇒pY : Pbs.Pullback⇒ C A pX pY
pX⇒pY = record
{ mor₁ = Category.id C
; mor₂ = h g
; commute₁ = identityʳ
; commute₂ = △ g
}
| 43.468254
| 181
| 0.486215
|
a1dee943e5374dafd507fd50c5c2f23fae2420f2
| 6,531
|
agda
|
Agda
|
Cubical/Algebra/Matrix.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | 1
|
2020-03-23T23:52:11.000Z
|
2020-03-23T23:52:11.000Z
|
Cubical/Algebra/Matrix.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Matrix.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.Algebra.Matrix where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Functions.FunExtEquiv
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Nat hiding (_+_)
open import Cubical.Data.Vec
open import Cubical.Data.FinData
open import Cubical.Relation.Nullary
open import Cubical.Structures.CommRing
private
variable
ℓ : Level
A : Type ℓ
-- Equivalence between Vec matrix and Fin function matrix
FinMatrix : (A : Type ℓ) (m n : ℕ) → Type ℓ
FinMatrix A m n = FinVec (FinVec A n) m
VecMatrix : (A : Type ℓ) (m n : ℕ) → Type ℓ
VecMatrix A m n = Vec (Vec A n) m
FinMatrix→VecMatrix : {m n : ℕ} → FinMatrix A m n → VecMatrix A m n
FinMatrix→VecMatrix M = FinVec→Vec (λ fm → FinVec→Vec (λ fn → M fm fn))
VecMatrix→FinMatrix : {m n : ℕ} → VecMatrix A m n → FinMatrix A m n
VecMatrix→FinMatrix M fn fm = lookup fm (lookup fn M)
FinMatrix→VecMatrix→FinMatrix : {m n : ℕ} (M : FinMatrix A m n) → VecMatrix→FinMatrix (FinMatrix→VecMatrix M) ≡ M
FinMatrix→VecMatrix→FinMatrix {m = zero} M = funExt λ f → ⊥.rec (¬Fin0 f)
FinMatrix→VecMatrix→FinMatrix {n = zero} M = funExt₂ λ _ f → ⊥.rec (¬Fin0 f)
FinMatrix→VecMatrix→FinMatrix {m = suc m} {n = suc n} M = funExt₂ goal
where
goal : (fm : Fin (suc m)) (fn : Fin (suc n)) →
VecMatrix→FinMatrix (_ ∷ FinMatrix→VecMatrix (λ z → M (suc z))) fm fn ≡ M fm fn
goal zero zero = refl
goal zero (suc fn) i = FinVec→Vec→FinVec (λ z → M zero (suc z)) i fn
goal (suc fm) fn i = FinMatrix→VecMatrix→FinMatrix (λ z → M (suc z)) i fm fn
VecMatrix→FinMatrix→VecMatrix : {m n : ℕ} (M : VecMatrix A m n) → FinMatrix→VecMatrix (VecMatrix→FinMatrix M) ≡ M
VecMatrix→FinMatrix→VecMatrix {m = zero} [] = refl
VecMatrix→FinMatrix→VecMatrix {m = suc m} (M ∷ MS) i = Vec→FinVec→Vec M i ∷ VecMatrix→FinMatrix→VecMatrix MS i
FinMatrixIsoVecMatrix : (A : Type ℓ) (m n : ℕ) → Iso (FinMatrix A m n) (VecMatrix A m n)
FinMatrixIsoVecMatrix A m n =
iso FinMatrix→VecMatrix VecMatrix→FinMatrix VecMatrix→FinMatrix→VecMatrix FinMatrix→VecMatrix→FinMatrix
FinMatrix≃VecMatrix : {m n : ℕ} → FinMatrix A m n ≃ VecMatrix A m n
FinMatrix≃VecMatrix {_} {A} {m} {n} = isoToEquiv (FinMatrixIsoVecMatrix A m n)
FinMatrix≡VecMatrix : (A : Type ℓ) (m n : ℕ) → FinMatrix A m n ≡ VecMatrix A m n
FinMatrix≡VecMatrix _ _ _ = ua FinMatrix≃VecMatrix
-- We could have constructed the above Path as follows, but that
-- doesn't reduce as nicely as ua isn't on the toplevel:
--
-- FinMatrix≡VecMatrix : (A : Type ℓ) (m n : ℕ) → FinMatrix A m n ≡ VecMatrix A m n
-- FinMatrix≡VecMatrix A m n i = FinVec≡Vec (FinVec≡Vec A n i) m i
-- Experiment using addition. Transport commutativity from one
-- representation to the the other and relate the transported
-- operation with a more direct definition.
module _ (R : CommRing {ℓ}) where
open commring-·syntax R
addFinMatrix : ∀ {m n} → FinMatrix ⟨ R ⟩ m n → FinMatrix ⟨ R ⟩ m n → FinMatrix ⟨ R ⟩ m n
addFinMatrix M N = λ k l → M k l + N k l
addFinMatrixComm : ∀ {m n} → (M N : FinMatrix ⟨ R ⟩ m n) → addFinMatrix M N ≡ addFinMatrix N M
addFinMatrixComm M N i k l = commring+-comm R (M k l) (N k l) i
addVecMatrix : ∀ {m n} → VecMatrix ⟨ R ⟩ m n → VecMatrix ⟨ R ⟩ m n → VecMatrix ⟨ R ⟩ m n
addVecMatrix {m} {n} = transport (λ i → FinMatrix≡VecMatrix ⟨ R ⟩ m n i
→ FinMatrix≡VecMatrix ⟨ R ⟩ m n i
→ FinMatrix≡VecMatrix ⟨ R ⟩ m n i)
addFinMatrix
addMatrixPath : ∀ {m n} → PathP (λ i → FinMatrix≡VecMatrix ⟨ R ⟩ m n i
→ FinMatrix≡VecMatrix ⟨ R ⟩ m n i
→ FinMatrix≡VecMatrix ⟨ R ⟩ m n i)
addFinMatrix addVecMatrix
addMatrixPath {m} {n} i = transp (λ j → FinMatrix≡VecMatrix ⟨ R ⟩ m n (i ∧ j)
→ FinMatrix≡VecMatrix ⟨ R ⟩ m n (i ∧ j)
→ FinMatrix≡VecMatrix ⟨ R ⟩ m n (i ∧ j))
(~ i) addFinMatrix
addVecMatrixComm : ∀ {m n} → (M N : VecMatrix ⟨ R ⟩ m n) → addVecMatrix M N ≡ addVecMatrix N M
addVecMatrixComm {m} {n} = transport (λ i → (M N : FinMatrix≡VecMatrix ⟨ R ⟩ m n i)
→ addMatrixPath i M N ≡ addMatrixPath i N M)
addFinMatrixComm
-- More direct definition of addition for VecMatrix:
addVec : ∀ {m} → Vec ⟨ R ⟩ m → Vec ⟨ R ⟩ m → Vec ⟨ R ⟩ m
addVec [] [] = []
addVec (x ∷ xs) (y ∷ ys) = x + y ∷ addVec xs ys
addVecLem : ∀ {m} → (M N : Vec ⟨ R ⟩ m)
→ FinVec→Vec (λ l → lookup l M + lookup l N) ≡ addVec M N
addVecLem {zero} [] [] = refl
addVecLem {suc m} (x ∷ xs) (y ∷ ys) = cong (λ zs → x + y ∷ zs) (addVecLem xs ys)
addVecMatrix' : ∀ {m n} → VecMatrix ⟨ R ⟩ m n → VecMatrix ⟨ R ⟩ m n → VecMatrix ⟨ R ⟩ m n
addVecMatrix' [] [] = []
addVecMatrix' (M ∷ MS) (N ∷ NS) = addVec M N ∷ addVecMatrix' MS NS
-- The key lemma relating addVecMatrix and addVecMatrix'
addVecMatrixEq : ∀ {m n} → (M N : VecMatrix ⟨ R ⟩ m n) → addVecMatrix M N ≡ addVecMatrix' M N
addVecMatrixEq {zero} {n} [] [] j = transp (λ i → Vec (Vec ⟨ R ⟩ n) 0) j []
addVecMatrixEq {suc m} {n} (M ∷ MS) (N ∷ NS) =
addVecMatrix (M ∷ MS) (N ∷ NS)
≡⟨ transportUAop₂ FinMatrix≃VecMatrix addFinMatrix (M ∷ MS) (N ∷ NS) ⟩
FinVec→Vec (λ l → lookup l M + lookup l N) ∷ _
≡⟨ (λ i → addVecLem M N i ∷ FinMatrix→VecMatrix (λ k l → lookup l (lookup k MS) + lookup l (lookup k NS))) ⟩
addVec M N ∷ _
≡⟨ cong (λ X → addVec M N ∷ X) (sym (transportUAop₂ FinMatrix≃VecMatrix addFinMatrix MS NS) ∙ addVecMatrixEq MS NS) ⟩
addVec M N ∷ addVecMatrix' MS NS ∎
-- By binary funext we get an equality as functions
addVecMatrixEqFun : ∀ {m} {n} → addVecMatrix {m} {n} ≡ addVecMatrix'
addVecMatrixEqFun i M N = addVecMatrixEq M N i
-- We then directly get the properties about addVecMatrix'
addVecMatrixComm' : ∀ {m n} → (M N : VecMatrix ⟨ R ⟩ m n) → addVecMatrix' M N ≡ addVecMatrix' N M
addVecMatrixComm' M N = sym (addVecMatrixEq M N) ∙∙ addVecMatrixComm M N ∙∙ addVecMatrixEq N M
-- TODO: prove more properties about addition of matrices for both
-- FinMatrix and VecMatrix
-- TODO: define multiplication of matrices and do the same kind of
-- reasoning as we did for addition
| 44.732877
| 123
| 0.614913
|
120d854e6656ddba8e65afe476a6736c14b8edde
| 18,919
|
agda
|
Agda
|
STLC.agda
|
pedagand/typechecker-evolution
|
f807a85ccd570905d3dd834b5966efcf6f215e64
|
[
"MIT"
] | 43
|
2018-02-14T20:50:21.000Z
|
2022-02-09T11:13:36.000Z
|
STLC.agda
|
pedagand/typechecker-evolution
|
f807a85ccd570905d3dd834b5966efcf6f215e64
|
[
"MIT"
] | null | null | null |
STLC.agda
|
pedagand/typechecker-evolution
|
f807a85ccd570905d3dd834b5966efcf6f215e64
|
[
"MIT"
] | null | null | null |
-- Type-checker for the simply-typed lambda calculus
--
-- Where we make sure that failing to typecheck a term is justified by
-- an "ill-typing judgment", which erases to the original term.
open import Data.Empty
open import Data.Unit hiding (_≟_)
open import Data.List hiding ([_])
open import Data.Nat hiding (_*_ ; _+_ ; _≟_)
open import Data.Product
open import Relation.Nullary
open import Relation.Binary hiding (_⇒_)
open import Relation.Binary.PropositionalEquality hiding ([_])
infix 5 _⊢?_∋_
infix 5 _⊢?_∈
infix 19 _↪_
infixr 30 _+_
infixr 35 _*_
infixr 40 _⇒_
infix 50 _∈_
infix 50 _∈
infix 50 _∋_
infixl 150 _▹_
-- * Types
data type : Set where
unit nat : type
_*_ _+_ _⇒_ : (A B : type) → type
bool : type
bool = unit + unit
-- TODO: automate this definition using reflection of Agda in Agda
-- see https://github.com/UlfNorell/agda-prelude/blob/master/src/Tactic/Deriving/Eq.agda
_≟_ : Decidable {A = type} _≡_
unit ≟ unit = yes refl
nat ≟ nat = yes refl
(A₁ + B₁) ≟ (A₂ + B₂)
with A₁ ≟ A₂ | B₁ ≟ B₂
... | yes refl | yes refl = yes refl
... | yes refl | no ¬p = no (λ { refl → ¬p refl })
... | no ¬p | _ = no (λ { refl → ¬p refl })
(A₁ ⇒ B₁) ≟ (A₂ ⇒ B₂)
with A₁ ≟ A₂ | B₁ ≟ B₂
... | yes refl | yes refl = yes refl
... | yes _ | no ¬p = no λ { refl → ¬p refl }
... | no ¬p | _ = no λ { refl → ¬p refl }
(A₁ * B₁) ≟ (A₂ * B₂)
with A₁ ≟ A₂ | B₁ ≟ B₂
... | yes refl | yes refl = yes refl
... | yes _ | no ¬p = no λ { refl → ¬p refl }
... | no ¬p | q₂ = no λ { refl → ¬p refl }
unit ≟ (_ ⇒ _) = no λ {()}
unit ≟ (_ * _) = no λ {()}
unit ≟ nat = no λ {()}
unit ≟ (_ + _) = no λ {()}
nat ≟ (_ ⇒ _) = no λ {()}
nat ≟ (_ * _) = no λ {()}
nat ≟ unit = no λ {()}
nat ≟ (_ + _) = no λ {()}
(_ + _) ≟ (_ ⇒ _) = no λ {()}
(_ + _) ≟ (_ * _) = no λ {()}
(_ + _) ≟ nat = no λ {()}
(_ + _) ≟ unit = no λ {()}
(_ ⇒ _) ≟ unit = no λ {()}
(_ ⇒ _) ≟ nat = no λ {()}
(_ ⇒ _) ≟ (_ * _) = no λ {()}
(_ ⇒ _) ≟ (_ + _) = no λ {()}
(_ * _) ≟ unit = no λ {()}
(_ * _) ≟ nat = no λ {()}
(_ * _) ≟ (_ ⇒ _) = no λ {()}
(_ * _) ≟ (_ + _) = no λ {()}
-- * Syntax of terms
data dir : Set where
⇑ ⇓ : dir
data can (T : Set) : Set where
tt : can T
pair : (t₁ t₂ : T) → can T
lam : (b : T) → can T
ze : can T
su : (t : T) → can T
inj₁ inj₂ : (t : T) → can T
data elim (T : Set) : dir → Set where
apply : (s : T) → elim T ⇑
fst snd : elim T ⇑
split : (c₁ c₂ : T) → elim T ⇓
data term : dir → Set where
C : (c : can (term ⇓)) → term ⇓
inv : (t : term ⇑) → term ⇓
var : (k : ℕ) → term ⇑
_#_ : ∀ {d} → (n : term ⇑)(args : elim (term ⇓) d) → term d
[_:∋:_] : (T : type)(t : term ⇓) → term ⇑
pattern Ctt = C tt
pattern Cze = C ze
pattern Csu x = C (su x)
pattern Cpair x y = C (pair x y)
pattern Clam b = C (lam b)
pattern Cinj₁ x = C (inj₁ x)
pattern Cinj₂ x = C (inj₂ x)
-- ** Tests
true : term ⇓
true = Cinj₁ Ctt
false : term ⇓
false = Cinj₂ Ctt
t1 : term ⇓
t1 = inv ([ nat ⇒ nat :∋: Clam {- x -} (inv (var {- x -} 0)) ] # apply (Csu (Csu Cze)))
t2 : term ⇓
t2 = Clam {-x-} (var {- x -} 0 # split true false)
-- * Type system
context = List type
pattern _▹_ Γ T = T ∷ Γ
pattern ε = []
data _∈_ (T : type) : context → Set where
here : ∀ {Γ} →
---------
T ∈ Γ ▹ T
there : ∀ {Γ T'} →
T ∈ Γ
→ ----------
T ∈ Γ ▹ T'
mutual
data _C⊢[_]_ : context → dir → type → Set where
lam : ∀ {Γ A B} →
Γ ▹ A ⊢[ ⇓ ] B
→ ---------------
Γ C⊢[ ⇓ ] A ⇒ B
tt : ∀ {Γ} →
--------------
Γ C⊢[ ⇓ ] unit
ze : ∀ {Γ} →
-------------
Γ C⊢[ ⇓ ] nat
su : ∀ {Γ} →
Γ ⊢[ ⇓ ] nat
→ -------------
Γ C⊢[ ⇓ ] nat
inj₁ : ∀ {Γ A B} →
Γ ⊢[ ⇓ ] A
→ ---------------
Γ C⊢[ ⇓ ] A + B
inj₂ : ∀ {Γ A B} →
Γ ⊢[ ⇓ ] B
→ ---------------
Γ C⊢[ ⇓ ] A + B
pair : ∀ {Γ A B} →
Γ ⊢[ ⇓ ] A →
Γ ⊢[ ⇓ ] B
→ ---------------
Γ C⊢[ ⇓ ] A * B
data _E⊢[_]_↝_ : context → dir → type → type → Set where
apply : ∀ {Γ A B} →
Γ ⊢[ ⇓ ] A
→ -------------------
Γ E⊢[ ⇑ ] A ⇒ B ↝ B
fst : ∀ {Γ A B} →
-------------------
Γ E⊢[ ⇑ ] A * B ↝ A
snd : ∀ {Γ A B} →
-------------------
Γ E⊢[ ⇑ ] A * B ↝ B
iter : ∀ {Γ A} →
Γ ▹ A ⊢[ ⇓ ] A →
Γ ⊢[ ⇓ ] A
→ -----------------
Γ E⊢[ ⇓ ] nat ↝ A
case : ∀ {Γ A B C} →
Γ ▹ A ⊢[ ⇓ ] C →
Γ ▹ B ⊢[ ⇓ ] C
→ -------------------
Γ E⊢[ ⇓ ] A + B ↝ C
data _⊢[_]_ : context → dir → type → Set where
C : ∀ {Γ d T} →
Γ C⊢[ d ] T
→ -----------
Γ ⊢[ d ] T
inv : ∀ {Γ T} →
Γ ⊢[ ⇑ ] T
→ ----------
Γ ⊢[ ⇓ ] T
var : ∀ {Γ T} →
T ∈ Γ
→ ----------
Γ ⊢[ ⇑ ] T
_#_ : ∀ {Γ d I O} →
Γ ⊢[ ⇑ ] I →
Γ E⊢[ d ] I ↝ O
→ ---------------
Γ ⊢[ d ] O
[_:∋:_by_] : ∀ {Γ A} →
(B : type) → Γ ⊢[ ⇓ ] B → A ≡ B
→ -------------------------------
Γ ⊢[ ⇑ ] A
-- ** Tests
⊢true : [] ⊢[ ⇓ ] bool
⊢true = C (inj₁ (C tt))
⊢false : [] ⊢[ ⇓ ] bool
⊢false = C (inj₂ (C tt))
⊢t1 : [] ⊢[ ⇓ ] nat
⊢t1 = inv ([ (nat ⇒ nat) :∋: (C (lam (inv (var here)))) by refl ]
# (apply (C (su (C (su (C ze)))))))
-- * Relating typing and terms
record _↪_ (S T : Set) : Set where
field
⌊_⌋ : S → T
open _↪_ {{...}} public
instance
VarRaw : ∀ {T Γ} → T ∈ Γ ↪ ℕ
⌊_⌋ {{ VarRaw }} here = zero
⌊_⌋ {{ VarRaw }} (there x) = suc ⌊ x ⌋
OTermRaw : ∀ {Γ T d} → Γ ⊢[ d ] T ↪ term d
⌊_⌋ {{OTermRaw}} (C (lam b)) = C (lam ⌊ b ⌋)
⌊_⌋ {{OTermRaw}} (C tt) = C tt
⌊_⌋ {{OTermRaw}} (C ze) = C ze
⌊_⌋ {{OTermRaw}} (C (su t)) = C (su ⌊ t ⌋)
⌊_⌋ {{OTermRaw}} (C (inj₁ t)) = C (inj₁ ⌊ t ⌋)
⌊_⌋ {{OTermRaw}} (C (inj₂ t)) = C (inj₂ ⌊ t ⌋)
⌊_⌋ {{OTermRaw}} (C (pair t₁ t₂)) = C (pair ⌊ t₁ ⌋ ⌊ t₂ ⌋)
⌊_⌋ {{OTermRaw}} (inv t) = inv ⌊ t ⌋
⌊_⌋ {{OTermRaw}} (var x) = var ⌊ x ⌋
⌊_⌋ {{OTermRaw}} (f # (apply s)) = ⌊ f ⌋ # apply ⌊ s ⌋
⌊_⌋ {{OTermRaw}} (p # fst) = ⌊ p ⌋ # fst
⌊_⌋ {{OTermRaw}} (p # snd) = ⌊ p ⌋ # snd
⌊_⌋ {{OTermRaw}} (t # case x y) = ⌊ t ⌋ # split ⌊ x ⌋ ⌊ y ⌋
⌊_⌋ {{OTermRaw}} (t # iter fs fz) = ⌊ t ⌋ # split ⌊ fs ⌋ ⌊ fz ⌋
⌊_⌋ {{OTermRaw}} [ T :∋: t by refl ] = [ T :∋: ⌊ t ⌋ ]
data _⊢_∋_ (Γ : context)(T : type){d} : term d → Set where
well-typed : (Δ : Γ ⊢[ d ] T ) → Γ ⊢ T ∋ ⌊ Δ ⌋
-- TODO: one could prove that `Γ ⊢ T ∋ t` is H-prop when `t : term ⇓`, ie. we have
-- lemma-proof-irr : ∀ {Γ T}{t : term ⇓} → ∀ (pf₁ pf₂ : Γ ⊢ T ∋ t) → → pf₁ ≅ pf₂
-- but this requires proving that `⌊_⌋` is injective.
-- TODO: conversely, one should be able to prove that `Γ ⊢ T ∋ t` is
-- equivalent to `type` when `t : term ⇑` but I haven't tried.
-- ** Tests
bool∋true : [] ⊢ bool ∋ true
bool∋true = well-typed ⊢true
bool∋false : [] ⊢ bool ∋ false
bool∋false = well-typed ⊢false
nat∋t1 : [] ⊢ nat ∋ t1
nat∋t1 = well-typed ⊢t1
-- * Ill-type system
data Canonical {X} : type → can X → Set where
can-unit-tt : Canonical unit tt
can-nat-ze : Canonical nat ze
can-nat-su : ∀ {a} → Canonical nat (su a)
can-sum-inj₁ : ∀ {A B a} → Canonical (A + B) (inj₁ a)
can-sum-inj₂ : ∀ {A B b} → Canonical (A + B) (inj₂ b)
can-prod-pair : ∀ {A B a b} → Canonical (A * B) (pair a b)
data IsProduct : type → Set where
is-product : ∀ {A B} → IsProduct (A * B)
data IsArrow : type → Set where
is-arrow : ∀ {A B} → IsArrow (A ⇒ B)
data IsSplit : type → Set where
is-split-nat : IsSplit nat
is-split-sum : ∀ {A B} → IsSplit (A + B)
mtype : dir → Set
mtype ⇑ = ⊤
mtype ⇓ = type
data _B⊬[_]_ (Γ : context) : (d : dir) → mtype d → Set where
not-canonical : ∀ {c : can (term ⇓)}{T} →
¬ Canonical T c
→ ---------------
Γ B⊬[ ⇓ ] T
unsafe-inv : ∀ {A B} →
Γ ⊢[ ⇑ ] A → A ≢ B
→ -------------------
Γ B⊬[ ⇓ ] B
bad-split : ∀ {A B}{c₁ c₂ : term ⇓} →
Γ ⊢[ ⇑ ] A → ¬ IsSplit A
→ -------------------------
Γ B⊬[ ⇓ ] B
out-of-scope : ∀ {x : ℕ} →
x ≥ length Γ
→ ------------
Γ B⊬[ ⇑ ] _
bad-function : ∀ {T}{s : term ⇓} →
Γ ⊢[ ⇑ ] T → ¬ IsArrow T
→ ------------------------
Γ B⊬[ ⇑ ] _
bad-fst : ∀ {T} →
Γ ⊢[ ⇑ ] T → ¬ IsProduct T
→ --------------------------
Γ B⊬[ ⇑ ] _
bad-snd : ∀ {T} →
Γ ⊢[ ⇑ ] T → ¬ IsProduct T
→ --------------------------
Γ B⊬[ ⇑ ] _
-- TODO: automate this "trisection & free monad" construction by meta-programming
-- see: "The gentle art of levitation", Chapman et al. for the free monad
-- see: "Clowns to the left of me, jokers to the right", McBride for the dissection
mutual
data _C⊬[_]_ : context → (d : dir) → mtype d → Set where
lam : ∀ {Γ A B} → Γ ▹ A ⊬[ ⇓ ] B → Γ C⊬[ ⇓ ] A ⇒ B
su : ∀ {Γ} → Γ ⊬[ ⇓ ] nat → Γ C⊬[ ⇓ ] nat
inj₁ : ∀ {Γ A B} → Γ ⊬[ ⇓ ] A → Γ C⊬[ ⇓ ] A + B
inj₂ : ∀ {Γ A B} → Γ ⊬[ ⇓ ] B → Γ C⊬[ ⇓ ] A + B
pair₁ : ∀ {Γ A B} → Γ ⊬[ ⇓ ] A → term ⇓ → Γ C⊬[ ⇓ ] A * B
pair₂ : ∀ {Γ A B} → Γ ⊢[ ⇓ ] A → Γ ⊬[ ⇓ ] B → Γ C⊬[ ⇓ ] A * B
data _E⊬[_]_↝_ : context → (d : dir) → type → mtype d → Set where
apply : ∀ {Γ A B} → Γ ⊬[ ⇓ ] A → Γ E⊬[ ⇑ ] A ⇒ B ↝ _
iter₁ : ∀ {Γ T} → Γ ▹ T ⊬[ ⇓ ] T → term ⇓ → Γ E⊬[ ⇓ ] nat ↝ T
iter₂ : ∀ {Γ T} → Γ ▹ T ⊢[ ⇓ ] T → Γ ⊬[ ⇓ ] T → Γ E⊬[ ⇓ ] nat ↝ T
case₁ : ∀ {Γ A B C} → Γ ▹ A ⊬[ ⇓ ] C → term ⇓ → Γ E⊬[ ⇓ ] A + B ↝ C
case₂ : ∀ {Γ A B C} → Γ ▹ A ⊢[ ⇓ ] C → Γ ▹ B ⊬[ ⇓ ] C → Γ E⊬[ ⇓ ] A + B ↝ C
data _⊬[_]_ : context → (d : dir) → mtype d → Set where
because : ∀ {Γ d T} → Γ B⊬[ d ] T → Γ ⊬[ d ] T
C : ∀ {Γ d T} → Γ C⊬[ d ] T → Γ ⊬[ d ] T
inv : ∀ {Γ T} → Γ ⊬[ ⇑ ] _ → Γ ⊬[ ⇓ ] T
_#₁_ : ∀ {Γ d T} → Γ ⊬[ ⇑ ] _ → elim (term ⇓) d → Γ ⊬[ d ] T
_#₂_ : ∀ {Γ d I O} → Γ ⊢[ ⇑ ] I → Γ E⊬[ d ] I ↝ O → Γ ⊬[ d ] O
[_:∋:_] : ∀ {Γ} → (T : type) → Γ ⊬[ ⇓ ] T → Γ ⊬[ ⇑ ] _
instance
BTermRaw : ∀ {Γ d T} → Γ B⊬[ d ] T ↪ term d
⌊_⌋ {{BTermRaw}} (not-canonical {c} x) = C c
⌊_⌋ {{BTermRaw}} (unsafe-inv q _) = inv ⌊ q ⌋
⌊_⌋ {{BTermRaw}} (bad-split {c₁ = c₁} {c₂} t _) = ⌊ t ⌋ # split c₁ c₂
⌊_⌋ {{BTermRaw}} (out-of-scope {x} _) = var x
⌊_⌋ {{BTermRaw}} (bad-function {s = s} f _) = ⌊ f ⌋ # apply s
⌊_⌋ {{BTermRaw}} (bad-fst p _) = ⌊ p ⌋ # fst
⌊_⌋ {{BTermRaw}} (bad-snd p _) = ⌊ p ⌋ # snd
ETermRaw : ∀ {Γ d T} → Γ ⊬[ d ] T ↪ term d
⌊_⌋ {{ETermRaw}} (because e) = ⌊ e ⌋
⌊_⌋ {{ETermRaw}} (C (lam b)) = C (lam ⌊ b ⌋)
⌊_⌋ {{ETermRaw}} (C (su t)) = C (su ⌊ t ⌋)
⌊_⌋ {{ETermRaw}} (C (inj₁ t)) = C (inj₁ ⌊ t ⌋)
⌊_⌋ {{ETermRaw}} (C (inj₂ t)) = C (inj₂ ⌊ t ⌋)
⌊_⌋ {{ETermRaw}} (C (pair₁ t₁ t₂)) = C (pair ⌊ t₁ ⌋ t₂)
⌊_⌋ {{ETermRaw}} (C (pair₂ t₁ t₂)) = C (pair ⌊ t₁ ⌋ ⌊ t₂ ⌋)
⌊_⌋ {{ETermRaw}} (inv t) = inv ⌊ t ⌋
⌊_⌋ {{ETermRaw}} [ T :∋: t ] = [ T :∋: ⌊ t ⌋ ]
⌊_⌋ {{ETermRaw}} (t #₁ e) = ⌊ t ⌋ # e
⌊_⌋ {{ETermRaw}} (t #₂ apply x) = ⌊ t ⌋ # apply ⌊ x ⌋
⌊_⌋ {{ETermRaw}} (t #₂ iter₁ fs fz) = ⌊ t ⌋ # split ⌊ fs ⌋ fz
⌊_⌋ {{ETermRaw}} (t #₂ iter₂ fs fz) = ⌊ t ⌋ # split ⌊ fs ⌋ ⌊ fz ⌋
⌊_⌋ {{ETermRaw}} (t #₂ case₁ cX cY) = ⌊ t ⌋ # split ⌊ cX ⌋ cY
⌊_⌋ {{ETermRaw}} (t #₂ case₂ cX cY) = ⌊ t ⌋ # split ⌊ cX ⌋ ⌊ cY ⌋
-- * Type-checking
-- ** View on variable lookup
data _∈-view_ : ℕ → context → Set where
yes : ∀ {T Γ} → (x : T ∈ Γ) → ⌊ x ⌋ ∈-view Γ
no : ∀ {Γ n} → n ≥ length Γ → n ∈-view Γ
_∈?_ : ∀ n Γ → n ∈-view Γ
_ ∈? ε = no z≤n
zero ∈? Γ ▹ T = yes here
suc n ∈? Γ ▹ T
with n ∈? Γ
... | yes t = yes (there t)
... | no q = no (s≤s q)
-- ** View on typing
data Dir : dir → Set where
_∈ : term ⇑ → Dir ⇑
_∋_ : type → term ⇓ → Dir ⇓
instance
DirRaw : ∀ {Γ d T} → Γ ⊢[ d ] T ↪ Dir d
⌊_⌋ {{DirRaw {d = ⇑}}} e = ⌊ e ⌋ ∈
⌊_⌋ {{DirRaw {d = ⇓}{T}}} e = T ∋ ⌊ e ⌋
EDirRaw : ∀ {Γ d T} → Γ ⊬[ d ] T ↪ Dir d
⌊_⌋ {{EDirRaw {d = ⇑}}} e = ⌊ e ⌋ ∈
⌊_⌋ {{EDirRaw {d = ⇓}{T}}} e = T ∋ ⌊ e ⌋
data _⊢[_]-view_ (Γ : context)(d : dir) : Dir d → Set where
yes : ∀ {T} (Δ : Γ ⊢[ d ] T) → Γ ⊢[ d ]-view ⌊ Δ ⌋
no : ∀ {T} (¬Δ : Γ ⊬[ d ] T) → Γ ⊢[ d ]-view ⌊ ¬Δ ⌋
isYes : ∀ {Γ T t} → Γ ⊢[ ⇓ ]-view T ∋ t → Set
isYes (yes Δ) = ⊤
isYes (no ¬Δ) = ⊥
lemma : ∀ {Γ T t} → (pf : Γ ⊢[ ⇓ ]-view T ∋ t) → isYes pf → Γ ⊢ T ∋ t
lemma (yes Δ) tt = well-typed Δ
lemma (no _) ()
-- XXX: Mutually-recursive to please the termination checker
_⊢?_∋_ : (Γ : context)(T : type)(t : term ⇓) → Γ ⊢[ ⇓ ]-view T ∋ t
_⊢?_∈ : (Γ : context)(t : term ⇑) → Γ ⊢[ ⇑ ]-view t ∈
_⊢?_∋C_ : (Γ : context)(T : type)(t : can (term ⇓)) → Γ ⊢[ ⇓ ]-view T ∋ C t
_!_∋_⊢?_∋#_ : (Γ : context)(I : type)(Δt : Γ ⊢[ ⇑ ] I)(T : type)(e : elim (term ⇓) ⇓) → Γ ⊢[ ⇓ ]-view T ∋ (⌊ Δt ⌋ # e)
_!_∋_⊢?_∈# : (Γ : context)(T : type)(Δt : Γ ⊢[ ⇑ ] T)(e : elim (term ⇓) ⇑) → Γ ⊢[ ⇑ ]-view (⌊ Δt ⌋ # e) ∈
Γ ⊢? T ∋ C t = Γ ⊢? T ∋C t
Γ ⊢? T ∋ inv t
with Γ ⊢? t ∈
... | no ¬Δ = no (inv ¬Δ)
... | yes {T'} Δ
with T' ≟ T
... | yes refl = yes (inv Δ)
... | no ¬p = no (because (unsafe-inv Δ ¬p))
Γ ⊢? A ∋ t # e
with Γ ⊢? t ∈
... | no ¬Δt = no (¬Δt #₁ e)
... | yes {T} Δt = Γ ! T ∋ Δt ⊢? A ∋# e
Γ ⊢? var k ∈
with k ∈? Γ
... | yes x = yes (var x)
... | no ¬q = no (because (out-of-scope ¬q))
Γ ⊢? t # e ∈
with Γ ⊢? t ∈
... | no ¬Δt = no (¬Δt #₁ e)
... | yes {T} Δt = Γ ! T ∋ Δt ⊢? e ∈#
Γ ⊢? [ T :∋: t ] ∈
with Γ ⊢? T ∋ t
... | yes Δt = yes [ T :∋: Δt by refl ]
... | no ¬Δt = no [ T :∋: ¬Δt ]
Γ ⊢? unit ∋C tt = yes (C tt)
Γ ⊢? unit ∋C pair _ _ = no (because (not-canonical (λ {()})))
Γ ⊢? unit ∋C lam _ = no (because (not-canonical (λ {()})))
Γ ⊢? unit ∋C ze = no (because (not-canonical (λ {()})))
Γ ⊢? unit ∋C su _ = no (because (not-canonical (λ {()})))
Γ ⊢? unit ∋C inj₁ _ = no (because (not-canonical (λ {()})))
Γ ⊢? unit ∋C inj₂ _ = no (because (not-canonical (λ {()})))
Γ ⊢? A * B ∋C pair t₁ t₂
with Γ ⊢? A ∋ t₁ | Γ ⊢? B ∋ t₂
... | yes Δ₁ | yes Δ₂ = yes (C (pair Δ₁ Δ₂))
... | yes Δ₁ | no ¬Δ₂ = no (C (pair₂ Δ₁ ¬Δ₂))
... | no ¬Δ₁ | _ = no (C (pair₁ ¬Δ₁ t₂))
Γ ⊢? A * B ∋C tt = no (because (not-canonical (λ {()})))
Γ ⊢? A * B ∋C lam _ = no (because (not-canonical (λ {()})))
Γ ⊢? A * B ∋C ze = no (because (not-canonical (λ {()})))
Γ ⊢? A * B ∋C su _ = no (because (not-canonical (λ {()})))
Γ ⊢? A * B ∋C inj₁ _ = no (because (not-canonical (λ {()})))
Γ ⊢? A * B ∋C inj₂ _ = no (because (not-canonical (λ {()})))
Γ ⊢? A ⇒ B ∋C lam b
with Γ ▹ A ⊢? B ∋ b
... | yes Δ = yes (C (lam Δ))
... | no ¬Δ = no (C (lam ¬Δ))
Γ ⊢? A ⇒ B ∋C tt = no (because (not-canonical (λ {()})))
Γ ⊢? A ⇒ B ∋C ze = no (because (not-canonical (λ {()})))
Γ ⊢? A ⇒ B ∋C su x = no (because (not-canonical (λ {()})))
Γ ⊢? A ⇒ B ∋C pair _ _ = no (because (not-canonical (λ {()})))
Γ ⊢? A ⇒ B ∋C inj₁ _ = no (because (not-canonical (λ {()})))
Γ ⊢? A ⇒ B ∋C inj₂ _ = no (because (not-canonical (λ {()})))
Γ ⊢? nat ∋C ze = yes (C ze)
Γ ⊢? nat ∋C su n
with Γ ⊢? nat ∋ n
... | yes Δ = yes (C (su Δ))
... | no ¬Δ = no (C (su ¬Δ))
Γ ⊢? nat ∋C tt = no (because (not-canonical (λ {()})))
Γ ⊢? nat ∋C pair _ _ = no (because (not-canonical (λ {()})))
Γ ⊢? nat ∋C lam _ = no (because (not-canonical (λ {()})))
Γ ⊢? nat ∋C inj₁ _ = no (because (not-canonical (λ {()})))
Γ ⊢? nat ∋C inj₂ _ = no (because (not-canonical (λ {()})))
Γ ⊢? A + B ∋C inj₁ t
with Γ ⊢? A ∋ t
... | yes Δ = yes (C (inj₁ Δ))
... | no ¬Δ = no (C (inj₁ ¬Δ))
Γ ⊢? A + B ∋C inj₂ t
with Γ ⊢? B ∋ t
... | yes Δ = yes (C (inj₂ Δ))
... | no ¬Δ = no (C (inj₂ ¬Δ))
Γ ⊢? A + B ∋C tt = no (because (not-canonical (λ {()})))
Γ ⊢? A + B ∋C pair _ _ = no (because (not-canonical (λ {()})))
Γ ⊢? A + B ∋C lam _ = no (because (not-canonical (λ {()})))
Γ ⊢? A + B ∋C ze = no (because (not-canonical (λ {()})))
Γ ⊢? A + B ∋C su _ = no (because (not-canonical (λ {()})))
Γ ! nat ∋ Δt ⊢? A ∋# split fs fz
with Γ ▹ A ⊢? A ∋ fs | Γ ⊢? A ∋ fz
... | yes Δfs | yes Δfz = yes (Δt # iter Δfs Δfz)
... | yes Δfs | no ¬Δfz = no (Δt #₂ iter₂ Δfs ¬Δfz)
... | no ¬Δfs | _ = no (Δt #₂ iter₁ ¬Δfs fz)
Γ ! X + Y ∋ Δt ⊢? A ∋# split cX cY
with (X ∷ Γ) ⊢? A ∋ cX | (Y ∷ Γ) ⊢? A ∋ cY
... | yes ΔcX | yes ΔcY = yes (Δt # case ΔcX ΔcY)
... | yes ΔcX | no ¬ΔcY = no (Δt #₂ case₂ ΔcX ¬ΔcY)
... | no ¬ΔcX | _ = no (Δt #₂ case₁ ¬ΔcX cY)
Γ ! unit ∋ Δt ⊢? A ∋# split _ _ = no (because (bad-split Δt (λ {()})))
Γ ! _ ⇒ _ ∋ Δt ⊢? A ∋# split _ _ = no (because (bad-split Δt (λ {()})))
Γ ! _ * _ ∋ Δt ⊢? A ∋# split _ _ = no (because (bad-split Δt (λ {()})))
Γ ! A ⇒ B ∋ Δf ⊢? apply s ∈#
with Γ ⊢? A ∋ s
... | yes Δs = yes (Δf # apply Δs)
... | no ¬Δs = no (Δf #₂ apply ¬Δs)
Γ ! unit ∋ Δf ⊢? apply _ ∈# = no (because (bad-function Δf λ {()}))
Γ ! nat ∋ Δf ⊢? apply _ ∈# = no (because (bad-function Δf λ {()}))
Γ ! _ + _ ∋ Δf ⊢? apply _ ∈# = no (because (bad-function Δf λ {()}))
Γ ! _ * _ ∋ Δf ⊢? apply _ ∈# = no (because (bad-function Δf λ {()}))
Γ ! A * B ∋ Δp ⊢? fst ∈# = yes (Δp # fst)
Γ ! unit ∋ Δp ⊢? fst ∈# = no (because (bad-fst Δp (λ {()})))
Γ ! nat ∋ Δp ⊢? fst ∈# = no (because (bad-fst Δp (λ {()})))
Γ ! _ + _ ∋ Δp ⊢? fst ∈# = no (because (bad-fst Δp (λ {()})))
Γ ! _ ⇒ _ ∋ Δp ⊢? fst ∈# = no (because (bad-fst Δp (λ {()})))
Γ ! A * B ∋ Δp ⊢? snd ∈# = yes (Δp # snd)
Γ ! unit ∋ Δp ⊢? snd ∈# = no (because (bad-snd Δp (λ {()})))
Γ ! nat ∋ Δp ⊢? snd ∈# = no (because (bad-snd Δp (λ {()})))
Γ ! _ + _ ∋ Δp ⊢? snd ∈# = no (because (bad-snd Δp (λ {()})))
Γ ! _ ⇒ _ ∋ Δp ⊢? snd ∈# = no (because (bad-snd Δp (λ {()})))
-- ** Tests
nat∋t1' : [] ⊢ nat ∋ t1
nat∋t1' = lemma ([] ⊢? nat ∋ t1) tt
T1 : type
T1 = nat ⇒ (unit + unit)
T2 : type
T2 = (nat + unit) ⇒ (unit + unit)
T1∋t2 : [] ⊢ T1 ∋ t2
T1∋t2 = lemma ([] ⊢? T1 ∋ t2) tt
T2∋t2 : [] ⊢ T2 ∋ t2
T2∋t2 = lemma ([] ⊢? T2 ∋ t2) tt
| 30.173844
| 119
| 0.395528
|
06c7fadd3ef81d1470777d01096fc58874fb5d8b
| 903
|
agda
|
Agda
|
src/fot/PA/Inductive/PropertiesByInductionATP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
src/fot/PA/Inductive/PropertiesByInductionATP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
src/fot/PA/Inductive/PropertiesByInductionATP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- Inductive PA properties using the induction principle
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module PA.Inductive.PropertiesByInductionATP where
open import PA.Inductive.Base
open import PA.Inductive.PropertiesByInduction
------------------------------------------------------------------------------
+-comm : ∀ m n → m + n ≡ n + m
+-comm m n = ℕ-ind A A0 is m
where
A : ℕ → Set
A i = i + n ≡ n + i
{-# ATP definition A #-}
A0 : A zero
A0 = sym (+-rightIdentity n)
postulate is : ∀ i → A i → A (succ i)
-- TODO (21 November 2014). See Apia issue 16
-- {-# ATP prove is x+Sy≡S[x+y] #-}
| 30.1
| 78
| 0.431894
|
3134eb8f6dd35543661c04ac03824708d25bf2a2
| 162
|
agda
|
Agda
|
src/data/lib/prim/Agda/Builtin/Unit.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | null | null | null |
src/data/lib/prim/Agda/Builtin/Unit.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | null | null | null |
src/data/lib/prim/Agda/Builtin/Unit.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | null | null | null |
{-# OPTIONS --without-K #-}
module Agda.Builtin.Unit where
record ⊤ : Set where
instance constructor tt
{-# BUILTIN UNIT ⊤ #-}
{-# COMPILED_DATA ⊤ () () #-}
| 16.2
| 30
| 0.617284
|
4a03bce441942d977b4fb675b1b8a4b44115dde1
| 1,072
|
agda
|
Agda
|
test/interaction/Issue2095.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/interaction/Issue2095.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 3
|
2018-11-14T15:31:44.000Z
|
2019-04-01T19:39:26.000Z
|
test/interaction/Issue2095.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T14:36:15.000Z
|
2015-09-15T14:36:15.000Z
|
-- Andreas, 2016-07-13, issue reported by Mietek Bak
-- {-# OPTIONS -v tc.size:20 #-}
-- {-# OPTIONS -v tc.meta.assign:30 #-}
open import Agda.Builtin.Size
data Cx (U : Set) : Set where
⌀ : Cx U
_,_ : Cx U → U → Cx U
data _∈_ {U : Set} (A : U) : Cx U → Set where
top : ∀ {Γ} → A ∈ (Γ , A)
pop : ∀ {C Γ} → A ∈ Γ → A ∈ (Γ , C)
infixr 3 _⊃_
data Ty : Set where
ι : Ty
_⊃_ : Ty → Ty → Ty
infix 1 _⊢⟨_⟩_
data _⊢⟨_⟩_ (Γ : Cx Ty) : Size → Ty → Set where
var : ∀ {m A} → A ∈ Γ → Γ ⊢⟨ m ⟩ A
lam : ∀ {m A B} {m′ : Size< m} → Γ , A ⊢⟨ m′ ⟩ B → Γ ⊢⟨ m ⟩ A ⊃ B
app : ∀ {m A B} {m′ m″ : Size< m} → Γ ⊢⟨ m′ ⟩ A ⊃ B → Γ ⊢⟨ m″ ⟩ A → Γ ⊢⟨ m ⟩ B
works : ∀ {m A B Γ} → Γ ⊢⟨ ↑ ↑ ↑ ↑ m ⟩ (A ⊃ A ⊃ B) ⊃ A ⊃ B
works = lam (lam (app (app (var (pop top)) (var top)) (var top)))
test : ∀ {m A B Γ} → Γ ⊢⟨ {!↑ ↑ ↑ ↑ m!} ⟩ (A ⊃ A ⊃ B) ⊃ A ⊃ B
test = lam (lam (app (app (var (pop top)) (var top)) (var top)))
-- This interaction meta should be solvable with
-- ↑ ↑ ↑ ↑ m
-- Give should succeed.
-- The problem was: premature instantiation to ∞.
| 28.972973
| 80
| 0.460821
|
12a20b0914bfda7ffb30e44f540951b0f4131aa3
| 11,796
|
agda
|
Agda
|
Cubical/ZCohomology/Groups/Wedge.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/ZCohomology/Groups/Wedge.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/ZCohomology/Groups/Wedge.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.ZCohomology.Groups.Wedge where
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Function
open import Cubical.Foundations.GroupoidLaws renaming (assoc to assoc∙)
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Data.Nat
open import Cubical.Data.Int hiding (_+_)
open import Cubical.Data.Sigma
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.DirProd
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.HITs.SetTruncation as ST
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.HITs.Truncation as T
open import Cubical.HITs.Susp
open import Cubical.HITs.S1
open import Cubical.HITs.Sn
open import Cubical.HITs.Wedge
open import Cubical.HITs.Pushout
open import Cubical.Homotopy.Connected
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.Properties
open import Cubical.ZCohomology.Groups.Unit
open import Cubical.ZCohomology.Groups.Sn
open IsGroupHom
open Iso
{-
This module proves that Hⁿ(A ⋁ B) ≅ Hⁿ(A) × Hⁿ(B) for n ≥ 1 directly (rather than by means of Mayer-Vietoris).
It also proves that Ĥⁿ(A ⋁ B) ≅ Ĥ⁰(A) × Ĥ⁰(B) (reduced groups)
Proof sketch for n ≥ 1:
Any ∣ f ∣₂ ∈ Hⁿ(A ⋁ B) is uniquely characterised by a pair of functions
f₁ : A → Kₙ
f₂ : B → Kₙ
together with a path
p : f₁ (pt A) ≡ f₂ (pt B)
The map F : Hⁿ(A ⋁ B) → Hⁿ(A) × Hⁿ(B) simply forgets about p, i.e.:
F(∣ f ∣₂) := (∣ f₁ ∣₂ , ∣ f₂ ∣₂)
The construction of its inverse is defined by
F⁻(∣ f₁ ∣₂ , ∣ f₂ ∣₂) := ∣ f₁∨f₂ ∣₂
where
f₁∨f₂ : A ⋁ B → Kₙ is defined inductively by
f₁∨f₂ (inl x) := f₁ x + f₂ (pt B)
f₁∨f₂ (inr x) := f₁ (pt B) + f₂ x
cong f₁∨f₂ (push tt) := refl
(this is the map wedgeFun⁻ below)
The fact that F and F⁻ cancel out is a proposition and we may thus assume for any
∣ f ∣₂ ∈ Hⁿ(A ⋁ B) and its corresponding f₁ that
f₁ (pt A) = f₂ (pt B) = 0 (*)
and
f (inl (pt A)) = 0 (**)
The fact that F(F⁻(∣ f₁ ∣₂ , ∣ f₂ ∣₂)) = ∣ f₁ ∣₂ , ∣ f₂ ∣₂) follows immediately from (*)
The other way is slightly trickier. We need to construct paths
Pₗ(x) : f (inl (x)) + f (inr (pt B)) ---> f (inl (x))
Pᵣ(x) : f (inl (pt A)) + f (inr (x)) ---> f (inr (x))
Together with a filler of the following square
cong f (push tt)
----------------->
^ ^
| |
| |
Pₗ(pr A) | | Pᵣ(pt B)
| |
| |
| |
----------------->
refl
The square is filled by first constructing Pₗ by
f (inl (x)) + f (inr (pt B)) ---[cong f (push tt)⁻¹]--->
f (inl (x)) + f (inl (pt A)) ---[(**)]--->
f (inl (x)) + 0 ---[right-unit]--->
f (inl (x))
and then Pᵣ by
f (inl (pt A)) + f (inr (x)) ---[(**)⁻¹]--->
0 + f (inr (x)) ---[left-unit]--->
f (inr (x))
and finally by using the fact that the group laws for Kₙ are refl at its base point.
-}
module _ {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') where
private
wedgeFun⁻ : ∀ n → (f : typ A → coHomK (suc n)) (g : typ B → coHomK (suc n))
→ ((A ⋁ B) → coHomK (suc n))
wedgeFun⁻ n f g (inl x) = f x +ₖ g (pt B)
wedgeFun⁻ n f g (inr x) = f (pt A) +ₖ g x
wedgeFun⁻ n f g (push a i) = f (pt A) +ₖ g (pt B)
Hⁿ-⋁ : (n : ℕ) → GroupIso (coHomGr (suc n) (A ⋁ B)) (×coHomGr (suc n) (typ A) (typ B))
fun (fst (Hⁿ-⋁ zero)) =
ST.elim (λ _ → isSet× isSetSetTrunc isSetSetTrunc)
λ f → ∣ (λ x → f (inl x)) ∣₂ , ∣ (λ x → f (inr x)) ∣₂
inv (fst (Hⁿ-⋁ zero)) =
uncurry (ST.elim2 (λ _ _ → isSetSetTrunc)
λ f g → ∣ wedgeFun⁻ 0 f g ∣₂)
rightInv (fst (Hⁿ-⋁ zero)) =
uncurry
(coHomPointedElim _ (pt A) (λ _ → isPropΠ λ _ → isSet× isSetSetTrunc isSetSetTrunc _ _)
λ f fId → coHomPointedElim _ (pt B) (λ _ → isSet× isSetSetTrunc isSetSetTrunc _ _)
λ g gId → ΣPathP ((cong ∣_∣₂ (funExt (λ x → cong (f x +ₖ_) gId ∙ rUnitₖ 1 (f x))))
, cong ∣_∣₂ (funExt (λ x → cong (_+ₖ g x) fId ∙ lUnitₖ 1 (g x)))))
leftInv (fst (Hⁿ-⋁ zero)) =
ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
(λ f → PT.rec (isSetSetTrunc _ _)
(λ fId → cong ∣_∣₂ (sym fId))
(helper f _ refl))
where
helper : (f : A ⋁ B → coHomK 1) (x : coHomK 1)
→ f (inl (pt A)) ≡ x
→ ∥ f ≡ wedgeFun⁻ 0 (λ x → f (inl x)) (λ x → f (inr x)) ∥₁
helper f =
T.elim (λ _ → isProp→isOfHLevelSuc 2 (isPropΠ λ _ → isPropPropTrunc))
(sphereElim 0 (λ _ → isPropΠ λ _ → isPropPropTrunc)
λ inlId → ∣ funExt (λ { (inl x) → sym (rUnitₖ 1 (f (inl x)))
∙∙ cong ((f (inl x)) +ₖ_) (sym inlId)
∙∙ cong ((f (inl x)) +ₖ_) (cong f (push tt))
; (inr x) → sym (lUnitₖ 1 (f (inr x)))
∙ cong (_+ₖ (f (inr x))) (sym inlId)
; (push tt i) j → helper2 (f (inl (pt A))) (sym (inlId))
(f (inr (pt B))) (cong f (push tt)) j i} ) ∣₁)
where
helper2 : (x : coHomK 1) (r : ∣ base ∣ ≡ x) (y : coHomK 1) (p : x ≡ y)
→ PathP (λ j → ((sym (rUnitₖ 1 x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j
≡ (sym (lUnitₖ 1 y) ∙ cong (_+ₖ y) r) j)
p refl
helper2 x = J (λ x r → (y : coHomK 1) (p : x ≡ y)
→ PathP (λ j → ((sym (rUnitₖ 1 x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j
≡ (sym (lUnitₖ 1 y) ∙ cong (_+ₖ y) r) j)
p refl)
λ y → J (λ y p → PathP (λ j → ((sym (rUnitₖ 1 ∣ base ∣) ∙∙ refl ∙∙ cong (∣ base ∣ +ₖ_) p)) j
≡ (sym (lUnitₖ 1 y) ∙ refl) j)
p refl)
λ i _ → (refl ∙ (λ _ → 0ₖ 1)) i
snd (Hⁿ-⋁ zero) =
makeIsGroupHom
(ST.elim2 (λ _ _ → isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _)
λ _ _ → refl)
fun (fst (Hⁿ-⋁ (suc n))) =
ST.elim (λ _ → isSet× isSetSetTrunc isSetSetTrunc)
λ f → ∣ (λ x → f (inl x)) ∣₂ , ∣ (λ x → f (inr x)) ∣₂
inv (fst (Hⁿ-⋁ (suc n))) =
uncurry (ST.elim2 (λ _ _ → isSetSetTrunc)
λ f g → ∣ wedgeFun⁻ (suc n) f g ∣₂)
rightInv (fst (Hⁿ-⋁ (suc n))) =
uncurry
(coHomPointedElim _ (pt A) (λ _ → isPropΠ λ _ → isSet× isSetSetTrunc isSetSetTrunc _ _)
λ f fId → coHomPointedElim _ (pt B) (λ _ → isSet× isSetSetTrunc isSetSetTrunc _ _)
λ g gId → ΣPathP ((cong ∣_∣₂ (funExt (λ x → cong (f x +ₖ_) gId ∙ rUnitₖ (2 + n) (f x))))
, cong ∣_∣₂ (funExt (λ x → cong (_+ₖ g x) fId ∙ lUnitₖ (2 + n) (g x)))))
leftInv (fst (Hⁿ-⋁ (suc n))) =
ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
(λ f → PT.rec (isSetSetTrunc _ _)
(λ fId → cong ∣_∣₂ (sym fId))
(helper f _ refl))
where
helper : (f : A ⋁ B → coHomK (2 + n)) (x : coHomK (2 + n))
→ f (inl (pt A)) ≡ x
→ ∥ f ≡ wedgeFun⁻ (suc n) (λ x → f (inl x)) (λ x → f (inr x)) ∥₁
helper f =
T.elim (λ _ → isProp→isOfHLevelSuc (3 + n) (isPropΠ λ _ → isPropPropTrunc))
(sphereToPropElim (suc n) (λ _ → isPropΠ λ _ → isPropPropTrunc)
λ inlId → (∣ funExt (λ { (inl x) → sym (rUnitₖ (2 + n) (f (inl x)))
∙∙ cong ((f (inl x)) +ₖ_) (sym inlId)
∙∙ cong ((f (inl x)) +ₖ_) (cong f (push tt))
; (inr x) → sym (lUnitₖ (2 + n) (f (inr x)))
∙ cong (_+ₖ (f (inr x))) (sym inlId)
; (push tt i) j → helper2 (f (inl (pt A))) (sym (inlId))
(f (inr (pt B))) (cong f (push tt)) j i}) ∣₁))
where
helper2 : (x : coHomK (2 + n)) (r : ∣ north ∣ ≡ x) (y : coHomK (2 + n)) (p : x ≡ y)
→ PathP (λ j → ((sym (rUnitₖ (2 + n) x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j
≡ (sym (lUnitₖ (2 + n) y) ∙ cong (_+ₖ y) r) j)
p refl
helper2 x = J (λ x r → (y : coHomK (2 + n)) (p : x ≡ y)
→ PathP (λ j → ((sym (rUnitₖ (2 + n) x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j
≡ (sym (lUnitₖ (2 + n) y) ∙ cong (_+ₖ y) r) j)
p refl)
λ y → J (λ y p → PathP (λ j → ((sym (rUnitₖ (2 + n) ∣ north ∣) ∙∙ refl ∙∙ cong (∣ north ∣ +ₖ_) p)) j
≡ (sym (lUnitₖ (2 + n) y) ∙ refl) j)
p refl)
λ i j → ((λ _ → ∣ north ∣) ∙ refl) i
snd (Hⁿ-⋁ (suc n)) =
makeIsGroupHom
(ST.elim2 (λ _ _ → isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _)
λ _ _ → refl)
H⁰Red-⋁ : GroupIso (coHomRedGrDir 0 (A ⋁ B , inl (pt A)))
(DirProd (coHomRedGrDir 0 A) (coHomRedGrDir 0 B))
fun (fst H⁰Red-⋁) =
ST.rec (isSet× isSetSetTrunc isSetSetTrunc)
λ {(f , p) → ∣ (f ∘ inl) , p ∣₂
, ∣ (f ∘ inr) , cong f (sym (push tt)) ∙ p ∣₂}
inv (fst H⁰Red-⋁) =
uncurry (ST.rec2 isSetSetTrunc
λ {(f , p) (g , q) → ∣ (λ {(inl a) → f a
; (inr b) → g b
; (push tt i) → (p ∙ sym q) i})
, p ∣₂})
rightInv (fst H⁰Red-⋁) =
uncurry
(ST.elim2 (λ _ _ → isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _)
λ {(_ , _) (_ , _) → ΣPathP (cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) refl)
, cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) refl))})
leftInv (fst H⁰Red-⋁) =
ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ {(f , p) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _)
(funExt λ {(inl a) → refl
; (inr b) → refl
; (push tt i) j → (cong (p ∙_) (symDistr (cong f (sym (push tt))) p)
∙∙ assoc∙ p (sym p) (cong f (push tt))
∙∙ cong (_∙ (cong f (push tt))) (rCancel p)
∙ sym (lUnit (cong f (push tt)))) j i}))}
-- Alt. use isOfHLevel→isOfHLevelDep
snd H⁰Red-⋁ =
makeIsGroupHom
(ST.elim2 (λ _ _ → isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _)
λ {(f , p) (g , q) → ΣPathP (cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) refl)
, cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) refl))})
wedgeConnected : ((x : typ A) → ∥ pt A ≡ x ∥₁) → ((x : typ B) → ∥ pt B ≡ x ∥₁) → (x : A ⋁ B) → ∥ inl (pt A) ≡ x ∥₁
wedgeConnected conA conB =
PushoutToProp (λ _ → isPropPropTrunc)
(λ a → PT.rec isPropPropTrunc (λ p → ∣ cong inl p ∣₁) (conA a))
λ b → PT.rec isPropPropTrunc (λ p → ∣ push tt ∙ cong inr p ∣₁) (conB b)
| 46.809524
| 121
| 0.4588
|
06c77964f41f5c7ff53662f4636e836f7716df12
| 74,932
|
agda
|
Agda
|
src/Category.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | 3
|
2020-05-21T22:58:50.000Z
|
2021-09-02T17:18:15.000Z
|
src/Category.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | null | null | null |
src/Category.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- 1-categories
------------------------------------------------------------------------
-- The code is based on the presentation in the HoTT book (but might
-- not follow it exactly).
{-# OPTIONS --without-K --safe #-}
open import Equality
module Category
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open import Bijection eq as Bijection using (_↔_)
open Derived-definitions-and-properties eq
open import Equivalence eq as Eq
using (_≃_; ⟨_,_⟩; module _≃_; Is-equivalence)
open import Function-universe eq as F hiding (id) renaming (_∘_ to _⊚_)
open import H-level eq
open import H-level.Closure eq
open import Logical-equivalence using (module _⇔_)
import Nat eq as Nat
open import Prelude as P hiding (id; Unit)
open import Univalence-axiom eq
------------------------------------------------------------------------
-- Precategories
-- This definition of precategories takes the type of objects as a
-- parameter.
Precategory-with-Obj :
∀ {ℓ₁} → Type ℓ₁ → (ℓ₂ : Level) → Type (ℓ₁ ⊔ lsuc ℓ₂)
Precategory-with-Obj Obj ℓ₂ =
-- Morphisms (a /set/).
∃ λ (HOM : Obj → Obj → Set ℓ₂) →
let Hom = λ X Y → proj₁ (HOM X Y) in
-- Identity.
∃ λ (id : ∀ {X} → Hom X X) →
-- Composition.
∃ λ (_∙_ : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z) →
-- Identity laws.
(∀ {X Y} {f : Hom X Y} → (id ∙ f) ≡ f) ×
(∀ {X Y} {f : Hom X Y} → (f ∙ id) ≡ f) ×
-- Associativity.
(∀ {X Y Z U} {f : Hom X Y} {g : Hom Y Z} {h : Hom Z U} →
(h ∙ (g ∙ f)) ≡ ((h ∙ g) ∙ f))
-- Precategories.
Precategory′ : (ℓ₁ ℓ₂ : Level) → Type (lsuc (ℓ₁ ⊔ ℓ₂))
Precategory′ ℓ₁ ℓ₂ =
-- Objects.
∃ λ (Obj : Type ℓ₁) →
Precategory-with-Obj Obj ℓ₂
-- A wrapper.
record Precategory (ℓ₁ ℓ₂ : Level) : Type (lsuc (ℓ₁ ⊔ ℓ₂)) where
field
precategory : Precategory′ ℓ₁ ℓ₂
-- Objects.
Obj : Type ℓ₁
Obj = proj₁ precategory
-- Morphisms.
HOM : Obj → Obj → Set ℓ₂
HOM = proj₁ (proj₂ precategory)
-- The morphism type family.
Hom : Obj → Obj → Type ℓ₂
Hom X Y = proj₁ (HOM X Y)
-- The morphism types are sets.
Hom-is-set : ∀ {X Y} → Is-set (Hom X Y)
Hom-is-set = proj₂ (HOM _ _)
-- Identity.
id : ∀ {X} → Hom X X
id = proj₁ (proj₂ (proj₂ precategory))
-- Composition.
infixr 10 _∙_
_∙_ : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z
_∙_ = proj₁ (proj₂ (proj₂ (proj₂ precategory)))
-- The left identity law.
left-identity : ∀ {X Y} {f : Hom X Y} → id ∙ f ≡ f
left-identity = proj₁ (proj₂ (proj₂ (proj₂ (proj₂ precategory))))
-- The right identity law.
right-identity : ∀ {X Y} {f : Hom X Y} → f ∙ id ≡ f
right-identity =
proj₁ (proj₂ (proj₂ (proj₂ (proj₂ (proj₂ precategory)))))
-- The associativity law.
assoc : ∀ {X Y Z U} {f : Hom X Y} {g : Hom Y Z} {h : Hom Z U} →
h ∙ (g ∙ f) ≡ (h ∙ g) ∙ f
assoc =
proj₂ (proj₂ (proj₂ (proj₂ (proj₂ (proj₂ precategory)))))
-- Isomorphisms.
Is-isomorphism : ∀ {X Y} → Hom X Y → Type ℓ₂
Is-isomorphism f = ∃ λ g → (f ∙ g ≡ id) × (g ∙ f ≡ id)
infix 4 _≅_
_≅_ : Obj → Obj → Type ℓ₂
X ≅ Y = ∃ λ (f : Hom X Y) → Is-isomorphism f
-- Some projections.
infix 15 _¹ _⁻¹ _¹⁻¹ _⁻¹¹
_¹ : ∀ {X Y} → X ≅ Y → Hom X Y
f ¹ = proj₁ f
_⁻¹ : ∀ {X Y} → X ≅ Y → Hom Y X
f ⁻¹ = proj₁ (proj₂ f)
_¹⁻¹ : ∀ {X Y} (f : X ≅ Y) → f ¹ ∙ f ⁻¹ ≡ id
f ¹⁻¹ = proj₁ (proj₂ (proj₂ f))
_⁻¹¹ : ∀ {X Y} (f : X ≅ Y) → f ⁻¹ ∙ f ¹ ≡ id
f ⁻¹¹ = proj₂ (proj₂ (proj₂ f))
abstract
-- "Is-isomorphism f" is a proposition.
Is-isomorphism-propositional :
∀ {X Y} (f : Hom X Y) →
Is-proposition (Is-isomorphism f)
Is-isomorphism-propositional f (g , fg , gf) (g′ , fg′ , g′f) =
Σ-≡,≡→≡ (g ≡⟨ sym left-identity ⟩
id ∙ g ≡⟨ cong (λ h → h ∙ g) $ sym g′f ⟩
(g′ ∙ f) ∙ g ≡⟨ sym assoc ⟩
g′ ∙ (f ∙ g) ≡⟨ cong (_∙_ g′) fg ⟩
g′ ∙ id ≡⟨ right-identity ⟩∎
g′ ∎)
(Σ-≡,≡→≡ (Hom-is-set _ _) (Hom-is-set _ _))
-- Isomorphism equality is equivalent to "forward morphism"
-- equality.
≡≃≡¹ : ∀ {X Y} {f g : X ≅ Y} → (f ≡ g) ≃ (f ¹ ≡ g ¹)
≡≃≡¹ {f = f} {g} =
(f ≡ g) ↔⟨ inverse $ ignore-propositional-component $ Is-isomorphism-propositional _ ⟩□
(f ¹ ≡ g ¹) □
-- The type of isomorphisms (between two objects) is a set.
≅-set : ∀ {X Y} → Is-set (X ≅ Y)
≅-set = Σ-closure 2 Hom-is-set
(λ _ → mono₁ 1 $ Is-isomorphism-propositional _)
-- Identity isomorphism.
id≅ : ∀ {X} → X ≅ X
id≅ = id , id , left-identity , right-identity
-- Composition of isomorphisms.
infixr 10 _∙≅_
_∙≅_ : ∀ {X Y Z} → Y ≅ Z → X ≅ Y → X ≅ Z
f ∙≅ g = (f ¹ ∙ g ¹) , (g ⁻¹ ∙ f ⁻¹) , fg f g , gf f g
where
abstract
fg : ∀ {X Y Z} (f : Y ≅ Z) (g : X ≅ Y) →
(f ¹ ∙ g ¹) ∙ (g ⁻¹ ∙ f ⁻¹) ≡ id
fg f g =
(f ¹ ∙ g ¹) ∙ (g ⁻¹ ∙ f ⁻¹) ≡⟨ sym assoc ⟩
f ¹ ∙ (g ¹ ∙ (g ⁻¹ ∙ f ⁻¹)) ≡⟨ cong (_∙_ (f ¹)) assoc ⟩
f ¹ ∙ ((g ¹ ∙ g ⁻¹) ∙ f ⁻¹) ≡⟨ cong (λ h → f ¹ ∙ (h ∙ f ⁻¹)) $ g ¹⁻¹ ⟩
f ¹ ∙ (id ∙ f ⁻¹) ≡⟨ cong (_∙_ (f ¹)) left-identity ⟩
f ¹ ∙ f ⁻¹ ≡⟨ f ¹⁻¹ ⟩∎
id ∎
gf : ∀ {X Y Z} (f : Y ≅ Z) (g : X ≅ Y) →
(g ⁻¹ ∙ f ⁻¹) ∙ (f ¹ ∙ g ¹) ≡ id
gf f g =
(g ⁻¹ ∙ f ⁻¹) ∙ (f ¹ ∙ g ¹) ≡⟨ sym assoc ⟩
g ⁻¹ ∙ (f ⁻¹ ∙ (f ¹ ∙ g ¹)) ≡⟨ cong (_∙_ (g ⁻¹)) assoc ⟩
g ⁻¹ ∙ ((f ⁻¹ ∙ f ¹) ∙ g ¹) ≡⟨ cong (λ h → g ⁻¹ ∙ (h ∙ g ¹)) $ f ⁻¹¹ ⟩
g ⁻¹ ∙ (id ∙ g ¹) ≡⟨ cong (_∙_ (g ⁻¹)) left-identity ⟩
g ⁻¹ ∙ g ¹ ≡⟨ g ⁻¹¹ ⟩∎
id ∎
-- The inverse of an isomorphism.
infix 15 _⁻¹≅
_⁻¹≅ : ∀ {X Y} → X ≅ Y → Y ≅ X
f ⁻¹≅ = f ⁻¹ , f ¹ , f ⁻¹¹ , f ¹⁻¹
-- Isomorphisms form a precategory.
precategory-≅ : Precategory ℓ₁ ℓ₂
precategory-≅ = record { precategory =
Obj ,
(λ X Y → (X ≅ Y) , ≅-set) ,
id≅ , _∙≅_ ,
_≃_.from ≡≃≡¹ left-identity ,
_≃_.from ≡≃≡¹ right-identity ,
_≃_.from ≡≃≡¹ assoc }
-- Equal objects are isomorphic.
≡→≅ : ∀ {X Y} → X ≡ Y → X ≅ Y
≡→≅ = elim (λ {X Y} _ → X ≅ Y) (λ _ → id≅)
-- "Computation rule" for ≡→≅.
≡→≅-refl : ∀ {X} → ≡→≅ (refl X) ≡ id≅
≡→≅-refl = elim-refl (λ {X Y} _ → X ≅ Y) _
-- Rearrangement lemma for ≡→≅.
≡→≅-¹ :
∀ {X Y} (X≡Y : X ≡ Y) →
≡→≅ X≡Y ¹ ≡ elim (λ {X Y} _ → Hom X Y) (λ _ → id) X≡Y
≡→≅-¹ {X} = elim¹
(λ X≡Y → ≡→≅ X≡Y ¹ ≡
elim (λ {X Y} _ → Hom X Y) (λ _ → id) X≡Y)
(≡→≅ (refl X) ¹ ≡⟨ cong _¹ ≡→≅-refl ⟩
id≅ ¹ ≡⟨⟩
id ≡⟨ sym $ elim-refl (λ {X Y} _ → Hom X Y) _ ⟩∎
elim (λ {X Y} _ → Hom X Y) (λ _ → id) (refl X) ∎)
-- A lemma that can be used to prove that ≡→≅ is an equivalence.
≡→≅-equivalence-lemma :
∀ {X} →
(≡≃≅ : ∀ {Y} → (X ≡ Y) ≃ (X ≅ Y)) →
_≃_.to ≡≃≅ (refl X) ¹ ≡ id →
∀ {Y} → Is-equivalence (≡→≅ {X = X} {Y = Y})
≡→≅-equivalence-lemma {X} ≡≃≅ ≡≃≅-refl {Y} =
Eq.respects-extensional-equality
(elim¹ (λ X≡Y → _≃_.to ≡≃≅ X≡Y ≡ ≡→≅ X≡Y)
(_≃_.to ≡≃≅ (refl X) ≡⟨ _≃_.from ≡≃≡¹ ≡≃≅-refl ⟩
id≅ ≡⟨ sym ≡→≅-refl ⟩∎
≡→≅ (refl X) ∎))
(_≃_.is-equivalence ≡≃≅)
-- An example: sets and functions. (Defined using extensionality.)
precategory-Set :
(ℓ : Level) →
Extensionality ℓ ℓ →
Precategory (lsuc ℓ) ℓ
precategory-Set ℓ ext = record { precategory =
-- Objects: sets.
Set ℓ ,
-- Morphisms: functions.
(λ { (A , A-set) (B , B-set) →
(A → B) , Π-closure ext 2 (λ _ → B-set) }) ,
-- Identity.
P.id ,
-- Composition.
(λ f g → f ∘ g) ,
-- Laws.
refl _ , refl _ , refl _ }
-- Isomorphisms in this category are equivalent to equivalences
-- (assuming extensionality).
≃≃≅-Set :
(ℓ : Level) (ext : Extensionality ℓ ℓ) →
let open Precategory (precategory-Set ℓ ext) in
(X Y : Obj) → (⌞ X ⌟ ≃ ⌞ Y ⌟) ≃ (X ≅ Y)
≃≃≅-Set ℓ ext X Y = Eq.↔⇒≃ record
{ surjection = record
{ logical-equivalence = record
{ to = λ X≃Y → _≃_.to X≃Y , _≃_.from X≃Y ,
apply-ext ext (_≃_.right-inverse-of X≃Y) ,
apply-ext ext (_≃_.left-inverse-of X≃Y)
; from = λ X≅Y → Eq.↔⇒≃ record
{ surjection = record
{ logical-equivalence = record
{ to = proj₁ X≅Y
; from = proj₁ (proj₂ X≅Y)
}
; right-inverse-of = λ x →
cong (_$ x) $ proj₁ (proj₂ (proj₂ X≅Y))
}
; left-inverse-of = λ x →
cong (_$ x) $ proj₂ (proj₂ (proj₂ X≅Y))
}
}
; right-inverse-of = λ X≅Y →
_≃_.from (≡≃≡¹ {X = X} {Y = Y}) (refl (proj₁ X≅Y))
}
; left-inverse-of = λ X≃Y →
Eq.lift-equality ext (refl (_≃_.to X≃Y))
}
where open Precategory (precategory-Set ℓ ext) using (≡≃≡¹)
-- Equality characterisation lemma for Precategory′.
equality-characterisation-Precategory′ :
∀ {ℓ₁ ℓ₂} {C D : Precategory′ ℓ₁ ℓ₂} →
Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ lsuc ℓ₂) →
Univalence ℓ₁ →
Univalence ℓ₂ →
let module C = Precategory (record { precategory = C })
module D = Precategory (record { precategory = D })
in
(∃ λ (eqO : C.Obj ≃ D.Obj) →
∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃
D.Hom X Y) →
(∀ X → _≃_.to (eqH X X) C.id ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
_≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f)
(_≃_.from (eqH X Y) g)) ≡
f D.∙ g))
↔
C ≡ D
equality-characterisation-Precategory′ {ℓ₁} {ℓ₂} {C} {D}
ext univ₁ univ₂ =
(∃ λ (eqO : C.Obj ≃ D.Obj) →
∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃
D.Hom X Y) →
(∀ X → _≃_.to (eqH X X) C.id ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
_≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f)
(_≃_.from (eqH X Y) g)) ≡
f D.∙ g)) ↝⟨ ∃-cong (λ _ → inverse $
Σ-cong (∀-cong ext₁₁₂₊ λ _ →
∀-cong ext₁₂₊ λ _ →
≡≃≃ univ₂)
(λ _ → F.id)) ⟩
(∃ λ (eqO : C.Obj ≃ D.Obj) →
∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≡
D.Hom X Y) →
(∀ X → ≡⇒→ (eqH X X) C.id ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
≡⇒→ (eqH X Z) (C._∙_ (≡⇒← (eqH Y Z) f) (≡⇒← (eqH X Y) g)) ≡
f D.∙ g)) ↝⟨ inverse $ Σ-cong (≡≃≃ univ₁) (λ _ → F.id) ⟩
(∃ λ (eqO : C.Obj ≡ D.Obj) →
∃ λ (eqH : ∀ X Y → C.Hom (≡⇒← eqO X) (≡⇒← eqO Y) ≡ D.Hom X Y) →
(∀ X → ≡⇒→ (eqH X X) C.id ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
≡⇒→ (eqH X Z) (C._∙_ (≡⇒← (eqH Y Z) f) (≡⇒← (eqH X Y) g)) ≡
f D.∙ g)) ↝⟨ ∃-cong (λ _ → inverse $
Σ-cong (∀-cong ext₁₁₂₊ λ _ →
∀-cong ext₁₂₊ λ _ →
inverse $
ignore-propositional-component $
H-level-propositional ext₂₂ 2)
(λ _ → F.id)) ⟩
(∃ λ (eqO : C.Obj ≡ D.Obj) →
∃ λ (eqH : ∀ X Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y) ≡ D.HOM X Y) →
let eqH′ = λ X Y → proj₁ (Σ-≡,≡←≡ (eqH X Y))
in
(∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡
f D.∙ g)) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → ≡⇒↝ _ $
cong (λ (eqH′ : ∀ _ _ → _) →
(∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) ×
(∀ X Y Z f g →
≡⇒→ (eqH′ X Z)
(C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g))
(apply-ext ext₁₁₂₊ λ _ → apply-ext ext₁₂₊ λ _ →
proj₁-Σ-≡,≡←≡ _)) ⟩
(∃ λ (eqO : C.Obj ≡ D.Obj) →
∃ λ (eqH : ∀ X Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y) ≡ D.HOM X Y) →
let eqH′ = λ X Y → cong proj₁ (eqH X Y)
in
(∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡
f D.∙ g)) ↝⟨ ∃-cong (λ _ → inverse $
Σ-cong (∀-cong ext₁₁₂₊ λ _ →
inverse $ Eq.extensionality-isomorphism ext₁₂₊)
(λ _ → F.id)) ⟩
(∃ λ (eqO : C.Obj ≡ D.Obj) →
∃ λ (eqH : ∀ X → (λ Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y)) ≡ D.HOM X) →
let eqH′ = λ X Y → cong proj₁ (ext⁻¹ (eqH X) Y)
in
(∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡
f D.∙ g)) ↝⟨ ∃-cong (λ _ → inverse $
Σ-cong (inverse $ Eq.extensionality-isomorphism ext₁₁₂₊)
(λ _ → F.id)) ⟩
(∃ λ (eqO : C.Obj ≡ D.Obj) →
∃ λ (eqH : (λ X Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y)) ≡ D.HOM) →
let eqH′ = λ X Y → cong proj₁ (ext⁻¹ (ext⁻¹ eqH X) Y)
in
(∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡
f D.∙ g)) ↝⟨ ∃-cong (λ eqO → inverse $
Σ-cong (inverse $ ≡⇒↝ equivalence (HOM-lemma eqO))
(λ _ → F.id)) ⟩
(∃ λ (eqO : C.Obj ≡ D.Obj) →
∃ λ (eqH : subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) →
let eqH′ = λ X Y →
cong proj₁
(ext⁻¹ (ext⁻¹ (≡⇒← (HOM-lemma eqO) eqH) X) Y)
in
(∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡
f D.∙ g)) ↝⟨ ∃-cong (λ eqO → ∃-cong λ eqH → ≡⇒↝ _ $
cong (λ (eqH′ : ∀ _ _ → _) →
(∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id) ×
(∀ X Y Z f g →
≡⇒→ (eqH′ X Z)
(C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡ f D.∙ g))
(apply-ext ext₁₁₂₊ λ X → apply-ext ext₁₂₊ λ Y →
cong proj₁ (ext⁻¹ (ext⁻¹ (≡⇒← (HOM-lemma eqO) eqH) X) Y) ≡⟨⟩
cong proj₁ (cong (_$ Y) (cong (_$ X) (≡⇒← (HOM-lemma eqO) eqH))) ≡⟨ cong (cong _) $ cong-∘ _ _ _ ⟩
cong proj₁ (cong (λ f → f X Y) (≡⇒← (HOM-lemma eqO) eqH)) ≡⟨ cong-∘ _ _ _ ⟩∎
cong (λ F → ⌞ F X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH) ∎)) ⟩
(∃ λ (eqO : C.Obj ≡ D.Obj) →
∃ λ (eqH : subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) →
let eqH′ = λ X Y → cong (λ F → ⌞ F X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH)
in
(∀ X → ≡⇒→ (eqH′ X X) C.id ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
≡⇒→ (eqH′ X Z) (C._∙_ (≡⇒← (eqH′ Y Z) f) (≡⇒← (eqH′ X Y) g)) ≡
f D.∙ g)) ↝⟨ ∃-cong (λ eqO → ∃-cong λ eqH →
(∀-cong ext₁₂ λ _ →
≡⇒↝ _ $ cong (_≡ _) P-lemma)
×-cong
(∀-cong ext₁₁₂ λ X →
∀-cong ext₁₁₂ λ Y →
∀-cong ext₁₂ λ Z →
∀-cong ext₂₂ λ f →
∀-cong ext₂₂ λ g →
≡⇒↝ _ $ cong (_≡ _) Q-lemma)) ⟩
(∃ λ (eqO : C.Obj ≡ D.Obj) →
∃ λ (eqH : subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) →
(∀ X → subst₂ (uncurry P) eqO eqH C.id {X = X} ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
subst₂ (uncurry Q) eqO eqH C._∙_ f g ≡ f D.∙ g)) ↝⟨ Σ-assoc ⟩
(∃ λ (eq : ∃ λ (eqO : C.Obj ≡ D.Obj) →
subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM) →
(∀ X → subst (uncurry P) (uncurry Σ-≡,≡→≡ eq) C.id {X = X} ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
subst (uncurry Q) (uncurry Σ-≡,≡→≡ eq) C._∙_ f g ≡ f D.∙ g)) ↝⟨ Σ-cong Bijection.Σ-≡,≡↔≡ (λ _ → F.id) ⟩
(∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) →
(∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
subst (uncurry Q) eq C._∙_ f g ≡ f D.∙ g)) ↔⟨ ∃-cong (λ _ → ∃-cong λ _ → ∀-cong ext₁₁₂ λ _ →
∀-cong ext₁₁₂ λ _ → ∀-cong ext₁₂ λ _ →
∀-cong ext₂₂ λ _ →
Eq.extensionality-isomorphism ext₂₂) ⟩
(∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) →
(∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) →
subst (uncurry Q) eq C._∙_ {X = X} f ≡ D._∙_ f)) ↔⟨ ∃-cong (λ _ → ∃-cong λ _ → ∀-cong ext₁₁₂ λ _ →
∀-cong ext₁₁₂ λ _ → ∀-cong ext₁₂ λ _ →
Eq.extensionality-isomorphism ext₂₂) ⟩
(∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) →
(∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id)
×
(∀ X Y Z →
subst (uncurry Q) eq C._∙_ {X = X} {Y = Y} {Z = Z} ≡ D._∙_)) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ →
∀-cong ext₁₁₂ λ _ → ∀-cong ext₁₁₂ λ _ →
implicit-extensionality-isomorphism ext₁₂) ⟩
(∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) →
(∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id)
×
(∀ X Y →
(λ {_} → subst (uncurry Q) eq C._∙_ {X = X} {Y = Y}) ≡ D._∙_)) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → ∀-cong ext₁₁₂ λ _ →
implicit-extensionality-isomorphism ext₁₁₂) ⟩
(∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) →
(∀ X → subst (uncurry P) eq C.id {X = X} ≡ D.id)
×
(∀ X → (λ {_ _} → subst (uncurry Q) eq C._∙_ {X = X}) ≡ D._∙_)) ↝⟨ ∃-cong (λ _ →
implicit-extensionality-isomorphism ext₁₂
×-cong
implicit-extensionality-isomorphism ext₁₁₂) ⟩
(∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) →
(λ {_} → subst (uncurry P) eq (λ {_} → C.id)) ≡
(λ {_} → D.id)
×
(λ {_ _ _} → subst (uncurry Q) eq (λ {_ _ _} → C._∙_)) ≡
(λ {_ _ _} → D._∙_)) ↝⟨ ∃-cong (λ _ → ≡×≡↔≡) ⟩
(∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) →
( (λ {_} → subst (uncurry P) eq (λ {_} → C.id))
, (λ {_ _ _} → subst (uncurry Q) eq (λ {_ _ _} → C._∙_))
) ≡
((λ {_} → D.id) , λ {_ _ _} → D._∙_)) ↝⟨ ∃-cong (λ _ → ≡⇒↝ _ $ cong (_≡ _) $ sym $ push-subst-, _ _) ⟩
(∃ λ (eq : (C.Obj , C.HOM) ≡ (D.Obj , D.HOM)) →
subst _ eq ((λ {_} → C.id) , λ {_ _ _} → C._∙_) ≡
((λ {_} → D.id) , λ {_ _ _} → D._∙_)) ↝⟨ Bijection.Σ-≡,≡↔≡ ⟩
((C.Obj , C.HOM) , (λ {_} → C.id) , λ {_ _ _} → C._∙_) ≡
((D.Obj , D.HOM) , (λ {_} → D.id) , λ {_ _ _} → D._∙_) ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ Σ-assoc) ⟩
(C.Obj , C.HOM , (λ {_} → C.id) , λ {_ _ _} → C._∙_) ≡
(D.Obj , D.HOM , (λ {_} → D.id) , λ {_ _ _} → D._∙_) ↝⟨ ignore-propositional-component (
×-closure 1 (implicit-Π-closure ext₁₁₂ 1 λ _ →
implicit-Π-closure ext₁₂ 1 λ _ →
implicit-Π-closure ext₂₂ 1 λ _ →
D.Hom-is-set) $
×-closure 1 (implicit-Π-closure ext₁₁₂ 1 λ _ →
implicit-Π-closure ext₁₂ 1 λ _ →
implicit-Π-closure ext₂₂ 1 λ _ →
D.Hom-is-set)
(implicit-Π-closure ext₁₁₂ 1 λ _ →
implicit-Π-closure ext₁₁₂ 1 λ _ →
implicit-Π-closure ext₁₁₂ 1 λ _ →
implicit-Π-closure ext₁₂ 1 λ _ →
implicit-Π-closure ext₂₂ 1 λ _ →
implicit-Π-closure ext₂₂ 1 λ _ →
implicit-Π-closure ext₂₂ 1 λ _ →
D.Hom-is-set)) ⟩
((C.Obj , C.HOM , (λ {_} → C.id) , λ {_ _ _} → C._∙_) , _) ≡
((D.Obj , D.HOM , (λ {_} → D.id) , λ {_ _ _} → D._∙_) , _) ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ rearrange) ⟩□
C ≡ D □
where
module C = Precategory (record { precategory = C })
module D = Precategory (record { precategory = D })
ext₁₁₂₊ : Extensionality ℓ₁ (ℓ₁ ⊔ lsuc ℓ₂)
ext₁₁₂₊ = lower-extensionality ℓ₂ lzero ext
ext₁₁₂ : Extensionality ℓ₁ (ℓ₁ ⊔ ℓ₂)
ext₁₁₂ = lower-extensionality ℓ₂ (lsuc ℓ₂) ext
ext₁₂₊ : Extensionality ℓ₁ (lsuc ℓ₂)
ext₁₂₊ = lower-extensionality ℓ₂ ℓ₁ ext
ext₁₂ : Extensionality ℓ₁ ℓ₂
ext₁₂ = lower-extensionality ℓ₂ _ ext
ext₂₂ : Extensionality ℓ₂ ℓ₂
ext₂₂ = lower-extensionality ℓ₁ _ ext
rearrange :
∀ {a b c d e}
{A : Type a} {B : A → Type b} {C : (a : A) → B a → Type c}
{D : (a : A) (b : B a) → C a b → Type d}
{E : (a : A) (b : B a) (c : C a b) → D a b c → Type e} →
(∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (c : C a b) → ∃ λ (d : D a b c) →
E a b c d)
↔
(∃ λ (p : ∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (c : C a b) → D a b c) →
E (proj₁ p) (proj₁ (proj₂ p)) (proj₁ (proj₂ (proj₂ p)))
(proj₂ (proj₂ (proj₂ p))))
rearrange {A = A} {B} {C} {D} {E} =
(∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (c : C a b) → ∃ λ (d : D a b c) →
E a b c d) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → Σ-assoc) ⟩
(∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (p : ∃ λ (c : C a b) → D a b c) →
E a b (proj₁ p) (proj₂ p)) ↝⟨ ∃-cong (λ _ → Σ-assoc) ⟩
(∃ λ (a : A) → ∃ λ (p : ∃ λ (b : B a) → ∃ λ (c : C a b) → D a b c) →
E a (proj₁ p) (proj₁ (proj₂ p)) (proj₂ (proj₂ p))) ↝⟨ Σ-assoc ⟩□
(∃ λ (p : ∃ λ (a : A) → ∃ λ (b : B a) → ∃ λ (c : C a b) → D a b c) →
E (proj₁ p) (proj₁ (proj₂ p)) (proj₁ (proj₂ (proj₂ p)))
(proj₂ (proj₂ (proj₂ p)))) □
≡⇒←-subst :
{C D : Type ℓ₁} {H : C → C → Set ℓ₂}
(eqO : C ≡ D) →
(λ X Y → H (≡⇒← eqO X) (≡⇒← eqO Y))
≡
subst (λ Obj → Obj → Obj → Set _) eqO H
≡⇒←-subst {C} {H = H} eqO =
elim¹ (λ eqO → (λ X Y → H (≡⇒← eqO X) (≡⇒← eqO Y)) ≡
subst (λ Obj → Obj → Obj → Set _) eqO H)
((λ X Y → H (≡⇒← (refl C) X) (≡⇒← (refl C) Y)) ≡⟨ cong (λ f X Y → H (f X) (f Y)) ≡⇒←-refl ⟩
H ≡⟨ sym $ subst-refl _ _ ⟩∎
subst (λ Obj → Obj → Obj → Set _) (refl C) H ∎)
eqO
≡⇒←-subst-refl : {C : Type ℓ₁} {H : C → C → Set ℓ₂} → _
≡⇒←-subst-refl {C} {H} =
≡⇒←-subst {H = H} (refl C) ≡⟨ elim¹-refl _ _ ⟩∎
trans (cong (λ f X Y → H (f X) (f Y)) ≡⇒←-refl)
(sym $ subst-refl _ _) ∎
HOM-lemma :
(eqO : C.Obj ≡ D.Obj) →
((λ X Y → C.HOM (≡⇒← eqO X) (≡⇒← eqO Y)) ≡ D.HOM)
≡
(subst (λ Obj → Obj → Obj → Set _) eqO C.HOM ≡ D.HOM)
HOM-lemma eqO = cong (_≡ _) (≡⇒←-subst eqO)
≡⇒→-lemma :
∀ {eqO eqH X Y} {f : C.Hom (≡⇒← eqO X) (≡⇒← eqO Y)} → _
≡⇒→-lemma {eqO} {eqH} {X} {Y} {f} =
≡⇒→ (cong (λ H → ⌞ H X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH)) f ≡⟨ sym $ subst-in-terms-of-≡⇒↝ equivalence
(≡⇒← (HOM-lemma eqO) eqH) (λ H → ⌞ H X Y ⌟) _ ⟩
subst (λ H → ⌞ H X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq _) $ sym $
subst-in-terms-of-inverse∘≡⇒↝ equivalence (≡⇒←-subst eqO) (_≡ _) _ ⟩
subst (λ H → ⌞ H X Y ⌟)
(subst (_≡ _) (sym $ ≡⇒←-subst eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq _) $
subst-trans (≡⇒←-subst eqO) ⟩
subst (λ H → ⌞ H X Y ⌟) (trans (≡⇒←-subst eqO) eqH) f ≡⟨ sym $ subst-subst _ _ _ _ ⟩∎
subst (λ H → ⌞ H X Y ⌟) eqH
(subst (λ H → ⌞ H X Y ⌟) (≡⇒←-subst eqO) f) ∎
≡⇒←-lemma : ∀ {eqO eqH X Y} {f : D.Hom X Y} → _
≡⇒←-lemma {eqO} {eqH} {X} {Y} {f} =
≡⇒← (cong (λ H → ⌞ H X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH)) f ≡⟨ sym $ subst-in-terms-of-inverse∘≡⇒↝ equivalence
(≡⇒← (HOM-lemma eqO) eqH) (λ H → ⌞ H X Y ⌟) _ ⟩
subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒← (HOM-lemma eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) (sym eq) _) $ sym $
subst-in-terms-of-inverse∘≡⇒↝ equivalence (≡⇒←-subst eqO) (_≡ _) _ ⟩
subst (λ H → ⌞ H X Y ⌟)
(sym $ subst (_≡ _) (sym $ ≡⇒←-subst eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) (sym eq) _) $
subst-trans (≡⇒←-subst eqO) ⟩
subst (λ H → ⌞ H X Y ⌟) (sym $ trans (≡⇒←-subst eqO) eqH) f ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq _) $
sym-trans (≡⇒←-subst eqO) eqH ⟩
subst (λ H → ⌞ H X Y ⌟) (trans (sym eqH) (sym $ ≡⇒←-subst eqO)) f ≡⟨ sym $ subst-subst _ _ _ _ ⟩∎
subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst eqO)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ∎
expand-≡⇒←-subst :
∀ {C : Type ℓ₁} {X Y}
{F G : C → C → Set ℓ₂}
{eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) (refl C) F ≡ G}
{f : ⌞ F (≡⇒← (refl C) X) (≡⇒← (refl C) Y) ⌟} →
_
expand-≡⇒←-subst {C} {X} {Y} {F} {eqH = eqH} {f} =
subst (λ H → ⌞ H X Y ⌟) eqH
(subst (λ H → ⌞ H X Y ⌟) (≡⇒←-subst (refl C)) f) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eqH $ subst (λ H → ⌞ H X Y ⌟) eq f)
≡⇒←-subst-refl ⟩
subst (λ H → ⌞ H X Y ⌟) eqH
(subst (λ H → ⌞ H X Y ⌟)
(trans (cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl)
(sym $ subst-refl _ _))
f) ≡⟨ cong (subst (λ H → ⌞ H X Y ⌟) eqH) $ sym $
subst-subst _ _ _ _ ⟩
subst (λ H → ⌞ H X Y ⌟) eqH
(subst (λ H → ⌞ H X Y ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H X Y ⌟)
(cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl)
f)) ≡⟨ cong (λ f → subst (λ H → ⌞ H X Y ⌟) eqH $
subst (λ H → ⌞ H X Y ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) f) $ sym $
subst-∘ (λ H → ⌞ H X Y ⌟) (λ f X Y → F (f X) (f Y)) ≡⇒←-refl ⟩∎
subst (λ H → ⌞ H X Y ⌟) eqH
(subst (λ H → ⌞ H X Y ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ f → ⌞ F (f X) (f Y) ⌟) ≡⇒←-refl f)) ∎
expand-sym-≡⇒←-subst :
∀ {C : Type ℓ₁} {X Y}
{F G : C → C → Set ℓ₂}
{eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) (refl C) F ≡ G}
{f : ⌞ G X Y ⌟} →
_
expand-sym-≡⇒←-subst {C} {X} {Y} {F} {eqH = eqH} {f} =
subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst (refl C))
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) (sym eq) $
subst (λ H → ⌞ H X Y ⌟) (sym eqH) f)
≡⇒←-subst-refl ⟩
subst (λ H → ⌞ H X Y ⌟)
(sym $ trans (cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl)
(sym $ subst-refl _ _))
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq $
subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) $
sym-trans (cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl) _ ⟩
subst (λ H → ⌞ H X Y ⌟)
(trans (sym $ sym $
subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(sym $ cong (λ f X Y → F (f X) (f Y))
≡⇒←-refl))
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟)
(trans eq (sym $ cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl)) $
subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) $
sym-sym _ ⟩
subst (λ H → ⌞ H X Y ⌟)
(trans (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(sym $ cong (λ f X Y → F (f X) (f Y))
≡⇒←-refl))
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) ≡⟨ sym $ subst-subst _ _ _ _ ⟩
subst (λ H → ⌞ H X Y ⌟)
(sym $ cong (λ f X Y → F (f X) (f Y)) ≡⇒←-refl)
(subst (λ H → ⌞ H X Y ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) f)) ≡⟨ cong (λ eq → subst (λ H → ⌞ H X Y ⌟) eq $
subst (λ H → ⌞ H X Y ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _) $
subst (λ H → ⌞ H X Y ⌟) (sym eqH) f) $ sym $
cong-sym (λ f X Y → F (f X) (f Y)) ≡⇒←-refl ⟩
subst (λ H → ⌞ H X Y ⌟)
(cong (λ f X Y → F (f X) (f Y)) $ sym ≡⇒←-refl)
(subst (λ H → ⌞ H X Y ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) f)) ≡⟨ sym $ subst-∘ _ _ _ ⟩∎
subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym ≡⇒←-refl)
(subst (λ H → ⌞ H X Y ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) f)) ∎
subst-Σ-≡,≡→≡ :
∀ {C : Type ℓ₁}
{F G : C → C → Set ℓ₂}
{eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) (refl C) F ≡ G}
{P : (Obj : Type ℓ₁) (HOM : Obj → Obj → Set ℓ₂) → Type (ℓ₁ ⊔ ℓ₂)} →
_
subst-Σ-≡,≡→≡ {C} {F} {eqH = eqH} {P} =
subst (P C) eqH ∘
subst (P C) (sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) F) ≡⟨ apply-ext (lower-extensionality lzero (lsuc ℓ₂) ext) (λ _ →
subst-subst (P C) _ _ _) ⟩
subst (P C) (trans (sym $ subst-refl _ _) eqH) ≡⟨ apply-ext (lower-extensionality lzero (lsuc ℓ₂) ext) (λ _ →
subst-∘ (uncurry P) (C ,_) _) ⟩
subst (uncurry P) (cong (C ,_) (trans (sym $ subst-refl _ _) eqH)) ≡⟨ cong (subst (uncurry P)) $ sym $ Σ-≡,≡→≡-reflˡ eqH ⟩∎
subst (uncurry P) (Σ-≡,≡→≡ (refl C) eqH) ∎
P = λ Obj (HOM : Obj → Obj → Set _) →
∀ {X} → ⌞ HOM X X ⌟
abstract
P-lemma :
∀ {eqO eqH X} →
≡⇒→ (cong (λ H → ⌞ H X X ⌟) (≡⇒← (HOM-lemma eqO) eqH)) C.id ≡
subst₂ (uncurry P) eqO eqH C.id {X = X}
P-lemma {eqO} {eqH} {X} =
≡⇒→ (cong (λ H → ⌞ H X X ⌟) (≡⇒← (HOM-lemma eqO) eqH)) C.id ≡⟨ ≡⇒→-lemma ⟩
subst (λ H → ⌞ H X X ⌟) eqH
(subst (λ H → ⌞ H X X ⌟) (≡⇒←-subst eqO)
(C.id {X = ≡⇒← eqO X})) ≡⟨ elim
(λ eqO →
∀ {X F G}
(eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) eqO F ≡ G)
(id : ∀ X → ⌞ F X X ⌟) →
subst (λ H → ⌞ H X X ⌟) eqH
(subst (λ H → ⌞ H X X ⌟) (≡⇒←-subst eqO) (id (≡⇒← eqO X)))
≡
subst (uncurry P) (Σ-≡,≡→≡ eqO eqH) (λ {X} → id X))
(λ C {X F G} eqH id →
subst (λ H → ⌞ H X X ⌟) eqH
(subst (λ H → ⌞ H X X ⌟) (≡⇒←-subst (refl C))
(id (≡⇒← (refl C) X))) ≡⟨ expand-≡⇒←-subst ⟩
subst (λ H → ⌞ H X X ⌟) eqH
(subst
(λ H → ⌞ H X X ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ f → ⌞ F (f X) (f X) ⌟)
≡⇒←-refl
(id (≡⇒← (refl C) X)))) ≡⟨ cong (λ f → subst (λ H → ⌞ H X X ⌟) eqH
(subst
(λ H → ⌞ H X X ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
f)) $
dcong (λ f → id (f X)) ≡⇒←-refl ⟩
subst (λ H → ⌞ H X X ⌟) eqH
(subst (λ H → ⌞ H X X ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) F)
(id X)) ≡⟨ cong (subst (λ H → ⌞ H X X ⌟) eqH) $
push-subst-implicit-application _ _ ⟩
subst (λ H → ⌞ H X X ⌟) eqH
(subst (P C)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) F)
(λ {X} → id X) {X = X}) ≡⟨ push-subst-implicit-application _ _ ⟩
subst (P C) eqH
(subst (P C)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) F)
(λ {X} → id X)) {X = X} ≡⟨ cong (λ (f : P C F → P C G) → f _)
subst-Σ-≡,≡→≡ ⟩∎
subst (uncurry P) (Σ-≡,≡→≡ (refl C) eqH) (λ {X} → id X) ∎)
eqO eqH (λ _ → C.id) ⟩
subst (uncurry P) (Σ-≡,≡→≡ eqO eqH)
(λ {X} → C.id {X = X}) {X = X} ≡⟨⟩
subst₂ (uncurry P) eqO eqH C.id ∎
Q = λ Obj (HOM : Obj → Obj → Set _) →
∀ {X Y Z} → ⌞ HOM Y Z ⌟ → ⌞ HOM X Y ⌟ → ⌞ HOM X Z ⌟
push-Q :
{C : Type ℓ₁} {X Y Z : C} {F G : C → C → Set ℓ₂}
{c : (X Y Z : C) → ⌞ F Y Z ⌟ → ⌞ F X Y ⌟ → ⌞ F X Z ⌟}
{F≡G : F ≡ G} {f : ⌞ G Y Z ⌟} {g : ⌞ G X Y ⌟} →
subst (λ H → ⌞ H X Z ⌟) F≡G
(c X Y Z
(subst (λ H → ⌞ H Y Z ⌟) (sym F≡G) f)
(subst (λ H → ⌞ H X Y ⌟) (sym F≡G) g)) ≡
subst (Q C) F≡G (c _ _ _) f g
push-Q {C} {X} {Y} {Z} {c = c} {F≡G} {f} {g} =
subst (λ H → ⌞ H X Z ⌟) F≡G
(c X Y Z (subst (λ H → ⌞ H Y Z ⌟) (sym F≡G) f)
(subst (λ H → ⌞ H X Y ⌟) (sym F≡G) g)) ≡⟨ sym subst-→ ⟩
subst (λ H → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) F≡G
(c X Y Z (subst (λ H → ⌞ H Y Z ⌟) (sym F≡G) f)) g ≡⟨ cong (_$ g) $ sym subst-→ ⟩
subst (λ H → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) F≡G
(c X Y Z) f g ≡⟨ cong (λ h → h f g) $
push-subst-implicit-application _
(λ H Z → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) ⟩
subst (λ H → ∀ {Z} → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟)
F≡G (c X Y _) f g ≡⟨ cong (λ h → h {Z = Z} f g) $
push-subst-implicit-application F≡G
(λ H Y → ∀ {Z} → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) ⟩
subst (λ H → ∀ {Y Z} → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟)
F≡G (c X _ _) f g ≡⟨ cong (λ h → h {Y = Y} {Z = Z} f g) $
push-subst-implicit-application F≡G
(λ H X → ∀ {Y Z} → ⌞ H Y Z ⌟ → ⌞ H X Y ⌟ → ⌞ H X Z ⌟) ⟩∎
subst (Q C) F≡G (c _ _ _) f g ∎
abstract
Q-lemma :
∀ {eqO eqH X Y Z f g} →
let eqH′ = λ X Y →
cong (λ H → ⌞ H X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH)
in
≡⇒→ (eqH′ X Z) (≡⇒← (eqH′ Y Z) f C.∙ ≡⇒← (eqH′ X Y) g) ≡
subst₂ (uncurry Q) eqO eqH C._∙_ f g
Q-lemma {eqO} {eqH} {X} {Y} {Z} {f} {g} =
let eqH′ = λ X Y →
cong (λ F → ⌞ F X Y ⌟) (≡⇒← (HOM-lemma eqO) eqH)
in
≡⇒→ (eqH′ X Z) (≡⇒← (eqH′ Y Z) f C.∙ ≡⇒← (eqH′ X Y) g) ≡⟨ cong₂ (λ f g → ≡⇒→ (eqH′ X Z) (f C.∙ g))
≡⇒←-lemma
≡⇒←-lemma ⟩
≡⇒→ (eqH′ X Z)
(subst (λ H → ⌞ H Y Z ⌟) (sym $ ≡⇒←-subst eqO)
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)
C.∙
subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst eqO)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)) ≡⟨ ≡⇒→-lemma ⟩
subst (λ H → ⌞ H X Z ⌟) eqH
(subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst eqO)
(subst (λ H → ⌞ H Y Z ⌟) (sym $ ≡⇒←-subst eqO)
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)
C.∙
subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst eqO)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))) ≡⟨ elim
(λ eqO → ∀ {X Y Z F G}
(eqH : subst (λ Obj → Obj → Obj → Set ℓ₂) eqO F ≡ G)
(comp : ∀ X Y Z →
⌞ F Y Z ⌟ → ⌞ F X Y ⌟ → ⌞ F X Z ⌟)
(f : ⌞ G Y Z ⌟) (g : ⌞ G X Y ⌟) →
subst (λ H → ⌞ H X Z ⌟) eqH
(subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst eqO)
(comp (≡⇒← eqO X) (≡⇒← eqO Y) (≡⇒← eqO Z)
(subst (λ H → ⌞ H Y Z ⌟) (sym $ ≡⇒←-subst eqO)
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))
(subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst eqO)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))
≡
subst (uncurry Q) (Σ-≡,≡→≡ eqO eqH) (λ {X Y Z} → comp X Y Z) f g)
(λ C {X Y Z F G} eqH comp f g →
subst (λ H → ⌞ H X Z ⌟) eqH
(subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst (refl C))
(comp (≡⇒← (refl C) X) (≡⇒← (refl C) Y) (≡⇒← (refl C) Z)
(subst (λ H → ⌞ H Y Z ⌟) (sym $ ≡⇒←-subst (refl C))
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))
(subst (λ H → ⌞ H X Y ⌟) (sym $ ≡⇒←-subst (refl C))
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))) ≡⟨ cong₂ (λ f g →
subst (λ H → ⌞ H X Z ⌟) eqH $
subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst (refl C)) $
comp (≡⇒← (refl C) X) (≡⇒← (refl C) Y)
(≡⇒← (refl C) Z) f g)
expand-sym-≡⇒←-subst
expand-sym-≡⇒←-subst ⟩
subst (λ H → ⌞ H X Z ⌟) eqH
(subst (λ H → ⌞ H X Z ⌟) (≡⇒←-subst (refl C))
(comp (≡⇒← (refl C) X) (≡⇒← (refl C) Y) (≡⇒← (refl C) Z)
(subst (λ f → ⌞ F (f Y) (f Z) ⌟) (sym ≡⇒←-refl)
(subst (λ H → ⌞ H Y Z ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)))
(subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym ≡⇒←-refl)
(subst (λ H → ⌞ H X Y ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))) ≡⟨ expand-≡⇒←-subst ⟩
subst (λ H → ⌞ H X Z ⌟) eqH
(subst (λ H → ⌞ H X Z ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ f → ⌞ F (f X) (f Z) ⌟) ≡⇒←-refl
(comp (≡⇒← (refl C) X) (≡⇒← (refl C) Y)
(≡⇒← (refl C) Z)
(subst (λ f → ⌞ F (f Y) (f Z) ⌟) (sym ≡⇒←-refl)
(subst (λ H → ⌞ H Y Z ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)))
(subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym ≡⇒←-refl)
(subst (λ H → ⌞ H X Y ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))))) ≡⟨ cong (subst (λ H → ⌞ H X Z ⌟) eqH ∘
subst (λ H → ⌞ H X Z ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)) $
dcong′
(λ h eq →
comp (h X) (h Y) (h Z)
(subst (λ f → ⌞ F (f Y) (f Z) ⌟) (sym eq)
(subst (λ H → ⌞ H Y Z ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)))
(subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym eq)
(subst (λ H → ⌞ H X Y ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))
_ ⟩
subst (λ H → ⌞ H X Z ⌟) eqH
(subst (λ H → ⌞ H X Z ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(comp X Y Z
(subst (λ f → ⌞ F (f Y) (f Z) ⌟) (sym (refl P.id))
(subst (λ H → ⌞ H Y Z ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)))
(subst (λ f → ⌞ F (f X) (f Y) ⌟) (sym (refl P.id))
(subst (λ H → ⌞ H X Y ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))) ≡⟨ cong₂ (λ p q →
subst (λ H → ⌞ H X Z ⌟) eqH
(subst (λ H → ⌞ H X Z ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(comp X Y Z
(subst (λ f → ⌞ F (f Y) (f Z) ⌟) p
(subst (λ H → ⌞ H Y Z ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)))
(subst (λ f → ⌞ F (f X) (f Y) ⌟) q
(subst (λ H → ⌞ H X Y ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))))
(sym-refl {x = P.id})
(sym-refl {x = P.id}) ⟩
subst (λ H → ⌞ H X Z ⌟) eqH
(subst (λ H → ⌞ H X Z ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(comp X Y Z
(subst (λ f → ⌞ F (f Y) (f Z) ⌟) (refl P.id)
(subst (λ H → ⌞ H Y Z ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)))
(subst (λ f → ⌞ F (f X) (f Y) ⌟) (refl P.id)
(subst (λ H → ⌞ H X Y ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g))))) ≡⟨ cong₂ (λ f g →
subst (λ H → ⌞ H X Z ⌟) eqH
(subst (λ H → ⌞ H X Z ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(comp X Y Z f g)))
(subst-refl _ _)
(subst-refl _ _) ⟩
subst (λ H → ⌞ H X Z ⌟) eqH
(subst (λ H → ⌞ H X Z ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(comp X Y Z
(subst (λ H → ⌞ H Y Z ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))
(subst (λ H → ⌞ H X Y ⌟)
(subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))) ≡⟨ sym $ cong₂ (λ p q →
subst (λ H → ⌞ H X Z ⌟) eqH
(subst (λ H → ⌞ H X Z ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(comp X Y Z
(subst (λ H → ⌞ H Y Z ⌟) p
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))
(subst (λ H → ⌞ H X Y ⌟) q
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))))
(sym-sym (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _))
(sym-sym (subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)) ⟩
subst (λ H → ⌞ H X Z ⌟) eqH
(subst (λ H → ⌞ H X Z ⌟)
(sym $ subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(comp X Y Z
(subst (λ H → ⌞ H Y Z ⌟)
(sym $ sym $
subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f))
(subst (λ H → ⌞ H X Y ⌟)
(sym $ sym $
subst-refl (λ Obj → Obj → Obj → Set ℓ₂) _)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)))) ≡⟨ cong (subst (λ H → ⌞ H X Z ⌟) eqH) push-Q ⟩
subst (λ H → ⌞ H X Z ⌟) eqH
(subst (Q C)
(sym $ subst-refl _ _)
(λ {X Y Z} → comp X Y Z)
(subst (λ H → ⌞ H Y Z ⌟) (sym eqH) f)
(subst (λ H → ⌞ H X Y ⌟) (sym eqH) g)) ≡⟨ push-Q ⟩
subst (Q C) eqH
(subst (Q C)
(sym $ subst-refl _ _)
(λ {X Y Z} → comp X Y Z)) f g ≡⟨ cong (λ (h : Q C F → Q C G) → h _ _ _)
subst-Σ-≡,≡→≡ ⟩∎
subst (uncurry Q)
(Σ-≡,≡→≡ (refl C) eqH)
(λ {X Y Z} → comp X Y Z) f g ∎)
eqO eqH (λ _ _ _ → C._∙_) f g ⟩
subst (uncurry Q) (Σ-≡,≡→≡ eqO eqH) C._∙_ f g ≡⟨⟩
subst₂ (uncurry Q) eqO eqH C._∙_ f g ∎
-- Equality characterisation lemma for Precategory.
equality-characterisation-Precategory :
∀ {ℓ₁ ℓ₂} {C D : Precategory ℓ₁ ℓ₂} →
Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ lsuc ℓ₂) →
Univalence ℓ₁ →
Univalence ℓ₂ →
let module C = Precategory C
module D = Precategory D
in
(∃ λ (eqO : C.Obj ≃ D.Obj) →
∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃
D.Hom X Y) →
(∀ X → _≃_.to (eqH X X) C.id ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
_≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f)
(_≃_.from (eqH X Y) g)) ≡
f D.∙ g))
↔
C ≡ D
equality-characterisation-Precategory {ℓ₁} {ℓ₂} {C} {D}
ext univ₁ univ₂ =
_ ↝⟨ equality-characterisation-Precategory′ ext univ₁ univ₂ ⟩
C.precategory ≡ D.precategory ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ rearrange) ⟩□
C ≡ D □
where
module C = Precategory C
module D = Precategory D
rearrange : Precategory ℓ₁ ℓ₂ ↔ Precategory′ ℓ₁ ℓ₂
rearrange = record
{ surjection = record
{ logical-equivalence = record
{ to = Precategory.precategory
; from = λ C → record { precategory = C }
}
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ _ → refl _
}
-- Lifts a precategory's object type.
lift-precategory-Obj :
∀ {ℓ₁} ℓ₁′ {ℓ₂} →
Precategory ℓ₁ ℓ₂ → Precategory (ℓ₁ ⊔ ℓ₁′) ℓ₂
lift-precategory-Obj ℓ₁′ C .Precategory.precategory =
↑ ℓ₁′ C.Obj
, (λ (lift A) (lift B) → C.HOM A B)
, C.id
, C._∙_
, C.left-identity
, C.right-identity
, C.assoc
where
module C = Precategory C
-- Lifts a precategory's morphism type family.
lift-precategory-Hom :
∀ {ℓ₁ ℓ₂} ℓ₂′ →
Precategory ℓ₁ ℓ₂ → Precategory ℓ₁ (ℓ₂ ⊔ ℓ₂′)
lift-precategory-Hom ℓ₂′ C .Precategory.precategory =
C.Obj
, (λ A B → ↑ ℓ₂′ (C.Hom A B)
, ↑-closure 2 C.Hom-is-set)
, lift C.id
, (λ (lift f) (lift g) → lift (f C.∙ g))
, cong lift C.left-identity
, cong lift C.right-identity
, cong lift C.assoc
where
module C = Precategory C
------------------------------------------------------------------------
-- Categories
Category′ : (ℓ₁ ℓ₂ : Level) → Type (lsuc (ℓ₁ ⊔ ℓ₂))
Category′ ℓ₁ ℓ₂ =
-- A precategory.
∃ λ (C : Precategory ℓ₁ ℓ₂) →
-- The function ≡→≅ is an equivalence (for each pair of objects).
∀ {X Y} → Is-equivalence (Precategory.≡→≅ C {X = X} {Y = Y})
-- A wrapper.
record Category (ℓ₁ ℓ₂ : Level) : Type (lsuc (ℓ₁ ⊔ ℓ₂)) where
field
category : Category′ ℓ₁ ℓ₂
-- Precategory.
precategory : Precategory ℓ₁ ℓ₂
precategory = proj₁ category
open Precategory precategory public hiding (precategory)
-- The function ≡→≅ is an equivalence (for each pair of objects).
≡→≅-equivalence : ∀ {X Y} → Is-equivalence (≡→≅ {X = X} {Y = Y})
≡→≅-equivalence = proj₂ category
≡≃≅ : ∀ {X Y} → (X ≡ Y) ≃ (X ≅ Y)
≡≃≅ = ⟨ _ , ≡→≅-equivalence ⟩
≅→≡ : ∀ {X Y} → X ≅ Y → X ≡ Y
≅→≡ = _≃_.from ≡≃≅
-- "Computation rule" for ≅→≡.
≅→≡-refl : ∀ {X} → ≅→≡ id≅ ≡ refl X
≅→≡-refl {X} =
≅→≡ id≅ ≡⟨ cong ≅→≡ $ sym ≡→≅-refl ⟩
≅→≡ (≡→≅ (refl X)) ≡⟨ _≃_.left-inverse-of ≡≃≅ _ ⟩∎
refl X ∎
-- Obj has h-level 3.
Obj-3 : H-level 3 Obj
Obj-3 =
respects-surjection
(_≃_.surjection (Eq.inverse ≡≃≅))
2 ≅-set
-- Isomorphisms form a category.
category-≅ : Category ℓ₁ ℓ₂
category-≅ = record { category = precategory-≅ , is-equiv }
where
module P≅ = Precategory precategory-≅
abstract
is-equiv : ∀ {X Y} → Is-equivalence (P≅.≡→≅ {X = X} {Y = Y})
is-equiv =
_⇔_.from (Is-equivalence≃Is-equivalence-CP _)
λ (X≅Y , X≅Y-iso) →
Σ-map (Σ-map
P.id
(λ {X≡Y} ≡→≅[X≡Y]≡X≅Y →
elim (λ {X Y} X≡Y →
(X≅Y : X ≅ Y) (X≅Y-iso : P≅.Is-isomorphism X≅Y) →
≡→≅ X≡Y ≡ X≅Y →
P≅.≡→≅ X≡Y ≡ (X≅Y , X≅Y-iso))
(λ X X≅X X≅X-iso ≡→≅[refl]≡X≅X →
P≅.≡→≅ (refl X) ≡⟨ P≅.≡→≅-refl ⟩
P≅.id≅ ≡⟨ Σ-≡,≡→≡ (id≅ ≡⟨ sym ≡→≅-refl ⟩
≡→≅ (refl X) ≡⟨ ≡→≅[refl]≡X≅X ⟩∎
X≅X ∎)
(P≅.Is-isomorphism-propositional _ _ _) ⟩∎
(X≅X , X≅X-iso) ∎)
X≡Y X≅Y X≅Y-iso
≡→≅[X≡Y]≡X≅Y))
(λ { {X≡Y , _} ∀y→≡y → λ { (X≡Y′ , ≡→≅[X≡Y′]≡X≅Y) →
let lemma =
≡→≅ X≡Y′ ≡⟨ elim (λ X≡Y′ → ≡→≅ X≡Y′ ≡ proj₁ (P≅.≡→≅ X≡Y′))
(λ X → ≡→≅ (refl X) ≡⟨ ≡→≅-refl ⟩
id≅ ≡⟨ cong proj₁ $ sym P≅.≡→≅-refl ⟩∎
proj₁ (P≅.≡→≅ (refl X)) ∎)
X≡Y′ ⟩
proj₁ (P≅.≡→≅ X≡Y′) ≡⟨ cong proj₁ ≡→≅[X≡Y′]≡X≅Y ⟩∎
X≅Y ∎ in
(X≡Y , _) ≡⟨ Σ-≡,≡→≡ (cong proj₁ (∀y→≡y (X≡Y′ , lemma))) (P≅.≅-set _ _) ⟩∎
(X≡Y′ , _) ∎ } }) $
_⇔_.to (Is-equivalence≃Is-equivalence-CP _)
≡→≅-equivalence X≅Y
-- Some equality rearrangement lemmas.
Hom-, : ∀ {X X′ Y Y′} {f : Hom X Y}
(p : X ≡ X′) (q : Y ≡ Y′) →
subst (uncurry Hom) (cong₂ _,_ p q) f ≡ ≡→≅ q ¹ ∙ f ∙ ≡→≅ p ⁻¹
Hom-, p q = elim
(λ p → ∀ q → ∀ {f} → subst (uncurry Hom) (cong₂ _,_ p q) f ≡
≡→≅ q ¹ ∙ f ∙ ≡→≅ p ⁻¹)
(λ X q → elim
(λ q → ∀ {f} → subst (uncurry Hom) (cong₂ _,_ (refl X) q) f ≡
≡→≅ q ¹ ∙ f ∙ ≡→≅ (refl X) ⁻¹)
(λ Y {f} →
subst (uncurry Hom) (cong₂ _,_ (refl X) (refl Y)) f ≡⟨ cong (λ eq → subst (uncurry Hom) eq f) $ cong₂-refl _,_ ⟩
subst (uncurry Hom) (refl (X , Y)) f ≡⟨ subst-refl (uncurry Hom) _ ⟩
f ≡⟨ sym left-identity ⟩
id ∙ f ≡⟨ cong (λ g → g ¹ ∙ f) $ sym ≡→≅-refl ⟩
≡→≅ (refl Y) ¹ ∙ f ≡⟨ sym right-identity ⟩
(≡→≅ (refl Y) ¹ ∙ f) ∙ id ≡⟨ sym assoc ⟩
≡→≅ (refl Y) ¹ ∙ f ∙ id ≡⟨ cong (λ g → ≡→≅ (refl Y) ¹ ∙ f ∙ g ⁻¹) $ sym ≡→≅-refl ⟩∎
≡→≅ (refl Y) ¹ ∙ f ∙ ≡→≅ (refl X) ⁻¹ ∎)
q)
p q
≡→≅-trans : ∀ {X Y Z} (p : X ≡ Y) (q : Y ≡ Z) →
≡→≅ (trans p q) ≡ ≡→≅ q ∙≅ ≡→≅ p
≡→≅-trans {X} = elim¹
(λ p → ∀ q → ≡→≅ (trans p q) ≡ ≡→≅ q ∙≅ ≡→≅ p)
(elim¹
(λ q → ≡→≅ (trans (refl X) q) ≡ ≡→≅ q ∙≅ ≡→≅ (refl X))
(≡→≅ (trans (refl X) (refl X)) ≡⟨ cong ≡→≅ trans-refl-refl ⟩
≡→≅ (refl X) ≡⟨ ≡→≅-refl ⟩
id≅ ≡⟨ sym $ Precategory.left-identity precategory-≅ ⟩
id≅ ∙≅ id≅ ≡⟨ sym $ cong₂ _∙≅_ ≡→≅-refl ≡→≅-refl ⟩∎
≡→≅ (refl X) ∙≅ ≡→≅ (refl X) ∎))
-- Equality of categories is isomorphic to equality of the underlying
-- precategories (assuming extensionality).
≡↔precategory≡precategory′ :
∀ {ℓ₁ ℓ₂} {C D : Category′ ℓ₁ ℓ₂} →
Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) →
C ≡ D ↔ proj₁ C ≡ proj₁ D
≡↔precategory≡precategory′ {ℓ₂ = ℓ₂} ext =
inverse $
ignore-propositional-component
(implicit-Π-closure (lower-extensionality ℓ₂ lzero ext) 1 λ _ →
implicit-Π-closure (lower-extensionality ℓ₂ lzero ext) 1 λ _ →
Eq.propositional ext _)
-- Equality of categories is isomorphic to equality of the underlying
-- precategories (assuming extensionality).
≡↔precategory≡precategory :
∀ {ℓ₁ ℓ₂} {C D : Category ℓ₁ ℓ₂} →
Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) →
C ≡ D ↔ Category.precategory C ≡ Category.precategory D
≡↔precategory≡precategory {C = C} {D = D} ext =
C ≡ D ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ rearrange) ⟩
C.category ≡ D.category ↝⟨ ≡↔precategory≡precategory′ ext ⟩□
C.precategory ≡ D.precategory □
where
module C = Category C
module D = Category D
rearrange : Category′ _ _ ↔ Category _ _
rearrange = record
{ surjection = record
{ logical-equivalence = record
{ to = λ C → record { category = C }
; from = Category.category
}
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ _ → refl _
}
-- Equality characterisation lemma for Category′.
equality-characterisation-Category′ :
∀ {ℓ₁ ℓ₂} {C D : Category′ ℓ₁ ℓ₂} →
Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ lsuc ℓ₂) →
Univalence ℓ₁ →
Univalence ℓ₂ →
let module C = Category (record { category = C })
module D = Category (record { category = D })
in
(∃ λ (eqO : C.Obj ≃ D.Obj) →
∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃
D.Hom X Y) →
(∀ X → _≃_.to (eqH X X) C.id ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
_≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f)
(_≃_.from (eqH X Y) g)) ≡
f D.∙ g))
↔
C ≡ D
equality-characterisation-Category′ {ℓ₂ = ℓ₂} {C} {D} ext univ₁ univ₂ =
_ ↝⟨ equality-characterisation-Precategory ext univ₁ univ₂ ⟩
C.precategory ≡ D.precategory ↝⟨ inverse $ ≡↔precategory≡precategory′ (lower-extensionality lzero (lsuc ℓ₂) ext) ⟩□
C ≡ D □
where
module C = Category (record { category = C })
module D = Category (record { category = D })
-- Equality characterisation lemma for Category.
equality-characterisation-Category :
∀ {ℓ₁ ℓ₂} {C D : Category ℓ₁ ℓ₂} →
Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ lsuc ℓ₂) →
Univalence ℓ₁ →
Univalence ℓ₂ →
let module C = Category C
module D = Category D
in
(∃ λ (eqO : C.Obj ≃ D.Obj) →
∃ λ (eqH : ∀ X Y → C.Hom (_≃_.from eqO X) (_≃_.from eqO Y) ≃
D.Hom X Y) →
(∀ X → _≃_.to (eqH X X) C.id ≡ D.id)
×
(∀ X Y Z (f : D.Hom Y Z) (g : D.Hom X Y) →
_≃_.to (eqH X Z) (C._∙_ (_≃_.from (eqH Y Z) f)
(_≃_.from (eqH X Y) g)) ≡
f D.∙ g))
↔
C ≡ D
equality-characterisation-Category {ℓ₂ = ℓ₂} {C} {D} ext univ₁ univ₂ =
_ ↝⟨ equality-characterisation-Precategory ext univ₁ univ₂ ⟩
C.precategory ≡ D.precategory ↝⟨ inverse $ ≡↔precategory≡precategory (lower-extensionality lzero (lsuc ℓ₂) ext) ⟩□
C ≡ D □
where
module C = Category C
module D = Category D
-- A lemma that can be used to turn a precategory into a category.
precategory-to-category :
∀ {c₁ c₂}
(C : Precategory c₁ c₂) →
let open Precategory C in
(≡≃≅ : ∀ {X Y} → (X ≡ Y) ≃ (X ≅ Y)) →
(∀ {X} → _≃_.to ≡≃≅ (refl X) ¹ ≡ id) →
Category c₁ c₂
precategory-to-category C ≡≃≅ ≡≃≅-refl = record
{ category = C , Precategory.≡→≅-equivalence-lemma C ≡≃≅ ≡≃≅-refl
}
-- A variant of the previous lemma for precategories with Set c₁ as
-- the type of objects. (The lemma is defined using extensionality and
-- univalence for sets.)
precategory-with-Set-to-category :
∀ {c₁ c₂} →
Extensionality c₁ c₁ →
((A B : Set c₁) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) →
(C : Precategory-with-Obj (Set c₁) c₂) →
let open Precategory (record { precategory = _ , C }) in
(≃≃≅ : ∀ X Y → (⌞ X ⌟ ≃ ⌞ Y ⌟) ≃ (X ≅ Y)) →
(∀ X → _≃_.to (≃≃≅ X X) Eq.id ¹ ≡ id) →
Category (lsuc c₁) c₂
precategory-with-Set-to-category ext univ C ≃≃≅ ≃≃≅-id =
precategory-to-category C′ ≡≃≅ ≡≃≅-refl
where
C′ = record { precategory = _ , C }
open Precategory C′
-- _≡_ and _≅_ are pointwise equivalent…
cong-⌞⌟ : {X Y : Obj} → (X ≡ Y) ≃ (⌞ X ⌟ ≡ ⌞ Y ⌟)
cong-⌞⌟ = Eq.↔⇒≃ $ inverse $
ignore-propositional-component (H-level-propositional ext 2)
≡≃≅ : ∀ {X Y} → (X ≡ Y) ≃ (X ≅ Y)
≡≃≅ {X} {Y} = ≃≃≅ X Y ⊚ ≡≃≃ (univ X Y) ⊚ cong-⌞⌟
-- …and the proof maps reflexivity to the identity isomorphism.
≡≃≅-refl :
∀ {X} → _¹ {X = X} {Y = X} (_≃_.to ≡≃≅ (refl X)) ≡ id
≡≃≅-refl {X} = cong (_¹ {X = X} {Y = X}) (
_≃_.to (≃≃≅ X X) (≡⇒≃ (proj₁ (Σ-≡,≡←≡ (refl X)))) ≡⟨ cong (_≃_.to (≃≃≅ X X) ∘ ≡⇒≃ ∘ proj₁) Σ-≡,≡←≡-refl ⟩
_≃_.to (≃≃≅ X X) (≡⇒≃ (refl ⌞ X ⌟)) ≡⟨ cong (_≃_.to (≃≃≅ X X)) ≡⇒≃-refl ⟩
_≃_.to (≃≃≅ X X) Eq.id ≡⟨ _≃_.from (≡≃≡¹ {X = X} {Y = X}) $ ≃≃≅-id X ⟩∎
id≅ ∎)
-- An example: sets and functions. (Defined using extensionality and
-- univalence for sets.)
category-Set :
(ℓ : Level) →
Extensionality ℓ ℓ →
((A B : Set ℓ) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) →
Category (lsuc ℓ) ℓ
category-Set ℓ ext univ =
precategory-with-Set-to-category
ext
univ
(proj₂ precategory)
(≃≃≅-Set ℓ ext)
(λ _ → refl P.id)
where
C = precategory-Set ℓ ext
open Precategory C
-- An example: sets and bijections. (Defined using extensionality and
-- univalence for sets.)
category-Set-≅ :
(ℓ : Level) →
Extensionality ℓ ℓ →
((A B : Set ℓ) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) →
Category (lsuc ℓ) ℓ
category-Set-≅ ℓ ext univ =
Category.category-≅ (category-Set ℓ ext univ)
private
-- The objects are sets.
Obj-category-Set-≅ :
∀ ℓ (ext : Extensionality ℓ ℓ)
(univ : (A B : Set ℓ) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) →
Category.Obj (category-Set-≅ ℓ ext univ) ≡ Set ℓ
Obj-category-Set-≅ _ _ _ = refl _
-- The morphisms are bijections.
Hom-category-Set-≅ :
∀ ℓ (ext : Extensionality ℓ ℓ)
(univ : (A B : Set ℓ) → Univalence′ ⌞ A ⌟ ⌞ B ⌟) →
Category.Hom (category-Set-≅ ℓ ext univ) ≡
Category._≅_ (category-Set ℓ ext univ)
Hom-category-Set-≅ _ _ _ = refl _
-- A trivial category (with a singleton type of objects and singleton
-- homsets).
Unit : ∀ ℓ₁ ℓ₂ → Category ℓ₁ ℓ₂
Unit ℓ₁ ℓ₂ =
precategory-to-category record
{ precategory =
↑ ℓ₁ ⊤
, (λ _ _ → ↑ ℓ₂ ⊤ , ↑⊤-set)
, _
, _
, refl _
, refl _
, refl _
}
(λ {x y} →
x ≡ y ↔⟨ ≡↔⊤ ⟩
⊤ ↔⟨ inverse ≡↔⊤ ⟩
lift tt ≡ lift tt ↔⟨ inverse $ drop-⊤-left-Σ ≡↔⊤ ⟩
lift tt ≡ lift tt × lift tt ≡ lift tt ↔⟨ inverse $ drop-⊤-left-Σ Bijection.↑↔ ⟩
↑ ℓ₂ ⊤ × lift tt ≡ lift tt × lift tt ≡ lift tt ↔⟨ inverse $ drop-⊤-left-Σ Bijection.↑↔ ⟩□
↑ ℓ₂ ⊤ × ↑ ℓ₂ ⊤ × lift tt ≡ lift tt × lift tt ≡ lift tt □)
(refl _)
where
↑⊤-set : ∀ {ℓ} → Is-set (↑ ℓ ⊤)
↑⊤-set = mono (Nat.zero≤ 2) (↑-closure 0 ⊤-contractible)
≡↔⊤ : ∀ {ℓ} {x y : ↑ ℓ ⊤} → (x ≡ y) ↔ ⊤
≡↔⊤ = _⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible ↑⊤-set (refl _)
-- An "empty" category, without objects.
Empty : ∀ ℓ₁ ℓ₂ → Category ℓ₁ ℓ₂
Empty ℓ₁ ℓ₂ =
precategory-to-category record
{ precategory =
⊥
, ⊥-elim
, (λ {x} → ⊥-elim x)
, (λ {x} → ⊥-elim x)
, (λ {x} → ⊥-elim x)
, (λ {x} → ⊥-elim x)
, (λ {x} → ⊥-elim x)
}
(λ {x} → ⊥-elim x)
(λ {x} → ⊥-elim x)
-- Lifts a category's object type.
lift-category-Obj :
∀ {ℓ₁} ℓ₁′ {ℓ₂} →
Category ℓ₁ ℓ₂ → Category (ℓ₁ ⊔ ℓ₁′) ℓ₂
lift-category-Obj ℓ₁′ C .Category.category =
C′
, ≡→≅-equivalence
where
C′ = lift-precategory-Obj ℓ₁′ (Category.precategory C)
module C = Category C
module C′ = Precategory C′
≡→≅-equivalence :
{X Y : Precategory.Obj C′} →
Is-equivalence (C′.≡→≅ {X = X} {Y = Y})
≡→≅-equivalence {X = X} {Y = Y} =
_≃_.is-equivalence $
Eq.with-other-function
(X ≡ Y ↝⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ Bijection.↑↔ ⟩
lower X ≡ lower Y ↝⟨ Eq.⟨ _ , C.≡→≅-equivalence ⟩ ⟩
lower X C.≅ lower Y ↔⟨⟩
X C′.≅ Y □)
C′.≡→≅
(elim (λ X≡Y → C.≡→≅ (cong lower X≡Y) ≡ C′.≡→≅ X≡Y)
(λ X →
C.≡→≅ (cong lower (refl X)) ≡⟨ cong C.≡→≅ $ cong-refl lower ⟩
C.≡→≅ (refl (lower X)) ≡⟨ C.≡→≅-refl ⟩
C.id≅ ≡⟨⟩
C′.id≅ ≡⟨ sym C′.≡→≅-refl ⟩∎
C′.≡→≅ (refl X) ∎))
-- Lifts a category's morphism type family.
lift-category-Hom :
∀ {ℓ₁ ℓ₂} ℓ₂′ →
Category ℓ₁ ℓ₂ → Category ℓ₁ (ℓ₂ ⊔ ℓ₂′)
lift-category-Hom ℓ₂′ C .Category.category =
C′
, ≡→≅-equivalence
where
C′ = lift-precategory-Hom ℓ₂′ (Category.precategory C)
module C = Category C
module C′ = Precategory C′
≡→≅-equivalence :
{X Y : Precategory.Obj C′} →
Is-equivalence (C′.≡→≅ {X = X} {Y = Y})
≡→≅-equivalence {X = X} {Y = Y} =
_≃_.is-equivalence $
Eq.with-other-function
(X ≡ Y ↝⟨ Eq.⟨ _ , C.≡→≅-equivalence ⟩ ⟩
X C.≅ Y ↝⟨ equiv ⟩□
X C′.≅ Y □)
C′.≡→≅
(elim (λ X≡Y → _≃_.to equiv (C.≡→≅ X≡Y) ≡ C′.≡→≅ X≡Y)
(λ X →
_≃_.to equiv (C.≡→≅ (refl X)) ≡⟨ cong (_≃_.to equiv) C.≡→≅-refl ⟩
_≃_.to equiv C.id≅ ≡⟨ _≃_.from C′.≡≃≡¹ (refl _) ⟩
C′.id≅ ≡⟨ sym C′.≡→≅-refl ⟩∎
C′.≡→≅ (refl X) ∎))
where
equiv : ∀ {X Y} → (X C.≅ Y) ≃ (X C′.≅ Y)
equiv =
Σ-cong (inverse Bijection.↑↔) λ _ →
Σ-cong (inverse Bijection.↑↔) λ _ →
(Eq.≃-≡ $ Eq.↔⇒≃ Bijection.↑↔)
×-cong
(Eq.≃-≡ $ Eq.↔⇒≃ Bijection.↑↔)
| 47.515536
| 148
| 0.327003
|
20308bfeefe1e36e9f868aeb4ff805ab85930c1b
| 515
|
agda
|
Agda
|
test/Succeed/OverloadedString.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/OverloadedString.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/OverloadedString.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module _ where
open import Common.Prelude
open import Common.String
record IsString {a} (A : Set a) : Set a where
field
fromString : String → A
open IsString {{...}} public
{-# BUILTIN FROMSTRING fromString #-}
instance
StringIsString : IsString String
StringIsString = record { fromString = λ s → s }
ListIsString : IsString (List Char)
ListIsString = record { fromString = stringToList }
foo : List Char
foo = "foo"
open import Common.Equality
thm : "foo" ≡ 'f' ∷ 'o' ∷ 'o' ∷ []
thm = refl
| 18.392857
| 53
| 0.673786
|
2f27cab5b76333f2659af032f70239ec8ad794d6
| 791
|
agda
|
Agda
|
test/Succeed/Issue162.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue162.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue162.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Now you don't need a mutual keyword anymore!
module Issue162 where
data Odd : Set
data Even : Set where
zero : Even
suc : Odd → Even
data Odd where
suc : Even → Odd
-- This means you can have all kinds of things in
-- mutual blocks.
-- Like postulates
_o+e_ : Odd → Even → Odd
_e+e_ : Even → Even → Even
zero e+e m = m
suc n e+e m = suc (n o+e m)
postulate todo : Even
suc n o+e m = suc todo
-- Or modules
_e+o_ : Even → Odd → Odd
_o+o_ : Odd → Odd → Even
suc n o+o m = suc (n e+o m)
module Helper where
f : Even → Odd → Odd
f zero m = m
f (suc n) m = suc (n o+o m)
n e+o m = Helper.f n m
-- Multiplication just for the sake of it
_o*o_ : Odd → Odd → Odd
_e*o_ : Even → Odd → Even
zero e*o m = zero
suc n e*o m = m o+o (n o*o m)
suc n o*o m = m o+e (n e*o m)
| 17.577778
| 49
| 0.603034
|
39474b0e0b7eb93a72acf328c6303c8420bcee65
| 1,124
|
agda
|
Agda
|
test/Fail/Issue4283.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue4283.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue4283.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
--{-# OPTIONS -vtc:50 #-}
{-# OPTIONS --double-check #-}
open import Agda.Primitive
postulate Id : (l : Level) (A : Set l) → A → A → Set l
postulate w/e : (l : Level) (A : Set l) → A
data Box l (A : Set l) : Set l where
box : A → Box l A
unbox : (l : Level) (A : Set l) → Box l A → A
unbox l A (box x) = x
record R l (A : Set l) : Set l where
--no-eta-equality
-- ^ works if eta is disabled
field
boxed : Box l A
refl : Id l A (w/e l A) (w/e l A)
postulate
El : (l : Level) (A : Set l) → A → A
trans : (l : Level) (A : Set l) (x : A) → Id l A (w/e l A) (w/e l A) → Id l A (w/e l A) (w/e l A) → Id l A (w/e l A) (w/e l A)
cong : (l : Level) (A : Set l) (f : A → A) (x y : A) → Id l A x y → Id l A (f x) (f y)
module _ (l : Level) (BADNESS : Set) (A : Set l) (r : R l A) where
open R r
x = w/e l A
p = trans l A (unbox l A boxed) refl refl
lemma = El l
(Id l (Id l A x x) p p)
(cong l _ (λ p → trans l A (unbox l A boxed) p _) refl refl (w/e l (Id l (Id l A x x) refl refl)))
-- ^ works if definition of lemma is removed
test = λ _ → unbox _ _ boxed
| 26.761905
| 128
| 0.508007
|
c51e0156c7be482697f590c2a0db2d98b37f0ae6
| 940
|
agda
|
Agda
|
proofs/AKS/Unsafe.agda
|
mckeankylej/thesis
|
ddad4c0d5f384a0219b2177461a68dae06952dde
|
[
"MIT"
] | 1
|
2020-12-01T22:38:27.000Z
|
2020-12-01T22:38:27.000Z
|
proofs/AKS/Unsafe.agda
|
mckeankylej/thesis
|
ddad4c0d5f384a0219b2177461a68dae06952dde
|
[
"MIT"
] | null | null | null |
proofs/AKS/Unsafe.agda
|
mckeankylej/thesis
|
ddad4c0d5f384a0219b2177461a68dae06952dde
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --with-K #-}
open import Axiom.Extensionality.Propositional using (Extensionality)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary using (Irrelevant)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_)
open import Relation.Binary.PropositionalEquality.WithK using (≡-erase)
-- acursed and unmentionable
-- turn back traveller
module AKS.Unsafe where
open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe) public
postulate
TODO : ∀ {a} {A : Set a} → A
BOTTOM : ∀ {a} {A : Set a} → A
.irrelevance : ∀ {a} {A : Set a} -> .A -> A
≡-recomp : ∀ {a} {A : Set a} {x y : A} → .(x ≡ y) → x ≡ y
fun-ext : ∀ {ℓ₁ ℓ₂} → Extensionality ℓ₁ ℓ₂
≡-recomputable : ∀ {a} {A : Set a} {x y : A} → .(x ≡ y) → x ≡ y
≡-recomputable x≡y = ≡-erase (≡-recomp x≡y)
≢-irrelevant : ∀ {a} {A : Set a} → Irrelevant {A = A} _≢_
≢-irrelevant {x} {y} [x≉y]₁ [x≉y]₂ = trustMe
| 34.814815
| 80
| 0.652128
|
dcf58ec8c796fc35403e8bd6ff989282b3d03938
| 183
|
agda
|
Agda
|
test/Fail/Issue952-unnamed.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue952-unnamed.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue952-unnamed.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module _ where
-- Should not be able to give by name
id : {_ = A : Set} → A → A
id x = x
works : (X : Set) → X → X
works X = id {X}
fails : (X : Set) → X → X
fails X = id {A = X}
| 14.076923
| 37
| 0.508197
|
4a432d8ac95ab13f98f714be6830204e8460a6bf
| 4,899
|
agda
|
Agda
|
Cubical/Data/Maybe/Properties.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/Data/Maybe/Properties.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/Data/Maybe/Properties.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Maybe.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Embedding
open import Cubical.Data.Empty
open import Cubical.Data.Unit
open import Cubical.Data.Nat
open import Cubical.Relation.Nullary
open import Cubical.Data.Sum
open import Cubical.Data.Maybe.Base
-- Path space of Maybe type
module MaybePath {ℓ} {A : Type ℓ} where
Cover : Maybe A → Maybe A → Type ℓ
Cover nothing nothing = Lift Unit
Cover nothing (just _) = Lift ⊥
Cover (just _) nothing = Lift ⊥
Cover (just a) (just a') = a ≡ a'
reflCode : (c : Maybe A) → Cover c c
reflCode nothing = lift tt
reflCode (just b) = refl
encode : ∀ c c' → c ≡ c' → Cover c c'
encode c _ = J (λ c' _ → Cover c c') (reflCode c)
encodeRefl : ∀ c → encode c c refl ≡ reflCode c
encodeRefl c = JRefl (λ c' _ → Cover c c') (reflCode c)
decode : ∀ c c' → Cover c c' → c ≡ c'
decode nothing nothing _ = refl
decode (just _) (just _) p = cong just p
decodeRefl : ∀ c → decode c c (reflCode c) ≡ refl
decodeRefl nothing = refl
decodeRefl (just _) = refl
decodeEncode : ∀ c c' → (p : c ≡ c') → decode c c' (encode c c' p) ≡ p
decodeEncode c _ =
J (λ c' p → decode c c' (encode c c' p) ≡ p)
(cong (decode c c) (encodeRefl c) ∙ decodeRefl c)
encodeDecode : ∀ c c' → (d : Cover c c') → encode c c' (decode c c' d) ≡ d
encodeDecode nothing nothing _ = refl
encodeDecode (just a) (just a') =
J (λ a' p → encode (just a) (just a') (cong just p) ≡ p) (encodeRefl (just a))
Cover≃Path : ∀ c c' → Cover c c' ≃ (c ≡ c')
Cover≃Path c c' = isoToEquiv
(iso (decode c c') (encode c c') (decodeEncode c c') (encodeDecode c c'))
Cover≡Path : ∀ c c' → Cover c c' ≡ (c ≡ c')
Cover≡Path c c' = isoToPath
(iso (decode c c') (encode c c') (decodeEncode c c') (encodeDecode c c'))
isOfHLevelCover : (n : ℕ)
→ isOfHLevel (suc (suc n)) A
→ ∀ c c' → isOfHLevel (suc n) (Cover c c')
isOfHLevelCover n p nothing nothing = isOfHLevelLift (suc n) (isOfHLevelUnit (suc n))
isOfHLevelCover n p nothing (just a') = isOfHLevelLift (suc n)
(subst (λ m → isOfHLevel m ⊥) (+-comm n 1) (hLevelLift n isProp⊥))
isOfHLevelCover n p (just a) nothing = isOfHLevelLift (suc n)
(subst (λ m → isOfHLevel m ⊥) (+-comm n 1) (hLevelLift n isProp⊥))
isOfHLevelCover n p (just a) (just a') = p a a'
isOfHLevelMaybe : ∀ {ℓ} (n : ℕ) {A : Type ℓ}
→ isOfHLevel (suc (suc n)) A
→ isOfHLevel (suc (suc n)) (Maybe A)
isOfHLevelMaybe n lA c c' =
retractIsOfHLevel (suc n)
(MaybePath.encode c c')
(MaybePath.decode c c')
(MaybePath.decodeEncode c c')
(MaybePath.isOfHLevelCover n lA c c')
private
variable
ℓ : Level
A : Type ℓ
fromJust-def : A → Maybe A → A
fromJust-def a nothing = a
fromJust-def _ (just a) = a
just-inj : (x y : A) → just x ≡ just y → x ≡ y
just-inj x _ eq = cong (fromJust-def x) eq
isEmbedding-just : isEmbedding (just {A = A})
isEmbedding-just w z = MaybePath.Cover≃Path (just w) (just z) .snd
¬nothing≡just : ∀ {x : A} → ¬ (nothing ≡ just x)
¬nothing≡just {A = A} {x = x} p = lower (subst (caseMaybe (Maybe A) (Lift ⊥)) p (just x))
¬just≡nothing : ∀ {x : A} → ¬ (just x ≡ nothing)
¬just≡nothing {A = A} {x = x} p = lower (subst (caseMaybe (Lift ⊥) (Maybe A)) p (just x))
isProp-x≡nothing : (x : Maybe A) → isProp (x ≡ nothing)
isProp-x≡nothing nothing x w = subst isProp (MaybePath.Cover≡Path nothing nothing) (isOfHLevelLift 1 isPropUnit) x w
isProp-x≡nothing (just _) p _ = ⊥-elim (¬just≡nothing p)
isContr-nothing≡nothing : isContr (nothing {A = A} ≡ nothing)
isContr-nothing≡nothing = inhProp→isContr refl (isProp-x≡nothing _)
discreteMaybe : Discrete A → Discrete (Maybe A)
discreteMaybe eqA nothing nothing = yes refl
discreteMaybe eqA nothing (just a') = no ¬nothing≡just
discreteMaybe eqA (just a) nothing = no ¬just≡nothing
discreteMaybe eqA (just a) (just a') with eqA a a'
... | yes p = yes (cong just p)
... | no ¬p = no (λ p → ¬p (just-inj _ _ p))
module SumUnit where
Maybe→SumUnit : Maybe A → Unit ⊎ A
Maybe→SumUnit nothing = inl tt
Maybe→SumUnit (just a) = inr a
SumUnit→Maybe : Unit ⊎ A → Maybe A
SumUnit→Maybe (inl _) = nothing
SumUnit→Maybe (inr a) = just a
Maybe→SumUnit→Maybe : (x : Maybe A) → SumUnit→Maybe (Maybe→SumUnit x) ≡ x
Maybe→SumUnit→Maybe nothing = refl
Maybe→SumUnit→Maybe (just _) = refl
SumUnit→Maybe→SumUnit : (x : Unit ⊎ A) → Maybe→SumUnit (SumUnit→Maybe x) ≡ x
SumUnit→Maybe→SumUnit (inl _) = refl
SumUnit→Maybe→SumUnit (inr _) = refl
Maybe≡SumUnit : Maybe A ≡ Unit ⊎ A
Maybe≡SumUnit = isoToPath (iso SumUnit.Maybe→SumUnit SumUnit.SumUnit→Maybe SumUnit.SumUnit→Maybe→SumUnit SumUnit.Maybe→SumUnit→Maybe)
| 35.759124
| 133
| 0.650133
|
2fc383355c263ede33aaea9002d08bcab97be395
| 290
|
agda
|
Agda
|
prototyping/Luau/Addr/ToString.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | 1
|
2021-11-06T08:03:00.000Z
|
2021-11-06T08:03:00.000Z
|
prototyping/Luau/Addr/ToString.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | null | null | null |
prototyping/Luau/Addr/ToString.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | null | null | null |
module Luau.Addr.ToString where
open import Agda.Builtin.String using (String; primStringAppend)
open import Luau.Addr using (Addr)
open import Agda.Builtin.Int using (Int; primShowInteger; pos)
addrToString : Addr → String
addrToString a = primStringAppend "a" (primShowInteger (pos a))
| 32.222222
| 64
| 0.789655
|
1d30a84b68747d31150e8a12f396f0b5c161fd48
| 358
|
agda
|
Agda
|
src/Fragment/Equational/FreeExtension.agda
|
yallop/agda-fragment
|
f2a6b1cf4bc95214bd075a155012f84c593b9496
|
[
"MIT"
] | 18
|
2021-06-15T15:45:39.000Z
|
2022-01-17T17:26:09.000Z
|
src/Fragment/Equational/FreeExtension.agda
|
yallop/agda-fragment
|
f2a6b1cf4bc95214bd075a155012f84c593b9496
|
[
"MIT"
] | 1
|
2021-06-16T09:44:31.000Z
|
2021-06-16T10:24:15.000Z
|
src/Fragment/Equational/FreeExtension.agda
|
yallop/agda-fragment
|
f2a6b1cf4bc95214bd075a155012f84c593b9496
|
[
"MIT"
] | 3
|
2021-06-15T15:34:50.000Z
|
2021-06-16T08:04:31.000Z
|
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Equational.Theory
module Fragment.Equational.FreeExtension (Θ : Theory) where
open import Fragment.Equational.FreeExtension.Base Θ public
open import Fragment.Equational.FreeExtension.Synthetic Θ using (SynFrex) public
open import Fragment.Equational.FreeExtension.Properties Θ public
| 35.8
| 80
| 0.812849
|
50897da48e4aca86bb43f22165320f9975904490
| 589
|
agda
|
Agda
|
test/Succeed/Issue658.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue658.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue658.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2012-05-24, issue reported by Nisse
{-# OPTIONS --allow-unsolved-metas #-}
-- {-# OPTIONS -v tc.meta:50 #-}
module Issue658 where
import Common.Level
postulate
A : Set
P : A → Set
Q : (x : A) → P x → Set
p : (x : A) → P x
record R : Set where
field
a : A
r : R
r = {!!}
postulate
q : Q (R.a r) (p (R.a r))
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/TypeChecking/MetaVars.hs:101
-- The internal error was cause by eta-expanding the frozen meta.
-- Eta-expansion of frozen metas is now allowed.
| 20.310345
| 68
| 0.63837
|
59b44d99837bdbe86131fac7298e6c56609323f8
| 3,615
|
agda
|
Agda
|
Languages/SDE.agda
|
hbasold/Sandbox
|
8fc7a6cd878f37f9595124ee8dea62258da28aa4
|
[
"MIT"
] | null | null | null |
Languages/SDE.agda
|
hbasold/Sandbox
|
8fc7a6cd878f37f9595124ee8dea62258da28aa4
|
[
"MIT"
] | null | null | null |
Languages/SDE.agda
|
hbasold/Sandbox
|
8fc7a6cd878f37f9595124ee8dea62258da28aa4
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --copatterns --sized-types #-}
open import Size
open import Function
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P
open ≡-Reasoning
open import Algebra.Structures using (IsCommutativeSemiring; IsCommutativeMonoid)
open import Data.Nat
open import Data.Nat.Properties using (isCommutativeSemiring)
open import Stream
open ∼ˢ∞-Reasoning
⟦_⟧ : ℕ → Str ℕ
hd (⟦ n ⟧) = n
tl (⟦ n ⟧) = ⟦ 0 ⟧
_⊕_ : ∀{i} → Str {i} ℕ → Str {i} ℕ → Str {i} ℕ
hd (s ⊕ t) = (hd s) + (hd t)
tl (s ⊕ t) = (tl s) ⊕ (tl t)
_×_ : ∀{i} → Str {i} ℕ → Str {i} ℕ → Str {i} ℕ
hd (s × t) = hd s * hd t
tl (s × t)= ((tl s) × t) ⊕ (⟦ hd s ⟧ × (tl t))
comm-* : ∀ m n → m * n ≡ n * m
comm-* = IsCommutativeMonoid.comm
(IsCommutativeSemiring.*-isCommutativeMonoid isCommutativeSemiring)
comm-+ : ∀ m n → m + n ≡ n + m
comm-+ = IsCommutativeMonoid.comm
(IsCommutativeSemiring.+-isCommutativeMonoid isCommutativeSemiring)
Bisim = _∼ˢ_
{-
mutual
comm-× : ∀{i} →
(s t : Str {i} ℕ) → Bisim {ℕ} {i} (s × t) (t × s)
hd≡ (comm-× s t) = comm-* (hd s) (hd t)
tl∼ (comm-× s t) = lem-comm-× s t
lem-comm-× : ∀{i} → ∀{j : Size< i} →
(s t : Str {i} ℕ) →
Bisim {ℕ} {j}
((tl s × t) ⊕ (⟦ hd s ⟧ × tl t))
((tl t × s) ⊕ (⟦ hd t ⟧ × tl s))
hd≡ (lem-comm-× {i} {j} s t) =
begin
hd s' * hd t + hd s * hd t'
≡⟨ comm-+ (hd s' * hd t) (hd s * hd t') ⟩
hd s * hd t' + hd s' * hd t
≡⟨ cong (λ x → x + hd s' * hd t) (comm-* (hd s) (hd t')) ⟩
hd t' * hd s + hd s' * hd t
≡⟨ cong (λ x → hd t' * hd s + x) (comm-* (hd s') (hd t)) ⟩
hd t' * hd s + hd t * hd s'
∎
where
s' = tl s {j}
t' = tl t {j}
tl∼ (lem-comm-× {i} {j} s t) {k} = lem {k}
where
s' = tl s {j}
t' = tl t {j}
lem : ∀{k : Size< j} → Bisim {ℕ} {k}
(((tl s' × t) ⊕ (⟦ hd s' ⟧ × t')) ⊕ ((⟦ 0 ⟧ × t') ⊕ (⟦ hd s ⟧ × tl t')))
(((tl t' × s) ⊕ (⟦ hd t' ⟧ × s')) ⊕ ((⟦ 0 ⟧ × s') ⊕ (⟦ hd t ⟧ × tl s')))
lem = {!!}
where
s'' = tl s' {k}
t'' = tl t' {k}
-}
zero-⊕-unit-l : (s : Str ℕ) → (⟦ 0 ⟧ ⊕ s) ∼ˢ∞ s
hd≡∞ (zero-⊕-unit-l s) = refl
tl∼∞ (zero-⊕-unit-l s) = zero-⊕-unit-l (tl s)
zero-⊕-unit-r : (s : Str ℕ) → (s ⊕ ⟦ 0 ⟧) ∼ˢ∞ s
hd≡∞ (zero-⊕-unit-r s) = comm-+ (hd s) 0
tl∼∞ (zero-⊕-unit-r s) = zero-⊕-unit-r (tl s)
zero-×-annihil-l : (s : Str ℕ) → (⟦ 0 ⟧ × s) ∼ˢ∞ ⟦ 0 ⟧
hd≡∞ (zero-×-annihil-l s) = refl
tl∼∞ (zero-×-annihil-l s) =
beginˢ∞
tl (⟦ 0 ⟧ × s)
∼ˢ∞⟨ s-bisim∞-refl ⟩
(⟦ 0 ⟧ × s) ⊕ (⟦ 0 ⟧ × tl s)
∼ˢ∞⟨ {!!} ⟩
tl (⟦ 0 ⟧)
∎ˢ∞
mutual
comm-× : (s t : Str ℕ) → (s × t) ∼ˢ∞ (t × s)
hd≡∞ (comm-× s t) = comm-* (hd s) (hd t)
tl∼∞ (comm-× s t) = lem-comm-× s t
lem-comm-× : (s t : Str ℕ) →
((tl s × t) ⊕ (⟦ hd s ⟧ × tl t))
∼ˢ∞ ((tl t × s) ⊕ (⟦ hd t ⟧ × tl s))
hd≡∞ (lem-comm-× s t) =
begin
hd s' * hd t + hd s * hd t'
≡⟨ comm-+ (hd s' * hd t) (hd s * hd t') ⟩
hd s * hd t' + hd s' * hd t
≡⟨ cong (λ x → x + hd s' * hd t) (comm-* (hd s) (hd t')) ⟩
hd t' * hd s + hd s' * hd t
≡⟨ cong (λ x → hd t' * hd s + x) (comm-* (hd s') (hd t)) ⟩
hd t' * hd s + hd t * hd s'
∎
where
s' = tl s
t' = tl t
tl∼∞ (lem-comm-× s t) = lem
where
s' = tl s
t' = tl t
lem :
(((tl s' × t) ⊕ (⟦ hd s' ⟧ × t')) ⊕ ((⟦ 0 ⟧ × t') ⊕ (⟦ hd s ⟧ × tl t')))
∼ˢ∞ (((tl t' × s) ⊕ (⟦ hd t' ⟧ × s')) ⊕ ((⟦ 0 ⟧ × s') ⊕ (⟦ hd t ⟧ × tl s')))
lem = {!!}
where
s'' = tl s'
t'' = tl t'
| 27.59542
| 84
| 0.410235
|
dcb7202a9eb33588897003fa6fc0432ec641b3b0
| 2,557
|
agda
|
Agda
|
src/CF/Transform/Hoist.agda
|
ajrouvoet/jvm.agda
|
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
|
[
"Apache-2.0"
] | 6
|
2020-10-07T14:07:17.000Z
|
2021-02-28T21:49:08.000Z
|
src/CF/Transform/Hoist.agda
|
ajrouvoet/jvm.agda
|
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
|
[
"Apache-2.0"
] | null | null | null |
src/CF/Transform/Hoist.agda
|
ajrouvoet/jvm.agda
|
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
|
[
"Apache-2.0"
] | 1
|
2021-12-28T17:37:15.000Z
|
2021-12-28T17:37:15.000Z
|
{- MJ where variable declarations have been hoisted to the top of a block -}
module CF.Transform.Hoist where
open import Level
open import Function using (_∘_)
open import Data.List
open import Data.List.Properties
open import Data.Unit
open import Data.Product
open import Relation.Unary hiding (_⊢_)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Ternary.Core
open import Relation.Ternary.Structures
open import Relation.Ternary.Structures.Syntax
open import Relation.Ternary.Monad
open import Relation.Ternary.Monad.Weakening
open import Relation.Ternary.Structures.Syntax
open import CF.Types
open import CF.Contexts.Lexical
open import CF.Syntax as Src hiding (Stmt; Block; Statement; var) public
open import CF.Syntax.Hoisted as Hoisted
open import Relation.Ternary.Construct.List.Overlapping Ty
open import Relation.Ternary.Data.Bigstar
pattern _⍮⟨_⟩_ s σ b = cons (s ∙⟨ σ ⟩ b)
hoist-binder : ∀ {P : Pred Ctx 0ℓ} {Γ} → ∀[ (Γ ⊢ P) ⇒ ◇ (Vars Γ ✴ P) ]
hoist-binder px = pack (⊢-zip (∙-copy _) (binders ∙⟨ ∙-idˡ ⟩ px))
-- A typed hoisting transformation for statement blocks
{-# TERMINATING #-}
mutual
{- Hoist local variables from blocks -}
hoist : ∀[ Src.Block r ⇒ ◇ (Block r) ]
hoist Src.emp = do
return nil
hoist (ss Src.⍮⟨ σ ⟩ b) = do
b ∙⟨ σ ⟩ s ← translate ss &⟨ Src.Block _ # ∙-comm σ ⟩ b
s ∙⟨ σ ⟩ b ← hoist b &⟨ Hoisted.Stmt _ # ∙-comm σ ⟩ s
return (s ⍮⟨ σ ⟩ b)
hoist (e Src.≔⟨ σ ⟩ Γ⊢b) = do
e×v ∙⟨ σ ⟩ b ← ✴-assocₗ ⟨$⟩ (hoist-binder Γ⊢b &⟨ Src.Exp _ # σ ⟩ e)
(e ∙⟨ σ₁ ⟩ v) ∙⟨ σ₂ ⟩ b' ← hoist b &⟨ _ ✴ _ # σ ⟩ e×v
return (Hoisted.asgn (v ∙⟨ ∙-comm σ₁ ⟩ e) ⍮⟨ σ₂ ⟩ b')
{- Hoist local variables from statements -}
translate : ∀[ Src.Stmt r ⇒ ◇ (Stmt r) ]
translate (Src.asgn x) = do
return (Hoisted.asgn x)
translate (Src.run e) = do
return (Hoisted.run e)
translate (Src.while (e ∙⟨ σ ⟩ body)) = do
e ∙⟨ σ ⟩ body' ← translate body &⟨ Src.Exp _ # σ ⟩ e
return (Hoisted.while (e ∙⟨ σ ⟩ body'))
translate (Src.ifthenelse e×s₁×s₂) = do
let (s₁ ∙⟨ σ ⟩ s₂×e) = ✴-rotateₗ e×s₁×s₂
s₂ ∙⟨ σ ⟩ e×s₁ ← ✴-assocᵣ ⟨$⟩ (translate s₁ &⟨ _ ✴ _ # ∙-comm σ ⟩ s₂×e)
e×s₁×s₂ ← ✴-assocᵣ ⟨$⟩ (translate s₂ &⟨ _ ✴ _ # ∙-comm σ ⟩ e×s₁)
return (Hoisted.ifthenelse e×s₁×s₂)
translate (Src.block bl) = do
bl' ← hoist bl
return (Hoisted.block bl')
| 35.513889
| 94
| 0.593664
|
1d8edc582eb544c7e0e84684c1992e5aff0f07dd
| 302
|
agda
|
Agda
|
test/Fail/Issue1322.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue1322.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue1322.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module _ where
data _==_ {A : Set} (a : A) : A → Set where
refl : a == a
data ⊥ : Set where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
it : ∀ {a} {A : Set a} ⦃ x : A ⦄ → A
it ⦃ x ⦄ = x
f : (n : ℕ) ⦃ p : n == zero → ⊥ ⦄ → ℕ
f n = n
h : (n : ℕ) ⦃ q : n == zero → ⊥ ⦄ → ℕ
h n ⦃ q ⦄ = f n ⦃ it ⦄
| 14.380952
| 43
| 0.39404
|
a1f5899de0b40d5eca96a559c5c78db707816c32
| 3,769
|
agda
|
Agda
|
theorems/cw/cohomology/ReconstructedFirstCohomologyGroup.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
theorems/cw/cohomology/ReconstructedFirstCohomologyGroup.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
theorems/cw/cohomology/ReconstructedFirstCohomologyGroup.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | 1
|
2018-12-26T21:31:57.000Z
|
2018-12-26T21:31:57.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.ChainComplex
open import cohomology.Theory
open import groups.KernelImage
open import cw.CW
module cw.cohomology.ReconstructedFirstCohomologyGroup {i : ULevel} (OT : OrdinaryTheory i) where
open OrdinaryTheory OT
import cw.cohomology.TipCoboundary OT as TC
import cw.cohomology.HigherCoboundary OT as HC
import cw.cohomology.TipAndAugment OT as TAA
open import cw.cohomology.WedgeOfCells OT
open import cw.cohomology.Descending OT
open import cw.cohomology.ReconstructedCochainComplex OT
import cw.cohomology.FirstCohomologyGroup OT as FCG
import cw.cohomology.FirstCohomologyGroupOnDiag OT as FCGD
import cw.cohomology.CohomologyGroupsTooHigh OT as CGTH
private
≤-dec-has-all-paths : {m n : ℕ} → has-all-paths (Dec (m ≤ n))
≤-dec-has-all-paths = prop-has-all-paths (Dec-level ≤-is-prop)
private
abstract
first-cohomology-group-descend : ∀ {n} (⊙skel : ⊙Skeleton {i} (3 + n))
→ cohomology-group (cochain-complex ⊙skel) 1
== cohomology-group (cochain-complex (⊙cw-init ⊙skel)) 1
first-cohomology-group-descend {n = O} ⊙skel
= ap2 (λ δ₁ δ₂ → Ker/Im δ₂ δ₁ (CXₙ/Xₙ₋₁-is-abelian (⊙cw-take (lteSR lteS) ⊙skel) 1))
(coboundary-first-template-descend-from-far {n = 2} ⊙skel (ltSR ltS) ltS)
(coboundary-higher-template-descend-from-one-above ⊙skel)
first-cohomology-group-descend {n = S n} ⊙skel -- n = S n
= ap2 (λ δ₁ δ₂ → Ker/Im δ₂ δ₁ (CXₙ/Xₙ₋₁-is-abelian (⊙cw-take (≤-+-l 1 (lteSR $ lteSR $ inr (O<S n))) ⊙skel) 1))
(coboundary-first-template-descend-from-far {n = 3 + n} ⊙skel (ltSR (ltSR (O<S n))) (<-+-l 1 (ltSR (O<S n))))
(coboundary-higher-template-descend-from-far {n = 3 + n} ⊙skel (<-+-l 1 (ltSR (O<S n))) (<-+-l 2 (O<S n)))
first-cohomology-group-β : ∀ (⊙skel : ⊙Skeleton {i} 2)
→ cohomology-group (cochain-complex ⊙skel) 1
== Ker/Im
(HC.cw-co∂-last ⊙skel)
(TC.cw-co∂-head (⊙cw-init ⊙skel))
(CXₙ/Xₙ₋₁-is-abelian (⊙cw-init ⊙skel) 1)
first-cohomology-group-β ⊙skel
= ap2 (λ δ₁ δ₂ → Ker/Im δ₂ δ₁ (CXₙ/Xₙ₋₁-is-abelian (⊙cw-init ⊙skel) 1))
( coboundary-first-template-descend-from-two ⊙skel
∙ coboundary-first-template-β (⊙cw-init ⊙skel))
(coboundary-higher-template-β ⊙skel)
first-cohomology-group-β-one-below : ∀ (⊙skel : ⊙Skeleton {i} 1)
→ cohomology-group (cochain-complex ⊙skel) 1
== Ker/Im
(cst-hom {H = Lift-group {j = i} Unit-group})
(TC.cw-co∂-head ⊙skel)
(CXₙ/Xₙ₋₁-is-abelian ⊙skel 1)
first-cohomology-group-β-one-below ⊙skel
= ap
(λ δ₁ → Ker/Im
(cst-hom {H = Lift-group {j = i} Unit-group})
δ₁ (CXₙ/Xₙ₋₁-is-abelian ⊙skel 1))
(coboundary-first-template-β ⊙skel)
abstract
first-cohomology-group : ∀ {n} (⊙skel : ⊙Skeleton {i} n)
→ ⊙has-cells-with-choice 0 ⊙skel i
→ C 1 ⊙⟦ ⊙skel ⟧ ≃ᴳ cohomology-group (cochain-complex ⊙skel) 1
first-cohomology-group {n = 0} ⊙skel ac =
CGTH.C-cw-iso-ker/im 1 ltS (TAA.C2×CX₀ ⊙skel 0) ⊙skel ac
first-cohomology-group {n = 1} ⊙skel ac =
coe!ᴳ-iso (first-cohomology-group-β-one-below ⊙skel)
∘eᴳ FCGD.C-cw-iso-ker/im ⊙skel ac
first-cohomology-group {n = 2} ⊙skel ac =
coe!ᴳ-iso (first-cohomology-group-β ⊙skel)
∘eᴳ FCG.C-cw-iso-ker/im ⊙skel ac
first-cohomology-group {n = S (S (S n))} ⊙skel ac =
coe!ᴳ-iso (first-cohomology-group-descend ⊙skel)
∘eᴳ first-cohomology-group (⊙cw-init ⊙skel) (⊙init-has-cells-with-choice ⊙skel ac)
∘eᴳ C-cw-descend-at-lower ⊙skel (<-+-l 1 (O<S n)) ac
| 46.530864
| 122
| 0.614221
|
502bd5777ce4691db5f0bc463f8e08cf9f5c2850
| 296
|
agda
|
Agda
|
test/Fail/BadCon.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/BadCon.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/BadCon.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module BadCon where
data D : Set where
d : D
data E : Set where
d : E
postulate
F : D -> Set
test : (x : D) -> F x
test = d
-- Bad error (unbound de Bruijn index):
-- the constructor d does not construct an element of F @0
-- when checking that the expression d has type (x : D) → F x
| 16.444444
| 61
| 0.631757
|
069eae8cbf9a15a8634833ffa63c90b09e571278
| 208
|
agda
|
Agda
|
test/interaction/Issue1073.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue1073.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue1073.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module _ (A : Set) (Sing : A → Set) (F : (a : A) → Sing a → Set) where
test : {a : A} → Sing a → Set
test s = F {!!} s
-- WAS: C-c C-s inserts a, which produces a scope error
-- Instead, it should insert _
| 26
| 70
| 0.5625
|
0edd4a6467da331450fdcab3375adbb0e1288760
| 5,173
|
agda
|
Agda
|
src/LibraBFT/Abstract/RecordChain/Assumptions.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
src/LibraBFT/Abstract/RecordChain/Assumptions.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
src/LibraBFT/Abstract/RecordChain/Assumptions.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Abstract.Types.EpochConfig
open import Util.Lemmas
open import Util.Prelude
open WithAbsVote
-- Here we establish the properties necessary to achieve consensus
-- just like we see them on paper: stating facts about the state of
-- the system and reasoning about which QC's exist in the system.
-- This module is a stepping stone to the properties we want;
-- you should probably not be importing it directly, see 'LibraBFT.Abstract.Properties'
-- instead.
--
-- The module 'LibraBFT.Abstract.Properties' proves that the invariants
-- presented here can be obtained from reasoning about sent votes,
-- which provides a much easier-to-prove interface to an implementation.
module LibraBFT.Abstract.RecordChain.Assumptions
(UID : Set)
(_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁))
(NodeId : Set)
(𝓔 : EpochConfig UID NodeId)
(𝓥 : VoteEvidence UID NodeId 𝓔)
where
open import LibraBFT.Abstract.Types UID NodeId 𝓔
open import LibraBFT.Abstract.System UID _≟UID_ NodeId 𝓔 𝓥
open import LibraBFT.Abstract.Records UID _≟UID_ NodeId 𝓔 𝓥
open import LibraBFT.Abstract.Records.Extends UID _≟UID_ NodeId 𝓔 𝓥
open import LibraBFT.Abstract.RecordChain UID _≟UID_ NodeId 𝓔 𝓥
open EpochConfig 𝓔
module _ {ℓ}(InSys : Record → Set ℓ) where
-- Another important predicate of a "valid" RecordStoreState is the fact
-- that α's n-th vote is always the same.
VotesOnlyOnceRule : Set ℓ
VotesOnlyOnceRule
-- Given an honest α
= (α : Member) → Meta-Honest-Member α
-- For all system states where q and q' exist,
→ ∀{q q'} → (q∈𝓢 : InSys (Q q)) → (q'∈𝓢 : InSys (Q q'))
-- such that α voted for q and q'; if α says it's the same vote, then it's the same vote.
→ (v : α ∈QC q)(v' : α ∈QC q')
→ abs-vRound (∈QC-Vote q v) ≡ abs-vRound (∈QC-Vote q' v')
-----------------
→ ∈QC-Vote q v ≡ ∈QC-Vote q' v'
module _ {ℓ}(InSys : Record → Set ℓ) where
-- The preferred-round rule (aka locked-round-rule) is a critical
-- aspect of LibraBFT's correctness. It states that an honest node α will cast
-- votes for blocks b only if prevRound(b) ≥ preferred_round(α), where preferred_round(α)
-- is defined as $max { round b | b is the head of a 2-chain }$.
--
-- Operationally, α can ensure it obeys this rule as follows: it keeps a counter
-- preferred_round, initialized at 0 and, whenever α receives a QC q that forms a
-- 2-chain:
--
-- Fig1
--
-- I ← ⋯ ← b₁ ← q₁ ← b ← q
-- ⌞₋₋₋₋₋₋₋₋₋₋₋₋₋₋₋₋₋⌟
-- 2-chain
--
-- it checks whether round(b₁) , which is the head of the 2-chain above,
-- is greater than its previously known preferred_round; if so, α updates
-- it. Note that α doesn't need to cast a vote in q, above, to have its
-- preferred_round updated. All that matters is that α has seen q.
--
-- We are encoding the rules governing Libra nodes as invariants in the
-- state of other nodes. Hence, the PreferredRoundRule below states an invariant
-- on the state of β, if α respects the preferred-round-rule.
--
-- Let the state of β be as below, such that α did cast votes for q
-- and q' in that order (α is honest here!):
--
--
-- Fig2
-- 3-chain
-- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝
-- | 2-chain | α knows of the 2-chain because
-- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ | it voted at the 3-chain.
-- I ← ⋯ ← b₂ ← q₂ ← b₁ ← q₁ ← b ← q
-- ↖
-- ⋯ ← b₁' ← q₁' ← b' ← q'
--
-- Then, since α is honest and follows the preferred-round rule, we know that
-- round(b₂) ≤ round(b₁') because, by seeing that α voted on q, we know that α
-- has seen the 2-chain above, hence, α's preferred_round was at least round(b₂) at
-- the time α cast its vote for b.
--
-- After casting a vote for b, α cast a vote for b', which means that α must have
-- checked that round(b₂) ≤ prevRound(b'), as stated by the preferred round rule.
--
-- The invariant below states that, since α is honest, we can trust that these
-- checks have been performed and we can infer this information solely
-- by seeing α has knowledge of the 2-chain in Fig2 above.
--
open All-InSys-props InSys
PreferredRoundRule : Set ℓ
PreferredRoundRule
= ∀(α : Member) → Meta-Honest-Member α
→ ∀{q q'}
→ {rc : RecordChain (Q q)} → All-InSys rc → {n : ℕ}(c3 : 𝕂-chain Contig (3 + n) rc)
→ (v : α ∈QC q) -- α knows of the 2-chain because it voted on the tail of the 3-chain!
→ {rc' : RecordChain (Q q')} → All-InSys rc'
→ (v' : α ∈QC q')
→ abs-vRound (∈QC-Vote q v) < abs-vRound (∈QC-Vote q' v')
→ NonInjective-≡-pred (InSys ∘ B) bId ⊎ (getRound (kchainBlock (suc (suc zero)) c3) ≤ prevRound rc')
| 43.470588
| 111
| 0.619756
|
1042d936021b1bbbe59051aac054b78ace259a47
| 3,342
|
agda
|
Agda
|
vendor/stdlib/src/Data/Rational.agda
|
isabella232/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 56
|
2015-01-20T02:11:42.000Z
|
2021-12-21T17:02:19.000Z
|
vendor/stdlib/src/Data/Rational.agda
|
larrytheliquid/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 1
|
2022-03-12T12:17:51.000Z
|
2022-03-12T12:17:51.000Z
|
vendor/stdlib/src/Data/Rational.agda
|
isabella232/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 3
|
2015-07-21T16:37:58.000Z
|
2022-03-12T11:54:10.000Z
|
------------------------------------------------------------------------
-- Rational numbers
------------------------------------------------------------------------
module Data.Rational where
open import Data.Bool.Properties
open import Data.Function
open import Data.Integer hiding (suc) renaming (_*_ to _ℤ*_)
open import Data.Integer.Divisibility as ℤDiv using (Coprime)
import Data.Integer.Properties as ℤ
open import Data.Nat.Divisibility as ℕDiv using (_∣_)
import Data.Nat.Coprimality as C
open import Data.Nat as ℕ renaming (_*_ to _ℕ*_)
open import Relation.Nullary.Decidable
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
open ≡-Reasoning
------------------------------------------------------------------------
-- The definition
-- Rational numbers in reduced form.
record ℚ : Set where
field
numerator : ℤ
denominator-1 : ℕ
isCoprime : True (C.coprime? ∣ numerator ∣ (suc denominator-1))
denominator : ℤ
denominator = + suc denominator-1
coprime : Coprime numerator denominator
coprime = witnessToTruth isCoprime
-- Constructs rational numbers. The arguments have to be in reduced
-- form.
infixl 7 _÷_
_÷_ : (numerator : ℤ) (denominator : ℕ)
{coprime : True (C.coprime? ∣ numerator ∣ denominator)}
{≢0 : False (ℕ._≟_ denominator 0)} →
ℚ
(n ÷ zero) {≢0 = ()}
(n ÷ suc d) {c} =
record { numerator = n; denominator-1 = d; isCoprime = c }
private
-- Note that the implicit arguments do not need to be given for
-- concrete inputs:
0/1 : ℚ
0/1 = + 0 ÷ 1
-½ : ℚ
-½ = - + 1 ÷ 2
------------------------------------------------------------------------
-- Equality
-- Equality of rational numbers.
infix 4 _≃_
_≃_ : Rel ℚ
p ≃ q = P.numerator ℤ* Q.denominator ≡
Q.numerator ℤ* P.denominator
where module P = ℚ p; module Q = ℚ q
-- _≃_ coincides with propositional equality.
≡⇒≃ : _≡_ ⇒ _≃_
≡⇒≃ refl = refl
≃⇒≡ : _≃_ ⇒ _≡_
≃⇒≡ {p} {q} = helper P.numerator P.denominator-1 P.isCoprime
Q.numerator Q.denominator-1 Q.isCoprime
where
module P = ℚ p; module Q = ℚ q
helper : ∀ n₁ d₁ c₁ n₂ d₂ c₂ →
n₁ ℤ* + suc d₂ ≡ n₂ ℤ* + suc d₁ →
(n₁ ÷ suc d₁) {c₁} ≡ (n₂ ÷ suc d₂) {c₂}
helper n₁ d₁ c₁ n₂ d₂ c₂ eq
with Poset.antisym ℕDiv.poset 1+d₁∣1+d₂ 1+d₂∣1+d₁
where
1+d₁∣1+d₂ : suc d₁ ∣ suc d₂
1+d₁∣1+d₂ = ℤDiv.coprime-divisor (+ suc d₁) n₁ (+ suc d₂)
(C.sym $ witnessToTruth c₁) $
ℕDiv.divides ∣ n₂ ∣ (begin
∣ n₁ ℤ* + suc d₂ ∣ ≡⟨ cong ∣_∣ eq ⟩
∣ n₂ ℤ* + suc d₁ ∣ ≡⟨ ℤ.abs-*-commute n₂ (+ suc d₁) ⟩
∣ n₂ ∣ ℕ* suc d₁ ∎)
1+d₂∣1+d₁ : suc d₂ ∣ suc d₁
1+d₂∣1+d₁ = ℤDiv.coprime-divisor (+ suc d₂) n₂ (+ suc d₁)
(C.sym $ witnessToTruth c₂) $
ℕDiv.divides ∣ n₁ ∣ (begin
∣ n₂ ℤ* + suc d₁ ∣ ≡⟨ cong ∣_∣ (PropEq.sym eq) ⟩
∣ n₁ ℤ* + suc d₂ ∣ ≡⟨ ℤ.abs-*-commute n₁ (+ suc d₂) ⟩
∣ n₁ ∣ ℕ* suc d₂ ∎)
helper n₁ d c₁ n₂ .d c₂ eq | refl with ℤ.cancel-*-right
n₁ n₂ (+ suc d) (λ ()) eq
helper n d c₁ .n .d c₂ eq | refl | refl with proof-irrelevance c₁ c₂
helper n d c .n .d .c eq | refl | refl | refl = refl
| 30.381818
| 74
| 0.524536
|
12e684f3fff7f439754eb17c8abe02355c5b65d7
| 520
|
agda
|
Agda
|
test/Fail/Issue610-module.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/Fail/Issue610-module.agda
|
Blaisorblade/Agda
|
802a28aa8374f15fe9d011ceb80317fdb1ec0949
|
[
"BSD-3-Clause"
] | null | null | null |
test/Fail/Issue610-module.agda
|
Blaisorblade/Agda
|
802a28aa8374f15fe9d011ceb80317fdb1ec0949
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
-- Andreas, 2016-02-11, bug reported by sanzhiyan
module Issue610-module where
import Common.Level
open import Common.Equality
data ⊥ : Set where
record ⊤ : Set where
data A : Set₁ where
set : .Set → A
module M .(x : Set) where
.out : Set
out = x
.ack : A → Set
ack (set x) = M.out x
hah : set ⊤ ≡ set ⊥
hah = refl
-- SHOULD FAIL
.moo' : ⊥
moo' = subst (λ x → x) (cong ack hah) _
-- SHOULD FAIL
.moo : ⊥
moo with cong ack hah
moo | q = subst (λ x → x) q _
baa : .⊥ → ⊥
baa ()
yoink : ⊥
yoink = baa moo
| 13.333333
| 49
| 0.6
|
20c84a399c3db027ad9ab04b826f561740178291
| 743
|
agda
|
Agda
|
Prelude/BooleanAlgebra.agda
|
bbarenblat/B
|
c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec
|
[
"Apache-2.0"
] | 1
|
2017-06-30T15:59:38.000Z
|
2017-06-30T15:59:38.000Z
|
Prelude/BooleanAlgebra.agda
|
bbarenblat/B
|
c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec
|
[
"Apache-2.0"
] | null | null | null |
Prelude/BooleanAlgebra.agda
|
bbarenblat/B
|
c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec
|
[
"Apache-2.0"
] | null | null | null |
{- Copyright © 2015 Benjamin Barenblat
Licensed under the Apache License, Version 2.0 (the ‘License’); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an ‘AS IS’ BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -}
module B.Prelude.BooleanAlgebra where
import Algebra
open Algebra
using (BooleanAlgebra)
public
open Algebra.BooleanAlgebra ⦃...⦄
using (_∧_; _∨_; ¬_; ⊤; ⊥)
public
| 32.304348
| 79
| 0.765814
|
3904f5ce86bb956ba9ff41aeddeca02e73c174df
| 730
|
agda
|
Agda
|
test/Succeed/Issue2384.agda
|
zgrannan/agda
|
5953ce337eb6b77b29ace7180478f49c541aea1c
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/Succeed/Issue2384.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | null | null | null |
test/Succeed/Issue2384.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
{-# OPTIONS --show-implicit #-}
open import Agda.Builtin.Nat renaming (Nat to ℕ)
open import Agda.Builtin.Equality
postulate
funext : {X : Set} {Y : X → Set} {f g : (x : X) → Y x} → (∀ x → f x ≡ g x) → f ≡ g
_::_ : {X : ℕ → Set} → X 0 → ((n : ℕ) → X (suc n)) → ((n : ℕ) → X n)
(x :: α) 0 = x
(x :: α) (suc n) = α n
hd : {X : ℕ → Set} → ((n : ℕ) → X n) → X 0
hd α = α 0
tl : {X : ℕ → Set} → ((n : ℕ) → X n) → ((n : ℕ) → X (suc n))
tl α n = α(suc n)
-- Needed to add the implicit arguments for funext in Agda 2.5.2:
hd-tl-eta : (X : ℕ → Set) {α : (n : ℕ) → X n} → (hd α :: tl α) ≡ α
hd-tl-eta X {α} = funext {Y = _} lemma
where
lemma : ∀ {α} → ∀ i → _::_ {_} (hd α) (tl α) i ≡ α i
lemma 0 = refl
lemma (suc i) = refl
| 28.076923
| 84
| 0.468493
|
a1dac2b07ca3548ef5ce326e422b3535c597850d
| 1,382
|
agda
|
Agda
|
Cubical/HITs/Localization/Base.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | 1
|
2020-03-23T23:52:11.000Z
|
2020-03-23T23:52:11.000Z
|
Cubical/HITs/Localization/Base.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Localization/Base.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Localization.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv.PathSplit
open isPathSplitEquiv
module _ {ℓα ℓs ℓt} {A : Type ℓα} {S : A → Type ℓs} {T : A → Type ℓt} where
isLocal : ∀ (F : ∀ α → S α → T α) {ℓ} (X : Type ℓ) → Type _
isLocal F X = ∀ α → isPathSplitEquiv (λ (g : T α → X) → g ∘ F α)
data Localize (F : ∀ α → S α → T α) {ℓ} (X : Type ℓ) : Type (ℓ-max ℓ (ℓ-max ℓα (ℓ-max ℓs ℓt))) where
∣_∣ : X → Localize F X
-- (_∘ F α) : (T α → Localize F X) → (S α → Localize F X) is a path-split equivalence ∀ α
ext : ∀ α → (S α → Localize F X) → (T α → Localize F X)
isExt : ∀ α (f : S α → Localize F X) (s : S α) → ext α f (F α s) ≡ f s
≡ext : ∀ α (g h : T α → Localize F X) → ((s : S α) → g (F α s) ≡ h (F α s)) → ((t : T α) → g t ≡ h t)
≡isExt : ∀ α g h (p : (s : S α) → g (F α s) ≡ h (F α s)) (s : S α) → ≡ext α g h p (F α s) ≡ p s
isLocal-Localize : ∀ (F : ∀ α → S α → T α) {ℓ} (X : Type ℓ) → isLocal F (Localize F X)
fst (sec (isLocal-Localize F X α)) f t = ext α f t
snd (sec (isLocal-Localize F X α)) f i s = isExt α f s i
fst (secCong (isLocal-Localize F X α) g h) p i t = ≡ext α g h (funExt⁻ p) t i
snd (secCong (isLocal-Localize F X α) g h) p i j t = ≡isExt α g h (funExt⁻ p) t i j
| 51.185185
| 107
| 0.542692
|
fb0762af21cf302ffe9d3c4e833231eaaa6d45fc
| 6,936
|
agda
|
Agda
|
formalization/Context.agda
|
ishantheperson/Obsidian
|
b5fc75b137cf86251c03709c58f940286d730e86
|
[
"BSD-3-Clause"
] | 79
|
2017-08-19T16:24:10.000Z
|
2022-03-27T10:34:28.000Z
|
formalization/Context.agda
|
ishantheperson/Obsidian
|
b5fc75b137cf86251c03709c58f940286d730e86
|
[
"BSD-3-Clause"
] | 259
|
2017-08-18T19:50:41.000Z
|
2022-03-29T18:20:05.000Z
|
formalization/Context.agda
|
ishantheperson/Obsidian
|
b5fc75b137cf86251c03709c58f940286d730e86
|
[
"BSD-3-Clause"
] | 11
|
2018-05-24T08:20:52.000Z
|
2021-06-09T18:40:19.000Z
|
-- Adapted from Wadler: https://plfa.github.io/Lambda/
module Context (A : Set) where
open import Prelude
open import Data.Nat
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym)
open import Data.Maybe
open import Data.Product using (_×_; proj₁; proj₂; ∃-syntax) renaming (_,_ to ⟨_,_⟩)
open import Relation.Nullary.Decidable
open import Relation.Nullary using (Dec; yes; no)
open import Data.Empty
import Data.Nat.Properties
infixl 5 _,_⦂_
-- Internal type of contexts
data ctx : Set where
∅ : ctx
_,_⦂_ : ctx → ℕ → A → ctx
infix 4 _∋_⦂_
data _∋_⦂_ : ctx → ℕ → A → Set where
Z : ∀ {Γ : ctx}
→ ∀ {x : ℕ}
→ ∀ {a : A}
------------------
→ Γ , x ⦂ a ∋ x ⦂ a
S : ∀ {Γ x y a b}
→ x ≢ y
→ Γ ∋ x ⦂ a
------------------
→ Γ , y ⦂ b ∋ x ⦂ a
lookup : ctx → ℕ → Maybe A
lookup ∅ _ = nothing
lookup (Γ , x ⦂ t) y with compare x y
... | equal _ = just t
... | _ = lookup Γ x
data _∈dom_ : ℕ → ctx → Set where
inDom : ∀ {x Γ a}
→ Γ ∋ x ⦂ a
-------------
→ x ∈dom Γ
data _∉dom_ : ℕ → ctx → Set where
notInEmpty : ∀ {x}
----------
→ x ∉dom ∅
notInNonempty : ∀ {x x' Γ T}
→ x ≢ x'
→ x ∉dom Γ
--------------------
→ x ∉dom (Γ , x' ⦂ T)
irrelevantExtensionsOK : ∀ {Γ : ctx}
→ ∀ {x y t t'}
→ Γ ∋ x ⦂ t
→ x ≢ y
→ Γ , y ⦂ t' ∋ x ⦂ t
irrelevantExtensionsOK {Γ} {x} {y} {t} cont@(Z {Γ₀} {x} {t}) neq = S neq cont
irrelevantExtensionsOK (S neq' rest) neq = S neq (irrelevantExtensionsOK rest neq')
irrelevantReductionsOK : ∀ {Γ : ctx}
→ ∀ {x y t t'}
→ Γ , x ⦂ t ∋ y ⦂ t'
→ y ≢ x
→ Γ ∋ y ⦂ t'
-- ⊥-elim (!neq (Relation.Binary.PropositionalEquality.sym x x))
irrelevantReductionsOK {Γ} {x} {y} {t} {t'} z@(Z {Γ} {x} {t}) neq =
let
s : x ≡ x
s = refl
bot = neq s
in
Data.Empty.⊥-elim bot
irrelevantReductionsOK {Γ} {x} {y} {t} {t'} (S x₁ qq) neq = qq
irrelevantReductionsInValuesOK : ∀ {Γ : ctx}
→ ∀ {x y t t'}
→ Γ , x ⦂ t ∋ y ⦂ t'
→ t ≢ t'
→ Γ ∋ y ⦂ t'
irrelevantReductionsInValuesOK {Γ} {x} {.x} {t} {.t} Z tNeqt' = ⊥-elim (tNeqt' refl)
irrelevantReductionsInValuesOK {Γ} {x} {y} {t} {t'} (S yNeqx yt'InΓ') tNeqt' = yt'InΓ'
∈domExcludedMiddle : ∀ {Γ x}
→ x ∉dom Γ
→ Relation.Nullary.¬ (x ∈dom Γ)
∈domExcludedMiddle {.∅} {x} notInEmpty (inDom ())
∈domExcludedMiddle {.(_ , _ ⦂ _)} {x} (notInNonempty xNeqx' xNotInΓ) (inDom n) =
let
rest = ∈domExcludedMiddle xNotInΓ
xInΓ = irrelevantReductionsOK n xNeqx'
in
rest (inDom xInΓ)
∉domPreservation : ∀ {x x' Γ T T'}
→ x ∉dom (Γ , x' ⦂ T)
---------------------
→ x ∉dom (Γ , x' ⦂ T')
∉domPreservation {x} {x'} {Γ} {T} {T'} (notInNonempty xNeqX' xNotInDom) = notInNonempty xNeqX' xNotInDom
∉domGreaterThan : ∀ {Γ x}
→ (∀ x' → x' ∈dom Γ → x' < x)
→ x ∉dom Γ
∉domGreaterThan {∅} {x} xBigger = notInEmpty
∉domGreaterThan {Γ , x' ⦂ t} {x} xBigger =
notInNonempty x≢x' (∉domGreaterThan rest) -- (∉domGreaterThan (λ x'' → λ x''InΓ → xBigger x'' (inDom {!!})))
where
x'<x = xBigger x' (inDom Z)
x≢x' : x ≢ x'
x≢x' = ≢-sym (Data.Nat.Properties.<⇒≢ x'<x)
rest : (x'' : ℕ)
→ x'' ∈dom Γ
→ x'' < x
rest x'' (inDom x''InΓ) with x' ≟ x''
... | yes x'≡x'' rewrite x'≡x'' = xBigger x'' (inDom Z)
... | no x'≢x'' = xBigger x'' (inDom (S (≢-sym x'≢x'') x''InΓ))
fresh : (Γ : ctx)
→ ∃[ x ] (x ∉dom Γ × (∀ x' → x' ∈dom Γ → x' < x))
fresh ∅ =
⟨ zero , ⟨ notInEmpty , xBigger ⟩ ⟩
where
xBigger : (∀ x' → x' ∈dom ∅ → x' < zero)
xBigger x' (inDom ())
fresh (Γ , x ⦂ t) =
⟨ x' , ⟨ x'IsFresh , x'Bigger ⟩ ⟩
where
freshInRest = fresh Γ
biggerThanRest = suc (proj₁ freshInRest)
x' = biggerThanRest ⊔ (suc x) -- bigger than both everything in Γ and x.
freshInRestBigger = proj₂ (proj₂ freshInRest)
x'Bigger : (x'' : ℕ) → (x'' ∈dom (Γ , x ⦂ t)) → x'' < x'
x'Bigger x'' (inDom x''InΓ') with x ≟ x''
... | yes x≡x'' rewrite x≡x'' =
s≤s (Data.Nat.Properties.n≤m⊔n (proj₁ (fresh Γ)) x'') -- s≤s (Data.Nat.Properties.<⇒≤ x''<oldFresh)
... | no x≢x'' =
let
x''<oldFresh = freshInRestBigger x'' (inDom (irrelevantReductionsOK x''InΓ' (≢-sym x≢x'')) )
x''≤oldFresh = (Data.Nat.Properties.<⇒≤ x''<oldFresh)
in
s≤s ( Data.Nat.Properties.m≤n⇒m≤n⊔o x x''≤oldFresh) -- s≤s (Data.Nat.Properties.<⇒≤ x''<oldFresh)
x'IsFresh : x' ∉dom (Γ , x ⦂ t)
x'IsFresh = ∉domGreaterThan x'Bigger
-- Removing elements from a context
_#_ : ctx → ℕ → ctx
∅ # x = ∅
(Γ , x' ⦂ T) # x with compare x x'
... | equal _ = Γ
... | _ = (Γ # x) , x' ⦂ T
contextLookupUnique : ∀ {Γ : ctx}
→ ∀ {x t t'}
→ Γ ∋ x ⦂ t
→ Γ ∋ x ⦂ t'
→ t ≡ t'
contextLookupUnique z1@Z z2@Z = refl
contextLookupUnique z1@Z s2@(S {Γ} {x} {y} {a} {b} neq xHasTypeT') = Data.Empty.⊥-elim (neq refl)
contextLookupUnique (S neq xHasTypeT) Z = Data.Empty.⊥-elim (neq refl)
contextLookupUnique (S x₁ xHasTypeT) (S x₂ xHasTypeT') = contextLookupUnique xHasTypeT xHasTypeT'
contextLookupNeq : ∀ {Γ : ctx}
→ ∀ {x x' t t'}
→ Γ , x ⦂ t ∋ x' ⦂ t'
→ t ≢ t'
→ x ≢ x'
contextLookupNeq Z tNeq = Data.Empty.⊥-elim (tNeq refl)
contextLookupNeq (S xNeq x'InΓ) tNeq = λ xEq → xNeq (sym xEq)
lookupWeakening : ∀ {Γ : ctx}
→ ∀ {x x' t t'}
→ Γ ∋ x ⦂ t
→ ∃[ T ] ((Γ , x' ⦂ t') ∋ x ⦂ T)
lookupWeakening {Γ} {x} {x'} {t} {t'} Γcontainment with x ≟ x'
... | yes refl = ⟨ t' , Z {Γ = Γ} {x = x'} {a = t'} ⟩
... | no neq = ⟨ t , S neq Γcontainment ⟩
∉dom-≢ : {Γ : ctx}
→ ∀ {x x' t}
→ x ∉dom (Γ , x' ⦂ t)
→ x ≢ x'
∉dom-≢ {Γ} {x} {x'} {t} (notInNonempty xNeqx' xNotInΓ') xEqx' = xNeqx' xEqx'
| 33.669903
| 115
| 0.425317
|
a11d9a533a97ed788d4d4ff5cf4eec3d24f72d7e
| 2,301
|
agda
|
Agda
|
src/Data/QuadTree/Implementation/PublicFunctions.agda
|
JonathanBrouwer/research-project
|
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
|
[
"Unlicense"
] | 1
|
2021-05-25T09:10:20.000Z
|
2021-05-25T09:10:20.000Z
|
src/Data/QuadTree/Implementation/PublicFunctions.agda
|
JonathanBrouwer/research-project
|
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
|
[
"Unlicense"
] | null | null | null |
src/Data/QuadTree/Implementation/PublicFunctions.agda
|
JonathanBrouwer/research-project
|
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
|
[
"Unlicense"
] | null | null | null |
module Data.QuadTree.Implementation.PublicFunctions where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Lens.Lens
open import Data.Logic
open import Data.QuadTree.Implementation.PropDepthRelation
open import Data.QuadTree.Implementation.Definition
open import Data.QuadTree.Implementation.ValidTypes
open import Data.QuadTree.Implementation.QuadrantLenses
open import Data.QuadTree.Implementation.DataLenses
open import Data.QuadTree.Implementation.SafeFunctions
{-# FOREIGN AGDA2HS
{-# LANGUAGE Safe #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE Rank2Types #-}
import Data.Nat
import Data.Lens.Lens
import Data.Logic
import Data.QuadTree.Implementation.Definition
import Data.QuadTree.Implementation.ValidTypes
import Data.QuadTree.Implementation.QuadrantLenses
import Data.QuadTree.Implementation.DataLenses
import Data.QuadTree.Implementation.SafeFunctions
#-}
---- Unsafe functions (Original)
makeTree : {t : Set} {{eqT : Eq t}} -> (size : Nat × Nat) -> t -> QuadTree t
makeTree size v = qtFromSafe $ makeTreeSafe size v
{-# COMPILE AGDA2HS makeTree #-}
getLocation : {t : Set} {{eqT : Eq t}}
-> (loc : Nat × Nat) -> {dep : Nat}
-> (qt : QuadTree t)
-> {.(IsTrue (isInsideQuadTree loc qt))}
-> {.(IsTrue (isValid dep (treeToQuadrant qt)))} -> {.(IsTrue (dep == maxDepth qt))}
-> t
getLocation loc qt {inside} {p} {q} = getLocationSafe loc (maxDepth qt) (qtToSafe qt {p} {q}) {inside}
{-# COMPILE AGDA2HS getLocation #-}
setLocation : {t : Set} {{eqT : Eq t}}
-> (loc : Nat × Nat) -> t
-> {dep : Nat} -> (qt : QuadTree t)
-> {.(IsTrue (isInsideQuadTree loc qt))}
-> {.(IsTrue (isValid dep (treeToQuadrant qt)))} -> {.(IsTrue (dep == maxDepth qt))}
-> QuadTree t
setLocation loc v qt {inside} {p} {q} = qtFromSafe $ setLocationSafe loc (maxDepth qt) v (qtToSafe qt {p} {q}) {inside}
{-# COMPILE AGDA2HS setLocation #-}
mapLocation : {t : Set} {{eqT : Eq t}}
-> (loc : Nat × Nat) -> (t -> t)
-> {dep : Nat} -> (qt : QuadTree t)
-> {.(IsTrue (isInsideQuadTree loc qt))}
-> {.(IsTrue (isValid dep (treeToQuadrant qt)))} -> {.(IsTrue (dep == maxDepth qt))}
-> QuadTree t
mapLocation loc f qt {inside} {p} {q} = qtFromSafe $ mapLocationSafe loc (maxDepth qt) f (qtToSafe qt {p} {q}) {inside}
{-# COMPILE AGDA2HS mapLocation #-}
| 39
| 119
| 0.687527
|
cb8b43a1f4cda6c5779b06097abeea695bd04f7b
| 895
|
agda
|
Agda
|
test/Fail/Issue3577.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue3577.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue3577.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --cubical --safe #-}
module Issue3577 where
open import Agda.Primitive.Cubical renaming (primTransp to transp; primHComp to hcomp)
open import Agda.Builtin.Cubical.Path
open import Agda.Builtin.Sigma
open import Agda.Builtin.Cubical.Sub renaming (primSubOut to ouc; Sub to _[_↦_])
refl : ∀ {l} {A : Set l} {x : A} → x ≡ x
refl {x = x} = \ _ → x
ptType : Set₁
ptType = Σ Set (λ A → A)
data Susp' (A : ptType) : Set where
susp* : Susp' A
-- Non-computation of transp on non-HIT's hcomp
testTr : {A' : ptType} (ψ : I) (A : I → ptType [ ψ ↦ (\ _ → A') ])
{φ : I}
(u : ∀ i → Partial φ (Susp' (ouc (A i0))))
(u0 : Susp' (ouc (A i0)) [ φ ↦ u i0 ])
→ transp (\ i -> Susp' (ouc (A i))) ψ (hcomp u (ouc u0))
≡ hcomp (λ j .o → transp (λ i → Susp' (ouc (A i))) ψ (u j o)) (transp (λ i → Susp' (ouc (A i))) ψ (ouc u0))
testTr ψ A u u0 = refl
| 33.148148
| 116
| 0.560894
|
12c64dd0dfcda61c012d301515563a0e4f00c25a
| 11,832
|
agda
|
Agda
|
Lang/Reflection.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Lang/Reflection.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Lang/Reflection.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
-- A modified copy of "agda/src/data/lib/prim/Agda/Builtin/Reflection.agda" from the Agda repository (https://github.com/agda/agda.git) at 2020-05-12 04:05 (commit bc8feec71e61a4c4369aa0ee93b77bf027c0f7f1).
-- The names here must be redefined because this project binds its custom builtin data types.
module Lang.Reflection where
open import Data.Boolean
open import Data.List
open import Data
open import Float
import Lvl
open import FFI.MachineWord
open import Numeral.Natural
open import String
-- open import Agda.Builtin.Int
open import Type.Dependent
open import Type
-- Names --
postulate Name : TYPE
{-# BUILTIN QNAME Name #-}
primitive
primQNameEquality : Name → Name → Bool
primQNameLess : Name → Name → Bool
primShowQName : Name → String
-- Fixity --
data Associativity : TYPE where
left-assoc : Associativity
right-assoc : Associativity
non-assoc : Associativity
data Precedence : TYPE where
related : Float → Precedence
unrelated : Precedence
data Fixity : TYPE where
fixity : Associativity → Precedence → Fixity
{-# BUILTIN ASSOC Associativity #-}
{-# BUILTIN ASSOCLEFT left-assoc #-}
{-# BUILTIN ASSOCRIGHT right-assoc #-}
{-# BUILTIN ASSOCNON non-assoc #-}
{-# BUILTIN PRECEDENCE Precedence #-}
{-# BUILTIN PRECRELATED related #-}
{-# BUILTIN PRECUNRELATED unrelated #-}
{-# BUILTIN FIXITY Fixity #-}
{-# BUILTIN FIXITYFIXITY fixity #-}
{-# COMPILE GHC Associativity = data MAlonzo.RTE.Assoc (MAlonzo.RTE.LeftAssoc | MAlonzo.RTE.RightAssoc | MAlonzo.RTE.NonAssoc) #-}
{-# COMPILE GHC Precedence = data MAlonzo.RTE.Precedence (MAlonzo.RTE.Related | MAlonzo.RTE.Unrelated) #-}
{-# COMPILE GHC Fixity = data MAlonzo.RTE.Fixity (MAlonzo.RTE.Fixity) #-}
{-# COMPILE JS Associativity = function (x,v) { return v[x](); } #-}
{-# COMPILE JS left-assoc = "left-assoc" #-}
{-# COMPILE JS right-assoc = "right-assoc" #-}
{-# COMPILE JS non-assoc = "non-assoc" #-}
{-# COMPILE JS Precedence =
function (x,v) {
if (x === "unrelated") { return v[x](); } else { return v["related"](x); }} #-}
{-# COMPILE JS related = function(x) { return x; } #-}
{-# COMPILE JS unrelated = "unrelated" #-}
{-# COMPILE JS Fixity = function (x,v) { return v["fixity"](x["assoc"], x["prec"]); } #-}
{-# COMPILE JS fixity = function (x) { return function (y) { return { "assoc": x, "prec": y}; }; } #-}
primitive
primQNameFixity : Name → Fixity
primQNameToWord64s : Name → Σ Word64 (λ _ → Word64)
-- Metavariables --
postulate Meta : TYPE
{-# BUILTIN AGDAMETA Meta #-}
primitive
primMetaEquality : Meta → Meta → Bool
primMetaLess : Meta → Meta → Bool
primShowMeta : Meta → String
primMetaToNat : Meta → ℕ
-- Arguments --
-- Arguments can be (visible), {hidden}, or {{instance}}.
data Visibility : TYPE where
visible hidden instance′ : Visibility
{-# BUILTIN HIDING Visibility #-}
{-# BUILTIN VISIBLE visible #-}
{-# BUILTIN HIDDEN hidden #-}
{-# BUILTIN INSTANCE instance′ #-}
-- Arguments can be relevant or irrelevant.
data Relevance : TYPE where
relevant irrelevant : Relevance
{-# BUILTIN RELEVANCE Relevance #-}
{-# BUILTIN RELEVANT relevant #-}
{-# BUILTIN IRRELEVANT irrelevant #-}
data ArgInfo : TYPE where
arg-info : (v : Visibility) (r : Relevance) → ArgInfo
data Arg {a} (A : TYPE a) : TYPE a where
arg : (i : ArgInfo) (x : A) → Arg A
{-# BUILTIN ARGINFO ArgInfo #-}
{-# BUILTIN ARGARGINFO arg-info #-}
{-# BUILTIN ARG Arg #-}
{-# BUILTIN ARGARG arg #-}
-- Name abstraction --
data Abs {a} (A : TYPE a) : TYPE a where
abs : (s : String) (x : A) → Abs A
{-# BUILTIN ABS Abs #-}
{-# BUILTIN ABSABS abs #-}
-- Literals --
data Literal : TYPE where
nat : (n : ℕ) → Literal
word64 : (n : Word64) → Literal
float : (x : Float) → Literal
char : (c : Char) → Literal
string : (s : String) → Literal
name : (x : Name) → Literal
meta : (x : Meta) → Literal
{-# BUILTIN AGDALITERAL Literal #-}
{-# BUILTIN AGDALITNAT nat #-}
{-# BUILTIN AGDALITWORD64 word64 #-}
{-# BUILTIN AGDALITFLOAT float #-}
{-# BUILTIN AGDALITCHAR char #-}
{-# BUILTIN AGDALITSTRING string #-}
{-# BUILTIN AGDALITQNAME name #-}
{-# BUILTIN AGDALITMETA meta #-}
-- Patterns --
data Pattern : TYPE where
con : (c : Name) (ps : List (Arg Pattern)) → Pattern
dot : Pattern
var : (s : String) → Pattern
lit : (l : Literal) → Pattern
proj : (f : Name) → Pattern
absurd : Pattern
{-# BUILTIN AGDAPATTERN Pattern #-}
{-# BUILTIN AGDAPATCON con #-}
{-# BUILTIN AGDAPATLIT lit #-}
{-# BUILTIN AGDAPATPROJ proj #-}
{-# BUILTIN AGDAPATABSURD absurd #-}
-- Terms --
data Sort : TYPE
data Clause : TYPE
data Term : TYPE
TypeTerm = Term
data Term where
var : (x : ℕ) (args : List (Arg Term)) → Term
con : (c : Name) (args : List (Arg Term)) → Term
def : (f : Name) (args : List (Arg Term)) → Term
lam : (v : Visibility) (t : Abs Term) → Term
pat-lam : (cs : List Clause) (args : List (Arg Term)) → Term
pi : (a : Arg TypeTerm) (b : Abs TypeTerm) → Term
agda-sort : (s : Sort) → Term
lit : (l : Literal) → Term
meta : (x : Meta) → List (Arg Term) → Term
unknown : Term
data Sort where
set : (t : Term) → Sort
lit : (n : ℕ) → Sort
unknown : Sort
data Clause where
clause : (ps : List (Arg Pattern)) (t : Term) → Clause
absurd-clause : (ps : List (Arg Pattern)) → Clause
{-# BUILTIN AGDASORT Sort #-}
{-# BUILTIN AGDATERM Term #-}
{-# BUILTIN AGDACLAUSE Clause #-}
{-# BUILTIN AGDATERMVAR var #-}
{-# BUILTIN AGDATERMCON con #-}
{-# BUILTIN AGDATERMDEF def #-}
{-# BUILTIN AGDATERMMETA meta #-}
{-# BUILTIN AGDATERMLAM lam #-}
{-# BUILTIN AGDATERMEXTLAM pat-lam #-}
{-# BUILTIN AGDATERMPI pi #-}
{-# BUILTIN AGDATERMSORT agda-sort #-}
{-# BUILTIN AGDATERMLIT lit #-}
{-# BUILTIN AGDATERMUNSUPPORTED unknown #-}
{-# BUILTIN AGDASORTSET set #-}
{-# BUILTIN AGDASORTLIT lit #-}
{-# BUILTIN AGDASORTUNSUPPORTED unknown #-}
-- Definitions --
data Definition : TYPE where
function : (cs : List Clause) → Definition
data-type : (pars : ℕ) (cs : List Name) → Definition
record-type : (c : Name) (fs : List (Arg Name)) → Definition
data-cons : (d : Name) → Definition
axiom : Definition
prim-fun : Definition
{-# BUILTIN AGDADEFINITION Definition #-}
{-# BUILTIN AGDADEFINITIONFUNDEF function #-}
{-# BUILTIN AGDADEFINITIONDATADEF data-type #-}
{-# BUILTIN AGDADEFINITIONRECORDDEF record-type #-}
{-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR data-cons #-}
{-# BUILTIN AGDADEFINITIONPOSTULATE axiom #-}
{-# BUILTIN AGDADEFINITIONPRIMITIVE prim-fun #-}
-- Errors --
data ErrorPart : TYPE where
strErr : String → ErrorPart
termErr : Term → ErrorPart
nameErr : Name → ErrorPart
{-# BUILTIN AGDAERRORPART ErrorPart #-}
{-# BUILTIN AGDAERRORPARTSTRING strErr #-}
{-# BUILTIN AGDAERRORPARTTERM termErr #-}
{-# BUILTIN AGDAERRORPARTNAME nameErr #-}
-- TC monad --
postulate
TC : ∀ {a} → TYPE a → TYPE a
returnTC : ∀ {a} {A : TYPE a} → A → TC A
bindTC : ∀ {a b} {A : TYPE a} {B : TYPE b} → TC A → (A → TC B) → TC B
unify : Term → Term → TC(Unit{Lvl.𝟎})
typeError : ∀ {a} {A : TYPE a} → List ErrorPart → TC A
inferType : Term → TC TypeTerm
checkType : Term → TypeTerm → TC Term
normalise : Term → TC Term
reduce : Term → TC Term
catchTC : ∀ {a} {A : TYPE a} → TC A → TC A → TC A
quoteTC : ∀ {a} {A : TYPE a} → A → TC Term
unquoteTC : ∀ {a} {A : TYPE a} → Term → TC A
quoteωTC : ∀ {A : Typeω} → A → TC Term
getContext : TC (List (Arg TypeTerm))
extendContext : ∀ {a} {A : TYPE a} → Arg TypeTerm → TC A → TC A
inContext : ∀ {a} {A : TYPE a} → List (Arg TypeTerm) → TC A → TC A
freshName : String → TC Name
declareDef : Arg Name → TypeTerm → TC(Unit{Lvl.𝟎})
declarePostulate : Arg Name → TypeTerm → TC(Unit{Lvl.𝟎})
defineFun : Name → List Clause → TC(Unit{Lvl.𝟎})
getType : Name → TC TypeTerm
getDefinition : Name → TC Definition
blockOnMeta : ∀ {a} {A : TYPE a} → Meta → TC A
commitTC : TC(Unit{Lvl.𝟎})
isMacro : Name → TC Bool
-- If the argument is 'true' makes the following primitives also normalise
-- their results: inferType, checkType, quoteTC, getType, and getContext
withNormalisation : ∀ {a} {A : TYPE a} → Bool → TC A → TC A
-- Prints the third argument if the corresponding verbosity level is turned
-- on (with the -v flag to Agda).
debugPrint : String → ℕ → List ErrorPart → TC(Unit{Lvl.𝟎})
-- Fail if the given computation gives rise to new, unsolved
-- "blocking" constraints.
noConstraints : ∀ {a} {A : TYPE a} → TC A → TC A
-- Run the given TC action and return the first component. Resets to
-- the old TC state if the second component is 'false', or keep the
-- new TC state if it is 'true'.
runSpeculative : ∀ {a} {A : TYPE a} → TC (Σ A λ _ → Bool) → TC A
{-# BUILTIN AGDATCM TC #-}
{-# BUILTIN AGDATCMRETURN returnTC #-}
{-# BUILTIN AGDATCMBIND bindTC #-}
{-# BUILTIN AGDATCMUNIFY unify #-}
{-# BUILTIN AGDATCMTYPEERROR typeError #-}
{-# BUILTIN AGDATCMINFERTYPE inferType #-}
{-# BUILTIN AGDATCMCHECKTYPE checkType #-}
{-# BUILTIN AGDATCMNORMALISE normalise #-}
{-# BUILTIN AGDATCMREDUCE reduce #-}
{-# BUILTIN AGDATCMCATCHERROR catchTC #-}
{-# BUILTIN AGDATCMQUOTETERM quoteTC #-}
{-# BUILTIN AGDATCMUNQUOTETERM unquoteTC #-}
-- {-# BUILTIN AGDATCMQUOTEOMEGATERM quoteωTC #-}
{-# BUILTIN AGDATCMGETCONTEXT getContext #-}
{-# BUILTIN AGDATCMEXTENDCONTEXT extendContext #-}
{-# BUILTIN AGDATCMINCONTEXT inContext #-}
{-# BUILTIN AGDATCMFRESHNAME freshName #-}
{-# BUILTIN AGDATCMDECLAREDEF declareDef #-}
{-# BUILTIN AGDATCMDECLAREPOSTULATE declarePostulate #-}
{-# BUILTIN AGDATCMDEFINEFUN defineFun #-}
{-# BUILTIN AGDATCMGETTYPE getType #-}
{-# BUILTIN AGDATCMGETDEFINITION getDefinition #-}
{-# BUILTIN AGDATCMBLOCKONMETA blockOnMeta #-}
{-# BUILTIN AGDATCMCOMMIT commitTC #-}
{-# BUILTIN AGDATCMISMACRO isMacro #-}
{-# BUILTIN AGDATCMWITHNORMALISATION withNormalisation #-}
{-# BUILTIN AGDATCMDEBUGPRINT debugPrint #-}
{-# BUILTIN AGDATCMNOCONSTRAINTS noConstraints #-}
{-# BUILTIN AGDATCMRUNSPECULATIVE runSpeculative #-}
module DoNotation where
open import Syntax.Do
instance
TC-doNotation : ∀{ℓ} → DoNotation{ℓ}(TC)
return ⦃ TC-doNotation ⦄ = returnTC
_>>=_ ⦃ TC-doNotation ⦄ = bindTC
| 36.975
| 206
| 0.567444
|
1236419d33305dd973f66dc1ae7acf805f0eb748
| 798
|
agda
|
Agda
|
test/Succeed/Issue1136.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/Succeed/Issue1136.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 3
|
2018-11-14T15:31:44.000Z
|
2019-04-01T19:39:26.000Z
|
test/Succeed/Issue1136.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T14:36:15.000Z
|
2015-09-15T14:36:15.000Z
|
-- Andreas, 2014-05-20 Triggered by Andrea Vezzosi & NAD
{-# OPTIONS --copatterns #-}
-- {-# OPTIONS -v tc.conv.coerce:10 #-}
open import Common.Size
-- Andreas, 2015-03-16: currently forbidden
-- Size≤ : Size → SizeUniv
-- Size≤ i = Size< ↑ i
postulate
Dom : Size → Set
mapDom : ∀ i (j : Size< (↑ i)) → Dom i → Dom j
record ∞Dom i : Set where
field
force : ∀ (j : Size< i) → Dom j
∞mapDom : ∀ i (j : Size< (↑ i)) → ∞Dom i → ∞Dom j
∞Dom.force (∞mapDom i j x) k = mapDom k k (∞Dom.force x k)
-- The second k on the rhs has type
-- k : Size< j
-- and should have type
-- k : Size≤ k = Size< ↑ k
-- Since j <= ↑ k does not hold (we have only k < j),
-- we cannot do the usual subtyping Size< j <= Size≤ k,
-- but we have to use the "singleton type property"
-- k : Size< ↑ k
| 26.6
| 58
| 0.582707
|
0b6e1d84d9f6757298f1259195d3b4cc9b2884ee
| 191
|
agda
|
Agda
|
problems/UniverseCollapse/UniverseCollapse.agda
|
danr/agder
|
ece25bed081a24f02e9f85056d05933eae2afabf
|
[
"BSD-3-Clause"
] | 1
|
2021-05-17T12:07:03.000Z
|
2021-05-17T12:07:03.000Z
|
problems/UniverseCollapse/UniverseCollapse.agda
|
danr/agder
|
ece25bed081a24f02e9f85056d05933eae2afabf
|
[
"BSD-3-Clause"
] | null | null | null |
problems/UniverseCollapse/UniverseCollapse.agda
|
danr/agder
|
ece25bed081a24f02e9f85056d05933eae2afabf
|
[
"BSD-3-Clause"
] | null | null | null |
module UniverseCollapse
(down : Set₁ -> Set)
(up : Set → Set₁)
(iso : ∀ {A} → down (up A) → A)
(osi : ∀ {A} → up (down A) → A) where
anything : (A : Set) → A
anything = {!!}
| 21.222222
| 41
| 0.481675
|
2f62ec66551b714e795413be5fdb93431982dbd6
| 2,441
|
agda
|
Agda
|
Cubical/Data/Unit/Properties.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
Cubical/Data/Unit/Properties.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
Cubical/Data/Unit/Properties.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Unit.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat
open import Cubical.Data.Unit.Base
open import Cubical.Data.Prod.Base
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
isContrUnit : isContr Unit
isContrUnit = tt , λ {tt → refl}
isPropUnit : isProp Unit
isPropUnit _ _ i = tt -- definitionally equal to: isContr→isProp isContrUnit
isSetUnit : isSet Unit
isSetUnit = isProp→isSet isPropUnit
isOfHLevelUnit : (n : HLevel) → isOfHLevel n Unit
isOfHLevelUnit n = isContr→isOfHLevel n isContrUnit
UnitToTypeIso : ∀ {ℓ} (A : Type ℓ) → Iso (Unit → A) A
Iso.fun (UnitToTypeIso A) f = f _
Iso.inv (UnitToTypeIso A) a _ = a
Iso.rightInv (UnitToTypeIso A) _ = refl
Iso.leftInv (UnitToTypeIso A) _ = refl
UnitToTypePath : ∀ {ℓ} (A : Type ℓ) → (Unit → A) ≡ A
UnitToTypePath A = isoToPath (UnitToTypeIso A)
isContr→Iso2 : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → isContr A → Iso (A → B) B
Iso.fun (isContr→Iso2 iscontr) f = f (fst iscontr)
Iso.inv (isContr→Iso2 iscontr) b _ = b
Iso.rightInv (isContr→Iso2 iscontr) _ = refl
Iso.leftInv (isContr→Iso2 iscontr) f = funExt λ x → cong f (snd iscontr x)
diagonal-unit : Unit ≡ Unit × Unit
diagonal-unit = isoToPath (iso (λ x → tt , tt) (λ x → tt) (λ {(tt , tt) i → tt , tt}) λ {tt i → tt})
fibId : ∀ {ℓ} (A : Type ℓ) → (fiber (λ (x : A) → tt) tt) ≡ A
fibId A =
isoToPath
(iso fst
(λ a → a , refl)
(λ _ → refl)
(λ a i → fst a
, isOfHLevelSuc 1 isPropUnit _ _ (snd a) refl i))
isContr→≃Unit : ∀ {ℓ} {A : Type ℓ} → isContr A → A ≃ Unit
isContr→≃Unit contr = isoToEquiv (iso (λ _ → tt) (λ _ → fst contr) (λ _ → refl) λ _ → snd contr _)
isContr→≡Unit : {A : Type₀} → isContr A → A ≡ Unit
isContr→≡Unit contr = ua (isContr→≃Unit contr)
isContrUnit* : ∀ {ℓ} → isContr (Unit* {ℓ})
isContrUnit* = tt* , λ _ → refl
isPropUnit* : ∀ {ℓ} → isProp (Unit* {ℓ})
isPropUnit* _ _ = refl
isOfHLevelUnit* : ∀ {ℓ} (n : HLevel) → isOfHLevel n (Unit* {ℓ})
isOfHLevelUnit* zero = tt* , λ _ → refl
isOfHLevelUnit* (suc zero) _ _ = refl
isOfHLevelUnit* (suc (suc zero)) _ _ _ _ _ _ = tt*
isOfHLevelUnit* (suc (suc (suc n))) = isOfHLevelPlus 3 (isOfHLevelUnit* n)
| 32.986486
| 100
| 0.665711
|
dc88f5de968228f73873c8ac47c2d53052f680b2
| 1,149
|
agda
|
Agda
|
src/fot/FOTC/Program/GCD/Total/CorrectnessProofATP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
src/fot/FOTC/Program/GCD/Total/CorrectnessProofATP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
src/fot/FOTC/Program/GCD/Total/CorrectnessProofATP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- The gcd program is correct
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- This module proves the correctness of the gcd program using
-- the Euclid's algorithm.
-- N.B This module does not contain combined proofs, but it imports
-- modules which contain combined proofs.
module FOTC.Program.GCD.Total.CorrectnessProofATP where
open import FOTC.Base
open import FOTC.Data.Nat.Type
open import FOTC.Program.GCD.Total.CommonDivisorATP using ( gcdCD )
open import FOTC.Program.GCD.Total.Definitions using ( gcdSpec )
open import FOTC.Program.GCD.Total.DivisibleATP using ( gcdDivisible )
open import FOTC.Program.GCD.Total.GCD using ( gcd )
------------------------------------------------------------------------------
-- The gcd is correct.
postulate gcdCorrect : ∀ {m n} → N m → N n → gcdSpec m n (gcd m n)
{-# ATP prove gcdCorrect gcdCD gcdDivisible #-}
| 39.62069
| 78
| 0.558747
|
599546155a068df99375d53ad7ae899c6d4f697f
| 3,297
|
agda
|
Agda
|
020-equivalence.agda
|
mcmtroffaes/agda-proofs
|
76fe404b25210258810641cc6807feecf0ff8d6c
|
[
"MIT"
] | 2
|
2015-08-09T22:51:55.000Z
|
2016-08-17T16:15:42.000Z
|
020-equivalence.agda
|
mcmtroffaes/agda-proofs
|
76fe404b25210258810641cc6807feecf0ff8d6c
|
[
"MIT"
] | null | null | null |
020-equivalence.agda
|
mcmtroffaes/agda-proofs
|
76fe404b25210258810641cc6807feecf0ff8d6c
|
[
"MIT"
] | null | null | null |
module 020-equivalence where
-- We need False to represent logical contradiction.
open import 010-false-true
-- Next, we need to be able to work with equalities. Equalities are
-- defined between objects of the same type. Two objects are equal if
-- we have a proof of their equality. In Agda, we can represent this
-- by means of a function which takes two instances of some type M,
-- and maps this to a proof of equality.
-- To be a reasonable model for equality, we demand that this function
-- has the properties of an equivalence relation: (i) we must have a
-- proof that every object r in M equals itself, (ii) given a proof
-- that r == s, we must be able to prove that s == r, and (iii) given
-- proofs of r == s and s == t, we must be able to prove that r == t.
-- A convenient way to store all these properties, goes by means of a
-- record, which is in essence a local parametrised module, where the
-- parameters and fields correspond to postulates (theorems that can
-- be stated without proof), and declarations are theorems derived
-- from parameters and fields. A good question is, what should be a
-- parameter, and what should be a field? Fields can be considered as
-- named parameters, so probably anything that would otherwise not be
-- obvious without name should go into a field.
-- Here we declare the type and equality function (which maps pairs of
-- elements to proofs) as parameters, and the equivalence axioms as
-- fields. The parameter M is optional because it can be derived
-- unambiguously from the type signature of the equality function.
record Equivalence
{M : Set}
(_==_ : M -> M -> Set)
: Set1 where
{- axioms -}
field
refl : ∀ {r} -> (r == r)
symm : ∀ {r s} -> (r == s) -> (s == r)
trans : ∀ {r s t} -> (r == s) -> (s == t) -> (r == t)
-- We have a proof of inequality if we can prove contradiction from
-- equality, and this is precisely how we define the inequality
-- relation.
_!=_ : M -> M -> Set
m != n = (m == n) -> False
-- Prove transitivity chains.
-- (TODO: Use a type dependent function for these chains.)
trans3 : ∀ {r s t u}
-> (r == s) -> (s == t) -> (t == u) -> (r == u)
trans3 p1 p2 p3 = trans (trans p1 p2) p3
trans4 : ∀ {r s t u v}
-> (r == s) -> (s == t) -> (t == u) -> (u == v) -> (r == v)
trans4 p1 p2 p3 p4 = trans (trans3 p1 p2 p3) p4
trans5 : ∀ {r s t u v w}
-> (r == s) -> (s == t) -> (t == u) -> (u == v) -> (v == w)
-> (r == w)
trans5 p1 p2 p3 p4 p5 = trans (trans4 p1 p2 p3 p4) p5
trans6 : ∀ {r s t u v w x}
-> (r == s) -> (s == t) -> (t == u) -> (u == v) -> (v == w)
-> (w == x) -> (r == x)
trans6 p1 p2 p3 p4 p5 p6 = trans (trans5 p1 p2 p3 p4 p5) p6
-- Now we construct a trivial model of equivalence: two instances of a
-- type are equivalent if they reduce to the same normal form. (Note
-- that Agda reduces expressions to normal form for us.)
data _≡_ {A : Set} : A -> A -> Set where
refl : ∀ {r} -> r ≡ r
thm-≡-is-equivalence : {A : Set} -> Equivalence {A} _≡_
thm-≡-is-equivalence = record {
refl = refl;
symm = symm;
trans = trans
}
where
symm : ∀ {r s} -> r ≡ s -> s ≡ r
symm refl = refl
trans : ∀ {r s t} -> r ≡ s -> s ≡ t -> r ≡ t
trans refl refl = refl
| 38.337209
| 70
| 0.607825
|
a1ef269f8f45ff1b14b12150b9f58b50950223a0
| 1,856
|
agda
|
Agda
|
test/Succeed/PropTests.agda
|
asr/eagda
|
7220bebfe9f64297880ecec40314c0090018fdd0
|
[
"BSD-3-Clause"
] | 1
|
2016-03-17T01:45:59.000Z
|
2016-03-17T01:45:59.000Z
|
test/Succeed/PropTests.agda
|
asr/eagda
|
7220bebfe9f64297880ecec40314c0090018fdd0
|
[
"BSD-3-Clause"
] | null | null | null |
test/Succeed/PropTests.agda
|
asr/eagda
|
7220bebfe9f64297880ecec40314c0090018fdd0
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
{-# OPTIONS --enable-prop #-}
open import Agda.Builtin.Nat
-- You can define datatypes in Prop, even with multiple constructors.
-- However, all constructors are considered (definitionally) equal.
data TestProp : Prop where
p₁ p₂ : TestProp
-- Pattern matching on a datatype in Prop is disallowed unless the
-- target type is a Prop:
test-case : {P : Prop} (x₁ x₂ : P) → TestProp → P
test-case x₁ x₂ p₁ = x₁
test-case x₁ x₂ p₂ = x₂
-- All elements of a Prop are definitionally equal:
data _≡Prop_ {A : Prop} (x : A) : A → Set where
refl : x ≡Prop x
p₁≡p₂ : p₁ ≡Prop p₂
p₁≡p₂ = refl
-- A special case are empty types in Prop: these can be eliminated to
-- any other type.
data ⊥ : Prop where
absurd : {A : Set} → ⊥ → A
absurd ()
-- We can also define record types in Prop, such as the unit:
record ⊤ : Prop where
constructor tt
-- We have Prop : Set₀, so we can store predicates in a small datatype:
data NatProp : Set₁ where
c : (Nat → Prop) → NatProp
-- To define more interesting predicates, we need to define them by pattern matching:
_≤_ : Nat → Nat → Prop
zero ≤ y = ⊤
suc x ≤ suc y = x ≤ y
_ ≤ _ = ⊥
-- We can also define the induction principle for predicates defined in this way,
-- using the fact that we can eliminate absurd propositions with a () pattern.
≤-ind : (P : (m n : Nat) → Set)
→ (pzy : (y : Nat) → P zero y)
→ (pss : (x y : Nat) → P x y → P (suc x) (suc y))
→ (m n : Nat) → m ≤ n → P m n
≤-ind P pzy pss zero y pf = pzy y
≤-ind P pzy pss (suc x) (suc y) pf = pss x y (≤-ind P pzy pss x y pf)
≤-ind P pzy pss (suc _) zero ()
-- We can define equality as a Prop, but (currently) we cannot define
-- the corresponding eliminator, so the equality is only useful for
-- refuting impossible equations.
data _≡P_ {A : Set} (x : A) : A → Prop where
refl : x ≡P x
0≢1 : 0 ≡P 1 → ⊥
0≢1 ()
| 29.935484
| 85
| 0.640086
|
1d560bec723a29de726e4befd24b5823b5cc1a7f
| 879
|
agda
|
Agda
|
test/Succeed/Issue1701.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue1701.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue1701.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2015-10-26, issue reported by Wolfram Kahl
-- {-# OPTIONS -v scope.mod.inst:30 -v tc.mod.check:10 -v tc.mod.apply:80 #-}
module _ where
module ModParamsRecord (A : Set) where
record R (B : Set) : Set where
field F : A → B
module ModParamsToLoose (A : Set) where
open ModParamsRecord
module _ (B : Set) (G : A → B) where
r : R A B
r = record { F = G }
module r = R r
module ModParamsLost (A : Set) where
open ModParamsRecord
open ModParamsToLoose A
f : (A → A) → A → A
f G = S.F
where
module S = r A G -- expected |S.F : A → A|,
-- WAS: but obtained |S.F : (B : Set) (G₁ : A → B) → A → B|
-- module S = r -- as expected: |S.F : (B : Set) (G₁ : A → B) → A → B|
-- module S = R A (r A G) -- as expected: |S.F : A → A|
| 29.3
| 94
| 0.494881
|
59c0bbb56927e6daeb82b1e35d535bcbbeec499e
| 185
|
agda
|
Agda
|
test/Fail/Issue484.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue484.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue484.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- There was a bug where constructors of private datatypes were
-- not made private.
module Issue484 where
module A where
private
data Foo : Set where
foo : Foo
foo′ = A.foo
| 16.818182
| 63
| 0.708108
|
4a86635ab94d49502f36fc6a4c5d13ce248d0168
| 2,237
|
agda
|
Agda
|
src/Categories/Functor/Instance/UnderlyingQuiver.agda
|
yourboynico/agda-categories
|
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
|
[
"MIT"
] | 279
|
2019-06-01T14:36:40.000Z
|
2022-03-22T00:40:14.000Z
|
src/Categories/Functor/Instance/UnderlyingQuiver.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 236
|
2019-06-01T14:53:54.000Z
|
2022-03-28T14:31:43.000Z
|
src/Categories/Functor/Instance/UnderlyingQuiver.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 64
|
2019-06-02T16:58:15.000Z
|
2022-03-14T02:00:59.000Z
|
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Instance.UnderlyingQuiver where
-- The forgetful functor from categories to its underlying quiver
-- **except** that this functor only goes from **StrictCats**,
-- i.e. where Functor equivalence is propositional equality, not
-- NaturalIsomorphism.
open import Level using (Level)
open import Relation.Binary.PropositionalEquality
using (refl)
open import Relation.Binary.PropositionalEquality.Subst.Properties
using (module Transport)
open import Data.Quiver using (Quiver)
open import Data.Quiver.Morphism using (Morphism; _≃_)
open import Categories.Category.Core using (Category)
open import Categories.Category.Instance.Quivers using (Quivers)
open import Categories.Category.Instance.StrictCats
open import Categories.Functor using (Functor)
open import Categories.Functor.Equivalence using (_≡F_)
import Categories.Morphism.HeterogeneousIdentity as HId
private
variable
o ℓ e o′ ℓ′ e′ : Level
A B : Category o ℓ e
Underlying₀ : Category o ℓ e → Quiver o ℓ e
Underlying₀ C = record { Category C }
Underlying₁ : Functor A B → Morphism (Underlying₀ A) (Underlying₀ B)
Underlying₁ F = record { Functor F }
private
≡F-resp-≃ : {F G : Functor A B} → F ≡F G → Underlying₁ F ≃ Underlying₁ G
≡F-resp-≃ {B = B} {F} {G} F≈G = record
{ F₀≡ = λ {X} → eq₀ F≈G X
; F₁≡ = λ {x} {y} {f} →
let open Category B using (_∘_)
open HId B
UB = Underlying₀ B
open Transport (Quiver._⇒_ UB) using (_▸_; _◂_)
module F = Functor F using (₁)
module G = Functor G using (₁)
open Quiver.EdgeReasoning (Underlying₀ B)
in begin
F.₁ f ▸ eq₀ F≈G y ≈⟨ hid-subst-cod (F.₁ f) (eq₀ F≈G y) ⟩
hid (eq₀ F≈G y) ∘ F.₁ f ≈⟨ eq₁ F≈G f ⟩
G.₁ f ∘ hid (eq₀ F≈G x) ≈˘⟨ hid-subst-dom (eq₀ F≈G x) (G.₁ f) ⟩
eq₀ F≈G x ◂ G.₁ f ∎
}
where open _≡F_
Underlying : Functor (StrictCats o ℓ e) (Quivers o ℓ e)
Underlying = record
{ F₀ = Underlying₀
; F₁ = Underlying₁
; identity = λ {A} → record { F₀≡ = refl ; F₁≡ = Category.Equiv.refl A }
; homomorphism = λ where {Z = Z} → record { F₀≡ = refl ; F₁≡ = Category.Equiv.refl Z }
; F-resp-≈ = ≡F-resp-≃
}
| 34.953125
| 88
| 0.650872
|
1d731f744940e82a73db64c7f8ba9f65216c96d4
| 519
|
agda
|
Agda
|
src/Categories/Functor/Profunctor.agda
|
jaykru/agda-categories
|
a4053cf700bcefdf73b857c3352f1eae29382a60
|
[
"MIT"
] | 279
|
2019-06-01T14:36:40.000Z
|
2022-03-22T00:40:14.000Z
|
src/Categories/Functor/Profunctor.agda
|
jaykru/agda-categories
|
a4053cf700bcefdf73b857c3352f1eae29382a60
|
[
"MIT"
] | 236
|
2019-06-01T14:53:54.000Z
|
2022-03-28T14:31:43.000Z
|
src/Categories/Functor/Profunctor.agda
|
jaykru/agda-categories
|
a4053cf700bcefdf73b857c3352f1eae29382a60
|
[
"MIT"
] | 64
|
2019-06-02T16:58:15.000Z
|
2022-03-14T02:00:59.000Z
|
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Profunctor where
open import Level
open import Categories.Category
open import Categories.Category.Instance.Setoids
open import Categories.Functor.Bifunctor
open import Categories.Functor.Hom
Profunctor : ∀ {o ℓ e} {o′ ℓ′ e′} → Category o ℓ e → Category o′ ℓ′ e′ → Set _
Profunctor {ℓ = ℓ} {e} {ℓ′ = ℓ′} {e′} C D = Bifunctor (Category.op D) C (Setoids (ℓ ⊔ ℓ′) (e ⊔ e′))
id : ∀ {o ℓ e} → {C : Category o ℓ e} → Profunctor C C
id {C = C} = Hom[ C ][-,-]
| 30.529412
| 99
| 0.651252
|
2f54d639d4022c03d839e9ed5213420afa2c3ac9
| 568
|
agda
|
Agda
|
test/Succeed/Issue2108.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue2108.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue2108.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2016-07-25, issue #2108
-- test case and report by Jesper
{-# OPTIONS --allow-unsolved-metas #-}
-- {-# OPTIONS -v tc.pos.occ:70 #-}
open import Agda.Primitive
open import Agda.Builtin.Equality
lone = lsuc lzero
record Level-zero-or-one : Set where
field
level : Level
is-lower : (level ⊔ lone) ≡ lone
open Level-zero-or-one public
Coerce : ∀ {a} → a ≡ lone → Set₁
Coerce refl = Set
data Test : Set₁ where
test : Coerce (is-lower _) → Test
-- WAS:
-- Meta variable here triggers internal error.
-- Should succeed with unsolved metas.
| 18.933333
| 46
| 0.672535
|
59c773e59d53e8387590990f56436a0b544f63b1
| 2,133
|
agda
|
Agda
|
trie-core.agda
|
rfindler/ial
|
f3f0261904577e930bd7646934f756679a6cbba6
|
[
"MIT"
] | 29
|
2019-02-06T13:09:31.000Z
|
2022-03-04T15:05:12.000Z
|
trie-core.agda
|
rfindler/ial
|
f3f0261904577e930bd7646934f756679a6cbba6
|
[
"MIT"
] | 8
|
2018-07-09T22:53:38.000Z
|
2022-03-22T03:43:34.000Z
|
trie-core.agda
|
rfindler/ial
|
f3f0261904577e930bd7646934f756679a6cbba6
|
[
"MIT"
] | 17
|
2018-12-03T22:38:15.000Z
|
2021-11-28T20:13:21.000Z
|
module trie-core where
open import bool
open import char
open import list
open import maybe
open import product
open import string
open import unit
open import eq
open import nat
cal : Set → Set
cal A = 𝕃 (char × A)
empty-cal : ∀{A : Set} → cal A
empty-cal = []
cal-lookup : ∀ {A : Set} → cal A → char → maybe A
cal-lookup [] _ = nothing
cal-lookup ((c , a) :: l) c' with c =char c'
... | tt = just a
... | ff = cal-lookup l c'
cal-insert : ∀ {A : Set} → cal A → char → A → cal A
cal-insert [] c a = (c , a) :: []
cal-insert ((c' , a') :: l) c a with c =char c'
... | tt = (c , a) :: l
... | ff = (c' , a') :: (cal-insert l c a)
cal-remove : ∀ {A : Set} → cal A → char → cal A
cal-remove [] _ = []
cal-remove ((c , a) :: l) c' with c =char c'
... | tt = cal-remove l c'
... | ff = (c , a) :: cal-remove l c'
cal-add : ∀{A : Set} → cal A → char → A → cal A
cal-add l c a = (c , a) :: l
test-cal-insert = cal-insert (('a' , 1) :: ('b' , 2) :: []) 'b' 20
data trie (A : Set) : Set where
Node : maybe A → cal (trie A) → trie A
empty-trie : ∀{A : Set} → trie A
empty-trie = (Node nothing empty-cal)
trie-lookup-h : ∀{A : Set} → trie A → 𝕃 char → maybe A
trie-lookup-h (Node odata ts) (c :: cs) with cal-lookup ts c
trie-lookup-h (Node odata ts) (c :: cs) | nothing = nothing
trie-lookup-h (Node odata ts) (c :: cs) | just t = trie-lookup-h t cs
trie-lookup-h (Node odata ts) [] = odata
trie-insert-h : ∀{A : Set} → trie A → 𝕃 char → A → trie A
trie-insert-h (Node odata ts) [] x = (Node (just x) ts)
trie-insert-h (Node odata ts) (c :: cs) x with cal-lookup ts c
trie-insert-h (Node odata ts) (c :: cs) x | just t =
(Node odata (cal-insert ts c (trie-insert-h t cs x)))
trie-insert-h (Node odata ts) (c :: cs) x | nothing =
(Node odata (cal-add ts c (trie-insert-h empty-trie cs x)))
trie-remove-h : ∀{A : Set} → trie A → 𝕃 char → trie A
trie-remove-h (Node odata ts) (c :: cs) with cal-lookup ts c
trie-remove-h (Node odata ts) (c :: cs) | nothing = Node odata ts
trie-remove-h (Node odata ts) (c :: cs) | just t = Node odata (cal-insert ts c (trie-remove-h t cs))
trie-remove-h (Node odata ts) [] = Node nothing ts
| 31.835821
| 100
| 0.583685
|
dc0d1e4f7bfa81e9e3afcbc2a9ad1afb868ae68c
| 14,366
|
agda
|
Agda
|
agda/Bundles.agda
|
mchristianl/synthetic-reals
|
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
|
[
"MIT"
] | 3
|
2020-07-31T18:15:26.000Z
|
2022-02-19T12:15:21.000Z
|
agda/Bundles.agda
|
mchristianl/synthetic-reals
|
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
|
[
"MIT"
] | null | null | null |
agda/Bundles.agda
|
mchristianl/synthetic-reals
|
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts #-}
module Bundles where
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
private
variable
ℓ ℓ' ℓ'' : Level
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Structures.CommRing
open import Cubical.Relation.Nullary.Base -- ¬_
open import Cubical.Relation.Binary.Base
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim`
-- open import Cubical.Structures.Poset
open import Cubical.Foundations.Function
open import Cubical.Structures.Ring
open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_)
open import Function.Base using (_∋_)
-- open import Function.Reasoning using (∋-syntax)
open import Function.Base using (it) -- instance search
open import Utils
open import MoreLogic
open MoreLogic.Reasoning
open MoreLogic.Properties
open import MoreAlgebra
open MoreAlgebra.Definitions
open MoreAlgebra.Consequences
-- 4.1 Algebraic structure of numbers
--
-- Fields have the property that nonzero numbers have a multiplicative inverse, or more precisely, that
-- (∀ x : F) x ≠ 0 ⇒ (∃ y : F) x · y = 1.
--
-- Remark 4.1.1.
-- If we require the collection of numbers to form a set in the sense of Definition 2.5.4, and satisfy the ring axioms, then multiplicative inverses are unique, so that the above is equivalent to the proposition
-- (Π x : F) x ≠ 0 ⇒ (Σ y : F) x · y = 1.
--
-- Definition 4.1.2.
-- A classical field is a set F with points 0, 1 : F, operations +, · : F → F → F, which is a commutative ring with unit, such that
-- (∀ x : F) x ≠ 0 ⇒ (∃ y : F) x · y = 1.
module ClassicalFieldModule where
record IsClassicalField {F : Type ℓ}
(0f : F) (1f : F) (_+_ : F → F → F) (_·_ : F → F → F) (-_ : F → F) (_⁻¹ᶠ : (x : F) → {{¬(x ≡ 0f)}} → F) : Type ℓ where
constructor isclassicalfield
field
isCommRing : IsCommRing 0f 1f _+_ _·_ -_
·-rinv : (x : F) → (p : ¬(x ≡ 0f)) → x · (_⁻¹ᶠ x {{p}}) ≡ 1f
·-linv : (x : F) → (p : ¬(x ≡ 0f)) → (_⁻¹ᶠ x {{p}}) · x ≡ 1f
open IsCommRing {0r = 0f} {1r = 1f} isCommRing public
record ClassicalField : Type (ℓ-suc ℓ) where
field
Carrier : Type ℓ
0f : Carrier
1f : Carrier
_+_ : Carrier → Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_⁻¹ᶠ : (x : Carrier) → {{¬(x ≡ 0f)}} → Carrier
isClassicalField : IsClassicalField 0f 1f _+_ _·_ -_ _⁻¹ᶠ
infix 9 _⁻¹ᶠ
infix 8 -_
infixl 7 _·_
infixl 6 _+_
open IsClassicalField isClassicalField public
-- Remark 4.1.3.
-- As in the classical case, by proving that additive and multiplicative inverses are unique, we also obtain the negation and division operations.
--
-- For the reals, the assumption x ≠ 0 does not give us any information allowing us to bound x away from 0, which we would like in order to compute multiplicative inverses.
-- Hence, we give a variation on the denition of fields in which the underlying set comes equipped with an apartness relation #, which satises x # y ⇒ x ≠ y, although the converse implication may not hold.
-- This apartness relation allows us to make appropriate error bounds and compute multiplicative inverses based on the assumption x # 0.
--
-- NOTE: there is also PropRel in Cubical.Relation.Binary.Base which
-- NOTE: one needs these "all-lowercase constructors" to make use of copatterns
-- NOTE: see also Relation.Binary.Indexed.Homogeneous.Definitions.html
-- NOTE: see also Algebra.Definitions.html
-- Definition 4.1.5.
-- A constructive field is a set F with points 0, 1 : F, binary operations +, · : F → F → F, and a binary relation # such that
-- 1. (F, 0, 1, +, ·) is a commutative ring with unit;
-- 2. x : F has a multiplicative inverse iff x # 0;
-- 3. + is #-extensional, that is, for all w, x, y, z : F
-- w + x # y + z ⇒ w # y ∨ x # z.
record IsConstructiveField {F : Type ℓ}
(0f : F) (1f : F) (_+_ : F → F → F) (_·_ : F → F → F) (-_ : F → F) (_#_ : hPropRel F F ℓ') (_⁻¹ᶠ : (x : F) → {{[ x # 0f ]}} → F) : Type (ℓ-max ℓ ℓ') where
constructor isconstructivefield
field
isCommRing : IsCommRing 0f 1f _+_ _·_ -_
·-rinv : ∀ x → (p : [ x # 0f ]) → x · (_⁻¹ᶠ x {{p}}) ≡ 1f
·-linv : ∀ x → (p : [ x # 0f ]) → (_⁻¹ᶠ x {{p}}) · x ≡ 1f
·-inv-back : ∀ x y → (x · y ≡ 1f) → [ x # 0f ] × [ y # 0f ]
#-tight : ∀ x y → ¬([ x # y ]) → x ≡ y
-- NOTE: the following ⊎ caused trouble two times with resolving ℓ or ℓ'
+-#-extensional : ∀ w x y z → [ (w + x) # (y + z) ] → [ (w # y) ⊔ (x # z) ]
isApartnessRel : IsApartnessRelᵖ _#_
open IsCommRing {0r = 0f} {1r = 1f} isCommRing public
open IsApartnessRelᵖ isApartnessRel public
renaming
( isIrrefl to #-irrefl
; isSym to #-sym
; isCotrans to #-cotrans )
record ConstructiveField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor constructivefield
field
Carrier : Type ℓ
0f : Carrier
1f : Carrier
_+_ : Carrier → Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_#_ : hPropRel Carrier Carrier ℓ'
_⁻¹ᶠ : (x : Carrier) → {{[ x # 0f ]}} → Carrier
isConstructiveField : IsConstructiveField 0f 1f _+_ _·_ -_ _#_ _⁻¹ᶠ
infix 9 _⁻¹ᶠ
infixl 7 _·_
infix 6 -_
infixl 5 _+_
infixl 4 _#_
open IsConstructiveField isConstructiveField public
-- Definition 4.1.8.
-- Let (A, ≤) be a partial order, and let min, max : A → A → A be binary operators on A. We say that (A, ≤, min, max) is a lattice if min computes greatest lower bounds in the sense that for every x, y, z : A, we have
-- z ≤ min(x,y) ⇔ z ≤ x ∧ z ≤ y,
-- and max computes least upper bounds in the sense that for every x, y, z : A, we have
-- max(x,y) ≤ z ⇔ x ≤ z ∧ y ≤ z.
record IsLattice {A : Type ℓ}
(_≤_ : Rel A A ℓ') (min max : A → A → A) : Type (ℓ-max ℓ ℓ') where
constructor islattice
field
isPartialOrder : IsPartialOrder _≤_
glb : ∀ x y z → z ≤ min x y → z ≤ x × z ≤ y
glb-back : ∀ x y z → z ≤ x × z ≤ y → z ≤ min x y
lub : ∀ x y z → max x y ≤ z → x ≤ z × y ≤ z
lub-back : ∀ x y z → x ≤ z × y ≤ z → max x y ≤ z
open IsPartialOrder isPartialOrder public
renaming
( isRefl to ≤-refl
; isAntisym to ≤-antisym
; isTrans to ≤-trans )
record Lattice : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor lattice
field
Carrier : Type ℓ
_≤_ : Rel Carrier Carrier ℓ'
min max : Carrier → Carrier → Carrier
isLattice : IsLattice _≤_ min max
infixl 4 _≤_
open IsLattice isLattice public
-- Remark 4.1.9.2
-- 1. From the fact that (A, ≤, min, max) is a lattice, it does not follow that for every x and y, min(x,y) = x ∨ min(x,y) = y. However, we can characterize min as
-- z < min(x,y) ⇔ z < x ∨ z < y
-- and similarly for max, see Lemma 6.7.1.
-- 2. In a partial order, for two fixed elements a and b, all joins and meets of a, b are equal, so that Lemma 2.6.20 the type of joins and the type of meets are propositions. Hence, providing the maps min and max as in the above definition is equivalent to the showing the existenceof all binary joins and meets.
--
-- The following definition is modified from on The Univalent Foundations Program [89, Definition 11.2.7].
--
-- Definition 4.1.10.
-- An ordered field is a set F together with constants 0, 1, operations +, ·, min, max, and a binary relation < such that:
-- 1. (F, 0, 1, +, ·) is a commutative ring with unit;
-- 2. < is a strict [partial] order;
-- 3. x : F has a multiplicative inverse iff x # 0, recalling that # is defined as in Lemma 4.1.7;
-- 4. ≤, as in Lemma 4.1.7, is antisymmetric, so that (F, ≤) is a partial order;
-- 5. (F, ≤, min, max) is a lattice.
-- 6. for all x, y, z, w : F:
-- x + y < z + w ⇒ x < z ∨ y < w, (†)
-- 0 < z ∧ x < y ⇒ x z < y z. (∗)
-- Our notion of ordered fields coincides with The Univalent Foundations Program [89, Definition 11.2.7].
-- NOTE: well, the HOTT book definition organizes things slightly different. Why prefer one approach over the other?
record IsAlmostOrderedField {F : Type ℓ}
(0f 1f : F) (_+_ : F → F → F) (-_ : F → F) (_·_ min max : F → F → F) (_<_ _#_ _≤_ : Rel F F ℓ') (_⁻¹ᶠ : (x : F) → {{x # 0f}} → F) : Type (ℓ-max ℓ ℓ') where
field
-- 1.
isCommRing : IsCommRing 0f 1f _+_ _·_ -_
-- 2.
<-isStrictPartialOrder : IsStrictPartialOrder _<_
-- 3.
·-rinv : (x : F) → (p : x # 0f) → x · (_⁻¹ᶠ x {{p}}) ≡ 1f
·-linv : (x : F) → (p : x # 0f) → (_⁻¹ᶠ x {{p}}) · x ≡ 1f
·-inv-back : (x y : F) → (x · y ≡ 1f) → x # 0f × y # 0f
-- 4. NOTE: we already have ≤-isPartialOrder in <-isLattice
-- ≤-isPartialOrder : IsPartialOrder _≤_
-- 5.
≤-isLattice : IsLattice _≤_ min max
open IsCommRing {0r = 0f} {1r = 1f} isCommRing public
open IsStrictPartialOrder <-isStrictPartialOrder public
renaming
( isIrrefl to <-irrefl
; isTrans to <-trans
; isCotrans to <-cotrans )
open IsLattice ≤-isLattice public
record AlmostOrderedField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor orderedfield
field
Carrier : Type ℓ
0f 1f : Carrier
_+_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
min max : Carrier → Carrier → Carrier
_<_ : Rel Carrier Carrier ℓ'
<-isProp : ∀ x y → isProp (x < y)
_#_ = _#'_ {_<_ = _<_}
_≤_ = _≤'_ {_<_ = _<_}
field
_⁻¹ᶠ : (x : Carrier) → {{x # 0f}} → Carrier
isAlmostOrderedField : IsAlmostOrderedField 0f 1f _+_ -_ _·_ min max _<_ _#_ _≤_ _⁻¹ᶠ
infix 9 _⁻¹ᶠ
infixl 7 _·_
infix 6 -_
infixl 5 _+_
infixl 4 _#_
infixl 4 _≤_
infixl 4 _<_
open IsAlmostOrderedField isAlmostOrderedField public
#-isProp : ∀ x y → isProp (x # y)
#-isProp = #-from-<-isProp _<_ <-isStrictPartialOrder <-isProp
record IsOrderedField {F : Type ℓ}
(0f 1f : F) (_+_ : F → F → F) (-_ : F → F) (_·_ min max : F → F → F) (_<_ _#_ _≤_ : Rel F F ℓ') (_⁻¹ᶠ : (x : F) → {{x # 0f}} → F) : Type (ℓ-max ℓ ℓ') where
constructor isorderedfield
field
-- 1. 2. 3. 4. 5.
isAlmostOrderedField : IsAlmostOrderedField 0f 1f _+_ -_ _·_ min max _<_ _#_ _≤_ _⁻¹ᶠ
-- 6. (†)
-- NOTE: this is 'shifted' from the pevious definition of #-extensionality for + .. does the name still fit?
+-<-extensional : ∀ w x y z → (x + y) < (z + w) → (x < z) ⊎ (y < w)
-- 6. (∗)
·-preserves-< : ∀ x y z → 0f < z → x < y → (x · z) < (y · z)
open IsAlmostOrderedField isAlmostOrderedField public
record OrderedField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor orderedfield
field
Carrier : Type ℓ
0f 1f : Carrier
_+_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
min max : Carrier → Carrier → Carrier
_<_ : Rel Carrier Carrier ℓ'
<-isProp : ∀ x y → isProp (x < y)
_#_ = _#'_ {_<_ = _<_}
_≤_ = _≤'_ {_<_ = _<_}
field
_⁻¹ᶠ : (x : Carrier) → {{x # 0f}} → Carrier
isOrderedField : IsOrderedField 0f 1f _+_ -_ _·_ min max _<_ _#_ _≤_ _⁻¹ᶠ
infix 9 _⁻¹ᶠ
infixl 7 _·_
infix 6 -_
infixl 5 _+_
infixl 4 _#_
infixl 4 _≤_
infixl 4 _<_
open IsOrderedField isOrderedField public
abstract
-- NOTE: there might be some reason not to "do" (or "open") all the theory of a record within that record
+-preserves-< : ∀ a b x → a < b → a + x < b + x
+-preserves-< a b x a<b = (
a < b ⇒⟨ transport (λ i → sym (fst (+-identity a)) i < sym (fst (+-identity b)) i) ⟩
a + 0f < b + 0f ⇒⟨ transport (λ i → a + sym (+-rinv x) i < b + sym (+-rinv x) i) ⟩
a + (x - x) < b + (x - x) ⇒⟨ transport (λ i → +-assoc a x (- x) i < +-assoc b x (- x) i) ⟩
(a + x) - x < (b + x) - x ⇒⟨ +-<-extensional (- x) (a + x) (- x) (b + x) ⟩
(a + x < b + x) ⊎ (- x < - x) ⇒⟨ (λ{ (inl a+x<b+x) → a+x<b+x -- somehow ⊥-elim needs a hint in the next line
; (inr -x<-x ) → ⊥-elim {A = λ _ → (a + x < b + x)} (<-irrefl (- x) -x<-x) }) ⟩
a + x < b + x ◼) a<b
≤-isPreorder : IsPreorder _≤_
≤-isPreorder = ≤-isPreorder' {_<_ = _<_} {<-isStrictPartialOrder}
-- Definition 4.3.1.
-- A morphism from an ordered field (F, 0F , 1F , +F , ·F , minF , maxF , <F )
-- to an ordered field (G, 0G , 1G , +G , ·G , minG , maxG , <G )
-- is a map f : F → G such that
-- 1. f is a morphism of rings,
-- 2. f reflects < in the sense that for every x, y : F
-- f (x) <G f (y) ⇒ x <F y.
-- NOTE: see Cubical.Structures.Group.Morphism
-- and Cubical.Structures.Group.MorphismProperties
-- open import Cubical.Structures.Group.Morphism
record IsRingMor
{ℓ ℓ'}
(F : Ring {ℓ}) (G : Ring {ℓ'})
(f : (Ring.Carrier F) → (Ring.Carrier G)) : Type (ℓ-max ℓ ℓ')
where
module F = Ring F
module G = Ring G
field
preserves-+ : ∀ a b → f (a F.+ b) ≡ f a G.+ f b
preserves-· : ∀ a b → f (a F.· b) ≡ f a G.· f b
perserves-1 : f F.1r ≡ G.1r
record IsOrderedFieldMor
{ℓ ℓ' ℓₚ ℓₚ'} -- NOTE: this is a lot of levels. Can we get rid of some of these?
(F : OrderedField {ℓ} {ℓₚ}) (G : OrderedField {ℓ'} {ℓₚ'})
-- (let module F = OrderedField F) -- NOTE: `let` is not allowed in a telescope
-- (let module G = OrderedField G)
(f : (OrderedField.Carrier F) → (OrderedField.Carrier G)) : Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓₚ ℓₚ'))
where
module F = OrderedField F
module G = OrderedField G
field
isRingMor : IsRingMor (record {F}) (record {G}) f
reflects-< : ∀ x y → f x G.< f y → x F.< y
-- NOTE: for more properties, see https://en.wikipedia.org/wiki/Ring_homomorphism#Properties
record OrderedFieldMor {ℓ ℓ' ℓₚ ℓₚ'} (F : OrderedField {ℓ} {ℓₚ}) (G : OrderedField {ℓ'} {ℓₚ'}) : Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓₚ ℓₚ')) where
constructor orderedfieldmor
module F = OrderedField F
module G = OrderedField G
field
fun : F.Carrier → G.Carrier
isOrderedFieldMor : IsOrderedFieldMor F G fun
-- NOTE: f preserves P: P A ⇒ P (f A)
-- f reflects P: P (f A) ⇒ P A
-- Remark 4.3.2. The contrapositive of reflecting < means preserving ≤.
| 40.016713
| 313
| 0.59258
|
5934214346cfbc2e44b59373f9a9ac5c55d3f36a
| 369
|
agda
|
Agda
|
metatheory/test/Negation.agda
|
greggdourgarian/plutus
|
07a2fbef515b988ca3401d38e1464a36ca80b641
|
[
"Apache-2.0"
] | 1
|
2021-12-11T03:10:00.000Z
|
2021-12-11T03:10:00.000Z
|
metatheory/test/Negation.agda
|
greggdourgarian/plutus
|
07a2fbef515b988ca3401d38e1464a36ca80b641
|
[
"Apache-2.0"
] | 1
|
2019-02-06T12:42:31.000Z
|
2019-02-06T12:42:31.000Z
|
metatheory/test/Negation.agda
|
greggdourgarian/plutus
|
07a2fbef515b988ca3401d38e1464a36ca80b641
|
[
"Apache-2.0"
] | null | null | null |
module test.Negation where
open import Type
open import Declarative
open import Builtin
open import Builtin.Constant.Type
open import Builtin.Constant.Term Ctx⋆ Kind * # _⊢⋆_ con size⋆
-- plutus/language-plutus-core/test/data/negation.plc
open import Declarative.StdLib.Bool
negate : ∀{Γ} → Γ ⊢ boolean ⇒ boolean
negate {Γ} = ƛ (if ·⋆ boolean · ` Z · false · true)
| 24.6
| 62
| 0.737127
|
1d91ad458432ea9020ab27bbff423c1be841e269
| 968
|
agda
|
Agda
|
Rings/Homomorphisms/Image.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Rings/Homomorphisms/Image.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Rings/Homomorphisms/Image.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.Homomorphisms.Definition
module Rings.Homomorphisms.Image {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_+A_ _*A_ : A → A → A} {_+B_ _*B_ : B → B → B} {R1 : Ring S _+A_ _*A_} {R2 : Ring T _+B_ _*B_} {f : A → B} (hom : RingHom R1 R2 f) where
open import Groups.Homomorphisms.Image (RingHom.groupHom hom)
open import Rings.Subrings.Definition
imageGroupSubring : Subring R2 imageGroupPred
Subring.isSubgroup imageGroupSubring = imageGroupSubgroup
Subring.containsOne imageGroupSubring = Ring.1R R1 , RingHom.preserves1 hom
Subring.closedUnderProduct imageGroupSubring {x} {y} (a , fa=x) (b , fb=y) = (a *A b) , transitive ringHom (Ring.*WellDefined R2 fa=x fb=y)
where
open Setoid T
open Equivalence eq
open RingHom hom
| 42.086957
| 254
| 0.71281
|
10e1d57b88db73e1ee9a79063fe76e53aa2ffdd9
| 432,294
|
agda
|
Agda
|
agda/Text/Greek/SBLGNT/Rev.agda
|
scott-fleischman/GreekGrammar
|
915c46c27c7f8aad5907474d8484f2685a4cd6a7
|
[
"MIT"
] | 44
|
2015-05-29T14:48:51.000Z
|
2022-03-06T15:41:57.000Z
|
agda/Text/Greek/SBLGNT/Rev.agda
|
scott-fleischman/GreekGrammar
|
915c46c27c7f8aad5907474d8484f2685a4cd6a7
|
[
"MIT"
] | 13
|
2015-05-28T20:04:08.000Z
|
2020-09-07T11:58:38.000Z
|
agda/Text/Greek/SBLGNT/Rev.agda
|
scott-fleischman/GreekGrammar
|
915c46c27c7f8aad5907474d8484f2685a4cd6a7
|
[
"MIT"
] | 5
|
2015-02-27T22:34:13.000Z
|
2017-06-11T11:25:09.000Z
|
module Text.Greek.SBLGNT.Rev where
open import Data.List
open import Text.Greek.Bible
open import Text.Greek.Script
open import Text.Greek.Script.Unicode
ΑΠΟΚΑΛΥΨΙΣ-ΙΩΑΝΝΟΥ : List (Word)
ΑΠΟΚΑΛΥΨΙΣ-ΙΩΑΝΝΟΥ =
word (Ἀ ∷ π ∷ ο ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ ψ ∷ ι ∷ ς ∷ []) "Rev.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1"
∷ word (ἣ ∷ ν ∷ []) "Rev.1.1"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.1.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.1.1"
∷ word (ὁ ∷ []) "Rev.1.1"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.1.1"
∷ word (δ ∷ ε ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.1.1"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.1.1"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.1.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1"
∷ word (ἃ ∷ []) "Rev.1.1"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.1.1"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.1.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.1"
∷ word (τ ∷ ά ∷ χ ∷ ε ∷ ι ∷ []) "Rev.1.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.1"
∷ word (ἐ ∷ σ ∷ ή ∷ μ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rev.1.1"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.1.1"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.1.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.1.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.1.1"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ῳ ∷ []) "Rev.1.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ῃ ∷ []) "Rev.1.1"
∷ word (ὃ ∷ ς ∷ []) "Rev.1.2"
∷ word (ἐ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.1.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.1.2"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.1.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.1.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.2"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.1.2"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.2"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.2"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Rev.1.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.1.2"
∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.1.3"
∷ word (ὁ ∷ []) "Rev.1.3"
∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Rev.1.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.3"
∷ word (ο ∷ ἱ ∷ []) "Rev.1.3"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.1.3"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.3"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.1.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.3"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.1.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.3"
∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.1.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.1.3"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.1.3"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.1.3"
∷ word (ὁ ∷ []) "Rev.1.3"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.1.3"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.3"
∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Rev.1.3"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Rev.1.4"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.1.4"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.4"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.1.4"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.1.4"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.4"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.4"
∷ word (Ἀ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Rev.1.4"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.1.4"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Rev.1.4"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.1.4"
∷ word (ὁ ∷ []) "Rev.1.4"
∷ word (ὢ ∷ ν ∷ []) "Rev.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4"
∷ word (ὁ ∷ []) "Rev.1.4"
∷ word (ἦ ∷ ν ∷ []) "Rev.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4"
∷ word (ὁ ∷ []) "Rev.1.4"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.1.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.4"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.4"
∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.1.4"
∷ word (ἃ ∷ []) "Rev.1.4"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.4"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.1.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.5"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.1.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.5"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.5"
∷ word (ὁ ∷ []) "Rev.1.5"
∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Rev.1.5"
∷ word (ὁ ∷ []) "Rev.1.5"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.1.5"
∷ word (ὁ ∷ []) "Rev.1.5"
∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ό ∷ τ ∷ ο ∷ κ ∷ ο ∷ ς ∷ []) "Rev.1.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.5"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.5"
∷ word (ὁ ∷ []) "Rev.1.5"
∷ word (ἄ ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.1.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.5"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.1.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.5"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.1.5"
∷ word (Τ ∷ ῷ ∷ []) "Rev.1.5"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.1.5"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.5"
∷ word (∙λ ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Rev.1.5"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.1.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.1.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.5"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.1.5"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.1.5"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.5"
∷ word (τ ∷ ῷ ∷ []) "Rev.1.5"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.1.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.6"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.1.6"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.1.6"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.1.6"
∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.1.6"
∷ word (τ ∷ ῷ ∷ []) "Rev.1.6"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.1.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.6"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Rev.1.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.1.6"
∷ word (ἡ ∷ []) "Rev.1.6"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.1.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.1.6"
∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.6"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.6"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.1.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.6"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.1.6"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.1.6"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.1.7"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.1.7"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.1.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.7"
∷ word (ν ∷ ε ∷ φ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.7"
∷ word (ὄ ∷ ψ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.1.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.1.7"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.1.7"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.7"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.1.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.1.7"
∷ word (ἐ ∷ ξ ∷ ε ∷ κ ∷ έ ∷ ν ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.7"
∷ word (κ ∷ ό ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.1.7"
∷ word (ἐ ∷ π ∷ []) "Rev.1.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.1.7"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Rev.1.7"
∷ word (α ∷ ἱ ∷ []) "Rev.1.7"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.1.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.7"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.1.7"
∷ word (ν ∷ α ∷ ί ∷ []) "Rev.1.7"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.1.7"
∷ word (Ἐ ∷ γ ∷ ώ ∷ []) "Rev.1.8"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.1.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.1.8"
∷ word (Ἄ ∷ ∙λ ∷ φ ∷ α ∷ []) "Rev.1.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.1.8"
∷ word (Ὦ ∷ []) "Rev.1.8"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.1.8"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.1.8"
∷ word (ὁ ∷ []) "Rev.1.8"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.1.8"
∷ word (ὁ ∷ []) "Rev.1.8"
∷ word (ὢ ∷ ν ∷ []) "Rev.1.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.8"
∷ word (ὁ ∷ []) "Rev.1.8"
∷ word (ἦ ∷ ν ∷ []) "Rev.1.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.8"
∷ word (ὁ ∷ []) "Rev.1.8"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.1.8"
∷ word (ὁ ∷ []) "Rev.1.8"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.1.8"
∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Rev.1.9"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Rev.1.9"
∷ word (ὁ ∷ []) "Rev.1.9"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Rev.1.9"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9"
∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.1.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.9"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.9"
∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rev.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῇ ∷ []) "Rev.1.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.9"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.9"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.1.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.9"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.9"
∷ word (ν ∷ ή ∷ σ ∷ ῳ ∷ []) "Rev.1.9"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.9"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "Rev.1.9"
∷ word (Π ∷ ά ∷ τ ∷ μ ∷ ῳ ∷ []) "Rev.1.9"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.1.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.1.9"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.1.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.9"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.9"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.1.9"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.9"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.1.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.10"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.1.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.10"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.10"
∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ α ∷ κ ∷ ῇ ∷ []) "Rev.1.10"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Rev.1.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.10"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.1.10"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Rev.1.10"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.1.10"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.1.10"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.1.10"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.10"
∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Rev.1.10"
∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.1.11"
∷ word (Ὃ ∷ []) "Rev.1.11"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Rev.1.11"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.1.11"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.1.11"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.11"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Ἔ ∷ φ ∷ ε ∷ σ ∷ ο ∷ ν ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Σ ∷ μ ∷ ύ ∷ ρ ∷ ν ∷ α ∷ ν ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Π ∷ έ ∷ ρ ∷ γ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Θ ∷ υ ∷ ά ∷ τ ∷ ε ∷ ι ∷ ρ ∷ α ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Σ ∷ ά ∷ ρ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ έ ∷ ∙λ ∷ φ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Λ ∷ α ∷ ο ∷ δ ∷ ί ∷ κ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.1.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.1.12"
∷ word (ἐ ∷ π ∷ έ ∷ σ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ α ∷ []) "Rev.1.12"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.1.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.12"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.1.12"
∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.1.12"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.1.12"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.1.12"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.1.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.12"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Rev.1.12"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.1.12"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.12"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Rev.1.12"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.1.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.13"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.1.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.13"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.1.13"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.13"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Rev.1.13"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.1.13"
∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.1.13"
∷ word (π ∷ ο ∷ δ ∷ ή ∷ ρ ∷ η ∷ []) "Rev.1.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.13"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ ζ ∷ ω ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.1.13"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.13"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.1.13"
∷ word (μ ∷ α ∷ σ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.1.13"
∷ word (ζ ∷ ώ ∷ ν ∷ η ∷ ν ∷ []) "Rev.1.13"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ν ∷ []) "Rev.1.13"
∷ word (ἡ ∷ []) "Rev.1.14"
∷ word (δ ∷ ὲ ∷ []) "Rev.1.14"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "Rev.1.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.14"
∷ word (α ∷ ἱ ∷ []) "Rev.1.14"
∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ ε ∷ ς ∷ []) "Rev.1.14"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ α ∷ ὶ ∷ []) "Rev.1.14"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.14"
∷ word (ἔ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.14"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ό ∷ ν ∷ []) "Rev.1.14"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.14"
∷ word (χ ∷ ι ∷ ώ ∷ ν ∷ []) "Rev.1.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.14"
∷ word (ο ∷ ἱ ∷ []) "Rev.1.14"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rev.1.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.14"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.14"
∷ word (φ ∷ ∙λ ∷ ὸ ∷ ξ ∷ []) "Rev.1.14"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.1.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.1.15"
∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.1.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.15"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ι ∷ []) "Rev.1.15"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ο ∷ ∙λ ∷ ι ∷ β ∷ ά ∷ ν ∷ ῳ ∷ []) "Rev.1.15"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.15"
∷ word (κ ∷ α ∷ μ ∷ ί ∷ ν ∷ ῳ ∷ []) "Rev.1.15"
∷ word (π ∷ ε ∷ π ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.15"
∷ word (ἡ ∷ []) "Rev.1.15"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.1.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.15"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.15"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.1.15"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.1.15"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.16"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.1.16"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.16"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.16"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Rev.1.16"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.1.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.1.16"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.1.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.16"
∷ word (ἐ ∷ κ ∷ []) "Rev.1.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16"
∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ α ∷ []) "Rev.1.16"
∷ word (δ ∷ ί ∷ σ ∷ τ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.1.16"
∷ word (ὀ ∷ ξ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.1.16"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.1.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.16"
∷ word (ἡ ∷ []) "Rev.1.16"
∷ word (ὄ ∷ ψ ∷ ι ∷ ς ∷ []) "Rev.1.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.16"
∷ word (ὁ ∷ []) "Rev.1.16"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.1.16"
∷ word (φ ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.1.16"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.16"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.16"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "Rev.1.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.1.17"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.1.17"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.1.17"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.1.17"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ []) "Rev.1.17"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.17"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.17"
∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Rev.1.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.17"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.17"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.1.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.17"
∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rev.1.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.17"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὰ ∷ ν ∷ []) "Rev.1.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.17"
∷ word (ἐ ∷ π ∷ []) "Rev.1.17"
∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Rev.1.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.1.17"
∷ word (Μ ∷ ὴ ∷ []) "Rev.1.17"
∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Rev.1.17"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Rev.1.17"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.1.17"
∷ word (ὁ ∷ []) "Rev.1.17"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.17"
∷ word (ὁ ∷ []) "Rev.1.17"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18"
∷ word (ὁ ∷ []) "Rev.1.18"
∷ word (ζ ∷ ῶ ∷ ν ∷ []) "Rev.1.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.1.18"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.1.18"
∷ word (ζ ∷ ῶ ∷ ν ∷ []) "Rev.1.18"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.1.18"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.18"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.1.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.18"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.1.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.1.18"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.1.18"
∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.1.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.18"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.1.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.18"
∷ word (ᾅ ∷ δ ∷ ο ∷ υ ∷ []) "Rev.1.18"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.1.19"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.1.19"
∷ word (ἃ ∷ []) "Rev.1.19"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.1.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.19"
∷ word (ἃ ∷ []) "Rev.1.19"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.1.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.19"
∷ word (ἃ ∷ []) "Rev.1.19"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.1.19"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.1.19"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.1.19"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.1.19"
∷ word (τ ∷ ὸ ∷ []) "Rev.1.20"
∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.1.20"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Rev.1.20"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.1.20"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.1.20"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.20"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Rev.1.20"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.1.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.20"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.1.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Rev.1.20"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.1.20"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.1.20"
∷ word (ο ∷ ἱ ∷ []) "Rev.1.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.1.20"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.1.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.1.20"
∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.1.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.20"
∷ word (α ∷ ἱ ∷ []) "Rev.1.20"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ι ∷ []) "Rev.1.20"
∷ word (α ∷ ἱ ∷ []) "Rev.1.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "Rev.1.20"
∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.1.20"
∷ word (Τ ∷ ῷ ∷ []) "Rev.2.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.1"
∷ word (Ἐ ∷ φ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.2.1"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.1"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.1"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.1"
∷ word (ὁ ∷ []) "Rev.2.1"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.2.1"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.2.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.1"
∷ word (τ ∷ ῇ ∷ []) "Rev.2.1"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Rev.2.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.2.1"
∷ word (ὁ ∷ []) "Rev.2.1"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.1"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.2.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.2.1"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.2.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ῶ ∷ ν ∷ []) "Rev.2.1"
∷ word (Ο ∷ ἶ ∷ δ ∷ α ∷ []) "Rev.2.2"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.2"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.2"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.2"
∷ word (κ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.2"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ή ∷ ν ∷ []) "Rev.2.2"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.2"
∷ word (ο ∷ ὐ ∷ []) "Rev.2.2"
∷ word (δ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Rev.2.2"
∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2"
∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ρ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.2.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.2"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.2"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.2"
∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2"
∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.2.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.2"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.3"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.2.3"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.3"
∷ word (ἐ ∷ β ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.2.3"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.2.3"
∷ word (τ ∷ ὸ ∷ []) "Rev.2.3"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.2.3"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.3"
∷ word (ο ∷ ὐ ∷ []) "Rev.2.3"
∷ word (κ ∷ ε ∷ κ ∷ ο ∷ π ∷ ί ∷ α ∷ κ ∷ ε ∷ ς ∷ []) "Rev.2.3"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.4"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.2.4"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.4"
∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.2.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.4"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Rev.2.4"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.4"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ ν ∷ []) "Rev.2.4"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ς ∷ []) "Rev.2.4"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ ε ∷ []) "Rev.2.5"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.2.5"
∷ word (π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.2.5"
∷ word (π ∷ έ ∷ π ∷ τ ∷ ω ∷ κ ∷ α ∷ ς ∷ []) "Rev.2.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.5"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.2.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.5"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.5"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.2.5"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.5"
∷ word (π ∷ ο ∷ ί ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.2.5"
∷ word (ε ∷ ἰ ∷ []) "Rev.2.5"
∷ word (δ ∷ ὲ ∷ []) "Rev.2.5"
∷ word (μ ∷ ή ∷ []) "Rev.2.5"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Rev.2.5"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.2.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.5"
∷ word (κ ∷ ι ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.2.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.5"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.5"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.2.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.5"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ υ ∷ []) "Rev.2.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.5"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.2.5"
∷ word (μ ∷ ὴ ∷ []) "Rev.2.5"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.2.5"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.6"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.2.6"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.6"
∷ word (μ ∷ ι ∷ σ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.6"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.6"
∷ word (Ν ∷ ι ∷ κ ∷ ο ∷ ∙λ ∷ α ∷ ϊ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.6"
∷ word (ἃ ∷ []) "Rev.2.6"
∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.2.6"
∷ word (μ ∷ ι ∷ σ ∷ ῶ ∷ []) "Rev.2.6"
∷ word (ὁ ∷ []) "Rev.2.7"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.7"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.7"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.7"
∷ word (τ ∷ ί ∷ []) "Rev.2.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.2.7"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.7"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.7"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.7"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.7"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.2.7"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.7"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.2.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.7"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.2.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.7"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.2.7"
∷ word (ὅ ∷ []) "Rev.2.7"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.7"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.7"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ε ∷ ί ∷ σ ∷ ῳ ∷ []) "Rev.2.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.7"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.2.7"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.2.8"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.8"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.8"
∷ word (Σ ∷ μ ∷ ύ ∷ ρ ∷ ν ∷ ῃ ∷ []) "Rev.2.8"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.8"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.8"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.8"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.8"
∷ word (ὁ ∷ []) "Rev.2.8"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.2.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.8"
∷ word (ὁ ∷ []) "Rev.2.8"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.2.8"
∷ word (ὃ ∷ ς ∷ []) "Rev.2.8"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.2.8"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.2.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.8"
∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.2.8"
∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.2.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.9"
∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Rev.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.9"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.9"
∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.2.9"
∷ word (ε ∷ ἶ ∷ []) "Rev.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.9"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.2.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.9"
∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.2.9"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.9"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rev.2.9"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.9"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.9"
∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.2.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.9"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ὴ ∷ []) "Rev.2.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.9"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.2.9"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Rev.2.10"
∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Rev.2.10"
∷ word (ἃ ∷ []) "Rev.2.10"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.10"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.2.10"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.2.10"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.2.10"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.2.10"
∷ word (ὁ ∷ []) "Rev.2.10"
∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.2.10"
∷ word (ἐ ∷ ξ ∷ []) "Rev.2.10"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.2.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.2.10"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ ν ∷ []) "Rev.2.10"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.2.10"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ τ ∷ ε ∷ []) "Rev.2.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.10"
∷ word (ἕ ∷ ξ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.2.10"
∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Rev.2.10"
∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.2.10"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.2.10"
∷ word (γ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.2.10"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.2.10"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.2.10"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.2.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.10"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.10"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.2.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.10"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.2.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.10"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.2.10"
∷ word (ὁ ∷ []) "Rev.2.11"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.11"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.11"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.11"
∷ word (τ ∷ ί ∷ []) "Rev.2.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.2.11"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.11"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.11"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.11"
∷ word (ὁ ∷ []) "Rev.2.11"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.2.11"
∷ word (ο ∷ ὐ ∷ []) "Rev.2.11"
∷ word (μ ∷ ὴ ∷ []) "Rev.2.11"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ η ∷ θ ∷ ῇ ∷ []) "Rev.2.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.2.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.11"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.2.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.11"
∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.2.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.2.12"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.12"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.12"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.12"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.12"
∷ word (Π ∷ ε ∷ ρ ∷ γ ∷ ά ∷ μ ∷ ῳ ∷ []) "Rev.2.12"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.12"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.12"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.12"
∷ word (ὁ ∷ []) "Rev.2.12"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.12"
∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.12"
∷ word (δ ∷ ί ∷ σ ∷ τ ∷ ο ∷ μ ∷ ο ∷ ν ∷ []) "Rev.2.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.12"
∷ word (ὀ ∷ ξ ∷ ε ∷ ῖ ∷ α ∷ ν ∷ []) "Rev.2.12"
∷ word (Ο ∷ ἶ ∷ δ ∷ α ∷ []) "Rev.2.13"
∷ word (π ∷ ο ∷ ῦ ∷ []) "Rev.2.13"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.13"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.2.13"
∷ word (ὁ ∷ []) "Rev.2.13"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.2.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.13"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.13"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.2.13"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.2.13"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.13"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.13"
∷ word (ἠ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.2.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.13"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.13"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.13"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.13"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.13"
∷ word (Ἀ ∷ ν ∷ τ ∷ ι ∷ π ∷ ᾶ ∷ ς ∷ []) "Rev.2.13"
∷ word (ὁ ∷ []) "Rev.2.13"
∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Rev.2.13"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13"
∷ word (ὁ ∷ []) "Rev.2.13"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.2.13"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13"
∷ word (ὃ ∷ ς ∷ []) "Rev.2.13"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.2.13"
∷ word (π ∷ α ∷ ρ ∷ []) "Rev.2.13"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.2.13"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.2.13"
∷ word (ὁ ∷ []) "Rev.2.13"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.2.13"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.2.13"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.14"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.2.14"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.14"
∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.2.14"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ α ∷ []) "Rev.2.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.14"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.14"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.2.14"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.14"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.2.14"
∷ word (Β ∷ α ∷ ∙λ ∷ α ∷ ά ∷ μ ∷ []) "Rev.2.14"
∷ word (ὃ ∷ ς ∷ []) "Rev.2.14"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Rev.2.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.14"
∷ word (Β ∷ α ∷ ∙λ ∷ ὰ ∷ κ ∷ []) "Rev.2.14"
∷ word (β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.14"
∷ word (σ ∷ κ ∷ ά ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.2.14"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.2.14"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.14"
∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rev.2.14"
∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rev.2.14"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.14"
∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ α ∷ []) "Rev.2.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.14"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.14"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.2.15"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.15"
∷ word (σ ∷ ὺ ∷ []) "Rev.2.15"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.15"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.2.15"
∷ word (Ν ∷ ι ∷ κ ∷ ο ∷ ∙λ ∷ α ∷ ϊ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.15"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Rev.2.15"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.2.16"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.2.16"
∷ word (ε ∷ ἰ ∷ []) "Rev.2.16"
∷ word (δ ∷ ὲ ∷ []) "Rev.2.16"
∷ word (μ ∷ ή ∷ []) "Rev.2.16"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Rev.2.16"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.2.16"
∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.2.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.16"
∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ή ∷ σ ∷ ω ∷ []) "Rev.2.16"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.2.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.16"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.16"
∷ word (τ ∷ ῇ ∷ []) "Rev.2.16"
∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rev.2.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.16"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "Rev.2.16"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.16"
∷ word (ὁ ∷ []) "Rev.2.17"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.17"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.17"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.17"
∷ word (τ ∷ ί ∷ []) "Rev.2.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.2.17"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.17"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.17"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.17"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.17"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.2.17"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.17"
∷ word (μ ∷ ά ∷ ν ∷ ν ∷ α ∷ []) "Rev.2.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.17"
∷ word (κ ∷ ε ∷ κ ∷ ρ ∷ υ ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.2.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.17"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.17"
∷ word (ψ ∷ ῆ ∷ φ ∷ ο ∷ ν ∷ []) "Rev.2.17"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ ν ∷ []) "Rev.2.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.17"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.2.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.17"
∷ word (ψ ∷ ῆ ∷ φ ∷ ο ∷ ν ∷ []) "Rev.2.17"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.2.17"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.2.17"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.2.17"
∷ word (ὃ ∷ []) "Rev.2.17"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.2.17"
∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.2.17"
∷ word (ε ∷ ἰ ∷ []) "Rev.2.17"
∷ word (μ ∷ ὴ ∷ []) "Rev.2.17"
∷ word (ὁ ∷ []) "Rev.2.17"
∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ω ∷ ν ∷ []) "Rev.2.17"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.2.18"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.18"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.18"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.18"
∷ word (Θ ∷ υ ∷ α ∷ τ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.2.18"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.18"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.18"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.18"
∷ word (ὁ ∷ []) "Rev.2.18"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Rev.2.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.18"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.2.18"
∷ word (ὁ ∷ []) "Rev.2.18"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.18"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.2.18"
∷ word (ὡ ∷ ς ∷ []) "Rev.2.18"
∷ word (φ ∷ ∙λ ∷ ό ∷ γ ∷ α ∷ []) "Rev.2.18"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.18"
∷ word (ο ∷ ἱ ∷ []) "Rev.2.18"
∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.2.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.2.18"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ι ∷ []) "Rev.2.18"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ο ∷ ∙λ ∷ ι ∷ β ∷ ά ∷ ν ∷ ῳ ∷ []) "Rev.2.18"
∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.2.19"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.19"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Rev.2.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ή ∷ ν ∷ []) "Rev.2.19"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.19"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.19"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.19"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ α ∷ []) "Rev.2.19"
∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ α ∷ []) "Rev.2.19"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.19"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.2.19"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.20"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.2.20"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.20"
∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.2.20"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.20"
∷ word (ἀ ∷ φ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.20"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.2.20"
∷ word (Ἰ ∷ ε ∷ ζ ∷ ά ∷ β ∷ ε ∷ ∙λ ∷ []) "Rev.2.20"
∷ word (ἡ ∷ []) "Rev.2.20"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.2.20"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.2.20"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.20"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "Rev.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.20"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾷ ∷ []) "Rev.2.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.20"
∷ word (ἐ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.20"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.20"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.20"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.20"
∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ α ∷ []) "Rev.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.21"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "Rev.2.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.2.21"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.2.21"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.2.21"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.2.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.21"
∷ word (ο ∷ ὐ ∷ []) "Rev.2.21"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.2.21"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.2.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.21"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.21"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.2.22"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Rev.2.22"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.2.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.2.22"
∷ word (κ ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Rev.2.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.22"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.22"
∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.22"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.2.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.2.22"
∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Rev.2.22"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.2.22"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.2.22"
∷ word (μ ∷ ὴ ∷ []) "Rev.2.22"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.2.22"
∷ word (ἐ ∷ κ ∷ []) "Rev.2.22"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.22"
∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.2.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.23"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Rev.2.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.23"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ῶ ∷ []) "Rev.2.23"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.23"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Rev.2.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23"
∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.2.23"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.23"
∷ word (α ∷ ἱ ∷ []) "Rev.2.23"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "Rev.2.23"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.23"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Rev.2.23"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.2.23"
∷ word (ὁ ∷ []) "Rev.2.23"
∷ word (ἐ ∷ ρ ∷ α ∷ υ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.2.23"
∷ word (ν ∷ ε ∷ φ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.23"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.2.23"
∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rev.2.23"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.23"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.23"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.23"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.2.23"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.2.24"
∷ word (δ ∷ ὲ ∷ []) "Rev.2.24"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Rev.2.24"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.2.24"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.2.24"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.2.24"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.24"
∷ word (Θ ∷ υ ∷ α ∷ τ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.2.24"
∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rev.2.24"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.24"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.2.24"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.24"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.2.24"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Rev.2.24"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.2.24"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.24"
∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Rev.2.24"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.24"
∷ word (β ∷ α ∷ θ ∷ έ ∷ α ∷ []) "Rev.2.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.24"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.2.24"
∷ word (ὡ ∷ ς ∷ []) "Rev.2.24"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.2.24"
∷ word (ο ∷ ὐ ∷ []) "Rev.2.24"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Rev.2.24"
∷ word (ἐ ∷ φ ∷ []) "Rev.2.24"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.2.24"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.2.24"
∷ word (β ∷ ά ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.2.24"
∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.2.25"
∷ word (ὃ ∷ []) "Rev.2.25"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.2.25"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.2.25"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.2.25"
∷ word (ο ∷ ὗ ∷ []) "Rev.2.25"
∷ word (ἂ ∷ ν ∷ []) "Rev.2.25"
∷ word (ἥ ∷ ξ ∷ ω ∷ []) "Rev.2.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.26"
∷ word (ὁ ∷ []) "Rev.2.26"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.26"
∷ word (ὁ ∷ []) "Rev.2.26"
∷ word (τ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.2.26"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.2.26"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.26"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.26"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.26"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.26"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.26"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.26"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.26"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.2.26"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.26"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.27"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.2.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.27"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.27"
∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.2.27"
∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ᾷ ∷ []) "Rev.2.27"
∷ word (ὡ ∷ ς ∷ []) "Rev.2.27"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.27"
∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ η ∷ []) "Rev.2.27"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.27"
∷ word (κ ∷ ε ∷ ρ ∷ α ∷ μ ∷ ι ∷ κ ∷ ὰ ∷ []) "Rev.2.27"
∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ ί ∷ β ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.2.27"
∷ word (ὡ ∷ ς ∷ []) "Rev.2.28"
∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.2.28"
∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ α ∷ []) "Rev.2.28"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rev.2.28"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.28"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.2.28"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.28"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.28"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.28"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.2.28"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.28"
∷ word (π ∷ ρ ∷ ω ∷ ϊ ∷ ν ∷ ό ∷ ν ∷ []) "Rev.2.28"
∷ word (ὁ ∷ []) "Rev.2.29"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.29"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.29"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.29"
∷ word (τ ∷ ί ∷ []) "Rev.2.29"
∷ word (τ ∷ ὸ ∷ []) "Rev.2.29"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.29"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.29"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.29"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.29"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.3.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.3.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.3.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.1"
∷ word (Σ ∷ ά ∷ ρ ∷ δ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.1"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.3.1"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.3.1"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.3.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.1"
∷ word (ὁ ∷ []) "Rev.3.1"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.1"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.3.1"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.3.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.1"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.3.1"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.3.1"
∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.3.1"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.1"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.1"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.1"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.1"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.1"
∷ word (ζ ∷ ῇ ∷ ς ∷ []) "Rev.3.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.1"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.1"
∷ word (ε ∷ ἶ ∷ []) "Rev.3.1"
∷ word (γ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.3.2"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.3.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.2"
∷ word (σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ σ ∷ ο ∷ ν ∷ []) "Rev.3.2"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.2"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὰ ∷ []) "Rev.3.2"
∷ word (ἃ ∷ []) "Rev.3.2"
∷ word (ἔ ∷ μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.3.2"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.3.2"
∷ word (ο ∷ ὐ ∷ []) "Rev.3.2"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.3.2"
∷ word (ε ∷ ὕ ∷ ρ ∷ η ∷ κ ∷ ά ∷ []) "Rev.3.2"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.2"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.2"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.2"
∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.3.2"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.2"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.2"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ ε ∷ []) "Rev.3.3"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.3.3"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Rev.3.3"
∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ α ∷ ς ∷ []) "Rev.3.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "Rev.3.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3"
∷ word (τ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ []) "Rev.3.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.3.3"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.3.3"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.3.3"
∷ word (μ ∷ ὴ ∷ []) "Rev.3.3"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.3.3"
∷ word (ἥ ∷ ξ ∷ ω ∷ []) "Rev.3.3"
∷ word (ὡ ∷ ς ∷ []) "Rev.3.3"
∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ η ∷ ς ∷ []) "Rev.3.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3"
∷ word (ο ∷ ὐ ∷ []) "Rev.3.3"
∷ word (μ ∷ ὴ ∷ []) "Rev.3.3"
∷ word (γ ∷ ν ∷ ῷ ∷ ς ∷ []) "Rev.3.3"
∷ word (π ∷ ο ∷ ί ∷ α ∷ ν ∷ []) "Rev.3.3"
∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.3"
∷ word (ἥ ∷ ξ ∷ ω ∷ []) "Rev.3.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.3"
∷ word (σ ∷ έ ∷ []) "Rev.3.3"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.3.4"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.4"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ α ∷ []) "Rev.3.4"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.3.4"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.4"
∷ word (Σ ∷ ά ∷ ρ ∷ δ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.4"
∷ word (ἃ ∷ []) "Rev.3.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.4"
∷ word (ἐ ∷ μ ∷ ό ∷ ∙λ ∷ υ ∷ ν ∷ α ∷ ν ∷ []) "Rev.3.4"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.4"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Rev.3.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.3.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.4"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.4"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.4"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.4"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.4"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.3.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.4"
∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ί ∷ []) "Rev.3.4"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.4"
∷ word (ὁ ∷ []) "Rev.3.5"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.3.5"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.3.5"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.3.5"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.5"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.3.5"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.5"
∷ word (ο ∷ ὐ ∷ []) "Rev.3.5"
∷ word (μ ∷ ὴ ∷ []) "Rev.3.5"
∷ word (ἐ ∷ ξ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ω ∷ []) "Rev.3.5"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.5"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.3.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.5"
∷ word (β ∷ ί ∷ β ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.3.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.5"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.5"
∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.5"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.5"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.3.5"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.5"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.3.5"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.3.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5"
∷ word (ὁ ∷ []) "Rev.3.6"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.6"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.3.6"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.3.6"
∷ word (τ ∷ ί ∷ []) "Rev.3.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.6"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.3.6"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.6"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.3.6"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.3.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.3.7"
∷ word (τ ∷ ῷ ∷ []) "Rev.3.7"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.3.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.7"
∷ word (Φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.3.7"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.3.7"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.3.7"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.3.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.7"
∷ word (ὁ ∷ []) "Rev.3.7"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.3.7"
∷ word (ὁ ∷ []) "Rev.3.7"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.3.7"
∷ word (ὁ ∷ []) "Rev.3.7"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.3.7"
∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.3.7"
∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Rev.3.7"
∷ word (ὁ ∷ []) "Rev.3.7"
∷ word (ἀ ∷ ν ∷ ο ∷ ί ∷ γ ∷ ω ∷ ν ∷ []) "Rev.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.7"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.7"
∷ word (κ ∷ ∙λ ∷ ε ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Rev.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.7"
∷ word (κ ∷ ∙λ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Rev.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.7"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.7"
∷ word (ἀ ∷ ν ∷ ο ∷ ί ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.7"
∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.3.8"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.8"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.8"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.8"
∷ word (δ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "Rev.3.8"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ό ∷ ν ∷ []) "Rev.3.8"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.8"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.8"
∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.3.8"
∷ word (ἣ ∷ ν ∷ []) "Rev.3.8"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.8"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Rev.3.8"
∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.8"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.3.8"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.8"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὰ ∷ ν ∷ []) "Rev.3.8"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.8"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.8"
∷ word (ἐ ∷ τ ∷ ή ∷ ρ ∷ η ∷ σ ∷ ά ∷ ς ∷ []) "Rev.3.8"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.3.8"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.8"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.8"
∷ word (ἠ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.8"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.3.8"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.8"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.9"
∷ word (δ ∷ ι ∷ δ ∷ ῶ ∷ []) "Rev.3.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.3.9"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.9"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.3.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.9"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.3.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.3.9"
∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.3.9"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.9"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.3.9"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rev.3.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.9"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.9"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.3.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.3.9"
∷ word (ψ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.3.9"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.9"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.9"
∷ word (ἥ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.9"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.9"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.3.9"
∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.3.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.9"
∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.9"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.9"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.3.9"
∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ ά ∷ []) "Rev.3.9"
∷ word (σ ∷ ε ∷ []) "Rev.3.9"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.10"
∷ word (ἐ ∷ τ ∷ ή ∷ ρ ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Rev.3.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.3.10"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.3.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.10"
∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "Rev.3.10"
∷ word (σ ∷ ε ∷ []) "Rev.3.10"
∷ word (τ ∷ η ∷ ρ ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.3.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.3.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.10"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.3.10"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.3.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.3.10"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.3.10"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.10"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.3.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.3.11"
∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.3.11"
∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ε ∷ ι ∷ []) "Rev.3.11"
∷ word (ὃ ∷ []) "Rev.3.11"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.11"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.11"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.11"
∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Rev.3.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.3.11"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.3.11"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.11"
∷ word (ὁ ∷ []) "Rev.3.12"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.3.12"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.3.12"
∷ word (σ ∷ τ ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.3.12"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.12"
∷ word (τ ∷ ῷ ∷ []) "Rev.3.12"
∷ word (ν ∷ α ∷ ῷ ∷ []) "Rev.3.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Rev.3.12"
∷ word (ο ∷ ὐ ∷ []) "Rev.3.12"
∷ word (μ ∷ ὴ ∷ []) "Rev.3.12"
∷ word (ἐ ∷ ξ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rev.3.12"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ω ∷ []) "Rev.3.12"
∷ word (ἐ ∷ π ∷ []) "Rev.3.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.3.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.12"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.12"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.12"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.12"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.3.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.3.12"
∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ή ∷ μ ∷ []) "Rev.3.12"
∷ word (ἡ ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.3.12"
∷ word (ἐ ∷ κ ∷ []) "Rev.3.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.3.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.12"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.3.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ό ∷ ν ∷ []) "Rev.3.12"
∷ word (ὁ ∷ []) "Rev.3.13"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.13"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.3.13"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.3.13"
∷ word (τ ∷ ί ∷ []) "Rev.3.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.13"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.3.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.13"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.3.13"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.3.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.3.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.3.14"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.3.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.14"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.14"
∷ word (Λ ∷ α ∷ ο ∷ δ ∷ ι ∷ κ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.3.14"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.3.14"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.3.14"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.3.14"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.14"
∷ word (ὁ ∷ []) "Rev.3.14"
∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.3.14"
∷ word (ὁ ∷ []) "Rev.3.14"
∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Rev.3.14"
∷ word (ὁ ∷ []) "Rev.3.14"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.3.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.14"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.3.14"
∷ word (ἡ ∷ []) "Rev.3.14"
∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.3.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.14"
∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.3.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.14"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.14"
∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.3.15"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.15"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.15"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.15"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.15"
∷ word (ψ ∷ υ ∷ χ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.15"
∷ word (ε ∷ ἶ ∷ []) "Rev.3.15"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.15"
∷ word (ζ ∷ ε ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.15"
∷ word (ὄ ∷ φ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.3.15"
∷ word (ψ ∷ υ ∷ χ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.15"
∷ word (ἦ ∷ ς ∷ []) "Rev.3.15"
∷ word (ἢ ∷ []) "Rev.3.15"
∷ word (ζ ∷ ε ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.15"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.3.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.16"
∷ word (χ ∷ ∙λ ∷ ι ∷ α ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.16"
∷ word (ε ∷ ἶ ∷ []) "Rev.3.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.16"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.16"
∷ word (ζ ∷ ε ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.3.16"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.16"
∷ word (ψ ∷ υ ∷ χ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.3.16"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Rev.3.16"
∷ word (σ ∷ ε ∷ []) "Rev.3.16"
∷ word (ἐ ∷ μ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.16"
∷ word (ἐ ∷ κ ∷ []) "Rev.3.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.16"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.16"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.17"
∷ word (Π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ό ∷ ς ∷ []) "Rev.3.17"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ η ∷ κ ∷ α ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Rev.3.17"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.3.17"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.17"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "Rev.3.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.17"
∷ word (σ ∷ ὺ ∷ []) "Rev.3.17"
∷ word (ε ∷ ἶ ∷ []) "Rev.3.17"
∷ word (ὁ ∷ []) "Rev.3.17"
∷ word (τ ∷ α ∷ ∙λ ∷ α ∷ ί ∷ π ∷ ω ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ε ∷ ι ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ὸ ∷ ς ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ό ∷ ς ∷ []) "Rev.3.17"
∷ word (σ ∷ υ ∷ μ ∷ β ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ω ∷ []) "Rev.3.18"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.3.18"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.18"
∷ word (π ∷ α ∷ ρ ∷ []) "Rev.3.18"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.18"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.3.18"
∷ word (π ∷ ε ∷ π ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.3.18"
∷ word (ἐ ∷ κ ∷ []) "Rev.3.18"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.18"
∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.18"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Rev.3.18"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὰ ∷ []) "Rev.3.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.18"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.18"
∷ word (μ ∷ ὴ ∷ []) "Rev.3.18"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "Rev.3.18"
∷ word (ἡ ∷ []) "Rev.3.18"
∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ύ ∷ ν ∷ η ∷ []) "Rev.3.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.18"
∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.18"
∷ word (κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.18"
∷ word (ἐ ∷ γ ∷ χ ∷ ρ ∷ ῖ ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.18"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.3.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.18"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ῃ ∷ ς ∷ []) "Rev.3.18"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.3.19"
∷ word (ὅ ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.3.19"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.3.19"
∷ word (φ ∷ ι ∷ ∙λ ∷ ῶ ∷ []) "Rev.3.19"
∷ word (ἐ ∷ ∙λ ∷ έ ∷ γ ∷ χ ∷ ω ∷ []) "Rev.3.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.19"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ύ ∷ ω ∷ []) "Rev.3.19"
∷ word (ζ ∷ ή ∷ ∙λ ∷ ε ∷ υ ∷ ε ∷ []) "Rev.3.19"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.3.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.19"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.3.19"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.20"
∷ word (ἕ ∷ σ ∷ τ ∷ η ∷ κ ∷ α ∷ []) "Rev.3.20"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.3.20"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20"
∷ word (κ ∷ ρ ∷ ο ∷ ύ ∷ ω ∷ []) "Rev.3.20"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rev.3.20"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.3.20"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "Rev.3.20"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.20"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.3.20"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20"
∷ word (ἀ ∷ ν ∷ ο ∷ ί ∷ ξ ∷ ῃ ∷ []) "Rev.3.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.3.20"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.3.20"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20"
∷ word (δ ∷ ε ∷ ι ∷ π ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.20"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.3.20"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.20"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.20"
∷ word (ὁ ∷ []) "Rev.3.21"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.3.21"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.3.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.3.21"
∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.21"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.21"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.21"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.21"
∷ word (τ ∷ ῷ ∷ []) "Rev.3.21"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.3.21"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.21"
∷ word (ὡ ∷ ς ∷ []) "Rev.3.21"
∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.3.21"
∷ word (ἐ ∷ ν ∷ ί ∷ κ ∷ η ∷ σ ∷ α ∷ []) "Rev.3.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.21"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ α ∷ []) "Rev.3.21"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.3.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.21"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.3.21"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.21"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.21"
∷ word (τ ∷ ῷ ∷ []) "Rev.3.21"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.3.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.21"
∷ word (ὁ ∷ []) "Rev.3.22"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.22"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.3.22"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.3.22"
∷ word (τ ∷ ί ∷ []) "Rev.3.22"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.22"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.3.22"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.22"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.3.22"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.3.22"
∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.4.1"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.4.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.1"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.4.1"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ []) "Rev.4.1"
∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.4.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.4.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.4.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.1"
∷ word (ἡ ∷ []) "Rev.4.1"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.4.1"
∷ word (ἡ ∷ []) "Rev.4.1"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Rev.4.1"
∷ word (ἣ ∷ ν ∷ []) "Rev.4.1"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.4.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.4.1"
∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Rev.4.1"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.4.1"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.4.1"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.4.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.4.1"
∷ word (Ἀ ∷ ν ∷ ά ∷ β ∷ α ∷ []) "Rev.4.1"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Rev.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.1"
∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ω ∷ []) "Rev.4.1"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.4.1"
∷ word (ἃ ∷ []) "Rev.4.1"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.4.1"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.4.1"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.4.1"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.4.1"
∷ word (ε ∷ ὐ ∷ θ ∷ έ ∷ ω ∷ ς ∷ []) "Rev.4.2"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.4.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.4.2"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.4.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.2"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.4.2"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.2"
∷ word (ἔ ∷ κ ∷ ε ∷ ι ∷ τ ∷ ο ∷ []) "Rev.4.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.4.2"
∷ word (τ ∷ ῷ ∷ []) "Rev.4.2"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.4.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.4.2"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.4.2"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.3"
∷ word (ὁ ∷ []) "Rev.4.3"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.3"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.3"
∷ word (ὁ ∷ ρ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.4.3"
∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.4.3"
∷ word (ἰ ∷ ά ∷ σ ∷ π ∷ ι ∷ δ ∷ ι ∷ []) "Rev.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.3"
∷ word (σ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ῳ ∷ []) "Rev.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.3"
∷ word (ἶ ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.4.3"
∷ word (κ ∷ υ ∷ κ ∷ ∙λ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.3"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.3"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.3"
∷ word (ὁ ∷ ρ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.4.3"
∷ word (σ ∷ μ ∷ α ∷ ρ ∷ α ∷ γ ∷ δ ∷ ί ∷ ν ∷ ῳ ∷ []) "Rev.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.4"
∷ word (κ ∷ υ ∷ κ ∷ ∙λ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.4"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.4"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ι ∷ []) "Rev.4.4"
∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.4.4"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.4.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.4"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.4"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4"
∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.4.4"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.4.4"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4"
∷ word (ἐ ∷ ν ∷ []) "Rev.4.4"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.4.4"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.4.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.4"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.4.4"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.4.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.4.4"
∷ word (σ ∷ τ ∷ ε ∷ φ ∷ ά ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.4.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.4.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.5"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.5"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.4.5"
∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5"
∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.4.5"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.4.5"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.4.5"
∷ word (κ ∷ α ∷ ι ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Rev.4.5"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.5"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.5"
∷ word (ἅ ∷ []) "Rev.4.5"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.5"
∷ word (τ ∷ ὰ ∷ []) "Rev.4.5"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.4.5"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.4.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.5"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.6"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.6"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.4.6"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Rev.4.6"
∷ word (ὑ ∷ α ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ []) "Rev.4.6"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ α ∷ []) "Rev.4.6"
∷ word (κ ∷ ρ ∷ υ ∷ σ ∷ τ ∷ ά ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "Rev.4.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.4.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.4.6"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.4.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.6"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.6"
∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Rev.4.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.6"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.6"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.4.6"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.4.6"
∷ word (γ ∷ έ ∷ μ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.4.6"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.4.6"
∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.6"
∷ word (ὄ ∷ π ∷ ι ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.7"
∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.7"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (∙λ ∷ έ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.7"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (μ ∷ ό ∷ σ ∷ χ ∷ ῳ ∷ []) "Rev.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.7"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.4.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.7"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ὡ ∷ ς ∷ []) "Rev.4.7"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.7"
∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ἀ ∷ ε ∷ τ ∷ ῷ ∷ []) "Rev.4.7"
∷ word (π ∷ ε ∷ τ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.4.8"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.4.8"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.4.8"
∷ word (ἓ ∷ ν ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ θ ∷ []) "Rev.4.8"
∷ word (ἓ ∷ ν ∷ []) "Rev.4.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.4.8"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.4.8"
∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Rev.4.8"
∷ word (π ∷ τ ∷ έ ∷ ρ ∷ υ ∷ γ ∷ α ∷ ς ∷ []) "Rev.4.8"
∷ word (ἕ ∷ ξ ∷ []) "Rev.4.8"
∷ word (κ ∷ υ ∷ κ ∷ ∙λ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8"
∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.8"
∷ word (γ ∷ έ ∷ μ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.8"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8"
∷ word (ἀ ∷ ν ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.8"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.4.8"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.8"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.4.8"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.4.8"
∷ word (Ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8"
∷ word (ὁ ∷ []) "Rev.4.8"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.4.8"
∷ word (ὁ ∷ []) "Rev.4.8"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.4.8"
∷ word (ὁ ∷ []) "Rev.4.8"
∷ word (ἦ ∷ ν ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8"
∷ word (ὁ ∷ []) "Rev.4.8"
∷ word (ὢ ∷ ν ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8"
∷ word (ὁ ∷ []) "Rev.4.8"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.9"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.4.9"
∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.9"
∷ word (τ ∷ ὰ ∷ []) "Rev.4.9"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.4.9"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.4.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.9"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.4.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.9"
∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Rev.4.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.4.9"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.4.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.4.9"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.4.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.4.9"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.4.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.4.9"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.9"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.4.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.4.9"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.4.9"
∷ word (π ∷ ε ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.4.10"
∷ word (ο ∷ ἱ ∷ []) "Rev.4.10"
∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.4.10"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.4.10"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.4.10"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.10"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.10"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.10"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.4.10"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.4.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.4.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.10"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.4.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.4.10"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.4.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.10"
∷ word (β ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.10"
∷ word (σ ∷ τ ∷ ε ∷ φ ∷ ά ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.4.10"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.10"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.4.10"
∷ word (Ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.11"
∷ word (ε ∷ ἶ ∷ []) "Rev.4.11"
∷ word (ὁ ∷ []) "Rev.4.11"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11"
∷ word (ὁ ∷ []) "Rev.4.11"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.4.11"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.4.11"
∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.4.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.4.11"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.4.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.4.11"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.4.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.4.11"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.4.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.4.11"
∷ word (σ ∷ ὺ ∷ []) "Rev.4.11"
∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ α ∷ ς ∷ []) "Rev.4.11"
∷ word (τ ∷ ὰ ∷ []) "Rev.4.11"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.4.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.4.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.11"
∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ ά ∷ []) "Rev.4.11"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.4.11"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.4.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11"
∷ word (ἐ ∷ κ ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.4.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.5.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.5.1"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὰ ∷ ν ∷ []) "Rev.5.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.1"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.1"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.1"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.1"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.1"
∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.5.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.1"
∷ word (ὄ ∷ π ∷ ι ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.5.1"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.1"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.1"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.5.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.2"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.5.2"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.5.2"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.5.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.2"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.5.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.5.2"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Rev.5.2"
∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.5.2"
∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.2"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.2"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.2"
∷ word (∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.5.2"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.5.2"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ ς ∷ []) "Rev.5.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.5.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.3"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.5.3"
∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.5.3"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.3"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.3"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.5.3"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.5.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.3"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.5.3"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.5.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.3"
∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.3"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.3"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.3"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.5.3"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.5.3"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.5.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.4"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.5.4"
∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rev.5.4"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Rev.5.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.5.4"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.5.4"
∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.5.4"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.5.4"
∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.4"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.4"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.5.4"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.5.4"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.5.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.5"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.5.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.5.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.5"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.5.5"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.5.5"
∷ word (Μ ∷ ὴ ∷ []) "Rev.5.5"
∷ word (κ ∷ ∙λ ∷ α ∷ ῖ ∷ ε ∷ []) "Rev.5.5"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.5.5"
∷ word (ἐ ∷ ν ∷ ί ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.5.5"
∷ word (ὁ ∷ []) "Rev.5.5"
∷ word (∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.5.5"
∷ word (ὁ ∷ []) "Rev.5.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.5.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.5"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.5.5"
∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Rev.5.5"
∷ word (ἡ ∷ []) "Rev.5.5"
∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "Rev.5.5"
∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Rev.5.5"
∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.5"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.5"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.5"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.5.5"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.5.5"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ ς ∷ []) "Rev.5.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.5.5"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.5.6"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.6"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.5.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.6"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.6"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.6"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.5.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.6"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.5.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.6"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.6"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.6"
∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.5.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.5.6"
∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.6"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.5.6"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.5.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.5.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.6"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.5.6"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.5.6"
∷ word (ο ∷ ἵ ∷ []) "Rev.5.6"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.5.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.5.6"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.5.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.6"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.5.6"
∷ word (ἀ ∷ π ∷ ε ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.5.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.5.6"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.5.6"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.5.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.7"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.5.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.7"
∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ ε ∷ ν ∷ []) "Rev.5.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.5.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.7"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Rev.5.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.7"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.7"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.7"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.8"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.5.8"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Rev.5.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.8"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.5.8"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.5.8"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.5.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.8"
∷ word (ο ∷ ἱ ∷ []) "Rev.5.8"
∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.5.8"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.5.8"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.5.8"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.8"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.5.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.8"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.5.8"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.5.8"
∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.5.8"
∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ ν ∷ []) "Rev.5.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.8"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.5.8"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.5.8"
∷ word (γ ∷ ε ∷ μ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Rev.5.8"
∷ word (θ ∷ υ ∷ μ ∷ ι ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.5.8"
∷ word (α ∷ ἵ ∷ []) "Rev.5.8"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.8"
∷ word (α ∷ ἱ ∷ []) "Rev.5.8"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ὶ ∷ []) "Rev.5.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.8"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.5.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9"
∷ word (ᾄ ∷ δ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.9"
∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.5.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.5.9"
∷ word (Ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.5.9"
∷ word (ε ∷ ἶ ∷ []) "Rev.5.9"
∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.5.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.9"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9"
∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.9"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.5.9"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ ς ∷ []) "Rev.5.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.5.9"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.5.9"
∷ word (ἐ ∷ σ ∷ φ ∷ ά ∷ γ ∷ η ∷ ς ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9"
∷ word (ἠ ∷ γ ∷ ό ∷ ρ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.5.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.9"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.5.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.9"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rev.5.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.5.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.5.9"
∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rev.5.9"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9"
∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9"
∷ word (∙λ ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9"
∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.10"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Rev.5.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.5.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.10"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.5.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.5.10"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.5.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.10"
∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.5.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.10"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.10"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.5.11"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.5.11"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.5.11"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.5.11"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.5.11"
∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Rev.5.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.11"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.11"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.5.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.11"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11"
∷ word (ἦ ∷ ν ∷ []) "Rev.5.11"
∷ word (ὁ ∷ []) "Rev.5.11"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.5.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.5.11"
∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.5.11"
∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.5.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.5.11"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.5.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.5.12"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.5.12"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.5.12"
∷ word (Ἄ ∷ ξ ∷ ι ∷ ό ∷ ν ∷ []) "Rev.5.12"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.5.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.12"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.12"
∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.12"
∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.5.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.5.12"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12"
∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12"
∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12"
∷ word (ἰ ∷ σ ∷ χ ∷ ὺ ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.5.13"
∷ word (κ ∷ τ ∷ ί ∷ σ ∷ μ ∷ α ∷ []) "Rev.5.13"
∷ word (ὃ ∷ []) "Rev.5.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.13"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.13"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.13"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.5.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.13"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.13"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (τ ∷ ὰ ∷ []) "Rev.5.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.5.13"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.5.13"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.5.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.5.13"
∷ word (Τ ∷ ῷ ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.5.13"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.13"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.13"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.13"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.5.13"
∷ word (ἡ ∷ []) "Rev.5.13"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (ἡ ∷ []) "Rev.5.13"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (ἡ ∷ []) "Rev.5.13"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.13"
∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.5.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.5.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.5.13"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.5.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.13"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.14"
∷ word (τ ∷ ὰ ∷ []) "Rev.5.14"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.5.14"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.5.14"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Rev.5.14"
∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.5.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.14"
∷ word (ο ∷ ἱ ∷ []) "Rev.5.14"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.5.14"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.14"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.14"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.1"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.1"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.6.1"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.6.1"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.6.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.6.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.6.1"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ δ ∷ ω ∷ ν ∷ []) "Rev.6.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.1"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.1"
∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.6.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.6.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.1"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.6.1"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.6.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.1"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.6.1"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.6.1"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.6.2"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.2"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ό ∷ ς ∷ []) "Rev.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2"
∷ word (ὁ ∷ []) "Rev.6.2"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.2"
∷ word (ἐ ∷ π ∷ []) "Rev.6.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.6.2"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.6.2"
∷ word (τ ∷ ό ∷ ξ ∷ ο ∷ ν ∷ []) "Rev.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.2"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.6.2"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.6.2"
∷ word (ν ∷ ι ∷ κ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.6.2"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.3"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.3"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.3"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.3"
∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.6.3"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.3"
∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.6.3"
∷ word (ζ ∷ ῴ ∷ ο ∷ υ ∷ []) "Rev.6.3"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.3"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.6.4"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.6.4"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.4"
∷ word (π ∷ υ ∷ ρ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.6.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.6.4"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.6.4"
∷ word (ἐ ∷ π ∷ []) "Rev.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.6.4"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.4"
∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.6.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.4"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "Rev.6.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.6.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.4"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.6.4"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.6.4"
∷ word (σ ∷ φ ∷ ά ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.4"
∷ word (μ ∷ ά ∷ χ ∷ α ∷ ι ∷ ρ ∷ α ∷ []) "Rev.6.4"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.6.4"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.5"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.5"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ []) "Rev.6.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.5"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.5"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.5"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.5"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "Rev.6.5"
∷ word (ζ ∷ ῴ ∷ ο ∷ υ ∷ []) "Rev.6.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.5"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.5"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.5"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.6.5"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.5"
∷ word (μ ∷ έ ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.6.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.5"
∷ word (ὁ ∷ []) "Rev.6.5"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.5"
∷ word (ἐ ∷ π ∷ []) "Rev.6.5"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.6.5"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.6.5"
∷ word (ζ ∷ υ ∷ γ ∷ ὸ ∷ ν ∷ []) "Rev.6.5"
∷ word (ἐ ∷ ν ∷ []) "Rev.6.5"
∷ word (τ ∷ ῇ ∷ []) "Rev.6.5"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.6.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.6.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.6"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.6.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.6.6"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.6.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.6"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.6.6"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.6.6"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.6.6"
∷ word (Χ ∷ ο ∷ ῖ ∷ ν ∷ ι ∷ ξ ∷ []) "Rev.6.6"
∷ word (σ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "Rev.6.6"
∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.6.6"
∷ word (χ ∷ ο ∷ ί ∷ ν ∷ ι ∷ κ ∷ ε ∷ ς ∷ []) "Rev.6.6"
∷ word (κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ ν ∷ []) "Rev.6.6"
∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.6.6"
∷ word (ἔ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rev.6.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.6.6"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.6.6"
∷ word (μ ∷ ὴ ∷ []) "Rev.6.6"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.6.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.7"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.7"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.7"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.7"
∷ word (τ ∷ ε ∷ τ ∷ ά ∷ ρ ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.7"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.7"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.6.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.7"
∷ word (τ ∷ ε ∷ τ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.6.7"
∷ word (ζ ∷ ῴ ∷ ο ∷ υ ∷ []) "Rev.6.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.7"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.6.8"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.8"
∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ὁ ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.8"
∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "Rev.6.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.6.8"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.6.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.8"
∷ word (ὁ ∷ []) "Rev.6.8"
∷ word (Θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ὁ ∷ []) "Rev.6.8"
∷ word (ᾅ ∷ δ ∷ η ∷ ς ∷ []) "Rev.6.8"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Rev.6.8"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.6.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.8"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.6.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.6.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.6.8"
∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.6.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.8"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.8"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Rev.6.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.6.8"
∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.6.8"
∷ word (∙λ ∷ ι ∷ μ ∷ ῷ ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.6.8"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rev.6.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.8"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.6.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.8"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.9"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.9"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.9"
∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.9"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.9"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.9"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.6.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.9"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.9"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.6.9"
∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "Rev.6.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.9"
∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.6.9"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.6.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.6.9"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.6.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.9"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.6.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.9"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.6.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.9"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.6.9"
∷ word (ἣ ∷ ν ∷ []) "Rev.6.9"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.6.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.10"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rev.6.10"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.6.10"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.6.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.6.10"
∷ word (Ἕ ∷ ω ∷ ς ∷ []) "Rev.6.10"
∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Rev.6.10"
∷ word (ὁ ∷ []) "Rev.6.10"
∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ η ∷ ς ∷ []) "Rev.6.10"
∷ word (ὁ ∷ []) "Rev.6.10"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.6.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.10"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.6.10"
∷ word (ο ∷ ὐ ∷ []) "Rev.6.10"
∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ ς ∷ []) "Rev.6.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.10"
∷ word (ἐ ∷ κ ∷ δ ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.6.10"
∷ word (τ ∷ ὸ ∷ []) "Rev.6.10"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.6.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.6.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.6.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.10"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.6.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.6.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.10"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.11"
∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rev.6.11"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Rev.6.11"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ []) "Rev.6.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11"
∷ word (ἐ ∷ ρ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.6.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.11"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.6.11"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.6.11"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.6.11"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.6.11"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ό ∷ ν ∷ []) "Rev.6.11"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Rev.6.11"
∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.11"
∷ word (σ ∷ ύ ∷ ν ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.6.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.11"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "Rev.6.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.11"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.6.11"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ έ ∷ ν ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.6.11"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.6.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.12"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.12"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.12"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.12"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.12"
∷ word (ἕ ∷ κ ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.12"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.6.12"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.6.12"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.6.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.12"
∷ word (ὁ ∷ []) "Rev.6.12"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.6.12"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.6.12"
∷ word (μ ∷ έ ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.6.12"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.12"
∷ word (σ ∷ ά ∷ κ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.6.12"
∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.12"
∷ word (ἡ ∷ []) "Rev.6.12"
∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Rev.6.12"
∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "Rev.6.12"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.6.12"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.12"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.6.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.13"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.13"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.6.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.13"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.6.13"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.6.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.6.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.13"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.6.13"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.13"
∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ []) "Rev.6.13"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.6.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.6.13"
∷ word (ὀ ∷ ∙λ ∷ ύ ∷ ν ∷ θ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.6.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.6.13"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rev.6.13"
∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.6.13"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.6.13"
∷ word (σ ∷ ε ∷ ι ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.6.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.14"
∷ word (ὁ ∷ []) "Rev.6.14"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.6.14"
∷ word (ἀ ∷ π ∷ ε ∷ χ ∷ ω ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.6.14"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.14"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.6.14"
∷ word (ἑ ∷ ∙λ ∷ ι ∷ σ ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.6.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.14"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.6.14"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.6.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.14"
∷ word (ν ∷ ῆ ∷ σ ∷ ο ∷ ς ∷ []) "Rev.6.14"
∷ word (ἐ ∷ κ ∷ []) "Rev.6.14"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.14"
∷ word (τ ∷ ό ∷ π ∷ ω ∷ ν ∷ []) "Rev.6.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.14"
∷ word (ἐ ∷ κ ∷ ι ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.6.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.15"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.6.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.15"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.15"
∷ word (μ ∷ ε ∷ γ ∷ ι ∷ σ ∷ τ ∷ ᾶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.15"
∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ρ ∷ χ ∷ ο ∷ ι ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.15"
∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.15"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.6.15"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.6.15"
∷ word (ἔ ∷ κ ∷ ρ ∷ υ ∷ ψ ∷ α ∷ ν ∷ []) "Rev.6.15"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.6.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.6.15"
∷ word (τ ∷ ὰ ∷ []) "Rev.6.15"
∷ word (σ ∷ π ∷ ή ∷ ∙λ ∷ α ∷ ι ∷ α ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.6.15"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.6.15"
∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.6.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.15"
∷ word (ὀ ∷ ρ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.16"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.16"
∷ word (ὄ ∷ ρ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.6.16"
∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.6.16"
∷ word (Π ∷ έ ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.6.16"
∷ word (ἐ ∷ φ ∷ []) "Rev.6.16"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.6.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16"
∷ word (κ ∷ ρ ∷ ύ ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "Rev.6.16"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.6.16"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.6.16"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.6.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.16"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.6.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.6.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.16"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.6.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.6.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.16"
∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.6.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.16"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.6.17"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.6.17"
∷ word (ἡ ∷ []) "Rev.6.17"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.6.17"
∷ word (ἡ ∷ []) "Rev.6.17"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.6.17"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.17"
∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.6.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.17"
∷ word (τ ∷ ί ∷ ς ∷ []) "Rev.6.17"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Rev.6.17"
∷ word (σ ∷ τ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.6.17"
∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.7.1"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.7.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.7.1"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.1"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ ς ∷ []) "Rev.7.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.1"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.1"
∷ word (γ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Rev.7.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.7.1"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.1"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.1"
∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.7.1"
∷ word (μ ∷ ὴ ∷ []) "Rev.7.1"
∷ word (π ∷ ν ∷ έ ∷ ῃ ∷ []) "Rev.7.1"
∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Rev.7.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.7.1"
∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.7.1"
∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.7.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.7.2"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.7.2"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.7.2"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.7.2"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.7.2"
∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.2"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.7.2"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.7.2"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.7.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.7.2"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.7.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.2"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.7.2"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.7.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.7.2"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.7.2"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.2"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.7.2"
∷ word (ο ∷ ἷ ∷ ς ∷ []) "Rev.7.2"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.7.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.7.2"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.7.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.2"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.7.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.2"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.7.3"
∷ word (Μ ∷ ὴ ∷ []) "Rev.7.3"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Rev.7.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.3"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.7.3"
∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.3"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.3"
∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.7.3"
∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Rev.7.3"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.7.3"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rev.7.3"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.3"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.3"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.7.3"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.3"
∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.7.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.3"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.7.4"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.7.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.7.4"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.7.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.4"
∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.7.4"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.7.4"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.7.4"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.7.4"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.4"
∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.4"
∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rev.7.4"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.4"
∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rev.7.4"
∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rev.7.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.5"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.5"
∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Rev.7.5"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.5"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.5"
∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.5"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.5"
∷ word (Ῥ ∷ ο ∷ υ ∷ β ∷ ὴ ∷ ν ∷ []) "Rev.7.5"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.5"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.5"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.5"
∷ word (Γ ∷ ὰ ∷ δ ∷ []) "Rev.7.5"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.5"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.6"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.6"
∷ word (Ἀ ∷ σ ∷ ὴ ∷ ρ ∷ []) "Rev.7.6"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.6"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.6"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.6"
∷ word (Ν ∷ ε ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ ὶ ∷ μ ∷ []) "Rev.7.6"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.6"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.6"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.6"
∷ word (Μ ∷ α ∷ ν ∷ α ∷ σ ∷ σ ∷ ῆ ∷ []) "Rev.7.6"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.6"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.7"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.7"
∷ word (Σ ∷ υ ∷ μ ∷ ε ∷ ὼ ∷ ν ∷ []) "Rev.7.7"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.7"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.7"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.7"
∷ word (Λ ∷ ε ∷ υ ∷ ὶ ∷ []) "Rev.7.7"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.7"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.7"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.7"
∷ word (Ἰ ∷ σ ∷ σ ∷ α ∷ χ ∷ ὰ ∷ ρ ∷ []) "Rev.7.7"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.7"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.8"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.8"
∷ word (Ζ ∷ α ∷ β ∷ ο ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.7.8"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.8"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.8"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.8"
∷ word (Ἰ ∷ ω ∷ σ ∷ ὴ ∷ φ ∷ []) "Rev.7.8"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.8"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.8"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.8"
∷ word (Β ∷ ε ∷ ν ∷ ι ∷ α ∷ μ ∷ ὶ ∷ ν ∷ []) "Rev.7.8"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.8"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.8"
∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.8"
∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.7.9"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.7.9"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.7.9"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.7.9"
∷ word (π ∷ ο ∷ ∙λ ∷ ύ ∷ ς ∷ []) "Rev.7.9"
∷ word (ὃ ∷ ν ∷ []) "Rev.7.9"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.7.9"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.7.9"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.7.9"
∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.7.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.9"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.7.9"
∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9"
∷ word (∙λ ∷ α ∷ ῶ ∷ ν ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9"
∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "Rev.7.9"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.9"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.9"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.9"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.7.9"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.9"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.7.9"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ά ∷ ς ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9"
∷ word (φ ∷ ο ∷ ί ∷ ν ∷ ι ∷ κ ∷ ε ∷ ς ∷ []) "Rev.7.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.7.9"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.7.9"
∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.7.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.10"
∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "Rev.7.10"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.7.10"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.7.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.10"
∷ word (Ἡ ∷ []) "Rev.7.10"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rev.7.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.10"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.7.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.10"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.7.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.10"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.7.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.10"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.7.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.7.11"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.7.11"
∷ word (ε ∷ ἱ ∷ σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.11"
∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Rev.7.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.11"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.11"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.7.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.11"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.7.11"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.7.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.11"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.11"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.11"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.11"
∷ word (τ ∷ ὰ ∷ []) "Rev.7.11"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.7.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.11"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.11"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.7.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.12"
∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ []) "Rev.7.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.7.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "Rev.7.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ []) "Rev.7.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "Rev.7.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rev.7.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (ἰ ∷ σ ∷ χ ∷ ὺ ∷ ς ∷ []) "Rev.7.12"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.12"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.7.12"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.12"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.7.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.12"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.7.12"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.7.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.7.13"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Rev.7.13"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.7.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.13"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.7.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.7.13"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.7.13"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.7.13"
∷ word (ο ∷ ἱ ∷ []) "Rev.7.13"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.13"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.13"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.7.13"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.13"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὰ ∷ ς ∷ []) "Rev.7.13"
∷ word (τ ∷ ί ∷ ν ∷ ε ∷ ς ∷ []) "Rev.7.13"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.7.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.13"
∷ word (π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.7.13"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Rev.7.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14"
∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ α ∷ []) "Rev.7.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.7.14"
∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ έ ∷ []) "Rev.7.14"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.7.14"
∷ word (σ ∷ ὺ ∷ []) "Rev.7.14"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "Rev.7.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14"
∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.7.14"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.7.14"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.7.14"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.14"
∷ word (ο ∷ ἱ ∷ []) "Rev.7.14"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.14"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.14"
∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.7.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.14"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.7.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14"
∷ word (ἔ ∷ π ∷ ∙λ ∷ υ ∷ ν ∷ α ∷ ν ∷ []) "Rev.7.14"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.14"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.7.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ κ ∷ α ∷ ν ∷ α ∷ ν ∷ []) "Rev.7.14"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ ς ∷ []) "Rev.7.14"
∷ word (ἐ ∷ ν ∷ []) "Rev.7.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.14"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.7.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.14"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.7.14"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.7.15"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Rev.7.15"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.15"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.7.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.15"
∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.7.15"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.15"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.7.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.7.15"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.15"
∷ word (ν ∷ α ∷ ῷ ∷ []) "Rev.7.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.15"
∷ word (ὁ ∷ []) "Rev.7.15"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.7.15"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.15"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.7.15"
∷ word (ἐ ∷ π ∷ []) "Rev.7.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.7.15"
∷ word (ο ∷ ὐ ∷ []) "Rev.7.16"
∷ word (π ∷ ε ∷ ι ∷ ν ∷ ά ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.16"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.7.16"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.7.16"
∷ word (δ ∷ ι ∷ ψ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.16"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.7.16"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.7.16"
∷ word (μ ∷ ὴ ∷ []) "Rev.7.16"
∷ word (π ∷ έ ∷ σ ∷ ῃ ∷ []) "Rev.7.16"
∷ word (ἐ ∷ π ∷ []) "Rev.7.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.16"
∷ word (ὁ ∷ []) "Rev.7.16"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.7.16"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.7.16"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.7.16"
∷ word (κ ∷ α ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.7.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.7.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.7.17"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.7.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.7.17"
∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Rev.7.17"
∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.7.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.17"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.17"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.7.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.7.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.17"
∷ word (ὁ ∷ δ ∷ η ∷ γ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.7.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.17"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.17"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.7.17"
∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.7.17"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.7.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.17"
∷ word (ἐ ∷ ξ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rev.7.17"
∷ word (ὁ ∷ []) "Rev.7.17"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.7.17"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.7.17"
∷ word (δ ∷ ά ∷ κ ∷ ρ ∷ υ ∷ ο ∷ ν ∷ []) "Rev.7.17"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.17"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.17"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.1"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.8.1"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.8.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.1"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.8.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.1"
∷ word (ἑ ∷ β ∷ δ ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.8.1"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.1"
∷ word (σ ∷ ι ∷ γ ∷ ὴ ∷ []) "Rev.8.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.8.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.8.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.8.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.8.1"
∷ word (ἡ ∷ μ ∷ ι ∷ ώ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.8.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.8.2"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.2"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.8.2"
∷ word (ο ∷ ἳ ∷ []) "Rev.8.2"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.8.2"
∷ word (ἑ ∷ σ ∷ τ ∷ ή ∷ κ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Rev.8.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.2"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.8.2"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.2"
∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ε ∷ ς ∷ []) "Rev.8.2"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.3"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.3"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.3"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.8.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.3"
∷ word (ἐ ∷ σ ∷ τ ∷ ά ∷ θ ∷ η ∷ []) "Rev.8.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.3"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.8.3"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.8.3"
∷ word (∙λ ∷ ι ∷ β ∷ α ∷ ν ∷ ω ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.8.3"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.8.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.3"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.8.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.8.3"
∷ word (θ ∷ υ ∷ μ ∷ ι ∷ ά ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.8.3"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.8.3"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.8.3"
∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.8.3"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.3"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.3"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.8.3"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.3"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.3"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.3"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.3"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.8.3"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.3"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.3"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.8.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.4"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "Rev.8.4"
∷ word (ὁ ∷ []) "Rev.8.4"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.8.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.4"
∷ word (θ ∷ υ ∷ μ ∷ ι ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.4"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.4"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.8.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.8.4"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.8.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.4"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.8.4"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.4"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.8.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ ε ∷ ν ∷ []) "Rev.8.5"
∷ word (ὁ ∷ []) "Rev.8.5"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.8.5"
∷ word (∙λ ∷ ι ∷ β ∷ α ∷ ν ∷ ω ∷ τ ∷ ό ∷ ν ∷ []) "Rev.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (ἐ ∷ γ ∷ έ ∷ μ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.5"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.8.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.8.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.5"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.8.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.5"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.8.5"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.5"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.8.5"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ό ∷ ς ∷ []) "Rev.8.5"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.6"
∷ word (ο ∷ ἱ ∷ []) "Rev.8.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.6"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.8.6"
∷ word (ο ∷ ἱ ∷ []) "Rev.8.6"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.8.6"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.8.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.6"
∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ α ∷ ς ∷ []) "Rev.8.6"
∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.6"
∷ word (α ∷ ὑ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.8.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.8.6"
∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.8.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (ὁ ∷ []) "Rev.8.7"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.7"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.7"
∷ word (χ ∷ ά ∷ ∙λ ∷ α ∷ ζ ∷ α ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.8.7"
∷ word (μ ∷ ε ∷ μ ∷ ι ∷ γ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.8.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.8.7"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.8.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.7"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.7"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.7"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ κ ∷ ά ∷ η ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.7"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.7"
∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ κ ∷ ά ∷ η ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.8.7"
∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.7"
∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ κ ∷ ά ∷ η ∷ []) "Rev.8.7"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.8"
∷ word (ὁ ∷ []) "Rev.8.8"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.8.8"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.8"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.8"
∷ word (ὡ ∷ ς ∷ []) "Rev.8.8"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.8.8"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.8.8"
∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.8.8"
∷ word (κ ∷ α ∷ ι ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.8.8"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.8.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.8"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.8"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.8"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.8"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.8.8"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.8.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.9"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ []) "Rev.8.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.9"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.9"
∷ word (κ ∷ τ ∷ ι ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.8.9"
∷ word (τ ∷ ῇ ∷ []) "Rev.8.9"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Rev.8.9"
∷ word (τ ∷ ὰ ∷ []) "Rev.8.9"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.8.9"
∷ word (ψ ∷ υ ∷ χ ∷ ά ∷ ς ∷ []) "Rev.8.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.9"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.9"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ω ∷ ν ∷ []) "Rev.8.9"
∷ word (δ ∷ ι ∷ ε ∷ φ ∷ θ ∷ ά ∷ ρ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.10"
∷ word (ὁ ∷ []) "Rev.8.10"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.10"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.10"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.10"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.8.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.10"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.8.10"
∷ word (ἀ ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "Rev.8.10"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.8.10"
∷ word (κ ∷ α ∷ ι ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.8.10"
∷ word (ὡ ∷ ς ∷ []) "Rev.8.10"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ά ∷ ς ∷ []) "Rev.8.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.10"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.10"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.10"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.10"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.8.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.10"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.8.10"
∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.8.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.10"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.11"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.8.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.11"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.8.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.8.11"
∷ word (ὁ ∷ []) "Rev.8.11"
∷ word (Ἄ ∷ ψ ∷ ι ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.8.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.11"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.11"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.11"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.11"
∷ word (ἄ ∷ ψ ∷ ι ∷ ν ∷ θ ∷ ο ∷ ν ∷ []) "Rev.8.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.11"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Rev.8.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.11"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.8.11"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.8.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.8.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.11"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.8.11"
∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.12"
∷ word (ὁ ∷ []) "Rev.8.12"
∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.12"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.12"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12"
∷ word (ἐ ∷ π ∷ ∙λ ∷ ή ∷ γ ∷ η ∷ []) "Rev.8.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.12"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.12"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.8.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.12"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.12"
∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Rev.8.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.12"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.12"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.8.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.8.12"
∷ word (σ ∷ κ ∷ ο ∷ τ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.8.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.12"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.8.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12"
∷ word (ἡ ∷ []) "Rev.8.12"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.8.12"
∷ word (μ ∷ ὴ ∷ []) "Rev.8.12"
∷ word (φ ∷ ά ∷ ν ∷ ῃ ∷ []) "Rev.8.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.12"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.8.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12"
∷ word (ἡ ∷ []) "Rev.8.12"
∷ word (ν ∷ ὺ ∷ ξ ∷ []) "Rev.8.12"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Rev.8.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.13"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.8.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.13"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.8.13"
∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.8.13"
∷ word (ἀ ∷ ε ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.8.13"
∷ word (π ∷ ε ∷ τ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.8.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.8.13"
∷ word (μ ∷ ε ∷ σ ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.8.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.13"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.8.13"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.8.13"
∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.8.13"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.8.13"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.8.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.8.13"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.8.13"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.13"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.8.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.8.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.13"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ῶ ∷ ν ∷ []) "Rev.8.13"
∷ word (φ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.8.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.13"
∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Rev.8.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.13"
∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.8.13"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.8.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.13"
∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.13"
∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.8.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.1"
∷ word (ὁ ∷ []) "Rev.9.1"
∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.1"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.9.1"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.9.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.9.1"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.9.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.1"
∷ word (π ∷ ε ∷ π ∷ τ ∷ ω ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Rev.9.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.1"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.9.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.1"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.9.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.9.1"
∷ word (ἡ ∷ []) "Rev.9.1"
∷ word (κ ∷ ∙λ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.9.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.1"
∷ word (φ ∷ ρ ∷ έ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.1"
∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.9.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.9.2"
∷ word (τ ∷ ὸ ∷ []) "Rev.9.2"
∷ word (φ ∷ ρ ∷ έ ∷ α ∷ ρ ∷ []) "Rev.9.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.2"
∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.9.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.2"
∷ word (φ ∷ ρ ∷ έ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ μ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.9.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2"
∷ word (ἐ ∷ σ ∷ κ ∷ ο ∷ τ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.9.2"
∷ word (ὁ ∷ []) "Rev.9.2"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2"
∷ word (ὁ ∷ []) "Rev.9.2"
∷ word (ἀ ∷ ὴ ∷ ρ ∷ []) "Rev.9.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.2"
∷ word (φ ∷ ρ ∷ έ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.3"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.3"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.3"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Rev.9.3"
∷ word (ἀ ∷ κ ∷ ρ ∷ ί ∷ δ ∷ ε ∷ ς ∷ []) "Rev.9.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.3"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.9.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.3"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.9.3"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.3"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.9.3"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.3"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.3"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.9.3"
∷ word (ο ∷ ἱ ∷ []) "Rev.9.3"
∷ word (σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ί ∷ ο ∷ ι ∷ []) "Rev.9.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.9.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.4"
∷ word (ἐ ∷ ρ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.9.4"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.4"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.4"
∷ word (μ ∷ ὴ ∷ []) "Rev.9.4"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.4"
∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.4"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.9.4"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.9.4"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.9.4"
∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.9.4"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.9.4"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.9.4"
∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.9.4"
∷ word (ε ∷ ἰ ∷ []) "Rev.9.4"
∷ word (μ ∷ ὴ ∷ []) "Rev.9.4"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.4"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.4"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.9.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.9.4"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "Rev.9.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.4"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.9.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.4"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.9.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.9.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.4"
∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.5"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.9.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.9.5"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.5"
∷ word (μ ∷ ὴ ∷ []) "Rev.9.5"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.9.5"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.9.5"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.5"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.5"
∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.9.5"
∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Rev.9.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.5"
∷ word (ὁ ∷ []) "Rev.9.5"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.9.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.5"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.5"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.9.5"
∷ word (σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ί ∷ ο ∷ υ ∷ []) "Rev.9.5"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.9.5"
∷ word (π ∷ α ∷ ί ∷ σ ∷ ῃ ∷ []) "Rev.9.5"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.9.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.6"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.6"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.9.6"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Rev.9.6"
∷ word (ζ ∷ η ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.6"
∷ word (ο ∷ ἱ ∷ []) "Rev.9.6"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.9.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.6"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6"
∷ word (ο ∷ ὐ ∷ []) "Rev.9.6"
∷ word (μ ∷ ὴ ∷ []) "Rev.9.6"
∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.6"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.9.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.6"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.9.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6"
∷ word (φ ∷ ε ∷ ύ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.9.6"
∷ word (ὁ ∷ []) "Rev.9.6"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.6"
∷ word (ἀ ∷ π ∷ []) "Rev.9.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.7"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.7"
∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.9.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.7"
∷ word (ἀ ∷ κ ∷ ρ ∷ ί ∷ δ ∷ ω ∷ ν ∷ []) "Rev.9.7"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ α ∷ []) "Rev.9.7"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Rev.9.7"
∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.9.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.7"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.9.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.7"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.9.7"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.9.7"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.9.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.7"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.7"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ι ∷ []) "Rev.9.7"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ι ∷ []) "Rev.9.7"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ῷ ∷ []) "Rev.9.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.7"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.7"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.9.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.7"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.7"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.9.7"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.8"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.9.8"
∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ α ∷ ς ∷ []) "Rev.9.8"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.8"
∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ α ∷ ς ∷ []) "Rev.9.8"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.9.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.8"
∷ word (ο ∷ ἱ ∷ []) "Rev.9.8"
∷ word (ὀ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.9.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.8"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.8"
∷ word (∙λ ∷ ε ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.8"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.9"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.9.9"
∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ ς ∷ []) "Rev.9.9"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.9"
∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ ς ∷ []) "Rev.9.9"
∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.9.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.9"
∷ word (ἡ ∷ []) "Rev.9.9"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.9.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.9"
∷ word (π ∷ τ ∷ ε ∷ ρ ∷ ύ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.9.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.9"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.9"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.9.9"
∷ word (ἁ ∷ ρ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.9"
∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.9"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.9.9"
∷ word (τ ∷ ρ ∷ ε ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.9"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.9.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.10"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.10"
∷ word (ο ∷ ὐ ∷ ρ ∷ ὰ ∷ ς ∷ []) "Rev.9.10"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Rev.9.10"
∷ word (σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.9.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.10"
∷ word (κ ∷ έ ∷ ν ∷ τ ∷ ρ ∷ α ∷ []) "Rev.9.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.10"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.10"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.10"
∷ word (ἡ ∷ []) "Rev.9.10"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.9.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.10"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.9.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.10"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.10"
∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.9.10"
∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Rev.9.10"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.11"
∷ word (ἐ ∷ π ∷ []) "Rev.9.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.11"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Rev.9.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.11"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.9.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.11"
∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.9.11"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.9.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.9.11"
∷ word (Ἑ ∷ β ∷ ρ ∷ α ∷ ϊ ∷ σ ∷ τ ∷ ὶ ∷ []) "Rev.9.11"
∷ word (Ἀ ∷ β ∷ α ∷ δ ∷ δ ∷ ώ ∷ ν ∷ []) "Rev.9.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.11"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.11"
∷ word (τ ∷ ῇ ∷ []) "Rev.9.11"
∷ word (Ἑ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ι ∷ κ ∷ ῇ ∷ []) "Rev.9.11"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.9.11"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.9.11"
∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ύ ∷ ω ∷ ν ∷ []) "Rev.9.11"
∷ word (Ἡ ∷ []) "Rev.9.12"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.9.12"
∷ word (ἡ ∷ []) "Rev.9.12"
∷ word (μ ∷ ί ∷ α ∷ []) "Rev.9.12"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.9.12"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.9.12"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.12"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.9.12"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.9.12"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.9.12"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.9.12"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.9.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.13"
∷ word (ὁ ∷ []) "Rev.9.13"
∷ word (ἕ ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.13"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.9.13"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.9.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.13"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.9.13"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.9.13"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.9.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.13"
∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.9.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.9.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.9.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.9.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.9.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.9.14"
∷ word (ἕ ∷ κ ∷ τ ∷ ῳ ∷ []) "Rev.9.14"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.9.14"
∷ word (ὁ ∷ []) "Rev.9.14"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.9.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.14"
∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ α ∷ []) "Rev.9.14"
∷ word (Λ ∷ ῦ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.9.14"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.14"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.9.14"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.14"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.14"
∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.9.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.9.14"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ῷ ∷ []) "Rev.9.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.9.14"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῳ ∷ []) "Rev.9.14"
∷ word (Ε ∷ ὐ ∷ φ ∷ ρ ∷ ά ∷ τ ∷ ῃ ∷ []) "Rev.9.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15"
∷ word (ἐ ∷ ∙λ ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.9.15"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.9.15"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.9.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.9.15"
∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.9.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.15"
∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.9.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.9.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15"
∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ []) "Rev.9.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15"
∷ word (ἐ ∷ ν ∷ ι ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.9.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.15"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.15"
∷ word (τ ∷ ὸ ∷ []) "Rev.9.15"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.15"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.16"
∷ word (ὁ ∷ []) "Rev.9.16"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.9.16"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.16"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.16"
∷ word (ἱ ∷ π ∷ π ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ []) "Rev.9.16"
∷ word (δ ∷ ι ∷ σ ∷ μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.9.16"
∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.9.16"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.9.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.16"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.9.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.9.17"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.9.17"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.17"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.17"
∷ word (τ ∷ ῇ ∷ []) "Rev.9.17"
∷ word (ὁ ∷ ρ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17"
∷ word (ἐ ∷ π ∷ []) "Rev.9.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.9.17"
∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ ς ∷ []) "Rev.9.17"
∷ word (π ∷ υ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (ὑ ∷ α ∷ κ ∷ ι ∷ ν ∷ θ ∷ ί ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (θ ∷ ε ∷ ι ∷ ώ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (α ∷ ἱ ∷ []) "Rev.9.17"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17"
∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.17"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.17"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (∙λ ∷ ε ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17"
∷ word (σ ∷ τ ∷ ο ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.17"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (θ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.9.17"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.9.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18"
∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.9.18"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῶ ∷ ν ∷ []) "Rev.9.18"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.18"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.18"
∷ word (τ ∷ ὸ ∷ []) "Rev.9.18"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.18"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18"
∷ word (θ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Rev.9.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.9.18"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18"
∷ word (σ ∷ τ ∷ ο ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18"
∷ word (ἡ ∷ []) "Rev.9.19"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.9.19"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.9.19"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19"
∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.19"
∷ word (τ ∷ ῷ ∷ []) "Rev.9.19"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.9.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.9.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.19"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.19"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19"
∷ word (α ∷ ἱ ∷ []) "Rev.9.19"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.9.19"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ὶ ∷ []) "Rev.9.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ α ∷ ι ∷ []) "Rev.9.19"
∷ word (ὄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.19"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "Rev.9.19"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ά ∷ ς ∷ []) "Rev.9.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.19"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.19"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.19"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.20"
∷ word (ο ∷ ἱ ∷ []) "Rev.9.20"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.9.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.20"
∷ word (ο ∷ ἳ ∷ []) "Rev.9.20"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.9.20"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.20"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.20"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.20"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.20"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Rev.9.20"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.9.20"
∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.20"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20"
∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.9.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.9.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.20"
∷ word (μ ∷ ὴ ∷ []) "Rev.9.20"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Rev.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (ε ∷ ἴ ∷ δ ∷ ω ∷ ∙λ ∷ α ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ []) "Rev.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (ἀ ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ᾶ ∷ []) "Rev.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ᾶ ∷ []) "Rev.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (∙λ ∷ ί ∷ θ ∷ ι ∷ ν ∷ α ∷ []) "Rev.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ι ∷ ν ∷ α ∷ []) "Rev.9.20"
∷ word (ἃ ∷ []) "Rev.9.20"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.20"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.9.20"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.20"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.20"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.9.20"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.20"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.21"
∷ word (ο ∷ ὐ ∷ []) "Rev.9.21"
∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.21"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (φ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Rev.9.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.21"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (φ ∷ α ∷ ρ ∷ μ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.9.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.21"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.9.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.21"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (κ ∷ ∙λ ∷ ε ∷ μ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.10.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.10.1"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.1"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.1"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.10.1"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.10.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.10.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.10.1"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.10.1"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.1"
∷ word (ἡ ∷ []) "Rev.10.1"
∷ word (ἶ ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.10.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.1"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.10.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.10.1"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.10.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.10.1"
∷ word (ὁ ∷ []) "Rev.10.1"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.1"
∷ word (ο ∷ ἱ ∷ []) "Rev.10.1"
∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.10.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.10.1"
∷ word (σ ∷ τ ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.10.1"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.2"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.10.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.2"
∷ word (τ ∷ ῇ ∷ []) "Rev.10.2"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.10.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.2"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ α ∷ ρ ∷ ί ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.2"
∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.10.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.2"
∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rev.10.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.2"
∷ word (π ∷ ό ∷ δ ∷ α ∷ []) "Rev.10.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.2"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὸ ∷ ν ∷ []) "Rev.10.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.2"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.10.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.2"
∷ word (δ ∷ ὲ ∷ []) "Rev.10.2"
∷ word (ε ∷ ὐ ∷ ώ ∷ ν ∷ υ ∷ μ ∷ ο ∷ ν ∷ []) "Rev.10.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.2"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.10.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.3"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.10.3"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.10.3"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.10.3"
∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Rev.10.3"
∷ word (∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.10.3"
∷ word (μ ∷ υ ∷ κ ∷ ᾶ ∷ τ ∷ α ∷ ι ∷ []) "Rev.10.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.3"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.10.3"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.10.3"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.3"
∷ word (α ∷ ἱ ∷ []) "Rev.10.3"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.10.3"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ὶ ∷ []) "Rev.10.3"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.10.3"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.10.3"
∷ word (φ ∷ ω ∷ ν ∷ ά ∷ ς ∷ []) "Rev.10.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.4"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.10.4"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.4"
∷ word (α ∷ ἱ ∷ []) "Rev.10.4"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.10.4"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.10.4"
∷ word (ἤ ∷ μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.4"
∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.10.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.4"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.10.4"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.10.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.10.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.4"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.10.4"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.4"
∷ word (Σ ∷ φ ∷ ρ ∷ ά ∷ γ ∷ ι ∷ σ ∷ ο ∷ ν ∷ []) "Rev.10.4"
∷ word (ἃ ∷ []) "Rev.10.4"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.4"
∷ word (α ∷ ἱ ∷ []) "Rev.10.4"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.10.4"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.10.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.4"
∷ word (μ ∷ ὴ ∷ []) "Rev.10.4"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rev.10.4"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ῃ ∷ ς ∷ []) "Rev.10.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.5"
∷ word (ὁ ∷ []) "Rev.10.5"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.10.5"
∷ word (ὃ ∷ ν ∷ []) "Rev.10.5"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.10.5"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.10.5"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.5"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.10.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.5"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.5"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.10.5"
∷ word (ἦ ∷ ρ ∷ ε ∷ ν ∷ []) "Rev.10.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.5"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.10.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.5"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὰ ∷ ν ∷ []) "Rev.10.5"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.10.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.5"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.10.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6"
∷ word (ὤ ∷ μ ∷ ο ∷ σ ∷ ε ∷ ν ∷ []) "Rev.10.6"
∷ word (τ ∷ ῷ ∷ []) "Rev.10.6"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.10.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.10.6"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.10.6"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.10.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.10.6"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.10.6"
∷ word (ὃ ∷ ς ∷ []) "Rev.10.6"
∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.10.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.6"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.10.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.10.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.10.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.6"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.10.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.10.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.10.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.6"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.10.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.10.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.10.6"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.10.6"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rev.10.6"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.10.6"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.10.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.7"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.10.7"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.10.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.7"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.10.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.7"
∷ word (ἑ ∷ β ∷ δ ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rev.10.7"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.10.7"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.10.7"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῃ ∷ []) "Rev.10.7"
∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.10.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.7"
∷ word (ἐ ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ θ ∷ η ∷ []) "Rev.10.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.10.7"
∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.7"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.10.7"
∷ word (ὡ ∷ ς ∷ []) "Rev.10.7"
∷ word (ε ∷ ὐ ∷ η ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.10.7"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.10.7"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.7"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.10.7"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.10.7"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ς ∷ []) "Rev.10.7"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.10.8"
∷ word (ἡ ∷ []) "Rev.10.8"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.10.8"
∷ word (ἣ ∷ ν ∷ []) "Rev.10.8"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.10.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.10.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.8"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.10.8"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.10.8"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.8"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.10.8"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.10.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.8"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.8"
∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Rev.10.8"
∷ word (∙λ ∷ ά ∷ β ∷ ε ∷ []) "Rev.10.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.10.8"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.10.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.10.8"
∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.10.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.8"
∷ word (τ ∷ ῇ ∷ []) "Rev.10.8"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.10.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.8"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.10.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.8"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.10.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.8"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.10.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.8"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.10.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ α ∷ []) "Rev.10.9"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.10.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.9"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.10.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.10.9"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ί ∷ []) "Rev.10.9"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.10.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.10.9"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ α ∷ ρ ∷ ί ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.10.9"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.10.9"
∷ word (Λ ∷ ά ∷ β ∷ ε ∷ []) "Rev.10.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9"
∷ word (κ ∷ α ∷ τ ∷ ά ∷ φ ∷ α ∷ γ ∷ ε ∷ []) "Rev.10.9"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.10.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9"
∷ word (π ∷ ι ∷ κ ∷ ρ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.10.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.10.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.9"
∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Rev.10.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.10.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.10.9"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rev.10.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.10.9"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.10.9"
∷ word (γ ∷ ∙λ ∷ υ ∷ κ ∷ ὺ ∷ []) "Rev.10.9"
∷ word (ὡ ∷ ς ∷ []) "Rev.10.9"
∷ word (μ ∷ έ ∷ ∙λ ∷ ι ∷ []) "Rev.10.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Rev.10.10"
∷ word (τ ∷ ὸ ∷ []) "Rev.10.10"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ α ∷ ρ ∷ ί ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.10.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.10"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.10.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.10"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.10.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Rev.10.10"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.10.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10"
∷ word (ἦ ∷ ν ∷ []) "Rev.10.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.10.10"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rev.10.10"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.10.10"
∷ word (ὡ ∷ ς ∷ []) "Rev.10.10"
∷ word (μ ∷ έ ∷ ∙λ ∷ ι ∷ []) "Rev.10.10"
∷ word (γ ∷ ∙λ ∷ υ ∷ κ ∷ ύ ∷ []) "Rev.10.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.10.10"
∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Rev.10.10"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.10.10"
∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.10.10"
∷ word (ἡ ∷ []) "Rev.10.10"
∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ []) "Rev.10.10"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.10.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.10.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.10.11"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.10.11"
∷ word (Δ ∷ ε ∷ ῖ ∷ []) "Rev.10.11"
∷ word (σ ∷ ε ∷ []) "Rev.10.11"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.10.11"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.10.11"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.11"
∷ word (∙λ ∷ α ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.10.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.11"
∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.10.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.11"
∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Rev.10.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.11"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.10.11"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.10.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.1"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.11.1"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.11.1"
∷ word (κ ∷ ά ∷ ∙λ ∷ α ∷ μ ∷ ο ∷ ς ∷ []) "Rev.11.1"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.11.1"
∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.11.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.11.1"
∷ word (Ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Rev.11.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.1"
∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.11.1"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.1"
∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.11.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.1"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.11.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.1"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.1"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.11.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2"
∷ word (α ∷ ὐ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.11.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2"
∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.2"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.11.2"
∷ word (ἔ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ []) "Rev.11.2"
∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.2"
∷ word (μ ∷ ὴ ∷ []) "Rev.11.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2"
∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.11.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.11.2"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.11.2"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.2"
∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.11.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2"
∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.2"
∷ word (π ∷ α ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.2"
∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.11.2"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.11.2"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.3"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.11.3"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.3"
∷ word (δ ∷ υ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.11.3"
∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.11.3"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.11.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.3"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.3"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.3"
∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.3"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.3"
∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.11.3"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.11.3"
∷ word (σ ∷ ά ∷ κ ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.11.3"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.11.4"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.4"
∷ word (α ∷ ἱ ∷ []) "Rev.11.4"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.4"
∷ word (ἐ ∷ ∙λ ∷ α ∷ ῖ ∷ α ∷ ι ∷ []) "Rev.11.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.4"
∷ word (α ∷ ἱ ∷ []) "Rev.11.4"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.4"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ι ∷ []) "Rev.11.4"
∷ word (α ∷ ἱ ∷ []) "Rev.11.4"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.11.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.4"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.11.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.4"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.11.4"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.5"
∷ word (ε ∷ ἴ ∷ []) "Rev.11.5"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.11.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.11.5"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.11.5"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.11.5"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.11.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.5"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.11.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.5"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Rev.11.5"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5"
∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.5"
∷ word (ε ∷ ἴ ∷ []) "Rev.11.5"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.11.5"
∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.11.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.11.5"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.11.5"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.11.5"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.11.5"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.5"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.11.6"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.6"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.6"
∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ ι ∷ []) "Rev.11.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.6"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.11.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.11.6"
∷ word (μ ∷ ὴ ∷ []) "Rev.11.6"
∷ word (ὑ ∷ ε ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.11.6"
∷ word (β ∷ ρ ∷ έ ∷ χ ∷ ῃ ∷ []) "Rev.11.6"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.11.6"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.6"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.6"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.6"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.6"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.11.6"
∷ word (σ ∷ τ ∷ ρ ∷ έ ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.11.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rev.11.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.6"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.11.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.6"
∷ word (π ∷ α ∷ τ ∷ ά ∷ ξ ∷ α ∷ ι ∷ []) "Rev.11.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.6"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.11.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.6"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Rev.11.6"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῇ ∷ []) "Rev.11.6"
∷ word (ὁ ∷ σ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Rev.11.6"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.11.6"
∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.7"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.11.7"
∷ word (τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.7"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.7"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.11.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.7"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.11.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.11.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.7"
∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.11.7"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.11.7"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.7"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.11.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.7"
∷ word (ν ∷ ι ∷ κ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.7"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.11.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.8"
∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Rev.11.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.8"
∷ word (π ∷ ∙λ ∷ α ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.8"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.11.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.8"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.11.8"
∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.11.8"
∷ word (κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.8"
∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ῶ ∷ ς ∷ []) "Rev.11.8"
∷ word (Σ ∷ ό ∷ δ ∷ ο ∷ μ ∷ α ∷ []) "Rev.11.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.8"
∷ word (Α ∷ ἴ ∷ γ ∷ υ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.11.8"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.11.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.8"
∷ word (ὁ ∷ []) "Rev.11.8"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.11.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.8"
∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.11.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.11.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (∙λ ∷ α ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9"
∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.9"
∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Rev.11.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.9"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9"
∷ word (ἥ ∷ μ ∷ ι ∷ σ ∷ υ ∷ []) "Rev.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9"
∷ word (τ ∷ ὰ ∷ []) "Rev.11.9"
∷ word (π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.11.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.11.9"
∷ word (ἀ ∷ φ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.9"
∷ word (τ ∷ ε ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.9"
∷ word (μ ∷ ν ∷ ῆ ∷ μ ∷ α ∷ []) "Rev.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.10"
∷ word (ο ∷ ἱ ∷ []) "Rev.11.10"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.10"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.11.10"
∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.10"
∷ word (ἐ ∷ π ∷ []) "Rev.11.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.10"
∷ word (ε ∷ ὐ ∷ φ ∷ ρ ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.10"
∷ word (δ ∷ ῶ ∷ ρ ∷ α ∷ []) "Rev.11.10"
∷ word (π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.10"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.10"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.11.10"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.11.10"
∷ word (ο ∷ ἱ ∷ []) "Rev.11.10"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.10"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.10"
∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ά ∷ ν ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.10"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.10"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.11.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.11"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.11.11"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.11.11"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.11.11"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.11"
∷ word (ἥ ∷ μ ∷ ι ∷ σ ∷ υ ∷ []) "Rev.11.11"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.11.11"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.11.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.11.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.11"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.11"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.11"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.11"
∷ word (ἔ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.11"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.11"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.11"
∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Rev.11.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.11"
∷ word (φ ∷ ό ∷ β ∷ ο ∷ ς ∷ []) "Rev.11.11"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.11.11"
∷ word (ἐ ∷ π ∷ έ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.11.11"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.11"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.11"
∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.11.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.12"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.12"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.11.12"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.11.12"
∷ word (ἐ ∷ κ ∷ []) "Rev.11.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.12"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.11.12"
∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.11.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.12"
∷ word (Ἀ ∷ ν ∷ ά ∷ β ∷ α ∷ τ ∷ ε ∷ []) "Rev.11.12"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Rev.11.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.12"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.12"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.11.12"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.12"
∷ word (τ ∷ ῇ ∷ []) "Rev.11.12"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Rev.11.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.12"
∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.12"
∷ word (ο ∷ ἱ ∷ []) "Rev.11.12"
∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.11.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.13"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Rev.11.13"
∷ word (τ ∷ ῇ ∷ []) "Rev.11.13"
∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.11.13"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.11.13"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.11.13"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.11.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.13"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rev.11.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.13"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.11.13"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.11.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.13"
∷ word (τ ∷ ῷ ∷ []) "Rev.11.13"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ῷ ∷ []) "Rev.11.13"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.11.13"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.11.13"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.11.13"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.11.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13"
∷ word (ο ∷ ἱ ∷ []) "Rev.11.13"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.11.13"
∷ word (ἔ ∷ μ ∷ φ ∷ ο ∷ β ∷ ο ∷ ι ∷ []) "Rev.11.13"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.11.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Rev.11.13"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.11.13"
∷ word (τ ∷ ῷ ∷ []) "Rev.11.13"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.11.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.13"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.11.13"
∷ word (Ἡ ∷ []) "Rev.11.14"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.11.14"
∷ word (ἡ ∷ []) "Rev.11.14"
∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.11.14"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.14"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.11.14"
∷ word (ἡ ∷ []) "Rev.11.14"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.11.14"
∷ word (ἡ ∷ []) "Rev.11.14"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ η ∷ []) "Rev.11.14"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.14"
∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.11.14"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.15"
∷ word (ὁ ∷ []) "Rev.11.15"
∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.11.15"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.11.15"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.15"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.11.15"
∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.11.15"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ []) "Rev.11.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.15"
∷ word (τ ∷ ῷ ∷ []) "Rev.11.15"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.11.15"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.15"
∷ word (Ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.11.15"
∷ word (ἡ ∷ []) "Rev.11.15"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Rev.11.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.11.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.11.15"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.15"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.11.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.15"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.15"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.11.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.15"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.11.15"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.16"
∷ word (ο ∷ ἱ ∷ []) "Rev.11.16"
∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.11.16"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.11.16"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.11.16"
∷ word (ο ∷ ἱ ∷ []) "Rev.11.16"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.11.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.16"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.16"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rev.11.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.16"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.11.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.16"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.16"
∷ word (τ ∷ ὰ ∷ []) "Rev.11.16"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.11.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.16"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.16"
∷ word (τ ∷ ῷ ∷ []) "Rev.11.16"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.11.16"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.17"
∷ word (Ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ μ ∷ έ ∷ ν ∷ []) "Rev.11.17"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.11.17"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.11.17"
∷ word (ὁ ∷ []) "Rev.11.17"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.11.17"
∷ word (ὁ ∷ []) "Rev.11.17"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.11.17"
∷ word (ὁ ∷ []) "Rev.11.17"
∷ word (ὢ ∷ ν ∷ []) "Rev.11.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.17"
∷ word (ὁ ∷ []) "Rev.11.17"
∷ word (ἦ ∷ ν ∷ []) "Rev.11.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.11.17"
∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ α ∷ ς ∷ []) "Rev.11.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.17"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ί ∷ ν ∷ []) "Rev.11.17"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.17"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.11.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.17"
∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "Rev.11.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (τ ∷ ὰ ∷ []) "Rev.11.18"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.11.18"
∷ word (ὠ ∷ ρ ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.18"
∷ word (ἡ ∷ []) "Rev.11.18"
∷ word (ὀ ∷ ρ ∷ γ ∷ ή ∷ []) "Rev.11.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (ὁ ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.11.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.18"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.11.18"
∷ word (κ ∷ ρ ∷ ι ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.18"
∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18"
∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18"
∷ word (φ ∷ ο ∷ β ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.18"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.18"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.11.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (δ ∷ ι ∷ α ∷ φ ∷ θ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ι ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18"
∷ word (δ ∷ ι ∷ α ∷ φ ∷ θ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.18"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.18"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.11.18"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ γ ∷ η ∷ []) "Rev.11.19"
∷ word (ὁ ∷ []) "Rev.11.19"
∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.11.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.19"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.19"
∷ word (ὁ ∷ []) "Rev.11.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.19"
∷ word (τ ∷ ῷ ∷ []) "Rev.11.19"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.11.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Rev.11.19"
∷ word (ἡ ∷ []) "Rev.11.19"
∷ word (κ ∷ ι ∷ β ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.11.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.19"
∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Rev.11.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.19"
∷ word (τ ∷ ῷ ∷ []) "Rev.11.19"
∷ word (ν ∷ α ∷ ῷ ∷ []) "Rev.11.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.11.19"
∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.11.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (χ ∷ ά ∷ ∙λ ∷ α ∷ ζ ∷ α ∷ []) "Rev.11.19"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.11.19"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.1"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.12.1"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.12.1"
∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Rev.12.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.12.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.1"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.12.1"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.12.1"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.1"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.1"
∷ word (ἡ ∷ []) "Rev.12.1"
∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Rev.12.1"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.12.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.1"
∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.12.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.1"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.12.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.1"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ς ∷ []) "Rev.12.1"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.12.1"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.2"
∷ word (γ ∷ α ∷ σ ∷ τ ∷ ρ ∷ ὶ ∷ []) "Rev.12.2"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.12.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.2"
∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Rev.12.2"
∷ word (ὠ ∷ δ ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.12.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.2"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.12.2"
∷ word (τ ∷ ε ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.12.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3"
∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Rev.12.3"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.12.3"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.12.3"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.3"
∷ word (τ ∷ ῷ ∷ []) "Rev.12.3"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.12.3"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.3"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.12.3"
∷ word (π ∷ υ ∷ ρ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.12.3"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.12.3"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.12.3"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.12.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.12.3"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.12.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.3"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.12.3"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.12.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.3"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.12.3"
∷ word (δ ∷ ι ∷ α ∷ δ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.12.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.4"
∷ word (ἡ ∷ []) "Rev.12.4"
∷ word (ο ∷ ὐ ∷ ρ ∷ ὰ ∷ []) "Rev.12.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.4"
∷ word (σ ∷ ύ ∷ ρ ∷ ε ∷ ι ∷ []) "Rev.12.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.12.4"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.12.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.4"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.12.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.4"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.12.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.4"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.12.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.12.4"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.4"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.4"
∷ word (ὁ ∷ []) "Rev.12.4"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.4"
∷ word (ἕ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rev.12.4"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.12.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.4"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.12.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.4"
∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.12.4"
∷ word (τ ∷ ε ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.12.4"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.4"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.12.4"
∷ word (τ ∷ έ ∷ κ ∷ ῃ ∷ []) "Rev.12.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.12.4"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.4"
∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ ά ∷ γ ∷ ῃ ∷ []) "Rev.12.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.5"
∷ word (ἔ ∷ τ ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Rev.12.5"
∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Rev.12.5"
∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.5"
∷ word (ὃ ∷ ς ∷ []) "Rev.12.5"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.12.5"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Rev.12.5"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.12.5"
∷ word (τ ∷ ὰ ∷ []) "Rev.12.5"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.12.5"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.5"
∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.12.5"
∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ᾷ ∷ []) "Rev.12.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.5"
∷ word (ἡ ∷ ρ ∷ π ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Rev.12.5"
∷ word (τ ∷ ὸ ∷ []) "Rev.12.5"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.5"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.12.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.5"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.12.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.5"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.12.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.5"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.6"
∷ word (ἡ ∷ []) "Rev.12.6"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.12.6"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Rev.12.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.6"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.6"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.12.6"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.12.6"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.12.6"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.12.6"
∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.6"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.12.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.6"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.6"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.12.6"
∷ word (τ ∷ ρ ∷ έ ∷ φ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.12.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.12.6"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.12.6"
∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Rev.12.6"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.12.6"
∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.12.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.7"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.12.7"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Rev.12.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.7"
∷ word (τ ∷ ῷ ∷ []) "Rev.12.7"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.7"
∷ word (ὁ ∷ []) "Rev.12.7"
∷ word (Μ ∷ ι ∷ χ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Rev.12.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.7"
∷ word (ο ∷ ἱ ∷ []) "Rev.12.7"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.12.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7"
∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.12.7"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.12.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.7"
∷ word (ὁ ∷ []) "Rev.12.7"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.7"
∷ word (ἐ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.7"
∷ word (ο ∷ ἱ ∷ []) "Rev.12.7"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.12.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.8"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.12.8"
∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.8"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.12.8"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Rev.12.8"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.12.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.12.8"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.12.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.8"
∷ word (τ ∷ ῷ ∷ []) "Rev.12.8"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.9"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (ὄ ∷ φ ∷ ι ∷ ς ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.12.9"
∷ word (Δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.12.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.12.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.9"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.12.9"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.12.9"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.9"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.12.9"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.12.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.9"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.12.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.9"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.10"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.12.10"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.12.10"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.12.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.12.10"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.10"
∷ word (Ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "Rev.12.10"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.12.10"
∷ word (ἡ ∷ []) "Rev.12.10"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10"
∷ word (ἡ ∷ []) "Rev.12.10"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10"
∷ word (ἡ ∷ []) "Rev.12.10"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Rev.12.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10"
∷ word (ἡ ∷ []) "Rev.12.10"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.12.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.10"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.10"
∷ word (ὁ ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ τ ∷ ή ∷ γ ∷ ω ∷ ρ ∷ []) "Rev.12.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.10"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Rev.12.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.12.10"
∷ word (ὁ ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.12.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.12.10"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.12.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.12.10"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.12.11"
∷ word (ἐ ∷ ν ∷ ί ∷ κ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.11"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.12.11"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.12.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.12.11"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.12.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.11"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.12.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.11"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.12.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.11"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.12.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.11"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Rev.12.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.12.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.11"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.12.11"
∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.11"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.12.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.12.11"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.12.11"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.12.11"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.12.12"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.12.12"
∷ word (ε ∷ ὐ ∷ φ ∷ ρ ∷ α ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Rev.12.12"
∷ word (ο ∷ ἱ ∷ []) "Rev.12.12"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ὶ ∷ []) "Rev.12.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.12"
∷ word (ο ∷ ἱ ∷ []) "Rev.12.12"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.12.12"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.12.12"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.12.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.12"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.12"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.12"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ β ∷ η ∷ []) "Rev.12.12"
∷ word (ὁ ∷ []) "Rev.12.12"
∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.12.12"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.12.12"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.12.12"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.12.12"
∷ word (θ ∷ υ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.12.12"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.12.12"
∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "Rev.12.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.12"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Rev.12.12"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.12.12"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.12.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.13"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.12.13"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.12.13"
∷ word (ὁ ∷ []) "Rev.12.13"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.13"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.13"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.13"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.13"
∷ word (ἐ ∷ δ ∷ ί ∷ ω ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.12.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.13"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.12.13"
∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.12.13"
∷ word (ἔ ∷ τ ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Rev.12.13"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.13"
∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ α ∷ []) "Rev.12.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.14"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.14"
∷ word (τ ∷ ῇ ∷ []) "Rev.12.14"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὶ ∷ []) "Rev.12.14"
∷ word (α ∷ ἱ ∷ []) "Rev.12.14"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.12.14"
∷ word (π ∷ τ ∷ έ ∷ ρ ∷ υ ∷ γ ∷ ε ∷ ς ∷ []) "Rev.12.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14"
∷ word (ἀ ∷ ε ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.12.14"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.14"
∷ word (π ∷ έ ∷ τ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.12.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.14"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.14"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.12.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.14"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.12.14"
∷ word (τ ∷ ρ ∷ έ ∷ φ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.12.14"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.12.14"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.12.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.14"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.12.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.14"
∷ word (ἥ ∷ μ ∷ ι ∷ σ ∷ υ ∷ []) "Rev.12.14"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῦ ∷ []) "Rev.12.14"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.12.14"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.12.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14"
∷ word (ὄ ∷ φ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.12.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.15"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.12.15"
∷ word (ὁ ∷ []) "Rev.12.15"
∷ word (ὄ ∷ φ ∷ ι ∷ ς ∷ []) "Rev.12.15"
∷ word (ἐ ∷ κ ∷ []) "Rev.12.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.15"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.15"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Rev.12.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.15"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.12.15"
∷ word (ὕ ∷ δ ∷ ω ∷ ρ ∷ []) "Rev.12.15"
∷ word (ὡ ∷ ς ∷ []) "Rev.12.15"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ό ∷ ν ∷ []) "Rev.12.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.12.15"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ο ∷ φ ∷ ό ∷ ρ ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Rev.12.15"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.12.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.16"
∷ word (ἐ ∷ β ∷ ο ∷ ή ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.16"
∷ word (ἡ ∷ []) "Rev.12.16"
∷ word (γ ∷ ῆ ∷ []) "Rev.12.16"
∷ word (τ ∷ ῇ ∷ []) "Rev.12.16"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "Rev.12.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.16"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.12.16"
∷ word (ἡ ∷ []) "Rev.12.16"
∷ word (γ ∷ ῆ ∷ []) "Rev.12.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.12.16"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.12.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.16"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ π ∷ ι ∷ ε ∷ ν ∷ []) "Rev.12.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.16"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.12.16"
∷ word (ὃ ∷ ν ∷ []) "Rev.12.16"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.12.16"
∷ word (ὁ ∷ []) "Rev.12.16"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.16"
∷ word (ἐ ∷ κ ∷ []) "Rev.12.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.16"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.17"
∷ word (ὠ ∷ ρ ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.12.17"
∷ word (ὁ ∷ []) "Rev.12.17"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.17"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.17"
∷ word (τ ∷ ῇ ∷ []) "Rev.12.17"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "Rev.12.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.17"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.12.17"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.12.17"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.17"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.12.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.17"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ῶ ∷ ν ∷ []) "Rev.12.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.17"
∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.17"
∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.12.17"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.12.17"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.12.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.17"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.17"
∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.12.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.17"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.12.17"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.12.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.18"
∷ word (ἐ ∷ σ ∷ τ ∷ ά ∷ θ ∷ η ∷ []) "Rev.12.18"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.18"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.18"
∷ word (ἄ ∷ μ ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.18"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.12.18"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.13.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.13.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.13.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.1"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.13.1"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.1"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.13.1"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.13.1"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.1"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.13.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.1"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.13.1"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.13.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.1"
∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.13.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.1"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.13.1"
∷ word (δ ∷ ι ∷ α ∷ δ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.1"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.13.1"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.13.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.1"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.1"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.13.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.2"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.2"
∷ word (ὃ ∷ []) "Rev.13.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.13.2"
∷ word (ἦ ∷ ν ∷ []) "Rev.13.2"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.2"
∷ word (π ∷ α ∷ ρ ∷ δ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.13.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2"
∷ word (ο ∷ ἱ ∷ []) "Rev.13.2"
∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.13.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.13.2"
∷ word (ἄ ∷ ρ ∷ κ ∷ ο ∷ υ ∷ []) "Rev.13.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.2"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.13.2"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.2"
∷ word (∙λ ∷ έ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.13.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.13.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.2"
∷ word (ὁ ∷ []) "Rev.13.2"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.13.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.2"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.13.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.2"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.13.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.13.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.3"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.3"
∷ word (ἐ ∷ κ ∷ []) "Rev.13.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.3"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.13.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3"
∷ word (ὡ ∷ ς ∷ []) "Rev.13.3"
∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.13.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.3"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rev.13.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.3"
∷ word (ἡ ∷ []) "Rev.13.3"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ []) "Rev.13.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.13.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ύ ∷ θ ∷ η ∷ []) "Rev.13.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.3"
∷ word (ἐ ∷ θ ∷ α ∷ υ ∷ μ ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Rev.13.3"
∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "Rev.13.3"
∷ word (ἡ ∷ []) "Rev.13.3"
∷ word (γ ∷ ῆ ∷ []) "Rev.13.3"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Rev.13.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.4"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.13.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.13.4"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.13.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.4"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.4"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.4"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.4"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.13.4"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Rev.13.4"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.13.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.4"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.4"
∷ word (τ ∷ ί ∷ ς ∷ []) "Rev.13.4"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Rev.13.4"
∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.4"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.13.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.4"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.13.5"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.5"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.5"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.13.5"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ []) "Rev.13.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.5"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.13.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.5"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.5"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.13.5"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.5"
∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.13.5"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.13.5"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.13.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.6"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ []) "Rev.13.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.6"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.6"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.13.6"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.13.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.6"
∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Rev.13.6"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.6"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.13.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.6"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.13.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.6"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.13.6"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.6"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.13.6"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.7"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.7"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.13.7"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.13.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.7"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7"
∷ word (ν ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.7"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.13.7"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.7"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.7"
∷ word (φ ∷ υ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7"
∷ word (∙λ ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7"
∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7"
∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.8"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.8"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.13.8"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.13.8"
∷ word (ο ∷ ἱ ∷ []) "Rev.13.8"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.13.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.8"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.8"
∷ word (ο ∷ ὗ ∷ []) "Rev.13.8"
∷ word (ο ∷ ὐ ∷ []) "Rev.13.8"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rev.13.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.8"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.13.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.13.8"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.8"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.13.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.8"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.13.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.8"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.8"
∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.13.8"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.13.8"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.13.8"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.13.8"
∷ word (Ε ∷ ἴ ∷ []) "Rev.13.9"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.9"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.13.9"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.13.9"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.13.9"
∷ word (ε ∷ ἴ ∷ []) "Rev.13.10"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.10"
∷ word (α ∷ ἰ ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ω ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.10"
∷ word (α ∷ ἰ ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ω ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.10"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Rev.13.10"
∷ word (ε ∷ ἴ ∷ []) "Rev.13.10"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.13.10"
∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ ῃ ∷ []) "Rev.13.10"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.13.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.13.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.13.10"
∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ ῃ ∷ []) "Rev.13.10"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.13.10"
∷ word (ὧ ∷ δ ∷ έ ∷ []) "Rev.13.10"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.13.10"
∷ word (ἡ ∷ []) "Rev.13.10"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ []) "Rev.13.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.10"
∷ word (ἡ ∷ []) "Rev.13.10"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.13.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.10"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.13.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.13.11"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.13.11"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.13.11"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.11"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.13.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.13.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.11"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.11"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Rev.13.11"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.11"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.13.11"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ α ∷ []) "Rev.13.11"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.13.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.11"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.13.11"
∷ word (ὡ ∷ ς ∷ []) "Rev.13.11"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.13.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.12"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.13.12"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.12"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.12"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.12"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.12"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.12"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.12"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.12"
∷ word (ἐ ∷ ν ∷ []) "Rev.13.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.13.12"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.12"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.12"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.12"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.13.12"
∷ word (ο ∷ ὗ ∷ []) "Rev.13.12"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ύ ∷ θ ∷ η ∷ []) "Rev.13.12"
∷ word (ἡ ∷ []) "Rev.13.12"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ []) "Rev.13.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.13.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.13"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.13"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.13.13"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ []) "Rev.13.13"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.13"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.13.13"
∷ word (π ∷ ο ∷ ι ∷ ῇ ∷ []) "Rev.13.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.13.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.13"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.13.13"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Rev.13.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.13"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.13.13"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.13"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.13.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.14"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾷ ∷ []) "Rev.13.14"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.14"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.14"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.14"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.13.14"
∷ word (τ ∷ ὰ ∷ []) "Rev.13.14"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.13.14"
∷ word (ἃ ∷ []) "Rev.13.14"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.14"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.14"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.14"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.14"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.13.14"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.13.14"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.14"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.14"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.14"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.13.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.14"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.14"
∷ word (ὃ ∷ ς ∷ []) "Rev.13.14"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.13.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.14"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ ν ∷ []) "Rev.13.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.14"
∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ η ∷ ς ∷ []) "Rev.13.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.14"
∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.13.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.15"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.15"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.13.15"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.13.15"
∷ word (τ ∷ ῇ ∷ []) "Rev.13.15"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.13.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.15"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.15"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.13.15"
∷ word (ἡ ∷ []) "Rev.13.15"
∷ word (ε ∷ ἰ ∷ κ ∷ ὼ ∷ ν ∷ []) "Rev.13.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.15"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.15"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.13.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.15"
∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rev.13.15"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.13.15"
∷ word (μ ∷ ὴ ∷ []) "Rev.13.15"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.15"
∷ word (τ ∷ ῇ ∷ []) "Rev.13.15"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.13.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.15"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.15"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.16"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.13.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.16"
∷ word (δ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.13.16"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.13.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.16"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.13.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.13.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.16"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Rev.13.16"
∷ word (ἢ ∷ []) "Rev.13.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.16"
∷ word (μ ∷ έ ∷ τ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.13.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.13.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.17"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.17"
∷ word (μ ∷ ή ∷ []) "Rev.13.17"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.17"
∷ word (δ ∷ ύ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.13.17"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.17"
∷ word (ἢ ∷ []) "Rev.13.17"
∷ word (π ∷ ω ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.17"
∷ word (ε ∷ ἰ ∷ []) "Rev.13.17"
∷ word (μ ∷ ὴ ∷ []) "Rev.13.17"
∷ word (ὁ ∷ []) "Rev.13.17"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.13.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.17"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.13.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.17"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.13.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.17"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.17"
∷ word (ἢ ∷ []) "Rev.13.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.17"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.13.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.17"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.13.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.17"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Rev.13.18"
∷ word (ἡ ∷ []) "Rev.13.18"
∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "Rev.13.18"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.13.18"
∷ word (ὁ ∷ []) "Rev.13.18"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.13.18"
∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.13.18"
∷ word (ψ ∷ η ∷ φ ∷ ι ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.13.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.18"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.13.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.18"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.18"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.13.18"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.13.18"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.13.18"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.13.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.18"
∷ word (ὁ ∷ []) "Rev.13.18"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.13.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.18"
∷ word (ἑ ∷ ξ ∷ α ∷ κ ∷ ό ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.13.18"
∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.13.18"
∷ word (ἕ ∷ ξ ∷ []) "Rev.13.18"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.1"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.14.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.1"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.14.1"
∷ word (ἑ ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.14.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.1"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.14.1"
∷ word (Σ ∷ ι ∷ ώ ∷ ν ∷ []) "Rev.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.1"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.14.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.14.1"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.1"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.14.1"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.14.1"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "Rev.14.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.1"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.14.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.1"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.14.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.14.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.1"
∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.2"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.14.2"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.2"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.14.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.14.2"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.2"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.14.2"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.14.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.14.2"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.2"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.14.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.14.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.2"
∷ word (ἡ ∷ []) "Rev.14.2"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.14.2"
∷ word (ἣ ∷ ν ∷ []) "Rev.14.2"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.14.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.14.2"
∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ῳ ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.14.2"
∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ι ∷ ζ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.14.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.2"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.14.2"
∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.14.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3"
∷ word (ᾄ ∷ δ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.3"
∷ word (ὡ ∷ ς ∷ []) "Rev.14.3"
∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.14.3"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.3"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.3"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.3"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.14.3"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.14.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.3"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.14.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.14.3"
∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.14.3"
∷ word (μ ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.14.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.3"
∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.14.3"
∷ word (ε ∷ ἰ ∷ []) "Rev.14.3"
∷ word (μ ∷ ὴ ∷ []) "Rev.14.3"
∷ word (α ∷ ἱ ∷ []) "Rev.14.3"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.14.3"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.3"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.14.3"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.14.3"
∷ word (ο ∷ ἱ ∷ []) "Rev.14.3"
∷ word (ἠ ∷ γ ∷ ο ∷ ρ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.14.3"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.14.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.3"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.14.4"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.4"
∷ word (ο ∷ ἳ ∷ []) "Rev.14.4"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.14.4"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.14.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.14.4"
∷ word (ἐ ∷ μ ∷ ο ∷ ∙λ ∷ ύ ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.4"
∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.14.4"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Rev.14.4"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.4"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.14.4"
∷ word (ο ∷ ἱ ∷ []) "Rev.14.4"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.4"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.14.4"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.14.4"
∷ word (ἂ ∷ ν ∷ []) "Rev.14.4"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ῃ ∷ []) "Rev.14.4"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.14.4"
∷ word (ἠ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.4"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.14.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.4"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.4"
∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.14.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.4"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.14.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.4"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.14.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.5"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.5"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.5"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.14.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.5"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.14.5"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.14.5"
∷ word (ψ ∷ ε ∷ ῦ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.14.5"
∷ word (ἄ ∷ μ ∷ ω ∷ μ ∷ ο ∷ ί ∷ []) "Rev.14.5"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.5"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.6"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.14.6"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.14.6"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.14.6"
∷ word (π ∷ ε ∷ τ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.6"
∷ word (μ ∷ ε ∷ σ ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.14.6"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.6"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.6"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.6"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.14.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.6"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.14.6"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.14.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.6"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.6"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.14.6"
∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.14.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6"
∷ word (φ ∷ υ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.14.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6"
∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6"
∷ word (∙λ ∷ α ∷ ό ∷ ν ∷ []) "Rev.14.6"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.7"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.7"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.7"
∷ word (Φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Rev.14.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.14.7"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.14.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7"
∷ word (δ ∷ ό ∷ τ ∷ ε ∷ []) "Rev.14.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.14.7"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.14.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.7"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.7"
∷ word (ἡ ∷ []) "Rev.14.7"
∷ word (ὥ ∷ ρ ∷ α ∷ []) "Rev.14.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.7"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.14.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.14.7"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.7"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Rev.14.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.14.7"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.14.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.7"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.14.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7"
∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.14.7"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.14.7"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.8"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.8"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.14.8"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.8"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.8"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.8"
∷ word (Ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.8"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.8"
∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.14.8"
∷ word (ἡ ∷ []) "Rev.14.8"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.14.8"
∷ word (ἣ ∷ []) "Rev.14.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.8"
∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.8"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.8"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.14.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.14.8"
∷ word (π ∷ ε ∷ π ∷ ό ∷ τ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Rev.14.8"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.14.8"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.14.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.9"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.9"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.9"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.14.9"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.14.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.9"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.9"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.9"
∷ word (Ε ∷ ἴ ∷ []) "Rev.14.9"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.14.9"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.14.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.9"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.14.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.9"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.14.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.9"
∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Rev.14.9"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.14.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9"
∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.14.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9"
∷ word (ἢ ∷ []) "Rev.14.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.9"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.14.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.14.10"
∷ word (π ∷ ί ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.14.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (κ ∷ ε ∷ κ ∷ ε ∷ ρ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.10"
∷ word (ἀ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.14.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.10"
∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.14.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.10"
∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.14.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.14.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.10"
∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.14.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10"
∷ word (θ ∷ ε ∷ ί ∷ ῳ ∷ []) "Rev.14.10"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.10"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.14.10"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.14.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11"
∷ word (ὁ ∷ []) "Rev.14.11"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.14.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.14.11"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.14.11"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.14.11"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.14.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.14.11"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.11"
∷ word (ἀ ∷ ν ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.11"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.14.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.14.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.14.11"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.11"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.14.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.11"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.14.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11"
∷ word (ε ∷ ἴ ∷ []) "Rev.14.11"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.14.11"
∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Rev.14.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.11"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.14.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.14.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11"
∷ word (Ὧ ∷ δ ∷ ε ∷ []) "Rev.14.12"
∷ word (ἡ ∷ []) "Rev.14.12"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ []) "Rev.14.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.12"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.12"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.14.12"
∷ word (ο ∷ ἱ ∷ []) "Rev.14.12"
∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.12"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.14.12"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.14.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.12"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.14.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.12"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.14.12"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.14.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.13"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.14.13"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.14.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.13"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.14.13"
∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.14.13"
∷ word (Γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.14.13"
∷ word (Μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.14.13"
∷ word (ο ∷ ἱ ∷ []) "Rev.14.13"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.14.13"
∷ word (ο ∷ ἱ ∷ []) "Rev.14.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.13"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.14.13"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.13"
∷ word (ἀ ∷ π ∷ []) "Rev.14.13"
∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "Rev.14.13"
∷ word (ν ∷ α ∷ ί ∷ []) "Rev.14.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.14.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.13"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.14.13"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.14.13"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.14.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13"
∷ word (κ ∷ ό ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13"
∷ word (τ ∷ ὰ ∷ []) "Rev.14.13"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.14.13"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.14.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ῖ ∷ []) "Rev.14.13"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.14.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.14"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.14.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.14"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.14.14"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ []) "Rev.14.14"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ []) "Rev.14.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.14"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.14.14"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.14"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.14"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Rev.14.14"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.14.14"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.14.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.14"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.14.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.14"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.14"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.14.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.14"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.14"
∷ word (τ ∷ ῇ ∷ []) "Rev.14.14"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.14.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.14"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.14"
∷ word (ὀ ∷ ξ ∷ ύ ∷ []) "Rev.14.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.15"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.15"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.15"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.15"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.15"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.14.15"
∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "Rev.14.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.15"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.15"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.15"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.15"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.14.15"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.15"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.14.15"
∷ word (Π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.14.15"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.15"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.14.15"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.14.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.15"
∷ word (θ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ ο ∷ ν ∷ []) "Rev.14.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.15"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.15"
∷ word (ἡ ∷ []) "Rev.14.15"
∷ word (ὥ ∷ ρ ∷ α ∷ []) "Rev.14.15"
∷ word (θ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.14.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.15"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.14.15"
∷ word (ὁ ∷ []) "Rev.14.15"
∷ word (θ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.14.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.15"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.16"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.14.16"
∷ word (ὁ ∷ []) "Rev.14.16"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.14.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.16"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.14.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.16"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.16"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.14.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.16"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.14.16"
∷ word (ἡ ∷ []) "Rev.14.16"
∷ word (γ ∷ ῆ ∷ []) "Rev.14.16"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.17"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.17"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.17"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.17"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.17"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.14.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.17"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.17"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.17"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.14.17"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.14.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.14.17"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.17"
∷ word (ὀ ∷ ξ ∷ ύ ∷ []) "Rev.14.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.18"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.18"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.18"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.18"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.14.18"
∷ word (ὁ ∷ []) "Rev.14.18"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.14.18"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.14.18"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.18"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.14.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.18"
∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.18"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.18"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.18"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.18"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.14.18"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.18"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.18"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.18"
∷ word (ὀ ∷ ξ ∷ ὺ ∷ []) "Rev.14.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.18"
∷ word (Π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.14.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.14.18"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.18"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.18"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.18"
∷ word (ὀ ∷ ξ ∷ ὺ ∷ []) "Rev.14.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.18"
∷ word (τ ∷ ρ ∷ ύ ∷ γ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.14.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.14.18"
∷ word (β ∷ ό ∷ τ ∷ ρ ∷ υ ∷ α ∷ ς ∷ []) "Rev.14.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.18"
∷ word (ἀ ∷ μ ∷ π ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.14.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.18"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.18"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.18"
∷ word (ἤ ∷ κ ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.18"
∷ word (α ∷ ἱ ∷ []) "Rev.14.18"
∷ word (σ ∷ τ ∷ α ∷ φ ∷ υ ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.14.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.14.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.19"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.14.19"
∷ word (ὁ ∷ []) "Rev.14.19"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.19"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.19"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.14.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.19"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.14.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.19"
∷ word (ἐ ∷ τ ∷ ρ ∷ ύ ∷ γ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.19"
∷ word (ἄ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.14.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.19"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.19"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.14.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.14.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.19"
∷ word (∙λ ∷ η ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.14.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.19"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.19"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.14.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.14.19"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.14.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.20"
∷ word (ἐ ∷ π ∷ α ∷ τ ∷ ή ∷ θ ∷ η ∷ []) "Rev.14.20"
∷ word (ἡ ∷ []) "Rev.14.20"
∷ word (∙λ ∷ η ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.14.20"
∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.20"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.20"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.14.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.20"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.20"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.14.20"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.20"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.20"
∷ word (∙λ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.14.20"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.14.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.20"
∷ word (χ ∷ α ∷ ∙λ ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.14.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.20"
∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.20"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.14.20"
∷ word (σ ∷ τ ∷ α ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.20"
∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.20"
∷ word (ἑ ∷ ξ ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.15.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.15.1"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.15.1"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.15.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.15.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.15.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.15.1"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.15.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.1"
∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.15.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.15.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.1"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.1"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.15.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.1"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.15.1"
∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.15.1"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.15.1"
∷ word (ἐ ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ θ ∷ η ∷ []) "Rev.15.1"
∷ word (ὁ ∷ []) "Rev.15.1"
∷ word (θ ∷ υ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.15.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.1"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.15.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.15.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.15.2"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.15.2"
∷ word (ὑ ∷ α ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Rev.15.2"
∷ word (μ ∷ ε ∷ μ ∷ ι ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.15.2"
∷ word (π ∷ υ ∷ ρ ∷ ί ∷ []) "Rev.15.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.15.2"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.15.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.2"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.15.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.15.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.15.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.2"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.15.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.2"
∷ word (ὑ ∷ α ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Rev.15.2"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.2"
∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ ς ∷ []) "Rev.15.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3"
∷ word (ᾄ ∷ δ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.3"
∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.15.3"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Rev.15.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.3"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.15.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.3"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.3"
∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.15.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.3"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.15.3"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.15.3"
∷ word (Μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ []) "Rev.15.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3"
∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ τ ∷ ὰ ∷ []) "Rev.15.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.15.3"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.15.3"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.3"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.15.3"
∷ word (ὁ ∷ []) "Rev.15.3"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.15.3"
∷ word (ὁ ∷ []) "Rev.15.3"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.15.3"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ α ∷ ι ∷ []) "Rev.15.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.15.3"
∷ word (α ∷ ἱ ∷ []) "Rev.15.3"
∷ word (ὁ ∷ δ ∷ ο ∷ ί ∷ []) "Rev.15.3"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.3"
∷ word (ὁ ∷ []) "Rev.15.3"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Rev.15.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.3"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.15.3"
∷ word (τ ∷ ί ∷ ς ∷ []) "Rev.15.4"
∷ word (ο ∷ ὐ ∷ []) "Rev.15.4"
∷ word (μ ∷ ὴ ∷ []) "Rev.15.4"
∷ word (φ ∷ ο ∷ β ∷ η ∷ θ ∷ ῇ ∷ []) "Rev.15.4"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.15.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.4"
∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.15.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.15.4"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.15.4"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.4"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.15.4"
∷ word (ὅ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.15.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.4"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.15.4"
∷ word (τ ∷ ὰ ∷ []) "Rev.15.4"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.15.4"
∷ word (ἥ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.4"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ό ∷ ν ∷ []) "Rev.15.4"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.4"
∷ word (τ ∷ ὰ ∷ []) "Rev.15.4"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ ά ∷ []) "Rev.15.4"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.4"
∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.15.4"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.15.5"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.15.5"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.15.5"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.15.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.5"
∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ γ ∷ η ∷ []) "Rev.15.5"
∷ word (ὁ ∷ []) "Rev.15.5"
∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.15.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.5"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.15.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.5"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.15.5"
∷ word (ἐ ∷ ν ∷ []) "Rev.15.5"
∷ word (τ ∷ ῷ ∷ []) "Rev.15.5"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.15.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.6"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Rev.15.6"
∷ word (ο ∷ ἱ ∷ []) "Rev.15.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.6"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.15.6"
∷ word (ο ∷ ἱ ∷ []) "Rev.15.6"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.15.6"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.15.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.6"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.15.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.6"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.15.6"
∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.15.6"
∷ word (∙λ ∷ ί ∷ ν ∷ ο ∷ ν ∷ []) "Rev.15.6"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.15.6"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.15.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.6"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ ζ ∷ ω ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.15.6"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Rev.15.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.15.6"
∷ word (σ ∷ τ ∷ ή ∷ θ ∷ η ∷ []) "Rev.15.6"
∷ word (ζ ∷ ώ ∷ ν ∷ α ∷ ς ∷ []) "Rev.15.6"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.15.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.7"
∷ word (ἓ ∷ ν ∷ []) "Rev.15.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.7"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.15.7"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.15.7"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.15.7"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.15.7"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.7"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.15.7"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.7"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.15.7"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.15.7"
∷ word (γ ∷ ε ∷ μ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Rev.15.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.7"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.15.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.7"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.7"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.15.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.15.7"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.15.7"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.15.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.7"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.15.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.8"
∷ word (ἐ ∷ γ ∷ ε ∷ μ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.15.8"
∷ word (ὁ ∷ []) "Rev.15.8"
∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.15.8"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.15.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.8"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Rev.15.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.8"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.8"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.15.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.15.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.8"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.15.8"
∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.15.8"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.15.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.15.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.15.8"
∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.15.8"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.15.8"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.8"
∷ word (α ∷ ἱ ∷ []) "Rev.15.8"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.8"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ὶ ∷ []) "Rev.15.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.8"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.8"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.15.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.1"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.1"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.16.1"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.16.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.1"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.16.1"
∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.16.1"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.16.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.16.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.16.1"
∷ word (Ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.16.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.1"
∷ word (ἐ ∷ κ ∷ χ ∷ έ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.16.1"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.16.1"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.16.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.1"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.16.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.1"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.16.1"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.2"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.16.2"
∷ word (ὁ ∷ []) "Rev.16.2"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.2"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.2"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.2"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.16.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.2"
∷ word (ἕ ∷ ∙λ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.16.2"
∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "Rev.16.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2"
∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.16.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.2"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.16.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.2"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.16.2"
∷ word (τ ∷ ὸ ∷ []) "Rev.16.2"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.16.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.2"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.2"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.16.2"
∷ word (τ ∷ ῇ ∷ []) "Rev.16.2"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.16.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.2"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.3"
∷ word (ὁ ∷ []) "Rev.16.3"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.16.3"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.3"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.3"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.3"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.3"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.3"
∷ word (ὡ ∷ ς ∷ []) "Rev.16.3"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Rev.16.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.3"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Rev.16.3"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ []) "Rev.16.3"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.16.3"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rev.16.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.16.3"
∷ word (ἐ ∷ ν ∷ []) "Rev.16.3"
∷ word (τ ∷ ῇ ∷ []) "Rev.16.3"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Rev.16.3"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.4"
∷ word (ὁ ∷ []) "Rev.16.4"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.4"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.4"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.4"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.4"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.4"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.4"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.4"
∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.16.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.4"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.16.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.4"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.4"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.5"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.5"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.16.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.5"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.16.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.5"
∷ word (Δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "Rev.16.5"
∷ word (ε ∷ ἶ ∷ []) "Rev.16.5"
∷ word (ὁ ∷ []) "Rev.16.5"
∷ word (ὢ ∷ ν ∷ []) "Rev.16.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.5"
∷ word (ὁ ∷ []) "Rev.16.5"
∷ word (ἦ ∷ ν ∷ []) "Rev.16.5"
∷ word (ὁ ∷ []) "Rev.16.5"
∷ word (ὅ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.16.5"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.16.5"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.16.5"
∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ α ∷ ς ∷ []) "Rev.16.5"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.16.6"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.6"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.16.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.6"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.6"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ α ∷ ν ∷ []) "Rev.16.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.6"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.16.6"
∷ word (δ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ ς ∷ []) "Rev.16.6"
∷ word (π ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.16.6"
∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ί ∷ []) "Rev.16.6"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.16.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.7"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.7"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.7"
∷ word (Ν ∷ α ∷ ί ∷ []) "Rev.16.7"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.16.7"
∷ word (ὁ ∷ []) "Rev.16.7"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.16.7"
∷ word (ὁ ∷ []) "Rev.16.7"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.16.7"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.16.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.7"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ α ∷ ι ∷ []) "Rev.16.7"
∷ word (α ∷ ἱ ∷ []) "Rev.16.7"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.16.7"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.16.7"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.8"
∷ word (ὁ ∷ []) "Rev.16.8"
∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.8"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.8"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.8"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.8"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.16.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.16.8"
∷ word (κ ∷ α ∷ υ ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.16.8"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.8"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.16.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.16.8"
∷ word (π ∷ υ ∷ ρ ∷ ί ∷ []) "Rev.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.9"
∷ word (ἐ ∷ κ ∷ α ∷ υ ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.16.9"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.16.9"
∷ word (κ ∷ α ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.16.9"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.16.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.9"
∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.16.9"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.16.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.9"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.9"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.9"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.16.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.9"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.9"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.16.9"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ς ∷ []) "Rev.16.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.9"
∷ word (ο ∷ ὐ ∷ []) "Rev.16.9"
∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.9"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.16.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.16.9"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.16.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.10"
∷ word (ὁ ∷ []) "Rev.16.10"
∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.10"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.10"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.10"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.16.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.10"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.10"
∷ word (ἡ ∷ []) "Rev.16.10"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Rev.16.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10"
∷ word (ἐ ∷ σ ∷ κ ∷ ο ∷ τ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.16.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.10"
∷ word (ἐ ∷ μ ∷ α ∷ σ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ []) "Rev.16.10"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.10"
∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ς ∷ []) "Rev.16.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10"
∷ word (π ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.16.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.11"
∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.11"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.16.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.11"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.16.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (π ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Rev.16.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (ἑ ∷ ∙λ ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.11"
∷ word (ο ∷ ὐ ∷ []) "Rev.16.11"
∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.16.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.12"
∷ word (ὁ ∷ []) "Rev.16.12"
∷ word (ἕ ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.12"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.12"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.12"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.12"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.16.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.12"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.16.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.12"
∷ word (Ε ∷ ὐ ∷ φ ∷ ρ ∷ ά ∷ τ ∷ η ∷ ν ∷ []) "Rev.16.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.12"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.16.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.16.12"
∷ word (ὕ ∷ δ ∷ ω ∷ ρ ∷ []) "Rev.16.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.16.12"
∷ word (ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.16.12"
∷ word (ἡ ∷ []) "Rev.16.12"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ς ∷ []) "Rev.16.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.12"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.16.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.12"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.16.12"
∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.16.12"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.13"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.16.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ο ∷ υ ∷ []) "Rev.16.13"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.16.13"
∷ word (τ ∷ ρ ∷ ί ∷ α ∷ []) "Rev.16.13"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Rev.16.13"
∷ word (ὡ ∷ ς ∷ []) "Rev.16.13"
∷ word (β ∷ ά ∷ τ ∷ ρ ∷ α ∷ χ ∷ ο ∷ ι ∷ []) "Rev.16.13"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.16.14"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.16.14"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.16.14"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Rev.16.14"
∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Rev.16.14"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.16.14"
∷ word (ἃ ∷ []) "Rev.16.14"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.16.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.14"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.14"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.16.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.14"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.16.14"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.16.14"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.16.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.14"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.16.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.14"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.16.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.14"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.16.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.14"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.14"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.16.14"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.16.15"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.16.15"
∷ word (ὡ ∷ ς ∷ []) "Rev.16.15"
∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ η ∷ ς ∷ []) "Rev.16.15"
∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.16.15"
∷ word (ὁ ∷ []) "Rev.16.15"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.16.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.15"
∷ word (τ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.16.15"
∷ word (τ ∷ ὰ ∷ []) "Rev.16.15"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Rev.16.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.16.15"
∷ word (μ ∷ ὴ ∷ []) "Rev.16.15"
∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.16.15"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῇ ∷ []) "Rev.16.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.15"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.16.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.15"
∷ word (ἀ ∷ σ ∷ χ ∷ η ∷ μ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rev.16.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.16"
∷ word (σ ∷ υ ∷ ν ∷ ή ∷ γ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Rev.16.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.16"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.16.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.16"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.16.16"
∷ word (Ἑ ∷ β ∷ ρ ∷ α ∷ ϊ ∷ σ ∷ τ ∷ ὶ ∷ []) "Rev.16.16"
∷ word (Ἁ ∷ ρ ∷ μ ∷ α ∷ γ ∷ ε ∷ δ ∷ ώ ∷ ν ∷ []) "Rev.16.16"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.17"
∷ word (ὁ ∷ []) "Rev.16.17"
∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.16.17"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.17"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.17"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.17"
∷ word (ἀ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.16.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.17"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.16.17"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.16.17"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.17"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.17"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.16.17"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.16.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.17"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.16.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.17"
∷ word (Γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Rev.16.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.16.18"
∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.16.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18"
∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.16.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.16.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.16.18"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.18"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.16.18"
∷ word (ο ∷ ἷ ∷ ο ∷ ς ∷ []) "Rev.16.18"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.16.18"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.18"
∷ word (ἀ ∷ φ ∷ []) "Rev.16.18"
∷ word (ο ∷ ὗ ∷ []) "Rev.16.18"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.16.18"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.16.18"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.18"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.16.18"
∷ word (τ ∷ η ∷ ∙λ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.18"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.16.18"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ []) "Rev.16.18"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.16.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.19"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.19"
∷ word (ἡ ∷ []) "Rev.16.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.16.19"
∷ word (ἡ ∷ []) "Rev.16.19"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.19"
∷ word (τ ∷ ρ ∷ ί ∷ α ∷ []) "Rev.16.19"
∷ word (μ ∷ έ ∷ ρ ∷ η ∷ []) "Rev.16.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.19"
∷ word (α ∷ ἱ ∷ []) "Rev.16.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.16.19"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.19"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.16.19"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.19"
∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.16.19"
∷ word (ἡ ∷ []) "Rev.16.19"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.19"
∷ word (ἐ ∷ μ ∷ ν ∷ ή ∷ σ ∷ θ ∷ η ∷ []) "Rev.16.19"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.16.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.19"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.16.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.16.19"
∷ word (τ ∷ ὸ ∷ []) "Rev.16.19"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.16.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19"
∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.16.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.16.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.19"
∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.16.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.20"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Rev.16.20"
∷ word (ν ∷ ῆ ∷ σ ∷ ο ∷ ς ∷ []) "Rev.16.20"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Rev.16.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.20"
∷ word (ὄ ∷ ρ ∷ η ∷ []) "Rev.16.20"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.16.20"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.21"
∷ word (χ ∷ ά ∷ ∙λ ∷ α ∷ ζ ∷ α ∷ []) "Rev.16.21"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.21"
∷ word (ὡ ∷ ς ∷ []) "Rev.16.21"
∷ word (τ ∷ α ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ι ∷ α ∷ ί ∷ α ∷ []) "Rev.16.21"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.16.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.21"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.16.21"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.21"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.21"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.16.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.21"
∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.21"
∷ word (ο ∷ ἱ ∷ []) "Rev.16.21"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.16.21"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.21"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.16.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.21"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.16.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.21"
∷ word (χ ∷ α ∷ ∙λ ∷ ά ∷ ζ ∷ η ∷ ς ∷ []) "Rev.16.21"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.16.21"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.21"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Rev.16.21"
∷ word (ἡ ∷ []) "Rev.16.21"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ []) "Rev.16.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.16.21"
∷ word (σ ∷ φ ∷ ό ∷ δ ∷ ρ ∷ α ∷ []) "Rev.16.21"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.17.1"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.17.1"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.17.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.17.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.17.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.1"
∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.1"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.1"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.17.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.1"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.17.1"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.17.1"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.17.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.17.1"
∷ word (Δ ∷ ε ∷ ῦ ∷ ρ ∷ ο ∷ []) "Rev.17.1"
∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ω ∷ []) "Rev.17.1"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.17.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.1"
∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rev.17.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.1"
∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ς ∷ []) "Rev.17.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.1"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.17.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.1"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.17.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.1"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.1"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.17.1"
∷ word (μ ∷ ε ∷ θ ∷ []) "Rev.17.2"
∷ word (ἧ ∷ ς ∷ []) "Rev.17.2"
∷ word (ἐ ∷ π ∷ ό ∷ ρ ∷ ν ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.2"
∷ word (ο ∷ ἱ ∷ []) "Rev.17.2"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.2"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.2"
∷ word (ἐ ∷ μ ∷ ε ∷ θ ∷ ύ ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.2"
∷ word (ο ∷ ἱ ∷ []) "Rev.17.2"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.17.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.2"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.17.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.17.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.2"
∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.17.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.2"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.3"
∷ word (ἀ ∷ π ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ έ ∷ ν ∷ []) "Rev.17.3"
∷ word (μ ∷ ε ∷ []) "Rev.17.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.3"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Rev.17.3"
∷ word (ἐ ∷ ν ∷ []) "Rev.17.3"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.17.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.3"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.17.3"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.17.3"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.17.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.3"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.3"
∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.17.3"
∷ word (γ ∷ έ ∷ μ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.17.3"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.3"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.3"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.17.3"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.17.3"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.3"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.3"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4"
∷ word (ἡ ∷ []) "Rev.17.4"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.17.4"
∷ word (ἦ ∷ ν ∷ []) "Rev.17.4"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.17.4"
∷ word (π ∷ ο ∷ ρ ∷ φ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.17.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4"
∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.17.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4"
∷ word (κ ∷ ε ∷ χ ∷ ρ ∷ υ ∷ σ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.17.4"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ῳ ∷ []) "Rev.17.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4"
∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.17.4"
∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ῳ ∷ []) "Rev.17.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4"
∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Rev.17.4"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.17.4"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.17.4"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.17.4"
∷ word (ἐ ∷ ν ∷ []) "Rev.17.4"
∷ word (τ ∷ ῇ ∷ []) "Rev.17.4"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.17.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.4"
∷ word (γ ∷ έ ∷ μ ∷ ο ∷ ν ∷ []) "Rev.17.4"
∷ word (β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4"
∷ word (τ ∷ ὰ ∷ []) "Rev.17.4"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Rev.17.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.4"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.5"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.5"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.5"
∷ word (μ ∷ έ ∷ τ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.17.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.5"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.17.5"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.17.5"
∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.17.5"
∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.17.5"
∷ word (ἡ ∷ []) "Rev.17.5"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.17.5"
∷ word (ἡ ∷ []) "Rev.17.5"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Rev.17.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.5"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.17.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.5"
∷ word (β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.5"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.6"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.17.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.6"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.17.6"
∷ word (μ ∷ ε ∷ θ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.17.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.6"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.6"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.17.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.17.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.6"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.6"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.17.6"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.17.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.17.6"
∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ σ ∷ α ∷ []) "Rev.17.6"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Rev.17.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.17.6"
∷ word (θ ∷ α ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.17.6"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.17.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.7"
∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.17.7"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.17.7"
∷ word (ὁ ∷ []) "Rev.17.7"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.17.7"
∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Rev.17.7"
∷ word (τ ∷ ί ∷ []) "Rev.17.7"
∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.17.7"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.17.7"
∷ word (ἐ ∷ ρ ∷ ῶ ∷ []) "Rev.17.7"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.17.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.7"
∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.17.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.7"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.17.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.7"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.17.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.7"
∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.7"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.17.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.7"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.7"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.7"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.7"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.17.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.7"
∷ word (τ ∷ ὰ ∷ []) "Rev.17.7"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.7"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.8"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.8"
∷ word (ὃ ∷ []) "Rev.17.8"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.8"
∷ word (ἦ ∷ ν ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.17.8"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.17.8"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Rev.17.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.17.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.8"
∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.8"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.17.8"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8"
∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.8"
∷ word (ο ∷ ἱ ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.17.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.8"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.8"
∷ word (ὧ ∷ ν ∷ []) "Rev.17.8"
∷ word (ο ∷ ὐ ∷ []) "Rev.17.8"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.8"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.17.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.8"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.8"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.17.8"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.17.8"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.17.8"
∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.8"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.8"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.17.8"
∷ word (ἦ ∷ ν ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.17.8"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.8"
∷ word (Ὧ ∷ δ ∷ ε ∷ []) "Rev.17.9"
∷ word (ὁ ∷ []) "Rev.17.9"
∷ word (ν ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.17.9"
∷ word (ὁ ∷ []) "Rev.17.9"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.17.9"
∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.9"
∷ word (α ∷ ἱ ∷ []) "Rev.17.9"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.9"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.17.9"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.9"
∷ word (ὄ ∷ ρ ∷ η ∷ []) "Rev.17.9"
∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.17.9"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.17.9"
∷ word (ἡ ∷ []) "Rev.17.9"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.17.9"
∷ word (κ ∷ ά ∷ θ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.9"
∷ word (ἐ ∷ π ∷ []) "Rev.17.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.9"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.9"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.17.9"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.17.10"
∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Rev.17.10"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.10"
∷ word (ὁ ∷ []) "Rev.17.10"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.17.10"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.10"
∷ word (ὁ ∷ []) "Rev.17.10"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.17.10"
∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Rev.17.10"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.17.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.10"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.17.10"
∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rev.17.10"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Rev.17.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.17.10"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.17.10"
∷ word (μ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Rev.17.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.11"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.11"
∷ word (ὃ ∷ []) "Rev.17.11"
∷ word (ἦ ∷ ν ∷ []) "Rev.17.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.17.11"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.17.11"
∷ word (ὄ ∷ γ ∷ δ ∷ ο ∷ ό ∷ ς ∷ []) "Rev.17.11"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.17.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.11"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.17.11"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.11"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.17.11"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Rev.17.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.12"
∷ word (τ ∷ ὰ ∷ []) "Rev.17.12"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.12"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.12"
∷ word (ἃ ∷ []) "Rev.17.12"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.12"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.12"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.12"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.12"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.17.12"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.12"
∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Rev.17.12"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Rev.17.12"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.17.12"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.12"
∷ word (ὡ ∷ ς ∷ []) "Rev.17.12"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.12"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.12"
∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.17.12"
∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.12"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.17.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.12"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.17.12"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.17.13"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.13"
∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Rev.17.13"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.13"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.17.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.13"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.13"
∷ word (τ ∷ ῷ ∷ []) "Rev.17.13"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.17.13"
∷ word (δ ∷ ι ∷ δ ∷ ό ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.13"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.17.14"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.17.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.14"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.17.14"
∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.14"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.14"
∷ word (ν ∷ ι ∷ κ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.17.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.17.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.17.14"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.17.14"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.17.14"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Rev.17.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Rev.17.14"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.17.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14"
∷ word (ο ∷ ἱ ∷ []) "Rev.17.14"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.17.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.17.14"
∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.17.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.17.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.17.14"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.17.15"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.17.15"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.17.15"
∷ word (Τ ∷ ὰ ∷ []) "Rev.17.15"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.15"
∷ word (ἃ ∷ []) "Rev.17.15"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.15"
∷ word (ο ∷ ὗ ∷ []) "Rev.17.15"
∷ word (ἡ ∷ []) "Rev.17.15"
∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ []) "Rev.17.15"
∷ word (κ ∷ ά ∷ θ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.15"
∷ word (∙λ ∷ α ∷ ο ∷ ὶ ∷ []) "Rev.17.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.15"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.17.15"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.17.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.15"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.17.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.15"
∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ι ∷ []) "Rev.17.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16"
∷ word (τ ∷ ὰ ∷ []) "Rev.17.16"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.16"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.16"
∷ word (ἃ ∷ []) "Rev.17.16"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.16"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.16"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.17.16"
∷ word (μ ∷ ι ∷ σ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "Rev.17.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.16"
∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ν ∷ []) "Rev.17.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16"
∷ word (ἠ ∷ ρ ∷ η ∷ μ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.17.16"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.16"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.17.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16"
∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ή ∷ ν ∷ []) "Rev.17.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.16"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.17.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.16"
∷ word (φ ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.17.16"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.16"
∷ word (ἐ ∷ ν ∷ []) "Rev.17.16"
∷ word (π ∷ υ ∷ ρ ∷ ί ∷ []) "Rev.17.16"
∷ word (ὁ ∷ []) "Rev.17.17"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.17.17"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.17.17"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.17.17"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.17"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.17"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.17"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.17.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.17"
∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Rev.17.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.17.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.17"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.17.17"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.17"
∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Rev.17.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.17"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.17.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.17"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.17"
∷ word (τ ∷ ῷ ∷ []) "Rev.17.17"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.17.17"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.17.17"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.17"
∷ word (ο ∷ ἱ ∷ []) "Rev.17.17"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.17.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.17"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.17.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.18"
∷ word (ἡ ∷ []) "Rev.17.18"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.17.18"
∷ word (ἣ ∷ ν ∷ []) "Rev.17.18"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.18"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.18"
∷ word (ἡ ∷ []) "Rev.17.18"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.17.18"
∷ word (ἡ ∷ []) "Rev.17.18"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.17.18"
∷ word (ἡ ∷ []) "Rev.17.18"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.17.18"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.18"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.18"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.17.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.18"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.18"
∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.18.1"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.18.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.18.1"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.1"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.1"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.18.1"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.1"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.18.1"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.18.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.1"
∷ word (ἡ ∷ []) "Rev.18.1"
∷ word (γ ∷ ῆ ∷ []) "Rev.18.1"
∷ word (ἐ ∷ φ ∷ ω ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.18.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.1"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Rev.18.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.18.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.18.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.2"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ᾷ ∷ []) "Rev.18.2"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.18.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.18.2"
∷ word (Ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.2"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.2"
∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.18.2"
∷ word (ἡ ∷ []) "Rev.18.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.18.2"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ η ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.18.2"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Rev.18.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ []) "Rev.18.2"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.18.2"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.2"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ []) "Rev.18.2"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.18.2"
∷ word (ὀ ∷ ρ ∷ ν ∷ έ ∷ ο ∷ υ ∷ []) "Rev.18.2"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ []) "Rev.18.2"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.18.2"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.18.2"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2"
∷ word (μ ∷ ε ∷ μ ∷ ι ∷ σ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.3"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.3"
∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.3"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.18.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.18.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (π ∷ έ ∷ π ∷ τ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Rev.18.3"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.3"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.18.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.3"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.3"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.18.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.18.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (ἐ ∷ π ∷ ό ∷ ρ ∷ ν ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.3"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.3"
∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.18.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.18.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.3"
∷ word (σ ∷ τ ∷ ρ ∷ ή ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.18.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (ἐ ∷ π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.3"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.4"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.18.4"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.18.4"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.18.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.4"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.18.4"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.4"
∷ word (Ἐ ∷ ξ ∷ έ ∷ ∙λ ∷ θ ∷ α ∷ τ ∷ ε ∷ []) "Rev.18.4"
∷ word (ὁ ∷ []) "Rev.18.4"
∷ word (∙λ ∷ α ∷ ό ∷ ς ∷ []) "Rev.18.4"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.18.4"
∷ word (ἐ ∷ ξ ∷ []) "Rev.18.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.4"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.18.4"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.4"
∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Rev.18.4"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.18.4"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.18.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.18.4"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῶ ∷ ν ∷ []) "Rev.18.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.4"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.18.4"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.4"
∷ word (∙λ ∷ ά ∷ β ∷ η ∷ τ ∷ ε ∷ []) "Rev.18.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.5"
∷ word (ἐ ∷ κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.5"
∷ word (α ∷ ἱ ∷ []) "Rev.18.5"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "Rev.18.5"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.18.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.5"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.18.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.5"
∷ word (ἐ ∷ μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.5"
∷ word (ὁ ∷ []) "Rev.18.5"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.18.5"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.5"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.18.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.5"
∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ ο ∷ τ ∷ ε ∷ []) "Rev.18.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.18.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "Rev.18.6"
∷ word (ἀ ∷ π ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.18.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.6"
∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ώ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.18.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.6"
∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ᾶ ∷ []) "Rev.18.6"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.18.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.6"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.18.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.6"
∷ word (τ ∷ ῷ ∷ []) "Rev.18.6"
∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.18.6"
∷ word (ᾧ ∷ []) "Rev.18.6"
∷ word (ἐ ∷ κ ∷ έ ∷ ρ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.6"
∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.18.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.6"
∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.18.6"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Rev.18.7"
∷ word (ἐ ∷ δ ∷ ό ∷ ξ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.7"
∷ word (α ∷ ὑ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.18.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7"
∷ word (ἐ ∷ σ ∷ τ ∷ ρ ∷ η ∷ ν ∷ ί ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.7"
∷ word (τ ∷ ο ∷ σ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.18.7"
∷ word (δ ∷ ό ∷ τ ∷ ε ∷ []) "Rev.18.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.7"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.18.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7"
∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.18.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.7"
∷ word (τ ∷ ῇ ∷ []) "Rev.18.7"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Rev.18.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.18.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.7"
∷ word (Κ ∷ ά ∷ θ ∷ η ∷ μ ∷ α ∷ ι ∷ []) "Rev.18.7"
∷ word (β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ι ∷ σ ∷ σ ∷ α ∷ []) "Rev.18.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7"
∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "Rev.18.7"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.18.7"
∷ word (ε ∷ ἰ ∷ μ ∷ ί ∷ []) "Rev.18.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7"
∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.18.7"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.7"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.7"
∷ word (ἴ ∷ δ ∷ ω ∷ []) "Rev.18.7"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.18.8"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.18.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.8"
∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.8"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.8"
∷ word (ἥ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.8"
∷ word (α ∷ ἱ ∷ []) "Rev.18.8"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ὶ ∷ []) "Rev.18.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.8"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.8"
∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.18.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.8"
∷ word (∙λ ∷ ι ∷ μ ∷ ό ∷ ς ∷ []) "Rev.18.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.8"
∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.18.8"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ υ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.8"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.8"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.18.8"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.18.8"
∷ word (ὁ ∷ []) "Rev.18.8"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.18.8"
∷ word (ὁ ∷ []) "Rev.18.8"
∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Rev.18.8"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.18.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.9"
∷ word (κ ∷ ∙λ ∷ α ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.9"
∷ word (κ ∷ ό ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.9"
∷ word (ἐ ∷ π ∷ []) "Rev.18.9"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.18.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.9"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.18.9"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.9"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.18.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.9"
∷ word (σ ∷ τ ∷ ρ ∷ η ∷ ν ∷ ι ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.9"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.18.9"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.9"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.18.9"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9"
∷ word (π ∷ υ ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.18.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.10"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.10"
∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.10"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.18.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.10"
∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Rev.18.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.10"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.18.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.10"
∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.18.10"
∷ word (ο ∷ ὐ ∷ α ∷ ί ∷ []) "Rev.18.10"
∷ word (ἡ ∷ []) "Rev.18.10"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.10"
∷ word (ἡ ∷ []) "Rev.18.10"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.10"
∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.18.10"
∷ word (ἡ ∷ []) "Rev.18.10"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.10"
∷ word (ἡ ∷ []) "Rev.18.10"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ά ∷ []) "Rev.18.10"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.10"
∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.10"
∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.10"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.10"
∷ word (ἡ ∷ []) "Rev.18.10"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ς ∷ []) "Rev.18.10"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.11"
∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.18.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.11"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.11"
∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.11"
∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.11"
∷ word (ἐ ∷ π ∷ []) "Rev.18.11"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.18.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.11"
∷ word (γ ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.11"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.18.11"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Rev.18.11"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rev.18.11"
∷ word (γ ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.12"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (ἀ ∷ ρ ∷ γ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (β ∷ υ ∷ σ ∷ σ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (π ∷ ο ∷ ρ ∷ φ ∷ ύ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (σ ∷ ι ∷ ρ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (κ ∷ ο ∷ κ ∷ κ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.18.12"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.12"
∷ word (θ ∷ ύ ∷ ϊ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.18.12"
∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "Rev.18.12"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ φ ∷ ά ∷ ν ∷ τ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.18.12"
∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "Rev.18.12"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.12"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (τ ∷ ι ∷ μ ∷ ι ∷ ω ∷ τ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ο ∷ ῦ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (σ ∷ ι ∷ δ ∷ ή ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (μ ∷ α ∷ ρ ∷ μ ∷ ά ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (κ ∷ ι ∷ ν ∷ ν ∷ ά ∷ μ ∷ ω ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (ἄ ∷ μ ∷ ω ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (θ ∷ υ ∷ μ ∷ ι ∷ ά ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (∙λ ∷ ί ∷ β ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (ἔ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (σ ∷ ε ∷ μ ∷ ί ∷ δ ∷ α ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (σ ∷ ῖ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (κ ∷ τ ∷ ή ∷ ν ∷ η ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (ῥ ∷ ε ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (σ ∷ ω ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "Rev.18.13"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14"
∷ word (ἡ ∷ []) "Rev.18.14"
∷ word (ὀ ∷ π ∷ ώ ∷ ρ ∷ α ∷ []) "Rev.18.14"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.14"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.18.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.14"
∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Rev.18.14"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.14"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.14"
∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.18.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.14"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.14"
∷ word (∙λ ∷ ι ∷ π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rev.18.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.14"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὰ ∷ []) "Rev.18.14"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "Rev.18.14"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.14"
∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.18.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rev.18.14"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.14"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.14"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rev.18.14"
∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.14"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.15"
∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.18.15"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.18.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.15"
∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.15"
∷ word (ἀ ∷ π ∷ []) "Rev.18.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.15"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.15"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.15"
∷ word (σ ∷ τ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.15"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.18.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.15"
∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Rev.18.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.15"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.18.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.15"
∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.15"
∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.15"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.16"
∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.18.16"
∷ word (ο ∷ ὐ ∷ α ∷ ί ∷ []) "Rev.18.16"
∷ word (ἡ ∷ []) "Rev.18.16"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.16"
∷ word (ἡ ∷ []) "Rev.18.16"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.16"
∷ word (ἡ ∷ []) "Rev.18.16"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.18.16"
∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16"
∷ word (π ∷ ο ∷ ρ ∷ φ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.18.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16"
∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16"
∷ word (κ ∷ ε ∷ χ ∷ ρ ∷ υ ∷ σ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.18.16"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ῳ ∷ []) "Rev.18.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16"
∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.18.16"
∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ῳ ∷ []) "Rev.18.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16"
∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ ῃ ∷ []) "Rev.18.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.17"
∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.17"
∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.17"
∷ word (ἠ ∷ ρ ∷ η ∷ μ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.18.17"
∷ word (ὁ ∷ []) "Rev.18.17"
∷ word (τ ∷ ο ∷ σ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.17"
∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.17"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.17"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.18.17"
∷ word (κ ∷ υ ∷ β ∷ ε ∷ ρ ∷ ν ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Rev.18.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.17"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.18.17"
∷ word (ὁ ∷ []) "Rev.18.17"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.18.17"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.18.17"
∷ word (π ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.18.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.17"
∷ word (ν ∷ α ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.17"
∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rev.18.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.18.17"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.17"
∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.17"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.17"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.17"
∷ word (ἔ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.18"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rev.18.18"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.18"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.18.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.18"
∷ word (π ∷ υ ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.18.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.18"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Rev.18.18"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ α ∷ []) "Rev.18.18"
∷ word (τ ∷ ῇ ∷ []) "Rev.18.18"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.18.18"
∷ word (τ ∷ ῇ ∷ []) "Rev.18.18"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.18.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.19"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.19"
∷ word (χ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.18.19"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.18.19"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.18.19"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.18.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.19"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rev.18.19"
∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.19"
∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19"
∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.18.19"
∷ word (ο ∷ ὐ ∷ α ∷ ί ∷ []) "Rev.18.19"
∷ word (ἡ ∷ []) "Rev.18.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.19"
∷ word (ἡ ∷ []) "Rev.18.19"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.19"
∷ word (ᾗ ∷ []) "Rev.18.19"
∷ word (ἐ ∷ π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.19"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.19"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.19"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ α ∷ []) "Rev.18.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.19"
∷ word (τ ∷ ῇ ∷ []) "Rev.18.19"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Rev.18.19"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.19"
∷ word (τ ∷ ι ∷ μ ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.19"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.19"
∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.19"
∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.19"
∷ word (ἠ ∷ ρ ∷ η ∷ μ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.18.19"
∷ word (Ε ∷ ὐ ∷ φ ∷ ρ ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.20"
∷ word (ἐ ∷ π ∷ []) "Rev.18.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.20"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ έ ∷ []) "Rev.18.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.20"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.20"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.18.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.20"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.20"
∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.18.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.20"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.20"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.20"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.20"
∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Rev.18.20"
∷ word (ὁ ∷ []) "Rev.18.20"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.18.20"
∷ word (τ ∷ ὸ ∷ []) "Rev.18.20"
∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rev.18.20"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.18.20"
∷ word (ἐ ∷ ξ ∷ []) "Rev.18.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.21"
∷ word (ἦ ∷ ρ ∷ ε ∷ ν ∷ []) "Rev.18.21"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.18.21"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.18.21"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.18.21"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Rev.18.21"
∷ word (ὡ ∷ ς ∷ []) "Rev.18.21"
∷ word (μ ∷ ύ ∷ ∙λ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.21"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.18.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.21"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.18.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.18.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.18.21"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.21"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.18.21"
∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.18.21"
∷ word (ὁ ∷ ρ ∷ μ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.18.21"
∷ word (β ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.21"
∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.18.21"
∷ word (ἡ ∷ []) "Rev.18.21"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.21"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.21"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.21"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.21"
∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῇ ∷ []) "Rev.18.21"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.18.22"
∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ῳ ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.18.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22"
∷ word (μ ∷ ο ∷ υ ∷ σ ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.18.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22"
∷ word (α ∷ ὐ ∷ ∙λ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22"
∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.22"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.22"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.22"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.18.22"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.22"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.22"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.18.22"
∷ word (τ ∷ ε ∷ χ ∷ ν ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "Rev.18.22"
∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rev.18.22"
∷ word (τ ∷ έ ∷ χ ∷ ν ∷ η ∷ ς ∷ []) "Rev.18.22"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.22"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.22"
∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῇ ∷ []) "Rev.18.22"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.22"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.22"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.18.22"
∷ word (μ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.18.22"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.22"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.22"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.18.22"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.22"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.22"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.23"
∷ word (φ ∷ ῶ ∷ ς ∷ []) "Rev.18.23"
∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.23"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.23"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.23"
∷ word (φ ∷ ά ∷ ν ∷ ῃ ∷ []) "Rev.18.23"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.23"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.23"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.23"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.18.23"
∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.18.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.23"
∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ ς ∷ []) "Rev.18.23"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.23"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.23"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.18.23"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.23"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.23"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.23"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.23"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.23"
∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ί ∷ []) "Rev.18.23"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.23"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.23"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.23"
∷ word (μ ∷ ε ∷ γ ∷ ι ∷ σ ∷ τ ∷ ᾶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.18.23"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.23"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.23"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.23"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.23"
∷ word (τ ∷ ῇ ∷ []) "Rev.18.23"
∷ word (φ ∷ α ∷ ρ ∷ μ ∷ α ∷ κ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.18.23"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.23"
∷ word (ἐ ∷ π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.23"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.23"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.23"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.18.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.24"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.24"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.18.24"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.24"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.18.24"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.18.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.24"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.18.24"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.18.24"
∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.18.24"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.18.24"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.24"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.24"
∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.19.1"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.19.1"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.19.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.19.1"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.1"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.19.1"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.19.1"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Rev.19.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.19.1"
∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.1"
∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.1"
∷ word (ἡ ∷ []) "Rev.19.1"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rev.19.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.1"
∷ word (ἡ ∷ []) "Rev.19.1"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.19.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.1"
∷ word (ἡ ∷ []) "Rev.19.1"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rev.19.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.1"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.19.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.2"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.19.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.2"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ α ∷ ι ∷ []) "Rev.19.2"
∷ word (α ∷ ἱ ∷ []) "Rev.19.2"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.19.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.2"
∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Rev.19.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.2"
∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ν ∷ []) "Rev.19.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.19.2"
∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.19.2"
∷ word (ἔ ∷ φ ∷ θ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Rev.19.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.2"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.19.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.2"
∷ word (τ ∷ ῇ ∷ []) "Rev.19.2"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.19.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.19.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.2"
∷ word (ἐ ∷ ξ ∷ ε ∷ δ ∷ ί ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.2"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.2"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.19.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.2"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.19.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.19.2"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.19.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.19.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.3"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.19.3"
∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Rev.19.3"
∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.3"
∷ word (ὁ ∷ []) "Rev.19.3"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.19.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.19.3"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.19.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.3"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.3"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.19.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.3"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.19.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.4"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.4"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.4"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.19.4"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.4"
∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.19.4"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.19.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.4"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.4"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.19.4"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.19.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.4"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.19.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.4"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.19.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.4"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.19.4"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.19.4"
∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.19.4"
∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.4"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.5"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.19.5"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.19.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.5"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.5"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.19.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.19.5"
∷ word (Α ∷ ἰ ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Rev.19.5"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.5"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.19.5"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.19.5"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.19.5"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.5"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.19.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.5"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.5"
∷ word (φ ∷ ο ∷ β ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rev.19.5"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.19.5"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.5"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.19.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.5"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.5"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.19.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.6"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.19.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.19.6"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.6"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.19.6"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Rev.19.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.19.6"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.6"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.6"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.19.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.19.6"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.6"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.6"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.19.6"
∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.6"
∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.6"
∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.6"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.19.6"
∷ word (ὁ ∷ []) "Rev.19.6"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.19.6"
∷ word (ὁ ∷ []) "Rev.19.6"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.19.6"
∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rev.19.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.7"
∷ word (ἀ ∷ γ ∷ α ∷ ∙λ ∷ ∙λ ∷ ι ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Rev.19.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.7"
∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rev.19.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.7"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.19.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.19.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.7"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.19.7"
∷ word (ὁ ∷ []) "Rev.19.7"
∷ word (γ ∷ ά ∷ μ ∷ ο ∷ ς ∷ []) "Rev.19.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.7"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.19.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.7"
∷ word (ἡ ∷ []) "Rev.19.7"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.19.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.7"
∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.7"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.19.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.8"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.19.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.19.8"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.19.8"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.19.8"
∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.8"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.19.8"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ό ∷ ν ∷ []) "Rev.19.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.8"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.19.8"
∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.8"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.8"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.19.8"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.19.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.19.9"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.19.9"
∷ word (Γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.19.9"
∷ word (Μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.19.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.9"
∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.9"
∷ word (γ ∷ ά ∷ μ ∷ ο ∷ υ ∷ []) "Rev.19.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.9"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.19.9"
∷ word (κ ∷ ε ∷ κ ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.19.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.19.9"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.19.9"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.19.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.9"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.19.9"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ο ∷ ὶ ∷ []) "Rev.19.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.9"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.9"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.19.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.10"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ []) "Rev.19.10"
∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.19.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.10"
∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.19.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.10"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.19.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.19.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.19.10"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.19.10"
∷ word (Ὅ ∷ ρ ∷ α ∷ []) "Rev.19.10"
∷ word (μ ∷ ή ∷ []) "Rev.19.10"
∷ word (σ ∷ ύ ∷ ν ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ ς ∷ []) "Rev.19.10"
∷ word (σ ∷ ο ∷ ύ ∷ []) "Rev.19.10"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.19.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.10"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Rev.19.10"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.19.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.10"
∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.10"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.19.10"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.19.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.10"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.19.10"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.19.10"
∷ word (ἡ ∷ []) "Rev.19.10"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.19.10"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "Rev.19.10"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.19.10"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.19.10"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.10"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.19.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.10"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.19.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.11"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.19.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.19.11"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.19.11"
∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.19.11"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.19.11"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ό ∷ ς ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11"
∷ word (ὁ ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.19.11"
∷ word (ἐ ∷ π ∷ []) "Rev.19.11"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.19.11"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.11"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Rev.19.11"
∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11"
∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ε ∷ ῖ ∷ []) "Rev.19.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.12"
∷ word (δ ∷ ὲ ∷ []) "Rev.19.12"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rev.19.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.12"
∷ word (φ ∷ ∙λ ∷ ὸ ∷ ξ ∷ []) "Rev.19.12"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.19.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.12"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.12"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.19.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.12"
∷ word (δ ∷ ι ∷ α ∷ δ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.12"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Rev.19.12"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.19.12"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.19.12"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.12"
∷ word (ὃ ∷ []) "Rev.19.12"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.19.12"
∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.19.12"
∷ word (ε ∷ ἰ ∷ []) "Rev.19.12"
∷ word (μ ∷ ὴ ∷ []) "Rev.19.12"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.19.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.13"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.19.13"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.19.13"
∷ word (β ∷ ε ∷ β ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.13"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.19.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.13"
∷ word (κ ∷ έ ∷ κ ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.19.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.13"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.19.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.13"
∷ word (ὁ ∷ []) "Rev.19.13"
∷ word (Λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Rev.19.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.13"
∷ word (Θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.14"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.14"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.14"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.14"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.14"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.19.14"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Rev.19.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.19.14"
∷ word (ἐ ∷ φ ∷ []) "Rev.19.14"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Rev.19.14"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.19.14"
∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.19.14"
∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.14"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὸ ∷ ν ∷ []) "Rev.19.14"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ό ∷ ν ∷ []) "Rev.19.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.15"
∷ word (ἐ ∷ κ ∷ []) "Rev.19.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.19.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.19.15"
∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ α ∷ []) "Rev.19.15"
∷ word (ὀ ∷ ξ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.19.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.19.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.19.15"
∷ word (π ∷ α ∷ τ ∷ ά ∷ ξ ∷ ῃ ∷ []) "Rev.19.15"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.15"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.19.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.19.15"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.19.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.15"
∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.19.15"
∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ᾷ ∷ []) "Rev.19.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.19.15"
∷ word (π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ []) "Rev.19.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.15"
∷ word (∙λ ∷ η ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.19.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.15"
∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.19.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.19.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.16"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.19.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.16"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.19.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.19.16"
∷ word (μ ∷ η ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.19.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.16"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.19.16"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.16"
∷ word (Β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Rev.19.16"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.19.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.16"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.19.16"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.19.16"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.17"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.19.17"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Rev.19.17"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.19.17"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.19.17"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.17"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.17"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.19.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.17"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.19.17"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.19.17"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.19.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.19.17"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ []) "Rev.19.17"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.19.17"
∷ word (ὀ ∷ ρ ∷ ν ∷ έ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.19.17"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.19.17"
∷ word (π ∷ ε ∷ τ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.19.17"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.17"
∷ word (μ ∷ ε ∷ σ ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.19.17"
∷ word (Δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Rev.19.17"
∷ word (σ ∷ υ ∷ ν ∷ ά ∷ χ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Rev.19.17"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.17"
∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.17"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.19.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.17"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.17"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.19.18"
∷ word (φ ∷ ά ∷ γ ∷ η ∷ τ ∷ ε ∷ []) "Rev.19.18"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18"
∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (ἐ ∷ π ∷ []) "Rev.19.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (τ ∷ ε ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.19.19"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.19"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.19.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.19"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.19.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.19"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.19.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.19"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.19"
∷ word (σ ∷ υ ∷ ν ∷ η ∷ γ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.19.19"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.19.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.19.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.19.19"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.19.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.19"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Rev.19.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.19.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.19.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.20"
∷ word (ἐ ∷ π ∷ ι ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Rev.19.20"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.20"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.19.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.20"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.19.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20"
∷ word (ὁ ∷ []) "Rev.19.20"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Rev.19.20"
∷ word (ὁ ∷ []) "Rev.19.20"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Rev.19.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.20"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.19.20"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.19.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.20"
∷ word (ο ∷ ἷ ∷ ς ∷ []) "Rev.19.20"
∷ word (ἐ ∷ π ∷ ∙λ ∷ ά ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.20"
∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.19.20"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.20"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.19.20"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.19.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.20"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.19.20"
∷ word (τ ∷ ῇ ∷ []) "Rev.19.20"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.19.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.19.20"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.20"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.20"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.19.20"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.20"
∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.19.20"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.19.20"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.20"
∷ word (κ ∷ α ∷ ι ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.19.20"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.20"
∷ word (θ ∷ ε ∷ ί ∷ ῳ ∷ []) "Rev.19.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.21"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.21"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.19.21"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.21"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.21"
∷ word (τ ∷ ῇ ∷ []) "Rev.19.21"
∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rev.19.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.21"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Rev.19.21"
∷ word (τ ∷ ῇ ∷ []) "Rev.19.21"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "Rev.19.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.19.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.19.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.21"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.19.21"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.21"
∷ word (ὄ ∷ ρ ∷ ν ∷ ε ∷ α ∷ []) "Rev.19.21"
∷ word (ἐ ∷ χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.19.21"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.21"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.19.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.21"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.1"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.20.1"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.20.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.20.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.20.1"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.20.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.1"
∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.20.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.1"
∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.20.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.1"
∷ word (ἅ ∷ ∙λ ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.20.1"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.20.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.1"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.20.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.2"
∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.2"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.20.2"
∷ word (ὁ ∷ []) "Rev.20.2"
∷ word (ὄ ∷ φ ∷ ι ∷ ς ∷ []) "Rev.20.2"
∷ word (ὁ ∷ []) "Rev.20.2"
∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Rev.20.2"
∷ word (ὅ ∷ ς ∷ []) "Rev.20.2"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.20.2"
∷ word (Δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.20.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.2"
∷ word (ὁ ∷ []) "Rev.20.2"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.20.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.2"
∷ word (ἔ ∷ δ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.20.2"
∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.2"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.3"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.20.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.20.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.3"
∷ word (ἄ ∷ β ∷ υ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.20.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.3"
∷ word (ἔ ∷ κ ∷ ∙λ ∷ ε ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.3"
∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ ά ∷ γ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.3"
∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "Rev.20.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.3"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.20.3"
∷ word (μ ∷ ὴ ∷ []) "Rev.20.3"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.20.3"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.20.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.3"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.20.3"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.20.3"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.20.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.3"
∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.3"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.3"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.20.3"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.20.3"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.20.3"
∷ word (∙λ ∷ υ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.20.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.20.3"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.20.3"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.20.3"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.4"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4"
∷ word (ἐ ∷ π ∷ []) "Rev.20.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rev.20.4"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.20.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.20.4"
∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "Rev.20.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.4"
∷ word (π ∷ ε ∷ π ∷ ε ∷ ∙λ ∷ ε ∷ κ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.20.4"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.20.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.4"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.20.4"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.20.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.4"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.20.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.20.4"
∷ word (ο ∷ ὐ ∷ []) "Rev.20.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.20.4"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.20.4"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.20.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.4"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.20.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.20.4"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Rev.20.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.20.4"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.20.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.20.4"
∷ word (μ ∷ έ ∷ τ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.4"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.20.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.20.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4"
∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.4"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.4"
∷ word (ο ∷ ἱ ∷ []) "Rev.20.5"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.20.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.5"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.20.5"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.20.5"
∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.5"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.20.5"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.20.5"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.5"
∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.5"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.5"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Rev.20.5"
∷ word (ἡ ∷ []) "Rev.20.5"
∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "Rev.20.5"
∷ word (ἡ ∷ []) "Rev.20.5"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Rev.20.5"
∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.20.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.6"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.20.6"
∷ word (ὁ ∷ []) "Rev.20.6"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.20.6"
∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.20.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.20.6"
∷ word (τ ∷ ῇ ∷ []) "Rev.20.6"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.20.6"
∷ word (τ ∷ ῇ ∷ []) "Rev.20.6"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "Rev.20.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.6"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.20.6"
∷ word (ὁ ∷ []) "Rev.20.6"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.20.6"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.6"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.20.6"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.20.6"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.20.6"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.20.6"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.6"
∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.20.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.20.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.6"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.20.6"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.20.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6"
∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.6"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.7"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.20.7"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.20.7"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.7"
∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.7"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.7"
∷ word (∙λ ∷ υ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.7"
∷ word (ὁ ∷ []) "Rev.20.7"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.20.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.20.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.7"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῆ ∷ ς ∷ []) "Rev.20.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.8"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.8"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.20.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.8"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.20.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.20.8"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.20.8"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ σ ∷ ι ∷ []) "Rev.20.8"
∷ word (γ ∷ ω ∷ ν ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.20.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.8"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.20.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.8"
∷ word (Γ ∷ ὼ ∷ γ ∷ []) "Rev.20.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.8"
∷ word (Μ ∷ α ∷ γ ∷ ώ ∷ γ ∷ []) "Rev.20.8"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.20.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.8"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.20.8"
∷ word (ὧ ∷ ν ∷ []) "Rev.20.8"
∷ word (ὁ ∷ []) "Rev.20.8"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.20.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.8"
∷ word (ὡ ∷ ς ∷ []) "Rev.20.8"
∷ word (ἡ ∷ []) "Rev.20.8"
∷ word (ἄ ∷ μ ∷ μ ∷ ο ∷ ς ∷ []) "Rev.20.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.8"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.20.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.20.9"
∷ word (π ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.9"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.9"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9"
∷ word (ἐ ∷ κ ∷ ύ ∷ κ ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.9"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ μ ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.20.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.9"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.9"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.20.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.9"
∷ word (ἠ ∷ γ ∷ α ∷ π ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ β ∷ η ∷ []) "Rev.20.9"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.20.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.20.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.9"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ φ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Rev.20.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10"
∷ word (ὁ ∷ []) "Rev.20.10"
∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.20.10"
∷ word (ὁ ∷ []) "Rev.20.10"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.20.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.10"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.20.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.10"
∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.10"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.20.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10"
∷ word (θ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Rev.20.10"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.20.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10"
∷ word (τ ∷ ὸ ∷ []) "Rev.20.10"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.20.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10"
∷ word (ὁ ∷ []) "Rev.20.10"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Rev.20.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.10"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.20.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.20.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.10"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.20.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.10"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.20.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.11"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.11"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.20.11"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.20.11"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὸ ∷ ν ∷ []) "Rev.20.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.11"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.20.11"
∷ word (ἐ ∷ π ∷ []) "Rev.20.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.11"
∷ word (ο ∷ ὗ ∷ []) "Rev.20.11"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.20.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.11"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.20.11"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Rev.20.11"
∷ word (ἡ ∷ []) "Rev.20.11"
∷ word (γ ∷ ῆ ∷ []) "Rev.20.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.11"
∷ word (ὁ ∷ []) "Rev.20.11"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ς ∷ []) "Rev.20.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.11"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Rev.20.11"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.20.11"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.20.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.12"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.12"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.12"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.12"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.20.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.12"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.12"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ ς ∷ []) "Rev.20.12"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.20.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.12"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.20.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ α ∷ []) "Rev.20.12"
∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.20.12"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.20.12"
∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ χ ∷ θ ∷ η ∷ []) "Rev.20.12"
∷ word (ὅ ∷ []) "Rev.20.12"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.20.12"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.12"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.20.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12"
∷ word (ἐ ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.12"
∷ word (ο ∷ ἱ ∷ []) "Rev.20.12"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.20.12"
∷ word (ἐ ∷ κ ∷ []) "Rev.20.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.12"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.20.12"
∷ word (ἐ ∷ ν ∷ []) "Rev.20.12"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.12"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.20.12"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.20.12"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.12"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.20.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.20.13"
∷ word (ἡ ∷ []) "Rev.20.13"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Rev.20.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.20.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.20.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13"
∷ word (ὁ ∷ []) "Rev.20.13"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13"
∷ word (ὁ ∷ []) "Rev.20.13"
∷ word (ᾅ ∷ δ ∷ η ∷ ς ∷ []) "Rev.20.13"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Rev.20.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.20.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13"
∷ word (ἐ ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.13"
∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.13"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.20.13"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.13"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.20.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.14"
∷ word (ὁ ∷ []) "Rev.20.14"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.14"
∷ word (ὁ ∷ []) "Rev.20.14"
∷ word (ᾅ ∷ δ ∷ η ∷ ς ∷ []) "Rev.20.14"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.14"
∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.14"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.14"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.14"
∷ word (ὁ ∷ []) "Rev.20.14"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.14"
∷ word (ὁ ∷ []) "Rev.20.14"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.14"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.20.14"
∷ word (ἡ ∷ []) "Rev.20.14"
∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ []) "Rev.20.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.14"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.15"
∷ word (ε ∷ ἴ ∷ []) "Rev.20.15"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.20.15"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.20.15"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.20.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.20.15"
∷ word (τ ∷ ῇ ∷ []) "Rev.20.15"
∷ word (β ∷ ί ∷ β ∷ ∙λ ∷ ῳ ∷ []) "Rev.20.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.15"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.20.15"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.20.15"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.20.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.15"
∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.15"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.15"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.21.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.21.1"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.21.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.1"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.21.1"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ή ∷ ν ∷ []) "Rev.21.1"
∷ word (ὁ ∷ []) "Rev.21.1"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.1"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.21.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.1"
∷ word (ἡ ∷ []) "Rev.21.1"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Rev.21.1"
∷ word (γ ∷ ῆ ∷ []) "Rev.21.1"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ α ∷ ν ∷ []) "Rev.21.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.1"
∷ word (ἡ ∷ []) "Rev.21.1"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Rev.21.1"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.1"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.1"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.21.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.2"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.2"
∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.21.2"
∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ὴ ∷ μ ∷ []) "Rev.21.2"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.21.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.21.2"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.21.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.21.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.2"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.21.2"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.2"
∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.21.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.21.2"
∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ ν ∷ []) "Rev.21.2"
∷ word (κ ∷ ε ∷ κ ∷ ο ∷ σ ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.21.2"
∷ word (τ ∷ ῷ ∷ []) "Rev.21.2"
∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "Rev.21.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.21.3"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.21.3"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.21.3"
∷ word (ἐ ∷ κ ∷ []) "Rev.21.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.3"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.21.3"
∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.21.3"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.21.3"
∷ word (ἡ ∷ []) "Rev.21.3"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ὴ ∷ []) "Rev.21.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.3"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.3"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.21.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.3"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.21.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.21.3"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.21.3"
∷ word (∙λ ∷ α ∷ ο ∷ ὶ ∷ []) "Rev.21.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.21.3"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.21.3"
∷ word (ὁ ∷ []) "Rev.21.3"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.21.3"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.3"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.4"
∷ word (ἐ ∷ ξ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rev.21.4"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.21.4"
∷ word (δ ∷ ά ∷ κ ∷ ρ ∷ υ ∷ ο ∷ ν ∷ []) "Rev.21.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.21.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.4"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.21.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.4"
∷ word (ὁ ∷ []) "Rev.21.4"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.4"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.4"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.21.4"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.21.4"
∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.21.4"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.21.4"
∷ word (κ ∷ ρ ∷ α ∷ υ ∷ γ ∷ ὴ ∷ []) "Rev.21.4"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.21.4"
∷ word (π ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.4"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.4"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.21.4"
∷ word (τ ∷ ὰ ∷ []) "Rev.21.4"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.21.4"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ α ∷ ν ∷ []) "Rev.21.4"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.5"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Rev.21.5"
∷ word (ὁ ∷ []) "Rev.21.5"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.5"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.5"
∷ word (τ ∷ ῷ ∷ []) "Rev.21.5"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.21.5"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.21.5"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὰ ∷ []) "Rev.21.5"
∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Rev.21.5"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.21.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.21.5"
∷ word (Γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.21.5"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.21.5"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.21.5"
∷ word (ο ∷ ἱ ∷ []) "Rev.21.5"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.21.5"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.21.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.5"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ο ∷ ί ∷ []) "Rev.21.5"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.6"
∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.21.6"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.21.6"
∷ word (Γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ α ∷ ν ∷ []) "Rev.21.6"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.21.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.6"
∷ word (Ἄ ∷ ∙λ ∷ φ ∷ α ∷ []) "Rev.21.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.6"
∷ word (Ὦ ∷ []) "Rev.21.6"
∷ word (ἡ ∷ []) "Rev.21.6"
∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.21.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.6"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.21.6"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.21.6"
∷ word (τ ∷ ῷ ∷ []) "Rev.21.6"
∷ word (δ ∷ ι ∷ ψ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.21.6"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.21.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.21.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.6"
∷ word (π ∷ η ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.21.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.6"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.6"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.21.6"
∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ά ∷ ν ∷ []) "Rev.21.6"
∷ word (ὁ ∷ []) "Rev.21.7"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.21.7"
∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.21.7"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.21.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.7"
∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.21.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.21.7"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.21.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.21.7"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.7"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.21.7"
∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Rev.21.7"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.8"
∷ word (δ ∷ ὲ ∷ []) "Rev.21.8"
∷ word (δ ∷ ε ∷ ι ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (ἐ ∷ β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (φ ∷ α ∷ ρ ∷ μ ∷ ά ∷ κ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ []) "Rev.21.8"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.8"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ έ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.8"
∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.21.8"
∷ word (τ ∷ ῇ ∷ []) "Rev.21.8"
∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ ῃ ∷ []) "Rev.21.8"
∷ word (τ ∷ ῇ ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ι ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "Rev.21.8"
∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (θ ∷ ε ∷ ί ∷ ῳ ∷ []) "Rev.21.8"
∷ word (ὅ ∷ []) "Rev.21.8"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.8"
∷ word (ὁ ∷ []) "Rev.21.8"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.8"
∷ word (ὁ ∷ []) "Rev.21.8"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.9"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.21.9"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.21.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.21.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.21.9"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.21.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9"
∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.21.9"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.21.9"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.21.9"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.21.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9"
∷ word (γ ∷ ε ∷ μ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.21.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.21.9"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῶ ∷ ν ∷ []) "Rev.21.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9"
∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.21.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.9"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.9"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.9"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.21.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.21.9"
∷ word (Δ ∷ ε ∷ ῦ ∷ ρ ∷ ο ∷ []) "Rev.21.9"
∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ω ∷ []) "Rev.21.9"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.21.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.9"
∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ ν ∷ []) "Rev.21.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.9"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.21.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.9"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.10"
∷ word (ἀ ∷ π ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ έ ∷ ν ∷ []) "Rev.21.10"
∷ word (μ ∷ ε ∷ []) "Rev.21.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.21.10"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.21.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.10"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.10"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.21.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.10"
∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ό ∷ ν ∷ []) "Rev.21.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.10"
∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ ξ ∷ έ ∷ ν ∷ []) "Rev.21.10"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.21.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.10"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.10"
∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.21.10"
∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ὴ ∷ μ ∷ []) "Rev.21.10"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.21.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.21.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.10"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.21.10"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.10"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.10"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.21.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.11"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.21.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.11"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.11"
∷ word (ὁ ∷ []) "Rev.21.11"
∷ word (φ ∷ ω ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "Rev.21.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.11"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.21.11"
∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.21.11"
∷ word (τ ∷ ι ∷ μ ∷ ι ∷ ω ∷ τ ∷ ά ∷ τ ∷ ῳ ∷ []) "Rev.21.11"
∷ word (ὡ ∷ ς ∷ []) "Rev.21.11"
∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.21.11"
∷ word (ἰ ∷ ά ∷ σ ∷ π ∷ ι ∷ δ ∷ ι ∷ []) "Rev.21.11"
∷ word (κ ∷ ρ ∷ υ ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.21.11"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.21.12"
∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.12"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.21.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.12"
∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ό ∷ ν ∷ []) "Rev.21.12"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.21.12"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.21.12"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.12"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.12"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.12"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.12"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.12"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.12"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.21.12"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.21.12"
∷ word (ἅ ∷ []) "Rev.21.12"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.12"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.12"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.21.12"
∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rev.21.12"
∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rev.21.12"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13"
∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.21.13"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.13"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13"
∷ word (β ∷ ο ∷ ρ ∷ ρ ∷ ᾶ ∷ []) "Rev.21.13"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.13"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13"
∷ word (ν ∷ ό ∷ τ ∷ ο ∷ υ ∷ []) "Rev.21.13"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.13"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13"
∷ word (δ ∷ υ ∷ σ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.21.13"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.14"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.14"
∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.14"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.21.14"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.21.14"
∷ word (θ ∷ ε ∷ μ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.14"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.14"
∷ word (ἐ ∷ π ∷ []) "Rev.21.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.14"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.14"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.21.14"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.14"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.14"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.21.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.14"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.14"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.15"
∷ word (ὁ ∷ []) "Rev.21.15"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.21.15"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.15"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.21.15"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Rev.21.15"
∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.21.15"
∷ word (κ ∷ ά ∷ ∙λ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Rev.21.15"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.21.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.21.15"
∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.21.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.15"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.15"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.21.15"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.21.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.15"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.15"
∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16"
∷ word (ἡ ∷ []) "Rev.21.16"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.21.16"
∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.16"
∷ word (κ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.16"
∷ word (μ ∷ ῆ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.21.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.16"
∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.21.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.16"
∷ word (π ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16"
∷ word (ἐ ∷ μ ∷ έ ∷ τ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.16"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.16"
∷ word (τ ∷ ῷ ∷ []) "Rev.21.16"
∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ῳ ∷ []) "Rev.21.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.16"
∷ word (σ ∷ τ ∷ α ∷ δ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.16"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.16"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.21.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.16"
∷ word (μ ∷ ῆ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.21.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.16"
∷ word (π ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.16"
∷ word (ὕ ∷ ψ ∷ ο ∷ ς ∷ []) "Rev.21.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.16"
∷ word (ἴ ∷ σ ∷ α ∷ []) "Rev.21.16"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.21.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.17"
∷ word (ἐ ∷ μ ∷ έ ∷ τ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.17"
∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.17"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.21.17"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.21.17"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.21.17"
∷ word (π ∷ η ∷ χ ∷ ῶ ∷ ν ∷ []) "Rev.21.17"
∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.21.17"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.21.17"
∷ word (ὅ ∷ []) "Rev.21.17"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.17"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.21.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.18"
∷ word (ἡ ∷ []) "Rev.21.18"
∷ word (ἐ ∷ ν ∷ δ ∷ ώ ∷ μ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "Rev.21.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.18"
∷ word (τ ∷ ε ∷ ί ∷ χ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.18"
∷ word (ἴ ∷ α ∷ σ ∷ π ∷ ι ∷ ς ∷ []) "Rev.21.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.18"
∷ word (ἡ ∷ []) "Rev.21.18"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.21.18"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.18"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.21.18"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.21.18"
∷ word (ὑ ∷ ά ∷ ∙λ ∷ ῳ ∷ []) "Rev.21.18"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ῷ ∷ []) "Rev.21.18"
∷ word (ο ∷ ἱ ∷ []) "Rev.21.19"
∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.21.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.19"
∷ word (τ ∷ ε ∷ ί ∷ χ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.21.19"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Rev.21.19"
∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.21.19"
∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ῳ ∷ []) "Rev.21.19"
∷ word (κ ∷ ε ∷ κ ∷ ο ∷ σ ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.21.19"
∷ word (ὁ ∷ []) "Rev.21.19"
∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (ὁ ∷ []) "Rev.21.19"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (ἴ ∷ α ∷ σ ∷ π ∷ ι ∷ ς ∷ []) "Rev.21.19"
∷ word (ὁ ∷ []) "Rev.21.19"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (σ ∷ ά ∷ π ∷ φ ∷ ι ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (ὁ ∷ []) "Rev.21.19"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ η ∷ δ ∷ ώ ∷ ν ∷ []) "Rev.21.19"
∷ word (ὁ ∷ []) "Rev.21.19"
∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (σ ∷ μ ∷ ά ∷ ρ ∷ α ∷ γ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (σ ∷ α ∷ ρ ∷ δ ∷ ό ∷ ν ∷ υ ∷ ξ ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (ἕ ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (σ ∷ ά ∷ ρ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ό ∷ ∙λ ∷ ι ∷ θ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (ὄ ∷ γ ∷ δ ∷ ο ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (β ∷ ή ∷ ρ ∷ υ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (ἔ ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (τ ∷ ο ∷ π ∷ ά ∷ ζ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ό ∷ π ∷ ρ ∷ α ∷ σ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (ἑ ∷ ν ∷ δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (ὑ ∷ ά ∷ κ ∷ ι ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (δ ∷ ω ∷ δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (ἀ ∷ μ ∷ έ ∷ θ ∷ υ ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.21"
∷ word (ο ∷ ἱ ∷ []) "Rev.21.21"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.21"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.21"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.21"
∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.21"
∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Rev.21.21"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.21.21"
∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.21"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.21"
∷ word (π ∷ υ ∷ ∙λ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.21.21"
∷ word (ἦ ∷ ν ∷ []) "Rev.21.21"
∷ word (ἐ ∷ ξ ∷ []) "Rev.21.21"
∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.21.21"
∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "Rev.21.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.21"
∷ word (ἡ ∷ []) "Rev.21.21"
∷ word (π ∷ ∙λ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.21.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.21"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.21.21"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.21"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.21.21"
∷ word (ὡ ∷ ς ∷ []) "Rev.21.21"
∷ word (ὕ ∷ α ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.21.21"
∷ word (δ ∷ ι ∷ α ∷ υ ∷ γ ∷ ή ∷ ς ∷ []) "Rev.21.21"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.22"
∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.21.22"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.22"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.21.22"
∷ word (ἐ ∷ ν ∷ []) "Rev.21.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.21.22"
∷ word (ὁ ∷ []) "Rev.21.22"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.22"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.21.22"
∷ word (ὁ ∷ []) "Rev.21.22"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.21.22"
∷ word (ὁ ∷ []) "Rev.21.22"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.21.22"
∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.21.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.22"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.22"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.22"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.23"
∷ word (ἡ ∷ []) "Rev.21.23"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.21.23"
∷ word (ο ∷ ὐ ∷ []) "Rev.21.23"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.21.23"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.21.23"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.23"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.23"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.21.23"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.23"
∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Rev.21.23"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.21.23"
∷ word (φ ∷ α ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.21.23"
∷ word (ἡ ∷ []) "Rev.21.23"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.23"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.21.23"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.23"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.23"
∷ word (ἐ ∷ φ ∷ ώ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.23"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.21.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.23"
∷ word (ὁ ∷ []) "Rev.21.23"
∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.23"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.23"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.24"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.24"
∷ word (τ ∷ ὰ ∷ []) "Rev.21.24"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.21.24"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.21.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.24"
∷ word (φ ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.21.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.24"
∷ word (ο ∷ ἱ ∷ []) "Rev.21.24"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.24"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.24"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.21.24"
∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.24"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.24"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.21.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.24"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.21.24"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.21.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.25"
∷ word (ο ∷ ἱ ∷ []) "Rev.21.25"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.25"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.25"
∷ word (ο ∷ ὐ ∷ []) "Rev.21.25"
∷ word (μ ∷ ὴ ∷ []) "Rev.21.25"
∷ word (κ ∷ ∙λ ∷ ε ∷ ι ∷ σ ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.25"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.21.25"
∷ word (ν ∷ ὺ ∷ ξ ∷ []) "Rev.21.25"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.25"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.25"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.25"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.21.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.26"
∷ word (ο ∷ ἴ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.26"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.26"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.21.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.26"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.26"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.21.26"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.26"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.21.26"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.21.26"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.21.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.27"
∷ word (ο ∷ ὐ ∷ []) "Rev.21.27"
∷ word (μ ∷ ὴ ∷ []) "Rev.21.27"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rev.21.27"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.21.27"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.21.27"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.21.27"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.21.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.27"
∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.21.27"
∷ word (β ∷ δ ∷ έ ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "Rev.21.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.27"
∷ word (ψ ∷ ε ∷ ῦ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.21.27"
∷ word (ε ∷ ἰ ∷ []) "Rev.21.27"
∷ word (μ ∷ ὴ ∷ []) "Rev.21.27"
∷ word (ο ∷ ἱ ∷ []) "Rev.21.27"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.21.27"
∷ word (ἐ ∷ ν ∷ []) "Rev.21.27"
∷ word (τ ∷ ῷ ∷ []) "Rev.21.27"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.21.27"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.27"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.21.27"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.27"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.27"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.22.1"
∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ ξ ∷ έ ∷ ν ∷ []) "Rev.22.1"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.1"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.22.1"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.22.1"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.1"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.22.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.22.1"
∷ word (κ ∷ ρ ∷ ύ ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.1"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.22.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.22.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.1"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.22.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.22.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.1"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.22.2"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.22.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.2"
∷ word (π ∷ ∙λ ∷ α ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.2"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.22.2"
∷ word (ἐ ∷ ν ∷ τ ∷ ε ∷ ῦ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.2"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.22.2"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.2"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.2"
∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.2"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.22.2"
∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ []) "Rev.22.2"
∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.22.2"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ι ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.22.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Rev.22.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.2"
∷ word (τ ∷ ὰ ∷ []) "Rev.22.2"
∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Rev.22.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.2"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.22.2"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.22.2"
∷ word (θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.22.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.2"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.22.3"
∷ word (κ ∷ α ∷ τ ∷ ά ∷ θ ∷ ε ∷ μ ∷ α ∷ []) "Rev.22.3"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.22.3"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.3"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3"
∷ word (ὁ ∷ []) "Rev.22.3"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.22.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.3"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.22.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.3"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.3"
∷ word (ἐ ∷ ν ∷ []) "Rev.22.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.22.3"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.3"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.22.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.3"
∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.22.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.4"
∷ word (ὄ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.4"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.22.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.4"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.22.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.22.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.4"
∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.22.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5"
∷ word (ν ∷ ὺ ∷ ξ ∷ []) "Rev.22.5"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.22.5"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.5"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.22.5"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.5"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.22.5"
∷ word (φ ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.22.5"
∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.22.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5"
∷ word (φ ∷ ῶ ∷ ς ∷ []) "Rev.22.5"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.5"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.22.5"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.5"
∷ word (ὁ ∷ []) "Rev.22.5"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.5"
∷ word (φ ∷ ω ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Rev.22.5"
∷ word (ἐ ∷ π ∷ []) "Rev.22.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.22.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.5"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.22.5"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.5"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.22.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.5"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.22.5"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.22.6"
∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.22.6"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.6"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.22.6"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.6"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.22.6"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.22.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.6"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ο ∷ ί ∷ []) "Rev.22.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.6"
∷ word (ὁ ∷ []) "Rev.22.6"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.6"
∷ word (ὁ ∷ []) "Rev.22.6"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.6"
∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.22.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.6"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.6"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.22.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.22.6"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.6"
∷ word (δ ∷ ε ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.22.6"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.22.6"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.22.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.6"
∷ word (ἃ ∷ []) "Rev.22.6"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.22.6"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.22.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.22.6"
∷ word (τ ∷ ά ∷ χ ∷ ε ∷ ι ∷ []) "Rev.22.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.7"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.22.7"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.22.7"
∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.22.7"
∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.7"
∷ word (ὁ ∷ []) "Rev.22.7"
∷ word (τ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.22.7"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.7"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.7"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.7"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.7"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.7"
∷ word (Κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.22.8"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Rev.22.8"
∷ word (ὁ ∷ []) "Rev.22.8"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ ν ∷ []) "Rev.22.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.8"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ ν ∷ []) "Rev.22.8"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.8"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.22.8"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.22.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.8"
∷ word (ἔ ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ α ∷ []) "Rev.22.8"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ []) "Rev.22.8"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.22.8"
∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.22.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.8"
∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.22.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.8"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.22.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.8"
∷ word (δ ∷ ε ∷ ι ∷ κ ∷ ν ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ό ∷ ς ∷ []) "Rev.22.8"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.8"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.22.9"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.9"
∷ word (Ὅ ∷ ρ ∷ α ∷ []) "Rev.22.9"
∷ word (μ ∷ ή ∷ []) "Rev.22.9"
∷ word (σ ∷ ύ ∷ ν ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ ς ∷ []) "Rev.22.9"
∷ word (σ ∷ ο ∷ ύ ∷ []) "Rev.22.9"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.22.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Rev.22.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.22.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9"
∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.22.9"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.9"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.9"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.9"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.22.9"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.22.9"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.22.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.22.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.22.10"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.10"
∷ word (Μ ∷ ὴ ∷ []) "Rev.22.10"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.22.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.10"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.10"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.10"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.10"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.10"
∷ word (ὁ ∷ []) "Rev.22.10"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.22.10"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.22.10"
∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Rev.22.10"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.22.10"
∷ word (ὁ ∷ []) "Rev.22.11"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.22.11"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ η ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.22.11"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.11"
∷ word (ὁ ∷ []) "Rev.22.11"
∷ word (ῥ ∷ υ ∷ π ∷ α ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.22.11"
∷ word (ῥ ∷ υ ∷ π ∷ α ∷ ρ ∷ ε ∷ υ ∷ θ ∷ ή ∷ τ ∷ ω ∷ []) "Rev.22.11"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.11"
∷ word (ὁ ∷ []) "Rev.22.11"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.11"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rev.22.11"
∷ word (π ∷ ο ∷ ι ∷ η ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.22.11"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.11"
∷ word (ὁ ∷ []) "Rev.22.11"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.11"
∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ θ ∷ ή ∷ τ ∷ ω ∷ []) "Rev.22.11"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.22.12"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.22.12"
∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.22.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.12"
∷ word (ὁ ∷ []) "Rev.22.12"
∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ό ∷ ς ∷ []) "Rev.22.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.22.12"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.22.12"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.22.12"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.22.12"
∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rev.22.12"
∷ word (ὡ ∷ ς ∷ []) "Rev.22.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.12"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Rev.22.12"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Rev.22.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.12"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.22.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.13"
∷ word (Ἄ ∷ ∙λ ∷ φ ∷ α ∷ []) "Rev.22.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.13"
∷ word (Ὦ ∷ []) "Rev.22.13"
∷ word (ὁ ∷ []) "Rev.22.13"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.22.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.13"
∷ word (ὁ ∷ []) "Rev.22.13"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.22.13"
∷ word (ἡ ∷ []) "Rev.22.13"
∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.22.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.13"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.22.13"
∷ word (Μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.22.14"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.14"
∷ word (π ∷ ∙λ ∷ ύ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.22.14"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.22.14"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.22.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.14"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.22.14"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.14"
∷ word (ἡ ∷ []) "Rev.22.14"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.22.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.22.14"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.14"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.14"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.14"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.22.14"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.14"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.22.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.22.14"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.22.14"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Rev.22.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.15"
∷ word (κ ∷ ύ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.22.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.15"
∷ word (φ ∷ ά ∷ ρ ∷ μ ∷ α ∷ κ ∷ ο ∷ ι ∷ []) "Rev.22.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.15"
∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.22.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.15"
∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.22.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.15"
∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ []) "Rev.22.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.22.15"
∷ word (φ ∷ ι ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.22.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15"
∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.22.15"
∷ word (ψ ∷ ε ∷ ῦ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.22.15"
∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Rev.22.16"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.22.16"
∷ word (ἔ ∷ π ∷ ε ∷ μ ∷ ψ ∷ α ∷ []) "Rev.22.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.22.16"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ []) "Rev.22.16"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.22.16"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.22.16"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.22.16"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.22.16"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.22.16"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.22.16"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Rev.22.16"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.22.16"
∷ word (ἡ ∷ []) "Rev.22.16"
∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "Rev.22.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.16"
∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.22.16"
∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Rev.22.16"
∷ word (ὁ ∷ []) "Rev.22.16"
∷ word (ἀ ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "Rev.22.16"
∷ word (ὁ ∷ []) "Rev.22.16"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.22.16"
∷ word (ὁ ∷ []) "Rev.22.16"
∷ word (π ∷ ρ ∷ ω ∷ ϊ ∷ ν ∷ ό ∷ ς ∷ []) "Rev.22.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.17"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.22.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17"
∷ word (ἡ ∷ []) "Rev.22.17"
∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ []) "Rev.22.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.17"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.22.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17"
∷ word (ὁ ∷ []) "Rev.22.17"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ ν ∷ []) "Rev.22.17"
∷ word (ε ∷ ἰ ∷ π ∷ ά ∷ τ ∷ ω ∷ []) "Rev.22.17"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.22.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17"
∷ word (ὁ ∷ []) "Rev.22.17"
∷ word (δ ∷ ι ∷ ψ ∷ ῶ ∷ ν ∷ []) "Rev.22.17"
∷ word (ἐ ∷ ρ ∷ χ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "Rev.22.17"
∷ word (ὁ ∷ []) "Rev.22.17"
∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.22.17"
∷ word (∙λ ∷ α ∷ β ∷ έ ∷ τ ∷ ω ∷ []) "Rev.22.17"
∷ word (ὕ ∷ δ ∷ ω ∷ ρ ∷ []) "Rev.22.17"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.17"
∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ά ∷ ν ∷ []) "Rev.22.17"
∷ word (Μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῶ ∷ []) "Rev.22.18"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.22.18"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Rev.22.18"
∷ word (τ ∷ ῷ ∷ []) "Rev.22.18"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.22.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.18"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.18"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.18"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.18"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.18"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rev.22.18"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.22.18"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ῇ ∷ []) "Rev.22.18"
∷ word (ἐ ∷ π ∷ []) "Rev.22.18"
∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "Rev.22.18"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.22.18"
∷ word (ὁ ∷ []) "Rev.22.18"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.18"
∷ word (ἐ ∷ π ∷ []) "Rev.22.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.22.18"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.22.18"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.22.18"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.22.18"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ α ∷ ς ∷ []) "Rev.22.18"
∷ word (ἐ ∷ ν ∷ []) "Rev.22.18"
∷ word (τ ∷ ῷ ∷ []) "Rev.22.18"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.22.18"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Rev.22.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.19"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rev.22.19"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.22.19"
∷ word (ἀ ∷ φ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Rev.22.19"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.22.19"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.19"
∷ word (∙λ ∷ ό ∷ γ ∷ ω ∷ ν ∷ []) "Rev.22.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.19"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.19"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ς ∷ []) "Rev.22.19"
∷ word (ἀ ∷ φ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Rev.22.19"
∷ word (ὁ ∷ []) "Rev.22.19"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.19"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.19"
∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.22.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.19"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.22.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.19"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.22.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.19"
∷ word (ἐ ∷ κ ∷ []) "Rev.22.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.22.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19"
∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.19"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.19"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.22.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.22.19"
∷ word (τ ∷ ῷ ∷ []) "Rev.22.19"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.22.19"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Rev.22.19"
∷ word (Λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.22.20"
∷ word (ὁ ∷ []) "Rev.22.20"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.22.20"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.20"
∷ word (Ν ∷ α ∷ ί ∷ []) "Rev.22.20"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.22.20"
∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.22.20"
∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.22.20"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.22.20"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.22.20"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.22.20"
∷ word (Ἡ ∷ []) "Rev.22.21"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.22.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.21"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.21"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.22.21"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.22.21"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.22.21"
∷ []
| 43.914466
| 87
| 0.336789
|
3131f70ec47ffca1b404a2229fce54616c1a9d7b
| 1,457
|
agda
|
Agda
|
formalization/Celeste.agda
|
brunoczim/Celeste
|
9f5129d97ee7b89fb8e43136779a78806b7506ab
|
[
"MIT"
] | 1
|
2020-09-16T17:31:57.000Z
|
2020-09-16T17:31:57.000Z
|
formalization/Celeste.agda
|
brunoczim/Celeste
|
9f5129d97ee7b89fb8e43136779a78806b7506ab
|
[
"MIT"
] | null | null | null |
formalization/Celeste.agda
|
brunoczim/Celeste
|
9f5129d97ee7b89fb8e43136779a78806b7506ab
|
[
"MIT"
] | null | null | null |
module Celeste where
open import Data.Nat using (ℕ; _⊔_; zero)
open import Data.String using (String)
open import Data.Vec using (Vec)
open import Data.Unsigned using (Unsigned)
open import Data.Signed using (Signed)
open import Data.Float using (Float)
private
variable
word-size : ℕ
mutual
data Type : ℕ → Set where
string : Type zero
int8 : Type zero
uint8 : Type zero
int16 : Type zero
uint16 : Type zero
int32 : Type zero
uint32 : Type zero
int64 : Type zero
uint64 : Type zero
int128 : Type zero
uint128 : Type zero
int-word : Type zero
uint-word : Type zero
float32 : Type zero
float64 : Type zero
_×_ : {m n : ℕ} → Type m → Type n → Type (m ⊔ n)
_⟶_ : {m n : ℕ} → Type m → Type n → Type (m ⊔ n)
data Expr : {n : ℕ} → Type n → Set where
str-lit : String → Expr string
int8-lit : Signed 8 → Expr int8
uint8-lit : Unsigned 8 → Expr uint8
int16-lit : Signed 16 → Expr int16
uint16-lit : Unsigned 16 → Expr uint16
int32-lit : Signed 32 → Expr int32
uint32-lit : Unsigned 32 → Expr uint32
int64-lit : Signed 64 → Expr int64
uint64-lit : Unsigned 64 → Expr uint64
int128-lit : Signed 128 → Expr int128
uint128-lit : Unsigned 128 → Expr uint128
int-word-lit : Signed word-size → Expr int-word
uint-word-lit : Unsigned word-size → Expr uint-word
float32-lit : Float → Expr float32
float64-lit : Float → Expr float64
| 29.14
| 55
| 0.643789
|
Subsets and Splits
HTML Code Excluding Scripts
The query retrieves a limited set of HTML content entries that are longer than 8 characters and do not contain script tags, offering only basic filtering with minimal analytical value.