hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
398d030c38156cf5e14e1a3516d3aed5f0a8e2a8
1,804
agda
Agda
test/Succeed/Issue3621.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3621.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3621.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2019-03-18, AIM XXIX, performance regression in 2.5.4 -- The following was quick in 2.5.3 postulate Bool : Set Foo : Bool → Bool → Bool → Bool → Bool → Bool → Bool → Bool → Bool → Set data FooRel : (x1 x1' : Bool) (x2 x2' : Bool) (x3 x3' : Bool) (x4 x4' : Bool) (x5 x5' : Bool) (x6 x6' : Bool) (x7 x7' : Bool) (x8 x8' : Bool) (x9 x9' : Bool) → Foo x1 x2 x3 x4 x5 x6 x7 x8 x9 → Foo x1' x2' x3' x4' x5' x6' x7' x8' x9' → Set where tran : (x1 x1' x1'' : Bool) (x2 x2' x2'' : Bool) (x3 x3' x3'' : Bool) (x4 x4' x4'' : Bool) (x5 x5' x5'' : Bool) (x6 x6' x6'' : Bool) (x7 x7' x7'' : Bool) (x8 x8' x8'' : Bool) (x9 x9' x9'' : Bool) (t : Foo x1 x2 x3 x4 x5 x6 x7 x8 x9) (t' : Foo x1' x2' x3' x4' x5' x6' x7' x8' x9') (t'' : Foo x1'' x2'' x3'' x4'' x5'' x6'' x7'' x8'' x9'') → FooRel x1 x1' x2 x2' x3 x3' x4 x4' x5 x5' x6 x6' x7 x7' x8 x8' x9 x9' t t' → FooRel x1' x1'' x2' x2'' x3' x3'' x4' x4'' x5' x5'' x6' x6'' x7' x7'' x8' x8'' x9' x9'' t' t'' → FooRel x1 x1'' x2 x2'' x3 x3'' x4 x4'' x5 x5'' x6 x6'' x7 x7'' x8 x8'' x9 x9'' t t'' foo : (x1 x1' : Bool) (x2 x2' : Bool) (x3 x3' : Bool) (x4 x4' : Bool) (x5 x5' : Bool) (x6 x6' : Bool) (x7 x7' : Bool) (x8 x8' : Bool) (x9 x9' : Bool) (t : Foo x1 x2 x3 x4 x5 x6 x7 x8 x9) (t' : Foo x1' x2' x3' x4' x5' x6' x7' x8' x9') → FooRel x1 x1' x2 x2' x3 x3' x4 x4' x5 x5' x6 x6' x7 x7' x8 x8' x9 x9' t t' → Set foo x1 x1' x2 x2' x3 x3' x4 x4' x5 x5' x6 x6' x7 x7' x8 x8' x9 x9' t t' (tran .x1 x1'' .x1' .x2 x2'' .x2' .x3 x3'' .x3' .x4 x4'' .x4' .x5 x5'' .x5' .x6 x6'' .x6' .x7 x7'' .x7' .x8 x8'' .x8' .x9 x9'' .x9' .t t'' .t' xy yz) = Bool -- Should check quickly again in 2.6.0
32.214286
228
0.476164
a13e0384d1bdb73931e1214f63f79f45adb1d24f
2,715
agda
Agda
RecursiveTypes/Subtyping/Semantic/Equivalence.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
1
2021-02-13T14:48:45.000Z
2021-02-13T14:48:45.000Z
RecursiveTypes/Subtyping/Semantic/Equivalence.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
RecursiveTypes/Subtyping/Semantic/Equivalence.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The two semantical definitions of subtyping are equivalent ------------------------------------------------------------------------ module RecursiveTypes.Subtyping.Semantic.Equivalence where open import Data.Nat open import Codata.Musical.Notation open import Function.Base open import RecursiveTypes.Syntax open import RecursiveTypes.Subtyping.Semantic.Inductive open import RecursiveTypes.Subtyping.Semantic.Coinductive mutual ≤∞⇒≤↓ : ∀ {n} {σ τ : Tree n} → σ ≤∞ τ → σ ≤↓ τ ≤∞⇒≤↓ le zero = ⊥ ≤∞⇒≤↓ ⊥ (suc k) = ⊥ ≤∞⇒≤↓ ⊤ (suc k) = ⊤ ≤∞⇒≤↓ var (suc k) = refl ≤∞⇒≤↓ (τ₁≤σ₁ ⟶ σ₂≤τ₂) (suc k) = ≤∞⇒≤↑ (♭ τ₁≤σ₁) k ⟶ ≤∞⇒≤↓ (♭ σ₂≤τ₂) k ≤∞⇒≤↑ : ∀ {n} {σ τ : Tree n} → σ ≤∞ τ → σ ≤↑ τ ≤∞⇒≤↑ le zero = ⊤ ≤∞⇒≤↑ ⊥ (suc k) = ⊥ ≤∞⇒≤↑ ⊤ (suc k) = ⊤ ≤∞⇒≤↑ var (suc k) = refl ≤∞⇒≤↑ (τ₁≤σ₁ ⟶ σ₂≤τ₂) (suc k) = ≤∞⇒≤↓ (♭ τ₁≤σ₁) k ⟶ ≤∞⇒≤↑ (♭ σ₂≤τ₂) k domain : ∀ {n} {σ₁ σ₂ τ₁ τ₂ : FinTree n} → σ₁ ⟶ σ₂ ≤Fin τ₁ ⟶ τ₂ → σ₂ ≤Fin τ₂ domain refl = refl domain (τ₁≤σ₁ ⟶ σ₂≤τ₂) = σ₂≤τ₂ codomain : ∀ {n} {σ₁ σ₂ τ₁ τ₂ : FinTree n} → σ₁ ⟶ σ₂ ≤Fin τ₁ ⟶ τ₂ → τ₁ ≤Fin σ₁ codomain refl = refl codomain (τ₁≤σ₁ ⟶ σ₂≤τ₂) = τ₁≤σ₁ mutual ≤↑⇒≤∞ : ∀ {n} (σ τ : Tree n) → σ ≤↑ τ → σ ≤∞ τ ≤↑⇒≤∞ ⊥ _ le = ⊥ ≤↑⇒≤∞ _ ⊤ le = ⊤ ≤↑⇒≤∞ ⊤ ⊥ le with le 1 ... | () ≤↑⇒≤∞ ⊤ (var x) le with le 1 ... | () ≤↑⇒≤∞ ⊤ (σ ⟶ τ) le with le 1 ... | () ≤↑⇒≤∞ (var x) ⊥ le with le 1 ... | () ≤↑⇒≤∞ (var x) (var x′) le with le 1 ≤↑⇒≤∞ (var x) (var .x) le | refl = var ≤↑⇒≤∞ (var x) (σ ⟶ τ) le with le 1 ... | () ≤↑⇒≤∞ (σ₁ ⟶ τ₁) ⊥ le with le 1 ... | () ≤↑⇒≤∞ (σ₁ ⟶ τ₁) (var x) le with le 1 ... | () ≤↑⇒≤∞ (σ₁ ⟶ τ₁) (σ₂ ⟶ τ₂) le = ♯ ≤↓⇒≤∞ (♭ σ₂) (♭ σ₁) (codomain ∘ le ∘ suc) ⟶ ♯ ≤↑⇒≤∞ (♭ τ₁) (♭ τ₂) (domain ∘ le ∘ suc) ≤↓⇒≤∞ : ∀ {n} (σ τ : Tree n) → σ ≤↓ τ → σ ≤∞ τ ≤↓⇒≤∞ ⊥ _ le = ⊥ ≤↓⇒≤∞ _ ⊤ le = ⊤ ≤↓⇒≤∞ ⊤ ⊥ le with le 1 ... | () ≤↓⇒≤∞ ⊤ (var x) le with le 1 ... | () ≤↓⇒≤∞ ⊤ (σ ⟶ τ) le with le 1 ... | () ≤↓⇒≤∞ (var x) ⊥ le with le 1 ... | () ≤↓⇒≤∞ (var x) (var x′) le with le 1 ≤↓⇒≤∞ (var x) (var .x) le | refl = var ≤↓⇒≤∞ (var x) (σ ⟶ τ) le with le 1 ... | () ≤↓⇒≤∞ (σ₁ ⟶ τ₁) ⊥ le with le 1 ... | () ≤↓⇒≤∞ (σ₁ ⟶ τ₁) (var x) le with le 1 ... | () ≤↓⇒≤∞ (σ₁ ⟶ τ₁) (σ₂ ⟶ τ₂) le = ♯ ≤↑⇒≤∞ (♭ σ₂) (♭ σ₁) (codomain ∘ le ∘ suc) ⟶ ♯ ≤↓⇒≤∞ (♭ τ₁) (♭ τ₂) (domain ∘ le ∘ suc) Ind⇒Coind : ∀ {n} {σ τ : Ty n} → σ ≤Ind τ → σ ≤Coind τ Ind⇒Coind = ≤↓⇒≤∞ _ _ Coind⇒Ind : ∀ {n} {σ τ : Ty n} → σ ≤Coind τ → σ ≤Ind τ Coind⇒Ind = ≤∞⇒≤↓
28.882979
72
0.378637
592519970e2c4af0f76a520f418acf107d57354c
2,321
agda
Agda
src/Implicits/Substitutions/Type.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/Implicits/Substitutions/Type.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Implicits/Substitutions/Type.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
open import Prelude module Implicits.Substitutions.Type where open import Implicits.Syntax.Type open import Data.Fin.Substitution open import Data.Star as Star hiding (map) open import Data.Star.Properties open import Data.Vec module TypeApp {T} (l : Lift T Type) where open Lift l hiding (var) infixl 8 _/_ mutual _simple/_ : ∀ {m n} → SimpleType m → Sub T m n → Type n tc c simple/ σ = simpl (tc c) tvar x simple/ σ = lift (lookup x σ) (a →' b) simple/ σ = simpl ((a / σ) →' (b / σ)) _/_ : ∀ {m n} → Type m → Sub T m n → Type n (simpl c) / σ = (c simple/ σ) (a ⇒ b) / σ = (a / σ) ⇒ (b / σ) (∀' a) / σ = ∀' (a / σ ↑) open Application (record { _/_ = _/_ }) using (_/✶_) →'-/✶-↑✶ : ∀ k {m n a b} (ρs : Subs T m n) → (simpl (a →' b)) /✶ ρs ↑✶ k ≡ simpl ((a /✶ ρs ↑✶ k) →' (b /✶ ρs ↑✶ k)) →'-/✶-↑✶ k ε = refl →'-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (→'-/✶-↑✶ k ρs) refl ⇒-/✶-↑✶ : ∀ k {m n a b} (ρs : Subs T m n) → (a ⇒ b) /✶ ρs ↑✶ k ≡ (a /✶ ρs ↑✶ k) ⇒ (b /✶ ρs ↑✶ k) ⇒-/✶-↑✶ k ε = refl ⇒-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (⇒-/✶-↑✶ k ρs) refl tc-/✶-↑✶ : ∀ k {c m n} (ρs : Subs T m n) → (simpl (tc c)) /✶ ρs ↑✶ k ≡ simpl (tc c) tc-/✶-↑✶ k ε = refl tc-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (tc-/✶-↑✶ k ρs) refl ∀'-/✶-↑✶ : ∀ k {m n a} (ρs : Subs T m n) → (∀' a) /✶ ρs ↑✶ k ≡ ∀' (a /✶ ρs ↑✶ (suc k)) ∀'-/✶-↑✶ k ε = refl ∀'-/✶-↑✶ k (x ◅ ρs) = cong₂ _/_ (∀'-/✶-↑✶ k ρs) refl typeSubst : TermSubst Type typeSubst = record { var = (λ n → simpl (tvar n)); app = TypeApp._/_ } open TermSubst typeSubst public hiding (var) open TypeApp termLift public using (_simple/_) open TypeApp varLift public using () renaming (_simple/_ to _simple/Var_) infix 8 _[/_] -- Shorthand for single-variable type substitutions _[/_] : ∀ {n} → Type (suc n) → Type n → Type n a [/ b ] = a / sub b -- shorthand for type application infixl 8 _∙_ _∙_ : ∀ {ν} → (a : Type ν) → {is∀ : is-∀' a} → Type ν → Type ν _∙_ (simpl (tvar n)) {is∀ = ()} _ _∙_ (simpl (tc c)) b = simpl (tc c) _∙_ (simpl (_ →' _)) {is∀ = ()} _ _∙_ (∀' x) b = x [/ b ] _∙_ (_ ⇒ _) {is∀ = ()} _ stp-weaken : ∀ {ν} → SimpleType ν → SimpleType (suc ν) stp-weaken (tc x) = tc x stp-weaken (tvar n) = tvar (suc n) stp-weaken (a →' b) = weaken a →' weaken b
30.539474
83
0.490306
0bc67cac4dcae8e189789bb14f93897d84f532e2
1,708
agda
Agda
src/Human/Humanity.agda
MaisaMilena/JuiceMaker
b509eb4c4014605facfb4ee5c807cd07753d4477
[ "MIT" ]
6
2019-03-29T17:35:20.000Z
2020-11-28T05:46:27.000Z
src/Human/Humanity.agda
MaisaMilena/AgdaCalculator
e977a5f2a005682cee123568b49462dd7d7b11ad
[ "MIT" ]
null
null
null
src/Human/Humanity.agda
MaisaMilena/AgdaCalculator
e977a5f2a005682cee123568b49462dd7d7b11ad
[ "MIT" ]
null
null
null
module Human.Humanity where -- Use agda-prelude instead of agda-stdlib? open import Human.JS public open import Human.Unit public open import Human.Nat public open import Human.List public open import Human.Bool public open import Human.String public open import Human.IO public open import Human.Float public open import Human.Int public Lazy : ∀ (A : Set) → Set Lazy A = Unit → A then:_ : ∀ {A : Set} → A → Lazy A then: a = λ x → a else:_ : ∀ {A : Set} → A → Lazy A else: a = λ x → a if : ∀ {A : Set} → Bool → Lazy A → Lazy A → A if true t f = t unit if false t f = f unit init-to : ∀ {A : Set} → Nat → A → (Nat → A → A) → A init-to zero x fn = x init-to (suc i) x fn = init-to i (fn zero x) (λ i → fn (suc i)) {-# COMPILE JS init-to = A => n => x => fn => { for (var i = 0, l = n.toJSValue(); i < l; ++i) x = fn(agdaRTS.primIntegerFromString(String(i)))(x); return x; } #-} syntax init-to m x (λ i → b) = init x for i to m do: b init-from-to : ∀ {A : Set} → Nat → A → Nat → (Nat → A → A) → A init-from-to n x m f = init-to (m - n) x (λ i x → f (n + i) x) syntax init-from-to n x m (λ i → b) = init x for i from n to m do: b for-to : Nat → (Nat → IO Unit) → IO Unit for-to zero act = return unit for-to (suc n) act = act zero >> for-to n (λ i → act (suc i)) syntax for-from-to n m (λ i → b) = for i from n to m do: b for-from-to : Nat → Nat → (Nat → IO Unit) → IO Unit for-from-to n m f = for-to (m - n) (λ i → f (n + i)) syntax for-to m (λ i → b) = for i to m do: b _++_ : String → String → String _++_ = primStringAppend show : Nat → String show zero = "Z" show (suc n) = "S" ++ show n Program : Set Program = Lazy (IO Unit) _f+_ : Float → Float → Float _f+_ = primFloatPlus
26.6875
163
0.591335
2348ff954ff9791a18a3e73feb7b8fd739c84b7b
1,277
agda
Agda
Agda/univalent-hott/1-type-theory.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
Agda/univalent-hott/1-type-theory.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
Agda/univalent-hott/1-type-theory.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --exact-split #-} module 1-type-theory where import 00-preamble open 00-preamble public -- Exercise 1.1 (From ../02-pi.agda) _∘-1-1_ : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} → (B → C) → ((A → B) → (A → C)) (g ∘-1-1 f) a = g (f a) import 04-inductive-types open 04-inductive-types public -- Exercise 1.2 recursorOfProjections : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} → (A → B → C) → (prod A B) → C recursorOfProjections f p = f (pr1 p) (pr2 p) -- Exercise 1.11 is neg-triple-neg exercise-1-12-i : {i j : Level} {A : UU i} {B : UU j} → A → B → A exercise-1-12-i x y = x exercise-1-12-ii : {i : Level} {A : UU i} → A → ¬ (¬ A) exercise-1-12-ii a = (\ f → f a) exercise-1-12-iii : {i j : Level} {A : UU i} {B : UU j} → (coprod (¬ A) (¬ B)) → (¬ (prod A B)) exercise-1-12-iii (inl fa) = (\ p → fa (pr1 p)) exercise-1-12-iii (inr fb) = (\ p → fb (pr2 p)) kian-ex-1-13 : {i : Level} {A : UU i} → ¬ (¬ (coprod A (¬ A))) kian-ex-1-13 = (\ f → (\ g → f (inr g)) (\ a → f (inl a))) import 05-identity-types open 05-identity-types public exercise-1-15 : {i j : Level} {A : UU i} (C : A → UU j) (x : A) (y : A) → (Id x y) → (C x) → (C y) exercise-1-15 C x y eq = ind-Id x (\ y' eq' → (C(x) → C(y'))) (\ x → x) y eq
26.604167
84
0.516053
106a7928cc93b598085d495cdc11a029bf37081a
413
agda
Agda
notes/agda-interface/OptionPragmaCommandLine.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
notes/agda-interface/OptionPragmaCommandLine.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
notes/agda-interface/OptionPragmaCommandLine.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
-- Testing how the pragmas are saved in the agda interface files (using -- the program dump-agdai) when they are used from the command-line: -- $ agda --no-termination-check OptionPragmaCommandLine.agda -- 17 October 2012. Because the PragmaOption --no-termination-check -- was used from the command-line it is *not* saved in the interface -- file. -- iPragmaOptions = [] module OptionPragmaCommandLine where
31.769231
71
0.757869
23e0a1257901658e8a9df4f50662fcca190e78ee
345
agda
Agda
test/Succeed/ForeignPragma.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/ForeignPragma.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/ForeignPragma.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Check that FOREIGN code can have nested pragmas. module _ where open import Common.Prelude {-# FOREIGN GHC {-# NOINLINE plusOne #-} plusOne :: Integer -> Integer plusOne n = n + 1 {-# INLINE plusTwo #-} plusTwo :: Integer -> Integer plusTwo = plusOne . plusOne #-} postulate plusOne : Nat → Nat {-# COMPILE GHC plusOne = plusOne #-}
15.681818
51
0.672464
06abedb3fd65bbb3907e00fafa5d62d3ca6d7342
41,064
agda
Agda
Cubical/ZCohomology/GroupStructure.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:02.000Z
2022-02-05T01:25:02.000Z
Cubical/ZCohomology/GroupStructure.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/ZCohomology/GroupStructure.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.GroupStructure where open import Cubical.ZCohomology.Base open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed hiding (id) open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws renaming (assoc to assoc∙) open import Cubical.Data.Sigma open import Cubical.HITs.Susp open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; isSetSetTrunc to §) open import Cubical.Data.Int renaming (_+_ to _ℤ+_ ; -_ to -ℤ_) open import Cubical.Data.Nat renaming (+-assoc to +-assocℕ ; +-comm to +-commℕ) open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec ; elim3 to trElim3 ; map2 to trMap2) open import Cubical.Homotopy.Loopspace open import Cubical.Algebra.Group renaming (ℤ to ℤGroup) open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open Iso renaming (inv to inv') private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' A' : Pointed ℓ infixr 34 _+ₖ_ infixr 34 _+ₕ_ infixr 34 _+ₕ∙_ -- Addition in the Eilenberg-Maclane spaces is uniquely determined if we require it to have left- and right-unit laws, -- such that these agree on 0. In particular, any h-structure (see http://ericfinster.github.io/files/emhott.pdf) is unique. +ₖ-unique : (n : ℕ) → (comp1 comp2 : coHomK (suc n) → coHomK (suc n) → coHomK (suc n)) → (rUnit1 : (x : _) → comp1 x (coHom-pt (suc n)) ≡ x) → (lUnit1 : (x : _) → comp1 (coHom-pt (suc n)) x ≡ x) → (rUnit2 : (x : _) → comp2 x (coHom-pt (suc n)) ≡ x) → (lUnit2 : (x : _) → comp2 (coHom-pt (suc n)) x ≡ x) → (unId1 : rUnit1 (coHom-pt (suc n)) ≡ lUnit1 (coHom-pt (suc n))) → (unId2 : rUnit2 (coHom-pt (suc n)) ≡ lUnit2 (coHom-pt (suc n))) → (x y : _) → comp1 x y ≡ comp2 x y +ₖ-unique n comp1 comp2 rUnit1 lUnit1 rUnit2 lUnit2 unId1 unId2 = elim2 (λ _ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _) (wedgeconFun _ _ (λ _ _ → help _ _) (λ x → lUnit1 ∣ x ∣ ∙ sym (lUnit2 ∣ x ∣)) (λ x → rUnit1 ∣ x ∣ ∙ sym (rUnit2 ∣ x ∣)) (cong₂ _∙_ unId1 (cong sym unId2))) where help : isOfHLevel (2 + (n + suc n)) (coHomK (suc n)) help = subst (λ x → isOfHLevel x (coHomK (suc n))) (+-suc n (2 + n) ∙ +-suc (suc n) (suc n)) (isOfHLevelPlus n (isOfHLevelTrunc (3 + n))) wedgeConHLev : (n : ℕ) → isOfHLevel ((2 + n) + (2 + n)) (coHomK (2 + n)) wedgeConHLev n = subst (λ x → isOfHLevel x (coHomK (2 + n))) (sym (+-suc (2 + n) (suc n) ∙ +-suc (3 + n) n)) (isOfHLevelPlus' {n = n} (4 + n) (isOfHLevelTrunc (4 + n))) wedgeConHLev' : (n : ℕ) → isOfHLevel ((2 + n) + (2 + n)) (typ (Ω (coHomK-ptd (3 + n)))) wedgeConHLev' n = subst (λ x → isOfHLevel x (typ (Ω (coHomK-ptd (3 + n))))) (sym (+-suc (2 + n) (suc n) ∙ +-suc (3 + n) n)) (isOfHLevelPlus' {n = n} (4 + n) (isOfHLevelTrunc (5 + n) _ _)) wedgeConHLevPath : (n : ℕ) → (x y : coHomK (suc n)) → isOfHLevel ((suc n) + (suc n)) (x ≡ y) wedgeConHLevPath zero x y = isOfHLevelTrunc 3 _ _ wedgeConHLevPath (suc n) x y = isOfHLevelPath ((2 + n) + (2 + n)) (wedgeConHLev n) _ _ -- addition for n ≥ 2 together with the left- and right-unit laws (modulo truncations) preAdd : (n : ℕ) → (S₊ (2 + n) → S₊ (2 + n) → coHomK (2 + n)) preAdd n = wedgeconFun _ _ (λ _ _ → wedgeConHLev n) ∣_∣ ∣_∣ refl preAdd-l : (n : ℕ) → (x : (S₊ (2 + n))) → preAdd n north x ≡ ∣ x ∣ preAdd-l n _ = refl preAdd-r : (n : ℕ) → (x : (S₊ (2 + n))) → preAdd n x north ≡ ∣ x ∣ preAdd-r n = wedgeconRight _ (suc n) (λ _ _ → wedgeConHLev n) ∣_∣ ∣_∣ refl -- addition for n = 1 wedgeMapS¹ : S¹ → S¹ → S¹ wedgeMapS¹ base y = y wedgeMapS¹ (loop i) base = loop i wedgeMapS¹ (loop i) (loop j) = hcomp (λ k → λ { (i = i0) → loop j ; (i = i1) → loop (j ∧ k) ; (j = i0) → loop i ; (j = i1) → loop (i ∧ k)}) (loop (i ∨ j)) ---------- Algebra/Group stuff -------- 0ₖ : (n : ℕ) → coHomK n 0ₖ = coHom-pt _+ₖ_ : {n : ℕ} → coHomK n → coHomK n → coHomK n _+ₖ_ {n = zero} x y = x ℤ+ y _+ₖ_ {n = suc zero} = trMap2 wedgeMapS¹ _+ₖ_ {n = suc (suc n)} = trRec (isOfHLevelΠ (4 + n) λ _ → isOfHLevelTrunc (4 + n)) λ x → trRec (isOfHLevelTrunc (4 + n)) (preAdd n x) private isEquiv+ : (n : ℕ) → (x : coHomK (suc n)) → isEquiv (_+ₖ_ {n = (suc n)} x) isEquiv+ zero = trElim (λ _ → isProp→isOfHLevelSuc 2 (isPropIsEquiv _)) (toPropElim (λ _ → isPropIsEquiv _) (subst isEquiv (sym help) (idIsEquiv _))) where help : _+ₖ_ {n = 1} (coHom-pt 1) ≡ idfun _ help = funExt (trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ _ → refl) isEquiv+ (suc n) = trElim (λ _ → isProp→isOfHLevelSuc (3 + n) (isPropIsEquiv _)) (suspToPropElim (ptSn (suc n)) (λ _ → isPropIsEquiv _) (subst isEquiv (sym help) (idIsEquiv _))) where help : _+ₖ_ {n = (2 + n)} (coHom-pt (2 + n)) ≡ idfun _ help = funExt (trElim (λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) λ _ → refl) Kₙ≃Kₙ : (n : ℕ) (x : coHomK (suc n)) → coHomK (suc n) ≃ coHomK (suc n) Kₙ≃Kₙ n x = _ , isEquiv+ n x -ₖ_ : {n : ℕ} → coHomK n → coHomK n -ₖ_ {n = zero} x = 0 - x -ₖ_ {n = suc zero} = trMap λ {base → base ; (loop i) → (loop (~ i))} -ₖ_ {n = suc (suc n)} = trMap λ {north → north ; south → north ; (merid a i) → ((merid (ptSn (suc n)) ∙ sym (merid a))) i} _-ₖ_ : {n : ℕ} → coHomK n → coHomK n → coHomK n _-ₖ_ {n = n} x y = _+ₖ_ {n = n} x (-ₖ_ {n = n} y) +ₖ-syntax : (n : ℕ) → coHomK n → coHomK n → coHomK n +ₖ-syntax n = _+ₖ_ {n = n} -ₖ-syntax : (n : ℕ) → coHomK n → coHomK n -ₖ-syntax n = -ₖ_ {n = n} -'ₖ-syntax : (n : ℕ) → coHomK n → coHomK n → coHomK n -'ₖ-syntax n = _-ₖ_ {n = n} syntax +ₖ-syntax n x y = x +[ n ]ₖ y syntax -ₖ-syntax n x = -[ n ]ₖ x syntax -'ₖ-syntax n x y = x -[ n ]ₖ y -ₖ^2 : {n : ℕ} → (x : coHomK n) → (-ₖ (-ₖ x)) ≡ x -ₖ^2 {n = zero} x = +Comm (pos zero) (-ℤ (pos zero ℤ+ (-ℤ x))) ∙∙ -Dist+ (pos zero) (-ℤ x) ∙∙ (+Comm (pos zero) (-ℤ (-ℤ x)) ∙ -Involutive x) -ₖ^2 {n = suc zero} = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ { base → refl ; (loop i) → refl} -ₖ^2 {n = suc (suc n)} = trElim (λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) λ { north → refl ; south j → ∣ merid (ptSn _) j ∣ₕ ; (merid a i) j → hcomp (λ k → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ compPath-filler' (merid a) (sym (merid (ptSn _))) (~ k) (~ j) ∣ₕ ; (j = i0) → help a (~ k) i ; (j = i1) → ∣ merid a (i ∧ k) ∣}) ∣ (merid a ∙ sym (merid (ptSn _))) (i ∧ ~ j) ∣ₕ} where help : (a : _) → cong (-ₖ_ ∘ (-ₖ_ {n = suc (suc n)})) (cong ∣_∣ₕ (merid a)) ≡ cong ∣_∣ₕ (merid a ∙ sym (merid (ptSn _))) help a = cong (cong ((-ₖ_ {n = suc (suc n)}))) (cong-∙ ∣_∣ₕ (merid (ptSn (suc n))) (sym (merid a))) ∙∙ cong-∙ (-ₖ_ {n = suc (suc n)}) (cong ∣_∣ₕ (merid (ptSn (suc n)))) (cong ∣_∣ₕ (sym (merid a))) ∙∙ (λ i → (λ j → ∣ rCancel (merid (ptSn (suc n))) i j ∣ₕ) ∙ λ j → ∣ symDistr (merid (ptSn (suc n))) (sym (merid a)) i j ∣ₕ) ∙ sym (lUnit _) ------- Groupoid Laws for Kₙ --------- commₖ : (n : ℕ) → (x y : coHomK n) → x +[ n ]ₖ y ≡ y +[ n ]ₖ x commₖ zero = +Comm commₖ (suc zero) = elim2 (λ _ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (wedgeconFun _ _ (λ _ _ → isOfHLevelTrunc 3 _ _) (λ {base → refl ; (loop i) → refl}) (λ {base → refl ; (loop i) → refl}) refl) commₖ (suc (suc n)) = elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) (wedgeconFun _ _ (λ x y → isOfHLevelPath ((2 + n) + (2 + n)) (wedgeConHLev n) _ _) (λ x → preAdd-l n x ∙ sym (preAdd-r n x)) (λ x → preAdd-r n x ∙ sym (preAdd-l n x)) refl) commₖ-base : (n : ℕ) → commₖ n (coHom-pt n) (coHom-pt n) ≡ refl commₖ-base zero = refl commₖ-base (suc zero) = refl commₖ-base (suc (suc n)) = sym (rUnit _) rUnitₖ : (n : ℕ) → (x : coHomK n) → x +[ n ]ₖ coHom-pt n ≡ x rUnitₖ zero x = refl rUnitₖ (suc zero) = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ {base → refl ; (loop i) → refl} rUnitₖ (suc (suc n)) = trElim (λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) (preAdd-r n) lUnitₖ : (n : ℕ) → (x : coHomK n) → coHom-pt n +[ n ]ₖ x ≡ x lUnitₖ zero x = sym (pos0+ x) lUnitₖ (suc zero) = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ {base → refl ; (loop i) → refl} lUnitₖ (suc (suc n)) = trElim (λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) λ x → refl ∙≡+₁ : (p q : typ (Ω (coHomK-ptd 1))) → p ∙ q ≡ cong₂ _+ₖ_ p q ∙≡+₁ p q = (λ i → (λ j → rUnitₖ 1 (p j) (~ i)) ∙ λ j → lUnitₖ 1 (q j) (~ i)) ∙ sym (cong₂Funct _+ₖ_ p q) ∙≡+₂ : (n : ℕ) (p q : typ (Ω (coHomK-ptd (suc (suc n))))) → p ∙ q ≡ cong₂ _+ₖ_ p q ∙≡+₂ n p q = (λ i → (λ j → rUnitₖ (2 + n) (p j) (~ i)) ∙ λ j → lUnitₖ (2 + n) (q j) (~ i)) ∙ sym (cong₂Funct _+ₖ_ p q) lCancelₖ : (n : ℕ) → (x : coHomK n) → (-ₖ_ {n = n} x) +ₖ x ≡ coHom-pt n lCancelₖ zero x = minusPlus x 0 lCancelₖ (suc zero) = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ {base → refl ; (loop i) j → help j i} where help : cong₂ _+ₖ_ (sym (cong ∣_∣ loop)) (cong ∣_∣ loop) ≡ refl help = sym (∙≡+₁ (sym (cong ∣_∣ loop)) (cong ∣_∣ loop)) ∙ lCancel _ lCancelₖ (suc (suc n)) = trElim (λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) λ {north → refl ; south → cong ∣_∣ (sym (merid (ptSn (suc n)))) ; (merid a i) → help a i } where s : (a : _) → _ ≡ _ s x = cong₂ _+ₖ_ (sym (cong ∣_∣ (merid (ptSn (suc n)) ∙ sym (merid x)))) (cong ∣_∣ (sym (merid x))) help : (a : _) → PathP (λ i → (preAdd n ((merid (ptSn (suc n)) ∙ (λ i₁ → merid a (~ i₁))) i) (merid a i)) ≡ ∣ north ∣) refl λ i₁ → ∣ merid (ptSn (suc n)) (~ i₁) ∣ help x = compPathR→PathP ((sym (lCancel _) ∙∙ (λ i → ∙≡+₂ _ (cong ∣_∣ (symDistr (merid x) (sym (merid (ptSn (suc n)))) i)) (cong ∣_∣ ((merid x) ∙ sym (merid (ptSn (suc n))))) i) ∙∙ rUnit _) ∙∙ (λ j → cong₂ _+ₖ_ ((cong ∣_∣ (merid (ptSn (suc n)) ∙ sym (merid x)))) (λ i → ∣ compPath-filler ((merid x)) ((sym (merid (ptSn (suc n))))) (~ j) i ∣) ∙ λ i → ∣ merid (ptSn (suc n)) (~ i ∧ j) ∣) ∙∙ λ i → sym (s x) ∙ rUnit (cong ∣_∣ (sym (merid (ptSn (suc n))))) i) rCancelₖ : (n : ℕ) → (x : coHomK n) → x +ₖ (-ₖ_ {n = n} x) ≡ coHom-pt n rCancelₖ zero x = +Comm x (pos 0 - x) ∙ minusPlus x 0 -- +-comm x (pos 0 - x) ∙ minusPlus x 0 rCancelₖ (suc zero) = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ {base → refl ; (loop i) j → help j i} where help : (λ i → ∣ loop i ∣ₕ +ₖ (-ₖ ∣ loop i ∣ₕ)) ≡ refl help = sym (∙≡+₁ (cong ∣_∣ₕ loop) (sym (cong ∣_∣ₕ loop))) ∙ rCancel _ rCancelₖ (suc (suc n)) x = commₖ _ x (-ₖ x) ∙ lCancelₖ _ x rCancel≡refl : (n : ℕ) → rCancelₖ (2 + n) (0ₖ _) ≡ refl rCancel≡refl n i = rUnit (rUnit refl (~ i)) (~ i) assocₖ : (n : ℕ) → (x y z : coHomK n) → x +[ n ]ₖ (y +[ n ]ₖ z) ≡ (x +[ n ]ₖ y) +[ n ]ₖ z assocₖ zero = +Assoc assocₖ (suc zero) = trElim3 (λ _ _ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ x → wedgeconFun _ _ (λ _ _ → isOfHLevelTrunc 3 _ _) (λ y i → rUnitₖ 1 ∣ x ∣ (~ i) +ₖ ∣ y ∣) (λ z → cong (∣ x ∣ +ₖ_) (rUnitₖ 1 ∣ z ∣) ∙ sym (rUnitₖ 1 (∣ x ∣ +ₖ ∣ z ∣))) (helper x) where helper : (x : S¹) → cong (∣ x ∣ +ₖ_) (rUnitₖ 1 ∣ base ∣) ∙ sym (rUnitₖ 1 (∣ x ∣ +ₖ ∣ base ∣)) ≡ (cong (_+ₖ ∣ base ∣) (sym (rUnitₖ 1 ∣ x ∣))) helper = toPropElim (λ _ → isOfHLevelTrunc 3 _ _ _ _) (sym (lUnit refl)) assocₖ (suc (suc n)) = trElim3 (λ _ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) (wedgeConSn-×3 _ (λ x z i → preAdd-r n x (~ i) +ₖ ∣ z ∣) (λ x y → cong (∣ x ∣ +ₖ_) (rUnitₖ (2 + n) ∣ y ∣) ∙ sym (rUnitₖ (2 + n) (∣ x ∣ +ₖ ∣ y ∣))) (lUnit (sym (rUnitₖ (2 + n) (∣ north ∣ +ₖ ∣ north ∣))))) where wedgeConSn-×3 : (n : ℕ) → (f : (x z : S₊ (2 + n))→ ∣ x ∣ +ₖ ((0ₖ _) +ₖ ∣ z ∣) ≡ (∣ x ∣ +ₖ (0ₖ _)) +ₖ ∣ z ∣) → (g : (x y : S₊ (2 + n)) → ∣ x ∣ +ₖ (∣ y ∣ +ₖ 0ₖ _) ≡ (∣ x ∣ +ₖ ∣ y ∣) +ₖ 0ₖ _) → (f (ptSn _) (ptSn _) ≡ g (ptSn _) (ptSn _)) → (x y z : S₊ (2 + n)) → ∣ x ∣ +ₖ (∣ y ∣ +ₖ ∣ z ∣) ≡ (∣ x ∣ +ₖ ∣ y ∣) +ₖ ∣ z ∣ wedgeConSn-×3 n f g d x = wedgeconFun _ _ (λ _ _ → isOfHLevelPath ((2 + n) + (2 + n)) (wedgeConHLev n) _ _) (f x) (g x) (sphereElim _ {A = λ x → g x (ptSn (suc (suc n))) ≡ f x (ptSn (suc (suc n))) } (λ _ → isOfHLevelTrunc (4 + n) _ _ _ _) (sym d) x) {- This was the original proof for the case n ≥ 2: For some reason it doesn't check in reasonable time anymore: assocₖ (suc (suc n)) = trElim3 (λ _ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) λ x → wedgeConSn _ _ (λ _ _ → isOfHLevelPath ((2 + n) + (2 + n)) (wedgeConHLev n) _ _) (λ z i → preAdd n .snd .snd x (~ i) +ₖ ∣ z ∣) (λ y → cong (∣ x ∣ +ₖ_) (rUnitₖ (2 + n) ∣ y ∣) ∙ sym (rUnitₖ (2 + n) (∣ x ∣ +ₖ ∣ y ∣))) (helper x) .fst where helper : (x : S₊ (2 + n)) → cong (∣ x ∣ +ₖ_) (rUnitₖ (2 + n) ∣ north ∣) ∙ sym (rUnitₖ (2 + n) (∣ x ∣ +ₖ ∣ north ∣)) ≡ cong (_+ₖ ∣ north ∣) (sym (preAdd n .snd .snd x)) helper = sphereElim (suc n) (λ _ → isOfHLevelTrunc (4 + n) _ _ _ _) (sym (lUnit (sym (rUnitₖ (2 + n) (∣ north ∣ +ₖ ∣ north ∣))))) -} lUnitₖ≡rUnitₖ : (n : ℕ) → lUnitₖ n (coHom-pt n) ≡ rUnitₖ n (coHom-pt n) lUnitₖ≡rUnitₖ zero = isSetℤ _ _ _ _ lUnitₖ≡rUnitₖ (suc zero) = refl lUnitₖ≡rUnitₖ (suc (suc n)) = refl ------ Commutativity of ΩKₙ -- We show that p ∙ q ≡ (λ i → (p i) +ₖ (q i)) for any p q : ΩKₙ₊₁. This allows us to prove that p ∙ q ≡ q ∙ p -- without having to use the equivalence Kₙ ≃ ΩKₙ₊₁ cong+ₖ-comm : (n : ℕ) (p q : typ (Ω (coHomK-ptd (suc n)))) → cong₂ _+ₖ_ p q ≡ cong₂ _+ₖ_ q p cong+ₖ-comm zero p q = rUnit (cong₂ _+ₖ_ p q) ∙∙ (λ i → (λ j → commₖ 1 ∣ base ∣ ∣ base ∣ (i ∧ j)) ∙∙ (λ j → commₖ 1 (p j) (q j) i) ∙∙ λ j → commₖ 1 ∣ base ∣ ∣ base ∣ (i ∧ ~ j)) ∙∙ ((λ i → commₖ-base 1 i ∙∙ cong₂ _+ₖ_ q p ∙∙ sym (commₖ-base 1 i)) ∙ sym (rUnit (cong₂ _+ₖ_ q p))) cong+ₖ-comm (suc n) p q = rUnit (cong₂ _+ₖ_ p q) ∙∙ (λ i → (λ j → commₖ (2 + n) ∣ north ∣ ∣ north ∣ (i ∧ j)) ∙∙ (λ j → commₖ (2 + n) (p j) (q j) i ) ∙∙ λ j → commₖ (2 + n) ∣ north ∣ ∣ north ∣ (i ∧ ~ j)) ∙∙ ((λ i → commₖ-base (2 + n) i ∙∙ cong₂ _+ₖ_ q p ∙∙ sym (commₖ-base (2 + n) i)) ∙ sym (rUnit (cong₂ _+ₖ_ q p))) isCommΩK : (n : ℕ) → isComm∙ (coHomK-ptd n) isCommΩK zero p q = isSetℤ _ _ (p ∙ q) (q ∙ p) isCommΩK (suc zero) p q = ∙≡+₁ p q ∙∙ cong+ₖ-comm 0 p q ∙∙ sym (∙≡+₁ q p) isCommΩK (suc (suc n)) p q = ∙≡+₂ n p q ∙∙ cong+ₖ-comm (suc n) p q ∙∙ sym (∙≡+₂ n q p) ----- some other useful lemmas about algebra in Kₙ -0ₖ : {n : ℕ} → -[ n ]ₖ (0ₖ n) ≡ (0ₖ n) -0ₖ {n = zero} = refl -0ₖ {n = suc zero} = refl -0ₖ {n = suc (suc n)} = refl -distrₖ : (n : ℕ) (x y : coHomK n) → -[ n ]ₖ (x +[ n ]ₖ y) ≡ (-[ n ]ₖ x) +[ n ]ₖ (-[ n ]ₖ y) -distrₖ zero x y = GroupTheory.invDistr ℤGroup x y ∙ +Comm (0 - y) (0 - x) -distrₖ (suc zero) = elim2 (λ _ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (wedgeconFun _ _ (λ _ _ → isOfHLevelTrunc 3 _ _) (λ x → sym (lUnitₖ 1 (-[ 1 ]ₖ ∣ x ∣))) (λ x → cong (λ x → -[ 1 ]ₖ x) (rUnitₖ 1 ∣ x ∣) ∙ sym (rUnitₖ 1 (-[ 1 ]ₖ ∣ x ∣))) (sym (rUnit refl))) -distrₖ (suc (suc n)) = elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) (wedgeconFun _ _ (λ _ _ → isOfHLevelPath ((2 + n) + (2 + n)) (wedgeConHLev n) _ _) (λ x → sym (lUnitₖ (2 + n) (-[ (2 + n) ]ₖ ∣ x ∣))) (λ x → cong (λ x → -[ (2 + n) ]ₖ x) (rUnitₖ (2 + n) ∣ x ∣ ) ∙ sym (rUnitₖ (2 + n) (-[ (2 + n) ]ₖ ∣ x ∣))) (sym (rUnit refl))) -cancelRₖ : (n : ℕ) (x y : coHomK n) → (y +[ n ]ₖ x) -[ n ]ₖ x ≡ y -cancelRₖ zero x y = sym (+Assoc y x (0 - x)) ∙∙ cong (y ℤ+_) (+Comm x (0 - x)) ∙∙ cong (y ℤ+_) (minusPlus x (pos 0)) -cancelRₖ (suc zero) = elim2 (λ _ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (wedgeconFun _ _ (λ _ _ → wedgeConHLevPath 0 _ _) (λ x → cong (_+ₖ ∣ base ∣) (rUnitₖ 1 ∣ x ∣) ∙ rUnitₖ 1 ∣ x ∣) (λ x → rCancelₖ 1 ∣ x ∣) (rUnit refl)) -cancelRₖ (suc (suc n)) = elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) (wedgeconFun _ _ (λ _ _ → wedgeConHLevPath (suc n) _ _) (λ x → cong (_+ₖ ∣ north ∣) (rUnitₖ (2 + n) ∣ x ∣) ∙ rUnitₖ (2 + n) ∣ x ∣) (λ x → rCancelₖ (2 + n) ∣ x ∣) (sym (rUnit _))) -cancelLₖ : (n : ℕ) (x y : coHomK n) → (x +[ n ]ₖ y) -[ n ]ₖ x ≡ y -cancelLₖ n x y = cong (λ z → z -[ n ]ₖ x) (commₖ n x y) ∙ -cancelRₖ n x y -+cancelₖ : (n : ℕ) (x y : coHomK n) → (x -[ n ]ₖ y) +[ n ]ₖ y ≡ x -+cancelₖ zero x y = sym (+Assoc x (0 - y) y) ∙ cong (x ℤ+_) (minusPlus y (pos 0)) -+cancelₖ (suc zero) = elim2 (λ _ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (wedgeconFun _ _ (λ _ _ → wedgeConHLevPath 0 _ _) (λ x → cong (_+ₖ ∣ x ∣) (lUnitₖ 1 (-ₖ ∣ x ∣)) ∙ lCancelₖ 1 ∣ x ∣) (λ x → cong (_+ₖ ∣ base ∣) (rUnitₖ 1 ∣ x ∣) ∙ rUnitₖ 1 ∣ x ∣) refl) -+cancelₖ (suc (suc n)) = elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) (wedgeconFun _ _ (λ _ _ → wedgeConHLevPath (suc n) _ _) (λ x → cong (_+ₖ ∣ x ∣) (lUnitₖ (2 + n) (-ₖ ∣ x ∣)) ∙ lCancelₖ (2 + n) ∣ x ∣) (λ x → cong (_+ₖ ∣ north ∣) (rUnitₖ (2 + n) ∣ x ∣) ∙ rUnitₖ (2 + n) ∣ x ∣) refl) ---- Group structure of cohomology groups _+ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A _+ₕ_ {n = n} = sRec2 § λ a b → ∣ (λ x → a x +[ n ]ₖ b x) ∣₂ -ₕ_ : {n : ℕ} → coHom n A → coHom n A -ₕ_ {n = n} = sRec § λ a → ∣ (λ x → -[ n ]ₖ a x) ∣₂ _-ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A _-ₕ_ {n = n} = sRec2 § λ a b → ∣ (λ x → a x -[ n ]ₖ b x) ∣₂ +ₕ-syntax : (n : ℕ) → coHom n A → coHom n A → coHom n A +ₕ-syntax n = _+ₕ_ {n = n} -ₕ-syntax : (n : ℕ) → coHom n A → coHom n A -ₕ-syntax n = -ₕ_ {n = n} -ₕ'-syntax : (n : ℕ) → coHom n A → coHom n A → coHom n A -ₕ'-syntax n = _-ₕ_ {n = n} syntax +ₕ-syntax n x y = x +[ n ]ₕ y syntax -ₕ-syntax n x = -[ n ]ₕ x syntax -ₕ'-syntax n x y = x -[ n ]ₕ y 0ₕ : (n : ℕ) → coHom n A 0ₕ n = ∣ (λ _ → (0ₖ n)) ∣₂ _+'ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A _+'ₕ_ {n = n} x y = (x +ₕ 0ₕ _) +ₕ y +ₕ 0ₕ _ rUnitₕ : (n : ℕ) (x : coHom n A) → x +[ n ]ₕ (0ₕ n) ≡ x rUnitₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rUnitₖ n (a x)) i ∣₂ lUnitₕ : (n : ℕ) (x : coHom n A) → (0ₕ n) +[ n ]ₕ x ≡ x lUnitₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lUnitₖ n (a x)) i ∣₂ rCancelₕ : (n : ℕ) (x : coHom n A) → x +[ n ]ₕ (-[ n ]ₕ x) ≡ 0ₕ n rCancelₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rCancelₖ n (a x)) i ∣₂ lCancelₕ : (n : ℕ) (x : coHom n A) → (-[ n ]ₕ x) +[ n ]ₕ x ≡ 0ₕ n lCancelₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lCancelₖ n (a x)) i ∣₂ assocₕ : (n : ℕ) (x y z : coHom n A) → (x +[ n ]ₕ (y +[ n ]ₕ z)) ≡ ((x +[ n ]ₕ y) +[ n ]ₕ z) assocₕ n = elim3 (λ _ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b c i → ∣ funExt (λ x → assocₖ n (a x) (b x) (c x)) i ∣₂ commₕ : (n : ℕ) (x y : coHom n A) → (x +[ n ]ₕ y) ≡ (y +[ n ]ₕ x) commₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ funExt (λ x → commₖ n (a x) (b x)) i ∣₂ -cancelLₕ : (n : ℕ) (x y : coHom n A) → (x +[ n ]ₕ y) -[ n ]ₕ x ≡ y -cancelLₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -cancelLₖ n (a x) (b x) i) ∣₂ -cancelRₕ : (n : ℕ) (x y : coHom n A) → (y +[ n ]ₕ x) -[ n ]ₕ x ≡ y -cancelRₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -cancelRₖ n (a x) (b x) i) ∣₂ -+cancelₕ : (n : ℕ) (x y : coHom n A) → (x -[ n ]ₕ y) +[ n ]ₕ y ≡ x -+cancelₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -+cancelₖ n (a x) (b x) i) ∣₂ -- Group structure of reduced cohomology groups (in progress - might need K to compute properly first) _+ₕ∙_ : {A : Pointed ℓ} {n : ℕ} → coHomRed n A → coHomRed n A → coHomRed n A _+ₕ∙_ {n = zero} = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ zero ]ₖ b x) , (λ i → (pa i +[ zero ]ₖ pb i)) ∣₂ } _+ₕ∙_ {n = (suc zero)} = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ 1 ]ₖ b x) , (λ i → pa i +[ 1 ]ₖ pb i) ∣₂ } _+ₕ∙_ {n = (suc (suc n))} = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ (2 + n) ]ₖ b x) , (λ i → pa i +[ (2 + n) ]ₖ pb i) ∣₂ } -ₕ∙_ : {A : Pointed ℓ} {n : ℕ} → coHomRed n A → coHomRed n A -ₕ∙_ {n = zero} = sRec § λ {(f , p) → ∣ (λ x → -[ 0 ]ₖ (f x)) , cong (λ x → -[ 0 ]ₖ x) p ∣₂} -ₕ∙_ {n = suc zero} = sRec § λ {(f , p) → ∣ (λ x → -ₖ (f x)) , cong -ₖ_ p ∣₂} -ₕ∙_ {n = suc (suc n)} = sRec § λ {(f , p) → ∣ (λ x → -ₖ (f x)) , cong -ₖ_ p ∣₂} 0ₕ∙ : {A : Pointed ℓ} (n : ℕ) → coHomRed n A 0ₕ∙ n = ∣ (λ _ → 0ₖ n) , refl ∣₂ +ₕ∙-syntax : {A : Pointed ℓ} (n : ℕ) → coHomRed n A → coHomRed n A → coHomRed n A +ₕ∙-syntax n = _+ₕ∙_ {n = n} -ₕ∙-syntax : {A : Pointed ℓ} (n : ℕ) → coHomRed n A → coHomRed n A -ₕ∙-syntax n = -ₕ∙_ {n = n} -'ₕ∙-syntax : {A : Pointed ℓ} (n : ℕ) → coHomRed n A → coHomRed n A → coHomRed n A -'ₕ∙-syntax n x y = _+ₕ∙_ {n = n} x (-ₕ∙_ {n = n} y) syntax +ₕ∙-syntax n x y = x +[ n ]ₕ∙ y syntax -ₕ∙-syntax n x = -[ n ]ₕ∙ x syntax -'ₕ∙-syntax n x y = x -[ n ]ₕ∙ y commₕ∙ : {A : Pointed ℓ} (n : ℕ) (x y : coHomRed n A) → x +[ n ]ₕ∙ y ≡ y +[ n ]ₕ∙ x commₕ∙ zero = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ {(f , p) (g , q) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) λ i x → commₖ 0 (f x) (g x) i)} commₕ∙ (suc zero) = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ {(f , p) (g , q) → cong ∣_∣₂ (ΣPathP ((λ i x → commₖ 1 (f x) (g x) i) , λ i j → commₖ 1 (p j) (q j) i))} commₕ∙ {A = A} (suc (suc n)) = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ {(f , p) (g , q) → cong ∣_∣₂ (ΣPathP ((λ i x → commₖ (2 + n) (f x) (g x) i) , λ i j → hcomp (λ k → λ {(i = i0) → p j +ₖ q j ; (i = i1) → q j +ₖ p j ; (j = i0) → commₖ (2 + n) (f (pt A)) (g (pt A)) i ; (j = i1) → rUnit (refl {x = 0ₖ (2 + n)}) (~ k) i}) (commₖ (2 + n) (p j) (q j) i)))} rUnitₕ∙ : {A : Pointed ℓ} (n : ℕ) (x : coHomRed n A) → x +[ n ]ₕ∙ 0ₕ∙ n ≡ x rUnitₕ∙ zero = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) λ i x → rUnitₖ zero (f x) i)} rUnitₕ∙ (suc zero) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (ΣPathP ((λ i x → rUnitₖ 1 (f x) i) , λ i j → rUnitₖ 1 (p j) i))} rUnitₕ∙ (suc (suc n)) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (ΣPathP ((λ i x → rUnitₖ (2 + n) (f x) i) , λ i j → rUnitₖ (2 + n) (p j) i))} lUnitₕ∙ : {A : Pointed ℓ} (n : ℕ) (x : coHomRed n A) → 0ₕ∙ n +[ n ]ₕ∙ x ≡ x lUnitₕ∙ zero = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) λ i x → lUnitₖ zero (f x) i)} lUnitₕ∙ (suc zero) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (ΣPathP ((λ i x → lUnitₖ 1 (f x) i) , λ i j → lUnitₖ 1 (p j) i))} lUnitₕ∙ (suc (suc n)) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (ΣPathP ((λ i x → lUnitₖ (2 + n) (f x) i) , λ i j → lUnitₖ (2 + n) (p j) i))} private pp : {A : Pointed ℓ} (n : ℕ) → (f : fst A → coHomK (suc (suc n))) → (p : f (snd A) ≡ snd (coHomK-ptd (suc (suc n)))) → PathP (λ i → rCancelₖ (2 + n) (f (snd A)) i ≡ 0ₖ (suc (suc n))) (λ i → (p i) +ₖ (-ₖ p i)) (λ _ → 0ₖ (suc (suc n))) pp {A = A} n f p i j = hcomp (λ k → λ {(i = i0) → rCancelₖ (suc (suc n)) (p j) (~ k) ; (i = i1) → 0ₖ (suc (suc n)) ; (j = i0) → rCancelₖ (2 + n) (f (snd A)) (i ∨ ~ k) ; (j = i1) → rUnit (rUnit (λ _ → 0ₖ (suc (suc n))) (~ i)) (~ i) k}) (0ₖ (suc (suc n))) rCancelₕ∙ : {A : Pointed ℓ} (n : ℕ) (x : coHomRed n A) → x +[ n ]ₕ∙ (-[ n ]ₕ∙ x) ≡ 0ₕ∙ n rCancelₕ∙ zero = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) λ i x → rCancelₖ zero (f x) i)} rCancelₕ∙ {A = A} (suc zero) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (ΣPathP ((λ i x → rCancelₖ 1 (f x) i) , λ i j → rCancelₖ 1 (p j) i))} rCancelₕ∙ {A = A} (suc (suc n)) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (ΣPathP ((λ i x → rCancelₖ (2 + n) (f x) i) , pp n f p))} lCancelₕ∙ : {A : Pointed ℓ} (n : ℕ) (x : coHomRed n A) → (-[ n ]ₕ∙ x) +[ n ]ₕ∙ x ≡ 0ₕ∙ n lCancelₕ∙ zero = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) λ i x → lCancelₖ zero (f x) i)} lCancelₕ∙ {A = A} (suc zero) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (ΣPathP ((λ i x → lCancelₖ 1 (f x) i) , λ i j → (lCancelₖ 1 (p j) i)))} lCancelₕ∙ {A = A} (suc (suc n)) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (ΣPathP ((λ i x → lCancelₖ (2 + n) (f x) i) , λ i j → lCancelₖ (2 + n) (p j) i))} assocₕ∙ : {A : Pointed ℓ} (n : ℕ) (x y z : coHomRed n A) → (x +[ n ]ₕ∙ (y +[ n ]ₕ∙ z)) ≡ ((x +[ n ]ₕ∙ y) +[ n ]ₕ∙ z) assocₕ∙ zero = elim3 (λ _ _ _ → isOfHLevelPath 2 § _ _) λ {(f , p) (g , q) (h , r) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) (λ i x → assocₖ zero (f x) (g x) (h x) i))} assocₕ∙ (suc zero) = elim3 (λ _ _ _ → isOfHLevelPath 2 § _ _) λ {(f , p) (g , q) (h , r) → cong ∣_∣₂ (ΣPathP ((λ i x → assocₖ 1 (f x) (g x) (h x) i) , λ i j → assocₖ 1 (p j) (q j) (r j) i))} assocₕ∙ (suc (suc n)) = elim3 (λ _ _ _ → isOfHLevelPath 2 § _ _) λ {(f , p) (g , q) (h , r) → cong ∣_∣₂ (ΣPathP ((λ i x → assocₖ (2 + n) (f x) (g x) (h x) i) , λ i j → assocₖ (2 + n) (p j) (q j) (r j) i))} open IsSemigroup open IsMonoid open GroupStr open IsGroupHom coHomGr : (n : ℕ) (A : Type ℓ) → Group ℓ coHomGr n A = coHom n A , coHomGrnA where coHomGrnA : GroupStr (coHom n A) 1g coHomGrnA = 0ₕ n GroupStr._·_ coHomGrnA = λ x y → x +[ n ]ₕ y inv coHomGrnA = λ x → -[ n ]ₕ x isGroup coHomGrnA = helper where abstract helper : IsGroup {G = coHom n A} (0ₕ n) (λ x y → x +[ n ]ₕ y) (λ x → -[ n ]ₕ x) helper = makeIsGroup § (assocₕ n) (rUnitₕ n) (lUnitₕ n) (rCancelₕ n) (lCancelₕ n) ×coHomGr : (n : ℕ) (A : Type ℓ) (B : Type ℓ') → Group _ ×coHomGr n A B = DirProd (coHomGr n A) (coHomGr n B) coHomGroup : (n : ℕ) (A : Type ℓ) → AbGroup ℓ fst (coHomGroup n A) = coHom n A AbGroupStr.0g (snd (coHomGroup n A)) = 0ₕ n AbGroupStr._+_ (snd (coHomGroup n A)) = _+ₕ_ {n = n} AbGroupStr.- snd (coHomGroup n A) = -ₕ_ {n = n} IsAbGroup.isGroup (AbGroupStr.isAbGroup (snd (coHomGroup n A))) = isGroup (snd (coHomGr n A)) IsAbGroup.comm (AbGroupStr.isAbGroup (snd (coHomGroup n A))) = commₕ n -- Reduced cohomology group (direct def) coHomRedGroupDir : (n : ℕ) (A : Pointed ℓ) → AbGroup ℓ fst (coHomRedGroupDir n A) = coHomRed n A AbGroupStr.0g (snd (coHomRedGroupDir n A)) = 0ₕ∙ n AbGroupStr._+_ (snd (coHomRedGroupDir n A)) = _+ₕ∙_ {n = n} AbGroupStr.- snd (coHomRedGroupDir n A) = -ₕ∙_ {n = n} IsAbGroup.isGroup (AbGroupStr.isAbGroup (snd (coHomRedGroupDir n A))) = helper where abstract helper : IsGroup {G = coHomRed n A} (0ₕ∙ n) (_+ₕ∙_ {n = n}) (-ₕ∙_ {n = n}) helper = makeIsGroup § (assocₕ∙ n) (rUnitₕ∙ n) (lUnitₕ∙ n) (rCancelₕ∙ n) (lCancelₕ∙ n) IsAbGroup.comm (AbGroupStr.isAbGroup (snd (coHomRedGroupDir n A))) = commₕ∙ n coHomRedGrDir : (n : ℕ) (A : Pointed ℓ) → Group ℓ coHomRedGrDir n A = AbGroup→Group (coHomRedGroupDir n A) -- Induced map coHomFun : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n : ℕ) (f : A → B) → coHom n B → coHom n A coHomFun n f = sRec § λ β → ∣ β ∘ f ∣₂ coHomMorph : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n : ℕ) (f : A → B) → GroupHom (coHomGr n B) (coHomGr n A) fst (coHomMorph n f) = coHomFun n f snd (coHomMorph n f) = makeIsGroupHom (helper n) where helper : ℕ → _ helper zero = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ _ _ → refl helper (suc zero) = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ _ _ → refl helper (suc (suc n)) = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ _ _ → refl -- Alternative definition of cohomology using ΩKₙ instead. Useful for breaking proofs of group isos -- up into smaller parts coHomGrΩ : ∀ {ℓ} (n : ℕ) (A : Type ℓ) → Group ℓ coHomGrΩ n A = ∥ (A → typ (Ω (coHomK-ptd (suc n)))) ∥₂ , coHomGrnA where coHomGrnA : GroupStr ∥ (A → typ (Ω (coHomK-ptd (suc n)))) ∥₂ 1g coHomGrnA = ∣ (λ _ → refl) ∣₂ GroupStr._·_ coHomGrnA = sRec2 § λ p q → ∣ (λ x → p x ∙ q x) ∣₂ inv coHomGrnA = map λ f x → sym (f x) isGroup coHomGrnA = helper where abstract helper : IsGroup {G = ∥ (A → typ (Ω (coHomK-ptd (suc n)))) ∥₂} (∣ (λ _ → refl) ∣₂) (sRec2 § λ p q → ∣ (λ x → p x ∙ q x) ∣₂) (map λ f x → sym (f x)) helper = makeIsGroup § (elim3 (λ _ _ _ → isOfHLevelPath 2 § _ _) (λ p q r → cong ∣_∣₂ (funExt λ x → assoc∙ (p x) (q x) (r x)))) (sElim (λ _ → isOfHLevelPath 2 § _ _) λ p → cong ∣_∣₂ (funExt λ x → sym (rUnit (p x)))) (sElim (λ _ → isOfHLevelPath 2 § _ _) λ p → cong ∣_∣₂ (funExt λ x → sym (lUnit (p x)))) (sElim (λ _ → isOfHLevelPath 2 § _ _) λ p → cong ∣_∣₂ (funExt λ x → rCancel (p x))) (sElim (λ _ → isOfHLevelPath 2 § _ _) λ p → cong ∣_∣₂ (funExt λ x → lCancel (p x))) --- the loopspace of Kₙ is commutative regardless of base addIso : (n : ℕ) (x : coHomK n) → Iso (coHomK n) (coHomK n) fun (addIso n x) y = y +[ n ]ₖ x inv' (addIso n x) y = y -[ n ]ₖ x rightInv (addIso n x) y = -+cancelₖ n y x leftInv (addIso n x) y = -cancelRₖ n x y baseChange : (n : ℕ) (x : coHomK (suc n)) → (0ₖ (suc n) ≡ 0ₖ (suc n)) ≃ (x ≡ x) baseChange n x = isoToEquiv is where f : (n : ℕ) (x : coHomK (suc n)) → (0ₖ (suc n) ≡ 0ₖ (suc n)) → (x ≡ x) f n x p = sym (rUnitₖ _ x) ∙∙ cong (x +ₖ_) p ∙∙ rUnitₖ _ x g : (n : ℕ) (x : coHomK (suc n)) → (x ≡ x) → (0ₖ (suc n) ≡ 0ₖ (suc n)) g n x p = sym (rCancelₖ _ x) ∙∙ cong (λ y → y -ₖ x) p ∙∙ rCancelₖ _ x f-g : (n : ℕ) (x : coHomK (suc n)) (p : x ≡ x) → f n x (g n x p) ≡ p f-g n = trElim (λ _ → isOfHLevelΠ (3 + n) λ _ → isOfHLevelPath (3 + n) (isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _) _ _) (ind n) where ind : (n : ℕ) (a : S₊ (suc n)) (p : ∣ a ∣ₕ ≡ ∣ a ∣ₕ) → f n ∣ a ∣ₕ (g n ∣ a ∣ₕ p) ≡ p ind zero = toPropElim (λ _ → isPropΠ λ _ → isOfHLevelTrunc 3 _ _ _ _) λ p → cong (f zero (0ₖ 1)) (sym (rUnit _) ∙ (λ k i → rUnitₖ _ (p i) k)) ∙∙ sym (rUnit _) ∙∙ λ k i → lUnitₖ _ (p i) k ind (suc n) = sphereElim (suc n) (λ _ → isOfHLevelΠ (2 + n) λ _ → isOfHLevelTrunc (4 + n) _ _ _ _) λ p → cong (f (suc n) (0ₖ (2 + n))) ((λ k → (sym (rUnit (refl ∙ refl)) ∙ sym (rUnit refl)) k ∙∙ (λ i → p i +ₖ 0ₖ (2 + n)) ∙∙ (sym (rUnit (refl ∙ refl)) ∙ sym (rUnit refl)) k) ∙ (λ k → rUnit (λ i → rUnitₖ _ (p i) k) (~ k))) ∙ λ k → rUnit (λ i → lUnitₖ _ (p i) k) (~ k) g-f : (n : ℕ) (x : coHomK (suc n)) (p : 0ₖ _ ≡ 0ₖ _) → g n x (f n x p) ≡ p g-f n = trElim (λ _ → isOfHLevelΠ (3 + n) λ _ → isOfHLevelPath (3 + n) (isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _) _ _) (ind n) where ind : (n : ℕ) (a : S₊ (suc n)) (p : 0ₖ (suc n) ≡ 0ₖ (suc n)) → g n ∣ a ∣ₕ (f n ∣ a ∣ₕ p) ≡ p ind zero = toPropElim (λ _ → isPropΠ λ _ → isOfHLevelTrunc 3 _ _ _ _) λ p → cong (g zero (0ₖ 1)) (λ k → rUnit (λ i → lUnitₖ _ (p i) k) (~ k)) ∙ (λ k → rUnit (λ i → rUnitₖ _ (p i) k) (~ k)) ind (suc n) = sphereElim (suc n) (λ _ → isOfHLevelΠ (2 + n) λ _ → isOfHLevelTrunc (4 + n) _ _ _ _) λ p → cong (g (suc n) (0ₖ (2 + n))) (λ k → rUnit (λ i → lUnitₖ _ (p i) k) (~ k)) ∙∙ (λ k → (sym (rUnit (refl ∙ refl)) ∙ sym (rUnit refl)) k ∙∙ (λ i → p i +ₖ 0ₖ (2 + n)) ∙∙ (sym (rUnit (refl ∙ refl)) ∙ sym (rUnit refl)) k) ∙∙ λ k → rUnit (λ i → rUnitₖ _ (p i) k) (~ k) is : Iso _ _ fun is = f n x inv' is = g n x rightInv is = f-g n x leftInv is = g-f n x isCommΩK-based : (n : ℕ) (x : coHomK n) → isComm∙ (coHomK n , x) isCommΩK-based zero x p q = isSetℤ _ _ (p ∙ q) (q ∙ p) isCommΩK-based (suc zero) x = subst isComm∙ (λ i → coHomK 1 , lUnitₖ 1 x i) (ptdIso→comm {A = (_ , 0ₖ 1)} (addIso 1 x) (isCommΩK 1)) isCommΩK-based (suc (suc n)) x = subst isComm∙ (λ i → coHomK (suc (suc n)) , lUnitₖ (suc (suc n)) x i) (ptdIso→comm {A = (_ , 0ₖ (suc (suc n)))} (addIso (suc (suc n)) x) (isCommΩK (suc (suc n)))) -- hidden versions of cohom stuff using the "lock" hack. The locked versions can be used when proving things. -- Swapping "key" for "tt*" will then give computing functions. Unit' : Type₀ Unit' = lockUnit {ℓ-zero} lock : ∀ {ℓ} {A : Type ℓ} → Unit' → A → A lock unlock = λ x → x module lockedCohom (key : Unit') where +K : (n : ℕ) → coHomK n → coHomK n → coHomK n +K n = lock key (_+ₖ_ {n = n}) -K : (n : ℕ) → coHomK n → coHomK n -K n = lock key (-ₖ_ {n = n}) -Kbin : (n : ℕ) → coHomK n → coHomK n → coHomK n -Kbin n x y = +K n x (-K n y) rUnitK : (n : ℕ) (x : coHomK n) → +K n x (0ₖ n) ≡ x rUnitK n x = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x (0ₖ n) ≡ x pm unlock = rUnitₖ n x lUnitK : (n : ℕ) (x : coHomK n) → +K n (0ₖ n) x ≡ x lUnitK n x = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (0ₖ n) x ≡ x pm unlock = lUnitₖ n x rCancelK : (n : ℕ) (x : coHomK n) → +K n x (-K n x) ≡ 0ₖ n rCancelK n x = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x (lock t (-ₖ_ {n = n}) x) ≡ 0ₖ n pm unlock = rCancelₖ n x lCancelK : (n : ℕ) (x : coHomK n) → +K n (-K n x) x ≡ 0ₖ n lCancelK n x = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (-ₖ_ {n = n}) x) x ≡ 0ₖ n pm unlock = lCancelₖ n x -cancelRK : (n : ℕ) (x y : coHomK n) → -Kbin n (+K n y x) x ≡ y -cancelRK n x y = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) y x) (lock t (-ₖ_ {n = n}) x) ≡ y pm unlock = -cancelRₖ n x y -cancelLK : (n : ℕ) (x y : coHomK n) → -Kbin n (+K n x y) x ≡ y -cancelLK n x y = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) x y) (lock t (-ₖ_ {n = n}) x) ≡ y pm unlock = -cancelLₖ n x y -+cancelK : (n : ℕ) (x y : coHomK n) → +K n (-Kbin n x y) y ≡ x -+cancelK n x y = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) x (lock t (-ₖ_ {n = n}) y)) y ≡ x pm unlock = -+cancelₖ n x y assocK : (n : ℕ) (x y z : coHomK n) → +K n x (+K n y z) ≡ +K n (+K n x y) z assocK n x y z = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x (lock t (_+ₖ_ {n = n}) y z) ≡ lock t (_+ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) x y) z pm unlock = assocₖ n x y z commK : (n : ℕ) (x y : coHomK n) → +K n x y ≡ +K n y x commK n x y = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x y ≡ lock t (_+ₖ_ {n = n}) y x pm unlock = commₖ n x y -- cohom +H : (n : ℕ) (x y : coHom n A) → coHom n A +H n = sRec2 § λ a b → ∣ (λ x → +K n (a x) (b x)) ∣₂ -H : (n : ℕ) (x : coHom n A) → coHom n A -H n = sRec § λ a → ∣ (λ x → -K n (a x)) ∣₂ -Hbin : (n : ℕ) → coHom n A → coHom n A → coHom n A -Hbin n = sRec2 § λ a b → ∣ (λ x → -Kbin n (a x) (b x)) ∣₂ rUnitH : (n : ℕ) (x : coHom n A) → +H n x (0ₕ n) ≡ x rUnitH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rUnitK n (a x)) i ∣₂ lUnitH : (n : ℕ) (x : coHom n A) → +H n (0ₕ n) x ≡ x lUnitH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lUnitK n (a x)) i ∣₂ rCancelH : (n : ℕ) (x : coHom n A) → +H n x (-H n x) ≡ 0ₕ n rCancelH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rCancelK n (a x)) i ∣₂ lCancelH : (n : ℕ) (x : coHom n A) → +H n (-H n x) x ≡ 0ₕ n lCancelH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lCancelK n (a x)) i ∣₂ assocH : (n : ℕ) (x y z : coHom n A) → (+H n x (+H n y z)) ≡ (+H n (+H n x y) z) assocH n = elim3 (λ _ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b c i → ∣ funExt (λ x → assocK n (a x) (b x) (c x)) i ∣₂ commH : (n : ℕ) (x y : coHom n A) → (+H n x y) ≡ (+H n y x) commH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ funExt (λ x → commK n (a x) (b x)) i ∣₂ -cancelRH : (n : ℕ) (x y : coHom n A) → -Hbin n (+H n y x) x ≡ y -cancelRH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -cancelRK n (a x) (b x) i) ∣₂ -cancelLH : (n : ℕ) (x y : coHom n A) → -Hbin n (+H n x y) x ≡ y -cancelLH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -cancelLK n (a x) (b x) i) ∣₂ -+cancelH : (n : ℕ) (x y : coHom n A) → +H n (-Hbin n x y) y ≡ x -+cancelH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -+cancelK n (a x) (b x) i) ∣₂ lUnitK≡rUnitK : (key : Unit') (n : ℕ) → lockedCohom.lUnitK key n (0ₖ n) ≡ lockedCohom.rUnitK key n (0ₖ n) lUnitK≡rUnitK unlock = lUnitₖ≡rUnitₖ open GroupStr renaming (_·_ to _+gr_) open IsGroupHom -- inducedCoHom : ∀ {ℓ ℓ'} {A : Type ℓ} {G : Group {ℓ'}} {n : ℕ} -- → GroupIso (coHomGr n A) G -- → Group -- inducedCoHom {A = A} {G = G} {n = n} e = -- InducedGroup (coHomGr n A) -- (coHom n A , λ x y → Iso.inv (isom e) (_+gr_ (snd G) (fun (isom e) x) -- (fun (isom e) y))) -- (idEquiv _) -- λ x y → sym (leftInv (isom e) _) -- ∙ cong (Iso.inv (isom e)) (isHom e x y) -- induced+ : ∀ {ℓ ℓ'} {A : Type ℓ} {G : Group {ℓ'}} {n : ℕ} -- → (e : GroupIso (coHomGr n A) G) -- → fst (inducedCoHom e) → fst (inducedCoHom e) → fst (inducedCoHom e) -- induced+ e = _+gr_ (snd (inducedCoHom e)) -- inducedCoHomIso : ∀ {ℓ ℓ'} {A : Type ℓ} {G : Group {ℓ'}} {n : ℕ} -- → (e : GroupIso (coHomGr n A) G) -- → GroupIso (coHomGr n A) (inducedCoHom e) -- isom (inducedCoHomIso e) = idIso -- isHom (inducedCoHomIso e) x y = sym (leftInv (isom e) _) -- ∙ cong (Iso.inv (isom e)) (isHom e x y) -- inducedCoHomPath : ∀ {ℓ ℓ'} {A : Type ℓ} {G : Group {ℓ'}} {n : ℕ} -- → (e : GroupIso (coHomGr n A) G) -- → coHomGr n A ≡ inducedCoHom e -- inducedCoHomPath e = InducedGroupPath _ _ _ _
44.586319
138
0.4765
a16f302cd11d2409538d58165a44e540572965ec
3,385
agda
Agda
agda-stdlib/src/Algebra/Properties/Ring.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Algebra/Properties/Ring.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Algebra/Properties/Ring.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Some basic properties of Rings ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Properties.Ring {r₁ r₂} (R : Ring r₁ r₂) where open Ring R import Algebra.Properties.AbelianGroup as AbelianGroupProperties open import Function using (_$_) open import Relation.Binary.Reasoning.Setoid setoid ------------------------------------------------------------------------ -- Export properties of abelian groups open AbelianGroupProperties +-abelianGroup public renaming ( ε⁻¹≈ε to -0#≈0# ; ∙-cancelˡ to +-cancelˡ ; ∙-cancelʳ to +-cancelʳ ; ∙-cancel to +-cancel ; ⁻¹-involutive to -‿involutive ; ⁻¹-injective to -‿injective ; ⁻¹-anti-homo-∙ to -‿anti-homo-+ ; identityˡ-unique to +-identityˡ-unique ; identityʳ-unique to +-identityʳ-unique ; identity-unique to +-identity-unique ; inverseˡ-unique to +-inverseˡ-unique ; inverseʳ-unique to +-inverseʳ-unique ; ⁻¹-∙-comm to -‿+-comm -- DEPRECATED ; left-identity-unique to +-left-identity-unique ; right-identity-unique to +-right-identity-unique ; left-inverse-unique to +-left-inverse-unique ; right-inverse-unique to +-right-inverse-unique ) ------------------------------------------------------------------------ -- Properties of -_ -‿distribˡ-* : ∀ x y → - (x * y) ≈ - x * y -‿distribˡ-* x y = sym $ begin - x * y ≈⟨ sym $ +-identityʳ _ ⟩ - x * y + 0# ≈⟨ +-congˡ $ sym (-‿inverseʳ _) ⟩ - x * y + (x * y + - (x * y)) ≈⟨ sym $ +-assoc _ _ _ ⟩ - x * y + x * y + - (x * y) ≈⟨ +-congʳ $ sym (distribʳ _ _ _) ⟩ (- x + x) * y + - (x * y) ≈⟨ +-congʳ $ *-congʳ $ -‿inverseˡ _ ⟩ 0# * y + - (x * y) ≈⟨ +-congʳ $ zeroˡ _ ⟩ 0# + - (x * y) ≈⟨ +-identityˡ _ ⟩ - (x * y) ∎ -‿distribʳ-* : ∀ x y → - (x * y) ≈ x * - y -‿distribʳ-* x y = sym $ begin x * - y ≈⟨ sym $ +-identityˡ _ ⟩ 0# + x * - y ≈⟨ +-congʳ $ sym (-‿inverseˡ _) ⟩ - (x * y) + x * y + x * - y ≈⟨ +-assoc _ _ _ ⟩ - (x * y) + (x * y + x * - y) ≈⟨ +-congˡ $ sym (distribˡ _ _ _) ⟩ - (x * y) + x * (y + - y) ≈⟨ +-congˡ $ *-congˡ $ -‿inverseʳ _ ⟩ - (x * y) + x * 0# ≈⟨ +-congˡ $ zeroʳ _ ⟩ - (x * y) + 0# ≈⟨ +-identityʳ _ ⟩ - (x * y) ∎ ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.1 -‿*-distribˡ : ∀ x y → - x * y ≈ - (x * y) -‿*-distribˡ x y = sym (-‿distribˡ-* x y) {-# WARNING_ON_USAGE -‿*-distribˡ "Warning: -‿*-distribˡ was deprecated in v1.1. Please use -‿distribˡ-* instead. NOTE: the equality is flipped so you will need sym (-‿distribˡ-* ...)." #-} -‿*-distribʳ : ∀ x y → x * - y ≈ - (x * y) -‿*-distribʳ x y = sym (-‿distribʳ-* x y) {-# WARNING_ON_USAGE -‿*-distribʳ "Warning: -‿*-distribʳ was deprecated in v1.1. Please use -‿distribʳ-* instead. NOTE: the equality is flipped so you will need sym (-‿distribʳ-* ...)." #-}
36.793478
72
0.458789
500c028baa3002d38b1cd69b3b8c22e8010a6675
4,952
agda
Agda
src/exercices/stack.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
2
2021-03-12T18:31:14.000Z
2021-05-04T09:35:36.000Z
src/exercices/stack.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
null
null
null
src/exercices/stack.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
null
null
null
module Stack where open import Data.Bool using (Bool; true; false) open import Data.Nat using (ℕ; zero; suc) import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎; step-≡) module V1 where {- This first version introduces the Stack abstract data type. -} data Stack (A : Set) : Set where ∅ : Stack A _>>_ : A → Stack A → Stack A infixr 50 _>>_ push : ∀ {A} → A → Stack A → Stack A push a s = a >> s peek : ∀ {A} → (S : Stack A) → A -- May be absurd can be used here but how? peek (a >> _) = a pop : ∀ {A} → (S : Stack A) → Stack A -- May be absurd can be used here but how? pop (a >> s) = s module Example where _ : Stack Bool _ = true >> false >> ∅ module Laws where law1 : ∀ {A} (a : A) (s : Stack A) -> peek (push a s) ≡ a law1 a s = begin peek (push a s) ≡⟨⟩ peek (a >> s) ≡⟨⟩ a ∎ law2 : ∀ {A} {a : A} {s : Stack A} → pop (push a s) ≡ s law2 = refl module V2 where {- This second version introduces the expression as constraint in the type definition. This prevents incomplete pattern matching for peek and pop. For this purpose we first design empty? predicate and then we use it in the type definition of peek and pop. -} data Stack (A : Set) : Set where ∅ : Stack A _>>_ : A → Stack A → Stack A infixr 50 _>>_ empty? : ∀ {A} → Stack A → Bool empty? ∅ = true empty? _ = false push : ∀ {A} → A → Stack A → Stack A push a s = a >> s peek : ∀ {A} → (S : Stack A) -> {empty? S ≡ false} → A peek (a >> _) = a pop : ∀ {A} → (S : Stack A) -> {empty? S ≡ false} → Stack A pop (a >> s) = s module Example where _ : Stack Bool _ = pop (push true ∅) {refl} module Laws where law1 : ∀ {A} {a : A} {s : Stack A} → peek (push a s) {refl} ≡ a law1 = refl law2 : ∀ {A} {a : A} {s : Stack A} → pop (push a s) {refl} ≡ s law2 = refl module V3 where {- In this third version we use a GADT for the Stack data representation. A Kind then is design on purpose and a phantom type is used for the association between the stack and the kind. -} data Kind : Set where Empty : Kind NotEmpty : Kind data Stack (A : Set) : Kind → Set where ∅ : Stack A Empty _>>_ : ∀ {B} → A → Stack A B → Stack A NotEmpty infixr 50 _>>_ push : ∀ {A B} → A → Stack A B → Stack A NotEmpty push a s = a >> s peek : ∀ {A} → Stack A NotEmpty → A peek (a >> _) = a {- B is in the ouput only! => No constraint with the input. Writing such pop function is impossible as is. pop : ∀ {A B} → Stack A NotEmpty → Stack A B pop (_ >> s) = s -} module Example where _ : Stack Bool NotEmpty _ = push true ∅ module Laws where law1 : ∀ {A B} {a : A} {s : Stack A B} → peek (push a s) ≡ a law1 = refl -- law2 cannot be expressed ... module V4 where {- In this fourth version we slightly review the NotEmpty construction. This opens the opportunity to express the pop function since a dependency can by modeled in the corresponding type definition. -} data Kind : Set where Empty : Kind NotEmpty : Kind → Kind data Stack (A : Set) : Kind → Set where ∅ : Stack A Empty _>>_ : ∀ {B} → A → Stack A B → Stack A (NotEmpty B) infixr 50 _>>_ push : ∀ {A B} → A → Stack A B → Stack A (NotEmpty B) push a s = a >> s peek : ∀ {A B} → Stack A (NotEmpty B) → A peek (a >> _) = a pop : ∀ {A B} → Stack A (NotEmpty B) → Stack A B pop (_ >> s) = s module Example where _ : Stack Bool (NotEmpty Empty) _ = push true ∅ module Laws where law1 : ∀ {A B} {a : A} {s : Stack A B} → peek (push a s) ≡ a law1 = refl law2 : ∀ {A B} {a : A} {s : Stack A B} → pop (push a s) ≡ s law2 = refl module V5 where {- In this last version we show that previous Kind definiton is isomorphic with the Natural. -} data Stack (A : Set) : ℕ → Set where ∅ : Stack A 0 _>>_ : ∀ {B} → A → Stack A B → Stack A (suc B) infixr 50 _>>_ push : ∀ {A B} → A → Stack A B → Stack A (suc B) push a s = a >> s peek : ∀ {A B} → Stack A (suc B) → A peek (a >> _) = a pop : ∀ {A B} → Stack A (suc B) → Stack A B pop (_ >> s) = s module Example where _ : Stack Bool 1 _ = push true ∅ module Laws where law1 : ∀ {A B} {a : A} {s : Stack A B} → peek (push a s) ≡ a law1 = refl law2 : ∀ {A B} {a : A} {s : Stack A B} → pop (push a s) ≡ s law2 = refl
25.137056
95
0.510299
4df73cbdc3ac3eb61f8e2807e7c25789acb88366
1,699
agda
Agda
Cubical/Foundations/Pointed/FunExt.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Foundations/Pointed/FunExt.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Foundations/Pointed/FunExt.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Pointed.FunExt where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Pointed.Base open import Cubical.Foundations.Pointed.Properties open import Cubical.Foundations.Pointed.Homotopy private variable ℓ ℓ' : Level module _ {A : Pointed ℓ} {B : typ A → Type ℓ'} {ptB : B (pt A)} where -- pointed function extensionality funExt∙P : {f g : Π∙ A B ptB} → f ∙∼P g → f ≡ g funExt∙P (h , h∙) i .fst x = h x i funExt∙P (h , h∙) i .snd = h∙ i -- inverse of pointed function extensionality funExt∙P⁻ : {f g : Π∙ A B ptB} → f ≡ g → f ∙∼P g funExt∙P⁻ p .fst a i = p i .fst a funExt∙P⁻ p .snd i = p i .snd -- function extensionality is an isomorphism, PathP version funExt∙PIso : (f g : Π∙ A B ptB) → Iso (f ∙∼P g) (f ≡ g) Iso.fun (funExt∙PIso f g) = funExt∙P {f = f} {g = g} Iso.inv (funExt∙PIso f g) = funExt∙P⁻ {f = f} {g = g} Iso.rightInv (funExt∙PIso f g) p i j = p j Iso.leftInv (funExt∙PIso f g) h _ = h -- transformed to equivalence funExt∙P≃ : (f g : Π∙ A B ptB) → (f ∙∼P g) ≃ (f ≡ g) funExt∙P≃ f g = isoToEquiv (funExt∙PIso f g) -- funExt∙≃ using the other kind of pointed homotopy funExt∙≃ : (f g : Π∙ A B ptB) → (f ∙∼ g) ≃ (f ≡ g) funExt∙≃ f g = compEquiv (∙∼≃∙∼P f g) (funExt∙P≃ f g) -- standard pointed function extensionality and its inverse funExt∙ : {f g : Π∙ A B ptB} → f ∙∼ g → f ≡ g funExt∙ {f = f} {g = g} = equivFun (funExt∙≃ f g) funExt∙⁻ : {f g : Π∙ A B ptB} → f ≡ g → f ∙∼ g funExt∙⁻ {f = f} {g = g} = equivFun (invEquiv (funExt∙≃ f g))
34.673469
69
0.60977
0646bfb31569989a210da5d4c8d12296a3450a6a
589
agda
Agda
test/asset/agda-stdlib-1.0/Data/W/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Data/W/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/W/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Some code related to the W type that relies on the K rule ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Data.W.WithK where open import Data.Product open import Data.Container.Core open import Data.W open import Agda.Builtin.Equality module _ {s p} {C : Container s p} {s : Shape C} {f : Position C s → W C} where sup-injective₂ : ∀ {g} → sup (s , f) ≡ sup (s , g) → f ≡ g sup-injective₂ refl = refl
28.047619
72
0.490662
4db915116fd0c58215c133850b5bdf23b0b6ef55
7,384
agda
Agda
src/FRP/LTL/Time.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
21
2015-07-02T20:25:05.000Z
2020-06-15T02:51:13.000Z
src/FRP/LTL/Time.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
2
2015-03-01T07:01:31.000Z
2015-03-02T15:23:53.000Z
src/FRP/LTL/Time.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
3
2015-03-01T07:33:00.000Z
2022-03-12T11:39:04.000Z
open import Function using ( _∘_ ) open import Data.Product using ( ∃ ; _×_ ; _,_ ) open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ ) open import Data.Empty using ( ⊥ ; ⊥-elim ) open import Data.Nat using ( ℕ ; zero ; suc ) renaming ( _+_ to _+ℕ_ ; _≤_ to _≤ℕ_ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; _≢_ ; refl ; sym ; cong ; cong₂ ; subst₂ ; inspect ; [_] ) open import Relation.Nullary using ( ¬_ ; Dec ; yes ; no ) open import FRP.LTL.Util using ( _trans_ ; _∋_ ; m+n≡0-impl-m≡0 ; ≤0-impl-≡0 ; 1+n≰n ) renaming ( +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ) open Relation.Binary.PropositionalEquality.≡-Reasoning using ( begin_ ; _≡⟨_⟩_ ; _∎ ) module FRP.LTL.Time where infix 2 _≤_ _≥_ _≰_ _≱_ _<_ _>_ infixr 4 _,_ infixr 5 _≤-trans_ _<-transˡ_ _<-transʳ_ _≤-asym_ _≤-total_ infixl 6 _+_ _∸_ -- Time has a cancellative action _+_ which respects the monoid structure of ℕ postulate Time : Set _+_ : Time → ℕ → Time +-unit : ∀ t → (t + 0 ≡ t) +-assoc : ∀ t m n → ((t + m) + n ≡ t + (m +ℕ n)) +-cancelˡ : ∀ t {m n} → (t + m ≡ t + n) → (m ≡ n) +-cancelʳ : ∀ {s t} n → (s + n ≡ t + n) → (s ≡ t) -- The order on time is derived from + data _≤_ (t u : Time) : Set where _,_ : ∀ n → (t + n ≡ u) → (t ≤ u) -- Floored subtraction t ∸ u is the smallest n such that t ≤ u + n postulate _∸_ : Time → Time → ℕ t≤u+t∸u : ∀ {t u} → (t ≤ u + (t ∸ u)) ∸-min : ∀ {t u n} → (t ≤ u + n) → (t ∸ u ≤ℕ n) -- End of postulates. suc-cancelʳ : ∀ {t u m n} → (t + suc m ≡ u + suc n) → (t + m ≡ u + n) suc-cancelʳ {t} {u} {m} {n} t+1+m≡u+1+n = +-cancelʳ 1 (+-assoc t m 1 trans cong₂ _+_ refl (+ℕ-comm m 1) trans t+1+m≡u+1+n trans cong₂ _+_ refl (+ℕ-comm 1 n) trans sym (+-assoc u n 1)) -- Syntax sugar for ≤ _≥_ : Time → Time → Set t ≥ u = u ≤ t _≰_ : Time → Time → Set t ≰ u = ¬(t ≤ u) _≱_ : Time → Time → Set t ≱ u = u ≰ t _<_ : Time → Time → Set t < u = (t ≤ u) × (u ≰ t) _>_ : Time → Time → Set t > u = u < t -- ≤ is a decidable total order ≤-refl : ∀ {t} → (t ≤ t) ≤-refl {t} = (0 , +-unit t) _≤-trans_ : ∀ {t u v} → (t ≤ u) → (u ≤ v) → (t ≤ v) _≤-trans_ {t} {u} {v} (m , t+m≡u) (n , u+n≡v) = (m +ℕ n , (sym (+-assoc t m n)) trans (cong₂ _+_ t+m≡u refl) trans u+n≡v) ≡-impl-≤ : ∀ {t u} → (t ≡ u) → (t ≤ u) ≡-impl-≤ refl = ≤-refl ≡-impl-≥ : ∀ {t u} → (t ≡ u) → (t ≥ u) ≡-impl-≥ refl = ≤-refl _≤-asym_ : ∀ {t u} → (t ≤ u) → (u ≤ t) → (t ≡ u) (m , t+m≡u) ≤-asym (n , u+n≡t) = sym (+-unit _) trans cong₂ _+_ refl (sym m≡0) trans t+m≡u where m≡0 : m ≡ 0 m≡0 = m+n≡0-impl-m≡0 m n (+-cancelˡ _ (sym (+-assoc _ m n) trans cong₂ _+_ t+m≡u refl trans u+n≡t trans sym (+-unit _))) ≤-impl-∸≡0 : ∀ {t u} → (t ≤ u) → (t ∸ u ≡ 0) ≤-impl-∸≡0 t≤u with (∸-min (t≤u ≤-trans ≡-impl-≤ (sym (+-unit _)))) ≤-impl-∸≡0 t≤u | t∸u≤0 = ≤0-impl-≡0 t∸u≤0 ∸≡0-impl-≤ : ∀ {t u} → (t ∸ u ≡ 0) → (t ≤ u) ∸≡0-impl-≤ t∸u≡0 = t≤u+t∸u ≤-trans ≡-impl-≤ (cong₂ _+_ refl t∸u≡0 trans +-unit _) ∸≢0-impl-≰ : ∀ {t u n} → (t ∸ u ≡ suc n) → (t ≰ u) ∸≢0-impl-≰ t∸u≡1+n t≤u with sym t∸u≡1+n trans ≤0-impl-≡0 (∸-min (t≤u ≤-trans ≡-impl-≤ (sym (+-unit _)))) ∸≢0-impl-≰ t∸u≡1+n t≤u | () t∸u≢0-impl-u∸t≡0 : ∀ t u {n} → (t ∸ u ≡ suc n) → (u ∸ t ≡ 0) t∸u≢0-impl-u∸t≡0 t u {n} t∸u≡1+n with t≤u+t∸u {t} {u} t∸u≢0-impl-u∸t≡0 t u {n} t∸u≡1+n | (zero , t+0≡u+t∸u) = ≤-impl-∸≡0 (t ∸ u , sym t+0≡u+t∸u trans +-unit t) t∸u≢0-impl-u∸t≡0 t u {n} t∸u≡1+n | (suc m , t+1+m≡u+t∸u) = ⊥-elim (1+n≰n n (subst₂ _≤ℕ_ t∸u≡1+n refl (∸-min (m , suc-cancelʳ (t+1+m≡u+t∸u trans cong₂ _+_ refl t∸u≡1+n))))) _≤-total_ : ∀ t u → (t ≤ u) ⊎ (u < t) t ≤-total u with t ∸ u | inspect (_∸_ t) u t ≤-total u | zero | [ t∸u≡0 ] = inj₁ (∸≡0-impl-≤ t∸u≡0) t ≤-total u | suc n | [ t∸u≡1+n ] with t∸u≢0-impl-u∸t≡0 t u t∸u≡1+n t ≤-total u | suc n | [ t∸u≡1+n ] | u∸t≡0 = inj₂ (∸≡0-impl-≤ u∸t≡0 , ∸≢0-impl-≰ t∸u≡1+n) -- Case analysis on ≤ data _≤-Case_ (t u : Time) : Set where lt : .(t < u) → (t ≤-Case u) eq : .(t ≡ u) → (t ≤-Case u) gt : .(u < t) → (t ≤-Case u) _≤-case_ : ∀ t u → (t ≤-Case u) t ≤-case u with (t ∸ u) | inspect (_∸_ t) u | u ∸ t | inspect (_∸_ u) t t ≤-case u | zero | [ t∸u≡0 ] | zero | [ u∸t≡0 ] = eq (∸≡0-impl-≤ t∸u≡0 ≤-asym ∸≡0-impl-≤ u∸t≡0) t ≤-case u | suc n | [ t∸u≡1+n ] | zero | [ u∸t≡0 ] = gt (∸≡0-impl-≤ u∸t≡0 , ∸≢0-impl-≰ t∸u≡1+n) t ≤-case u | zero | [ t∸u≡0 ] | suc w₁ | [ u∸t≡1+n ] = lt (∸≡0-impl-≤ t∸u≡0 , ∸≢0-impl-≰ u∸t≡1+n) t ≤-case u | suc m | [ t∸u≡1+m ] | suc n | [ u∸t≡1+n ] with sym u∸t≡1+n trans t∸u≢0-impl-u∸t≡0 t u t∸u≡1+m t ≤-case u | suc m | [ t∸u≡1+m ] | suc n | [ u∸t≡1+n ] | () -- + is monotone +-resp-≤ : ∀ {t u} → (t ≤ u) → ∀ n → (t + n ≤ u + n) +-resp-≤ (m , t+m≡u) n = ( m , +-assoc _ n m trans cong₂ _+_ refl (+ℕ-comm n m) trans sym (+-assoc _ m n) trans cong₂ _+_ t+m≡u refl ) +-refl-≤ : ∀ {t u} n → (t + n ≤ u + n) → (t ≤ u) +-refl-≤ n (m , t+n+m≡u+n) = ( m , +-cancelʳ n (+-assoc _ m n trans cong₂ _+_ refl (+ℕ-comm m n) trans sym (+-assoc _ n m) trans t+n+m≡u+n) ) -- Lemmas about < <-impl-≤ : ∀ {t u} → (t < u) → (t ≤ u) <-impl-≤ (t≤u , u≰t) = t≤u <-impl-≱ : ∀ {t u} → (t < u) → (u ≰ t) <-impl-≱ (t≤u , u≰t) = u≰t _<-transˡ_ : ∀ {t u v} → (t < u) → (u ≤ v) → (t < v) _<-transˡ_ (t≤u , u≰t) u≤v = (t≤u ≤-trans u≤v , λ v≤t → u≰t (u≤v ≤-trans v≤t)) _<-transʳ_ : ∀ {t u v} → (t ≤ u) → (u < v) → (t < v) _<-transʳ_ t≤u (u≤v , v≰u) = (t≤u ≤-trans u≤v , λ v≤t → v≰u (v≤t ≤-trans t≤u)) ≤-proof-irrel′ : ∀ {t u m n} → (m ≡ n) → (t+m≡u : t + m ≡ u) → (t+n≡u : t + n ≡ u) → (t ≤ u) ∋ (m , t+m≡u) ≡ (n , t+n≡u) ≤-proof-irrel′ refl refl refl = refl t≤t+1 : ∀ {t} → (t ≤ t + 1) t≤t+1 = (1 , refl) t≱t+1 : ∀ {t} → (t ≱ t + 1) t≱t+1 {t} (m , t+1+m≡t) with +-cancelˡ t (sym (+-assoc t 1 m) trans t+1+m≡t trans sym (+-unit t)) t≱t+1 (m , t+1+m≡t) | () t<t+1 : ∀ {t} → (t < t + 1) t<t+1 = (t≤t+1 , t≱t+1) <-impl-+1≤ : ∀ {t u} → (t < u) → (t + 1 ≤ u) <-impl-+1≤ {t} ((zero , t+0≡u) , u≰t) = ⊥-elim (u≰t (≡-impl-≥ (sym (+-unit t) trans t+0≡u))) <-impl-+1≤ {t} ((suc n , t+1+n≡u) , u≰t) = (n , +-assoc t 1 n trans t+1+n≡u) +-resp-< : ∀ {t u} → (t < u) → ∀ n → (t + n < u + n) +-resp-< (t≤u , t≱u) n = (+-resp-≤ t≤u n , λ u+n≤t+n → t≱u (+-refl-≤ n u+n≤t+n)) -- Proof irrelevance for ≤ ≤-proof-irrel : ∀ {t u} → (p q : t ≤ u) → (p ≡ q) ≤-proof-irrel {t} (m , t+m≡u) (n , t+n≡u) = ≤-proof-irrel′ (+-cancelˡ t (t+m≡u trans (sym t+n≡u))) t+m≡u t+n≡u -- Well ordering of < on an interval _≮[_]_ : Time → ℕ → Time → Set s ≮[ zero ] u = ⊥ s ≮[ suc n ] u = ∀ {t} → (s ≤ t) → (t < u) → (s ≮[ n ] t) <-wo′ : ∀ n {s u} → (s ≤ u) → (u ≤ s + n) → (s ≮[ suc n ] u) <-wo′ zero {s} s≤u u≤s+0 s≤t t<u = <-impl-≱ t<u (u≤s+0 ≤-trans ≡-impl-≤ (+-unit s) ≤-trans s≤t) <-wo′ (suc n) s≤u u≤s+1+n {t} s≤t ((zero , t+0≡u) , t≱u) = ⊥-elim (t≱u (≡-impl-≤ ((sym t+0≡u) trans (+-unit t)))) <-wo′ (suc n) {s} {u} s≤u (l , u+l≡s+1+n) {t} s≤t ((suc m , t+1+m≡u) , t≱u) = <-wo′ n s≤t (l +ℕ m , suc-cancelʳ t+1+l+m≡s+1+n) where t+1+l+m≡s+1+n : t + suc (l +ℕ m) ≡ s + suc n t+1+l+m≡s+1+n = cong₂ _+_ refl (cong suc (+ℕ-comm l m)) trans sym (+-assoc t (1 +ℕ m) l) trans cong₂ _+_ t+1+m≡u refl trans u+l≡s+1+n <-wo : ∀ {s u} → (s ≤ u) → ∃ λ n → (s ≮[ n ] u) <-wo (n , s+n≡u) = (suc n , λ {t} → <-wo′ n (n , s+n≡u) (≡-impl-≤ (sym s+n≡u)) {t})
33.112108
107
0.452465
501df080b3a93eb2593455383c90633fa5418c90
5,010
agda
Agda
Cubical/Displayed/Function.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Displayed/Function.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Displayed/Function.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
{- Functions building UARels and DUARels on function types -} {-# OPTIONS --no-exact-split --safe #-} module Cubical.Displayed.Function where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Functions.FunExtEquiv open import Cubical.Functions.Implicit open import Cubical.Displayed.Base open import Cubical.Displayed.Constant open import Cubical.Displayed.Morphism open import Cubical.Displayed.Subst open import Cubical.Displayed.Sigma private variable ℓA ℓ≅A ℓB ℓ≅B ℓC ℓ≅C : Level -- UARel on dependent function type -- from UARel on domain and DUARel on codomain module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) where open UARel 𝒮-A open DUARel 𝒮ᴰ-B 𝒮-Π : UARel ((a : A) → B a) (ℓ-max ℓA ℓ≅B) UARel._≅_ 𝒮-Π f f' = ∀ a → f a ≅ᴰ⟨ ρ a ⟩ f' a UARel.ua 𝒮-Π f f' = compEquiv (equivΠCod λ a → uaᴰρ (f a) (f' a)) funExtEquiv -- Parameterize UARel by type _→𝒮_ : (A : Type ℓA) {B : Type ℓB} (𝒮-B : UARel B ℓ≅B) → UARel (A → B) (ℓ-max ℓA ℓ≅B) (A →𝒮 𝒮-B) .UARel._≅_ f f' = ∀ a → 𝒮-B .UARel._≅_ (f a) (f' a) (A →𝒮 𝒮-B) .UARel.ua f f' = compEquiv (equivΠCod λ a → 𝒮-B .UARel.ua (f a) (f' a)) funExtEquiv 𝒮-app : {A : Type ℓA} {B : Type ℓB} {𝒮-B : UARel B ℓ≅B} → A → UARelHom (A →𝒮 𝒮-B) 𝒮-B 𝒮-app a .UARelHom.fun f = f a 𝒮-app a .UARelHom.rel h = h a 𝒮-app a .UARelHom.ua h = refl -- DUARel on dependent function type -- from DUARels on domain and codomain module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) {C : (a : A) → B a → Type ℓC} (𝒮ᴰ-C : DUARel (∫ 𝒮ᴰ-B) (uncurry C) ℓ≅C) where open UARel 𝒮-A private module B = DUARel 𝒮ᴰ-B module C = DUARel 𝒮ᴰ-C 𝒮ᴰ-Π : DUARel 𝒮-A (λ a → (b : B a) → C a b) (ℓ-max (ℓ-max ℓB ℓ≅B) ℓ≅C) DUARel._≅ᴰ⟨_⟩_ 𝒮ᴰ-Π f p f' = ∀ {b b'} (q : b B.≅ᴰ⟨ p ⟩ b') → f b C.≅ᴰ⟨ p , q ⟩ f' b' DUARel.uaᴰ 𝒮ᴰ-Π f p f' = compEquiv (equivImplicitΠCod λ {b} → (equivImplicitΠCod λ {b'} → (equivΠ (B.uaᴰ b p b') (λ q → C.uaᴰ (f b) (p , q) (f' b'))))) funExtDepEquiv _→𝒮ᴰ_ : {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) {C : A → Type ℓC} (𝒮ᴰ-C : DUARel 𝒮-A C ℓ≅C) → DUARel 𝒮-A (λ a → B a → C a) (ℓ-max (ℓ-max ℓB ℓ≅B) ℓ≅C) 𝒮ᴰ-B →𝒮ᴰ 𝒮ᴰ-C = 𝒮ᴰ-Π 𝒮ᴰ-B (𝒮ᴰ-Lift _ 𝒮ᴰ-C 𝒮ᴰ-B) -- DUARel on dependent function type -- from a SubstRel on the domain and DUARel on the codomain module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} (𝒮ˢ-B : SubstRel 𝒮-A B) {C : (a : A) → B a → Type ℓC} (𝒮ᴰ-C : DUARel (∫ˢ 𝒮ˢ-B) (uncurry C) ℓ≅C) where open UARel 𝒮-A open SubstRel 𝒮ˢ-B open DUARel 𝒮ᴰ-C 𝒮ᴰ-Πˢ : DUARel 𝒮-A (λ a → (b : B a) → C a b) (ℓ-max ℓB ℓ≅C) DUARel._≅ᴰ⟨_⟩_ 𝒮ᴰ-Πˢ f p f' = (b : B _) → f b ≅ᴰ⟨ p , refl ⟩ f' (act p .fst b) DUARel.uaᴰ 𝒮ᴰ-Πˢ f p f' = compEquiv (compEquiv (equivΠCod λ b → Jequiv (λ b' q → f b ≅ᴰ⟨ p , q ⟩ f' b')) (invEquiv implicit≃Explicit)) (DUARel.uaᴰ (𝒮ᴰ-Π (Subst→DUA 𝒮ˢ-B) 𝒮ᴰ-C) f p f') -- SubstRel on a dependent function type -- from a SubstRel on the domain and SubstRel on the codomain equivΠ' : ∀ {ℓA ℓA' ℓB ℓB'} {A : Type ℓA} {A' : Type ℓA'} {B : A → Type ℓB} {B' : A' → Type ℓB'} (eA : A ≃ A') (eB : {a : A} {a' : A'} → eA .fst a ≡ a' → B a ≃ B' a') → ((a : A) → B a) ≃ ((a' : A') → B' a') equivΠ' {B' = B'} eA eB = isoToEquiv isom where open Iso isom : Iso _ _ isom .fun f a' = eB (retEq eA a') .fst (f (invEq eA a')) isom .inv f' a = invEq (eB refl) (f' (eA .fst a)) isom .rightInv f' = funExt λ a' → J (λ a'' p → eB p .fst (invEq (eB refl) (f' (p i0))) ≡ f' a'') (retEq (eB refl) (f' (eA .fst (invEq eA a')))) (retEq eA a') isom .leftInv f = funExt λ a → subst (λ p → invEq (eB refl) (eB p .fst (f (invEq eA (eA .fst a)))) ≡ f a) (sym (commPathIsEq (eA .snd) a)) (J (λ a'' p → invEq (eB refl) (eB (cong (eA .fst) p) .fst (f (invEq eA (eA .fst a)))) ≡ f a'') (secEq (eB refl) (f (invEq eA (eA .fst a)))) (secEq eA a)) module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} (𝒮ˢ-B : SubstRel 𝒮-A B) {C : Σ A B → Type ℓC} (𝒮ˢ-C : SubstRel (∫ˢ 𝒮ˢ-B) C) where open UARel 𝒮-A open SubstRel private module B = SubstRel 𝒮ˢ-B module C = SubstRel 𝒮ˢ-C 𝒮ˢ-Π : SubstRel 𝒮-A (λ a → (b : B a) → C (a , b)) 𝒮ˢ-Π .act p = equivΠ' (B.act p) (λ q → C.act (p , q)) 𝒮ˢ-Π .uaˢ p f = fromPathP (DUARel.uaᴰ (𝒮ᴰ-Π (Subst→DUA 𝒮ˢ-B) (Subst→DUA 𝒮ˢ-C)) f p (equivFun (𝒮ˢ-Π .act p) f) .fst (λ {b} → J (λ b' q → equivFun (C.act (p , q)) (f b) ≡ equivFun (equivΠ' (𝒮ˢ-B .act p) (λ q → C.act (p , q))) f b') (λ i → C.act (p , λ j → commSqIsEq (𝒮ˢ-B .act p .snd) b (~ i) j) .fst (f (secEq (𝒮ˢ-B .act p) b (~ i))))))
30.54878
100
0.547305
1dd1c054a64bc2094ce3cb55a002c843a24916ba
374
agda
Agda
test/Succeed/Issue2429-subtyping.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue2429-subtyping.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue2429-subtyping.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2017-01-24, issue #2429 -- Respect subtyping also for irrelevant lambdas! -- Subtyping: (.A → B) ≤ (A → B) -- Where a function is expected, we can put one which does not use its argument. id : ∀{A B : Set} → (.A → B) → A → B id f = f test : ∀{A B : Set} → (.A → B) → A → B test f = λ .a → f a -- Should work! -- The eta-expansion should not change anything!
24.933333
80
0.596257
59dc43967ecd8dcf237b5d3c5cdf44730003683e
421
agda
Agda
Math/NumberTheory/Summation/Generic/Properties/Lemma.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
3
2020-04-07T17:49:42.000Z
2020-04-21T00:03:43.000Z
Math/NumberTheory/Summation/Generic/Properties/Lemma.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
Math/NumberTheory/Summation/Generic/Properties/Lemma.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Math.NumberTheory.Summation.Generic.Properties.Lemma where -- agda-stdlib open import Data.Nat open import Data.Nat.Properties open import Data.Nat.Solver open import Relation.Binary.PropositionalEquality open import Function.Base lemma₁ : ∀ m n → 2 + m + n ≡ suc m + suc n lemma₁ = solve 2 (λ m n → con 2 :+ m :+ n := con 1 :+ m :+ (con 1 :+ n)) refl where open +-*-Solver
28.066667
77
0.688836
296979e7ce9e87a80be902e7d074f66e971da4d3
8,118
agda
Agda
Cubical/HITs/Cylinder/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Cylinder/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/Cylinder/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Cylinder.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Everything open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Data.Sum using (_⊎_; inl; inr) open import Cubical.HITs.PropositionalTruncation using (∥_∥; ∣_∣; squash) open import Cubical.HITs.Interval using (Interval; zero; one; seg) -- Cylinder A is a cylinder object in the category of cubical types. -- -- https://ncatlab.org/nlab/show/cylinder+object data Cylinder {ℓ} (A : Type ℓ) : Type ℓ where inl : A → Cylinder A inr : A → Cylinder A cross : ∀ x → inl x ≡ inr x -- Dual to this is the cocylinder or path space object. -- -- https://ncatlab.org/nlab/show/path+space+object Cocylinder : ∀ {ℓ} → Type ℓ → Type ℓ Cocylinder A = Interval → A module _ {ℓ} {A : Type ℓ} where -- The cylinder is part of a factorization of the obvious mapping -- of type A ⊎ A → A into a pair of mappings: -- -- A ⊎ A → Cylinder A ≃ A -- -- include is the first part of the factorization. include : A ⊎ A → Cylinder A include (inl x) = inl x include (inr x) = inr x -- The above inclusion is surjective includeSurjective : ∀ c → ∃[ s ∈ A ⊎ A ] include s ≡ c includeSurjective (inl x) = ∣ inl x , refl ∣ includeSurjective (inr x) = ∣ inr x , refl ∣ includeSurjective (cross x i) = squash ∣ inl x , (λ j → cross x (i ∧ j)) ∣ ∣ inr x , (λ j → cross x (i ∨ ~ j)) ∣ i elim : ∀{ℓ'} {B : Cylinder A → Type ℓ'} → (f : (x : A) → B (inl x)) → (g : (x : A) → B (inr x)) → (p : ∀ x → PathP (λ i → B (cross x i)) (f x) (g x)) → (c : Cylinder A) → B c elim f _ _ (inl x) = f x elim _ g _ (inr x) = g x elim _ _ p (cross x i) = p x i private out : Cylinder A → A out (inl x) = x out (inr x) = x out (cross x i) = x inl-out : (c : Cylinder A) → inl (out c) ≡ c inl-out (inl x) = refl inl-out (inr x) = cross x inl-out (cross x i) = λ j → cross x (i ∧ j) out-inl : ∀(x : A) → out (inl x) ≡ x out-inl x = refl -- The second part of the factorization above. CylinderA≃A : Cylinder A ≃ A CylinderA≃A = isoToEquiv (iso out inl out-inl inl-out) -- The cocylinder has a similar equivalence that is part -- of factorizing the diagonal mapping. private inco : A → Cocylinder A inco x _ = x outco : Cocylinder A → A outco f = f zero A→CocylinderA→A : (x : A) → outco (inco x) ≡ x A→CocylinderA→A x = refl CocylinderA→A→CocylinderA : (c : Cocylinder A) → inco (outco c) ≡ c CocylinderA→A→CocylinderA c j zero = c zero CocylinderA→A→CocylinderA c j one = c (seg j) CocylinderA→A→CocylinderA c j (seg i) = c (seg (j ∧ i)) A≃CocylinderA : A ≃ Cocylinder A A≃CocylinderA = isoToEquiv (iso inco outco CocylinderA→A→CocylinderA A→CocylinderA→A) project : Cocylinder A → A × A project c = c zero , c one -- Since we can construct cylinders for every type, Cylinder actually -- constitutes a cylinder functor: -- -- https://ncatlab.org/nlab/show/cylinder+functor -- -- e₀ = inl -- e₁ = inr -- σ = out module Functorial where private variable ℓa ℓb ℓc : Level A : Type ℓa B : Type ℓb C : Type ℓc map : (A → B) → Cylinder A → Cylinder B map f (inl x) = inl (f x) map f (inr x) = inr (f x) map f (cross x i) = cross (f x) i mapId : map (λ(x : A) → x) ≡ (λ x → x) mapId i (inl x) = inl x mapId i (inr x) = inr x mapId i (cross x j) = cross x j map∘ : (f : A → B) → (g : B → C) → map (λ x → g (f x)) ≡ (λ x → map g (map f x)) map∘ f g i (inl x) = inl (g (f x)) map∘ f g i (inr x) = inr (g (f x)) map∘ f g i (cross x j) = cross (g (f x)) j -- There is an adjunction between the cylinder and coyclinder -- functors. -- -- Cylinder ⊣ Cocylinder adj₁ : (Cylinder A → B) → A → Cocylinder B adj₁ f x zero = f (inl x) adj₁ f x one = f (inr x) adj₁ f x (seg i) = f (cross x i) adj₂ : (A → Cocylinder B) → Cylinder A → B adj₂ g (inl x) = g x zero adj₂ g (inr x) = g x one adj₂ g (cross x i) = g x (seg i) adj₁₂ : (g : A → Cocylinder B) → adj₁ (adj₂ g) ≡ g adj₁₂ g _ x zero = g x zero adj₁₂ g _ x one = g x one adj₁₂ g _ x (seg i) = g x (seg i) adj₂₁ : (f : Cylinder A → B) → adj₂ (adj₁ f) ≡ f adj₂₁ f j (inl x) = f (inl x) adj₂₁ f j (inr x) = f (inr x) adj₂₁ f j (cross x i) = f (cross x i) module IntervalEquiv where -- There is an equivalence between the interval and the -- cylinder over the unit type. Interval→CylinderUnit : Interval → Cylinder Unit Interval→CylinderUnit zero = inl _ Interval→CylinderUnit one = inr _ Interval→CylinderUnit (seg i) = cross _ i CylinderUnit→Interval : Cylinder Unit → Interval CylinderUnit→Interval (inl _) = zero CylinderUnit→Interval (inr _) = one CylinderUnit→Interval (cross _ i) = seg i Interval→CylinderUnit→Interval : ∀ i → CylinderUnit→Interval (Interval→CylinderUnit i) ≡ i Interval→CylinderUnit→Interval zero = refl Interval→CylinderUnit→Interval one = refl Interval→CylinderUnit→Interval (seg i) = refl CylinderUnit→Interval→CylinderUnit : ∀ c → Interval→CylinderUnit (CylinderUnit→Interval c) ≡ c CylinderUnit→Interval→CylinderUnit (inl _) = refl CylinderUnit→Interval→CylinderUnit (inr _) = refl CylinderUnit→Interval→CylinderUnit (cross _ i) = refl CylinderUnit≃Interval : Cylinder Unit ≃ Interval CylinderUnit≃Interval = isoToEquiv (iso CylinderUnit→Interval Interval→CylinderUnit Interval→CylinderUnit→Interval CylinderUnit→Interval→CylinderUnit) -- More generally, there is an equivalence between the cylinder -- over any type A and the product of A and the interval. module _ {ℓ} {A : Type ℓ} where private Cyl : Type ℓ Cyl = A × Interval CylinderA→A×Interval : Cylinder A → Cyl CylinderA→A×Interval (inl x) = x , zero CylinderA→A×Interval (inr x) = x , one CylinderA→A×Interval (cross x i) = x , seg i A×Interval→CylinderA : Cyl → Cylinder A A×Interval→CylinderA (x , zero) = inl x A×Interval→CylinderA (x , one) = inr x A×Interval→CylinderA (x , seg i) = cross x i A×Interval→CylinderA→A×Interval : ∀ c → CylinderA→A×Interval (A×Interval→CylinderA c) ≡ c A×Interval→CylinderA→A×Interval (x , zero) = refl A×Interval→CylinderA→A×Interval (x , one) = refl A×Interval→CylinderA→A×Interval (x , seg i) = refl CylinderA→A×Interval→CylinderA : ∀ c → A×Interval→CylinderA (CylinderA→A×Interval c) ≡ c CylinderA→A×Interval→CylinderA (inl x) = refl CylinderA→A×Interval→CylinderA (inr x) = refl CylinderA→A×Interval→CylinderA (cross x i) = refl CylinderA≃A×Interval : Cylinder A ≃ Cyl CylinderA≃A×Interval = isoToEquiv (iso CylinderA→A×Interval A×Interval→CylinderA A×Interval→CylinderA→A×Interval CylinderA→A×Interval→CylinderA) -- The cylinder is also the pushout of the identity on A with itself. module Push {ℓ} {A : Type ℓ} where open import Cubical.HITs.Pushout private Push : Type ℓ Push = Pushout (λ(x : A) → x) (λ x → x) Cyl : Type ℓ Cyl = Cylinder A Cylinder→Pushout : Cyl → Push Cylinder→Pushout (inl x) = inl x Cylinder→Pushout (inr x) = inr x Cylinder→Pushout (cross x i) = push x i Pushout→Cylinder : Push → Cyl Pushout→Cylinder (inl x) = inl x Pushout→Cylinder (inr x) = inr x Pushout→Cylinder (push x i) = cross x i Pushout→Cylinder→Pushout : ∀ p → Cylinder→Pushout (Pushout→Cylinder p) ≡ p Pushout→Cylinder→Pushout (inl x) = refl Pushout→Cylinder→Pushout (inr x) = refl Pushout→Cylinder→Pushout (push x i) = refl Cylinder→Pushout→Cylinder : ∀ c → Pushout→Cylinder (Cylinder→Pushout c) ≡ c Cylinder→Pushout→Cylinder (inl x) = refl Cylinder→Pushout→Cylinder (inr x) = refl Cylinder→Pushout→Cylinder (cross x i) = refl Pushout≃Cylinder : Push ≃ Cyl Pushout≃Cylinder = isoToEquiv (iso Pushout→Cylinder Cylinder→Pushout Cylinder→Pushout→Cylinder Pushout→Cylinder→Pushout)
30.518797
130
0.631683
2fff73fe5f79b867e2128c46d647d3673a55f7e1
10,039
agda
Agda
TypeTheory/HoTT/Partiality2.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
TypeTheory/HoTT/Partiality2.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
TypeTheory/HoTT/Partiality2.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --copatterns --sized-types #-} open import lib.Basics open import lib.PathGroupoid open import lib.types.Paths open import lib.Funext open import Size {- -- | Coinductive delay type. This is the functor νπ̂ : Set → Set arising -- as the fixed point of π̂(H) = π ∘ ⟨Id, H⟩, where π : Set × Set → Set -- with π(X, Y) = X. record D (S : Set) : Set where coinductive field force : S open D -- | Action of D on morphisms D₁ : ∀ {X Y} → (X → Y) → D X → D Y force (D₁ f x) = f (force x) -- | D lifted to dependent functions ↑D₁ : ∀ {A} → (B : A → Set) → ((x : A) → B x) → (y : D A) → D (B (force y)) force (↑D₁ B f y) = f (force y) D-intro : ∀ {H : Set → Set} → (∀ {X} → H X → X) → (∀ {X} → H X → D X) force (D-intro f x) = f x D-intro2 : ∀ {X S : Set} → (X → S) → X → D S force (D-intro2 f x) = f x postulate -- | We'll need coinduction to prove such equalities in the future, or prove -- it from univalence. D-coind : ∀ {S} {x y : D S} → force x == force y → x == y D-coind2 : ∀ {S} {x y : D S} → D (force x == force y) → x == y D-coind2 p = D-coind (force p -} module _ where private mutual data #D (A : Set) (P : Set) : Set where #p : #D-aux A P → (Unit → Unit) → #D A P data #D-aux (A : Set) (P : Set) : Set where #now : A → #D-aux A P #later : P → #D-aux A P D : Set → Set → Set D A X = #D A X now : ∀ {A X} → A → D A X now a = #p (#now a) _ later : ∀ {A X} → X → D A X later x = #p (#later x) _ D₁ : ∀ {A P₁ P₂} → (P₁ → P₂) → (D A P₁ → D A P₂) D₁ f (#p (#now a) _) = now a D₁ f (#p (#later x) _) = later (f x) record P {i : Size} (A : Set) : Set where coinductive field #force : ∀ {j : Size< i} → D A (P {j} A) open P force : ∀ {A} → P A → D A (P A) force x = #force x P-intro : ∀ {A X : Set} → (X → D A X) → (X → P A) P-intro {A} {X} f = P-intro' where P-intro' : ∀ {i} → X → P {i} A #force (P-intro' x) {j} = D₁ (P-intro' {j}) (f x) postulate -- HIT weak~ : ∀{A X : Set} → (force* : X → D A X) → (x : X) → (later x == force* x) -- | Extra module for recursion using sized types. -- This is convenient, as we can use the functor D in the definition, which -- in turn simplifies proofs. module DRec {A B : Set} {P' Y : Set} (now* : A → D B Y) (later* : P A → D B Y) (force* : Y → D B Y) (weak~* : (x : P A) → (later* x == force x)) where f : D A P' → D B Y f = f-aux phantom where f-aux : Phantom weak~* → D A P' → D B Y f-aux phantom (#p (#now a) _) = now* a f-aux phantom (#p (#later x) _) = later* x postulate -- HIT weak~-β : (x : P') → ap f (weak~ force* x) == weak~* x {- module PElim {A X} {S : D A X → Set} (now* : (a : A) → S (now a)) (later* : (x : X) → S (later x)) (force*₁ : (x : X) → D A X) (force*₂ : (x : X) → S (force*₁ x)) (weak~* : (x : X) → -- (x_rec : S (later* x == (force*₂ x) [ S ↓ (weak~ force*₁ x) ])) where f : (x : D A X) → S x f = f-aux phantom where f-aux : Phantom weak~* → (x : D A X) → S x f-aux phantom (#p (#now a) _) = now* a f-aux phantom (#p (#later x) _) = later* x -} -- postulate -- HIT -- weak~-β : (x : X) → apd f (weak~ force*₁ x) == weak~* x {- weak~-β₂ : (x : ∞P A) → apd f (weak~ x) == weak~* x (↑D₁ S f x) -- transport (weak~* x) g-is-D₁f (↑D₁ S f x) weak~-β₂ = ? -} open DRec public renaming (f to D-rec) {- open PElim public renaming (f to P-elim; g to ∞P-elim; f-homomorphism to P-elim-hom; weak~-β to elim-weak~-β) -} module Bla where ⊥ : ∀ {A} → P A ⊥ = P-intro later unit -- | Copairing of morphisms [_,_] : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (l : A → C) (r : B → C) → (x : Coprod A B) → C [ f , g ] x = match x withl f withr g id-D : ∀ {A} → D A (P A) → D A (P A) id-D {A} = D-rec now later force (weak~ force) --(idf A) (idf (P A)) (λ x → force x) (weak~ (λ x → force x)) D₁-force : ∀ {A P₁ P₂} → (force* : P₁ → D A P₁) → (f : P₁ → P₂) → (x : P₁) → later (f x) == D₁ f (force* x) D₁-force force* f x = later (f x) =⟨ idp ⟩ D₁ f (later x) =⟨ weak~ force* x |in-ctx (D₁ f) ⟩ D₁ f (force* x) ∎ -- | Direct definition of bind bind : ∀ {A B} → (A → P B) → (P A → P B) bind {A} {B} f x = P-intro {X = P A ⊔ P B} [ u , v ] (inl x) where elim-A : A → D B (P A ⊔ P B) elim-A a = D-rec now (later ∘ inr) (D₁ inr ∘ force) (D₁-force force inr) (force (f a)) u : P A → D B (P A ⊔ P B) u x = D-rec elim-A (later ∘ inl) (later ∘ inl) -- this should be force ... (λ _ → idp) (force x) v : P B → D B (P A ⊔ P B) v = D₁ inr ∘ force {- -- | Copairing of morphisms [_,_] : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (l : A → C) (r : B → C) → (x : Coprod A B) → C [ f , g ] x = match x withl f withr g -- | Inverse of [now, later] à la Lambek, -- given by extending id + D ([now, later]) : A ⊔ D(A ⊔ ∞P A) → A ⊔ ∞P A. out : ∀ {A} → P A → A ⊔ ∞P A out {A} = P-rec inl force (λ _ → idp) -- (inr ∘ D₁ [ now , later ]) resp-weak~ where resp-weak~ : (x : D (A ⊔ ∞P A)) → (inr ∘ D₁ [ now , later ]) x == force x resp-weak~ x = (inr ∘ D₁ [ now , later ]) x =⟨ {!!} ⟩ inr (D₁ [ now , later ] x) =⟨ {!!} ⟩ force x ∎ ⊥' : ∀ {A} → ∞P A ⊥ : ∀ {A} → P A ⊥ = later (D-intro (λ _ → {!!}) unit) force ⊥' = {!!} -- ⊥ -- | Action of P on morphisms P₁ : ∀ {A B} → (A → B) → (P A → P B) P₁ f = P-rec (now ∘ f) later weak~ -- | Unit for the monad η : ∀ {A} → A → P A η = now -- | Monad multiplication μ : ∀ {A} → P (P A) → P A μ {A} = P-rec (idf (P A)) later weak~ -- | Direct definition of bind bind : ∀ {A B} → (A → P B) → (P A → P B) bind {A} {B} f = P-rec f later weak~ η-natural : ∀ {A B} → (f : A → B) → η ∘ f == P₁ f ∘ η η-natural f = λ=-nondep (λ x → idp) where n open FunextNonDep μ-natural : ∀ {A B} → (f : A → B) → μ ∘ P₁ (P₁ f) == P₁ f ∘ μ μ-natural {A} f = λ=-nondep q where open FunextNonDep T : P (P A) → Set T x = μ ( P₁ (P₁ f) x) == P₁ f (μ x) =-later : (x : ∞P (P A)) → D (T (force x)) → T (later x) =-later x p = transport T (! (weak~ x)) (force p) r : (x : ∞P (P A)) → (p : D (T (force x))) → (=-later x p) == (force p) [ T ↓ (weak~ x) ] r x p = trans-↓ T (weak~ x) (force p) q : (x : P (P A)) → μ ( P₁ (P₁ f) x) == P₁ f (μ x) q = P-elim {S = λ x → μ ( P₁ (P₁ f) x) == P₁ f (μ x)} (λ a → idp) =-later r -- | Termination predicate on P A data _↓_ {A} (x : P A) : A → Set where now↓ : (a : A) → now a == x → x ↓ a later↓ : (a : A) → (u : ∞P A) → (later u == x) → (force u) ↓ a → x ↓ a mutual -- | Weak bisimilarity proofs data ~proof {A} (x y : P A) : Set where terminating : (a : A) → x ↓ a → y ↓ a → ~proof x y -- A bit awkward, but otherwise we cannot pattern matching on ~proof step : (u v : ∞P A) → (later u == x) → (later v == y) → force u ~ force v → ~proof x y -- | Weak bisimilarity for P A record _~_ {A} (x y : P A) : Set where coinductive field out~ : ~proof x y open _~_ terminate→=now : ∀{A} → (a : A) → (x : P A) → x ↓ a → now a == x terminate→=now a x (now↓ .a na=x) = na=x terminate→=now a x (later↓ .a u lu=x fu↓a) = now a =⟨ terminate→=now a (force u) fu↓a ⟩ force u =⟨ ! (weak~ u) ⟩ later u =⟨ lu=x ⟩ x ∎ lemma : ∀{A} → (a : A) → (x y : P A) → x ↓ a → y ↓ a → x == y lemma a x y x↓a y↓a = x =⟨ ! (terminate→=now a x x↓a) ⟩ now a =⟨ terminate→=now a y y↓a ⟩ y ∎ inr-inj : ∀ {i} {A B : Set i} → (x y : B) → Path {i} {A ⊔ B} (inr x) (inr y) → x == y inr-inj x .x idp = idp later-inj : ∀ {A} → (u v : ∞P A) → later u == later v → u == v later-inj u v p = inr-inj u v lem where lem : inr u == inr v lem = transport (λ z → inr u == P-out z) {later u} {later v} p idp -- | Weak bisimilarity implies equality for P A ~→= : ∀{A} → (x y : P A) → x ~ y → x == y ~→= {A} x y = P-elim {S = λ x' → x' ~ y → x' == y} now-= later-= weak~-= x where now-= : (a : A) → now a ~ y → now a == y now-= a p = lem (out~ p) where lem : ~proof (now a) y → now a == y lem (terminating b (now↓ .b nb=na) y↓b) = now a =⟨ ! nb=na ⟩ now b =⟨ terminate→=now b y y↓b ⟩ y ∎ lem (terminating b (later↓ .b u () now_a↓b) y↓b) lem (step u v () x₂ x₃) later-= : (u : ∞P A) → D (force u ~ y → force u == y) → later u ~ y → later u == y later-= u p later_u~y = lem (out~ later_u~y) where lem : ~proof (later u) y → later u == y lem (terminating a later_u↓a y↓a) = lemma a (later u) y later_u↓a y↓a lem (step u' v later_u'=later_u later_v=y force_u'~force_v) = later u =⟨ weak~ u ⟩ force u =⟨ force p force_u~y ⟩ y ∎ where force_u'=force_u : force u' == force u force_u'=force_u = force u' =⟨ later-inj u' u later_u'=later_u |in-ctx force ⟩ force u ∎ y=force_v : y == force v y=force_v = y =⟨ ! later_v=y ⟩ later v =⟨ weak~ v ⟩ force v ∎ force_u~y : force u ~ y force_u~y = transport (λ z → z ~ y) force_u'=force_u (transport! (λ z → force u' ~ z) y=force_v force_u'~force_v) weak~-= : (u : ∞P A) (p : D (force u ~ y → force u == y)) → (later-= u p) == (force p) [ (λ x' → x' ~ y → x' == y) ↓ (weak~ u) ] weak~-= u p = {!!} -}
27.57967
79
0.441578
318b6174a49ec4de279fb1b5e9e72f65e595df33
2,832
agda
Agda
Cubical/Data/Fin/Arithmetic.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/Data/Fin/Arithmetic.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Data/Fin/Arithmetic.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Fin.Arithmetic where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat open import Cubical.Data.Nat.Mod open import Cubical.Data.Nat.Order open import Cubical.Data.Fin open import Cubical.Data.Sigma infixl 6 _+ₘ_ _-ₘ_ _·ₘ_ infix 7 -ₘ_ -- Addition, subtraction and multiplication _+ₘ_ : {n : ℕ} → Fin (suc n) → Fin (suc n) → Fin (suc n) fst (_+ₘ_ {n = n} x y) = ((fst x) + (fst y)) mod (suc n) snd (_+ₘ_ {n = n} x y) = mod< _ ((fst x) + (fst y)) -ₘ_ : {n : ℕ} → (x : Fin (suc n)) → Fin (suc n) fst (-ₘ_ {n = n} x) = (+induction n _ (λ x _ → ((suc n) ∸ x) mod (suc n)) λ _ x → x) (fst x) snd (-ₘ_ {n = n} x) = lem (fst x) where ≡<-trans : {x y z : ℕ} → x < y → x ≡ z → z < y ≡<-trans (k , p) q = k , cong (λ x → k + suc x) (sym q) ∙ p lem : {n : ℕ} (x : ℕ) → (+induction n _ _ _) x < suc n lem {n = n} = +induction n _ (λ x p → ≡<-trans (mod< n (suc n ∸ x)) (sym (+inductionBase n _ _ _ x p))) λ x p → ≡<-trans p (sym (+inductionStep n _ _ _ x)) _-ₘ_ : {n : ℕ} → (x y : Fin (suc n)) → Fin (suc n) _-ₘ_ x y = x +ₘ (-ₘ y) _·ₘ_ : {n : ℕ} → (x y : Fin (suc n)) → Fin (suc n) fst (_·ₘ_ {n = n} x y) = (fst x · fst y) mod (suc n) snd (_·ₘ_ {n = n} x y) = mod< n (fst x · fst y) -- Group laws +ₘ-assoc : {n : ℕ} (x y z : Fin (suc n)) → (x +ₘ y) +ₘ z ≡ (x +ₘ (y +ₘ z)) +ₘ-assoc {n = n} x y z = Σ≡Prop (λ _ → m≤n-isProp) ((mod-rCancel (suc n) ((fst x + fst y) mod (suc n)) (fst z)) ∙∙ sym (mod+mod≡mod (suc n) (fst x + fst y) (fst z)) ∙∙ cong (_mod suc n) (sym (+-assoc (fst x) (fst y) (fst z))) ∙∙ mod+mod≡mod (suc n) (fst x) (fst y + fst z) ∙∙ sym (mod-lCancel (suc n) (fst x) ((fst y + fst z) mod suc n))) +ₘ-comm : {n : ℕ} (x y : Fin (suc n)) → (x +ₘ y) ≡ (y +ₘ x) +ₘ-comm {n = n} x y = Σ≡Prop (λ _ → m≤n-isProp) (cong (_mod suc n) (+-comm (fst x) (fst y))) +ₘ-lUnit : {n : ℕ} (x : Fin (suc n)) → 0 +ₘ x ≡ x +ₘ-lUnit {n = n} (x , p) = Σ≡Prop (λ _ → m≤n-isProp) (+inductionBase n _ _ _ x p) +ₘ-rUnit : {n : ℕ} (x : Fin (suc n)) → x +ₘ 0 ≡ x +ₘ-rUnit x = +ₘ-comm x 0 ∙ (+ₘ-lUnit x) +ₘ-rCancel : {n : ℕ} (x : Fin (suc n)) → x -ₘ x ≡ 0 +ₘ-rCancel {n = n} x = Σ≡Prop (λ _ → m≤n-isProp) (cong (λ z → (fst x + z) mod (suc n)) (+inductionBase n _ _ _ (fst x) (snd x)) ∙∙ sym (mod-rCancel (suc n) (fst x) ((suc n) ∸ (fst x))) ∙∙ cong (_mod (suc n)) (+-comm (fst x) ((suc n) ∸ (fst x))) ∙∙ cong (_mod (suc n)) (≤-∸-+-cancel (<-weaken (snd x))) ∙∙ zero-charac (suc n)) +ₘ-lCancel : {n : ℕ} (x : Fin (suc n)) → (-ₘ x) +ₘ x ≡ 0 +ₘ-lCancel {n = n} x = +ₘ-comm (-ₘ x) x ∙ +ₘ-rCancel x -- TODO : Ring laws private test₁ : Path (Fin 11) (5 +ₘ 10) 4 test₁ = refl test₂ : Path (Fin 11) (-ₘ 7 +ₘ 5 +ₘ 10) 8 test₂ = refl
32.181818
72
0.491172
18601ac944ba24cd8cd923ef865baa7050a8cf84
6,618
agda
Agda
InterpreterWithConstants.agda
sseefried/well-typed-agda-interpreter
2a85cc82934be9433648bca0b49b77db18de524c
[ "MIT" ]
3
2021-06-18T12:06:14.000Z
2021-06-18T12:37:46.000Z
InterpreterWithConstants.agda
sseefried/well-typed-agda-interpreter
2a85cc82934be9433648bca0b49b77db18de524c
[ "MIT" ]
null
null
null
InterpreterWithConstants.agda
sseefried/well-typed-agda-interpreter
2a85cc82934be9433648bca0b49b77db18de524c
[ "MIT" ]
2
2021-06-18T06:14:18.000Z
2021-06-18T12:31:11.000Z
{-# OPTIONS --without-K --safe --overlapping-instances #-} -- Reference to check out -- -- Simply Typed Lambda Calculus in Agda, without Shortcuts -- https://gergo.erdi.hu/blog/2013-05-01-simply_typed_lambda_calculus_in_agda,_without_shortcuts/ module InterpreterWithConstants where open import Data.Char hiding (_≤_) open import Data.Bool hiding (_≤_) open import Data.Nat hiding (_≤_) open import Data.Unit import Data.Nat as N open import Data.Product open import Data.Sum open import Relation.Binary.PropositionalEquality open import Relation.Nullary import Data.String as Str open import Data.Nat.Show import Data.List as List open import Data.Empty infix 3 _:::_,_ infix 2 _∈_ infix 2 _∉_ infix 1 _⊢_ data `Set : Set where `Bool : `Set _`⇨_ : `Set → `Set → `Set `⊤ : `Set _`×_ : `Set → `Set → `Set infixr 2 _`⇨_ data Var : Set where x' : Var y' : Var z' : Var -- Inequality proofs on variables data _≠_ : Var → Var → Set where x≠y : x' ≠ y' x≠z : x' ≠ z' y≠x : y' ≠ x' y≠z : y' ≠ z' z≠x : z' ≠ x' z≠y : z' ≠ y' instance xy : x' ≠ y' xy = x≠y xz : x' ≠ z' xz = x≠z yx : y' ≠ x' yx = y≠x yz : y' ≠ z' yz = y≠z zx : z' ≠ x' zx = z≠x zy : z' ≠ y' zy = z≠y ⟦_⟧ : `Set → Set ⟦ `Bool ⟧ = Bool ⟦ (t `⇨ s) ⟧ = ⟦ t ⟧ → ⟦ s ⟧ ⟦ `⊤ ⟧ = ⊤ ⟦ (t `× s) ⟧ = ⟦ t ⟧ × ⟦ s ⟧ data Γ : Set where · : Γ _:::_,_ : Var → `Set → Γ → Γ data _∈_ : Var → Γ → Set where H : ∀ {x Δ t } → x ∈ x ::: t , Δ TH : ∀ {x y Δ t} → ⦃ prf : x ∈ Δ ⦄ → ⦃ neprf : x ≠ y ⦄ → x ∈ y ::: t , Δ instance ∈_type₁ : ∀ {x Δ t} → x ∈ x ::: t , Δ ∈_type₁ = H ∈_type₂ : ∀ {x y Δ t} → ⦃ prf : x ∈ Δ ⦄ → ⦃ x ≠ y ⦄ → x ∈ y ::: t , Δ ∈_type₂ = TH data _∉_ : Var → Γ → Set where H : ∀ {x} → x ∉ · TH : ∀ {x y Δ t} → ⦃ prf : x ∉ Δ ⦄ → ⦃ neprf : x ≠ y ⦄ → x ∉ y ::: t , Δ instance ∉_type₁ : ∀ {x} → x ∉ · ∉_type₁ = H ∉_type₂ : ∀ {x y Δ t} → ⦃ prf : x ∉ Δ ⦄ → ⦃ x ≠ y ⦄ → x ∉ y ::: t , Δ ∉_type₂ = TH !Γ_[_] : ∀ {x} → (Δ : Γ) → x ∈ Δ → `Set !Γ_[_] · () !Γ _ ::: t , Δ [ H ] = t !Γ _ ::: _ , Δ [ TH ⦃ prf = i ⦄ ] = !Γ Δ [ i ] infix 30 `v_ infix 30 `c_ infix 24 _`,_ infixl 22 _`₋_ data Constant : `Set → Set where `not : Constant (`Bool `⇨ `Bool) `∧ : Constant (`Bool `× `Bool `⇨ `Bool) `∨ : Constant (`Bool `× `Bool `⇨ `Bool) `xor : Constant (`Bool `× `Bool `⇨ `Bool) data _⊢_ : Γ → `Set → Set where `false : ∀ {Δ} → Δ ⊢ `Bool `true : ∀ {Δ} → Δ ⊢ `Bool `v_ : ∀ {Δ} → (x : Var) → ⦃ i : x ∈ Δ ⦄ → Δ ⊢ !Γ Δ [ i ] `c_ : ∀ {Δ t} → Constant t → Δ ⊢ t _`₋_ : ∀ {Δ t s} → Δ ⊢ t `⇨ s → Δ ⊢ t → Δ ⊢ s --application `λ_`:_⇨_ : ∀ {Δ tr} → (x : Var) → (tx : `Set) → x ::: tx , Δ ⊢ tr → Δ ⊢ tx `⇨ tr _`,_ : ∀ {Δ t s} → Δ ⊢ t → Δ ⊢ s → Δ ⊢ t `× s `fst : ∀ {Δ t s} → Δ ⊢ t `× s → Δ ⊢ t `snd : ∀ {Δ t s} → Δ ⊢ t `× s → Δ ⊢ s `tt : ∀ {Δ} → Δ ⊢ `⊤ data ⟨_⟩ : Γ → Set₁ where [] : ⟨ · ⟩ _∷_ : ∀ {x t Δ} → ⟦ t ⟧ → ⟨ Δ ⟩ → ⟨ x ::: t , Δ ⟩ !_[_] : ∀ {x Δ} → ⟨ Δ ⟩ → (i : x ∈ Δ) → ⟦ !Γ Δ [ i ] ⟧ !_[_] [] () !_[_] (val ∷ env) H = val !_[_] (val ∷ env) (TH ⦃ prf = i ⦄) = ! env [ i ] interpretConstant : ∀ {t} → Constant t → ⟦ t ⟧ interpretConstant `not = not interpretConstant `∧ = uncurry _∧_ interpretConstant `∨ = uncurry _∨_ interpretConstant `xor = uncurry _xor_ interpret : ∀ {t} → · ⊢ t → ⟦ t ⟧ interpret = interpret' [] where interpret' : ∀ {Δ t} → ⟨ Δ ⟩ → Δ ⊢ t → ⟦ t ⟧ interpret' env `true = true interpret' env `false = false interpret' env `tt = tt interpret' env ((`v x) ⦃ i = idx ⦄) = ! env [ idx ] interpret' env (f `₋ x) = (interpret' env f) (interpret' env x) interpret' env (`λ _ `: tx ⇨ body) = λ (x : ⟦ tx ⟧) → interpret' (x ∷ env) body interpret' env (`c f) = interpretConstant f interpret' env (f `, s) = interpret' env f ,′ interpret' env s interpret' env (`fst p) with interpret' env p interpret' env (`fst p) | f , s = f interpret' env (`snd p) with interpret' env p interpret' env (`snd p) | f , s = s ----- and₁ : · ⊢ `Bool `× `Bool `⇨ `Bool and₁ = `λ x' `: `Bool `× `Bool ⇨ `c `∧ `₋ `v x' and₂ : · ⊢ `Bool `× `Bool `⇨ `Bool and₂ = `c `∧ {- I want to write a function called eta-reduce that one could prove the following: pf : eta-reduce and₁ ≡ and₂ pf = refl This function will eta-reduce when it can, and do nothing when it can't. For instance the following should be true: eta-reduce-constant : ∀ {c} → eta-reduce (`c c) ≡ `c c However, I get stuck even on this case. Uncomment the definition below and try to type check this module: -} -- eta-reduce : ∀ {t₁ t₂} → · ⊢ t₁ `⇨ t₂ → · ⊢ t₁ `⇨ t₂ -- eta-reduce (`c c) = ? {- You will get the following error message: I'm not sure if there should be a case for the constructor `v_, because I get stuck when trying to solve the following unification problems (inferred index ≟ expected index): Δ ≟ · !Γ Δ [ i ] ≟ t₁ `⇨ t₂ when checking the definition of eta-reduce I did a bit of searching on the Internet and the only source I could find that I could understand was this one: https://doisinkidney.com/posts/2018-09-20-agda-tips.html It seems to be suggesting that one of the indices for a type is not in constructor form but is, rather, a function. Looking at the definition of _⊢_ we see that the `v_` constructor is most likely at fault: `v_ : ∀ {Δ} → (x : Var) → ⦃ i : x ∈ Δ ⦄ → Δ ⊢ !Γ Δ [ i ] The result type is `Δ ⊢ !Γ Δ [ i ]`. Clearly the index `!Γ Δ [ i ]` is referring to a user-defined function. My question is, "how can I fix this?". How would I modify the _⊢_ data structure - I would be open to an alternative interpreter for the Simply Typed Lambda Calculus - This interpreter is a modified form of this code base. ttps://github.com/ahmadsalim/well-typed-agda-interpreter It has had instance declarations added and the syntactic form of terms has changed a little. I pulled out the constant functions into their own data structure called `Constant` and changed their types a little to work on products (_×_) instead of a curried form. -} {- The instance based searching for _∈_ proofs might be a problem. I'm uncomfortable with the use of --overlapping-instances -} -- eta-reduce : ∀ {t₁ t₂} → · ⊢ t₁ `⇨ t₂ → · ⊢ t₁ `⇨ t₂ -- eta-reduce (`λ x `: _ ⇨ f `₋ y) = {!!} -- eta-reduce t = t
26.261905
113
0.526594
31c6a4af94679326887fcff9e5658eee607981bc
754
agda
Agda
agda/hott/core/universe.agda
piyush-kurur/hott
876ecdcfddca1abf499e8f00db321c6dc3d5b2bc
[ "BSD-3-Clause" ]
null
null
null
agda/hott/core/universe.agda
piyush-kurur/hott
876ecdcfddca1abf499e8f00db321c6dc3d5b2bc
[ "BSD-3-Clause" ]
null
null
null
agda/hott/core/universe.agda
piyush-kurur/hott
876ecdcfddca1abf499e8f00db321c6dc3d5b2bc
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} -- The universe of all types module hott.core.universe where open import Agda.Primitive public using (Level; lzero; lsuc; _⊔_) -- We give an new name for Set Type : (ℓ : Level) → Set (lsuc ℓ) Type ℓ = Set ℓ lone : Level; lone = lsuc lzero ltwo : Level; ltwo = lsuc lone lthree : Level; lthree = lsuc ltwo lfour : Level; lfour = lsuc lthree lfive : Level; lfive = lsuc lfour lsix : Level; lsix = lsuc lfive lseven : Level; lseven = lsuc lsix leight : Level; leight = lsuc lseven lnine : Level; lnine = lsuc leight Type₀ = Type lzero Type₁ = Type lone Type₂ = Type ltwo Type₃ = Type lthree Type₄ = Type lfour Type₅ = Type lfive Type₆ = Type lsix Type₇ = Type lseven Type₈ = Type leight Type₉ = Type lnine
23.5625
65
0.685676
a12bd13d60a5db10678b774d4f2d2349e216f95f
854
agda
Agda
function/extensionality/core.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
27
2015-04-14T15:47:03.000Z
2022-01-09T07:26:57.000Z
src/function/extensionality/core.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T14:32:16.000Z
2016-10-26T11:57:26.000Z
function/extensionality/core.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
4
2015-04-11T17:19:12.000Z
2019-02-26T06:17:38.000Z
{-# OPTIONS --without-K #-} module function.extensionality.core where open import level using (lsuc; _⊔_) open import equality.core Extensionality : ∀ i j → Set (lsuc (i ⊔ j)) Extensionality i j = {X : Set i}{Y : Set j} → {f g : X → Y} → ((x : X) → f x ≡ g x) → f ≡ g Extensionality' : ∀ i j → Set (lsuc (i ⊔ j)) Extensionality' i j = {X : Set i}{Y : X → Set j} → {f g : (x : X) → Y x} → ((x : X) → f x ≡ g x) → f ≡ g StrongExt : ∀ i j → Set (lsuc (i ⊔ j)) StrongExt i j = {X : Set i}{Y : X → Set j} → {f g : (x : X) → Y x} → (∀ x → f x ≡ g x) ≡ (f ≡ g) funext-inv : ∀ {i j}{X : Set i}{Y : X → Set j} → {f g : (x : X) → Y x} → f ≡ g → (x : X) → f x ≡ g x funext-inv refl x = refl
29.448276
48
0.395785
292920876b47a7cb25264c5352c144eb479d19ee
4,975
agda
Agda
src/LibraBFT/Abstract/Properties.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Abstract/Properties.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Abstract/Properties.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Abstract.Types open import LibraBFT.Abstract.Types.EpochConfig open import Util.Lemmas open import Util.Prelude open WithAbsVote -- For each desired property (VotesOnce and PreferredRoundRule), we have a -- module containing a Type that defines a property that an implementation -- should prove, and a proof that it implies the corresponding rule used by -- the abstract proofs. Then, we use those proofs to instantiate thmS5, -- and the use thmS5 to prove a number of correctness conditions. -- -- TODO-1: refactor this file to separate the definitions and proofs of -- VotesOnce and PreferredRoundRule from their use in proving the correctness -- properties. module LibraBFT.Abstract.Properties (UID : Set) (_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) (NodeId : Set) (𝓔 : EpochConfig UID NodeId) (𝓥 : VoteEvidence UID NodeId 𝓔) where open import LibraBFT.Abstract.Records UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.Records.Extends UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.RecordChain UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.RecordChain.Assumptions UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.System UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.RecordChain.Properties UID _≟UID_ NodeId 𝓔 𝓥 open EpochConfig 𝓔 module WithAssumptions {ℓ} (InSys : Record → Set ℓ) (no-collisions-InSys : NoCollisions InSys) (votes-once : VotesOnlyOnceRule InSys) (preferred-round : PreferredRoundRule InSys) where open All-InSys-props InSys CommitsDoNotConflict : ∀{q q'} → {rc : RecordChain (Q q)} → All-InSys rc → {rc' : RecordChain (Q q')} → All-InSys rc' → {b b' : Block} → CommitRule rc b → CommitRule rc' b' → (B b) ∈RC rc' ⊎ (B b') ∈RC rc CommitsDoNotConflict ais ais' cr cr' with WithInvariants.thmS5 InSys votes-once preferred-round ais ais' cr cr' -- We use the implementation-provided evidence that Block ids are injective among -- Block actually in the system to dismiss the first possibility ...| inj₁ ((_ , neq , h≡) , (is1 , is2)) = ⊥-elim (neq (no-collisions-InSys is1 is2 h≡)) ...| inj₂ corr = corr -- When we are dealing with a /Complete/ InSys predicate, we can go a few steps -- further and prove that commits do not conflict even if we have only partial -- knowledge about Records represented in the system. module _ (∈QC⇒AllSent : Complete InSys) where -- For a /complete/ system (i.e., one in which peers vote for a Block only if -- they know of a RecordChain up to that Block whose Records are all InSys), we -- can prove that CommitRules based on RecordChainFroms similarly do not -- conflict, provided all of the Records in the RecordChainFroms are InSys. -- This enables peers not participating in consensus to confirm commits even if -- they are sent only a "commit certificate" that contains enough of a -- RecordChain to confirm the CommitRule. Note that it is this "sending" that -- justfies the assumption that the RecordChainFroms on which the CommitRules -- are based are All-InSys. CommitsDoNotConflict' : ∀{o o' q q'} → {rcf : RecordChainFrom o (Q q)} → All-InSys rcf → {rcf' : RecordChainFrom o' (Q q')} → All-InSys rcf' → {b b' : Block} → CommitRuleFrom rcf b → CommitRuleFrom rcf' b' → Σ (RecordChain (Q q')) ((B b) ∈RC_) ⊎ Σ (RecordChain (Q q)) ((B b') ∈RC_) CommitsDoNotConflict' {cb} {q = q} {q'} {rcf} rcfAll∈sys {rcf'} rcf'All∈sys crf crf' with bft-property (qVotes-C1 q) (qVotes-C1 q') ...| α , α∈qmem , α∈q'mem , hα with Any-sym (Any-map⁻ α∈qmem) | Any-sym (Any-map⁻ α∈q'mem) ...| α∈q | α∈q' with ∈QC⇒AllSent {q = q} hα α∈q (rcfAll∈sys here) | ∈QC⇒AllSent {q = q'} hα α∈q' (rcf'All∈sys here) ...| ab , (arc , ais) , ab←q | ab' , (arc' , ais') , ab←q' with crf⇒cr rcf (step arc ab←q) crf | crf⇒cr rcf' (step arc' ab←q') crf' ...| inj₁ ((_ , neq , h≡) , (is1 , is2)) | _ = ⊥-elim (neq (no-collisions-InSys (rcfAll∈sys is1) (ais (∈RC-simple-¬here arc ab←q (λ ()) is2)) h≡)) ...| inj₂ _ | inj₁ ((_ , neq , h≡) , (is1 , is2)) = ⊥-elim (neq (no-collisions-InSys (rcf'All∈sys is1) (ais' (∈RC-simple-¬here arc' ab←q' (λ ()) is2)) h≡)) ...| inj₂ cr | inj₂ cr' with CommitsDoNotConflict (All-InSys-step ais ab←q (rcfAll∈sys here)) (All-InSys-step ais' ab←q' (rcf'All∈sys here)) cr cr' ...| inj₁ b∈arc' = inj₁ (step arc' ab←q' , b∈arc') ...| inj₂ b'∈arc = inj₂ (step arc ab←q , b'∈arc)
50.252525
174
0.642814
12b29a64e5c67de4c95bff25c64055721691110f
6,568
agda
Agda
TotalParserCombinators/Semantics.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
TotalParserCombinators/Semantics.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
TotalParserCombinators/Semantics.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Semantics of the parsers ------------------------------------------------------------------------ module TotalParserCombinators.Semantics where open import Coinduction open import Data.List hiding (drop) open import Data.List.Any.Membership.Propositional using (bag) renaming (_∼[_]_ to _List-∼[_]_) open import Data.Maybe using (Maybe); open Data.Maybe.Maybe open import Data.Product open import Data.Unit using (⊤; tt) open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence as Eq using (_⇔_; module Equivalence) open import Function.Inverse using (_↔_; module Inverse) open import Function.Related as Related using (Related) open import Level import Relation.Binary.HeterogeneousEquality as H open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import TotalParserCombinators.Parser ------------------------------------------------------------------------ -- Semantics -- The semantics of the parsers. x ∈ p · s means that x can be the -- result of applying the parser p to the string s. Note that the -- semantics is defined inductively. infix 60 <$>_ infixl 50 _⊛_ [_-_]_⊛_ infixl 10 _>>=_ [_-_]_>>=_ infix 4 _∈_·_ data _∈_·_ {Tok} : ∀ {R xs} → R → Parser Tok R xs → List Tok → Set₁ where return : ∀ {R} {x : R} → x ∈ return x · [] token : ∀ {x} → x ∈ token · [ x ] ∣-left : ∀ {R x xs₁ xs₂ s} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} (x∈p₁ : x ∈ p₁ · s) → x ∈ p₁ ∣ p₂ · s ∣-right : ∀ {R x xs₂ s} xs₁ {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} (x∈p₂ : x ∈ p₂ · s) → x ∈ p₁ ∣ p₂ · s <$>_ : ∀ {R₁ R₂ x s xs} {p : Parser Tok R₁ xs} {f : R₁ → R₂} (x∈p : x ∈ p · s) → f x ∈ f <$> p · s _⊛_ : ∀ {R₁ R₂ f x s₁ s₂ fs xs} {p₁ : ∞⟨ xs ⟩Parser Tok (R₁ → R₂) (flatten fs)} {p₂ : ∞⟨ fs ⟩Parser Tok R₁ (flatten xs)} → (f∈p₁ : f ∈ ♭? p₁ · s₁) (x∈p₂ : x ∈ ♭? p₂ · s₂) → f x ∈ p₁ ⊛ p₂ · s₁ ++ s₂ _>>=_ : ∀ {R₁ R₂ x y s₁ s₂ xs} {f : Maybe (R₁ → List R₂)} {p₁ : ∞⟨ f ⟩Parser Tok R₁ (flatten xs)} {p₂ : (x : R₁) → ∞⟨ xs ⟩Parser Tok R₂ (apply f x)} (x∈p₁ : x ∈ ♭? p₁ · s₁) (y∈p₂x : y ∈ ♭? (p₂ x) · s₂) → y ∈ p₁ >>= p₂ · s₁ ++ s₂ nonempty : ∀ {R xs x y s} {p : Parser Tok R xs} (x∈p : y ∈ p · x ∷ s) → y ∈ nonempty p · x ∷ s cast : ∀ {R xs₁ xs₂ x s} {xs₁≈xs₂ : xs₁ List-∼[ bag ] xs₂} {p : Parser Tok R xs₁} (x∈p : x ∈ p · s) → x ∈ cast xs₁≈xs₂ p · s -- Some variants with fewer implicit arguments. (The arguments xs and -- fs can usually not be inferred, but I do not want to mention them -- in the paper, so I have made them implicit in the definition -- above.) [_-_]_⊛_ : ∀ {Tok R₁ R₂ f x s₁ s₂} xs fs {p₁ : ∞⟨ xs ⟩Parser Tok (R₁ → R₂) (flatten fs)} {p₂ : ∞⟨ fs ⟩Parser Tok R₁ (flatten xs)} → f ∈ ♭? p₁ · s₁ → x ∈ ♭? p₂ · s₂ → f x ∈ p₁ ⊛ p₂ · s₁ ++ s₂ [ xs - fs ] f∈p₁ ⊛ x∈p₂ = _⊛_ {fs = fs} {xs = xs} f∈p₁ x∈p₂ [_-_]_>>=_ : ∀ {Tok R₁ R₂ x y s₁ s₂} (f : Maybe (R₁ → List R₂)) xs {p₁ : ∞⟨ f ⟩Parser Tok R₁ (flatten xs)} {p₂ : (x : R₁) → ∞⟨ xs ⟩Parser Tok R₂ (apply f x)} → x ∈ ♭? p₁ · s₁ → y ∈ ♭? (p₂ x) · s₂ → y ∈ p₁ >>= p₂ · s₁ ++ s₂ [ f - xs ] x∈p₁ >>= y∈p₂x = _>>=_ {xs = xs} {f = f} x∈p₁ y∈p₂x ------------------------------------------------------------------------ -- Parser and language equivalence infix 4 _∼[_]_ _≈_ _≅_ _≲_ -- There are two kinds of equivalences. Parser equivalences are -- stronger, and correspond to bag equality. Language equivalences are -- weaker, and correspond to set equality. open Data.List.Any.Membership.Propositional public using (Kind) renaming ( bag to parser ; set to language ; subbag to subparser ; subset to sublanguage ; superbag to superparser ; superset to superlanguage ) -- General definition of equivalence between parsers. (Note that this -- definition also gives access to some ordering relations.) _∼[_]_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Kind → Parser Tok R xs₂ → Set₁ p₁ ∼[ k ] p₂ = ∀ {x s} → Related k (x ∈ p₁ · s) (x ∈ p₂ · s) -- Language equivalence. (Corresponds to set equality.) _≈_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Parser Tok R xs₂ → Set₁ p₁ ≈ p₂ = p₁ ∼[ language ] p₂ -- Parser equivalence. (Corresponds to bag equality.) _≅_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Parser Tok R xs₂ → Set₁ p₁ ≅ p₂ = p₁ ∼[ parser ] p₂ -- p₁ ≲ p₂ means that the language defined by p₂ contains all the -- string/result pairs contained in the language defined by p₁. _≲_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Parser Tok R xs₂ → Set₁ p₁ ≲ p₂ = p₁ ∼[ sublanguage ] p₂ -- p₁ ≈ p₂ iff both p₁ ≲ p₂ and p₂ ≲ p₁. ≈⇔≲≳ : ∀ {Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ≈ p₂ ⇔ (p₁ ≲ p₂ × p₂ ≲ p₁) ≈⇔≲≳ = Eq.equivalence (λ p₁≈p₂ → ((λ {x s} → _⟨$⟩_ (Equivalence.to (p₁≈p₂ {x = x} {s = s}))) , λ {x s} → _⟨$⟩_ (Equivalence.from (p₁≈p₂ {x = x} {s = s})))) (λ p₁≲≳p₂ → λ {x s} → Eq.equivalence (proj₁ p₁≲≳p₂ {s = s}) (proj₂ p₁≲≳p₂ {s = s})) -- Parser equivalence implies language equivalence. ≅⇒≈ : ∀ {Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ≅ p₂ → p₁ ≈ p₂ ≅⇒≈ p₁≅p₂ = Related.↔⇒ p₁≅p₂ -- Language equivalence does not (in general) imply parser -- equivalence. ¬≈⇒≅ : ¬ (∀ {Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ≈ p₂ → p₁ ≅ p₂) ¬≈⇒≅ hyp with Inverse.injective p₁≅p₂ {∣-left return} {∣-right [ tt ] return} (lemma _ _) where p₁ : Parser ⊤ ⊤ _ p₁ = return tt ∣ return tt p₂ : Parser ⊤ ⊤ _ p₂ = return tt p₁≲p₂ : p₁ ≲ p₂ p₁≲p₂ (∣-left return) = return p₁≲p₂ (∣-right ._ return) = return p₁≅p₂ : p₁ ≅ p₂ p₁≅p₂ = hyp $ Eq.equivalence p₁≲p₂ ∣-left lemma : ∀ {x s} (x∈₁ x∈₂ : x ∈ p₂ · s) → x∈₁ ≡ x∈₂ lemma return return = P.refl ... | () ------------------------------------------------------------------------ -- A simple cast lemma cast∈ : ∀ {Tok R xs} {p p′ : Parser Tok R xs} {x x′ s s′} → x ≡ x′ → p ≡ p′ → s ≡ s′ → x ∈ p · s → x′ ∈ p′ · s′ cast∈ P.refl P.refl P.refl x∈ = x∈
36.488889
72
0.510201
06a91371398e142c40f5fa8782abfe5b045906fc
1,359
agda
Agda
test/fail/Issue399.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/fail/Issue399.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Issue399.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- 2011-04-12 AIM XIII fixed this issue by freezing metas after declaration (Andreas & Ulf) module Issue399 where open import Common.Prelude data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A _++_ : {A : Set} → List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) record MyMonadPlus m : Set₁ where field mzero : {a : Set} → m a → List a mplus : {a : Set} → m a → m a → List a -- this produces an unsolved meta variable, because it is not clear which -- level m has. m could be in Set -> Set or in Set -> Set1 -- if you uncomment the rest of the files, you get unsolved metas here {- Old error, without freezing: --Emacs error: and the 10th line is the above line --/home/j/dev/apps/haskell/agda/learn/bug-in-record.agda:10,36-39 --Set != Set₁ --when checking that the expression m a has type Set₁ -} mymaybemzero : {a : Set} → Maybe a → List a mymaybemzero nothing = [] mymaybemzero (just x) = x ∷ [] mymaybemplus : {a : Set} → Maybe a → Maybe a → List a mymaybemplus x y = (mymaybemzero x) ++ (mymaybemzero y) -- the following def gives a type error because of unsolved metas in MyMonadPlus -- if you uncomment it, you see m in MyMonadPlus yellow mymaybeMonadPlus : MyMonadPlus Maybe mymaybeMonadPlus = record { mzero = mymaybemzero ; mplus = mymaybemplus }
32.357143
91
0.660044
1cb0bbbb20fa027665048e9436f70e0c00f77c4a
1,435
agda
Agda
test/Fail/Issue2101.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue2101.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Fail/Issue2101.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2016-07-17 issue 2101 -- It should be possible to place a single function with a where block -- inside `abstract`. -- This will work if type signatures inside a where-block -- are considered private, since in private type signatures, -- abstract definitions are transparent. -- (Unlike in public type signatures.) record Wrap (A : Set) : Set where field unwrap : A postulate P : ∀{A : Set} → A → Set module AbstractPrivate (A : Set) where abstract B : Set B = Wrap A postulate b : B private -- this makes abstract defs transparent in type signatures postulate test : P (Wrap.unwrap b) -- should succeed abstract unnamedWhere : (A : Set) → Set unnamedWhere A = A where -- the following definitions are private! B : Set B = Wrap A postulate b : B test : P (Wrap.unwrap b) -- should succeed namedWherePrivate : (A : Set) → Set namedWherePrivate A = A module MP where B : Set B = Wrap A private postulate b : B test : P (Wrap.unwrap b) -- should succeed namedWhere : (A : Set) → Set namedWhere A = A module M where -- the definitions in this module are not private! B : Set B = Wrap A postulate b : B test : P (Wrap.unwrap b) -- should fail! access = M.b -- should be in scope outside : ∀ {A} → M.B A → A outside = Wrap.unwrap -- should fail and does so --
20.797101
70
0.620906
294f6a6f1a826f6c98df878eec1e18df8dfdcc5b
402
agda
Agda
Categories/Object/Indexed.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Object/Indexed.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Object/Indexed.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category open import Categories.Support.Equivalence module Categories.Object.Indexed {o ℓ e c q} (C : Category o ℓ e) (B : Setoid c q) where open import Categories.Support.SetoidFunctions open Category C open _⟶_ public using () renaming (cong to cong₀; _⟨$⟩_ to _!_) Objoid = set→setoid Obj Dust = B ⟶ Objoid dust-setoid = B ⇨ Objoid
26.8
88
0.736318
fbb4ad2c41be89a23b8031ea354ae56d5876ee56
3,807
agda
Agda
src/Web/Semantic/DL/TBox/Interp/Morphism.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
9
2015-09-13T17:46:41.000Z
2020-03-14T14:21:08.000Z
src/Web/Semantic/DL/TBox/Interp/Morphism.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
4
2018-11-14T02:32:28.000Z
2021-01-04T20:57:19.000Z
src/Web/Semantic/DL/TBox/Interp/Morphism.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
3
2017-12-03T14:52:09.000Z
2022-03-12T11:40:03.000Z
open import Data.Product using ( ∃ ; _×_ ; _,_ ; proj₁ ; proj₂ ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.TBox.Interp using ( Interp ; Δ ; _⊨_≈_ ; con ; rol ; ≈-refl ; ≈-sym ; ≈-trans ; con-≈ ; rol-≈ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.Util using ( id ; _∘_ ) module Web.Semantic.DL.TBox.Interp.Morphism {Σ : Signature} where infix 2 _≲_ _≃_ -- I ≲ J whenever J respects all the properties of I data _≲_ (I J : Interp Σ) : Set where morph : (f : Δ I → Δ J) → (≲-resp-≈ : ∀ {x y} → (I ⊨ x ≈ y) → (J ⊨ f x ≈ f y)) → (≲-resp-con : ∀ {c x} → (x ∈ con I c) → (f x ∈ con J c)) → (≲-resp-rol : ∀ {r x y} → ((x , y) ∈ rol I r) → ((f x , f y) ∈ rol J r)) → (I ≲ J) ≲-image : ∀ {I J} → (I ≲ J) → Δ I → Δ J ≲-image (morph f ≲-resp-≈ ≲-resp-con ≲-resp-rol) = f ≲-image² : ∀ {I J} → (I ≲ J) → (Δ I × Δ I) → (Δ J × Δ J) ≲-image² I≲J (x , y) = (≲-image I≲J x , ≲-image I≲J y) ≲-resp-≈ : ∀ {I J} → (I≲J : I ≲ J) → ∀ {x y} → (I ⊨ x ≈ y) → (J ⊨ ≲-image I≲J x ≈ ≲-image I≲J y) ≲-resp-≈ (morph f ≲-resp-≈ ≲-resp-con ≲-resp-rol) = ≲-resp-≈ ≲-resp-con : ∀ {I J} → (I≲J : I ≲ J) → ∀ {c x} → (x ∈ con I c) → (≲-image I≲J x ∈ con J c) ≲-resp-con (morph f ≲-resp-≈ ≲-resp-con ≲-resp-rol) = ≲-resp-con ≲-resp-rol : ∀ {I J} → (I≲J : I ≲ J) → ∀ {r xy} → (xy ∈ rol I r) → (≲-image² I≲J xy ∈ rol J r) ≲-resp-rol (morph f ≲-resp-≈ ≲-resp-con ≲-resp-rol) {r} {x , y} = ≲-resp-rol ≲-refl : ∀ I → (I ≲ I) ≲-refl I = morph id id id id ≲-trans : ∀ {I J K} → (I ≲ J) → (J ≲ K) → (I ≲ K) ≲-trans I≲J J≲K = morph (≲-image J≲K ∘ ≲-image I≲J) (≲-resp-≈ J≲K ∘ ≲-resp-≈ I≲J) (≲-resp-con J≲K ∘ ≲-resp-con I≲J) (≲-resp-rol J≲K ∘ ≲-resp-rol I≲J) -- I ≃ J whenever there is an isomprhism between I and J data _≃_ (I J : Interp Σ) : Set where iso : (≃-impl-≲ : I ≲ J) → (≃-impl-≳ : J ≲ I) → (≃-iso : ∀ x → I ⊨ (≲-image ≃-impl-≳ (≲-image ≃-impl-≲ x)) ≈ x) → (≃-iso⁻¹ : ∀ x → J ⊨ (≲-image ≃-impl-≲ (≲-image ≃-impl-≳ x)) ≈ x) → (I ≃ J) ≃-impl-≲ : ∀ {I J} → (I ≃ J) → (I ≲ J) ≃-impl-≲ (iso ≃-impl-≲ ≃-impl-≳ ≃-iso ≃-iso⁻¹) = ≃-impl-≲ ≃-impl-≳ : ∀ {I J} → (I ≃ J) → (J ≲ I) ≃-impl-≳ (iso ≃-impl-≲ ≃-impl-≳ ≃-iso ≃-iso⁻¹) = ≃-impl-≳ ≃-image : ∀ {I J} → (I ≃ J) → Δ I → Δ J ≃-image I≃J = ≲-image (≃-impl-≲ I≃J) ≃-image² : ∀ {I J} → (I ≃ J) → (Δ I × Δ I) → (Δ J × Δ J) ≃-image² I≃J = ≲-image² (≃-impl-≲ I≃J) ≃-image⁻¹ : ∀ {I J} → (I ≃ J) → Δ J → Δ I ≃-image⁻¹ I≃J = ≲-image (≃-impl-≳ I≃J) ≃-image²⁻¹ : ∀ {I J} → (I ≃ J) → (Δ J × Δ J) → (Δ I × Δ I) ≃-image²⁻¹ I≃J = ≲-image² (≃-impl-≳ I≃J) ≃-iso : ∀ {I J} → (I≃J : I ≃ J) → ∀ x → (I ⊨ (≃-image⁻¹ I≃J (≃-image I≃J x)) ≈ x) ≃-iso (iso ≃-impl-≲ ≃-impl-≳ ≃-iso ≃-iso⁻¹) = ≃-iso ≃-iso⁻¹ : ∀ {I J} → (I≃J : I ≃ J) → ∀ x → (J ⊨ (≃-image I≃J (≃-image⁻¹ I≃J x)) ≈ x) ≃-iso⁻¹ (iso ≃-impl-≲ ≃-impl-≳ ≃-iso ≃-iso⁻¹) = ≃-iso⁻¹ ≃-resp-≈ : ∀ {I J} → (I≃J : I ≃ J) → ∀ {x y} → (I ⊨ x ≈ y) → (J ⊨ ≃-image I≃J x ≈ ≃-image I≃J y) ≃-resp-≈ I≃J = ≲-resp-≈ (≃-impl-≲ I≃J) ≃-refl-≈ : ∀ {I J} → (I≃J : I ≃ J) → ∀ {x y} → (I ⊨ ≃-image⁻¹ I≃J x ≈ ≃-image⁻¹ I≃J y) → (J ⊨ x ≈ y) ≃-refl-≈ {I} {J} I≃J {x} {y} x≈y = ≈-trans J (≈-sym J (≃-iso⁻¹ I≃J x)) (≈-trans J (≃-resp-≈ I≃J x≈y) (≃-iso⁻¹ I≃J y)) ≃-refl : ∀ I → (I ≃ I) ≃-refl I = iso (≲-refl I) (≲-refl I) (λ x → ≈-refl I) (λ x → ≈-refl I) ≃-sym : ∀ {I J} → (I ≃ J) → (J ≃ I) ≃-sym I≃J = iso (≃-impl-≳ I≃J) (≃-impl-≲ I≃J) (≃-iso⁻¹ I≃J) (≃-iso I≃J) ≃-trans : ∀ {I J K} → (I ≃ J) → (J ≃ K) → (I ≃ K) ≃-trans {I} {J} {K} I≃J J≃K = iso (≲-trans (≃-impl-≲ I≃J) (≃-impl-≲ J≃K)) (≲-trans (≃-impl-≳ J≃K) (≃-impl-≳ I≃J)) (λ x → ≈-trans I (≲-resp-≈ (≃-impl-≳ I≃J) (≃-iso J≃K (≃-image I≃J x))) (≃-iso I≃J x)) (λ x → ≈-trans K (≲-resp-≈ (≃-impl-≲ J≃K) (≃-iso⁻¹ I≃J (≃-image⁻¹ J≃K x))) (≃-iso⁻¹ J≃K x))
35.25
83
0.430785
31d016568af6bb255bf3b84be4f7b96609a49fca
387
agda
Agda
test/Succeed/Issue479.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue479.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue479.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2012-03-15, example by Ulf -- {-# OPTIONS -v tc.meta:20 #-} module Issue479 where import Common.Level open import Common.Equality data ⊥ : Set where data Bool : Set where true false : Bool X : Bool X=true : X ≡ true X≠false : X ≡ false → ⊥ X = _ X≠false () X=true = refl -- The emptyness check for X ≡ false should be postponed until -- X has been solved to true.
19.35
62
0.661499
df3ac23248224561f3bc542b3e449966675f5bac
3,702
agda
Agda
test/asset/agda-stdlib-1.0/Function/Surjection.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Function/Surjection.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Function/Surjection.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Surjections ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Surjection where open import Level open import Function.Equality as F using (_⟶_) renaming (_∘_ to _⟪∘⟫_) open import Function.Equivalence using (Equivalence) open import Function.Injection hiding (id; _∘_; injection) open import Function.LeftInverse as Left hiding (id; _∘_) open import Data.Product open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- Surjective functions. record Surjective {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} (to : From ⟶ To) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where field from : To ⟶ From right-inverse-of : from RightInverseOf to ------------------------------------------------------------------------ -- The set of all surjections from one setoid to another. record Surjection {f₁ f₂ t₁ t₂} (From : Setoid f₁ f₂) (To : Setoid t₁ t₂) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where field to : From ⟶ To surjective : Surjective to open Surjective surjective public right-inverse : RightInverse From To right-inverse = record { to = from ; from = to ; left-inverse-of = right-inverse-of } open LeftInverse right-inverse public using () renaming (to-from to from-to) injective : Injective from injective = LeftInverse.injective right-inverse injection : Injection To From injection = LeftInverse.injection right-inverse equivalence : Equivalence From To equivalence = record { to = to ; from = from } -- Right inverses can be turned into surjections. fromRightInverse : ∀ {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} → RightInverse From To → Surjection From To fromRightInverse r = record { to = from ; surjective = record { from = to ; right-inverse-of = left-inverse-of } } where open LeftInverse r ------------------------------------------------------------------------ -- The set of all surjections from one set to another (i.e. sujections -- with propositional equality) infix 3 _↠_ _↠_ : ∀ {f t} → Set f → Set t → Set _ From ↠ To = Surjection (P.setoid From) (P.setoid To) surjection : ∀ {f t} {From : Set f} {To : Set t} → (to : From → To) (from : To → From) → (∀ x → to (from x) ≡ x) → From ↠ To surjection to from surjective = record { to = P.→-to-⟶ to ; surjective = record { from = P.→-to-⟶ from ; right-inverse-of = surjective } } ------------------------------------------------------------------------ -- Identity and composition. id : ∀ {s₁ s₂} {S : Setoid s₁ s₂} → Surjection S S id {S = S} = record { to = F.id ; surjective = record { from = LeftInverse.to id′ ; right-inverse-of = LeftInverse.left-inverse-of id′ } } where id′ = Left.id {S = S} infixr 9 _∘_ _∘_ : ∀ {f₁ f₂ m₁ m₂ t₁ t₂} {F : Setoid f₁ f₂} {M : Setoid m₁ m₂} {T : Setoid t₁ t₂} → Surjection M T → Surjection F M → Surjection F T f ∘ g = record { to = to f ⟪∘⟫ to g ; surjective = record { from = LeftInverse.to g∘f ; right-inverse-of = LeftInverse.left-inverse-of g∘f } } where open Surjection g∘f = Left._∘_ (right-inverse g) (right-inverse f)
29.149606
72
0.52188
12efdf290f0672f9d934e2197809b89a7897cb70
102
agda
Agda
test/Succeed/OpBind.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/OpBind.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/OpBind.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module OpBind where postulate _∘_ : Set -> Set -> Set Homomorphic₀ : Set → Set Homomorphic₀ ∘ = ∘
11.333333
33
0.656863
a1292ffbcfba5c7a71d384f870509d1593fdf99e
1,727
agda
Agda
src/STLC/Term.agda
johnyob/agda-types
aeb2be63381d891fabe5317e3c27553deb6bca6d
[ "MIT" ]
null
null
null
src/STLC/Term.agda
johnyob/agda-types
aeb2be63381d891fabe5317e3c27553deb6bca6d
[ "MIT" ]
null
null
null
src/STLC/Term.agda
johnyob/agda-types
aeb2be63381d891fabe5317e3c27553deb6bca6d
[ "MIT" ]
null
null
null
module STLC.Term where open import Data.Fin using (Fin) open import Data.Fin.Substitution open import Data.Nat using (ℕ; _+_) open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (Star; ε; _◅_) open import Data.Vec using (Vec; []; _∷_; lookup) open import Relation.Binary.PropositionalEquality using (refl; _≡_; cong₂) -- -------------------------------------------------------------------- -- Untyped terms and values -- -------------------------------------------------------------------- infix 7 _·_ data Term (n : ℕ) : Set where # : (x : Fin n) -> Term n ƛ : Term (1 + n) -> Term n _·_ : Term n -> Term n -> Term n data Value {n : ℕ} : Term n -> Set where ƛ : ∀ { t } -- ----------- -> Value (ƛ t) -- -------------------------------------------------------------------- module Substitution where -- This sub module defines application of the subtitution -- TODO: Rename for consistency module SubstApplication { T : ℕ -> Set } ( l : Lift T Term ) where open Lift l hiding (var) -- Application of substitution to term infixl 8 _/_ _/_ : ∀ { m n : ℕ } -> Term m -> Sub T m n -> Term n # x / ρ = lift (lookup ρ x) (ƛ t) / ρ = ƛ (t / ρ ↑) (t₁ · t₂) / ρ = (t₁ / ρ) · (t₂ / ρ) open Application (record { _/_ = _/_ }) using (_/✶_) open TermSubst (record { var = #; app = SubstApplication._/_ }) public hiding (var) infix 8 _[/_] -- Shorthand for single-variable term substitutions _[/_] : ∀ { n } → Term (1 + n) → Term n → Term n t₁ [/ t₂ ] = t₁ / sub t₂ -- -------------------------------------------------------------------- -- TODO: Add additional operators -- TODO: Add constants w/ delta-rules
23.657534
85
0.493341
295cdf7cd7845789e4ba416771b96215abc99bc7
4,122
agda
Agda
Agda/quotient-groups.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
333
2018-09-26T08:33:30.000Z
2022-03-22T23:50:15.000Z
Agda/quotient-groups.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
8
2019-06-18T04:16:04.000Z
2020-10-16T15:27:01.000Z
Agda/quotient-groups.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
30
2018-09-26T09:08:57.000Z
2022-03-16T00:33:50.000Z
{-# OPTIONS --without-K --exact-split #-} module quotient-groups where import subgroups open subgroups public {- The left and right coset relation -} left-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y : type-Group G) → UU (l1 ⊔ l2) left-coset-relation G H x = fib ((mul-Group G x) ∘ (incl-group-Subgroup G H)) right-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y : type-Group G) → UU (l1 ⊔ l2) right-coset-relation G H x = fib ((mul-Group' G x) ∘ (incl-group-Subgroup G H)) {- We show that the left coset relation is an equivalence relation -} is-prop-left-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y : type-Group G) → is-prop (left-coset-relation G H x y) is-prop-left-coset-relation G H x = is-prop-map-is-emb ( (mul-Group G x) ∘ (incl-group-Subgroup G H)) ( is-emb-comp' ( mul-Group G x) ( incl-group-Subgroup G H) ( is-emb-is-equiv (mul-Group G x) (is-equiv-mul-Group G x)) ( is-emb-incl-group-Subgroup G H)) is-reflexive-left-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x : type-Group G) → left-coset-relation G H x x is-reflexive-left-coset-relation G H x = pair ( unit-group-Subgroup G H) ( right-unit-law-Group G x) is-symmetric-left-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y : type-Group G) → left-coset-relation G H x y → left-coset-relation G H y x is-symmetric-left-coset-relation G H x y (pair z p) = pair ( inv-group-Subgroup G H z) ( ap ( λ t → mul-Group G t ( incl-group-Subgroup G H ( inv-group-Subgroup G H z))) ( inv p) ∙ ( ( is-associative-mul-Group G _ _ _) ∙ ( ( ap (mul-Group G x) (right-inverse-law-Group G _)) ∙ ( right-unit-law-Group G x)))) is-transitive-left-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y z : type-Group G) → left-coset-relation G H x y → left-coset-relation G H y z → left-coset-relation G H x z is-transitive-left-coset-relation G H x y z (pair h1 p1) (pair h2 p2) = pair ( mul-group-Subgroup G H h1 h2) ( ( inv (is-associative-mul-Group G _ _ _)) ∙ ( ( ap (λ t → mul-Group G t (incl-group-Subgroup G H h2)) p1) ∙ p2)) {- We show that the right coset relation is an equivalence relation -} is-prop-right-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y : type-Group G) → is-prop (right-coset-relation G H x y) is-prop-right-coset-relation G H x = is-prop-map-is-emb ( (mul-Group' G x) ∘ (incl-group-Subgroup G H)) ( is-emb-comp' ( mul-Group' G x) ( incl-group-Subgroup G H) ( is-emb-is-equiv (mul-Group' G x) (is-equiv-mul-Group' G x)) ( is-emb-incl-group-Subgroup G H)) is-reflexive-right-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x : type-Group G) → right-coset-relation G H x x is-reflexive-right-coset-relation G H x = pair ( unit-group-Subgroup G H) ( left-unit-law-Group G x) is-symmetric-right-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y : type-Group G) → right-coset-relation G H x y → right-coset-relation G H y x is-symmetric-right-coset-relation G H x y (pair z p) = pair ( inv-group-Subgroup G H z) ( ( ap ( mul-Group G (incl-group-Subgroup G H (inv-group-Subgroup G H z))) ( inv p)) ∙ ( ( inv (is-associative-mul-Group G _ _ _)) ∙ ( ( ap (λ t → mul-Group G t x) (left-inverse-law-Group G _)) ∙ ( left-unit-law-Group G x)))) is-transitive-right-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y z : type-Group G) → right-coset-relation G H x y → right-coset-relation G H y z → right-coset-relation G H x z is-transitive-right-coset-relation G H x y z (pair h1 p1) (pair h2 p2) = pair ( mul-group-Subgroup G H h2 h1) ( ( is-associative-mul-Group G _ _ _) ∙ ( ( ap (mul-Group G (incl-group-Subgroup G H h2)) p1) ∙ p2))
37.472727
78
0.600194
59142c1d33da5100d1ac715f5f1cae389d607978
1,490
agda
Agda
Prelude/Eq.agda
bbarenblat/B
c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec
[ "Apache-2.0" ]
1
2017-06-30T15:59:38.000Z
2017-06-30T15:59:38.000Z
Prelude/Eq.agda
bbarenblat/B
c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec
[ "Apache-2.0" ]
null
null
null
Prelude/Eq.agda
bbarenblat/B
c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec
[ "Apache-2.0" ]
null
null
null
{- Copyright © 2015 Benjamin Barenblat Licensed under the Apache License, Version 2.0 (the ‘License’); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an ‘AS IS’ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} module B.Prelude.Eq where import Data.Bool as Bool open Bool using (Bool) import Data.Char as Char open Char using (Char) import Data.Nat as ℕ open ℕ using (ℕ) open import Function using (_$_) import Level open Level using (_⊔_) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary using (DecSetoid) record Eq {c} {ℓ} (t : Set c) : Set (Level.suc $ c ⊔ ℓ) where field decSetoid : DecSetoid c ℓ _≟_ = DecSetoid._≟_ decSetoid _==_ : DecSetoid.Carrier decSetoid → DecSetoid.Carrier decSetoid → Bool x == y = ⌊ x ≟ y ⌋ open Eq ⦃...⦄ public instance Eq-Bool : Eq Bool Eq-Bool = record { decSetoid = Bool.decSetoid } Eq-Char : Eq Char Eq-Char = record { decSetoid = Char.decSetoid } -- TODO: Float Eq-ℕ : Eq ℕ Eq-ℕ = let module DecTotalOrder = Relation.Binary.DecTotalOrder in record { decSetoid = DecTotalOrder.Eq.decSetoid ℕ.decTotalOrder }
27.592593
79
0.719463
1d49422474c1181033fb9d7678a311a3ff552f56
2,462
agda
Agda
agda-stdlib-0.9/src/Algebra/FunctionProperties.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Algebra/FunctionProperties.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Algebra/FunctionProperties.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of functions, such as associativity and commutativity ------------------------------------------------------------------------ -- These properties can (for instance) be used to define algebraic -- structures. open import Level open import Relation.Binary -- The properties are specified using the following relation as -- "equality". module Algebra.FunctionProperties {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where open import Data.Product ------------------------------------------------------------------------ -- Unary and binary operations open import Algebra.FunctionProperties.Core public ------------------------------------------------------------------------ -- Properties of operations Associative : Op₂ A → Set _ Associative _∙_ = ∀ x y z → ((x ∙ y) ∙ z) ≈ (x ∙ (y ∙ z)) Commutative : Op₂ A → Set _ Commutative _∙_ = ∀ x y → (x ∙ y) ≈ (y ∙ x) LeftIdentity : A → Op₂ A → Set _ LeftIdentity e _∙_ = ∀ x → (e ∙ x) ≈ x RightIdentity : A → Op₂ A → Set _ RightIdentity e _∙_ = ∀ x → (x ∙ e) ≈ x Identity : A → Op₂ A → Set _ Identity e ∙ = LeftIdentity e ∙ × RightIdentity e ∙ LeftZero : A → Op₂ A → Set _ LeftZero z _∙_ = ∀ x → (z ∙ x) ≈ z RightZero : A → Op₂ A → Set _ RightZero z _∙_ = ∀ x → (x ∙ z) ≈ z Zero : A → Op₂ A → Set _ Zero z ∙ = LeftZero z ∙ × RightZero z ∙ LeftInverse : A → Op₁ A → Op₂ A → Set _ LeftInverse e _⁻¹ _∙_ = ∀ x → (x ⁻¹ ∙ x) ≈ e RightInverse : A → Op₁ A → Op₂ A → Set _ RightInverse e _⁻¹ _∙_ = ∀ x → (x ∙ (x ⁻¹)) ≈ e Inverse : A → Op₁ A → Op₂ A → Set _ Inverse e ⁻¹ ∙ = LeftInverse e ⁻¹ ∙ × RightInverse e ⁻¹ ∙ _DistributesOverˡ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverˡ _+_ = ∀ x y z → (x * (y + z)) ≈ ((x * y) + (x * z)) _DistributesOverʳ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverʳ _+_ = ∀ x y z → ((y + z) * x) ≈ ((y * x) + (z * x)) _DistributesOver_ : Op₂ A → Op₂ A → Set _ * DistributesOver + = (* DistributesOverˡ +) × (* DistributesOverʳ +) _IdempotentOn_ : Op₂ A → A → Set _ _∙_ IdempotentOn x = (x ∙ x) ≈ x Idempotent : Op₂ A → Set _ Idempotent ∙ = ∀ x → ∙ IdempotentOn x IdempotentFun : Op₁ A → Set _ IdempotentFun f = ∀ x → f (f x) ≈ f x _Absorbs_ : Op₂ A → Op₂ A → Set _ _∙_ Absorbs _∘_ = ∀ x y → (x ∙ (x ∘ y)) ≈ x Absorptive : Op₂ A → Op₂ A → Set _ Absorptive ∙ ∘ = (∙ Absorbs ∘) × (∘ Absorbs ∙) Involutive : Op₁ A → Set _ Involutive f = ∀ x → f (f x) ≈ x
27.355556
72
0.529651
3906dd9cd11971a5175dfd5047bb04b464a7ecf7
1,257
agda
Agda
RefactorAgdaEngine/AgdaHelperFunctions.agda
omega12345/RefactorAgda
52d1034aed14c578c9e077fb60c3db1d0791416b
[ "BSD-3-Clause" ]
5
2019-01-31T14:10:18.000Z
2019-05-03T10:03:36.000Z
RefactorAgdaEngine/AgdaHelperFunctions.agda
omega12345/RefactorAgda
52d1034aed14c578c9e077fb60c3db1d0791416b
[ "BSD-3-Clause" ]
3
2019-01-31T08:03:07.000Z
2019-02-05T12:53:36.000Z
RefactorAgdaEngine/AgdaHelperFunctions.agda
omega12345/RefactorAgda
52d1034aed14c578c9e077fb60c3db1d0791416b
[ "BSD-3-Clause" ]
1
2019-01-31T08:40:41.000Z
2019-01-31T08:40:41.000Z
-- stuff I did not find in the standard library, but which -- I might just not have noticed. module AgdaHelperFunctions where open import Data.String open import Data.Sum open import Category.Monad infixr 0 _$_ _$_ : {A B : Set} -> (A -> B) -> A -> B x $ y = x y bind : {error x y : Set} -> error ⊎ x -> (x -> error ⊎ y) -> error ⊎ y bind (inj₁ x) f = inj₁ x bind (inj₂ y) f = f y SumMonad : {error : Set} -> RawMonad (error ⊎_) SumMonad = record { return = inj₂ ; _>>=_ = bind } bindT : {monadType : Set -> Set}(underlyingMonad : RawMonad monadType){error x y : Set} -> (monadType (error ⊎ x)) -> (x -> monadType (error ⊎ y)) -> monadType (error ⊎ y) bindT underlyingMonad x f = do inj₂ content <- x where inj₁ e -> return $ inj₁ e f content where open RawMonad underlyingMonad SumMonadT : {monadType : Set -> Set}(underlyingMonad : RawMonad monadType)(error : Set) -> RawMonad (λ x -> monadType (error ⊎ x)) SumMonadT underlyingMonad error = record { return = λ x -> r $ inj₂ x ; _>>=_ = bindT underlyingMonad } where open RawMonad underlyingMonad renaming (return to r) import IO.Primitive as Prim IOMonad : RawMonad (λ (x : Set) -> Prim.IO x) IOMonad = record { return = Prim.return ; _>>=_ = Prim._>>=_ }
27.933333
171
0.638823
292887218748123ddfd1721e7be70d43a2d1bcc3
2,269
agda
Agda
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/interfaceExtensionAndDelegation.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/interfaceExtensionAndDelegation.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/interfaceExtensionAndDelegation.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module interfaceExtensionAndDelegation where open import Data.Product open import Data.Nat.Base open import Data.Nat.Show open import Data.String.Base using (String; _++_) open import Size open import NativeIO open import interactiveProgramsAgda using (ConsoleInterface; _>>=_; do; IO; return; putStrLn; translateIOConsole ) open import objectsInAgda using (Interface; Method; Result; CellMethod; get; put; CellResult; cellI; IOObject; CellC; method; simpleCell ) data CounterMethod A : Set where super : (m : CellMethod A) → CounterMethod A stats : CounterMethod A statsCellI : (A : Set) → Interface Method (statsCellI A) = CounterMethod A Result (statsCellI A) (super m) = Result (cellI A) m Result (statsCellI A) stats = Unit CounterC : (i : Size) → Set CounterC = IOObject ConsoleInterface (statsCellI String) pattern getᶜ = super get pattern putᶜ x = super (put x) {- Methods of CounterC are now getᶜ (putᶜ x) stats -} counterCell : ∀{i} (c : CellC i) (ngets nputs : ℕ) → CounterC i method (counterCell c ngets nputs) getᶜ = method c get >>= λ { (s , c') → return (s , counterCell c' (1 + ngets) nputs) } method (counterCell c ngets nputs) (putᶜ x) = method c (put x) >>= λ { (_ , c') → return (_ , counterCell c' ngets (1 + nputs)) } method (counterCell c ngets nputs) stats = do (putStrLn ("Counted " ++ show ngets ++ " calls to get and " ++ show nputs ++ " calls to put.")) λ _ → return (_ , counterCell c ngets nputs) program : String → IO ConsoleInterface ∞ Unit program arg = let c₀ = counterCell (simpleCell "Start") 0 0 in method c₀ getᶜ >>= λ{ (s , c₁) → do (putStrLn s) λ _ → method c₁ (putᶜ arg) >>= λ{ (_ , c₂) → method c₂ getᶜ >>= λ{ (s' , c₃) → do (putStrLn s') λ _ → method c₃ (putᶜ "Over!") >>= λ{ (_ , c₄) → method c₄ stats >>= λ{ (_ , c₅) → return _ }}}}} main : NativeIO Unit main = translateIOConsole (program "Hello")
33.367647
72
0.560599
20a01ef9cc23f176aa52df98acf2480cd4316d72
4,673
agda
Agda
agda-stdlib/src/Algebra/Solver/Ring/AlmostCommutativeRing.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Algebra/Solver/Ring/AlmostCommutativeRing.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Algebra/Solver/Ring/AlmostCommutativeRing.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Commutative semirings with some additional structure ("almost" -- commutative rings), used by the ring solver ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Algebra.Solver.Ring.AlmostCommutativeRing where open import Algebra open import Algebra.Structures open import Algebra.Definitions import Algebra.Morphism as Morphism import Algebra.Morphism.Definitions as MorphismDefinitions open import Function open import Level open import Relation.Binary record IsAlmostCommutativeRing {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where field isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1# -‿cong : Congruent₁ _≈_ -_ -‿*-distribˡ : ∀ x y → ((- x) * y) ≈ (- (x * y)) -‿+-comm : ∀ x y → ((- x) + (- y)) ≈ (- (x + y)) open IsCommutativeSemiring isCommutativeSemiring public record AlmostCommutativeRing c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 1# : Carrier isAlmostCommutativeRing : IsAlmostCommutativeRing _≈_ _+_ _*_ -_ 0# 1# open IsAlmostCommutativeRing isAlmostCommutativeRing public commutativeSemiring : CommutativeSemiring _ _ commutativeSemiring = record { isCommutativeSemiring = isCommutativeSemiring } open CommutativeSemiring commutativeSemiring public using ( +-magma; +-semigroup ; *-magma; *-semigroup; *-commutativeSemigroup ; +-monoid; +-commutativeMonoid ; *-monoid; *-commutativeMonoid ; semiring ) rawRing : RawRing _ _ rawRing = record { _≈_ = _≈_ ; _+_ = _+_ ; _*_ = _*_ ; -_ = -_ ; 0# = 0# ; 1# = 1# } ------------------------------------------------------------------------ -- Homomorphisms record _-Raw-AlmostCommutative⟶_ {r₁ r₂ r₃ r₄} (From : RawRing r₁ r₄) (To : AlmostCommutativeRing r₂ r₃) : Set (r₁ ⊔ r₂ ⊔ r₃) where private module F = RawRing From module T = AlmostCommutativeRing To open MorphismDefinitions F.Carrier T.Carrier T._≈_ field ⟦_⟧ : Morphism +-homo : Homomorphic₂ ⟦_⟧ F._+_ T._+_ *-homo : Homomorphic₂ ⟦_⟧ F._*_ T._*_ -‿homo : Homomorphic₁ ⟦_⟧ F.-_ T.-_ 0-homo : Homomorphic₀ ⟦_⟧ F.0# T.0# 1-homo : Homomorphic₀ ⟦_⟧ F.1# T.1# -raw-almostCommutative⟶ : ∀ {r₁ r₂} (R : AlmostCommutativeRing r₁ r₂) → AlmostCommutativeRing.rawRing R -Raw-AlmostCommutative⟶ R -raw-almostCommutative⟶ R = record { ⟦_⟧ = id ; +-homo = λ _ _ → refl ; *-homo = λ _ _ → refl ; -‿homo = λ _ → refl ; 0-homo = refl ; 1-homo = refl } where open AlmostCommutativeRing R Induced-equivalence : ∀ {c₁ c₂ ℓ₁ ℓ₂} {Coeff : RawRing c₁ ℓ₁} {R : AlmostCommutativeRing c₂ ℓ₂} → Coeff -Raw-AlmostCommutative⟶ R → Rel (RawRing.Carrier Coeff) ℓ₂ Induced-equivalence {R = R} morphism a b = ⟦ a ⟧ ≈ ⟦ b ⟧ where open AlmostCommutativeRing R open _-Raw-AlmostCommutative⟶_ morphism ------------------------------------------------------------------------ -- Conversions -- Commutative rings are almost commutative rings. fromCommutativeRing : ∀ {r₁ r₂} → CommutativeRing r₁ r₂ → AlmostCommutativeRing r₁ r₂ fromCommutativeRing CR = record { isAlmostCommutativeRing = record { isCommutativeSemiring = isCommutativeSemiring ; -‿cong = -‿cong ; -‿*-distribˡ = -‿*-distribˡ ; -‿+-comm = ⁻¹-∙-comm } } where open CommutativeRing CR open import Algebra.Properties.Ring ring open import Algebra.Properties.AbelianGroup +-abelianGroup -- Commutative semirings can be viewed as almost commutative rings by -- using identity as the "almost negation". fromCommutativeSemiring : ∀ {r₁ r₂} → CommutativeSemiring r₁ r₂ → AlmostCommutativeRing _ _ fromCommutativeSemiring CS = record { -_ = id ; isAlmostCommutativeRing = record { isCommutativeSemiring = isCommutativeSemiring ; -‿cong = id ; -‿*-distribˡ = λ _ _ → refl ; -‿+-comm = λ _ _ → refl } } where open CommutativeSemiring CS
31.153333
91
0.562166
39f46096f129d02593a8bfde9d5039e53b6158ee
970
agda
Agda
test/succeed/Issue826-2.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue826-2.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/Issue826-2.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Issue826-2 where open import Common.Coinduction data _≡_ {A : Set} (x y : A) : Set where data D : Set where c : ∞ D → D delay : D → ∞ D delay = ♯_ data P : D → Set where o : (x : ∞ D) → P (♭ x) → P (c x) postulate h : (x : D) → P x → P x f : (x : D) → P (c (delay x)) → P x f x (o .(delay x) p) = h x p g : (x : D) → P x → P (c (delay x)) g x p = h (c (delay x)) (o (delay x) p) postulate bar : (x : ∞ D) (p : P (♭ x)) → h (c x) (o x (h (♭ x) p)) ≡ o x p foo : (x : D) (p : P (c (delay x))) → g x (f x p) ≡ p foo x (o .(delay x) p) = goal where x′ = _ goal : _ ≡ o x′ p goal = bar x′ p -- The following error message seems to indicate that an expression is -- not forced properly: -- -- Bug.agda:30,26-30 -- ♭ (.Bug.♯-0 x) != x of type D -- when checking that the expression goal has type -- g x (f x (o (.Bug.♯-0 x) p)) ≡ o (.Bug.♯-0 x) p -- -- Thus it seems as if this problem affects plain type-checking as -- well.
20.638298
70
0.510309
0bd8d8bab6d69824c787510726b0ed9181ac50bc
4,846
agda
Agda
Cubical/DStructures/Structures/ReflGraph.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/DStructures/Structures/ReflGraph.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/DStructures/Structures/ReflGraph.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Structures.ReflGraph where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv open import Cubical.Homotopy.Base open import Cubical.Data.Sigma open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Structures.LeftAction open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.DStructures.Structures.Constant open import Cubical.DStructures.Structures.Type open import Cubical.DStructures.Structures.Group open import Cubical.DStructures.Structures.SplitEpi open GroupLemmas open MorphismLemmas private variable ℓ ℓ' : Level --------------------------------------------- -- Reflexive graphs in the category of groups -- -- ReflGraph -- | -- SplitEpiB -- --------------------------------------------- module _ (ℓ ℓ' : Level) where -- type of internal reflexive graphs in the category of groups ReflGraph = Σ[ ((((G₀ , G₁) , ι , σ) , split-σ) , τ) ∈ (SplitEpiB ℓ ℓ') ] isGroupSplitEpi ι τ -- reflexive graphs displayed over split epimorphisms with an -- extra morphism back 𝒮ᴰ-ReflGraph : URGStrᴰ (𝒮-SplitEpiB ℓ ℓ') (λ ((((G , H) , f , b) , isRet) , b') → isGroupSplitEpi f b') ℓ-zero 𝒮ᴰ-ReflGraph = Subtype→Sub-𝒮ᴰ (λ ((((G , H) , f , b) , isRet) , b') → isGroupSplitEpi f b' , isPropIsGroupSplitEpi f b') (𝒮-SplitEpiB ℓ ℓ') -- the URG structure on the type of reflexive graphs 𝒮-ReflGraph : URGStr ReflGraph (ℓ-max ℓ ℓ') 𝒮-ReflGraph = ∫⟨ (𝒮-SplitEpiB ℓ ℓ') ⟩ 𝒮ᴰ-ReflGraph -------------------------------------------------- -- This module introduces convenient notation -- when working with a single reflexive graph --------------------------------------------------- module ReflGraphNotation (𝒢 : ReflGraph ℓ ℓ') where -- extract the components of the Σ-type G₁ = snd (fst (fst (fst (fst 𝒢)))) G₀ = fst (fst (fst (fst (fst 𝒢)))) σ = snd (snd (fst (fst (fst 𝒢)))) τ = snd (fst 𝒢) ι = fst (snd (fst (fst (fst 𝒢)))) split-τ = snd 𝒢 split-σ = snd (fst (fst 𝒢)) -- open other modules containing convenient notation open SplitEpiNotation ι σ split-σ public open GroupNotation₁ G₁ public open GroupNotation₀ G₀ public open GroupHom public -- underlying maps t = GroupHom.fun τ -- combinations of maps to reduce -- amount of parentheses in proofs 𝒾s = λ (g : ⟨ G₁ ⟩) → 𝒾 (s g) -- TODO: remove 𝒾t = λ (g : ⟨ G₁ ⟩) → 𝒾 (t g) -- TODO: remove it = λ (g : ⟨ G₁ ⟩) → 𝒾 (t g) ti = λ (g : ⟨ G₀ ⟩) → t (𝒾 g) -it = λ (x : ⟨ G₁ ⟩) → -₁ (𝒾t x) it- = λ (x : ⟨ G₁ ⟩) → 𝒾t (-₁ x) ι∘τ : GroupHom G₁ G₁ ι∘τ = compGroupHom τ ι -- extract what it means for σ and τ to be split σι-≡-fun : (g : ⟨ G₀ ⟩) → si g ≡ g σι-≡-fun = λ (g : ⟨ G₀ ⟩) → funExt⁻ (cong GroupHom.fun split-σ) g τι-≡-fun : (g : ⟨ G₀ ⟩) → ti g ≡ g τι-≡-fun = λ (g : ⟨ G₀ ⟩) → funExt⁻ (cong GroupHom.fun split-τ) g ------------------------------------------- -- Lemmas about reflexive graphs in groups ------------------------------------------- module ReflGraphLemmas (𝒢 : ReflGraph ℓ ℓ') where open ReflGraphNotation 𝒢 -- the property for two morphisms to be composable isComposable : (g f : ⟨ G₁ ⟩) → Type ℓ isComposable g f = s g ≡ t f -- isComposable is a proposition, because G₀ is a set isPropIsComposable : (g f : ⟨ G₁ ⟩) → isProp (isComposable g f) isPropIsComposable g f c c' = set₀ (s g) (t f) c c' -- further reductions that are used often abstract -- σ (g -₁ ι (σ g)) ≡ 0₀ σ-g--isg : (g : ⟨ G₁ ⟩) → s (g -₁ (𝒾s g)) ≡ 0₀ σ-g--isg g = s (g -₁ (𝒾s g)) ≡⟨ σ .isHom g (-₁ 𝒾s g) ⟩ s g +₀ s (-₁ 𝒾s g) ≡⟨ cong (s g +₀_) (mapInv σ (𝒾s g)) ⟩ s g -₀ s (𝒾s g) ≡⟨ cong (λ z → s g -₀ z) (σι-≡-fun (s g)) ⟩ s g -₀ s g ≡⟨ rCancel₀ (s g) ⟩ 0₀ ∎ -- g is composable with ι (σ g) isComp-g-isg : (g : ⟨ G₁ ⟩) → isComposable g (𝒾s g) isComp-g-isg g = sym (τι-≡-fun (s g)) -- ι (τ f) is composable with f isComp-itf-f : (f : ⟨ G₁ ⟩) → isComposable (it f) f isComp-itf-f f = σι-≡-fun (t f) -- ι (σ (-₁ ι g)) ≡ -₁ (ι g) ισ-ι : (g : ⟨ G₀ ⟩) → 𝒾s (-₁ (𝒾 g)) ≡ -₁ (𝒾 g) ισ-ι g = mapInv ι∘σ (𝒾 g) ∙ cong (λ z → -₁ (𝒾 z)) (σι-≡-fun g)
32.743243
95
0.535493
cb25daa96908fe0feac180d21db72a56391b45e8
67,003
agda
Agda
agda/Esterel/Lang/CanFunction/CanThetaContinuation.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
3
2020-04-16T10:58:53.000Z
2020-07-01T03:59:31.000Z
agda/Esterel/Lang/CanFunction/CanThetaContinuation.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
null
null
null
agda/Esterel/Lang/CanFunction/CanThetaContinuation.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
1
2020-04-15T20:02:49.000Z
2020-04-15T20:02:49.000Z
{- The module CanThetaContinuation contains the continuation-passing variant of Canθ, which is used as a tool to simplify Canθ-Can expressions. The lemmas are mainly about the function Canθ' defined by the equation unfold : ∀ sigs S'' p θ → Canθ sigs S'' p θ ≡ Canθ' sigs S'' (Can p) θ The main property proved here is that the search function Canθ is distributive over the environment: canθ'-←-distribute : ∀ sigs sigs' S'' r θ → Canθ (SigMap.union sigs sigs') S'' r θ ≡ Canθ' sigs S'' (Canθ sigs' S'' r) θ Other properties about how the search is performed are: canθ'-inner-shadowing-irr : ∀ sigs S'' sigs' p S status θ → S ∈ SigMap.keys sigs' → Canθ' sigs S'' (Canθ sigs' 0 p) (θ ← [ (S ₛ) ↦ status ]) ≡ Canθ' sigs S'' (Canθ sigs' 0 p) θ canθ'-search-acc : ∀ sigs S κ θ → ∀ S'' status → S'' ∉ map (_+_ S) (SigMap.keys sigs) → Canθ' sigs S κ (θ ← [ (S'' ₛ) ↦ status ]) ≡ Canθ' sigs S (κ ∘ (_← [ (S'' ₛ) ↦ status ])) θ -} module Esterel.Lang.CanFunction.CanThetaContinuation where open import utility open import utility renaming (_U̬_ to _∪_ ; _|̌_ to _-_) open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.CanFunction open import Esterel.Lang.CanFunction.Base open import Esterel.Context using (EvaluationContext1 ; EvaluationContext ; _⟦_⟧e ; _≐_⟦_⟧e) open import Esterel.Context.Properties using (plug ; unplug) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open EvaluationContext1 open _≐_⟦_⟧e open import Data.Bool using (Bool ; not ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; [] ; _∷_ ; _++_ ; map ; concatMap ; foldr) open import Data.List.Properties using (map-id) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using () renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Maybe using (Maybe ; maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _≟_ ; _+_) open import Data.Nat.Properties.Simple using (+-comm) open import Data.Product using (Σ ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary.PropositionalEquality using (_≡_ ; _≢_ ; refl ; trans ; sym ; cong ; subst ; module ≡-Reasoning) open ListSet Data.Nat._≟_ using (set-subtract ; set-subtract-[] ; set-subtract-split ; set-subtract-merge ; set-subtract-notin ; set-remove ; set-remove-mono-∈ ; set-remove-removed ; set-remove-not-removed ; set-subtract-[a]≡set-remove) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM open ≡-Reasoning -- equation: Canθ sig S'' p θ = Canθ' sig S'' (Can p) θ Canθ' : SigMap.Map Signal.Status → ℕ → (Env → SigSet.ST × CodeSet.ST × ShrSet.ST) → Env → SigSet.ST × CodeSet.ST × ShrSet.ST Canθ' [] S κ θ = κ θ Canθ' (nothing ∷ sig') S κ θ = Canθ' sig' (suc S) κ θ Canθ' (just Signal.present ∷ sig') S κ θ = Canθ' sig' (suc S) κ (θ ← [S]-env-present (S ₛ)) Canθ' (just Signal.absent ∷ sig') S κ θ = Canθ' sig' (suc S) κ (θ ← [S]-env-absent (S ₛ)) Canθ' (just Signal.unknown ∷ sig') S κ θ with any (_≟_ S) (proj₁ (Canθ' sig' (suc S) κ (θ ← [S]-env (S ₛ)))) ... | yes S∈can-p-θ←[S] = Canθ' sig' (suc S) κ (θ ← [S]-env (S ₛ)) ... | no S∉can-p-θ←[S] = Canθ' sig' (suc S) κ (θ ← [S]-env-absent (S ₛ)) unfold : ∀ sigs S'' p θ → Canθ sigs S'' p θ ≡ Canθ' sigs S'' (Can p) θ unfold [] S'' p θ = refl unfold (nothing ∷ sigs) S'' p θ = unfold sigs (suc S'') p θ unfold (just Signal.present ∷ sigs) S'' p θ = unfold sigs (suc S'') p (θ ← [S]-env-present (S'' ₛ)) unfold (just Signal.absent ∷ sigs) S'' p θ = unfold sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) unfold (just Signal.unknown ∷ sigs) S'' p θ with any (_≟_ S'') (proj₁ (Canθ sigs (suc S'') p (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Can p) (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ-sigs-θ←[S''] | yes S''∈canθ'-sigs-θ←[S''] = unfold sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) ... | no S''∉canθ-sigs-θ←[S''] | no S''∉canθ'-sigs-θ←[S''] = unfold sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) ... | yes S''∈canθ-sigs-θ←[S''] | no S''∉canθ'-sigs-θ←[S''] rewrite unfold sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) = ⊥-elim (S''∉canθ'-sigs-θ←[S''] S''∈canθ-sigs-θ←[S'']) ... | no S''∉canθ-sigs-θ←[S''] | yes S''∈canθ'-sigs-θ←[S''] rewrite unfold sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) = ⊥-elim (S''∉canθ-sigs-θ←[S''] S''∈canθ'-sigs-θ←[S'']) canθ'-cong : ∀ sigs S'' κ κ' θ → (∀ θ* → κ θ* ≡ κ' θ*) → Canθ' sigs S'' κ θ ≡ Canθ' sigs S'' κ' θ canθ'-cong [] S'' κ κ' θ κ≗κ' = κ≗κ' θ canθ'-cong (nothing ∷ sigs) S'' κ κ' θ κ≗κ' = canθ'-cong sigs (suc S'') κ κ' θ κ≗κ' canθ'-cong (just Signal.present ∷ sigs) S'' κ κ' θ κ≗κ' = canθ'-cong sigs (suc S'') κ κ' (θ ← [S]-env-present (S'' ₛ)) κ≗κ' canθ'-cong (just Signal.absent ∷ sigs) S'' κ κ' θ κ≗κ' = canθ'-cong sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ≗κ' canθ'-cong (just Signal.unknown ∷ sigs) S'' κ κ' θ κ≗κ' with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ' (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-κ-θ←[S''] | yes S''∈canθ'-sigs-κ'-θ←[S''] = canθ'-cong sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ≗κ' ... | no S''∉canθ'-sigs-κ-θ←[S''] | no S''∉canθ'-sigs-κ'-θ←[S''] = canθ'-cong sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ≗κ' ... | yes S''∈canθ'-sigs-κ-θ←[S''] | no S''∉canθ'-sigs-κ'-θ←[S''] rewrite canθ'-cong sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ≗κ' = ⊥-elim (S''∉canθ'-sigs-κ'-θ←[S''] S''∈canθ'-sigs-κ-θ←[S'']) ... | no S''∉canθ'-sigs-κ-θ←[S''] | yes S''∈canθ'-sigs-κ'-θ←[S''] rewrite canθ'-cong sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ≗κ' = ⊥-elim (S''∉canθ'-sigs-κ-θ←[S''] S''∈canθ'-sigs-κ'-θ←[S'']) canθₛ'-cong : ∀ sigs S'' κ κ' θ → (∀ θ* → proj₁ (κ θ*) ≡ proj₁ (κ' θ*)) → proj₁ (Canθ' sigs S'' κ θ) ≡ proj₁ (Canθ' sigs S'' κ' θ) canθₛ'-cong [] S'' κ κ' θ κ≗κ' = κ≗κ' θ canθₛ'-cong (nothing ∷ sigs) S'' κ κ' θ κ≗κ' = canθₛ'-cong sigs (suc S'') κ κ' θ κ≗κ' canθₛ'-cong (just Signal.present ∷ sigs) S'' κ κ' θ κ≗κ' = canθₛ'-cong sigs (suc S'') κ κ' (θ ← [S]-env-present (S'' ₛ)) κ≗κ' canθₛ'-cong (just Signal.absent ∷ sigs) S'' κ κ' θ κ≗κ' = canθₛ'-cong sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ≗κ' canθₛ'-cong (just Signal.unknown ∷ sigs) S'' κ κ' θ κ≗κ' with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ' (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-κ-θ←[S''] | yes S''∈canθ'-sigs-κ'-θ←[S''] = canθₛ'-cong sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ≗κ' ... | no S''∉canθ'-sigs-κ-θ←[S''] | no S''∉canθ'-sigs-κ'-θ←[S''] = canθₛ'-cong sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ≗κ' ... | yes S''∈canθ'-sigs-κ-θ←[S''] | no S''∉canθ'-sigs-κ'-θ←[S''] rewrite canθₛ'-cong sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ≗κ' = ⊥-elim (S''∉canθ'-sigs-κ'-θ←[S''] S''∈canθ'-sigs-κ-θ←[S'']) ... | no S''∉canθ'-sigs-κ-θ←[S''] | yes S''∈canθ'-sigs-κ'-θ←[S''] rewrite canθₛ'-cong sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ≗κ' = ⊥-elim (S''∉canθ'-sigs-κ-θ←[S''] S''∈canθ'-sigs-κ'-θ←[S'']) canθ'-map-comm : ∀ f sigs S κ θ → Canθ' sigs S (map-second f ∘ κ) θ ≡ map-second f (Canθ' sigs S κ θ) canθ'-map-comm f [] S κ θ = refl canθ'-map-comm f (nothing ∷ sigs) S κ θ = canθ'-map-comm f sigs (suc S) κ θ canθ'-map-comm f (just Signal.present ∷ sigs) S κ θ = canθ'-map-comm f sigs (suc S) κ (θ ← [S]-env-present (S ₛ)) canθ'-map-comm f (just Signal.absent ∷ sigs) S κ θ = canθ'-map-comm f sigs (suc S) κ (θ ← [S]-env-absent (S ₛ)) canθ'-map-comm f (just Signal.unknown ∷ sigs) S κ θ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (map-second f ∘ κ) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) κ (θ ← [S]-env (S ₛ)))) ... | yes S∈canθ'-sigs-f∘κ-θ←[S] | yes S∈canθ'-sigs-κ-θ←[S] = canθ'-map-comm f sigs (suc S) κ (θ ← [S]-env (S ₛ)) ... | no S∉canθ'-sigs-f∘κ-θ←[S] | no S∉canθ'-sigs-κ-θ←[S] = canθ'-map-comm f sigs (suc S) κ (θ ← [S]-env-absent (S ₛ)) ... | yes S∈canθ'-sigs-f∘κ-θ←[S] | no S∉canθ'-sigs-κ-θ←[S] rewrite canθ'-map-comm f sigs (suc S) κ (θ ← [S]-env (S ₛ)) = ⊥-elim (S∉canθ'-sigs-κ-θ←[S] S∈canθ'-sigs-f∘κ-θ←[S]) ... | no S∉canθ'-sigs-f∘κ-θ←[S] | yes S∈canθ'-sigs-κ-θ←[S] rewrite canθ'-map-comm f sigs (suc S) κ (θ ← [S]-env (S ₛ)) = ⊥-elim (S∉canθ'-sigs-f∘κ-θ←[S] S∈canθ'-sigs-κ-θ←[S]) canθ'ₛ-add-sig-monotonic : ∀ sigs S'' κ θ S status → (∀ θ S status S' → S' ∈ proj₁ (κ (θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty)) → S' ∈ proj₁ (κ (θ ← [S]-env S))) → ∀ S' → S' ∈ proj₁ (Canθ' sigs S'' κ (θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty)) → S' ∈ proj₁ (Canθ' sigs S'' κ (θ ← [S]-env S)) canθ'ₛ-add-sig-monotonic [] S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] = κ-add-sig-monotonic θ S status S' S'∈canθ'-sigs-p-θ←[S↦status] canθ'ₛ-add-sig-monotonic (nothing ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] canθ'ₛ-add-sig-monotonic (just x ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] with Signal.unwrap S ≟ S'' canθ'ₛ-add-sig-monotonic (just Signal.present ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] | yes refl rewrite Env.sig-single-←-←-overwrite θ (S'' ₛ) Signal.unknown Signal.present | Env.sig-single-←-←-overwrite θ (S'' ₛ) status Signal.present = S'∈canθ'-sigs-p-θ←[S↦status] canθ'ₛ-add-sig-monotonic (just Signal.absent ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] | yes refl rewrite Env.sig-single-←-←-overwrite θ (S'' ₛ) Signal.unknown Signal.absent | Env.sig-single-←-←-overwrite θ (S'' ₛ) status Signal.absent = S'∈canθ'-sigs-p-θ←[S↦status] canθ'ₛ-add-sig-monotonic (just Signal.unknown ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] | yes refl with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ ((θ ← [S]-env (S'' ₛ)) ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ ((θ ← [ (S'' ₛ) ↦ status ]) ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-κ-θ←[S''↦unknown]←[S''] | yes S''∈canθ'-sigs-κ-θ←[S''↦status]←[S''] rewrite Env.sig-single-←-←-overwrite θ (S'' ₛ) Signal.unknown Signal.unknown | Env.sig-single-←-←-overwrite θ (S'' ₛ) status Signal.unknown = S'∈canθ'-sigs-p-θ←[S↦status] ... | no S''∉canθ'-sigs-κ-θ←[S''↦unknown]←[S''] | no S''∉canθ'-sigs-κ-θ←[S''↦status]←[S''] rewrite Env.sig-single-←-←-overwrite θ (S'' ₛ) Signal.unknown Signal.absent | Env.sig-single-←-←-overwrite θ (S'' ₛ) status Signal.absent = S'∈canθ'-sigs-p-θ←[S↦status] ... | yes S''∈canθ'-sigs-κ-θ←[S''↦unknown]←[S''] | no S''∉canθ'-sigs-κ-θ←[S''↦status]←[S''] rewrite Env.sig-single-←-←-overwrite θ (S'' ₛ) Signal.unknown Signal.unknown | Env.sig-single-←-←-overwrite θ (S'' ₛ) status Signal.unknown = ⊥-elim (S''∉canθ'-sigs-κ-θ←[S''↦status]←[S''] S''∈canθ'-sigs-κ-θ←[S''↦unknown]←[S'']) ... | no S''∉canθ'-sigs-κ-θ←[S''↦unknown]←[S''] | yes S''∈canθ'-sigs-κ-θ←[S''↦status]←[S''] rewrite Env.sig-single-←-←-overwrite θ (S'' ₛ) Signal.unknown Signal.unknown | Env.sig-single-←-←-overwrite θ (S'' ₛ) status Signal.unknown = ⊥-elim (S''∉canθ'-sigs-κ-θ←[S''↦unknown]←[S''] S''∈canθ'-sigs-κ-θ←[S''↦status]←[S'']) canθ'ₛ-add-sig-monotonic (just Signal.present ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] | no S≢S'' rewrite Env.←-assoc-comm θ ([S]-env S) ([S]-env-present (S'' ₛ)) (Env.sig-single-noteq-distinct S Signal.unknown (S'' ₛ) Signal.present S≢S'') = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [S]-env-present (S'' ₛ)) S status κ-add-sig-monotonic S' (subst (S' ∈_) (cong (proj₁ ∘ Canθ' sigs (suc S'') κ) (Env.←-assoc-comm θ [ S ↦ status ] ([S]-env-present (S'' ₛ)) (Env.sig-single-noteq-distinct S status (S'' ₛ) Signal.present S≢S''))) S'∈canθ'-sigs-p-θ←[S↦status]) canθ'ₛ-add-sig-monotonic (just Signal.absent ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] | no S≢S'' rewrite Env.←-assoc-comm θ ([S]-env S) ([S]-env-absent (S'' ₛ)) (Env.sig-single-noteq-distinct S Signal.unknown (S'' ₛ) Signal.absent S≢S'') = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [S]-env-absent (S'' ₛ)) S status κ-add-sig-monotonic S' (subst (S' ∈_) (cong (proj₁ ∘ Canθ' sigs (suc S'') κ) (Env.←-assoc-comm θ [ S ↦ status ] ([S]-env-absent (S'' ₛ)) (Env.sig-single-noteq-distinct S status (S'' ₛ) Signal.absent S≢S''))) S'∈canθ'-sigs-p-θ←[S↦status]) canθ'ₛ-add-sig-monotonic (just Signal.unknown ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] | no S≢S'' with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ ((θ ← [S]-env S) ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ ((θ ← [ S ↦ status ]) ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-κ-θ←[S↦unknown]←[S''] | yes S''∈canθ'-sigs-κ-θ←[S↦status]←[S''] rewrite Env.←-assoc-comm θ ([S]-env S) ([S]-env (S'' ₛ)) (Env.sig-single-noteq-distinct S Signal.unknown (S'' ₛ) Signal.unknown S≢S'') = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [S]-env (S'' ₛ)) S status κ-add-sig-monotonic S' (subst (S' ∈_) (cong (proj₁ ∘ Canθ' sigs (suc S'') κ) (Env.←-assoc-comm θ [ S ↦ status ] ([S]-env (S'' ₛ)) (Env.sig-single-noteq-distinct S status (S'' ₛ) Signal.unknown S≢S''))) S'∈canθ'-sigs-p-θ←[S↦status]) ... | no S''∉canθ'-sigs-κ-θ←[S↦unknown]←[S''] | no S''∉canθ'-sigs-κ-θ←[S↦status]←[S''] rewrite Env.←-assoc-comm θ ([S]-env S) ([S]-env-absent (S'' ₛ)) (Env.sig-single-noteq-distinct S Signal.unknown (S'' ₛ) Signal.absent S≢S'') = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [S]-env-absent (S'' ₛ)) S status κ-add-sig-monotonic S' (subst (S' ∈_) (cong (proj₁ ∘ Canθ' sigs (suc S'') κ) (Env.←-assoc-comm θ [ S ↦ status ] ([S]-env-absent (S'' ₛ)) (Env.sig-single-noteq-distinct S status (S'' ₛ) Signal.absent S≢S''))) S'∈canθ'-sigs-p-θ←[S↦status]) ... | yes S''∈canθ'-sigs-κ-θ←[S↦unknown]←[S''] | no S''∉canθ'-sigs-κ-θ←[S↦status]←[S''] rewrite Env.←-assoc-comm θ ([S]-env S) ([S]-env (S'' ₛ)) (Env.sig-single-noteq-distinct S Signal.unknown (S'' ₛ) Signal.unknown S≢S'') = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [S]-env (S'' ₛ)) S status κ-add-sig-monotonic S' (subst (S' ∈_) (cong (proj₁ ∘ Canθ' sigs (suc S'') κ) (Env.←-assoc-comm θ [ S ↦ status ] ([S]-env (S'' ₛ)) (Env.sig-single-noteq-distinct S status (S'' ₛ) Signal.unknown S≢S''))) (canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [ S ↦ status ]) (S'' ₛ) Signal.absent κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status])) ... | no S''∉canθ'-sigs-κ-θ←[S↦unknown]←[S''] | yes S''∈canθ'-sigs-κ-θ←[S↦status]←[S''] rewrite Env.←-assoc-comm θ ([S]-env S) ([S]-env (S'' ₛ)) (Env.sig-single-noteq-distinct S Signal.unknown (S'' ₛ) Signal.unknown S≢S'') = ⊥-elim (S''∉canθ'-sigs-κ-θ←[S↦unknown]←[S''] (canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [S]-env (S'' ₛ)) S status κ-add-sig-monotonic S'' (subst (S'' ∈_) (cong (proj₁ ∘ Canθ' sigs (suc S'') κ) (Env.←-assoc-comm θ [ S ↦ status ] ([S]-env (S'' ₛ)) (Env.sig-single-noteq-distinct S status (S'' ₛ) Signal.unknown S≢S''))) S''∈canθ'-sigs-κ-θ←[S↦status]←[S'']))) canθ'ₛ-canθ-add-sig-monotonic : ∀ sigs S sigs' S' p θ S''' status → ∀ S'' → S'' ∈ proj₁ (Canθ' sigs S (Canθ sigs' S' p) (θ ← Θ SigMap.[ S''' ↦ status ] ShrMap.empty VarMap.empty)) → S'' ∈ proj₁ (Canθ' sigs S (Canθ sigs' S' p) (θ ← [S]-env S''')) canθ'ₛ-canθ-add-sig-monotonic sigs S sigs' S' p θ S''' status S'' S''∈canθ'-sigs-p-θ←[S↦status] = canθ'ₛ-add-sig-monotonic sigs S (Canθ sigs' S' p) θ S''' status (canθₛ-add-sig-monotonic sigs' S' p) S'' S''∈canθ'-sigs-p-θ←[S↦status] canθ'ₛ-subset-lemma : ∀ sigs S'' κ κ' θ → (∀ θ' S → S ∈ proj₁ (κ θ') → S ∈ proj₁ (κ' θ')) → (∀ θ S status S' → S' ∈ proj₁ (κ' (θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty)) → S' ∈ proj₁ (κ' (θ ← [S]-env S))) → ∀ S → S ∈ proj₁ (Canθ' sigs S'' κ θ) → S ∈ proj₁ (Canθ' sigs S'' κ' θ) canθ'ₛ-subset-lemma [] S'' κ κ' θ κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ = κ⊆κ' θ S S∈canθ'-κ-θ canθ'ₛ-subset-lemma (nothing ∷ sigs) S'' κ κ' θ κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ = canθ'ₛ-subset-lemma sigs (suc S'') κ κ' θ κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ canθ'ₛ-subset-lemma (just Signal.present ∷ sigs) S'' κ κ' θ κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ = canθ'ₛ-subset-lemma sigs (suc S'') κ κ' (θ ← [S]-env-present (S'' ₛ)) κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ canθ'ₛ-subset-lemma (just Signal.absent ∷ sigs) S'' κ κ' θ κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ = canθ'ₛ-subset-lemma sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ canθ'ₛ-subset-lemma (just Signal.unknown ∷ sigs) S'' κ κ' θ κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ' (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-κ-θ' | yes S''∈canθ-κ'-θ' = canθ'ₛ-subset-lemma sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ ... | no S''∉canθ'-κ-θ' | no S''∉canθ-q-θ' = canθ'ₛ-subset-lemma sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ ... | yes S''∈canθ'-κ-θ' | no S''∉canθ-q-θ' = ⊥-elim (S''∉canθ-q-θ' (canθ'ₛ-subset-lemma sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ⊆κ' κ'-add-sig-monotonic S'' S''∈canθ'-κ-θ')) ... | no S''∉canθ'-κ-θ' | yes S''∈canθ-κ'-θ' = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ' θ (S'' ₛ) Signal.absent κ'-add-sig-monotonic S (canθ'ₛ-subset-lemma sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ) canθ'-inner-shadowing-irr' : ∀ sigs S'' sigs' p S status θ θo → S ∈ SigMap.keys sigs' → Canθ' sigs S'' (Canθ sigs' 0 p) ((θ ← [ (S ₛ) ↦ status ]) ← θo) ≡ Canθ' sigs S'' (Canθ sigs' 0 p) (θ ← θo) canθ'-inner-shadowing-irr' [] S'' sigs' p S status θ θo S∈sigs' rewrite sym (map-id (SigMap.keys sigs')) = canθ-shadowing-irr' sigs' 0 p S status θ θo S∈sigs' canθ'-inner-shadowing-irr' (nothing ∷ sigs) S'' sigs' p S status θ θo S∈sigs' = canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ θo S∈sigs' canθ'-inner-shadowing-irr' (just Signal.present ∷ sigs) S'' sigs' p S status θ θo S∈sigs' rewrite sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env-present (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env-present (S'' ₛ))) = canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ (θo ← ([S]-env-present (S'' ₛ))) S∈sigs' canθ'-inner-shadowing-irr' (just Signal.absent ∷ sigs) S'' sigs' p S status θ θo S∈sigs' rewrite sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env-absent (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env-absent (S'' ₛ))) = canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ (θo ← ([S]-env-absent (S'' ₛ))) S∈sigs' canθ'-inner-shadowing-irr' (just Signal.unknown ∷ sigs) S'' sigs' p S status θ θo S∈sigs' with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ sigs' 0 p) (((θ ← [ (S ₛ) ↦ status ]) ← θo) ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ sigs' 0 p) ((θ ← θo) ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-Canθ-θ←[S]-absent←S←θo←[S''] | yes S''∈canθ'-sigs-Canθ-θ←[S]←S←θo←[S''] rewrite sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env (S'' ₛ))) = canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ (θo ← ([S]-env (S'' ₛ))) S∈sigs' ... | no S''∉canθ'-sigs-Canθ-θ←[S]-absent←S←θo←[S''] | no S''∉canθ'-sigs-Canθ-θ←[S]←S←θo←[S''] rewrite sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env-absent (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env-absent (S'' ₛ))) = canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ (θo ← ([S]-env-absent (S'' ₛ))) S∈sigs' ... | yes S''∈canθ'-sigs-Canθ-θ←[S]-absent←S←θo←[S''] | no S''∉canθ'-sigs-Canθ-θ←[S]←S←θo←[S''] rewrite sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env (S'' ₛ))) | canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ (θo ← ([S]-env (S'' ₛ))) S∈sigs' = ⊥-elim (S''∉canθ'-sigs-Canθ-θ←[S]←S←θo←[S''] S''∈canθ'-sigs-Canθ-θ←[S]-absent←S←θo←[S'']) ... | no S''∉canθ'-sigs-Canθ-θ←[S]-absent←S←θo←[S''] | yes S''∈canθ'-sigs-Canθ-θ←[S]←S←θo←[S''] rewrite sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env (S'' ₛ))) | canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ (θo ← ([S]-env (S'' ₛ))) S∈sigs' = ⊥-elim (S''∉canθ'-sigs-Canθ-θ←[S]-absent←S←θo←[S''] S''∈canθ'-sigs-Canθ-θ←[S]←S←θo←[S'']) canθ'-inner-shadowing-irr : ∀ sigs S'' sigs' p S status θ → S ∈ SigMap.keys sigs' → Canθ' sigs S'' (Canθ sigs' 0 p) (θ ← [ (S ₛ) ↦ status ]) ≡ Canθ' sigs S'' (Canθ sigs' 0 p) θ canθ'-inner-shadowing-irr sigs S'' sigs' p S status θ S∈sigs' rewrite cong (Canθ' sigs S'' (Canθ sigs' 0 p)) (Env.←-comm Env.[]env θ distinct-empty-left) | cong (Canθ' sigs S'' (Canθ sigs' 0 p)) (Env.←-comm Env.[]env (θ ← [ (S ₛ) ↦ status ]) distinct-empty-left) = canθ'-inner-shadowing-irr' sigs S'' sigs' p S status θ Env.[]env S∈sigs' canθ'-search-acc : ∀ sigs S κ θ → ∀ S'' status → S'' ∉ map (_+_ S) (SigMap.keys sigs) → Canθ' sigs S κ (θ ← [ (S'' ₛ) ↦ status ]) ≡ Canθ' sigs S (κ ∘ (_← [ (S'' ₛ) ↦ status ])) θ canθ'-search-acc [] S κ θ S'' status S''∉map-+-S-sigs = refl canθ'-search-acc (nothing ∷ sigs) S κ θ S'' status S''∉map-+-S-sigs rewrite map-+-compose-suc S (SigMap.keys sigs) = canθ'-search-acc sigs (suc S) κ θ S'' status S''∉map-+-S-sigs canθ'-search-acc (just Signal.present ∷ sigs) S κ θ S'' status S''∉map-+-S-sigs rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env-present (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.present (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc sigs (suc S) κ (θ ← [S]-env-present (S ₛ)) S'' status (S''∉map-+-S-sigs ∘ there) canθ'-search-acc (just Signal.absent ∷ sigs) S κ θ S'' status S''∉map-+-S-sigs rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env-absent (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.absent (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc sigs (suc S) κ (θ ← [S]-env-absent (S ₛ)) S'' status (S''∉map-+-S-sigs ∘ there) canθ'-search-acc (just Signal.unknown ∷ sigs) S κ θ S'' status S''∉map-+-S-sigs with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → κ (θ* ← [ (S'' ₛ) ↦ status ])) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) κ ((θ ← [ (S'' ₛ) ↦ status ]) ← [S]-env (S ₛ)))) ... | yes S∈canθ'-⟨canθ-←[S'']⟩-θ←[S] | yes S∈canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc sigs (suc S) κ (θ ← [S]-env (S ₛ)) S'' status (S''∉map-+-S-sigs ∘ there) ... | no S∉canθ'-⟨canθ-←[S'']⟩-θ←[S] | no S∉canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env-absent (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.absent (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc sigs (suc S) κ (θ ← [S]-env-absent (S ₛ)) S'' status (S''∉map-+-S-sigs ∘ there) ... | yes S∈canθ'-⟨canθ-←[S'']⟩-θ←[S] | no S∉canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | canθ'-search-acc sigs (suc S) κ (θ ← [S]-env (S ₛ)) S'' status (S''∉map-+-S-sigs ∘ there) = ⊥-elim (S∉canθ'-canθ-θ←[S'']←[S] S∈canθ'-⟨canθ-←[S'']⟩-θ←[S]) ... | no S∉canθ'-⟨canθ-←[S'']⟩-θ←[S] | yes S∈canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | canθ'-search-acc sigs (suc S) κ (θ ← [S]-env (S ₛ)) S'' status (S''∉map-+-S-sigs ∘ there) = ⊥-elim (S∉canθ'-⟨canθ-←[S'']⟩-θ←[S] S∈canθ'-canθ-θ←[S'']←[S]) canθ'-search-acc-set-irr : ∀ sigs S κ θ → ∀ S'' status status' → S'' ∉ map (_+_ S) (SigMap.keys sigs) → Canθ' sigs S κ (θ ← [ (S'' ₛ) ↦ status ]) ≡ Canθ' sigs S (κ ∘ (_← [ (S'' ₛ) ↦ status ])) (θ ← [ (S'' ₛ) ↦ status' ]) canθ'-search-acc-set-irr [] S κ θ S'' status status' S''∉map-+-S-sigs rewrite sym (Env.←-assoc θ [ (S'' ₛ) ↦ status' ] [ (S'' ₛ) ↦ status ]) | cong (θ ←_) (Env.←-single-overwrite-sig (S'' ₛ) status' [ (S'' ₛ) ↦ status ] (Env.sig-∈-single (S'' ₛ) status)) = refl canθ'-search-acc-set-irr (nothing ∷ sigs) S κ θ S'' status status' S''∉map-+-S-sigs rewrite map-+-compose-suc S (SigMap.keys sigs) = canθ'-search-acc-set-irr sigs (suc S) κ θ S'' status status' S''∉map-+-S-sigs canθ'-search-acc-set-irr (just Signal.present ∷ sigs) S κ θ S'' status status' S''∉map-+-S-sigs rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env-present (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.present (S''∉map-+-S-sigs ∘ here)) | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status' ] ([S]-env-present (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status' (S ₛ) Signal.present (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc-set-irr sigs (suc S) κ (θ ← [S]-env-present (S ₛ)) S'' status status' (S''∉map-+-S-sigs ∘ there) canθ'-search-acc-set-irr (just Signal.absent ∷ sigs) S κ θ S'' status status' S''∉map-+-S-sigs rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env-absent (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.absent (S''∉map-+-S-sigs ∘ here)) | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status' ] ([S]-env-absent (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status' (S ₛ) Signal.absent (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc-set-irr sigs (suc S) κ (θ ← [S]-env-absent (S ₛ)) S'' status status' (S''∉map-+-S-sigs ∘ there) canθ'-search-acc-set-irr (just Signal.unknown ∷ sigs) S κ θ S'' status status' S''∉map-+-S-sigs with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → κ (θ* ← [ (S'' ₛ) ↦ status ])) ((θ ← [ (S'' ₛ) ↦ status' ]) ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) κ ((θ ← [ (S'' ₛ) ↦ status ]) ← [S]-env (S ₛ)))) ... | yes S∈canθ'-⟨canθ-←[S'']⟩-θ←[S'']←[S] | yes S∈canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status' ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status' (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc-set-irr sigs (suc S) κ (θ ← [S]-env (S ₛ)) S'' status status' (S''∉map-+-S-sigs ∘ there) ... | no S∉canθ'-⟨canθ-←[S'']⟩-θ←[S'']←[S] | no S∉canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env-absent (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.absent (S''∉map-+-S-sigs ∘ here)) | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status' ] ([S]-env-absent (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status' (S ₛ) Signal.absent (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc-set-irr sigs (suc S) κ (θ ← [S]-env-absent (S ₛ)) S'' status status' (S''∉map-+-S-sigs ∘ there) ... | yes S∈canθ'-⟨canθ-←[S'']⟩-θ←[S'']←[S] | no S∉canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status' ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status' (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | canθ'-search-acc-set-irr sigs (suc S) κ (θ ← [S]-env (S ₛ)) S'' status status' (S''∉map-+-S-sigs ∘ there) = ⊥-elim (S∉canθ'-canθ-θ←[S'']←[S] S∈canθ'-⟨canθ-←[S'']⟩-θ←[S'']←[S]) ... | no S∉canθ'-⟨canθ-←[S'']⟩-θ←[S'']←[S] | yes S∈canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status' ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status' (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | canθ'-search-acc-set-irr sigs (suc S) κ (θ ← [S]-env (S ₛ)) S'' status status' (S''∉map-+-S-sigs ∘ there) = ⊥-elim (S∉canθ'-⟨canθ-←[S'']⟩-θ←[S'']←[S] S∈canθ'-canθ-θ←[S'']←[S]) canθ'-canθ-propagate-up-in : ∀ sigs S r θ → ∀ sigs' S' S'' → S' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) θ) → S'' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) θ) → S'' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r θ*) θ) canθ'-canθ-propagate-up-in [] S r θ sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ with any (_≟_ S') (Canθₛ sigs' (suc S') r (θ ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-r-θ*←[S'] = S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ ... | no S'∉canθ-sigs'-r-θ*←[S'] = ⊥-elim (S'∉canθ-sigs'-r-θ*←[S'] S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩) canθ'-canθ-propagate-up-in (nothing ∷ sigs) S r θ sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ = canθ'-canθ-propagate-up-in sigs (suc S) r θ sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ canθ'-canθ-propagate-up-in (just Signal.present ∷ sigs) S r θ sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ = canθ'-canθ-propagate-up-in sigs (suc S) r (θ ← [S]-env-present (S ₛ)) sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ canθ'-canθ-propagate-up-in (just Signal.absent ∷ sigs) S r θ sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ = canθ'-canθ-propagate-up-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ canθ'-canθ-propagate-up-in (just Signal.unknown ∷ sigs) S r θ sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (Canθ (just Signal.unknown ∷ sigs') S' r) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) (θ ← [S]-env (S ₛ)))) ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-up-in sigs (suc S) r (θ ← [S]-env (S ₛ)) sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-up-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'ₛ-canθ-add-sig-monotonic sigs (suc S) (just Signal.unknown ∷ sigs') S' r θ (S ₛ) Signal.absent S'' (canθ'-canθ-propagate-up-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩) ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = ⊥-elim (S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] (canθ'-canθ-propagate-up-in sigs (suc S) r (θ ← [S]-env (S ₛ)) sigs' S' S S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S])) canθₛ-a∷s⊆canθₛ-u∷s : ∀ sigs r S' θ S → S ∈ Canθₛ (just Signal.absent ∷ sigs) S' r θ → S ∈ Canθₛ (just Signal.unknown ∷ sigs) S' r θ canθₛ-a∷s⊆canθₛ-u∷s sigs r S' θ S S∈can-sigs-r-θ←[S↦absent] with any (_≟_ S') (Canθₛ sigs (suc S') r (θ ← [S]-env (S' ₛ))) ... | yes a = canθₛ-add-sig-monotonic sigs (suc S') r θ (S' ₛ) Signal.absent S S∈can-sigs-r-θ←[S↦absent] ... | no na = S∈can-sigs-r-θ←[S↦absent] canθ'-canθ-propagate-down-not-in : ∀ sigs S r θ → ∀ S' sigs' → S' ∉ proj₁ (Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r θ*) θ) → Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r θ*) θ ≡ Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env-absent (S' ₛ))) θ canθ'-canθ-propagate-down-not-in [] S r θ S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ with any (_≟_ S') (Canθₛ sigs' (suc S') r (θ ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-r-θ←[S'] = ⊥-elim (S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ S'∈canθ-sigs'-r-θ←[S']) ... | no S'∉canθ-sigs'-r-θ←[S'] = refl canθ'-canθ-propagate-down-not-in (nothing ∷ sigs) S r θ S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-not-in sigs (suc S) r θ S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-not-in (just Signal.present ∷ sigs) S r θ S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-not-in sigs (suc S) r (θ ← [S]-env-present (S ₛ)) S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-not-in (just Signal.absent ∷ sigs) S r θ S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-not-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-not-in (just Signal.unknown ∷ sigs) S r θ S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r θ*) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env-absent (S' ₛ))) (θ ← [S]-env (S ₛ)))) ... | yes a | yes b = canθ'-canθ-propagate-down-not-in sigs (suc S) r (θ ← [S]-env (S ₛ)) S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ ... | no na | no nb = canθ'-canθ-propagate-down-not-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ ... | yes a | no nb rewrite sym (canθ'-canθ-propagate-down-not-in sigs (suc S) r (θ ← [S]-env (S ₛ)) S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩) = ⊥-elim (nb a) ... | no na | yes b = ⊥-elim (na (canθ'ₛ-subset-lemma sigs (suc S) (Canθ (just Signal.absent ∷ sigs') S' r) (Canθ (just Signal.unknown ∷ sigs') S' r) (θ ← [S]-env (S ₛ)) (canθₛ-a∷s⊆canθₛ-u∷s sigs' r S') (canθₛ-add-sig-monotonic (just Signal.unknown ∷ sigs') S' r) S b)) canθ'-canθ-propagate-down-in : ∀ sigs S r θ → ∀ S' sigs' → S' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r θ*) θ) → Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r θ*) θ ≡ Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) θ canθ'-canθ-propagate-down-in [] S r θ S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ with any (_≟_ S') (Canθₛ sigs' (suc S') r (θ ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-r-θ←[S'] = refl ... | no S'∉canθ-sigs'-r-θ←[S'] = ⊥-elim (S'∉canθ-sigs'-r-θ←[S'] (canθₛ-add-sig-monotonic sigs' (suc S') r θ (S' ₛ) Signal.absent S' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩)) canθ'-canθ-propagate-down-in (nothing ∷ sigs) S r θ S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-in sigs (suc S) r θ S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-in (just Signal.present ∷ sigs) S r θ S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-in sigs (suc S) r (θ ← [S]-env-present (S ₛ)) S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-in (just Signal.absent ∷ sigs) S r θ S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-in (just Signal.unknown ∷ sigs) S r θ S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (Canθ (just Signal.unknown ∷ sigs') S' r) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) (θ ← [S]-env (S ₛ)))) ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-down-in sigs (suc S) r (θ ← [S]-env (S ₛ)) S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-down-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = ⊥-elim (S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] (subst (S ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in sigs (suc S) r (θ ← [S]-env (S ₛ)) S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩)) S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S])) ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = ⊥-elim (S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] (subst (S ∈_) (cong proj₁ (sym (canθ'-canθ-propagate-down-in sigs (suc S) r (θ ← [S]-env (S ₛ)) S' sigs' (canθ'ₛ-canθ-add-sig-monotonic sigs (suc S) (just Signal.unknown ∷ sigs') S' r θ (S ₛ) Signal.absent S' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩)))) S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S])) canθ'-canθ-propagate-up-in-set-irr : ∀ sigs S r θ status → ∀ sigs' S' S'' → S' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) θ) → S'' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) θ) → S'' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r (θ* ← [ (S' ₛ) ↦ status ])) θ) canθ'-canθ-propagate-up-in-set-irr [] S r θ status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ with any (_≟_ S') (Canθₛ sigs' (suc S') r ((θ ← [ (S' ₛ) ↦ status ]) ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-r-θ*←[S'] rewrite Env.sig-single-←-←-overwrite θ (S' ₛ) status Signal.unknown = S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ ... | no S'∉canθ-sigs'-r-θ*←[S'] rewrite Env.sig-single-←-←-overwrite θ (S' ₛ) status Signal.unknown = ⊥-elim (S'∉canθ-sigs'-r-θ*←[S'] S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩) canθ'-canθ-propagate-up-in-set-irr (nothing ∷ sigs) S r θ status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ = canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r θ status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ canθ'-canθ-propagate-up-in-set-irr (just Signal.present ∷ sigs) S r θ status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ = canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r (θ ← [S]-env-present (S ₛ)) status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ canθ'-canθ-propagate-up-in-set-irr (just Signal.absent ∷ sigs) S r θ status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ = canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ canθ'-canθ-propagate-up-in-set-irr (just Signal.unknown ∷ sigs) S r θ status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r (θ* ← [ (S' ₛ) ↦ status ])) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) (θ ← [S]-env (S ₛ)))) ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r (θ ← [S]-env (S ₛ)) status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'ₛ-add-sig-monotonic sigs (suc S) (Canθ (just Signal.unknown ∷ sigs') S' r ∘ (_← [ (S' ₛ) ↦ status ])) θ (S ₛ) Signal.absent (λ θ* S* status* S'' S''∈ → canθₛ-cong-←-add-sig-monotonic (just Signal.unknown ∷ sigs') S' r θ* [ (S' ₛ) ↦ status ] S* status* S'' S''∈) S'' (canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩) ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = ⊥-elim (S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] (canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r (θ ← [S]-env (S ₛ)) status sigs' S' S S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S])) canθ'-canθ-propagate-down-in-set-irr : ∀ sigs S r θ status → ∀ S' sigs' → S' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r (θ* ← [ (S' ₛ) ↦ status ])) θ) → Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r (θ* ← [ (S' ₛ) ↦ status ])) θ ≡ Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) θ canθ'-canθ-propagate-down-in-set-irr [] S r θ status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ with any (_≟_ S') (Canθₛ sigs' (suc S') r ((θ ← [ (S' ₛ) ↦ status ]) ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-r-θ←[S'] rewrite Env.sig-single-←-←-overwrite θ (S' ₛ) status Signal.unknown = refl ... | no S'∉canθ-sigs'-r-θ←[S'] = ⊥-elim (S'∉canθ-sigs'-r-θ←[S'] (canθₛ-add-sig-monotonic sigs' (suc S') r (θ ← [ (S' ₛ) ↦ status ]) (S' ₛ) Signal.absent S' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩)) canθ'-canθ-propagate-down-in-set-irr (nothing ∷ sigs) S r θ status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r θ status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-in-set-irr (just Signal.present ∷ sigs) S r θ status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r (θ ← [S]-env-present (S ₛ)) status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-in-set-irr (just Signal.absent ∷ sigs) S r θ status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-in-set-irr (just Signal.unknown ∷ sigs) S r θ status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r (θ* ← [ (S' ₛ) ↦ status ])) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) (θ ← [S]-env (S ₛ)))) ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r (θ ← [S]-env (S ₛ)) status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = ⊥-elim (S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] (subst (S ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r (θ ← [S]-env (S ₛ)) status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩)) S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S])) ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = ⊥-elim (S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] (subst (S ∈_) (cong proj₁ (sym (canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r (θ ← [S]-env (S ₛ)) status S' sigs' (canθ'ₛ-add-sig-monotonic sigs (suc S) (Canθ (just Signal.unknown ∷ sigs') S' r ∘ (λ section → section ← [ (S' ₛ) ↦ status ])) θ (S ₛ) Signal.absent (λ θ* S* status* → canθₛ-cong-←-add-sig-monotonic (just Signal.unknown ∷ sigs') S' r θ* [ (S' ₛ) ↦ status ] S* status*) S' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩)))) S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S])) canθ'-←-distribute : ∀ sigs sigs' S'' r θ → Canθ (SigMap.union sigs sigs') S'' r θ ≡ Canθ' sigs S'' (Canθ sigs' S'' r) θ canθ'-←-distribute [] sigs' S'' r θ = refl canθ'-←-distribute sigs [] S'' r θ rewrite SigMap.union-comm sigs SigMap.empty (λ _ _ ()) | unfold sigs S'' r θ = refl canθ'-←-distribute (nothing ∷ sigs) (nothing ∷ sigs') S'' r θ = canθ'-←-distribute sigs sigs' (suc S'') r θ canθ'-←-distribute (just Signal.present ∷ sigs) (nothing ∷ sigs') S'' r θ = canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-present (S'' ₛ)) canθ'-←-distribute (just Signal.absent ∷ sigs) (nothing ∷ sigs') S'' r θ = canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ)) canθ'-←-distribute (just Signal.unknown ∷ sigs) (nothing ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ (SigMap.union sigs sigs') (suc S'') r (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ sigs' (suc S'') r) (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨canθ-sigs'⟩-θ←[S''] = canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ)) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨canθ-sigs'⟩-θ←[S''] = canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ)) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨canθ-sigs'⟩-θ←[S''] rewrite canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ)) = ⊥-elim (S''∉canθ'-sigs-⟨canθ-sigs'⟩-θ←[S''] S''∈canθ'-sigs←sigs'-r-θ←[S'']) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨canθ-sigs'⟩-θ←[S''] rewrite canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ)) = ⊥-elim (S''∉canθ'-sigs←sigs'-r-θ←[S''] S''∈canθ'-sigs-⟨canθ-sigs'⟩-θ←[S'']) canθ'-←-distribute (nothing ∷ sigs) (just Signal.present ∷ sigs') S'' r θ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-present (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (nothing ∷ sigs) (just Signal.absent ∷ sigs') S'' r θ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (nothing ∷ sigs) (just Signal.unknown ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ (SigMap.union sigs sigs') (suc S'') r (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ)) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-in sigs (suc S'') r θ S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-not-in sigs (suc S'') r θ S'' sigs' S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) = ⊥-elim (S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ (canθ'-canθ-propagate-up-in sigs (suc S'') r θ sigs' S'' S'' S''∈canθ'-sigs←sigs'-r-θ←[S''] S''∈canθ'-sigs←sigs'-r-θ←[S''])) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) = ⊥-elim (S''∉canθ'-sigs←sigs'-r-θ←[S''] (subst (S'' ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in sigs (suc S'') r θ S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) canθ'-←-distribute (just Signal.present ∷ sigs) (just Signal.present ∷ sigs') S'' r θ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-present (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.present Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (just Signal.absent ∷ sigs) (just Signal.present ∷ sigs') S'' r θ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-present (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.present Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (just Signal.unknown ∷ sigs) (just Signal.present ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (λ θ* → Canθ sigs' (suc S'') r (θ* ← [S]-env-present (S'' ₛ))) (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-⟨Canθ-sigs'-r-θ*←[S'']⟩-θ←[S''] = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-present (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.present Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs-⟨Canθ-sigs'-r-θ*←[S'']⟩-θ←[S''] = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-present (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.present Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (just Signal.present ∷ sigs) (just Signal.absent ∷ sigs') S'' r θ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (just Signal.absent ∷ sigs) (just Signal.absent ∷ sigs') S'' r θ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (just Signal.unknown ∷ sigs) (just Signal.absent ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (λ θ* → Canθ sigs' (suc S'') r (θ* ← [S]-env-absent (S'' ₛ))) (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-⟨Canθ-sigs'-r-θ*←[S'']⟩-θ←[S''] = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs-⟨Canθ-sigs'-r-θ*←[S'']⟩-θ←[S''] = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (just Signal.present ∷ sigs) (just Signal.unknown ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ (SigMap.union sigs sigs') (suc S'') r (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) (θ ← [S]-env-present (S'' ₛ)))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-in sigs (suc S'') r (θ ← [S]-env-present (S'' ₛ)) S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-not-in sigs (suc S'') r (θ ← [S]-env-present (S'' ₛ)) S'' sigs' S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) = ⊥-elim (S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ (subst (S'' ∈_) (sym (cong proj₁ (canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs))))) (canθ'-canθ-propagate-up-in-set-irr sigs (suc S'') r θ Signal.present sigs' S'' S'' S''∈canθ'-sigs←sigs'-r-θ←[S''] S''∈canθ'-sigs←sigs'-r-θ←[S'']))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) | canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs)) = ⊥-elim (S''∉canθ'-sigs←sigs'-r-θ←[S''] (subst (S'' ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in-set-irr sigs (suc S'') r θ Signal.present S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) canθ'-←-distribute (just Signal.absent ∷ sigs) (just Signal.unknown ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ (SigMap.union sigs sigs') (suc S'') r (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) (θ ← [S]-env-absent (S'' ₛ)))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-in sigs (suc S'') r (θ ← [S]-env-absent (S'' ₛ)) S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-not-in sigs (suc S'') r (θ ← [S]-env-absent (S'' ₛ)) S'' sigs' S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) = ⊥-elim (S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ (subst (S'' ∈_) (sym (cong proj₁ (canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))))) (canθ'-canθ-propagate-up-in-set-irr sigs (suc S'') r θ Signal.absent sigs' S'' S'' S''∈canθ'-sigs←sigs'-r-θ←[S''] S''∈canθ'-sigs←sigs'-r-θ←[S'']))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) | canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs)) = ⊥-elim (S''∉canθ'-sigs←sigs'-r-θ←[S''] (subst (S'' ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in-set-irr sigs (suc S'') r θ Signal.absent S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) canθ'-←-distribute (just Signal.unknown ∷ sigs) (just Signal.unknown ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (λ θ* → Canθ (just Signal.unknown ∷ sigs') S'' r θ*) (θ ← [S]-env (S'' ₛ)))) canθ'-←-distribute (just Signal.unknown ∷ sigs) (just Signal.unknown ∷ sigs') S'' r θ | yes p with any (_≟_ S'') (proj₁ (Canθ (SigMap.union sigs sigs') (suc S'') r (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-in sigs (suc S'') r (θ ← [S]-env (S'' ₛ)) S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-not-in sigs (suc S'') r (θ ← [S]-env (S'' ₛ)) S'' sigs' S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) = ⊥-elim (S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ (subst (S'' ∈_) (sym (cong proj₁ (canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))))) (canθ'-canθ-propagate-up-in-set-irr sigs (suc S'') r θ Signal.unknown sigs' S'' S'' S''∈canθ'-sigs←sigs'-r-θ←[S''] S''∈canθ'-sigs←sigs'-r-θ←[S'']))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) | canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs)) = ⊥-elim (S''∉canθ'-sigs←sigs'-r-θ←[S''] (subst (S'' ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in-set-irr sigs (suc S'') r θ Signal.unknown S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) canθ'-←-distribute (just Signal.unknown ∷ sigs) (just Signal.unknown ∷ sigs') S'' r θ | no ¬p with any (_≟_ S'') (proj₁ (Canθ (SigMap.union sigs sigs') (suc S'') r (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) (θ ← [S]-env-absent (S'' ₛ)))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-in sigs (suc S'') r (θ ← [S]-env-absent (S'' ₛ)) S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-not-in sigs (suc S'') r (θ ← [S]-env-absent (S'' ₛ)) S'' sigs' S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) = ⊥-elim (S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ (subst (S'' ∈_) (sym (cong proj₁ (canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))))) (canθ'-canθ-propagate-up-in-set-irr sigs (suc S'') r θ Signal.absent sigs' S'' S'' S''∈canθ'-sigs←sigs'-r-θ←[S''] S''∈canθ'-sigs←sigs'-r-θ←[S'']))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) | canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs)) = ⊥-elim (S''∉canθ'-sigs←sigs'-r-θ←[S''] (subst (S'' ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in-set-irr sigs (suc S'') r θ Signal.absent S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩))
57.218617
251
0.533454
1c4a1de2c88c4cfb80f2d0f7ed2e44dc743dad46
1,032
agda
Agda
examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Relations.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Relations.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Relations.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Logic.Relations where import Logic.Base import Data.Bool Rel : Set -> Set1 Rel A = A -> A -> Set Reflexive : {A : Set} -> Rel A -> Set Reflexive {A} _R_ = {x : A} -> x R x Symmetric : {A : Set} -> Rel A -> Set Symmetric {A} _R_ = {x y : A} -> x R y -> y R x Transitive : {A : Set} -> Rel A -> Set Transitive {A} _R_ = {x y z : A} -> x R y -> y R z -> x R z Congruent : {A : Set} -> Rel A -> Set Congruent {A} _R_ = (f : A -> A)(x y : A) -> x R y -> f x R f y Substitutive : {A : Set} -> Rel A -> Set1 Substitutive {A} _R_ = (P : A -> Set)(x y : A) -> x R y -> P x -> P y module PolyEq (_≡_ : {A : Set} -> Rel A) where Antisymmetric : {A : Set} -> Rel A -> Set Antisymmetric {A} _R_ = (x y : A) -> x R y -> y R x -> x ≡ y module MonoEq {A : Set}(_≡_ : Rel A) where Antisymmetric : Rel A -> Set Antisymmetric _R_ = (x y : A) -> x R y -> y R x -> x ≡ y open Logic.Base Total : {A : Set} -> Rel A -> Set Total {A} _R_ = (x y : A) -> (x R y) \/ (y R x) Decidable : (P : Set) -> Set Decidable P = P \/ ¬ P
24
69
0.514535
df38eb987d8e9bc7a5d87312752e0df168d068a2
34
agda
Agda
test/Succeed/ValidNamePartSet.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/ValidNamePartSet.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/ValidNamePartSet.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
test = forall (_Set_ : Set) → Set
17
33
0.617647
188b73cd1a4e0f12d03dc5f85b5b9a9944531f08
140
agda
Agda
test/Fail/UnequalHiding.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/UnequalHiding.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/UnequalHiding.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module UnequalHiding where data One : Set where one : One f : ({A : Set} -> A -> A) -> One f = \(id : (A : Set) -> A -> A) -> id One one
17.5
45
0.514286
12ec94499394b4a24e2b520bad5c3e2c0b00c284
31,064
agda
Agda
BTA6.agda
luminousfennell/polybta
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
[ "BSD-3-Clause" ]
1
2019-10-15T04:35:29.000Z
2019-10-15T04:35:29.000Z
BTA6.agda
luminousfennell/polybta
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
[ "BSD-3-Clause" ]
null
null
null
BTA6.agda
luminousfennell/polybta
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
[ "BSD-3-Clause" ]
1
2019-10-15T09:01:37.000Z
2019-10-15T09:01:37.000Z
module BTA6 where ---------------------------------------------- -- Preliminaries: Imports and List-utilities ---------------------------------------------- open import Data.Nat hiding (_<_) open import Data.Bool open import Function using (_∘_) open import Data.List open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Category.Functor -- Pointer into a list. It is similar to list membership as defined in -- Data.List.AnyMembership, rather than going through propositional -- equality, it asserts the existence of the referenced element -- directly. module ListReference where infix 4 _∈_ data _∈_ {A : Set} : A → List A → Set where hd : ∀ {x xs} → x ∈ (x ∷ xs) tl : ∀ {x y xs} → x ∈ xs → x ∈ (y ∷ xs) open ListReference mapIdx : {A B : Set} → (f : A → B) → {x : A} {xs : List A} → x ∈ xs → f x ∈ map f xs mapIdx f hd = hd mapIdx f (tl x₁) = tl (mapIdx f x₁) -- Extension of lists at the front and, as a generalization, extension -- of lists somewhere in the middle. module ListExtension where open import Relation.Binary.PropositionalEquality -- Extension of a list by consing elements at the front. data _↝_ {A : Set} : List A → List A → Set where ↝-refl : ∀ {Γ} → Γ ↝ Γ ↝-extend : ∀ {Γ Γ' τ} → Γ ↝ Γ' → Γ ↝ (τ ∷ Γ') -- Combining two transitive extensions. ↝-trans : ∀ {A : Set}{Γ Γ' Γ'' : List A} → Γ ↝ Γ' → Γ' ↝ Γ'' → Γ ↝ Γ'' ↝-trans Γ↝Γ' ↝-refl = Γ↝Γ' ↝-trans Γ↝Γ' (↝-extend Γ'↝Γ'') = ↝-extend (↝-trans Γ↝Γ' Γ'↝Γ'') -- Of course, ↝-refl is the identity for combining two extensions. lem-↝-refl-id : ∀ {A : Set} {Γ Γ' : List A} → (Γ↝Γ' : Γ ↝ Γ') → Γ↝Γ' ≡ (↝-trans ↝-refl Γ↝Γ') lem-↝-refl-id ↝-refl = refl lem-↝-refl-id (↝-extend Γ↝Γ') = cong ↝-extend (lem-↝-refl-id Γ↝Γ') -- TODO: why does this work? -- lem-↝-refl-id (↝-extend Γ↝Γ') = lem-↝-refl-id (↝-extend Γ↝Γ') -- Extending a list in the middle: data _↝_↝_ {A : Set} : List A → List A → List A → Set where -- First prepend the extension list to the common suffix ↝↝-base : ∀ {Γ Γ''} → Γ ↝ Γ'' → Γ ↝ [] ↝ Γ'' -- ... and then add the common prefix ↝↝-extend : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → (τ ∷ Γ) ↝ (τ ∷ Γ') ↝ (τ ∷ Γ'') open ListExtension --------------------------------------- -- Start of the development: --------------------------------------- -- Intro/Objective: ------------------- -- The following development defines a (verified) specializer/partial -- evaluator for a simply typed lambda calculus embedded in Agda using -- deBruijn indices. -- The residual language. ------------------------- -- The residual language is a standard simply typed λ-calculus. The -- types are integers and functions. data Type : Set where Int : Type Fun : Type → Type → Type Ctx = List Type -- The type Exp describes the typed residual expressions. Variables -- are represented by deBruijn indices that form references into the -- typing context. The constructors and typing constraints are -- standard. -- TODO: citations for ``as usual'' and ``standard'' data Exp (Γ : Ctx) : Type → Set where EVar : ∀ {τ} → τ ∈ Γ → Exp Γ τ EInt : ℕ → Exp Γ Int EAdd : Exp Γ Int → Exp Γ Int -> Exp Γ Int ELam : ∀ {τ τ'} → Exp (τ ∷ Γ) τ' → Exp Γ (Fun τ τ') EApp : ∀ {τ τ'} → Exp Γ (Fun τ τ') → Exp Γ τ → Exp Γ τ' -- The standard functional semantics of the residual expressions. -- TODO: citations for ``as usual'' and ``standard'' module Exp-Eval where -- interpretation of Exp types EImp : Type → Set EImp Int = ℕ EImp (Fun τ₁ τ₂) = EImp τ₁ → EImp τ₂ -- Environments containing values for free variables. An environment -- is indexed by a typing context that provides the types for the -- contained values. data Env : Ctx → Set where [] : Env [] _∷_ : ∀ {τ Γ} → EImp τ → Env Γ → Env (τ ∷ Γ) -- Lookup a value in the environment, given a reference into the -- associated typing context. lookupE : ∀ { τ Γ } → τ ∈ Γ → Env Γ → EImp τ lookupE hd (x ∷ env) = x lookupE (tl v) (x ∷ env) = lookupE v env -- Evaluation of residual terms, given a suitably typed environment. ev : ∀ {τ Γ} → Exp Γ τ → Env Γ → EImp τ ev (EVar x) env = lookupE x env ev (EInt x) env = x ev (EAdd e f) env = ev e env + ev f env ev (ELam e) env = λ x → ev e (x ∷ env) ev (EApp e f) env = ev e env (ev f env) -- The binding-time-annotated language. --------------------------------------- -- The type of a term determines the term's binding time. The type -- constructors with an A-prefix denote statically bound integers and -- functions. Terms with dynamic binding time have a `D' type. The `D' -- type constructor simply wraps up a residual type. data AType : Set where AInt : AType AFun : AType → AType → AType D : Type → AType ACtx = List AType -- The mapping from annotated types to residual types is straightforward. typeof : AType → Type typeof AInt = Int typeof (AFun α₁ α₂) = Fun (typeof α₁) (typeof α₂) typeof (D x) = x -- ATypes are stratified such that that dynamically bound -- functions can only have dynamically bound parameters. -- TODO: why exactly is that necessary? -- The following well-formedness relation as an alternative representation -- for this constraint: module AType-WF where open import Relation.Binary.PropositionalEquality -- Static and dynamic binding times data BT : Set where stat : BT dyn : BT -- Ordering on binding times: dynamic binding time subsumes static -- binding time. data _≤-bt_ : BT → BT → Set where bt≤bt : ∀ bt → bt ≤-bt bt stat≤bt : ∀ bt → stat ≤-bt bt module WF (ATy : Set) (typeof : ATy → Type) (btof : ATy → BT) where data wf : ATy → Set where wf-int : ∀ α → typeof α ≡ Int → wf α wf-fun : ∀ α α₁ α₂ → typeof α ≡ Fun (typeof α₁) (typeof α₂) → btof α ≤-bt btof α₁ → btof α ≤-bt btof α₂ → wf α₁ → wf α₂ → wf α -- It is easy to check that the stratification respects the -- well-formedness, given the intended mapping from ATypes to -- binding times expained above: btof : AType → BT btof AInt = stat btof (AFun _ _) = stat btof (D x) = dyn open WF AType typeof btof using (wf-fun; wf-int) renaming (wf to wf-AType) lem-wf-AType : ∀ α → wf-AType α lem-wf-AType AInt = WF.wf-int AInt refl lem-wf-AType (AFun α α₁) = WF.wf-fun (AFun α α₁) α α₁ refl (stat≤bt (btof α)) (stat≤bt (btof α₁)) (lem-wf-AType α) (lem-wf-AType α₁) lem-wf-AType (D Int) = WF.wf-int (D Int) refl lem-wf-AType (D (Fun x x₁)) = WF.wf-fun (D (Fun x x₁)) (D x) (D x₁) refl (bt≤bt dyn) (bt≤bt dyn) (lem-wf-AType (D x)) (lem-wf-AType (D x₁)) -- The typed annotated terms: The binding times of variables is -- determined by the corresponding type-binding in the context. In the -- other cases, the A- and D-prefixes on term constructors inidicate -- the corresponding binding times for the resulting terms. data AExp (Δ : ACtx) : AType → Set where Var : ∀ {α} → α ∈ Δ → AExp Δ α AInt : ℕ → AExp Δ AInt AAdd : AExp Δ AInt → AExp Δ AInt → AExp Δ AInt ALam : ∀ {α₁ α₂} → AExp (α₁ ∷ Δ) α₂ → AExp Δ (AFun α₁ α₂) AApp : ∀ {α₁ α₂} → AExp Δ (AFun α₂ α₁) → AExp Δ α₂ → AExp Δ α₁ DInt : ℕ → AExp Δ (D Int) DAdd : AExp Δ (D Int) → AExp Δ (D Int) → AExp Δ (D Int) DLam : ∀ {σ₁ σ₂} → AExp ((D σ₁) ∷ Δ) (D σ₂) → AExp Δ (D (Fun σ₁ σ₂)) DApp : ∀ {α₁ α₂} → AExp Δ (D (Fun α₂ α₁)) → AExp Δ (D α₂) → AExp Δ (D α₁) Lift : AExp Δ AInt → AExp Δ (D Int) -- The terms of AExp assign a binding time to each subterm. For -- program specialization, we interpret terms with dynamic binding -- time as the programs subject to specialization, and their subterms -- with static binding time as statically known inputs. A partial -- evaluation function (or specializer) then compiles the program into -- a residual term for that is specialized for the static inputs. The -- main complication when defining partial evaluation as a total, -- primitively recursive function will be the treatment of the De -- Bruijn variables of non-closed residual expressions. -- Before diving into the precise definition, it is instructive to -- investigate the expected result of partial evaluation on some -- examples. module ApplicativeMaybe where open import Data.Maybe public open import Category.Functor public import Level open RawFunctor {Level.zero} functor public infixl 4 _⊛_ _⊛_ : {A B : Set} → Maybe (A → B) → Maybe A → Maybe B just f ⊛ just x = just (f x) _ ⊛ _ = nothing liftA2 : {A B C : Set} → (A → B → C) → Maybe A → Maybe B → Maybe C liftA2 f mx my = just f ⊛ mx ⊛ my module AExp-Examples where open import Data.Product hiding (map) open ApplicativeMaybe open import Data.Empty open Relation.Binary.PropositionalEquality -- (We pre-define some De Bruijn indices to improve -- readability of the examples:) x : ∀ {α Δ} → AExp (α ∷ Δ) α x = Var hd x' : ∀ {α Δ} → Exp (α ∷ Δ) α x' = EVar hd y : ∀ {α₁ α Δ} → AExp (α₁ ∷ α ∷ Δ) α y = Var (tl hd) z : ∀ {α₁ α₂ α Δ} → AExp (α₁ ∷ α₂ ∷ α ∷ Δ) α z = Var (tl (tl hd)) -- A rather trivial case is the specialization of base-type -- calulations. Here, we simply want to emit the result of a static -- addition as a constant: -- Lift (5S +S 5S) --specializes to --> 5E ex0 : AExp [] (D Int) ex0 = (Lift (AAdd (AInt 5) (AInt 5))) ex0' : AExp [] (D Int) ex0' = DAdd (DInt 6) (Lift (AAdd (AInt 5) (AInt 5))) ex0-spec : Exp [] Int ex0-spec = (EInt 10) ex0'-spec : Exp [] Int ex0'-spec = (EAdd (EInt 6) (EInt 10)) -- The partial evaluation for this case is of course -- straightforward. We use Agda's ℕ as an implementation type for -- static integers and residual expressions Exp for dynamic ones. Imp0 : AType → Set Imp0 AInt = ℕ Imp0 (D σ) = Exp [] σ Imp0 _ = ⊥ pe-ex0 : ∀ { α } → AExp [] α → Maybe (Imp0 α) pe-ex0 (AInt x) = just (x) pe-ex0 (DInt x) = just (EInt x) pe-ex0 (AAdd e f) = liftA2 _+_ (pe-ex0 e) (pe-ex0 f) pe-ex0 (DAdd e f) = liftA2 EAdd (pe-ex0 e) (pe-ex0 f) pe-ex0 (Lift e) = EInt <$> (pe-ex0 e) pe-ex0 _ = nothing ex0-test : pe-ex0 ex0 ≡ just ex0-spec ex0-test = refl ex0'-test : pe-ex0 ex0' ≡ just ex0'-spec ex0'-test = refl -- Specializing open terms is also straightforward. This situation -- typically arises when specializing the body of a lambda -- abstraction. -- (Dλ x → x +D Lift (5S + 5S)) ---specializes to--> Eλ x → EInt 10 ex1 : AExp [] (D (Fun Int Int)) ex1 = (DLam (DAdd x (Lift (AAdd (AInt 5) (AInt 5))))) ex1-spec : Exp [] (Fun Int Int) ex1-spec = ELam (EAdd x' (EInt 10)) ex1' : AExp (D Int ∷ []) (D Int) ex1' = (Lift (AAdd (AInt 5) (AInt 5))) ex1'-spec : Exp (Int ∷ []) Int ex1'-spec = (EAdd x' (EInt 10)) -- The implementation type now also has to hold open residual terms, -- which arise as the result of partially evaluating an open term -- with with dynamic binding time. The calculation of the -- implementation type thus requires a typing context as a -- parameter. Imp1 : Ctx → AType → Set Imp1 _ AInt = ℕ Imp1 Γ (D τ) = Exp Γ τ Imp1 _ _ = ⊥ erase = typeof -- Unsurprisingly, Partial evaluation of open terms emits -- implementations that are typed under the erased context. pe-ex1 : ∀ {α Δ} → AExp Δ α → Maybe (Imp1 (map erase Δ) α) pe-ex1 (AInt x) = just (x) pe-ex1 (DInt x) = just (EInt x) pe-ex1 (AAdd e f) = liftA2 _+_ (pe-ex1 e) (pe-ex1 f) pe-ex1 (DAdd e f) = liftA2 EAdd (pe-ex1 e) (pe-ex1 f) pe-ex1 (Lift e) = EInt <$> (pe-ex1 e) pe-ex1 (DLam {τ} e) = ELam <$> pe-ex1 e -- Technical note: In the case for variables we can simply exploit -- the fact that variables are functorial in the actual type of -- their contexts' elements pe-ex1 (Var {D _} x) = just (EVar (mapIdx typeof x)) pe-ex1 _ = nothing ex1-test : pe-ex1 ex1 ≡ just ex1-spec ex1-test = refl data Static : AType → Set where SInt : Static AInt SFun : ∀ { α₁ α₂ } → Static α₂ → Static (AFun α₁ α₂) is-static : (α : AType) → Dec (Static α) is-static α = {!!} Imp2 : Ctx → AType → Set Imp2 _ AInt = ℕ Imp2 Γ (D τ) = Exp Γ τ Imp2 Γ (AFun α₁ α₂) = Imp2 Γ α₁ → Imp2 Γ α₂ -- The interpretation of annotated types. Imp : Ctx → AType → Set Imp Γ (AInt) = ℕ Imp Γ (AFun α₁ α₂) = ∀ {Γ'} → Γ ↝ Γ' → (Imp Γ' α₁ → Imp Γ' α₂) Imp Γ (D σ) = Exp Γ σ elevate-var : ∀ {Γ Γ'} {τ : Type} → Γ ↝ Γ' → τ ∈ Γ → τ ∈ Γ' elevate-var ↝-refl x = x elevate-var (↝-extend Γ↝Γ') x = tl (elevate-var Γ↝Γ' x) elevate-var2 : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → τ ∈ Γ → τ ∈ Γ'' elevate-var2 (↝↝-base x) x₁ = elevate-var x x₁ elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') hd = hd elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') (tl x) = tl (elevate-var2 Γ↝Γ'↝Γ'' x) elevate : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → Exp Γ τ → Exp Γ'' τ elevate Γ↝Γ'↝Γ'' (EVar x) = EVar (elevate-var2 Γ↝Γ'↝Γ'' x) elevate Γ↝Γ'↝Γ'' (EInt x) = EInt x elevate Γ↝Γ'↝Γ'' (EAdd e e₁) = EAdd (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁) elevate Γ↝Γ'↝Γ'' (ELam e) = ELam (elevate (↝↝-extend Γ↝Γ'↝Γ'') e) elevate Γ↝Γ'↝Γ'' (EApp e e₁) = EApp (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁) lift : ∀ {Γ Γ'} α → Γ ↝ Γ' → Imp Γ α → Imp Γ' α lift AInt p v = v lift (AFun x x₁) Γ↝Γ' v = λ Γ'↝Γ'' → v (↝-trans Γ↝Γ' Γ'↝Γ'') lift (D x₁) Γ↝Γ' v = elevate (↝↝-base Γ↝Γ') v module SimpleAEnv where -- A little weaker, but much simpler data AEnv (Γ : Ctx) : ACtx → Set where [] : AEnv Γ [] cons : ∀ {Δ} (α : AType) → Imp Γ α → AEnv Γ Δ → AEnv Γ (α ∷ Δ) lookup : ∀ {α Δ Γ} → AEnv Γ Δ → α ∈ Δ → Imp Γ α lookup (cons α v env) hd = v lookup (cons α₁ v env) (tl x) = lookup env x liftEnv : ∀ {Γ Γ' Δ} → Γ ↝ Γ' → AEnv Γ Δ → AEnv Γ' Δ liftEnv Γ↝Γ' [] = [] liftEnv Γ↝Γ' (cons α x env) = cons α (lift α Γ↝Γ' x) (liftEnv Γ↝Γ' env) consD : ∀ {Γ Δ} σ → AEnv Γ Δ → AEnv (σ ∷ Γ) (D σ ∷ Δ) consD σ env = (cons (D σ) (EVar hd) (liftEnv (↝-extend {τ = σ} ↝-refl) env)) pe : ∀ {α Δ Γ} → AExp Δ α → AEnv Γ Δ → Imp Γ α pe (Var x) env = lookup env x pe (AInt x) env = x pe (AAdd e₁ e₂) env = pe e₁ env + pe e₂ env pe (ALam {α} e) env = λ Γ↝Γ' → λ y → pe e (cons α y (liftEnv Γ↝Γ' env)) pe (AApp e₁ e₂) env = ((pe e₁ env) ↝-refl) (pe e₂ env) pe (DInt x) env = EInt x pe (DAdd e e₁) env = EAdd (pe e env) (pe e₁ env) pe (DLam {σ} e) env = ELam (pe e (consD σ env)) pe (DApp e e₁) env = EApp (pe e env) (pe e₁ env) pe (Lift e) env = EInt (pe e env) module CheckExamples where open import Relation.Binary.PropositionalEquality hiding ([_]) open SimpleAEnv open AExp-Examples check-ex1 : pe ex1 [] ≡ ex1-spec check-ex1 = refl check-ex0 : pe ex0 [] ≡ ex0-spec check-ex0 = refl check-ex0' : pe ex0' [] ≡ ex0'-spec check-ex0' = refl module Examples where open SimpleAEnv open import Relation.Binary.PropositionalEquality x : ∀ {α Δ} → AExp (α ∷ Δ) α x = Var hd y : ∀ {α₁ α Δ} → AExp (α₁ ∷ α ∷ Δ) α y = Var (tl hd) z : ∀ {α₁ α₂ α Δ} → AExp (α₁ ∷ α₂ ∷ α ∷ Δ) α z = Var (tl (tl hd)) -- Dλ y → let f = λ x → x D+ y in Dλ z → f z term1 : AExp [] (D (Fun Int (Fun Int Int))) term1 = DLam (AApp (ALam (DLam (AApp (ALam y) x))) ((ALam (DAdd x y)))) -- Dλ y → let f = λ x → (Dλ w → x D+ y) in Dλ z → f z -- Dλ y → (λ f → Dλ z → f z) (λ x → (Dλ w → x D+ y)) term2 : AExp [] (D (Fun Int (Fun Int Int))) term2 = DLam (AApp (ALam (DLam (AApp (ALam y) x))) ((ALam (DLam {σ₁ = Int} (DAdd y z))))) -- closed pe. In contrast to BTA5, it is now not clear what Γ is -- given an expression. So perhaps AEnv has it's merrits after all? pe[] : ∀ {α} → AExp [] α → Imp [] α pe[] e = pe e [] ex-pe-term1 : pe[] term1 ≡ ELam (ELam (EVar hd)) ex-pe-term1 = refl ex-pe-term2 : pe[] term2 ≡ ELam (ELam (EVar hd)) ex-pe-term2 = refl module Correctness where open SimpleAEnv open Exp-Eval -- TODO: rename occurences of stripα to typeof stripα = typeof stripΔ : ACtx → Ctx stripΔ = map stripα strip-lookup : ∀ { α Δ} → α ∈ Δ → stripα α ∈ stripΔ Δ strip-lookup hd = hd strip-lookup (tl x) = tl (strip-lookup x) strip : ∀ {α Δ} → AExp Δ α → Exp (stripΔ Δ) (stripα α) strip (Var x) = EVar (strip-lookup x) strip (AInt x) = EInt x strip (AAdd e f) = EAdd (strip e) (strip f) strip (ALam e) = ELam (strip e) strip (AApp e f) = EApp (strip e) (strip f) strip (DInt x) = EInt x strip (DAdd e f) = EAdd (strip e) (strip f) strip (DLam e) = ELam (strip e) strip (DApp e f) = EApp (strip e) (strip f) strip (Lift e) = strip e liftE : ∀ {τ Γ Γ'} → Γ ↝ Γ' → Exp Γ τ → Exp Γ' τ liftE Γ↝Γ' e = elevate (↝↝-base Γ↝Γ') e stripLift : ∀ {α Δ Γ} → stripΔ Δ ↝ Γ → AExp Δ α → Exp Γ (stripα α) stripLift Δ↝Γ = liftE Δ↝Γ ∘ strip -- We want to show that pe preserves the semantics of the -- program. Roughly, Exp-Eval.ev-ing a stripped program is -- equivalent to first pe-ing a program and then Exp-Eval.ev-ing the -- result. But as the pe-result of a static function ``can do more'' -- than the (ev ∘ strip)ped function we need somthing more refined. module Equiv where open import Relation.Binary.PropositionalEquality -- Extending a value environment according to an extension of a -- type environment data _⊢_↝_ {Γ} : ∀ {Γ'} → Γ ↝ Γ' → Env Γ → Env Γ' → Set where refl : ∀ env → ↝-refl ⊢ env ↝ env extend : ∀ {τ Γ' env env'} → {Γ↝Γ' : Γ ↝ Γ'} → (v : EImp τ) → (Γ↝Γ' ⊢ env ↝ env') → ↝-extend Γ↝Γ' ⊢ env ↝ (v ∷ env') env↝trans : ∀ {Γ Γ' Γ''} {Γ↝Γ' : Γ ↝ Γ'} {Γ'↝Γ'' : Γ' ↝ Γ''} {env env' env''} → Γ↝Γ' ⊢ env ↝ env' → Γ'↝Γ'' ⊢ env' ↝ env'' → let Γ↝Γ'' = ↝-trans Γ↝Γ' Γ'↝Γ'' in Γ↝Γ'' ⊢ env ↝ env'' -- env↝trans {Γ} {.Γ''} {Γ''} {Γ↝Γ'} {.↝-refl} {env} {.env''} {env''} env↝env' (refl .env'') = env↝env' -- env↝trans env↝env' (extend v env'↝env'') = extend v (env↝trans env↝env' env'↝env'') -- TODO: why does this work??? env↝trans {.Γ'} {Γ'} {Γ''} {.↝-refl} {Γ'↝Γ''} {.env'} {env'} (refl .env') env'↝env'' rewrite sym (lem-↝-refl-id Γ'↝Γ'') = env'↝env'' env↝trans (extend v env↝env') env'↝env'' = env↝trans (extend v env↝env') env'↝env'' -- Equivalent Imp Γ α and EImp τ values (where τ = stripα α). As -- (v : Imp Γ α) is not necessarily closed, equivalence is defined for -- the closure (Env Γ, ImpΓ α) Equiv : ∀ {α Γ} → Env Γ → Imp Γ α → EImp (stripα α) → Set Equiv {AInt} env av v = av ≡ v Equiv {AFun α₁ α₂} {Γ} env af f = -- extensional equality, given -- an extended context ∀ {Γ' env' Γ↝Γ'} → (Γ↝Γ' ⊢ env ↝ env') → {ax : Imp Γ' α₁} → {x : EImp (stripα α₁)} → Equiv env' ax x → Equiv env' (af Γ↝Γ' ax) (f x) Equiv {D x} {Γ} env av v = ev av env ≡ v -- actually we mean extensional equality -- Equivalence of AEnv and Env environments. They need to provide -- Equivalent bindings for a context Δ/stripΔ Δ. Again, the -- equivalence is defined for a closure (Env Γ', AEnv Γ' Δ). data Equiv-Env {Γ' : _} (env' : Env Γ') : ∀ {Δ} → let Γ = stripΔ Δ in AEnv Γ' Δ → Env Γ → Set where [] : Equiv-Env env' [] [] cons : ∀ {α Δ} → let τ = stripα α Γ = stripΔ Δ in {env : Env Γ} → {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → (va : Imp (Γ') α) → (v : EImp τ) → Equiv env' va v → Equiv-Env env' (cons α va (aenv)) (v ∷ env) -- Now for the proof... module Proof where open Equiv open import Relation.Binary.PropositionalEquality -- Extensional equality as an axiom to prove the Equivalence of -- function values. We could (should?) define it locally for -- Equiv. postulate ext : ∀ {τ₁ τ₂} {f g : EImp τ₁ → EImp τ₂} → (∀ x → f x ≡ g x) → f ≡ g -- Ternary helper relation for environment extensions, analogous to _↝_↝_ for contexts data _⊢_↝_↝_⊣ : ∀ { Γ Γ' Γ''} → Γ ↝ Γ' ↝ Γ'' → Env Γ → Env Γ' → Env Γ'' → Set where refl : ∀ {Γ Γ''} {Γ↝Γ'' : Γ ↝ Γ''} { env env'' } → Γ↝Γ'' ⊢ env ↝ env'' → ↝↝-base Γ↝Γ'' ⊢ env ↝ [] ↝ env'' ⊣ extend : ∀ {Γ Γ' Γ'' τ} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} { env env' env'' } → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (v : EImp τ) → ↝↝-extend Γ↝Γ'↝Γ'' ⊢ (v ∷ env) ↝ (v ∷ env') ↝ (v ∷ env'') ⊣ -- the following lemmas are strong versions of the shifting -- functions, proving that consistent variable renaming preserves -- equivalence (and not just typing). lookup-elevate-≡ : ∀ {τ Γ Γ'} {Γ↝Γ' : Γ ↝ Γ'} {env : Env Γ} {env' : Env Γ'} → Γ↝Γ' ⊢ env ↝ env' → (x : τ ∈ Γ) → lookupE x env ≡ lookupE (elevate-var Γ↝Γ' x) env' lookup-elevate-≡ {τ} {.Γ'} {Γ'} {.↝-refl} {.env'} {env'} (refl .env') x = refl lookup-elevate-≡ (extend v env↝env') x = lookup-elevate-≡ env↝env' x lookup-elevate2-≡ : ∀ {τ Γ Γ' Γ''} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} {env : Env Γ} {env' : Env Γ'} {env'' : Env Γ''} → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (x : τ ∈ Γ) → lookupE x env ≡ lookupE (elevate-var2 Γ↝Γ'↝Γ'' x) env'' lookup-elevate2-≡ (refl Γ↝Γ') x = lookup-elevate-≡ Γ↝Γ' x lookup-elevate2-≡ (extend env↝env'↝env'' v) hd = refl lookup-elevate2-≡ (extend env↝env'↝env'' _) (tl x) rewrite lookup-elevate2-≡ env↝env'↝env'' x = refl lem-elevate-≡ : ∀ {τ Γ Γ' Γ''} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} {env : Env Γ} {env' : Env Γ'} {env'' : Env Γ''} → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (e : Exp Γ τ) → ev e env ≡ ev (elevate Γ↝Γ'↝Γ'' e) env'' lem-elevate-≡ env↝env' (EVar x) = lookup-elevate2-≡ env↝env' x lem-elevate-≡ env↝env' (EInt x) = refl lem-elevate-≡ env↝env' (EAdd e f) with lem-elevate-≡ env↝env' e | lem-elevate-≡ env↝env' f ... | IA1 | IA2 = cong₂ _+_ IA1 IA2 lem-elevate-≡ {Γ↝Γ'↝Γ'' = Γ↝Γ'↝Γ''} {env = env} {env'' = env''} env↝env' (ELam e) = ext lem-elevate-≡-body where lem-elevate-≡-body : ∀ x → ev e (x ∷ env) ≡ ev (elevate (↝↝-extend Γ↝Γ'↝Γ'') e) (x ∷ env'') lem-elevate-≡-body x = lem-elevate-≡ (extend env↝env' x) e lem-elevate-≡ env↝env' (EApp e f) with lem-elevate-≡ env↝env' e | lem-elevate-≡ env↝env' f ... | IA1 | IA2 = cong₂ (λ f₁ x → f₁ x) IA1 IA2 lem-lift-refl-id : ∀ {α Γ} → let τ = stripα α in (env : Env Γ) → (v : EImp τ) (va : Imp Γ α) → Equiv env va v → Equiv env (lift α ↝-refl va) v lem-lift-refl-id {AInt} env v va eq = eq lem-lift-refl-id {AFun α α₁} {Γ} env v va eq = body where body : ∀ {Γ'} {env' : Env Γ'} {Γ↝Γ' : Γ ↝ Γ'} → Γ↝Γ' ⊢ env ↝ env' → {av' : Imp Γ' α} {v' : EImp (stripα α)} → Equiv env' av' v' → Equiv env' (va (↝-trans ↝-refl Γ↝Γ') av') (v v') body {Γ↝Γ' = Γ↝Γ'} env↝env' eq' rewrite sym (lem-↝-refl-id Γ↝Γ') = eq env↝env' eq' lem-lift-refl-id {D x} env v e eq rewrite sym eq = sym (lem-elevate-≡ (refl (refl env)) e) -- lifting an Imp does not affect equivalence lem-lift-equiv : ∀ {α Γ Γ'} → let τ = stripα α in {Γ↝Γ' : Γ ↝ Γ'} → (va : Imp Γ α) (v : EImp τ) → {env : Env Γ} {env' : Env Γ'} → Γ↝Γ' ⊢ env ↝ env' → Equiv env va v → Equiv env' (lift α Γ↝Γ' va) v lem-lift-equiv va v {.env'} {env'} (refl .env') eq = lem-lift-refl-id env' v va eq lem-lift-equiv {AInt} va v (extend v₁ env↝env') eq = eq lem-lift-equiv {AFun α α₁} va v (extend v₁ env↝env') eq = λ v₁env₁↝env' eq₁ → eq (env↝trans (extend v₁ env↝env') v₁env₁↝env') eq₁ lem-lift-equiv {D x} va v (extend v₁ env↝env') eq rewrite sym eq = sym (lem-elevate-≡ (refl (extend v₁ env↝env')) va) lem-equiv-lookup : ∀ {α Δ Γ'} → let Γ = stripΔ Δ in { aenv : AEnv Γ' Δ } {env : Env Γ} → (env' : Env Γ') → Equiv-Env env' aenv env → ∀ x → Equiv {α} env' (lookup aenv x) (lookupE (strip-lookup x) env) lem-equiv-lookup env' [] () lem-equiv-lookup env' (cons enveq va v eq) hd = eq lem-equiv-lookup env' (cons enveq va v eq) (tl x) = lem-equiv-lookup env' enveq x lem-equiv-env-lift-extend : ∀ {σ Γ' Δ} (env' : Env Γ') → let Γ = stripΔ Δ in {env : Env Γ} {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → (x : EImp σ) → Equiv-Env (x ∷ env') (liftEnv (↝-extend ↝-refl) aenv) env lem-equiv-env-lift-extend _ [] x = [] lem-equiv-env-lift-extend env' (cons {α} eqenv va v x) x₁ = cons (lem-equiv-env-lift-extend env' eqenv x₁) (lift α (↝-extend ↝-refl) va) v (lem-lift-equiv va v (extend x₁ (refl env')) x) lem-equiv-env-lift-lift : ∀ {Γ' Γ'' Δ} → let Γ = stripΔ Δ in {Γ↝Γ' : Γ' ↝ Γ''} {env' : Env Γ'} {env'' : Env Γ''} (env'↝env'' : Γ↝Γ' ⊢ env' ↝ env'') → {env : Env Γ} {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → Equiv-Env env'' (liftEnv Γ↝Γ' aenv) env lem-equiv-env-lift-lift env'↝env'' [] = [] lem-equiv-env-lift-lift {Γ↝Γ' = Γ↝Γ'} env'↝env'' (cons {α} eqenv va v x) with lem-equiv-env-lift-lift env'↝env'' eqenv ... | IA = cons IA (lift α Γ↝Γ' va) v (lem-lift-equiv va v env'↝env'' x) -- When we partially evaluate somthing under an environment , it -- will give equivalent results to a ``complete'' evaluation under -- an equivalent environment pe-correct : ∀ { α Δ Γ' } → (e : AExp Δ α) → let Γ = stripΔ Δ in {aenv : AEnv Γ' Δ} → {env : Env Γ} → (env' : Env Γ') → Equiv-Env env' aenv env → Equiv env' (pe e aenv) (ev (strip e) env) pe-correct (Var x) env' eqenv = lem-equiv-lookup env' eqenv x pe-correct (AInt x) env' eqenv = refl pe-correct (AAdd e f) env' eqenv rewrite pe-correct e env' eqenv | pe-correct f env' eqenv = refl pe-correct (ALam e) env' eqenv = λ {_} {env''} env'↝env'' {av'} {v'} eq → let eqenv' = (lem-equiv-env-lift-lift env'↝env'' eqenv) eqenv'' = (cons eqenv' av' v' eq) in pe-correct e env'' eqenv'' pe-correct (AApp e f) env' eqenv with pe-correct e env' eqenv | pe-correct f env' eqenv ... | IAe | IAf = IAe (refl env') IAf pe-correct (DInt x) env' eqenv = refl pe-correct (DAdd e f) env' eqenv rewrite pe-correct e env' eqenv | pe-correct f env' eqenv = refl pe-correct (DLam e) env' eqenv = ext (λ x → let eqenv' = (lem-equiv-env-lift-extend env' eqenv x) eqenv'' = (cons eqenv' (EVar hd) x refl) in pe-correct e (x ∷ env') eqenv'') pe-correct (DApp e f) {env = env} env' eqenv with pe-correct f env' eqenv | pe-correct e env' eqenv ... | IA' | IA = cong₂ (λ f x → f x) IA IA' pe-correct (Lift e) env' eqenv with pe-correct e env' eqenv ... | IA = IA -- module PreciseAEnv where -- open Exp-Eval -- open import Relation.Binary.PropositionalEquality -- data AEnv : Ctx → ACtx → Set where -- [] : AEnv [] [] -- cons : ∀ { Γ Γ' Δ } (α : AType) → Γ ↝ Γ' → Imp Γ' α → AEnv Γ Δ → AEnv Γ' (α ∷ Δ) -- consD : ∀ {Γ Δ} σ → AEnv Γ Δ → AEnv (σ ∷ Γ) (D σ ∷ Δ) -- consD σ env = (cons (D σ) (↝-extend {τ = σ} ↝-refl) (EVar hd) (env)) -- lookup : ∀ {α Δ Γ} → AEnv Γ Δ → α ∈ Δ → Imp Γ α -- lookup (cons α _ v env) hd = v -- lookup (cons α₁ Γ↝Γ' v env) (tl x) = lookup (cons α₁ Γ↝Γ' v env) (tl x) -- pe : ∀ {α Δ Γ} → AExp Δ α → AEnv Γ Δ → Imp Γ α -- pe (Var x) env = lookup env x -- pe (AInt x) env = x -- pe (AAdd e₁ e₂) env = pe e₁ env + pe e₂ env -- pe (ALam {α} e) env = λ Γ↝Γ' → λ y → pe e (cons α Γ↝Γ' y env) -- pe (AApp e₁ e₂) env = ((pe e₁ env) ↝-refl) (pe e₂ env) -- pe (DInt x) env = EInt x -- pe (DAdd e e₁) env = EAdd (pe e env) (pe e₁ env) -- pe (DLam {σ} e) env = ELam (pe e (consD σ env)) -- pe (DApp e e₁) env = EApp (pe e env) (pe e₁ env) -- -- What is a suitable environment to interpret an AExp without pe? -- -- 1-1 mapping from AExp into Exp -- stripα : AType → Type -- stripα AInt = Int -- stripα (AFun α₁ α₂) = Fun (stripα α₁) (stripα α₂) -- stripα (D x) = x -- stripΔ : ACtx → Ctx -- stripΔ = map stripα -- stripEnv : ∀ {Δ} → -- let Γ = stripΔ Δ -- in AEnv Γ Δ → Env Γ -- stripEnv [] = [] -- stripEnv (cons AInt Γ↝Γ' v env) = v ∷ (stripEnv {!!}) -- stripEnv (cons (AFun α α₁) Γ↝Γ' v env) = {!!} -- stripEnv (cons (D x) Γ↝Γ' v env) = {!!} -- -- Extending a value environment according to an extension of a type environment -- data _⊢_↝_ {Γ} : ∀ {Γ'} → Γ ↝ Γ' → Env Γ → Env Γ' → Set where -- refl : ∀ env → ↝-refl ⊢ env ↝ env -- extend : ∀ {τ Γ' env env'} → {Γ↝Γ' : Γ ↝ Γ'} → -- (v : EImp τ) → (Γ↝Γ' ⊢ env ↝ env') → -- ↝-extend Γ↝Γ' ⊢ env ↝ (v ∷ env') -- -- It turns out that we have to shift Exp also -- liftE : ∀ {τ Γ Γ'} → Γ ↝ Γ' → Exp Γ τ → Exp Γ' τ -- liftE Γ↝Γ' e = elevate (↝↝-base Γ↝Γ') e -- Equiv : ∀ {α Γ} → Env Γ → Imp Γ α → EImp (stripα α) → Set -- Equiv {AInt} env av v = av ≡ v -- Equiv {AFun α₁ α₂} {Γ} env av v = -- an pe-d static function is -- -- equivalent to an EImp value -- -- if given an suitably extended -- -- environment, evaluating the -- -- body yields something -- -- equivalent to the EImp-value -- ∀ {Γ' env' Γ↝Γ'} → (Γ↝Γ' ⊢ env ↝ env') → -- {av' : Imp Γ' α₁} → {v' : EImp (stripα α₁)} → -- Equiv env' av' v' → Equiv env' (av Γ↝Γ' av') (v v') -- Equiv {D x} {Γ} env av v = ev av env ≡ v -- data Equiv-Env : ∀ {Δ} → let Γ = stripΔ Δ in -- AEnv Γ Δ → Env Γ → Set where -- [] : Equiv-Env [] [] -- -- cons : ∀ {α Δ} → let Γ = stripΔ Δ in -- -- (va : Imp Γ α) → (v : EImp (stripα α)) → -- -- (env : Env Γ) → Equiv env v va → -- -- (aenv : AEnv Γ Δ) → -- -- Equiv-Env aenv env → -- -- Equiv-Env {α ∷ Δ} (cons α (lift α (↝-extend ↝-refl) va) -- -- (liftEnv (↝-extend ↝-refl) aenv)) -- -- (v ∷ env)
39.371356
107
0.53657
502bd202274fd2aaf9c1721b8ff9498d6a485694
5,098
agda
Agda
src/DTGP.agda
larrytheliquid/dtgp
31d79242908f2d80ea8e0c02931f4fdc5a3e5d1f
[ "MIT" ]
9
2015-07-20T16:46:00.000Z
2022-03-19T21:39:58.000Z
src/DTGP.agda
larrytheliquid/dtgp
31d79242908f2d80ea8e0c02931f4fdc5a3e5d1f
[ "MIT" ]
null
null
null
src/DTGP.agda
larrytheliquid/dtgp
31d79242908f2d80ea8e0c02931f4fdc5a3e5d1f
[ "MIT" ]
2
2018-04-17T02:02:58.000Z
2022-03-12T11:53:14.000Z
open import Relation.Nullary open import Relation.Binary.PropositionalEquality module DTGP {Domain Word : Set} (pre post : Word → Domain → Domain) (_≟_ : (x y : Domain) → Dec (x ≡ y)) where open import Function open import Relation.Binary open import Data.Bool hiding (_≟_) open import Data.Nat hiding (_≥_; _≟_) open import Data.Fin hiding (_+_; raise) open import Data.Maybe open import Data.Product hiding (map; swap) open import Data.List hiding (length) renaming (_++_ to _l++_) open import Data.Vec hiding (_++_; _>>=_; concat; map; init) open import DTGP.Rand infixr 5 _∷_ _++_ _++'_ data Term (inp : Domain) : Domain → Set where [] : Term inp inp _∷_ : ∀ {d} (w : Word) → Term inp (pre w d) → Term inp (post w d) _++_ : ∀ {inp mid out} → Term mid out → Term inp mid → Term inp out [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) data Split {inp out} mid : Term inp out → Set where _++'_ : (xs : Term mid out) (ys : Term inp mid) → Split mid (xs ++ ys) swap₁ : ∀ {inp mid out} {xs ys : Term inp out} → Split mid xs → Split mid ys → Term inp out swap₁ (xs ++' ys) (as ++' bs) = xs ++ bs swap₂ : ∀ {inp mid out} {xs ys : Term inp out} → Split mid xs → Split mid ys → Term inp out swap₂ (xs ++' ys) (as ++' bs) = as ++ ys swaps : ∀ {inp mid out} {xs ys : Term inp out} → Split mid xs → Split mid ys → Term inp out × Term inp out swaps xs ys = swap₁ xs ys , swap₂ xs ys split : ∀ {inp out} (n : ℕ) (xs : Term inp out) → ∃ λ mid → Split mid xs split zero xs = _ , [] ++' xs split (suc n) [] = _ , [] ++' [] split (suc n) (x ∷ xs) with split n xs split (suc n) (x ∷ ._) | _ , xs ++' ys = _ , (x ∷ xs) ++' ys splits : ∀ {inp out} (n : ℕ) mid → (xs : Term inp out) → ∃ (Vec (Split mid xs)) splits zero mid xs with split zero xs ... | mid' , ys with mid ≟ mid' ... | yes p rewrite p = _ , ys ∷ [] ... | no p = _ , [] splits (suc n) mid xs with split (suc n) xs ... | mid' , ys with mid ≟ mid' | splits n mid xs ... | yes p | _ , yss rewrite p = _ , ys ∷ yss ... | no p | _ , yss = _ , yss length : ∀ {inp out} → Term inp out → ℕ length [] = 0 length (x ∷ xs) = suc (length xs) split♀ : ∀ {inp out} → (xs : Term inp out) → Rand (∃ λ mid → Split mid xs) split♀ xs = rand >>= λ r → let i = r mod (suc (length xs)) in return (split (toℕ i) xs) split♂ : ∀ {inp out} (xs : Term inp out) mid → Maybe (Rand (Split mid xs)) split♂ xs B with splits (length xs) B xs ... | zero , [] = nothing ... | suc n , xss = just ( rand >>= λ r → return (lookup (r mod suc n) xss) ) crossover : ∀ {inp out} (♀ ♂ : Term inp out) → Rand (Term inp out × Term inp out) crossover ♀ ♂ = split♀ ♀ >>= λ b,xs → maybe′ (_=<<_ (return ∘ (swaps (proj₂ b,xs)))) (return (♀ , ♂)) (split♂ ♂ (proj₁ b,xs)) Population : ∀ inp out n → Set Population inp out n = Vec (Term inp out) (2 + n) module Initialization (match : ∀ w out → Dec (∃ λ d → out ≡ pre w d)) where toMaybe : ∀ {w inp out} → Term inp out → Dec (∃ λ d → out ≡ pre w d) → Maybe (∃ λ d → Term inp d) toMaybe {w = w} ws (no _) = nothing toMaybe {w = w} ws (yes (_ , p)) rewrite p = just (_ , w ∷ ws) enum-inp : ∀ (n : ℕ) inp → List Word → List (∃ λ out → Term inp out) enum-inp zero inp ws = gfilter (λ w → toMaybe [] (match w inp)) ws enum-inp (suc n) A ws with enum-inp n A ws ... | ih = concat (map (λ out,t → gfilter (λ w → toMaybe (proj₂ out,t) (match w (proj₁ out,t)) ) ws) ih) l++ ih filter-out : ∀ {inp} out → List (∃ (Term inp)) → List (Term inp out) filter-out out [] = [] filter-out out ((out' , x) ∷ xs) with out' ≟ out ... | no p = filter-out out xs ... | yes p rewrite p = x ∷ filter-out out xs init : ∀ (n : ℕ) inp out → List Word → List (Term inp out) init n inp out ws = filter-out out (enum-inp n inp ws) module Evolution {inp out} (score : Term inp out → ℕ) where _≥_ : ℕ → ℕ → Bool zero ≥ zero = true zero ≥ (suc n) = false (suc m) ≥ zero = true (suc m) ≥ (suc n) = m ≥ n select : ∀ {n} → Population inp out n → Rand (Term inp out) select {n = n} xss = rand >>= λ ii → rand >>= λ jj → let ♀ = lookup (ii mod (2 + n)) xss ♂ = lookup (jj mod (2 + n)) xss in return $ if score ♀ ≥ score ♂ then ♀ else ♂ breed2 : ∀ {n} → Population inp out n → Rand (Term inp out × Term inp out) breed2 xss = select xss >>= λ ♀ → select xss >>= λ ♂ → crossover ♀ ♂ breedN : ∀ {m} → (n : ℕ) → Population inp out m → Rand (Vec (Term inp out) n) breedN zero xss = return [] breedN (suc n) xss = breed2 xss >>= λ offspring → breedN n xss >>= λ ih → return (proj₁ offspring ∷ ih) evolve1 : ∀ {n} → Population inp out n → Rand (Population inp out n) evolve1 xss = breedN _ xss evolveN : ∀ {n} → (gens : ℕ) → Population inp out n → Rand (Population inp out n) evolveN zero xss = return xss evolveN (suc gens) xss = evolveN gens xss >>= evolve1 evolve : ∀ {n} → (seed gens : ℕ) → Population inp out n → Population inp out n evolve seed gens xss = runRand (evolveN gens xss) seed
28.010989
79
0.557866
12fdbed078bbf844e97548c684d16aebeab15679
536
agda
Agda
test/Succeed/Issue4010.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue4010.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue4010.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2019-08-19, issue #4010 -- unquoteDef and unquoteDecl should also work in abstract blocks. open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.List abstract data D : Set where c : D f : D unquoteDef f = do qc ← quoteTC c -- Previously, there was a complaint here about c. defineFun f (clause [] [] qc ∷ []) unquoteDecl g = do ty ← quoteTC D _ ← declareDef (arg (arg-info visible relevant) g) ty qc ← quoteTC c defineFun g (clause [] [] qc ∷ [])
24.363636
70
0.647388
1ddc31778804f4e778e6acad4d2a02f3fbfb603f
3,337
agda
Agda
agda-stdlib/src/Reflection/Pattern.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Reflection/Pattern.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Reflection/Pattern.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Patterns used in the reflection machinery ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Reflection.Pattern where open import Data.List.Base hiding (_++_) open import Data.List.Properties open import Data.Product open import Data.String as String using (String; braces; parens; _++_; _<+>_) import Reflection.Literal as Literal import Reflection.Name as Name open import Relation.Nullary open import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Product using (_×-dec_) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Reflection.Argument open import Reflection.Argument.Visibility using (Visibility); open Visibility open import Reflection.Argument.Relevance using (Relevance); open Relevance open import Reflection.Argument.Information using (ArgInfo); open ArgInfo ------------------------------------------------------------------------ -- Re-exporting the builtin type and constructors open import Agda.Builtin.Reflection public using (Pattern) open Pattern public ------------------------------------------------------------------------ -- Decidable equality con-injective₁ : ∀ {c c′ args args′} → con c args ≡ con c′ args′ → c ≡ c′ con-injective₁ refl = refl con-injective₂ : ∀ {c c′ args args′} → con c args ≡ con c′ args′ → args ≡ args′ con-injective₂ refl = refl con-injective : ∀ {c c′ args args′} → con c args ≡ con c′ args′ → c ≡ c′ × args ≡ args′ con-injective = < con-injective₁ , con-injective₂ > var-injective : ∀ {x y} → var x ≡ var y → x ≡ y var-injective refl = refl lit-injective : ∀ {x y} → Pattern.lit x ≡ lit y → x ≡ y lit-injective refl = refl proj-injective : ∀ {x y} → proj x ≡ proj y → x ≡ y proj-injective refl = refl _≟s_ : Decidable (_≡_ {A = Args Pattern}) _≟_ : Decidable (_≡_ {A = Pattern}) con c ps ≟ con c′ ps′ = Dec.map′ (uncurry (cong₂ con)) con-injective (c Name.≟ c′ ×-dec ps ≟s ps′) var s ≟ var s′ = Dec.map′ (cong var) var-injective (s String.≟ s′) lit l ≟ lit l′ = Dec.map′ (cong lit) lit-injective (l Literal.≟ l′) proj a ≟ proj a′ = Dec.map′ (cong proj) proj-injective (a Name.≟ a′) con x x₁ ≟ dot = no (λ ()) con x x₁ ≟ var x₂ = no (λ ()) con x x₁ ≟ lit x₂ = no (λ ()) con x x₁ ≟ proj x₂ = no (λ ()) con x x₁ ≟ absurd = no (λ ()) dot ≟ con x x₁ = no (λ ()) dot ≟ dot = yes refl dot ≟ var x = no (λ ()) dot ≟ lit x = no (λ ()) dot ≟ proj x = no (λ ()) dot ≟ absurd = no (λ ()) var s ≟ con x x₁ = no (λ ()) var s ≟ dot = no (λ ()) var s ≟ lit x = no (λ ()) var s ≟ proj x = no (λ ()) var s ≟ absurd = no (λ ()) lit x ≟ con x₁ x₂ = no (λ ()) lit x ≟ dot = no (λ ()) lit x ≟ var _ = no (λ ()) lit x ≟ proj x₁ = no (λ ()) lit x ≟ absurd = no (λ ()) proj x ≟ con x₁ x₂ = no (λ ()) proj x ≟ dot = no (λ ()) proj x ≟ var _ = no (λ ()) proj x ≟ lit x₁ = no (λ ()) proj x ≟ absurd = no (λ ()) absurd ≟ con x x₁ = no (λ ()) absurd ≟ dot = no (λ ()) absurd ≟ var _ = no (λ ()) absurd ≟ lit x = no (λ ()) absurd ≟ proj x = no (λ ()) absurd ≟ absurd = yes refl [] ≟s [] = yes refl (arg i p ∷ xs) ≟s (arg j q ∷ ys) = ∷-dec (unArg-dec (p ≟ q)) (xs ≟s ys) [] ≟s (_ ∷ _) = no λ() (_ ∷ _) ≟s [] = no λ()
33.039604
98
0.560084
2f8a98ee76fefb80066a50ca9a9e97c7b69d0414
312
agda
Agda
Data/Binary/Proofs.agda
oisdk/agda-binary
92af4d620febd47a9791d466d747278dc4a417aa
[ "MIT" ]
1
2019-03-21T21:30:10.000Z
2019-03-21T21:30:10.000Z
Data/Binary/Proofs.agda
oisdk/agda-binary
92af4d620febd47a9791d466d747278dc4a417aa
[ "MIT" ]
null
null
null
Data/Binary/Proofs.agda
oisdk/agda-binary
92af4d620febd47a9791d466d747278dc4a417aa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Data.Binary.Proofs where open import Data.Binary.Proofs.Multiplication using (*-homo) open import Data.Binary.Proofs.Addition using (+-homo) open import Data.Binary.Proofs.Unary using (inc-homo) open import Data.Binary.Proofs.Bijection using (𝔹↔ℕ)
34.666667
62
0.714744
59945a9d43a0c12fb38fbbe1f82be6bc31ad1dcf
883
agda
Agda
test/fail/Issue503.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/fail/Issue503.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Issue503.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- div shouldn't termination check, but it also shouldn't make the termination -- checker loop. module Issue503 where data Bool : Set where true : Bool false : Bool if_then_else_ : {C : Set} -> Bool -> C -> C -> C if true then a else b = a if false then a else b = b data Nat : Set where zero : Nat succ : Nat -> Nat pred : Nat -> Nat pred zero = zero pred (succ n) = n _+_ : Nat -> Nat -> Nat zero + b = b succ a + b = succ (a + b) _*_ : Nat -> Nat -> Nat zero * _ = zero succ a * b = (a * b) + b {-# BUILTIN NATURAL Nat #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC succ #-} {-# BUILTIN NATPLUS _+_ #-} {-# BUILTIN NATTIMES _*_ #-} _-_ : Nat -> Nat -> Nat a - zero = a a - succ b = pred (a - b) _<_ : Nat -> Nat -> Bool a < zero = false zero < succ b = true succ a < succ b = a < b div : Nat -> Nat -> Nat div m n = if (m < n) then zero else succ (div (m - n) n)
19.195652
78
0.570781
fba4250e9a7d132dfbbeceb8ba9e389f78ad831f
357
agda
Agda
test/Fail/IrrelevantFin.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/IrrelevantFin.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/IrrelevantFin.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2011-04-07 module IrrelevantFin where data Nat : Set where zero : Nat suc : Nat -> Nat data Fin : Nat -> Set where zero : .(n : Nat) -> Fin (suc n) suc : .(n : Nat) -> Fin n -> Fin (suc n) -- this should not type check, since irrelevant n cannot appear in Fin n -- or Fin (suc c) -- note: this is possible in ICC*, but not in Agda!
23.8
72
0.619048
31bab9ded5314949c629f47299cf3f70319f6a3e
17,169
agda
Agda
agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec4.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec4.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec4.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
{-# OPTIONS --type-in-type #-} -- yes, there will be some cheating in this lecture module Lec4 where open import Lec1Done open import Lec2Done open import Lec3Done -- the identity functor (the identity action on objects and arrows) ID : {C : Category} -> C => C ID = id~> where open Category CATEGORY -- composition of functors (composition of actions on objects and arrows) _>F>_ : {C D E : Category} -> (C => D) -> (D => E) -> (C => E) F >F> G = F >~> G where open Category CATEGORY -- EXAMPLES data Maybe (X : Set) : Set where yes : (x : X) -> Maybe X no : Maybe X {-# COMPILE GHC Maybe = data Maybe (Just | Nothing) #-} maybe : {X Y : Set} -> (X -> Y) -> Maybe X -> Maybe Y maybe f (yes x) = yes (f x) maybe f no = no MAYBE : SET => SET MAYBE = record { F-Obj = Maybe ; F-map = maybe ; F-map-id~> = extensionality \ { (yes x) -> refl (yes x) ; no -> refl no } -- extensionality \ { (yes x) -> refl (yes x) ; no -> refl no } ; F-map->~> = \ f g -> extensionality \ { (yes x) -> refl (yes (g (f x))) ; no -> refl no } } module MAYBE-CAT where open Category SET open _=>_ MAYBE {- unMaybe : {T : Set} -> Maybe T -> T unMaybe (yes t) = t unMaybe no = {!!} -} joinMaybe : {T : Set} -> Maybe (Maybe T) -> Maybe T joinMaybe (yes mt) = mt joinMaybe no = no MAYBE-CAT : Category MAYBE-CAT = record { Obj = Set ; _~>_ = \ S T -> S -> Maybe T ; id~> = yes ; _>~>_ = \ f g -> f >> (F-map g >> joinMaybe) ; law-id~>>~> = \ f -> refl f ; law->~>id~> = \ f -> extensionality \ x -> help f x ; law->~>>~> = \ f g h -> extensionality \ x -> yelp f g h x } where help : forall {S T} (f : S -> Maybe T) (x : S) -> joinMaybe (maybe yes (f x)) == f x help f x with f x help f x | yes y = refl (yes y) help f x | no = refl no yelp : forall {Q R S T} (f : Q -> Maybe R) (g : R -> Maybe S)(h : S -> Maybe T) (x : Q) -> joinMaybe (maybe h (joinMaybe (maybe g (f x)))) == joinMaybe (maybe (\ y → joinMaybe (maybe h (g y))) (f x)) yelp f g h x with f x yelp f g h x | yes y = refl (joinMaybe (maybe h (g y))) yelp f g h x | no = refl no open MAYBE-CAT module NATURAL-TRANSFORMATION {C D : Category} where open Category open _=>_ record _~~>_ (F G : C => D) : Set where field -- one operation xf : {X : Obj C} -> _~>_ D (F-Obj F X) (F-Obj G X) -- one law naturality : {X Y : Obj C}(f : _~>_ C X Y) -> _>~>_ D (F-map F f) (xf {Y}) == _>~>_ D (xf {X}) (F-map G f) module FUNCTOR-CP {C D E : Category} where open _=>_ open Category _>=>_ : C => D -> D => E -> C => E F-Obj (F >=> G) = F-Obj F >> F-Obj G F-map (F >=> G) = F-map F >> F-map G F-map-id~> (F >=> G) = F-map G (F-map F (id~> C)) =[ refl (F-map G) =$= F-map-id~> F >= F-map G (id~> D) =[ F-map-id~> G >= id~> E [QED] F-map->~> (F >=> G) f g = F-map G (F-map F (_>~>_ C f g)) =[ refl (F-map G) =$= F-map->~> F f g >= F-map G (_>~>_ D (F-map F f) (F-map F g)) =[ F-map->~> G (F-map F f) (F-map F g) >= _>~>_ E (F-map G (F-map F f)) (F-map G (F-map F g)) [QED] open FUNCTOR-CP open NATURAL-TRANSFORMATION public open _~~>_ public UNIT-MAYBE : ID ~~> MAYBE xf UNIT-MAYBE = yes naturality UNIT-MAYBE f = refl _ MULT-MAYBE : (MAYBE >=> MAYBE) ~~> MAYBE MULT-MAYBE = record { xf = joinMaybe ; naturality = \ f -> extensionality \ { (yes x) → refl (maybe f x) ; no → refl no } } module MONAD {C : Category}(M : C => C) where open Category C open _=>_ M record Monad : Set where field unit : ID ~~> M mult : (M >=> M) ~~> M unitMult : {X : Obj} -> (xf unit >~> xf mult) == id~> {F-Obj X} multUnit : {X : Obj} -> (F-map (xf unit) >~> xf mult) == id~> {F-Obj X} multMult : {X : Obj} -> (xf mult >~> xf mult) == (F-map (xf mult) >~> xf mult {X}) KLEISLI : Category KLEISLI = record { Obj = Obj ; _~>_ = \ S T -> S ~> F-Obj T ; id~> = xf unit ; _>~>_ = \ f g -> f >~> F-map g >~> xf mult ; law-id~>>~> = \ f -> xf unit >~> F-map f >~> xf mult =< law->~>>~> _ _ _ ]= (xf unit >~> F-map f) >~> xf mult =< refl (_>~> xf mult) =$= naturality unit f ]= (f >~> xf unit) >~> xf mult =[ law->~>>~> _ _ _ >= f >~> (xf unit >~> xf mult) =[ refl (f >~>_) =$= unitMult >= f >~> id~> =[ law->~>id~> f >= f [QED] ; law->~>id~> = \ f -> f >~> (F-map (xf unit) >~> xf mult) =[ refl (f >~>_) =$= multUnit >= f >~> id~> =[ law->~>id~> f >= f [QED] ; law->~>>~> = \ f g h -> (f >~> F-map g >~> xf mult) >~> F-map h >~> xf mult =[ law->~>>~> _ _ _ >= f >~> (F-map g >~> xf mult) >~> (F-map h >~> xf mult) =[ refl (\ x -> _ >~> x) =$= law->~>>~> _ _ _ >= f >~> F-map g >~> xf mult >~> F-map h >~> xf mult =< refl (\ x -> _ >~> _ >~> x) =$= assocn (naturality mult _) ]= f >~> F-map g >~> F-map (F-map h) >~> xf mult >~> xf mult =[ refl (\ x -> _ >~> _ >~> _ >~> x) =$= multMult >= f >~> F-map g >~> F-map (F-map h) >~> F-map (xf mult) >~> xf mult =< refl (\ x -> _ >~> _ >~> x) =$= law->~>>~> _ _ _ ]= f >~> F-map g >~> (F-map (F-map h) >~> F-map (xf mult)) >~> xf mult =< refl (\ x -> _ >~> _ >~> x >~> _) =$= F-map->~> _ _ ]= f >~> F-map g >~> F-map (F-map h >~> xf mult) >~> xf mult =< refl (\ x -> _ >~> x) =$= law->~>>~> _ _ _ ]= f >~> (F-map g >~> F-map (F-map h >~> xf mult)) >~> xf mult =< refl (\ x -> _ >~> x >~> _) =$= F-map->~> _ _ ]= f >~> F-map (g >~> F-map h >~> xf mult) >~> xf mult [QED] } open MONAD public MAYBE-Monad : Monad MAYBE MAYBE-Monad = record { unit = UNIT-MAYBE ; mult = MULT-MAYBE ; unitMult = refl _ ; multUnit = extensionality \ { (yes x) -> refl _ ; no -> refl _ } ; multMult = extensionality \ { (yes mmx) -> refl _ ; no -> refl _ } } data List (X : Set) : Set where [] : List X _,-_ : (x : X)(xs : List X) -> List X {-# COMPILE GHC List = data [] ([] | (:)) #-} list : {X Y : Set} -> (X -> Y) -> List X -> List Y list f [] = [] list f (x ,- xs) = f x ,- list f xs LIST : SET => SET LIST = record { F-Obj = List ; F-map = list ; F-map-id~> = extensionality listId ; F-map->~> = \ f g -> extensionality (listCp f g) } where open Category SET listId : {T : Set}(xs : List T) -> list id xs == xs listId [] = refl [] listId (x ,- xs) = refl (_,-_ x) =$= listId xs listCp : {R S T : Set} (f : R -> S) (g : S -> T) (xs : List R) → list (f >~> g) xs == (list f >~> list g) xs listCp f g [] = refl [] listCp f g (x ,- xs) = refl (_,-_ (g (f x))) =$= listCp f g xs data Two : Set where tt ff : Two {- BUILTIN BOOL Two -} {- BUILTIN FALSE ff -} {- BUILTIN TRUE tt -} {-# COMPILE GHC Two = data Bool (True | False) #-} data BitProcess (X : Set) : Set where -- in what way is X used? stop : (x : X) -> BitProcess X -- stop with value x send : (b : Two)(k : BitProcess X) -> BitProcess X -- send b, continue as k recv : (kt kf : BitProcess X) -> BitProcess X -- receive bit, continue as -- kt if tt, kf if ff {-(-} send1 : (b : Two) -> BitProcess One send1 b = send b (stop <>) {-)-} {-(-} recv1 : BitProcess Two recv1 = recv (stop tt) (stop ff) {-)-} {-(-} bpRun : forall {X} -> BitProcess X -- a process to run -> List Two -- a list of bits waiting to be input -> List Two -- the list of bits output * Maybe -- and, if we don't run out of input ( X -- the resulting value * List Two -- and the unused input ) bpRun (stop x) bs = [] , yes (x , bs) bpRun (send b px) bs = let os , mz = bpRun px bs in (b ,- os) , mz bpRun (recv pxt pxf) [] = [] , no bpRun (recv pxt pxf) (tt ,- bs) = bpRun pxt bs bpRun (recv pxt pxf) (ff ,- bs) = bpRun pxf bs {-)-} example = bpRun recv1 (tt ,- []) bitProcess : {X Y : Set} -> (X -> Y) -> BitProcess X -> BitProcess Y bitProcess f (stop x) = stop (f x) bitProcess f (send b k) = send b (bitProcess f k) bitProcess f (recv kt kf) = recv (bitProcess f kt) (bitProcess f kf) BITPROCESS : SET => SET -- actions on *values* lift to processes BITPROCESS = record { F-Obj = BitProcess ; F-map = bitProcess ; F-map-id~> = extensionality helpId ; F-map->~> = \ f g -> extensionality (helpCp f g) } where open Category SET helpId : {T : Set} (p : BitProcess T) -> bitProcess id p == p helpId (stop x) = refl (stop x) helpId (send b k) rewrite helpId k = refl (send b k) helpId (recv kt kf) rewrite helpId kt | helpId kf = refl (recv kt kf) helpCp : {R S T : Set} (f : R -> S)(g : S -> T) (p : BitProcess R) -> bitProcess (f >~> g) p == (bitProcess f >~> bitProcess g) p helpCp f g (stop x) = refl (stop (g (f x))) helpCp f g (send b k) rewrite helpCp f g k = refl (send b (bitProcess g (bitProcess f k))) helpCp f g (recv kt kf) rewrite helpCp f g kt | helpCp f g kf = refl (recv (bitProcess g (bitProcess f kt)) (bitProcess g (bitProcess f kf))) {-(-} UNIT-BP : ID ~~> BITPROCESS UNIT-BP = record { xf = stop ; naturality = \ f -> refl _ } {-)-} join-BP : {X : Set} -> BitProcess (BitProcess X) -> BitProcess X join-BP (stop px) = px join-BP (send b ppx) = send b (join-BP ppx) join-BP (recv ppxt ppxf) = recv (join-BP ppxt) (join-BP ppxf) {-(-} MULT-BP : (BITPROCESS >=> BITPROCESS) ~~> BITPROCESS MULT-BP = record { xf = join-BP ; naturality = \ f -> extensionality (help f ) } where help : ∀ {X Y} (f : X → Y) (x : BitProcess (BitProcess X)) → join-BP (bitProcess (bitProcess f) x) == bitProcess f (join-BP x) help f (stop x) = refl (bitProcess f x) help f (send b p) rewrite help f p = refl (send b (bitProcess f (join-BP p))) help f (recv pt pf) rewrite help f pf | help f pt = refl (recv (bitProcess f (join-BP pt)) (bitProcess f (join-BP pf))) {-)-} {-(-} BITPROCESS-Monad : Monad BITPROCESS BITPROCESS-Monad = record { unit = UNIT-BP ; mult = MULT-BP ; unitMult = refl id ; multUnit = extensionality help ; multMult = extensionality yelp } where help : ∀ {X} (x : BitProcess X) → join-BP (bitProcess stop x) == x help (stop x) = refl (stop x) help (send b p) rewrite help p = refl (send b p) help (recv pt pf) rewrite help pt | help pf = refl (recv pt pf) yelp : ∀ {X} (x : BitProcess (BitProcess (BitProcess X))) → join-BP (join-BP x) == join-BP (bitProcess join-BP x) yelp (stop x) = refl _ yelp (send b p) rewrite yelp p = refl _ yelp (recv pt pf) rewrite yelp pt | yelp pf = refl _ {-)-} module BIND {F : SET => SET}(M : Monad F) where open _=>_ F public open Monad M public open Category KLEISLI public {-(-} _>>=_ : {S T : Set} -> F-Obj S -> (S -> F-Obj T) -> F-Obj T fs >>= k = (id >~> k) fs {-)-} open BIND BITPROCESS-Monad bpEcho : BitProcess One bpEcho = recv1 >>= \ b -> send1 b BP-SEM : Set -> Set BP-SEM X = List Two -- a list of bits waiting to be input -> List Two -- the list of bits output * Maybe -- and, if we don't run out of input ( X -- the resulting value * List Two -- and the unused input ) record _**_ (S T : Set) : Set where constructor _,_ field outl : S outr : T open _**_ {-# COMPILE GHC _**_ = data (,) ((,)) #-} infixr 4 _**_ _,_ postulate -- Haskell has a monad for doing IO, which we use at the top level IO : Set -> Set mainLoop : {S : Set} -> S -> (S -> Two -> (List Two ** Maybe S)) -> IO One mainOutIn : {S : Set} -> S -> (S -> (List Two ** Maybe (Two -> S))) -> IO One {-# BUILTIN IO IO #-} {-# COMPILE GHC IO = type IO #-} {-# COMPILE GHC mainLoop = (\ _ -> Lec4HS.mainLoop) #-} {-# COMPILE GHC mainOutIn = (\ _ -> Lec4HS.mainOutIn) #-} {-# FOREIGN GHC import qualified Lec4HS #-} STATE : Set STATE = Two -> BitProcess One step : STATE -> Two -> (List Two ** Maybe STATE) step s b = go (s b) where go : BitProcess One → List Two ** Maybe (Two → BitProcess One) go (stop <>) = [] , no go (send b p) with go p ... | bs , ms = (b ,- bs) , ms go (recv pt pf) = [] , yes \ { tt → pt ; ff → pf } myState : STATE myState tt = bpEcho >>= \ _ -> bpEcho myState ff = bpEcho {- main : IO One main = mainLoop myState step -} example2 = bpRun (myState ff) (tt ,- ff ,- []) outIn : BitProcess One -> List Two ** Maybe (Two -> BitProcess One) outIn (stop <>) = [] , no outIn (send b p) with outIn p ... | os , mk = (b ,- os) , mk outIn (recv pt pf) = [] , yes \ { tt → pt ; ff → pf } main : IO One main = mainOutIn (send1 ff >>= \ _ -> bpEcho >>= \ _ -> bpEcho) outIn _-:>_ : {I : Set} -> (I -> Set) -> (I -> Set) -> (I -> Set) (S -:> T) i = S i -> T i [_] : {I : Set} -> (I -> Set) -> Set [ P ] = forall i -> P i -- [_] {I} P = (i : I) -> P i _->SET : Set -> Category I ->SET = record { Obj = I -> Set -- I-indexed sets ; _~>_ = \ S T -> [ S -:> T ] -- index-respecting functions ; id~> = \ i -> id -- the identity at every index ; _>~>_ = \ f g i -> f i >> g i -- composition at every index ; law-id~>>~> = refl -- and the laws are very boring ; law->~>id~> = refl ; law->~>>~> = \ f g h -> refl _ } All : {X : Set} -> (X -> Set) -> (List X -> Set) All P [] = One All P (x ,- xs) = P x * All P xs example3 : All (Vec Two) (1 ,- 2 ,- 3 ,- []) example3 = (tt ,- []) , (tt ,- ff ,- []) , (tt ,- ff ,- tt ,- []) , <> record _|>_ (I O : Set) : Set where field Cuts : O -> Set -- given o : O, how may we cut it? inners : {o : O} -> Cuts o -> List I -- given how we cut it, what are -- the shapes of its pieces? -- Let us have some examples right away! copy : Nat -> List One copy zero = [] copy (suc n) = <> ,- copy n VecCut : One |> Nat -- cut numbers into boring pieces VecCut = record { Cuts = \ n -> One -- there is one way to cut n ; inners = \ {n} _ -> copy n -- and you get n pieces } -- Here's a less boring example. You can cut a number into *two* pieces -- by finding two numbers that add to it. NatCut : Nat |> Nat NatCut = record { Cuts = \ mn -> Sg Nat \ m -> Sg Nat \ n -> (m +N n) == mn ; inners = \ { (m , n , _) -> m ,- n ,- [] } } -- The point is that we can make data structures that record how we -- built an O-shaped thing from I-shaped pieces. record Cutting {I O}(C : I |> O)(P : I -> Set)(o : O) : Set where constructor _8><_ -- "scissors" open _|>_ C field cut : Cuts o -- we decide how to cut o pieces : All P (inners cut) -- then we give all the pieces. infixr 3 _8><_ example4 : Cutting NatCut (Vec Two) 5 example4 = (3 , 2 , refl 5) 8>< ((tt ,- tt ,- tt ,- []) , (ff ,- ff ,- []) , <>) data Interior {I}(C : I |> I)(T : I -> Set)(i : I) : Set where -- either... tile : T i -> Interior C T i -- we have a tile that fits, or... <_> : Cutting C (Interior C T) i -> -- ...we cut, then tile the pieces. Interior C T i MayC : One |> One MayC = record { Cuts = \ _ -> One ; inners = \ _ -> [] } Maybe' : Set -> Set Maybe' X = Interior MayC (\ _ -> X) <> yes' : {X : Set} -> X -> Maybe' X yes' x = tile x no' : {X : Set} -> Maybe' X no' = < <> 8>< <> > BPC : One |> One BPC = record { Cuts = \ _ -> Two + One ; inners = \ { (inl x) → <> ,- [] ; (inr x) → <> ,- <> ,- [] } } data Type : Set where nat two : Type Val : Type -> Set Val nat = Nat Val two = Two data Op : Type -> Set where val : {T : Type} -> Val T -> Op T add : Op nat if : {T : Type} -> Op T Syntax : Type |> Type _|>_.Cuts Syntax T = Op T _|>_.inners Syntax {T} (val x) = [] _|>_.inners Syntax {.nat} add = nat ,- nat ,- [] _|>_.inners Syntax {T} if = two ,- T ,- T ,- [] eval : {T : Type}{X : Type -> Set} -> Interior Syntax X T -> ({T : Type} -> X T -> Val T) -> Val T eval (tile x) g = g x eval < val v 8>< <> > g = v eval < add 8>< e1 , e2 , <> > g = eval e1 g +N eval e2 g eval < if 8>< e1 , e2 , e3 , <> > g with eval e1 g eval < if 8>< e1 , e2 , e3 , <> > g | tt = eval e2 g eval < if 8>< e1 , e2 , e3 , <> > g | ff = eval e3 g
31.273224
93
0.478362
1de94c62b949743b2b972fe536cbbbbfe82fc982
6,035
agda
Agda
src/CategoryTheory/BCCCs/Cartesian.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
4
2018-05-31T20:37:04.000Z
2022-01-04T09:33:48.000Z
src/CategoryTheory/BCCCs/Cartesian.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
src/CategoryTheory/BCCCs/Cartesian.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
-- Products and Cartesian categories module CategoryTheory.BCCCs.Cartesian where open import CategoryTheory.Categories open import Relation.Binary using (IsEquivalence) module _ {n} (ℂ : Category n) where open Category ℂ -- Terminal object in a category record TerminalObj : Set (lsuc n) where field -- | Data -- The terminal object ⊤ : obj -- Canonical morphism ! : {A : obj} -> (A ~> ⊤) -- | Laws -- Need to show that the canonical morphism ! is unique !-unique : {A : obj} -> (m : A ~> ⊤) -> m ≈ ! -- Product of two objects -- Based on github.com/copumpkin/categories record Product (A B : obj) : Set (lsuc n) where infix 10 ⟨_,_⟩ field -- | Data -- Product of A and B A⊗B : obj -- First projection π₁ : A⊗B ~> A -- Second projection π₂ : A⊗B ~> B -- Canonical mediator ⟨_,_⟩ : ∀{P} -> (P ~> A) -> (P ~> B) -> (P ~> A⊗B) -- | Laws -- ⟨_,_⟩ expresses that given another candidate product C -- and candidate projections to A and B there is a morphism -- from P to A⊗B. We need to check that this mediator makes -- the product diagram commute and is unique. π₁-comm : ∀{P} -> {p₁ : P ~> A} {p₂ : P ~> B} -> π₁ ∘ ⟨ p₁ , p₂ ⟩ ≈ p₁ π₂-comm : ∀{P} -> {p₁ : P ~> A} {p₂ : P ~> B} -> π₂ ∘ ⟨ p₁ , p₂ ⟩ ≈ p₂ ⊗-unique : ∀{P} -> {p₁ : P ~> A} {p₂ : P ~> B} {m : P ~> A⊗B} -> π₁ ∘ m ≈ p₁ -> π₂ ∘ m ≈ p₂ -> ⟨ p₁ , p₂ ⟩ ≈ m -- η-expansion of function pairs (via morphisms) ⊗-η-exp : ∀{P} -> {m : P ~> A⊗B} -> ⟨ π₁ ∘ m , π₂ ∘ m ⟩ ≈ m ⊗-η-exp = ⊗-unique r≈ r≈ -- Pairing of projection functions is the identity ⊗-η-id : ⟨ π₁ , π₂ ⟩ ≈ id ⊗-η-id = ⊗-unique id-right id-right -- Congruence over function pairing ⟨,⟩-cong : ∀{P} -> {p₁ q₁ : P ~> A} {p₂ q₂ : P ~> B} -> p₁ ≈ q₁ -> p₂ ≈ q₂ -> ⟨ p₁ , p₂ ⟩ ≈ ⟨ q₁ , q₂ ⟩ ⟨,⟩-cong pr1 pr2 = ⊗-unique (π₁-comm ≈> pr1 [sym]) (π₂-comm ≈> pr2 [sym]) ⟨,⟩-distrib : ∀{P Q} -> {h : P ~> Q} {f : Q ~> A} {g : Q ~> B} -> ⟨ f , g ⟩ ∘ h ≈ ⟨ f ∘ h , g ∘ h ⟩ ⟨,⟩-distrib = ⊗-unique (∘-assoc [sym] ≈> ≈-cong-left π₁-comm) (∘-assoc [sym] ≈> ≈-cong-left π₂-comm) [sym] -- Type class for Cartesian categories record Cartesian {n} (ℂ : Category n) : Set (lsuc n) where open Category ℂ field -- | Data -- Terminal object term : TerminalObj ℂ -- Binary products for all pairs of objects prod : ∀(A B : obj) -> Product ℂ A B open TerminalObj term public open module P {A} {B} = Product (prod A B) public -- Shorthand for sum object infixl 25 _⊗_ _⊗_ : (A B : obj) -> obj A ⊗ B = A⊗B {A} {B} -- Parallel product of morphisms infixl 65 _*_ _*_ : {A B P Q : obj} -> (A ~> P) -> (B ~> Q) -> (A ⊗ B ~> P ⊗ Q) _*_ {A} {B} {P} {Q} f g = ⟨ f ∘ π₁ , g ∘ π₂ ⟩ -- Parallel product with an idempotent morphism distributes over ∘ *-idemp-dist-∘ : {A B C D : obj}{g : B ~> C}{f : A ~> B}{h : D ~> D} -> h ∘ h ≈ h -> g * h ∘ f * h ≈ (g ∘ f) * h *-idemp-dist-∘ {g = g}{f}{h} idemp = ⊗-unique u₁ u₂ [sym] where u₁ : π₁ ∘ (g * h ∘ f * h) ≈ (g ∘ f) ∘ π₁ u₁ = ∘-assoc [sym] ≈> ≈-cong-left π₁-comm ≈> ∘-assoc ≈> ≈-cong-right π₁-comm ≈> ∘-assoc [sym] u₂ : π₂ ∘ (g * h ∘ f * h) ≈ h ∘ π₂ u₂ = ∘-assoc [sym] ≈> ≈-cong-left π₂-comm ≈> ∘-assoc ≈> ≈-cong-right π₂-comm ≈> ∘-assoc [sym] ≈> ≈-cong-left idemp -- Parallel product with an idempotent morphism distributes over ∘ *-id-dist-∘ : {A B C : obj}{g : B ~> C}{f : A ~> B} -> (_*_ {B = B} g id) ∘ f * id ≈ (g ∘ f) * id *-id-dist-∘ = *-idemp-dist-∘ id-right -- Commutativity of product comm : {A B : obj} -> A ⊗ B ~> B ⊗ A comm {A}{B} = ⟨ π₂ , π₁ ⟩ -- Associativity of product assoc-left : {A B C : obj} -> A ⊗ (B ⊗ C) ~> (A ⊗ B) ⊗ C assoc-left = ⟨ ⟨ π₁ , (π₁ ∘ π₂) ⟩ , π₂ ∘ π₂ ⟩ assoc-right : {A B C : obj} -> (A ⊗ B) ⊗ C ~> A ⊗ (B ⊗ C) assoc-right = ⟨ π₁ ∘ π₁ , ⟨ (π₂ ∘ π₁) , π₂ ⟩ ⟩ -- Left and right unit for product unit-left : {A : obj} -> ⊤ ⊗ A ~> A unit-left = π₂ unit-right : {A : obj} -> A ⊗ ⊤ ~> A unit-right = π₁ -- The terminal object is the unit for product ⊤-left-cancel : ∀{A} -> ⊤ ⊗ A <~> A ⊤-left-cancel {A} = record { iso~> = π₂ ; iso<~ = ⟨ ! , id ⟩ ; iso-id₁ = iso-id₁-⊤ ; iso-id₂ = π₂-comm } where iso-id₁-⊤ : ⟨ ! , id ⟩ ∘ π₂ ≈ id iso-id₁-⊤ = begin ⟨ ! , id ⟩ ∘ π₂ ≈⟨ ⟨,⟩-distrib ⟩ ⟨ ! ∘ π₂ , id ∘ π₂ ⟩ ≈⟨ ⟨,⟩-cong r≈ id-left ⟩ ⟨ ! ∘ π₂ , π₂ ⟩ ≈⟨ ⟨,⟩-cong (!-unique (! ∘ π₂)) r≈ ⟩ ⟨ ! , π₂ ⟩ ≈⟨ ⟨,⟩-cong ((!-unique π₁) [sym]) r≈ ⟩ ⟨ π₁ , π₂ ⟩ ≈⟨ ⊗-η-id ⟩ id ∎ ⊤-right-cancel : ∀{A} -> A ⊗ ⊤ <~> A ⊤-right-cancel {A} = record { iso~> = π₁ ; iso<~ = ⟨ id , ! ⟩ ; iso-id₁ = iso-id₁-⊤ ; iso-id₂ = π₁-comm } where iso-id₁-⊤ : ⟨ id , ! ⟩ ∘ π₁ ≈ id iso-id₁-⊤ = begin ⟨ id , ! ⟩ ∘ π₁ ≈⟨ ⟨,⟩-distrib ⟩ ⟨ id ∘ π₁ , ! ∘ π₁ ⟩ ≈⟨ ⟨,⟩-cong id-left r≈ ⟩ ⟨ π₁ , ! ∘ π₁ ⟩ ≈⟨ ⟨,⟩-cong r≈ (!-unique (! ∘ π₁)) ⟩ ⟨ π₁ , ! ⟩ ≈⟨ ⟨,⟩-cong r≈ ((!-unique π₂) [sym]) ⟩ ⟨ π₁ , π₂ ⟩ ≈⟨ ⊗-η-id ⟩ id ∎
32.798913
81
0.401491
5965d4e8a8d274a19bf56e94da7b9c1aa30ec488
71
agda
Agda
test/Succeed/Issue2007.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2007.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2007.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where record R : Set₁ where constructor c open R {{...}}
8.875
21
0.633803
4d4aa5269fdd5fc763cfae1573f41a8f6d33ad35
12,810
agda
Agda
Eq/Theory.agda
msullivan/godels-t
7412725cf27873b2b23f7e411a236a97dd99ef91
[ "MIT" ]
4
2016-12-25T01:52:57.000Z
2021-03-22T00:28:03.000Z
Eq/Theory.agda
msullivan/godels-t
7412725cf27873b2b23f7e411a236a97dd99ef91
[ "MIT" ]
null
null
null
Eq/Theory.agda
msullivan/godels-t
7412725cf27873b2b23f7e411a236a97dd99ef91
[ "MIT" ]
3
2015-04-26T11:39:14.000Z
2021-05-04T22:37:18.000Z
module Eq.Theory where open import Prelude open import T open import DynTheory open import SubstTheory open import Contexts open import Eq.Defs open import Eq.KleeneTheory open import Eq.ObsTheory open import Eq.LogicalTheory -- Theory about the interactions between the relationships between the equivs -- Now that we have shown that logical equivalence is a consistent congruence, -- it follows that it is contained in observational equivalence. obs-contains-logical : ∀{Γ} {A} → OLogicalEq Γ A ⊆ ObservEq Γ A obs-contains-logical = obs-is-coarsest OLogicalEq log-is-con-congruence obs-contains-clogical : ∀{A} → (LogicalEq A) ⊆ (ObservEq [] A) obs-contains-clogical leq = obs-contains-logical (closed-logical-imp-open leq) -- Show that observational equivalence implies logical for closed terms. obs-implies-closed-logical : ∀{A} {e e' : TCExp A} → [] ⊢ e ≅ e' :: A → e ~ e' :: A obs-implies-closed-logical {nat} oeq = ObservEq.observe oeq ∘ obs-implies-closed-logical {A ⇒ B} {e} {e'} oeq = body where body : (e₁ e₁' : TExp [] A) → LogicalEq A e₁ e₁' → LogicalEq B (e $ e₁) (e' $ e₁') body e₁ e₁' leq with obs-contains-clogical leq ... | oeq' with obs-trans (obs-congruence oeq' (e e$ ∘)) (obs-congruence oeq (∘ $e e₁')) ... | oeq'' = obs-implies-closed-logical oeq'' obs-contains-logical-subst : ∀{Γ} → SubstRel LogicalEq Γ ⊆ SubstRel (ObservEq []) Γ obs-contains-logical-subst η x = obs-contains-clogical (η x) -- Since observational implies logical for closed terms and -- respects substitution of observational equivalent terms, -- logical equivalence contains observational. logical-contains-obs : ∀{Γ} {A} → ObservEq Γ A ⊆ OLogicalEq Γ A logical-contains-obs {Γ} {A} {e} {e'} oeq {γ} {γ'} η with substs-respect-obs oeq (obs-contains-logical-subst η) ... | coeq = obs-implies-closed-logical coeq -- This is sort of silly. We need these lemmas to prove that logical -- equivalence contains definitional. nat-val-weakening : ∀{Γ} {n : TNat} → TVal n → Σ[ e :: TExp Γ nat ] (∀{γ : TSubst Γ []} → n ≡ ssubst γ e) nat-val-weakening val-zero = zero , (λ {γ} → Refl) nat-val-weakening {Γ} {suc n} (val-suc v) with nat-val-weakening {Γ} v ... | e , subst-thing = (suc e) , (λ {γ} → resp suc subst-thing) nat-logical-equiv-val : ∀{Γ} (γ : TSubst Γ []) (e : TExp Γ nat) → Σ[ n :: TExp Γ nat ] ((ssubst γ n ~ ssubst γ e :: nat) × TVal (ssubst γ n)) nat-logical-equiv-val {Γ} γ e with kleene-refl {ssubst γ e} ... | kleeneq n val E1 E2 with nat-val-weakening {Γ} val ... | n' , is-val = n' , ((kleeneq n val (ID.coe1 (λ x → x ~>* n) is-val eval-refl) E1) , ID.coe1 TVal is-val val) -- Logical equivalence contains definitional equivalence. logical-contains-def : ∀{Γ} {A} → DefEq Γ A ⊆ OLogicalEq Γ A logical-contains-def {y = e} def-refl η = ological-refl e η logical-contains-def {x = e} {y = e'} (def-sym defeq) η = ological-sym {_} {_} {e'} {e} (logical-contains-def defeq) η logical-contains-def {x = e} {y = e''} (def-trans {e' = e'} defeq1 defeq2) η with logical-contains-def defeq1 | logical-contains-def defeq2 ... | leq1 | leq2 = ological-trans {_} {_} {e} {e'} {e''} leq1 leq2 η logical-contains-def (def-cong defeq C) η = ological-is-congruence (logical-contains-def defeq) C η logical-contains-def {Γ} {A} (def-beta {e = e} {e' = e'}) {γ} {γ'} η with step-beta {e = (ssubst (liftγ γ) e)} {e' = ssubst γ e'} ... | step with ological-refl e (extendLogicalEQΓ η (ological-refl e' η)) ... | leq with subeq (compose-subst-noob γ' e') e ≡≡ subcomp γ' (singγ e') e ... | subeq-r with subcomp (singγ (ssubst γ e')) (liftγ γ) e ... | subeq-l with ID.coe2 (LogicalEq A) subeq-l subeq-r leq ... | leq' = logical-converse-evaluation-1 leq' (eval-step step) logical-contains-def {Γ} {A} (def-rec-z {e0 = e0} {es = es}) {γ} {γ'} η with ological-refl e0 η ... | leq = logical-converse-evaluation-1 leq (eval-step step-rec-z) -- This is super nasty. It has some code duplication when handling the congruence stuff. -- And it also needs to deal with a bunch of nasty substitution crap. -- The main source of nonstupid complication is that the step rule requires -- n to be a value, and definitional equivalence does not. logical-contains-def {Γ} {A} (def-rec-s {e = en} {e0 = e0} {es = es}) {γ} {γ'} η with nat-logical-equiv-val γ en ... | n , num-leq , is-val with ological-refl (rec en e0 es) η ... | full-leq with ological-is-congruence {e = ssubst γ n} {e' = ssubst γ en} (closed-logical-imp-open num-leq) (rec1 ∘ (ssubst γ e0) (ssubst (liftγ γ) es)) (emptyLogicalEqΓ {γ = emptyγ} {γ' = emptyγ}) ... | eq-with-γn-and-nasty-subst with ID.coe2 (LogicalEq A) (subid _) (subid _) eq-with-γn-and-nasty-subst ... | eq-with-γn with logical-trans eq-with-γn full-leq ... | leq-subrec with ological-refl (rec (suc en) e0 es) (logicalγ-refl {x = γ}) ... | full-leq-s with ological-is-congruence {e = ssubst γ n} {e' = ssubst γ en} (closed-logical-imp-open num-leq) (rec1 (suc ∘) (ssubst γ e0) (ssubst (liftγ γ) es)) (emptyLogicalEqΓ {γ = emptyγ} {γ' = emptyγ}) ... | eq-with-sγn-and-nasty-subst with ID.coe2 (LogicalEq A) (subid _) (subid _) eq-with-sγn-and-nasty-subst ... | eq-with-sγn with logical-trans eq-with-sγn full-leq-s ... | leq-subrec-2 with ological-refl es (extendLogicalEQΓ η leq-subrec) ... | leq-unrolled with subeq (compose-subst-noob γ' (rec en e0 es)) es ≡≡ subcomp γ' (singγ (rec en e0 es)) es ... | subeq-l with subcomp (singγ (ssubst γ (rec n e0 es))) (liftγ γ) es ... | subeq-r with ID.coe2 (LogicalEq A) subeq-r subeq-l leq-unrolled ... | leq with step-rec-s {e = ssubst γ n} {e₀ = ssubst γ e0} {es = ssubst (liftγ γ) es} is-val ... | step with logical-converse-evaluation-1 leq (eval-step step) ... | leq-stepped = logical-trans (logical-sym leq-subrec-2) leq-stepped -- Obvious corollary that observational equivalence contains definitional. obs-contains-def : ∀{Γ} {A} → DefEq Γ A ⊆ ObservEq Γ A obs-contains-def = obs-contains-logical o logical-contains-def -- Proving this mostly out of spite, because one formulation -- of my theory needed this for observational equivalence, -- and there wasn't a good way to prove it other than appealing -- to observational equivalence coinciding with logical, which -- was what we were trying to prove. weakened-equiv-log : ∀{Γ} {A} {e e' : TCExp A} → e ~ e' :: A → Γ ⊢ weaken-closed e ~ weaken-closed e' :: A weakened-equiv-log {Γ} {A} {e} {e'} leq {γ} {γ'} η with subren γ closed-wkγ e | subren γ' closed-wkγ e' ... | eq1 | eq2 with closed-subst (γ o closed-wkγ) e | closed-subst (γ' o closed-wkγ) e' ... | eq1' | eq2' = ID.coe2 (LogicalEq A) (symm eq1' ≡≡ symm eq1) (symm eq2' ≡≡ symm eq2) leq weakened-equiv-obs : ∀{Γ} {A} {e e' : TCExp A} → [] ⊢ e ≅ e' :: A → Γ ⊢ weaken-closed e ≅ weaken-closed e' :: A weakened-equiv-obs {Γ} {A} {e} {e'} oeq = obs-contains-logical (weakened-equiv-log {Γ} {A} {e} {e'} (obs-implies-closed-logical oeq)) -- Some more stuff about renaming. wkren1 : ∀{Γ A} → TRen Γ (A :: Γ) wkren1 = (λ x → S x) weaken1 : ∀{Γ A B} → TExp Γ B → TExp (A :: Γ) B weaken1 e = ren wkren1 e weakening-ignores : ∀{Γ A} (e₁ : TCExp A) (γ : TSubst Γ []) → Sub≡ (λ x₁ → ssubst (singγ e₁) (ren wkren1 (γ x₁))) γ weakening-ignores e₁ γ x = subren (singγ e₁) wkren1 (γ x) ≡≡ subid (γ x) -- Functional extensionality function-ext-log : ∀{Γ A B} {e e' : TExp Γ (A ⇒ B)} → (A :: Γ) ⊢ weaken1 e $ var Z ~ weaken1 e' $ var Z :: B → Γ ⊢ e ~ e' :: A ⇒ B function-ext-log {Γ} {A} {B} {e} {e'} leq {γ} {γ'} η e₁ e₁' leq' with leq (extendLogicalEQΓ η leq') ... | leq'' with subren (subComp (singγ e₁) (liftγ γ)) wkren1 e | subren (subComp (singγ e₁') (liftγ γ')) wkren1 e' ... | eq1' | eq2' with eq1' ≡≡ subeq (weakening-ignores e₁ γ) e | eq2' ≡≡ subeq (weakening-ignores e₁' γ') e' ... | eq1 | eq2 = ID.coe2 (LogicalEq B) (resp (λ x → x $ e₁) eq1) (resp (λ x → x $ e₁') eq2) leq'' function-ext-obs : ∀{Γ A B} {e e' : TExp Γ (A ⇒ B)} → (A :: Γ) ⊢ weaken1 e $ var Z ≅ weaken1 e' $ var Z :: B → Γ ⊢ e ≅ e' :: A ⇒ B function-ext-obs {e = e} {e' = e'} oeq = obs-contains-logical (function-ext-log {e = e} {e' = e'} (logical-contains-obs oeq)) -- Eta, essentially -- The important part of the proof is the def-beta and the function-ext-obs, -- but most of the actual work is fucking around with substitutions. function-eta-obs : ∀{Γ A B} (e : TExp Γ (A ⇒ B)) → Γ ⊢ e ≅ (Λ (weaken1 e $ var Z)) :: A ⇒ B function-eta-obs {Γ} {A} {B} e with obs-sym (obs-contains-def (def-beta {e = ren (wk wkren1) (ren wkren1 e) $ var Z} {e' = var Z})) ... | beta-eq with (subren (singγ (var Z)) (wk wkren1) (weaken1 e)) ≡≡ (subren (λ x → singγ (var Z) (wk wkren1 x)) wkren1 e) ≡≡ symm (subren emptyγ wkren1 e) ≡≡ subid (weaken1 e) ... | eq2 with resp (λ x → x $ var Z) eq2 ... | eq with ID.coe2 (ObservEq (A :: Γ) B) eq refl beta-eq ... | oeq = function-ext-obs oeq obs-equiv-nat-val : (e : TNat) → Σ[ n :: TNat ] (TVal n × ([] ⊢ e ≅ n :: nat)) obs-equiv-nat-val e with ological-equiv-nat-val e obs-equiv-nat-val e | n , val , eq = n , val , obs-contains-logical eq -- OK, maybe we are trying this with numerals again. Argh. t-numeral : ∀{Γ} → Nat → TExp Γ nat t-numeral Z = zero t-numeral (S n) = suc (t-numeral n) numeral-val : ∀{Γ} → (n : Nat) → TVal {Γ} (t-numeral n) numeral-val Z = val-zero numeral-val (S n) = val-suc (numeral-val n) val-numeral : ∀{Γ} {e : TExp Γ nat} → TVal e → Σ[ n :: Nat ] (e ≡ t-numeral n) val-numeral val-zero = Z , Refl val-numeral (val-suc v) with val-numeral v ... | n , eq = (S n) , (resp suc eq) numeral-subst-dontcare : ∀{Γ Γ'} (n : Nat) (γ : TSubst Γ Γ') → ssubst γ (t-numeral n) ≡ t-numeral n numeral-subst-dontcare Z γ = Refl numeral-subst-dontcare (S n) γ = resp suc (numeral-subst-dontcare n γ) -- obs-equiv-numeral : (e : TNat) → Σ[ n :: Nat ] ([] ⊢ e ≅ t-numeral n :: nat) obs-equiv-numeral e with obs-equiv-nat-val e obs-equiv-numeral e | en , val , oeq with val-numeral val ... | n , eq = n , (ID.coe1 (ObservEq [] nat e) eq oeq) dropSubstRel : ∀(R : CRel) {Γ A} {γ γ' : TSubst (A :: Γ) []} → SubstRel R (A :: Γ) γ γ' → SubstRel R Γ (dropγ γ) (dropγ γ') dropSubstRel R η n = η (S n) dropLogicalEqΓ = dropSubstRel LogicalEq -- Allow induction over nats, essentially function-induction-log : ∀{Γ A} {e e' : TExp (nat :: Γ) A} → ((n : Nat) → Γ ⊢ ssubst (singγ (t-numeral n)) e ~ ssubst (singγ (t-numeral n)) e' :: A) → (nat :: Γ) ⊢ e ~ e' :: A function-induction-log {Γ} {A} {e} {e'} f {γ} {γ'} η with η Z | obs-equiv-numeral (γ Z) ... | n-eq | n , oeq-n with f n (dropLogicalEqΓ η) ... | butt with subcomp (dropγ γ) (singγ (t-numeral n)) e | subcomp (dropγ γ') (singγ (t-numeral n)) e' ... | lol1 | lol2 with subeq (compose-subst-noob (dropγ γ) (t-numeral n)) e | subeq (compose-subst-noob (dropγ γ') (t-numeral n)) e' ... | lol1' | lol2' with ID.coe2 (LogicalEq A) (symm lol1 ≡≡ symm lol1') (symm lol2 ≡≡ symm lol2') butt ... | wtf with ID.coe2 (λ x y → LogicalEq A (ssubst (extendγ (dropγ γ) x) e) (ssubst (extendγ (dropγ γ') y) e')) (numeral-subst-dontcare n (dropγ γ)) (numeral-subst-dontcare n (dropγ γ')) wtf ... | wtf' with ological-refl e (extendLogicalEQΓ (dropLogicalEqΓ (logicalγ-refl {x = γ})) (obs-consistent oeq-n)) ... | leq-e with ID.coe2 (LogicalEq A) (symm (subeq (drop-fix γ) e)) Refl leq-e ... | leq-e' with ological-refl e' (extendLogicalEQΓ (dropLogicalEqΓ (logicalγ-refl {x = γ'})) (kleene-trans (kleene-sym n-eq) (obs-consistent oeq-n))) ... | leq-e2 with ID.coe2 (LogicalEq A) (symm (subeq (drop-fix γ') e')) Refl leq-e2 ... | leq-e2' = logical-trans leq-e' (logical-trans wtf' (logical-sym leq-e2')) function-induction-obs : ∀{Γ A} {e e' : TExp (nat :: Γ) A} → ((n : Nat) → Γ ⊢ ssubst (singγ (t-numeral n)) e ≅ ssubst (singγ (t-numeral n)) e' :: A) → (nat :: Γ) ⊢ e ≅ e' :: A function-induction-obs {Γ} {A} {e} {e'} f = obs-contains-logical (function-induction-log {Γ} {A} {e} {e'} (λ n → logical-contains-obs (f n)))
50.833333
133
0.588993
3980488e59af79655d05ed09085b6bc72a18f024
4,091
agda
Agda
typed-elaboration.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
typed-elaboration.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
typed-elaboration.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
open import Nat open import Prelude open import dynamics-core open import contexts open import lemmas-consistency open import lemmas-disjointness open import lemmas-matching open import weakening module typed-elaboration where mutual typed-elaboration-synth : {Γ : tctx} {e : hexp} {τ : htyp} {d : ihexp} {Δ : hctx} → Γ ⊢ e ⇒ τ ~> d ⊣ Δ → Δ , Γ ⊢ d :: τ typed-elaboration-synth ESNum = TANum typed-elaboration-synth (ESPlus dis apt x₁ x₂) with typed-elaboration-ana x₁ | typed-elaboration-ana x₂ ... | con1 , ih1 | con2 , ih2 = TAPlus (TACast (weaken-ta-Δ1 apt ih1) con1) (TACast (weaken-ta-Δ2 apt ih2) con2) typed-elaboration-synth (ESVar x₁) = TAVar x₁ typed-elaboration-synth (ESLam x₁ ex) = TALam x₁ (typed-elaboration-synth ex) typed-elaboration-synth (ESAp {Δ1 = Δ1} _ d x₁ x₂ x₃ x₄) with typed-elaboration-ana x₃ | typed-elaboration-ana x₄ ... | con1 , ih1 | con2 , ih2 = TAAp (TACast (weaken-ta-Δ1 d ih1) con1) (TACast (weaken-ta-Δ2 {Δ1 = Δ1} d ih2) con2) typed-elaboration-synth (ESEHole {Γ = Γ} {u = u}) with natEQ u u ... | Inr u≠u = abort (u≠u refl) ... | Inl refl = TAEHole (x∈■ u (Γ , ⦇-⦈)) (STAId (λ x τ z → z)) typed-elaboration-synth (ESNEHole {Γ = Γ} {τ = τ} {u = u} {Δ = Δ} (d1 , d2) ex) with typed-elaboration-synth ex ... | ih1 = TANEHole {Δ = Δ ,, (u , Γ , ⦇-⦈)} (ctx-top Δ u (Γ , ⦇-⦈) (d2 u (lem-domsingle _ _))) (weaken-ta-Δ2 (d2 , d1) ih1) (STAId (λ x τ₁ z → z)) typed-elaboration-synth (ESAsc x) with typed-elaboration-ana x ... | con , ih = TACast ih con typed-elaboration-synth (ESPair x x₁ x₂ x₃) with typed-elaboration-synth x₂ | typed-elaboration-synth x₃ ... | ih1 | ih2 = TAPair (weaken-ta-Δ1 x₁ ih1) (weaken-ta-Δ2 x₁ ih2) typed-elaboration-synth (ESFst x x₁ x₂) with typed-elaboration-ana x₂ ... | con , ih = TAFst (TACast ih con) typed-elaboration-synth (ESSnd x x₁ x₂) with typed-elaboration-ana x₂ ... | con , ih = TASnd (TACast ih con) typed-elaboration-ana : {Γ : tctx} {e : hexp} {τ τ' : htyp} {d : ihexp} {Δ : hctx} → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → (τ' ~ τ) × (Δ , Γ ⊢ d :: τ') typed-elaboration-ana (EALam x₁ MAHole ex) with typed-elaboration-ana ex ... | con , D = TCHole1 , TALam x₁ D typed-elaboration-ana (EALam x₁ MAArr ex) with typed-elaboration-ana ex ... | con , D = TCArr TCRefl con , TALam x₁ D typed-elaboration-ana (EASubsume x x₁ x₂ x₃) = ~sym x₃ , typed-elaboration-synth x₂ typed-elaboration-ana (EAEHole {Γ = Γ} {u = u}) = TCRefl , TAEHole (x∈■ u (Γ , _)) (STAId (λ x τ z → z)) typed-elaboration-ana (EANEHole {Γ = Γ} {u = u} {τ = τ} {Δ = Δ} (d1 , d2) x) with typed-elaboration-synth x ... | ih1 = TCRefl , TANEHole {Δ = Δ ,, (u , Γ , τ)} (ctx-top Δ u (Γ , τ) (d2 u (lem-domsingle _ _)) ) (weaken-ta-Δ2 (d2 , d1) ih1) (STAId (λ x₁ τ₁ z → z)) typed-elaboration-ana (EAInl MSHole x₁) with typed-elaboration-ana x₁ ... | con , D = TCHole1 , TAInl D typed-elaboration-ana (EAInl MSSum x₁) with typed-elaboration-ana x₁ ... | con , D = TCSum con TCRefl , TAInl D typed-elaboration-ana (EAInr MSHole x₁) with typed-elaboration-ana x₁ ... | con , D = TCHole1 , TAInr D typed-elaboration-ana (EAInr MSSum x₁) with typed-elaboration-ana x₁ ... | con , D = TCSum TCRefl con , TAInr D typed-elaboration-ana (EACase x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁) with typed-elaboration-synth x₈ | typed-elaboration-ana x₁₀ | typed-elaboration-ana x₁₁ ... | D | con1 , D1 | con2 , D2 = let Δ##Δ1∪Δ2 = ##-comm (disjoint-parts (##-comm x₃) (##-comm x₄)) in let wtd = TACast (weaken-ta-Δ1 Δ##Δ1∪Δ2 D) (▸sum-consist x₉) in let wtd1 = TACast (weaken-ta-Δ2 Δ##Δ1∪Δ2 (weaken-ta-Δ1 x₅ D1)) con1 in let wtd2 = TACast (weaken-ta-Δ2 Δ##Δ1∪Δ2 (weaken-ta-Δ2 x₅ D2)) con2 in let wt = TACase wtd x₆ wtd1 x₇ wtd2 in TCRefl , wt
51.78481
159
0.587631
20d9d5020a7a0746d95c4cd010733b58f0f77283
1,011
agda
Agda
Cubical/Relation/Binary/Reasoning/Equality.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Reasoning/Equality.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Reasoning/Equality.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Reasoning.Equality where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude private variable ℓ : Level A : Type ℓ infixr 1 _≡⟨⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ infix 2 _∎ -- Step with a non-trivial propositional equality _≡⟨_⟩_ : ∀ x {y z : A} → x ≡ y → y ≡ z → x ≡ z _≡⟨_⟩_ x = _∙_ -- Step with a flipped non-trivial propositional equality _≡˘⟨_⟩_ : ∀ x {y z : A} → y ≡ x → y ≡ z → x ≡ z x ≡˘⟨ y≡x ⟩ y≡z = x ≡⟨ sym y≡x ⟩ y≡z -- Step with a trivial propositional equality _≡⟨⟩_ : ∀ x {y : A} → x ≡ y → x ≡ y _ ≡⟨⟩ x≡y = x≡y -- Syntax for path definition ≡⟨⟩-syntax : ∀ x {y z : A} → x ≡ y → y ≡ z → x ≡ z ≡⟨⟩-syntax = _≡⟨_⟩_ infixr 1 ≡⟨⟩-syntax syntax ≡⟨⟩-syntax x (λ i → B) y = x ≡[ i ]⟨ B ⟩ y ≡˘⟨⟩-syntax : ∀ x {y z : A} → y ≡ x → y ≡ z → x ≡ z ≡˘⟨⟩-syntax = _≡˘⟨_⟩_ infixr 1 ≡˘⟨⟩-syntax syntax ≡˘⟨⟩-syntax x (λ i → B) y = x ≡˘[ i ]⟨ B ⟩ y -- Termination step _∎ : ∀ (x : A) → x ≡ x x ∎ = refl
21.978261
57
0.538081
59b551fa69f581476c2f012f5d2041a3201469ed
4,361
agda
Agda
Mixfix/Expr.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
1
2020-07-03T08:56:13.000Z
2020-07-03T08:56:13.000Z
Mixfix/Expr.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
Mixfix/Expr.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Precedence-correct expressions ------------------------------------------------------------------------ module Mixfix.Expr where open import Data.Vec using (Vec) open import Data.List using (List; []; _∷_) open import Data.List.Membership.Propositional using (_∈_) open import Data.List.Relation.Unary.Any using (here; there) open import Data.Product using (∃; _,_) open import Mixfix.Fixity open import Mixfix.Operator ------------------------------------------------------------------------ -- An abstract definition of precedence graphs -- The interface of precedence graphs. record PrecedenceGraphInterface : Set₁ where field -- Precedence graphs. PrecedenceGraph : Set -- Precedence levels. Precedence : PrecedenceGraph → Set -- The operators of the given precedence. ops : (g : PrecedenceGraph) → Precedence g → (fix : Fixity) → List (∃ (Operator fix)) -- The immediate successors of the precedence level. ↑ : (g : PrecedenceGraph) → Precedence g → List (Precedence g) -- All precedence levels in the graph. anyPrecedence : (g : PrecedenceGraph) → List (Precedence g) -- When a precedence graph is given the following module may be -- convenient to avoid having to write "g" all the time. module PrecedenceGraph (i : PrecedenceGraphInterface) (g : PrecedenceGraphInterface.PrecedenceGraph i) where PrecedenceGraph : Set PrecedenceGraph = PrecedenceGraphInterface.PrecedenceGraph i Precedence : Set Precedence = PrecedenceGraphInterface.Precedence i g ops : Precedence → (fix : Fixity) → List (∃ (Operator fix)) ops = PrecedenceGraphInterface.ops i g ↑ : Precedence → List Precedence ↑ = PrecedenceGraphInterface.↑ i g anyPrecedence : List Precedence anyPrecedence = PrecedenceGraphInterface.anyPrecedence i g ------------------------------------------------------------------------ -- Precedence-correct operator applications -- Parameterised on a precedence graph. module PrecedenceCorrect (i : PrecedenceGraphInterface) (g : PrecedenceGraphInterface.PrecedenceGraph i) where open PrecedenceGraph i g public mutual infixl 4 _⟨_⟩ˡ_ infixr 4 _⟨_⟩ʳ_ infix 4 _⟨_⟩_ _⟨_⟫ ⟪_⟩_ _∙_ -- Expr ps contains expressions where the outermost operator has -- one of the precedences in ps. data Expr (ps : List Precedence) : Set where _∙_ : ∀ {p assoc} (p∈ps : p ∈ ps) (e : ExprIn p assoc) → Expr ps -- ExprIn p assoc contains expressions where the outermost -- operator has precedence p (is /in/ precedence level p) and the -- associativity assoc. data ExprIn (p : Precedence) : Associativity → Set where ⟪_⟫ : (op : Inner (ops p closed )) → ExprIn p non _⟨_⟫ : (l : Outer p left) (op : Inner (ops p postfx )) → ExprIn p left ⟪_⟩_ : (op : Inner (ops p prefx )) (r : Outer p right) → ExprIn p right _⟨_⟩_ : (l : Expr (↑ p) ) (op : Inner (ops p (infx non ))) (r : Expr (↑ p) ) → ExprIn p non _⟨_⟩ˡ_ : (l : Outer p left) (op : Inner (ops p (infx left ))) (r : Expr (↑ p) ) → ExprIn p left _⟨_⟩ʳ_ : (l : Expr (↑ p) ) (op : Inner (ops p (infx right))) (r : Outer p right) → ExprIn p right -- Outer p fix contains expressions where the head operator either -- ⑴ has precedence p and associativity assoc or -- ⑵ binds strictly tighter than p. data Outer (p : Precedence) (assoc : Associativity) : Set where similar : (e : ExprIn p assoc) → Outer p assoc tighter : (e : Expr (↑ p)) → Outer p assoc -- Inner ops contains the internal parts (operator plus -- internal arguments) of operator applications. The operators -- have to be members of ops. data Inner {fix} (ops : List (∃ (Operator fix))) : Set where _∙_ : ∀ {arity op} (op∈ops : (arity , op) ∈ ops) (args : Vec (Expr anyPrecedence) arity) → Inner ops -- "Weakening". weakenE : ∀ {p ps} → Expr ps → Expr (p ∷ ps) weakenE (p∈ps ∙ e) = there p∈ps ∙ e weakenI : ∀ {fix ops} {op : ∃ (Operator fix)} → Inner ops → Inner (op ∷ ops) weakenI (op∈ops ∙ args) = there op∈ops ∙ args
35.169355
104
0.588397
2948e814c478e47b4d98b27593f53631fe215043
3,309
agda
Agda
archive/agda-1/TermCode.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/TermCode.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/TermCode.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
{-# OPTIONS --allow-unsolved-metas #-} module TermCode where open import OscarPrelude open import VariableName open import FunctionName open import Arity open import Term open import Vector data TermCode : Set where variable : VariableName → TermCode function : FunctionName → Arity → TermCode termCode-function-inj₁ : ∀ {𝑓₁ 𝑓₂ arity₁ arity₂} → TermCode.function 𝑓₁ arity₁ ≡ function 𝑓₂ arity₂ → 𝑓₁ ≡ 𝑓₂ termCode-function-inj₁ refl = refl termCode-function-inj₂ : ∀ {𝑓₁ 𝑓₂ arity₁ arity₂} → TermCode.function 𝑓₁ arity₁ ≡ function 𝑓₂ arity₂ → arity₁ ≡ arity₂ termCode-function-inj₂ refl = refl instance EqTermCode : Eq TermCode Eq._==_ EqTermCode (variable 𝑥₁) (variable 𝑥₂) with 𝑥₁ ≟ 𝑥₂ … | yes 𝑥₁≡𝑥₂ rewrite 𝑥₁≡𝑥₂ = yes refl … | no 𝑥₁≢𝑥₂ = no (λ { refl → 𝑥₁≢𝑥₂ refl}) Eq._==_ EqTermCode (variable x) (function x₁ x₂) = no (λ ()) Eq._==_ EqTermCode (function x x₁) (variable x₂) = no (λ ()) Eq._==_ EqTermCode (function 𝑓₁ 𝑎₁) (function 𝑓₂ 𝑎₂) = decEq₂ termCode-function-inj₁ termCode-function-inj₂ (𝑓₁ ≟ 𝑓₂) (𝑎₁ ≟ 𝑎₂) mutual encodeTerm : Term → List TermCode encodeTerm (variable 𝑥) = variable 𝑥 ∷ [] encodeTerm (function 𝑓 (⟨_⟩ {arity} τs)) = function 𝑓 arity ∷ encodeTerms τs encodeTerms : {arity : Arity} → Vector Term arity → List TermCode encodeTerms ⟨ [] ⟩ = [] encodeTerms ⟨ τ ∷ τs ⟩ = encodeTerm τ ++ encodeTerms ⟨ τs ⟩ mutual decodeTerm : Nat → StateT (List TermCode) Maybe Term decodeTerm zero = lift nothing decodeTerm (suc n) = do caseM get of λ { [] → lift nothing ; (variable 𝑥 ∷ _) → modify (drop 1) ~| return (variable 𝑥) ; (function 𝑓 arity ∷ _) → modify (drop 1) ~| decodeFunction n 𝑓 arity } decodeFunction : Nat → FunctionName → Arity → StateT (List TermCode) Maybe Term decodeFunction n 𝑓 arity = do τs ← decodeTerms n arity -| return (function 𝑓 ⟨ τs ⟩) decodeTerms : Nat → (arity : Arity) → StateT (List TermCode) Maybe (Vector Term arity) decodeTerms n ⟨ zero ⟩ = return ⟨ [] ⟩ decodeTerms n ⟨ suc arity ⟩ = do τ ← decodeTerm n -| τs ← decodeTerms n ⟨ arity ⟩ -| return ⟨ τ ∷ vector τs ⟩ .decode-is-inverse-of-encode : ∀ τ → runStateT (decodeTerm ∘ length $ encodeTerm τ) (encodeTerm τ) ≡ (just $ τ , []) decode-is-inverse-of-encode (variable 𝑥) = refl decode-is-inverse-of-encode (function 𝑓 ⟨ ⟨ [] ⟩ ⟩) = {!!} decode-is-inverse-of-encode (function 𝑓 ⟨ ⟨ variable 𝑥 ∷ τs ⟩ ⟩) = {!!} decode-is-inverse-of-encode (function 𝑓 ⟨ ⟨ function 𝑓' τs' ∷ τs ⟩ ⟩) = {!!} module ExampleEncodeDecode where example-Term : Term example-Term = (function ⟨ 2 ⟩ ⟨ ⟨ ( variable ⟨ 0 ⟩ ∷ function ⟨ 3 ⟩ ⟨ ⟨ variable ⟨ 2 ⟩ ∷ [] ⟩ ⟩ ∷ variable ⟨ 5 ⟩ ∷ [] ) ⟩ ⟩ ) -- function ⟨ 2 ⟩ ⟨ 3 ⟩ ∷ variable ⟨ 0 ⟩ ∷ function ⟨ 3 ⟩ ⟨ 1 ⟩ ∷ variable ⟨ 2 ⟩ ∷ variable ⟨ 5 ⟩ ∷ [] example-TermCodes : List TermCode example-TermCodes = encodeTerm example-Term example-TermDecode : Maybe (Term × List TermCode) example-TermDecode = runStateT (decodeTerm (length example-TermCodes)) example-TermCodes example-verified : example-TermDecode ≡ (just $ example-Term , []) example-verified = refl example-bad : runStateT (decodeTerm 2) (function ⟨ 2 ⟩ ⟨ 2 ⟩ ∷ variable ⟨ 0 ⟩ ∷ []) ≡ nothing example-bad = refl
35.202128
129
0.638259
502e8960bca26ea7776492be629133fd658a160b
6,845
agda
Agda
Cubical/Foundations/Transport.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/Foundations/Transport.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Foundations/Transport.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{- Basic theory about transport: - transport is invertible - transport is an equivalence ([transportEquiv]) -} {-# OPTIONS --safe #-} module Cubical.Foundations.Transport where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Function using (_∘_) -- Direct definition of transport filler, note that we have to -- explicitly tell Agda that the type is constant (like in CHM) transpFill : ∀ {ℓ} {A : Type ℓ} (φ : I) (A : (i : I) → Type ℓ [ φ ↦ (λ _ → A) ]) (u0 : outS (A i0)) → -------------------------------------- PathP (λ i → outS (A i)) u0 (transp (λ i → outS (A i)) φ u0) transpFill φ A u0 i = transp (λ j → outS (A (i ∧ j))) (~ i ∨ φ) u0 transport⁻ : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → B → A transport⁻ p = transport (λ i → p (~ i)) subst⁻ : ∀ {ℓ ℓ'} {A : Type ℓ} {x y : A} (B : A → Type ℓ') (p : x ≡ y) → B y → B x subst⁻ B p pa = transport⁻ (λ i → B (p i)) pa transport-fillerExt : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → A → p i) (λ x → x) (transport p) transport-fillerExt p i x = transport-filler p x i transport⁻-fillerExt : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → p i → A) (λ x → x) (transport⁻ p) transport⁻-fillerExt p i x = transp (λ j → p (i ∧ ~ j)) (~ i) x transport-fillerExt⁻ : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → p i → B) (transport p) (λ x → x) transport-fillerExt⁻ p = symP (transport⁻-fillerExt (sym p)) transport⁻-fillerExt⁻ : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → B → p i) (transport⁻ p) (λ x → x) transport⁻-fillerExt⁻ p = symP (transport-fillerExt (sym p)) transport⁻-filler : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) (x : B) → PathP (λ i → p (~ i)) x (transport⁻ p x) transport⁻-filler p x = transport-filler (λ i → p (~ i)) x transport⁻Transport : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (a : A) → transport⁻ p (transport p a) ≡ a transport⁻Transport p a j = transport⁻-fillerExt p (~ j) (transport-fillerExt p (~ j) a) transportTransport⁻ : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (b : B) → transport p (transport⁻ p b) ≡ b transportTransport⁻ p b j = transport-fillerExt⁻ p j (transport⁻-fillerExt⁻ p j b) -- Transport is an equivalence isEquivTransport : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → isEquiv (transport p) isEquivTransport {A = A} {B = B} p = transport (λ i → isEquiv (transport-fillerExt p i)) (idIsEquiv A) transportEquiv : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → A ≃ B transportEquiv p = (transport p , isEquivTransport p) substEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {a a' : A} (P : A → Type ℓ') (p : a ≡ a') → P a ≃ P a' substEquiv P p = (subst P p , isEquivTransport (λ i → P (p i))) liftEquiv : ∀ {ℓ ℓ'} {A B : Type ℓ} (P : Type ℓ → Type ℓ') (e : A ≃ B) → P A ≃ P B liftEquiv P e = substEquiv P (ua e) transpEquiv : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → ∀ i → p i ≃ B transpEquiv P i .fst = transp (λ j → P (i ∨ j)) i transpEquiv P i .snd = transp (λ k → isEquiv (transp (λ j → P (i ∨ (j ∧ k))) (i ∨ ~ k))) i (idIsEquiv (P i)) uaTransportη : ∀ {ℓ} {A B : Type ℓ} (P : A ≡ B) → ua (transportEquiv P) ≡ P uaTransportη P i j = Glue (P i1) λ where (j = i0) → P i0 , transportEquiv P (i = i1) → P j , transpEquiv P j (j = i1) → P i1 , idEquiv (P i1) pathToIso : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → Iso A B Iso.fun (pathToIso x) = transport x Iso.inv (pathToIso x) = transport⁻ x Iso.rightInv (pathToIso x) = transportTransport⁻ x Iso.leftInv (pathToIso x) = transport⁻Transport x isInjectiveTransport : ∀ {ℓ : Level} {A B : Type ℓ} {p q : A ≡ B} → transport p ≡ transport q → p ≡ q isInjectiveTransport {p = p} {q} α i = hcomp (λ j → λ { (i = i0) → retEq univalence p j ; (i = i1) → retEq univalence q j }) (invEq univalence ((λ a → α i a) , t i)) where t : PathP (λ i → isEquiv (λ a → α i a)) (pathToEquiv p .snd) (pathToEquiv q .snd) t = isProp→PathP (λ i → isPropIsEquiv (λ a → α i a)) _ _ transportUaInv : ∀ {ℓ} {A B : Type ℓ} (e : A ≃ B) → transport (ua (invEquiv e)) ≡ transport (sym (ua e)) transportUaInv e = cong transport (uaInvEquiv e) -- notice that transport (ua e) would reduce, thus an alternative definition using EquivJ can give -- refl for the case of idEquiv: -- transportUaInv e = EquivJ (λ _ e → transport (ua (invEquiv e)) ≡ transport (sym (ua e))) refl e isSet-subst : ∀ {ℓ ℓ′} {A : Type ℓ} {B : A → Type ℓ′} → (isSet-A : isSet A) → ∀ {a : A} → (p : a ≡ a) → (x : B a) → subst B p x ≡ x isSet-subst {B = B} isSet-A p x = subst (λ p′ → subst B p′ x ≡ x) (isSet-A _ _ refl p) (substRefl {B = B} x) -- substituting along a composite path is equivalent to substituting twice substComposite : ∀ {ℓ ℓ′} {A : Type ℓ} → (B : A → Type ℓ′) → {x y z : A} (p : x ≡ y) (q : y ≡ z) (u : B x) → subst B (p ∙ q) u ≡ subst B q (subst B p u) substComposite B p q Bx i = transport (cong B (compPath-filler' p q (~ i))) (transport-fillerExt (cong B p) i Bx) -- transporting along a composite path is equivalent to transporting twice transportComposite : ∀ {ℓ} {A B C : Type ℓ} (p : A ≡ B) (q : B ≡ C) (x : A) → transport (p ∙ q) x ≡ transport q (transport p x) transportComposite = substComposite (λ D → D) -- substitution commutes with morphisms in slices substCommSlice : ∀ {ℓ ℓ′} {A : Type ℓ} → (B C : A → Type ℓ′) → (F : ∀ i → B i → C i) → {x y : A} (p : x ≡ y) (u : B x) → subst C p (F x u) ≡ F y (subst B p u) substCommSlice B C F p Bx i = transport-fillerExt⁻ (cong C p) i (F _ (transport-fillerExt (cong B p) i Bx)) -- transporting over (λ i → B (p i) → C (p i)) divides the transport into -- transports over (λ i → C (p i)) and (λ i → B (p (~ i))) funTypeTransp : ∀ {ℓ ℓ'} {A : Type ℓ} (B C : A → Type ℓ') {x y : A} (p : x ≡ y) (f : B x → C x) → PathP (λ i → B (p i) → C (p i)) f (subst C p ∘ f ∘ subst B (sym p)) funTypeTransp B C {x = x} p f i b = transp (λ j → C (p (j ∧ i))) (~ i) (f (transp (λ j → B (p (i ∧ ~ j))) (~ i) b)) -- transports between loop spaces preserve path composition overPathFunct : ∀ {ℓ} {A : Type ℓ} {x y : A} (p q : x ≡ x) (P : x ≡ y) → transport (λ i → P i ≡ P i) (p ∙ q) ≡ transport (λ i → P i ≡ P i) p ∙ transport (λ i → P i ≡ P i) q overPathFunct p q = J (λ y P → transport (λ i → P i ≡ P i) (p ∙ q) ≡ transport (λ i → P i ≡ P i) p ∙ transport (λ i → P i ≡ P i) q) (transportRefl (p ∙ q) ∙ cong₂ _∙_ (sym (transportRefl p)) (sym (transportRefl q)))
44.16129
113
0.540979
59f5de4d3f5330b3d95e4a4f7d9ae69862da9934
4,866
agda
Agda
src/hott/truncation/equality.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
20
2015-06-12T12:20:17.000Z
2022-02-01T11:25:54.000Z
src/hott/truncation/equality.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T14:32:16.000Z
2016-10-26T11:57:26.000Z
src/hott/truncation/equality.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T12:17:00.000Z
2019-05-04T19:31:00.000Z
{-# OPTIONS --without-K #-} module hott.truncation.equality where open import sum open import equality open import function.extensionality open import function.isomorphism open import function.overloading open import sets.nat open import hott.equivalence open import hott.level.core open import hott.level.closure open import hott.truncation.core module _ {i}{X : Set i}(n-1 : ℕ) where private n : ℕ n = suc n-1 Trunc-dep-iso₂ : ∀ {j} (Z : Trunc n X → Trunc n X → Set j) → ((c c' : Trunc n X) → h n (Z c c')) → ((c c' : Trunc n X) → Z c c') ≅ ((x y : X) → Z [ x ] [ y ]) Trunc-dep-iso₂ Z hZ = begin ((c c' : Trunc n X) → Z c c') ≅⟨ (Π-ap-iso refl≅ λ c → Trunc-dep-iso n (Z c) (hZ c)) ⟩ ((c : Trunc n X)(y : X) → Z c [ y ]) ≅⟨ Trunc-dep-iso n (λ c → (y : X) → Z c [ y ]) (λ c → Π-level λ y → hZ c [ y ]) ⟩ ((x y : X) → Z [ x ] [ y ]) ∎ where open ≅-Reasoning P₀ : X → X → Type i (n-1) P₀ x y = Trunc (n-1) (x ≡ y) , Trunc-level n-1 abstract r₀ : (x : X) → proj₁ (P₀ x x) r₀ x = [ refl ] abstract P-iso' : (Trunc n X → Trunc n X → Type i (n-1)) ≅ (X → X → Type i (n-1)) P-iso' = Trunc-dep-iso₂ (λ _ _ → Type i (n-1)) (λ _ _ → type-level) P-iso-we : weak-equiv (λ (Z : Trunc n X → Trunc n X → Type i (n-1)) x y → Z [ x ] [ y ]) P-iso-we = proj₂ (≅⇒≈ P-iso') P-iso : (Trunc n X → Trunc n X → Type i (n-1)) ≅ (X → X → Type i (n-1)) P-iso = ≈⇒≅ ((λ Z x y → Z [ x ] [ y ]) , P-iso-we) module impl (P : Trunc n X → Trunc n X → Type i (n-1)) (P-β : (x y : X) → P [ x ] [ y ] ≡ P₀ x y) where r' : (P : Trunc n X → Trunc n X → Type i (n-1)) → (∀ x y → P [ x ] [ y ] ≡ P₀ x y) → (c : Trunc n X) → proj₁ (P c c) r' P q = Trunc-dep-elim n (λ c → proj₁ (P c c)) (λ c → h↑ (proj₂ (P c c))) λ x → subst proj₁ (sym (q x x)) (r₀ x) r : (c : Trunc n X) → proj₁ (P c c) r = r' P P-β abstract P-elim-iso : (Z : Trunc n X → Trunc n X → Type i (n-1)) → ((c c' : Trunc n X) → proj₁ (P c c') → proj₁ (Z c c')) ≅ ((c : Trunc n X) → proj₁ (Z c c)) P-elim-iso Z = begin ((c c' : Trunc n X) → proj₁ (P c c') → proj₁ (Z c c')) ≅⟨ Trunc-dep-iso₂ (λ c c' → proj₁ (P c c') → proj₁ (Z c c')) (λ c c' → Π-level λ p → h↑ (proj₂ (Z c c'))) ⟩ ((x y : X) → proj₁ (P [ x ] [ y ]) → proj₁ (Z [ x ] [ y ])) ≅⟨ ( Π-ap-iso refl≅ λ x → Π-ap-iso refl≅ λ y → Π-ap-iso (≡⇒≅ (ap proj₁ (P-β x y))) λ _ → refl≅ ) ⟩ ((x y : X) → Trunc (n-1) (x ≡ y) → proj₁ (Z [ x ] [ y ])) ≅⟨ ( Π-ap-iso refl≅ λ x → Π-ap-iso refl≅ λ y → Trunc-elim-iso (n-1) (x ≡ y) _ (proj₂ (Z [ x ] [ y ])) ) ⟩ ((x y : X) → x ≡ y → proj₁ (Z [ x ] [ y ])) ≅⟨ ( Π-ap-iso refl≅ λ x → sym≅ J-iso ) ⟩ ((x : X) → proj₁ (Z [ x ] [ x ])) ≅⟨ sym≅ (Trunc-dep-iso n (λ c → proj₁ (Z c c)) (λ c → h↑ (proj₂ (Z c c)))) ⟩ ((c : Trunc n X) → proj₁ (Z c c)) ∎ where open ≅-Reasoning Eq : Trunc n X → Trunc n X → Type i (n-1) Eq c c' = (c ≡ c') , Trunc-level n c c' abstract f₀ : (c c' : Trunc n X) → proj₁ (P c c') → c ≡ c' f₀ = _≅_.from (P-elim-iso Eq) (λ _ → refl) abstract f : (c c' : Trunc n X) → proj₁ (P c c') → c ≡ c' f c c' p = f₀ c c' p · sym (f₀ c' c' (r c')) f-β : (c : Trunc n X) → f c c (r c) ≡ refl f-β c = left-inverse (f₀ c c (r c)) g : (c c' : Trunc n X) → c ≡ c' → proj₁ (P c c') g c .c refl = r c -- α : (c c' : Trunc n X)(p : proj₁ (P c c')) → g c c' (f c c' p) ≡ p -- α = _≅_.from (P-elim-dep-iso Z) λ c → ap (g c c) (f-β c) -- where -- Z : (c c' : Trunc n X) → proj₁ (P c c') → Type i (n-1) -- Z c c' p = (g c c' (f c c' p) ≡ p) , h↑ (proj₂ (P c c')) _ _ β : (c c' : Trunc n X)(q : c ≡ c') → f c c' (g c c' q) ≡ q β c .c refl = f-β c trunc-equality : {x y : X} → _≡_ {A = Trunc n X} [ x ] [ y ] → Trunc (n-1) (x ≡ y) trunc-equality {x}{y} p = subst (λ Z → Z) (ap proj₁ (P-β x y)) (g [ x ] [ y ] p) P : Trunc n X → Trunc n X → Type i (n-1) P = _≅_.from P-iso P₀ P-β' : (λ x y → P [ x ] [ y ]) ≡ P₀ P-β' = _≅_.iso₂ P-iso P₀ P-β : (x y : X) → P [ x ] [ y ] ≡ P₀ x y P-β x y = funext-inv (funext-inv P-β' x) y open impl P P-β using (trunc-equality) public
37.430769
96
0.394986
2073a9070726ee3ba5f653b4dc03f5c91b1ef454
536
agda
Agda
neg-datatype-nonterm.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
neg-datatype-nonterm.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
neg-datatype-nonterm.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
{-# OPTIONS --no-positivity-check #-} {- This file gives a standard example showing that if arguments to constructors can use the datatype in a negative position (to the left of one or an odd number of arrows), then termination and logical consistency is lost. -} module neg-datatype-nonterm where open import empty data Bad : Set where bad : (Bad → ⊥) → Bad badFunc : Bad → ⊥ badFunc (bad f) = f (bad f) -- if you try to normalize the following, it will diverge inconsistency : ⊥ inconsistency = badFunc (bad badFunc)
26.8
67
0.714552
12f85fc96c2f6c11292737fc200ce9b1bca53e60
1,118
agda
Agda
Categories/Groupoid/Coproduct.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Groupoid/Coproduct.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Groupoid/Coproduct.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} module Categories.Groupoid.Coproduct where open import Level open import Data.Sum open import Categories.Category open import Categories.Groupoid open import Categories.Morphisms import Categories.Coproduct as CoproductC Coproduct : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Groupoid C → Groupoid D → Groupoid (CoproductC.Coproduct C D) Coproduct C D = record { _⁻¹ = λ { {inj₁ _} {inj₁ _} → λ { {lift f} → lift (C._⁻¹ f) } ; {inj₁ _} {inj₂ _} (lift ()) ; {inj₂ _} {inj₁ _} (lift ()) ; {inj₂ _} {inj₂ _} → λ { {lift f} → lift (D._⁻¹ f) } } ; iso = λ { {inj₁ _} {inj₁ _} → record { isoˡ = lift (Iso.isoˡ C.iso) ; isoʳ = lift (Iso.isoʳ C.iso) } ; {inj₁ _} {inj₂ _} {lift ()} ; {inj₂ _} {inj₁ _} {lift ()} ; {inj₂ _} {inj₂ _} → record { isoˡ = lift (Iso.isoˡ D.iso) ; isoʳ = lift (Iso.isoʳ D.iso) } } } where module C = Groupoid C module D = Groupoid D
34.9375
75
0.516995
5932c8d17f4b9023e0e3dea0f20916a4d4a3d2e0
2,412
agda
Agda
test/Succeed/Erasure-succeed-Issue3855.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Erasure-succeed-Issue3855.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Erasure-succeed-Issue3855.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2019-06-18, LAIM 2019, issue #3855: -- Successful tests for the erasure (@0) modality. module _ where open import Agda.Builtin.Bool open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Agda.Builtin.Coinduction open import Common.IO module WhereInErasedDeclaration where @0 n : Nat n = 4711 @0 m : Nat m = n' where n' = n module ErasedDeclarationInWhere where F : (G : @0 Set → Set) (@0 A : Set) → Set F G A = G B where @0 B : Set B = A module FlatErasure where @0 resurrect-λ : (A : Set) (@0 x : A) → A resurrect-λ A = λ x → x -- Andreas, 2019-10-01: -- An extended lambda now lives in @ω by default, -- making this test fail. -- We need to find a way to tell when an extended lambda -- should be created in @0. Often, when it is created -- in the type world, we still want to use it in the term -- world (in solutions found by the constraint solver). -- Thus, we cannot simply inherit the current quantity -- for the extended lambda. -- @0 resurrect-λ-where : (A : Set) (@0 x : A) → A -- resurrect-λ-where A = λ where x → x @0 resurrect-app : (A : Set) (@0 x : A) → A resurrect-app A x = x module ErasedEquality where -- Should maybe not work --without-K -- should definitely not work in --cubical cast : ∀{A B : Set} → @0 A ≡ B → A → B cast refl x = x J : ∀{A : Set} {a : A} (P : (x : A) → a ≡ x → Set) {b : A} (@0 eq : a ≡ b) → P a refl → P b eq J P refl p = p module ParametersAreErased where test : (@0 A : Set) → A ≡ A test A = refl {x = _} -- TODO: A instead of _ module Records where record R (A : Set) : Set where field el : A Par : Set Par = A -- record module parameters are NOT erased, so, this should be accepted proj : (A : Set) → R A → A -- TODO: @0 A instead of A proj A r = R.el {A = _} r MyPar : (A : Set) → R A → Set MyPar A = R.Par {A = A} record RB (b : Bool) : Set where bPar : Bool bPar = b myBPar : (b : Bool) → RB b → Bool myBPar b r = RB.bPar {b = b} r module CoinductionWithErasure (A : Set) where data Stream : Set where cons : (x : A) (xs : ∞ Stream) → Stream -- Andreas, 2019-10-01: -- A #-auxiliary function lives in @ω by default, -- making this test fail. -- @0 repeat : (@0 a : A) → Stream -- repeat a = cons a (♯ (repeat a)) main = putStrLn "Hello, world!"
23.647059
86
0.592869
298bad9e4988aa3d4cdf4f8174a8417e3eb7e987
700
agda
Agda
test/Succeed/Issue1366a.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1366a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1366a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2014-11-25, variant of Issue 1366 {-# OPTIONS --copatterns #-} open import Common.Prelude using (Nat; zero; suc; Unit; unit) data Vec (A : Set) : Nat → Set where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) -- Singleton type data Sg {A : Set} (x : A) : Set where sg : Sg x -- Generalizing Unit → Nat record DNat : Set₁ where field D : Set force : D → Nat open DNat nonNil : ∀ {n} → Vec Unit n → Nat nonNil [] = zero nonNil (i ∷ is) = suc (force f i) where f : DNat D f = Unit force f unit = zero g : ∀ {n} {v : Vec Unit n} → Sg (nonNil v) → Sg v g sg = sg one : Sg (suc zero) one = sg test : Sg (unit ∷ []) test = g one
17.948718
61
0.55
1d2eca79b897778275812cea41852f92b29cc410
16,736
agda
Agda
Cubical/Data/BinNat/BinNat.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Data/BinNat/BinNat.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Data/BinNat/BinNat.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{- Binary natural numbers (Anders Mörtberg, Jan. 2019) This file defines two representations of binary numbers. We prove that they are equivalent to unary numbers and univalence is then used to transport both programs and properties between the representations. This is an example of how having computational univalence can be useful for practical programming. The first definition is [Binℕ] and the numbers are essentially lists of 0/1 with no trailing zeroes (in little-endian format). The main definitions and examples are: - Equivalence between Binℕ and ℕ ([Binℕ≃ℕ]) with an equality obtained using univalence ([Binℕ≡ℕ]). - Addition on Binℕ defined by transporting addition on ℕ to Binℕ ([_+Binℕ_]) along Binℕ≡ℕ together with a proof that addition on Binℕ is associative obtained by transporting the proof for ℕ ([+Binℕ-assoc]). - Functions testing whether a binary number is odd or even in O(1) ([oddBinℕ], [evenBinℕ]) and the corresponding functions for ℕ obtained by transport. Proof that odd numbers are not even transported from Binℕ to ℕ ([oddℕnotEvenℕ]). - An example of the structure identity principle for natural number structures ([NatImpl]). We first prove that Binℕ≡ℕ lifts to natural number structures ([NatImplℕ≡Binℕ]) and we then use this to transport "+-suc : m + suc n ≡ suc (m + n)" from ℕ to Binℕ ([+Binℕ-suc]). - An example of program/data refinement using the structure identity principle where we transport a property that is infeasible to prove by computation for ℕ ([propDoubleℕ]): 2^20 · 2^10 = 2^5 · (2^15 · 2^10) from the corresponding result on Binℕ which is proved instantly by refl ([propDoubleBinℕ]). These examples are inspired from an old cubicaltt formalization: https://github.com/mortberg/cubicaltt/blob/master/examples/binnat.ctt which itself is based on an even older cubical formalization (from 2014): https://github.com/simhu/cubical/blob/master/examples/binnat.cub The second representation is more non-standard and inspired by: https://github.com/RedPRL/redtt/blob/master/library/cool/nats.red Only some of the experiments have been done for this representation, but it has the virtue of being a bit simpler to prove equivalent to ℕ. The same representation can be found in: http://www.cs.bham.ac.uk/~mhe/agda-new/BinaryNaturals.html -} {-# OPTIONS --no-exact-split --safe #-} module Cubical.Data.BinNat.BinNat where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Bool open import Cubical.Data.Empty open import Cubical.Relation.Nullary data Binℕ : Type₀ data Pos : Type₀ -- Binary natural numbers data Binℕ where binℕ0 : Binℕ binℕpos : Pos → Binℕ -- Positive binary numbers data Pos where x0 : Pos → Pos x1 : Binℕ → Pos pattern pos1 = x1 binℕ0 pattern x1-pos n = x1 (binℕpos n) -- Note on notation: -- We use "⇒" for functions that are equivalences (and therefore -- they don't preserve the numerical value where the ranges don't -- match, as with Binℕ⇒Pos). -- -- We use "→" for the opposite situation (numerical value is preserved, -- but the function is not necessarily an equivalence) Binℕ⇒Pos : Binℕ → Pos sucPos : Pos → Pos Binℕ⇒Pos binℕ0 = pos1 Binℕ⇒Pos (binℕpos n) = sucPos n sucPos (x0 ps) = x1-pos ps sucPos (x1 ps) = x0 (Binℕ⇒Pos ps) Binℕ→ℕ : Binℕ → ℕ Pos⇒ℕ : Pos → ℕ Pos→ℕ : Pos → ℕ Binℕ→ℕ binℕ0 = zero Binℕ→ℕ (binℕpos x) = Pos→ℕ x Pos→ℕ ps = suc (Pos⇒ℕ ps) Pos⇒ℕ (x0 ps) = suc (doubleℕ (Pos⇒ℕ ps)) Pos⇒ℕ (x1 ps) = doubleℕ (Binℕ→ℕ ps) posInd : {P : Pos → Type₀} → P pos1 → ((p : Pos) → P p → P (sucPos p)) → (p : Pos) → P p posInd {P} h1 hs ps = f ps where H : (p : Pos) → P (x0 p) → P (x0 (sucPos p)) H p hx0p = hs (x1-pos p) (hs (x0 p) hx0p) f : (ps : Pos) → P ps f pos1 = h1 f (x0 ps) = posInd (hs pos1 h1) H ps f (x1-pos ps) = hs (x0 ps) (posInd (hs pos1 h1) H ps) Binℕ⇒Pos⇒ℕ : (p : Binℕ) → Pos⇒ℕ (Binℕ⇒Pos p) ≡ Binℕ→ℕ p Binℕ⇒Pos⇒ℕ binℕ0 = refl Binℕ⇒Pos⇒ℕ (binℕpos (x0 p)) = refl Binℕ⇒Pos⇒ℕ (binℕpos (x1 x)) = λ i → suc (doubleℕ (Binℕ⇒Pos⇒ℕ x i)) Pos⇒ℕsucPos : (p : Pos) → Pos⇒ℕ (sucPos p) ≡ suc (Pos⇒ℕ p) Pos⇒ℕsucPos p = Binℕ⇒Pos⇒ℕ (binℕpos p) Pos→ℕsucPos : (p : Pos) → Pos→ℕ (sucPos p) ≡ suc (Pos→ℕ p) Pos→ℕsucPos p = cong suc (Binℕ⇒Pos⇒ℕ (binℕpos p)) ℕ⇒Pos : ℕ → Pos ℕ⇒Pos zero = pos1 ℕ⇒Pos (suc n) = sucPos (ℕ⇒Pos n) ℕ→Pos : ℕ → Pos ℕ→Pos zero = pos1 ℕ→Pos (suc n) = ℕ⇒Pos n Pos⇒ℕ⇒Pos : (p : Pos) → ℕ⇒Pos (Pos⇒ℕ p) ≡ p Pos⇒ℕ⇒Pos p = posInd refl hs p where hs : (p : Pos) → ℕ⇒Pos (Pos⇒ℕ p) ≡ p → ℕ⇒Pos (Pos⇒ℕ (sucPos p)) ≡ sucPos p hs p hp = ℕ⇒Pos (Pos⇒ℕ (sucPos p)) ≡⟨ cong ℕ⇒Pos (Pos⇒ℕsucPos p) ⟩ sucPos (ℕ⇒Pos (Pos⇒ℕ p)) ≡⟨ cong sucPos hp ⟩ sucPos p ∎ ℕ⇒Pos⇒ℕ : (n : ℕ) → Pos⇒ℕ (ℕ⇒Pos n) ≡ n ℕ⇒Pos⇒ℕ zero = refl ℕ⇒Pos⇒ℕ (suc n) = Pos⇒ℕ (ℕ⇒Pos (suc n)) ≡⟨ Pos⇒ℕsucPos (ℕ⇒Pos n) ⟩ suc (Pos⇒ℕ (ℕ⇒Pos n)) ≡⟨ cong suc (ℕ⇒Pos⇒ℕ n) ⟩ suc n ∎ ℕ→Binℕ : ℕ → Binℕ ℕ→Binℕ zero = binℕ0 ℕ→Binℕ (suc n) = binℕpos (ℕ⇒Pos n) ℕ→Binℕ→ℕ : (n : ℕ) → Binℕ→ℕ (ℕ→Binℕ n) ≡ n ℕ→Binℕ→ℕ zero = refl ℕ→Binℕ→ℕ (suc n) = cong suc (ℕ⇒Pos⇒ℕ n) Binℕ→ℕ→Binℕ : (n : Binℕ) → ℕ→Binℕ (Binℕ→ℕ n) ≡ n Binℕ→ℕ→Binℕ binℕ0 = refl Binℕ→ℕ→Binℕ (binℕpos p) = cong binℕpos (Pos⇒ℕ⇒Pos p) Binℕ≃ℕ : Binℕ ≃ ℕ Binℕ≃ℕ = isoToEquiv (iso Binℕ→ℕ ℕ→Binℕ ℕ→Binℕ→ℕ Binℕ→ℕ→Binℕ) -- Use univalence (in fact only "ua") to get an equality from the -- above equivalence Binℕ≡ℕ : Binℕ ≡ ℕ Binℕ≡ℕ = ua Binℕ≃ℕ sucBinℕ : Binℕ → Binℕ sucBinℕ x = binℕpos (Binℕ⇒Pos x) Binℕ→ℕsuc : (x : Binℕ) → suc (Binℕ→ℕ x) ≡ Binℕ→ℕ (sucBinℕ x) Binℕ→ℕsuc binℕ0 = refl Binℕ→ℕsuc (binℕpos x) = sym (Pos→ℕsucPos x) -- We can transport addition on ℕ to Binℕ _+Binℕ_ : Binℕ → Binℕ → Binℕ _+Binℕ_ = transport (λ i → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i)) _+_ -- Test: 4 + 1 = 5 private _ : binℕpos (x0 (x0 pos1)) +Binℕ binℕpos pos1 ≡ binℕpos (x1-pos (x0 pos1)) _ = refl -- It is easy to test if binary numbers are odd oddBinℕ : Binℕ → Bool oddBinℕ binℕ0 = false oddBinℕ (binℕpos (x0 _)) = false oddBinℕ (binℕpos (x1 _)) = true evenBinℕ : Binℕ → Bool evenBinℕ n = oddBinℕ (sucBinℕ n) -- And prove the following property (without induction) oddBinℕnotEvenBinℕ : (n : Binℕ) → oddBinℕ n ≡ not (evenBinℕ n) oddBinℕnotEvenBinℕ binℕ0 = refl oddBinℕnotEvenBinℕ (binℕpos (x0 x)) = refl oddBinℕnotEvenBinℕ (binℕpos (x1 x)) = refl -- It is also easy to define and prove the property for unary numbers, -- however the definition uses recursion and the proof induction private oddn : ℕ → Bool oddn zero = true oddn (suc x) = not (oddn x) evenn : ℕ → Bool evenn n = not (oddn n) oddnSuc : (n : ℕ) → oddn n ≡ not (evenn n) oddnSuc zero = refl oddnSuc (suc n) = cong not (oddnSuc n) -- So what we can do instead is to transport the odd test from Binℕ to -- ℕ along the equality oddℕ : ℕ → Bool oddℕ = transport (λ i → Binℕ≡ℕ i → Bool) oddBinℕ evenℕ : ℕ → Bool evenℕ = transport (λ i → Binℕ≡ℕ i → Bool) evenBinℕ -- We can then also transport the property oddℕnotEvenℕ : (n : ℕ) → oddℕ n ≡ not (evenℕ n) oddℕnotEvenℕ = let -- We first build a path from oddBinℕ to oddℕ. When i=1 this is -- "transp (λ j → Binℕ≡ℕ j → Bool) i0 oddBinℕ" (i.e. oddℕ) oddp : PathP (λ i → Binℕ≡ℕ i → Bool) oddBinℕ oddℕ oddp i = transp (λ j → Binℕ≡ℕ (i ∧ j) → Bool) (~ i) oddBinℕ -- We then build a path from evenBinℕ to evenℕ evenp : PathP (λ i → Binℕ≡ℕ i → Bool) evenBinℕ evenℕ evenp i = transp (λ j → Binℕ≡ℕ (i ∧ j) → Bool) (~ i) evenBinℕ in -- Then transport oddBinℕnotEvenBinℕ in a suitable equality type -- When i=0 this is "(n : Binℕ) → oddBinℕ n ≡ not (evenBinℕ n)" -- When i=1 this is "(n : ℕ) → oddℕ n ≡ not (evenℕ n)" transport (λ i → (n : Binℕ≡ℕ i) → oddp i n ≡ not (evenp i n)) oddBinℕnotEvenBinℕ -- We can do the same for natural numbers: -- First construct the path addp : PathP (λ i → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i)) _+_ _+Binℕ_ addp i = transp (λ j → Binℕ≡ℕ (~ i ∨ ~ j) → Binℕ≡ℕ (~ i ∨ ~ j) → Binℕ≡ℕ (~ i ∨ ~ j)) (~ i) _+_ -- Then transport associativity: +Binℕ-assoc : ∀ m n o → m +Binℕ (n +Binℕ o) ≡ (m +Binℕ n) +Binℕ o +Binℕ-assoc = transport (λ i → (m n o : Binℕ≡ℕ (~ i)) → addp i m (addp i n o) ≡ addp i (addp i m n) o) +-assoc -- We can also define what it means to be an implementation of natural -- numbers and use this to transport properties between different -- implementation of natural numbers. This can be seen as a special -- case of the structure identity principle: any property that holds -- for one structure also holds for an equivalent one. -- An implementation of natural numbers (i.e. a "natural number -- structure") has a zero and successor. record NatImpl (A : Type₀) : Type₀ where field z : A s : A → A open NatImpl NatImplℕ : NatImpl ℕ z NatImplℕ = zero s NatImplℕ = suc NatImplBinℕ : NatImpl Binℕ z NatImplBinℕ = binℕ0 s NatImplBinℕ = sucBinℕ -- Using the equality between binary and unary numbers we can get an -- equality between the two implementations of the NatImpl interface NatImplℕ≡Binℕ : PathP (λ i → NatImpl (Binℕ≡ℕ (~ i))) NatImplℕ NatImplBinℕ z (NatImplℕ≡Binℕ i) = transp (λ j → Binℕ≡ℕ (~ i ∨ ~ j)) (~ i) zero s (NatImplℕ≡Binℕ i) = λ x → glue (λ { (i = i0) → suc x ; (i = i1) → sucBinℕ x }) -- We need to do use and hcomp to do and endpoint -- correction as "suc (unglue x)" connects "suc x" -- with "suc (Binℕ→ℕ x)" along i (which makes sense as -- x varies from ℕ to Binℕ along i), but we need -- something from "suc x" to "Binℕ→ℕ (sucBinℕ x)" for -- the glue to be well-formed (hcomp (λ j → λ { (i = i0) → suc x ; (i = i1) → Binℕ→ℕsuc x j }) (suc (unglue (i ∨ ~ i) x))) -- We then use this to transport +-suc from unary to binary numbers +Binℕ-suc : ∀ m n → m +Binℕ sucBinℕ n ≡ sucBinℕ (m +Binℕ n) +Binℕ-suc = transport (λ i → (m n : Binℕ≡ℕ (~ i)) → addp i m (NatImplℕ≡Binℕ i .s n) ≡ NatImplℕ≡Binℕ i .s (addp i m n)) +-suc -- Doubling experiment: we define a notion of "doubling structure" and -- transport a proof that is proved directly using refl for binary -- numbers to unary numbers. This is an example of program/data -- refinement: we can use univalence to prove properties about -- inefficient data-structures using efficient ones. -- Doubling structures record Double {ℓ} (A : Type ℓ) : Type (ℓ-suc ℓ) where field -- doubling function computing 2 · x double : A → A -- element to double elt : A open Double -- Compute: 2^n · x doubles : ∀ {ℓ} {A : Type ℓ} (D : Double A) → ℕ → A → A doubles D n x = iter n (double D) x Doubleℕ : Double ℕ double Doubleℕ = doubleℕ elt Doubleℕ = n1024 where -- 1024 = 2^8 · 2^2 = 2^10 n1024 : ℕ n1024 = doublesℕ 8 4 -- The doubling operation on binary numbers is O(1), while for unary -- numbers it is O(n). What is of course even more problematic is that -- we cannot handle very big unary natural numbers, but with binary -- there is no problem to represent very big numbers doubleBinℕ : Binℕ → Binℕ doubleBinℕ binℕ0 = binℕ0 doubleBinℕ (binℕpos x) = binℕpos (x0 x) DoubleBinℕ : Double Binℕ double DoubleBinℕ = doubleBinℕ elt DoubleBinℕ = bin1024 where -- 1024 = 2^10 = 10000000000₂ bin1024 : Binℕ bin1024 = binℕpos (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 pos1)))))))))) -- As these function don't commute strictly we have to prove it -- separately and insert it in the proof of DoubleBinℕ≡Doubleℕ below -- (just like we had to in NatImplℕ≡NatImplBinℕ Binℕ→ℕdouble : (x : Binℕ) → doubleℕ (Binℕ→ℕ x) ≡ Binℕ→ℕ (doubleBinℕ x) Binℕ→ℕdouble binℕ0 = refl Binℕ→ℕdouble (binℕpos x) = refl -- We use the equality between Binℕ and ℕ to get an equality of -- doubling structures DoubleBinℕ≡Doubleℕ : PathP (λ i → Double (Binℕ≡ℕ i)) DoubleBinℕ Doubleℕ double (DoubleBinℕ≡Doubleℕ i) = λ x → glue (λ { (i = i0) → doubleBinℕ x ; (i = i1) → doubleℕ x }) (hcomp (λ j → λ { (i = i0) → Binℕ→ℕdouble x j ; (i = i1) → doubleℕ x }) (doubleℕ (unglue (i ∨ ~ i) x))) elt (DoubleBinℕ≡Doubleℕ i) = transp (λ j → Binℕ≡ℕ (i ∨ ~ j)) i (Doubleℕ .elt) -- We can now use transport to prove a property that is too slow to -- check with unary numbers. We define the property we want to check -- as a record so that Agda does not try to unfold it eagerly. record propDouble {ℓ} {A : Type ℓ} (D : Double A) : Type ℓ where field -- 2^20 · e = 2^5 · (2^15 · e) proof : doubles D 20 (elt D) ≡ doubles D 5 (doubles D 15 (elt D)) open propDouble -- The property we want to prove takes too long to typecheck for ℕ: -- propDoubleℕ : propDouble Doubleℕ -- propDoubleℕ = refl -- With binary numbers it is instant propDoubleBinℕ : propDouble DoubleBinℕ proof propDoubleBinℕ = refl -- By transporting the proof along the equality we then get it for -- unary numbers propDoubleℕ : propDouble Doubleℕ propDoubleℕ = transport (λ i → propDouble (DoubleBinℕ≡Doubleℕ i)) propDoubleBinℕ -------------------------------------------------------------------------------- -- -- Alternative encoding of binary natural numbers inspired by: -- https://github.com/RedPRL/redtt/blob/master/library/cool/nats.red -- -- This representation makes the equivalence with ℕ a bit easier to -- prove, but the doubling example wouldn't work as nicely as we -- cannot define it as an O(1) operation data binnat : Type₀ where zero : binnat -- 0 consOdd : binnat → binnat -- 2·n + 1 consEven : binnat → binnat -- 2·{n+1} binnat→ℕ : binnat → ℕ binnat→ℕ zero = 0 binnat→ℕ (consOdd n) = suc (doubleℕ (binnat→ℕ n)) binnat→ℕ (consEven n) = suc (suc (doubleℕ (binnat→ℕ n))) suc-binnat : binnat → binnat suc-binnat zero = consOdd zero suc-binnat (consOdd n) = consEven n suc-binnat (consEven n) = consOdd (suc-binnat n) ℕ→binnat : ℕ → binnat ℕ→binnat zero = zero ℕ→binnat (suc n) = suc-binnat (ℕ→binnat n) binnat→ℕ-suc : (n : binnat) → binnat→ℕ (suc-binnat n) ≡ suc (binnat→ℕ n) binnat→ℕ-suc zero = refl binnat→ℕ-suc (consOdd n) = refl binnat→ℕ-suc (consEven n) = λ i → suc (doubleℕ (binnat→ℕ-suc n i)) ℕ→binnat→ℕ : (n : ℕ) → binnat→ℕ (ℕ→binnat n) ≡ n ℕ→binnat→ℕ zero = refl ℕ→binnat→ℕ (suc n) = (binnat→ℕ-suc (ℕ→binnat n)) ∙ (cong suc (ℕ→binnat→ℕ n)) suc-ℕ→binnat-double : (n : ℕ) → suc-binnat (ℕ→binnat (doubleℕ n)) ≡ consOdd (ℕ→binnat n) suc-ℕ→binnat-double zero = refl suc-ℕ→binnat-double (suc n) = λ i → suc-binnat (suc-binnat (suc-ℕ→binnat-double n i)) binnat→ℕ→binnat : (n : binnat) → ℕ→binnat (binnat→ℕ n) ≡ n binnat→ℕ→binnat zero = refl binnat→ℕ→binnat (consOdd n) = (suc-ℕ→binnat-double (binnat→ℕ n)) ∙ (cong consOdd (binnat→ℕ→binnat n)) binnat→ℕ→binnat (consEven n) = (λ i → suc-binnat (suc-ℕ→binnat-double (binnat→ℕ n) i)) ∙ (cong consEven (binnat→ℕ→binnat n)) ℕ≃binnat : ℕ ≃ binnat ℕ≃binnat = isoToEquiv (iso ℕ→binnat binnat→ℕ binnat→ℕ→binnat ℕ→binnat→ℕ) ℕ≡binnat : ℕ ≡ binnat ℕ≡binnat = ua ℕ≃binnat -- We can transport addition on ℕ to binnat _+binnat_ : binnat → binnat → binnat _+binnat_ = transport (λ i → ℕ≡binnat i → ℕ≡binnat i → ℕ≡binnat i) _+_ -- Test: 4 + 1 = 5 _ : consEven (consOdd zero) +binnat consOdd zero ≡ consOdd (consEven zero) _ = refl oddbinnat : binnat → Bool oddbinnat zero = false oddbinnat (consOdd _) = true oddbinnat (consEven _) = false oddℕ' : ℕ → Bool oddℕ' = transport (λ i → ℕ≡binnat (~ i) → Bool) oddbinnat -- The NatImpl example for this representation of binary numbers private NatImplbinnat : NatImpl binnat z NatImplbinnat = zero s NatImplbinnat = suc-binnat -- Note that the s case is a bit simpler as no end-point correction -- is necessary (things commute strictly) NatImplℕ≡NatImplbinnat : PathP (λ i → NatImpl (ℕ≡binnat i)) NatImplℕ NatImplbinnat z (NatImplℕ≡NatImplbinnat i) = transp (λ j → ℕ≡binnat (i ∨ ~ j)) i zero s (NatImplℕ≡NatImplbinnat i) = λ x → glue (λ { (i = i0) → suc x ; (i = i1) → suc-binnat x }) (suc-binnat (unglue (i ∨ ~ i) x)) oddSuc : (n : binnat) → oddbinnat n ≡ not (oddbinnat (suc-binnat n)) oddSuc zero = refl oddSuc (consOdd _) = refl oddSuc (consEven _) = refl oddℕSuc' : (n : ℕ) → oddℕ' n ≡ not (oddℕ' (suc n)) oddℕSuc' = let eq : (i : I) → ℕ≡binnat (~ i) → Bool eq i = transp (λ j → ℕ≡binnat (~ i ∨ ~ j) → Bool) (~ i) oddbinnat in transport (λ i → (n : ℕ≡binnat (~ i)) → eq i n ≡ not (eq i (NatImplℕ≡NatImplbinnat (~ i) .NatImpl.s n))) oddSuc
33.947262
104
0.645734
0b73e4b7836da7cc0aca3b16bb39b2dafcce8b17
23
agda
Agda
test/Fail/Issue3448.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue3448.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue3448.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
data D : _ where D : _
7.666667
16
0.565217
fb417a5cd852d20ab35c3ae8a05d4e7e81f9f609
3,523
agda
Agda
theorems/homotopy/SuspSmashJoin.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/homotopy/SuspSmashJoin.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/homotopy/SuspSmashJoin.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.elims.SuspSmash open import homotopy.elims.CofPushoutSection -- Σ(X∧Y) ≃ X * Y module homotopy.SuspSmashJoin {i j} (X : Ptd i) (Y : Ptd j) where private {- path lemmas -} private reduce-x : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : z == y) → p ∙ ! q ∙ q ∙ ! p ∙ p == p reduce-x idp idp = idp reduce-y : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : x == z) → p ∙ ! p ∙ q ∙ ! q ∙ p == p reduce-y idp idp = idp module Into = SuspRec {A = Smash X Y} {C = de⊙ X * de⊙ Y} (left (pt X)) (right (pt Y)) (Smash-rec (λ x y → jglue (pt X) (pt Y) ∙ ! (jglue x (pt Y)) ∙ jglue x y ∙ ! (jglue (pt X) y) ∙ jglue (pt X) (pt Y)) (jglue (pt X) (pt Y)) (jglue (pt X) (pt Y)) (λ x → reduce-x (jglue (pt X) (pt Y)) (jglue x (pt Y))) (λ y → reduce-y (jglue (pt X) (pt Y)) (jglue (pt X) y))) into = Into.f module Out = JoinRec {C = Susp (Smash X Y)} (λ _ → north) (λ _ → south) (λ x y → merid (smin x y)) out = Out.f abstract into-out : (j : de⊙ X * de⊙ Y) → into (out j) == j into-out = Join-elim (λ x → glue (pt X , pt Y) ∙ ! (glue (x , pt Y))) (λ y → ! (glue (pt X , pt Y)) ∙ glue (pt X , y)) (λ x y → ↓-∘=idf-from-square into out $ (ap (ap into) (Out.glue-β x y) ∙ Into.merid-β (smin x y)) ∙v⊡ lemma (glue (pt X , pt Y)) (glue (x , pt Y)) (glue (pt X , y)) (glue (x , y))) where lemma : ∀ {i} {A : Type i} {x y z w : A} (p : x == y) (q : z == y) (r : x == w) (s : z == w) → Square (p ∙ ! q) (p ∙ ! q ∙ s ∙ ! r ∙ p) s (! p ∙ r) lemma idp idp idp s = vert-degen-square (∙-unit-r s) out-into : (σ : Susp (Smash X Y)) → out (into σ) == σ out-into = SuspSmash-elim idp idp (λ x y → ↓-∘=idf-in' out into $ ap (ap out) (Into.merid-β (smin x y)) ∙ lemma₁ out (Out.glue-β (pt X) (pt Y)) (Out.glue-β x (pt Y)) (Out.glue-β x y) (Out.glue-β (pt X) y) (Out.glue-β (pt X) (pt Y)) ∙ lemma₂ {p = merid (smin (pt X) (pt Y))} {q = merid (smin x (pt Y))} {r = merid (smin x y)} {s = merid (smin (pt X) y)} {t = merid (smin (pt X) (pt Y))} (ap merid (smgluel (pt X) ∙ ! (smgluel x))) (ap merid (smgluer y ∙ ! (smgluer (pt Y))))) where lemma₁ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y z u v w : A} {p : x == y} {q : z == y} {r : z == u} {s : v == u} {t : v == w} {p' : f x == f y} {q' : f z == f y} {r' : f z == f u} {s' : f v == f u} {t' : f v == f w} (α : ap f p == p') (β : ap f q == q') (γ : ap f r == r') (δ : ap f s == s') (ε : ap f t == t') → ap f (p ∙ ! q ∙ r ∙ ! s ∙ t) == p' ∙ ! q' ∙ r' ∙ ! s' ∙ t' lemma₁ f {p = idp} {q = idp} {r = idp} {s = idp} {t = idp} idp idp idp idp idp = idp lemma₂ : ∀ {i} {A : Type i} {x y z u : A} {p q : x == y} {r : x == z} {s t : u == z} (α : p == q) (β : s == t) → p ∙ ! q ∙ r ∙ ! s ∙ t == r lemma₂ {p = idp} {r = idp} {s = idp} idp idp = idp module SuspSmashJoin where eq : Susp (Smash X Y) ≃ (de⊙ X * de⊙ Y) eq = equiv into out into-out out-into ⊙eq : ⊙Susp (X ∧ Y) ⊙≃ (X ⊙* Y) ⊙eq = ≃-to-⊙≃ eq idp
32.62037
72
0.400511
299e6b66bb23e7aaf5f9e6b8d3eac0d49568a7bd
1,047
agda
Agda
Data/Boolean/NaryOperators.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Data/Boolean/NaryOperators.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Data/Boolean/NaryOperators.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Data.Boolean.NaryOperators where open import Data.Boolean import Data.Boolean.Operators open Data.Boolean.Operators.Logic open import Function.DomainRaise open import Numeral.Natural private variable n : ℕ -- N-ary conjunction (AND). -- Every term is true. ∧₊ : (n : ℕ) → (Bool →̂ Bool)(n) ∧₊(0) = 𝑇 ∧₊(1) x = x ∧₊(𝐒(𝐒(n))) x = (x ∧_) ∘ (∧₊(𝐒(n))) -- N-ary disjunction (OR). -- There is a term which is true. ∨₊ : (n : ℕ) → (Bool →̂ Bool)(n) ∨₊(0) = 𝐹 ∨₊(1) x = x ∨₊(𝐒(𝐒(n))) x = (x ∨_) ∘ (∨₊(𝐒(n))) -- N-ary implication. -- All left terms together imply the right-most term. ⟶₊ : (n : ℕ) → (Bool →̂ Bool)(n) ⟶₊(0) = 𝑇 ⟶₊(1) x = x ⟶₊(𝐒(𝐒(n))) x = (x ⟶_) ∘ (⟶₊(𝐒(n))) -- N-ary NAND. -- Not every term is true. -- There is a term which is false. ⊼₊ : (n : ℕ) → (Bool →̂ Bool)(n) ⊼₊(0) = 𝐹 ⊼₊(1) x = ¬ x ⊼₊(𝐒(𝐒(n))) x = (x ⊼_) ∘ ((¬) ∘ (⊼₊(𝐒(n)))) -- N-ary NOR. -- There are no terms that are true. -- Every term is false. ⊽₊ : (n : ℕ) → (Bool →̂ Bool)(n) ⊽₊(0) = 𝐹 ⊽₊(1) x = ¬ x ⊽₊(𝐒(𝐒(n))) x = (x ⊽_) ∘ ((¬) ∘ (⊽₊(𝐒(n))))
22.276596
53
0.505253
4d47f7b1749217bb1f56e83b4acfcc9dcbef3a7b
799
agda
Agda
agda-stdlib-0.9/src/Data/W.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Data/W.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Data/W.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- W-types ------------------------------------------------------------------------ module Data.W where open import Level open import Relation.Nullary -- The family of W-types. data W {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where sup : (x : A) (f : B x → W A B) → W A B -- Projections. head : ∀ {a b} {A : Set a} {B : A → Set b} → W A B → A head (sup x f) = x tail : ∀ {a b} {A : Set a} {B : A → Set b} → (x : W A B) → B (head x) → W A B tail (sup x f) = f -- If B is always inhabited, then W A B is empty. inhabited⇒empty : ∀ {a b} {A : Set a} {B : A → Set b} → (∀ x → B x) → ¬ W A B inhabited⇒empty b (sup x f) = inhabited⇒empty b (f (b x))
24.96875
72
0.413016
29f98d512e1cec626a8f546f27f8f2955b25b15b
25,788
agda
Agda
src/Equality/Path/Isomorphisms.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Equality/Path/Isomorphisms.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Equality/Path/Isomorphisms.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Isomorphisms and equalities relating an arbitrary "equality with J" -- to path equality, along with a proof of extensionality for the -- "equality with J" ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} import Equality.Path as P module Equality.Path.Isomorphisms {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Prelude import Bijection import Embedding import Equivalence import Equivalence.Contractible-preimages import Equivalence.Half-adjoint import Function-universe import H-level import Surjection import Univalence-axiom private module B = Bijection equality-with-J module CP = Equivalence.Contractible-preimages equality-with-J module HA = Equivalence.Half-adjoint equality-with-J module Eq = Equivalence equality-with-J module F = Function-universe equality-with-J module PB = Bijection P.equality-with-J module PM = Embedding P.equality-with-J module PE = Equivalence P.equality-with-J module PCP = Equivalence.Contractible-preimages P.equality-with-J module PHA = Equivalence.Half-adjoint P.equality-with-J module PF = Function-universe P.equality-with-J module PH = H-level P.equality-with-J module PS = Surjection P.equality-with-J module PU = Univalence-axiom P.equality-with-J open B using (_↔_) open Embedding equality-with-J hiding (id; _∘_) open Eq using (_≃_; Is-equivalence) open F hiding (id; _∘_) open H-level equality-with-J open Surjection equality-with-J using (_↠_) open Univalence-axiom equality-with-J private variable a b c p q ℓ : Level A : Type a B : A → Type b u v x y z : A f g h : (x : A) → B x n : ℕ ------------------------------------------------------------------------ -- Extensionality -- The proof bad-ext is perhaps not less "good" than ext (I don't -- know), it is called this simply because it is not defined using -- good-ext. bad-ext : Extensionality a b apply-ext bad-ext {f = f} {g = g} = (∀ x → f x ≡ g x) ↝⟨ (λ p x → _↔_.to ≡↔≡ (p x)) ⟩ (∀ x → f x P.≡ g x) ↝⟨ P.apply-ext P.ext ⟩ f P.≡ g ↔⟨ inverse ≡↔≡ ⟩□ f ≡ g □ -- Extensionality. ext : Extensionality a b ext = Eq.good-ext bad-ext ⟨ext⟩ : Extensionality′ A B ⟨ext⟩ = apply-ext ext abstract -- The function ⟨ext⟩ is an equivalence. ext-is-equivalence : Is-equivalence {A = ∀ x → f x ≡ g x} ⟨ext⟩ ext-is-equivalence = Eq.good-ext-is-equivalence bad-ext -- Equality rearrangement lemmas for ⟨ext⟩. ext-refl : ⟨ext⟩ (λ x → refl (f x)) ≡ refl f ext-refl = Eq.good-ext-refl bad-ext _ ext-const : (x≡y : x ≡ y) → ⟨ext⟩ (const {B = A} x≡y) ≡ cong const x≡y ext-const = Eq.good-ext-const bad-ext cong-ext : ∀ (f≡g : ∀ x → f x ≡ g x) {x} → cong (_$ x) (⟨ext⟩ f≡g) ≡ f≡g x cong-ext = Eq.cong-good-ext bad-ext ext-cong : {B : Type b} {C : B → Type c} {f : A → (x : B) → C x} {x≡y : x ≡ y} → ⟨ext⟩ (λ z → cong (flip f z) x≡y) ≡ cong f x≡y ext-cong = Eq.good-ext-cong bad-ext subst-ext : ∀ {f g : (x : A) → B x} (P : B x → Type p) {p} (f≡g : ∀ x → f x ≡ g x) → subst (λ f → P (f x)) (⟨ext⟩ f≡g) p ≡ subst P (f≡g x) p subst-ext = Eq.subst-good-ext bad-ext elim-ext : (P : B x → B x → Type p) (p : (y : B x) → P y y) {f g : (x : A) → B x} (f≡g : ∀ x → f x ≡ g x) → elim (λ {f g} _ → P (f x) (g x)) (p ∘ (_$ x)) (⟨ext⟩ f≡g) ≡ elim (λ {x y} _ → P x y) p (f≡g x) elim-ext = Eq.elim-good-ext bad-ext -- I based the statements of the following three lemmas on code in -- the Lean Homotopy Type Theory Library with Jakob von Raumer and -- Floris van Doorn listed as authors. The file was claimed to have -- been ported from the Coq HoTT library. (The third lemma has later -- been generalised.) ext-sym : (f≡g : ∀ x → f x ≡ g x) → ⟨ext⟩ (sym ∘ f≡g) ≡ sym (⟨ext⟩ f≡g) ext-sym = Eq.good-ext-sym bad-ext ext-trans : (f≡g : ∀ x → f x ≡ g x) (g≡h : ∀ x → g x ≡ h x) → ⟨ext⟩ (λ x → trans (f≡g x) (g≡h x)) ≡ trans (⟨ext⟩ f≡g) (⟨ext⟩ g≡h) ext-trans = Eq.good-ext-trans bad-ext cong-post-∘-ext : (f≡g : ∀ x → f x ≡ g x) → cong (h ∘_) (⟨ext⟩ f≡g) ≡ ⟨ext⟩ (cong h ∘ f≡g) cong-post-∘-ext = Eq.cong-post-∘-good-ext bad-ext bad-ext cong-pre-∘-ext : (f≡g : ∀ x → f x ≡ g x) → cong (_∘ h) (⟨ext⟩ f≡g) ≡ ⟨ext⟩ (f≡g ∘ h) cong-pre-∘-ext = Eq.cong-pre-∘-good-ext bad-ext bad-ext cong-∘-ext : {A : Type a} {B : Type b} {C : Type c} {f g : B → C} (f≡g : ∀ x → f x ≡ g x) → cong {B = (A → B) → (A → C)} (λ f → f ∘_) (⟨ext⟩ f≡g) ≡ ⟨ext⟩ λ h → ⟨ext⟩ λ x → f≡g (h x) cong-∘-ext = Eq.cong-∘-good-ext bad-ext bad-ext bad-ext ------------------------------------------------------------------------ -- More isomorphisms and related properties -- Split surjections expressed using equality are equivalent to split -- surjections expressed using paths. ↠≃↠ : {A : Type a} {B : Type b} → (A ↠ B) ≃ (A PS.↠ B) ↠≃↠ = Eq.↔→≃ (λ A↠B → record { logical-equivalence = _↠_.logical-equivalence A↠B ; right-inverse-of = _↔_.to ≡↔≡ ∘ _↠_.right-inverse-of A↠B }) (λ A↠B → record { logical-equivalence = PS._↠_.logical-equivalence A↠B ; right-inverse-of = _↔_.from ≡↔≡ ∘ PS._↠_.right-inverse-of A↠B }) (λ A↠B → cong (λ r → record { logical-equivalence = PS._↠_.logical-equivalence A↠B ; right-inverse-of = r }) $ ⟨ext⟩ λ _ → _↔_.right-inverse-of ≡↔≡ _) (λ A↠B → cong (λ r → record { logical-equivalence = _↠_.logical-equivalence A↠B ; right-inverse-of = r }) $ ⟨ext⟩ λ _ → _↔_.left-inverse-of ≡↔≡ _) private -- Bijections expressed using paths can be converted into bijections -- expressed using equality. ↔→↔ : {A B : Type ℓ} → A PB.↔ B → A ↔ B ↔→↔ A↔B = record { surjection = _≃_.from ↠≃↠ $ PB._↔_.surjection A↔B ; left-inverse-of = _↔_.from ≡↔≡ ∘ PB._↔_.left-inverse-of A↔B } -- Bijections expressed using equality are equivalent to bijections -- expressed using paths. ↔≃↔ : {A : Type a} {B : Type b} → (A ↔ B) ≃ (A PB.↔ B) ↔≃↔ {A = A} {B = B} = A ↔ B ↔⟨ B.↔-as-Σ ⟩ (∃ λ (f : A → B) → ∃ λ (f⁻¹ : B → A) → (∀ x → f (f⁻¹ x) ≡ x) × (∀ x → f⁻¹ (f x) ≡ x)) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → (∀-cong ext λ _ → ≡↔≡) ×-cong (∀-cong ext λ _ → ≡↔≡)) ⟩ (∃ λ (f : A → B) → ∃ λ (f⁻¹ : B → A) → (∀ x → f (f⁻¹ x) P.≡ x) × (∀ x → f⁻¹ (f x) P.≡ x)) ↔⟨ inverse $ ↔→↔ $ PB.↔-as-Σ ⟩□ A PB.↔ B □ -- H-level expressed using equality is isomorphic to H-level expressed -- using paths. H-level↔H-level : ∀ n → H-level n A ↔ PH.H-level n A H-level↔H-level {A = A} zero = H-level 0 A ↔⟨⟩ (∃ λ (x : A) → ∀ y → x ≡ y) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → ≡↔≡) ⟩ (∃ λ (x : A) → ∀ y → x P.≡ y) ↔⟨⟩ PH.H-level 0 A □ H-level↔H-level {A = A} (suc n) = H-level (suc n) A ↝⟨ inverse $ ≡↔+ _ ext ⟩ (∀ x y → H-level n (x ≡ y)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → H-level-cong ext _ ≡↔≡) ⟩ (∀ x y → H-level n (x P.≡ y)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → H-level↔H-level n) ⟩ (∀ x y → PH.H-level n (x P.≡ y)) ↝⟨ ↔→↔ $ PF.≡↔+ _ P.ext ⟩ PH.H-level (suc n) A □ -- CP.Is-equivalence is isomorphic to PCP.Is-equivalence. Is-equivalence-CP↔Is-equivalence-CP : CP.Is-equivalence f ↔ PCP.Is-equivalence f Is-equivalence-CP↔Is-equivalence-CP {f = f} = CP.Is-equivalence f ↔⟨⟩ (∀ y → Contractible (∃ λ x → f x ≡ y)) ↝⟨ (∀-cong ext λ _ → H-level-cong ext _ $ ∃-cong λ _ → ≡↔≡) ⟩ (∀ y → Contractible (∃ λ x → f x P.≡ y)) ↝⟨ (∀-cong ext λ _ → H-level↔H-level _) ⟩ (∀ y → P.Contractible (∃ λ x → f x P.≡ y)) ↔⟨⟩ PCP.Is-equivalence f □ -- Is-equivalence expressed using equality is isomorphic to -- Is-equivalence expressed using paths. Is-equivalence↔Is-equivalence : Is-equivalence f ↔ PE.Is-equivalence f Is-equivalence↔Is-equivalence {f = f} = Is-equivalence f ↝⟨ HA.Is-equivalence↔Is-equivalence-CP ext ⟩ CP.Is-equivalence f ↝⟨ Is-equivalence-CP↔Is-equivalence-CP ⟩ PCP.Is-equivalence f ↝⟨ inverse $ ↔→↔ $ PHA.Is-equivalence↔Is-equivalence-CP P.ext ⟩□ PE.Is-equivalence f □ -- The type of equivalences, expressed using equality, is isomorphic -- to the type of equivalences, expressed using paths. ≃↔≃ : {A : Type a} {B : Type b} → A ≃ B ↔ A PE.≃ B ≃↔≃ {A = A} {B = B} = A ≃ B ↝⟨ Eq.≃-as-Σ ⟩ ∃ Is-equivalence ↝⟨ (∃-cong λ _ → Is-equivalence↔Is-equivalence) ⟩ ∃ PE.Is-equivalence ↝⟨ inverse $ ↔→↔ PE.≃-as-Σ ⟩□ A PE.≃ B □ private -- ≃↔≃ computes in the "right" way. to-≃↔≃ : {A : Type a} {B : Type b} {A≃B : A ≃ B} → PE._≃_.logical-equivalence (_↔_.to ≃↔≃ A≃B) ≡ _≃_.logical-equivalence A≃B to-≃↔≃ = refl _ from-≃↔≃ : {A : Type a} {B : Type b} {A≃B : A PE.≃ B} → _≃_.logical-equivalence (_↔_.from ≃↔≃ A≃B) ≡ PE._≃_.logical-equivalence A≃B from-≃↔≃ = refl _ -- The type of equivalences, expressed using "contractible preimages" -- and equality, is isomorphic to the type of equivalences, expressed -- using contractible preimages and paths. ≃-CP↔≃-CP : {A : Type a} {B : Type b} → A CP.≃ B ↔ A PCP.≃ B ≃-CP↔≃-CP {A = A} {B = B} = ∃ CP.Is-equivalence ↝⟨ (∃-cong λ _ → Is-equivalence-CP↔Is-equivalence-CP) ⟩□ ∃ PCP.Is-equivalence □ -- The cong function for paths can be expressed in terms of the cong -- function for equality. cong≡cong : {A : Type a} {B : Type b} {f : A → B} {x y : A} {x≡y : x P.≡ y} → cong f (_↔_.from ≡↔≡ x≡y) ≡ _↔_.from ≡↔≡ (P.cong f x≡y) cong≡cong {f = f} {x≡y = x≡y} = P.elim (λ x≡y → cong f (_↔_.from ≡↔≡ x≡y) ≡ _↔_.from ≡↔≡ (P.cong f x≡y)) (λ x → cong f (_↔_.from ≡↔≡ P.refl) ≡⟨ cong (cong f) from-≡↔≡-refl ⟩ cong f (refl x) ≡⟨ cong-refl _ ⟩ refl (f x) ≡⟨ sym $ from-≡↔≡-refl ⟩ _↔_.from ≡↔≡ P.refl ≡⟨ cong (_↔_.from ≡↔≡) $ sym $ _↔_.from ≡↔≡ $ P.cong-refl f ⟩∎ _↔_.from ≡↔≡ (P.cong f P.refl) ∎) x≡y -- The sym function for paths can be expressed in terms of the sym -- function for equality. sym≡sym : {x≡y : x P.≡ y} → sym (_↔_.from ≡↔≡ x≡y) ≡ _↔_.from ≡↔≡ (P.sym x≡y) sym≡sym {x≡y = x≡y} = P.elim₁ (λ x≡y → sym (_↔_.from ≡↔≡ x≡y) ≡ _↔_.from ≡↔≡ (P.sym x≡y)) (sym (_↔_.from ≡↔≡ P.refl) ≡⟨ cong sym from-≡↔≡-refl ⟩ sym (refl _) ≡⟨ sym-refl ⟩ refl _ ≡⟨ sym from-≡↔≡-refl ⟩ _↔_.from ≡↔≡ P.refl ≡⟨ cong (_↔_.from ≡↔≡) $ sym $ _↔_.from ≡↔≡ P.sym-refl ⟩∎ _↔_.from ≡↔≡ (P.sym P.refl) ∎) x≡y -- The trans function for paths can be expressed in terms of the trans -- function for equality. trans≡trans : {x≡y : x P.≡ y} {y≡z : y P.≡ z} → trans (_↔_.from ≡↔≡ x≡y) (_↔_.from ≡↔≡ y≡z) ≡ _↔_.from ≡↔≡ (P.trans x≡y y≡z) trans≡trans {x≡y = x≡y} {y≡z = y≡z} = P.elim₁ (λ x≡y → trans (_↔_.from ≡↔≡ x≡y) (_↔_.from ≡↔≡ y≡z) ≡ _↔_.from ≡↔≡ (P.trans x≡y y≡z)) (trans (_↔_.from ≡↔≡ P.refl) (_↔_.from ≡↔≡ y≡z) ≡⟨ cong (flip trans _) from-≡↔≡-refl ⟩ trans (refl _) (_↔_.from ≡↔≡ y≡z) ≡⟨ trans-reflˡ _ ⟩ _↔_.from ≡↔≡ y≡z ≡⟨ cong (_↔_.from ≡↔≡) $ sym $ _↔_.from ≡↔≡ $ P.trans-reflˡ _ ⟩∎ _↔_.from ≡↔≡ (P.trans P.refl y≡z) ∎) x≡y -- The type of embeddings, expressed using equality, is isomorphic to -- the type of embeddings, expressed using paths. Embedding↔Embedding : {A : Type a} {B : Type b} → Embedding A B ↔ PM.Embedding A B Embedding↔Embedding {A = A} {B = B} = Embedding A B ↝⟨ Embedding-as-Σ ⟩ (∃ λ f → ∀ x y → Is-equivalence (cong f)) ↔⟨ (∃-cong λ f → ∀-cong ext λ x → ∀-cong ext λ y → Eq.⇔→≃ (Eq.propositional ext _) (Eq.propositional ext _) (λ is → _≃_.is-equivalence $ Eq.with-other-function ( x P.≡ y ↔⟨ inverse ≡↔≡ ⟩ x ≡ y ↝⟨ Eq.⟨ _ , is ⟩ ⟩ f x ≡ f y ↔⟨ ≡↔≡ ⟩□ f x P.≡ f y □) (P.cong f) (λ eq → _↔_.to ≡↔≡ (cong f (_↔_.from ≡↔≡ eq)) ≡⟨ cong (_↔_.to ≡↔≡) cong≡cong ⟩ _↔_.to ≡↔≡ (_↔_.from ≡↔≡ (P.cong f eq)) ≡⟨ _↔_.right-inverse-of ≡↔≡ _ ⟩∎ P.cong f eq ∎)) (λ is → _≃_.is-equivalence $ Eq.with-other-function ( x ≡ y ↔⟨ ≡↔≡ ⟩ x P.≡ y ↝⟨ Eq.⟨ _ , is ⟩ ⟩ f x P.≡ f y ↔⟨ inverse ≡↔≡ ⟩□ f x ≡ f y □) (cong f) (λ eq → _↔_.from ≡↔≡ (P.cong f (_↔_.to ≡↔≡ eq)) ≡⟨ sym cong≡cong ⟩ cong f (_↔_.from ≡↔≡ (_↔_.to ≡↔≡ eq)) ≡⟨ cong (cong f) $ _↔_.left-inverse-of ≡↔≡ _ ⟩∎ cong f eq ∎))) ⟩ (∃ λ f → ∀ x y → Is-equivalence (P.cong f)) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → Is-equivalence↔Is-equivalence) ⟩ (∃ λ f → ∀ x y → PE.Is-equivalence (P.cong f)) ↝⟨ inverse $ ↔→↔ PM.Embedding-as-Σ ⟩□ PM.Embedding A B □ -- The subst function for paths can be expressed in terms of the subst -- function for equality. subst≡subst : ∀ {P : A → Type p} {x≡y : x P.≡ y} {p} → subst P (_↔_.from ≡↔≡ x≡y) p ≡ P.subst P x≡y p subst≡subst {P = P} {x≡y} = P.elim (λ x≡y → ∀ {p} → subst P (_↔_.from ≡↔≡ x≡y) p ≡ P.subst P x≡y p) (λ x {p} → subst P (_↔_.from ≡↔≡ P.refl) p ≡⟨ cong (λ eq → subst P eq p) from-≡↔≡-refl ⟩ subst P (refl x) p ≡⟨ subst-refl _ _ ⟩ p ≡⟨ sym $ _↔_.from ≡↔≡ $ P.subst-refl P _ ⟩∎ P.subst P P.refl p ∎) x≡y -- A "computation" rule for subst≡subst. subst≡subst-refl : ∀ {P : A → Type p} {p : P x} → subst≡subst {x≡y = P.refl} ≡ trans (cong (λ eq → subst P eq p) from-≡↔≡-refl) (trans (subst-refl _ _) (sym $ _↔_.from ≡↔≡ $ P.subst-refl P _)) subst≡subst-refl {P = P} = cong (λ f → f {p = _}) $ _↔_.from ≡↔≡ $ P.elim-refl (λ x≡y → ∀ {p} → subst P (_↔_.from ≡↔≡ x≡y) p ≡ P.subst P x≡y p) (λ _ → trans (cong (λ eq → subst P eq _) from-≡↔≡-refl) (trans (subst-refl _ _) (sym $ _↔_.from ≡↔≡ $ P.subst-refl P _))) -- Some corollaries. subst≡↔subst≡ : ∀ {eq : x P.≡ y} → subst B (_↔_.from ≡↔≡ eq) u ≡ v ↔ P.subst B eq u P.≡ v subst≡↔subst≡ {B = B} {u = u} {v = v} {eq = eq} = subst B (_↔_.from ≡↔≡ eq) u ≡ v ↝⟨ ≡⇒↝ _ $ cong (_≡ _) subst≡subst ⟩ P.subst B eq u ≡ v ↝⟨ ≡↔≡ ⟩□ P.subst B eq u P.≡ v □ subst≡↔[]≡ : {eq : x P.≡ y} → subst B (_↔_.from ≡↔≡ eq) u ≡ v ↔ P.[ (λ i → B (eq i)) ] u ≡ v subst≡↔[]≡ {B = B} {u = u} {v = v} {eq = eq} = subst B (_↔_.from ≡↔≡ eq) u ≡ v ↝⟨ subst≡↔subst≡ ⟩ P.subst B eq u P.≡ v ↝⟨ ↔→↔ $ PB.inverse $ P.heterogeneous↔homogeneous _ ⟩□ P.[ (λ i → B (eq i)) ] u ≡ v □ -- The dcong function for paths can be expressed using dcong for -- equality (up to pointwise equality). dcong≡dcong : {f : (x : A) → B x} {x≡y : x P.≡ y} → _↔_.to subst≡↔subst≡ (dcong f (_↔_.from ≡↔≡ x≡y)) ≡ P.dcong f x≡y dcong≡dcong {B = B} {f = f} {x≡y} = P.elim (λ x≡y → _↔_.to subst≡↔subst≡ (dcong f (_↔_.from ≡↔≡ x≡y)) ≡ P.dcong f x≡y) (λ x → _↔_.to subst≡↔subst≡ (dcong f (_↔_.from ≡↔≡ P.refl)) ≡⟨⟩ _↔_.to ≡↔≡ (_↔_.to (≡⇒↝ _ $ cong (_≡ _) subst≡subst) $ dcong f (_↔_.from ≡↔≡ P.refl)) ≡⟨ cong (_↔_.to ≡↔≡) $ lemma x ⟩ _↔_.to ≡↔≡ (_↔_.from ≡↔≡ $ P.subst-refl B (f x)) ≡⟨ _↔_.right-inverse-of ≡↔≡ _ ⟩ P.subst-refl B (f x) ≡⟨ sym $ _↔_.from ≡↔≡ $ P.dcong-refl f ⟩∎ P.dcong f P.refl ∎) x≡y where lemma : ∀ _ → _ lemma _ = _↔_.to (≡⇒↝ _ $ cong (_≡ _) subst≡subst) (dcong f (_↔_.from ≡↔≡ P.refl)) ≡⟨ sym $ subst-in-terms-of-≡⇒↝ bijection _ _ _ ⟩ subst (_≡ _) subst≡subst (dcong f (_↔_.from ≡↔≡ P.refl)) ≡⟨ cong (λ p → subst (_≡ _) p $ dcong f _) $ sym $ sym-sym _ ⟩ subst (_≡ _) (sym $ sym subst≡subst) (dcong f (_↔_.from ≡↔≡ P.refl)) ≡⟨ subst-trans _ ⟩ trans (sym (subst≡subst {x≡y = P.refl})) (dcong f (_↔_.from ≡↔≡ P.refl)) ≡⟨ cong (λ p → trans (sym p) (dcong f (_↔_.from ≡↔≡ P.refl))) subst≡subst-refl ⟩ trans (sym $ trans (cong (λ eq → subst B eq _) from-≡↔≡-refl) (trans (subst-refl _ _) (sym $ _↔_.from ≡↔≡ $ P.subst-refl B _))) (dcong f (_↔_.from ≡↔≡ P.refl)) ≡⟨ elim₁ (λ {x} p → trans (sym $ trans (cong (λ eq → subst B eq _) p) (trans (subst-refl _ _) (sym $ _↔_.from ≡↔≡ $ P.subst-refl B _))) (dcong f x) ≡ trans (sym $ trans (cong (λ eq → subst B eq _) (refl _)) (trans (subst-refl _ _) (sym $ _↔_.from ≡↔≡ $ P.subst-refl B _))) (dcong f (refl _))) (refl _) from-≡↔≡-refl ⟩ trans (sym $ trans (cong (λ eq → subst B eq _) (refl _)) (trans (subst-refl _ _) (sym $ _↔_.from ≡↔≡ $ P.subst-refl B _))) (dcong f (refl _)) ≡⟨ cong₂ (λ p → trans $ sym $ trans p $ trans (subst-refl _ _) $ sym $ _↔_.from ≡↔≡ $ P.subst-refl B _) (cong-refl _) (dcong-refl _) ⟩ trans (sym $ trans (refl _) (trans (subst-refl _ _) (sym $ _↔_.from ≡↔≡ $ P.subst-refl B _))) (subst-refl B _) ≡⟨ cong (λ p → trans (sym p) (subst-refl _ _)) $ trans-reflˡ _ ⟩ trans (sym $ trans (subst-refl _ _) (sym $ _↔_.from ≡↔≡ $ P.subst-refl B _)) (subst-refl B _) ≡⟨ cong (λ p → trans p (subst-refl _ _)) $ sym-trans _ _ ⟩ trans (trans (sym $ sym $ _↔_.from ≡↔≡ $ P.subst-refl B _) (sym $ subst-refl _ _)) (subst-refl B _) ≡⟨ trans-[trans-sym]- _ _ ⟩ sym $ sym $ _↔_.from ≡↔≡ $ P.subst-refl B _ ≡⟨ sym-sym _ ⟩∎ _↔_.from ≡↔≡ $ P.subst-refl B _ ∎ -- A lemma relating dcong and hcong (for paths). dcong≡hcong : {x≡y : x P.≡ y} (f : (x : A) → B x) → dcong f (_↔_.from ≡↔≡ x≡y) ≡ _↔_.from subst≡↔[]≡ (P.hcong f x≡y) dcong≡hcong {x≡y = x≡y} f = dcong f (_↔_.from ≡↔≡ x≡y) ≡⟨ sym $ _↔_.from-to (inverse subst≡↔subst≡) dcong≡dcong ⟩ _↔_.from subst≡↔subst≡ (P.dcong f x≡y) ≡⟨ cong (_↔_.from subst≡↔subst≡) $ _↔_.from ≡↔≡ $ P.dcong≡hcong f ⟩ _↔_.from subst≡↔subst≡ (PB._↔_.to (P.heterogeneous↔homogeneous _) (P.hcong f x≡y)) ≡⟨⟩ _↔_.from subst≡↔[]≡ (P.hcong f x≡y) ∎ -- Three corollaries, intended to be used in the implementation of -- eliminators for HITs. For some examples, see Interval and -- Quotient.HIT. subst≡→[]≡ : {eq : x P.≡ y} → subst B (_↔_.from ≡↔≡ eq) u ≡ v → P.[ (λ i → B (eq i)) ] u ≡ v subst≡→[]≡ = _↔_.to subst≡↔[]≡ dcong-subst≡→[]≡ : {eq₁ : x P.≡ y} {eq₂ : subst B (_↔_.from ≡↔≡ eq₁) (f x) ≡ f y} → P.hcong f eq₁ ≡ subst≡→[]≡ eq₂ → dcong f (_↔_.from ≡↔≡ eq₁) ≡ eq₂ dcong-subst≡→[]≡ {B = B} {f = f} {eq₁} {eq₂} hyp = dcong f (_↔_.from ≡↔≡ eq₁) ≡⟨ dcong≡hcong f ⟩ _↔_.from subst≡↔[]≡ (P.hcong f eq₁) ≡⟨ cong (_↔_.from subst≡↔[]≡) hyp ⟩ _↔_.from subst≡↔[]≡ (_↔_.to subst≡↔[]≡ eq₂) ≡⟨ _↔_.left-inverse-of subst≡↔[]≡ _ ⟩∎ eq₂ ∎ cong-≡↔≡ : {eq₁ : x P.≡ y} {eq₂ : f x ≡ f y} → P.cong f eq₁ ≡ _↔_.to ≡↔≡ eq₂ → cong f (_↔_.from ≡↔≡ eq₁) ≡ eq₂ cong-≡↔≡ {f = f} {eq₁ = eq₁} {eq₂} hyp = cong f (_↔_.from ≡↔≡ eq₁) ≡⟨ cong≡cong ⟩ _↔_.from ≡↔≡ $ P.cong f eq₁ ≡⟨ cong (_↔_.from ≡↔≡) hyp ⟩ _↔_.from ≡↔≡ $ _↔_.to ≡↔≡ eq₂ ≡⟨ _↔_.left-inverse-of ≡↔≡ _ ⟩∎ eq₂ ∎ ------------------------------------------------------------------------ -- Univalence -- CP.Univalence′ is pointwise equivalent to PCP.Univalence′. Univalence′-CP≃Univalence′-CP : {A B : Type ℓ} → CP.Univalence′ A B ≃ PCP.Univalence′ A B Univalence′-CP≃Univalence′-CP {A = A} {B = B} = ((A≃B : A CP.≃ B) → ∃ λ (x : ∃ λ A≡B → CP.≡⇒≃ A≡B ≡ A≃B) → ∀ y → x ≡ y) ↔⟨⟩ ((A≃B : ∃ λ (f : A → B) → CP.Is-equivalence f) → ∃ λ (x : ∃ λ A≡B → CP.≡⇒≃ A≡B ≡ A≃B) → ∀ y → x ≡ y) ↝⟨ (Π-cong ext (∃-cong λ _ → Is-equivalence-CP↔Is-equivalence-CP) λ A≃B → Σ-cong (lemma₁ A≃B) λ _ → Π-cong ext (lemma₁ A≃B) λ _ → inverse $ Eq.≃-≡ (lemma₁ A≃B)) ⟩ ((A≃B : ∃ λ (f : A → B) → PCP.Is-equivalence f) → ∃ λ (x : ∃ λ A≡B → PCP.≡⇒≃ A≡B ≡ A≃B) → ∀ y → x ≡ y) ↔⟨⟩ ((A≃B : A PCP.≃ B) → ∃ λ (x : ∃ λ A≡B → PCP.≡⇒≃ A≡B ≡ A≃B) → ∀ y → x ≡ y) ↔⟨ Is-equivalence-CP↔Is-equivalence-CP ⟩□ ((A≃B : A PCP.≃ B) → ∃ λ (x : ∃ λ A≡B → PCP.≡⇒≃ A≡B P.≡ A≃B) → ∀ y → x P.≡ y) □ where lemma₃ : (A≡B : A ≡ B) → _↔_.to ≃-CP↔≃-CP (CP.≡⇒≃ A≡B) ≡ PCP.≡⇒≃ (_↔_.to ≡↔≡ A≡B) lemma₃ = elim¹ (λ A≡B → _↔_.to ≃-CP↔≃-CP (CP.≡⇒≃ A≡B) ≡ PCP.≡⇒≃ (_↔_.to ≡↔≡ A≡B)) (_↔_.to ≃-CP↔≃-CP (CP.≡⇒≃ (refl _)) ≡⟨ cong (_↔_.to ≃-CP↔≃-CP) CP.≡⇒≃-refl ⟩ _↔_.to ≃-CP↔≃-CP CP.id ≡⟨ _↔_.from ≡↔≡ $ P.Σ-≡,≡→≡ P.refl (PCP.propositional P.ext _ _ _) ⟩ PCP.id ≡⟨ sym $ _↔_.from ≡↔≡ PCP.≡⇒≃-refl ⟩ PCP.≡⇒≃ P.refl ≡⟨ sym $ cong PCP.≡⇒≃ to-≡↔≡-refl ⟩∎ PCP.≡⇒≃ (_↔_.to ≡↔≡ (refl _)) ∎) lemma₂ : ∀ _ _ → _ ≃ _ lemma₂ A≡B (f , f-eq) = CP.≡⇒≃ A≡B ≡ (f , f-eq) ↝⟨ inverse $ Eq.≃-≡ (Eq.↔⇒≃ ≃-CP↔≃-CP) ⟩ _↔_.to ≃-CP↔≃-CP (CP.≡⇒≃ A≡B) ≡ (f , _↔_.to Is-equivalence-CP↔Is-equivalence-CP f-eq) ↝⟨ ≡⇒≃ $ cong (_≡ (f , _↔_.to Is-equivalence-CP↔Is-equivalence-CP f-eq)) $ lemma₃ A≡B ⟩□ PCP.≡⇒≃ (_↔_.to ≡↔≡ A≡B) ≡ (f , _↔_.to Is-equivalence-CP↔Is-equivalence-CP f-eq) □ lemma₁ : ∀ A≃B → (∃ λ A≡B → CP.≡⇒≃ A≡B ≡ A≃B) ≃ (∃ λ A≡B → PCP.≡⇒≃ A≡B ≡ ( proj₁ A≃B , _↔_.to Is-equivalence-CP↔Is-equivalence-CP (proj₂ A≃B) )) lemma₁ A≃B = Σ-cong ≡↔≡ λ A≡B → lemma₂ A≡B A≃B -- Univalence′ expressed using equality is equivalent to Univalence′ -- expressed using paths. Univalence′≃Univalence′ : {A B : Type ℓ} → Univalence′ A B ≃ PU.Univalence′ A B Univalence′≃Univalence′ {A = A} {B = B} = Univalence′ A B ↝⟨ Univalence′≃Univalence′-CP ext ⟩ CP.Univalence′ A B ↝⟨ Univalence′-CP≃Univalence′-CP ⟩ PCP.Univalence′ A B ↝⟨ inverse $ _↔_.from ≃↔≃ $ PU.Univalence′≃Univalence′-CP P.ext ⟩□ PU.Univalence′ A B □ -- Univalence expressed using equality is equivalent to univalence -- expressed using paths. Univalence≃Univalence : Univalence ℓ ≃ PU.Univalence ℓ Univalence≃Univalence {ℓ = ℓ} = ({A B : Type ℓ} → Univalence′ A B) ↝⟨ implicit-∀-cong ext $ implicit-∀-cong ext Univalence′≃Univalence′ ⟩□ ({A B : Type ℓ} → PU.Univalence′ A B) □
40.54717
134
0.436017
59d78ae566f6729bf42bc757d228d7bbe5971418
356
agda
Agda
test/Succeed/Issue1115.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1115.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1115.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K #-} open import Agda.Builtin.Nat open import Agda.Builtin.Equality data Fin : Nat → Set where zero : {n : Nat} → Fin (suc n) suc : {n : Nat} (i : Fin n) → Fin (suc n) -- From Data.Fin.Properties in the standard library (2016-12-30). suc-injective : ∀ {o} {m n : Fin o} → Fin.suc m ≡ suc n → m ≡ n suc-injective refl = refl
25.428571
65
0.620787
066aeba8e3817ad1165f521418254bb3ccbfc2c9
9,937
agda
Agda
src/Delay-monad/Bisimilarity/Observation.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
src/Delay-monad/Bisimilarity/Observation.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
src/Delay-monad/Bisimilarity/Observation.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- An observation about weak bisimilarity ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Delay-monad.Bisimilarity.Observation where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude open import Prelude.Size open import Function-universe equality-with-J as F hiding (_∘_) open import H-level.Closure equality-with-J ------------------------------------------------------------------------ -- The D type mutual -- A mixed inductive-coinductive type. data D (i : Size) : Type where -- Output a boolean and continue. Note that this constructor is -- inductive. put : Bool → D i → D i -- Wait. The intention is that finite delay should not be -- "observable" (as captured by weak bisimilarity). later : D′ i → D i record D′ (i : Size) : Type where coinductive field force : {j : Size< i} → D j open D′ public private variable b b′ : Bool n : ℕ i : Size x y z : D ∞ x′ y′ : D′ ∞ -- Making put inductive is a bit strange, because one can construct a -- coinductive variant of it by using later. put′ : Bool → D′ i → D i put′ b x = later λ { .force → put b (x .force) } ------------------------------------------------------------------------ -- Weak bisimilarity -- The output relation: x [ n ]≡ b means that x can output at least n -- times, and the n-th output is b. data _[_]≡_ : D ∞ → ℕ → Bool → Type where put-zero : put b x [ zero ]≡ b put-suc : x [ n ]≡ b → put b′ x [ suc n ]≡ b later : x′ .force [ n ]≡ b → later x′ [ n ]≡ b -- The output relation is propositional. []≡-propositional : Is-proposition (x [ n ]≡ b) []≡-propositional {b = true} put-zero put-zero = refl []≡-propositional {b = false} put-zero put-zero = refl []≡-propositional (put-suc p) (put-suc q) = cong put-suc ([]≡-propositional p q) []≡-propositional (later p) (later q) = cong later ([]≡-propositional p q) -- Weak bisimilarity. Two computations are weakly bisimilar if the -- output relation cannot distinguish between them. _≈_ : D ∞ → D ∞ → Type x ≈ y = ∀ {n b} → x [ n ]≡ b ⇔ y [ n ]≡ b -- Weak bisimilarity is propositional (assuming extensionality). ≈-propositional : Extensionality lzero lzero → Is-proposition (x ≈ y) ≈-propositional ext = implicit-Π-closure ext 1 λ _ → implicit-Π-closure ext 1 λ _ → ⇔-closure ext 1 []≡-propositional []≡-propositional -- The put constructor and the function put′ are closely related. put≈put′ : put b (x′ .force) ≈ put′ b x′ put≈put′ ._⇔_.to q = later q put≈put′ ._⇔_.from (later q) = q -- Weak bisimilarity is an equivalence relation. reflexive-≈ : x ≈ x reflexive-≈ = F.id symmetric-≈ : x ≈ y → y ≈ x symmetric-≈ x≈y = F.inverse x≈y transitive-≈ : x ≈ y → y ≈ z → x ≈ z transitive-≈ x≈y y≈z = y≈z F.∘ x≈y -- The later constructor can be removed to the left and to the right. laterˡ⁻¹ : later x′ ≈ y → x′ .force ≈ y laterˡ⁻¹ p ._⇔_.to q = _⇔_.to p (later q) laterˡ⁻¹ p ._⇔_.from q with _⇔_.from p q … | later q′ = q′ laterʳ⁻¹ : x ≈ later y′ → x ≈ y′ .force laterʳ⁻¹ = symmetric-≈ ∘ laterˡ⁻¹ ∘ symmetric-≈ later⁻¹ : later x′ ≈ later y′ → x′ .force ≈ y′ .force later⁻¹ = laterˡ⁻¹ ∘ laterʳ⁻¹ -- The put constructor can be removed if it is removed on both sides -- at the same time. put⁻¹ : put b x ≈ put b′ y → x ≈ y put⁻¹ p ._⇔_.to q with _⇔_.to p (put-suc q) … | put-suc q′ = q′ put⁻¹ p ._⇔_.from q with _⇔_.from p (put-suc q) … | put-suc q′ = q′ ------------------------------------------------------------------------ -- Not weak bisimilarity module Not-weak-bisimilarity where mutual infix 4 [_]_≈_ [_]_≈′_ -- After having seen the definition of weak bisimilarity in -- Delay-monad.Bisimilarity one might believe that weak -- bisimilarity for D can be defined in the following way: data [_]_≈_ (i : Size) : D ∞ → D ∞ → Type where put : [ i ] x ≈ y → [ i ] put b x ≈ put b y later : [ i ] x′ .force ≈′ y′ .force → [ i ] later x′ ≈ later y′ laterˡ : [ i ] x′ .force ≈ y → [ i ] later x′ ≈ y laterʳ : [ i ] x ≈ y′ .force → [ i ] x ≈ later y′ record [_]_≈′_ (i : Size) (x y : D ∞) : Type where coinductive field force : {j : Size< i} → [ j ] x ≈ y open [_]_≈′_ public -- The relation [ i ]_≈_ is reflexive and symmetric. reflexive-[]≈ : [ i ] x ≈ x reflexive-[]≈ {x = put _ _} = put reflexive-[]≈ reflexive-[]≈ {x = later _} = later λ { .force → reflexive-[]≈ } symmetric-[]≈ : [ i ] x ≈ y → [ i ] y ≈ x symmetric-[]≈ (put p) = put (symmetric-[]≈ p) symmetric-[]≈ (later p) = later λ { .force → symmetric-[]≈ (p .force) } symmetric-[]≈ (laterˡ p) = laterʳ (symmetric-[]≈ p) symmetric-[]≈ (laterʳ p) = laterˡ (symmetric-[]≈ p) -- However, the relation [ ∞ ]_≈_ is not transitive. ¬-transitive-≈ : ¬ (∀ {x y z} → [ ∞ ] x ≈ y → [ ∞ ] y ≈ z → [ ∞ ] x ≈ z) ¬-transitive-≈ trans = x≉z x≈z where x̲ : D i x̲ = later λ { .force → put true (put true x̲) } y̲ : D i y̲ = later λ { .force → put true y̲ } z̲ : D i z̲ = put true (later λ { .force → put true z̲ }) x≈y : [ i ] x̲ ≈ y̲ x≈y = later λ { .force → put (laterʳ (put x≈y)) } y≈z : [ i ] y̲ ≈ z̲ y≈z = laterˡ (put (later λ { .force → put y≈z })) x≉z : ¬ [ ∞ ] x̲ ≈ z̲ x≉z (laterˡ (put (laterʳ (put p)))) = x≉z p x≈z : [ ∞ ] x̲ ≈ z̲ x≈z = trans x≈y y≈z -- Thus the two relations _≈_ and [ ∞ ]_≈_ are not pointwise -- logically equivalent. ¬≈⇔[]≈ : ¬ (∀ {x y} → x ≈ y ⇔ [ ∞ ] x ≈ y) ¬≈⇔[]≈ = (∀ {x y} → x ≈ y ⇔ [ ∞ ] x ≈ y) ↝⟨ (λ hyp x≈y y≈z → _⇔_.to hyp (transitive-≈ (_⇔_.from hyp x≈y) (_⇔_.from hyp y≈z))) ⟩ (∀ {x y z} → [ ∞ ] x ≈ y → [ ∞ ] y ≈ z → [ ∞ ] x ≈ z) ↝⟨ ¬-transitive-≈ ⟩□ ⊥ □ -- The relation [ ∞ ]_≈_ is contained in _≈_. []≈→≈ : [ ∞ ] x ≈ y → x ≈ y []≈→≈ = λ p → record { to = ≈→→ p; from = ≈→→ (symmetric-[]≈ p) } where ≈→→ : [ ∞ ] x ≈ y → x [ n ]≡ b → y [ n ]≡ b ≈→→ (put p) put-zero = put-zero ≈→→ (put p) (put-suc q) = put-suc (≈→→ p q) ≈→→ (later p) (later q) = later (≈→→ (p .force) q) ≈→→ (laterˡ p) (later q) = ≈→→ p q ≈→→ (laterʳ p) q = later (≈→→ p q) -- The relation _≈_ is not contained in [ ∞ ]_≈_. ¬≈→[]≈ : ¬ (∀ {x y} → x ≈ y → [ ∞ ] x ≈ y) ¬≈→[]≈ = (∀ {x y} → x ≈ y → [ ∞ ] x ≈ y) ↝⟨ (λ hyp → record { to = hyp; from = []≈→≈ }) ⟩ (∀ {x y} → x ≈ y ⇔ [ ∞ ] x ≈ y) ↝⟨ ¬≈⇔[]≈ ⟩□ ⊥ □ ------------------------------------------------------------------------ -- An alternative definition of weak bisimilarity mutual infix 4 [_]_≈_ [_]_≈′_ -- The problem with Not-weak-bisimilarity.[_]_≈_ is that its put -- constructor is inductive. The put constructor of D is inductive, -- but as noted above (put′, put≈put′) this is a bit strange, and it -- might make more sense to make put coinductive. -- -- The following definition of weak bisimilarity uses a coinductive -- put constructor. data [_]_≈_ (i : Size) : D ∞ → D ∞ → Type where put : [ i ] x ≈′ y → [ i ] put b x ≈ put b y later : [ i ] x′ .force ≈′ y′ .force → [ i ] later x′ ≈ later y′ laterˡ : [ i ] x′ .force ≈ y → [ i ] later x′ ≈ y laterʳ : [ i ] x ≈ y′ .force → [ i ] x ≈ later y′ record [_]_≈′_ (i : Size) (x y : D ∞) : Type where coinductive field force : {j : Size< i} → [ j ] x ≈ y open [_]_≈′_ public -- The relation [ ∞ ]_≈_ is not propositional. ¬-≈[]-propositional : ¬ (∀ {x y} → Is-proposition ([ ∞ ] x ≈ y)) ¬-≈[]-propositional = (∀ {x y} → Is-proposition ([ ∞ ] x ≈ y)) ↝⟨ (λ prop → prop _ _) ⟩ proof₁ ≡ proof₂ ↝⟨ (λ ()) ⟩□ ⊥ □ where never : D i never = later λ { .force → never } proof₁ : ∀ {i} → [ i ] never ≈ never proof₁ = later λ { .force → proof₁ } proof₂ : ∀ {i} → [ i ] never ≈ never proof₂ = laterˡ proof₁ -- The relation [ i ]_≈_ is reflexive and symmetric. reflexive-[]≈ : [ i ] x ≈ x reflexive-[]≈ {x = put _ _} = put λ { .force → reflexive-[]≈ } reflexive-[]≈ {x = later _} = later λ { .force → reflexive-[]≈ } symmetric-[]≈ : [ i ] x ≈ y → [ i ] y ≈ x symmetric-[]≈ (put p) = put λ { .force → symmetric-[]≈ (p .force) } symmetric-[]≈ (later p) = later λ { .force → symmetric-[]≈ (p .force) } symmetric-[]≈ (laterˡ p) = laterʳ (symmetric-[]≈ p) symmetric-[]≈ (laterʳ p) = laterˡ (symmetric-[]≈ p) -- The two relations _≈_ and [ ∞ ]_≈_ are pointwise logically -- equivalent. ≈⇔[]≈ : x ≈ y ⇔ [ ∞ ] x ≈ y ≈⇔[]≈ = record { to = to _ _ ; from = λ p → record { to = from p; from = from (symmetric-[]≈ p) } } where from : [ ∞ ] x ≈ y → x [ n ]≡ b → y [ n ]≡ b from (put p) put-zero = put-zero from (put p) (put-suc q) = put-suc (from (p .force) q) from (later p) (later q) = later (from (p .force) q) from (laterˡ p) (later q) = from p q from (laterʳ p) q = later (from p q) mutual to : ∀ x y → x ≈ y → [ i ] x ≈ y to (put b x) y p = symmetric-[]≈ (to′ (symmetric-≈ p) (_⇔_.to p put-zero)) to x (put b y) p = to′ p (_⇔_.from p put-zero) to (later x) (later y) p = later λ { .force → to _ _ (later⁻¹ p) } to′ : x ≈ put b y → x [ zero ]≡ b → [ i ] x ≈ put b y to′ p put-zero = put λ { .force → to _ _ (put⁻¹ p) } to′ p (later q) = laterˡ (to′ (laterˡ⁻¹ p) q) -- The relation [ ∞ ]_≈_ is transitive. transitive-[]≈ : [ ∞ ] x ≈ y → [ ∞ ] y ≈ z → [ ∞ ] x ≈ z transitive-[]≈ p q = _⇔_.to ≈⇔[]≈ (transitive-≈ (_⇔_.from ≈⇔[]≈ p) (_⇔_.from ≈⇔[]≈ q))
31.546032
145
0.491597
2f60c8d7bf72d8198da23f31ef4345d378570c29
83
agda
Agda
Ferros/Resource/CNode.agda
auxoncorp/ferros-spec
8759d36ac9ec24c53f226a60fa3811eb1d4e5d93
[ "Apache-2.0" ]
3
2021-09-11T01:06:56.000Z
2022-01-27T23:18:55.000Z
Ferros/Resource/CNode.agda
auxoncorp/ferros-spec
8759d36ac9ec24c53f226a60fa3811eb1d4e5d93
[ "Apache-2.0" ]
null
null
null
Ferros/Resource/CNode.agda
auxoncorp/ferros-spec
8759d36ac9ec24c53f226a60fa3811eb1d4e5d93
[ "Apache-2.0" ]
null
null
null
module Ferros.Resource.CNode where open import Ferros.Resource.CNode.Base public
20.75
46
0.831325
0ee3ca34c200c76c1853cf00370049847677d4db
38,948
agda
Agda
agda/Text/Greek/SBLGNT/2Thess.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
44
2015-05-29T14:48:51.000Z
2022-03-06T15:41:57.000Z
agda/Text/Greek/SBLGNT/2Thess.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
13
2015-05-28T20:04:08.000Z
2020-09-07T11:58:38.000Z
agda/Text/Greek/SBLGNT/2Thess.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
5
2015-02-27T22:34:13.000Z
2017-06-11T11:25:09.000Z
module Text.Greek.SBLGNT.2Thess where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΠΡΟΣ-ΘΕΣΣΑΛΟΝΙΚΕΙΣ-Β : List (Word) ΠΡΟΣ-ΘΕΣΣΑΛΟΝΙΚΕΙΣ-Β = word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Thess.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.1" ∷ word (Σ ∷ ι ∷ ∙λ ∷ ο ∷ υ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "2Thess.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.1" ∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ς ∷ []) "2Thess.1.1" ∷ word (τ ∷ ῇ ∷ []) "2Thess.1.1" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "2Thess.1.1" ∷ word (Θ ∷ ε ∷ σ ∷ σ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ ι ∷ κ ∷ έ ∷ ω ∷ ν ∷ []) "2Thess.1.1" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.1" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Thess.1.1" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "2Thess.1.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "2Thess.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Thess.1.1" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Thess.1.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.2" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "2Thess.1.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.1.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.1.2" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Thess.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.1.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.1.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.2" ∷ word (Ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Thess.1.3" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.1.3" ∷ word (τ ∷ ῷ ∷ []) "2Thess.1.3" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Thess.1.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "2Thess.1.3" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Thess.1.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.3" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Thess.1.3" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Thess.1.3" ∷ word (ἄ ∷ ξ ∷ ι ∷ ό ∷ ν ∷ []) "2Thess.1.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Thess.1.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.1.3" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ α ∷ υ ∷ ξ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "2Thess.1.3" ∷ word (ἡ ∷ []) "2Thess.1.3" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "2Thess.1.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.3" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "2Thess.1.3" ∷ word (ἡ ∷ []) "2Thess.1.3" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "2Thess.1.3" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "2Thess.1.3" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "2Thess.1.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Thess.1.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.1.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "2Thess.1.3" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "2Thess.1.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.4" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.1.4" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ υ ∷ χ ∷ ᾶ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.1.4" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.4" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Thess.1.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.1.4" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Thess.1.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῆ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.4" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "2Thess.1.4" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.4" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.4" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.4" ∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.4" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Thess.1.4" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.4" ∷ word (α ∷ ἷ ∷ ς ∷ []) "2Thess.1.4" ∷ word (ἀ ∷ ν ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Thess.1.4" ∷ word (ἔ ∷ ν ∷ δ ∷ ε ∷ ι ∷ γ ∷ μ ∷ α ∷ []) "2Thess.1.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.1.5" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "2Thess.1.5" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Thess.1.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.1.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.1.5" ∷ word (τ ∷ ὸ ∷ []) "2Thess.1.5" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ξ ∷ ι ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.1.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.1.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.1.5" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Thess.1.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.1.5" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Thess.1.5" ∷ word (ἧ ∷ ς ∷ []) "2Thess.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.5" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "2Thess.1.5" ∷ word (ε ∷ ἴ ∷ π ∷ ε ∷ ρ ∷ []) "2Thess.1.6" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "2Thess.1.6" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "2Thess.1.6" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Thess.1.6" ∷ word (ἀ ∷ ν ∷ τ ∷ α ∷ π ∷ ο ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.1.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.6" ∷ word (θ ∷ ∙λ ∷ ί ∷ β ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.1.6" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "2Thess.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.1.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.7" ∷ word (θ ∷ ∙λ ∷ ι ∷ β ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Thess.1.7" ∷ word (ἄ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.7" ∷ word (μ ∷ ε ∷ θ ∷ []) "2Thess.1.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.7" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.7" ∷ word (τ ∷ ῇ ∷ []) "2Thess.1.7" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ ψ ∷ ε ∷ ι ∷ []) "2Thess.1.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.7" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.1.7" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.1.7" ∷ word (ἀ ∷ π ∷ []) "2Thess.1.7" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "2Thess.1.7" ∷ word (μ ∷ ε ∷ τ ∷ []) "2Thess.1.7" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "2Thess.1.7" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "2Thess.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.7" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.8" ∷ word (φ ∷ ∙λ ∷ ο ∷ γ ∷ ὶ ∷ []) "2Thess.1.8" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "2Thess.1.8" ∷ word (δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Thess.1.8" ∷ word (ἐ ∷ κ ∷ δ ∷ ί ∷ κ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.8" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.8" ∷ word (μ ∷ ὴ ∷ []) "2Thess.1.8" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ σ ∷ ι ∷ []) "2Thess.1.8" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "2Thess.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.8" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.8" ∷ word (μ ∷ ὴ ∷ []) "2Thess.1.8" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.8" ∷ word (τ ∷ ῷ ∷ []) "2Thess.1.8" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "2Thess.1.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.1.8" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.1.8" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "2Thess.1.9" ∷ word (δ ∷ ί ∷ κ ∷ η ∷ ν ∷ []) "2Thess.1.9" ∷ word (τ ∷ ί ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.9" ∷ word (ὄ ∷ ∙λ ∷ ε ∷ θ ∷ ρ ∷ ο ∷ ν ∷ []) "2Thess.1.9" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "2Thess.1.9" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.1.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "2Thess.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.9" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.9" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.1.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.1.9" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "2Thess.1.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.1.9" ∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ς ∷ []) "2Thess.1.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.9" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "2Thess.1.10" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ ν ∷ δ ∷ ο ∷ ξ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.10" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "2Thess.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.10" ∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.10" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.1.10" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.1.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ θ ∷ η ∷ []) "2Thess.1.10" ∷ word (τ ∷ ὸ ∷ []) "2Thess.1.10" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "2Thess.1.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ φ ∷ []) "2Thess.1.10" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.10" ∷ word (τ ∷ ῇ ∷ []) "2Thess.1.10" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "2Thess.1.10" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "2Thess.1.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.1.11" ∷ word (ὃ ∷ []) "2Thess.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Thess.1.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "2Thess.1.11" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Thess.1.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.1.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.1.11" ∷ word (ἀ ∷ ξ ∷ ι ∷ ώ ∷ σ ∷ ῃ ∷ []) "2Thess.1.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.1.11" ∷ word (κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Thess.1.11" ∷ word (ὁ ∷ []) "2Thess.1.11" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Thess.1.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.11" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ σ ∷ ῃ ∷ []) "2Thess.1.11" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "2Thess.1.11" ∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "2Thess.1.11" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ω ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "2Thess.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.11" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "2Thess.1.11" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "2Thess.1.11" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.11" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "2Thess.1.11" ∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "2Thess.1.12" ∷ word (ἐ ∷ ν ∷ δ ∷ ο ∷ ξ ∷ α ∷ σ ∷ θ ∷ ῇ ∷ []) "2Thess.1.12" ∷ word (τ ∷ ὸ ∷ []) "2Thess.1.12" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "2Thess.1.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.12" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.1.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.12" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.1.12" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.12" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.12" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Thess.1.12" ∷ word (ἐ ∷ ν ∷ []) "2Thess.1.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Thess.1.12" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Thess.1.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Thess.1.12" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "2Thess.1.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.1.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.1.12" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.1.12" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.1.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.1.12" ∷ word (Ἐ ∷ ρ ∷ ω ∷ τ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.2.1" ∷ word (δ ∷ ὲ ∷ []) "2Thess.2.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Thess.2.1" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "2Thess.2.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.2.1" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.2.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.2.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.1" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῆ ∷ ς ∷ []) "2Thess.2.1" ∷ word (ἐ ∷ π ∷ []) "2Thess.2.1" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "2Thess.2.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.2" ∷ word (τ ∷ ὸ ∷ []) "2Thess.2.2" ∷ word (μ ∷ ὴ ∷ []) "2Thess.2.2" ∷ word (τ ∷ α ∷ χ ∷ έ ∷ ω ∷ ς ∷ []) "2Thess.2.2" ∷ word (σ ∷ α ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.2.2" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.2.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.2" ∷ word (ν ∷ ο ∷ ὸ ∷ ς ∷ []) "2Thess.2.2" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "2Thess.2.2" ∷ word (θ ∷ ρ ∷ ο ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.2.2" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "2Thess.2.2" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.2.2" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Thess.2.2" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "2Thess.2.2" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.2.2" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "2Thess.2.2" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "2Thess.2.2" ∷ word (δ ∷ ι ∷ []) "2Thess.2.2" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "2Thess.2.2" ∷ word (ὡ ∷ ς ∷ []) "2Thess.2.2" ∷ word (δ ∷ ι ∷ []) "2Thess.2.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.2" ∷ word (ὡ ∷ ς ∷ []) "2Thess.2.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.2.2" ∷ word (ἐ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "2Thess.2.2" ∷ word (ἡ ∷ []) "2Thess.2.2" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "2Thess.2.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.2.2" ∷ word (μ ∷ ή ∷ []) "2Thess.2.3" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Thess.2.3" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.3" ∷ word (ἐ ∷ ξ ∷ α ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ []) "2Thess.2.3" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Thess.2.3" ∷ word (μ ∷ η ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "2Thess.2.3" ∷ word (τ ∷ ρ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "2Thess.2.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.2.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "2Thess.2.3" ∷ word (μ ∷ ὴ ∷ []) "2Thess.2.3" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "2Thess.2.3" ∷ word (ἡ ∷ []) "2Thess.2.3" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ α ∷ σ ∷ ί ∷ α ∷ []) "2Thess.2.3" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "2Thess.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.3" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ φ ∷ θ ∷ ῇ ∷ []) "2Thess.2.3" ∷ word (ὁ ∷ []) "2Thess.2.3" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "2Thess.2.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.2.3" ∷ word (ἀ ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.3" ∷ word (ὁ ∷ []) "2Thess.2.3" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "2Thess.2.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.2.3" ∷ word (ἀ ∷ π ∷ ω ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.3" ∷ word (ὁ ∷ []) "2Thess.2.4" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ κ ∷ ε ∷ ί ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Thess.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.4" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ α ∷ ι ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Thess.2.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Thess.2.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "2Thess.2.4" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "2Thess.2.4" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "2Thess.2.4" ∷ word (ἢ ∷ []) "2Thess.2.4" ∷ word (σ ∷ έ ∷ β ∷ α ∷ σ ∷ μ ∷ α ∷ []) "2Thess.2.4" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "2Thess.2.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Thess.2.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Thess.2.4" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "2Thess.2.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.2.4" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "2Thess.2.4" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ε ∷ ι ∷ κ ∷ ν ∷ ύ ∷ ν ∷ τ ∷ α ∷ []) "2Thess.2.4" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Thess.2.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.2.4" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Thess.2.4" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "2Thess.2.4" ∷ word (ο ∷ ὐ ∷ []) "2Thess.2.5" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "2Thess.2.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.2.5" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "2Thess.2.5" ∷ word (ὢ ∷ ν ∷ []) "2Thess.2.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Thess.2.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.5" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "2Thess.2.5" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "2Thess.2.5" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.6" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "2Thess.2.6" ∷ word (τ ∷ ὸ ∷ []) "2Thess.2.6" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ο ∷ ν ∷ []) "2Thess.2.6" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "2Thess.2.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.6" ∷ word (τ ∷ ὸ ∷ []) "2Thess.2.6" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ φ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.2.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Thess.2.6" ∷ word (ἐ ∷ ν ∷ []) "2Thess.2.6" ∷ word (τ ∷ ῷ ∷ []) "2Thess.2.6" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.6" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "2Thess.2.6" ∷ word (τ ∷ ὸ ∷ []) "2Thess.2.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Thess.2.7" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "2Thess.2.7" ∷ word (ἤ ∷ δ ∷ η ∷ []) "2Thess.2.7" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "2Thess.2.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.2.7" ∷ word (ἀ ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.7" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "2Thess.2.7" ∷ word (ὁ ∷ []) "2Thess.2.7" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ω ∷ ν ∷ []) "2Thess.2.7" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "2Thess.2.7" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "2Thess.2.7" ∷ word (ἐ ∷ κ ∷ []) "2Thess.2.7" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ υ ∷ []) "2Thess.2.7" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Thess.2.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.8" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "2Thess.2.8" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ φ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Thess.2.8" ∷ word (ὁ ∷ []) "2Thess.2.8" ∷ word (ἄ ∷ ν ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "2Thess.2.8" ∷ word (ὃ ∷ ν ∷ []) "2Thess.2.8" ∷ word (ὁ ∷ []) "2Thess.2.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Thess.2.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "2Thess.2.8" ∷ word (ἀ ∷ ν ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "2Thess.2.8" ∷ word (τ ∷ ῷ ∷ []) "2Thess.2.8" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Thess.2.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.8" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Thess.2.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Thess.2.8" ∷ word (τ ∷ ῇ ∷ []) "2Thess.2.8" ∷ word (ἐ ∷ π ∷ ι ∷ φ ∷ α ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Thess.2.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.2.8" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.8" ∷ word (ο ∷ ὗ ∷ []) "2Thess.2.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Thess.2.9" ∷ word (ἡ ∷ []) "2Thess.2.9" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "2Thess.2.9" ∷ word (κ ∷ α ∷ τ ∷ []) "2Thess.2.9" ∷ word (ἐ ∷ ν ∷ έ ∷ ρ ∷ γ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Thess.2.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.9" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "2Thess.2.9" ∷ word (ἐ ∷ ν ∷ []) "2Thess.2.9" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "2Thess.2.9" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "2Thess.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.9" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "2Thess.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.9" ∷ word (τ ∷ έ ∷ ρ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.2.9" ∷ word (ψ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ υ ∷ ς ∷ []) "2Thess.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.10" ∷ word (ἐ ∷ ν ∷ []) "2Thess.2.10" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "2Thess.2.10" ∷ word (ἀ ∷ π ∷ ά ∷ τ ∷ ῃ ∷ []) "2Thess.2.10" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.2.10" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Thess.2.10" ∷ word (ἀ ∷ ν ∷ θ ∷ []) "2Thess.2.10" ∷ word (ὧ ∷ ν ∷ []) "2Thess.2.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Thess.2.10" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "2Thess.2.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.2.10" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.10" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Thess.2.10" ∷ word (ἐ ∷ δ ∷ έ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "2Thess.2.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.10" ∷ word (τ ∷ ὸ ∷ []) "2Thess.2.10" ∷ word (σ ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.2.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "2Thess.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Thess.2.11" ∷ word (π ∷ έ ∷ μ ∷ π ∷ ε ∷ ι ∷ []) "2Thess.2.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.2.11" ∷ word (ὁ ∷ []) "2Thess.2.11" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Thess.2.11" ∷ word (ἐ ∷ ν ∷ έ ∷ ρ ∷ γ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Thess.2.11" ∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ η ∷ ς ∷ []) "2Thess.2.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.11" ∷ word (τ ∷ ὸ ∷ []) "2Thess.2.11" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "2Thess.2.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Thess.2.11" ∷ word (τ ∷ ῷ ∷ []) "2Thess.2.11" ∷ word (ψ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ ι ∷ []) "2Thess.2.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.2.12" ∷ word (κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.2.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Thess.2.12" ∷ word (ο ∷ ἱ ∷ []) "2Thess.2.12" ∷ word (μ ∷ ὴ ∷ []) "2Thess.2.12" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Thess.2.12" ∷ word (τ ∷ ῇ ∷ []) "2Thess.2.12" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Thess.2.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Thess.2.12" ∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Thess.2.12" ∷ word (τ ∷ ῇ ∷ []) "2Thess.2.12" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ ᾳ ∷ []) "2Thess.2.12" ∷ word (Ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Thess.2.13" ∷ word (δ ∷ ὲ ∷ []) "2Thess.2.13" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.2.13" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Thess.2.13" ∷ word (τ ∷ ῷ ∷ []) "2Thess.2.13" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Thess.2.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "2Thess.2.13" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Thess.2.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.13" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "2Thess.2.13" ∷ word (ἠ ∷ γ ∷ α ∷ π ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "2Thess.2.13" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Thess.2.13" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.2.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.2.13" ∷ word (ε ∷ ἵ ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "2Thess.2.13" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.13" ∷ word (ὁ ∷ []) "2Thess.2.13" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Thess.2.13" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ ν ∷ []) "2Thess.2.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.13" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "2Thess.2.13" ∷ word (ἐ ∷ ν ∷ []) "2Thess.2.13" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ ῷ ∷ []) "2Thess.2.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Thess.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "2Thess.2.13" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.14" ∷ word (ὃ ∷ []) "2Thess.2.14" ∷ word (ἐ ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "2Thess.2.14" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.14" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.2.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.2.14" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.2.14" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "2Thess.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.14" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.2.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.2.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.2.14" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "2Thess.2.15" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Thess.2.15" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Thess.2.15" ∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "2Thess.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.15" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "2Thess.2.15" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Thess.2.15" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ό ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "2Thess.2.15" ∷ word (ἃ ∷ ς ∷ []) "2Thess.2.15" ∷ word (ἐ ∷ δ ∷ ι ∷ δ ∷ ά ∷ χ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "2Thess.2.15" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Thess.2.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.2.15" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "2Thess.2.15" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "2Thess.2.15" ∷ word (δ ∷ ι ∷ []) "2Thess.2.15" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "2Thess.2.15" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.15" ∷ word (Α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.2.16" ∷ word (δ ∷ ὲ ∷ []) "2Thess.2.16" ∷ word (ὁ ∷ []) "2Thess.2.16" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Thess.2.16" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.16" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "2Thess.2.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.16" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Thess.2.16" ∷ word (ὁ ∷ []) "2Thess.2.16" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "2Thess.2.16" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.16" ∷ word (ὁ ∷ []) "2Thess.2.16" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "2Thess.2.16" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.16" ∷ word (δ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Thess.2.16" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.2.16" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "2Thess.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.16" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "2Thess.2.16" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὴ ∷ ν ∷ []) "2Thess.2.16" ∷ word (ἐ ∷ ν ∷ []) "2Thess.2.16" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "2Thess.2.16" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "2Thess.2.17" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.2.17" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Thess.2.17" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.17" ∷ word (σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ξ ∷ α ∷ ι ∷ []) "2Thess.2.17" ∷ word (ἐ ∷ ν ∷ []) "2Thess.2.17" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Thess.2.17" ∷ word (ἔ ∷ ρ ∷ γ ∷ ῳ ∷ []) "2Thess.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.2.17" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "2Thess.2.17" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῷ ∷ []) "2Thess.2.17" ∷ word (Τ ∷ ὸ ∷ []) "2Thess.3.1" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "2Thess.3.1" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Thess.3.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Thess.3.1" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Thess.3.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.3.1" ∷ word (ὁ ∷ []) "2Thess.3.1" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "2Thess.3.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.3.1" ∷ word (τ ∷ ρ ∷ έ ∷ χ ∷ ῃ ∷ []) "2Thess.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.1" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ ζ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Thess.3.1" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Thess.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Thess.3.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.3.2" ∷ word (ῥ ∷ υ ∷ σ ∷ θ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.3.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Thess.3.2" ∷ word (ἀ ∷ τ ∷ ό ∷ π ∷ ω ∷ ν ∷ []) "2Thess.3.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.2" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "2Thess.3.2" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "2Thess.3.2" ∷ word (ο ∷ ὐ ∷ []) "2Thess.3.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Thess.3.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Thess.3.2" ∷ word (ἡ ∷ []) "2Thess.3.2" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "2Thess.3.2" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.3.3" ∷ word (δ ∷ έ ∷ []) "2Thess.3.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Thess.3.3" ∷ word (ὁ ∷ []) "2Thess.3.3" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Thess.3.3" ∷ word (ὃ ∷ ς ∷ []) "2Thess.3.3" ∷ word (σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ξ ∷ ε ∷ ι ∷ []) "2Thess.3.3" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.3" ∷ word (φ ∷ υ ∷ ∙λ ∷ ά ∷ ξ ∷ ε ∷ ι ∷ []) "2Thess.3.3" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.3.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.3" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ []) "2Thess.3.3" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ί ∷ θ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.4" ∷ word (δ ∷ ὲ ∷ []) "2Thess.3.4" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.4" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "2Thess.3.4" ∷ word (ἐ ∷ φ ∷ []) "2Thess.3.4" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.3.4" ∷ word (ἃ ∷ []) "2Thess.3.4" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.4" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "2Thess.3.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.4" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "2Thess.3.4" ∷ word (ὁ ∷ []) "2Thess.3.5" ∷ word (δ ∷ ὲ ∷ []) "2Thess.3.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Thess.3.5" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ υ ∷ θ ∷ ύ ∷ ν ∷ α ∷ ι ∷ []) "2Thess.3.5" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.5" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Thess.3.5" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.3.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.3.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Thess.3.5" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "2Thess.3.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Thess.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.3.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Thess.3.5" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ ν ∷ []) "2Thess.3.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.5" ∷ word (Π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.6" ∷ word (δ ∷ ὲ ∷ []) "2Thess.3.6" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.3.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Thess.3.6" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.6" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Thess.3.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.6" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.3.6" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.3.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.6" ∷ word (σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.3.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.6" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Thess.3.6" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.3.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "2Thess.3.6" ∷ word (ἀ ∷ τ ∷ ά ∷ κ ∷ τ ∷ ω ∷ ς ∷ []) "2Thess.3.6" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Thess.3.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.6" ∷ word (μ ∷ ὴ ∷ []) "2Thess.3.6" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Thess.3.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Thess.3.6" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.3.6" ∷ word (ἣ ∷ ν ∷ []) "2Thess.3.6" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ά ∷ β ∷ ο ∷ σ ∷ α ∷ ν ∷ []) "2Thess.3.6" ∷ word (π ∷ α ∷ ρ ∷ []) "2Thess.3.6" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "2Thess.3.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Thess.3.7" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "2Thess.3.7" ∷ word (π ∷ ῶ ∷ ς ∷ []) "2Thess.3.7" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "2Thess.3.7" ∷ word (μ ∷ ι ∷ μ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.3.7" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.3.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Thess.3.7" ∷ word (ἠ ∷ τ ∷ α ∷ κ ∷ τ ∷ ή ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.7" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.3.7" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "2Thess.3.8" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ὰ ∷ ν ∷ []) "2Thess.3.8" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "2Thess.3.8" ∷ word (ἐ ∷ φ ∷ ά ∷ γ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.8" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ []) "2Thess.3.8" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "2Thess.3.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Thess.3.8" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.8" ∷ word (κ ∷ ό ∷ π ∷ ῳ ∷ []) "2Thess.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.8" ∷ word (μ ∷ ό ∷ χ ∷ θ ∷ ῳ ∷ []) "2Thess.3.8" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "2Thess.3.8" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Thess.3.8" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Thess.3.8" ∷ word (τ ∷ ὸ ∷ []) "2Thess.3.8" ∷ word (μ ∷ ὴ ∷ []) "2Thess.3.8" ∷ word (ἐ ∷ π ∷ ι ∷ β ∷ α ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ί ∷ []) "2Thess.3.8" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "2Thess.3.8" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.8" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "2Thess.3.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.3.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Thess.3.9" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.9" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "2Thess.3.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Thess.3.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.3.9" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Thess.3.9" ∷ word (τ ∷ ύ ∷ π ∷ ο ∷ ν ∷ []) "2Thess.3.9" ∷ word (δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.9" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.3.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Thess.3.9" ∷ word (τ ∷ ὸ ∷ []) "2Thess.3.9" ∷ word (μ ∷ ι ∷ μ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.3.9" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Thess.3.10" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "2Thess.3.10" ∷ word (ἦ ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.10" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Thess.3.10" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Thess.3.10" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Thess.3.10" ∷ word (π ∷ α ∷ ρ ∷ η ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.10" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.3.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Thess.3.10" ∷ word (ε ∷ ἴ ∷ []) "2Thess.3.10" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Thess.3.10" ∷ word (ο ∷ ὐ ∷ []) "2Thess.3.10" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "2Thess.3.10" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.3.10" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "2Thess.3.10" ∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ έ ∷ τ ∷ ω ∷ []) "2Thess.3.10" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.11" ∷ word (γ ∷ ά ∷ ρ ∷ []) "2Thess.3.11" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ ς ∷ []) "2Thess.3.11" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Thess.3.11" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.3.11" ∷ word (ἀ ∷ τ ∷ ά ∷ κ ∷ τ ∷ ω ∷ ς ∷ []) "2Thess.3.11" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "2Thess.3.11" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Thess.3.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Thess.3.11" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Thess.3.11" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Thess.3.12" ∷ word (δ ∷ ὲ ∷ []) "2Thess.3.12" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "2Thess.3.12" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.12" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Thess.3.12" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.12" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "2Thess.3.12" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.3.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Thess.3.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.3.12" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Thess.3.12" ∷ word (ἡ ∷ σ ∷ υ ∷ χ ∷ ί ∷ α ∷ ς ∷ []) "2Thess.3.12" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Thess.3.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Thess.3.12" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Thess.3.12" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "2Thess.3.12" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Thess.3.12" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Thess.3.13" ∷ word (δ ∷ έ ∷ []) "2Thess.3.13" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Thess.3.13" ∷ word (μ ∷ ὴ ∷ []) "2Thess.3.13" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ κ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "2Thess.3.13" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Thess.3.13" ∷ word (Ε ∷ ἰ ∷ []) "2Thess.3.14" ∷ word (δ ∷ έ ∷ []) "2Thess.3.14" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Thess.3.14" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "2Thess.3.14" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ []) "2Thess.3.14" ∷ word (τ ∷ ῷ ∷ []) "2Thess.3.14" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "2Thess.3.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.3.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.3.14" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "2Thess.3.14" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "2Thess.3.14" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ ε ∷ []) "2Thess.3.14" ∷ word (μ ∷ ὴ ∷ []) "2Thess.3.14" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ μ ∷ ί ∷ γ ∷ ν ∷ υ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Thess.3.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Thess.3.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Thess.3.14" ∷ word (ἐ ∷ ν ∷ τ ∷ ρ ∷ α ∷ π ∷ ῇ ∷ []) "2Thess.3.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Thess.3.15" ∷ word (μ ∷ ὴ ∷ []) "2Thess.3.15" ∷ word (ὡ ∷ ς ∷ []) "2Thess.3.15" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ὸ ∷ ν ∷ []) "2Thess.3.15" ∷ word (ἡ ∷ γ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "2Thess.3.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Thess.3.15" ∷ word (ν ∷ ο ∷ υ ∷ θ ∷ ε ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "2Thess.3.15" ∷ word (ὡ ∷ ς ∷ []) "2Thess.3.15" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ν ∷ []) "2Thess.3.15" ∷ word (Α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.3.16" ∷ word (δ ∷ ὲ ∷ []) "2Thess.3.16" ∷ word (ὁ ∷ []) "2Thess.3.16" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Thess.3.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Thess.3.16" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "2Thess.3.16" ∷ word (δ ∷ ῴ ∷ η ∷ []) "2Thess.3.16" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Thess.3.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Thess.3.16" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "2Thess.3.16" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Thess.3.16" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "2Thess.3.16" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.16" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "2Thess.3.16" ∷ word (τ ∷ ρ ∷ ό ∷ π ∷ ῳ ∷ []) "2Thess.3.16" ∷ word (ὁ ∷ []) "2Thess.3.16" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Thess.3.16" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Thess.3.16" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Thess.3.16" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.16" ∷ word (Ὁ ∷ []) "2Thess.3.17" ∷ word (ἀ ∷ σ ∷ π ∷ α ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "2Thess.3.17" ∷ word (τ ∷ ῇ ∷ []) "2Thess.3.17" ∷ word (ἐ ∷ μ ∷ ῇ ∷ []) "2Thess.3.17" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "2Thess.3.17" ∷ word (Π ∷ α ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "2Thess.3.17" ∷ word (ὅ ∷ []) "2Thess.3.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Thess.3.17" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "2Thess.3.17" ∷ word (ἐ ∷ ν ∷ []) "2Thess.3.17" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "2Thess.3.17" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῇ ∷ []) "2Thess.3.17" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "2Thess.3.17" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ω ∷ []) "2Thess.3.17" ∷ word (ἡ ∷ []) "2Thess.3.18" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Thess.3.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.18" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Thess.3.18" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.18" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Thess.3.18" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Thess.3.18" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Thess.3.18" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Thess.3.18" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Thess.3.18" ∷ []
46.868833
91
0.369518
1caea53527969f970c7ce4a1da2e1164ca814a02
1,838
agda
Agda
test/Succeed/Issue795.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue795.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue795.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v tc.term.args:30 -v tc.meta:50 #-} module Issue795 where data Q (A : Set) : Set where F : (N : Set → Set) → Set₁ F N = (A : Set) → N (Q A) → N A postulate N : Set → Set f : F N R : (N : Set → Set) → Set funny-term : ∀ N → (f : F N) → R N -- This should work now: WAS: "Refuse to construct infinite term". thing : R N thing = funny-term _ (λ A → f _) -- funny-term ?N : F ?N -> R ?N -- funny-term ?N : ((A : Set) -> ?N (Q A) -> ?N A) -> R ?N -- A : F ?N |- f (?A A) :=> ?N (Q (?A A)) -> ?N (?A A) -- |- λ A → f (?A A) <=: (A : Set) -> N (Q A) -> N A {- What is happening here? Agda first creates a (closed) meta variable ?N : Set -> Set Then it checks λ A → f ? against type F ?N = (A : Set) -> ?N (Q A) -> ?N A (After what it does now, it still needs to check that R ?N is a subtype of R N It would be smart if that was done first.) In context A : Set, continues to check f ? against type ?N (Q A) -> ?N A Since the type of f is F N = (A : Set) -> N (Q A) -> N A, the created meta, dependent on A : Set is ?A : Set -> Set and we are left with checking that the inferred type of f (?A A), N (Q (?A A)) -> N (?A A) is a subtype of ?N (Q A) -> ?N A This yields two equations ?N (Q A) = N (Q (?A A)) ?N A = N (?A A) The second one is solved as ?N = λ z → N (?A z) simpliying the remaining equation to N (?A (Q A)) = N (Q (?A A)) and further to ?A (Q A) = Q (?A A) The expected solution is, of course, the identity, but it cannot be found mechanically from this equation. At this point, another solution is ?A = Q. In general, any power of Q is a solution. If Agda postponed here, it would come to the problem R ?N = R N simplified to ?N = N and instantiated to λ z → N (?A z) = N This would solve ?A to be the identity. -}
20.197802
75
0.555495
29c40d6569aa11b859be9bd7563ff1ced9700cc6
1,615
agda
Agda
Cubical/Data/HomotopyGroup/Base.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Data/HomotopyGroup/Base.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Data/HomotopyGroup/Base.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{-# OPTIONS --safe #-} module Cubical.Data.HomotopyGroup.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels import Cubical.Foundations.GroupoidLaws as GL open import Cubical.Foundations.Pointed open import Cubical.Data.Nat open import Cubical.Algebra.Group open import Cubical.Homotopy.Loopspace open import Cubical.HITs.SetTruncation as SetTrunc π^_ : ∀ {ℓ} → ℕ → Pointed ℓ → Group ℓ π^_ {ℓ} n p = makeGroup e _⨀_ _⁻¹ setTruncIsSet assoc rUnit lUnit rCancel lCancel where n' : ℕ n' = suc n A : Type ℓ A = typ ((Ω^ n') p) e : ∥ A ∥₂ e = ∣ pt ((Ω^ n') p) ∣₂ _⁻¹ : ∥ A ∥₂ → ∥ A ∥₂ _⁻¹ = SetTrunc.elim {B = λ _ → ∥ A ∥₂} (λ x → squash₂) λ a → ∣ sym a ∣₂ _⨀_ : ∥ A ∥₂ → ∥ A ∥₂ → ∥ A ∥₂ _⨀_ = SetTrunc.elim2 (λ _ _ → squash₂) λ a₀ a₁ → ∣ a₀ ∙ a₁ ∣₂ lUnit : (a : ∥ A ∥₂) → (e ⨀ a) ≡ a lUnit = SetTrunc.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ a → cong ∣_∣₂ (sym (GL.lUnit a) )) rUnit : (a : ∥ A ∥₂) → a ⨀ e ≡ a rUnit = SetTrunc.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ a → cong ∣_∣₂ (sym (GL.rUnit a) )) assoc : (a b c : ∥ A ∥₂) → a ⨀ (b ⨀ c) ≡ (a ⨀ b) ⨀ c assoc = SetTrunc.elim3 (λ _ _ _ → isProp→isSet (squash₂ _ _)) (λ a b c → cong ∣_∣₂ (GL.assoc _ _ _)) lCancel : (a : ∥ A ∥₂) → ((a ⁻¹) ⨀ a) ≡ e lCancel = SetTrunc.elim (λ _ → isProp→isSet (squash₂ _ _)) λ a → cong ∣_∣₂ (GL.lCancel _) rCancel : (a : ∥ A ∥₂) → (a ⨀ (a ⁻¹)) ≡ e rCancel = SetTrunc.elim (λ _ → isProp→isSet (squash₂ _ _)) λ a → cong ∣_∣₂ (GL.rCancel _)
30.471698
81
0.548607
2fd053889e58887a3b3e85bfb52e4e88f013a3f0
5,436
agda
Agda
Cubical/Algebra/Ring/Properties.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/Properties.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/Properties.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Ring.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Macro open import Cubical.Algebra.Semigroup hiding (⟨_⟩) open import Cubical.Algebra.Monoid hiding (⟨_⟩) open import Cubical.Algebra.AbGroup hiding (⟨_⟩) open import Cubical.Algebra.Ring.Base private variable ℓ : Level {- some basic calculations (used for example in QuotientRing.agda), that should become obsolete or subject to change once we have a ring solver (see https://github.com/agda/cubical/issues/297) -} module Theory (R' : Ring {ℓ}) where open Ring R' renaming ( Carrier to R ) implicitInverse : (x y : R) → x + y ≡ 0r → y ≡ - x implicitInverse x y p = y ≡⟨ sym (+-lid y) ⟩ 0r + y ≡⟨ cong (λ u → u + y) (sym (+-linv x)) ⟩ (- x + x) + y ≡⟨ sym (+-assoc _ _ _) ⟩ (- x) + (x + y) ≡⟨ cong (λ u → (- x) + u) p ⟩ (- x) + 0r ≡⟨ +-rid _ ⟩ - x ∎ 0-selfinverse : - 0r ≡ 0r 0-selfinverse = sym (implicitInverse _ _ (+-rid 0r)) 0-idempotent : 0r + 0r ≡ 0r 0-idempotent = +-lid 0r +-idempotency→0 : (x : R) → x ≡ x + x → 0r ≡ x +-idempotency→0 x p = 0r ≡⟨ sym (+-rinv _) ⟩ x + (- x) ≡⟨ cong (λ u → u + (- x)) p ⟩ (x + x) + (- x) ≡⟨ sym (+-assoc _ _ _) ⟩ x + (x + (- x)) ≡⟨ cong (λ u → x + u) (+-rinv _) ⟩ x + 0r ≡⟨ +-rid x ⟩ x ∎ 0-rightNullifies : (x : R) → x · 0r ≡ 0r 0-rightNullifies x = let x·0-is-idempotent : x · 0r ≡ x · 0r + x · 0r x·0-is-idempotent = x · 0r ≡⟨ cong (λ u → x · u) (sym 0-idempotent) ⟩ x · (0r + 0r) ≡⟨ ·-rdist-+ _ _ _ ⟩ (x · 0r) + (x · 0r) ∎ in sym (+-idempotency→0 _ x·0-is-idempotent) 0-leftNullifies : (x : R) → 0r · x ≡ 0r 0-leftNullifies x = let 0·x-is-idempotent : 0r · x ≡ 0r · x + 0r · x 0·x-is-idempotent = 0r · x ≡⟨ cong (λ u → u · x) (sym 0-idempotent) ⟩ (0r + 0r) · x ≡⟨ ·-ldist-+ _ _ _ ⟩ (0r · x) + (0r · x) ∎ in sym (+-idempotency→0 _ 0·x-is-idempotent) -commutesWithRight-· : (x y : R) → x · (- y) ≡ - (x · y) -commutesWithRight-· x y = implicitInverse (x · y) (x · (- y)) (x · y + x · (- y) ≡⟨ sym (·-rdist-+ _ _ _) ⟩ x · (y + (- y)) ≡⟨ cong (λ u → x · u) (+-rinv y) ⟩ x · 0r ≡⟨ 0-rightNullifies x ⟩ 0r ∎) -commutesWithLeft-· : (x y : R) → (- x) · y ≡ - (x · y) -commutesWithLeft-· x y = implicitInverse (x · y) ((- x) · y) (x · y + (- x) · y ≡⟨ sym (·-ldist-+ _ _ _) ⟩ (x - x) · y ≡⟨ cong (λ u → u · y) (+-rinv x) ⟩ 0r · y ≡⟨ 0-leftNullifies y ⟩ 0r ∎) -isDistributive : (x y : R) → (- x) + (- y) ≡ - (x + y) -isDistributive x y = implicitInverse _ _ ((x + y) + ((- x) + (- y)) ≡⟨ sym (+-assoc _ _ _) ⟩ x + (y + ((- x) + (- y))) ≡⟨ cong (λ u → x + (y + u)) (+-comm _ _) ⟩ x + (y + ((- y) + (- x))) ≡⟨ cong (λ u → x + u) (+-assoc _ _ _) ⟩ x + ((y + (- y)) + (- x)) ≡⟨ cong (λ u → x + (u + (- x))) (+-rinv _) ⟩ x + (0r + (- x)) ≡⟨ cong (λ u → x + u) (+-lid _) ⟩ x + (- x) ≡⟨ +-rinv _ ⟩ 0r ∎) translatedDifference : (x a b : R) → a - b ≡ (x + a) - (x + b) translatedDifference x a b = a - b ≡⟨ cong (λ u → a + u) (sym (+-lid _)) ⟩ (a + (0r + (- b))) ≡⟨ cong (λ u → a + (u + (- b))) (sym (+-rinv _)) ⟩ (a + ((x + (- x)) + (- b))) ≡⟨ cong (λ u → a + u) (sym (+-assoc _ _ _)) ⟩ (a + (x + ((- x) + (- b)))) ≡⟨ (+-assoc _ _ _) ⟩ ((a + x) + ((- x) + (- b))) ≡⟨ cong (λ u → u + ((- x) + (- b))) (+-comm _ _) ⟩ ((x + a) + ((- x) + (- b))) ≡⟨ cong (λ u → (x + a) + u) (-isDistributive _ _) ⟩ ((x + a) - (x + b)) ∎ +-assoc-comm1 : (x y z : R) → x + (y + z) ≡ y + (x + z) +-assoc-comm1 x y z = +-assoc x y z ∙∙ cong (λ x → x + z) (+-comm x y) ∙∙ sym (+-assoc y x z) +-assoc-comm2 : (x y z : R) → x + (y + z) ≡ z + (y + x) +-assoc-comm2 x y z = +-assoc-comm1 x y z ∙∙ cong (λ x → y + x) (+-comm x z) ∙∙ +-assoc-comm1 y z x
41.815385
101
0.392752
c5aaea1a9a142a73766ad5b5d0d72c03564f899b
5,858
agda
Agda
src/Extensions/List.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Extensions/List.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Extensions/List.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
module Extensions.List where open import Prelude open import Data.List open import Data.Fin using (fromℕ≤; zero; suc) open import Data.List.All hiding (lookup; map) open import Data.Maybe hiding (All; map) open import Relation.Nullary open import Relation.Nullary.Decidable using (map′) open import Relation.Binary.Core using (REL; Reflexive; Transitive) open import Relation.Binary.List.Pointwise hiding (refl; map) data _[_]=_ {a} {A : Set a} : List A → ℕ → A → Set where here : ∀ {x xs} → (x ∷ xs) [ 0 ]= x there : ∀ {x y xs n} → xs [ n ]= x → (y ∷ xs) [ suc n ]= x []=-functional : ∀ {a} {A : Set a} → (l : List A) → (i : ℕ) → ∀ {x y : A} → l [ i ]= x → l [ i ]= y → x ≡ y []=-functional .(_ ∷ _) .0 here here = refl []=-functional .(_ ∷ _) .(suc _) (there p) (there q) = []=-functional _ _ p q []=-map : ∀ {a b}{A : Set a}{B : Set b}{l : List A}{i x}{f : A → B} → l [ i ]= x → (map f l) [ i ]= (f x) []=-map here = here []=-map (there p) = there ([]=-map p) maybe-lookup : ∀ {a}{A : Set a} → ℕ → List A → Maybe A maybe-lookup n [] = nothing maybe-lookup zero (x ∷ μ) = just x maybe-lookup (suc n) (x ∷ μ) = maybe-lookup n μ maybe-lookup-safe : ∀ {a}{A : Set a}{l : List A} {i x} → l [ i ]= x → maybe-lookup i l ≡ just x maybe-lookup-safe here = refl maybe-lookup-safe (there p) = maybe-lookup-safe p lookup : ∀ {a} {A : Set a} → (l : List A) → Fin (length l) → A lookup [] () lookup (x ∷ l) zero = x lookup (x ∷ l) (suc p) = lookup l p dec-lookup : ∀ {a} {A : Set a} → (i : ℕ) → (l : List A) → Dec (∃ λ x → l [ i ]= x) dec-lookup _ [] = no (λ{ (_ , ())}) dec-lookup zero (x ∷ l) = yes (x , here) dec-lookup (suc i) (_ ∷ l) = map′ (λ{ (x , p) → x , there p}) (λ{ (x , there p) → x , p}) (dec-lookup i l) all-lookup : ∀ {a} {A : Set a} {l : List A} {i x p P} → l [ i ]= x → All {p = p} P l → P x all-lookup here (px ∷ l) = px all-lookup (there i) (px ∷ l) = all-lookup i l infixl 10 _[_]≔_ _[_]≔_ : ∀ {a} {A : Set a} → (l : List A) → Fin (length l) → A → List A [] [ () ]≔ x (x ∷ xs) [ zero ]≔ x' = x' ∷ xs (x ∷ xs) [ suc i ]≔ y = xs [ i ]≔ y module _ where open import Data.List.Any open Membership-≡ _[_]≔'_ : ∀ {a} {A : Set a}{x} → (l : List A) → x ∈ l → A → List A [] [ () ]≔' y (x ∷ l) [ here px ]≔' y = y ∷ l (x ∷ l) [ there px ]≔' y = x ∷ (l [ px ]≔' y) ≔'-[]= : ∀ {a} {A : Set a}{x}{l : List A} (p : x ∈ l) → ∀ {y} → y ∈ (l [ p ]≔' y) ≔'-[]= (here px) = here refl ≔'-[]= (there p) = there (≔'-[]= p) -- proof matters; update a particular witness of a property _All[_]≔_ : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A} {i x} → All P xs → xs [ i ]= x → P x → All P xs [] All[ () ]≔ px (px ∷ xs) All[ here ]≔ px' = px' ∷ xs (px ∷ xs) All[ there i ]≔ px' = px ∷ (xs All[ i ]≔ px') -- prefix predicate for lists infix 4 _⊑_ data _⊑_ {a} {A : Set a} : List A → List A → Set where [] : ∀ {ys} → [] ⊑ ys _∷_ : ∀ x {xs ys} → xs ⊑ ys → x ∷ xs ⊑ x ∷ ys ⊑-refl : ∀ {a} {A : Set a} → Reflexive (_⊑_ {A = A}) ⊑-refl {x = []} = [] ⊑-refl {x = x ∷ xs} = x ∷ ⊑-refl ⊑-trans : ∀ {a} {A : Set a} → Transitive (_⊑_ {A = A}) ⊑-trans [] _ = [] ⊑-trans (x ∷ p) (.x ∷ q) = x ∷ ⊑-trans p q -- list extensions; reverse prefix relation infix 4 _⊒_ _⊒_ : ∀ {a} {A : Set a} → List A → List A → Set xs ⊒ ys = ys ⊑ xs -- appending to a list gives a list extension; -- or, appending to a list makes the original a prefix ∷ʳ-⊒ : ∀ {a} {A : Set a} (x : A) xs → xs ∷ʳ x ⊒ xs ∷ʳ-⊒ x [] = [] ∷ʳ-⊒ x (x₁ ∷ Σ₁) = x₁ ∷ (∷ʳ-⊒ x Σ₁) -- indexes into a prefix point to the same element in extensions xs⊒ys[i] : ∀ {a} {A : Set a} {xs : List A} {ys : List A} {i y} → xs [ i ]= y → (p : ys ⊒ xs) → ys [ i ]= y xs⊒ys[i] here (x ∷ q) = here xs⊒ys[i] (there p) (x ∷ q) = there (xs⊒ys[i] p q) -- prefix is preserved by map ⊑-map : ∀ {a b} {A : Set a} {B : Set b} {xs ys : List A} {f : A → B} → xs ⊑ ys → map f xs ⊑ map f ys ⊑-map [] = [] ⊑-map {f = f} (x ∷ p) = f x ∷ (⊑-map p) module Pointwise where pointwise-length : ∀ {a b ℓ A B P l m} → Rel {a} {b} {ℓ} {A} {B} P l m → length l ≡ length m pointwise-length [] = refl pointwise-length (x∼y ∷ p) = cong suc (pointwise-length p) []=-length : ∀ {a} {A : Set a} {L : List A} {i x} → L [ i ]= x → i < length L []=-length here = s≤s z≤n []=-length (there p) = s≤s ([]=-length p) ∷ʳ[length] : ∀ {a} {A : Set a} (l : List A) x → (l ∷ʳ x) [ length l ]= x ∷ʳ[length] [] y = here ∷ʳ[length] (x ∷ Σ) y = there (∷ʳ[length] Σ y) all-∷ʳ : ∀ {a p} {A : Set a} {l : List A} {x} {P : A → Set p} → All P l → P x → All P (l ∷ʳ x) all-∷ʳ [] q = q ∷ [] all-∷ʳ (px ∷ p) q = px ∷ (all-∷ʳ p q) pointwise-∷ʳ : ∀ {a b ℓ A B P l m x y} → Rel {a} {b} {ℓ} {A} {B} P l m → P x y → Rel {a} {b} {ℓ} {A} {B} P (l ∷ʳ x) (m ∷ʳ y) pointwise-∷ʳ [] q = q ∷ [] pointwise-∷ʳ (x∼y ∷ p) q = x∼y ∷ (pointwise-∷ʳ p q) pointwise-lookup : ∀ {a b ℓ A B P l m i x} → Rel {a} {b} {ℓ} {A} {B} P l m → l [ i ]= x → ∃ λ y → P x y pointwise-lookup (x∼y ∷ r) here = , x∼y pointwise-lookup (x∼y ∷ r) (there p) = pointwise-lookup r p pointwise-maybe-lookup : ∀ {a b ℓ A B P l m i x} → Rel {a} {b} {ℓ} {A} {B} P l m → l [ i ]= x → ∃ λ y → maybe-lookup i m ≡ just y × P x y pointwise-maybe-lookup [] () pointwise-maybe-lookup (x∼y ∷ r) here = , refl , x∼y pointwise-maybe-lookup (x∼y ∷ r) (there p) = pointwise-maybe-lookup r p postulate pointwise-[]≔ : ∀ {a b ℓ A B P l m i x y} → Rel {a} {b} {ℓ} {A} {B} P l m → (p : l [ i ]= x) → (q : i < length m) → P x y → Rel {a} {b} {ℓ} {A} {B} P l (m [ fromℕ≤ q ]≔ y) {-} pointwise-[]≔ [] () r pointwise-[]≔ (x∼y ∷ r) here (s≤s z≤n) z = z ∷ r pointwise-[]≔ (x∼y ∷ r) (there p) (s≤s q) z = subst (λ x → Rel _ _ x) {!!} (x∼y ∷ pointwise-[]≔ r p q z) -} open Pointwise public
36.385093
107
0.481564
29e59f1f76608bccd33b807f34e5df51a82c822f
520
agda
Agda
Cubical/Algebra/CommRing/Integers.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Integers.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Integers.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Integers where open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing open import Cubical.HITs.Ints.BiInvInt renaming ( _+_ to _+ℤ_; -_ to _-ℤ_; +-assoc to +ℤ-assoc; +-comm to +ℤ-comm ) BiInvIntAsCommRing : CommRing ℓ-zero BiInvIntAsCommRing = makeCommRing zero (suc zero) _+ℤ_ _·_ _-ℤ_ isSetBiInvInt +ℤ-assoc +-zero +-invʳ +ℤ-comm ·-assoc ·-identityʳ (λ x y z → sym (·-distribˡ x y z)) ·-comm
21.666667
46
0.663462
50b915177c809cd12b69c0196d24cc00e2885236
1,229
agda
Agda
Structure/Category/NaturalTransformation/Equiv.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Category/NaturalTransformation/Equiv.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Category/NaturalTransformation/Equiv.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.Category.NaturalTransformation.Equiv where import Function.Equals open Function.Equals.Dependent import Lvl open import Logic open import Logic.Predicate open import Structure.Category open import Structure.Category.Functor open import Structure.Category.NaturalTransformation open import Structure.Setoid open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Type module _ {ℓₗₒ ℓₗₘ ℓₗₑ ℓᵣₒ ℓᵣₘ ℓᵣₑ} {catₗ : CategoryObject{ℓₗₒ}{ℓₗₘ}{ℓₗₑ}} {catᵣ : CategoryObject{ℓᵣₒ}{ℓᵣₘ}{ℓᵣₑ}} {F₁ : catₗ →ᶠᵘⁿᶜᵗᵒʳ catᵣ} {F₂ : catₗ →ᶠᵘⁿᶜᵗᵒʳ catᵣ} where _≡ᴺᵀ_ : (F₁ →ᴺᵀ F₂) → (F₁ →ᴺᵀ F₂) → Stmt [∃]-intro N₁ ≡ᴺᵀ [∃]-intro N₂ = N₁ ⊜ N₂ instance [≡ᴺᵀ]-reflexivity : Reflexivity(_≡ᴺᵀ_) Reflexivity.proof [≡ᴺᵀ]-reflexivity = reflexivity(_⊜_) instance [≡ᴺᵀ]-symmetry : Symmetry(_≡ᴺᵀ_) Symmetry.proof [≡ᴺᵀ]-symmetry = symmetry(_⊜_) instance [≡ᴺᵀ]-transitivity : Transitivity(_≡ᴺᵀ_) Transitivity.proof [≡ᴺᵀ]-transitivity = transitivity(_⊜_) instance [≡ᴺᵀ]-equivalence : Equivalence(_≡ᴺᵀ_) [≡ᴺᵀ]-equivalence = intro instance [→ᴺᵀ]-equiv : Equiv(F₁ →ᴺᵀ F₂) [→ᴺᵀ]-equiv = intro(_≡ᴺᵀ_) ⦃ [≡ᴺᵀ]-equivalence ⦄
26.148936
61
0.70057
29d8ea9310c99795cfde7ce2d245a4681a3aa6e2
2,335
agda
Agda
test/LibSucceed/Issue1382.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
test/LibSucceed/Issue1382.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
test/LibSucceed/Issue1382.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --allow-unsolved-metas #-} -- Andreas, 2014-12-06 -- Reported by sanzhiyan, Dec 4 2014 open import Data.Vec open import Data.Fin open import Data.Nat renaming (_+_ to _+N_) open import Data.Nat.Solver open import Relation.Binary.PropositionalEquality hiding ([_]) open +-*-Solver using (prove; solve; _:=_; con; var; _:+_; _:*_; :-_; _:-_) data prop : Set where F T : prop _∧_ _∨_ : prop → prop → prop infixl 4 _∧_ _∨_ Γ : (n : ℕ) → Set Γ n = Vec prop n infix 1 _⊢_ data _⊢_ : ∀ {n} → Γ n → prop → Set where hyp : ∀ {n}(C : Γ n)(v : Fin n) → C ⊢ (lookup v C) andI : ∀ {n}{C : Γ n}{p p' : prop} → C ⊢ p → C ⊢ p' → C ⊢ p ∧ p' andEL : ∀ {n}{C : Γ n}{p p' : prop} → C ⊢ p ∧ p' → C ⊢ p andER : ∀ {n}{C : Γ n}{p p' : prop} → C ⊢ p ∧ p' → C ⊢ p' orIL : ∀ {n}{C : Γ n}{p : prop}(p' : prop) → C ⊢ p → C ⊢ p ∨ p' orIR : ∀ {n}{C : Γ n}{p' : prop}(p : prop) → C ⊢ p' → C ⊢ p ∨ p' orE : ∀ {n}{C : Γ n}{p p' c : prop} → C ⊢ p ∨ p' → p ∷ C ⊢ c → p' ∷ C ⊢ c → C ⊢ c -- WAS: -- The first two _ could not be solved before today's (2014-12-06) improvement of pruning. -- Except for variables, they were applied to a huge neutral proof term coming from the ring solver. -- Agda could not prune before the improved neutrality check implemented by Andrea(s) 2014-12-05/06. -- -- As a consequence, Agda would often reattempt solving, each time doing the expensive -- occurs check. This would extremely slow down Agda. weakening : ∀ {n m p p'}(C : Γ n)(C' : Γ m) → C ++ C' ⊢ p → C ++ [ p' ] ++ C' ⊢ p weakening {n} {m} {p' = p'} C C' (hyp .(C ++ C') v) = subst (λ R → C ++ (_ ∷ C') ⊢ R) {!!} (hyp (C ++ (_ ∷ C')) (subst (λ x → Fin x) proof (inject₁ v))) where proof : suc (n +N m) ≡ n +N suc m proof = (solve 2 (λ n₁ m₁ → con 1 :+ (n₁ :+ m₁) := n₁ :+ (con 1 :+ m₁)) refl n m) weakening C C' (andI prf prf') = andI (weakening C C' prf) (weakening C C' prf') weakening C C' (andEL prf) = andEL (weakening C C' prf) weakening C C' (andER prf) = andER (weakening C C' prf) weakening C C' (orIL p'' prf) = orIL p'' (weakening C C' prf) weakening C C' (orIR p prf) = orIR p (weakening C C' prf) weakening C C' (orE prf prf₁ prf₂) = orE (weakening C C' prf) (weakening (_ ∷ C) C' prf₁) (weakening (_ ∷ C) C' prf₂) -- Should check fast now and report the ? as unsolved meta.
43.240741
117
0.558887
2f3805f23dd84ddd28698077701ff78be93f28cc
63,312
agda
Agda
agda-stdlib/src/Data/Integer/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Integer/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Integer/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Some properties about integers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- Disabled to prevent warnings from deprecated names {-# OPTIONS --warn=noUserWarning #-} module Data.Integer.Properties where open import Algebra.Bundles import Algebra.Morphism as Morphism import Algebra.Properties.AbelianGroup open import Data.Integer.Base renaming (suc to sucℤ) open import Data.Nat as ℕ using (ℕ; suc; zero; _∸_; s≤s; z≤n) hiding (module ℕ) import Data.Nat.Properties as ℕₚ open import Data.Nat.Solver open import Data.Product using (proj₁; proj₂; _,_) open import Data.Sum.Base as Sum using (inj₁; inj₂) open import Data.Sign as Sign using () renaming (_*_ to _𝕊*_) import Data.Sign.Properties as 𝕊ₚ open import Function using (_∘_; _$_) open import Level using (0ℓ) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (yes; no) open import Relation.Nullary.Negation using (contradiction) import Relation.Nullary.Decidable as Dec open import Algebra.Definitions {A = ℤ} _≡_ open import Algebra.FunctionProperties.Consequences.Propositional open import Algebra.Structures {A = ℤ} _≡_ module ℤtoℕ = Morphism.Definitions ℤ ℕ _≡_ module ℕtoℤ = Morphism.Definitions ℕ ℤ _≡_ open +-*-Solver ------------------------------------------------------------------------ -- Equality ------------------------------------------------------------------------ +-injective : ∀ {m n} → + m ≡ + n → m ≡ n +-injective refl = refl -[1+-injective : ∀ {m n} → -[1+ m ] ≡ -[1+ n ] → m ≡ n -[1+-injective refl = refl +[1+-injective : ∀ {m n} → +[1+ m ] ≡ +[1+ n ] → m ≡ n +[1+-injective refl = refl infix 4 _≟_ _≟_ : Decidable {A = ℤ} _≡_ + m ≟ + n = Dec.map′ (cong (+_)) +-injective (m ℕ.≟ n) + m ≟ -[1+ n ] = no λ() -[1+ m ] ≟ + n = no λ() -[1+ m ] ≟ -[1+ n ] = Dec.map′ (cong -[1+_]) -[1+-injective (m ℕ.≟ n) ≡-setoid : Setoid 0ℓ 0ℓ ≡-setoid = setoid ℤ ≡-decSetoid : DecSetoid 0ℓ 0ℓ ≡-decSetoid = decSetoid _≟_ ------------------------------------------------------------------------ -- Properties of _≤_ ------------------------------------------------------------------------ drop‿+≤+ : ∀ {m n} → + m ≤ + n → m ℕ.≤ n drop‿+≤+ (+≤+ m≤n) = m≤n drop‿-≤- : ∀ {m n} → -[1+ m ] ≤ -[1+ n ] → n ℕ.≤ m drop‿-≤- (-≤- n≤m) = n≤m ------------------------------------------------------------------------ -- Relational properties ≤-reflexive : _≡_ ⇒ _≤_ ≤-reflexive { -[1+ n ]} refl = -≤- ℕₚ.≤-refl ≤-reflexive {+ n} refl = +≤+ ℕₚ.≤-refl ≤-refl : Reflexive _≤_ ≤-refl = ≤-reflexive refl ≤-trans : Transitive _≤_ ≤-trans -≤+ (+≤+ n≤m) = -≤+ ≤-trans (-≤- n≤m) -≤+ = -≤+ ≤-trans (-≤- n≤m) (-≤- k≤n) = -≤- (ℕₚ.≤-trans k≤n n≤m) ≤-trans (+≤+ m≤n) (+≤+ n≤k) = +≤+ (ℕₚ.≤-trans m≤n n≤k) ≤-antisym : Antisymmetric _≡_ _≤_ ≤-antisym (-≤- n≤m) (-≤- m≤n) = cong -[1+_] $ ℕₚ.≤-antisym m≤n n≤m ≤-antisym (+≤+ m≤n) (+≤+ n≤m) = cong (+_) $ ℕₚ.≤-antisym m≤n n≤m ≤-total : Total _≤_ ≤-total (-[1+ m ]) (-[1+ n ]) = Sum.map -≤- -≤- (ℕₚ.≤-total n m) ≤-total (-[1+ m ]) (+ n ) = inj₁ -≤+ ≤-total (+ m ) (-[1+ n ]) = inj₂ -≤+ ≤-total (+ m ) (+ n ) = Sum.map +≤+ +≤+ (ℕₚ.≤-total m n) infix 4 _≤?_ _≤?_ : Decidable _≤_ -[1+ m ] ≤? -[1+ n ] = Dec.map′ -≤- drop‿-≤- (n ℕ.≤? m) -[1+ m ] ≤? + n = yes -≤+ + m ≤? -[1+ n ] = no λ () + m ≤? + n = Dec.map′ +≤+ drop‿+≤+ (m ℕ.≤? n) ≤-irrelevant : Irrelevant _≤_ ≤-irrelevant -≤+ -≤+ = refl ≤-irrelevant (-≤- n≤m₁) (-≤- n≤m₂) = cong -≤- (ℕₚ.≤-irrelevant n≤m₁ n≤m₂) ≤-irrelevant (+≤+ n≤m₁) (+≤+ n≤m₂) = cong +≤+ (ℕₚ.≤-irrelevant n≤m₁ n≤m₂) ------------------------------------------------------------------------ -- Structures ≤-isPreorder : IsPreorder _≡_ _≤_ ≤-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≤-reflexive ; trans = ≤-trans } ≤-isPartialOrder : IsPartialOrder _≡_ _≤_ ≤-isPartialOrder = record { isPreorder = ≤-isPreorder ; antisym = ≤-antisym } ≤-isTotalOrder : IsTotalOrder _≡_ _≤_ ≤-isTotalOrder = record { isPartialOrder = ≤-isPartialOrder ; total = ≤-total } ≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_ ≤-isDecTotalOrder = record { isTotalOrder = ≤-isTotalOrder ; _≟_ = _≟_ ; _≤?_ = _≤?_ } ------------------------------------------------------------------------ -- Bundles ≤-preorder : Preorder 0ℓ 0ℓ 0ℓ ≤-preorder = record { isPreorder = ≤-isPreorder } ≤-poset : Poset 0ℓ 0ℓ 0ℓ ≤-poset = record { isPartialOrder = ≤-isPartialOrder } ≤-totalOrder : TotalOrder 0ℓ 0ℓ 0ℓ ≤-totalOrder = record { isTotalOrder = ≤-isTotalOrder } ≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ ≤-decTotalOrder = record { isDecTotalOrder = ≤-isDecTotalOrder } ------------------------------------------------------------------------ -- Properties _<_ ------------------------------------------------------------------------ drop‿+<+ : ∀ {m n} → + m < + n → m ℕ.< n drop‿+<+ (+<+ m<n) = m<n drop‿-<- : ∀ {m n} → -[1+ m ] < -[1+ n ] → n ℕ.< m drop‿-<- (-<- n<m) = n<m +≮0 : ∀ {n} → + n ≮ +0 +≮0 (+<+ ()) +≮- : ∀ {m n} → + m ≮ -[1+ n ] +≮- () ------------------------------------------------------------------------ -- Relationship between other operators <⇒≤ : ∀ {i j} → i < j → i ≤ j <⇒≤ (-<- i<j) = -≤- (ℕₚ.<⇒≤ i<j) <⇒≤ -<+ = -≤+ <⇒≤ (+<+ i<j) = +≤+ (ℕₚ.<⇒≤ i<j) >⇒≰ : ∀ {i j} → i > j → i ≰ j >⇒≰ (-<- n<m) = ℕₚ.<⇒≱ n<m ∘ drop‿-≤- >⇒≰ (+<+ m<n) = ℕₚ.<⇒≱ m<n ∘ drop‿+≤+ ≰⇒> : ∀ {i j} → i ≰ j → i > j ≰⇒> {+ n} {+_ n₁} i≰j = +<+ (ℕₚ.≰⇒> (i≰j ∘ +≤+)) ≰⇒> {+ n} { -[1+_] n₁} i≰j = -<+ ≰⇒> { -[1+_] n} {+_ n₁} i≰j = contradiction -≤+ i≰j ≰⇒> { -[1+_] n} { -[1+_] n₁} i≰j = -<- (ℕₚ.≰⇒> (i≰j ∘ -≤-)) ------------------------------------------------------------------------ -- Relational properties <-irrefl : Irreflexive _≡_ _<_ <-irrefl { -[1+ n ]} refl = ℕₚ.<-irrefl refl ∘ drop‿-<- <-irrefl { +0} refl (+<+ ()) <-irrefl { +[1+ n ]} refl = ℕₚ.<-irrefl refl ∘ drop‿+<+ <-asym : Asymmetric _<_ <-asym (-<- n<m) = ℕₚ.<-asym n<m ∘ drop‿-<- <-asym (+<+ m<n) = ℕₚ.<-asym m<n ∘ drop‿+<+ ≤-<-trans : Trans _≤_ _<_ _<_ ≤-<-trans (-≤- n≤m) (-<- o<n) = -<- (ℕₚ.<-transˡ o<n n≤m) ≤-<-trans (-≤- n≤m) -<+ = -<+ ≤-<-trans -≤+ (+<+ m<o) = -<+ ≤-<-trans (+≤+ m≤n) (+<+ n<o) = +<+ (ℕₚ.<-transʳ m≤n n<o) <-≤-trans : Trans _<_ _≤_ _<_ <-≤-trans (-<- n<m) (-≤- o≤n) = -<- (ℕₚ.<-transʳ o≤n n<m) <-≤-trans (-<- n<m) -≤+ = -<+ <-≤-trans -<+ (+≤+ m≤n) = -<+ <-≤-trans (+<+ m<n) (+≤+ n≤o) = +<+ (ℕₚ.<-transˡ m<n n≤o) <-trans : Transitive _<_ <-trans m<n n<p = ≤-<-trans (<⇒≤ m<n) n<p <-cmp : Trichotomous _≡_ _<_ <-cmp +0 +0 = tri≈ +≮0 refl +≮0 <-cmp +0 +[1+ n ] = tri< (+<+ (s≤s z≤n)) (λ()) +≮0 <-cmp +[1+ n ] +0 = tri> +≮0 (λ()) (+<+ (s≤s z≤n)) <-cmp (+ m) -[1+ n ] = tri> +≮- (λ()) -<+ <-cmp -[1+ m ] (+ n) = tri< -<+ (λ()) +≮- <-cmp -[1+ m ] -[1+ n ] with ℕₚ.<-cmp m n ... | tri< m<n m≢n n≯m = tri> (n≯m ∘ drop‿-<-) (m≢n ∘ -[1+-injective) (-<- m<n) ... | tri≈ m≮n m≡n n≯m = tri≈ (n≯m ∘ drop‿-<-) (cong -[1+_] m≡n) (m≮n ∘ drop‿-<-) ... | tri> m≮n m≢n n>m = tri< (-<- n>m) (m≢n ∘ -[1+-injective) (m≮n ∘ drop‿-<-) <-cmp +[1+ m ] +[1+ n ] with ℕₚ.<-cmp m n ... | tri< m<n m≢n n≯m = tri< (+<+ (s≤s m<n)) (m≢n ∘ +[1+-injective) (n≯m ∘ ℕₚ.≤-pred ∘ drop‿+<+) ... | tri≈ m≮n m≡n n≯m = tri≈ (m≮n ∘ ℕₚ.≤-pred ∘ drop‿+<+) (cong (+_ ∘ suc) m≡n) (n≯m ∘ ℕₚ.≤-pred ∘ drop‿+<+) ... | tri> m≮n m≢n n>m = tri> (m≮n ∘ ℕₚ.≤-pred ∘ drop‿+<+) (m≢n ∘ +[1+-injective) (+<+ (s≤s n>m)) infix 4 _<?_ _<?_ : Decidable _<_ -[1+ m ] <? -[1+ n ] = Dec.map′ -<- drop‿-<- (n ℕ.<? m) -[1+ m ] <? + n = yes -<+ + m <? -[1+ n ] = no λ() + m <? + n = Dec.map′ +<+ drop‿+<+ (m ℕ.<? n) <-irrelevant : Irrelevant _<_ <-irrelevant (-<- n<m₁) (-<- n<m₂) = cong -<- (ℕₚ.<-irrelevant n<m₁ n<m₂) <-irrelevant -<+ -<+ = refl <-irrelevant (+<+ m<n₁) (+<+ m<n₂) = cong +<+ (ℕₚ.<-irrelevant m<n₁ m<n₂) ------------------------------------------------------------------------ -- Structures <-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<_ <-isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = <-irrefl ; trans = <-trans ; <-resp-≈ = subst (_ <_) , subst (_< _) } <-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_ <-isStrictTotalOrder = record { isEquivalence = isEquivalence ; trans = <-trans ; compare = <-cmp } ------------------------------------------------------------------------ -- Bundles <-strictPartialOrder : StrictPartialOrder 0ℓ 0ℓ 0ℓ <-strictPartialOrder = record { isStrictPartialOrder = <-isStrictPartialOrder } <-strictTotalOrder : StrictTotalOrder 0ℓ 0ℓ 0ℓ <-strictTotalOrder = record { isStrictTotalOrder = <-isStrictTotalOrder } ------------------------------------------------------------------------ -- Other properties of _<_ n≮n : ∀ {n} → n ≮ n n≮n {n} = <-irrefl refl >-irrefl : Irreflexive _≡_ _>_ >-irrefl = <-irrefl ∘ sym ------------------------------------------------------------------------ -- A specialised module for reasoning about the _≤_ and _<_ relations ------------------------------------------------------------------------ module ≤-Reasoning where open import Relation.Binary.Reasoning.Base.Triple ≤-isPreorder <-trans (resp₂ _<_) <⇒≤ <-≤-trans ≤-<-trans public hiding (step-≈; step-≈˘) ------------------------------------------------------------------------ -- Properties of -_ ------------------------------------------------------------------------ neg-involutive : ∀ n → - - n ≡ n neg-involutive -[1+ n ] = refl neg-involutive +0 = refl neg-involutive +[1+ n ] = refl neg-injective : ∀ {m n} → - m ≡ - n → m ≡ n neg-injective {m} {n} -m≡-n = begin m ≡⟨ sym (neg-involutive m) ⟩ - - m ≡⟨ cong -_ -m≡-n ⟩ - - n ≡⟨ neg-involutive n ⟩ n ∎ where open ≡-Reasoning neg-≤-pos : ∀ {m n} → - (+ m) ≤ + n neg-≤-pos {zero} = +≤+ z≤n neg-≤-pos {suc m} = -≤+ neg-mono-<-> : -_ Preserves _<_ ⟶ _>_ neg-mono-<-> { -[1+ _ ]} { -[1+ _ ]} (-<- n<m) = +<+ (s≤s n<m) neg-mono-<-> { -[1+ _ ]} { +0} -<+ = +<+ (s≤s z≤n) neg-mono-<-> { -[1+ _ ]} { +[1+ n ]} -<+ = -<+ neg-mono-<-> { +0} { +[1+ n ]} (+<+ _) = -<+ neg-mono-<-> { +[1+ m ]} { +[1+ n ]} (+<+ m<n) = -<- (ℕₚ.≤-pred m<n) ------------------------------------------------------------------------ -- Properties of ∣_∣ ------------------------------------------------------------------------ ∣n∣≡0⇒n≡0 : ∀ {n} → ∣ n ∣ ≡ 0 → n ≡ + 0 ∣n∣≡0⇒n≡0 {+0} refl = refl ∣-n∣≡∣n∣ : ∀ n → ∣ - n ∣ ≡ ∣ n ∣ ∣-n∣≡∣n∣ -[1+ n ] = refl ∣-n∣≡∣n∣ +0 = refl ∣-n∣≡∣n∣ +[1+ n ] = refl 0≤n⇒+∣n∣≡n : ∀ {n} → + 0 ≤ n → + ∣ n ∣ ≡ n 0≤n⇒+∣n∣≡n (+≤+ 0≤n) = refl +∣n∣≡n⇒0≤n : ∀ {n} → + ∣ n ∣ ≡ n → + 0 ≤ n +∣n∣≡n⇒0≤n {+ n} _ = +≤+ z≤n ------------------------------------------------------------------------ -- Properties of sign and _◃_ ◃-inverse : ∀ i → sign i ◃ ∣ i ∣ ≡ i ◃-inverse -[1+ n ] = refl ◃-inverse +0 = refl ◃-inverse +[1+ n ] = refl ◃-cong : ∀ {i j} → sign i ≡ sign j → ∣ i ∣ ≡ ∣ j ∣ → i ≡ j ◃-cong {i} {j} sign-≡ abs-≡ = begin i ≡⟨ sym $ ◃-inverse i ⟩ sign i ◃ ∣ i ∣ ≡⟨ cong₂ _◃_ sign-≡ abs-≡ ⟩ sign j ◃ ∣ j ∣ ≡⟨ ◃-inverse j ⟩ j ∎ where open ≡-Reasoning +◃n≡+n : ∀ n → Sign.+ ◃ n ≡ + n +◃n≡+n zero = refl +◃n≡+n (suc _) = refl -◃n≡-n : ∀ n → Sign.- ◃ n ≡ - + n -◃n≡-n zero = refl -◃n≡-n (suc _) = refl sign-◃ : ∀ s n → sign (s ◃ suc n) ≡ s sign-◃ Sign.- _ = refl sign-◃ Sign.+ _ = refl abs-◃ : ∀ s n → ∣ s ◃ n ∣ ≡ n abs-◃ _ zero = refl abs-◃ Sign.- (suc n) = refl abs-◃ Sign.+ (suc n) = refl signₙ◃∣n∣≡n : ∀ n → sign n ◃ ∣ n ∣ ≡ n signₙ◃∣n∣≡n (+ n) = +◃n≡+n n signₙ◃∣n∣≡n -[1+ n ] = refl sign-cong : ∀ {s₁ s₂ n₁ n₂} → s₁ ◃ suc n₁ ≡ s₂ ◃ suc n₂ → s₁ ≡ s₂ sign-cong {s₁} {s₂} {n₁} {n₂} eq = begin s₁ ≡⟨ sym $ sign-◃ s₁ n₁ ⟩ sign (s₁ ◃ suc n₁) ≡⟨ cong sign eq ⟩ sign (s₂ ◃ suc n₂) ≡⟨ sign-◃ s₂ n₂ ⟩ s₂ ∎ where open ≡-Reasoning abs-cong : ∀ {s₁ s₂ n₁ n₂} → s₁ ◃ n₁ ≡ s₂ ◃ n₂ → n₁ ≡ n₂ abs-cong {s₁} {s₂} {n₁} {n₂} eq = begin n₁ ≡⟨ sym $ abs-◃ s₁ n₁ ⟩ ∣ s₁ ◃ n₁ ∣ ≡⟨ cong ∣_∣ eq ⟩ ∣ s₂ ◃ n₂ ∣ ≡⟨ abs-◃ s₂ n₂ ⟩ n₂ ∎ where open ≡-Reasoning ∣s◃m∣*∣t◃n∣≡m*n : ∀ s t m n → ∣ s ◃ m ∣ ℕ.* ∣ t ◃ n ∣ ≡ m ℕ.* n ∣s◃m∣*∣t◃n∣≡m*n s t m n = cong₂ ℕ._*_ (abs-◃ s m) (abs-◃ t n) ◃-≡ : ∀ {m n} → sign m ≡ sign n → ∣ m ∣ ≡ ∣ n ∣ → m ≡ n ◃-≡ {+ m} {+ n } ≡-sign refl = refl ◃-≡ { -[1+ m ]} { -[1+ n ]} ≡-sign refl = refl +◃-mono-< : ∀ {m n} → m ℕ.< n → Sign.+ ◃ m < Sign.+ ◃ n +◃-mono-< {zero} {suc n} m<n = +<+ m<n +◃-mono-< {suc m} {suc n} m<n = +<+ m<n +◃-cancel-< : ∀ {m n} → Sign.+ ◃ m < Sign.+ ◃ n → m ℕ.< n +◃-cancel-< {zero} {zero} (+<+ ()) +◃-cancel-< {suc m} {zero} (+<+ ()) +◃-cancel-< {zero} {suc n} (+<+ m<n) = m<n +◃-cancel-< {suc m} {suc n} (+<+ m<n) = m<n neg◃-cancel-< : ∀ {m n} → Sign.- ◃ m < Sign.- ◃ n → n ℕ.< m neg◃-cancel-< {zero} {suc n} () neg◃-cancel-< {zero} {zero} (+<+ ()) neg◃-cancel-< {suc m} {zero} -<+ = s≤s z≤n neg◃-cancel-< {suc m} {suc n} (-<- n<m) = s≤s n<m -◃<+◃ : ∀ m n → Sign.- ◃ (suc m) < Sign.+ ◃ n -◃<+◃ m zero = -<+ -◃<+◃ m (suc n) = -<+ +◃≮-◃ : ∀ {m n} → Sign.+ ◃ m ≮ Sign.- ◃ n +◃≮-◃ {zero} {zero} (+<+ ()) +◃≮-◃ {suc m} {zero} (+<+ ()) ------------------------------------------------------------------------ -- Properties of _⊖_ ------------------------------------------------------------------------ n⊖n≡0 : ∀ n → n ⊖ n ≡ + 0 n⊖n≡0 zero = refl n⊖n≡0 (suc n) = n⊖n≡0 n ⊖-swap : ∀ a b → a ⊖ b ≡ - (b ⊖ a) ⊖-swap zero zero = refl ⊖-swap (suc _) zero = refl ⊖-swap zero (suc _) = refl ⊖-swap (suc a) (suc b) = ⊖-swap a b ⊖-≥ : ∀ {m n} → m ℕ.≥ n → m ⊖ n ≡ + (m ∸ n) ⊖-≥ z≤n = refl ⊖-≥ (ℕ.s≤s n≤m) = ⊖-≥ n≤m ⊖-< : ∀ {m n} → m ℕ.< n → m ⊖ n ≡ - + (n ∸ m) ⊖-< {zero} (ℕ.s≤s z≤n) = refl ⊖-< {suc m} (ℕ.s≤s m<n) = ⊖-< m<n ⊖-≰ : ∀ {m n} → n ℕ.≰ m → m ⊖ n ≡ - + (n ∸ m) ⊖-≰ = ⊖-< ∘ ℕₚ.≰⇒> ∣⊖∣-< : ∀ {m n} → m ℕ.< n → ∣ m ⊖ n ∣ ≡ n ∸ m ∣⊖∣-< {zero} (ℕ.s≤s z≤n) = refl ∣⊖∣-< {suc n} (ℕ.s≤s m<n) = ∣⊖∣-< m<n ∣⊖∣-≰ : ∀ {m n} → n ℕ.≰ m → ∣ m ⊖ n ∣ ≡ n ∸ m ∣⊖∣-≰ = ∣⊖∣-< ∘ ℕₚ.≰⇒> -[n⊖m]≡-m+n : ∀ m n → - (m ⊖ n) ≡ (- (+ m)) + (+ n) -[n⊖m]≡-m+n zero zero = refl -[n⊖m]≡-m+n zero (suc n) = refl -[n⊖m]≡-m+n (suc m) zero = refl -[n⊖m]≡-m+n (suc m) (suc n) = sym (⊖-swap n m) ∣m⊖n∣≡∣n⊖m∣ : ∀ x y → ∣ x ⊖ y ∣ ≡ ∣ y ⊖ x ∣ ∣m⊖n∣≡∣n⊖m∣ zero zero = refl ∣m⊖n∣≡∣n⊖m∣ zero (suc _) = refl ∣m⊖n∣≡∣n⊖m∣ (suc _) zero = refl ∣m⊖n∣≡∣n⊖m∣ (suc x) (suc y) = ∣m⊖n∣≡∣n⊖m∣ x y +-cancelˡ-⊖ : ∀ a b c → (a ℕ.+ b) ⊖ (a ℕ.+ c) ≡ b ⊖ c +-cancelˡ-⊖ zero b c = refl +-cancelˡ-⊖ (suc a) b c = +-cancelˡ-⊖ a b c m⊖n≤m : ∀ m n → m ⊖ n ≤ + m m⊖n≤m m zero = ≤-refl m⊖n≤m zero (suc n) = -≤+ m⊖n≤m (suc m) (suc n) = ≤-trans (m⊖n≤m m n) (+≤+ (ℕₚ.n≤1+n m)) m⊖n<1+m : ∀ m n → m ⊖ n < +[1+ m ] m⊖n<1+m m zero = +<+ ℕₚ.≤-refl m⊖n<1+m zero (suc n) = -<+ m⊖n<1+m (suc m) (suc n) = <-trans (m⊖n<1+m m n) (+<+ ℕₚ.≤-refl) m⊖1+n<m : ∀ m n → m ⊖ suc n < + m m⊖1+n<m zero n = -<+ m⊖1+n<m (suc m) n = m⊖n<1+m m n -1+m<n⊖m : ∀ m n → -[1+ m ] < n ⊖ m -1+m<n⊖m zero n = -<+ -1+m<n⊖m (suc m) zero = -<- ℕₚ.≤-refl -1+m<n⊖m (suc m) (suc n) = <-trans (-<- ℕₚ.≤-refl) (-1+m<n⊖m m n) -[1+m]≤n⊖m+1 : ∀ m n → -[1+ m ] ≤ n ⊖ suc m -[1+m]≤n⊖m+1 m zero = ≤-refl -[1+m]≤n⊖m+1 m (suc n) = <⇒≤ (-1+m<n⊖m m n) -1+m≤n⊖m : ∀ m n → -[1+ m ] ≤ n ⊖ m -1+m≤n⊖m m n = <⇒≤ (-1+m<n⊖m m n) 0⊖m≤+ : ∀ m {n} → 0 ⊖ m ≤ + n 0⊖m≤+ zero = +≤+ z≤n 0⊖m≤+ (suc m) = -≤+ sign-⊖-< : ∀ {m n} → m ℕ.< n → sign (m ⊖ n) ≡ Sign.- sign-⊖-< {zero} (ℕ.s≤s z≤n) = refl sign-⊖-< {suc n} (ℕ.s≤s m<n) = sign-⊖-< m<n sign-⊖-≰ : ∀ {m n} → n ℕ.≰ m → sign (m ⊖ n) ≡ Sign.- sign-⊖-≰ = sign-⊖-< ∘ ℕₚ.≰⇒> ⊖-monoʳ-≥-≤ : ∀ p → (p ⊖_) Preserves ℕ._≥_ ⟶ _≤_ ⊖-monoʳ-≥-≤ zero (z≤n {n}) = 0⊖m≤+ n ⊖-monoʳ-≥-≤ zero (s≤s m≤n) = -≤- m≤n ⊖-monoʳ-≥-≤ (suc p) (z≤n {zero}) = ≤-refl ⊖-monoʳ-≥-≤ (suc p) (z≤n {suc n}) = ≤-trans (⊖-monoʳ-≥-≤ p (z≤n {n})) (+≤+ (ℕₚ.n≤1+n p)) ⊖-monoʳ-≥-≤ (suc p) (s≤s m≤n) = ⊖-monoʳ-≥-≤ p m≤n ⊖-monoˡ-≤ : ∀ p → (_⊖ p) Preserves ℕ._≤_ ⟶ _≤_ ⊖-monoˡ-≤ zero m≤n = +≤+ m≤n ⊖-monoˡ-≤ (suc p) (z≤n {0}) = ≤-refl ⊖-monoˡ-≤ (suc p) (z≤n {(suc m)}) = ≤-trans (⊖-monoʳ-≥-≤ 0 (ℕₚ.n≤1+n p)) (⊖-monoˡ-≤ p z≤n) ⊖-monoˡ-≤ (suc p) (s≤s m≤n) = ⊖-monoˡ-≤ p m≤n ⊖-monoʳ->-< : ∀ p → (p ⊖_) Preserves ℕ._>_ ⟶ _<_ ⊖-monoʳ->-< zero {_} (s≤s z≤n) = -<+ ⊖-monoʳ->-< zero {_} (s≤s (s≤s m≤n)) = -<- (s≤s m≤n) ⊖-monoʳ->-< (suc p) {suc m} (s≤s z≤n) = m⊖n<1+m p m ⊖-monoʳ->-< (suc p) {_} (s≤s (s≤s m≤n)) = ⊖-monoʳ->-< p (s≤s m≤n) ⊖-monoˡ-< : ∀ p → (_⊖ p) Preserves ℕ._<_ ⟶ _<_ ⊖-monoˡ-< zero m<n = +<+ m<n ⊖-monoˡ-< (suc p) (s≤s z≤n) = -1+m<n⊖m p _ ⊖-monoˡ-< (suc p) (s≤s (s≤s m<n)) = ⊖-monoˡ-< p (s≤s m<n) ------------------------------------------------------------------------ -- Properties of _+_ ------------------------------------------------------------------------ ------------------------------------------------------------------------ -- Algebraic properties of _+_ +-comm : Commutative _+_ +-comm -[1+ a ] -[1+ b ] = cong (-[1+_] ∘ suc) (ℕₚ.+-comm a b) +-comm (+ a ) (+ b ) = cong +_ (ℕₚ.+-comm a b) +-comm -[1+ _ ] (+ _ ) = refl +-comm (+ _ ) -[1+ _ ] = refl +-identityˡ : LeftIdentity +0 _+_ +-identityˡ -[1+ _ ] = refl +-identityˡ (+ _ ) = refl +-identityʳ : RightIdentity +0 _+_ +-identityʳ = comm+idˡ⇒idʳ +-comm +-identityˡ +-identity : Identity +0 _+_ +-identity = +-identityˡ , +-identityʳ distribˡ-⊖-+-pos : ∀ a b c → b ⊖ c + + a ≡ b ℕ.+ a ⊖ c distribˡ-⊖-+-pos _ zero zero = refl distribˡ-⊖-+-pos _ zero (suc _) = refl distribˡ-⊖-+-pos _ (suc _) zero = refl distribˡ-⊖-+-pos a (suc b) (suc c) = distribˡ-⊖-+-pos a b c distribˡ-⊖-+-neg : ∀ a b c → b ⊖ c + -[1+ a ] ≡ b ⊖ (suc c ℕ.+ a) distribˡ-⊖-+-neg _ zero zero = refl distribˡ-⊖-+-neg _ zero (suc _) = refl distribˡ-⊖-+-neg _ (suc _) zero = refl distribˡ-⊖-+-neg a (suc b) (suc c) = distribˡ-⊖-+-neg a b c distribʳ-⊖-+-pos : ∀ a b c → + a + (b ⊖ c) ≡ a ℕ.+ b ⊖ c distribʳ-⊖-+-pos a b c = begin + a + (b ⊖ c) ≡⟨ +-comm (+ a) (b ⊖ c) ⟩ (b ⊖ c) + + a ≡⟨ distribˡ-⊖-+-pos a b c ⟩ b ℕ.+ a ⊖ c ≡⟨ cong (_⊖ c) (ℕₚ.+-comm b a) ⟩ a ℕ.+ b ⊖ c ∎ where open ≡-Reasoning distribʳ-⊖-+-neg : ∀ a b c → -[1+ a ] + (b ⊖ c) ≡ b ⊖ (suc a ℕ.+ c) distribʳ-⊖-+-neg a b c = begin -[1+ a ] + (b ⊖ c) ≡⟨ +-comm -[1+ a ] (b ⊖ c) ⟩ (b ⊖ c) + -[1+ a ] ≡⟨ distribˡ-⊖-+-neg a b c ⟩ b ⊖ suc (c ℕ.+ a) ≡⟨ cong (λ x → b ⊖ suc x) (ℕₚ.+-comm c a) ⟩ b ⊖ suc (a ℕ.+ c) ∎ where open ≡-Reasoning +-assoc : Associative _+_ +-assoc +0 y z rewrite +-identityˡ y | +-identityˡ (y + z) = refl +-assoc x +0 z rewrite +-identityʳ x | +-identityˡ z = refl +-assoc x y +0 rewrite +-identityʳ (x + y) | +-identityʳ y = refl +-assoc -[1+ a ] -[1+ b ] +[1+ c ] = sym (distribʳ-⊖-+-neg a c b) +-assoc -[1+ a ] +[1+ b ] +[1+ c ] = distribˡ-⊖-+-pos (suc c) b a +-assoc +[1+ a ] -[1+ b ] -[1+ c ] = distribˡ-⊖-+-neg c a b +-assoc +[1+ a ] -[1+ b ] +[1+ c ] rewrite distribˡ-⊖-+-pos (suc c) a b | distribʳ-⊖-+-pos (suc a) c b | sym (ℕₚ.+-assoc a 1 c) | ℕₚ.+-comm a 1 = refl +-assoc +[1+ a ] +[1+ b ] -[1+ c ] rewrite distribʳ-⊖-+-pos (suc a) b c | sym (ℕₚ.+-assoc a 1 b) | ℕₚ.+-comm a 1 = refl +-assoc -[1+ a ] -[1+ b ] -[1+ c ] rewrite sym (ℕₚ.+-assoc a 1 (b ℕ.+ c)) | ℕₚ.+-comm a 1 | ℕₚ.+-assoc a b c = refl +-assoc -[1+ a ] +[1+ b ] -[1+ c ] rewrite distribʳ-⊖-+-neg a b c | distribˡ-⊖-+-neg c b a = refl +-assoc +[1+ a ] +[1+ b ] +[1+ c ] rewrite ℕₚ.+-assoc (suc a) (suc b) (suc c) = refl +-inverseˡ : LeftInverse +0 -_ _+_ +-inverseˡ -[1+ n ] = n⊖n≡0 n +-inverseˡ +0 = refl +-inverseˡ +[1+ n ] = n⊖n≡0 n +-inverseʳ : RightInverse +0 -_ _+_ +-inverseʳ = comm+invˡ⇒invʳ +-comm +-inverseˡ +-inverse : Inverse +0 -_ _+_ +-inverse = +-inverseˡ , +-inverseʳ ------------------------------------------------------------------------ -- Structures +-isMagma : IsMagma _+_ +-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _+_ } +-isSemigroup : IsSemigroup _+_ +-isSemigroup = record { isMagma = +-isMagma ; assoc = +-assoc } +-isCommutativeSemigroup : IsCommutativeSemigroup _+_ +-isCommutativeSemigroup = record { isSemigroup = +-isSemigroup ; comm = +-comm } +-0-isMonoid : IsMonoid _+_ +0 +-0-isMonoid = record { isSemigroup = +-isSemigroup ; identity = +-identity } +-0-isCommutativeMonoid : IsCommutativeMonoid _+_ +0 +-0-isCommutativeMonoid = record { isMonoid = +-0-isMonoid ; comm = +-comm } +-0-isGroup : IsGroup _+_ +0 (-_) +-0-isGroup = record { isMonoid = +-0-isMonoid ; inverse = +-inverse ; ⁻¹-cong = cong (-_) } +-isAbelianGroup : IsAbelianGroup _+_ +0 (-_) +-isAbelianGroup = record { isGroup = +-0-isGroup ; comm = +-comm } ------------------------------------------------------------------------ -- Bundles +-magma : Magma 0ℓ 0ℓ +-magma = record { isMagma = +-isMagma } +-semigroup : Semigroup 0ℓ 0ℓ +-semigroup = record { isSemigroup = +-isSemigroup } +-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ +-commutativeSemigroup = record { isCommutativeSemigroup = +-isCommutativeSemigroup } +-0-monoid : Monoid 0ℓ 0ℓ +-0-monoid = record { isMonoid = +-0-isMonoid } +-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ +-0-commutativeMonoid = record { isCommutativeMonoid = +-0-isCommutativeMonoid } +-0-abelianGroup : AbelianGroup 0ℓ 0ℓ +-0-abelianGroup = record { isAbelianGroup = +-isAbelianGroup } ------------------------------------------------------------------------ -- Properties of _+_ and +_/-_. pos-+-commute : ℕtoℤ.Homomorphic₂ +_ ℕ._+_ _+_ pos-+-commute zero n = refl pos-+-commute (suc m) n = cong sucℤ (pos-+-commute m n) neg-distrib-+ : ∀ m n → - (m + n) ≡ (- m) + (- n) neg-distrib-+ +0 +0 = refl neg-distrib-+ +0 +[1+ n ] = refl neg-distrib-+ +[1+ m ] +0 = cong -[1+_] (ℕₚ.+-identityʳ m) neg-distrib-+ +[1+ m ] +[1+ n ] = cong -[1+_] (ℕₚ.+-suc m n) neg-distrib-+ -[1+ m ] -[1+ n ] = cong (λ v → + suc v) (sym (ℕₚ.+-suc m n)) neg-distrib-+ (+ m) -[1+ n ] = -[n⊖m]≡-m+n m (suc n) neg-distrib-+ -[1+ m ] (+ n) = trans (-[n⊖m]≡-m+n n (suc m)) (+-comm (- + n) (+ suc m)) ◃-distrib-+ : ∀ s m n → s ◃ (m ℕ.+ n) ≡ (s ◃ m) + (s ◃ n) ◃-distrib-+ Sign.- m n = begin Sign.- ◃ (m ℕ.+ n) ≡⟨ -◃n≡-n (m ℕ.+ n) ⟩ - (+ (m ℕ.+ n)) ≡⟨⟩ - ((+ m) + (+ n)) ≡⟨ neg-distrib-+ (+ m) (+ n) ⟩ (- (+ m)) + (- (+ n)) ≡⟨ sym (cong₂ _+_ (-◃n≡-n m) (-◃n≡-n n)) ⟩ (Sign.- ◃ m) + (Sign.- ◃ n) ∎ where open ≡-Reasoning ◃-distrib-+ Sign.+ m n = begin Sign.+ ◃ (m ℕ.+ n) ≡⟨ +◃n≡+n (m ℕ.+ n) ⟩ + (m ℕ.+ n) ≡⟨⟩ (+ m) + (+ n) ≡⟨ sym (cong₂ _+_ (+◃n≡+n m) (+◃n≡+n n)) ⟩ (Sign.+ ◃ m) + (Sign.+ ◃ n) ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- Properties of _+_ and _≤_ +-pos-monoʳ-≤ : ∀ n → (_+_ (+ n)) Preserves _≤_ ⟶ _≤_ +-pos-monoʳ-≤ n {_} (-≤- o≤m) = ⊖-monoʳ-≥-≤ n (s≤s o≤m) +-pos-monoʳ-≤ n { -[1+ m ]} -≤+ = ≤-trans (m⊖n≤m n (suc m)) (+≤+ (ℕₚ.m≤m+n n _)) +-pos-monoʳ-≤ n {_} (+≤+ m≤o) = +≤+ (ℕₚ.+-monoʳ-≤ n m≤o) +-neg-monoʳ-≤ : ∀ n → (_+_ (-[1+ n ])) Preserves _≤_ ⟶ _≤_ +-neg-monoʳ-≤ n {_} {_} (-≤- n≤m) = -≤- (ℕₚ.+-monoʳ-≤ (suc n) n≤m) +-neg-monoʳ-≤ n {_} {+ m} -≤+ = ≤-trans (-≤- (ℕₚ.m≤m+n (suc n) _)) (-1+m≤n⊖m (suc n) m) +-neg-monoʳ-≤ n {_} {_} (+≤+ m≤n) = ⊖-monoˡ-≤ (suc n) m≤n +-monoʳ-≤ : ∀ n → (_+_ n) Preserves _≤_ ⟶ _≤_ +-monoʳ-≤ (+ n) = +-pos-monoʳ-≤ n +-monoʳ-≤ -[1+ n ] = +-neg-monoʳ-≤ n +-monoˡ-≤ : ∀ n → (_+ n) Preserves _≤_ ⟶ _≤_ +-monoˡ-≤ n {i} {j} i≤j rewrite +-comm i n | +-comm j n = +-monoʳ-≤ n i≤j +-mono-≤ : _+_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ +-mono-≤ {m} {n} {i} {j} m≤n i≤j = begin m + i ≤⟨ +-monoˡ-≤ i m≤n ⟩ n + i ≤⟨ +-monoʳ-≤ n i≤j ⟩ n + j ∎ where open ≤-Reasoning ≤-steps : ∀ {m n} p → m ≤ n → m ≤ + p + n ≤-steps p m≤n = subst (_≤ _) (+-identityˡ _) (+-mono-≤ (+≤+ z≤n) m≤n) m≤m+n : ∀ {m} n → m ≤ m + + n m≤m+n {m} n = begin m ≡⟨ sym (+-identityʳ m) ⟩ m + + 0 ≤⟨ +-monoʳ-≤ m (+≤+ z≤n) ⟩ m + + n ∎ where open ≤-Reasoning n≤m+n : ∀ m {n} → n ≤ + m + n n≤m+n m {n} rewrite +-comm (+ m) n = m≤m+n m ------------------------------------------------------------------------ -- Properties of _+_ and _<_ +-monoʳ-< : ∀ n → (_+_ n) Preserves _<_ ⟶ _<_ +-monoʳ-< (+ n) {_} {_} (-<- o<m) = ⊖-monoʳ->-< n (s≤s o<m) +-monoʳ-< (+ n) {_} {_} -<+ = <-≤-trans (m⊖1+n<m n _) (+≤+ (ℕₚ.m≤m+n n _)) +-monoʳ-< (+ n) {_} {_} (+<+ m<o) = +<+ (ℕₚ.+-monoʳ-< n m<o) +-monoʳ-< -[1+ n ] {_} {_} (-<- o<m) = -<- (ℕₚ.+-monoʳ-< (suc n) o<m) +-monoʳ-< -[1+ n ] {_} {+ o} -<+ = <-≤-trans (-<- (ℕₚ.m≤m+n (suc n) _)) (-[1+m]≤n⊖m+1 n o) +-monoʳ-< -[1+ n ] {_} {_} (+<+ m<o) = ⊖-monoˡ-< (suc n) m<o +-monoˡ-< : ∀ n → (_+ n) Preserves _<_ ⟶ _<_ +-monoˡ-< n {i} {j} i<j rewrite +-comm i n | +-comm j n = +-monoʳ-< n i<j +-mono-< : _+_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ +-mono-< {m} {n} {i} {j} m<n i<j = begin-strict m + i <⟨ +-monoˡ-< i m<n ⟩ n + i <⟨ +-monoʳ-< n i<j ⟩ n + j ∎ where open ≤-Reasoning +-mono-≤-< : _+_ Preserves₂ _≤_ ⟶ _<_ ⟶ _<_ +-mono-≤-< {m} {n} {i} m≤n i<j = ≤-<-trans (+-monoˡ-≤ i m≤n) (+-monoʳ-< n i<j) +-mono-<-≤ : _+_ Preserves₂ _<_ ⟶ _≤_ ⟶ _<_ +-mono-<-≤ {m} {n} {i} m<n i≤j = <-≤-trans (+-monoˡ-< i m<n) (+-monoʳ-≤ n i≤j) ------------------------------------------------------------------------ -- Properties of _-_ ------------------------------------------------------------------------ neg-minus-pos : ∀ x y → -[1+ x ] - (+ y) ≡ -[1+ (y ℕ.+ x) ] neg-minus-pos x zero = refl neg-minus-pos zero (suc y) = cong (-[1+_] ∘ suc) (sym (ℕₚ.+-identityʳ y)) neg-minus-pos (suc x) (suc y) = cong (-[1+_] ∘ suc) (ℕₚ.+-comm (suc x) y) +-minus-telescope : ∀ x y z → (x - y) + (y - z) ≡ x - z +-minus-telescope x y z = begin (x - y) + (y - z) ≡⟨ +-assoc x (- y) (y - z) ⟩ x + (- y + (y - z)) ≡⟨ cong (λ v → x + v) (sym (+-assoc (- y) y _)) ⟩ x + ((- y + y) - z) ≡⟨ sym (+-assoc x (- y + y) (- z)) ⟩ x + (- y + y) - z ≡⟨ cong (λ a → x + a - z) (+-inverseˡ y) ⟩ x + +0 - z ≡⟨ cong (_- z) (+-identityʳ x) ⟩ x - z ∎ where open ≡-Reasoning [+m]-[+n]≡m⊖n : ∀ x y → (+ x) - (+ y) ≡ x ⊖ y [+m]-[+n]≡m⊖n zero zero = refl [+m]-[+n]≡m⊖n zero (suc y) = refl [+m]-[+n]≡m⊖n (suc x) zero = cong (+_ ∘ suc) (ℕₚ.+-identityʳ x) [+m]-[+n]≡m⊖n (suc x) (suc y) = refl ∣m-n∣≡∣n-m∣ : (x y : ℤ) → ∣ x - y ∣ ≡ ∣ y - x ∣ ∣m-n∣≡∣n-m∣ -[1+ x ] -[1+ y ] = ∣m⊖n∣≡∣n⊖m∣ y x ∣m-n∣≡∣n-m∣ -[1+ x ] (+ y) = begin ∣ -[1+ x ] - (+ y) ∣ ≡⟨ cong ∣_∣ (neg-minus-pos x y) ⟩ suc (y ℕ.+ x) ≡⟨ sym (ℕₚ.+-suc y x) ⟩ y ℕ.+ suc x ∎ where open ≡-Reasoning ∣m-n∣≡∣n-m∣ (+ x) -[1+ y ] = begin x ℕ.+ suc y ≡⟨ ℕₚ.+-suc x y ⟩ suc (x ℕ.+ y) ≡⟨ cong ∣_∣ (sym (neg-minus-pos y x)) ⟩ ∣ -[1+ y ] + - (+ x) ∣ ∎ where open ≡-Reasoning ∣m-n∣≡∣n-m∣ (+ x) (+ y) = begin ∣ (+ x) - (+ y) ∣ ≡⟨ cong ∣_∣ ([+m]-[+n]≡m⊖n x y) ⟩ ∣ x ⊖ y ∣ ≡⟨ ∣m⊖n∣≡∣n⊖m∣ x y ⟩ ∣ y ⊖ x ∣ ≡⟨ cong ∣_∣ (sym ([+m]-[+n]≡m⊖n y x)) ⟩ ∣ (+ y) - (+ x) ∣ ∎ where open ≡-Reasoning m≡n⇒m-n≡0 : ∀ m n → m ≡ n → m - n ≡ + 0 m≡n⇒m-n≡0 m m refl = +-inverseʳ m m-n≡0⇒m≡n : ∀ m n → m - n ≡ + 0 → m ≡ n m-n≡0⇒m≡n m n m-n≡0 = begin m ≡⟨ sym (+-identityʳ m) ⟩ m + + 0 ≡⟨ cong (_+_ m) (sym (+-inverseˡ n)) ⟩ m + (- n + n) ≡⟨ sym (+-assoc m (- n) n) ⟩ (m - n) + n ≡⟨ cong (_+ n) m-n≡0 ⟩ + 0 + n ≡⟨ +-identityˡ n ⟩ n ∎ where open ≡-Reasoning ≤-steps-neg : ∀ {m n} p → m ≤ n → m - + p ≤ n ≤-steps-neg {m} zero m≤n rewrite +-identityʳ m = m≤n ≤-steps-neg {+ m} (suc p) m≤n = ≤-trans (m⊖n≤m m (suc p)) m≤n ≤-steps-neg { -[1+ n ]} (suc p) m≤n = ≤-trans (-≤- (ℕₚ.≤-trans (ℕₚ.m≤m+n n p) (ℕₚ.n≤1+n _))) m≤n neg-mono-≤-≥ : -_ Preserves _≤_ ⟶ _≥_ neg-mono-≤-≥ -≤+ = neg-≤-pos neg-mono-≤-≥ (-≤- n≤m) = +≤+ (s≤s n≤m) neg-mono-≤-≥ (+≤+ z≤n) = neg-≤-pos neg-mono-≤-≥ (+≤+ (s≤s m≤n)) = -≤- m≤n m-n≤m : ∀ m n → m - + n ≤ m m-n≤m m n = ≤-steps-neg n ≤-refl m≤n⇒m-n≤0 : ∀ {m n} → m ≤ n → m - n ≤ + 0 m≤n⇒m-n≤0 (-≤+ {n = n}) = ≤-steps-neg n -≤+ m≤n⇒m-n≤0 (-≤- {n = n} n≤m) = ≤-trans (⊖-monoʳ-≥-≤ n n≤m) (≤-reflexive (n⊖n≡0 n)) m≤n⇒m-n≤0 {n = + 0} (+≤+ z≤n) = +≤+ z≤n m≤n⇒m-n≤0 {n = + suc n} (+≤+ z≤n) = -≤+ m≤n⇒m-n≤0 (+≤+ (s≤s {m} m≤n)) = ≤-trans (⊖-monoʳ-≥-≤ m m≤n) (≤-reflexive (n⊖n≡0 m)) m-n≤0⇒m≤n : ∀ {m n} → m - n ≤ + 0 → m ≤ n m-n≤0⇒m≤n {m} {n} m-n≤0 = begin m ≡⟨ sym (+-identityʳ m) ⟩ m + + 0 ≡⟨ cong (_+_ m) (sym (+-inverseˡ n)) ⟩ m + (- n + n) ≡⟨ sym (+-assoc m (- n) n) ⟩ (m - n) + n ≤⟨ +-monoˡ-≤ n m-n≤0 ⟩ + 0 + n ≡⟨ +-identityˡ n ⟩ n ∎ where open ≤-Reasoning m≤n⇒0≤n-m : ∀ {m n} → m ≤ n → + 0 ≤ n - m m≤n⇒0≤n-m {m} {n} m≤n = begin + 0 ≡⟨ sym (+-inverseʳ m) ⟩ m - m ≤⟨ +-monoˡ-≤ (- m) m≤n ⟩ n - m ∎ where open ≤-Reasoning 0≤n-m⇒m≤n : ∀ {m n} → + 0 ≤ n - m → m ≤ n 0≤n-m⇒m≤n {m} {n} 0≤n-m = begin m ≡⟨ sym (+-identityˡ m) ⟩ + 0 + m ≤⟨ +-monoˡ-≤ m 0≤n-m ⟩ n - m + m ≡⟨ +-assoc n (- m) m ⟩ n + (- m + m) ≡⟨ cong (_+_ n) (+-inverseˡ m) ⟩ n + + 0 ≡⟨ +-identityʳ n ⟩ n ∎ where open ≤-Reasoning ------------------------------------------------------------------------ -- Properties of suc ------------------------------------------------------------------------ ≤-step : ∀ {n m} → n ≤ m → n ≤ sucℤ m ≤-step = ≤-steps 1 n≤1+n : ∀ n → n ≤ sucℤ n n≤1+n n = ≤-steps 1 ≤-refl suc-+ : ∀ m n → + suc m + n ≡ sucℤ (+ m + n) suc-+ m (+ n) = refl suc-+ m (-[1+ n ]) = sym (distribʳ-⊖-+-pos 1 m (suc n)) n≢1+n : ∀ {n} → n ≢ sucℤ n n≢1+n {+ _} () n≢1+n { -[1+ 0 ]} () n≢1+n { -[1+ suc n ]} () 1-[1+n]≡-n : ∀ n → sucℤ -[1+ n ] ≡ - (+ n) 1-[1+n]≡-n zero = refl 1-[1+n]≡-n (suc n) = refl suc-mono : sucℤ Preserves _≤_ ⟶ _≤_ suc-mono (-≤+ {m}) = 0⊖m≤+ m suc-mono (-≤- n≤m) = ⊖-monoʳ-≥-≤ zero n≤m suc-mono (+≤+ m≤n) = +≤+ (s≤s m≤n) suc[i]≤j⇒i<j : ∀ {i j} → sucℤ i ≤ j → i < j suc[i]≤j⇒i<j {+ i} {+ _} (+≤+ i≤j) = +<+ i≤j suc[i]≤j⇒i<j { -[1+ 0 ]} {+ j} p = -<+ suc[i]≤j⇒i<j { -[1+ suc i ]} {+ j} -≤+ = -<+ suc[i]≤j⇒i<j { -[1+ suc i ]} { -[1+ j ]} (-≤- j≤i) = -<- (ℕ.s≤s j≤i) i<j⇒suc[i]≤j : ∀ {i j} → i < j → sucℤ i ≤ j i<j⇒suc[i]≤j {+ _} {+ _} (+<+ i<j) = +≤+ i<j i<j⇒suc[i]≤j { -[1+ 0 ]} {+ _} -<+ = +≤+ z≤n i<j⇒suc[i]≤j { -[1+ suc i ]} { -[1+ _ ]} (-<- j<i) = -≤- (ℕ.≤-pred j<i) i<j⇒suc[i]≤j { -[1+ suc i ]} {+ _} -<+ = -≤+ ------------------------------------------------------------------------ -- Properties of pred ------------------------------------------------------------------------ suc-pred : ∀ m → sucℤ (pred m) ≡ m suc-pred m = begin sucℤ (pred m) ≡⟨ sym (+-assoc (+ 1) (- + 1) m) ⟩ + 0 + m ≡⟨ +-identityˡ m ⟩ m ∎ where open ≡-Reasoning pred-suc : ∀ m → pred (sucℤ m) ≡ m pred-suc m = begin pred (sucℤ m) ≡⟨ sym (+-assoc (- + 1) (+ 1) m) ⟩ + 0 + m ≡⟨ +-identityˡ m ⟩ m ∎ where open ≡-Reasoning +-pred : ∀ m n → m + pred n ≡ pred (m + n) +-pred m n = begin m + (-[1+ 0 ] + n) ≡⟨ sym (+-assoc m -[1+ 0 ] n) ⟩ m + -[1+ 0 ] + n ≡⟨ cong (_+ n) (+-comm m -[1+ 0 ]) ⟩ -[1+ 0 ] + m + n ≡⟨ +-assoc -[1+ 0 ] m n ⟩ -[1+ 0 ] + (m + n) ∎ where open ≡-Reasoning pred-+ : ∀ m n → pred m + n ≡ pred (m + n) pred-+ m n = begin pred m + n ≡⟨ +-comm (pred m) n ⟩ n + pred m ≡⟨ +-pred n m ⟩ pred (n + m) ≡⟨ cong pred (+-comm n m) ⟩ pred (m + n) ∎ where open ≡-Reasoning neg-suc : ∀ m → - + suc m ≡ pred (- + m) neg-suc zero = refl neg-suc (suc m) = refl minus-suc : ∀ m n → m - + suc n ≡ pred (m - + n) minus-suc m n = begin m + - + suc n ≡⟨ cong (_+_ m) (neg-suc n) ⟩ m + pred (- (+ n)) ≡⟨ +-pred m (- + n) ⟩ pred (m - + n) ∎ where open ≡-Reasoning m≤pred[n]⇒m<n : ∀ {m n} → m ≤ pred n → m < n m≤pred[n]⇒m<n {m} { + n} m≤predn = ≤-<-trans m≤predn (m⊖1+n<m n 0) m≤pred[n]⇒m<n {m} { -[1+ n ]} m≤predn = ≤-<-trans m≤predn (-<- ℕₚ.≤-refl) m<n⇒m≤pred[n] : ∀ {m n} → m < n → m ≤ pred n m<n⇒m≤pred[n] {_} { +0} -<+ = -≤- z≤n m<n⇒m≤pred[n] {_} { +[1+ n ]} -<+ = -≤+ m<n⇒m≤pred[n] {_} { +[1+ n ]} (+<+ m<n) = +≤+ (ℕₚ.≤-pred m<n) m<n⇒m≤pred[n] {_} { -[1+ n ]} (-<- n<m) = -≤- n<m ≤-step-neg : ∀ {m n} → m ≤ n → pred m ≤ n ≤-step-neg -≤+ = -≤+ ≤-step-neg (-≤- n≤m) = -≤- (ℕₚ.≤-step n≤m) ≤-step-neg (+≤+ z≤n) = -≤+ ≤-step-neg (+≤+ (s≤s m≤n)) = +≤+ (ℕₚ.≤-step m≤n) pred-mono : pred Preserves _≤_ ⟶ _≤_ pred-mono (-≤+ {n = 0}) = -≤- z≤n pred-mono (-≤+ {n = suc n}) = -≤+ pred-mono (-≤- n≤m) = -≤- (s≤s n≤m) pred-mono (+≤+ m≤n) = ⊖-monoˡ-≤ 1 m≤n ------------------------------------------------------------------------ -- Properties of _*_ ------------------------------------------------------------------------ ------------------------------------------------------------------------ -- Algebraic properties *-comm : Commutative _*_ *-comm -[1+ a ] -[1+ b ] rewrite ℕₚ.*-comm (suc a) (suc b) = refl *-comm -[1+ a ] (+ b ) rewrite ℕₚ.*-comm (suc a) b = refl *-comm (+ a ) -[1+ b ] rewrite ℕₚ.*-comm a (suc b) = refl *-comm (+ a ) (+ b ) rewrite ℕₚ.*-comm a b = refl *-identityˡ : LeftIdentity (+ 1) _*_ *-identityˡ -[1+ n ] rewrite ℕₚ.+-identityʳ n = refl *-identityˡ +0 = refl *-identityˡ +[1+ n ] rewrite ℕₚ.+-identityʳ n = refl *-identityʳ : RightIdentity (+ 1) _*_ *-identityʳ = comm+idˡ⇒idʳ *-comm *-identityˡ *-identity : Identity (+ 1) _*_ *-identity = *-identityˡ , *-identityʳ *-zeroˡ : LeftZero +0 _*_ *-zeroˡ n = refl *-zeroʳ : RightZero +0 _*_ *-zeroʳ = comm+zeˡ⇒zeʳ *-comm *-zeroˡ *-zero : Zero +0 _*_ *-zero = *-zeroˡ , *-zeroʳ private lemma : ∀ a b c → c ℕ.+ (b ℕ.+ a ℕ.* suc b) ℕ.* suc c ≡ c ℕ.+ b ℕ.* suc c ℕ.+ a ℕ.* suc (c ℕ.+ b ℕ.* suc c) lemma = solve 3 (λ a b c → c :+ (b :+ a :* (con 1 :+ b)) :* (con 1 :+ c) := c :+ b :* (con 1 :+ c) :+ a :* (con 1 :+ (c :+ b :* (con 1 :+ c)))) refl *-assoc : Associative _*_ *-assoc +0 _ _ = refl *-assoc x +0 z rewrite ℕₚ.*-zeroʳ ∣ x ∣ = refl *-assoc x y +0 rewrite ℕₚ.*-zeroʳ ∣ y ∣ | ℕₚ.*-zeroʳ ∣ x ∣ | ℕₚ.*-zeroʳ ∣ sign x 𝕊* sign y ◃ ∣ x ∣ ℕ.* ∣ y ∣ ∣ = refl *-assoc -[1+ a ] -[1+ b ] +[1+ c ] = cong (+_ ∘ suc) (lemma a b c) *-assoc -[1+ a ] +[1+ b ] -[1+ c ] = cong (+_ ∘ suc) (lemma a b c) *-assoc +[1+ a ] +[1+ b ] +[1+ c ] = cong (+_ ∘ suc) (lemma a b c) *-assoc +[1+ a ] -[1+ b ] -[1+ c ] = cong (+_ ∘ suc) (lemma a b c) *-assoc -[1+ a ] -[1+ b ] -[1+ c ] = cong -[1+_] (lemma a b c) *-assoc -[1+ a ] +[1+ b ] +[1+ c ] = cong -[1+_] (lemma a b c) *-assoc +[1+ a ] -[1+ b ] +[1+ c ] = cong -[1+_] (lemma a b c) *-assoc +[1+ a ] +[1+ b ] -[1+ c ] = cong -[1+_] (lemma a b c) private -- lemma used to prove distributivity. distrib-lemma : ∀ a b c → (c ⊖ b) * -[1+ a ] ≡ a ℕ.+ b ℕ.* suc a ⊖ (a ℕ.+ c ℕ.* suc a) distrib-lemma a b c rewrite +-cancelˡ-⊖ a (b ℕ.* suc a) (c ℕ.* suc a) | ⊖-swap (b ℕ.* suc a) (c ℕ.* suc a) with b ℕ.≤? c ... | yes b≤c rewrite ⊖-≥ b≤c | ⊖-≥ (ℕₚ.*-mono-≤ b≤c (ℕₚ.≤-refl {x = suc a})) | -◃n≡-n ((c ∸ b) ℕ.* suc a) | ℕₚ.*-distribʳ-∸ (suc a) c b = refl ... | no b≰c rewrite sign-⊖-≰ b≰c | ∣⊖∣-≰ b≰c | +◃n≡+n ((b ∸ c) ℕ.* suc a) | ⊖-≰ (b≰c ∘ ℕₚ.*-cancelʳ-≤ b c a) | neg-involutive (+ (b ℕ.* suc a ∸ c ℕ.* suc a)) | ℕₚ.*-distribʳ-∸ (suc a) b c = refl *-distribʳ-+ : _*_ DistributesOverʳ _+_ *-distribʳ-+ +0 y z rewrite ℕₚ.*-zeroʳ ∣ y ∣ | ℕₚ.*-zeroʳ ∣ z ∣ | ℕₚ.*-zeroʳ ∣ y + z ∣ = refl *-distribʳ-+ x +0 z rewrite +-identityˡ z | +-identityˡ (sign z 𝕊* sign x ◃ ∣ z ∣ ℕ.* ∣ x ∣) = refl *-distribʳ-+ x y +0 rewrite +-identityʳ y | +-identityʳ (sign y 𝕊* sign x ◃ ∣ y ∣ ℕ.* ∣ x ∣) = refl *-distribʳ-+ -[1+ a ] -[1+ b ] -[1+ c ] = cong (+_) $ solve 3 (λ a b c → (con 2 :+ b :+ c) :* (con 1 :+ a) := (con 1 :+ b) :* (con 1 :+ a) :+ (con 1 :+ c) :* (con 1 :+ a)) refl a b c *-distribʳ-+ (+ suc a) (+ suc b) (+ suc c) = cong (+_) $ solve 3 (λ a b c → (con 1 :+ b :+ (con 1 :+ c)) :* (con 1 :+ a) := (con 1 :+ b) :* (con 1 :+ a) :+ (con 1 :+ c) :* (con 1 :+ a)) refl a b c *-distribʳ-+ -[1+ a ] (+ suc b) (+ suc c) = cong -[1+_] $ solve 3 (λ a b c → a :+ (b :+ (con 1 :+ c)) :* (con 1 :+ a) := (con 1 :+ b) :* (con 1 :+ a) :+ (a :+ c :* (con 1 :+ a))) refl a b c *-distribʳ-+ (+ suc a) -[1+ b ] -[1+ c ] = cong -[1+_] $ solve 3 (λ a b c → a :+ (con 1 :+ a :+ (b :+ c) :* (con 1 :+ a)) := (con 1 :+ b) :* (con 1 :+ a) :+ (a :+ c :* (con 1 :+ a))) refl a b c *-distribʳ-+ -[1+ a ] -[1+ b ] (+ suc c) = distrib-lemma a b c *-distribʳ-+ -[1+ a ] (+ suc b) -[1+ c ] = distrib-lemma a c b *-distribʳ-+ (+ suc a) -[1+ b ] (+ suc c) with b ℕ.≤? c ... | yes b≤c rewrite +-cancelˡ-⊖ a (c ℕ.* suc a) (b ℕ.* suc a) | ⊖-≥ b≤c | +-comm (- (+ (a ℕ.+ b ℕ.* suc a))) (+ (a ℕ.+ c ℕ.* suc a)) | ⊖-≥ (ℕₚ.*-mono-≤ b≤c (ℕₚ.≤-refl {x = suc a})) | ℕₚ.*-distribʳ-∸ (suc a) c b | +◃n≡+n (c ℕ.* suc a ∸ b ℕ.* suc a) = refl ... | no b≰c rewrite +-cancelˡ-⊖ a (c ℕ.* suc a) (b ℕ.* suc a) | sign-⊖-≰ b≰c | ∣⊖∣-≰ b≰c | -◃n≡-n ((b ∸ c) ℕ.* suc a) | ⊖-≰ (b≰c ∘ ℕₚ.*-cancelʳ-≤ b c a) | ℕₚ.*-distribʳ-∸ (suc a) b c = refl *-distribʳ-+ (+ suc c) (+ suc a) -[1+ b ] with b ℕ.≤? a ... | yes b≤a rewrite +-cancelˡ-⊖ c (a ℕ.* suc c) (b ℕ.* suc c) | ⊖-≥ b≤a | ⊖-≥ (ℕₚ.*-mono-≤ b≤a (ℕₚ.≤-refl {x = suc c})) | +◃n≡+n ((a ∸ b) ℕ.* suc c) | ℕₚ.*-distribʳ-∸ (suc c) a b = refl ... | no b≰a rewrite +-cancelˡ-⊖ c (a ℕ.* suc c) (b ℕ.* suc c) | sign-⊖-≰ b≰a | ∣⊖∣-≰ b≰a | ⊖-≰ (b≰a ∘ ℕₚ.*-cancelʳ-≤ b a c) | -◃n≡-n ((b ∸ a) ℕ.* suc c) | ℕₚ.*-distribʳ-∸ (suc c) b a = refl *-distribˡ-+ : _*_ DistributesOverˡ _+_ *-distribˡ-+ = comm+distrʳ⇒distrˡ *-comm *-distribʳ-+ *-distrib-+ : _*_ DistributesOver _+_ *-distrib-+ = *-distribˡ-+ , *-distribʳ-+ ------------------------------------------------------------------------ -- Structures *-isMagma : IsMagma _*_ *-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _*_ } *-isSemigroup : IsSemigroup _*_ *-isSemigroup = record { isMagma = *-isMagma ; assoc = *-assoc } *-isCommutativeSemigroup : IsCommutativeSemigroup _*_ *-isCommutativeSemigroup = record { isSemigroup = *-isSemigroup ; comm = *-comm } *-1-isMonoid : IsMonoid _*_ (+ 1) *-1-isMonoid = record { isSemigroup = *-isSemigroup ; identity = *-identity } *-1-isCommutativeMonoid : IsCommutativeMonoid _*_ (+ 1) *-1-isCommutativeMonoid = record { isMonoid = *-1-isMonoid ; comm = *-comm } +-*-isSemiring : IsSemiring _+_ _*_ +0 (+ 1) +-*-isSemiring = record { isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-0-isCommutativeMonoid ; *-isMonoid = *-1-isMonoid ; distrib = *-distrib-+ } ; zero = *-zero } +-*-isCommutativeSemiring : IsCommutativeSemiring _+_ _*_ +0 (+ 1) +-*-isCommutativeSemiring = record { isSemiring = +-*-isSemiring ; *-comm = *-comm } +-*-isRing : IsRing _+_ _*_ -_ +0 (+ 1) +-*-isRing = record { +-isAbelianGroup = +-isAbelianGroup ; *-isMonoid = *-1-isMonoid ; distrib = *-distrib-+ ; zero = *-zero } +-*-isCommutativeRing : IsCommutativeRing _+_ _*_ -_ +0 (+ 1) +-*-isCommutativeRing = record { isRing = +-*-isRing ; *-comm = *-comm } ------------------------------------------------------------------------ -- Bundles *-magma : Magma 0ℓ 0ℓ *-magma = record { isMagma = *-isMagma } *-semigroup : Semigroup 0ℓ 0ℓ *-semigroup = record { isSemigroup = *-isSemigroup } *-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ *-commutativeSemigroup = record { isCommutativeSemigroup = *-isCommutativeSemigroup } *-1-monoid : Monoid 0ℓ 0ℓ *-1-monoid = record { isMonoid = *-1-isMonoid } *-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ *-1-commutativeMonoid = record { isCommutativeMonoid = *-1-isCommutativeMonoid } +-*-semiring : Semiring 0ℓ 0ℓ +-*-semiring = record { isSemiring = +-*-isSemiring } +-*-ring : Ring 0ℓ 0ℓ +-*-ring = record { isRing = +-*-isRing } +-*-commutativeRing : CommutativeRing 0ℓ 0ℓ +-*-commutativeRing = record { isCommutativeRing = +-*-isCommutativeRing } ------------------------------------------------------------------------ -- Other properties of _*_ and _≡_ abs-*-commute : ℤtoℕ.Homomorphic₂ ∣_∣ _*_ ℕ._*_ abs-*-commute i j = abs-◃ _ _ *-cancelʳ-≡ : ∀ i j k → k ≢ + 0 → i * k ≡ j * k → i ≡ j *-cancelʳ-≡ i j k ≢0 eq with signAbs k *-cancelʳ-≡ i j .+0 ≢0 eq | s ◂ zero = contradiction refl ≢0 *-cancelʳ-≡ i j .(s ◃ suc n) ≢0 eq | s ◂ suc n with ∣ s ◃ suc n ∣ | abs-◃ s (suc n) | sign (s ◃ suc n) | sign-◃ s n ... | .(suc n) | refl | .s | refl = ◃-cong (sign-i≡sign-j i j eq) $ ℕₚ.*-cancelʳ-≡ ∣ i ∣ ∣ j ∣ $ abs-cong eq where sign-i≡sign-j : ∀ i j → (sign i 𝕊* s) ◃ (∣ i ∣ ℕ.* suc n) ≡ (sign j 𝕊* s) ◃ (∣ j ∣ ℕ.* suc n) → sign i ≡ sign j sign-i≡sign-j i j eq with signAbs i | signAbs j sign-i≡sign-j .+0 .+0 eq | s₁ ◂ zero | s₂ ◂ zero = refl sign-i≡sign-j .+0 .(s₂ ◃ suc n₂) eq | s₁ ◂ zero | s₂ ◂ suc n₂ with ∣ s₂ ◃ suc n₂ ∣ | abs-◃ s₂ (suc n₂) ... | .(suc n₂) | refl with abs-cong {s₁} {sign (s₂ ◃ suc n₂) 𝕊* s} {0} {suc n₂ ℕ.* suc n} eq ... | () sign-i≡sign-j .(s₁ ◃ suc n₁) .+0 eq | s₁ ◂ suc n₁ | s₂ ◂ zero with ∣ s₁ ◃ suc n₁ ∣ | abs-◃ s₁ (suc n₁) ... | .(suc n₁) | refl with abs-cong {sign (s₁ ◃ suc n₁) 𝕊* s} {s₁} {suc n₁ ℕ.* suc n} {0} eq ... | () sign-i≡sign-j .(s₁ ◃ suc n₁) .(s₂ ◃ suc n₂) eq | s₁ ◂ suc n₁ | s₂ ◂ suc n₂ with ∣ s₁ ◃ suc n₁ ∣ | abs-◃ s₁ (suc n₁) | sign (s₁ ◃ suc n₁) | sign-◃ s₁ n₁ | ∣ s₂ ◃ suc n₂ ∣ | abs-◃ s₂ (suc n₂) | sign (s₂ ◃ suc n₂) | sign-◃ s₂ n₂ ... | .(suc n₁) | refl | .s₁ | refl | .(suc n₂) | refl | .s₂ | refl = 𝕊ₚ.*-cancelʳ-≡ s₁ s₂ (sign-cong eq) *-cancelˡ-≡ : ∀ i j k → i ≢ + 0 → i * j ≡ i * k → j ≡ k *-cancelˡ-≡ i j k rewrite *-comm i j | *-comm i k = *-cancelʳ-≡ j k i suc-* : ∀ m n → sucℤ m * n ≡ n + m * n suc-* m n = begin sucℤ m * n ≡⟨ *-distribʳ-+ n (+ 1) m ⟩ + 1 * n + m * n ≡⟨ cong (_+ m * n) (*-identityˡ n) ⟩ n + m * n ∎ where open ≡-Reasoning *-suc : ∀ m n → m * sucℤ n ≡ m + m * n *-suc m n = begin m * sucℤ n ≡⟨ *-comm m _ ⟩ sucℤ n * m ≡⟨ suc-* n m ⟩ m + n * m ≡⟨ cong (λ v → m + v) (*-comm n m) ⟩ m + m * n ∎ where open ≡-Reasoning -1*n≡-n : ∀ n → -[1+ 0 ] * n ≡ - n -1*n≡-n -[1+ n ] = cong (λ v → + suc v) (ℕₚ.+-identityʳ n) -1*n≡-n +0 = refl -1*n≡-n +[1+ n ] = cong -[1+_] (ℕₚ.+-identityʳ n) ------------------------------------------------------------------------ -- Properties of _*_ and +_/-_ pos-distrib-* : ∀ x y → (+ x) * (+ y) ≡ + (x ℕ.* y) pos-distrib-* zero y = refl pos-distrib-* (suc x) zero = pos-distrib-* x zero pos-distrib-* (suc x) (suc y) = refl neg-distribˡ-* : ∀ x y → - (x * y) ≡ (- x) * y neg-distribˡ-* x y = begin - (x * y) ≡⟨ sym (-1*n≡-n (x * y)) ⟩ -[1+ 0 ] * (x * y) ≡⟨ sym (*-assoc -[1+ 0 ] x y) ⟩ -[1+ 0 ] * x * y ≡⟨ cong (_* y) (-1*n≡-n x) ⟩ - x * y ∎ where open ≡-Reasoning neg-distribʳ-* : ∀ x y → - (x * y) ≡ x * (- y) neg-distribʳ-* x y = begin - (x * y) ≡⟨ cong -_ (*-comm x y) ⟩ - (y * x) ≡⟨ neg-distribˡ-* y x ⟩ - y * x ≡⟨ *-comm (- y) x ⟩ x * (- y) ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- Properties of _*_ and _◃_ ◃-distrib-* : ∀ s t m n → (s 𝕊* t) ◃ (m ℕ.* n) ≡ (s ◃ m) * (t ◃ n) ◃-distrib-* s t zero zero = refl ◃-distrib-* s t zero (suc n) = refl ◃-distrib-* s t (suc m) zero = trans (cong₂ _◃_ (𝕊ₚ.*-comm s t) (ℕₚ.*-comm m 0)) (*-comm (t ◃ zero) (s ◃ suc m)) ◃-distrib-* s t (suc m) (suc n) = sym (cong₂ _◃_ (cong₂ _𝕊*_ (sign-◃ s m) (sign-◃ t n)) (∣s◃m∣*∣t◃n∣≡m*n s t (suc m) (suc n))) ------------------------------------------------------------------------ -- Properties of _*_ and _≤_ *-cancelʳ-≤-pos : ∀ m n o → m * + suc o ≤ n * + suc o → m ≤ n *-cancelʳ-≤-pos (-[1+ m ]) (-[1+ n ]) o (-≤- n≤m) = -≤- (ℕₚ.≤-pred (ℕₚ.*-cancelʳ-≤ (suc n) (suc m) o (s≤s n≤m))) *-cancelʳ-≤-pos -[1+ _ ] (+ _) _ _ = -≤+ *-cancelʳ-≤-pos +0 +0 _ _ = +≤+ z≤n *-cancelʳ-≤-pos +0 (+ suc _) _ _ = +≤+ z≤n *-cancelʳ-≤-pos (+ suc _) +0 _ (+≤+ ()) *-cancelʳ-≤-pos (+ suc m) (+ suc n) o (+≤+ m≤n) = +≤+ (ℕₚ.*-cancelʳ-≤ (suc m) (suc n) o m≤n) *-cancelˡ-≤-pos : ∀ m n o → + suc m * n ≤ + suc m * o → n ≤ o *-cancelˡ-≤-pos m n o rewrite *-comm (+ suc m) n | *-comm (+ suc m) o = *-cancelʳ-≤-pos n o m *-monoʳ-≤-pos : ∀ n → (_* + suc n) Preserves _≤_ ⟶ _≤_ *-monoʳ-≤-pos _ (-≤+ {n = 0}) = -≤+ *-monoʳ-≤-pos _ (-≤+ {n = suc _}) = -≤+ *-monoʳ-≤-pos x (-≤- n≤m) = -≤- (ℕₚ.≤-pred (ℕₚ.*-mono-≤ (s≤s n≤m) (ℕₚ.≤-refl {x = suc x}))) *-monoʳ-≤-pos k {+ 0} {+ 0} (+≤+ m≤n) = +≤+ m≤n *-monoʳ-≤-pos k {+ 0} {+ suc _} (+≤+ m≤n) = +≤+ z≤n *-monoʳ-≤-pos x (+≤+ {m = suc _} {n = suc _} m≤n) = +≤+ ((ℕₚ.*-mono-≤ m≤n (ℕₚ.≤-refl {x = suc x}))) *-monoʳ-≤-non-neg : ∀ n → (_* + n) Preserves _≤_ ⟶ _≤_ *-monoʳ-≤-non-neg (suc n) = *-monoʳ-≤-pos n *-monoʳ-≤-non-neg zero {i} {j} i≤j rewrite *-zeroʳ i | *-zeroʳ j = +≤+ z≤n *-monoˡ-≤-non-neg : ∀ n → (+ n *_) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤-non-neg n {i} {j} i≤j rewrite *-comm (+ n) i | *-comm (+ n) j = *-monoʳ-≤-non-neg n i≤j *-monoˡ-≤-pos : ∀ n → (+ suc n *_) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤-pos n = *-monoˡ-≤-non-neg (suc n) ------------------------------------------------------------------------ -- Properties of _*_ and _≤_ *-monoˡ-<-pos : ∀ n → (+[1+ n ] *_) Preserves _<_ ⟶ _<_ *-monoˡ-<-pos n {+ m} {+ o} (+<+ m<o) = +◃-mono-< (ℕₚ.+-mono-<-≤ m<o (ℕₚ.*-monoʳ-≤ n (ℕₚ.<⇒≤ m<o))) *-monoˡ-<-pos n { -[1+ m ]} {+ o} leq = -◃<+◃ _ (suc n ℕ.* o) *-monoˡ-<-pos n { -[1+ m ]} { -[1+ o ]} (-<- o<m) = -<- (ℕₚ.+-mono-<-≤ o<m (ℕₚ.*-monoʳ-≤ n (ℕₚ.<⇒≤ (s≤s o<m)))) *-monoʳ-<-pos : ∀ n → (_* +[1+ n ]) Preserves _<_ ⟶ _<_ *-monoʳ-<-pos n {m} {o} rewrite *-comm m +[1+ n ] | *-comm o +[1+ n ] = *-monoˡ-<-pos n *-cancelˡ-<-non-neg : ∀ n {i j} → + n * i < + n * j → i < j *-cancelˡ-<-non-neg n {+ i} {+ j} leq = +<+ (ℕₚ.*-cancelˡ-< n (+◃-cancel-< leq)) *-cancelˡ-<-non-neg n {+ i} { -[1+ j ]} leq = contradiction leq +◃≮-◃ *-cancelˡ-<-non-neg n { -[1+ i ]} {+ j} leq = -<+ *-cancelˡ-<-non-neg n { -[1+ i ]} { -[1+ j ]} leq = -<- (ℕₚ.≤-pred (ℕₚ.*-cancelˡ-< n (neg◃-cancel-< leq))) *-cancelʳ-<-non-neg : ∀ {i j} n → i * + n < j * + n → i < j *-cancelʳ-<-non-neg {i} {j} n rewrite *-comm i (+ n) | *-comm j (+ n) = *-cancelˡ-<-non-neg n ------------------------------------------------------------------------ -- Properties of _⊓_ ------------------------------------------------------------------------ ------------------------------------------------------------------------ -- Algebraic properties ⊓-comm : Commutative _⊓_ ⊓-comm -[1+ m ] -[1+ n ] = cong -[1+_] (ℕₚ.⊔-comm m n) ⊓-comm -[1+ m ] (+ n) = refl ⊓-comm (+ m) -[1+ n ] = refl ⊓-comm (+ m) (+ n) = cong +_ (ℕₚ.⊓-comm m n) ⊓-assoc : Associative _⊓_ ⊓-assoc -[1+ m ] -[1+ n ] -[1+ p ] = cong -[1+_] (ℕₚ.⊔-assoc m n p) ⊓-assoc -[1+ m ] -[1+ n ] (+ p) = refl ⊓-assoc -[1+ m ] (+ n) -[1+ p ] = refl ⊓-assoc -[1+ m ] (+ n) (+ p) = refl ⊓-assoc (+ m) -[1+ n ] -[1+ p ] = refl ⊓-assoc (+ m) -[1+ n ] (+ p) = refl ⊓-assoc (+ m) (+ n) -[1+ p ] = refl ⊓-assoc (+ m) (+ n) (+ p) = cong +_ (ℕₚ.⊓-assoc m n p) ⊓-idem : Idempotent _⊓_ ⊓-idem (+ m) = cong +_ (ℕₚ.⊓-idem m) ⊓-idem -[1+ m ] = cong -[1+_] (ℕₚ.⊔-idem m) ⊓-sel : Selective _⊓_ ⊓-sel -[1+ m ] -[1+ n ] = Sum.map (cong -[1+_]) (cong -[1+_]) $ ℕₚ.⊔-sel m n ⊓-sel -[1+ m ] (+ n) = inj₁ refl ⊓-sel (+ m) -[1+ n ] = inj₂ refl ⊓-sel (+ m) (+ n) = Sum.map (cong ℤ.pos) (cong ℤ.pos) $ ℕₚ.⊓-sel m n ------------------------------------------------------------------------ -- Other properties m≤n⇒m⊓n≡m : ∀ {m n} → m ≤ n → m ⊓ n ≡ m m≤n⇒m⊓n≡m -≤+ = refl m≤n⇒m⊓n≡m (-≤- n≤m) = cong -[1+_] (ℕₚ.m≤n⇒n⊔m≡n n≤m) m≤n⇒m⊓n≡m (+≤+ m≤n) = cong +_ (ℕₚ.m≤n⇒m⊓n≡m m≤n) m⊓n≡m⇒m≤n : ∀ {m n} → m ⊓ n ≡ m → m ≤ n m⊓n≡m⇒m≤n { -[1+ m ]} { -[1+ n ]} eq = -≤- (ℕₚ.n⊔m≡n⇒m≤n (-[1+-injective eq)) m⊓n≡m⇒m≤n { -[1+ m ]} {+ n} eq = -≤+ m⊓n≡m⇒m≤n {+ m} {+ n} eq = +≤+ (ℕₚ.m⊓n≡m⇒m≤n (+-injective eq)) m≥n⇒m⊓n≡n : ∀ {m n} → m ≥ n → m ⊓ n ≡ n m≥n⇒m⊓n≡n {m} {n} pr rewrite ⊓-comm m n = m≤n⇒m⊓n≡m pr m⊓n≡n⇒m≥n : ∀ {m n} → m ⊓ n ≡ n → m ≥ n m⊓n≡n⇒m≥n {m} {n} eq rewrite ⊓-comm m n = m⊓n≡m⇒m≤n eq m⊓n≤n : ∀ m n → m ⊓ n ≤ n m⊓n≤n -[1+ m ] -[1+ n ] = -≤- (ℕₚ.n≤m⊔n m n) m⊓n≤n -[1+ m ] (+ n) = -≤+ m⊓n≤n (+ m) -[1+ n ] = -≤- ℕₚ.≤-refl m⊓n≤n (+ m) (+ n) = +≤+ (ℕₚ.m⊓n≤n m n) m⊓n≤m : ∀ m n → m ⊓ n ≤ m m⊓n≤m m n rewrite ⊓-comm m n = m⊓n≤n n m ------------------------------------------------------------------------ -- Properties _⊔_ ------------------------------------------------------------------------ ------------------------------------------------------------------------ -- Algebraic properties ⊔-assoc : Associative _⊔_ ⊔-assoc -[1+ m ] -[1+ n ] -[1+ p ] = cong -[1+_] (ℕₚ.⊓-assoc m n p) ⊔-assoc -[1+ m ] -[1+ n ] (+ p) = refl ⊔-assoc -[1+ m ] (+ n) -[1+ p ] = refl ⊔-assoc -[1+ m ] (+ n) (+ p) = refl ⊔-assoc (+ m) -[1+ n ] -[1+ p ] = refl ⊔-assoc (+ m) -[1+ n ] (+ p) = refl ⊔-assoc (+ m) (+ n) -[1+ p ] = refl ⊔-assoc (+ m) (+ n) (+ p) = cong +_ (ℕₚ.⊔-assoc m n p) ⊔-comm : Commutative _⊔_ ⊔-comm -[1+ m ] -[1+ n ] = cong -[1+_] (ℕₚ.⊓-comm m n) ⊔-comm -[1+ m ] (+ n) = refl ⊔-comm (+ m) -[1+ n ] = refl ⊔-comm (+ m) (+ n) = cong +_ (ℕₚ.⊔-comm m n) ⊔-idem : Idempotent _⊔_ ⊔-idem (+ m) = cong +_ (ℕₚ.⊔-idem m) ⊔-idem -[1+ m ] = cong -[1+_] (ℕₚ.⊓-idem m) ⊔-sel : Selective _⊔_ ⊔-sel -[1+ m ] -[1+ n ] = Sum.map (cong -[1+_]) (cong -[1+_]) $ ℕₚ.⊓-sel m n ⊔-sel -[1+ m ] (+ n) = inj₂ refl ⊔-sel (+ m) -[1+ n ] = inj₁ refl ⊔-sel (+ m) (+ n) = Sum.map (cong ℤ.pos) (cong ℤ.pos) $ ℕₚ.⊔-sel m n ------------------------------------------------------------------------ -- Other properties m≤n⇒m⊔n≡n : ∀ {m n} → m ≤ n → m ⊔ n ≡ n m≤n⇒m⊔n≡n -≤+ = refl m≤n⇒m⊔n≡n (-≤- n≤m) = cong -[1+_] (ℕₚ.m≤n⇒n⊓m≡m n≤m) m≤n⇒m⊔n≡n (+≤+ m≤n) = cong +_ (ℕₚ.m≤n⇒m⊔n≡n m≤n) m⊔n≡n⇒m≤n : ∀ {m n} → m ⊔ n ≡ n → m ≤ n m⊔n≡n⇒m≤n { -[1+ m ]} { -[1+ n ]} eq = -≤- (ℕₚ.m⊓n≡n⇒n≤m (-[1+-injective eq)) m⊔n≡n⇒m≤n { -[1+ m ]} {+ n} eq = -≤+ m⊔n≡n⇒m≤n {+ m} {+ n} eq = +≤+ (ℕₚ.n⊔m≡m⇒n≤m (+-injective eq)) m≥n⇒m⊔n≡m : ∀ {m n} → m ≥ n → m ⊔ n ≡ m m≥n⇒m⊔n≡m {m} {n} pr rewrite ⊔-comm m n = m≤n⇒m⊔n≡n pr m⊔n≡m⇒m≥n : ∀ {m n} → m ⊔ n ≡ m → m ≥ n m⊔n≡m⇒m≥n {m} {n} eq rewrite ⊔-comm m n = m⊔n≡n⇒m≤n eq m≤m⊔n : ∀ m n → m ≤ m ⊔ n m≤m⊔n -[1+ m ] -[1+ n ] = -≤- (ℕₚ.m⊓n≤m m n) m≤m⊔n -[1+ m ] (+ n) = -≤+ m≤m⊔n (+ m) -[1+ n ] = +≤+ ℕₚ.≤-refl m≤m⊔n (+ m) (+ n) = +≤+ (ℕₚ.m≤m⊔n m n) n≤m⊔n : ∀ m n → n ≤ m ⊔ n n≤m⊔n m n rewrite ⊔-comm m n = m≤m⊔n n m neg-distrib-⊔-⊓ : ∀ m n → - (m ⊔ n) ≡ - m ⊓ - n neg-distrib-⊔-⊓ -[1+ m ] -[1+ n ] = refl neg-distrib-⊔-⊓ -[1+ m ] +0 = refl neg-distrib-⊔-⊓ -[1+ m ] +[1+ n ] = refl neg-distrib-⊔-⊓ +0 -[1+ n ] = refl neg-distrib-⊔-⊓ +0 +0 = refl neg-distrib-⊔-⊓ +0 +[1+ n ] = refl neg-distrib-⊔-⊓ +[1+ m ] -[1+ n ] = refl neg-distrib-⊔-⊓ +[1+ m ] +0 = refl neg-distrib-⊔-⊓ +[1+ m ] +[1+ n ] = refl neg-distrib-⊓-⊔ : ∀ m n → - (m ⊓ n) ≡ - m ⊔ - n neg-distrib-⊓-⊔ -[1+ m ] -[1+ n ] = refl neg-distrib-⊓-⊔ -[1+ m ] +0 = refl neg-distrib-⊓-⊔ -[1+ m ] +[1+ n ] = refl neg-distrib-⊓-⊔ +0 -[1+ n ] = refl neg-distrib-⊓-⊔ +0 +0 = refl neg-distrib-⊓-⊔ +0 +[1+ n ] = refl neg-distrib-⊓-⊔ +[1+ m ] -[1+ n ] = refl neg-distrib-⊓-⊔ +[1+ m ] +0 = refl neg-distrib-⊓-⊔ +[1+ m ] +[1+ n ] = refl ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 inverseˡ = +-inverseˡ {-# WARNING_ON_USAGE inverseˡ "Warning: inverseˡ was deprecated in v0.15. Please use +-inverseˡ instead." #-} inverseʳ = +-inverseʳ {-# WARNING_ON_USAGE inverseʳ "Warning: inverseʳ was deprecated in v0.15. Please use +-inverseʳ instead." #-} distribʳ = *-distribʳ-+ {-# WARNING_ON_USAGE distribʳ "Warning: distribʳ was deprecated in v0.15. Please use *-distribʳ-+ instead." #-} isCommutativeSemiring = +-*-isCommutativeSemiring {-# WARNING_ON_USAGE isCommutativeSemiring "Warning: isCommutativeSemiring was deprecated in v0.15. Please use +-*-isCommutativeSemiring instead." #-} commutativeRing = +-*-commutativeRing {-# WARNING_ON_USAGE commutativeRing "Warning: commutativeRing was deprecated in v0.15. Please use +-*-commutativeRing instead." #-} *-+-right-mono = *-monoʳ-≤-pos {-# WARNING_ON_USAGE *-+-right-mono "Warning: *-+-right-mono was deprecated in v0.15. Please use *-monoʳ-≤-pos instead." #-} cancel-*-+-right-≤ = *-cancelʳ-≤-pos {-# WARNING_ON_USAGE cancel-*-+-right-≤ "Warning: cancel-*-+-right-≤ was deprecated in v0.15. Please use *-cancelʳ-≤-pos instead." #-} cancel-*-right = *-cancelʳ-≡ {-# WARNING_ON_USAGE cancel-*-right "Warning: cancel-*-right was deprecated in v0.15. Please use *-cancelʳ-≡ instead." #-} doubleNeg = neg-involutive {-# WARNING_ON_USAGE doubleNeg "Warning: doubleNeg was deprecated in v0.15. Please use neg-involutive instead." #-} -‿involutive = neg-involutive {-# WARNING_ON_USAGE -‿involutive "Warning: -‿involutive was deprecated in v0.15. Please use neg-involutive instead." #-} +-⊖-left-cancel = +-cancelˡ-⊖ {-# WARNING_ON_USAGE +-⊖-left-cancel "Warning: +-⊖-left-cancel was deprecated in v0.15. Please use +-cancelˡ-⊖ instead." #-} -- Version 1.0 ≰→> = ≰⇒> {-# WARNING_ON_USAGE ≰→> "Warning: ≰→> was deprecated in v1.0. Please use ≰⇒> instead." #-} ≤-irrelevance = ≤-irrelevant {-# WARNING_ON_USAGE ≤-irrelevance "Warning: ≤-irrelevance was deprecated in v1.0. Please use ≤-irrelevant instead." #-} <-irrelevance = <-irrelevant {-# WARNING_ON_USAGE <-irrelevance "Warning: <-irrelevance was deprecated in v1.0. Please use <-irrelevant instead." #-} -- Version 1.1 -- Not all of the below have deprecation warnings attached as they are -- reused by other deprecated results. -<′+ : ∀ {m n} → -[1+ m ] <′ + n -<′+ {0} = +≤+ z≤n -<′+ {suc _} = -≤+ {-# WARNING_ON_USAGE -<′+ "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} <′-irrefl : Irreflexive _≡_ _<′_ <′-irrefl { + n} refl (+≤+ 1+n≤n) = ℕₚ.<-irrefl refl 1+n≤n <′-irrefl { -[1+ suc n ]} refl (-≤- 1+n≤n) = ℕₚ.<-irrefl refl 1+n≤n {-# WARNING_ON_USAGE <′-irrefl "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} >′-irrefl : Irreflexive _≡_ _>′_ >′-irrefl = <′-irrefl ∘ sym {-# WARNING_ON_USAGE >′-irrefl "Warning: _>′_ was deprecated in v1.1. Please use _>_ instead." #-} <′-asym : Asymmetric _<′_ <′-asym {+ n} {+ m} (+≤+ n<m) (+≤+ m<n) = ℕₚ.<-asym n<m m<n <′-asym { -[1+ suc n ]} { -[1+ suc m ]} (-≤- n<m) (-≤- m<n) = ℕₚ.<-asym n<m m<n {-# WARNING_ON_USAGE <′-asym "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} ≤-<′-trans : Trans _≤_ _<′_ _<′_ ≤-<′-trans { -[1+ m ]} {+ n} {+ p} -≤+ (+≤+ 1+n≤p) = -<′+ {m} {p} ≤-<′-trans {+ m} {+ n} {+ p} (+≤+ m≤n) (+≤+ 1+n≤p) = +≤+ (ℕₚ.≤-trans (ℕ.s≤s m≤n) 1+n≤p) ≤-<′-trans { -[1+ m ]} { -[1+ n ]} (-≤- n≤m) n<p = ≤-trans (⊖-monoʳ-≥-≤ 0 n≤m) n<p {-# WARNING_ON_USAGE ≤-<′-trans "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} <′-≤-trans : Trans _<′_ _≤_ _<′_ <′-≤-trans = ≤-trans {-# WARNING_ON_USAGE <′-≤-trans "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} <′⇒≤ : ∀ {m n} → m <′ n → m ≤ n <′⇒≤ m<n = ≤-trans (n≤1+n _) m<n {-# WARNING_ON_USAGE <′⇒≤ "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} <′-trans : Transitive _<′_ <′-trans {m} {n} {p} m<n n<p = ≤-<′-trans {m} {n} {p} (<′⇒≤ m<n) n<p {-# WARNING_ON_USAGE <′-trans "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} <′-cmp : Trichotomous _≡_ _<′_ <′-cmp (+ m) (+ n) with ℕₚ.<-cmp m n ... | tri< m<n m≢n m≯n = tri< (+≤+ m<n) (m≢n ∘ +-injective) (m≯n ∘ drop‿+≤+) ... | tri≈ m≮n m≡n m≯n = tri≈ (m≮n ∘ drop‿+≤+) (cong (+_) m≡n) (m≯n ∘ drop‿+≤+) ... | tri> m≮n m≢n m>n = tri> (m≮n ∘ drop‿+≤+) (m≢n ∘ +-injective) (+≤+ m>n) <′-cmp (+_ m) -[1+ 0 ] = tri> (λ()) (λ()) (+≤+ z≤n) <′-cmp (+_ m) -[1+ suc n ] = tri> (λ()) (λ()) -≤+ <′-cmp -[1+ 0 ] (+ n) = tri< (+≤+ z≤n) (λ()) (λ()) <′-cmp -[1+ suc m ] (+ n) = tri< -≤+ (λ()) (λ()) <′-cmp -[1+ 0 ] -[1+ 0 ] = tri≈ (λ()) refl (λ()) <′-cmp -[1+ 0 ] -[1+ suc n ] = tri> (λ()) (λ()) (-≤- z≤n) <′-cmp -[1+ suc m ] -[1+ 0 ] = tri< (-≤- z≤n) (λ()) (λ()) <′-cmp -[1+ suc m ] -[1+ suc n ] with ℕₚ.<-cmp (suc m) (suc n) ... | tri< m<n m≢n m≯n = tri> (m≯n ∘ s≤s ∘ drop‿-≤-) (m≢n ∘ -[1+-injective) (-≤- (ℕₚ.≤-pred m<n)) ... | tri≈ m≮n m≡n m≯n = tri≈ (m≯n ∘ ℕ.s≤s ∘ drop‿-≤-) (cong -[1+_] m≡n) (m≮n ∘ ℕ.s≤s ∘ drop‿-≤-) ... | tri> m≮n m≢n m>n = tri< (-≤- (ℕₚ.≤-pred m>n)) (m≢n ∘ -[1+-injective) (m≮n ∘ s≤s ∘ drop‿-≤-) {-# WARNING_ON_USAGE <′-cmp "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} <′-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<′_ <′-isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = <′-irrefl ; trans = λ {i} → <′-trans {i} ; <-resp-≈ = (λ {x} → subst (x <′_)) , subst (_<′ _) } {-# WARNING_ON_USAGE <′-isStrictPartialOrder "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} <′-strictPartialOrder : StrictPartialOrder _ _ _ <′-strictPartialOrder = record { isStrictPartialOrder = <′-isStrictPartialOrder } {-# WARNING_ON_USAGE <′-strictPartialOrder "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} <′-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<′_ <′-isStrictTotalOrder = record { isEquivalence = isEquivalence ; trans = λ {i} → <′-trans {i} ; compare = <′-cmp } {-# WARNING_ON_USAGE <′-isStrictTotalOrder "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} <′-strictTotalOrder : StrictTotalOrder _ _ _ <′-strictTotalOrder = record { isStrictTotalOrder = <′-isStrictTotalOrder } {-# WARNING_ON_USAGE <′-strictTotalOrder "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} n≮′n : ∀ {n} → n ≮′ n n≮′n {+ n} (+≤+ n<n) = contradiction n<n ℕₚ.1+n≰n n≮′n { -[1+ suc n ]} (-≤- n<n) = contradiction n<n ℕₚ.1+n≰n {-# WARNING_ON_USAGE n≮′n "Warning: n≮′n was deprecated in v1.1. Please use n≮n instead." #-} >′⇒≰′ : ∀ {x y} → x >′ y → x ≰ y >′⇒≰′ {y = y} x>y x≤y = contradiction (<′-≤-trans {i = y} x>y x≤y) n≮′n {-# WARNING_ON_USAGE >′⇒≰′ "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} ≰⇒>′ : ∀ {x y} → x ≰ y → x >′ y ≰⇒>′ {+ m} {+ n} m≰n = +≤+ (ℕₚ.≰⇒> (m≰n ∘ +≤+)) ≰⇒>′ {+ m} { -[1+ n ]} _ = -<′+ {n} {m} ≰⇒>′ { -[1+ m ]} {+ _} m≰n = contradiction -≤+ m≰n ≰⇒>′ { -[1+ 0 ]} { -[1+ 0 ]} m≰n = contradiction ≤-refl m≰n ≰⇒>′ { -[1+ suc _ ]} { -[1+ 0 ]} m≰n = contradiction (-≤- z≤n) m≰n ≰⇒>′ { -[1+ m ]} { -[1+ suc n ]} m≰n with m ℕ.≤? n ... | yes m≤n = -≤- m≤n ... | no m≰n' = contradiction (-≤- (ℕₚ.≰⇒> m≰n')) m≰n {-# WARNING_ON_USAGE ≰⇒>′ "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} <′-irrelevant : Irrelevant _<′_ <′-irrelevant = ≤-irrelevant {-# WARNING_ON_USAGE <′-irrelevant "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} +-monoˡ-<′ : ∀ n → (_+ n) Preserves _<′_ ⟶ _<′_ +-monoˡ-<′ n {i} {j} i<j rewrite sym (+-assoc (+ 1) i n) = +-monoˡ-≤ n i<j {-# WARNING_ON_USAGE +-monoˡ-<′ "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} +-monoʳ-<′ : ∀ n → (_+_ n) Preserves _<′_ ⟶ _<′_ +-monoʳ-<′ n {i} {j} i<j rewrite +-comm n i | +-comm n j = +-monoˡ-<′ n {i} {j} i<j {-# WARNING_ON_USAGE +-monoʳ-<′ "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} +-mono-<′ : _+_ Preserves₂ _<′_ ⟶ _<′_ ⟶ _<′_ +-mono-<′ {m} {n} {i} {j} m<n i<j = begin sucℤ (m + i) ≤⟨ suc-mono {m + i} (<′⇒≤ (+-monoˡ-<′ i {m} {n} m<n)) ⟩ sucℤ (n + i) ≤⟨ +-monoʳ-<′ n i<j ⟩ n + j ∎ where open ≤-Reasoning {-# WARNING_ON_USAGE +-mono-<′ "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} +-mono-≤-<′ : _+_ Preserves₂ _≤_ ⟶ _<′_ ⟶ _<′_ +-mono-≤-<′ {m} {n} {i} {j} m≤n i<j = ≤-<′-trans (+-monoˡ-≤ i m≤n) (+-monoʳ-<′ n i<j) {-# WARNING_ON_USAGE +-mono-≤-<′ "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} +-mono-<′-≤ : _+_ Preserves₂ _<′_ ⟶ _≤_ ⟶ _<′_ +-mono-<′-≤ {m} {n} {i} {j} m<n i≤j = <′-≤-trans {m + i} {n + i} {n + j} (+-monoˡ-<′ i {m} {n} m<n) (+-monoʳ-≤ n i≤j) {-# WARNING_ON_USAGE +-mono-<′-≤ "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} m≤pred[n]⇒m<′n : ∀ {m n} → m ≤ pred n → m <′ n m≤pred[n]⇒m<′n {m} {n} m≤predn = begin sucℤ m ≤⟨ +-monoʳ-≤ (+ 1) m≤predn ⟩ + 1 + pred n ≡⟨ sym (+-assoc (+ 1) -[1+ 0 ] n) ⟩ (+ 1 + -[1+ 0 ]) + n ≡⟨ cong (_+ n) (+-inverseʳ (+ 1)) ⟩ + 0 + n ≡⟨ +-identityˡ n ⟩ n ∎ where open ≤-Reasoning {-# WARNING_ON_USAGE m≤pred[n]⇒m<′n "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} m<′n⇒m≤pred[n] : ∀ {m n} → m <′ n → m ≤ pred n m<′n⇒m≤pred[n] {m} {n} m<n = begin m ≡⟨ sym (pred-suc m) ⟩ pred (sucℤ m) ≤⟨ pred-mono m<n ⟩ pred n ∎ where open ≤-Reasoning {-# WARNING_ON_USAGE m<′n⇒m≤pred[n] "Warning: _<′_ was deprecated in v1.1. Please use _<_ instead." #-} -- Version 1.2 [1+m]*n≡n+m*n = suc-* {-# WARNING_ON_USAGE [1+m]*n≡n+m*n "Warning: [1+m]*n≡n+m*n was deprecated in v1.2. Please use suc-* instead." #-}
33.19979
111
0.425922
31250c2cdb40ce4e6071dccacfa02c662062da0b
841
agda
Agda
test/succeed/Test0.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
test/succeed/Test0.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
test/succeed/Test0.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K #-} open import lib.Base module succeed.Test0 where module _ where private data #I : Type₀ where #zero : #I #one : #I I : Type₀ I = #I zero : I zero = #zero one : I one = #one postulate seg : zero == one I-elim : ∀ {i} {P : I → Type i} (zero* : P zero) (one* : P one) (seg* : zero* == one* [ P ↓ seg ]) → Π I P I-elim zero* one* seg* #zero = zero* I-elim zero* one* seg* #one = one* postulate I-seg-β : ∀ {i} {P : I → Type i} (zero* : P zero) (one* : P one) (seg* : zero* == one* [ P ↓ seg ]) → apd (I-elim zero* one* seg*) seg == seg* test : ∀ {i} {P : I → Type i} (zero* : P zero) (one* : P one) (seg* : zero* == one* [ P ↓ seg ]) → (I-elim zero* one* seg*) zero == zero* test zero* one* seg* = idp
21.025
68
0.470868
2f4579f990805bf4ae7a2a1c297128caef7cfddf
7,296
agda
Agda
Cubical/Modalities/Lex.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Modalities/Lex.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Modalities/Lex.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --postfix-projections #-} open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function renaming (uncurry to λ⟨,⟩_) open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.CartesianKanOps open import Cubical.Data.Sigma.Properties module Cubical.Modalities.Lex (◯ : ∀ {ℓ} → Type ℓ → Type ℓ) (η : ∀ {ℓ} {A : Type ℓ} → A → ◯ A) (isModal : ∀ {ℓ} → Type ℓ → Type ℓ) (let isModalFam = λ {ℓ ℓ' : Level} {A : Type ℓ} (B : A → Type ℓ') → (x : A) → isModal (B x)) (idemp : ∀ {ℓ} {A : Type ℓ} → isModal (◯ A)) (≡-modal : ∀ {ℓ} {A : Type ℓ} {x y : A} (A-mod : isModal A) → isModal (x ≡ y)) (◯-ind : ∀ {ℓ ℓ'} {A : Type ℓ} {B : ◯ A → Type ℓ'} (B-mod : isModalFam B) (f : (x : A) → B (η x)) → ([x] : ◯ A) → B [x]) (◯-ind-β : ∀ {ℓ ℓ'} {A : Type ℓ} {B : ◯ A → Type ℓ'} (B-mod : isModalFam B) (f : (x : A) → B (η x)) (x : A) → ◯-ind B-mod f (η x) ≡ f x) (let Type◯ = λ (ℓ : Level) → Σ (Type ℓ) isModal) (◯-lex : ∀ {ℓ} → isModal (Type◯ ℓ)) where private variable ℓ ℓ' : Level η-at : (A : Type ℓ) → A → ◯ A η-at _ = η module _ where private variable A : Type ℓ B : Type ℓ' module ◯-rec (B-mod : isModal B) (f : A → B) where abstract ◯-rec : ◯ A → B ◯-rec = ◯-ind (λ _ → B-mod) f ◯-rec-β : (x : A) → ◯-rec (η x) ≡ f x ◯-rec-β = ◯-ind-β (λ _ → B-mod) f open ◯-rec module ◯-map (f : A → B) where abstract ◯-map : ◯ A → ◯ B ◯-map = ◯-rec idemp λ x → η (f x) ◯-map-β : (x : A) → ◯-map (η x) ≡ η (f x) ◯-map-β x = ◯-rec-β idemp _ x open ◯-rec open ◯-map module IsModalToUnitIsEquiv (A : Type ℓ) (A-mod : isModal A) where abstract inv : ◯ A → A inv = ◯-rec A-mod λ x → x η-retract : retract η inv η-retract = ◯-rec-β _ _ η-section : section η inv η-section = ◯-ind (λ _ → ≡-modal idemp) λ x i → η (η-retract x i) η-iso : Iso A (◯ A) Iso.fun η-iso = η Iso.inv η-iso = inv Iso.rightInv η-iso = η-section Iso.leftInv η-iso = η-retract η-is-equiv : isEquiv (η-at A) η-is-equiv = isoToIsEquiv η-iso abstract unit-is-equiv-to-is-modal : {A : Type ℓ} → isEquiv (η-at A) → isModal A unit-is-equiv-to-is-modal p = transport (cong isModal (sym (ua (η , p)))) idemp retract-is-modal : {A : Type ℓ} {B : Type ℓ'} → (A-mod : isModal A) (f : A → B) (g : B → A) (r : retract g f) → isModal B retract-is-modal {A = A} {B = B} A-mod f g r = unit-is-equiv-to-is-modal (isoToIsEquiv (iso η η-inv η-section η-retract)) where η-inv : ◯ B → B η-inv = f ∘ ◯-rec A-mod g η-retract : retract η η-inv η-retract b = cong f (◯-rec-β A-mod g b) ∙ r b η-section : section η η-inv η-section = ◯-ind (λ _ → ≡-modal idemp) (cong η ∘ η-retract) module LiftFam {A : Type ℓ} (B : A → Type ℓ') where module M = IsModalToUnitIsEquiv (Type◯ ℓ') ◯-lex abstract ◯-lift-fam : ◯ A → Type◯ ℓ' ◯-lift-fam = M.inv ∘ ◯-map (λ a → ◯ (B a) , idemp) ⟨◯⟩ : ◯ A → Type ℓ' ⟨◯⟩ [a] = ◯-lift-fam [a] .fst ⟨◯⟩-modal : isModalFam ⟨◯⟩ ⟨◯⟩-modal [a] = ◯-lift-fam [a] .snd ⟨◯⟩-compute : (x : A) → ⟨◯⟩ (η x) ≡ ◯ (B x) ⟨◯⟩-compute x = ⟨◯⟩ (η x) ≡⟨ cong (fst ∘ M.inv) (◯-map-β _ _) ⟩ M.inv (η (◯ (B x) , idemp)) .fst ≡⟨ cong fst (M.η-retract _) ⟩ ◯ (B x) ∎ open LiftFam using (⟨◯⟩; ⟨◯⟩-modal; ⟨◯⟩-compute) module LiftFamExtra {A : Type ℓ} {B : A → Type ℓ'} where ⟨◯⟩←◯ : ∀ {a} → ◯ (B a) → ⟨◯⟩ B (η a) ⟨◯⟩←◯ = transport (sym (⟨◯⟩-compute B _)) ⟨◯⟩→◯ : ∀ {a} → ⟨◯⟩ B (η a) → ◯ (B a) ⟨◯⟩→◯ = transport (⟨◯⟩-compute B _) ⟨η⟩ : ∀ {a} → B a → ⟨◯⟩ B (η a) ⟨η⟩ = ⟨◯⟩←◯ ∘ η abstract ⟨◯⟩→◯-section : ∀ {a} → section (⟨◯⟩→◯ {a}) ⟨◯⟩←◯ ⟨◯⟩→◯-section = transport⁻Transport (sym (⟨◯⟩-compute _ _)) module Combinators where private variable ℓ'' : Level A A′ : Type ℓ B : A → Type ℓ' C : Σ A B → Type ℓ'' λ/coe⟨_⟩_ : (p : A ≡ A′) → ((x : A′) → B (coe1→0 (λ i → p i) x)) → ((x : A) → B x) λ/coe⟨_⟩_ {B = B} p f = coe1→0 (λ i → (x : p i) → B (coei→0 (λ j → p j) i x)) f open Combinators module _ {A : Type ℓ} {B : A → Type ℓ'} where abstract Π-modal : isModalFam B → isModal ((x : A) → B x) Π-modal B-mod = retract-is-modal idemp η-inv η retr where η-inv : ◯ ((x : A) → B x) → (x : A) → B x η-inv [f] x = ◯-rec (B-mod x) (λ f → f x) [f] retr : retract η η-inv retr f = funExt λ x → ◯-rec-β (B-mod x) _ f Σ-modal : isModal A → isModalFam B → isModal (Σ A B) Σ-modal A-mod B-mod = retract-is-modal idemp η-inv η retr where h : ◯ (Σ A B) → A h = ◯-rec A-mod fst h-β : (x : Σ A B) → h (η x) ≡ fst x h-β = ◯-rec-β A-mod fst f : (i : I) (x : Σ A B) → B (h-β x i) f i x = coe1→i (λ j → B (h-β x j)) i (snd x) η-inv : ◯ (Σ A B) → Σ A B η-inv y = h y , ◯-ind (B-mod ∘ h) (f i0) y retr : (p : Σ A B) → η-inv (η p) ≡ p retr p = η-inv (η p) ≡⟨ ΣPathP (refl , ◯-ind-β _ _ _) ⟩ h (η p) , f i0 p ≡⟨ ΣPathP (h-β _ , λ i → f i p) ⟩ p ∎ module Σ-commute {A : Type ℓ} (B : A → Type ℓ') where open LiftFamExtra ◯Σ = ◯ (Σ A B) module Σ◯ where Σ◯ = Σ (◯ A) (⟨◯⟩ B) abstract Σ◯-modal : isModal Σ◯ Σ◯-modal = Σ-modal idemp (⟨◯⟩-modal _) open Σ◯ η-Σ◯ : Σ A B → Σ◯ η-Σ◯ (x , y) = η x , ⟨η⟩ y module Push where abstract fun : ◯Σ → Σ◯ fun = ◯-rec Σ◯-modal η-Σ◯ compute : fun ∘ η ≡ η-Σ◯ compute = funExt (◯-rec-β _ _) module Unpush where abstract fun : Σ◯ → ◯Σ fun = λ⟨,⟩ ◯-ind (λ _ → Π-modal λ _ → idemp) λ x → λ/coe⟨ ⟨◯⟩-compute B x ⟩ ◯-map (x ,_) compute : fun ∘ η-Σ◯ ≡ η compute = funExt λ p → fun (η-Σ◯ p) ≡⟨ funExt⁻ (◯-ind-β _ _ _) _ ⟩ transport refl (◯-map _ _) ≡⟨ transportRefl _ ⟩ ◯-map _ (⟨◯⟩→◯ (⟨η⟩ _)) ≡⟨ cong (◯-map _) (⟨◯⟩→◯-section _) ⟩ ◯-map _ (η _) ≡⟨ ◯-map-β _ _ ⟩ η p ∎ push-unpush-compute : Push.fun ∘ Unpush.fun ∘ η-Σ◯ ≡ η-Σ◯ push-unpush-compute = Push.fun ∘ Unpush.fun ∘ η-Σ◯ ≡⟨ cong (Push.fun ∘_) Unpush.compute ⟩ Push.fun ∘ η ≡⟨ Push.compute ⟩ η-Σ◯ ∎ unpush-push-compute : Unpush.fun ∘ Push.fun ∘ η ≡ η unpush-push-compute = Unpush.fun ∘ Push.fun ∘ η ≡⟨ cong (Unpush.fun ∘_) Push.compute ⟩ Unpush.fun ∘ η-Σ◯ ≡⟨ Unpush.compute ⟩ η ∎ is-section : section Unpush.fun Push.fun is-section = ◯-ind (λ x → ≡-modal idemp) λ x i → unpush-push-compute i x is-retract : retract Unpush.fun Push.fun is-retract = λ⟨,⟩ ◯-ind (λ _ → Π-modal λ _ → ≡-modal Σ◯-modal) λ x → λ/coe⟨ ⟨◯⟩-compute B x ⟩ ◯-ind (λ _ → ≡-modal Σ◯-modal) (λ y i → push-unpush-compute i (x , y)) push-sg-is-equiv : isEquiv Push.fun push-sg-is-equiv = isoToIsEquiv (iso Push.fun Unpush.fun is-retract is-section) isConnected : Type ℓ → Type ℓ isConnected A = isContr (◯ A) module FormalDiskBundle {A : Type ℓ} where 𝔻 : A → Type ℓ 𝔻 a = Σ[ x ∈ A ] η a ≡ η x
26.150538
138
0.488624
4dbecffc043af9188d9ef0acd9f7633f9c609729
20,018
agda
Agda
theorems/groups/CoefficientExtensionality.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/groups/CoefficientExtensionality.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/groups/CoefficientExtensionality.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT module groups.CoefficientExtensionality where module _ {i} {A : Type i} (dec : has-dec-eq A) where open FreeAbelianGroup A Word-coef : Word A → (A → ℤ) Word-coef nil a = 0 Word-coef (inl a' :: w) a with dec a' a Word-coef (inl a' :: w) a | inl a'=a = succ $ Word-coef w a Word-coef (inl a' :: w) a | inr a'≠a = Word-coef w a Word-coef (inr a' :: w) a with dec a' a Word-coef (inr a' :: w) a | inl a'=a = pred $ Word-coef w a Word-coef (inr a' :: w) a | inr a'≠a = Word-coef w a abstract Word-coef-++ : ∀ w₁ w₂ a → Word-coef (w₁ ++ w₂) a == Word-coef w₁ a ℤ+ Word-coef w₂ a Word-coef-++ nil w₂ a = idp Word-coef-++ (inl a' :: w₁) w₂ a with dec a' a Word-coef-++ (inl a' :: w₁) w₂ a | inl a'=a = ap succ (Word-coef-++ w₁ w₂ a) ∙ ! (succ-+ (Word-coef w₁ a) (Word-coef w₂ a)) Word-coef-++ (inl a' :: w₁) w₂ a | inr a'≠a = Word-coef-++ w₁ w₂ a Word-coef-++ (inr a' :: w₁) w₂ a with dec a' a Word-coef-++ (inr a' :: w₁) w₂ a | inl a'=a = ap pred (Word-coef-++ w₁ w₂ a) ∙ ! (pred-+ (Word-coef w₁ a) (Word-coef w₂ a)) Word-coef-++ (inr a' :: w₁) w₂ a | inr a'≠a = Word-coef-++ w₁ w₂ a Word-coef-flip : ∀ w a → Word-coef (Word-flip w) a == ℤ~ (Word-coef w a) Word-coef-flip nil a = idp Word-coef-flip (inl a' :: w) a with dec a' a Word-coef-flip (inl a' :: w) a | inl a'=a = ap pred (Word-coef-flip w a) ∙ ! (ℤ~-succ (Word-coef w a)) Word-coef-flip (inl a' :: w) a | inr a'≠a = Word-coef-flip w a Word-coef-flip (inr a' :: w) a with dec a' a Word-coef-flip (inr a' :: w) a | inl a'=a = ap succ (Word-coef-flip w a) ∙ ! (ℤ~-pred (Word-coef w a)) Word-coef-flip (inr a' :: w) a | inr a'≠a = Word-coef-flip w a private abstract FormalSum-coef-rel : {w₁ w₂ : Word A} → FormalSumRel w₁ w₂ → ∀ a → Word-coef w₁ a == Word-coef w₂ a FormalSum-coef-rel (qwr-refl p) a = ap (λ w → Word-coef w a) p FormalSum-coef-rel (qwr-trans r r') a = FormalSum-coef-rel r a ∙ FormalSum-coef-rel r' a FormalSum-coef-rel (qwr-sym r) a = ! (FormalSum-coef-rel r a) FormalSum-coef-rel (qwr-cong {w₁} {w₂} {w₃} {w₄} r r') a = Word-coef (w₁ ++ w₃) a =⟨ Word-coef-++ w₁ w₃ a ⟩ Word-coef w₁ a ℤ+ Word-coef w₃ a =⟨ ap2 _ℤ+_ (FormalSum-coef-rel r a) (FormalSum-coef-rel r' a) ⟩ Word-coef w₂ a ℤ+ Word-coef w₄ a =⟨ ! (Word-coef-++ w₂ w₄ a) ⟩ Word-coef (w₂ ++ w₄) a =∎ FormalSum-coef-rel (qwr-flip-r x) a = Word-coef (x :: flip x :: nil) a =⟨ Word-coef-++ (x :: nil) (flip x :: nil) a ⟩ Word-coef (x :: nil) a ℤ+ Word-coef (flip x :: nil) a =⟨ ap (Word-coef (x :: nil) a ℤ+_) (Word-coef-flip (x :: nil) a) ⟩ Word-coef (x :: nil) a ℤ+ ℤ~ (Word-coef (x :: nil) a) =⟨ ℤ~-inv-r (Word-coef (x :: nil) a) ⟩ pos 0 =∎ FormalSum-coef-rel (qwr-rel (agr-rel ())) a FormalSum-coef-rel (qwr-rel (agr-commutes w₁ w₂)) a = Word-coef (w₁ ++ w₂) a =⟨ Word-coef-++ w₁ w₂ a ⟩ Word-coef w₁ a ℤ+ Word-coef w₂ a =⟨ ℤ+-comm (Word-coef w₁ a) (Word-coef w₂ a) ⟩ Word-coef w₂ a ℤ+ Word-coef w₁ a =⟨ ! (Word-coef-++ w₂ w₁ a) ⟩ Word-coef (w₂ ++ w₁) a =∎ FormalSum-coef : FormalSum → (A → ℤ) FormalSum-coef = QuotWord-rec Word-coef (λ r → λ= $ FormalSum-coef-rel r) -- Theorem : if coef w a == 0 then FormalSumRel w nil private abstract Word-exp-succ : ∀ (a : A) z → FormalSumRel (inl a :: Word-exp a z) (Word-exp a (succ z)) Word-exp-succ a (pos _) = qwr-refl idp Word-exp-succ a (negsucc 0) = qwr-flip-r (inl a) Word-exp-succ a (negsucc (S n)) = qwr-cong-l (qwr-flip-r (inl a)) (Word-exp a (negsucc n)) Word-exp-pred : ∀ (a : A) z → FormalSumRel (inr a :: Word-exp a z) (Word-exp a (pred z)) Word-exp-pred a (pos 0) = qwr-refl idp Word-exp-pred a (pos (S n)) = qwr-cong-l (qwr-flip-r (inr a)) (Word-exp a (pos n)) Word-exp-pred a (negsucc _) = qwr-refl idp Word-coef-inl-eq : ∀ {a b} (p : b == a) w → Word-coef (inl b :: w) a == succ (Word-coef w a) Word-coef-inl-eq {a} {b} p w with dec b a Word-coef-inl-eq {a} {b} p w | inl _ = idp Word-coef-inl-eq {a} {b} p w | inr ¬p = ⊥-rec (¬p p) Word-coef-inr-eq : ∀ {a b} (p : b == a) w → Word-coef (inr b :: w) a == pred (Word-coef w a) Word-coef-inr-eq {a} {b} p w with dec b a Word-coef-inr-eq {a} {b} p w | inl _ = idp Word-coef-inr-eq {a} {b} p w | inr ¬p = ⊥-rec (¬p p) Word-coef-inl-neq : ∀ {a b} (p : b ≠ a) w → Word-coef (inl b :: w) a == Word-coef w a Word-coef-inl-neq {a} {b} ¬p w with dec b a Word-coef-inl-neq {a} {b} ¬p w | inl p = ⊥-rec (¬p p) Word-coef-inl-neq {a} {b} ¬p w | inr _ = idp Word-coef-inr-neq : ∀ {a b} (p : b ≠ a) w → Word-coef (inr b :: w) a == Word-coef w a Word-coef-inr-neq {a} {b} ¬p w with dec b a Word-coef-inr-neq {a} {b} ¬p w | inl p = ⊥-rec (¬p p) Word-coef-inr-neq {a} {b} ¬p w | inr _ = idp -- TODO maybe there is a better way to prove the final theorem? -- Here we are collecting all elements [inl a] and [inr a], and recurse on the rest. -- The [right-shorter] field makes sure that it is terminating. record CollectSplitIH (a : A) {n : ℕ} (w : Word A) (len : length w == n) : Type i where field left-exponent : ℤ left-captures-all : Word-coef w a == left-exponent right-list : Word A right-shorter : length right-list ≤ n fsr : FormalSumRel w (Word-exp a left-exponent ++ right-list) abstract collect-split : ∀ a {n} w (len=n : length w == n) → CollectSplitIH a w len=n collect-split a nil idp = record { left-exponent = 0; left-captures-all = idp; right-list = nil; right-shorter = inl idp; fsr = qwr-refl idp} collect-split a (inl b :: w) idp with dec b a ... | inl b=a = record { left-exponent = succ left-exponent; left-captures-all = Word-coef-inl-eq b=a w ∙ ap succ left-captures-all; right-list = right-list; right-shorter = ≤-trans right-shorter (inr ltS); fsr = inl b :: w qwr⟨ qwr-refl (ap (λ a → inl a :: w) b=a) ⟩ inl a :: w qwr⟨ qwr-cong-r (inl a :: nil) fsr ⟩ inl a :: Word-exp a left-exponent ++ right-list qwr⟨ qwr-cong-l (Word-exp-succ a left-exponent) right-list ⟩ Word-exp a (succ left-exponent) ++ right-list qwr∎} where open CollectSplitIH (collect-split a w idp) ... | inr b≠a = record { left-exponent = left-exponent; left-captures-all = Word-coef-inl-neq b≠a w ∙ left-captures-all; right-list = inl b :: right-list; right-shorter = ≤-ap-S right-shorter; fsr = inl b :: w qwr⟨ qwr-cong-r (inl b :: nil) fsr ⟩ inl b :: Word-exp a left-exponent ++ right-list qwr⟨ qwr-cong-l (qwr-rel (agr-commutes (inl b :: nil) (Word-exp a left-exponent))) right-list ⟩ (Word-exp a left-exponent ++ (inl b :: nil)) ++ right-list qwr⟨ qwr-refl (++-assoc (Word-exp a left-exponent) _ _) ⟩ Word-exp a left-exponent ++ (inl b :: right-list) qwr∎} where open CollectSplitIH (collect-split a w idp) collect-split a (inr b :: w) idp with dec b a ... | inl b=a = record { left-exponent = pred left-exponent; left-captures-all = Word-coef-inr-eq b=a w ∙ ap pred left-captures-all; right-list = right-list; right-shorter = ≤-trans right-shorter (inr ltS); fsr = inr b :: w qwr⟨ qwr-refl (ap (λ a → inr a :: w) b=a) ⟩ inr a :: w qwr⟨ qwr-cong-r (inr a :: nil) fsr ⟩ inr a :: Word-exp a left-exponent ++ right-list qwr⟨ qwr-cong-l (Word-exp-pred a left-exponent) right-list ⟩ Word-exp a (pred left-exponent) ++ right-list qwr∎} where open CollectSplitIH (collect-split a w idp) ... | inr b≠a = record { left-exponent = left-exponent; left-captures-all = Word-coef-inr-neq b≠a w ∙ left-captures-all; right-list = inr b :: right-list; right-shorter = ≤-ap-S right-shorter; fsr = inr b :: w qwr⟨ qwr-cong-r (inr b :: nil) fsr ⟩ inr b :: Word-exp a left-exponent ++ right-list qwr⟨ qwr-cong-l (qwr-rel (agr-commutes (inr b :: nil) (Word-exp a left-exponent))) right-list ⟩ (Word-exp a left-exponent ++ (inr b :: nil)) ++ right-list qwr⟨ qwr-refl (++-assoc (Word-exp a left-exponent) _ _) ⟩ Word-exp a left-exponent ++ (inr b :: right-list) qwr∎} where open CollectSplitIH (collect-split a w idp) -- We simulate strong induction by recursing on both [m] and [n≤m]. -- We could develop a general framework for strong induction but I am lazy. -Favonia zero-coef-is-ident' : ∀ {m n} (n≤m : n ≤ m) (w : Word A) (len : length w == n) → (∀ a → Word-coef w a == 0) → FormalSumRel w nil zero-coef-is-ident' (inr ltS) w len zero-coef = zero-coef-is-ident' (inl idp) w len zero-coef zero-coef-is-ident' (inr (ltSR lt)) w len zero-coef = zero-coef-is-ident' (inr lt) w len zero-coef zero-coef-is-ident' {m = O} (inl idp) nil _ _ = qwr-refl idp zero-coef-is-ident' {m = O} (inl idp) (_ :: _) len _ = ⊥-rec $ ℕ-S≠O _ len zero-coef-is-ident' {m = S m} (inl idp) nil len _ = ⊥-rec $ ℕ-S≠O _ (! len) zero-coef-is-ident' {m = S m} (inl idp) (inl a :: w) len zero-coef = inl a :: w qwr⟨ whole-is-right ⟩ right-list qwr⟨ (zero-coef-is-ident' right-shorter right-list idp right-zero-coef) ⟩ nil qwr∎ where open CollectSplitIH (collect-split a w (ℕ-S-is-inj _ _ len)) left-exponent-is-minus-one : left-exponent == -1 left-exponent-is-minus-one = succ-is-inj left-exponent -1 $ ap succ (! left-captures-all) ∙ ! (Word-coef-inl-eq idp w) ∙ zero-coef a whole-is-right : FormalSumRel (inl a :: w) right-list whole-is-right = inl a :: w qwr⟨ qwr-cong-r (inl a :: nil) fsr ⟩ inl a :: Word-exp a left-exponent ++ right-list qwr⟨ qwr-refl (ap (λ e → inl a :: Word-exp a e ++ right-list) left-exponent-is-minus-one) ⟩ inl a :: inr a :: right-list qwr⟨ qwr-cong-l (qwr-flip-r (inl a)) right-list ⟩ right-list qwr∎ right-zero-coef : ∀ a' → Word-coef right-list a' == 0 right-zero-coef a' = ! (FormalSum-coef-rel whole-is-right a') ∙ zero-coef a' zero-coef-is-ident' {m = S m} (inl idp) (inr a :: w) len zero-coef = inr a :: w qwr⟨ whole-is-right ⟩ right-list qwr⟨ zero-coef-is-ident' right-shorter right-list idp right-zero-coef ⟩ nil qwr∎ where open CollectSplitIH (collect-split a w (ℕ-S-is-inj _ _ len)) left-exponent-is-one : left-exponent == 1 left-exponent-is-one = pred-is-inj left-exponent 1 $ ap pred (! left-captures-all) ∙ ! (Word-coef-inr-eq idp w) ∙ zero-coef a whole-is-right : FormalSumRel (inr a :: w) right-list whole-is-right = inr a :: w qwr⟨ qwr-cong-r (inr a :: nil) fsr ⟩ inr a :: Word-exp a left-exponent ++ right-list qwr⟨ qwr-refl (ap (λ e → inr a :: Word-exp a e ++ right-list) left-exponent-is-one) ⟩ inr a :: inl a :: right-list qwr⟨ qwr-cong-l (qwr-flip-r (inr a)) right-list ⟩ right-list qwr∎ right-zero-coef : ∀ a' → Word-coef right-list a' == 0 right-zero-coef a' = ! (FormalSum-coef-rel whole-is-right a') ∙ zero-coef a' zero-coef-is-ident : ∀ (w : Word A) → (∀ a → Word-coef w a == 0) → FormalSumRel w nil zero-coef-is-ident w = zero-coef-is-ident' (inl idp) w idp abstract FormalSum-coef-ext' : ∀ w₁ w₂ → (∀ a → Word-coef w₁ a == Word-coef w₂ a) → qw[ w₁ ] == qw[ w₂ ] FormalSum-coef-ext' w₁ w₂ same-coef = FreeAbGroup.inv-is-inj qw[ w₁ ] qw[ w₂ ] $ FreeAbGroup.inv-unique-l (FreeAbGroup.inv qw[ w₂ ]) qw[ w₁ ] $ quot-rel $ reverse (Word-flip w₂) ++ w₁ qwr⟨ qwr-cong-l (agr-reverse (Word-flip w₂)) w₁ ⟩ Word-flip w₂ ++ w₁ qwr⟨ zero-coef-is-ident (Word-flip w₂ ++ w₁) (λ a → Word-coef-++ (Word-flip w₂) w₁ a ∙ ap2 _ℤ+_ (Word-coef-flip w₂ a) (same-coef a) ∙ ℤ~-inv-l (Word-coef w₂ a)) ⟩ nil qwr∎ FormalSum-coef-ext : ∀ fs₁ fs₂ → (∀ a → FormalSum-coef fs₁ a == FormalSum-coef fs₂ a) → fs₁ == fs₂ FormalSum-coef-ext = QuotWord-elim (λ w₁ → QuotWord-elim (λ w₂ → FormalSum-coef-ext' w₁ w₂) (λ _ → prop-has-all-paths-↓)) (λ _ → prop-has-all-paths-↓) has-finite-support : (A → ℤ) → Type i has-finite-support f = Σ FormalSum λ fs → ∀ a → f a == FormalSum-coef fs a module _ {i} {A : Type i} {dec : has-dec-eq A} where abstract has-finite-support-is-prop : ∀ f → is-prop (has-finite-support dec f) has-finite-support-is-prop f = all-paths-is-prop λ{(fs₁ , match₁) (fs₂ , match₂) → pair= (FormalSum-coef-ext dec fs₁ fs₂ λ a → ! (match₁ a) ∙ match₂ a) prop-has-all-paths-↓} module _ where private abstract Word-coef-exp-diag-pos : ∀ {I} (<I : Fin I) n → Word-coef Fin-has-dec-eq (Word-exp <I (pos n)) <I == pos n Word-coef-exp-diag-pos <I O = idp Word-coef-exp-diag-pos <I (S n) with Fin-has-dec-eq <I <I ... | inl _ = ap succ (Word-coef-exp-diag-pos <I n) ... | inr ¬p = ⊥-rec (¬p idp) Word-coef-exp-diag-negsucc : ∀ {I} (<I : Fin I) n → Word-coef Fin-has-dec-eq (Word-exp <I (negsucc n)) <I == negsucc n Word-coef-exp-diag-negsucc <I O with Fin-has-dec-eq <I <I ... | inl _ = idp ... | inr ¬p = ⊥-rec (¬p idp) Word-coef-exp-diag-negsucc <I (S n) with Fin-has-dec-eq <I <I ... | inl _ = ap pred (Word-coef-exp-diag-negsucc <I n) ... | inr ¬p = ⊥-rec (¬p idp) Word-coef-exp-diag : ∀ {I} (<I : Fin I) z → Word-coef Fin-has-dec-eq (Word-exp <I z) <I == z Word-coef-exp-diag <I (pos n) = Word-coef-exp-diag-pos <I n Word-coef-exp-diag <I (negsucc n) = Word-coef-exp-diag-negsucc <I n Word-coef-exp-≠-pos : ∀ {I} {<I <I' : Fin I} (_ : <I ≠ <I') n → Word-coef Fin-has-dec-eq (Word-exp <I (pos n)) <I' == 0 Word-coef-exp-≠-pos _ O = idp Word-coef-exp-≠-pos {<I = <I} {<I'} neq (S n) with Fin-has-dec-eq <I <I' ... | inl p = ⊥-rec (neq p) ... | inr ¬p = Word-coef-exp-≠-pos neq n Word-coef-exp-≠-negsucc : ∀ {I} {<I <I' : Fin I} (_ : <I ≠ <I') n → Word-coef Fin-has-dec-eq (Word-exp <I (negsucc n)) <I' == 0 Word-coef-exp-≠-negsucc {<I = <I} {<I'} neq O with Fin-has-dec-eq <I <I' ... | inl p = ⊥-rec (neq p) ... | inr ¬p = idp Word-coef-exp-≠-negsucc {<I = <I} {<I'} neq (S n) with Fin-has-dec-eq <I <I' ... | inl p = ⊥-rec (neq p) ... | inr ¬p = Word-coef-exp-≠-negsucc neq n Word-coef-exp-≠ : ∀ {I} {<I <I' : Fin I} (_ : <I ≠ <I') z → Word-coef Fin-has-dec-eq (Word-exp <I z) <I' == 0 Word-coef-exp-≠ neq (pos n) = Word-coef-exp-≠-pos neq n Word-coef-exp-≠ neq (negsucc n) = Word-coef-exp-≠-negsucc neq n Word-sum' : ∀ (I : ℕ) {A : Type₀} (F : Fin I → A) (f : Fin I → ℤ) → Word A Word-sum' 0 F f = nil Word-sum' (S I) F f = Word-sum' I (F ∘ Fin-S) (f ∘ Fin-S) ++ Word-exp (F (I , ltS)) (f (I , ltS)) Word-sum : ∀ {I : ℕ} (f : Fin I → ℤ) → Word (Fin I) Word-sum {I} f = Word-sum' I (idf (Fin I)) f abstract Word-coef-sum'-late : ∀ n m (I : ℕ) (f : Fin I → ℤ) → Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n) ∘ Fin-S^' m) f) (Fin-S^' n (ℕ-S^' m I , ltS)) == 0 Word-coef-sum'-late n m 0 f = idp Word-coef-sum'-late n m (S I) f = Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n) ∘ Fin-S^' (S m)) (f ∘ Fin-S) ++ Word-exp (Fin-S^' (S n) (Fin-S^' m (I , ltS))) (f (I , ltS))) (Fin-S^' n (ℕ-S^' (S m) I , ltS)) =⟨ Word-coef-++ Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n) ∘ Fin-S^' (S m)) (f ∘ Fin-S)) (Word-exp (Fin-S^' (S n) (Fin-S^' m (I , ltS))) (f (I , ltS))) (Fin-S^' n (ℕ-S^' (S m) I , ltS)) ⟩ Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n) ∘ Fin-S^' (S m)) (f ∘ Fin-S)) (Fin-S^' n (ℕ-S^' (S m) I , ltS)) ℤ+ Word-coef Fin-has-dec-eq (Word-exp (Fin-S^' (S n) (Fin-S^' m (I , ltS))) (f (I , ltS))) (Fin-S^' n (ℕ-S^' (S m) I , ltS)) =⟨ ap2 _ℤ+_ (Word-coef-sum'-late n (S m) I (f ∘ Fin-S)) (Word-coef-exp-≠ (Fin-S^'-≠ n (ltSR≠ltS _)) (f (I , ltS))) ⟩ 0 =∎ Word-coef-sum' : ∀ n {I} (f : Fin I → ℤ) <I → Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' n) f) (Fin-S^' n <I) == f <I Word-coef-sum' n f (I , ltS) = Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n)) (f ∘ Fin-S) ++ Word-exp (Fin-S^' n (I , ltS)) (f (I , ltS))) (Fin-S^' n (I , ltS)) =⟨ Word-coef-++ Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n)) (f ∘ Fin-S)) (Word-exp (Fin-S^' n (I , ltS)) (f (I , ltS))) (Fin-S^' n (I , ltS)) ⟩ Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n)) (f ∘ Fin-S)) (Fin-S^' n (I , ltS)) ℤ+ Word-coef Fin-has-dec-eq (Word-exp (Fin-S^' n (I , ltS)) (f (I , ltS))) (Fin-S^' n (I , ltS)) =⟨ ap2 _ℤ+_ (Word-coef-sum'-late n 0 I (f ∘ Fin-S)) (Word-coef-exp-diag (Fin-S^' n (I , ltS)) (f (I , ltS))) ⟩ f (I , ltS) =∎ Word-coef-sum' n {I = S I} f (m , ltSR m<I) = Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n)) (f ∘ Fin-S) ++ Word-exp (Fin-S^' n (I , ltS)) (f (I , ltS))) (Fin-S^' (S n) (m , m<I)) =⟨ Word-coef-++ Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n)) (f ∘ Fin-S)) (Word-exp (Fin-S^' n (I , ltS)) (f (I , ltS))) (Fin-S^' (S n) (m , m<I)) ⟩ Word-coef Fin-has-dec-eq (Word-sum' I (Fin-S^' (S n)) (f ∘ Fin-S)) (Fin-S^' (S n) (m , m<I)) ℤ+ Word-coef Fin-has-dec-eq (Word-exp (Fin-S^' n (I , ltS)) (f (I , ltS))) (Fin-S^' (S n) (m , m<I)) =⟨ ap2 _ℤ+_ (Word-coef-sum' (S n) {I} (f ∘ Fin-S) (m , m<I)) (Word-coef-exp-≠ (Fin-S^'-≠ n (ltS≠ltSR (m , m<I))) (f (I , ltS))) ⟩ f (m , ltSR m<I) ℤ+ 0 =⟨ ℤ+-unit-r _ ⟩ f (m , ltSR m<I) =∎ FormalSum-sum' : ∀ n (I : ℕ) (f : Fin I → ℤ) → FreeAbelianGroup.FormalSum (Fin (ℕ-S^' n I)) FormalSum-sum' n I f = FreeAbGroup.sum (λ <I → FreeAbGroup.exp qw[ inl (Fin-S^' n <I) :: nil ] (f <I)) where open FreeAbelianGroup (Fin (ℕ-S^' n I)) FormalSum-sum : ∀ {I : ℕ} (f : Fin I → ℤ) → FreeAbelianGroup.FormalSum (Fin I) FormalSum-sum {I} = FormalSum-sum' 0 I private abstract FormalSum-sum'-β : ∀ n (I : ℕ) (f : Fin I → ℤ) → FormalSum-sum' n I f == FreeAbelianGroup.qw[_] (Fin (ℕ-S^' n I)) (Word-sum' I (Fin-S^' n) f) FormalSum-sum'-β n O f = idp FormalSum-sum'-β n (S I) f = ap2 FreeAbGroup.comp (FormalSum-sum'-β (S n) I (f ∘ Fin-S)) (! (pres-exp (Fin-S^' n (I , ltS)) (f (I , ltS)))) where open FreeAbelianGroup (Fin (ℕ-S^' (S n) I)) Fin→-has-finite-support : ∀ {I} (f : Fin I → ℤ) → has-finite-support Fin-has-dec-eq f Fin→-has-finite-support {I} f = FormalSum-sum f , lemma where abstract lemma = λ <I → ! (ap (λ fs → FormalSum-coef Fin-has-dec-eq fs <I) (FormalSum-sum'-β 0 I f) ∙ Word-coef-sum' 0 f <I)
46.230947
134
0.512139
50ba1282587dbb247faede0d79314e22e0c9daf6
5,321
agda
Agda
core/lib/types/TLevel.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
core/lib/types/TLevel.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
core/lib/types/TLevel.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Base open import lib.PathGroupoid open import lib.types.Empty open import lib.types.Nat module lib.types.TLevel where ⟨_⟩₋₁ : ℕ → ℕ₋₂ ⟨ n ⟩₋₁ = S ⟨ n ⟩₋₂ ⟨_⟩ : ℕ → ℕ₋₂ ⟨ n ⟩ = S (S ⟨ n ⟩₋₂) infixl 80 _+2+_ _+2+_ : ℕ₋₂ → ℕ₋₂ → ℕ₋₂ ⟨-2⟩ +2+ n = n S m +2+ n = S (m +2+ n) +2+-unit-r : (m : ℕ₋₂) → m +2+ ⟨-2⟩ == m +2+-unit-r ⟨-2⟩ = idp +2+-unit-r (S m) = ap S (+2+-unit-r m) +2+-βr : (m n : ℕ₋₂) → m +2+ (S n) == S (m +2+ n) +2+-βr ⟨-2⟩ n = idp +2+-βr (S m) n = ap S (+2+-βr m n) +2+-comm : (m n : ℕ₋₂) → m +2+ n == n +2+ m +2+-comm m ⟨-2⟩ = +2+-unit-r m +2+-comm m (S n) = +2+-βr m n ∙ ap S (+2+-comm m n) +2+0 : (n : ℕ₋₂) → n +2+ 0 == S (S n) +2+0 n = +2+-comm n 0 +-+2+ : ∀ (n m : ℕ) → ⟨ n + m ⟩₋₂ == ⟨ n ⟩₋₂ +2+ ⟨ m ⟩₋₂ +-+2+ O m = idp +-+2+ (S n) m = ap S (+-+2+ n m) {- Inequalities -} infix 40 _<T_ infix 40 _≤T_ data _<T_ : ℕ₋₂ → ℕ₋₂ → Type₀ where ltS : {m : ℕ₋₂} → m <T (S m) ltSR : {m n : ℕ₋₂} → m <T n → m <T (S n) _≤T_ : ℕ₋₂ → ℕ₋₂ → Type₀ m ≤T n = Coprod (m == n) (m <T n) -2<T : (m : ℕ₋₂) → ⟨-2⟩ <T S m -2<T ⟨-2⟩ = ltS -2<T (S m) = ltSR (-2<T m) -2≤T : (m : ℕ₋₂) → ⟨-2⟩ ≤T m -2≤T ⟨-2⟩ = inl idp -2≤T (S m) = inr (-2<T m) <T-trans : {m n k : ℕ₋₂} → m <T n → n <T k → m <T k <T-trans lt₁ ltS = ltSR lt₁ <T-trans lt₁ (ltSR lt₂) = ltSR (<T-trans lt₁ lt₂) ≤T-refl : {m : ℕ₋₂} → m ≤T m ≤T-refl = inl idp ≤T-trans : {m n k : ℕ₋₂} → m ≤T n → n ≤T k → m ≤T k ≤T-trans {k = k} (inl p₁) lte₂ = transport (λ t → t ≤T k) (! p₁) lte₂ ≤T-trans {m = m} lte₁ (inl p₂) = transport (λ t → m ≤T t) p₂ lte₁ ≤T-trans (inr lt₁) (inr lt₂) = inr (<T-trans lt₁ lt₂) <T-ap-S : {m n : ℕ₋₂} → m <T n → S m <T S n <T-ap-S ltS = ltS <T-ap-S (ltSR lt) = ltSR (<T-ap-S lt) ≤T-ap-S : {m n : ℕ₋₂} → m ≤T n → S m ≤T S n ≤T-ap-S (inl p) = inl (ap S p) ≤T-ap-S (inr lt) = inr (<T-ap-S lt) <T-cancel-S : {m n : ℕ₋₂} → S m <T S n → m <T n <T-cancel-S ltS = ltS <T-cancel-S (ltSR lt) = <T-trans ltS lt <T-+2+-l : {m n : ℕ₋₂} (k : ℕ₋₂) → m <T n → (k +2+ m) <T (k +2+ n) <T-+2+-l ⟨-2⟩ lt = lt <T-+2+-l (S k) lt = <T-ap-S (<T-+2+-l k lt) ≤T-+2+-l : {m n : ℕ₋₂} (k : ℕ₋₂) → m ≤T n → (k +2+ m) ≤T (k +2+ n) ≤T-+2+-l k (inl p) = inl (ap (λ t → k +2+ t) p) ≤T-+2+-l k (inr lt) = inr (<T-+2+-l k lt) <T-+2+-r : {m n : ℕ₋₂} (k : ℕ₋₂) → m <T n → (m +2+ k) <T (n +2+ k) <T-+2+-r k ltS = ltS <T-+2+-r k (ltSR lt) = ltSR (<T-+2+-r k lt) ≤T-+2+-r : {m n : ℕ₋₂} (k : ℕ₋₂) → m ≤T n → (m +2+ k) ≤T (n +2+ k) ≤T-+2+-r k (inl p) = inl (ap (λ t → t +2+ k) p) ≤T-+2+-r k (inr lt) = inr (<T-+2+-r k lt) private T-get-S : ℕ₋₂ → ℕ₋₂ T-get-S ⟨-2⟩ = ⟨ 42 ⟩ T-get-S (S n) = n T-S≠⟨-2⟩-type : ℕ₋₂ → Type₀ T-S≠⟨-2⟩-type ⟨-2⟩ = Empty T-S≠⟨-2⟩-type (S n) = Unit T-S≠⟨-2⟩ : (n : ℕ₋₂) → S n ≠ ⟨-2⟩ T-S≠⟨-2⟩ n p = transport T-S≠⟨-2⟩-type p unit T-S≠ : (n : ℕ₋₂) → S n ≠ n T-S≠ ⟨-2⟩ p = T-S≠⟨-2⟩ ⟨-2⟩ p T-S≠ (S n) p = T-S≠ n (ap T-get-S p) T-S+2+≠ : (n k : ℕ₋₂) → S (k +2+ n) ≠ n T-S+2+≠ ⟨-2⟩ k p = T-S≠⟨-2⟩ (k +2+ ⟨-2⟩) p T-S+2+≠ (S n) k p = T-S+2+≠ n k (ap T-get-S (ap S (! (+2+-βr k n)) ∙ p)) <T-witness : {m n : ℕ₋₂} → (m <T n) → Σ ℕ₋₂ (λ k → S k +2+ m == n) <T-witness ltS = (⟨-2⟩ , idp) <T-witness (ltSR lt) = let w' = <T-witness lt in (S (fst w') , ap S (snd w')) ≤T-witness : {m n : ℕ₋₂} → (m ≤T n) → Σ ℕ₋₂ (λ k → k +2+ m == n) ≤T-witness (inl p) = (⟨-2⟩ , p) ≤T-witness (inr lt) = let w' = <T-witness lt in (S (fst w') , snd w') <T-to-≤T : {m n : ℕ₋₂} → m <T S n → m ≤T n <T-to-≤T ltS = inl idp <T-to-≤T (ltSR lt) = inr lt <T-to-≠ : {m n : ℕ₋₂} → (m <T n) → m ≠ n <T-to-≠ {m} {n} lt p = T-S+2+≠ m (fst w) (snd w ∙ ! p) where w = <T-witness lt =-to-≮T : {m n : ℕ₋₂} → (m == n) → ¬ (m <T n) =-to-≮T p lt = <T-to-≠ lt p <T-to-≯T : {m n : ℕ₋₂} → (m <T n) → ¬ (n <T m) <T-to-≯T lt gt = =-to-≮T idp (<T-trans lt gt) <T-to-≱T : {m n : ℕ₋₂} → (m <T n) → ¬ (n ≤T m) <T-to-≱T lt (inl p) = <T-to-≠ lt (! p) <T-to-≱T lt (inr gt) = <T-to-≯T lt gt {- -2-monotone-< : {m n : ℕ} → (m < n) → (m -2 <T n -2) -2-monotone-< ltS = ltS -2-monotone-< (ltSR lt) = ltSR (-2-monotone-< lt) -2-monotone-≤ : {m n : ℕ} → (m ≤ n) → (m -2 ≤T n -2) -2-monotone-≤ (inl p) = inl (ap _-2 p) -2-monotone-≤ (inr lt) = inr (-2-monotone-< lt) -} ⟨⟩-monotone-< : {m n : ℕ} → (m < n) → (⟨ m ⟩ <T ⟨ n ⟩) ⟨⟩-monotone-< ltS = ltS ⟨⟩-monotone-< (ltSR lt) = ltSR (⟨⟩-monotone-< lt) ⟨⟩-monotone-≤ : {m n : ℕ} → (m ≤ n) → (⟨ m ⟩ ≤T ⟨ n ⟩) ⟨⟩-monotone-≤ (inl p) = inl (ap ⟨_⟩ p) ⟨⟩-monotone-≤ (inr lt) = inr (⟨⟩-monotone-< lt) minT : ℕ₋₂ → ℕ₋₂ → ℕ₋₂ minT ⟨-2⟩ n = ⟨-2⟩ minT (S m) ⟨-2⟩ = ⟨-2⟩ minT (S m) (S n) = S (minT m n) minT≤l : (m n : ℕ₋₂) → minT m n ≤T m minT≤l ⟨-2⟩ n = inl idp minT≤l (S m) ⟨-2⟩ = -2≤T (S m) minT≤l (S m) (S n) = ≤T-ap-S (minT≤l m n) minT≤r : (m n : ℕ₋₂) → minT m n ≤T n minT≤r ⟨-2⟩ n = -2≤T n minT≤r (S m) ⟨-2⟩ = inl idp minT≤r (S m) (S n) = ≤T-ap-S (minT≤r m n) minT-out : (m n : ℕ₋₂) → Coprod (minT m n == m) (minT m n == n) minT-out ⟨-2⟩ _ = inl idp minT-out (S _) ⟨-2⟩ = inr idp minT-out (S m) (S n) with minT-out m n minT-out (S m) (S n) | inl p = inl (ap S p) minT-out (S m) (S n) | inr q = inr (ap S q) minT-out-l : {m n : ℕ₋₂} → (m ≤T n) → minT m n == m minT-out-l {m} {n} lte with minT-out m n minT-out-l lte | inl eqm = eqm minT-out-l (inl p) | inr eqn = eqn ∙ ! p minT-out-l {m} {n} (inr lt) | inr eq = ⊥-rec (<T-to-≱T (transport (λ k → m <T k) (! eq) lt) (minT≤l m n))
27.858639
77
0.440707
298d64711ed604760b2432dc45e60487d1b4978b
8,220
agda
Agda
Cubical/HITs/FiniteMultiset/CountExtensionality.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/FiniteMultiset/CountExtensionality.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/FiniteMultiset/CountExtensionality.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.FiniteMultiset.CountExtensionality where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sum open import Cubical.Relation.Nullary open import Cubical.HITs.FiniteMultiset.Base open import Cubical.HITs.FiniteMultiset.Properties as FMS open import Cubical.Structures.MultiSet open import Cubical.Relation.Nullary.DecidableEq private variable ℓ : Level -- We define a partial order on FMSet A and use it to proof -- a strong induction principle for finite multi-sets. -- Finally, we use this stronger elimination principle to show -- that any two FMSets can be identified, if they have the same count for every a : A module _{A : Type ℓ} (discA : Discrete A) where _≼_ : FMSet A → FMSet A → Type ℓ xs ≼ ys = ∀ a → FMScount discA a xs ≤ FMScount discA a ys ≼-refl : ∀ xs → xs ≼ xs ≼-refl xs a = ≤-refl ≼-trans : ∀ xs ys zs → xs ≼ ys → ys ≼ zs → xs ≼ zs ≼-trans xs ys zs xs≼ys ys≼zs a = ≤-trans (xs≼ys a) (ys≼zs a) ≼[]→≡[] : ∀ xs → xs ≼ [] → xs ≡ [] ≼[]→≡[] xs xs≼[] = FMScount-0-lemma discA xs λ a → ≤0→≡0 (xs≼[] a) ≼-remove1 : ∀ a xs → remove1 discA a xs ≼ xs ≼-remove1 a xs b with discA a b ... | yes a≡b = subst (λ n → n ≤ FMScount discA b xs) (sym path) (≤-predℕ) where path : FMScount discA b (remove1 discA a xs) ≡ predℕ (FMScount discA b xs) path = cong (λ c → FMScount discA b (remove1 discA c xs)) a≡b ∙ remove1-predℕ-lemma discA b xs ... | no a≢b = subst (λ n → n ≤ FMScount discA b xs) (sym (FMScount-remove1-≢-lemma discA xs λ b≡a → a≢b (sym b≡a))) ≤-refl ≼-remove1-lemma : ∀ x xs ys → ys ≼ (x ∷ xs) → (remove1 discA x ys) ≼ xs ≼-remove1-lemma x xs ys ys≼x∷xs a with discA a x ... | yes a≡x = ≤-trans (≤-trans (0 , p₁) (predℕ-≤-predℕ (ys≼x∷xs a))) (0 , cong predℕ (FMScount-≡-lemma discA xs a≡x)) where p₁ : FMScount discA a (remove1 discA x ys) ≡ predℕ (FMScount discA a ys) p₁ = subst (λ b → FMScount discA a (remove1 discA b ys) ≡ predℕ (FMScount discA a ys)) a≡x (remove1-predℕ-lemma discA a ys) ... | no a≢x = ≤-trans (≤-trans (0 , FMScount-remove1-≢-lemma discA ys a≢x) (ys≼x∷xs a)) (0 , FMScount-≢-lemma discA xs a≢x) ≼-Dichotomy : ∀ x xs ys → ys ≼ (x ∷ xs) → (ys ≼ xs) ⊎ (ys ≡ x ∷ (remove1 discA x ys)) ≼-Dichotomy x xs ys ys≼x∷xs with (FMScount discA x ys) ≟ suc (FMScount discA x xs) ... | lt <suc = inl ys≼xs where ys≼xs : ys ≼ xs ys≼xs a with discA a x ... | yes a≡x = pred-≤-pred (subst (λ b → (FMScount discA b ys) < suc (FMScount discA b xs)) (sym a≡x) <suc) ... | no a≢x = ≤-trans (ys≼x∷xs a) (subst (λ n → FMScount discA a (x ∷ xs) ≤ n) (FMScount-≢-lemma discA xs a≢x) ≤-refl) ... | eq ≡suc = inr (remove1-suc-lemma discA x (FMScount discA x xs) ys ≡suc) ... | gt >suc = ⊥.rec (¬m<m strict-ineq) where strict-ineq : suc (FMScount discA x xs) < suc (FMScount discA x xs) strict-ineq = <≤-trans (<≤-trans >suc (ys≼x∷xs x)) (0 , FMScount-≡-lemma-refl discA xs) -- proving a strong elimination principle for finite multisets module ≼-ElimProp {ℓ'} {B : FMSet A → Type ℓ'} (BisProp : ∀ {xs} → isProp (B xs)) (b₀ : B []) (B-≼-hyp : ∀ x xs → (∀ ys → ys ≼ xs → B ys) → B (x ∷ xs)) where C : FMSet A → Type (ℓ-max ℓ ℓ') C xs = ∀ ys → ys ≼ xs → B ys g : ∀ xs → C xs g = ElimProp.f (isPropΠ2 (λ _ _ → BisProp)) c₀ θ where c₀ : C [] c₀ ys ys≼[] = subst B (sym (≼[]→≡[] ys ys≼[])) b₀ θ : ∀ x {xs} → C xs → C (x ∷ xs) θ x {xs} hyp ys ys≼x∷xs with ≼-Dichotomy x xs ys ys≼x∷xs ... | inl ys≼xs = hyp ys ys≼xs ... | inr ys≡x∷zs = subst B (sym ys≡x∷zs) (B-≼-hyp x zs χ) where zs = remove1 discA x ys χ : ∀ vs → vs ≼ zs → B vs χ vs vs≼zs = hyp vs (≼-trans vs zs xs vs≼zs (≼-remove1-lemma x xs ys ys≼x∷xs)) f : ∀ xs → B xs f = C→B g where C→B : (∀ xs → C xs) → (∀ xs → B xs) C→B C-hyp xs = C-hyp xs xs (≼-refl xs) ≼-ElimPropBin : ∀ {ℓ'} {B : FMSet A → FMSet A → Type ℓ'} → (∀ {xs} {ys} → isProp (B xs ys)) → (B [] []) → (∀ x xs ys → (∀ vs ws → vs ≼ xs → ws ≼ ys → B vs ws) → B (x ∷ xs) ys) → (∀ x xs ys → (∀ vs ws → vs ≼ xs → ws ≼ ys → B vs ws) → B xs (x ∷ ys)) ------------------------------------------------------------------------------- → (∀ xs ys → B xs ys) ≼-ElimPropBin {B = B} BisProp b₀₀ left-hyp right-hyp = ≼-ElimProp.f (isPropΠ (λ _ → BisProp)) θ χ where θ : ∀ ys → B [] ys θ = ≼-ElimProp.f BisProp b₀₀ h₁ where h₁ : ∀ x ys → (∀ ws → ws ≼ ys → B [] ws) → B [] (x ∷ ys) h₁ x ys mini-h = right-hyp x [] ys h₂ where h₂ : ∀ vs ws → vs ≼ [] → ws ≼ ys → B vs ws h₂ vs ws vs≼[] ws≼ys = subst (λ zs → B zs ws) (sym (≼[]→≡[] vs vs≼[])) (mini-h ws ws≼ys) χ : ∀ x xs → (∀ zs → zs ≼ xs → (∀ ys → B zs ys)) → ∀ ys → B (x ∷ xs) ys χ x xs h ys = left-hyp x xs ys λ vs ws vs≼xs _ → h vs vs≼xs ws ≼-ElimPropBinSym : ∀ {ℓ'} {B : FMSet A → FMSet A → Type ℓ'} → (∀ {xs} {ys} → isProp (B xs ys)) → (∀ {xs} {ys} → B xs ys → B ys xs) → (B [] []) → (∀ x xs ys → (∀ vs ws → vs ≼ xs → ws ≼ ys → B vs ws) → B (x ∷ xs) ys) ---------------------------------------------------------------------------- → (∀ xs ys → B xs ys) ≼-ElimPropBinSym {B = B} BisProp BisSym b₀₀ left-hyp = ≼-ElimPropBin BisProp b₀₀ left-hyp right-hyp where right-hyp : ∀ x xs ys → (∀ vs ws → vs ≼ xs → ws ≼ ys → B vs ws) → B xs (x ∷ ys) right-hyp x xs ys h₁ = BisSym (left-hyp x ys xs (λ vs ws vs≼ys ws≼xs → BisSym (h₁ ws vs ws≼xs vs≼ys))) -- The main result module FMScountExt where B : FMSet A → FMSet A → Type ℓ B xs ys = (∀ a → FMScount discA a xs ≡ FMScount discA a ys) → xs ≡ ys BisProp : ∀ {xs} {ys} → isProp (B xs ys) BisProp = isPropΠ λ _ → trunc _ _ BisSym : ∀ {xs} {ys} → B xs ys → B ys xs BisSym {xs} {ys} b h = sym (b (λ a → sym (h a))) b₀₀ : B [] [] b₀₀ _ = refl left-hyp : ∀ x xs ys → (∀ vs ws → vs ≼ xs → ws ≼ ys → B vs ws) → B (x ∷ xs) ys left-hyp x xs ys hyp h₁ = (λ i → x ∷ (hyp-path i)) ∙ sym path where eq₁ : FMScount discA x ys ≡ suc (FMScount discA x xs) eq₁ = sym (h₁ x) ∙ FMScount-≡-lemma-refl discA xs path : ys ≡ x ∷ (remove1 discA x ys) path = remove1-suc-lemma discA x (FMScount discA x xs) ys eq₁ hyp-path : xs ≡ remove1 discA x ys hyp-path = hyp xs (remove1 discA x ys) (≼-refl xs) (≼-remove1 x ys) θ where θ : ∀ a → FMScount discA a xs ≡ FMScount discA a (remove1 discA x ys) θ a with discA a x ... | yes a≡x = subst (λ b → FMScount discA b xs ≡ FMScount discA b (remove1 discA x ys)) (sym a≡x) eq₂ where eq₂ : FMScount discA x xs ≡ FMScount discA x (remove1 discA x ys) eq₂ = FMScount discA x xs ≡⟨ cong predℕ (sym (FMScount-≡-lemma-refl discA xs)) ⟩ predℕ (FMScount discA x (x ∷ xs)) ≡⟨ cong predℕ (h₁ x) ⟩ predℕ (FMScount discA x ys) ≡⟨ sym (remove1-predℕ-lemma discA x ys) ⟩ FMScount discA x (remove1 discA x ys) ∎ ... | no a≢x = FMScount discA a xs ≡⟨ sym (FMScount-≢-lemma discA xs a≢x) ⟩ FMScount discA a (x ∷ xs) ≡⟨ h₁ a ⟩ FMScount discA a ys ≡⟨ cong (FMScount discA a) path ⟩ FMScount discA a (x ∷ (remove1 discA x ys)) ≡⟨ FMScount-≢-lemma discA (remove1 discA x ys) a≢x ⟩ FMScount discA a (remove1 discA x ys) ∎ Thm : ∀ xs ys → (∀ a → FMScount discA a xs ≡ FMScount discA a ys) → xs ≡ ys Thm = ≼-ElimPropBinSym BisProp BisSym b₀₀ left-hyp
42.8125
126
0.509854
294de7e13ce27566c48cc7868a767ed948726ad4
136
agda
Agda
test/interaction/Issue835.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue835.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue835.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue835 where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x postulate A : Set x y : A F : x ≡ y → Set F ()
9.714286
42
0.507353
4da4acc0d914449b06258226971051f3f4959e9a
358
agda
Agda
src/Calf/Prelude.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
29
2021-07-14T03:18:28.000Z
2022-03-22T20:35:11.000Z
src/Calf/Prelude.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
null
null
null
src/Calf/Prelude.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
2
2021-10-06T10:28:24.000Z
2022-01-29T08:12:01.000Z
{-# OPTIONS --prop --without-K --rewriting #-} module Calf.Prelude where open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite public Ω = Prop □ = Set postulate funext : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (a : A) → B a} → (∀ x → f x ≡ g x) → f ≡ g funext/Ω : {A : Prop} {B : □} {f g : A → B} → (∀ x → f x ≡ g x) → f ≡ g
25.571429
96
0.541899
18f29788b940c4eb0211e45645b991954ea25623
588
agda
Agda
test/Fail/Issue3855OccursErasedDefinition.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3855OccursErasedDefinition.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3855OccursErasedDefinition.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2019-10-01, continuing issue #3855 (erasure modality @0) -- Test case by Nisse at https://github.com/agda/agda/issues/3855#issuecomment-527164352 -- Occurs check needs to take erasure status of definitions -- (here: postulates) into account. postulate P : Set → Set p : (A : Set) → P A @0 A : Set -- fails : P A -- fails = p A test : P A test = p _ -- Should fail with error like: -- -- Cannot instantiate the metavariable _2 to solution A -- since (part of) the solution was created in an erased context -- when checking that the expression p _ has type P A
25.565217
88
0.687075
4118df13c7463e5d3f471e7b31b14ea61320f998
138
agda
Agda
Cubical/Codata/M/AsLimit/Coalg.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Codata/M/AsLimit/Coalg.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Codata/M/AsLimit/Coalg.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --guardedness --safe #-} module Cubical.Codata.M.AsLimit.Coalg where open import Cubical.Codata.M.AsLimit.Coalg.Base public
23
54
0.76087
185e4d553236541997fc5b066df92f784b13ded5
1,914
agda
Agda
agda/Number/InclusionModules.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
3
2020-07-31T18:15:26.000Z
2022-02-19T12:15:21.000Z
agda/Number/InclusionModules.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
agda/Number/InclusionModules.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts #-} module Number.InclusionModules where import Number.Postulates import Number.Inclusions -- NOTE: the following takes a very long time to typecheck -- see https://lists.chalmers.se/pipermail/agda-dev/2015-September/000201.html -- see https://github.com/agda/agda/issues/1646 -- Exponential module chain leads to infeasible scope checking module Isℕ↪ℤ = Number.Inclusions.IsROrderedCommSemiringInclusion Number.Postulates.ℕ↪ℤinc module Isℕ↪ℚ = Number.Inclusions.IsROrderedCommSemiringInclusion Number.Postulates.ℕ↪ℚinc module Isℕ↪ℂ = Number.Inclusions.Isℕ↪ℂ Number.Postulates.ℕ↪ℂinc module Isℕ↪ℝ = Number.Inclusions.IsROrderedCommSemiringInclusion Number.Postulates.ℕ↪ℝinc module Isℤ↪ℚ = Number.Inclusions.IsROrderedCommRingInclusion Number.Postulates.ℤ↪ℚinc module Isℤ↪ℝ = Number.Inclusions.IsROrderedCommRingInclusion Number.Postulates.ℤ↪ℝinc module Isℤ↪ℂ = Number.Inclusions.Isℤ↪ℂ Number.Postulates.ℤ↪ℂinc module Isℚ↪ℝ = Number.Inclusions.IsROrderedFieldInclusion Number.Postulates.ℚ↪ℝinc module Isℚ↪ℂ = Number.Inclusions.IsRFieldInclusion Number.Postulates.ℚ↪ℂinc module Isℝ↪ℂ = Number.Inclusions.IsRFieldInclusion Number.Postulates.ℝ↪ℂinc {- -- NOTE: the following is a little faster but does not help us module Isℕ↪ℤ = Number.Inclusions.IsROrderedCommSemiringInclusion module Isℕ↪ℚ = Number.Inclusions.IsROrderedCommSemiringInclusion module Isℕ↪ℂ = Number.Inclusions.Isℕ↪ℂ module Isℕ↪ℝ = Number.Inclusions.IsROrderedCommSemiringInclusion module Isℤ↪ℚ = Number.Inclusions.IsROrderedCommRingInclusion module Isℤ↪ℝ = Number.Inclusions.IsROrderedCommRingInclusion module Isℤ↪ℂ = Number.Inclusions.Isℤ↪ℂ module Isℚ↪ℝ = Number.Inclusions.IsROrderedFieldInclusion module Isℚ↪ℂ = Number.Inclusions.IsRFieldInclusion module Isℝ↪ℂ = Number.Inclusions.IsRFieldInclusion -}
50.368421
89
0.784222
20baf87b539733db297ad34dd41aa8e1f01c1905
1,468
agda
Agda
test/Fail/Issue5531.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue5531.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue5531.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --type-in-type --rewriting #-} open import Agda.Builtin.Sigma open import Agda.Builtin.Equality coe : {A B : Set} → A ≡ B → A → B coe refl x = x {-# BUILTIN REWRITE _≡_ #-} Tel = Set U = Set variable Δ : Tel A B : Δ → U δ₀ δ₁ : Δ postulate IdTel : (Δ : Tel)(δ₀ δ₁ : Δ) → Tel Id : (A : Δ → U){δ₀ δ₁ : Δ}(δ₂ : IdTel Δ δ₀ δ₁) → A δ₀ → A δ₁ → U ap : {A : Δ → U}(a : (δ : Δ) → A δ) → {δ₀ δ₁ : Δ}(δ₂ : IdTel Δ δ₀ δ₁) → Id A δ₂ (a δ₀) (a δ₁) idTel-sigma : {a₀ : A δ₀}{a₁ : A δ₁} → IdTel (Σ Δ A) (δ₀ , a₀) (δ₁ , a₁) ≡ Σ (IdTel Δ δ₀ δ₁) (λ δ₂ → Id A δ₂ a₀ a₁) {-# REWRITE idTel-sigma #-} id-u : {A₀ A₁ : U}{δ₂ : IdTel Δ δ₀ δ₁} → Id {Δ = Δ}(λ _ → U) δ₂ A₀ A₁ ≡ (A₀ → A₁ → U) {-# REWRITE id-u #-} id-ap : {δ₂ : IdTel Δ δ₀ δ₁}{a₀ : A δ₀}{a₁ : A δ₁} → Id A δ₂ a₀ a₁ ≡ ap {A = λ _ → U} A δ₂ a₀ a₁ ap-sigma : {δ₂ : IdTel Δ δ₀ δ₁}{a₀ : A δ₀}{a₁ : A δ₁} {B : (δ : Δ) → A δ → U} {b₀ : B δ₀ a₀}{b₁ : B δ₁ a₁}→ ap {Δ = Δ}{A = λ _ → U} (λ δ → Σ (A δ) (B δ)) δ₂ (a₀ , b₀) (a₁ , b₁) ≡ Σ (Id A δ₂ a₀ a₁) λ a₂ → Id {Δ = Σ Δ A} (λ (δ , a) → B δ a) (δ₂ , a₂) b₀ b₁ {-# REWRITE ap-sigma #-} {-# REWRITE id-ap #-} ap-proj₁ : {δ₂ : IdTel Δ δ₀ δ₁} {B : (δ : Δ) → A δ → U} {ab : (δ : Δ) → Σ (A δ) (B δ)} → ap {Δ = Δ}{A = A}(λ δ → fst (ab δ)) δ₂ ≡ fst (ap ab δ₂)
28.784314
91
0.412125
12cdf0d63ffd93f82a1910bd40b41e7546c65c92
1,953
agda
Agda
src/Categories/Functor/Monoidal/Symmetric.agda
o1lo01ol1o/agda-categories
5fc007768264a270b8ff319570225986773da601
[ "MIT" ]
null
null
null
src/Categories/Functor/Monoidal/Symmetric.agda
o1lo01ol1o/agda-categories
5fc007768264a270b8ff319570225986773da601
[ "MIT" ]
null
null
null
src/Categories/Functor/Monoidal/Symmetric.agda
o1lo01ol1o/agda-categories
5fc007768264a270b8ff319570225986773da601
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Monoidal.Structure using (SymmetricMonoidalCategory) module Categories.Functor.Monoidal.Symmetric {o o′ ℓ ℓ′ e e′} (C : SymmetricMonoidalCategory o ℓ e) (D : SymmetricMonoidalCategory o′ ℓ′ e′) where open import Level open import Data.Product using (_,_) open import Categories.Functor using (Functor) open import Categories.Functor.Monoidal private module C = SymmetricMonoidalCategory C renaming (braidedMonoidalCategory to B) module D = SymmetricMonoidalCategory D renaming (braidedMonoidalCategory to B) import Categories.Functor.Monoidal.Braided C.B D.B as Braided module Lax where open Braided.Lax -- Lax symmetric monoidal functors are just lax braided monoidal -- functors between symmetric monoidal categories. record SymmetricMonoidalFunctor : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field F : Functor C.U D.U isBraidedMonoidal : IsBraidedMonoidalFunctor F open Functor F public open IsBraidedMonoidalFunctor isBraidedMonoidal public monoidalFunctor : MonoidalFunctor C.monoidalCategory D.monoidalCategory monoidalFunctor = record { isMonoidal = isMonoidal } module Strong where open Braided.Strong -- Strong symmetric monoidal functors are just strong braided -- monoidal functors between symmetric monoidal categories. record SymmetricMonoidalFunctor : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field F : Functor C.U D.U isBraidedMonoidal : IsBraidedMonoidalFunctor F open Functor F public open IsBraidedMonoidalFunctor isBraidedMonoidal public monoidalFunctor : StrongMonoidalFunctor C.monoidalCategory D.monoidalCategory monoidalFunctor = record { isStrongMonoidal = isStrongMonoidal } laxSymmetricMonoidalFunctor : Lax.SymmetricMonoidalFunctor laxSymmetricMonoidalFunctor = record { isBraidedMonoidal = isLaxBraidedMonoidal }
33.101695
81
0.75064
cb3ff8fa9679b48e65965f64f244d794c540fa5d
1,206
agda
Agda
src/Categories/Minus2-Category.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Minus2-Category.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Minus2-Category.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} -- 'Traditionally', meaning in nLab and in -- "Lectures on n-Categories and Cohomology" by Baez and Shulman -- https://arxiv.org/abs/math/0608420 -- (-2)-Categories are defined to be just a single value, with trivial Hom -- But that's hardly a definition of a class of things, it's a definition of -- a single structure! What we want is the definition of a class which turns -- out to be (essentially) unique. Rather like the reals are (essentially) the -- only ordered complete archimedean field. -- So we will take a -2-Category to be a full-fledge Category, but where -- 1. |Obj| is (Categorically) contractible -- 2. |Hom| is connected (all arrows are equal) -- Note that we don't need to say anything at all about ≈ module Categories.Minus2-Category where open import Level open import Categories.Category open import Data.Product using (Σ) import Categories.Morphism as M private variable o ℓ e : Level record -2-Category : Set (suc (o ⊔ ℓ ⊔ e)) where field cat : Category o ℓ e open Category cat public open M cat using (_≅_) field Obj-Contr : Σ Obj (λ x → (y : Obj) → x ≅ y) Hom-Conn : {x y : Obj} {f g : x ⇒ y} → f ≈ g
31.736842
78
0.689055
c591b069716d5f353eb93b0fc5c18143566c5856
26
agda
Agda
test/interaction/space in the path/BehindSpaces.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/space in the path/BehindSpaces.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/space in the path/BehindSpaces.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module BehindSpaces where
13
25
0.884615
2316d1a470eeedbd50933749858b01472d803920
4,944
agda
Agda
Structure/Operator/Vector/LinearCombination/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Operator/Vector/LinearCombination/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Operator/Vector/LinearCombination/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
import Lvl open import Structure.Operator.Vector open import Structure.Setoid open import Type module Structure.Operator.Vector.LinearCombination.Proofs {ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ} {V : Type{ℓᵥ}} ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄ {S : Type{ℓₛ}} ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ {_+ᵥ_ : V → V → V} {_⋅ₛᵥ_ : S → V → V} {_+ₛ_ _⋅ₛ_ : S → S → S} ⦃ vectorSpace : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) ⦄ where open VectorSpace(vectorSpace) import Lvl open import Function.Equals open import Logic.Predicate open import Numeral.CoordinateVector as Vec using () renaming (Vector to Vec) open import Numeral.Finite open import Numeral.Natural open import Structure.Function.Multi import Structure.Function.Names as Names open import Structure.Operator.Proofs.Util open import Structure.Operator.Properties open import Structure.Operator open import Structure.Operator.Vector.LinearCombination ⦃ vectorSpace = vectorSpace ⦄ open import Structure.Operator.Vector.Proofs open import Structure.Relator.Properties open import Syntax.Function open import Syntax.Number open import Syntax.Transitivity open import Type private variable ℓ ℓ₁ ℓ₂ ℓₗ : Lvl.Level private variable n n₁ n₂ : ℕ private variable i j k : 𝕟(n) private variable vf vf₁ vf₂ : Vec(n)(V) private variable sf sf₁ sf₂ : Vec(n)(S) instance linearCombination-binaryOperator : BinaryOperator(linearCombination{n}) linearCombination-binaryOperator = intro p where p : Names.Congruence₂(linearCombination{n}) p {𝟎} {vf₁} {vf₂} (intro vfeq) {sf₁} {sf₂} (intro sfeq) = reflexivity(_≡_) p {𝐒(𝟎)} {vf₁} {vf₂} (intro vfeq) {sf₁} {sf₂} (intro sfeq) = congruence₂(_⋅ₛᵥ_) sfeq vfeq p {𝐒(𝐒(n))} {vf₁} {vf₂} (intro vfeq) {sf₁} {sf₂} (intro sfeq) = (sf₁(𝟎) ⋅ₛᵥ vf₁(𝟎)) +ᵥ linearCombination(Vec.tail vf₁) (Vec.tail sf₁) 🝖[ _≡_ ]-[ congruence₂(_+ᵥ_) (congruence₂(_⋅ₛᵥ_) sfeq vfeq) (p {𝐒(n)} (intro vfeq) (intro sfeq)) ] (sf₂(𝟎) ⋅ₛᵥ vf₂(𝟎)) +ᵥ linearCombination(Vec.tail vf₂) (Vec.tail sf₂) 🝖-end instance linearCombination-scalar-preserves-[+] : Preserving₂(linearCombination vf) (Vec.map₂(_+ₛ_)) (_+ᵥ_) linearCombination-scalar-preserves-[+] {vf = vf} = intro(p{vf = vf}) where p : ∀{n}{vf : Vec(n)(V)} → Names.Preserving₂(linearCombination vf) (Vec.map₂(_+ₛ_)) (_+ᵥ_) p {𝟎}{vf} {sf₁} {sf₂} = 𝟎ᵥ 🝖[ _≡_ ]-[ identityₗ(_+ᵥ_)(𝟎ᵥ) ]-sym 𝟎ᵥ +ᵥ 𝟎ᵥ 🝖-end p {𝐒(𝟎)}{vf} {sf₁} {sf₂} = (Vec.map₂(_+ₛ_) sf₁ sf₂ 𝟎) ⋅ₛᵥ vf(𝟎) 🝖[ _≡_ ]-[] (sf₁(𝟎) +ₛ sf₂(𝟎)) ⋅ₛᵥ vf(𝟎) 🝖[ _≡_ ]-[ [⋅ₛᵥ][+ₛ][+ᵥ]-distributivityᵣ ] (sf₁(𝟎) ⋅ₛᵥ vf(𝟎)) +ᵥ (sf₂(𝟎) ⋅ₛᵥ vf(𝟎)) 🝖-end p {𝐒(𝐒(n))}{vf} {sf₁} {sf₂} = ((Vec.map₂(_+ₛ_) sf₁ sf₂ 𝟎) ⋅ₛᵥ vf(𝟎)) +ᵥ (linearCombination {𝐒(n)} (Vec.tail vf) (Vec.tail(Vec.map₂(_+ₛ_) sf₁ sf₂))) 🝖[ _≡_ ]-[] ((sf₁(𝟎) +ₛ sf₂(𝟎)) ⋅ₛᵥ vf(𝟎)) +ᵥ (linearCombination {𝐒(n)} (Vec.tail vf) (Vec.tail(Vec.map₂(_+ₛ_) sf₁ sf₂))) 🝖[ _≡_ ]-[ congruence₂(_+ᵥ_) [⋅ₛᵥ][+ₛ][+ᵥ]-distributivityᵣ (p {𝐒(n)}{Vec.tail vf} {Vec.tail sf₁} {Vec.tail sf₂}) ] ((sf₁(𝟎) ⋅ₛᵥ vf(𝟎)) +ᵥ (sf₂(𝟎) ⋅ₛᵥ vf(𝟎))) +ᵥ ((linearCombination {𝐒(n)} (Vec.tail vf) (Vec.tail sf₁)) +ᵥ (linearCombination {𝐒(n)} (Vec.tail vf) (Vec.tail sf₂))) 🝖[ _≡_ ]-[ One.associate-commute4 (commutativity(_+ᵥ_)) ] (((sf₁(𝟎) ⋅ₛᵥ vf(𝟎)) +ᵥ (linearCombination {𝐒(n)} (Vec.tail vf) (Vec.tail sf₁))) +ᵥ ((sf₂(𝟎) ⋅ₛᵥ vf(𝟎)) +ᵥ (linearCombination {𝐒(n)} (Vec.tail vf) (Vec.tail sf₂)))) 🝖-end instance linearCombination-scalar-preserves-[⋅] : ∀{s} → Preserving₁(linearCombination vf) (Vec.map(s ⋅ₛ_)) (s ⋅ₛᵥ_) linearCombination-scalar-preserves-[⋅] {vf = vf} {s = s} = intro(p{vf = vf}) where p : ∀{n}{vf : Vec(n)(V)} → Names.Preserving₁(linearCombination vf) (Vec.map(s ⋅ₛ_)) (s ⋅ₛᵥ_) p {𝟎} {vf} {sf} = 𝟎ᵥ 🝖[ _≡_ ]-[ [⋅ₛᵥ]-absorberᵣ ]-sym s ⋅ₛᵥ 𝟎ᵥ 🝖-end p {𝐒(𝟎)} {vf} {sf} = (s ⋅ₛ sf(𝟎)) ⋅ₛᵥ vf(𝟎) 🝖[ _≡_ ]-[ [⋅ₛ][⋅ₛᵥ]-compatibility ] s ⋅ₛᵥ (sf(𝟎) ⋅ₛᵥ vf(𝟎)) 🝖-end p {𝐒(𝐒(n))} {vf} {sf} = linearCombination vf (Vec.map (s ⋅ₛ_) sf) 🝖[ _≡_ ]-[] ((s ⋅ₛ sf(𝟎)) ⋅ₛᵥ vf(𝟎)) +ᵥ (linearCombination (Vec.tail vf) (Vec.map (s ⋅ₛ_) (Vec.tail sf))) 🝖[ _≡_ ]-[ congruence₂(_+ᵥ_) ⦃ [+ᵥ]-binary-operator ⦄ [⋅ₛ][⋅ₛᵥ]-compatibility (p {𝐒(n)} {Vec.tail vf} {Vec.tail sf}) ] (s ⋅ₛᵥ (sf(𝟎) ⋅ₛᵥ vf(𝟎))) +ᵥ (s ⋅ₛᵥ (linearCombination (Vec.tail vf) (Vec.tail sf))) 🝖[ _≡_ ]-[ distributivityₗ(_⋅ₛᵥ_)(_+ᵥ_) ]-sym s ⋅ₛᵥ ((sf(𝟎) ⋅ₛᵥ vf(𝟎)) +ᵥ (linearCombination (Vec.tail vf) (Vec.tail sf))) 🝖[ _≡_ ]-[] s ⋅ₛᵥ (linearCombination vf sf) 🝖-end -- linearCombination-of-unit : linearCombination vf (Vec.fill 𝟏ₛ) ≡ (foldᵣ(_+_) 𝟎ᵥ vf) postulate linearCombination-of-indexProject : (linearCombination vf (Vec.indexProject i 𝟏ₛ 𝟎ₛ) ≡ vf(i))
55.550562
285
0.591828
18af3d0e94e08557428b7293ad64c1b83bb314cc
582
agda
Agda
Agda/RevRev.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
2
2020-02-03T05:05:52.000Z
2020-03-11T10:35:42.000Z
Agda/RevRev.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
null
null
null
Agda/RevRev.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
1
2019-12-13T04:50:46.000Z
2019-12-13T04:50:46.000Z
{-# OPTIONS --safe #-} module RevRev where open import Relation.Binary.PropositionalEquality open import Data.List open import Data.List.Properties rev : ∀ {ℓ} {A : Set ℓ} → List A → List A rev [] = [] rev (x ∷ xs) = rev xs ++ x ∷ [] lemma : ∀ {ℓ} {A : Set ℓ} (a b : List A) → rev (a ++ b) ≡ rev b ++ rev a lemma [] b rewrite ++-identityʳ (rev b) = refl lemma (x ∷ a) b rewrite lemma a b | ++-assoc (rev b) (rev a) (x ∷ []) = refl revrevid : ∀ {ℓ} {A : Set ℓ} (a : List A) → rev (rev a) ≡ a revrevid [] = refl revrevid (x ∷ a) rewrite lemma (rev a) (x ∷ []) | revrevid a = refl
30.631579
76
0.573883
a1f6f46ecd6fd03c588834a85c90a84751640b37
8,181
agda
Agda
test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Lex/NonStrict.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Lex/NonStrict.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Lex/NonStrict.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Lexicographic products of binary relations ------------------------------------------------------------------------ -- The definition of lexicographic product used here is suitable if -- the left-hand relation is a (non-strict) partial order. {-# OPTIONS --without-K --safe #-} module Data.Product.Relation.Binary.Lex.NonStrict where open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Data.Sum using (inj₁; inj₂) open import Relation.Binary open import Relation.Binary.Consequences import Relation.Binary.Construct.NonStrictToStrict as Conv open import Data.Product.Relation.Binary.Pointwise.NonDependent as Pointwise using (Pointwise) import Data.Product.Relation.Binary.Lex.Strict as Strict module _ {a₁ a₂ ℓ₁ ℓ₂} {A₁ : Set a₁} {A₂ : Set a₂} where ------------------------------------------------------------------------ -- A lexicographic ordering over products ×-Lex : (_≈₁_ _≤₁_ : Rel A₁ ℓ₁) (_≤₂_ : Rel A₂ ℓ₂) → Rel (A₁ × A₂) _ ×-Lex _≈₁_ _≤₁_ _≤₂_ = Strict.×-Lex _≈₁_ (Conv._<_ _≈₁_ _≤₁_) _≤₂_ ------------------------------------------------------------------------ -- Some properties which are preserved by ×-Lex (under certain -- assumptions). ×-reflexive : ∀ _≈₁_ _≤₁_ {_≈₂_} _≤₂_ → _≈₂_ ⇒ _≤₂_ → (Pointwise _≈₁_ _≈₂_) ⇒ (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-reflexive _≈₁_ _≤₁_ _≤₂_ refl₂ = Strict.×-reflexive _≈₁_ (Conv._<_ _≈₁_ _≤₁_) _≤₂_ refl₂ ×-transitive : ∀ {_≈₁_ _≤₁_} → IsPartialOrder _≈₁_ _≤₁_ → ∀ {_≤₂_} → Transitive _≤₂_ → Transitive (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-transitive {_≈₁_} {_≤₁_} po₁ {_≤₂_} trans₂ = Strict.×-transitive {_<₁_ = Conv._<_ _≈₁_ _≤₁_} isEquivalence (Conv.<-resp-≈ _ _ isEquivalence ≤-resp-≈) (Conv.<-trans _ _ po₁) {_≤₂_} trans₂ where open IsPartialOrder po₁ ×-antisymmetric : ∀ {_≈₁_ _≤₁_} → IsPartialOrder _≈₁_ _≤₁_ → ∀ {_≈₂_ _≤₂_} → Antisymmetric _≈₂_ _≤₂_ → Antisymmetric (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-antisymmetric {_≈₁_} {_≤₁_} po₁ {_≤₂_ = _≤₂_} antisym₂ = Strict.×-antisymmetric {_<₁_ = Conv._<_ _≈₁_ _≤₁_} ≈-sym₁ irrefl₁ asym₁ {_≤₂_ = _≤₂_} antisym₂ where open IsPartialOrder po₁ open Eq renaming (refl to ≈-refl₁; sym to ≈-sym₁) irrefl₁ : Irreflexive _≈₁_ (Conv._<_ _≈₁_ _≤₁_) irrefl₁ = Conv.<-irrefl _≈₁_ _≤₁_ asym₁ : Asymmetric (Conv._<_ _≈₁_ _≤₁_) asym₁ = trans∧irr⟶asym {_≈_ = _≈₁_} ≈-refl₁ (Conv.<-trans _ _ po₁) irrefl₁ ×-respects₂ : ∀ {_≈₁_ _≤₁_} → IsEquivalence _≈₁_ → _≤₁_ Respects₂ _≈₁_ → ∀ {_≈₂_ _≤₂_ : Rel A₂ ℓ₂} → _≤₂_ Respects₂ _≈₂_ → (×-Lex _≈₁_ _≤₁_ _≤₂_) Respects₂ (Pointwise _≈₁_ _≈₂_) ×-respects₂ eq₁ resp₁ resp₂ = Strict.×-respects₂ eq₁ (Conv.<-resp-≈ _ _ eq₁ resp₁) resp₂ ×-decidable : ∀ {_≈₁_ _≤₁_} → Decidable _≈₁_ → Decidable _≤₁_ → ∀ {_≤₂_} → Decidable _≤₂_ → Decidable (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-decidable dec-≈₁ dec-≤₁ dec-≤₂ = Strict.×-decidable dec-≈₁ (Conv.<-decidable _ _ dec-≈₁ dec-≤₁) dec-≤₂ ×-total : ∀ {_≈₁_ _≤₁_} → Symmetric _≈₁_ → Decidable _≈₁_ → Antisymmetric _≈₁_ _≤₁_ → Total _≤₁_ → ∀ {_≤₂_} → Total _≤₂_ → Total (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-total {_≈₁_} {_≤₁_} sym₁ dec₁ antisym₁ total₁ {_≤₂_} total₂ = total where tri₁ : Trichotomous _≈₁_ (Conv._<_ _≈₁_ _≤₁_) tri₁ = Conv.<-trichotomous _ _ sym₁ dec₁ antisym₁ total₁ total : Total (×-Lex _≈₁_ _≤₁_ _≤₂_) total x y with tri₁ (proj₁ x) (proj₁ y) ... | tri< x₁<y₁ x₁≉y₁ x₁≯y₁ = inj₁ (inj₁ x₁<y₁) ... | tri> x₁≮y₁ x₁≉y₁ x₁>y₁ = inj₂ (inj₁ x₁>y₁) ... | tri≈ x₁≮y₁ x₁≈y₁ x₁≯y₁ with total₂ (proj₂ x) (proj₂ y) ... | inj₁ x₂≤y₂ = inj₁ (inj₂ (x₁≈y₁ , x₂≤y₂)) ... | inj₂ x₂≥y₂ = inj₂ (inj₂ (sym₁ x₁≈y₁ , x₂≥y₂)) -- Some collections of properties which are preserved by ×-Lex -- (under certain assumptions). ×-isPartialOrder : ∀ {_≈₁_ _≤₁_} → IsPartialOrder _≈₁_ _≤₁_ → ∀ {_≈₂_ _≤₂_} → IsPartialOrder _≈₂_ _≤₂_ → IsPartialOrder (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-isPartialOrder {_≈₁_} {_≤₁_} po₁ {_≤₂_ = _≤₂_} po₂ = record { isPreorder = record { isEquivalence = Pointwise.×-isEquivalence (isEquivalence po₁) (isEquivalence po₂) ; reflexive = ×-reflexive _≈₁_ _≤₁_ _≤₂_ (reflexive po₂) ; trans = ×-transitive po₁ {_≤₂_ = _≤₂_} (trans po₂) } ; antisym = ×-antisymmetric {_≤₁_ = _≤₁_} po₁ {_≤₂_ = _≤₂_} (antisym po₂) } where open IsPartialOrder ×-isTotalOrder : ∀ {_≈₁_ _≤₁_} → Decidable _≈₁_ → IsTotalOrder _≈₁_ _≤₁_ → ∀ {_≈₂_ _≤₂_} → IsTotalOrder _≈₂_ _≤₂_ → IsTotalOrder (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-isTotalOrder {_≤₁_ = _≤₁_} ≈₁-dec to₁ {_≤₂_ = _≤₂_} to₂ = record { isPartialOrder = ×-isPartialOrder (isPartialOrder to₁) (isPartialOrder to₂) ; total = ×-total {_≤₁_ = _≤₁_} (Eq.sym to₁) ≈₁-dec (antisym to₁) (total to₁) {_≤₂_ = _≤₂_} (total to₂) } where open IsTotalOrder ×-isDecTotalOrder : ∀ {_≈₁_ _≤₁_} → IsDecTotalOrder _≈₁_ _≤₁_ → ∀ {_≈₂_ _≤₂_} → IsDecTotalOrder _≈₂_ _≤₂_ → IsDecTotalOrder (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-isDecTotalOrder {_≤₁_ = _≤₁_} to₁ {_≤₂_ = _≤₂_} to₂ = record { isTotalOrder = ×-isTotalOrder (_≟_ to₁) (isTotalOrder to₁) (isTotalOrder to₂) ; _≟_ = Pointwise.×-decidable (_≟_ to₁) (_≟_ to₂) ; _≤?_ = ×-decidable (_≟_ to₁) (_≤?_ to₁) (_≤?_ to₂) } where open IsDecTotalOrder ------------------------------------------------------------------------ -- "Packages" can also be combined. module _ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} where ×-poset : Poset ℓ₁ ℓ₂ _ → Poset ℓ₃ ℓ₄ _ → Poset _ _ _ ×-poset p₁ p₂ = record { isPartialOrder = ×-isPartialOrder (isPartialOrder p₁) (isPartialOrder p₂) } where open Poset ×-totalOrder : DecTotalOrder ℓ₁ ℓ₂ _ → TotalOrder ℓ₃ ℓ₄ _ → TotalOrder _ _ _ ×-totalOrder t₁ t₂ = record { isTotalOrder = ×-isTotalOrder T₁._≟_ T₁.isTotalOrder T₂.isTotalOrder } where module T₁ = DecTotalOrder t₁ module T₂ = TotalOrder t₂ ×-decTotalOrder : DecTotalOrder ℓ₁ ℓ₂ _ → DecTotalOrder ℓ₃ ℓ₄ _ → DecTotalOrder _ _ _ ×-decTotalOrder t₁ t₂ = record { isDecTotalOrder = ×-isDecTotalOrder (isDecTotalOrder t₁) (isDecTotalOrder t₂) } where open DecTotalOrder ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 _×-isPartialOrder_ = ×-isPartialOrder {-# WARNING_ON_USAGE _×-isPartialOrder_ "Warning: _×-isPartialOrder_ was deprecated in v0.15. Please use ×-isPartialOrder instead." #-} _×-isDecTotalOrder_ = ×-isDecTotalOrder {-# WARNING_ON_USAGE _×-isDecTotalOrder_ "Warning: _×-isDecTotalOrder_ was deprecated in v0.15. Please use ×-isDecTotalOrder instead." #-} _×-poset_ = ×-poset {-# WARNING_ON_USAGE _×-poset_ "Warning: _×-poset_ was deprecated in v0.15. Please use ×-poset instead." #-} _×-totalOrder_ = ×-totalOrder {-# WARNING_ON_USAGE _×-totalOrder_ "Warning: _×-totalOrder_ was deprecated in v0.15. Please use ×-totalOrder instead." #-} _×-decTotalOrder_ = ×-decTotalOrder {-# WARNING_ON_USAGE _×-decTotalOrder_ "Warning: _×-decTotalOrder_ was deprecated in v0.15. Please use ×-decTotalOrder instead." #-} ×-≈-respects₂ = ×-respects₂ {-# WARNING_ON_USAGE ×-≈-respects₂ "Warning: ×-≈-respects₂ was deprecated in v0.15. Please use ×-respects₂ instead." #-}
37.875
76
0.554455