contestId
int64 0
1.01k
| index
stringclasses 40
values | name
stringlengths 2
54
| type
stringclasses 2
values | rating
int64 0
3.4k
| tags
listlengths 0
7
| title
stringclasses 393
values | time-limit
stringclasses 7
values | memory-limit
stringclasses 6
values | problem-description
stringlengths 0
2.97k
| input-specification
stringlengths 4
1.87k
| output-specification
stringlengths 4
1.12k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
3.5k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 1
value | testset
stringclasses 9
values | passedTestCount
int64 1
402
| timeConsumedMillis
int64 15
8.06k
| memoryConsumedBytes
int64 0
514M
| code
stringlengths 11
61.4k
| prompt
stringlengths 297
7.35k
| response
stringlengths 25
61.4k
| score
float64 2.82
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
745
|
A
|
Hongcow Learns the Cyclic Shift
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] | null | null |
Hongcow is learning to spell! One day, his teacher gives him a word that he needs to learn to spell. Being a dutiful student, he immediately learns how to spell the word.
Hongcow has decided to try to make new words from this one. He starts by taking the word he just learned how to spell, and moves the last character of the word to the beginning of the word. He calls this a cyclic shift. He can apply cyclic shift many times. For example, consecutively applying cyclic shift operation to the word "abracadabra" Hongcow will get words "aabracadabr", "raabracadab" and so on.
Hongcow is now wondering how many distinct words he can generate by doing the cyclic shift arbitrarily many times. The initial string is also counted.
|
The first line of input will be a single string *s* (1<=β€<=|*s*|<=β€<=50), the word Hongcow initially learns how to spell. The string *s* consists only of lowercase English letters ('a'β'z').
|
Output a single integer equal to the number of distinct strings that Hongcow can obtain by applying the cyclic shift arbitrarily many times to the given string.
|
[
"abcd\n",
"bbb\n",
"yzyz\n"
] |
[
"4\n",
"1\n",
"2\n"
] |
For the first sample, the strings Hongcow can generate are "abcd", "dabc", "cdab", and "bcda".
For the second sample, no matter how many times Hongcow does the cyclic shift, Hongcow can only generate "bbb".
For the third sample, the two strings Hongcow can generate are "yzyz" and "zyzy".
| 500
|
[
{
"input": "abcd",
"output": "4"
},
{
"input": "bbb",
"output": "1"
},
{
"input": "yzyz",
"output": "2"
},
{
"input": "abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxy",
"output": "25"
},
{
"input": "zclkjadoprqronzclkjadoprqronzclkjadoprqron",
"output": "14"
},
{
"input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz",
"output": "1"
},
{
"input": "xyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxy",
"output": "2"
},
{
"input": "y",
"output": "1"
},
{
"input": "ervbfotfedpozygoumbmxeaqegouaqqzqerlykhmvxvvlcaos",
"output": "49"
},
{
"input": "zyzzzyyzyyyzyyzyzyzyzyzzzyyyzzyzyyzzzzzyyyzzzzyzyy",
"output": "50"
},
{
"input": "zzfyftdezzfyftdezzfyftdezzfyftdezzfyftdezzfyftde",
"output": "8"
},
{
"input": "yehcqdlllqpuxdsaicyjjxiylahgxbygmsopjbxhtimzkashs",
"output": "49"
},
{
"input": "yyyyzzzyzzzyzyzyzyyyyyzzyzyzyyyyyzyzyyyzyzzyyzzzz",
"output": "49"
},
{
"input": "zkqcrhzlzsnwzkqcrhzlzsnwzkqcrhzlzsnwzkqcrhzlzsnw",
"output": "12"
},
{
"input": "xxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxy",
"output": "3"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaab",
"output": "25"
},
{
"input": "aabaaabaaabaaabaaabaaabaaabaaabaaabaaabaaabaaaba",
"output": "4"
},
{
"input": "pqqpqqpqqpqqpqqpqqpqqpqqpqqpqqpqqppqppqppqppqppq",
"output": "48"
},
{
"input": "zxkljaqzxkljaqzxkljaqzxkljaqzxrljaqzxkljaqzxkljaq",
"output": "49"
},
{
"input": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwx",
"output": "50"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaz",
"output": "50"
},
{
"input": "abcddcba",
"output": "8"
},
{
"input": "aabaabaabaacaabaabaabaacaabaabaabaacaabaabaabaac",
"output": "12"
},
{
"input": "aabaabcaabaabcdaabaabcaabaabcd",
"output": "15"
},
{
"input": "ababaababaaababaababaaaababaababaaababaababaaaa",
"output": "47"
},
{
"input": "ababaababaaababaababaaaababaababaaababaababaaa",
"output": "23"
},
{
"input": "aaababaab",
"output": "9"
},
{
"input": "aba",
"output": "3"
}
] | 1,628,482,247
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 28
| 77
| 6,758,400
|
f,num = input().strip(),1
f1 = f[-1] + f[:-1]
while f1 != f:
num += 1
f1 = f1[-1] + f1[:-1]
print(num)
|
Title: Hongcow Learns the Cyclic Shift
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Hongcow is learning to spell! One day, his teacher gives him a word that he needs to learn to spell. Being a dutiful student, he immediately learns how to spell the word.
Hongcow has decided to try to make new words from this one. He starts by taking the word he just learned how to spell, and moves the last character of the word to the beginning of the word. He calls this a cyclic shift. He can apply cyclic shift many times. For example, consecutively applying cyclic shift operation to the word "abracadabra" Hongcow will get words "aabracadabr", "raabracadab" and so on.
Hongcow is now wondering how many distinct words he can generate by doing the cyclic shift arbitrarily many times. The initial string is also counted.
Input Specification:
The first line of input will be a single string *s* (1<=β€<=|*s*|<=β€<=50), the word Hongcow initially learns how to spell. The string *s* consists only of lowercase English letters ('a'β'z').
Output Specification:
Output a single integer equal to the number of distinct strings that Hongcow can obtain by applying the cyclic shift arbitrarily many times to the given string.
Demo Input:
['abcd\n', 'bbb\n', 'yzyz\n']
Demo Output:
['4\n', '1\n', '2\n']
Note:
For the first sample, the strings Hongcow can generate are "abcd", "dabc", "cdab", and "bcda".
For the second sample, no matter how many times Hongcow does the cyclic shift, Hongcow can only generate "bbb".
For the third sample, the two strings Hongcow can generate are "yzyz" and "zyzy".
|
```python
f,num = input().strip(),1
f1 = f[-1] + f[:-1]
while f1 != f:
num += 1
f1 = f1[-1] + f1[:-1]
print(num)
```
| 3
|
|
600
|
B
|
Queries about less or equal elements
|
PROGRAMMING
| 1,300
|
[
"binary search",
"data structures",
"sortings",
"two pointers"
] | null | null |
You are given two arrays of integers *a* and *b*. For each element of the second array *b**j* you should find the number of elements in array *a* that are less than or equal to the value *b**j*.
|
The first line contains two integers *n*,<=*m* (1<=β€<=*n*,<=*m*<=β€<=2Β·105) β the sizes of arrays *a* and *b*.
The second line contains *n* integers β the elements of array *a* (<=-<=109<=β€<=*a**i*<=β€<=109).
The third line contains *m* integers β the elements of array *b* (<=-<=109<=β€<=*b**j*<=β€<=109).
|
Print *m* integers, separated by spaces: the *j*-th of which is equal to the number of such elements in array *a* that are less than or equal to the value *b**j*.
|
[
"5 4\n1 3 5 7 9\n6 4 2 8\n",
"5 5\n1 2 1 2 5\n3 1 4 1 5\n"
] |
[
"3 2 1 4\n",
"4 2 4 2 5\n"
] |
none
| 0
|
[
{
"input": "5 4\n1 3 5 7 9\n6 4 2 8",
"output": "3 2 1 4"
},
{
"input": "5 5\n1 2 1 2 5\n3 1 4 1 5",
"output": "4 2 4 2 5"
},
{
"input": "1 1\n-1\n-2",
"output": "0"
},
{
"input": "1 1\n-80890826\n686519510",
"output": "1"
},
{
"input": "11 11\n237468511 -779187544 -174606592 193890085 404563196 -71722998 -617934776 170102710 -442808289 109833389 953091341\n994454001 322957429 216874735 -606986750 -455806318 -663190696 3793295 41395397 -929612742 -787653860 -684738874",
"output": "11 9 8 2 2 1 5 5 0 0 1"
},
{
"input": "20 22\n858276994 -568758442 -918490847 -983345984 -172435358 389604931 200224783 486556113 413281867 -258259500 -627945379 -584563643 444685477 -602481243 -370745158 965672503 630955806 -626138773 -997221880 633102929\n-61330638 -977252080 -212144219 385501731 669589742 954357160 563935906 584468977 -895883477 405774444 853372186 186056475 -964575261 -952431965 632332084 -388829939 -23011650 310957048 -770695392 977376693 321435214 199223897",
"output": "11 2 10 12 18 19 16 16 3 13 18 11 2 2 17 8 11 12 3 20 12 11"
},
{
"input": "5 9\n1 3 5 7 9\n1 2 3 4 5 6 7 8 9",
"output": "1 1 2 2 3 3 4 4 5"
},
{
"input": "22 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22\n1",
"output": "1"
},
{
"input": "5 1\n1 3 3 3 5\n3",
"output": "4"
},
{
"input": "4 5\n1 1 1 4\n1 5 5 4 3",
"output": "3 4 4 4 3"
},
{
"input": "5 4\n0 5 5 5 6\n5 1 6 3",
"output": "4 1 5 1"
},
{
"input": "1 3\n0\n-1 0 1",
"output": "0 1 1"
},
{
"input": "96 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1",
"output": "96"
},
{
"input": "7 1\n1 2 3 4 5 6 7\n1",
"output": "1"
},
{
"input": "13 13\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000",
"output": "7 13 7 13 7 13 7 13 7 13 7 13 7"
},
{
"input": "9 5\n1 2 3 4 5 6 7 8 9\n1 2 3 4 5",
"output": "1 2 3 4 5"
},
{
"input": "3 8\n1 1 1\n1 1 1 1 1 1 1 1",
"output": "3 3 3 3 3 3 3 3"
},
{
"input": "1 1\n-11111\n-5938",
"output": "1"
},
{
"input": "1 1\n1\n400000009",
"output": "1"
},
{
"input": "1 1\n1\n300000009",
"output": "1"
},
{
"input": "1 1\n1\n200000009",
"output": "1"
},
{
"input": "1 1\n1\n200000003",
"output": "1"
}
] | 1,616,305,724
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 60
| 717
| 23,244,800
|
def bs(e,arr):
l=0;r=n-1;ans=-1
while l<=r:
mid=(l+r)//2
if arr[mid]<=e:ans=mid;l=mid+1
else:r=mid-1
if ans==-1:return 0
return ans+1
n,m=map(int,input().split())
a=list(map(int,input().split()))
b=list(map(int,input().split()))
a=sorted(a);ans=[]
for i in range(m):
e=b[i]
k=bs(e,a)
ans.append(k)
print(*ans)
|
Title: Queries about less or equal elements
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given two arrays of integers *a* and *b*. For each element of the second array *b**j* you should find the number of elements in array *a* that are less than or equal to the value *b**j*.
Input Specification:
The first line contains two integers *n*,<=*m* (1<=β€<=*n*,<=*m*<=β€<=2Β·105) β the sizes of arrays *a* and *b*.
The second line contains *n* integers β the elements of array *a* (<=-<=109<=β€<=*a**i*<=β€<=109).
The third line contains *m* integers β the elements of array *b* (<=-<=109<=β€<=*b**j*<=β€<=109).
Output Specification:
Print *m* integers, separated by spaces: the *j*-th of which is equal to the number of such elements in array *a* that are less than or equal to the value *b**j*.
Demo Input:
['5 4\n1 3 5 7 9\n6 4 2 8\n', '5 5\n1 2 1 2 5\n3 1 4 1 5\n']
Demo Output:
['3 2 1 4\n', '4 2 4 2 5\n']
Note:
none
|
```python
def bs(e,arr):
l=0;r=n-1;ans=-1
while l<=r:
mid=(l+r)//2
if arr[mid]<=e:ans=mid;l=mid+1
else:r=mid-1
if ans==-1:return 0
return ans+1
n,m=map(int,input().split())
a=list(map(int,input().split()))
b=list(map(int,input().split()))
a=sorted(a);ans=[]
for i in range(m):
e=b[i]
k=bs(e,a)
ans.append(k)
print(*ans)
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line β the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,501,611,449
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 77
| 4,608,000
|
a=input()
b=input()
c=""
for r in range(0,len(a)):
if(b[r]==a[r]):
c=c+"0"
else:
c=c+"1"
print(c)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line β the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
a=input()
b=input()
c=""
for r in range(0,len(a)):
if(b[r]==a[r]):
c=c+"0"
else:
c=c+"1"
print(c)
```
| 3.972167
|
215
|
B
|
Olympic Medal
|
PROGRAMMING
| 1,300
|
[
"greedy",
"math"
] | null | null |
The World Programming Olympics Medal is a metal disk, consisting of two parts: the first part is a ring with outer radius of *r*1 cm, inner radius of *r*2 cm, (0<=<<=*r*2<=<<=*r*1) made of metal with density *p*1 g/cm3. The second part is an inner disk with radius *r*2 cm, it is made of metal with density *p*2 g/cm3. The disk is nested inside the ring.
The Olympic jury decided that *r*1 will take one of possible values of *x*1,<=*x*2,<=...,<=*x**n*. It is up to jury to decide which particular value *r*1 will take. Similarly, the Olympic jury decided that *p*1 will take one of possible value of *y*1,<=*y*2,<=...,<=*y**m*, and *p*2 will take a value from list *z*1,<=*z*2,<=...,<=*z**k*.
According to most ancient traditions the ratio between the outer ring mass *m**out* and the inner disk mass *m**in* must equal , where *A*,<=*B* are constants taken from ancient books. Now, to start making medals, the jury needs to take values for *r*1, *p*1, *p*2 and calculate the suitable value of *r*2.
The jury wants to choose the value that would maximize radius *r*2. Help the jury find the sought value of *r*2. Value *r*2 doesn't have to be an integer.
Medal has a uniform thickness throughout the area, the thickness of the inner disk is the same as the thickness of the outer ring.
|
The first input line contains an integer *n* and a sequence of integers *x*1,<=*x*2,<=...,<=*x**n*. The second input line contains an integer *m* and a sequence of integers *y*1,<=*y*2,<=...,<=*y**m*. The third input line contains an integer *k* and a sequence of integers *z*1,<=*z*2,<=...,<=*z**k*. The last line contains two integers *A* and *B*.
All numbers given in the input are positive and do not exceed 5000. Each of the three sequences contains distinct numbers. The numbers in the lines are separated by spaces.
|
Print a single real number β the sought value *r*2 with absolute or relative error of at most 10<=-<=6. It is guaranteed that the solution that meets the problem requirements exists.
|
[
"3 1 2 3\n1 2\n3 3 2 1\n1 2\n",
"4 2 3 6 4\n2 1 2\n3 10 6 8\n2 1\n"
] |
[
"2.683281573000\n",
"2.267786838055\n"
] |
In the first sample the jury should choose the following values: *r*<sub class="lower-index">1</sub>β=β3, *p*<sub class="lower-index">1</sub>β=β2, *p*<sub class="lower-index">2</sub>β=β1.
| 500
|
[
{
"input": "3 1 2 3\n1 2\n3 3 2 1\n1 2",
"output": "2.683281573000"
},
{
"input": "4 2 3 6 4\n2 1 2\n3 10 6 8\n2 1",
"output": "2.267786838055"
},
{
"input": "1 5\n1 3\n1 7\n515 892",
"output": "3.263613058533"
},
{
"input": "2 3 2\n3 2 3 1\n2 2 1\n733 883",
"output": "2.655066678191"
},
{
"input": "2 4 2\n3 1 2 3\n2 2 3\n676 769",
"output": "3.176161549164"
},
{
"input": "2 4 2\n3 2 3 1\n2 3 1\n772 833",
"output": "3.496252962144"
},
{
"input": "2 1 2\n3 2 3 1\n2 1 3\n452 219",
"output": "1.539383784060"
},
{
"input": "2 3 2\n3 3 2 1\n2 3 2\n417 202",
"output": "1.946150045603"
},
{
"input": "2 1 2\n3 1 2 3\n2 3 2\n596 206",
"output": "1.168651298016"
},
{
"input": "2 1 2\n3 3 1 2\n2 2 3\n306 406",
"output": "1.631654093847"
},
{
"input": "2 3 2\n3 3 1 2\n2 2 1\n881 165",
"output": "1.799345811354"
},
{
"input": "2 2 4\n3 1 2 3\n2 2 1\n618 401",
"output": "3.251156175034"
},
{
"input": "10 24 2621 2533 3148 3544 4273 4921 2950 3780 4483\n10 1687 4906 4246 2814 1874 3020 3039 3971 102 492\n10 3458 2699 2463 4395 3607 550 1608 958 3970 3077\n4 891",
"output": "4919.762124668494"
},
{
"input": "1 5000\n1 5000\n1 1\n1 5000",
"output": "4999.999900000003"
},
{
"input": "1 1\n1 1\n1 5000\n5000 1",
"output": "0.000199999996"
},
{
"input": "3 5000 4999 4998\n3 5000 4999 4998\n4 1 2 3 4\n1 5000",
"output": "4999.999900000003"
},
{
"input": "3 1 2 3\n3 1 2 3\n3 5000 4999 4998\n5000 1",
"output": "0.001039438331"
},
{
"input": "3 1 2 3\n1 2\n3 3 2 1\n54 58",
"output": "2.478139719747"
},
{
"input": "3 1 2 3\n1 2\n3 3 2 1\n52 56",
"output": "2.479181611624"
},
{
"input": "3 1 2 3\n1 2\n3 3 2 1\n51 55",
"output": "2.479731502196"
},
{
"input": "3 1 2 3\n1 2\n3 3 2 1\n55 59",
"output": "2.477645721991"
},
{
"input": "3 1 2 3\n1 2\n3 1 2 3\n53 57",
"output": "2.478651362102"
},
{
"input": "13 1 2 3 4 5 6 7 8 9 10 11 12 13\n1 14\n2 15 16\n17 18",
"output": "9.165151389912"
}
] | 1,655,983,794
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 31
| 154
| 3,686,400
|
from sys import stdin
from bisect import bisect_left as bl
from collections import defaultdict
# input = stdin.readline
read = lambda: map(int, input().strip().split())
def take(arr):
return arr[0], sorted(arr[1:])
def ans(r1, p1, p2):
return ((b * p1 * (r1 ** 2)) / (a * p2 + b * p1)) ** 0.5
n, lstx = take(list(read()))
# print(n, lstx)
m, lsty = take(list(read()))
# print(m, lsty)
k, lstz = take(list(read()))
# print(k, lstz)
a, b = read()
print(ans(lstx[-1], lsty[-1], lstz[0]))
# print(lstx[-1], lsty[-1], lstz[0])
|
Title: Olympic Medal
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The World Programming Olympics Medal is a metal disk, consisting of two parts: the first part is a ring with outer radius of *r*1 cm, inner radius of *r*2 cm, (0<=<<=*r*2<=<<=*r*1) made of metal with density *p*1 g/cm3. The second part is an inner disk with radius *r*2 cm, it is made of metal with density *p*2 g/cm3. The disk is nested inside the ring.
The Olympic jury decided that *r*1 will take one of possible values of *x*1,<=*x*2,<=...,<=*x**n*. It is up to jury to decide which particular value *r*1 will take. Similarly, the Olympic jury decided that *p*1 will take one of possible value of *y*1,<=*y*2,<=...,<=*y**m*, and *p*2 will take a value from list *z*1,<=*z*2,<=...,<=*z**k*.
According to most ancient traditions the ratio between the outer ring mass *m**out* and the inner disk mass *m**in* must equal , where *A*,<=*B* are constants taken from ancient books. Now, to start making medals, the jury needs to take values for *r*1, *p*1, *p*2 and calculate the suitable value of *r*2.
The jury wants to choose the value that would maximize radius *r*2. Help the jury find the sought value of *r*2. Value *r*2 doesn't have to be an integer.
Medal has a uniform thickness throughout the area, the thickness of the inner disk is the same as the thickness of the outer ring.
Input Specification:
The first input line contains an integer *n* and a sequence of integers *x*1,<=*x*2,<=...,<=*x**n*. The second input line contains an integer *m* and a sequence of integers *y*1,<=*y*2,<=...,<=*y**m*. The third input line contains an integer *k* and a sequence of integers *z*1,<=*z*2,<=...,<=*z**k*. The last line contains two integers *A* and *B*.
All numbers given in the input are positive and do not exceed 5000. Each of the three sequences contains distinct numbers. The numbers in the lines are separated by spaces.
Output Specification:
Print a single real number β the sought value *r*2 with absolute or relative error of at most 10<=-<=6. It is guaranteed that the solution that meets the problem requirements exists.
Demo Input:
['3 1 2 3\n1 2\n3 3 2 1\n1 2\n', '4 2 3 6 4\n2 1 2\n3 10 6 8\n2 1\n']
Demo Output:
['2.683281573000\n', '2.267786838055\n']
Note:
In the first sample the jury should choose the following values: *r*<sub class="lower-index">1</sub>β=β3, *p*<sub class="lower-index">1</sub>β=β2, *p*<sub class="lower-index">2</sub>β=β1.
|
```python
from sys import stdin
from bisect import bisect_left as bl
from collections import defaultdict
# input = stdin.readline
read = lambda: map(int, input().strip().split())
def take(arr):
return arr[0], sorted(arr[1:])
def ans(r1, p1, p2):
return ((b * p1 * (r1 ** 2)) / (a * p2 + b * p1)) ** 0.5
n, lstx = take(list(read()))
# print(n, lstx)
m, lsty = take(list(read()))
# print(m, lsty)
k, lstz = take(list(read()))
# print(k, lstz)
a, b = read()
print(ans(lstx[-1], lsty[-1], lstz[0]))
# print(lstx[-1], lsty[-1], lstz[0])
```
| 3
|
|
16
|
B
|
Burglar and Matches
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation",
"sortings"
] |
B. Burglar and Matches
|
0
|
64
|
A burglar got into a matches warehouse and wants to steal as many matches as possible. In the warehouse there are *m* containers, in the *i*-th container there are *a**i* matchboxes, and each matchbox contains *b**i* matches. All the matchboxes are of the same size. The burglar's rucksack can hold *n* matchboxes exactly. Your task is to find out the maximum amount of matches that a burglar can carry away. He has no time to rearrange matches in the matchboxes, that's why he just chooses not more than *n* matchboxes so that the total amount of matches in them is maximal.
|
The first line of the input contains integer *n* (1<=β€<=*n*<=β€<=2Β·108) and integer *m* (1<=β€<=*m*<=β€<=20). The *i*<=+<=1-th line contains a pair of numbers *a**i* and *b**i* (1<=β€<=*a**i*<=β€<=108,<=1<=β€<=*b**i*<=β€<=10). All the input numbers are integer.
|
Output the only number β answer to the problem.
|
[
"7 3\n5 10\n2 5\n3 6\n",
"3 3\n1 3\n2 2\n3 1\n"
] |
[
"62\n",
"7\n"
] |
none
| 0
|
[
{
"input": "7 3\n5 10\n2 5\n3 6",
"output": "62"
},
{
"input": "3 3\n1 3\n2 2\n3 1",
"output": "7"
},
{
"input": "1 1\n1 2",
"output": "2"
},
{
"input": "1 2\n1 9\n1 6",
"output": "9"
},
{
"input": "1 10\n1 1\n1 9\n1 3\n1 9\n1 7\n1 10\n1 4\n1 7\n1 3\n1 1",
"output": "10"
},
{
"input": "2 1\n2 1",
"output": "2"
},
{
"input": "2 2\n2 4\n1 4",
"output": "8"
},
{
"input": "2 3\n1 7\n1 2\n1 5",
"output": "12"
},
{
"input": "4 1\n2 2",
"output": "4"
},
{
"input": "4 2\n1 10\n4 4",
"output": "22"
},
{
"input": "4 3\n1 4\n6 4\n1 7",
"output": "19"
},
{
"input": "5 1\n10 5",
"output": "25"
},
{
"input": "5 2\n3 9\n2 2",
"output": "31"
},
{
"input": "5 5\n2 9\n3 1\n2 1\n1 8\n2 8",
"output": "42"
},
{
"input": "5 10\n1 3\n1 2\n1 9\n1 10\n1 1\n1 5\n1 10\n1 2\n1 3\n1 7",
"output": "41"
},
{
"input": "10 1\n9 4",
"output": "36"
},
{
"input": "10 2\n14 3\n1 3",
"output": "30"
},
{
"input": "10 7\n4 8\n1 10\n1 10\n1 2\n3 3\n1 3\n1 10",
"output": "71"
},
{
"input": "10 10\n1 8\n2 10\n1 9\n1 1\n1 9\n1 6\n1 4\n2 5\n1 2\n1 4",
"output": "70"
},
{
"input": "10 4\n1 5\n5 2\n1 9\n3 3",
"output": "33"
},
{
"input": "100 5\n78 6\n29 10\n3 6\n7 3\n2 4",
"output": "716"
},
{
"input": "1000 7\n102 10\n23 6\n79 4\n48 1\n34 10\n839 8\n38 4",
"output": "8218"
},
{
"input": "10000 10\n336 2\n2782 5\n430 10\n1893 7\n3989 10\n2593 8\n165 6\n1029 2\n2097 4\n178 10",
"output": "84715"
},
{
"input": "100000 3\n2975 2\n35046 4\n61979 9",
"output": "703945"
},
{
"input": "1000000 4\n314183 9\n304213 4\n16864 5\n641358 9",
"output": "8794569"
},
{
"input": "10000000 10\n360313 10\n416076 1\n435445 9\n940322 7\n1647581 7\n4356968 10\n3589256 2\n2967933 5\n2747504 7\n1151633 3",
"output": "85022733"
},
{
"input": "100000000 7\n32844337 7\n11210848 7\n47655987 1\n33900472 4\n9174763 2\n32228738 10\n29947408 5",
"output": "749254060"
},
{
"input": "200000000 10\n27953106 7\n43325979 4\n4709522 1\n10975786 4\n67786538 8\n48901838 7\n15606185 6\n2747583 1\n100000000 1\n633331 3",
"output": "1332923354"
},
{
"input": "200000000 9\n17463897 9\n79520463 1\n162407 4\n41017993 8\n71054118 4\n9447587 2\n5298038 9\n3674560 7\n20539314 5",
"output": "996523209"
},
{
"input": "200000000 8\n6312706 6\n2920548 2\n16843192 3\n1501141 2\n13394704 6\n10047725 10\n4547663 6\n54268518 6",
"output": "630991750"
},
{
"input": "200000000 7\n25621043 2\n21865270 1\n28833034 1\n22185073 5\n100000000 2\n13891017 9\n61298710 8",
"output": "931584598"
},
{
"input": "200000000 6\n7465600 6\n8453505 10\n4572014 8\n8899499 3\n86805622 10\n64439238 6",
"output": "1447294907"
},
{
"input": "200000000 5\n44608415 6\n100000000 9\n51483223 9\n44136047 1\n52718517 1",
"output": "1634907859"
},
{
"input": "200000000 4\n37758556 10\n100000000 6\n48268521 3\n20148178 10",
"output": "1305347138"
},
{
"input": "200000000 3\n65170000 7\n20790088 1\n74616133 4",
"output": "775444620"
},
{
"input": "200000000 2\n11823018 6\n100000000 9",
"output": "970938108"
},
{
"input": "200000000 1\n100000000 6",
"output": "600000000"
},
{
"input": "200000000 10\n12097724 9\n41745972 5\n26982098 9\n14916995 7\n21549986 7\n3786630 9\n8050858 7\n27994924 4\n18345001 5\n8435339 5",
"output": "1152034197"
},
{
"input": "200000000 10\n55649 8\n10980981 9\n3192542 8\n94994808 4\n3626106 1\n100000000 6\n5260110 9\n4121453 2\n15125061 4\n669569 6",
"output": "1095537357"
},
{
"input": "10 20\n1 7\n1 7\n1 8\n1 3\n1 10\n1 7\n1 7\n1 9\n1 3\n1 1\n1 2\n1 1\n1 3\n1 10\n1 9\n1 8\n1 8\n1 6\n1 7\n1 5",
"output": "83"
},
{
"input": "10000000 20\n4594 7\n520836 8\n294766 6\n298672 4\n142253 6\n450626 1\n1920034 9\n58282 4\n1043204 1\n683045 1\n1491746 5\n58420 4\n451217 2\n129423 4\n246113 5\n190612 8\n912923 6\n473153 6\n783733 6\n282411 10",
"output": "54980855"
},
{
"input": "200000000 20\n15450824 5\n839717 10\n260084 8\n1140850 8\n28744 6\n675318 3\n25161 2\n5487 3\n6537698 9\n100000000 5\n7646970 9\n16489 6\n24627 3\n1009409 5\n22455 1\n25488456 4\n484528 9\n32663641 3\n750968 4\n5152 6",
"output": "939368573"
},
{
"input": "200000000 20\n16896 2\n113 3\n277 2\n299 7\n69383562 2\n3929 8\n499366 4\n771846 5\n9 4\n1278173 7\n90 2\n54 7\n72199858 10\n17214 5\n3 10\n1981618 3\n3728 2\n141 8\n2013578 9\n51829246 5",
"output": "1158946383"
},
{
"input": "200000000 20\n983125 2\n7453215 9\n9193588 2\n11558049 7\n28666199 1\n34362244 1\n5241493 5\n15451270 4\n19945845 8\n6208681 3\n38300385 7\n6441209 8\n21046742 7\n577198 10\n3826434 8\n9764276 8\n6264675 7\n8567063 3\n3610303 4\n2908232 3",
"output": "1131379312"
},
{
"input": "10 15\n1 6\n2 6\n3 4\n1 3\n1 2\n1 5\n1 6\n1 2\n2 9\n1 10\n1 3\n1 7\n1 8\n1 2\n2 9",
"output": "79"
},
{
"input": "10000000 15\n111 5\n914124 3\n3 9\n177790 1\n2352 3\n32138 9\n104477 1\n1223 4\n18 6\n6655580 4\n57643 10\n94309 2\n37 1\n227002 10\n1733193 7",
"output": "45116295"
},
{
"input": "200000000 15\n7069868 1\n5567826 8\n2310059 10\n13539782 7\n38420939 4\n29911411 8\n52256316 1\n12265839 9\n2074265 1\n24896428 9\n72470695 5\n3236301 1\n3890243 2\n65168965 8\n65724 6",
"output": "1489289257"
},
{
"input": "200000000 15\n12044094 7\n2475138 10\n944451 7\n4854766 2\n3809145 10\n7727571 2\n43908937 6\n2745883 1\n427511 2\n100000000 5\n190914 6\n554889 3\n288798 4\n1848572 5\n893874 3",
"output": "961871671"
},
{
"input": "200000000 15\n6334191 7\n1927941 4\n5175933 10\n468389 1\n433043 10\n6863198 5\n7480646 4\n14774279 10\n2921129 8\n18325627 7\n6973152 9\n8277324 9\n21522856 2\n2058070 1\n2444742 4",
"output": "664376069"
}
] | 1,589,701,996
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 218
| 6,963,200
|
n, m = map(int, input().split())
matches = []
for i in range(m):
matches.append(list(map(int, input().split())))
matches.sort(key=lambda container: container[1], reverse=True)
count = 0
i = 0
j = 0
while i <= n and j < m:
if matches[j][0] < n - i:
i += matches[j][0]
count += matches[j][0] * matches[j][1]
else:
count += (n - i) * matches[j][1]
i = n
j += 1
print(count)
|
Title: Burglar and Matches
Time Limit: 0 seconds
Memory Limit: 64 megabytes
Problem Description:
A burglar got into a matches warehouse and wants to steal as many matches as possible. In the warehouse there are *m* containers, in the *i*-th container there are *a**i* matchboxes, and each matchbox contains *b**i* matches. All the matchboxes are of the same size. The burglar's rucksack can hold *n* matchboxes exactly. Your task is to find out the maximum amount of matches that a burglar can carry away. He has no time to rearrange matches in the matchboxes, that's why he just chooses not more than *n* matchboxes so that the total amount of matches in them is maximal.
Input Specification:
The first line of the input contains integer *n* (1<=β€<=*n*<=β€<=2Β·108) and integer *m* (1<=β€<=*m*<=β€<=20). The *i*<=+<=1-th line contains a pair of numbers *a**i* and *b**i* (1<=β€<=*a**i*<=β€<=108,<=1<=β€<=*b**i*<=β€<=10). All the input numbers are integer.
Output Specification:
Output the only number β answer to the problem.
Demo Input:
['7 3\n5 10\n2 5\n3 6\n', '3 3\n1 3\n2 2\n3 1\n']
Demo Output:
['62\n', '7\n']
Note:
none
|
```python
n, m = map(int, input().split())
matches = []
for i in range(m):
matches.append(list(map(int, input().split())))
matches.sort(key=lambda container: container[1], reverse=True)
count = 0
i = 0
j = 0
while i <= n and j < m:
if matches[j][0] < n - i:
i += matches[j][0]
count += matches[j][0] * matches[j][1]
else:
count += (n - i) * matches[j][1]
i = n
j += 1
print(count)
```
| 3
|
106
|
B
|
Choosing Laptop
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation"
] |
B. Choosing Laptop
|
2
|
256
|
Vasya is choosing a laptop. The shop has *n* laptops to all tastes.
Vasya is interested in the following properties: processor speed, ram and hdd. Vasya is a programmer and not a gamer which is why he is not interested in all other properties.
If all three properties of a laptop are strictly less than those properties of some other laptop, then the first laptop is considered outdated by Vasya. Among all laptops Vasya does not consider outdated, he chooses the cheapest one.
There are very many laptops, which is why Vasya decided to write a program that chooses the suitable laptop. However, Vasya doesn't have his own laptop yet and he asks you to help him.
|
The first line contains number *n* (1<=β€<=*n*<=β€<=100).
Then follow *n* lines. Each describes a laptop as *speed* *ram* *hdd* *cost*. Besides,
- *speed*, *ram*, *hdd* and *cost* are integers - 1000<=β€<=*speed*<=β€<=4200 is the processor's speed in megahertz - 256<=β€<=*ram*<=β€<=4096 the RAM volume in megabytes - 1<=β€<=*hdd*<=β€<=500 is the HDD in gigabytes - 100<=β€<=*cost*<=β€<=1000 is price in tugriks
All laptops have different prices.
|
Print a single number β the number of a laptop Vasya will choose. The laptops are numbered with positive integers from 1 to *n* in the order in which they are given in the input data.
|
[
"5\n2100 512 150 200\n2000 2048 240 350\n2300 1024 200 320\n2500 2048 80 300\n2000 512 180 150\n"
] |
[
"4"
] |
In the third sample Vasya considers the first and fifth laptops outdated as all of their properties cannot match those of the third laptop. The fourth one is the cheapest among the laptops that are left. Thus, Vasya chooses the fourth laptop.
| 1,000
|
[
{
"input": "5\n2100 512 150 200\n2000 2048 240 350\n2300 1024 200 320\n2500 2048 80 300\n2000 512 180 150",
"output": "4"
},
{
"input": "2\n1500 500 50 755\n1600 600 80 700",
"output": "2"
},
{
"input": "2\n1500 512 50 567\n1600 400 70 789",
"output": "1"
},
{
"input": "4\n1000 300 5 700\n1100 400 10 600\n1200 500 15 500\n1300 600 20 400",
"output": "4"
},
{
"input": "10\n2123 389 397 747\n2705 3497 413 241\n3640 984 470 250\n3013 2004 276 905\n3658 3213 353 602\n1428 626 188 523\n2435 1140 459 824\n2927 2586 237 860\n2361 4004 386 719\n2863 2429 476 310",
"output": "2"
},
{
"input": "25\n2123 389 397 747\n2705 3497 413 241\n3640 984 470 250\n3013 2004 276 905\n3658 3213 353 602\n1428 626 188 523\n2435 1140 459 824\n2927 2586 237 860\n2361 4004 386 719\n2863 2429 476 310\n3447 3875 1 306\n3950 1901 31 526\n4130 1886 152 535\n1951 1840 122 814\n1798 3722 474 106\n2305 3979 82 971\n3656 3148 349 992\n1062 1648 320 491\n3113 3706 302 542\n3545 1317 184 853\n1277 2153 95 492\n2189 3495 427 655\n4014 3030 22 963\n1455 3840 155 485\n2760 717 309 891",
"output": "15"
},
{
"input": "1\n1200 512 300 700",
"output": "1"
},
{
"input": "1\n4200 4096 500 1000",
"output": "1"
},
{
"input": "1\n1000 256 1 100",
"output": "1"
},
{
"input": "2\n2000 500 200 100\n3000 600 100 200",
"output": "1"
},
{
"input": "2\n2000 500 200 200\n3000 600 100 100",
"output": "2"
},
{
"input": "2\n2000 600 100 100\n3000 500 200 200",
"output": "1"
},
{
"input": "2\n2000 700 100 200\n3000 500 200 100",
"output": "2"
},
{
"input": "2\n3000 500 100 100\n1500 600 200 200",
"output": "1"
},
{
"input": "2\n3000 500 100 300\n1500 600 200 200",
"output": "2"
},
{
"input": "3\n3467 1566 191 888\n3047 3917 3 849\n1795 1251 97 281",
"output": "2"
},
{
"input": "4\n3835 1035 5 848\n2222 3172 190 370\n2634 2698 437 742\n1748 3112 159 546",
"output": "2"
},
{
"input": "5\n3511 981 276 808\n3317 2320 354 878\n3089 702 20 732\n1088 2913 327 756\n3837 691 173 933",
"output": "4"
},
{
"input": "6\n1185 894 287 455\n2465 3317 102 240\n2390 2353 81 615\n2884 603 170 826\n3202 2070 320 184\n3074 3776 497 466",
"output": "5"
},
{
"input": "7\n3987 1611 470 720\n1254 4048 226 626\n1747 630 25 996\n2336 2170 402 123\n1902 3952 337 663\n1416 271 77 499\n1802 1399 419 929",
"output": "4"
},
{
"input": "10\n3888 1084 420 278\n2033 277 304 447\n1774 514 61 663\n2055 3437 67 144\n1237 1590 145 599\n3648 663 244 525\n3691 2276 332 504\n1496 2655 324 313\n2462 1930 13 644\n1811 331 390 284",
"output": "4"
},
{
"input": "13\n3684 543 70 227\n3953 1650 151 681\n2452 655 102 946\n3003 990 121 411\n2896 1936 158 155\n1972 717 366 754\n3989 2237 32 521\n2738 2140 445 965\n2884 1772 251 369\n2240 741 465 209\n4073 2812 494 414\n3392 955 425 133\n4028 717 90 123",
"output": "11"
},
{
"input": "17\n3868 2323 290 182\n1253 3599 38 217\n2372 354 332 897\n1286 649 332 495\n1642 1643 301 216\n1578 792 140 299\n3329 3039 359 525\n1362 2006 172 183\n1058 3961 423 591\n3196 914 484 675\n3032 3752 217 954\n2391 2853 171 579\n4102 3170 349 516\n1218 1661 451 354\n3375 1997 196 404\n1030 918 198 893\n2546 2029 399 647",
"output": "14"
},
{
"input": "22\n1601 1091 249 107\n2918 3830 312 767\n4140 409 393 202\n3485 2409 446 291\n2787 530 272 147\n2303 3400 265 206\n2164 1088 143 667\n1575 2439 278 863\n2874 699 369 568\n4017 1625 368 641\n3446 916 53 509\n3627 3229 328 256\n1004 2525 109 670\n2369 3299 57 351\n4147 3038 73 309\n3510 3391 390 470\n3308 3139 268 736\n3733 1054 98 809\n3967 2992 408 873\n2104 3191 83 687\n2223 2910 209 563\n1406 2428 147 673",
"output": "3"
},
{
"input": "27\n1689 1927 40 270\n3833 2570 167 134\n2580 3589 390 300\n1898 2587 407 316\n1841 2772 411 187\n1296 288 407 506\n1215 263 236 307\n2737 1427 84 992\n1107 1879 284 866\n3311 2507 475 147\n2951 2214 209 375\n1352 2582 110 324\n2082 747 289 521\n2226 1617 209 108\n2253 1993 109 835\n2866 2360 29 206\n1431 3581 185 918\n3800 1167 463 943\n4136 1156 266 490\n3511 1396 478 169\n3498 1419 493 792\n2660 2165 204 172\n3509 2358 178 469\n1568 3564 276 319\n3871 2660 472 366\n3569 2829 146 761\n1365 2943 460 611",
"output": "10"
},
{
"input": "2\n1000 2000 300 120\n1000 2000 300 130",
"output": "1"
},
{
"input": "10\n2883 1110 230 501\n2662 821 163 215\n2776 1131 276 870\n2776 1131 276 596\n2776 1131 276 981\n2662 821 163 892\n2662 821 163 997\n2883 1110 230 132\n2776 1131 276 317\n2883 1110 230 481",
"output": "8"
},
{
"input": "23\n1578 3681 380 163\n2640 3990 180 576\n3278 2311 131 386\n3900 513 443 873\n1230 1143 267 313\n2640 3990 180 501\n1230 1143 267 428\n1578 3681 380 199\n1578 3681 380 490\n3900 513 443 980\n3900 513 443 882\n3278 2311 131 951\n3278 2311 131 863\n2640 3990 180 916\n3278 2311 131 406\n3278 2311 131 455\n3278 2311 131 239\n1230 1143 267 439\n3900 513 443 438\n3900 513 443 514\n3278 2311 131 526\n1578 3681 380 123\n1578 3681 380 263",
"output": "22"
},
{
"input": "6\n2100 512 150 200\n2000 2048 240 350\n2300 1024 200 320\n2500 2048 80 300\n2000 512 180 150\n1000 256 1 100",
"output": "4"
},
{
"input": "2\n1000 256 1 100\n1000 256 1 101",
"output": "1"
},
{
"input": "2\n1500 500 300 1000\n1500 500 300 900",
"output": "2"
},
{
"input": "4\n1000 256 1 500\n1000 256 1 400\n1000 256 1 300\n1000 256 1 200",
"output": "4"
},
{
"input": "3\n1500 1024 300 150\n1200 512 150 100\n1000 256 50 200",
"output": "1"
}
] | 1,647,338,502
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 55
| 92
| 0
|
def main():
n = int(input())
arr = []
for i in range(n):
arr.append([int(x) for x in input().split()])
arr[i].append(i)
for i in range(n):
for j in range(n):
if (
arr[i][0] < arr[j][0]
and arr[i][1] < arr[j][1]
and arr[i][2] < arr[j][2]
):
arr[i][3] = 1e5
arr.sort(key=lambda x: x[3])
print(arr[0][4]+1)
main()
|
Title: Choosing Laptop
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is choosing a laptop. The shop has *n* laptops to all tastes.
Vasya is interested in the following properties: processor speed, ram and hdd. Vasya is a programmer and not a gamer which is why he is not interested in all other properties.
If all three properties of a laptop are strictly less than those properties of some other laptop, then the first laptop is considered outdated by Vasya. Among all laptops Vasya does not consider outdated, he chooses the cheapest one.
There are very many laptops, which is why Vasya decided to write a program that chooses the suitable laptop. However, Vasya doesn't have his own laptop yet and he asks you to help him.
Input Specification:
The first line contains number *n* (1<=β€<=*n*<=β€<=100).
Then follow *n* lines. Each describes a laptop as *speed* *ram* *hdd* *cost*. Besides,
- *speed*, *ram*, *hdd* and *cost* are integers - 1000<=β€<=*speed*<=β€<=4200 is the processor's speed in megahertz - 256<=β€<=*ram*<=β€<=4096 the RAM volume in megabytes - 1<=β€<=*hdd*<=β€<=500 is the HDD in gigabytes - 100<=β€<=*cost*<=β€<=1000 is price in tugriks
All laptops have different prices.
Output Specification:
Print a single number β the number of a laptop Vasya will choose. The laptops are numbered with positive integers from 1 to *n* in the order in which they are given in the input data.
Demo Input:
['5\n2100 512 150 200\n2000 2048 240 350\n2300 1024 200 320\n2500 2048 80 300\n2000 512 180 150\n']
Demo Output:
['4']
Note:
In the third sample Vasya considers the first and fifth laptops outdated as all of their properties cannot match those of the third laptop. The fourth one is the cheapest among the laptops that are left. Thus, Vasya chooses the fourth laptop.
|
```python
def main():
n = int(input())
arr = []
for i in range(n):
arr.append([int(x) for x in input().split()])
arr[i].append(i)
for i in range(n):
for j in range(n):
if (
arr[i][0] < arr[j][0]
and arr[i][1] < arr[j][1]
and arr[i][2] < arr[j][2]
):
arr[i][3] = 1e5
arr.sort(key=lambda x: x[3])
print(arr[0][4]+1)
main()
```
| 3.977
|
437
|
C
|
The Child and Toy
|
PROGRAMMING
| 1,400
|
[
"graphs",
"greedy",
"sortings"
] | null | null |
On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy.
The toy consists of *n* parts and *m* ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part *i* as *v**i*. The child spend *v**f*1<=+<=*v**f*2<=+<=...<=+<=*v**f**k* energy for removing part *i* where *f*1,<=*f*2,<=...,<=*f**k* are the parts that are directly connected to the *i*-th and haven't been removed.
Help the child to find out, what is the minimum total energy he should spend to remove all *n* parts.
|
The first line contains two integers *n* and *m* (1<=β€<=*n*<=β€<=1000; 0<=β€<=*m*<=β€<=2000). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n* (0<=β€<=*v**i*<=β€<=105). Then followed *m* lines, each line contains two integers *x**i* and *y**i*, representing a rope from part *x**i* to part *y**i* (1<=β€<=*x**i*,<=*y**i*<=β€<=*n*;Β *x**i*<=β <=*y**i*).
Consider all the parts are numbered from 1 to *n*.
|
Output the minimum total energy the child should spend to remove all *n* parts of the toy.
|
[
"4 3\n10 20 30 40\n1 4\n1 2\n2 3\n",
"4 4\n100 100 100 100\n1 2\n2 3\n2 4\n3 4\n",
"7 10\n40 10 20 10 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n"
] |
[
"40\n",
"400\n",
"160\n"
] |
One of the optimal sequence of actions in the first sample is:
- First, remove part 3, cost of the action is 20. - Then, remove part 2, cost of the action is 10. - Next, remove part 4, cost of the action is 10. - At last, remove part 1, cost of the action is 0.
So the total energy the child paid is 20β+β10β+β10β+β0β=β40, which is the minimum.
In the second sample, the child will spend 400 no matter in what order he will remove the parts.
| 1,500
|
[
{
"input": "4 3\n10 20 30 40\n1 4\n1 2\n2 3",
"output": "40"
},
{
"input": "4 4\n100 100 100 100\n1 2\n2 3\n2 4\n3 4",
"output": "400"
},
{
"input": "7 10\n40 10 20 10 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4",
"output": "160"
},
{
"input": "1 0\n23333",
"output": "0"
},
{
"input": "5 4\n1 2 2 2 2\n1 2\n1 3\n1 4\n1 5",
"output": "4"
},
{
"input": "10 30\n3 6 17 15 13 15 6 12 9 1\n3 8\n1 10\n4 7\n1 7\n3 7\n2 9\n8 10\n3 1\n3 4\n8 6\n10 3\n3 9\n2 3\n10 4\n2 10\n5 8\n9 5\n6 1\n2 1\n7 2\n7 6\n7 10\n4 8\n5 6\n3 6\n4 1\n8 9\n7 9\n4 2\n5 10",
"output": "188"
},
{
"input": "3 3\n1 1 1\n1 2\n2 3\n3 1",
"output": "3"
}
] | 1,598,164,154
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 108
| 6,963,200
|
n,m=map(int,input().split())
l=[int(x) for x in input().split()]
ans=0
for i in range(m):
a,b=map(int,input().split())
ans+=min(l[a-1],l[b-1])
print(ans)
|
Title: The Child and Toy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy.
The toy consists of *n* parts and *m* ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part *i* as *v**i*. The child spend *v**f*1<=+<=*v**f*2<=+<=...<=+<=*v**f**k* energy for removing part *i* where *f*1,<=*f*2,<=...,<=*f**k* are the parts that are directly connected to the *i*-th and haven't been removed.
Help the child to find out, what is the minimum total energy he should spend to remove all *n* parts.
Input Specification:
The first line contains two integers *n* and *m* (1<=β€<=*n*<=β€<=1000; 0<=β€<=*m*<=β€<=2000). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n* (0<=β€<=*v**i*<=β€<=105). Then followed *m* lines, each line contains two integers *x**i* and *y**i*, representing a rope from part *x**i* to part *y**i* (1<=β€<=*x**i*,<=*y**i*<=β€<=*n*;Β *x**i*<=β <=*y**i*).
Consider all the parts are numbered from 1 to *n*.
Output Specification:
Output the minimum total energy the child should spend to remove all *n* parts of the toy.
Demo Input:
['4 3\n10 20 30 40\n1 4\n1 2\n2 3\n', '4 4\n100 100 100 100\n1 2\n2 3\n2 4\n3 4\n', '7 10\n40 10 20 10 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n']
Demo Output:
['40\n', '400\n', '160\n']
Note:
One of the optimal sequence of actions in the first sample is:
- First, remove part 3, cost of the action is 20. - Then, remove part 2, cost of the action is 10. - Next, remove part 4, cost of the action is 10. - At last, remove part 1, cost of the action is 0.
So the total energy the child paid is 20β+β10β+β10β+β0β=β40, which is the minimum.
In the second sample, the child will spend 400 no matter in what order he will remove the parts.
|
```python
n,m=map(int,input().split())
l=[int(x) for x in input().split()]
ans=0
for i in range(m):
a,b=map(int,input().split())
ans+=min(l[a-1],l[b-1])
print(ans)
```
| 3
|
|
200
|
B
|
Drinks
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
|
The first input line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=β€<=*p**i*<=β€<=100) β the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
|
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
|
[
"3\n50 50 100\n",
"4\n0 25 50 75\n"
] |
[
"66.666666666667\n",
"37.500000000000\n"
] |
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3Β·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
| 500
|
[
{
"input": "3\n50 50 100",
"output": "66.666666666667"
},
{
"input": "4\n0 25 50 75",
"output": "37.500000000000"
},
{
"input": "3\n0 1 8",
"output": "3.000000000000"
},
{
"input": "5\n96 89 93 95 70",
"output": "88.600000000000"
},
{
"input": "7\n62 41 78 4 38 39 75",
"output": "48.142857142857"
},
{
"input": "13\n2 22 7 0 1 17 3 17 11 2 21 26 22",
"output": "11.615384615385"
},
{
"input": "21\n5 4 11 7 0 5 45 21 0 14 51 6 0 16 10 19 8 9 7 12 18",
"output": "12.761904761905"
},
{
"input": "26\n95 70 93 74 94 70 91 70 39 79 80 57 87 75 37 93 48 67 51 90 85 26 23 64 66 84",
"output": "69.538461538462"
},
{
"input": "29\n84 99 72 96 83 92 95 98 97 93 76 84 99 93 81 76 93 99 99 100 95 100 96 95 97 100 71 98 94",
"output": "91.551724137931"
},
{
"input": "33\n100 99 100 100 99 99 99 100 100 100 99 99 99 100 100 100 100 99 100 99 100 100 97 100 100 100 100 100 100 100 98 98 100",
"output": "99.515151515152"
},
{
"input": "34\n14 9 10 5 4 26 18 23 0 1 0 20 18 15 2 2 3 5 14 1 9 4 2 15 7 1 7 19 10 0 0 11 0 2",
"output": "8.147058823529"
},
{
"input": "38\n99 98 100 100 99 92 99 99 98 84 88 94 86 99 93 100 98 99 65 98 85 84 64 97 96 89 79 96 91 84 99 93 72 96 94 97 96 93",
"output": "91.921052631579"
},
{
"input": "52\n100 94 99 98 99 99 99 95 97 97 98 100 100 98 97 100 98 90 100 99 97 94 90 98 100 100 90 99 100 95 98 95 94 85 97 94 96 94 99 99 99 98 100 100 94 99 99 100 98 87 100 100",
"output": "97.019230769231"
},
{
"input": "58\n10 70 12 89 1 82 100 53 40 100 21 69 92 91 67 66 99 77 25 48 8 63 93 39 46 79 82 14 44 42 1 79 0 69 56 73 67 17 59 4 65 80 20 60 77 52 3 61 16 76 33 18 46 100 28 59 9 6",
"output": "50.965517241379"
},
{
"input": "85\n7 8 1 16 0 15 1 7 0 11 15 6 2 12 2 8 9 8 2 0 3 7 15 7 1 8 5 7 2 26 0 3 11 1 8 10 31 0 7 6 1 8 1 0 9 14 4 8 7 16 9 1 0 16 10 9 6 1 1 4 2 7 4 5 4 1 20 6 16 16 1 1 10 17 8 12 14 19 3 8 1 7 10 23 10",
"output": "7.505882352941"
},
{
"input": "74\n5 3 0 7 13 10 12 10 18 5 0 18 2 13 7 17 2 7 5 2 40 19 0 2 2 3 0 45 4 20 0 4 2 8 1 19 3 9 17 1 15 0 16 1 9 4 0 9 32 2 6 18 11 18 1 15 16 12 7 19 5 3 9 28 26 8 3 10 33 29 4 13 28 6",
"output": "10.418918918919"
},
{
"input": "98\n42 9 21 11 9 11 22 12 52 20 10 6 56 9 26 27 1 29 29 14 38 17 41 21 7 45 15 5 29 4 51 20 6 8 34 17 13 53 30 45 0 10 16 41 4 5 6 4 14 2 31 6 0 11 13 3 3 43 13 36 51 0 7 16 28 23 8 36 30 22 8 54 21 45 39 4 50 15 1 30 17 8 18 10 2 20 16 50 6 68 15 6 38 7 28 8 29 41",
"output": "20.928571428571"
},
{
"input": "99\n60 65 40 63 57 44 30 84 3 10 39 53 40 45 72 20 76 11 61 32 4 26 97 55 14 57 86 96 34 69 52 22 26 79 31 4 21 35 82 47 81 28 72 70 93 84 40 4 69 39 83 58 30 7 32 73 74 12 92 23 61 88 9 58 70 32 75 40 63 71 46 55 39 36 14 97 32 16 95 41 28 20 85 40 5 50 50 50 75 6 10 64 38 19 77 91 50 72 96",
"output": "49.191919191919"
},
{
"input": "99\n100 88 40 30 81 80 91 98 69 73 88 96 79 58 14 100 87 84 52 91 83 88 72 83 99 35 54 80 46 79 52 72 85 32 99 39 79 79 45 83 88 50 75 75 50 59 65 75 97 63 92 58 89 46 93 80 89 33 69 86 99 99 66 85 72 74 79 98 85 95 46 63 77 97 49 81 89 39 70 76 68 91 90 56 31 93 51 87 73 95 74 69 87 95 57 68 49 95 92",
"output": "73.484848484848"
},
{
"input": "100\n18 15 17 0 3 3 0 4 1 8 2 22 7 21 5 0 0 8 3 16 1 0 2 9 9 3 10 8 17 20 5 4 8 12 2 3 1 1 3 2 23 0 1 0 5 7 4 0 1 3 3 4 25 2 2 14 8 4 9 3 0 11 0 3 12 3 14 16 7 7 14 1 17 9 0 35 42 12 3 1 25 9 3 8 5 3 2 8 22 14 11 6 3 9 6 8 7 7 4 6",
"output": "7.640000000000"
},
{
"input": "100\n88 77 65 87 100 63 91 96 92 89 77 95 76 80 84 83 100 71 85 98 26 54 74 78 69 59 96 86 88 91 95 26 52 88 64 70 84 81 76 84 94 82 100 66 97 98 43 94 59 94 100 80 98 73 69 83 94 70 74 79 91 31 62 88 69 55 62 97 40 64 62 83 87 85 50 90 69 72 67 49 100 51 69 96 81 90 83 91 86 34 79 69 100 66 97 98 47 97 74 100",
"output": "77.660000000000"
},
{
"input": "100\n91 92 90 91 98 84 85 96 83 98 99 87 94 70 87 75 86 90 89 88 82 83 91 94 88 86 90 99 100 98 97 75 95 99 95 100 91 92 76 93 95 97 88 93 95 81 96 89 88 100 98 87 90 96 100 99 58 90 96 77 92 82 100 100 93 93 98 99 79 88 97 95 98 66 96 83 96 100 99 92 98 98 92 93 100 97 98 100 98 97 100 100 94 90 99 100 98 79 80 81",
"output": "91.480000000000"
},
{
"input": "1\n0",
"output": "0.000000000000"
},
{
"input": "1\n100",
"output": "100.000000000000"
},
{
"input": "1\n78",
"output": "78.000000000000"
},
{
"input": "2\n0 100",
"output": "50.000000000000"
},
{
"input": "2\n100 100",
"output": "100.000000000000"
},
{
"input": "5\n0 0 0 0 1",
"output": "0.200000000000"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99",
"output": "99.990000000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1",
"output": "0.010000000000"
},
{
"input": "5\n100 100 100 100 100",
"output": "100.000000000000"
}
] | 1,697,424,117
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 92
| 0
|
n = int(input()) # Number of drinks
pi_values = list(map(int, input().split())) # List of volume fractions
# Calculate the proportions of each drink as decimals
proportions = [pi / 100 for pi in pi_values]
# Calculate the total proportion of orange juice in the cocktail
total_proportion = sum(proportions) / n
# Convert the total proportion back to a percentage
cocktail_percentage = total_proportion * 100
# Print the result with 4 decimal places
print("{:.4f}".format(cocktail_percentage))
|
Title: Drinks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
Input Specification:
The first input line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=β€<=*p**i*<=β€<=100) β the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
Output Specification:
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
Demo Input:
['3\n50 50 100\n', '4\n0 25 50 75\n']
Demo Output:
['66.666666666667\n', '37.500000000000\n']
Note:
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3Β·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
|
```python
n = int(input()) # Number of drinks
pi_values = list(map(int, input().split())) # List of volume fractions
# Calculate the proportions of each drink as decimals
proportions = [pi / 100 for pi in pi_values]
# Calculate the total proportion of orange juice in the cocktail
total_proportion = sum(proportions) / n
# Convert the total proportion back to a percentage
cocktail_percentage = total_proportion * 100
# Print the result with 4 decimal places
print("{:.4f}".format(cocktail_percentage))
```
| 3
|
|
13
|
A
|
Numbers
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Numbers
|
1
|
64
|
Little Petya likes numbers a lot. He found that number 123 in base 16 consists of two digits: the first is 7 and the second is 11. So the sum of digits of 123 in base 16 is equal to 18.
Now he wonders what is an average value of sum of digits of the number *A* written in all bases from 2 to *A*<=-<=1.
Note that all computations should be done in base 10. You should find the result as an irreducible fraction, written in base 10.
|
Input contains one integer number *A* (3<=β€<=*A*<=β€<=1000).
|
Output should contain required average value in format Β«X/YΒ», where X is the numerator and Y is the denominator.
|
[
"5\n",
"3\n"
] |
[
"7/3\n",
"2/1\n"
] |
In the first sample number 5 written in all bases from 2 to 4 looks so: 101, 12, 11. Sums of digits are 2, 3 and 2, respectively.
| 0
|
[
{
"input": "5",
"output": "7/3"
},
{
"input": "3",
"output": "2/1"
},
{
"input": "1000",
"output": "90132/499"
},
{
"input": "927",
"output": "155449/925"
},
{
"input": "260",
"output": "6265/129"
},
{
"input": "131",
"output": "3370/129"
},
{
"input": "386",
"output": "857/12"
},
{
"input": "277",
"output": "2864/55"
},
{
"input": "766",
"output": "53217/382"
},
{
"input": "28",
"output": "85/13"
},
{
"input": "406",
"output": "7560/101"
},
{
"input": "757",
"output": "103847/755"
},
{
"input": "6",
"output": "9/4"
},
{
"input": "239",
"output": "10885/237"
},
{
"input": "322",
"output": "2399/40"
},
{
"input": "98",
"output": "317/16"
},
{
"input": "208",
"output": "4063/103"
},
{
"input": "786",
"output": "55777/392"
},
{
"input": "879",
"output": "140290/877"
},
{
"input": "702",
"output": "89217/700"
},
{
"input": "948",
"output": "7369/43"
},
{
"input": "537",
"output": "52753/535"
},
{
"input": "984",
"output": "174589/982"
},
{
"input": "934",
"output": "157951/932"
},
{
"input": "726",
"output": "95491/724"
},
{
"input": "127",
"output": "3154/125"
},
{
"input": "504",
"output": "23086/251"
},
{
"input": "125",
"output": "3080/123"
},
{
"input": "604",
"output": "33178/301"
},
{
"input": "115",
"output": "2600/113"
},
{
"input": "27",
"output": "167/25"
},
{
"input": "687",
"output": "85854/685"
},
{
"input": "880",
"output": "69915/439"
},
{
"input": "173",
"output": "640/19"
},
{
"input": "264",
"output": "6438/131"
},
{
"input": "785",
"output": "111560/783"
},
{
"input": "399",
"output": "29399/397"
},
{
"input": "514",
"output": "6031/64"
},
{
"input": "381",
"output": "26717/379"
},
{
"input": "592",
"output": "63769/590"
},
{
"input": "417",
"output": "32002/415"
},
{
"input": "588",
"output": "62723/586"
},
{
"input": "852",
"output": "131069/850"
},
{
"input": "959",
"output": "5059/29"
},
{
"input": "841",
"output": "127737/839"
},
{
"input": "733",
"output": "97598/731"
},
{
"input": "692",
"output": "87017/690"
},
{
"input": "69",
"output": "983/67"
},
{
"input": "223",
"output": "556/13"
},
{
"input": "93",
"output": "246/13"
},
{
"input": "643",
"output": "75503/641"
},
{
"input": "119",
"output": "2833/117"
},
{
"input": "498",
"output": "1459/16"
},
{
"input": "155",
"output": "4637/153"
},
{
"input": "305",
"output": "17350/303"
},
{
"input": "454",
"output": "37893/452"
},
{
"input": "88",
"output": "1529/86"
},
{
"input": "850",
"output": "32645/212"
},
{
"input": "474",
"output": "20581/236"
},
{
"input": "309",
"output": "17731/307"
},
{
"input": "762",
"output": "105083/760"
},
{
"input": "591",
"output": "63761/589"
},
{
"input": "457",
"output": "38317/455"
},
{
"input": "141",
"output": "3832/139"
},
{
"input": "385",
"output": "27232/383"
},
{
"input": "387",
"output": "27628/385"
},
{
"input": "469",
"output": "40306/467"
},
{
"input": "624",
"output": "35285/311"
},
{
"input": "330",
"output": "487/8"
},
{
"input": "31",
"output": "222/29"
},
{
"input": "975",
"output": "171679/973"
},
{
"input": "584",
"output": "62183/582"
},
{
"input": "668",
"output": "81127/666"
},
{
"input": "331",
"output": "20297/329"
},
{
"input": "189",
"output": "6789/187"
},
{
"input": "251",
"output": "11939/249"
},
{
"input": "876",
"output": "69196/437"
},
{
"input": "615",
"output": "68987/613"
},
{
"input": "451",
"output": "37258/449"
},
{
"input": "499",
"output": "45727/497"
},
{
"input": "699",
"output": "89117/697"
},
{
"input": "619",
"output": "70019/617"
},
{
"input": "413",
"output": "10515/137"
},
{
"input": "197",
"output": "7399/195"
},
{
"input": "794",
"output": "14281/99"
},
{
"input": "659",
"output": "79403/657"
},
{
"input": "653",
"output": "77695/651"
},
{
"input": "23",
"output": "45/7"
},
{
"input": "430",
"output": "16985/214"
},
{
"input": "249",
"output": "11659/247"
},
{
"input": "837",
"output": "126869/835"
},
{
"input": "258",
"output": "12373/256"
},
{
"input": "995",
"output": "59665/331"
},
{
"input": "102",
"output": "504/25"
},
{
"input": "989",
"output": "177124/987"
},
{
"input": "376",
"output": "13008/187"
},
{
"input": "657",
"output": "15715/131"
},
{
"input": "746",
"output": "50509/372"
},
{
"input": "602",
"output": "13177/120"
}
] | 1,657,374,507
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 99
| 186
| 1,228,800
|
import math
num,cnt=0,0
n=int(input())
for i in range(2,n):
t=n
while t>0:
num+=t%i
cnt+=1
t-=t%i
t=t//i
tt=math.gcd(num,n-2)
print(str(num//tt)+'/'+str((n-2)//tt))
|
Title: Numbers
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
Little Petya likes numbers a lot. He found that number 123 in base 16 consists of two digits: the first is 7 and the second is 11. So the sum of digits of 123 in base 16 is equal to 18.
Now he wonders what is an average value of sum of digits of the number *A* written in all bases from 2 to *A*<=-<=1.
Note that all computations should be done in base 10. You should find the result as an irreducible fraction, written in base 10.
Input Specification:
Input contains one integer number *A* (3<=β€<=*A*<=β€<=1000).
Output Specification:
Output should contain required average value in format Β«X/YΒ», where X is the numerator and Y is the denominator.
Demo Input:
['5\n', '3\n']
Demo Output:
['7/3\n', '2/1\n']
Note:
In the first sample number 5 written in all bases from 2 to 4 looks so: 101, 12, 11. Sums of digits are 2, 3 and 2, respectively.
|
```python
import math
num,cnt=0,0
n=int(input())
for i in range(2,n):
t=n
while t>0:
num+=t%i
cnt+=1
t-=t%i
t=t//i
tt=math.gcd(num,n-2)
print(str(num//tt)+'/'+str((n-2)//tt))
```
| 3.897845
|
9
|
A
|
Die Roll
|
PROGRAMMING
| 800
|
[
"math",
"probabilities"
] |
A. Die Roll
|
1
|
64
|
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place.
But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams.
Yakko thrown a die and got Y points, Wakko β W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania.
It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
|
The only line of the input file contains two natural numbers Y and W β the results of Yakko's and Wakko's die rolls.
|
Output the required probability in the form of irreducible fraction in format Β«A/BΒ», where A β the numerator, and B β the denominator. If the required probability equals to zero, output Β«0/1Β». If the required probability equals to 1, output Β«1/1Β».
|
[
"4 2\n"
] |
[
"1/2\n"
] |
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
| 0
|
[
{
"input": "4 2",
"output": "1/2"
},
{
"input": "1 1",
"output": "1/1"
},
{
"input": "1 2",
"output": "5/6"
},
{
"input": "1 3",
"output": "2/3"
},
{
"input": "1 4",
"output": "1/2"
},
{
"input": "1 5",
"output": "1/3"
},
{
"input": "1 6",
"output": "1/6"
},
{
"input": "2 1",
"output": "5/6"
},
{
"input": "2 2",
"output": "5/6"
},
{
"input": "2 3",
"output": "2/3"
},
{
"input": "2 4",
"output": "1/2"
},
{
"input": "2 5",
"output": "1/3"
},
{
"input": "2 6",
"output": "1/6"
},
{
"input": "3 1",
"output": "2/3"
},
{
"input": "3 2",
"output": "2/3"
},
{
"input": "3 3",
"output": "2/3"
},
{
"input": "3 4",
"output": "1/2"
},
{
"input": "3 5",
"output": "1/3"
},
{
"input": "3 6",
"output": "1/6"
},
{
"input": "4 1",
"output": "1/2"
},
{
"input": "4 3",
"output": "1/2"
},
{
"input": "4 4",
"output": "1/2"
},
{
"input": "4 5",
"output": "1/3"
},
{
"input": "4 6",
"output": "1/6"
},
{
"input": "5 1",
"output": "1/3"
},
{
"input": "5 2",
"output": "1/3"
},
{
"input": "5 3",
"output": "1/3"
},
{
"input": "5 4",
"output": "1/3"
},
{
"input": "5 5",
"output": "1/3"
},
{
"input": "5 6",
"output": "1/6"
},
{
"input": "6 1",
"output": "1/6"
},
{
"input": "6 2",
"output": "1/6"
},
{
"input": "6 3",
"output": "1/6"
},
{
"input": "6 4",
"output": "1/6"
},
{
"input": "6 5",
"output": "1/6"
},
{
"input": "6 6",
"output": "1/6"
}
] | 1,632,489,029
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 124
| 6,963,200
|
'''
Welcome to GDB Online.
GDB online is an online compiler and debugger tool for C, C++, Python, Java, PHP, Ruby, Perl,
C#, VB, Swift, Pascal, Fortran, Haskell, Objective-C, Assembly, HTML, CSS, JS, SQLite, Prolog.
Code, Compile, Run and Debug online from anywhere in world.
'''
def gcd(a,b):
if a<b:a,b=b,a
while b:
a,b=b,a%b
return a
a,b=map(int,input().split())
k=7-max(a,b)
if gcd(6,k)!=1:
print(str(k//gcd(6,k))+'/'+str(6//(gcd(6,k))))
else:
print(str(k)+'/'+'6')
|
Title: Die Roll
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place.
But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams.
Yakko thrown a die and got Y points, Wakko β W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania.
It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
Input Specification:
The only line of the input file contains two natural numbers Y and W β the results of Yakko's and Wakko's die rolls.
Output Specification:
Output the required probability in the form of irreducible fraction in format Β«A/BΒ», where A β the numerator, and B β the denominator. If the required probability equals to zero, output Β«0/1Β». If the required probability equals to 1, output Β«1/1Β».
Demo Input:
['4 2\n']
Demo Output:
['1/2\n']
Note:
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
|
```python
'''
Welcome to GDB Online.
GDB online is an online compiler and debugger tool for C, C++, Python, Java, PHP, Ruby, Perl,
C#, VB, Swift, Pascal, Fortran, Haskell, Objective-C, Assembly, HTML, CSS, JS, SQLite, Prolog.
Code, Compile, Run and Debug online from anywhere in world.
'''
def gcd(a,b):
if a<b:a,b=b,a
while b:
a,b=b,a%b
return a
a,b=map(int,input().split())
k=7-max(a,b)
if gcd(6,k)!=1:
print(str(k//gcd(6,k))+'/'+str(6//(gcd(6,k))))
else:
print(str(k)+'/'+'6')
```
| 3.88612
|
814
|
A
|
An abandoned sentiment from past
|
PROGRAMMING
| 900
|
[
"constructive algorithms",
"greedy",
"implementation",
"sortings"
] | null | null |
A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed.
To get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity.
Hitagi's sequence *a* has a length of *n*. Lost elements in it are denoted by zeros. Kaiki provides another sequence *b*, whose length *k* equals the number of lost elements in *a* (i.e. the number of zeros). Hitagi is to replace each zero in *a* with an element from *b* so that each element in *b* should be used exactly once. Hitagi knows, however, that, apart from 0, no integer occurs in *a* and *b* more than once in total.
If the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In other words, you should detect whether it is possible to replace each zero in *a* with an integer from *b* so that each integer from *b* is used exactly once, and the resulting sequence is not increasing.
|
The first line of input contains two space-separated positive integers *n* (2<=β€<=*n*<=β€<=100) and *k* (1<=β€<=*k*<=β€<=*n*) β the lengths of sequence *a* and *b* respectively.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=β€<=*a**i*<=β€<=200) β Hitagi's broken sequence with exactly *k* zero elements.
The third line contains *k* space-separated integers *b*1,<=*b*2,<=...,<=*b**k* (1<=β€<=*b**i*<=β€<=200) β the elements to fill into Hitagi's sequence.
Input guarantees that apart from 0, no integer occurs in *a* and *b* more than once in total.
|
Output "Yes" if it's possible to replace zeros in *a* with elements in *b* and make the resulting sequence not increasing, and "No" otherwise.
|
[
"4 2\n11 0 0 14\n5 4\n",
"6 1\n2 3 0 8 9 10\n5\n",
"4 1\n8 94 0 4\n89\n",
"7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7\n"
] |
[
"Yes\n",
"No\n",
"Yes\n",
"Yes\n"
] |
In the first sample:
- Sequence *a* is 11,β0,β0,β14. - Two of the elements are lost, and the candidates in *b* are 5 and 4. - There are two possible resulting sequences: 11,β5,β4,β14 and 11,β4,β5,β14, both of which fulfill the requirements. Thus the answer is "Yes".
In the second sample, the only possible resulting sequence is 2,β3,β5,β8,β9,β10, which is an increasing sequence and therefore invalid.
| 500
|
[
{
"input": "4 2\n11 0 0 14\n5 4",
"output": "Yes"
},
{
"input": "6 1\n2 3 0 8 9 10\n5",
"output": "No"
},
{
"input": "4 1\n8 94 0 4\n89",
"output": "Yes"
},
{
"input": "7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7",
"output": "Yes"
},
{
"input": "40 1\n23 26 27 28 31 35 38 40 43 50 52 53 56 57 59 61 65 73 75 76 79 0 82 84 85 86 88 93 99 101 103 104 105 106 110 111 112 117 119 120\n80",
"output": "No"
},
{
"input": "100 1\n99 95 22 110 47 20 37 34 23 0 16 69 64 49 111 42 112 96 13 40 18 77 44 46 74 55 15 54 56 75 78 100 82 101 31 83 53 80 52 63 30 57 104 36 67 65 103 51 48 26 68 59 35 92 85 38 107 98 73 90 62 43 32 89 19 106 17 88 41 72 113 86 66 102 81 27 29 50 71 79 109 91 70 39 61 76 93 84 108 97 24 25 45 105 94 60 33 87 14 21\n58",
"output": "Yes"
},
{
"input": "4 1\n2 1 0 4\n3",
"output": "Yes"
},
{
"input": "2 1\n199 0\n200",
"output": "No"
},
{
"input": "3 2\n115 0 0\n145 191",
"output": "Yes"
},
{
"input": "5 1\n196 197 198 0 200\n199",
"output": "No"
},
{
"input": "5 1\n92 0 97 99 100\n93",
"output": "No"
},
{
"input": "3 1\n3 87 0\n81",
"output": "Yes"
},
{
"input": "3 1\n0 92 192\n118",
"output": "Yes"
},
{
"input": "10 1\n1 3 0 7 35 46 66 72 83 90\n22",
"output": "Yes"
},
{
"input": "100 1\n14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 0 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113\n67",
"output": "No"
},
{
"input": "100 5\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 0 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 0 53 54 0 56 57 58 59 60 61 62 63 0 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 0 99 100\n98 64 55 52 29",
"output": "Yes"
},
{
"input": "100 5\n175 30 124 0 12 111 6 0 119 108 0 38 127 3 151 114 95 54 4 128 91 11 168 120 80 107 18 21 149 169 0 141 195 20 78 157 33 118 17 69 105 130 197 57 74 110 138 84 71 172 132 93 191 44 152 156 24 101 146 26 2 36 143 122 104 42 103 97 39 116 115 0 155 87 53 85 7 43 65 196 136 154 16 79 45 129 67 150 35 73 55 76 37 147 112 82 162 58 40 75\n121 199 62 193 27",
"output": "Yes"
},
{
"input": "100 1\n1 2 3 4 5 6 7 8 9 0 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n11",
"output": "Yes"
},
{
"input": "100 1\n0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n1",
"output": "No"
},
{
"input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0\n100",
"output": "No"
},
{
"input": "100 1\n9 79 7 98 10 50 28 99 43 74 89 20 32 66 23 45 87 78 81 41 86 71 75 85 5 39 14 53 42 48 40 52 3 51 11 34 35 76 77 61 47 19 55 91 62 56 8 72 88 4 33 0 97 92 31 83 18 49 54 21 17 16 63 44 84 22 2 96 70 36 68 60 80 82 13 73 26 94 27 58 1 30 100 38 12 15 93 90 57 59 67 6 64 46 25 29 37 95 69 24\n65",
"output": "Yes"
},
{
"input": "100 2\n0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 0 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n48 1",
"output": "Yes"
},
{
"input": "100 1\n2 7 11 17 20 22 23 24 25 27 29 30 31 33 34 35 36 38 39 40 42 44 46 47 50 52 53 58 59 60 61 62 63 66 0 67 71 72 75 79 80 81 86 91 93 94 99 100 101 102 103 104 105 108 109 110 111 113 114 118 119 120 122 123 127 129 130 131 132 133 134 135 136 138 139 140 141 142 147 154 155 156 160 168 170 171 172 176 179 180 181 182 185 186 187 188 189 190 194 198\n69",
"output": "Yes"
},
{
"input": "100 1\n3 5 7 9 11 12 13 18 20 21 22 23 24 27 28 29 31 34 36 38 39 43 46 48 49 50 52 53 55 59 60 61 62 63 66 68 70 72 73 74 75 77 78 79 80 81 83 85 86 88 89 91 92 94 97 98 102 109 110 115 116 117 118 120 122 126 127 128 0 133 134 136 137 141 142 144 145 147 151 152 157 159 160 163 164 171 172 175 176 178 179 180 181 184 186 188 190 192 193 200\n129",
"output": "No"
},
{
"input": "5 2\n0 2 7 0 10\n1 8",
"output": "Yes"
},
{
"input": "3 1\n5 4 0\n1",
"output": "Yes"
},
{
"input": "3 1\n1 0 3\n4",
"output": "Yes"
},
{
"input": "2 1\n0 2\n1",
"output": "No"
},
{
"input": "2 1\n0 5\n7",
"output": "Yes"
},
{
"input": "5 1\n10 11 0 12 13\n1",
"output": "Yes"
},
{
"input": "5 1\n0 2 3 4 5\n6",
"output": "Yes"
},
{
"input": "6 2\n1 0 3 4 0 6\n2 5",
"output": "Yes"
},
{
"input": "7 2\n1 2 3 0 0 6 7\n4 5",
"output": "Yes"
},
{
"input": "4 1\n1 2 3 0\n4",
"output": "No"
},
{
"input": "2 2\n0 0\n1 2",
"output": "Yes"
},
{
"input": "3 2\n1 0 0\n2 3",
"output": "Yes"
},
{
"input": "4 2\n1 0 4 0\n5 2",
"output": "Yes"
},
{
"input": "2 1\n0 1\n2",
"output": "Yes"
},
{
"input": "5 2\n1 0 4 0 6\n2 5",
"output": "Yes"
},
{
"input": "5 1\n2 3 0 4 5\n1",
"output": "Yes"
},
{
"input": "3 1\n0 2 3\n5",
"output": "Yes"
},
{
"input": "6 1\n1 2 3 4 5 0\n6",
"output": "No"
},
{
"input": "5 1\n1 2 0 4 5\n6",
"output": "Yes"
},
{
"input": "3 1\n5 0 2\n7",
"output": "Yes"
},
{
"input": "4 1\n4 5 0 8\n3",
"output": "Yes"
},
{
"input": "5 1\n10 11 12 0 14\n13",
"output": "No"
},
{
"input": "4 1\n1 2 0 4\n5",
"output": "Yes"
},
{
"input": "3 1\n0 11 14\n12",
"output": "Yes"
},
{
"input": "4 1\n1 3 0 4\n2",
"output": "Yes"
},
{
"input": "2 1\n0 5\n1",
"output": "No"
},
{
"input": "5 1\n1 2 0 4 7\n5",
"output": "Yes"
},
{
"input": "3 1\n2 3 0\n1",
"output": "Yes"
},
{
"input": "6 1\n1 2 3 0 5 4\n6",
"output": "Yes"
},
{
"input": "4 2\n11 0 0 14\n13 12",
"output": "Yes"
},
{
"input": "2 1\n1 0\n2",
"output": "No"
},
{
"input": "3 1\n1 2 0\n3",
"output": "No"
},
{
"input": "4 1\n1 0 3 2\n4",
"output": "Yes"
},
{
"input": "3 1\n0 1 2\n5",
"output": "Yes"
},
{
"input": "3 1\n0 1 2\n3",
"output": "Yes"
},
{
"input": "4 1\n0 2 3 4\n5",
"output": "Yes"
},
{
"input": "6 1\n1 2 3 0 4 5\n6",
"output": "Yes"
},
{
"input": "3 1\n1 2 0\n5",
"output": "No"
},
{
"input": "4 2\n1 0 0 4\n3 2",
"output": "Yes"
},
{
"input": "5 1\n2 3 0 5 7\n6",
"output": "Yes"
},
{
"input": "3 1\n2 3 0\n4",
"output": "No"
},
{
"input": "3 1\n1 0 11\n5",
"output": "No"
},
{
"input": "4 1\n7 9 5 0\n8",
"output": "Yes"
},
{
"input": "6 2\n1 2 3 0 5 0\n6 4",
"output": "Yes"
},
{
"input": "3 2\n0 1 0\n3 2",
"output": "Yes"
},
{
"input": "4 1\n6 9 5 0\n8",
"output": "Yes"
},
{
"input": "2 1\n0 3\n6",
"output": "Yes"
},
{
"input": "5 2\n1 2 0 0 5\n4 3",
"output": "Yes"
},
{
"input": "4 2\n2 0 0 8\n3 4",
"output": "Yes"
},
{
"input": "2 1\n0 2\n3",
"output": "Yes"
},
{
"input": "3 1\n0 4 5\n6",
"output": "Yes"
},
{
"input": "6 1\n1 2 3 4 0 5\n6",
"output": "Yes"
},
{
"input": "2 1\n2 0\n3",
"output": "No"
},
{
"input": "4 2\n11 0 0 200\n100 199",
"output": "Yes"
},
{
"input": "2 1\n5 0\n4",
"output": "Yes"
},
{
"input": "3 1\n1 0 5\n10",
"output": "Yes"
},
{
"input": "6 2\n1 2 0 0 5 6\n3 4",
"output": "Yes"
},
{
"input": "5 2\n1 0 3 0 5\n2 4",
"output": "Yes"
},
{
"input": "4 1\n1 4 0 8\n3",
"output": "Yes"
},
{
"input": "4 1\n5 9 4 0\n8",
"output": "Yes"
},
{
"input": "4 2\n1 0 0 7\n3 2",
"output": "Yes"
},
{
"input": "3 3\n0 0 0\n1 4 3",
"output": "Yes"
},
{
"input": "5 5\n0 0 0 0 0\n5 4 3 2 1",
"output": "Yes"
},
{
"input": "4 1\n3 9 4 0\n8",
"output": "Yes"
},
{
"input": "4 2\n1 0 0 4\n2 3",
"output": "Yes"
},
{
"input": "6 1\n2 4 0 8 9 10\n3",
"output": "Yes"
},
{
"input": "4 1\n0 3 5 6\n9",
"output": "Yes"
},
{
"input": "4 2\n1 2 0 0\n3 4",
"output": "Yes"
},
{
"input": "5 1\n2 3 4 5 0\n1",
"output": "Yes"
},
{
"input": "3 1\n2 0 4\n5",
"output": "Yes"
}
] | 1,497,512,519
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 96
| 77
| 0
|
import sys
a,b = input().split()
n = [int(x) for x in input().split()]
m = [int(x) for x in input().split()]
a = int(a)
b = int(b)
m.sort()
m.reverse()
j = 0
for i in range(0,a):
if n[i] == 0:
n[i] = m[j]
j += 1
for i in range(1,a):
if n[i] < n[i - 1]:
print ("Yes")
sys.exit()
print ("No")
|
Title: An abandoned sentiment from past
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed.
To get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity.
Hitagi's sequence *a* has a length of *n*. Lost elements in it are denoted by zeros. Kaiki provides another sequence *b*, whose length *k* equals the number of lost elements in *a* (i.e. the number of zeros). Hitagi is to replace each zero in *a* with an element from *b* so that each element in *b* should be used exactly once. Hitagi knows, however, that, apart from 0, no integer occurs in *a* and *b* more than once in total.
If the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In other words, you should detect whether it is possible to replace each zero in *a* with an integer from *b* so that each integer from *b* is used exactly once, and the resulting sequence is not increasing.
Input Specification:
The first line of input contains two space-separated positive integers *n* (2<=β€<=*n*<=β€<=100) and *k* (1<=β€<=*k*<=β€<=*n*) β the lengths of sequence *a* and *b* respectively.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=β€<=*a**i*<=β€<=200) β Hitagi's broken sequence with exactly *k* zero elements.
The third line contains *k* space-separated integers *b*1,<=*b*2,<=...,<=*b**k* (1<=β€<=*b**i*<=β€<=200) β the elements to fill into Hitagi's sequence.
Input guarantees that apart from 0, no integer occurs in *a* and *b* more than once in total.
Output Specification:
Output "Yes" if it's possible to replace zeros in *a* with elements in *b* and make the resulting sequence not increasing, and "No" otherwise.
Demo Input:
['4 2\n11 0 0 14\n5 4\n', '6 1\n2 3 0 8 9 10\n5\n', '4 1\n8 94 0 4\n89\n', '7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7\n']
Demo Output:
['Yes\n', 'No\n', 'Yes\n', 'Yes\n']
Note:
In the first sample:
- Sequence *a* is 11,β0,β0,β14. - Two of the elements are lost, and the candidates in *b* are 5 and 4. - There are two possible resulting sequences: 11,β5,β4,β14 and 11,β4,β5,β14, both of which fulfill the requirements. Thus the answer is "Yes".
In the second sample, the only possible resulting sequence is 2,β3,β5,β8,β9,β10, which is an increasing sequence and therefore invalid.
|
```python
import sys
a,b = input().split()
n = [int(x) for x in input().split()]
m = [int(x) for x in input().split()]
a = int(a)
b = int(b)
m.sort()
m.reverse()
j = 0
for i in range(0,a):
if n[i] == 0:
n[i] = m[j]
j += 1
for i in range(1,a):
if n[i] < n[i - 1]:
print ("Yes")
sys.exit()
print ("No")
```
| 3
|
|
200
|
B
|
Drinks
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
|
The first input line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=β€<=*p**i*<=β€<=100) β the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
|
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
|
[
"3\n50 50 100\n",
"4\n0 25 50 75\n"
] |
[
"66.666666666667\n",
"37.500000000000\n"
] |
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3Β·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
| 500
|
[
{
"input": "3\n50 50 100",
"output": "66.666666666667"
},
{
"input": "4\n0 25 50 75",
"output": "37.500000000000"
},
{
"input": "3\n0 1 8",
"output": "3.000000000000"
},
{
"input": "5\n96 89 93 95 70",
"output": "88.600000000000"
},
{
"input": "7\n62 41 78 4 38 39 75",
"output": "48.142857142857"
},
{
"input": "13\n2 22 7 0 1 17 3 17 11 2 21 26 22",
"output": "11.615384615385"
},
{
"input": "21\n5 4 11 7 0 5 45 21 0 14 51 6 0 16 10 19 8 9 7 12 18",
"output": "12.761904761905"
},
{
"input": "26\n95 70 93 74 94 70 91 70 39 79 80 57 87 75 37 93 48 67 51 90 85 26 23 64 66 84",
"output": "69.538461538462"
},
{
"input": "29\n84 99 72 96 83 92 95 98 97 93 76 84 99 93 81 76 93 99 99 100 95 100 96 95 97 100 71 98 94",
"output": "91.551724137931"
},
{
"input": "33\n100 99 100 100 99 99 99 100 100 100 99 99 99 100 100 100 100 99 100 99 100 100 97 100 100 100 100 100 100 100 98 98 100",
"output": "99.515151515152"
},
{
"input": "34\n14 9 10 5 4 26 18 23 0 1 0 20 18 15 2 2 3 5 14 1 9 4 2 15 7 1 7 19 10 0 0 11 0 2",
"output": "8.147058823529"
},
{
"input": "38\n99 98 100 100 99 92 99 99 98 84 88 94 86 99 93 100 98 99 65 98 85 84 64 97 96 89 79 96 91 84 99 93 72 96 94 97 96 93",
"output": "91.921052631579"
},
{
"input": "52\n100 94 99 98 99 99 99 95 97 97 98 100 100 98 97 100 98 90 100 99 97 94 90 98 100 100 90 99 100 95 98 95 94 85 97 94 96 94 99 99 99 98 100 100 94 99 99 100 98 87 100 100",
"output": "97.019230769231"
},
{
"input": "58\n10 70 12 89 1 82 100 53 40 100 21 69 92 91 67 66 99 77 25 48 8 63 93 39 46 79 82 14 44 42 1 79 0 69 56 73 67 17 59 4 65 80 20 60 77 52 3 61 16 76 33 18 46 100 28 59 9 6",
"output": "50.965517241379"
},
{
"input": "85\n7 8 1 16 0 15 1 7 0 11 15 6 2 12 2 8 9 8 2 0 3 7 15 7 1 8 5 7 2 26 0 3 11 1 8 10 31 0 7 6 1 8 1 0 9 14 4 8 7 16 9 1 0 16 10 9 6 1 1 4 2 7 4 5 4 1 20 6 16 16 1 1 10 17 8 12 14 19 3 8 1 7 10 23 10",
"output": "7.505882352941"
},
{
"input": "74\n5 3 0 7 13 10 12 10 18 5 0 18 2 13 7 17 2 7 5 2 40 19 0 2 2 3 0 45 4 20 0 4 2 8 1 19 3 9 17 1 15 0 16 1 9 4 0 9 32 2 6 18 11 18 1 15 16 12 7 19 5 3 9 28 26 8 3 10 33 29 4 13 28 6",
"output": "10.418918918919"
},
{
"input": "98\n42 9 21 11 9 11 22 12 52 20 10 6 56 9 26 27 1 29 29 14 38 17 41 21 7 45 15 5 29 4 51 20 6 8 34 17 13 53 30 45 0 10 16 41 4 5 6 4 14 2 31 6 0 11 13 3 3 43 13 36 51 0 7 16 28 23 8 36 30 22 8 54 21 45 39 4 50 15 1 30 17 8 18 10 2 20 16 50 6 68 15 6 38 7 28 8 29 41",
"output": "20.928571428571"
},
{
"input": "99\n60 65 40 63 57 44 30 84 3 10 39 53 40 45 72 20 76 11 61 32 4 26 97 55 14 57 86 96 34 69 52 22 26 79 31 4 21 35 82 47 81 28 72 70 93 84 40 4 69 39 83 58 30 7 32 73 74 12 92 23 61 88 9 58 70 32 75 40 63 71 46 55 39 36 14 97 32 16 95 41 28 20 85 40 5 50 50 50 75 6 10 64 38 19 77 91 50 72 96",
"output": "49.191919191919"
},
{
"input": "99\n100 88 40 30 81 80 91 98 69 73 88 96 79 58 14 100 87 84 52 91 83 88 72 83 99 35 54 80 46 79 52 72 85 32 99 39 79 79 45 83 88 50 75 75 50 59 65 75 97 63 92 58 89 46 93 80 89 33 69 86 99 99 66 85 72 74 79 98 85 95 46 63 77 97 49 81 89 39 70 76 68 91 90 56 31 93 51 87 73 95 74 69 87 95 57 68 49 95 92",
"output": "73.484848484848"
},
{
"input": "100\n18 15 17 0 3 3 0 4 1 8 2 22 7 21 5 0 0 8 3 16 1 0 2 9 9 3 10 8 17 20 5 4 8 12 2 3 1 1 3 2 23 0 1 0 5 7 4 0 1 3 3 4 25 2 2 14 8 4 9 3 0 11 0 3 12 3 14 16 7 7 14 1 17 9 0 35 42 12 3 1 25 9 3 8 5 3 2 8 22 14 11 6 3 9 6 8 7 7 4 6",
"output": "7.640000000000"
},
{
"input": "100\n88 77 65 87 100 63 91 96 92 89 77 95 76 80 84 83 100 71 85 98 26 54 74 78 69 59 96 86 88 91 95 26 52 88 64 70 84 81 76 84 94 82 100 66 97 98 43 94 59 94 100 80 98 73 69 83 94 70 74 79 91 31 62 88 69 55 62 97 40 64 62 83 87 85 50 90 69 72 67 49 100 51 69 96 81 90 83 91 86 34 79 69 100 66 97 98 47 97 74 100",
"output": "77.660000000000"
},
{
"input": "100\n91 92 90 91 98 84 85 96 83 98 99 87 94 70 87 75 86 90 89 88 82 83 91 94 88 86 90 99 100 98 97 75 95 99 95 100 91 92 76 93 95 97 88 93 95 81 96 89 88 100 98 87 90 96 100 99 58 90 96 77 92 82 100 100 93 93 98 99 79 88 97 95 98 66 96 83 96 100 99 92 98 98 92 93 100 97 98 100 98 97 100 100 94 90 99 100 98 79 80 81",
"output": "91.480000000000"
},
{
"input": "1\n0",
"output": "0.000000000000"
},
{
"input": "1\n100",
"output": "100.000000000000"
},
{
"input": "1\n78",
"output": "78.000000000000"
},
{
"input": "2\n0 100",
"output": "50.000000000000"
},
{
"input": "2\n100 100",
"output": "100.000000000000"
},
{
"input": "5\n0 0 0 0 1",
"output": "0.200000000000"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99",
"output": "99.990000000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1",
"output": "0.010000000000"
},
{
"input": "5\n100 100 100 100 100",
"output": "100.000000000000"
}
] | 1,683,819,557
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 92
| 0
|
n=int(input())
l=list(map(int, input().split()))
c=0
for i in l:
c+=i
print(c/n)
|
Title: Drinks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
Input Specification:
The first input line contains a single integer *n* (1<=β€<=*n*<=β€<=100) β the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=β€<=*p**i*<=β€<=100) β the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
Output Specification:
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
Demo Input:
['3\n50 50 100\n', '4\n0 25 50 75\n']
Demo Output:
['66.666666666667\n', '37.500000000000\n']
Note:
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3Β·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
|
```python
n=int(input())
l=list(map(int, input().split()))
c=0
for i in l:
c+=i
print(c/n)
```
| 3
|
|
801
|
B
|
Valued Keys
|
PROGRAMMING
| 900
|
[
"constructive algorithms",
"greedy",
"strings"
] | null | null |
You found a mysterious function *f*. The function takes two strings *s*1 and *s*2. These strings must consist only of lowercase English letters, and must be the same length.
The output of the function *f* is another string of the same length. The *i*-th character of the output is equal to the minimum of the *i*-th character of *s*1 and the *i*-th character of *s*2.
For example, *f*("ab", "ba") = "aa", and *f*("nzwzl", "zizez") = "niwel".
You found two strings *x* and *y* of the same length and consisting of only lowercase English letters. Find any string *z* such that *f*(*x*,<=*z*)<==<=*y*, or print -1 if no such string *z* exists.
|
The first line of input contains the string *x*.
The second line of input contains the string *y*.
Both *x* and *y* consist only of lowercase English letters, *x* and *y* have same length and this length is between 1 and 100.
|
If there is no string *z* such that *f*(*x*,<=*z*)<==<=*y*, print -1.
Otherwise, print a string *z* such that *f*(*x*,<=*z*)<==<=*y*. If there are multiple possible answers, print any of them. The string *z* should be the same length as *x* and *y* and consist only of lowercase English letters.
|
[
"ab\naa\n",
"nzwzl\nniwel\n",
"ab\nba\n"
] |
[
"ba\n",
"xiyez\n",
"-1\n"
] |
The first case is from the statement.
Another solution for the second case is "zizez"
There is no solution for the third case. That is, there is no *z* such that *f*("ab", *z*)β=β "ba".
| 1,000
|
[
{
"input": "ab\naa",
"output": "ba"
},
{
"input": "nzwzl\nniwel",
"output": "xiyez"
},
{
"input": "ab\nba",
"output": "-1"
},
{
"input": "r\nl",
"output": "l"
},
{
"input": "d\ny",
"output": "-1"
},
{
"input": "yvowz\ncajav",
"output": "cajav"
},
{
"input": "lwzjp\ninjit",
"output": "-1"
},
{
"input": "epqnlxmiicdidyscjaxqznwur\neodnlemiicdedmkcgavqbnqmm",
"output": "eodnlemiicdedmkcgavqbnqmm"
},
{
"input": "qqdabbsxiibnnjgsgxllfvdqj\nuxmypqtwfdezewdxfgplannrs",
"output": "-1"
},
{
"input": "aanerbaqslfmqmuciqbxyznkevukvznpkmxlcorpmrenwxhzfgbmlfpxtkqpxdrmcqcmbf\naanebbaqkgfiimcciqbaoznkeqqkrgapdillccrfeienwbcvfgbmlfbimkqchcrmclcmbf",
"output": "aanebbaqkgfiimcciqbaoznkeqqkrgapdillccrfeienwbcvfgbmlfbimkqchcrmclcmbf"
},
{
"input": "mbyrkhjctrcrayisflptgfudwgrtegidhqicsjqafvdloritbjhciyxuwavxknezwwudnk\nvvixsutlbdewqoabqhpuerfkzrddcqptfwmxdlxwbvsaqfjoxztlddvwgflcteqbwaiaen",
"output": "-1"
},
{
"input": "eufycwztywhbjrpqobvknwfqmnboqcfdiahkagykeibbsqpljcghhmsgfmswwsanzyiwtvuirwmppfivtekaywkzskyydfvkjgxb\necfwavookadbcilfobojnweqinbcpcfdiahkabwkeibbacpljcghhksgfajgmianfnivmhfifogpffiheegayfkxkkcmdfvihgdb",
"output": "ecfwavookadbcilfobojnweqinbcpcfdiahkabwkeibbacpljcghhksgfajgmianfnivmhfifogpffiheegayfkxkkcmdfvihgdb"
},
{
"input": "qvpltcffyeghtbdhjyhfteojezyzziardduzrbwuxmzzkkoehfnxecafizxglboauhynfbawlfxenmykquyhrxswhjuovvogntok\nchvkcvzxptbcepdjfezcpuvtehewbnvqeoezlcnzhpfwujbmhafoeqmjhtwisnobauinkzyigrvahpuetkgpdjfgbzficsmuqnym",
"output": "-1"
},
{
"input": "nmuwjdihouqrnsuahimssnrbxdpwvxiyqtenahtrlshjkmnfuttnpqhgcagoptinnaptxaccptparldzrhpgbyrzedghudtsswxi\nnilhbdghosqnbebafimconrbvdodjsipqmekahhrllhjkemeketapfhgcagopfidnahtlaccpfpafedqicpcbvfgedghudhddwib",
"output": "nilhbdghosqnbebafimconrbvdodjsipqmekahhrllhjkemeketapfhgcagopfidnahtlaccpfpafedqicpcbvfgedghudhddwib"
},
{
"input": "dyxgwupoauwqtcfoyfjdotzirwztdfrueqiypxoqvkmhiehdppwtdoxrbfvtairdbuvlqohjflznggjpifhwjrshcrfbjtklpykx\ngzqlnoizhxolnditjdhlhptjsbczehicudoybzilwnshmywozwnwuipcgirgzldtvtowdsokfeafggwserzdazkxyddjttiopeew",
"output": "-1"
},
{
"input": "hbgwuqzougqzlxemvyjpeizjfwhgugrfnhbrlxkmkdalikfyunppwgdzmalbwewybnjzqsohwhjkdcyhhzmysflambvhpsjilsyv\nfbdjdqjojdafarakvcjpeipjfehgfgrfehbolxkmkdagikflunnpvadocalbkedibhbflmohnhjkdcthhaigsfjaibqhbcjelirv",
"output": "fbdjdqjojdafarakvcjpeipjfehgfgrfehbolxkmkdagikflunnpvadocalbkedibhbflmohnhjkdcthhaigsfjaibqhbcjelirv"
},
{
"input": "xnjjhjfuhgyxqhpzmvgbaohqarugdoaczcfecofltwemieyxolswkcwhlfagfrgmoiqrgftokbqwtxgxzweozzlikrvafiabivlk\npjfosalbsitcnqiazhmepfifjxvmazvdgffcnozmnqubhonwjldmpdsjagmamniylzjdbklcyrzivjyzgnogahobpkwpwpvraqns",
"output": "-1"
},
{
"input": "zrvzedssbsrfldqvjpgmsefrmsatspzoitwvymahiptphiystjlsauzquzqqbmljobdhijcpdvatorwmyojqgnezvzlgjibxepcf\npesoedmqbmffldqsjggmhefkadaesijointrkmahapaahiysfjdiaupqujngbjhjobdhiecadeatgjvelojjgnepvajgeibfepaf",
"output": "pesoedmqbmffldqsjggmhefkadaesijointrkmahapaahiysfjdiaupqujngbjhjobdhiecadeatgjvelojjgnepvajgeibfepaf"
},
{
"input": "pdvkuwyzntzfqpblzmbynknyhlnqbxijuqaincviugxohcsrofozrrsategwkbwxcvkyzxhurokefpbdnmcfogfhsojayysqbrow\nbvxruombdrywlcjkrltyayaazwpauuhbtgwfzdrmfwwucgffucwelzvpsdgtapogchblzahsrfymjlaghkbmbssghrpxalkslcvp",
"output": "-1"
},
{
"input": "tgharsjyihroiiahwgbjezlxvlterxivdhtzjcqegzmtigqmrehvhiyjeywegxaseoyoacouijudbiruoghgxvxadwzgdxtnxlds\ntghaksjsdhkoiiahegbjexlfrctercipdhmvjbgegxdtggqdpbhvhiseehhegnaseoooacnsijubbirjnghgsvpadhaadrtimfdp",
"output": "tghaksjsdhkoiiahegbjexlfrctercipdhmvjbgegxdtggqdpbhvhiseehhegnaseoooacnsijubbirjnghgsvpadhaadrtimfdp"
},
{
"input": "jsinejpfwhzloulxndzvzftgogfdagrsscxmatldssqsgaknnbkcvhptebjjpkjhrjegrotzwcdosezkedzxeoyibmyzunkguoqj\nkfmvybobocdpipiripysioruqvloopvbggpjksgmwzyqwyxnesmvhsawnbbmntulspvsysfkjqwpvoelliopbaukyagedextzoej",
"output": "-1"
},
{
"input": "nttdcfceptruiomtmwzestrfchnqpgqeztpcvthzelfyggjgqadylzubpvbrlgndrcsursczpxlnoyoadxezncqalupfzmjeqihe\nkttdcfceohrjiaahmoldanpfchnfpgheqpdahqhxecfpbgigqadrkjubjfbrlgndbcgcgmcjpeleinaadretncqaiqpfkmjeqihe",
"output": "kttdcfceohrjiaahmoldanpfchnfpgheqpdahqhxecfpbgigqadrkjubjfbrlgndbcgcgmcjpeleinaadretncqaiqpfkmjeqihe"
},
{
"input": "diuopwglduasnaxgduwslbzoyayoypzznqspljcyqehweydhlwifcvnjmaowuvyqfwynjghecqvxdvuquuwpvwrjljozocaxnktv\ntrdydprdzmjhgbhzytelrfjpgsebijicsigmwhynmcyjtqrvojcndodchzxfcvyqjxqzwibccdvsjqhsnectdjyrrhzkeamukang",
"output": "-1"
},
{
"input": "ftfr\nftfr",
"output": "ftfr"
},
{
"input": "ftr\nftr",
"output": "ftr"
},
{
"input": "shftr\nshftr",
"output": "shftr"
},
{
"input": "vkvkkv\nvkvkkv",
"output": "vkvkkv"
},
{
"input": "ftrd\nftrd",
"output": "ftrd"
},
{
"input": "fztr\nfztr",
"output": "fztr"
},
{
"input": "frtr\nfrtr",
"output": "frtr"
},
{
"input": "shdftr\nshdftr",
"output": "shdftr"
},
{
"input": "zzz\nzzz",
"output": "zzz"
},
{
"input": "shtr\nshtr",
"output": "shtr"
},
{
"input": "aaaaa\nzzzzz",
"output": "-1"
},
{
"input": "efr\nefr",
"output": "efr"
}
] | 1,697,009,723
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 46
| 0
|
def solve():
x = input()
y = input()
result = ""
for i in range(len(x)):
if x[i] == y[i]:
result += x[i]
elif x[i] > y[i]:
result += y[i]
else:
print(-1)
return
print(result)
if __name__ == "__main__":
solve()
|
Title: Valued Keys
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You found a mysterious function *f*. The function takes two strings *s*1 and *s*2. These strings must consist only of lowercase English letters, and must be the same length.
The output of the function *f* is another string of the same length. The *i*-th character of the output is equal to the minimum of the *i*-th character of *s*1 and the *i*-th character of *s*2.
For example, *f*("ab", "ba") = "aa", and *f*("nzwzl", "zizez") = "niwel".
You found two strings *x* and *y* of the same length and consisting of only lowercase English letters. Find any string *z* such that *f*(*x*,<=*z*)<==<=*y*, or print -1 if no such string *z* exists.
Input Specification:
The first line of input contains the string *x*.
The second line of input contains the string *y*.
Both *x* and *y* consist only of lowercase English letters, *x* and *y* have same length and this length is between 1 and 100.
Output Specification:
If there is no string *z* such that *f*(*x*,<=*z*)<==<=*y*, print -1.
Otherwise, print a string *z* such that *f*(*x*,<=*z*)<==<=*y*. If there are multiple possible answers, print any of them. The string *z* should be the same length as *x* and *y* and consist only of lowercase English letters.
Demo Input:
['ab\naa\n', 'nzwzl\nniwel\n', 'ab\nba\n']
Demo Output:
['ba\n', 'xiyez\n', '-1\n']
Note:
The first case is from the statement.
Another solution for the second case is "zizez"
There is no solution for the third case. That is, there is no *z* such that *f*("ab", *z*)β=β "ba".
|
```python
def solve():
x = input()
y = input()
result = ""
for i in range(len(x)):
if x[i] == y[i]:
result += x[i]
elif x[i] > y[i]:
result += y[i]
else:
print(-1)
return
print(result)
if __name__ == "__main__":
solve()
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line β the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,623,390,081
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 102
| 93
| 0
|
num1 = input()
num2 = input()
result = ''
i = 0
for x in num1:
if x == num2[i]:
result = result + '0'
else:
result = result + '1'
i = i+1
print(result)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line β the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
num1 = input()
num2 = input()
result = ''
i = 0
for x in num1:
if x == num2[i]:
result = result + '0'
else:
result = result + '1'
i = i+1
print(result)
```
| 3.97675
|
606
|
B
|
Testing Robots
|
PROGRAMMING
| 1,600
|
[
"implementation"
] | null | null |
The Cybernetics Failures (CF) organisation made a prototype of a bomb technician robot. To find the possible problems it was decided to carry out a series of tests. At the beginning of each test the robot prototype will be placed in cell (*x*0,<=*y*0) of a rectangular squared field of size *x*<=Γ<=*y*, after that a mine will be installed into one of the squares of the field. It is supposed to conduct exactly *x*Β·*y* tests, each time a mine is installed into a square that has never been used before. The starting cell of the robot always remains the same.
After placing the objects on the field the robot will have to run a sequence of commands given by string *s*, consisting only of characters 'L', 'R', 'U', 'D'. These commands tell the robot to move one square to the left, to the right, up or down, or stay idle if moving in the given direction is impossible. As soon as the robot fulfills all the sequence of commands, it will blow up due to a bug in the code. But if at some moment of time the robot is at the same square with the mine, it will also blow up, but not due to a bug in the code.
Moving to the left decreases coordinate *y*, and moving to the right increases it. Similarly, moving up decreases the *x* coordinate, and moving down increases it.
The tests can go on for very long, so your task is to predict their results. For each *k* from 0 to *length*(*s*) your task is to find in how many tests the robot will run exactly *k* commands before it blows up.
|
The first line of the input contains four integers *x*, *y*, *x*0, *y*0 (1<=β€<=*x*,<=*y*<=β€<=500,<=1<=β€<=*x*0<=β€<=*x*,<=1<=β€<=*y*0<=β€<=*y*)Β β the sizes of the field and the starting coordinates of the robot. The coordinate axis *X* is directed downwards and axis *Y* is directed to the right.
The second line contains a sequence of commands *s*, which should be fulfilled by the robot. It has length from 1 to 100<=000 characters and only consists of characters 'L', 'R', 'U', 'D'.
|
Print the sequence consisting of (*length*(*s*)<=+<=1) numbers. On the *k*-th position, starting with zero, print the number of tests where the robot will run exactly *k* commands before it blows up.
|
[
"3 4 2 2\nUURDRDRL\n",
"2 2 2 2\nULD\n"
] |
[
"1 1 0 1 1 1 1 0 6\n",
"1 1 1 1\n"
] |
In the first sample, if we exclude the probable impact of the mines, the robot's route will look like that: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/16bfda1e4f41cc00665c31f0a1d754d68cd9b4ab.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 1,000
|
[
{
"input": "3 4 2 2\nUURDRDRL",
"output": "1 1 0 1 1 1 1 0 6"
},
{
"input": "2 2 2 2\nULD",
"output": "1 1 1 1"
},
{
"input": "1 1 1 1\nURDLUURRDDLLURDL",
"output": "1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0"
},
{
"input": "15 17 8 9\nURRDLUULLDD",
"output": "1 1 1 1 1 1 0 1 1 1 1 245"
},
{
"input": "15 17 8 9\nURRDLUULLDDDRRUR",
"output": "1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 241"
},
{
"input": "15 17 8 9\nURRDLUULLDDDRRURR",
"output": "1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 241"
},
{
"input": "1 2 1 1\nR",
"output": "1 1"
},
{
"input": "2 1 1 1\nD",
"output": "1 1"
},
{
"input": "1 2 1 2\nLR",
"output": "1 1 0"
},
{
"input": "2 1 2 1\nUD",
"output": "1 1 0"
},
{
"input": "4 4 2 2\nDRUL",
"output": "1 1 1 1 12"
},
{
"input": "4 4 3 3\nLUDRUL",
"output": "1 1 1 0 0 1 12"
},
{
"input": "15 17 8 9\nURRDLU",
"output": "1 1 1 1 1 1 249"
},
{
"input": "15 17 8 9\nURRDLUULLDDR",
"output": "1 1 1 1 1 1 0 1 1 1 1 1 244"
},
{
"input": "15 17 8 9\nURRDLUULLDDRR",
"output": "1 1 1 1 1 1 0 1 1 1 1 1 0 244"
},
{
"input": "15 17 8 9\nURRDLUULLDDRRR",
"output": "1 1 1 1 1 1 0 1 1 1 1 1 0 0 244"
},
{
"input": "15 17 8 9\nURRDLUULLDDRRRR",
"output": "1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 244"
},
{
"input": "15 17 8 9\nURRDLUULLDDRRRRU",
"output": "1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 243"
}
] | 1,679,763,650
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 68
| 155
| 13,516,800
|
import sys, os, io
input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline
def f(u, v):
return u * y + v
x, y, x0, y0 = map(int, input().split())
d = {"D":(1, 0), "U":(-1, 0), "R":(0, 1), "L":(0, -1)}
s = list(input().rstrip().decode())
visit = [0] * (x * y)
i, j = x0 - 1, y0 - 1
ans = []
for k in s:
ans.append(visit[f(i, j)] ^ 1)
visit[f(i, j)] = 1
di, dj = d[k]
ni, nj = i + di, j + dj
if 0 <= ni < x and 0 <= nj < y:
i, j = ni, nj
ans.append(x * y - sum(ans))
sys.stdout.write(" ".join(map(str, ans)))
|
Title: Testing Robots
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Cybernetics Failures (CF) organisation made a prototype of a bomb technician robot. To find the possible problems it was decided to carry out a series of tests. At the beginning of each test the robot prototype will be placed in cell (*x*0,<=*y*0) of a rectangular squared field of size *x*<=Γ<=*y*, after that a mine will be installed into one of the squares of the field. It is supposed to conduct exactly *x*Β·*y* tests, each time a mine is installed into a square that has never been used before. The starting cell of the robot always remains the same.
After placing the objects on the field the robot will have to run a sequence of commands given by string *s*, consisting only of characters 'L', 'R', 'U', 'D'. These commands tell the robot to move one square to the left, to the right, up or down, or stay idle if moving in the given direction is impossible. As soon as the robot fulfills all the sequence of commands, it will blow up due to a bug in the code. But if at some moment of time the robot is at the same square with the mine, it will also blow up, but not due to a bug in the code.
Moving to the left decreases coordinate *y*, and moving to the right increases it. Similarly, moving up decreases the *x* coordinate, and moving down increases it.
The tests can go on for very long, so your task is to predict their results. For each *k* from 0 to *length*(*s*) your task is to find in how many tests the robot will run exactly *k* commands before it blows up.
Input Specification:
The first line of the input contains four integers *x*, *y*, *x*0, *y*0 (1<=β€<=*x*,<=*y*<=β€<=500,<=1<=β€<=*x*0<=β€<=*x*,<=1<=β€<=*y*0<=β€<=*y*)Β β the sizes of the field and the starting coordinates of the robot. The coordinate axis *X* is directed downwards and axis *Y* is directed to the right.
The second line contains a sequence of commands *s*, which should be fulfilled by the robot. It has length from 1 to 100<=000 characters and only consists of characters 'L', 'R', 'U', 'D'.
Output Specification:
Print the sequence consisting of (*length*(*s*)<=+<=1) numbers. On the *k*-th position, starting with zero, print the number of tests where the robot will run exactly *k* commands before it blows up.
Demo Input:
['3 4 2 2\nUURDRDRL\n', '2 2 2 2\nULD\n']
Demo Output:
['1 1 0 1 1 1 1 0 6\n', '1 1 1 1\n']
Note:
In the first sample, if we exclude the probable impact of the mines, the robot's route will look like that: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/16bfda1e4f41cc00665c31f0a1d754d68cd9b4ab.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
import sys, os, io
input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline
def f(u, v):
return u * y + v
x, y, x0, y0 = map(int, input().split())
d = {"D":(1, 0), "U":(-1, 0), "R":(0, 1), "L":(0, -1)}
s = list(input().rstrip().decode())
visit = [0] * (x * y)
i, j = x0 - 1, y0 - 1
ans = []
for k in s:
ans.append(visit[f(i, j)] ^ 1)
visit[f(i, j)] = 1
di, dj = d[k]
ni, nj = i + di, j + dj
if 0 <= ni < x and 0 <= nj < y:
i, j = ni, nj
ans.append(x * y - sum(ans))
sys.stdout.write(" ".join(map(str, ans)))
```
| 3
|
|
992
|
A
|
Nastya and an Array
|
PROGRAMMING
| 800
|
[
"implementation",
"sortings"
] | null | null |
Nastya owns too many arrays now, so she wants to delete the least important of them. However, she discovered that this array is magic! Nastya now knows that the array has the following properties:
- In one second we can add an arbitrary (possibly negative) integer to all elements of the array that are not equal to zero. - When all elements of the array become equal to zero, the array explodes.
Nastya is always busy, so she wants to explode the array as fast as possible. Compute the minimum time in which the array can be exploded.
|
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=105) β the size of the array.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=105<=β€<=*a**i*<=β€<=105) β the elements of the array.
|
Print a single integer β the minimum number of seconds needed to make all elements of the array equal to zero.
|
[
"5\n1 1 1 1 1\n",
"3\n2 0 -1\n",
"4\n5 -6 -5 1\n"
] |
[
"1\n",
"2\n",
"4\n"
] |
In the first example you can add β-β1 to all non-zero elements in one second and make them equal to zero.
In the second example you can add β-β2 on the first second, then the array becomes equal to [0,β0,ββ-β3]. On the second second you can add 3 to the third (the only non-zero) element.
| 500
|
[
{
"input": "5\n1 1 1 1 1",
"output": "1"
},
{
"input": "3\n2 0 -1",
"output": "2"
},
{
"input": "4\n5 -6 -5 1",
"output": "4"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "2\n21794 -79194",
"output": "2"
},
{
"input": "3\n-63526 95085 -5239",
"output": "3"
},
{
"input": "3\n0 53372 -20572",
"output": "2"
},
{
"input": "13\n-2075 -32242 27034 -37618 -96962 82203 64846 48249 -71761 28908 -21222 -61370 46899",
"output": "13"
},
{
"input": "5\n806 0 1308 1954 683",
"output": "4"
},
{
"input": "8\n-26 0 -249 -289 -126 -206 288 -11",
"output": "7"
},
{
"input": "10\n2 2 2 1 2 -1 0 2 -1 1",
"output": "3"
},
{
"input": "1\n8",
"output": "1"
},
{
"input": "3\n0 0 0",
"output": "0"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "10"
},
{
"input": "5\n2 0 -1 0 0",
"output": "2"
},
{
"input": "2\n0 0",
"output": "0"
},
{
"input": "5\n0 0 0 0 0",
"output": "0"
},
{
"input": "2\n1 0",
"output": "1"
},
{
"input": "2\n-1 0",
"output": "1"
},
{
"input": "4\n0 0 0 0",
"output": "0"
},
{
"input": "8\n10 9 -1 0 0 3 2 3",
"output": "5"
},
{
"input": "5\n5 0 1 2 3",
"output": "4"
},
{
"input": "3\n1 1 0",
"output": "1"
},
{
"input": "1\n-1",
"output": "1"
},
{
"input": "5\n1 2 0 0 0",
"output": "2"
},
{
"input": "5\n1 0 0 0 0",
"output": "1"
},
{
"input": "5\n4 5 6 0 0",
"output": "3"
},
{
"input": "4\n-1 0 0 1",
"output": "2"
},
{
"input": "5\n3 0 0 4 5",
"output": "3"
},
{
"input": "3\n0 0 2",
"output": "1"
},
{
"input": "3\n1 0 0",
"output": "1"
},
{
"input": "4\n0 0 0 4",
"output": "1"
},
{
"input": "5\n-1 0 0 0 0",
"output": "1"
},
{
"input": "2\n0 1",
"output": "1"
},
{
"input": "3\n1 2 3",
"output": "3"
},
{
"input": "1\n5",
"output": "1"
},
{
"input": "10\n0 0 0 0 0 1 2 3 0 0",
"output": "3"
},
{
"input": "4\n0 1 2 3",
"output": "3"
},
{
"input": "3\n0 1 2",
"output": "2"
},
{
"input": "4\n2 0 0 -1",
"output": "2"
}
] | 1,621,748,401
| 241
|
PyPy 3
|
OK
|
TESTS
| 79
| 186
| 12,083,200
|
import math
from collections import Counter
t = 1
for _ in range(t):
n = int(input())
# n,m - map(int, input().split())
ali = list(map(int, input().split()))
# s = input()
s = list(set(ali))
cnt = 0
for i in s:
if(i != 0):
cnt += 1
print(cnt)
|
Title: Nastya and an Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Nastya owns too many arrays now, so she wants to delete the least important of them. However, she discovered that this array is magic! Nastya now knows that the array has the following properties:
- In one second we can add an arbitrary (possibly negative) integer to all elements of the array that are not equal to zero. - When all elements of the array become equal to zero, the array explodes.
Nastya is always busy, so she wants to explode the array as fast as possible. Compute the minimum time in which the array can be exploded.
Input Specification:
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=105) β the size of the array.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=105<=β€<=*a**i*<=β€<=105) β the elements of the array.
Output Specification:
Print a single integer β the minimum number of seconds needed to make all elements of the array equal to zero.
Demo Input:
['5\n1 1 1 1 1\n', '3\n2 0 -1\n', '4\n5 -6 -5 1\n']
Demo Output:
['1\n', '2\n', '4\n']
Note:
In the first example you can add β-β1 to all non-zero elements in one second and make them equal to zero.
In the second example you can add β-β2 on the first second, then the array becomes equal to [0,β0,ββ-β3]. On the second second you can add 3 to the third (the only non-zero) element.
|
```python
import math
from collections import Counter
t = 1
for _ in range(t):
n = int(input())
# n,m - map(int, input().split())
ali = list(map(int, input().split()))
# s = input()
s = list(set(ali))
cnt = 0
for i in s:
if(i != 0):
cnt += 1
print(cnt)
```
| 3
|
|
248
|
B
|
Chilly Willy
|
PROGRAMMING
| 1,400
|
[
"math",
"number theory"
] | null | null |
Chilly Willy loves playing with numbers. He only knows prime numbers that are digits yet. These numbers are 2, 3, 5 and 7. But Willy grew rather bored of such numbers, so he came up with a few games that were connected with them.
Chilly Willy wants to find the minimum number of length *n*, such that it is simultaneously divisible by all numbers Willy already knows (2, 3, 5 and 7). Help him with that.
A number's length is the number of digits in its decimal representation without leading zeros.
|
A single input line contains a single integer *n* (1<=β€<=*n*<=β€<=105).
|
Print a single integer β the answer to the problem without leading zeroes, or "-1" (without the quotes), if the number that meet the problem condition does not exist.
|
[
"1\n",
"5\n"
] |
[
"-1\n",
"10080"
] |
none
| 1,000
|
[
{
"input": "1",
"output": "-1"
},
{
"input": "5",
"output": "10080"
},
{
"input": "6",
"output": "100170"
},
{
"input": "4",
"output": "1050"
},
{
"input": "15",
"output": "100000000000110"
},
{
"input": "16",
"output": "1000000000000050"
},
{
"input": "17",
"output": "10000000000000080"
},
{
"input": "7",
"output": "1000020"
},
{
"input": "120",
"output": "100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000170"
},
{
"input": "8",
"output": "10000200"
},
{
"input": "3",
"output": "210"
},
{
"input": "2",
"output": "-1"
},
{
"input": "9",
"output": "100000110"
},
{
"input": "10",
"output": "1000000050"
},
{
"input": "11",
"output": "10000000080"
},
{
"input": "12",
"output": "100000000170"
},
{
"input": "13",
"output": "1000000000020"
},
{
"input": "14",
"output": "10000000000200"
},
{
"input": "100000",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99999",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99998",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99997",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99996",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99995",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99994",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99993",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99992",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99991",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99990",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99989",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99988",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99987",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99988",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99987",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "99986",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "10000",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "5000",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "5001",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "5002",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "121",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020"
},
{
"input": "122",
"output": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000200"
},
{
"input": "123",
"output": "100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000110"
},
{
"input": "18",
"output": "100000000000000170"
},
{
"input": "19",
"output": "1000000000000000020"
},
{
"input": "20",
"output": "10000000000000000200"
},
{
"input": "21",
"output": "100000000000000000110"
},
{
"input": "22",
"output": "1000000000000000000050"
},
{
"input": "23",
"output": "10000000000000000000080"
},
{
"input": "24",
"output": "100000000000000000000170"
},
{
"input": "25",
"output": "1000000000000000000000020"
},
{
"input": "31",
"output": "1000000000000000000000000000020"
},
{
"input": "33",
"output": "100000000000000000000000000000110"
},
{
"input": "65",
"output": "10000000000000000000000000000000000000000000000000000000000000080"
},
{
"input": "2345",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "5522",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "8824",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "9003",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "88888",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "77777",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "66666",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "55553",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "34532",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "27324",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "45332",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "1000",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
},
{
"input": "12398",
"output": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000..."
}
] | 1,679,866,378
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 66
| 1,526
| 204,800
|
import math
n = int(input())
k = pow(10,n-1)
m = k%(210)
j = k// 210
if n<3:
print(-1)
else:
if m==0:
print(k)
else:
print((j+1)*210)
|
Title: Chilly Willy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Chilly Willy loves playing with numbers. He only knows prime numbers that are digits yet. These numbers are 2, 3, 5 and 7. But Willy grew rather bored of such numbers, so he came up with a few games that were connected with them.
Chilly Willy wants to find the minimum number of length *n*, such that it is simultaneously divisible by all numbers Willy already knows (2, 3, 5 and 7). Help him with that.
A number's length is the number of digits in its decimal representation without leading zeros.
Input Specification:
A single input line contains a single integer *n* (1<=β€<=*n*<=β€<=105).
Output Specification:
Print a single integer β the answer to the problem without leading zeroes, or "-1" (without the quotes), if the number that meet the problem condition does not exist.
Demo Input:
['1\n', '5\n']
Demo Output:
['-1\n', '10080']
Note:
none
|
```python
import math
n = int(input())
k = pow(10,n-1)
m = k%(210)
j = k// 210
if n<3:
print(-1)
else:
if m==0:
print(k)
else:
print((j+1)*210)
```
| 3
|
|
809
|
A
|
Do you want a date?
|
PROGRAMMING
| 1,500
|
[
"implementation",
"math",
"sortings"
] | null | null |
Leha decided to move to a quiet town ViΔkopolis, because he was tired by living in Bankopolis. Upon arrival he immediately began to expand his network of hacked computers. During the week Leha managed to get access to *n* computers throughout the town. Incidentally all the computers, which were hacked by Leha, lie on the same straight line, due to the reason that there is the only one straight street in ViΔkopolis.
Let's denote the coordinate system on this street. Besides let's number all the hacked computers with integers from 1 to *n*. So the *i*-th hacked computer is located at the point *x**i*. Moreover the coordinates of all computers are distinct.
Leha is determined to have a little rest after a hard week. Therefore he is going to invite his friend Noora to a restaurant. However the girl agrees to go on a date with the only one condition: Leha have to solve a simple task.
Leha should calculate a sum of *F*(*a*) for all *a*, where *a* is a non-empty subset of the set, that consists of all hacked computers. Formally, let's denote *A* the set of all integers from 1 to *n*. Noora asks the hacker to find value of the expression . Here *F*(*a*) is calculated as the maximum among the distances between all pairs of computers from the set *a*. Formally, . Since the required sum can be quite large Noora asks to find it modulo 109<=+<=7.
Though, Leha is too tired. Consequently he is not able to solve this task. Help the hacker to attend a date.
|
The first line contains one integer *n* (1<=β€<=*n*<=β€<=3Β·105) denoting the number of hacked computers.
The second line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (1<=β€<=*x**i*<=β€<=109) denoting the coordinates of hacked computers. It is guaranteed that all *x**i* are distinct.
|
Print a single integerΒ β the required sum modulo 109<=+<=7.
|
[
"2\n4 7\n",
"3\n4 3 1\n"
] |
[
"3\n",
"9\n"
] |
There are three non-empty subsets in the first sample test:<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/02b2d12556dad85f1c6c6912786eb87d4be2ea17.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/22f6a537962c86b3e28ddb8aaca28a7cdd219a8c.png" style="max-width: 100.0%;max-height: 100.0%;"/> and <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7d0f73b3e94e13cb797f39e93d9da74835c5a02d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. The first and the second subset increase the sum by 0 and the third subset increases the sum by 7β-β4β=β3. In total the answer is 0β+β0β+β3β=β3.
There are seven non-empty subsets in the second sample test. Among them only the following subsets increase the answer: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f368c407c8e85e2b5fedfffaff39d471d765f026.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/bb8f2118a3ac352db393b1f067b28e398ce7f816.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/049032074c04b16bc0cc153f95471c40b222072b.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc93c7f5b3d122314c9c5a707fae556a8f72a574.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In total the sum is (4β-β3)β+β(4β-β1)β+β(3β-β1)β+β(4β-β1)β=β9.
| 500
|
[
{
"input": "2\n4 7",
"output": "3"
},
{
"input": "3\n4 3 1",
"output": "9"
},
{
"input": "20\n8 11 13 19 21 34 36 44 57 58 61 63 76 78 79 81 85 86 90 95",
"output": "83396599"
},
{
"input": "20\n1 8 9 12 15 17 18 24 30 33 36 41 53 54 59 62 64 66 72 73",
"output": "68059140"
},
{
"input": "20\n2 6 8 9 20 23 27 36 43 49 63 65 70 71 85 87 89 91 94 97",
"output": "92743989"
},
{
"input": "1\n78091781",
"output": "0"
},
{
"input": "2\n1000000000 1",
"output": "999999999"
},
{
"input": "3\n999999998 999999999 999999992",
"output": "21"
},
{
"input": "3\n465343471 465343474 465343473",
"output": "9"
},
{
"input": "10\n10 3 6 2 1 9 8 4 5 7",
"output": "7181"
},
{
"input": "10\n756734546 756734524 756734550 756734529 756734553 756734538 756734541 756734536 756734579 756734537",
"output": "36489"
},
{
"input": "10\n877105545 939360757 849826701 845946140 803128820 926787996 967305000 904694971 921301848 971203310",
"output": "861364152"
},
{
"input": "5\n4 7 13 17 18",
"output": "270"
},
{
"input": "5\n20 17 13 7 2",
"output": "330"
},
{
"input": "5\n3 17 2 5 4",
"output": "237"
},
{
"input": "5\n999999980 999999985 999999986 999999990 999999992",
"output": "210"
},
{
"input": "5\n1000000000 999999988 999999982 999999981 999999980",
"output": "342"
},
{
"input": "5\n999999984 999999997 999999994 999999991 999999982",
"output": "285"
},
{
"input": "1\n2",
"output": "0"
},
{
"input": "5\n9 10 7 4 5",
"output": "114"
}
] | 1,596,054,572
| 1,772
|
PyPy 3
|
OK
|
TESTS
| 69
| 623
| 48,230,400
|
n = int(input())
arr = sorted(list(map(int, input().split())))
res = 0
mod = 1000000007
acc = 0
arr = [arr[i+1] - arr[i] for i in range(n-1)]
n -= 1
s = sum(arr)
for i in range((n+1)//2):
acc += s
res += acc * pow(2, n-i-1, mod) % mod
if not i*2+1 == n:
res += acc * pow(2, i, mod) % mod
res %= mod
s -= arr[i] + arr[n-i-1]
print(res)
|
Title: Do you want a date?
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Leha decided to move to a quiet town ViΔkopolis, because he was tired by living in Bankopolis. Upon arrival he immediately began to expand his network of hacked computers. During the week Leha managed to get access to *n* computers throughout the town. Incidentally all the computers, which were hacked by Leha, lie on the same straight line, due to the reason that there is the only one straight street in ViΔkopolis.
Let's denote the coordinate system on this street. Besides let's number all the hacked computers with integers from 1 to *n*. So the *i*-th hacked computer is located at the point *x**i*. Moreover the coordinates of all computers are distinct.
Leha is determined to have a little rest after a hard week. Therefore he is going to invite his friend Noora to a restaurant. However the girl agrees to go on a date with the only one condition: Leha have to solve a simple task.
Leha should calculate a sum of *F*(*a*) for all *a*, where *a* is a non-empty subset of the set, that consists of all hacked computers. Formally, let's denote *A* the set of all integers from 1 to *n*. Noora asks the hacker to find value of the expression . Here *F*(*a*) is calculated as the maximum among the distances between all pairs of computers from the set *a*. Formally, . Since the required sum can be quite large Noora asks to find it modulo 109<=+<=7.
Though, Leha is too tired. Consequently he is not able to solve this task. Help the hacker to attend a date.
Input Specification:
The first line contains one integer *n* (1<=β€<=*n*<=β€<=3Β·105) denoting the number of hacked computers.
The second line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (1<=β€<=*x**i*<=β€<=109) denoting the coordinates of hacked computers. It is guaranteed that all *x**i* are distinct.
Output Specification:
Print a single integerΒ β the required sum modulo 109<=+<=7.
Demo Input:
['2\n4 7\n', '3\n4 3 1\n']
Demo Output:
['3\n', '9\n']
Note:
There are three non-empty subsets in the first sample test:<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/02b2d12556dad85f1c6c6912786eb87d4be2ea17.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/22f6a537962c86b3e28ddb8aaca28a7cdd219a8c.png" style="max-width: 100.0%;max-height: 100.0%;"/> and <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7d0f73b3e94e13cb797f39e93d9da74835c5a02d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. The first and the second subset increase the sum by 0 and the third subset increases the sum by 7β-β4β=β3. In total the answer is 0β+β0β+β3β=β3.
There are seven non-empty subsets in the second sample test. Among them only the following subsets increase the answer: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f368c407c8e85e2b5fedfffaff39d471d765f026.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/bb8f2118a3ac352db393b1f067b28e398ce7f816.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/049032074c04b16bc0cc153f95471c40b222072b.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc93c7f5b3d122314c9c5a707fae556a8f72a574.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In total the sum is (4β-β3)β+β(4β-β1)β+β(3β-β1)β+β(4β-β1)β=β9.
|
```python
n = int(input())
arr = sorted(list(map(int, input().split())))
res = 0
mod = 1000000007
acc = 0
arr = [arr[i+1] - arr[i] for i in range(n-1)]
n -= 1
s = sum(arr)
for i in range((n+1)//2):
acc += s
res += acc * pow(2, n-i-1, mod) % mod
if not i*2+1 == n:
res += acc * pow(2, i, mod) % mod
res %= mod
s -= arr[i] + arr[n-i-1]
print(res)
```
| 3
|
|
106
|
A
|
Card Game
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
A. Card Game
|
2
|
256
|
There is a card game called "Durak", which means "Fool" in Russian. The game is quite popular in the countries that used to form USSR. The problem does not state all the game's rules explicitly β you can find them later yourselves if you want.
To play durak you need a pack of 36 cards. Each card has a suit ("S", "H", "D" and "C") and a rank (in the increasing order "6", "7", "8", "9", "T", "J", "Q", "K" and "A"). At the beginning of the game one suit is arbitrarily chosen as trump.
The players move like that: one player puts one or several of his cards on the table and the other one should beat each of them with his cards.
A card beats another one if both cards have similar suits and the first card has a higher rank then the second one. Besides, a trump card can beat any non-trump card whatever the cardsβ ranks are. In all other cases you can not beat the second card with the first one.
You are given the trump suit and two different cards. Determine whether the first one beats the second one or not.
|
The first line contains the tramp suit. It is "S", "H", "D" or "C".
The second line contains the description of the two different cards. Each card is described by one word consisting of two symbols. The first symbol stands for the rank ("6", "7", "8", "9", "T", "J", "Q", "K" and "A"), and the second one stands for the suit ("S", "H", "D" and "C").
|
Print "YES" (without the quotes) if the first cards beats the second one. Otherwise, print "NO" (also without the quotes).
|
[
"H\nQH 9S\n",
"S\n8D 6D\n",
"C\n7H AS\n"
] |
[
"YES\n",
"YES",
"NO"
] |
none
| 500
|
[
{
"input": "H\nQH 9S",
"output": "YES"
},
{
"input": "S\n8D 6D",
"output": "YES"
},
{
"input": "C\n7H AS",
"output": "NO"
},
{
"input": "C\nKC 9C",
"output": "YES"
},
{
"input": "D\n7D KD",
"output": "NO"
},
{
"input": "H\n7H KD",
"output": "YES"
},
{
"input": "D\nAS AH",
"output": "NO"
},
{
"input": "H\nKH KS",
"output": "YES"
},
{
"input": "C\n9H 6C",
"output": "NO"
},
{
"input": "C\n9H JC",
"output": "NO"
},
{
"input": "D\nTD JD",
"output": "NO"
},
{
"input": "H\n6S 7S",
"output": "NO"
},
{
"input": "D\n7S 8S",
"output": "NO"
},
{
"input": "S\n8H 9H",
"output": "NO"
},
{
"input": "C\n9D TD",
"output": "NO"
},
{
"input": "H\nTC JC",
"output": "NO"
},
{
"input": "C\nJH QH",
"output": "NO"
},
{
"input": "H\nQD KD",
"output": "NO"
},
{
"input": "D\nKS AS",
"output": "NO"
},
{
"input": "S\nAH 6H",
"output": "YES"
},
{
"input": "H\n7D 6D",
"output": "YES"
},
{
"input": "S\n8H 7H",
"output": "YES"
},
{
"input": "D\n9S 8S",
"output": "YES"
},
{
"input": "S\nTC 9C",
"output": "YES"
},
{
"input": "H\nJS TS",
"output": "YES"
},
{
"input": "S\nQD JD",
"output": "YES"
},
{
"input": "D\nKH QH",
"output": "YES"
},
{
"input": "H\nAD KD",
"output": "YES"
},
{
"input": "H\nQS QD",
"output": "NO"
},
{
"input": "C\nTS TH",
"output": "NO"
},
{
"input": "C\n6C 6D",
"output": "YES"
},
{
"input": "H\n8H 8D",
"output": "YES"
},
{
"input": "S\n7D 7S",
"output": "NO"
},
{
"input": "H\nJC JH",
"output": "NO"
},
{
"input": "H\n8H 9C",
"output": "YES"
},
{
"input": "D\n9D 6S",
"output": "YES"
},
{
"input": "C\nJC AH",
"output": "YES"
},
{
"input": "S\nAS KD",
"output": "YES"
},
{
"input": "S\n7S JS",
"output": "NO"
},
{
"input": "H\nTH 8H",
"output": "YES"
},
{
"input": "S\n7S QS",
"output": "NO"
},
{
"input": "C\nKC QC",
"output": "YES"
},
{
"input": "S\nAD 9S",
"output": "NO"
},
{
"input": "D\n7H 8D",
"output": "NO"
},
{
"input": "H\nJC 9H",
"output": "NO"
},
{
"input": "C\n7S AC",
"output": "NO"
},
{
"input": "C\n8C 7C",
"output": "YES"
},
{
"input": "H\n9D 8S",
"output": "NO"
},
{
"input": "D\nAC KS",
"output": "NO"
},
{
"input": "H\n8C QH",
"output": "NO"
},
{
"input": "S\n7S TS",
"output": "NO"
},
{
"input": "C\nAH 6S",
"output": "NO"
},
{
"input": "S\nKS QS",
"output": "YES"
},
{
"input": "H\nAC QC",
"output": "YES"
},
{
"input": "S\n9H 8D",
"output": "NO"
},
{
"input": "S\nTS JS",
"output": "NO"
},
{
"input": "S\n8H 7C",
"output": "NO"
},
{
"input": "C\nAH 6S",
"output": "NO"
},
{
"input": "S\n7S QS",
"output": "NO"
},
{
"input": "C\nAH 6S",
"output": "NO"
},
{
"input": "S\nTS KS",
"output": "NO"
},
{
"input": "C\nTH KH",
"output": "NO"
},
{
"input": "H\n9C 6D",
"output": "NO"
},
{
"input": "H\n9C 8D",
"output": "NO"
},
{
"input": "H\nTH AH",
"output": "NO"
},
{
"input": "H\nTH JH",
"output": "NO"
},
{
"input": "H\nQS 9C",
"output": "NO"
},
{
"input": "H\nKC AC",
"output": "NO"
},
{
"input": "H\nAH KH",
"output": "YES"
},
{
"input": "H\nKS QS",
"output": "YES"
},
{
"input": "C\nAD KS",
"output": "NO"
},
{
"input": "H\nQS 9C",
"output": "NO"
},
{
"input": "H\n9D 7S",
"output": "NO"
},
{
"input": "D\n6D 9S",
"output": "YES"
},
{
"input": "H\nAH KH",
"output": "YES"
},
{
"input": "H\nKC AC",
"output": "NO"
},
{
"input": "D\n8S 6C",
"output": "NO"
},
{
"input": "S\nAC KC",
"output": "YES"
}
] | 1,639,012,216
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 78
| 124
| 0
|
s=input()
t=input()
a=['6','7','8','9','T','J','Q','K','A']
s1,s2=t.split(' ')
if s1[1]==s:
if s2[1]==s:
if a.index(s1[0])>a.index(s2[0]):
print('YES')
else:
print('NO')
else:
print('YES')
else:
if s1[1]!=s2[1]:
print('NO')
else:
if a.index(s1[0])>a.index(s2[0]):
print('YES')
else:
print('NO')
|
Title: Card Game
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
There is a card game called "Durak", which means "Fool" in Russian. The game is quite popular in the countries that used to form USSR. The problem does not state all the game's rules explicitly β you can find them later yourselves if you want.
To play durak you need a pack of 36 cards. Each card has a suit ("S", "H", "D" and "C") and a rank (in the increasing order "6", "7", "8", "9", "T", "J", "Q", "K" and "A"). At the beginning of the game one suit is arbitrarily chosen as trump.
The players move like that: one player puts one or several of his cards on the table and the other one should beat each of them with his cards.
A card beats another one if both cards have similar suits and the first card has a higher rank then the second one. Besides, a trump card can beat any non-trump card whatever the cardsβ ranks are. In all other cases you can not beat the second card with the first one.
You are given the trump suit and two different cards. Determine whether the first one beats the second one or not.
Input Specification:
The first line contains the tramp suit. It is "S", "H", "D" or "C".
The second line contains the description of the two different cards. Each card is described by one word consisting of two symbols. The first symbol stands for the rank ("6", "7", "8", "9", "T", "J", "Q", "K" and "A"), and the second one stands for the suit ("S", "H", "D" and "C").
Output Specification:
Print "YES" (without the quotes) if the first cards beats the second one. Otherwise, print "NO" (also without the quotes).
Demo Input:
['H\nQH 9S\n', 'S\n8D 6D\n', 'C\n7H AS\n']
Demo Output:
['YES\n', 'YES', 'NO']
Note:
none
|
```python
s=input()
t=input()
a=['6','7','8','9','T','J','Q','K','A']
s1,s2=t.split(' ')
if s1[1]==s:
if s2[1]==s:
if a.index(s1[0])>a.index(s2[0]):
print('YES')
else:
print('NO')
else:
print('YES')
else:
if s1[1]!=s2[1]:
print('NO')
else:
if a.index(s1[0])>a.index(s2[0]):
print('YES')
else:
print('NO')
```
| 3.969
|
754
|
D
|
Fedor and coupons
|
PROGRAMMING
| 2,100
|
[
"binary search",
"data structures",
"greedy",
"sortings"
] | null | null |
All our characters have hobbies. The same is true for Fedor. He enjoys shopping in the neighboring supermarket.
The goods in the supermarket have unique integer ids. Also, for every integer there is a product with id equal to this integer. Fedor has *n* discount coupons, the *i*-th of them can be used with products with ids ranging from *l**i* to *r**i*, inclusive. Today Fedor wants to take exactly *k* coupons with him.
Fedor wants to choose the *k* coupons in such a way that the number of such products *x* that all coupons can be used with this product *x* is as large as possible (for better understanding, see examples). Fedor wants to save his time as well, so he asks you to choose coupons for him. Help Fedor!
|
The first line contains two integers *n* and *k* (1<=β€<=*k*<=β€<=*n*<=β€<=3Β·105)Β β the number of coupons Fedor has, and the number of coupons he wants to choose.
Each of the next *n* lines contains two integers *l**i* and *r**i* (<=-<=109<=β€<=*l**i*<=β€<=*r**i*<=β€<=109)Β β the description of the *i*-th coupon. The coupons can be equal.
|
In the first line print single integerΒ β the maximum number of products with which all the chosen coupons can be used. The products with which at least one coupon cannot be used shouldn't be counted.
In the second line print *k* distinct integers *p*1,<=*p*2,<=...,<=*p**k* (1<=β€<=*p**i*<=β€<=*n*)Β β the ids of the coupons which Fedor should choose.
If there are multiple answers, print any of them.
|
[
"4 2\n1 100\n40 70\n120 130\n125 180\n",
"3 2\n1 12\n15 20\n25 30\n",
"5 2\n1 10\n5 15\n14 50\n30 70\n99 100\n"
] |
[
"31\n1 2 \n",
"0\n1 2 \n",
"21\n3 4 \n"
] |
In the first example if we take the first two coupons then all the products with ids in range [40,β70] can be bought with both coupons. There are 31 products in total.
In the second example, no product can be bought with two coupons, that is why the answer is 0. Fedor can choose any two coupons in this example.
| 2,000
|
[
{
"input": "4 2\n1 100\n40 70\n120 130\n125 180",
"output": "31\n1 2 "
},
{
"input": "3 2\n1 12\n15 20\n25 30",
"output": "0\n1 2 "
},
{
"input": "5 2\n1 10\n5 15\n14 50\n30 70\n99 100",
"output": "21\n3 4 "
},
{
"input": "7 6\n-8 6\n7 9\n-10 -5\n-6 10\n-7 -3\n5 8\n4 10",
"output": "0\n1 2 3 4 5 6 "
},
{
"input": "9 6\n-7 -3\n-3 10\n-6 1\n-1 8\n-9 4\n-7 -6\n-5 -3\n-10 -2\n3 4",
"output": "1\n1 2 3 5 7 8 "
},
{
"input": "7 7\n9 10\n-5 3\n-6 2\n1 6\n-9 6\n-10 7\n-7 -5",
"output": "0\n1 2 3 4 5 6 7 "
},
{
"input": "23 2\n-629722518 -626148345\n739975524 825702590\n-360913153 -208398929\n76588954 101603025\n-723230356 -650106339\n-117490984 -101920679\n-39187628 -2520915\n717852164 720343632\n-611281114 -579708833\n-141791522 -122348148\n605078929 699430996\n-873386085 -820238799\n-922404067 -873522961\n7572046 13337057\n975081176 977171682\n901338407 964254238\n325388219 346712972\n505189756 516497863\n-425326983 -422098946\n520670681 522544433\n-410872616 -367919621\n359488350 447471156\n-566203447 -488202136",
"output": "0\n1 2 "
},
{
"input": "24 21\n240694945 246896662\n240694930 246896647\n240695065 246896782\n240695050 246896767\n240695080 246896797\n240694960 246896677\n240694975 246896692\n240694825 246896542\n240694900 246896617\n240694915 246896632\n240694885 246896602\n240694855 246896572\n240694870 246896587\n240694795 246896512\n240695095 246896812\n240695125 246896842\n240695005 246896722\n240694990 246896707\n240695140 246896857\n240695020 246896737\n240695035 246896752\n240694840 246896557\n240694810 246896527\n240695110 246896827",
"output": "6201418\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 20 21 22 23 "
},
{
"input": "1 1\n2 2",
"output": "1\n1 "
},
{
"input": "1 1\n-1000000000 1000000000",
"output": "2000000001\n1 "
},
{
"input": "2 1\n-1000000000 -1000000000\n1000000000 1000000000",
"output": "1\n1 "
},
{
"input": "7 3\n3 3\n-6 -1\n6 7\n2 8\n3 10\n-8 0\n-3 10",
"output": "6\n4 5 7 "
},
{
"input": "5 4\n4 7\n-4 2\n-7 -7\n-5 -2\n-8 -8",
"output": "0\n1 2 3 4 "
},
{
"input": "7 7\n0 7\n9 9\n-10 -7\n5 8\n-10 4\n-7 0\n-3 5",
"output": "0\n1 2 3 4 5 6 7 "
},
{
"input": "9 2\n5 10\n-10 -10\n0 10\n-6 3\n-8 7\n6 10\n-8 1\n5 7\n2 2",
"output": "10\n5 7 "
},
{
"input": "9 5\n-2 1\n-6 9\n-7 -2\n5 7\n-10 -7\n-9 -2\n1 4\n-1 10\n4 8",
"output": "0\n1 2 3 4 5 "
},
{
"input": "54 7\n-98 -39\n14 60\n-23 -5\n58 75\n14 16\n-40 20\n-6 10\n11 60\n-47 54\n-71 -17\n-48 -25\n-87 -46\n-10 99\n-97 -88\n-14 94\n-25 29\n-96 -92\n68 75\n-75 2\n12 84\n-47 3\n-88 49\n-37 88\n-61 -25\n36 67\n30 54\n12 31\n-71 60\n-18 -15\n-61 -47\n-51 -41\n-67 51\n26 37\n18 94\n-67 52\n-16 56\n-5 26\n27 57\n36 91\n-61 61\n71 86\n27 73\n-57 -39\n54 71\n-16 14\n-97 81\n-32 49\n-18 50\n-63 93\n51 70\n8 66\n43 45\n-2 99\n11 98",
"output": "111\n22 28 32 35 40 46 49 "
},
{
"input": "52 18\n-50 54\n35 65\n67 82\n-87 -10\n-39 4\n-55 -18\n-27 90\n-42 73\n18 43\n70 85\n-85 -22\n-1 60\n-89 23\n-78 -75\n-14 69\n-69 50\n-93 74\n-10 45\n-81 -72\n-24 86\n-89 100\n25 70\n-65 -61\n-45 100\n-49 -23\n-74 -59\n-81 -15\n-58 47\n-65 -58\n-47 16\n-22 91\n-85 19\n-81 77\n79 87\n-31 88\n26 32\n11 90\n7 46\n64 83\n-51 -20\n-76 44\n-22 75\n45 84\n-98 46\n-20 78\n-88 -47\n-41 65\n2 93\n-66 69\n-73 94\n-85 -44\n-65 -23",
"output": "67\n1 7 8 16 17 20 21 24 28 31 33 35 41 42 44 47 49 50 "
}
] | 1,665,045,509
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 77
| 2,121
| 61,337,600
|
import sys
from heapq import heappush,heappop
n,m=map(int,input().split())
arr=sorted([*map(int,sys.stdin.readline().split()),i] for i in range(1,n+1))
q,res,idx,poped,areas=[],0,0,[],set()
for i in range(n):
heappush(q,(arr[i][1],i))
if len(q)<m:continue
lr=arr[q[0][1]][1]-arr[i][0]+1
if lr>res:
res=lr
areas|={arr[j][2] for j in range(idx,i+1)}
idx=i+1
areas-=set(poped)
poped.clear()
poped.append(arr[heappop(q)[1]][2])
print(res)
print(*areas) if res>0 else print(*list(range(1,m+1)))
|
Title: Fedor and coupons
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
All our characters have hobbies. The same is true for Fedor. He enjoys shopping in the neighboring supermarket.
The goods in the supermarket have unique integer ids. Also, for every integer there is a product with id equal to this integer. Fedor has *n* discount coupons, the *i*-th of them can be used with products with ids ranging from *l**i* to *r**i*, inclusive. Today Fedor wants to take exactly *k* coupons with him.
Fedor wants to choose the *k* coupons in such a way that the number of such products *x* that all coupons can be used with this product *x* is as large as possible (for better understanding, see examples). Fedor wants to save his time as well, so he asks you to choose coupons for him. Help Fedor!
Input Specification:
The first line contains two integers *n* and *k* (1<=β€<=*k*<=β€<=*n*<=β€<=3Β·105)Β β the number of coupons Fedor has, and the number of coupons he wants to choose.
Each of the next *n* lines contains two integers *l**i* and *r**i* (<=-<=109<=β€<=*l**i*<=β€<=*r**i*<=β€<=109)Β β the description of the *i*-th coupon. The coupons can be equal.
Output Specification:
In the first line print single integerΒ β the maximum number of products with which all the chosen coupons can be used. The products with which at least one coupon cannot be used shouldn't be counted.
In the second line print *k* distinct integers *p*1,<=*p*2,<=...,<=*p**k* (1<=β€<=*p**i*<=β€<=*n*)Β β the ids of the coupons which Fedor should choose.
If there are multiple answers, print any of them.
Demo Input:
['4 2\n1 100\n40 70\n120 130\n125 180\n', '3 2\n1 12\n15 20\n25 30\n', '5 2\n1 10\n5 15\n14 50\n30 70\n99 100\n']
Demo Output:
['31\n1 2 \n', '0\n1 2 \n', '21\n3 4 \n']
Note:
In the first example if we take the first two coupons then all the products with ids in range [40,β70] can be bought with both coupons. There are 31 products in total.
In the second example, no product can be bought with two coupons, that is why the answer is 0. Fedor can choose any two coupons in this example.
|
```python
import sys
from heapq import heappush,heappop
n,m=map(int,input().split())
arr=sorted([*map(int,sys.stdin.readline().split()),i] for i in range(1,n+1))
q,res,idx,poped,areas=[],0,0,[],set()
for i in range(n):
heappush(q,(arr[i][1],i))
if len(q)<m:continue
lr=arr[q[0][1]][1]-arr[i][0]+1
if lr>res:
res=lr
areas|={arr[j][2] for j in range(idx,i+1)}
idx=i+1
areas-=set(poped)
poped.clear()
poped.append(arr[heappop(q)[1]][2])
print(res)
print(*areas) if res>0 else print(*list(range(1,m+1)))
```
| 3
|
|
496
|
B
|
Secret Combination
|
PROGRAMMING
| 1,500
|
[
"brute force",
"constructive algorithms",
"implementation"
] | null | null |
You got a box with a combination lock. The lock has a display showing *n* digits. There are two buttons on the box, each button changes digits on the display. You have quickly discovered that the first button adds 1 to all the digits (all digits 9 become digits 0), and the second button shifts all the digits on the display one position to the right (the last digit becomes the first one). For example, if the display is currently showing number 579, then if we push the first button, the display will show 680, and if after that we push the second button, the display will show 068.
You know that the lock will open if the display is showing the smallest possible number that can be obtained by pushing the buttons in some order. The leading zeros are ignored while comparing numbers. Now your task is to find the desired number.
|
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=1000)Β β the number of digits on the display.
The second line contains *n* digitsΒ β the initial state of the display.
|
Print a single line containing *n* digitsΒ β the desired state of the display containing the smallest possible number.
|
[
"3\n579\n",
"4\n2014\n"
] |
[
"024\n",
"0142\n"
] |
none
| 1,000
|
[
{
"input": "3\n579",
"output": "024"
},
{
"input": "4\n2014",
"output": "0142"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "3\n039",
"output": "014"
},
{
"input": "4\n4444",
"output": "0000"
},
{
"input": "5\n46802",
"output": "02468"
},
{
"input": "10\n4447444444",
"output": "0000000003"
},
{
"input": "10\n5810438174",
"output": "0147609473"
},
{
"input": "30\n027027027027027027027027027027",
"output": "027027027027027027027027027027"
},
{
"input": "50\n41012516454101251645410125164541012516454101251645",
"output": "01076781720107678172010767817201076781720107678172"
},
{
"input": "72\n464553044645330446455304464553064645530445455304464553044645530446455304",
"output": "001011960020119600201196002011960020119600201996002011960020119620201196"
},
{
"input": "100\n2144315253572020279108092911160072328496568665545836825277616363478721946398140227406814602154768031",
"output": "0005996121738545755443472571416650525236761083528703911639570359104365792010332041424619191680979818"
},
{
"input": "200\n79025531557298703099245700860027432585447902553155729870309924570086002743258544790255315572987030992457008600274325854479025531557298703099245700860027432585447902553155729870309924570086002743258544",
"output": "00274325854479025531557298703099245700860027432585447902553155729870309924570086002743258544790255315572987030992457008600274325854479025531557298703099245700860027432585447902553155729870309924570086"
},
{
"input": "100\n6669666666666666666866266666666666666666666666666666666666666666626666666666666966666766665667666656",
"output": "0000000000000000000000000000000000000000006000000000000030000010000900100009000030000000000000002006"
},
{
"input": "1\n0",
"output": "0"
}
] | 1,581,483,514
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 28
| 374
| 409,600
|
n=int(input())
a=[int(i) for i in list(input())]
m=a
for i in range(1,n+1):
t=a[i:]+a[:i]
x=t[0]
for k in range(n):
t[k]=(t[k]-x)%10
m=min(m,t)
print(''.join(str(i) for i in m))
|
Title: Secret Combination
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You got a box with a combination lock. The lock has a display showing *n* digits. There are two buttons on the box, each button changes digits on the display. You have quickly discovered that the first button adds 1 to all the digits (all digits 9 become digits 0), and the second button shifts all the digits on the display one position to the right (the last digit becomes the first one). For example, if the display is currently showing number 579, then if we push the first button, the display will show 680, and if after that we push the second button, the display will show 068.
You know that the lock will open if the display is showing the smallest possible number that can be obtained by pushing the buttons in some order. The leading zeros are ignored while comparing numbers. Now your task is to find the desired number.
Input Specification:
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=1000)Β β the number of digits on the display.
The second line contains *n* digitsΒ β the initial state of the display.
Output Specification:
Print a single line containing *n* digitsΒ β the desired state of the display containing the smallest possible number.
Demo Input:
['3\n579\n', '4\n2014\n']
Demo Output:
['024\n', '0142\n']
Note:
none
|
```python
n=int(input())
a=[int(i) for i in list(input())]
m=a
for i in range(1,n+1):
t=a[i:]+a[:i]
x=t[0]
for k in range(n):
t[k]=(t[k]-x)%10
m=min(m,t)
print(''.join(str(i) for i in m))
```
| 3
|
|
1,006
|
C
|
Three Parts of the Array
|
PROGRAMMING
| 1,200
|
[
"binary search",
"data structures",
"two pointers"
] | null | null |
You are given an array $d_1, d_2, \dots, d_n$ consisting of $n$ integer numbers.
Your task is to split this array into three parts (some of which may be empty) in such a way that each element of the array belongs to exactly one of the three parts, and each of the parts forms a consecutive contiguous subsegment (possibly, empty) of the original array.
Let the sum of elements of the first part be $sum_1$, the sum of elements of the second part be $sum_2$ and the sum of elements of the third part be $sum_3$. Among all possible ways to split the array you have to choose a way such that $sum_1 = sum_3$ and $sum_1$ is maximum possible.
More formally, if the first part of the array contains $a$ elements, the second part of the array contains $b$ elements and the third part contains $c$ elements, then:
$$sum_1 = \sum\limits_{1 \le i \le a}d_i,$$ $$sum_2 = \sum\limits_{a + 1 \le i \le a + b}d_i,$$ $$sum_3 = \sum\limits_{a + b + 1 \le i \le a + b + c}d_i.$$
The sum of an empty array is $0$.
Your task is to find a way to split the array such that $sum_1 = sum_3$ and $sum_1$ is maximum possible.
|
The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) β the number of elements in the array $d$.
The second line of the input contains $n$ integers $d_1, d_2, \dots, d_n$ ($1 \le d_i \le 10^9$) β the elements of the array $d$.
|
Print a single integer β the maximum possible value of $sum_1$, considering that the condition $sum_1 = sum_3$ must be met.
Obviously, at least one valid way to split the array exists (use $a=c=0$ and $b=n$).
|
[
"5\n1 3 1 1 4\n",
"5\n1 3 2 1 4\n",
"3\n4 1 2\n"
] |
[
"5\n",
"4\n",
"0\n"
] |
In the first example there is only one possible splitting which maximizes $sum_1$: $[1, 3, 1], [~], [1, 4]$.
In the second example the only way to have $sum_1=4$ is: $[1, 3], [2, 1], [4]$.
In the third example there is only one way to split the array: $[~], [4, 1, 2], [~]$.
| 0
|
[
{
"input": "5\n1 3 1 1 4",
"output": "5"
},
{
"input": "5\n1 3 2 1 4",
"output": "4"
},
{
"input": "3\n4 1 2",
"output": "0"
},
{
"input": "1\n1000000000",
"output": "0"
},
{
"input": "2\n1 1",
"output": "1"
},
{
"input": "5\n1 3 5 4 5",
"output": "9"
}
] | 1,663,653,769
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 187
| 17,510,400
|
n = int(input())
T = list(map(int, input().split()))
i = 0
j = n-1
s1 = T[0]
s2 = T[n-1]
res = 0
while i < j:
if s1 > s2:
j -= 1
s2 += T[j]
elif s1 < s2:
i += 1
s1 += T[i]
else:
res = s1
i += 1
s1 += T[i]
print(res)
|
Title: Three Parts of the Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given an array $d_1, d_2, \dots, d_n$ consisting of $n$ integer numbers.
Your task is to split this array into three parts (some of which may be empty) in such a way that each element of the array belongs to exactly one of the three parts, and each of the parts forms a consecutive contiguous subsegment (possibly, empty) of the original array.
Let the sum of elements of the first part be $sum_1$, the sum of elements of the second part be $sum_2$ and the sum of elements of the third part be $sum_3$. Among all possible ways to split the array you have to choose a way such that $sum_1 = sum_3$ and $sum_1$ is maximum possible.
More formally, if the first part of the array contains $a$ elements, the second part of the array contains $b$ elements and the third part contains $c$ elements, then:
$$sum_1 = \sum\limits_{1 \le i \le a}d_i,$$ $$sum_2 = \sum\limits_{a + 1 \le i \le a + b}d_i,$$ $$sum_3 = \sum\limits_{a + b + 1 \le i \le a + b + c}d_i.$$
The sum of an empty array is $0$.
Your task is to find a way to split the array such that $sum_1 = sum_3$ and $sum_1$ is maximum possible.
Input Specification:
The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) β the number of elements in the array $d$.
The second line of the input contains $n$ integers $d_1, d_2, \dots, d_n$ ($1 \le d_i \le 10^9$) β the elements of the array $d$.
Output Specification:
Print a single integer β the maximum possible value of $sum_1$, considering that the condition $sum_1 = sum_3$ must be met.
Obviously, at least one valid way to split the array exists (use $a=c=0$ and $b=n$).
Demo Input:
['5\n1 3 1 1 4\n', '5\n1 3 2 1 4\n', '3\n4 1 2\n']
Demo Output:
['5\n', '4\n', '0\n']
Note:
In the first example there is only one possible splitting which maximizes $sum_1$: $[1, 3, 1], [~], [1, 4]$.
In the second example the only way to have $sum_1=4$ is: $[1, 3], [2, 1], [4]$.
In the third example there is only one way to split the array: $[~], [4, 1, 2], [~]$.
|
```python
n = int(input())
T = list(map(int, input().split()))
i = 0
j = n-1
s1 = T[0]
s2 = T[n-1]
res = 0
while i < j:
if s1 > s2:
j -= 1
s2 += T[j]
elif s1 < s2:
i += 1
s1 += T[i]
else:
res = s1
i += 1
s1 += T[i]
print(res)
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=Γ<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=Γ<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* β board sizes in squares (1<=β€<=*M*<=β€<=*N*<=β€<=16).
|
Output one number β the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,696,965,971
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
m,n=list(map(int, input().split()))
a=m*n
print(a//2)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=Γ<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=Γ<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* β board sizes in squares (1<=β€<=*M*<=β€<=*N*<=β€<=16).
Output Specification:
Output one number β the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
m,n=list(map(int, input().split()))
a=m*n
print(a//2)
```
| 3.977
|
999
|
B
|
Reversing Encryption
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
A string $s$ of length $n$ can be encrypted by the following algorithm:
- iterate over all divisors of $n$ in decreasing order (i.e. from $n$ to $1$), - for each divisor $d$, reverse the substring $s[1 \dots d]$ (i.e. the substring which starts at position $1$ and ends at position $d$).
For example, the above algorithm applied to the string $s$="codeforces" leads to the following changes: "codeforces" $\to$ "secrofedoc" $\to$ "orcesfedoc" $\to$ "rocesfedoc" $\to$ "rocesfedoc" (obviously, the last reverse operation doesn't change the string because $d=1$).
You are given the encrypted string $t$. Your task is to decrypt this string, i.e., to find a string $s$ such that the above algorithm results in string $t$. It can be proven that this string $s$ always exists and is unique.
|
The first line of input consists of a single integer $n$ ($1 \le n \le 100$) β the length of the string $t$. The second line of input consists of the string $t$. The length of $t$ is $n$, and it consists only of lowercase Latin letters.
|
Print a string $s$ such that the above algorithm results in $t$.
|
[
"10\nrocesfedoc\n",
"16\nplmaetwoxesisiht\n",
"1\nz\n"
] |
[
"codeforces\n",
"thisisexampletwo\n",
"z\n"
] |
The first example is described in the problem statement.
| 0
|
[
{
"input": "10\nrocesfedoc",
"output": "codeforces"
},
{
"input": "16\nplmaetwoxesisiht",
"output": "thisisexampletwo"
},
{
"input": "1\nz",
"output": "z"
},
{
"input": "2\nir",
"output": "ri"
},
{
"input": "3\nilj",
"output": "jli"
},
{
"input": "4\njfyy",
"output": "yyjf"
},
{
"input": "6\nkrdych",
"output": "hcyrkd"
},
{
"input": "60\nfnebsopcvmlaoecpzmakqigyuutueuozjxutlwwiochekmhjgwxsgfbcrpqj",
"output": "jqprcbfgsxwgjhmkehcoiwwltuxjzokamzpalobnfespcvmoecqigyuutueu"
},
{
"input": "64\nhnlzzhrvqnldswxfsrowfhmyzbxtyoxhogudasgywxycyhzgiseerbislcncvnwy",
"output": "ywnvcnclsibreesigzhycyxwygsadugofxwsdlnqzlhnzhrvsrowfhmyzbxtyoxh"
},
{
"input": "97\nqnqrmdhmbubaijtwsecbidqouhlecladwgwcuxbigckrfzasnbfbslukoayhcgquuacygakhxoubibxtqkpyyhzjipylujgrc",
"output": "crgjulypijzhyypkqtxbibuoxhkagycauuqgchyaokulsbfbnsazfrkcgibxucwgwdalcelhuoqdibceswtjiabubmhdmrqnq"
},
{
"input": "100\nedykhvzcntljuuoqghptioetqnfllwekzohiuaxelgecabvsbibgqodqxvyfkbyjwtgbyhvssntinkwsinwsmalusiwnjmtcoovf",
"output": "fvooctmjnwisulamswniswknitnssvhybgtwjybkfyvxqdoqgbqteoitnczvkyedhljuuoqghptnfllwekzohiuaxelgecabvsbi"
},
{
"input": "96\nqtbcksuvxonzbkokhqlgkrvimzqmqnrvqlihrmksldyydacbtckfphenxszcnzhfjmpeykrvshgiboivkvabhrpphgavvprz",
"output": "zrpvvaghpprhbavkviobighsvrkyepmjfhznczsxnehpfkctvrnqmqzmkokbvuctqbksxonzhqlgkrviqlihrmksldyydacb"
},
{
"input": "90\nmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm",
"output": "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm"
},
{
"input": "89\nwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww",
"output": "wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww"
},
{
"input": "99\nqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq",
"output": "qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq"
},
{
"input": "100\noooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo",
"output": "oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo"
},
{
"input": "60\nwwwwwxwwwwwwfhwwhwwwwwwawwwwwwwwwwwwwnwwwwwwwwwwwwwwwwwwwwww",
"output": "wwwwwwwwwwwwwwwwwwwwwwnwwwwwwwwwwhwwwxwwwwwwwwwfhwwwwawwwwww"
},
{
"input": "90\ncccchccccccccccccccccccccccccccwcccccccccgcccccchccccccccccccccccccccccxccccccncccccccuccc",
"output": "cccucccccccnccccccxcccccccccccccccccccccchccccccccccccccccccccccchccccccccccwcccccccccgccc"
},
{
"input": "97\nfwffffffffffffffffffffffffrffffffffffffffzfffffffffffffffftfcfffffffqffffffffffffffffffffffyfffff",
"output": "fffffyffffffffffffffffffffffqfffffffcftffffffffffffffffzffffffffffffffrffffffffffffffffffffffffwf"
},
{
"input": "100\ndjjjjjjjjjjgjjjjjjjjjjjjjjsvjjjjjjjjjjmjjjjjjjjjjjjjajjjjjjajjjjjjrjjjjjjjjjjjjrjjtjjjjjjjjjjjjjojjj",
"output": "jjjojjjjjjjjjjjjjtjjrjjjjjjjjjjjjrjjjjjjajjjjjjajjjjjjjjjjjjjjdjjjgjjjjjjjjjsvjjjjjjjjjjmjjjjjjjjjjj"
}
] | 1,636,556,495
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 46
| 4,505,600
|
import math
n = int(input())
s = list(input())
div = []
for i in range(1, int(math.sqrt(n)) + 1):
if n % i == 0:
div.append(int(i))
if n / i != i:
div.append(int(n / i))
div.sort()
for j in div:
# print(j)
temp = s[0: j]
temp = temp[::-1]
s[0: j] = temp[0: j]
print("".join(s))
|
Title: Reversing Encryption
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A string $s$ of length $n$ can be encrypted by the following algorithm:
- iterate over all divisors of $n$ in decreasing order (i.e. from $n$ to $1$), - for each divisor $d$, reverse the substring $s[1 \dots d]$ (i.e. the substring which starts at position $1$ and ends at position $d$).
For example, the above algorithm applied to the string $s$="codeforces" leads to the following changes: "codeforces" $\to$ "secrofedoc" $\to$ "orcesfedoc" $\to$ "rocesfedoc" $\to$ "rocesfedoc" (obviously, the last reverse operation doesn't change the string because $d=1$).
You are given the encrypted string $t$. Your task is to decrypt this string, i.e., to find a string $s$ such that the above algorithm results in string $t$. It can be proven that this string $s$ always exists and is unique.
Input Specification:
The first line of input consists of a single integer $n$ ($1 \le n \le 100$) β the length of the string $t$. The second line of input consists of the string $t$. The length of $t$ is $n$, and it consists only of lowercase Latin letters.
Output Specification:
Print a string $s$ such that the above algorithm results in $t$.
Demo Input:
['10\nrocesfedoc\n', '16\nplmaetwoxesisiht\n', '1\nz\n']
Demo Output:
['codeforces\n', 'thisisexampletwo\n', 'z\n']
Note:
The first example is described in the problem statement.
|
```python
import math
n = int(input())
s = list(input())
div = []
for i in range(1, int(math.sqrt(n)) + 1):
if n % i == 0:
div.append(int(i))
if n / i != i:
div.append(int(n / i))
div.sort()
for j in div:
# print(j)
temp = s[0: j]
temp = temp[::-1]
s[0: j] = temp[0: j]
print("".join(s))
```
| 3
|
|
281
|
A
|
Word Capitalization
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.
Note, that during capitalization all the letters except the first one remains unchanged.
|
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
|
Output the given word after capitalization.
|
[
"ApPLe\n",
"konjac\n"
] |
[
"ApPLe\n",
"Konjac\n"
] |
none
| 500
|
[
{
"input": "ApPLe",
"output": "ApPLe"
},
{
"input": "konjac",
"output": "Konjac"
},
{
"input": "a",
"output": "A"
},
{
"input": "A",
"output": "A"
},
{
"input": "z",
"output": "Z"
},
{
"input": "ABACABA",
"output": "ABACABA"
},
{
"input": "xYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX",
"output": "XYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX"
},
{
"input": "rZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO",
"output": "RZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO"
},
{
"input": "hDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD",
"output": "HDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD"
},
{
"input": "qUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW",
"output": "QUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW"
},
{
"input": "kHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL",
"output": "KHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL"
},
{
"input": "aHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC",
"output": "AHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC"
},
{
"input": "sLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN",
"output": "SLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN"
},
{
"input": "iRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE",
"output": "IRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE"
},
{
"input": "cRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP",
"output": "CRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP"
},
{
"input": "wVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG",
"output": "WVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG"
},
{
"input": "kEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV",
"output": "KEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV"
},
{
"input": "eIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI",
"output": "EIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI"
},
{
"input": "uOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX",
"output": "UOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX"
},
{
"input": "lZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ",
"output": "LZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ"
},
{
"input": "P",
"output": "P"
},
{
"input": "Xyzzy",
"output": "Xyzzy"
},
{
"input": "Zzz",
"output": "Zzz"
},
{
"input": "Zp",
"output": "Zp"
}
] | 1,697,540,680
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 25
| 122
| 0
|
import sys
word = sys.stdin.readline().split()[0]
if word[0].islower():
word = word[0].upper() + word[1:]
print(word)
|
Title: Word Capitalization
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.
Note, that during capitalization all the letters except the first one remains unchanged.
Input Specification:
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
Output Specification:
Output the given word after capitalization.
Demo Input:
['ApPLe\n', 'konjac\n']
Demo Output:
['ApPLe\n', 'Konjac\n']
Note:
none
|
```python
import sys
word = sys.stdin.readline().split()[0]
if word[0].islower():
word = word[0].upper() + word[1:]
print(word)
```
| 3
|
|
854
|
A
|
Fraction
|
PROGRAMMING
| 800
|
[
"brute force",
"constructive algorithms",
"math"
] | null | null |
Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned that a fraction is called proper iff its numerator is smaller than its denominator (*a*<=<<=*b*) and that the fraction is called irreducible if its numerator and its denominator are coprime (they do not have positive common divisors except 1).
During his free time, Petya thinks about proper irreducible fractions and converts them to decimals using the calculator. One day he mistakenly pressed addition button (<=+<=) instead of division button (Γ·) and got sum of numerator and denominator that was equal to *n* instead of the expected decimal notation.
Petya wanted to restore the original fraction, but soon he realized that it might not be done uniquely. That's why he decided to determine maximum possible proper irreducible fraction such that sum of its numerator and denominator equals *n*. Help Petya deal with this problem.
|
In the only line of input there is an integer *n* (3<=β€<=*n*<=β€<=1000), the sum of numerator and denominator of the fraction.
|
Output two space-separated positive integers *a* and *b*, numerator and denominator of the maximum possible proper irreducible fraction satisfying the given sum.
|
[
"3\n",
"4\n",
"12\n"
] |
[
"1 2\n",
"1 3\n",
"5 7\n"
] |
none
| 500
|
[
{
"input": "3",
"output": "1 2"
},
{
"input": "4",
"output": "1 3"
},
{
"input": "12",
"output": "5 7"
},
{
"input": "34",
"output": "15 19"
},
{
"input": "13",
"output": "6 7"
},
{
"input": "11",
"output": "5 6"
},
{
"input": "24",
"output": "11 13"
},
{
"input": "17",
"output": "8 9"
},
{
"input": "10",
"output": "3 7"
},
{
"input": "69",
"output": "34 35"
},
{
"input": "100",
"output": "49 51"
},
{
"input": "57",
"output": "28 29"
},
{
"input": "1000",
"output": "499 501"
},
{
"input": "999",
"output": "499 500"
},
{
"input": "998",
"output": "497 501"
},
{
"input": "997",
"output": "498 499"
},
{
"input": "996",
"output": "497 499"
},
{
"input": "995",
"output": "497 498"
},
{
"input": "994",
"output": "495 499"
},
{
"input": "5",
"output": "2 3"
},
{
"input": "6",
"output": "1 5"
},
{
"input": "8",
"output": "3 5"
},
{
"input": "9",
"output": "4 5"
},
{
"input": "423",
"output": "211 212"
},
{
"input": "876",
"output": "437 439"
},
{
"input": "29",
"output": "14 15"
}
] | 1,628,379,461
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 62
| 6,758,400
|
from math import gcd
n = int(input())
for a in range(n >> 1, 0, -1):
b = n - a
if gcd(a, b) == 1:
print(a, b)
break
|
Title: Fraction
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned that a fraction is called proper iff its numerator is smaller than its denominator (*a*<=<<=*b*) and that the fraction is called irreducible if its numerator and its denominator are coprime (they do not have positive common divisors except 1).
During his free time, Petya thinks about proper irreducible fractions and converts them to decimals using the calculator. One day he mistakenly pressed addition button (<=+<=) instead of division button (Γ·) and got sum of numerator and denominator that was equal to *n* instead of the expected decimal notation.
Petya wanted to restore the original fraction, but soon he realized that it might not be done uniquely. That's why he decided to determine maximum possible proper irreducible fraction such that sum of its numerator and denominator equals *n*. Help Petya deal with this problem.
Input Specification:
In the only line of input there is an integer *n* (3<=β€<=*n*<=β€<=1000), the sum of numerator and denominator of the fraction.
Output Specification:
Output two space-separated positive integers *a* and *b*, numerator and denominator of the maximum possible proper irreducible fraction satisfying the given sum.
Demo Input:
['3\n', '4\n', '12\n']
Demo Output:
['1 2\n', '1 3\n', '5 7\n']
Note:
none
|
```python
from math import gcd
n = int(input())
for a in range(n >> 1, 0, -1):
b = n - a
if gcd(a, b) == 1:
print(a, b)
break
```
| 3
|
|
58
|
A
|
Chat room
|
PROGRAMMING
| 1,000
|
[
"greedy",
"strings"
] |
A. Chat room
|
1
|
256
|
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
|
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
|
If Vasya managed to say hello, print "YES", otherwise print "NO".
|
[
"ahhellllloou\n",
"hlelo\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "ahhellllloou",
"output": "YES"
},
{
"input": "hlelo",
"output": "NO"
},
{
"input": "helhcludoo",
"output": "YES"
},
{
"input": "hehwelloho",
"output": "YES"
},
{
"input": "pnnepelqomhhheollvlo",
"output": "YES"
},
{
"input": "tymbzjyqhymedasloqbq",
"output": "NO"
},
{
"input": "yehluhlkwo",
"output": "NO"
},
{
"input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello",
"output": "YES"
},
{
"input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq",
"output": "YES"
},
{
"input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi",
"output": "YES"
},
{
"input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo",
"output": "YES"
},
{
"input": "lqllcolohwflhfhlnaow",
"output": "NO"
},
{
"input": "heheeellollvoo",
"output": "YES"
},
{
"input": "hellooo",
"output": "YES"
},
{
"input": "o",
"output": "NO"
},
{
"input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv",
"output": "YES"
},
{
"input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk",
"output": "YES"
},
{
"input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry",
"output": "NO"
},
{
"input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq",
"output": "NO"
},
{
"input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi",
"output": "YES"
},
{
"input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm",
"output": "YES"
},
{
"input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac",
"output": "NO"
},
{
"input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok",
"output": "YES"
},
{
"input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz",
"output": "YES"
},
{
"input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb",
"output": "YES"
},
{
"input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla",
"output": "YES"
},
{
"input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz",
"output": "YES"
},
{
"input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti",
"output": "YES"
},
{
"input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli",
"output": "YES"
},
{
"input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo",
"output": "YES"
},
{
"input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk",
"output": "NO"
},
{
"input": "loee",
"output": "NO"
},
{
"input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo",
"output": "NO"
},
{
"input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi",
"output": "YES"
},
{
"input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv",
"output": "NO"
},
{
"input": "hello",
"output": "YES"
},
{
"input": "oohell",
"output": "NO"
},
{
"input": "hell",
"output": "NO"
},
{
"input": "eloellohoelo",
"output": "NO"
},
{
"input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo",
"output": "YES"
}
] | 1,533,712,098
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 109
| 0
|
a = str(input())
flag=0
b=a.find('h')
if(b==-1):
print ("NO")
flag=1
if(flag==0):
a = a[b+1:]
c = a.find('e')
print
if(c==-1):
print ("NO")
flag=1
if(flag==0):
a = a[c+1:]
d = a.find('l')
if(d==-1):
print ("NO")
flag=1
if(flag==0):
a = a[d+1:]
e = a.find('l')
if(e==-1):
print ("NO")
flag=1
if(flag==0):
f=a[e+1:].find('o')
if(f==-1):
print ("NO")
flag=1
if(flag==0):
print ("YES")
|
Title: Chat room
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
Input Specification:
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
Output Specification:
If Vasya managed to say hello, print "YES", otherwise print "NO".
Demo Input:
['ahhellllloou\n', 'hlelo\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
a = str(input())
flag=0
b=a.find('h')
if(b==-1):
print ("NO")
flag=1
if(flag==0):
a = a[b+1:]
c = a.find('e')
print
if(c==-1):
print ("NO")
flag=1
if(flag==0):
a = a[c+1:]
d = a.find('l')
if(d==-1):
print ("NO")
flag=1
if(flag==0):
a = a[d+1:]
e = a.find('l')
if(e==-1):
print ("NO")
flag=1
if(flag==0):
f=a[e+1:].find('o')
if(f==-1):
print ("NO")
flag=1
if(flag==0):
print ("YES")
```
| 3.9455
|
47
|
A
|
Triangular numbers
|
PROGRAMMING
| 800
|
[
"brute force",
"math"
] |
A. Triangular numbers
|
2
|
256
|
A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number).
Your task is to find out if a given integer is a triangular number.
|
The first line contains the single number *n* (1<=β€<=*n*<=β€<=500) β the given integer.
|
If the given integer is a triangular number output YES, otherwise output NO.
|
[
"1\n",
"2\n",
"3\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
none
| 500
|
[
{
"input": "1",
"output": "YES"
},
{
"input": "2",
"output": "NO"
},
{
"input": "3",
"output": "YES"
},
{
"input": "4",
"output": "NO"
},
{
"input": "5",
"output": "NO"
},
{
"input": "6",
"output": "YES"
},
{
"input": "7",
"output": "NO"
},
{
"input": "8",
"output": "NO"
},
{
"input": "12",
"output": "NO"
},
{
"input": "10",
"output": "YES"
},
{
"input": "11",
"output": "NO"
},
{
"input": "9",
"output": "NO"
},
{
"input": "14",
"output": "NO"
},
{
"input": "15",
"output": "YES"
},
{
"input": "16",
"output": "NO"
},
{
"input": "20",
"output": "NO"
},
{
"input": "21",
"output": "YES"
},
{
"input": "22",
"output": "NO"
},
{
"input": "121",
"output": "NO"
},
{
"input": "135",
"output": "NO"
},
{
"input": "136",
"output": "YES"
},
{
"input": "137",
"output": "NO"
},
{
"input": "152",
"output": "NO"
},
{
"input": "153",
"output": "YES"
},
{
"input": "154",
"output": "NO"
},
{
"input": "171",
"output": "YES"
},
{
"input": "189",
"output": "NO"
},
{
"input": "190",
"output": "YES"
},
{
"input": "191",
"output": "NO"
},
{
"input": "210",
"output": "YES"
},
{
"input": "211",
"output": "NO"
},
{
"input": "231",
"output": "YES"
},
{
"input": "232",
"output": "NO"
},
{
"input": "252",
"output": "NO"
},
{
"input": "253",
"output": "YES"
},
{
"input": "254",
"output": "NO"
},
{
"input": "275",
"output": "NO"
},
{
"input": "276",
"output": "YES"
},
{
"input": "277",
"output": "NO"
},
{
"input": "299",
"output": "NO"
},
{
"input": "300",
"output": "YES"
},
{
"input": "301",
"output": "NO"
},
{
"input": "324",
"output": "NO"
},
{
"input": "325",
"output": "YES"
},
{
"input": "326",
"output": "NO"
},
{
"input": "350",
"output": "NO"
},
{
"input": "351",
"output": "YES"
},
{
"input": "352",
"output": "NO"
},
{
"input": "377",
"output": "NO"
},
{
"input": "378",
"output": "YES"
},
{
"input": "406",
"output": "YES"
},
{
"input": "434",
"output": "NO"
},
{
"input": "435",
"output": "YES"
},
{
"input": "464",
"output": "NO"
},
{
"input": "465",
"output": "YES"
},
{
"input": "495",
"output": "NO"
},
{
"input": "496",
"output": "YES"
},
{
"input": "497",
"output": "NO"
},
{
"input": "331",
"output": "NO"
},
{
"input": "413",
"output": "NO"
},
{
"input": "177",
"output": "NO"
},
{
"input": "122",
"output": "NO"
},
{
"input": "478",
"output": "NO"
},
{
"input": "188",
"output": "NO"
},
{
"input": "21",
"output": "YES"
},
{
"input": "474",
"output": "NO"
},
{
"input": "21",
"output": "YES"
},
{
"input": "48",
"output": "NO"
},
{
"input": "498",
"output": "NO"
},
{
"input": "499",
"output": "NO"
},
{
"input": "500",
"output": "NO"
}
] | 1,647,536,963
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 71
| 184
| 0
|
import math
n=int(input())
if pow(int(math.sqrt(1+(8*n))),2)==1+(8*n):
print("YES")
else:
print("NO")
|
Title: Triangular numbers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number).
Your task is to find out if a given integer is a triangular number.
Input Specification:
The first line contains the single number *n* (1<=β€<=*n*<=β€<=500) β the given integer.
Output Specification:
If the given integer is a triangular number output YES, otherwise output NO.
Demo Input:
['1\n', '2\n', '3\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
none
|
```python
import math
n=int(input())
if pow(int(math.sqrt(1+(8*n))),2)==1+(8*n):
print("YES")
else:
print("NO")
```
| 3.954
|
222
|
A
|
Shooshuns and Sequence
|
PROGRAMMING
| 1,200
|
[
"brute force",
"implementation"
] | null | null |
One day shooshuns found a sequence of *n* integers, written on a blackboard. The shooshuns can perform one operation with it, the operation consists of two steps:
1. Find the number that goes *k*-th in the current sequence and add the same number to the end of the sequence; 1. Delete the first number of the current sequence.
The shooshuns wonder after how many operations all numbers on the board will be the same and whether all numbers will ever be the same.
|
The first line contains two space-separated integers *n* and *k* (1<=β€<=*k*<=β€<=*n*<=β€<=105).
The second line contains *n* space-separated integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=105) β the sequence that the shooshuns found.
|
Print the minimum number of operations, required for all numbers on the blackboard to become the same. If it is impossible to achieve, print -1.
|
[
"3 2\n3 1 1\n",
"3 1\n3 1 1\n"
] |
[
"1\n",
"-1\n"
] |
In the first test case after the first operation the blackboard will have sequence [1, 1, 1]. So, one operation is enough to make all numbers the same. Thus, the answer equals one.
In the second test case the sequence will never consist of the same numbers. It will always contain at least two distinct numbers 3 and 1. Thus, the answer equals -1.
| 500
|
[
{
"input": "3 2\n3 1 1",
"output": "1"
},
{
"input": "3 1\n3 1 1",
"output": "-1"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "2 1\n1 1",
"output": "0"
},
{
"input": "2 1\n2 1",
"output": "-1"
},
{
"input": "4 4\n1 2 3 4",
"output": "3"
},
{
"input": "4 3\n1 2 3 4",
"output": "-1"
},
{
"input": "5 3\n2 1 1 1 1",
"output": "1"
},
{
"input": "5 3\n1 1 1 1 1",
"output": "0"
},
{
"input": "5 5\n1 1 1 1 1",
"output": "0"
},
{
"input": "10 1\n1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "10 1\n1 2 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "10 1\n2 1 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "10 2\n2 1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "10 2\n1 2 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "10 3\n3 2 1 1 1 1 1 1 1 1",
"output": "2"
},
{
"input": "10 1\n1 2 3 4 5 6 7 8 9 10",
"output": "-1"
},
{
"input": "10 10\n1 2 3 4 5 6 7 8 9 10",
"output": "9"
},
{
"input": "20 10\n1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "20 11\n1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1",
"output": "10"
},
{
"input": "20 9\n1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "20 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "20 20\n20 1 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 9 11 10",
"output": "19"
}
] | 1,390,193,905
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 47
| 186
| 7,884,800
|
read=lambda:map(int,input().split())
n,k=read()
a=list(read())
s=set(a[k-1:])
if len(s)>1:
print(-1)
else:
p=k-2
while p>=0 and a[p]==a[k-1]:
p-=1
print(p+1)
|
Title: Shooshuns and Sequence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day shooshuns found a sequence of *n* integers, written on a blackboard. The shooshuns can perform one operation with it, the operation consists of two steps:
1. Find the number that goes *k*-th in the current sequence and add the same number to the end of the sequence; 1. Delete the first number of the current sequence.
The shooshuns wonder after how many operations all numbers on the board will be the same and whether all numbers will ever be the same.
Input Specification:
The first line contains two space-separated integers *n* and *k* (1<=β€<=*k*<=β€<=*n*<=β€<=105).
The second line contains *n* space-separated integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=105) β the sequence that the shooshuns found.
Output Specification:
Print the minimum number of operations, required for all numbers on the blackboard to become the same. If it is impossible to achieve, print -1.
Demo Input:
['3 2\n3 1 1\n', '3 1\n3 1 1\n']
Demo Output:
['1\n', '-1\n']
Note:
In the first test case after the first operation the blackboard will have sequence [1, 1, 1]. So, one operation is enough to make all numbers the same. Thus, the answer equals one.
In the second test case the sequence will never consist of the same numbers. It will always contain at least two distinct numbers 3 and 1. Thus, the answer equals -1.
|
```python
read=lambda:map(int,input().split())
n,k=read()
a=list(read())
s=set(a[k-1:])
if len(s)>1:
print(-1)
else:
p=k-2
while p>=0 and a[p]==a[k-1]:
p-=1
print(p+1)
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line β the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,678,497,538
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 46
| 0
|
n = input()
m = input()
x=''
for i in range(len(n)):
if n[i]!=m[i]:
x=x+'1'
else:
x=x+'0'
print(x)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line β the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
n = input()
m = input()
x=''
for i in range(len(n)):
if n[i]!=m[i]:
x=x+'1'
else:
x=x+'0'
print(x)
```
| 3.9885
|
912
|
A
|
Tricky Alchemy
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
During the winter holidays, the demand for Christmas balls is exceptionally high. Since it's already 2018, the advances in alchemy allow easy and efficient ball creation by utilizing magic crystals.
Grisha needs to obtain some yellow, green and blue balls. It's known that to produce a yellow ball one needs two yellow crystals, greenΒ β one yellow and one blue, and for a blue ball, three blue crystals are enough.
Right now there are *A* yellow and *B* blue crystals in Grisha's disposal. Find out how many additional crystals he should acquire in order to produce the required number of balls.
|
The first line features two integers *A* and *B* (0<=β€<=*A*,<=*B*<=β€<=109), denoting the number of yellow and blue crystals respectively at Grisha's disposal.
The next line contains three integers *x*, *y* and *z* (0<=β€<=*x*,<=*y*,<=*z*<=β€<=109)Β β the respective amounts of yellow, green and blue balls to be obtained.
|
Print a single integerΒ β the minimum number of crystals that Grisha should acquire in addition.
|
[
"4 3\n2 1 1\n",
"3 9\n1 1 3\n",
"12345678 87654321\n43043751 1000000000 53798715\n"
] |
[
"2\n",
"1\n",
"2147483648\n"
] |
In the first sample case, Grisha needs five yellow and four blue crystals to create two yellow balls, one green ball, and one blue ball. To do that, Grisha needs to obtain two additional crystals: one yellow and one blue.
| 500
|
[
{
"input": "4 3\n2 1 1",
"output": "2"
},
{
"input": "3 9\n1 1 3",
"output": "1"
},
{
"input": "12345678 87654321\n43043751 1000000000 53798715",
"output": "2147483648"
},
{
"input": "12 12\n3 5 2",
"output": "0"
},
{
"input": "770 1390\n170 442 311",
"output": "12"
},
{
"input": "3555165 6693472\n1499112 556941 3075290",
"output": "3089339"
},
{
"input": "0 0\n1000000000 1000000000 1000000000",
"output": "7000000000"
},
{
"input": "1 1\n0 1 0",
"output": "0"
},
{
"input": "117708228 562858833\n118004008 360437130 154015822",
"output": "738362681"
},
{
"input": "999998118 700178721\n822106746 82987112 547955384",
"output": "1753877029"
},
{
"input": "566568710 765371101\n60614022 80126928 809950465",
"output": "1744607222"
},
{
"input": "448858599 829062060\n764716760 97644201 203890025",
"output": "1178219122"
},
{
"input": "626115781 966381948\n395190569 820194184 229233367",
"output": "1525971878"
},
{
"input": "803372962 103701834\n394260597 837711458 623172928",
"output": "3426388098"
},
{
"input": "980630143 241021722\n24734406 928857659 312079781",
"output": "1624075280"
},
{
"input": "862920032 378341609\n360240924 241342224 337423122",
"output": "974174021"
},
{
"input": "40177212 515661496\n64343660 963892207 731362684",
"output": "3694721078"
},
{
"input": "217434393 579352456\n694817470 981409480 756706026",
"output": "4825785129"
},
{
"input": "394691574 716672343\n398920207 72555681 150645586",
"output": "475704521"
},
{
"input": "276981463 853992230\n29394015 90072954 839552440",
"output": "1754738044"
},
{
"input": "843552056 919184611\n341530221 423649259 101547519",
"output": "263157645"
},
{
"input": "20809236 56504497\n972004030 441166533 495487081",
"output": "4235488636"
},
{
"input": "198066417 825228166\n602477839 532312735 520830423",
"output": "2808777834"
},
{
"input": "80356306 962548053\n601547868 549830008 914769984",
"output": "4004161345"
},
{
"input": "257613487 394835231\n642087093 567347282 308709545",
"output": "2692548667"
},
{
"input": "139903376 532155119\n641157122 289897263 629020178",
"output": "3077110809"
},
{
"input": "612127849 669475006\n271630930 676010757 22959739",
"output": "682559736"
},
{
"input": "0 0\n0 0 0",
"output": "0"
},
{
"input": "1000000000 1000000000\n499999998 4 333333332",
"output": "0"
},
{
"input": "1000000000 1000000000\n1000000000 1000000000 1000000000",
"output": "5000000000"
},
{
"input": "4 3\n1 0 1",
"output": "0"
},
{
"input": "4 12\n1 2 3",
"output": "0"
},
{
"input": "4 20\n1 2 1",
"output": "0"
},
{
"input": "100 10\n2 3 4",
"output": "5"
},
{
"input": "6 0\n1 1 1",
"output": "4"
},
{
"input": "25 5\n3 3 3",
"output": "7"
},
{
"input": "48 27\n22 39 20",
"output": "107"
},
{
"input": "4 0\n1 1 1",
"output": "4"
}
] | 1,515,758,126
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 38
| 62
| 5,632,000
|
a,b=map(int,input().split())
x,y,z=map(int,input().split())
a1=2*x+y
b1=3*z+y
if a<a1:
a2=a1-a
else:
a2=0
if b<b1:
b2=b1-b
else:
b2=0
print(a2+b2)
|
Title: Tricky Alchemy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
During the winter holidays, the demand for Christmas balls is exceptionally high. Since it's already 2018, the advances in alchemy allow easy and efficient ball creation by utilizing magic crystals.
Grisha needs to obtain some yellow, green and blue balls. It's known that to produce a yellow ball one needs two yellow crystals, greenΒ β one yellow and one blue, and for a blue ball, three blue crystals are enough.
Right now there are *A* yellow and *B* blue crystals in Grisha's disposal. Find out how many additional crystals he should acquire in order to produce the required number of balls.
Input Specification:
The first line features two integers *A* and *B* (0<=β€<=*A*,<=*B*<=β€<=109), denoting the number of yellow and blue crystals respectively at Grisha's disposal.
The next line contains three integers *x*, *y* and *z* (0<=β€<=*x*,<=*y*,<=*z*<=β€<=109)Β β the respective amounts of yellow, green and blue balls to be obtained.
Output Specification:
Print a single integerΒ β the minimum number of crystals that Grisha should acquire in addition.
Demo Input:
['4 3\n2 1 1\n', '3 9\n1 1 3\n', '12345678 87654321\n43043751 1000000000 53798715\n']
Demo Output:
['2\n', '1\n', '2147483648\n']
Note:
In the first sample case, Grisha needs five yellow and four blue crystals to create two yellow balls, one green ball, and one blue ball. To do that, Grisha needs to obtain two additional crystals: one yellow and one blue.
|
```python
a,b=map(int,input().split())
x,y,z=map(int,input().split())
a1=2*x+y
b1=3*z+y
if a<a1:
a2=a1-a
else:
a2=0
if b<b1:
b2=b1-b
else:
b2=0
print(a2+b2)
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=Γ<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=Γ<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* β board sizes in squares (1<=β€<=*M*<=β€<=*N*<=β€<=16).
|
Output one number β the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,641,720,972
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
enter = input()
l1 = enter.split(" ")
for i in range(len(l1)):
l1[i] = int(l1[i])
c1 = l1[0] // 1
c2 = l1[1] // 2
c3 = c1 * c2
if l1[1] % 2 != 0:
v = l1[0] // 2
c3 += v
print(c3)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=Γ<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=Γ<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* β board sizes in squares (1<=β€<=*M*<=β€<=*N*<=β€<=16).
Output Specification:
Output one number β the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
enter = input()
l1 = enter.split(" ")
for i in range(len(l1)):
l1[i] = int(l1[i])
c1 = l1[0] // 1
c2 = l1[1] // 2
c3 = c1 * c2
if l1[1] % 2 != 0:
v = l1[0] // 2
c3 += v
print(c3)
```
| 3.977
|
265
|
A
|
Colorful Stones (Simplified Edition)
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively.
Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times.
Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move.
You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction.
Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence.
|
The input contains two lines. The first line contains the string *s* (1<=β€<=|*s*|<=β€<=50). The second line contains the string *t* (1<=β€<=|*t*|<=β€<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence.
|
Print the final 1-based position of Liss in a single line.
|
[
"RGB\nRRR\n",
"RRRBGBRBBB\nBBBRR\n",
"BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n"
] |
[
"2\n",
"3\n",
"15\n"
] |
none
| 500
|
[
{
"input": "RGB\nRRR",
"output": "2"
},
{
"input": "RRRBGBRBBB\nBBBRR",
"output": "3"
},
{
"input": "BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB",
"output": "15"
},
{
"input": "G\nRRBBRBRRBR",
"output": "1"
},
{
"input": "RRRRRBRRBRRGRBGGRRRGRBBRBBBBBRGRBGBRRGBBBRBBGBRGBB\nB",
"output": "1"
},
{
"input": "RRGGBRGRBG\nBRRGGBBGGR",
"output": "7"
},
{
"input": "BBRRGBGGRGBRGBRBRBGR\nGGGRBGGGBRRRRGRBGBGRGRRBGRBGBG",
"output": "15"
},
{
"input": "GBRRBGBGBBBBRRRGBGRRRGBGBBBRGR\nRRGBRRGRBBBBBBGRRBBR",
"output": "8"
},
{
"input": "BRGRRGRGRRGBBGBBBRRBBRRBGBBGRGBBGGRGBRBGGGRRRBGGBB\nRGBBGRRBBBRRGRRBRBBRGBBGGGRGBGRRRRBRBGGBRBGGGRGBRR",
"output": "16"
},
{
"input": "GGRGGBRRGRGBRRGGRBBGGRRGBBBGBBBGGRBGGBRBBRGBRRRBRG\nGGRGRRRRRRRRRGBBBBRGBRGRGRRGBBRGGBRBBRBGBRGRRRRGGR",
"output": "18"
},
{
"input": "RBBRBGBBGGGBRRBGBRGRRGGRBBBBGRBGGBRRBGBBRBRGBBGGGG\nBRRGRBGRBGBRGBRBGGBBBGBBRGRBGRGRBGRBGGRRBGBRGRRBBG",
"output": "23"
},
{
"input": "RRGGRRBRGRGBRGBRGBBRGGGBRBGBRGBRGGBRBRGBGRRBBGGRBR\nBRGRBBBGRBGRRGGRRRRRRRRGGGGGGGGBGGGGGGGRGRBBRGRGBR",
"output": "14"
},
{
"input": "RBRBRRRRRGGR\nBBBBRRGGBGRBRGBBRGGGRGGBRRBRBRBGGG",
"output": "12"
},
{
"input": "GGRGGGBRGRGRBBRGGGRBGRRR\nGBBBBGBGBGBBBRGGRGGBGRRGRRRGBGB",
"output": "12"
},
{
"input": "RGRBGBRBBGBRRGGGBBGBRRBGRGBBBBBGRRRGGRBB\nBGR",
"output": "2"
},
{
"input": "R\nB",
"output": "1"
},
{
"input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "50"
},
{
"input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG",
"output": "1"
},
{
"input": "R\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG",
"output": "1"
}
] | 1,673,358,209
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 19
| 186
| 0
|
s = input()
t = input()
count = 0
for i in range(len(t)):
if s[count] == t[i]:
count = count+1
print(count+1)
|
Title: Colorful Stones (Simplified Edition)
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively.
Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times.
Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move.
You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction.
Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence.
Input Specification:
The input contains two lines. The first line contains the string *s* (1<=β€<=|*s*|<=β€<=50). The second line contains the string *t* (1<=β€<=|*t*|<=β€<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence.
Output Specification:
Print the final 1-based position of Liss in a single line.
Demo Input:
['RGB\nRRR\n', 'RRRBGBRBBB\nBBBRR\n', 'BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n']
Demo Output:
['2\n', '3\n', '15\n']
Note:
none
|
```python
s = input()
t = input()
count = 0
for i in range(len(t)):
if s[count] == t[i]:
count = count+1
print(count+1)
```
| 3
|
|
313
|
B
|
Ilya and Queries
|
PROGRAMMING
| 1,100
|
[
"dp",
"implementation"
] | null | null |
Ilya the Lion wants to help all his friends with passing exams. They need to solve the following problem to pass the IT exam.
You've got string *s*<==<=*s*1*s*2... *s**n* (*n* is the length of the string), consisting only of characters "." and "#" and *m* queries. Each query is described by a pair of integers *l**i*,<=*r**i* (1<=β€<=*l**i*<=<<=*r**i*<=β€<=*n*). The answer to the query *l**i*,<=*r**i* is the number of such integers *i* (*l**i*<=β€<=*i*<=<<=*r**i*), that *s**i*<==<=*s**i*<=+<=1.
Ilya the Lion wants to help his friends but is there anyone to help him? Help Ilya, solve the problem.
|
The first line contains string *s* of length *n* (2<=β€<=*n*<=β€<=105). It is guaranteed that the given string only consists of characters "." and "#".
The next line contains integer *m* (1<=β€<=*m*<=β€<=105) β the number of queries. Each of the next *m* lines contains the description of the corresponding query. The *i*-th line contains integers *l**i*,<=*r**i* (1<=β€<=*l**i*<=<<=*r**i*<=β€<=*n*).
|
Print *m* integers β the answers to the queries in the order in which they are given in the input.
|
[
"......\n4\n3 4\n2 3\n1 6\n2 6\n",
"#..###\n5\n1 3\n5 6\n1 5\n3 6\n3 4\n"
] |
[
"1\n1\n5\n4\n",
"1\n1\n2\n2\n0\n"
] |
none
| 1,000
|
[
{
"input": "......\n4\n3 4\n2 3\n1 6\n2 6",
"output": "1\n1\n5\n4"
},
{
"input": "#..###\n5\n1 3\n5 6\n1 5\n3 6\n3 4",
"output": "1\n1\n2\n2\n0"
},
{
"input": ".#...#..\n6\n1 5\n2 3\n6 7\n2 4\n2 5\n1 3",
"output": "2\n0\n0\n1\n2\n0"
},
{
"input": "#.#.#..\n5\n3 4\n4 5\n5 7\n5 7\n1 3",
"output": "0\n0\n1\n1\n0"
},
{
"input": "#.##.##.\n7\n1 8\n2 6\n2 6\n6 8\n3 5\n2 4\n2 5",
"output": "2\n1\n1\n1\n1\n1\n1"
},
{
"input": "#..#\n1\n1 4",
"output": "1"
},
{
"input": "#..##...#.\n7\n5 9\n6 10\n1 7\n5 8\n3 5\n2 10\n3 4",
"output": "2\n2\n3\n2\n1\n4\n0"
},
{
"input": "#.#.#\n7\n1 2\n3 4\n3 5\n2 3\n3 5\n1 5\n1 3",
"output": "0\n0\n0\n0\n0\n0\n0"
},
{
"input": "###..#...#\n2\n2 4\n1 2",
"output": "1\n1"
},
{
"input": "..\n1\n1 2",
"output": "1"
},
{
"input": "##\n1\n1 2",
"output": "1"
},
{
"input": ".#\n1\n1 2",
"output": "0"
},
{
"input": "#.\n1\n1 2",
"output": "0"
},
{
"input": "...\n2\n1 2\n1 2",
"output": "1\n1"
}
] | 1,693,903,884
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 37
| 1,996
| 9,728,000
|
s = input()
n = len(s)
dp = [0] * n
for i in range(1, n):
dp[i] = dp[i - 1] + int(s[i] == s[i - 1])
m = int(input())
for _ in range(m):
l, r = map(int, input().split())
print(dp[r - 1] - dp[l - 1])
|
Title: Ilya and Queries
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ilya the Lion wants to help all his friends with passing exams. They need to solve the following problem to pass the IT exam.
You've got string *s*<==<=*s*1*s*2... *s**n* (*n* is the length of the string), consisting only of characters "." and "#" and *m* queries. Each query is described by a pair of integers *l**i*,<=*r**i* (1<=β€<=*l**i*<=<<=*r**i*<=β€<=*n*). The answer to the query *l**i*,<=*r**i* is the number of such integers *i* (*l**i*<=β€<=*i*<=<<=*r**i*), that *s**i*<==<=*s**i*<=+<=1.
Ilya the Lion wants to help his friends but is there anyone to help him? Help Ilya, solve the problem.
Input Specification:
The first line contains string *s* of length *n* (2<=β€<=*n*<=β€<=105). It is guaranteed that the given string only consists of characters "." and "#".
The next line contains integer *m* (1<=β€<=*m*<=β€<=105) β the number of queries. Each of the next *m* lines contains the description of the corresponding query. The *i*-th line contains integers *l**i*,<=*r**i* (1<=β€<=*l**i*<=<<=*r**i*<=β€<=*n*).
Output Specification:
Print *m* integers β the answers to the queries in the order in which they are given in the input.
Demo Input:
['......\n4\n3 4\n2 3\n1 6\n2 6\n', '#..###\n5\n1 3\n5 6\n1 5\n3 6\n3 4\n']
Demo Output:
['1\n1\n5\n4\n', '1\n1\n2\n2\n0\n']
Note:
none
|
```python
s = input()
n = len(s)
dp = [0] * n
for i in range(1, n):
dp[i] = dp[i - 1] + int(s[i] == s[i - 1])
m = int(input())
for _ in range(m):
l, r = map(int, input().split())
print(dp[r - 1] - dp[l - 1])
```
| 3
|
|
203
|
C
|
Photographer
|
PROGRAMMING
| 1,400
|
[
"greedy",
"sortings"
] | null | null |
Valera's lifelong ambition was to be a photographer, so he bought a new camera. Every day he got more and more clients asking for photos, and one day Valera needed a program that would determine the maximum number of people he can serve.
The camera's memory is *d* megabytes. Valera's camera can take photos of high and low quality. One low quality photo takes *a* megabytes of memory, one high quality photo take *b* megabytes of memory. For unknown reasons, each client asks him to make several low quality photos and several high quality photos. More formally, the *i*-th client asks to make *x**i* low quality photos and *y**i* high quality photos.
Valera wants to serve as many clients per day as possible, provided that they will be pleased with his work. To please the *i*-th client, Valera needs to give him everything he wants, that is, to make *x**i* low quality photos and *y**i* high quality photos. To make one low quality photo, the camera must have at least *a* megabytes of free memory space. Similarly, to make one high quality photo, the camera must have at least *b* megabytes of free memory space. Initially the camera's memory is empty. Valera also does not delete photos from the camera so that the camera's memory gradually fills up.
Calculate the maximum number of clients Valera can successfully serve and print the numbers of these clients.
|
The first line contains two integers *n* and *d* (1<=β€<=*n*<=β€<=105,<=1<=β€<=*d*<=β€<=109) β the number of clients and the camera memory size, correspondingly. The second line contains two integers *a* and *b* (1<=β€<=*a*<=β€<=*b*<=β€<=104) β the size of one low quality photo and of one high quality photo, correspondingly.
Next *n* lines describe the clients. The *i*-th line contains two integers *x**i* and *y**i* (0<=β€<=*x**i*,<=*y**i*<=β€<=105) β the number of low quality photos and high quality photos the *i*-th client wants, correspondingly.
All numbers on all lines are separated by single spaces.
|
On the first line print the answer to the problem β the maximum number of clients that Valera can successfully serve. Print on the second line the numbers of the client in any order. All numbers must be distinct. If there are multiple answers, print any of them. The clients are numbered starting with 1 in the order in which they are defined in the input data.
|
[
"3 10\n2 3\n1 4\n2 1\n1 0\n",
"3 6\n6 6\n1 1\n1 0\n1 0\n"
] |
[
"2\n3 2 ",
"1\n2 "
] |
none
| 1,500
|
[
{
"input": "3 10\n2 3\n1 4\n2 1\n1 0",
"output": "2\n3 2 "
},
{
"input": "3 6\n6 6\n1 1\n1 0\n1 0",
"output": "1\n2 "
},
{
"input": "4 5\n6 8\n1 2\n3 0\n10 2\n0 4",
"output": "0"
},
{
"input": "4 10\n6 6\n1 2\n2 2\n0 0\n0 0",
"output": "2\n3 4 "
},
{
"input": "10 10\n1 1\n0 3\n6 4\n3 3\n6 3\n5 2\n6 4\n1 3\n5 5\n2 6\n6 4",
"output": "2\n1 7 "
},
{
"input": "5 5\n1 1\n2 0\n3 2\n4 4\n10 0\n0 1",
"output": "2\n5 1 "
},
{
"input": "4 10\n1 2\n1 0\n0 0\n2 0\n1 3",
"output": "4\n2 1 3 4 "
},
{
"input": "1 22\n3 5\n1 3",
"output": "1\n1 "
},
{
"input": "10 20\n3 5\n3 0\n0 3\n1 2\n1 3\n1 1\n3 0\n0 3\n0 3\n3 1\n3 1",
"output": "2\n5 1 "
},
{
"input": "10 50\n1 1\n7 10\n6 6\n1 0\n2 5\n2 6\n9 7\n3 5\n7 6\n7 10\n7 7",
"output": "6\n3 4 5 7 2 8 "
},
{
"input": "15 30\n13 19\n10 20\n9 0\n11 15\n10 8\n18 3\n13 15\n2 14\n9 16\n8 4\n13 10\n19 2\n13 19\n6 17\n16 4\n15 6",
"output": "0"
},
{
"input": "30 50\n1 3\n2 2\n3 2\n3 3\n0 1\n0 2\n1 3\n1 3\n1 1\n0 1\n0 2\n1 3\n1 0\n1 0\n2 1\n0 1\n0 0\n0 3\n2 3\n2 2\n0 1\n2 3\n2 3\n0 3\n0 3\n3 3\n1 2\n2 1\n1 3\n3 1\n0 3",
"output": "13\n16 12 13 4 9 15 20 8 14 27 5 10 29 "
},
{
"input": "50 50\n6 10\n10 0\n1 9\n8 2\n4 9\n0 7\n2 0\n7 5\n4 8\n10 7\n2 4\n5 6\n6 8\n3 2\n4 6\n7 8\n6 9\n7 7\n7 3\n9 5\n3 10\n7 2\n4 3\n2 0\n6 5\n5 3\n1 7\n1 7\n9 1\n10 4\n10 5\n4 2\n10 10\n0 7\n1 2\n10 1\n1 7\n3 7\n8 7\n5 2\n6 1\n3 1\n4 7\n7 10\n1 5\n10 8\n5 5\n5 1\n3 3\n1 6\n2 1",
"output": "3\n6 23 50 "
},
{
"input": "1 100\n6 10\n14 19",
"output": "0"
},
{
"input": "2 160\n6 9\n11 9\n6 6",
"output": "1\n2 "
},
{
"input": "2 1000000000\n10000 10000\n50000 50000\n100000 100000",
"output": "1\n1 "
},
{
"input": "2 1000000000\n10000 10000\n100000 0\n100000 100000",
"output": "1\n1 "
},
{
"input": "1 1000000000\n1 1\n1 1",
"output": "1\n1 "
},
{
"input": "6 1000000000\n9999 10000\n10000 9998\n10000 10000\n10000 10000\n70000 70000\n10000 10000\n10000 10000",
"output": "5\n1 2 3 5 6 "
},
{
"input": "3 10\n1 10\n0 1\n3 0\n3 0",
"output": "2\n2 3 "
},
{
"input": "2 1000000000\n10000 10000\n0 100000\n100000 100000",
"output": "1\n1 "
},
{
"input": "3 3\n1 1\n3 0\n1 0\n1 0",
"output": "2\n2 3 "
},
{
"input": "2 1000000000\n10000 10000\n100000 100000\n50000 50000",
"output": "1\n2 "
},
{
"input": "2 1000000000\n10000 10000\n0 90000\n100000 100000",
"output": "1\n1 "
},
{
"input": "3 1000000000\n10000 10000\n100000 0\n100000 100000\n0 0",
"output": "2\n3 1 "
},
{
"input": "2 1000000000\n10000 10000\n10000 10000\n100000 100000",
"output": "1\n1 "
},
{
"input": "2 1000000000\n10000 10000\n100000 100000\n100000 0",
"output": "1\n2 "
},
{
"input": "3 1000000000\n10000 10000\n99999 0\n100000 100000\n100000 100000",
"output": "1\n1 "
}
] | 1,453,221,179
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 1,278
| 11,059,200
|
n, d = map(int,input().split())
a, b = map(int,input().split())
l = []
for i in range(1,n+1):
a1, b1 = map(int,input().split())
l.append([a1*a + b1*b, i])
l.sort()
temp = d
ans = []
for i in l:
if i[0] <= temp:
ans.append(i[1])
temp -= i[0]
else:
break
print(len(ans))
print (*ans)
|
Title: Photographer
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera's lifelong ambition was to be a photographer, so he bought a new camera. Every day he got more and more clients asking for photos, and one day Valera needed a program that would determine the maximum number of people he can serve.
The camera's memory is *d* megabytes. Valera's camera can take photos of high and low quality. One low quality photo takes *a* megabytes of memory, one high quality photo take *b* megabytes of memory. For unknown reasons, each client asks him to make several low quality photos and several high quality photos. More formally, the *i*-th client asks to make *x**i* low quality photos and *y**i* high quality photos.
Valera wants to serve as many clients per day as possible, provided that they will be pleased with his work. To please the *i*-th client, Valera needs to give him everything he wants, that is, to make *x**i* low quality photos and *y**i* high quality photos. To make one low quality photo, the camera must have at least *a* megabytes of free memory space. Similarly, to make one high quality photo, the camera must have at least *b* megabytes of free memory space. Initially the camera's memory is empty. Valera also does not delete photos from the camera so that the camera's memory gradually fills up.
Calculate the maximum number of clients Valera can successfully serve and print the numbers of these clients.
Input Specification:
The first line contains two integers *n* and *d* (1<=β€<=*n*<=β€<=105,<=1<=β€<=*d*<=β€<=109) β the number of clients and the camera memory size, correspondingly. The second line contains two integers *a* and *b* (1<=β€<=*a*<=β€<=*b*<=β€<=104) β the size of one low quality photo and of one high quality photo, correspondingly.
Next *n* lines describe the clients. The *i*-th line contains two integers *x**i* and *y**i* (0<=β€<=*x**i*,<=*y**i*<=β€<=105) β the number of low quality photos and high quality photos the *i*-th client wants, correspondingly.
All numbers on all lines are separated by single spaces.
Output Specification:
On the first line print the answer to the problem β the maximum number of clients that Valera can successfully serve. Print on the second line the numbers of the client in any order. All numbers must be distinct. If there are multiple answers, print any of them. The clients are numbered starting with 1 in the order in which they are defined in the input data.
Demo Input:
['3 10\n2 3\n1 4\n2 1\n1 0\n', '3 6\n6 6\n1 1\n1 0\n1 0\n']
Demo Output:
['2\n3 2 ', '1\n2 ']
Note:
none
|
```python
n, d = map(int,input().split())
a, b = map(int,input().split())
l = []
for i in range(1,n+1):
a1, b1 = map(int,input().split())
l.append([a1*a + b1*b, i])
l.sort()
temp = d
ans = []
for i in l:
if i[0] <= temp:
ans.append(i[1])
temp -= i[0]
else:
break
print(len(ans))
print (*ans)
```
| 3
|
|
387
|
A
|
George and Sleep
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
George woke up and saw the current time *s* on the digital clock. Besides, George knows that he has slept for time *t*.
Help George! Write a program that will, given time *s* and *t*, determine the time *p* when George went to bed. Note that George could have gone to bed yesterday relatively to the current time (see the second test sample).
|
The first line contains current time *s* as a string in the format "hh:mm". The second line contains time *t* in the format "hh:mm" β the duration of George's sleep. It is guaranteed that the input contains the correct time in the 24-hour format, that is, 00<=β€<=*hh*<=β€<=23, 00<=β€<=*mm*<=β€<=59.
|
In the single line print time *p* β the time George went to bed in the format similar to the format of the time in the input.
|
[
"05:50\n05:44\n",
"00:00\n01:00\n",
"00:01\n00:00\n"
] |
[
"00:06\n",
"23:00\n",
"00:01\n"
] |
In the first sample George went to bed at "00:06". Note that you should print the time only in the format "00:06". That's why answers "0:06", "00:6" and others will be considered incorrect.
In the second sample, George went to bed yesterday.
In the third sample, George didn't do to bed at all.
| 500
|
[
{
"input": "05:50\n05:44",
"output": "00:06"
},
{
"input": "00:00\n01:00",
"output": "23:00"
},
{
"input": "00:01\n00:00",
"output": "00:01"
},
{
"input": "23:59\n23:59",
"output": "00:00"
},
{
"input": "23:44\n23:55",
"output": "23:49"
},
{
"input": "00:00\n13:12",
"output": "10:48"
},
{
"input": "12:00\n23:59",
"output": "12:01"
},
{
"input": "12:44\n12:44",
"output": "00:00"
},
{
"input": "05:55\n07:12",
"output": "22:43"
},
{
"input": "07:12\n05:55",
"output": "01:17"
},
{
"input": "22:22\n22:22",
"output": "00:00"
},
{
"input": "22:22\n22:23",
"output": "23:59"
},
{
"input": "23:24\n23:23",
"output": "00:01"
},
{
"input": "00:00\n00:00",
"output": "00:00"
},
{
"input": "23:30\n00:00",
"output": "23:30"
},
{
"input": "01:00\n00:00",
"output": "01:00"
},
{
"input": "05:44\n06:00",
"output": "23:44"
},
{
"input": "00:00\n23:59",
"output": "00:01"
},
{
"input": "21:00\n01:00",
"output": "20:00"
},
{
"input": "21:21\n12:21",
"output": "09:00"
},
{
"input": "12:21\n21:12",
"output": "15:09"
},
{
"input": "12:33\n23:33",
"output": "13:00"
},
{
"input": "07:55\n05:53",
"output": "02:02"
},
{
"input": "19:30\n02:00",
"output": "17:30"
},
{
"input": "21:30\n02:00",
"output": "19:30"
},
{
"input": "19:30\n09:30",
"output": "10:00"
},
{
"input": "13:08\n00:42",
"output": "12:26"
},
{
"input": "13:04\n09:58",
"output": "03:06"
},
{
"input": "21:21\n23:06",
"output": "22:15"
},
{
"input": "20:53\n10:23",
"output": "10:30"
},
{
"input": "12:59\n00:45",
"output": "12:14"
},
{
"input": "12:39\n22:21",
"output": "14:18"
},
{
"input": "21:10\n13:50",
"output": "07:20"
},
{
"input": "03:38\n23:46",
"output": "03:52"
},
{
"input": "03:48\n00:41",
"output": "03:07"
},
{
"input": "07:43\n12:27",
"output": "19:16"
},
{
"input": "03:23\n08:52",
"output": "18:31"
},
{
"input": "16:04\n10:28",
"output": "05:36"
},
{
"input": "12:53\n08:37",
"output": "04:16"
},
{
"input": "13:43\n17:23",
"output": "20:20"
},
{
"input": "00:00\n00:01",
"output": "23:59"
},
{
"input": "10:10\n01:01",
"output": "09:09"
},
{
"input": "10:05\n00:00",
"output": "10:05"
},
{
"input": "09:09\n00:00",
"output": "09:09"
},
{
"input": "09:10\n00:01",
"output": "09:09"
},
{
"input": "23:24\n00:28",
"output": "22:56"
},
{
"input": "10:00\n01:00",
"output": "09:00"
}
] | 1,513,962,666
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 47
| 61
| 5,632,000
|
s=input()
t=input()
hrs=int(s[:2])-int(t[:2])
mins=int(s[3:])-int(t[3:])
if mins<0:
mins+=60
hrs-=1
if hrs<0:
hrs+=24
hrs=str(hrs)
mins=str(mins)
if len(hrs)==1:
hrs='0'+hrs
if len(mins)==1:
mins='0'+mins
print(hrs+':'+mins)
|
Title: George and Sleep
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
George woke up and saw the current time *s* on the digital clock. Besides, George knows that he has slept for time *t*.
Help George! Write a program that will, given time *s* and *t*, determine the time *p* when George went to bed. Note that George could have gone to bed yesterday relatively to the current time (see the second test sample).
Input Specification:
The first line contains current time *s* as a string in the format "hh:mm". The second line contains time *t* in the format "hh:mm" β the duration of George's sleep. It is guaranteed that the input contains the correct time in the 24-hour format, that is, 00<=β€<=*hh*<=β€<=23, 00<=β€<=*mm*<=β€<=59.
Output Specification:
In the single line print time *p* β the time George went to bed in the format similar to the format of the time in the input.
Demo Input:
['05:50\n05:44\n', '00:00\n01:00\n', '00:01\n00:00\n']
Demo Output:
['00:06\n', '23:00\n', '00:01\n']
Note:
In the first sample George went to bed at "00:06". Note that you should print the time only in the format "00:06". That's why answers "0:06", "00:6" and others will be considered incorrect.
In the second sample, George went to bed yesterday.
In the third sample, George didn't do to bed at all.
|
```python
s=input()
t=input()
hrs=int(s[:2])-int(t[:2])
mins=int(s[3:])-int(t[3:])
if mins<0:
mins+=60
hrs-=1
if hrs<0:
hrs+=24
hrs=str(hrs)
mins=str(mins)
if len(hrs)==1:
hrs='0'+hrs
if len(mins)==1:
mins='0'+mins
print(hrs+':'+mins)
```
| 3
|
|
172
|
D
|
Calendar Reform
|
PROGRAMMING
| 1,500
|
[
"*special",
"number theory"
] | null | null |
Reforms have started in Berland again! At this time, the Parliament is discussing the reform of the calendar. To make the lives of citizens of Berland more varied, it was decided to change the calendar. As more and more people are complaining that "the years fly by...", it was decided that starting from the next year the number of days per year will begin to grow. So the coming year will have exactly *a* days, the next after coming year will have *a*<=+<=1 days, the next one will have *a*<=+<=2 days and so on. This schedule is planned for the coming *n* years (in the *n*-th year the length of the year will be equal *a*<=+<=*n*<=-<=1 day).
No one has yet decided what will become of months. An MP Palevny made the following proposal.
- The calendar for each month is comfortable to be printed on a square sheet of paper. We are proposed to make the number of days in each month be the square of some integer. The number of days per month should be the same for each month of any year, but may be different for different years. - The number of days in each year must be divisible by the number of days per month in this year. This rule ensures that the number of months in each year is an integer. - The number of days per month for each year must be chosen so as to save the maximum amount of paper to print the calendars. In other words, the number of days per month should be as much as possible.
These rules provide an unambiguous method for choosing the number of days in each month for any given year length. For example, according to Palevny's proposition, a year that consists of 108 days will have three months, 36 days each. The year that consists of 99 days will have 11 months, 9 days each, and a year of 365 days will have 365 months, one day each.
The proposal provoked heated discussion in the community, the famous mathematician Perelmanov quickly calculated that if the proposal is supported, then in a period of *n* years, beginning with the year that has *a* days, the country will spend *p* sheets of paper to print a set of calendars for these years. Perelmanov's calculations take into account the fact that the set will contain one calendar for each year and each month will be printed on a separate sheet.
Repeat Perelmanov's achievement and print the required number *p*. You are given positive integers *a* and *n*. Perelmanov warns you that your program should not work longer than four seconds at the maximum test.
|
The only input line contains a pair of integers *a*, *n* (1<=β€<=*a*,<=*n*<=β€<=107; *a*<=+<=*n*<=-<=1<=β€<=107).
|
Print the required number *p*.
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use cin, cout streams or the %I64d specifier.
|
[
"25 3\n",
"50 5\n"
] |
[
"30\n",
"125\n"
] |
A note to the first sample test. A year of 25 days will consist of one month containing 25 days. A year of 26 days will consist of 26 months, one day each. A year of 27 days will have three months, 9 days each.
| 1,500
|
[
{
"input": "25 3",
"output": "30"
},
{
"input": "50 5",
"output": "125"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1 2",
"output": "3"
},
{
"input": "1 10",
"output": "38"
},
{
"input": "1 5000000",
"output": "8224640917276"
},
{
"input": "5000000 5000000",
"output": "24674231279431"
},
{
"input": "4000000 5000000",
"output": "21384022194564"
},
{
"input": "3000000 5000000",
"output": "18094224526592"
},
{
"input": "1000000 5000000",
"output": "11514506860120"
},
{
"input": "1 10000000",
"output": "32898872196712"
}
] | 1,678,673,309
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 11
| 202
| 82,329,600
|
import math
a,n=map(int,input().split())
arr=[0]*10000008
for i in range(1,math.ceil(math.sqrt(10000008))):
for j in range(1,10000008):
if j*i*i>=10000008:
break
arr[j*i*i]=j
count=0
for i in range(a,a+n):
count+=arr[i]
print(count)
|
Title: Calendar Reform
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Reforms have started in Berland again! At this time, the Parliament is discussing the reform of the calendar. To make the lives of citizens of Berland more varied, it was decided to change the calendar. As more and more people are complaining that "the years fly by...", it was decided that starting from the next year the number of days per year will begin to grow. So the coming year will have exactly *a* days, the next after coming year will have *a*<=+<=1 days, the next one will have *a*<=+<=2 days and so on. This schedule is planned for the coming *n* years (in the *n*-th year the length of the year will be equal *a*<=+<=*n*<=-<=1 day).
No one has yet decided what will become of months. An MP Palevny made the following proposal.
- The calendar for each month is comfortable to be printed on a square sheet of paper. We are proposed to make the number of days in each month be the square of some integer. The number of days per month should be the same for each month of any year, but may be different for different years. - The number of days in each year must be divisible by the number of days per month in this year. This rule ensures that the number of months in each year is an integer. - The number of days per month for each year must be chosen so as to save the maximum amount of paper to print the calendars. In other words, the number of days per month should be as much as possible.
These rules provide an unambiguous method for choosing the number of days in each month for any given year length. For example, according to Palevny's proposition, a year that consists of 108 days will have three months, 36 days each. The year that consists of 99 days will have 11 months, 9 days each, and a year of 365 days will have 365 months, one day each.
The proposal provoked heated discussion in the community, the famous mathematician Perelmanov quickly calculated that if the proposal is supported, then in a period of *n* years, beginning with the year that has *a* days, the country will spend *p* sheets of paper to print a set of calendars for these years. Perelmanov's calculations take into account the fact that the set will contain one calendar for each year and each month will be printed on a separate sheet.
Repeat Perelmanov's achievement and print the required number *p*. You are given positive integers *a* and *n*. Perelmanov warns you that your program should not work longer than four seconds at the maximum test.
Input Specification:
The only input line contains a pair of integers *a*, *n* (1<=β€<=*a*,<=*n*<=β€<=107; *a*<=+<=*n*<=-<=1<=β€<=107).
Output Specification:
Print the required number *p*.
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use cin, cout streams or the %I64d specifier.
Demo Input:
['25 3\n', '50 5\n']
Demo Output:
['30\n', '125\n']
Note:
A note to the first sample test. A year of 25 days will consist of one month containing 25 days. A year of 26 days will consist of 26 months, one day each. A year of 27 days will have three months, 9 days each.
|
```python
import math
a,n=map(int,input().split())
arr=[0]*10000008
for i in range(1,math.ceil(math.sqrt(10000008))):
for j in range(1,10000008):
if j*i*i>=10000008:
break
arr[j*i*i]=j
count=0
for i in range(a,a+n):
count+=arr[i]
print(count)
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=Γ<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=Γ<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* β board sizes in squares (1<=β€<=*M*<=β€<=*N*<=β€<=16).
|
Output one number β the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,639,211,110
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
a=list(map(int,input().split()))
c=a[0]*a[1]//2
print(c)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=Γ<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=Γ<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* β board sizes in squares (1<=β€<=*M*<=β€<=*N*<=β€<=16).
Output Specification:
Output one number β the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
a=list(map(int,input().split()))
c=a[0]*a[1]//2
print(c)
```
| 3.977
|
29
|
D
|
Ant on the Tree
|
PROGRAMMING
| 2,000
|
[
"constructive algorithms",
"dfs and similar",
"trees"
] |
D. Ant on the Tree
|
2
|
256
|
Connected undirected graph without cycles is called a tree. Trees is a class of graphs which is interesting not only for people, but for ants too.
An ant stands at the root of some tree. He sees that there are *n* vertexes in the tree, and they are connected by *n*<=-<=1 edges so that there is a path between any pair of vertexes. A leaf is a distinct from root vertex, which is connected with exactly one other vertex.
The ant wants to visit every vertex in the tree and return to the root, passing every edge twice. In addition, he wants to visit the leaves in a specific order. You are to find some possible route of the ant.
|
The first line contains integer *n* (3<=β€<=*n*<=β€<=300) β amount of vertexes in the tree. Next *n*<=-<=1 lines describe edges. Each edge is described with two integers β indexes of vertexes which it connects. Each edge can be passed in any direction. Vertexes are numbered starting from 1. The root of the tree has number 1. The last line contains *k* integers, where *k* is amount of leaves in the tree. These numbers describe the order in which the leaves should be visited. It is guaranteed that each leaf appears in this order exactly once.
|
If the required route doesn't exist, output -1. Otherwise, output 2*n*<=-<=1 numbers, describing the route. Every time the ant comes to a vertex, output it's index.
|
[
"3\n1 2\n2 3\n3\n",
"6\n1 2\n1 3\n2 4\n4 5\n4 6\n5 6 3\n",
"6\n1 2\n1 3\n2 4\n4 5\n4 6\n5 3 6\n"
] |
[
"1 2 3 2 1 ",
"1 2 4 5 4 6 4 2 1 3 1 ",
"-1\n"
] |
none
| 2,000
|
[
{
"input": "3\n1 2\n2 3\n3",
"output": "1 2 3 2 1 "
},
{
"input": "6\n1 2\n1 3\n2 4\n4 5\n4 6\n5 6 3",
"output": "1 2 4 5 4 6 4 2 1 3 1 "
},
{
"input": "6\n1 2\n1 3\n2 4\n4 5\n4 6\n5 3 6",
"output": "-1"
},
{
"input": "10\n8 10\n2 1\n7 5\n5 4\n6 10\n2 3\n3 10\n2 9\n7 2\n6 9 4 8",
"output": "-1"
},
{
"input": "8\n4 3\n6 7\n8 6\n6 1\n4 6\n6 5\n6 2\n3 2 7 8 5",
"output": "1 6 4 3 4 6 2 6 7 6 8 6 5 6 1 "
},
{
"input": "8\n4 3\n1 4\n8 5\n7 6\n3 5\n7 3\n4 2\n2 6 8",
"output": "1 4 2 4 3 7 6 7 3 5 8 5 3 4 1 "
},
{
"input": "20\n4 13\n17 7\n19 10\n18 1\n5 15\n2 6\n11 7\n3 6\n5 1\n20 16\n12 5\n10 17\n14 18\n8 13\n13 15\n19 1\n9 19\n6 13\n17 20\n14 12 4 2 3 9 8 11 16",
"output": "-1"
},
{
"input": "37\n27 3\n27 35\n6 8\n12 21\n4 7\n32 27\n27 17\n24 14\n1 10\n3 23\n20 8\n12 4\n16 33\n2 34\n15 36\n5 31\n31 14\n5 9\n8 28\n29 12\n33 35\n24 10\n18 25\n33 18\n2 37\n17 5\n36 29\n12 26\n20 26\n22 11\n23 8\n15 30\n34 6\n13 7\n22 4\n23 19\n37 11 9 32 28 16 21 30 25 19 13",
"output": "-1"
},
{
"input": "51\n28 3\n42 40\n40 51\n48 20\n13 28\n18 40\n44 40\n22 5\n22 27\n45 34\n40 9\n34 46\n40 34\n22 1\n22 11\n40 7\n28 40\n40 22\n14 40\n34 30\n40 20\n47 40\n12 34\n28 23\n40 24\n40 43\n41 40\n28 15\n49 32\n40 8\n32 10\n40 50\n40 36\n40 21\n16 33\n40 38\n34 2\n28 16\n34 4\n17 34\n19 40\n32 35\n40 29\n6 40\n40 39\n22 26\n37 40\n32 40\n31 20\n34 25\n35 15 7 9 12 31 36 50 19 17 29 46 5 42 8 13 10 24 44 25 41 2 38 23 43 30 18 3 26 47 37 11 39 33 49 14 4 45 6 51 48 21 27",
"output": "-1"
},
{
"input": "3\n1 2\n1 3\n2 3",
"output": "1 2 1 3 1 "
},
{
"input": "3\n1 2\n1 3\n3 2",
"output": "1 3 1 2 1 "
},
{
"input": "4\n1 2\n1 3\n1 4\n4 3 2",
"output": "1 4 1 3 1 2 1 "
},
{
"input": "5\n1 2\n4 3\n1 4\n4 5\n5 2 3",
"output": "-1"
}
] | 1,689,319,172
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 35
| 154
| 102,400
|
import sys
readline = sys.stdin.readline
N = int(readline())
tree = [[] for _ in range(N + 1)]
weights = [[N + 1 + i, -1] for i in range(N + 1)]
def clear_tree(node: int, parent: int):
tree[node] = list(set(tree[node]) - {parent})
if len(tree[node]) == 0:
return
for child in tree[node]:
clear_tree(child, node)
weights[node][0] = min(weights[node][0], weights[child][0])
weights[node][1] = max(weights[node][1], weights[child][1])
# buf = list(tree[node])
tree[node].sort(key=lambda x: weights[x][0])
for i in range(len(tree[node]) - 1):
if N > weights[tree[node][i]][1] > weights[tree[node][i + 1]][0]:
print(-1)
exit(0)
def travel_tree(node: int) -> list:
result = [node]
for child in tree[node]:
result.extend(travel_tree(child))
result.append(node)
return result
for _ in range(N - 1):
a, b = [int(w) for w in readline().split()]
tree[a].append(b)
tree[b].append(a)
order = [int(w) for w in readline().split()]
for idx, node in enumerate(order):
if len(tree[node]) != 1 or node == 1:
print(-1)
exit(1)
weights[node] = [idx, idx]
clear_tree(1, -1)
print(*travel_tree(1))
|
Title: Ant on the Tree
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Connected undirected graph without cycles is called a tree. Trees is a class of graphs which is interesting not only for people, but for ants too.
An ant stands at the root of some tree. He sees that there are *n* vertexes in the tree, and they are connected by *n*<=-<=1 edges so that there is a path between any pair of vertexes. A leaf is a distinct from root vertex, which is connected with exactly one other vertex.
The ant wants to visit every vertex in the tree and return to the root, passing every edge twice. In addition, he wants to visit the leaves in a specific order. You are to find some possible route of the ant.
Input Specification:
The first line contains integer *n* (3<=β€<=*n*<=β€<=300) β amount of vertexes in the tree. Next *n*<=-<=1 lines describe edges. Each edge is described with two integers β indexes of vertexes which it connects. Each edge can be passed in any direction. Vertexes are numbered starting from 1. The root of the tree has number 1. The last line contains *k* integers, where *k* is amount of leaves in the tree. These numbers describe the order in which the leaves should be visited. It is guaranteed that each leaf appears in this order exactly once.
Output Specification:
If the required route doesn't exist, output -1. Otherwise, output 2*n*<=-<=1 numbers, describing the route. Every time the ant comes to a vertex, output it's index.
Demo Input:
['3\n1 2\n2 3\n3\n', '6\n1 2\n1 3\n2 4\n4 5\n4 6\n5 6 3\n', '6\n1 2\n1 3\n2 4\n4 5\n4 6\n5 3 6\n']
Demo Output:
['1 2 3 2 1 ', '1 2 4 5 4 6 4 2 1 3 1 ', '-1\n']
Note:
none
|
```python
import sys
readline = sys.stdin.readline
N = int(readline())
tree = [[] for _ in range(N + 1)]
weights = [[N + 1 + i, -1] for i in range(N + 1)]
def clear_tree(node: int, parent: int):
tree[node] = list(set(tree[node]) - {parent})
if len(tree[node]) == 0:
return
for child in tree[node]:
clear_tree(child, node)
weights[node][0] = min(weights[node][0], weights[child][0])
weights[node][1] = max(weights[node][1], weights[child][1])
# buf = list(tree[node])
tree[node].sort(key=lambda x: weights[x][0])
for i in range(len(tree[node]) - 1):
if N > weights[tree[node][i]][1] > weights[tree[node][i + 1]][0]:
print(-1)
exit(0)
def travel_tree(node: int) -> list:
result = [node]
for child in tree[node]:
result.extend(travel_tree(child))
result.append(node)
return result
for _ in range(N - 1):
a, b = [int(w) for w in readline().split()]
tree[a].append(b)
tree[b].append(a)
order = [int(w) for w in readline().split()]
for idx, node in enumerate(order):
if len(tree[node]) != 1 or node == 1:
print(-1)
exit(1)
weights[node] = [idx, idx]
clear_tree(1, -1)
print(*travel_tree(1))
```
| 3.961309
|
41
|
A
|
Translation
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Translation
|
2
|
256
|
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the Β«translationΒ». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
|
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
|
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
|
[
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,637,478,575
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 92
| 0
|
word=input()
word1=input()
reversed_word=''
inde=-1
for i in word:
reversed_word+=word[inde]
inde-=1
if reversed_word==word1:
print('YES')
else:
print('NO')
|
Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the Β«translationΒ». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
word=input()
word1=input()
reversed_word=''
inde=-1
for i in word:
reversed_word+=word[inde]
inde-=1
if reversed_word==word1:
print('YES')
else:
print('NO')
```
| 3.977
|
421
|
A
|
Pasha and Hamsters
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
Pasha has two hamsters: Arthur and Alexander. Pasha put *n* apples in front of them. Pasha knows which apples Arthur likes. Similarly, Pasha knows which apples Alexander likes. Pasha doesn't want any conflict between the hamsters (as they may like the same apple), so he decided to distribute the apples between the hamsters on his own. He is going to give some apples to Arthur and some apples to Alexander. It doesn't matter how many apples each hamster gets but it is important that each hamster gets only the apples he likes. It is possible that somebody doesn't get any apples.
Help Pasha distribute all the apples between the hamsters. Note that Pasha wants to distribute all the apples, not just some of them.
|
The first line contains integers *n*, *a*, *b* (1<=β€<=*n*<=β€<=100;Β 1<=β€<=*a*,<=*b*<=β€<=*n*) β the number of apples Pasha has, the number of apples Arthur likes and the number of apples Alexander likes, correspondingly.
The next line contains *a* distinct integers β the numbers of the apples Arthur likes. The next line contains *b* distinct integers β the numbers of the apples Alexander likes.
Assume that the apples are numbered from 1 to *n*. The input is such that the answer exists.
|
Print *n* characters, each of them equals either 1 or 2. If the *i*-h character equals 1, then the *i*-th apple should be given to Arthur, otherwise it should be given to Alexander. If there are multiple correct answers, you are allowed to print any of them.
|
[
"4 2 3\n1 2\n2 3 4\n",
"5 5 2\n3 4 1 2 5\n2 3\n"
] |
[
"1 1 2 2\n",
"1 1 1 1 1\n"
] |
none
| 500
|
[
{
"input": "4 2 3\n1 2\n2 3 4",
"output": "1 1 2 2"
},
{
"input": "5 5 2\n3 4 1 2 5\n2 3",
"output": "1 1 1 1 1"
},
{
"input": "100 69 31\n1 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 24 26 27 29 31 37 38 39 40 44 46 48 49 50 51 53 55 56 57 58 59 60 61 63 64 65 66 67 68 69 70 71 72 74 76 77 78 79 80 81 82 83 89 92 94 95 97 98 99 100\n2 13 22 23 25 28 30 32 33 34 35 36 41 42 43 45 47 52 54 62 73 75 84 85 86 87 88 90 91 93 96",
"output": "1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 2 1 2 1 2 2 2 2 2 1 1 1 1 2 2 2 1 2 1 2 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 2 2 1 2 2 1 2 1 1 2 1 1 1 1"
},
{
"input": "100 56 44\n1 2 5 8 14 15 17 18 20 21 23 24 25 27 30 33 34 35 36 38 41 42 44 45 46 47 48 49 50 53 56 58 59 60 62 63 64 65 68 69 71 75 76 80 81 84 87 88 90 91 92 94 95 96 98 100\n3 4 6 7 9 10 11 12 13 16 19 22 26 28 29 31 32 37 39 40 43 51 52 54 55 57 61 66 67 70 72 73 74 77 78 79 82 83 85 86 89 93 97 99",
"output": "1 1 2 2 1 2 2 1 2 2 2 2 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 2 2 1 2 2 1 1 1 1 2 1 2 2 1 1 2 1 1 1 1 1 1 1 2 2 1 2 2 1 2 1 1 1 2 1 1 1 1 2 2 1 1 2 1 2 2 2 1 1 2 2 2 1 1 2 2 1 2 2 1 1 2 1 1 1 2 1 1 1 2 1 2 1"
},
{
"input": "100 82 18\n1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 22 23 25 27 29 30 31 32 33 34 35 36 37 38 42 43 44 45 46 47 48 49 50 51 53 54 55 57 58 59 60 61 62 63 64 65 66 67 68 69 71 72 73 74 75 77 78 79 80 82 83 86 88 90 91 92 93 94 96 97 98 99 100\n12 21 24 26 28 39 40 41 52 56 70 76 81 84 85 87 89 95",
"output": "1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1"
},
{
"input": "99 72 27\n1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 20 23 25 26 28 29 30 32 33 34 35 36 39 41 42 43 44 45 46 47 50 51 52 54 55 56 58 59 60 61 62 67 70 71 72 74 75 76 77 80 81 82 84 85 86 88 90 91 92 93 94 95 96 97 98 99\n9 18 19 21 22 24 27 31 37 38 40 48 49 53 57 63 64 65 66 68 69 73 78 79 83 87 89",
"output": "1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 2 1 2 1 1 2 1 1 1 2 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1 1 2 2 2 2 1 2 2 1 1 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "99 38 61\n1 3 10 15 16 22 23 28 31 34 35 36 37 38 39 43 44 49 50 53 56 60 63 68 69 70 72 74 75 77 80 81 83 85 96 97 98 99\n2 4 5 6 7 8 9 11 12 13 14 17 18 19 20 21 24 25 26 27 29 30 32 33 40 41 42 45 46 47 48 51 52 54 55 57 58 59 61 62 64 65 66 67 71 73 76 78 79 82 84 86 87 88 89 90 91 92 93 94 95",
"output": "1 2 1 2 2 2 2 2 2 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 1 2 2 1 2 2 1 1 1 1 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1"
},
{
"input": "99 84 15\n1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 35 36 37 38 39 40 41 42 43 44 47 48 50 51 52 53 55 56 58 59 60 61 62 63 64 65 68 69 70 71 72 73 74 75 77 79 80 81 82 83 84 85 86 87 89 90 91 92 93 94 97 98 99\n4 18 33 45 46 49 54 57 66 67 76 78 88 95 96",
"output": "1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1"
},
{
"input": "4 3 1\n1 3 4\n2",
"output": "1 2 1 1"
},
{
"input": "4 3 1\n1 2 4\n3",
"output": "1 1 2 1"
},
{
"input": "4 2 2\n2 3\n1 4",
"output": "2 1 1 2"
},
{
"input": "4 3 1\n2 3 4\n1",
"output": "2 1 1 1"
},
{
"input": "1 1 1\n1\n1",
"output": "1"
},
{
"input": "2 1 1\n2\n1",
"output": "2 1"
},
{
"input": "2 1 1\n1\n2",
"output": "1 2"
},
{
"input": "3 3 1\n1 2 3\n1",
"output": "1 1 1"
},
{
"input": "3 3 1\n1 2 3\n3",
"output": "1 1 1"
},
{
"input": "3 2 1\n1 3\n2",
"output": "1 2 1"
},
{
"input": "100 1 100\n84\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2"
},
{
"input": "100 100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n17",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "98 51 47\n1 2 3 4 6 7 8 10 13 15 16 18 19 21 22 23 25 26 27 29 31 32 36 37 39 40 41 43 44 48 49 50 51 52 54 56 58 59 65 66 68 79 80 84 86 88 89 90 94 95 97\n5 9 11 12 14 17 20 24 28 30 33 34 35 38 42 45 46 47 53 55 57 60 61 62 63 64 67 69 70 71 72 73 74 75 76 77 78 81 82 83 85 87 91 92 93 96 98",
"output": "1 1 1 1 2 1 1 1 2 1 2 2 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 2 1 1 2 2 2 1 1 2 1 1 1 2 1 1 2 2 2 1 1 1 1 1 2 1 2 1 2 1 1 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 1 2 1 2 1 1 1 2 2 2 1 1 2 1 2"
},
{
"input": "98 28 70\n1 13 15 16 19 27 28 40 42 43 46 53 54 57 61 63 67 68 69 71 75 76 78 80 88 93 97 98\n2 3 4 5 6 7 8 9 10 11 12 14 17 18 20 21 22 23 24 25 26 29 30 31 32 33 34 35 36 37 38 39 41 44 45 47 48 49 50 51 52 55 56 58 59 60 62 64 65 66 70 72 73 74 77 79 81 82 83 84 85 86 87 89 90 91 92 94 95 96",
"output": "1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 1 1 2 2 1 2 2 2 1 2 1 2 2 2 1 1 1 2 1 2 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 1 1"
},
{
"input": "97 21 76\n7 10 16 17 26 30 34 39 40 42 44 46 53 54 56 64 67 72 78 79 94\n1 2 3 4 5 6 8 9 11 12 13 14 15 18 19 20 21 22 23 24 25 27 28 29 31 32 33 35 36 37 38 41 43 45 47 48 49 50 51 52 55 57 58 59 60 61 62 63 65 66 68 69 70 71 73 74 75 76 77 80 81 82 83 84 85 86 87 88 89 90 91 92 93 95 96 97",
"output": "2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 1 2 1 2 1 2 1 2 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 1 2 2 1 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2"
},
{
"input": "97 21 76\n1 10 12 13 17 18 22 25 31 48 50 54 61 64 67 74 78 81 86 88 94\n2 3 4 5 6 7 8 9 11 14 15 16 19 20 21 23 24 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 49 51 52 53 55 56 57 58 59 60 62 63 65 66 68 69 70 71 72 73 75 76 77 79 80 82 83 84 85 87 89 90 91 92 93 95 96 97",
"output": "1 2 2 2 2 2 2 2 2 1 2 1 1 2 2 2 1 1 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2"
},
{
"input": "96 10 86\n2 5 31 37 68 69 80 82 90 91\n1 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 78 79 81 83 84 85 86 87 88 89 92 93 94 95 96",
"output": "2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2"
},
{
"input": "95 4 91\n58 65 70 93\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 59 60 61 62 63 64 66 67 68 69 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 94 95",
"output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2"
},
{
"input": "98 88 10\n1 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 38 39 40 41 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 62 63 64 65 66 67 68 69 71 72 73 74 75 76 77 79 80 81 83 84 85 86 87 88 89 90 92 93 94 95 96 97 98\n3 7 32 37 42 61 70 78 82 91",
"output": "1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1"
},
{
"input": "98 96 2\n1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n6 7",
"output": "1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "97 97 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97\n94",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "97 97 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97\n20",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "96 96 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96\n48",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "95 95 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95\n55",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
}
] | 1,626,342,102
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 32
| 109
| 20,172,800
|
n, a, b = map(int, input().split())
x = list(map(int, input().split()[:a]))
y = list(map(int, input().split()[:b]))
for i in range(1, n + 1):
if i in x:
print(1, end = " ")
else :
print(2, end = " ")
|
Title: Pasha and Hamsters
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pasha has two hamsters: Arthur and Alexander. Pasha put *n* apples in front of them. Pasha knows which apples Arthur likes. Similarly, Pasha knows which apples Alexander likes. Pasha doesn't want any conflict between the hamsters (as they may like the same apple), so he decided to distribute the apples between the hamsters on his own. He is going to give some apples to Arthur and some apples to Alexander. It doesn't matter how many apples each hamster gets but it is important that each hamster gets only the apples he likes. It is possible that somebody doesn't get any apples.
Help Pasha distribute all the apples between the hamsters. Note that Pasha wants to distribute all the apples, not just some of them.
Input Specification:
The first line contains integers *n*, *a*, *b* (1<=β€<=*n*<=β€<=100;Β 1<=β€<=*a*,<=*b*<=β€<=*n*) β the number of apples Pasha has, the number of apples Arthur likes and the number of apples Alexander likes, correspondingly.
The next line contains *a* distinct integers β the numbers of the apples Arthur likes. The next line contains *b* distinct integers β the numbers of the apples Alexander likes.
Assume that the apples are numbered from 1 to *n*. The input is such that the answer exists.
Output Specification:
Print *n* characters, each of them equals either 1 or 2. If the *i*-h character equals 1, then the *i*-th apple should be given to Arthur, otherwise it should be given to Alexander. If there are multiple correct answers, you are allowed to print any of them.
Demo Input:
['4 2 3\n1 2\n2 3 4\n', '5 5 2\n3 4 1 2 5\n2 3\n']
Demo Output:
['1 1 2 2\n', '1 1 1 1 1\n']
Note:
none
|
```python
n, a, b = map(int, input().split())
x = list(map(int, input().split()[:a]))
y = list(map(int, input().split()[:b]))
for i in range(1, n + 1):
if i in x:
print(1, end = " ")
else :
print(2, end = " ")
```
| 3
|
|
633
|
A
|
Ebony and Ivory
|
PROGRAMMING
| 1,100
|
[
"brute force",
"math",
"number theory"
] | null | null |
Dante is engaged in a fight with "The Savior". Before he can fight it with his sword, he needs to break its shields. He has two guns, Ebony and Ivory, each of them is able to perform any non-negative number of shots.
For every bullet that hits the shield, Ebony deals *a* units of damage while Ivory deals *b* units of damage. In order to break the shield Dante has to deal exactly *c* units of damage. Find out if this is possible.
|
The first line of the input contains three integers *a*, *b*, *c* (1<=β€<=*a*,<=*b*<=β€<=100,<=1<=β€<=*c*<=β€<=10<=000)Β β the number of units of damage dealt by Ebony gun and Ivory gun, and the total number of damage required to break the shield, respectively.
|
Print "Yes" (without quotes) if Dante can deal exactly *c* damage to the shield and "No" (without quotes) otherwise.
|
[
"4 6 15\n",
"3 2 7\n",
"6 11 6\n"
] |
[
"No\n",
"Yes\n",
"Yes\n"
] |
In the second sample, Dante can fire 1 bullet from Ebony and 2 from Ivory to deal exactly 1Β·3β+β2Β·2β=β7 damage. In the third sample, Dante can fire 1 bullet from ebony and no bullets from ivory to do 1Β·6β+β0Β·11β=β6 damage.
| 250
|
[
{
"input": "4 6 15",
"output": "No"
},
{
"input": "3 2 7",
"output": "Yes"
},
{
"input": "6 11 6",
"output": "Yes"
},
{
"input": "3 12 15",
"output": "Yes"
},
{
"input": "5 5 10",
"output": "Yes"
},
{
"input": "6 6 7",
"output": "No"
},
{
"input": "1 1 20",
"output": "Yes"
},
{
"input": "12 14 19",
"output": "No"
},
{
"input": "15 12 26",
"output": "No"
},
{
"input": "2 4 8",
"output": "Yes"
},
{
"input": "4 5 30",
"output": "Yes"
},
{
"input": "4 5 48",
"output": "Yes"
},
{
"input": "2 17 105",
"output": "Yes"
},
{
"input": "10 25 282",
"output": "No"
},
{
"input": "6 34 323",
"output": "No"
},
{
"input": "2 47 464",
"output": "Yes"
},
{
"input": "4 53 113",
"output": "Yes"
},
{
"input": "6 64 546",
"output": "Yes"
},
{
"input": "1 78 725",
"output": "Yes"
},
{
"input": "1 84 811",
"output": "Yes"
},
{
"input": "3 100 441",
"output": "Yes"
},
{
"input": "20 5 57",
"output": "No"
},
{
"input": "14 19 143",
"output": "No"
},
{
"input": "17 23 248",
"output": "No"
},
{
"input": "11 34 383",
"output": "Yes"
},
{
"input": "20 47 568",
"output": "Yes"
},
{
"input": "16 58 410",
"output": "Yes"
},
{
"input": "11 70 1199",
"output": "Yes"
},
{
"input": "16 78 712",
"output": "Yes"
},
{
"input": "20 84 562",
"output": "No"
},
{
"input": "19 100 836",
"output": "Yes"
},
{
"input": "23 10 58",
"output": "No"
},
{
"input": "25 17 448",
"output": "Yes"
},
{
"input": "22 24 866",
"output": "Yes"
},
{
"input": "24 35 67",
"output": "No"
},
{
"input": "29 47 264",
"output": "Yes"
},
{
"input": "23 56 45",
"output": "No"
},
{
"input": "25 66 1183",
"output": "Yes"
},
{
"input": "21 71 657",
"output": "Yes"
},
{
"input": "29 81 629",
"output": "No"
},
{
"input": "23 95 2226",
"output": "Yes"
},
{
"input": "32 4 62",
"output": "No"
},
{
"input": "37 15 789",
"output": "Yes"
},
{
"input": "39 24 999",
"output": "Yes"
},
{
"input": "38 32 865",
"output": "No"
},
{
"input": "32 50 205",
"output": "No"
},
{
"input": "31 57 1362",
"output": "Yes"
},
{
"input": "38 68 1870",
"output": "Yes"
},
{
"input": "36 76 549",
"output": "No"
},
{
"input": "35 84 1257",
"output": "No"
},
{
"input": "39 92 2753",
"output": "Yes"
},
{
"input": "44 1 287",
"output": "Yes"
},
{
"input": "42 12 830",
"output": "No"
},
{
"input": "42 27 9",
"output": "No"
},
{
"input": "49 40 1422",
"output": "No"
},
{
"input": "44 42 2005",
"output": "No"
},
{
"input": "50 55 2479",
"output": "No"
},
{
"input": "48 65 917",
"output": "No"
},
{
"input": "45 78 152",
"output": "No"
},
{
"input": "43 90 4096",
"output": "Yes"
},
{
"input": "43 94 4316",
"output": "Yes"
},
{
"input": "60 7 526",
"output": "Yes"
},
{
"input": "53 11 735",
"output": "Yes"
},
{
"input": "52 27 609",
"output": "Yes"
},
{
"input": "57 32 992",
"output": "Yes"
},
{
"input": "52 49 421",
"output": "No"
},
{
"input": "57 52 2634",
"output": "Yes"
},
{
"input": "54 67 3181",
"output": "Yes"
},
{
"input": "52 73 638",
"output": "No"
},
{
"input": "57 84 3470",
"output": "No"
},
{
"input": "52 100 5582",
"output": "No"
},
{
"input": "62 1 501",
"output": "Yes"
},
{
"input": "63 17 858",
"output": "Yes"
},
{
"input": "70 24 1784",
"output": "Yes"
},
{
"input": "65 32 1391",
"output": "Yes"
},
{
"input": "62 50 2775",
"output": "No"
},
{
"input": "62 58 88",
"output": "No"
},
{
"input": "66 68 3112",
"output": "Yes"
},
{
"input": "61 71 1643",
"output": "No"
},
{
"input": "69 81 3880",
"output": "No"
},
{
"input": "63 100 1960",
"output": "Yes"
},
{
"input": "73 6 431",
"output": "Yes"
},
{
"input": "75 19 736",
"output": "Yes"
},
{
"input": "78 25 247",
"output": "No"
},
{
"input": "79 36 2854",
"output": "Yes"
},
{
"input": "80 43 1864",
"output": "Yes"
},
{
"input": "76 55 2196",
"output": "Yes"
},
{
"input": "76 69 4122",
"output": "Yes"
},
{
"input": "76 76 4905",
"output": "No"
},
{
"input": "75 89 3056",
"output": "Yes"
},
{
"input": "73 100 3111",
"output": "Yes"
},
{
"input": "84 9 530",
"output": "No"
},
{
"input": "82 18 633",
"output": "No"
},
{
"input": "85 29 2533",
"output": "Yes"
},
{
"input": "89 38 2879",
"output": "Yes"
},
{
"input": "89 49 2200",
"output": "Yes"
},
{
"input": "88 60 4140",
"output": "Yes"
},
{
"input": "82 68 1299",
"output": "No"
},
{
"input": "90 76 2207",
"output": "No"
},
{
"input": "83 84 4923",
"output": "Yes"
},
{
"input": "89 99 7969",
"output": "Yes"
},
{
"input": "94 9 168",
"output": "No"
},
{
"input": "91 20 1009",
"output": "No"
},
{
"input": "93 23 2872",
"output": "Yes"
},
{
"input": "97 31 3761",
"output": "Yes"
},
{
"input": "99 46 1341",
"output": "Yes"
},
{
"input": "98 51 2845",
"output": "No"
},
{
"input": "93 66 3412",
"output": "No"
},
{
"input": "95 76 3724",
"output": "Yes"
},
{
"input": "91 87 6237",
"output": "Yes"
},
{
"input": "98 97 7886",
"output": "Yes"
},
{
"input": "12 17 15",
"output": "No"
},
{
"input": "93 94 95",
"output": "No"
},
{
"input": "27 43 27",
"output": "Yes"
},
{
"input": "17 43 68",
"output": "Yes"
},
{
"input": "44 12 12",
"output": "Yes"
},
{
"input": "44 50 150",
"output": "Yes"
},
{
"input": "1 1 10000",
"output": "Yes"
},
{
"input": "2 3 10000",
"output": "Yes"
},
{
"input": "100 1 10",
"output": "Yes"
},
{
"input": "3 2 1",
"output": "No"
},
{
"input": "1 1 1",
"output": "Yes"
},
{
"input": "9 9 10000",
"output": "No"
},
{
"input": "2 3 9995",
"output": "Yes"
},
{
"input": "3 5 4",
"output": "No"
},
{
"input": "99 98 100",
"output": "No"
},
{
"input": "6 10 2",
"output": "No"
},
{
"input": "1 6 5",
"output": "Yes"
},
{
"input": "1 4 3",
"output": "Yes"
},
{
"input": "3 2 3",
"output": "Yes"
},
{
"input": "1 7 6",
"output": "Yes"
},
{
"input": "2 3 9871",
"output": "Yes"
},
{
"input": "10 5 5",
"output": "Yes"
},
{
"input": "10 8 2",
"output": "No"
}
] | 1,500,102,277
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 134
| 62
| 5,529,600
|
string = input()
a, b, n = map(int, string.split())
for x in range(n // a + 1):
if (n - a * x) % b == 0:
print("Yes")
break
else:
print("No")
|
Title: Ebony and Ivory
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Dante is engaged in a fight with "The Savior". Before he can fight it with his sword, he needs to break its shields. He has two guns, Ebony and Ivory, each of them is able to perform any non-negative number of shots.
For every bullet that hits the shield, Ebony deals *a* units of damage while Ivory deals *b* units of damage. In order to break the shield Dante has to deal exactly *c* units of damage. Find out if this is possible.
Input Specification:
The first line of the input contains three integers *a*, *b*, *c* (1<=β€<=*a*,<=*b*<=β€<=100,<=1<=β€<=*c*<=β€<=10<=000)Β β the number of units of damage dealt by Ebony gun and Ivory gun, and the total number of damage required to break the shield, respectively.
Output Specification:
Print "Yes" (without quotes) if Dante can deal exactly *c* damage to the shield and "No" (without quotes) otherwise.
Demo Input:
['4 6 15\n', '3 2 7\n', '6 11 6\n']
Demo Output:
['No\n', 'Yes\n', 'Yes\n']
Note:
In the second sample, Dante can fire 1 bullet from Ebony and 2 from Ivory to deal exactly 1Β·3β+β2Β·2β=β7 damage. In the third sample, Dante can fire 1 bullet from ebony and no bullets from ivory to do 1Β·6β+β0Β·11β=β6 damage.
|
```python
string = input()
a, b, n = map(int, string.split())
for x in range(n // a + 1):
if (n - a * x) % b == 0:
print("Yes")
break
else:
print("No")
```
| 3
|
|
251
|
A
|
Points on Line
|
PROGRAMMING
| 1,300
|
[
"binary search",
"combinatorics",
"two pointers"
] | null | null |
Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*.
Note that the order of the points inside the group of three chosen points doesn't matter.
|
The first line contains two integers: *n* and *d* (1<=β€<=*n*<=β€<=105;Β 1<=β€<=*d*<=β€<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 β the *x*-coordinates of the points that Petya has got.
It is guaranteed that the coordinates of the points in the input strictly increase.
|
Print a single integer β the number of groups of three points, where the distance between two farthest points doesn't exceed *d*.
Please do not use the %lld specifier to read or write 64-bit integers in Π‘++. It is preferred to use the cin, cout streams or the %I64d specifier.
|
[
"4 3\n1 2 3 4\n",
"4 2\n-3 -2 -1 0\n",
"5 19\n1 10 20 30 50\n"
] |
[
"4\n",
"2\n",
"1\n"
] |
In the first sample any group of three points meets our conditions.
In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}.
In the third sample only one group does: {1, 10, 20}.
| 500
|
[
{
"input": "4 3\n1 2 3 4",
"output": "4"
},
{
"input": "4 2\n-3 -2 -1 0",
"output": "2"
},
{
"input": "5 19\n1 10 20 30 50",
"output": "1"
},
{
"input": "10 5\n31 36 43 47 48 50 56 69 71 86",
"output": "2"
},
{
"input": "10 50\n1 4 20 27 65 79 82 83 99 100",
"output": "25"
},
{
"input": "10 90\n24 27 40 41 61 69 73 87 95 97",
"output": "120"
},
{
"input": "100 100\n-98 -97 -96 -93 -92 -91 -90 -87 -86 -84 -81 -80 -79 -78 -76 -75 -73 -71 -69 -67 -65 -64 -63 -62 -61 -54 -51 -50 -49 -48 -46 -45 -44 -37 -36 -33 -30 -28 -27 -16 -15 -13 -12 -10 -9 -7 -6 -5 -4 2 3 5 8 9 10 11 13 14 15 16 17 19 22 24 25 26 27 28 30 31 32 36 40 43 45 46 47 50 51 52 53 58 60 63 69 70 73 78 80 81 82 85 88 89 90 91 95 96 97 99",
"output": "79351"
},
{
"input": "1 14751211\n847188590",
"output": "0"
},
{
"input": "2 1000000000\n-907894512 -289906312",
"output": "0"
},
{
"input": "2 1000000000\n-14348867 1760823",
"output": "0"
},
{
"input": "3 1000000000\n-5 -1 1",
"output": "1"
}
] | 1,689,425,115
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 39
| 404
| 11,059,200
|
from collections import defaultdict
import math
import sys
from bisect import bisect_right
def clc():
n,d = map(int,input().split())
arr = list(map(int,input().split()))
arr = sorted(arr)
ans= 0
for i in range(0,len(arr)):
curr = arr[i]
back = curr-d-1
ind = bisect_right(arr,back)
contri = ((i-ind)*(i-ind-1))//2
ans+=contri
print(ans)
return True
cc = clc()
if not cc :
print(-1)
|
Title: Points on Line
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*.
Note that the order of the points inside the group of three chosen points doesn't matter.
Input Specification:
The first line contains two integers: *n* and *d* (1<=β€<=*n*<=β€<=105;Β 1<=β€<=*d*<=β€<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 β the *x*-coordinates of the points that Petya has got.
It is guaranteed that the coordinates of the points in the input strictly increase.
Output Specification:
Print a single integer β the number of groups of three points, where the distance between two farthest points doesn't exceed *d*.
Please do not use the %lld specifier to read or write 64-bit integers in Π‘++. It is preferred to use the cin, cout streams or the %I64d specifier.
Demo Input:
['4 3\n1 2 3 4\n', '4 2\n-3 -2 -1 0\n', '5 19\n1 10 20 30 50\n']
Demo Output:
['4\n', '2\n', '1\n']
Note:
In the first sample any group of three points meets our conditions.
In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}.
In the third sample only one group does: {1, 10, 20}.
|
```python
from collections import defaultdict
import math
import sys
from bisect import bisect_right
def clc():
n,d = map(int,input().split())
arr = list(map(int,input().split()))
arr = sorted(arr)
ans= 0
for i in range(0,len(arr)):
curr = arr[i]
back = curr-d-1
ind = bisect_right(arr,back)
contri = ((i-ind)*(i-ind-1))//2
ans+=contri
print(ans)
return True
cc = clc()
if not cc :
print(-1)
```
| 3
|
|
412
|
B
|
Network Configuration
|
PROGRAMMING
| 900
|
[
"greedy",
"sortings"
] | null | null |
The R1 company wants to hold a web search championship. There were *n* computers given for the competition, each of them is connected to the Internet. The organizers believe that the data transfer speed directly affects the result. The higher the speed of the Internet is, the faster the participant will find the necessary information. Therefore, before the competition started, each computer had its maximum possible data transfer speed measured. On the *i*-th computer it was *a**i* kilobits per second.
There will be *k* participants competing in the championship, each should get a separate computer. The organizing company does not want any of the participants to have an advantage over the others, so they want to provide the same data transfer speed to each participant's computer. Also, the organizers want to create the most comfortable conditions for the participants, so the data transfer speed on the participants' computers should be as large as possible.
The network settings of the R1 company has a special option that lets you to cut the initial maximum data transfer speed of any computer to any lower speed. How should the R1 company configure the network using the described option so that at least *k* of *n* computers had the same data transfer speed and the data transfer speed on these computers was as large as possible?
|
The first line contains two space-separated integers *n* and *k* (1<=β€<=*k*<=β€<=*n*<=β€<=100) β the number of computers and the number of participants, respectively. In the second line you have a space-separated sequence consisting of *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (16<=β€<=*a**i*<=β€<=32768); number *a**i* denotes the maximum data transfer speed on the *i*-th computer.
|
Print a single integer β the maximum Internet speed value. It is guaranteed that the answer to the problem is always an integer.
|
[
"3 2\n40 20 30\n",
"6 4\n100 20 40 20 50 50\n"
] |
[
"30\n",
"40\n"
] |
In the first test case the organizers can cut the first computer's speed to 30 kilobits. Then two computers (the first and the third one) will have the same speed of 30 kilobits. They should be used as the participants' computers. This answer is optimal.
| 1,000
|
[
{
"input": "3 2\n40 20 30",
"output": "30"
},
{
"input": "6 4\n100 20 40 20 50 50",
"output": "40"
},
{
"input": "1 1\n16",
"output": "16"
},
{
"input": "2 1\n10000 17",
"output": "10000"
},
{
"input": "2 2\n200 300",
"output": "200"
},
{
"input": "3 1\n21 25 16",
"output": "25"
},
{
"input": "3 2\n23 20 26",
"output": "23"
},
{
"input": "3 3\n19 29 28",
"output": "19"
},
{
"input": "100 2\n82 37 88 28 98 30 38 76 90 68 79 29 67 93 19 71 122 103 110 79 20 75 68 101 16 120 114 68 73 71 103 114 99 70 73 18 36 31 32 87 32 79 44 72 58 25 44 72 106 38 47 17 83 41 75 23 49 30 73 67 117 52 22 117 109 89 66 88 75 62 17 35 83 69 63 60 23 120 93 18 112 93 39 72 116 109 106 72 27 123 117 119 87 72 33 73 70 110 43 43",
"output": "122"
},
{
"input": "30 13\n36 82 93 91 48 62 59 96 72 40 45 68 97 70 26 22 35 98 92 83 72 49 70 39 53 94 97 65 37 28",
"output": "70"
},
{
"input": "50 49\n20 77 31 40 18 87 44 64 70 48 29 59 98 33 95 17 69 84 81 17 24 66 37 54 97 55 77 79 42 21 23 42 36 55 81 83 94 45 25 84 20 97 37 95 46 92 73 39 90 71",
"output": "17"
},
{
"input": "40 40\n110 674 669 146 882 590 650 844 427 187 380 711 122 94 38 216 414 874 380 31 895 390 414 557 913 68 665 964 895 708 594 17 24 621 780 509 837 550 630 568",
"output": "17"
},
{
"input": "40 1\n851 110 1523 1572 945 4966 4560 756 2373 4760 144 2579 4022 220 1924 1042 160 2792 2425 4483 2154 4120 319 4617 4686 2502 4797 4941 4590 4478 4705 4355 695 684 1560 684 2780 1090 4995 3113",
"output": "4995"
},
{
"input": "70 12\n6321 2502 557 2734 16524 10133 13931 5045 3897 18993 5745 8687 12344 1724 12071 2345 3852 9312 14432 8615 7461 2439 4751 19872 12266 12997 8276 8155 9502 3047 7226 12754 9447 17349 1888 14564 18257 18099 8924 14199 738 13693 10917 15554 15773 17859 13391 13176 10567 19658 16494 3968 13977 14694 10537 4044 16402 9714 4425 13599 19660 2426 19687 2455 2382 3413 5754 113 7542 8353",
"output": "16402"
},
{
"input": "80 60\n6159 26457 23753 27073 9877 4492 11957 10989 27151 6552 1646 7773 23924 27554 10517 8788 31160 455 12625 22009 22133 15657 14968 31871 15344 16550 27414 876 31213 10895 21508 17516 12747 59 11786 10497 30143 25548 22003 2809 11694 30395 8122 31248 23075 19013 31614 9133 27942 27346 15969 19415 10367 8424 29355 18903 3396 6327 4201 24124 24266 22586 724 1595 3972 17526 2843 20982 23655 12714 18050 15225 2658 7236 27555 13023 729 9022 17386 2585",
"output": "8122"
},
{
"input": "100 1\n199 348 489 76 638 579 982 125 28 401 228 117 195 337 80 914 752 98 679 417 47 225 357 413 849 622 477 620 487 223 321 240 439 393 733 660 652 500 877 40 788 246 376 723 952 601 912 316 598 809 476 932 384 147 982 271 202 695 129 303 304 712 49 306 598 141 833 730 946 708 724 788 202 465 951 118 279 706 214 655 152 976 998 231 487 311 342 317 243 554 977 232 365 643 336 501 761 400 600 528",
"output": "998"
},
{
"input": "80 50\n15160 6853 20254 11358 19535 27691 2983 31650 9219 11833 32053 31695 21511 4320 4384 24843 1454 31543 18796 13815 1546 27926 16276 14315 12542 25370 24890 29647 3584 17867 12446 15072 19852 30207 16361 7964 5343 398 10837 31114 9252 12767 15098 22562 32637 31823 8160 12658 6422 19142 12448 6765 7373 868 31712 24856 23251 29200 8159 16144 27165 4308 13652 12502 4183 7961 3032 26855 8687 12263 24319 7722 19460 30700 29806 1280 21141 25965 25550 26881",
"output": "12448"
},
{
"input": "50 16\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 1\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 2\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 100\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 99\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
}
] | 1,404,678,062
| 722
|
Python 3
|
OK
|
TESTS
| 34
| 62
| 0
|
n, k = list(map(int, input().split()))
s = list(map(int, input().split()))
s.sort()
print(s[- k])
|
Title: Network Configuration
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The R1 company wants to hold a web search championship. There were *n* computers given for the competition, each of them is connected to the Internet. The organizers believe that the data transfer speed directly affects the result. The higher the speed of the Internet is, the faster the participant will find the necessary information. Therefore, before the competition started, each computer had its maximum possible data transfer speed measured. On the *i*-th computer it was *a**i* kilobits per second.
There will be *k* participants competing in the championship, each should get a separate computer. The organizing company does not want any of the participants to have an advantage over the others, so they want to provide the same data transfer speed to each participant's computer. Also, the organizers want to create the most comfortable conditions for the participants, so the data transfer speed on the participants' computers should be as large as possible.
The network settings of the R1 company has a special option that lets you to cut the initial maximum data transfer speed of any computer to any lower speed. How should the R1 company configure the network using the described option so that at least *k* of *n* computers had the same data transfer speed and the data transfer speed on these computers was as large as possible?
Input Specification:
The first line contains two space-separated integers *n* and *k* (1<=β€<=*k*<=β€<=*n*<=β€<=100) β the number of computers and the number of participants, respectively. In the second line you have a space-separated sequence consisting of *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (16<=β€<=*a**i*<=β€<=32768); number *a**i* denotes the maximum data transfer speed on the *i*-th computer.
Output Specification:
Print a single integer β the maximum Internet speed value. It is guaranteed that the answer to the problem is always an integer.
Demo Input:
['3 2\n40 20 30\n', '6 4\n100 20 40 20 50 50\n']
Demo Output:
['30\n', '40\n']
Note:
In the first test case the organizers can cut the first computer's speed to 30 kilobits. Then two computers (the first and the third one) will have the same speed of 30 kilobits. They should be used as the participants' computers. This answer is optimal.
|
```python
n, k = list(map(int, input().split()))
s = list(map(int, input().split()))
s.sort()
print(s[- k])
```
| 3
|
|
714
|
B
|
Filya and Homework
|
PROGRAMMING
| 1,200
|
[
"implementation",
"sortings"
] | null | null |
Today, hedgehog Filya went to school for the very first time! Teacher gave him a homework which Filya was unable to complete without your help.
Filya is given an array of non-negative integers *a*1,<=*a*2,<=...,<=*a**n*. First, he pick an integer *x* and then he adds *x* to some elements of the array (no more than once), subtract *x* from some other elements (also, no more than once) and do no change other elements. He wants all elements of the array to be equal.
Now he wonders if it's possible to pick such integer *x* and change some elements of the array using this *x* in order to make all elements equal.
|
The first line of the input contains an integer *n* (1<=β€<=*n*<=β€<=100<=000)Β β the number of integers in the Filya's array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=β€<=*a**i*<=β€<=109)Β β elements of the array.
|
If it's impossible to make all elements of the array equal using the process given in the problem statement, then print "NO" (without quotes) in the only line of the output. Otherwise print "YES" (without quotes).
|
[
"5\n1 3 3 2 1\n",
"5\n1 2 3 4 5\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample Filya should select *x*β=β1, then add it to the first and the last elements of the array and subtract from the second and the third elements.
| 1,000
|
[
{
"input": "5\n1 3 3 2 1",
"output": "YES"
},
{
"input": "5\n1 2 3 4 5",
"output": "NO"
},
{
"input": "2\n1 2",
"output": "YES"
},
{
"input": "3\n1 2 3",
"output": "YES"
},
{
"input": "3\n1 1 1",
"output": "YES"
},
{
"input": "2\n1 1000000000",
"output": "YES"
},
{
"input": "4\n1 2 3 4",
"output": "NO"
},
{
"input": "10\n1 1 1 1 1 2 2 2 2 2",
"output": "YES"
},
{
"input": "2\n4 2",
"output": "YES"
},
{
"input": "4\n1 1 4 7",
"output": "YES"
},
{
"input": "3\n99999999 1 50000000",
"output": "YES"
},
{
"input": "1\n0",
"output": "YES"
},
{
"input": "5\n0 0 0 0 0",
"output": "YES"
},
{
"input": "4\n4 2 2 1",
"output": "NO"
},
{
"input": "3\n1 4 2",
"output": "NO"
},
{
"input": "3\n1 4 100",
"output": "NO"
},
{
"input": "3\n2 5 11",
"output": "NO"
},
{
"input": "3\n1 4 6",
"output": "NO"
},
{
"input": "3\n1 2 4",
"output": "NO"
},
{
"input": "3\n1 2 7",
"output": "NO"
},
{
"input": "5\n1 1 1 4 5",
"output": "NO"
},
{
"input": "2\n100000001 100000003",
"output": "YES"
},
{
"input": "3\n7 4 5",
"output": "NO"
},
{
"input": "3\n2 3 5",
"output": "NO"
},
{
"input": "3\n1 2 5",
"output": "NO"
},
{
"input": "2\n2 3",
"output": "YES"
},
{
"input": "3\n2 100 29",
"output": "NO"
},
{
"input": "3\n0 1 5",
"output": "NO"
},
{
"input": "3\n1 3 6",
"output": "NO"
},
{
"input": "3\n2 1 3",
"output": "YES"
},
{
"input": "3\n1 5 100",
"output": "NO"
},
{
"input": "3\n1 4 8",
"output": "NO"
},
{
"input": "3\n1 7 10",
"output": "NO"
},
{
"input": "3\n5 4 1",
"output": "NO"
},
{
"input": "3\n1 6 10",
"output": "NO"
},
{
"input": "4\n1 3 4 5",
"output": "NO"
},
{
"input": "3\n1 5 4",
"output": "NO"
},
{
"input": "5\n1 2 3 3 5",
"output": "NO"
},
{
"input": "3\n2 3 1",
"output": "YES"
},
{
"input": "3\n2 3 8",
"output": "NO"
},
{
"input": "3\n0 3 5",
"output": "NO"
},
{
"input": "3\n1 5 10",
"output": "NO"
},
{
"input": "3\n1 7 2",
"output": "NO"
},
{
"input": "3\n1 3 9",
"output": "NO"
},
{
"input": "3\n1 1 2",
"output": "YES"
},
{
"input": "7\n1 1 1 1 1 2 4",
"output": "NO"
},
{
"input": "5\n1 4 4 4 6",
"output": "NO"
},
{
"input": "5\n1 2 2 4 4",
"output": "NO"
},
{
"input": "3\n1 9 10",
"output": "NO"
},
{
"input": "8\n1 1 1 1 1 1 2 3",
"output": "YES"
},
{
"input": "3\n1 2 100",
"output": "NO"
},
{
"input": "3\n1 3 4",
"output": "NO"
},
{
"input": "3\n1 15 14",
"output": "NO"
},
{
"input": "3\n1 3 8",
"output": "NO"
},
{
"input": "3\n1 2 10",
"output": "NO"
},
{
"input": "4\n2 2 4 5",
"output": "NO"
},
{
"input": "3\n1 3 5",
"output": "YES"
},
{
"input": "5\n3 6 7 8 9",
"output": "NO"
},
{
"input": "3\n7 6 8",
"output": "YES"
},
{
"input": "3\n3 2 1",
"output": "YES"
},
{
"input": "5\n1 2 2 2 3",
"output": "YES"
},
{
"input": "3\n4 6 7",
"output": "NO"
},
{
"input": "3\n2 0 4",
"output": "YES"
},
{
"input": "4\n10 20 21 30",
"output": "NO"
},
{
"input": "4\n0 2 3 4",
"output": "NO"
},
{
"input": "3\n3 6 12",
"output": "NO"
},
{
"input": "5\n0 0 1 3 5",
"output": "NO"
},
{
"input": "3\n3 5 8",
"output": "NO"
},
{
"input": "3\n1 4 4",
"output": "YES"
},
{
"input": "4\n2 4 5 6",
"output": "NO"
}
] | 1,672,171,103
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 79
| 62
| 8,192,000
|
# for i in range(5005):
# count[i]=0
# for i in range(n):
# count[arr[i]]=count.get(arr[i], 0) + 1
n=int(input())
set1=set()
[set1.add(x) for x in input().split()]
# print(set1)
if len(set1)==1 or len(set1)==2:
print("YES")
exit()
arr=[]
if len(set1)==3:
for i in set1:
arr.append(int(i))
arr.sort()
# print(arr)
# x=arr[2]+arr[0]-(2*arr[1])
if arr[1]-arr[0]==arr[2]-arr[1]:
print("YES")
exit()
print("NO")
# print(arr)
|
Title: Filya and Homework
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today, hedgehog Filya went to school for the very first time! Teacher gave him a homework which Filya was unable to complete without your help.
Filya is given an array of non-negative integers *a*1,<=*a*2,<=...,<=*a**n*. First, he pick an integer *x* and then he adds *x* to some elements of the array (no more than once), subtract *x* from some other elements (also, no more than once) and do no change other elements. He wants all elements of the array to be equal.
Now he wonders if it's possible to pick such integer *x* and change some elements of the array using this *x* in order to make all elements equal.
Input Specification:
The first line of the input contains an integer *n* (1<=β€<=*n*<=β€<=100<=000)Β β the number of integers in the Filya's array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=β€<=*a**i*<=β€<=109)Β β elements of the array.
Output Specification:
If it's impossible to make all elements of the array equal using the process given in the problem statement, then print "NO" (without quotes) in the only line of the output. Otherwise print "YES" (without quotes).
Demo Input:
['5\n1 3 3 2 1\n', '5\n1 2 3 4 5\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample Filya should select *x*β=β1, then add it to the first and the last elements of the array and subtract from the second and the third elements.
|
```python
# for i in range(5005):
# count[i]=0
# for i in range(n):
# count[arr[i]]=count.get(arr[i], 0) + 1
n=int(input())
set1=set()
[set1.add(x) for x in input().split()]
# print(set1)
if len(set1)==1 or len(set1)==2:
print("YES")
exit()
arr=[]
if len(set1)==3:
for i in set1:
arr.append(int(i))
arr.sort()
# print(arr)
# x=arr[2]+arr[0]-(2*arr[1])
if arr[1]-arr[0]==arr[2]-arr[1]:
print("YES")
exit()
print("NO")
# print(arr)
```
| 3
|
|
420
|
A
|
Start Up
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Recently, a start up by two students of a state university of city F gained incredible popularity. Now it's time to start a new company. But what do we call it?
The market analysts came up with a very smart plan: the name of the company should be identical to its reflection in a mirror! In other words, if we write out the name of the company on a piece of paper in a line (horizontally, from left to right) with large English letters, then put this piece of paper in front of the mirror, then the reflection of the name in the mirror should perfectly match the line written on the piece of paper.
There are many suggestions for the company name, so coming up to the mirror with a piece of paper for each name wouldn't be sensible. The founders of the company decided to automatize this process. They asked you to write a program that can, given a word, determine whether the word is a 'mirror' word or not.
|
The first line contains a non-empty name that needs to be checked. The name contains at most 105 large English letters. The name will be written with the next sans serif font:
|
Print 'YES' (without the quotes), if the given name matches its mirror reflection. Otherwise, print 'NO' (without the quotes).
|
[
"AHA\n",
"Z\n",
"XO\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "AHA",
"output": "YES"
},
{
"input": "Z",
"output": "NO"
},
{
"input": "XO",
"output": "NO"
},
{
"input": "AAA",
"output": "YES"
},
{
"input": "AHHA",
"output": "YES"
},
{
"input": "BAB",
"output": "NO"
},
{
"input": "OMMMAAMMMO",
"output": "YES"
},
{
"input": "YYHUIUGYI",
"output": "NO"
},
{
"input": "TT",
"output": "YES"
},
{
"input": "UUU",
"output": "YES"
},
{
"input": "WYYW",
"output": "YES"
},
{
"input": "MITIM",
"output": "YES"
},
{
"input": "VO",
"output": "NO"
},
{
"input": "WWS",
"output": "NO"
},
{
"input": "VIYMAXXAVM",
"output": "NO"
},
{
"input": "OVWIHIWVYXMVAAAATOXWOIUUHYXHIHHVUIOOXWHOXTUUMUUVHVWWYUTIAUAITAOMHXWMTTOIVMIVOTHOVOIOHYHAOXWAUVWAVIVM",
"output": "NO"
},
{
"input": "CC",
"output": "NO"
},
{
"input": "QOQ",
"output": "NO"
},
{
"input": "AEEA",
"output": "NO"
},
{
"input": "OQQQO",
"output": "NO"
},
{
"input": "HNCMEEMCNH",
"output": "NO"
},
{
"input": "QDPINBMCRFWXPDBFGOZVVOCEMJRUCTOADEWEGTVBVBFWWRPGYEEYGPRWWFBVBVTGEWEDAOTCURJMECOVVZOGFBDPXWFRCMBNIPDQ",
"output": "NO"
},
{
"input": "A",
"output": "YES"
},
{
"input": "B",
"output": "NO"
},
{
"input": "C",
"output": "NO"
},
{
"input": "D",
"output": "NO"
},
{
"input": "E",
"output": "NO"
},
{
"input": "F",
"output": "NO"
},
{
"input": "G",
"output": "NO"
},
{
"input": "H",
"output": "YES"
},
{
"input": "I",
"output": "YES"
},
{
"input": "J",
"output": "NO"
},
{
"input": "K",
"output": "NO"
},
{
"input": "L",
"output": "NO"
},
{
"input": "M",
"output": "YES"
},
{
"input": "N",
"output": "NO"
},
{
"input": "O",
"output": "YES"
},
{
"input": "P",
"output": "NO"
},
{
"input": "Q",
"output": "NO"
},
{
"input": "R",
"output": "NO"
},
{
"input": "S",
"output": "NO"
},
{
"input": "T",
"output": "YES"
},
{
"input": "U",
"output": "YES"
},
{
"input": "V",
"output": "YES"
},
{
"input": "W",
"output": "YES"
},
{
"input": "X",
"output": "YES"
},
{
"input": "Y",
"output": "YES"
},
{
"input": "JL",
"output": "NO"
},
{
"input": "AAAKTAAA",
"output": "NO"
},
{
"input": "AKA",
"output": "NO"
},
{
"input": "AAJAA",
"output": "NO"
},
{
"input": "ABA",
"output": "NO"
},
{
"input": "AAAAAABAAAAAA",
"output": "NO"
},
{
"input": "ZZ",
"output": "NO"
},
{
"input": "ADA",
"output": "NO"
},
{
"input": "N",
"output": "NO"
},
{
"input": "P",
"output": "NO"
},
{
"input": "LAL",
"output": "NO"
},
{
"input": "AABAA",
"output": "NO"
},
{
"input": "AZA",
"output": "NO"
},
{
"input": "V",
"output": "YES"
},
{
"input": "SSS",
"output": "NO"
},
{
"input": "NNN",
"output": "NO"
},
{
"input": "S",
"output": "NO"
},
{
"input": "I",
"output": "YES"
},
{
"input": "SS",
"output": "NO"
},
{
"input": "E",
"output": "NO"
}
] | 1,687,324,334
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 80
| 92
| 1,945,600
|
l = ["A", "H", "I", "M", "O", "T", "U", "V", "W", "X", "Y"]
s = input()
x = "YES"
for i in s:
if i not in l:
x = "NO"
break
if s != s[::-1]:
x = "NO"
print(x)
|
Title: Start Up
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, a start up by two students of a state university of city F gained incredible popularity. Now it's time to start a new company. But what do we call it?
The market analysts came up with a very smart plan: the name of the company should be identical to its reflection in a mirror! In other words, if we write out the name of the company on a piece of paper in a line (horizontally, from left to right) with large English letters, then put this piece of paper in front of the mirror, then the reflection of the name in the mirror should perfectly match the line written on the piece of paper.
There are many suggestions for the company name, so coming up to the mirror with a piece of paper for each name wouldn't be sensible. The founders of the company decided to automatize this process. They asked you to write a program that can, given a word, determine whether the word is a 'mirror' word or not.
Input Specification:
The first line contains a non-empty name that needs to be checked. The name contains at most 105 large English letters. The name will be written with the next sans serif font:
Output Specification:
Print 'YES' (without the quotes), if the given name matches its mirror reflection. Otherwise, print 'NO' (without the quotes).
Demo Input:
['AHA\n', 'Z\n', 'XO\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
l = ["A", "H", "I", "M", "O", "T", "U", "V", "W", "X", "Y"]
s = input()
x = "YES"
for i in s:
if i not in l:
x = "NO"
break
if s != s[::-1]:
x = "NO"
print(x)
```
| 3
|
|
492
|
A
|
Vanya and Cubes
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Vanya got *n* cubes. He decided to build a pyramid from them. Vanya wants to build the pyramid as follows: the top level of the pyramid must consist of 1 cube, the second level must consist of 1<=+<=2<==<=3 cubes, the third level must have 1<=+<=2<=+<=3<==<=6 cubes, and so on. Thus, the *i*-th level of the pyramid must have 1<=+<=2<=+<=...<=+<=(*i*<=-<=1)<=+<=*i* cubes.
Vanya wants to know what is the maximum height of the pyramid that he can make using the given cubes.
|
The first line contains integer *n* (1<=β€<=*n*<=β€<=104) β the number of cubes given to Vanya.
|
Print the maximum possible height of the pyramid in the single line.
|
[
"1\n",
"25\n"
] |
[
"1\n",
"4\n"
] |
Illustration to the second sample:
| 500
|
[
{
"input": "1",
"output": "1"
},
{
"input": "25",
"output": "4"
},
{
"input": "2",
"output": "1"
},
{
"input": "4115",
"output": "28"
},
{
"input": "9894",
"output": "38"
},
{
"input": "7969",
"output": "35"
},
{
"input": "6560",
"output": "33"
},
{
"input": "4",
"output": "2"
},
{
"input": "3",
"output": "1"
},
{
"input": "5",
"output": "2"
},
{
"input": "19",
"output": "3"
},
{
"input": "20",
"output": "4"
},
{
"input": "9880",
"output": "38"
},
{
"input": "9879",
"output": "37"
},
{
"input": "7770",
"output": "35"
},
{
"input": "7769",
"output": "34"
},
{
"input": "2925",
"output": "25"
},
{
"input": "220",
"output": "10"
},
{
"input": "219",
"output": "9"
},
{
"input": "3046",
"output": "25"
},
{
"input": "7590",
"output": "34"
},
{
"input": "1014",
"output": "17"
},
{
"input": "7142",
"output": "34"
},
{
"input": "9999",
"output": "38"
},
{
"input": "10000",
"output": "38"
}
] | 1,697,910,071
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 25
| 77
| 0
|
number = int(input())
count = 0
cubs = 1
while number > 0:
if number - cubs >= 0:
number -= cubs
count += 1
cubs += count + 1
else:
break
print(count)
|
Title: Vanya and Cubes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vanya got *n* cubes. He decided to build a pyramid from them. Vanya wants to build the pyramid as follows: the top level of the pyramid must consist of 1 cube, the second level must consist of 1<=+<=2<==<=3 cubes, the third level must have 1<=+<=2<=+<=3<==<=6 cubes, and so on. Thus, the *i*-th level of the pyramid must have 1<=+<=2<=+<=...<=+<=(*i*<=-<=1)<=+<=*i* cubes.
Vanya wants to know what is the maximum height of the pyramid that he can make using the given cubes.
Input Specification:
The first line contains integer *n* (1<=β€<=*n*<=β€<=104) β the number of cubes given to Vanya.
Output Specification:
Print the maximum possible height of the pyramid in the single line.
Demo Input:
['1\n', '25\n']
Demo Output:
['1\n', '4\n']
Note:
Illustration to the second sample:
|
```python
number = int(input())
count = 0
cubs = 1
while number > 0:
if number - cubs >= 0:
number -= cubs
count += 1
cubs += count + 1
else:
break
print(count)
```
| 3
|
|
41
|
A
|
Translation
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Translation
|
2
|
256
|
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the Β«translationΒ». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
|
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
|
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
|
[
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,696,883,327
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 92
| 0
|
s = input()
t = input()
cont = len(s)
is_diff = False
for character in t:
cont -= 1
if character != s[cont]:
is_diff = True
break
print("NO") if is_diff else print("YES")
|
Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the Β«translationΒ». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
s = input()
t = input()
cont = len(s)
is_diff = False
for character in t:
cont -= 1
if character != s[cont]:
is_diff = True
break
print("NO") if is_diff else print("YES")
```
| 3.977
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,623,742,751
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 154
| 0
|
s=input()
count=0
times=0
for i in range(len(s)):
if s[i].isupper():
count=count+1
if s[i].islower():
times=times+1
if count>times:
print(s.upper())
if count<=times:
print(s.lower())
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
s=input()
count=0
times=0
for i in range(len(s)):
if s[i].isupper():
count=count+1
if s[i].islower():
times=times+1
if count>times:
print(s.upper())
if count<=times:
print(s.lower())
```
| 3.9615
|
920
|
B
|
Tea Queue
|
PROGRAMMING
| 1,200
|
[
"implementation"
] | null | null |
Recently *n* students from city S moved to city P to attend a programming camp.
They moved there by train. In the evening, all students in the train decided that they want to drink some tea. Of course, no two people can use the same teapot simultaneously, so the students had to form a queue to get their tea.
*i*-th student comes to the end of the queue at the beginning of *l**i*-th second. If there are multiple students coming to the queue in the same moment, then the student with greater index comes after the student with lesser index. Students in the queue behave as follows: if there is nobody in the queue before the student, then he uses the teapot for exactly one second and leaves the queue with his tea; otherwise the student waits for the people before him to get their tea. If at the beginning of *r**i*-th second student *i* still cannot get his tea (there is someone before him in the queue), then he leaves the queue without getting any tea.
For each student determine the second he will use the teapot and get his tea (if he actually gets it).
|
The first line contains one integer *t* β the number of test cases to solve (1<=β€<=*t*<=β€<=1000).
Then *t* test cases follow. The first line of each test case contains one integer *n* (1<=β€<=*n*<=β€<=1000) β the number of students.
Then *n* lines follow. Each line contains two integer *l**i*, *r**i* (1<=β€<=*l**i*<=β€<=*r**i*<=β€<=5000) β the second *i*-th student comes to the end of the queue, and the second he leaves the queue if he still cannot get his tea.
It is guaranteed that for every condition *l**i*<=-<=1<=β€<=*l**i* holds.
The sum of *n* over all test cases doesn't exceed 1000.
Note that in hacks you have to set *t*<==<=1.
|
For each test case print *n* integers. *i*-th of them must be equal to the second when *i*-th student gets his tea, or 0 if he leaves without tea.
|
[
"2\n2\n1 3\n1 4\n3\n1 5\n1 1\n2 3\n"
] |
[
"1 2 \n1 0 2 \n"
] |
The example contains 2 tests:
1. During 1-st second, students 1 and 2 come to the queue, and student 1 gets his tea. Student 2 gets his tea during 2-nd second. 1. During 1-st second, students 1 and 2 come to the queue, student 1 gets his tea, and student 2 leaves without tea. During 2-nd second, student 3 comes and gets his tea.
| 0
|
[
{
"input": "2\n2\n1 3\n1 4\n3\n1 5\n1 1\n2 3",
"output": "1 2 \n1 0 2 "
},
{
"input": "19\n1\n1 1\n1\n1 2\n1\n1 1000\n1\n1 2000\n1\n2 2\n1\n2 3\n1\n2 1000\n1\n2 2000\n1\n1999 1999\n1\n1999 2000\n1\n2000 2000\n2\n1 1\n1 1\n2\n1 1\n1 2\n2\n1 2\n1 1\n2\n1 2000\n1 1\n2\n1 1\n1 2000\n2\n1 2000\n2 2\n2\n2 2000\n2 2\n2\n2 2\n2 2000",
"output": "1 \n1 \n1 \n1 \n2 \n2 \n2 \n2 \n1999 \n1999 \n2000 \n1 0 \n1 2 \n1 0 \n1 0 \n1 2 \n1 2 \n2 0 \n2 3 "
},
{
"input": "1\n11\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "1 0 0 0 0 0 0 0 0 0 0 "
},
{
"input": "1\n5\n1 1\n1 2\n1 5\n1 1\n1 1",
"output": "1 2 3 0 0 "
}
] | 1,517,632,435
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 8
| 61
| 5,632,000
|
import sys
cases = int(sys.stdin.readline())
for x in range(0, cases):
people = int(sys.stdin.readline())
times = []
for i in range(0, people):
cur = [int(x) for x in sys.stdin.readline().strip().split(" ")]
times.append(cur)
time = 1
to_print = []
for t in times:
if(time < t[0]):
time = t[0]
if(time > t[1]):
to_print.append("0")
else:
to_print.append(str(time))
time += 1
print(" ".join(to_print))
|
Title: Tea Queue
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently *n* students from city S moved to city P to attend a programming camp.
They moved there by train. In the evening, all students in the train decided that they want to drink some tea. Of course, no two people can use the same teapot simultaneously, so the students had to form a queue to get their tea.
*i*-th student comes to the end of the queue at the beginning of *l**i*-th second. If there are multiple students coming to the queue in the same moment, then the student with greater index comes after the student with lesser index. Students in the queue behave as follows: if there is nobody in the queue before the student, then he uses the teapot for exactly one second and leaves the queue with his tea; otherwise the student waits for the people before him to get their tea. If at the beginning of *r**i*-th second student *i* still cannot get his tea (there is someone before him in the queue), then he leaves the queue without getting any tea.
For each student determine the second he will use the teapot and get his tea (if he actually gets it).
Input Specification:
The first line contains one integer *t* β the number of test cases to solve (1<=β€<=*t*<=β€<=1000).
Then *t* test cases follow. The first line of each test case contains one integer *n* (1<=β€<=*n*<=β€<=1000) β the number of students.
Then *n* lines follow. Each line contains two integer *l**i*, *r**i* (1<=β€<=*l**i*<=β€<=*r**i*<=β€<=5000) β the second *i*-th student comes to the end of the queue, and the second he leaves the queue if he still cannot get his tea.
It is guaranteed that for every condition *l**i*<=-<=1<=β€<=*l**i* holds.
The sum of *n* over all test cases doesn't exceed 1000.
Note that in hacks you have to set *t*<==<=1.
Output Specification:
For each test case print *n* integers. *i*-th of them must be equal to the second when *i*-th student gets his tea, or 0 if he leaves without tea.
Demo Input:
['2\n2\n1 3\n1 4\n3\n1 5\n1 1\n2 3\n']
Demo Output:
['1 2 \n1 0 2 \n']
Note:
The example contains 2 tests:
1. During 1-st second, students 1 and 2 come to the queue, and student 1 gets his tea. Student 2 gets his tea during 2-nd second. 1. During 1-st second, students 1 and 2 come to the queue, student 1 gets his tea, and student 2 leaves without tea. During 2-nd second, student 3 comes and gets his tea.
|
```python
import sys
cases = int(sys.stdin.readline())
for x in range(0, cases):
people = int(sys.stdin.readline())
times = []
for i in range(0, people):
cur = [int(x) for x in sys.stdin.readline().strip().split(" ")]
times.append(cur)
time = 1
to_print = []
for t in times:
if(time < t[0]):
time = t[0]
if(time > t[1]):
to_print.append("0")
else:
to_print.append(str(time))
time += 1
print(" ".join(to_print))
```
| 3
|
|
263
|
A
|
Beautiful Matrix
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You've got a 5<=Γ<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=β€<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=β€<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
|
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
|
Print a single integer β the minimum number of moves needed to make the matrix beautiful.
|
[
"0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n",
"0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n"
] |
[
"3\n",
"1\n"
] |
none
| 500
|
[
{
"input": "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "0"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1",
"output": "4"
},
{
"input": "0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0",
"output": "3"
}
] | 1,694,443,345
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 92
| 0
|
mat = [[int(i) for i in input().split()] for _ in range(5)]
res = 0
for i in range(5):
for j in range(5):
if mat[i][j]:
res = abs(2 - i) + abs(2 - j)
print(res)
|
Title: Beautiful Matrix
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a 5<=Γ<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=β€<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=β€<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
Input Specification:
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
Output Specification:
Print a single integer β the minimum number of moves needed to make the matrix beautiful.
Demo Input:
['0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n', '0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n']
Demo Output:
['3\n', '1\n']
Note:
none
|
```python
mat = [[int(i) for i in input().split()] for _ in range(5)]
res = 0
for i in range(5):
for j in range(5):
if mat[i][j]:
res = abs(2 - i) + abs(2 - j)
print(res)
```
| 3
|
|
22
|
B
|
Bargaining Table
|
PROGRAMMING
| 1,500
|
[
"brute force",
"dp"
] |
B. Bargaining Table
|
2
|
256
|
Bob wants to put a new bargaining table in his office. To do so he measured the office room thoroughly and drew its plan: Bob's office room is a rectangular room *n*<=Γ<=*m* meters. Each square meter of the room is either occupied by some furniture, or free. A bargaining table is rectangular, and should be placed so, that its sides are parallel to the office walls. Bob doesn't want to change or rearrange anything, that's why all the squares that will be occupied by the table should be initially free. Bob wants the new table to sit as many people as possible, thus its perimeter should be maximal. Help Bob find out the maximum possible perimeter of a bargaining table for his office.
|
The first line contains 2 space-separated numbers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=25) β the office room dimensions. Then there follow *n* lines with *m* characters 0 or 1 each. 0 stands for a free square meter of the office room. 1 stands for an occupied square meter. It's guaranteed that at least one square meter in the room is free.
|
Output one number β the maximum possible perimeter of a bargaining table for Bob's office room.
|
[
"3 3\n000\n010\n000\n",
"5 4\n1100\n0000\n0000\n0000\n0000\n"
] |
[
"8\n",
"16\n"
] |
none
| 0
|
[
{
"input": "3 3\n000\n010\n000",
"output": "8"
},
{
"input": "5 4\n1100\n0000\n0000\n0000\n0000",
"output": "16"
},
{
"input": "3 3\n000\n110\n000",
"output": "8"
},
{
"input": "4 2\n00\n10\n11\n00",
"output": "6"
},
{
"input": "3 5\n00001\n00000\n10100",
"output": "12"
},
{
"input": "1 1\n0",
"output": "4"
},
{
"input": "10 11\n11111111101\n01111111111\n11101111111\n01111110111\n11111111111\n11111111111\n11111111111\n11110111111\n11111111111\n11111111111",
"output": "4"
},
{
"input": "7 7\n1110111\n1111111\n1111101\n1111101\n1111111\n1100111\n1011111",
"output": "6"
},
{
"input": "10 10\n0110001011\n0101010111\n0010110100\n1010000110\n0111100011\n1010100100\n1010010000\n1011100011\n1110011000\n0010100101",
"output": "16"
},
{
"input": "20 20\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000\n00000000000000000000",
"output": "80"
},
{
"input": "25 1\n1\n1\n1\n0\n1\n1\n1\n1\n1\n1\n0\n1\n1\n1\n1\n1\n0\n1\n1\n1\n0\n1\n1\n1\n1",
"output": "4"
},
{
"input": "25 1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0",
"output": "52"
},
{
"input": "1 25\n1111111111111111011010110",
"output": "4"
},
{
"input": "1 25\n0000000000000000000000000",
"output": "52"
},
{
"input": "3 4\n1111\n1101\n1011",
"output": "4"
}
] | 1,676,900,437
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 23
| 342
| 29,900,800
|
import sys; R = sys.stdin.readline
S = lambda: map(int,R().split())
n,m = S()
a = [R().rstrip() for _ in range(n)]
d = {}
r = 4
for i in range(n):
for j in range(m):
if a[i][j]=='1': continue
d[(i,j,i,j)] = 1
for l in range(j+1,m):
if a[i][l]=='1': break
d[(i,j,i,l)] = 1
r = max(r,2*(l-j)+4)
for k in range(i+1,n):
if a[k][j]=='1': break
d[(i,j,k,j)] = 1
r = max(r,2*(k-i)+4)
for l in range(j+1,m):
if a[k][l]=='1': break
if (i,j,k-1,l) in d and (i,j,k,l-1) in d:
d[(i,j,k,l)] = 1
r = max(r,2*(k-i+l-j)+4)
print(r)
|
Title: Bargaining Table
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob wants to put a new bargaining table in his office. To do so he measured the office room thoroughly and drew its plan: Bob's office room is a rectangular room *n*<=Γ<=*m* meters. Each square meter of the room is either occupied by some furniture, or free. A bargaining table is rectangular, and should be placed so, that its sides are parallel to the office walls. Bob doesn't want to change or rearrange anything, that's why all the squares that will be occupied by the table should be initially free. Bob wants the new table to sit as many people as possible, thus its perimeter should be maximal. Help Bob find out the maximum possible perimeter of a bargaining table for his office.
Input Specification:
The first line contains 2 space-separated numbers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=25) β the office room dimensions. Then there follow *n* lines with *m* characters 0 or 1 each. 0 stands for a free square meter of the office room. 1 stands for an occupied square meter. It's guaranteed that at least one square meter in the room is free.
Output Specification:
Output one number β the maximum possible perimeter of a bargaining table for Bob's office room.
Demo Input:
['3 3\n000\n010\n000\n', '5 4\n1100\n0000\n0000\n0000\n0000\n']
Demo Output:
['8\n', '16\n']
Note:
none
|
```python
import sys; R = sys.stdin.readline
S = lambda: map(int,R().split())
n,m = S()
a = [R().rstrip() for _ in range(n)]
d = {}
r = 4
for i in range(n):
for j in range(m):
if a[i][j]=='1': continue
d[(i,j,i,j)] = 1
for l in range(j+1,m):
if a[i][l]=='1': break
d[(i,j,i,l)] = 1
r = max(r,2*(l-j)+4)
for k in range(i+1,n):
if a[k][j]=='1': break
d[(i,j,k,j)] = 1
r = max(r,2*(k-i)+4)
for l in range(j+1,m):
if a[k][l]=='1': break
if (i,j,k-1,l) in d and (i,j,k,l-1) in d:
d[(i,j,k,l)] = 1
r = max(r,2*(k-i+l-j)+4)
print(r)
```
| 3.858805
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" β thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=β€<=*n*<=β€<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=β€<=*x**i*,<=*y**i*,<=*z**i*<=β€<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,645,290,264
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 81
| 186
| 0
|
vecs = list(zip(*[[int(x) for x in input().split()]for i in range(int(input()))]))
def main():
for i in vecs:
if sum(i) != 0:
return "NO"
return "YES"
print(main())
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" β thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=β€<=*n*<=β€<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=β€<=*x**i*,<=*y**i*,<=*z**i*<=β€<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
vecs = list(zip(*[[int(x) for x in input().split()]for i in range(int(input()))]))
def main():
for i in vecs:
if sum(i) != 0:
return "NO"
return "YES"
print(main())
```
| 3.9535
|
873
|
B
|
Balanced Substring
|
PROGRAMMING
| 1,500
|
[
"dp",
"implementation"
] | null | null |
You are given a string *s* consisting only of characters 0 and 1. A substring [*l*,<=*r*] of *s* is a string *s**l**s**l*<=+<=1*s**l*<=+<=2... *s**r*, and its length equals to *r*<=-<=*l*<=+<=1. A substring is called balanced if the number of zeroes (0) equals to the number of ones in this substring.
You have to determine the length of the longest balanced substring of *s*.
|
The first line contains *n* (1<=β€<=*n*<=β€<=100000) β the number of characters in *s*.
The second line contains a string *s* consisting of exactly *n* characters. Only characters 0 and 1 can appear in *s*.
|
If there is no non-empty balanced substring in *s*, print 0. Otherwise, print the length of the longest balanced substring.
|
[
"8\n11010111\n",
"3\n111\n"
] |
[
"4\n",
"0\n"
] |
In the first example you can choose the substring [3,β6]. It is balanced, and its length is 4. Choosing the substring [2,β5] is also possible.
In the second example it's impossible to find a non-empty balanced substring.
| 0
|
[
{
"input": "8\n11010111",
"output": "4"
},
{
"input": "3\n111",
"output": "0"
},
{
"input": "11\n00001000100",
"output": "2"
},
{
"input": "10\n0100000000",
"output": "2"
},
{
"input": "13\n0001000011010",
"output": "6"
},
{
"input": "14\n00000100101011",
"output": "10"
},
{
"input": "14\n01111101111111",
"output": "2"
},
{
"input": "18\n110010101101111111",
"output": "10"
},
{
"input": "11\n00010000011",
"output": "4"
},
{
"input": "10\n1000010110",
"output": "6"
},
{
"input": "15\n100000100000011",
"output": "4"
},
{
"input": "18\n011010101110111101",
"output": "8"
},
{
"input": "10\n0011011111",
"output": "6"
},
{
"input": "3\n011",
"output": "2"
},
{
"input": "14\n11111111111111",
"output": "0"
},
{
"input": "65\n11001000110001001011011110111100000000101001001010101111000100010",
"output": "48"
},
{
"input": "10\n0011111000",
"output": "10"
},
{
"input": "13\n1110000001110",
"output": "12"
},
{
"input": "3\n110",
"output": "2"
},
{
"input": "4\n1110",
"output": "2"
},
{
"input": "9\n001011001",
"output": "8"
},
{
"input": "2\n10",
"output": "2"
},
{
"input": "2\n01",
"output": "2"
},
{
"input": "12\n110000110000",
"output": "8"
},
{
"input": "3\n001",
"output": "2"
},
{
"input": "14\n11000011000000",
"output": "8"
},
{
"input": "19\n0000011111111100000",
"output": "18"
},
{
"input": "45\n011010001100001111110001011100000001101100111",
"output": "44"
},
{
"input": "18\n000001111111100000",
"output": "16"
},
{
"input": "4\n0101",
"output": "4"
},
{
"input": "12\n000101011001",
"output": "10"
}
] | 1,696,780,223
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 53
| 78
| 14,848,000
|
n = int(input())
s = input()
zero = 0
one = 0
dct = {0: -1}
ans = 0
for i in range(n):
if s[i] == '0':
zero += 1
else:
one += 1
diff = zero - one
#print(i, diff)
if diff not in dct:
dct[diff] = i
else:
ans = max(ans, i - dct[diff])
#print(dct[diff], 'a')
print(ans)
|
Title: Balanced Substring
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a string *s* consisting only of characters 0 and 1. A substring [*l*,<=*r*] of *s* is a string *s**l**s**l*<=+<=1*s**l*<=+<=2... *s**r*, and its length equals to *r*<=-<=*l*<=+<=1. A substring is called balanced if the number of zeroes (0) equals to the number of ones in this substring.
You have to determine the length of the longest balanced substring of *s*.
Input Specification:
The first line contains *n* (1<=β€<=*n*<=β€<=100000) β the number of characters in *s*.
The second line contains a string *s* consisting of exactly *n* characters. Only characters 0 and 1 can appear in *s*.
Output Specification:
If there is no non-empty balanced substring in *s*, print 0. Otherwise, print the length of the longest balanced substring.
Demo Input:
['8\n11010111\n', '3\n111\n']
Demo Output:
['4\n', '0\n']
Note:
In the first example you can choose the substring [3,β6]. It is balanced, and its length is 4. Choosing the substring [2,β5] is also possible.
In the second example it's impossible to find a non-empty balanced substring.
|
```python
n = int(input())
s = input()
zero = 0
one = 0
dct = {0: -1}
ans = 0
for i in range(n):
if s[i] == '0':
zero += 1
else:
one += 1
diff = zero - one
#print(i, diff)
if diff not in dct:
dct[diff] = i
else:
ans = max(ans, i - dct[diff])
#print(dct[diff], 'a')
print(ans)
```
| 3
|
|
680
|
B
|
Bear and Finding Criminals
|
PROGRAMMING
| 1,000
|
[
"constructive algorithms",
"implementation"
] | null | null |
There are *n* cities in Bearland, numbered 1 through *n*. Cities are arranged in one long row. The distance between cities *i* and *j* is equal to |*i*<=-<=*j*|.
Limak is a police officer. He lives in a city *a*. His job is to catch criminals. It's hard because he doesn't know in which cities criminals are. Though, he knows that there is at most one criminal in each city.
Limak is going to use a BCD (Bear Criminal Detector). The BCD will tell Limak how many criminals there are for every distance from a city *a*. After that, Limak can catch a criminal in each city for which he is sure that there must be a criminal.
You know in which cities criminals are. Count the number of criminals Limak will catch, after he uses the BCD.
|
The first line of the input contains two integers *n* and *a* (1<=β€<=*a*<=β€<=*n*<=β€<=100)Β β the number of cities and the index of city where Limak lives.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (0<=β€<=*t**i*<=β€<=1). There are *t**i* criminals in the *i*-th city.
|
Print the number of criminals Limak will catch.
|
[
"6 3\n1 1 1 0 1 0\n",
"5 2\n0 0 0 1 0\n"
] |
[
"3\n",
"1\n"
] |
In the first sample, there are six cities and Limak lives in the third one (blue arrow below). Criminals are in cities marked red.
Using the BCD gives Limak the following information:
- There is one criminal at distance 0 from the third cityΒ β Limak is sure that this criminal is exactly in the third city. - There is one criminal at distance 1 from the third cityΒ β Limak doesn't know if a criminal is in the second or fourth city. - There are two criminals at distance 2 from the third cityΒ β Limak is sure that there is one criminal in the first city and one in the fifth city. - There are zero criminals for every greater distance.
So, Limak will catch criminals in cities 1, 3 and 5, that is 3 criminals in total.
In the second sample (drawing below), the BCD gives Limak the information that there is one criminal at distance 2 from Limak's city. There is only one city at distance 2 so Limak is sure where a criminal is.
| 1,000
|
[
{
"input": "6 3\n1 1 1 0 1 0",
"output": "3"
},
{
"input": "5 2\n0 0 0 1 0",
"output": "1"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "9 3\n1 1 1 1 1 1 1 1 0",
"output": "8"
},
{
"input": "9 5\n1 0 1 0 1 0 1 0 1",
"output": "5"
},
{
"input": "20 17\n1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0",
"output": "10"
},
{
"input": "100 60\n1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 0",
"output": "27"
},
{
"input": "8 1\n1 0 1 1 0 0 1 0",
"output": "4"
},
{
"input": "11 11\n0 1 0 0 1 1 1 0 0 0 0",
"output": "4"
},
{
"input": "19 10\n0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1",
"output": "4"
},
{
"input": "100 38\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "100 38\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "1"
},
{
"input": "100 38\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "3"
},
{
"input": "99 38\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "25"
},
{
"input": "99 38\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "24"
},
{
"input": "99 38\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "24"
},
{
"input": "98 70\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "41"
},
{
"input": "99 70\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "9"
},
{
"input": "99 60\n0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1",
"output": "34"
},
{
"input": "98 24\n0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1",
"output": "39"
},
{
"input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100"
},
{
"input": "100 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "2 1\n0 1",
"output": "1"
}
] | 1,636,382,152
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 24
| 93
| 17,715,200
|
n, p = map(int, input().split())
a, res, p = list(map(int, input().split())), 0, p - 1
for x in range(p + 1, n):
if a[x] == 1 and ((p << 1) < x or a[(p << 1) - x] == 1): res += 1
for x in range(p - 1, -1, -1):
if a[x] == 1 and ((p << 1) - x >= n or a[(p << 1) - x] == 1): res += 1
print(res + a[p])
|
Title: Bear and Finding Criminals
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* cities in Bearland, numbered 1 through *n*. Cities are arranged in one long row. The distance between cities *i* and *j* is equal to |*i*<=-<=*j*|.
Limak is a police officer. He lives in a city *a*. His job is to catch criminals. It's hard because he doesn't know in which cities criminals are. Though, he knows that there is at most one criminal in each city.
Limak is going to use a BCD (Bear Criminal Detector). The BCD will tell Limak how many criminals there are for every distance from a city *a*. After that, Limak can catch a criminal in each city for which he is sure that there must be a criminal.
You know in which cities criminals are. Count the number of criminals Limak will catch, after he uses the BCD.
Input Specification:
The first line of the input contains two integers *n* and *a* (1<=β€<=*a*<=β€<=*n*<=β€<=100)Β β the number of cities and the index of city where Limak lives.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (0<=β€<=*t**i*<=β€<=1). There are *t**i* criminals in the *i*-th city.
Output Specification:
Print the number of criminals Limak will catch.
Demo Input:
['6 3\n1 1 1 0 1 0\n', '5 2\n0 0 0 1 0\n']
Demo Output:
['3\n', '1\n']
Note:
In the first sample, there are six cities and Limak lives in the third one (blue arrow below). Criminals are in cities marked red.
Using the BCD gives Limak the following information:
- There is one criminal at distance 0 from the third cityΒ β Limak is sure that this criminal is exactly in the third city. - There is one criminal at distance 1 from the third cityΒ β Limak doesn't know if a criminal is in the second or fourth city. - There are two criminals at distance 2 from the third cityΒ β Limak is sure that there is one criminal in the first city and one in the fifth city. - There are zero criminals for every greater distance.
So, Limak will catch criminals in cities 1, 3 and 5, that is 3 criminals in total.
In the second sample (drawing below), the BCD gives Limak the information that there is one criminal at distance 2 from Limak's city. There is only one city at distance 2 so Limak is sure where a criminal is.
|
```python
n, p = map(int, input().split())
a, res, p = list(map(int, input().split())), 0, p - 1
for x in range(p + 1, n):
if a[x] == 1 and ((p << 1) < x or a[(p << 1) - x] == 1): res += 1
for x in range(p - 1, -1, -1):
if a[x] == 1 and ((p << 1) - x >= n or a[(p << 1) - x] == 1): res += 1
print(res + a[p])
```
| 3
|
|
682
|
B
|
Alyona and Mex
|
PROGRAMMING
| 1,200
|
[
"sortings"
] | null | null |
Someone gave Alyona an array containing *n* positive integers *a*1,<=*a*2,<=...,<=*a**n*. In one operation, Alyona can choose any element of the array and decrease it, i.e. replace with any positive integer that is smaller than the current one. Alyona can repeat this operation as many times as she wants. In particular, she may not apply any operation to the array at all.
Formally, after applying some operations Alyona will get an array of *n* positive integers *b*1,<=*b*2,<=...,<=*b**n* such that 1<=β€<=*b**i*<=β€<=*a**i* for every 1<=β€<=*i*<=β€<=*n*. Your task is to determine the maximum possible value of mex of this array.
Mex of an array in this problem is the minimum positive integer that doesn't appear in this array. For example, mex of the array containing 1, 3 and 4 is equal to 2, while mex of the array containing 2, 3 and 2 is equal to 1.
|
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=100<=000)Β β the number of elements in the Alyona's array.
The second line of the input contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=109)Β β the elements of the array.
|
Print one positive integerΒ β the maximum possible value of mex of the array after Alyona applies some (possibly none) operations.
|
[
"5\n1 3 3 3 6\n",
"2\n2 1\n"
] |
[
"5\n",
"3\n"
] |
In the first sample case if one will decrease the second element value to 2 and the fifth element value to 4 then the mex value of resulting array 1 2 3 3 4 will be equal to 5.
To reach the answer to the second sample case one must not decrease any of the array elements.
| 1,000
|
[
{
"input": "5\n1 3 3 3 6",
"output": "5"
},
{
"input": "2\n2 1",
"output": "3"
},
{
"input": "1\n1",
"output": "2"
},
{
"input": "1\n1000000000",
"output": "2"
},
{
"input": "1\n2",
"output": "2"
},
{
"input": "2\n1 1",
"output": "2"
},
{
"input": "2\n1 3",
"output": "3"
},
{
"input": "2\n2 2",
"output": "3"
},
{
"input": "2\n2 3",
"output": "3"
},
{
"input": "2\n3 3",
"output": "3"
},
{
"input": "3\n1 1 1",
"output": "2"
},
{
"input": "3\n2 1 1",
"output": "3"
},
{
"input": "3\n3 1 1",
"output": "3"
},
{
"input": "3\n1 1 4",
"output": "3"
},
{
"input": "3\n2 1 2",
"output": "3"
},
{
"input": "3\n3 2 1",
"output": "4"
},
{
"input": "3\n2 4 1",
"output": "4"
},
{
"input": "3\n3 3 1",
"output": "4"
},
{
"input": "3\n1 3 4",
"output": "4"
},
{
"input": "3\n4 1 4",
"output": "4"
},
{
"input": "3\n2 2 2",
"output": "3"
},
{
"input": "3\n3 2 2",
"output": "4"
},
{
"input": "3\n4 2 2",
"output": "4"
},
{
"input": "3\n2 3 3",
"output": "4"
},
{
"input": "3\n4 2 3",
"output": "4"
},
{
"input": "3\n4 4 2",
"output": "4"
},
{
"input": "3\n3 3 3",
"output": "4"
},
{
"input": "3\n4 3 3",
"output": "4"
},
{
"input": "3\n4 3 4",
"output": "4"
},
{
"input": "3\n4 4 4",
"output": "4"
},
{
"input": "4\n1 1 1 1",
"output": "2"
},
{
"input": "4\n1 1 2 1",
"output": "3"
},
{
"input": "4\n1 1 3 1",
"output": "3"
},
{
"input": "4\n1 4 1 1",
"output": "3"
},
{
"input": "4\n1 2 1 2",
"output": "3"
},
{
"input": "4\n1 3 2 1",
"output": "4"
},
{
"input": "4\n2 1 4 1",
"output": "4"
},
{
"input": "4\n3 3 1 1",
"output": "4"
},
{
"input": "4\n1 3 4 1",
"output": "4"
},
{
"input": "4\n1 1 4 4",
"output": "4"
},
{
"input": "4\n2 2 2 1",
"output": "3"
},
{
"input": "4\n1 2 2 3",
"output": "4"
},
{
"input": "4\n2 4 1 2",
"output": "4"
},
{
"input": "4\n3 3 1 2",
"output": "4"
},
{
"input": "4\n2 3 4 1",
"output": "5"
},
{
"input": "4\n1 4 2 4",
"output": "5"
},
{
"input": "4\n3 1 3 3",
"output": "4"
},
{
"input": "4\n3 4 3 1",
"output": "5"
},
{
"input": "4\n1 4 4 3",
"output": "5"
},
{
"input": "4\n4 1 4 4",
"output": "5"
},
{
"input": "4\n2 2 2 2",
"output": "3"
},
{
"input": "4\n2 2 3 2",
"output": "4"
},
{
"input": "4\n2 2 2 4",
"output": "4"
},
{
"input": "4\n2 2 3 3",
"output": "4"
},
{
"input": "4\n2 2 3 4",
"output": "5"
},
{
"input": "4\n2 4 4 2",
"output": "5"
},
{
"input": "4\n2 3 3 3",
"output": "4"
},
{
"input": "4\n2 4 3 3",
"output": "5"
},
{
"input": "4\n4 4 2 3",
"output": "5"
},
{
"input": "4\n4 4 4 2",
"output": "5"
},
{
"input": "4\n3 3 3 3",
"output": "4"
},
{
"input": "4\n3 3 3 4",
"output": "5"
},
{
"input": "4\n4 3 3 4",
"output": "5"
},
{
"input": "4\n4 4 3 4",
"output": "5"
},
{
"input": "4\n4 4 4 4",
"output": "5"
},
{
"input": "11\n1 1 1 1 1 1 1 1 1 3 3",
"output": "4"
},
{
"input": "20\n1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8",
"output": "9"
},
{
"input": "4\n2 2 2 3",
"output": "4"
},
{
"input": "3\n1 1 2",
"output": "3"
},
{
"input": "15\n1 2 2 20 23 25 28 60 66 71 76 77 79 99 100",
"output": "15"
},
{
"input": "7\n1 2 2 2 5 5 1",
"output": "5"
},
{
"input": "4\n1 1 1 2",
"output": "3"
},
{
"input": "5\n1 1 1 1 10000",
"output": "3"
},
{
"input": "5\n1 1 1 1 2",
"output": "3"
},
{
"input": "7\n1 3 3 3 3 3 6",
"output": "5"
},
{
"input": "4\n1 1 1 3",
"output": "3"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 100",
"output": "3"
},
{
"input": "4\n1 1 2 2",
"output": "3"
},
{
"input": "5\n1 1 1 3 4",
"output": "4"
},
{
"input": "8\n1 1 1 1 2 2 3 40",
"output": "5"
},
{
"input": "5\n1 1 1 1 1",
"output": "2"
},
{
"input": "7\n1 2 2 2 2 2 4",
"output": "4"
},
{
"input": "10\n1 1 1 10000000 10000000 10000000 10000000 10000000 10000000 10000000",
"output": "9"
},
{
"input": "10\n1 1 1 1 1 1 1 1 2 3",
"output": "4"
},
{
"input": "4\n8 8 8 8",
"output": "5"
},
{
"input": "5\n5 6 6 6 7",
"output": "6"
}
] | 1,496,112,196
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 127
| 140
| 8,806,400
|
if __name__ == '__main__':
n = int(input())
line = list(map(int, input().split()))
line.sort()
rest = 1
for it in line:
rest += 1 if rest <= it else 0
print(rest)
|
Title: Alyona and Mex
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Someone gave Alyona an array containing *n* positive integers *a*1,<=*a*2,<=...,<=*a**n*. In one operation, Alyona can choose any element of the array and decrease it, i.e. replace with any positive integer that is smaller than the current one. Alyona can repeat this operation as many times as she wants. In particular, she may not apply any operation to the array at all.
Formally, after applying some operations Alyona will get an array of *n* positive integers *b*1,<=*b*2,<=...,<=*b**n* such that 1<=β€<=*b**i*<=β€<=*a**i* for every 1<=β€<=*i*<=β€<=*n*. Your task is to determine the maximum possible value of mex of this array.
Mex of an array in this problem is the minimum positive integer that doesn't appear in this array. For example, mex of the array containing 1, 3 and 4 is equal to 2, while mex of the array containing 2, 3 and 2 is equal to 1.
Input Specification:
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=100<=000)Β β the number of elements in the Alyona's array.
The second line of the input contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=109)Β β the elements of the array.
Output Specification:
Print one positive integerΒ β the maximum possible value of mex of the array after Alyona applies some (possibly none) operations.
Demo Input:
['5\n1 3 3 3 6\n', '2\n2 1\n']
Demo Output:
['5\n', '3\n']
Note:
In the first sample case if one will decrease the second element value to 2 and the fifth element value to 4 then the mex value of resulting array 1 2 3 3 4 will be equal to 5.
To reach the answer to the second sample case one must not decrease any of the array elements.
|
```python
if __name__ == '__main__':
n = int(input())
line = list(map(int, input().split()))
line.sort()
rest = 1
for it in line:
rest += 1 if rest <= it else 0
print(rest)
```
| 3
|
|
102
|
B
|
Sum of Digits
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
B. Sum of Digits
|
2
|
265
|
Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit?
|
The first line contains the only integer *n* (0<=β€<=*n*<=β€<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes.
|
Print the number of times a number can be replaced by the sum of its digits until it only contains one digit.
|
[
"0\n",
"10\n",
"991\n"
] |
[
"0\n",
"1\n",
"3\n"
] |
In the first sample the number already is one-digit β Herald can't cast a spell.
The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once.
The third test contains number 991. As one casts a spell the following transformations take place: 991βββ19βββ10βββ1. After three transformations the number becomes one-digit.
| 1,000
|
[
{
"input": "0",
"output": "0"
},
{
"input": "10",
"output": "1"
},
{
"input": "991",
"output": "3"
},
{
"input": "99",
"output": "2"
},
{
"input": "100",
"output": "1"
},
{
"input": "123456789",
"output": "2"
},
{
"input": "32",
"output": "1"
},
{
"input": "86",
"output": "2"
},
{
"input": "2",
"output": "0"
},
{
"input": "8",
"output": "0"
},
{
"input": "34",
"output": "1"
},
{
"input": "13",
"output": "1"
},
{
"input": "28",
"output": "2"
},
{
"input": "23",
"output": "1"
},
{
"input": "57",
"output": "2"
},
{
"input": "29",
"output": "2"
},
{
"input": "353869285",
"output": "3"
},
{
"input": "549548646",
"output": "2"
},
{
"input": "858893424",
"output": "2"
},
{
"input": "644818852",
"output": "3"
},
{
"input": "360322525",
"output": "3"
},
{
"input": "122937520",
"output": "2"
},
{
"input": "288403032",
"output": "2"
},
{
"input": "677257481",
"output": "3"
},
{
"input": "58059561",
"output": "3"
},
{
"input": "211288847",
"output": "2"
},
{
"input": "339900034079539584",
"output": "2"
},
{
"input": "784084029310269952",
"output": "3"
},
{
"input": "774730557264864000",
"output": "3"
},
{
"input": "478233807148352256",
"output": "3"
},
{
"input": "165646874056812544",
"output": "3"
},
{
"input": "477533739511673792",
"output": "3"
},
{
"input": "660119944377002240",
"output": "3"
},
{
"input": "448375218506078080",
"output": "3"
},
{
"input": "77213334785795616",
"output": "3"
},
{
"input": "165767221702271872",
"output": "3"
},
{
"input": "1",
"output": "0"
},
{
"input": "5",
"output": "0"
},
{
"input": "8",
"output": "0"
},
{
"input": "156161456146164104103460452045416165146141414651641564105461465156445621465146514562146145465165145145614561465145614561",
"output": "3"
},
{
"input": "9",
"output": "0"
}
] | 1,653,991,784
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 51
| 92
| 0
|
s=input()
c=0
while len(s)>1:
s=str(sum(map(int,s)))
c+=1
print(c)
|
Title: Sum of Digits
Time Limit: 2 seconds
Memory Limit: 265 megabytes
Problem Description:
Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit?
Input Specification:
The first line contains the only integer *n* (0<=β€<=*n*<=β€<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes.
Output Specification:
Print the number of times a number can be replaced by the sum of its digits until it only contains one digit.
Demo Input:
['0\n', '10\n', '991\n']
Demo Output:
['0\n', '1\n', '3\n']
Note:
In the first sample the number already is one-digit β Herald can't cast a spell.
The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once.
The third test contains number 991. As one casts a spell the following transformations take place: 991βββ19βββ10βββ1. After three transformations the number becomes one-digit.
|
```python
s=input()
c=0
while len(s)>1:
s=str(sum(map(int,s)))
c+=1
print(c)
```
| 3.977
|
96
|
A
|
Football
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] |
A. Football
|
2
|
256
|
Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.
|
The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.
|
Print "YES" if the situation is dangerous. Otherwise, print "NO".
|
[
"001001\n",
"1000000001\n"
] |
[
"NO\n",
"YES\n"
] |
none
| 500
|
[
{
"input": "001001",
"output": "NO"
},
{
"input": "1000000001",
"output": "YES"
},
{
"input": "00100110111111101",
"output": "YES"
},
{
"input": "11110111111111111",
"output": "YES"
},
{
"input": "01",
"output": "NO"
},
{
"input": "10100101",
"output": "NO"
},
{
"input": "1010010100000000010",
"output": "YES"
},
{
"input": "101010101",
"output": "NO"
},
{
"input": "000000000100000000000110101100000",
"output": "YES"
},
{
"input": "100001000000110101100000",
"output": "NO"
},
{
"input": "100001000011010110000",
"output": "NO"
},
{
"input": "010",
"output": "NO"
},
{
"input": "10101011111111111111111111111100",
"output": "YES"
},
{
"input": "1001101100",
"output": "NO"
},
{
"input": "1001101010",
"output": "NO"
},
{
"input": "1111100111",
"output": "NO"
},
{
"input": "00110110001110001111",
"output": "NO"
},
{
"input": "11110001001111110001",
"output": "NO"
},
{
"input": "10001111001011111101",
"output": "NO"
},
{
"input": "10000010100000001000110001010100001001001010011",
"output": "YES"
},
{
"input": "01111011111010111100101100001011001010111110000010",
"output": "NO"
},
{
"input": "00100000100100101110011001011011101110110110010100",
"output": "NO"
},
{
"input": "10110100110001001011110101110010100010000000000100101010111110111110100011",
"output": "YES"
},
{
"input": "00011101010101111001011011001101101011111101000010100000111000011100101011",
"output": "NO"
},
{
"input": "01110000110100110101110100111000101101011101011110110100100111100001110111",
"output": "NO"
},
{
"input": "11110110011000100111100111101101011111110100010101011011111101110110110111",
"output": "YES"
},
{
"input": "100100010101110010001011001110100011100010011110100101100011010001001010001001101111001100",
"output": "NO"
},
{
"input": "111110010001011010010011111100110110001111000010100011011100111101111101110010101111011110000001010",
"output": "NO"
},
{
"input": "111110111100010100000100001010111011101011000111011011011010110010100010000101011111000011010011110",
"output": "NO"
},
{
"input": "1011110110111010110111111010010010100011111011110000011000110010011110111010110100011010100010111000",
"output": "NO"
},
{
"input": "0010100111100010110110000011100111110100111110001010000100111111111010111100101101010101001011010110",
"output": "YES"
},
{
"input": "1111010100010100101011101100101101110011000010100010000001111100010011100101010001101111000001011000",
"output": "NO"
},
{
"input": "0101100011001110001110100111100011010101011000000000110110010010111100101111010111100011101100100101",
"output": "YES"
},
{
"input": "0001101110011101110000000010011111101001101111100001001010110000110001100000010001111011011110001101",
"output": "YES"
},
{
"input": "1000010000100000100010000100001000010000100001000010000100001000010000100001000010000100001000010000",
"output": "NO"
},
{
"input": "1000000000100000000010000000001000000000100000000010000000001000000000100000000010000000001000000000",
"output": "YES"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "YES"
},
{
"input": "1111111111111111111111111111111111111111011111111111111111111111111111111111111111111111111111111111",
"output": "YES"
},
{
"input": "10100101000",
"output": "NO"
},
{
"input": "11110111011101",
"output": "NO"
},
{
"input": "10000000",
"output": "YES"
},
{
"input": "00000001",
"output": "YES"
},
{
"input": "01111111",
"output": "YES"
},
{
"input": "11111110",
"output": "YES"
}
] | 1,683,724,884
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 44
| 92
| 0
|
s = input()
first = 0
second = 0
for i in s:
if i == '1':
first += 1
second = 0
else:
second += 1
first = 0
if first == 7 or second == 7:
print('YES')
break
else:
print('NO')
|
Title: Football
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.
Input Specification:
The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.
Output Specification:
Print "YES" if the situation is dangerous. Otherwise, print "NO".
Demo Input:
['001001\n', '1000000001\n']
Demo Output:
['NO\n', 'YES\n']
Note:
none
|
```python
s = input()
first = 0
second = 0
for i in s:
if i == '1':
first += 1
second = 0
else:
second += 1
first = 0
if first == 7 or second == 7:
print('YES')
break
else:
print('NO')
```
| 3.977
|
205
|
A
|
Little Elephant and Rozdil
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil").
However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere.
For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
|
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=105) β the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109.
You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
|
Print the answer on a single line β the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
|
[
"2\n7 4\n",
"7\n7 4 47 100 4 9 12\n"
] |
[
"2\n",
"Still Rozdil\n"
] |
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one β 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2.
In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
| 500
|
[
{
"input": "2\n7 4",
"output": "2"
},
{
"input": "7\n7 4 47 100 4 9 12",
"output": "Still Rozdil"
},
{
"input": "1\n47",
"output": "1"
},
{
"input": "2\n1000000000 1000000000",
"output": "Still Rozdil"
},
{
"input": "7\n7 6 5 4 3 2 1",
"output": "7"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 1",
"output": "Still Rozdil"
},
{
"input": "4\n1000000000 100000000 1000000 1000000",
"output": "Still Rozdil"
},
{
"input": "20\n7 1 1 2 1 1 8 7 7 8 4 3 7 10 5 3 10 5 10 6",
"output": "Still Rozdil"
},
{
"input": "20\n3 3 6 9 8 2 4 1 7 3 2 9 7 7 9 7 2 6 2 7",
"output": "8"
},
{
"input": "47\n35 79 84 56 67 95 80 34 77 68 14 55 95 32 40 89 58 79 96 66 50 79 35 86 31 74 91 35 22 72 84 38 11 59 73 51 65 11 11 62 30 12 32 71 69 15 11",
"output": "Still Rozdil"
},
{
"input": "47\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "32"
},
{
"input": "25\n73 56 65 70 57 57 49 50 65 68 54 48 66 55 55 66 60 70 47 62 63 70 62 70 63",
"output": "19"
},
{
"input": "100\n922 938 103 689 526 118 314 496 373 47 224 544 495 656 804 754 269 356 354 536 817 597 787 178 516 659 790 993 786 169 866 779 997 350 674 437 219 546 564 893 402 449 751 628 238 686 392 951 716 439 332 563 215 146 746 311 866 773 548 675 731 183 890 802 488 944 473 25 662 559 732 534 777 144 502 593 839 692 84 337 679 718 1005 663 709 940 86 469 310 960 902 233 606 761 116 231 662 903 68 622",
"output": "68"
},
{
"input": "5\n5 5 2 3 1",
"output": "5"
},
{
"input": "1\n1000000000",
"output": "1"
},
{
"input": "3\n7 7 4",
"output": "3"
},
{
"input": "3\n2 2 1",
"output": "3"
},
{
"input": "3\n4 4 3",
"output": "3"
},
{
"input": "2\n10000001 10000002",
"output": "1"
},
{
"input": "4\n3 3 2 1",
"output": "4"
},
{
"input": "3\n1 2 3",
"output": "1"
},
{
"input": "2\n1000000000 100000000",
"output": "2"
},
{
"input": "1\n99999999",
"output": "1"
},
{
"input": "3\n5 5 3",
"output": "3"
},
{
"input": "3\n7 7 5",
"output": "3"
},
{
"input": "3\n3 3 1",
"output": "3"
},
{
"input": "4\n10 10 10 1",
"output": "4"
}
] | 1,579,158,738
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 248
| 8,704,000
|
z=int(input())
x=list(map(int,input().split()))
print(['Still Rozdil','%d'%(x.index(min(x))+1)][x.count(min(x))==1])
|
Title: Little Elephant and Rozdil
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil").
However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere.
For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
Input Specification:
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=105) β the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109.
You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
Output Specification:
Print the answer on a single line β the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
Demo Input:
['2\n7 4\n', '7\n7 4 47 100 4 9 12\n']
Demo Output:
['2\n', 'Still Rozdil\n']
Note:
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one β 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2.
In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
|
```python
z=int(input())
x=list(map(int,input().split()))
print(['Still Rozdil','%d'%(x.index(min(x))+1)][x.count(min(x))==1])
```
| 3
|
|
330
|
A
|
Cakeminator
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
You are given a rectangular cake, represented as an *r*<=Γ<=*c* grid. Each cell either has an evil strawberry, or is empty. For example, a 3<=Γ<=4 cake may look as follows:
The cakeminator is going to eat the cake! Each time he eats, he chooses a row or a column that does not contain any evil strawberries and contains at least one cake cell that has not been eaten before, and eats all the cake cells there. He may decide to eat any number of times.
Please output the maximum number of cake cells that the cakeminator can eat.
|
The first line contains two integers *r* and *c* (2<=β€<=*r*,<=*c*<=β€<=10), denoting the number of rows and the number of columns of the cake. The next *r* lines each contains *c* characters β the *j*-th character of the *i*-th line denotes the content of the cell at row *i* and column *j*, and is either one of these:
- '.' character denotes a cake cell with no evil strawberry; - 'S' character denotes a cake cell with an evil strawberry.
|
Output the maximum number of cake cells that the cakeminator can eat.
|
[
"3 4\nS...\n....\n..S.\n"
] |
[
"8\n"
] |
For the first example, one possible way to eat the maximum number of cake cells is as follows (perform 3 eats).
| 500
|
[
{
"input": "3 4\nS...\n....\n..S.",
"output": "8"
},
{
"input": "2 2\n..\n..",
"output": "4"
},
{
"input": "2 2\nSS\nSS",
"output": "0"
},
{
"input": "7 3\nS..\nS..\nS..\nS..\nS..\nS..\nS..",
"output": "14"
},
{
"input": "3 5\n..S..\nSSSSS\n..S..",
"output": "0"
},
{
"input": "10 10\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS",
"output": "0"
},
{
"input": "10 10\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS\nS...SSSSSS",
"output": "30"
},
{
"input": "10 10\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..\n....S..S..",
"output": "80"
},
{
"input": "9 5\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS\nSSSSS",
"output": "0"
},
{
"input": "9 9\n...S.....\nS.S.....S\n.S....S..\n.S.....SS\n.........\n..S.S..S.\n.SS......\n....S....\n..S...S..",
"output": "17"
},
{
"input": "5 6\nSSSSSS\nSSSSSS\nSSSSSS\nSS.S..\nS.S.SS",
"output": "0"
},
{
"input": "9 8\n........\n.......S\n........\nS.......\n........\n........\nS.......\n........\n.......S",
"output": "64"
},
{
"input": "9 7\n......S\n......S\nS.S.S..\n.......\n.......\n.S.....\n.S....S\n..S....\n.S....S",
"output": "28"
},
{
"input": "10 10\n.....S....\n....SS..S.\n.S...S....\n........SS\n.S.......S\nSS..S.....\n.SS.....SS\nS..S......\n.......SSS\nSSSSS....S",
"output": "10"
},
{
"input": "6 7\n..S.SS.\n......S\n....S.S\nSS..S..\nS..SS.S\n.....S.",
"output": "0"
},
{
"input": "10 6\n.SSSSS\nSSS.SS\nSSSSSS\nS.SSSS\nSSSSS.\nS.SSSS\nSS.SSS\n.SSS.S\n.SSS..\nSS..SS",
"output": "0"
},
{
"input": "2 2\n..\n..",
"output": "4"
},
{
"input": "3 2\nS.\n.S\nS.",
"output": "0"
},
{
"input": "3 2\nS.\n.S\nS.",
"output": "0"
},
{
"input": "4 3\n.S.\nS.S\n.S.\nS.S",
"output": "0"
},
{
"input": "2 3\n...\nSSS",
"output": "3"
},
{
"input": "2 4\nS.SS\nS.SS",
"output": "2"
},
{
"input": "2 2\n..\n.S",
"output": "3"
},
{
"input": "3 2\n.S\n.S\nSS",
"output": "0"
},
{
"input": "2 4\nSS.S\n..S.",
"output": "0"
},
{
"input": "2 3\n...\nS..",
"output": "5"
}
] | 1,652,775,015
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 92
| 4,505,600
|
n,m=map(int,input().split());a=[];b=[]
for i in range(n):
s=str(input())
a.append(list(map(str,s)))
p=0
for i in range(m):
b.append(list(map(str,('0'*n))))
for i in range(n):
if ('S' in a[i])==False:
p+=m
a[i]=list(map(str,('0'*m)))
for i in range(n):
for j in range(m):
b[j][i]=a[i][j]
for i in range(m):
if ('S' in b[i])==False:
p+=b[i].count('.')
print(p)
|
Title: Cakeminator
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a rectangular cake, represented as an *r*<=Γ<=*c* grid. Each cell either has an evil strawberry, or is empty. For example, a 3<=Γ<=4 cake may look as follows:
The cakeminator is going to eat the cake! Each time he eats, he chooses a row or a column that does not contain any evil strawberries and contains at least one cake cell that has not been eaten before, and eats all the cake cells there. He may decide to eat any number of times.
Please output the maximum number of cake cells that the cakeminator can eat.
Input Specification:
The first line contains two integers *r* and *c* (2<=β€<=*r*,<=*c*<=β€<=10), denoting the number of rows and the number of columns of the cake. The next *r* lines each contains *c* characters β the *j*-th character of the *i*-th line denotes the content of the cell at row *i* and column *j*, and is either one of these:
- '.' character denotes a cake cell with no evil strawberry; - 'S' character denotes a cake cell with an evil strawberry.
Output Specification:
Output the maximum number of cake cells that the cakeminator can eat.
Demo Input:
['3 4\nS...\n....\n..S.\n']
Demo Output:
['8\n']
Note:
For the first example, one possible way to eat the maximum number of cake cells is as follows (perform 3 eats).
|
```python
n,m=map(int,input().split());a=[];b=[]
for i in range(n):
s=str(input())
a.append(list(map(str,s)))
p=0
for i in range(m):
b.append(list(map(str,('0'*n))))
for i in range(n):
if ('S' in a[i])==False:
p+=m
a[i]=list(map(str,('0'*m)))
for i in range(n):
for j in range(m):
b[j][i]=a[i][j]
for i in range(m):
if ('S' in b[i])==False:
p+=b[i].count('.')
print(p)
```
| 3
|
|
914
|
C
|
Travelling Salesman and Special Numbers
|
PROGRAMMING
| 1,800
|
[
"brute force",
"combinatorics",
"dp"
] | null | null |
The Travelling Salesman spends a lot of time travelling so he tends to get bored. To pass time, he likes to perform operations on numbers. One such operation is to take a positive integer *x* and reduce it to the number of bits set to 1 in the binary representation of *x*. For example for number 13 it's true that 1310<==<=11012, so it has 3 bits set and 13 will be reduced to 3 in one operation.
He calls a number special if the minimum number of operations to reduce it to 1 is *k*.
He wants to find out how many special numbers exist which are not greater than *n*. Please help the Travelling Salesman, as he is about to reach his destination!
Since the answer can be large, output it modulo 109<=+<=7.
|
The first line contains integer *n* (1<=β€<=*n*<=<<=21000).
The second line contains integer *k* (0<=β€<=*k*<=β€<=1000).
Note that *n* is given in its binary representation without any leading zeros.
|
Output a single integerΒ β the number of special numbers not greater than *n*, modulo 109<=+<=7.
|
[
"110\n2\n",
"111111011\n2\n"
] |
[
"3\n",
"169\n"
] |
In the first sample, the three special numbers are 3, 5 and 6. They get reduced to 2 in one operation (since there are two set bits in each of 3, 5 and 6) and then to 1 in one more operation (since there is only one set bit in 2).
| 1,500
|
[
{
"input": "110\n2",
"output": "3"
},
{
"input": "111111011\n2",
"output": "169"
},
{
"input": "100011110011110110100\n7",
"output": "0"
},
{
"input": "110100110\n0",
"output": "1"
},
{
"input": "10000000000000000000000000000000000000000000\n2",
"output": "79284496"
},
{
"input": "100000000000000000000100000000000010100100001001000010011101010\n3",
"output": "35190061"
},
{
"input": "101010110000\n3",
"output": "1563"
},
{
"input": "11010110000\n3",
"output": "1001"
},
{
"input": "100\n6",
"output": "0"
},
{
"input": "100100100100\n5",
"output": "0"
},
{
"input": "10000000000\n4",
"output": "120"
},
{
"input": "10\n868",
"output": "0"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "10\n0",
"output": "1"
},
{
"input": "101110011101100100010010101001010111001\n8",
"output": "0"
},
{
"input": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n10",
"output": "0"
},
{
"input": "10000000000000000000000000000\n1",
"output": "28"
},
{
"input": "111111111111111111111111111111111111\n2",
"output": "338250841"
},
{
"input": "10010110001111110001100000110111010011010110100111100010001011000011000011000100011010000000000110110010111111\n2",
"output": "678359035"
},
{
"input": "11111100010011110101100110100010001011100111001011001111101111110111001111011011110101100101001000111001000100000011011110110010001000111101001101001010100011\n1",
"output": "157"
},
{
"input": "10011101000010110111001\n1",
"output": "22"
},
{
"input": "10000110011100011111100010011010111110111110100011110101110010000001111100110000001000101011001000111110111100110111010011011100000000111101001010110\n1",
"output": "148"
},
{
"input": "11101011101101101111101100001101110010011011101101010101101111100011101111010111011\n1",
"output": "82"
},
{
"input": "11101111100100100110010100010100101111\n4",
"output": "839492816"
},
{
"input": "111111000110010101000000101001111000101100000110100101111000001011001011110111000000000010\n0",
"output": "1"
},
{
"input": "10000001011010001011101011100010110001010110111100110001010011111111010110101100100010101111\n1",
"output": "91"
},
{
"input": "100111000100101100\n4",
"output": "42232"
},
{
"input": "11001101101010100\n3",
"output": "55119"
},
{
"input": "10000010100111000111001111011001\n1",
"output": "31"
},
{
"input": "110001010001001\n0",
"output": "1"
},
{
"input": "10000010111110110111000001011111111010111101000101001000100111101011001101001111111011110111101100001101100011011111010010001001010100011000111100110101100001100001011111000111001010010010110000111110011111010111001001000111010111111100101101010111100010010111001001111010100110011001111111100000101000100011001011100011000101010100000001100110011011001110101100000111001111011\n732",
"output": "0"
},
{
"input": "111001100100110011100111101100010000111100111\n37",
"output": "0"
},
{
"input": "110101100110100001001011010001011001100100000111000000111100000001010000010001111101000101110001001000110001110001100100100000110101000110111000011010101010011011011000110101110010010111110101101110000010000101101010100101010011010001010010101110001010000001010001111000110100101010001011001110110010\n481",
"output": "0"
},
{
"input": "101011000000101110010001011010000110010100001011101110110000000001001000101011100100110111100110100010010001010111001010110011001011110111100100110000000001000100101101101101010101011100101001010000001111110011101000111111110001000101110000000011111101001100101101100111000000101111011110110001110001001110010001011010000001100001010010000100011001111100000100010000000101011100001010011100110001100111111011011100101101011110110000101000001110010001111100110101010\n129",
"output": "0"
},
{
"input": "1010010001000110110001010110101110100110101100011111101000001001001000001100000000011\n296",
"output": "0"
},
{
"input": "1100001110101110010111011111000111011011100011001000010111000010010011000111111011000100110010100111000000001110101001000110010000111000001001000111011010001001000010001111000111101001100101110000001111110001110111011101011000011010010101001111101101100011101010010110\n6",
"output": "0"
},
{
"input": "101010111001011101010100110100001111010111011000101000100100100111101101101000001110111110011100001110010010010000110101011101011111111011110000001011011101101111001011000111001100000110100100110\n7",
"output": "0"
},
{
"input": "11100001100000001101001111111101000000111010000001001000111101000100100111101100100011100111101100010110000010100100101001101001101001111101101000101010111111110001011000010011011011101010110110011010111011111000100001010110000010000101011001110011011001010001000010000110010110101100010101001111101101111100010010011000000100001000111010011011101000100111001110000000001110000010110000100010110100110011010110000100111110001100001011101\n3",
"output": "591387665"
},
{
"input": "10001011100010111001100001010011011011001100111000000010110010000000010000000011011110011110111110110011000000011110010011110001110110100010111010100111111000000100011011111011111111010000000001110000100100010100111001001000011010010010010001011110010101001001000101110011110000110010011110111011000010110110110101110011100011111001111001111110001011111110111111111010100111101101011000101000100001101001101010101111011001100000110011000\n1",
"output": "436"
},
{
"input": "10101010100111001111011010\n1",
"output": "25"
},
{
"input": "1110100100000010010000001111\n7",
"output": "0"
},
{
"input": "10011000111011110111100110111100011000100111110\n7",
"output": "0"
},
{
"input": "110110000010000001110101000000110010101110000011110101001111000111001111100110001001100011011\n5",
"output": "0"
},
{
"input": "11000011000010000011010011001000100010\n5",
"output": "0"
},
{
"input": "1011100011101000001101111111101111011101000110110001111001010111110111101110101011111110\n7",
"output": "0"
},
{
"input": "100110100010110011010110011101110001010000110011001100011000101000010110111000\n3",
"output": "637252489"
},
{
"input": "11110110000010111011111100010000001010001110110000101001\n6",
"output": "0"
},
{
"input": "100000001100101011100111100101001101110\n3",
"output": "186506375"
},
{
"input": "10011001111000101010111100111010110110000100101001011101011100000010011111100011101\n1",
"output": "82"
},
{
"input": "1111101000100110001010001001\n3",
"output": "122853842"
},
{
"input": "11010101010101001100101110100001001100111001111100100000001100100010010001010001001100001000111010010101101001100101100000000101001011010011000010100011101010111111100010101011111001110000010000111001101101001100010011101000110101110110001101\n4",
"output": "571603984"
},
{
"input": "100001111010010111101010000100000010011000001100101001000110010010001101001101101001001110000101101010011000011101000101111011001101001111011111000000001100100100011011111010000010011111010011001011111010100100001011010011011001010111011111110111100001001101001001101110101101111000110011011100001011011111001110001000110001100110101100001010000001001100000001101010111110001010011101001111010111\n3",
"output": "329948438"
},
{
"input": "1111110000010010100110001010001000111100001101110100100011101110000011001100010\n3",
"output": "774501673"
},
{
"input": "101100101001110000011101\n3",
"output": "5671856"
},
{
"input": "1011\n3",
"output": "2"
},
{
"input": "100010100\n3",
"output": "150"
},
{
"input": "110110010000000011010010100011111001111101110011100100100110001111100001\n3",
"output": "134209222"
},
{
"input": "11101000011\n3",
"output": "1074"
},
{
"input": "1000000101100011101000101010110111101010111100110\n4",
"output": "325122368"
},
{
"input": "1101\n3",
"output": "3"
},
{
"input": "101100100\n2",
"output": "139"
},
{
"input": "11011011111000010101010100000100110101\n4",
"output": "363038940"
},
{
"input": "10010110100010001010000000110100001000010000\n4",
"output": "399815120"
},
{
"input": "101101000001111101010001110\n4",
"output": "41258563"
},
{
"input": "1100000110100011100011110000010001110111\n4",
"output": "615102266"
},
{
"input": "10011100101110000100000011001000\n4",
"output": "937000434"
},
{
"input": "1110111100101001000100\n4",
"output": "1562803"
},
{
"input": "101110100101001000\n2",
"output": "38552"
},
{
"input": "11110110001110101001101110011011010010010101011000\n3",
"output": "895709102"
},
{
"input": "111001001001101111000\n4",
"output": "680132"
},
{
"input": "111101001101101110110010100010000101011100111\n4",
"output": "632815766"
},
{
"input": "1010100110101101101100001001101001100\n3",
"output": "555759044"
},
{
"input": "1011010011010010111111000011111100001001101010100011011110101\n3",
"output": "760546372"
},
{
"input": "101110010111100010011010001001001111001\n3",
"output": "557969925"
},
{
"input": "11010011111101111111010011011101101111010001001001100000111\n3",
"output": "389792479"
},
{
"input": "1011110111001010110001100011010000011111000100000000011000000101010101010000\n4",
"output": "184972385"
},
{
"input": "1111101000110001110011101001001101000000001000010001110000100111100110100101001100110111010010110000100100011001000110110000010010000101000010101011110101001000101000001101000101011100000101011100101011011001110011111000001011111111011100110010100111010010101000010010001001010101010101001110001001011111101111001101011111110010011001011110001100100011101010110010001110101111110010011111111111\n4",
"output": "678711158"
},
{
"input": "10111010100111101011010100001101000111000001111101000101101001100101011000100110100010100101001011110101111001111011000011010000010100110000100110110011001110001001001010110001011111000100010010010111100010110001011010101101010000101110011011100001100101011110110101100010111011111001011110110111110100101100111001000101100111001100001\n3",
"output": "187155647"
},
{
"input": "10100001110001001101000111010111011011101010111100000101001101001010000100000011110110111\n4",
"output": "108160984"
},
{
"input": "1110011001101101000011001110011111100011101100100000010100111010111001110011100111011111100100111001010101000001001010010010110010100100000011111000000001111010110011000010000100101011000101110100100001101111011110011001000111111010100001010001111100000100100101000001011111011110010111010100111001101000001000111000110100000000010101110000011010010011001000111001111101\n3",
"output": "652221861"
},
{
"input": "100110011001000111111110001010011001110100111010010101100110000110011010111010011110101110011101111000001101010111010101111110100100111010010010101000111011111000010101\n3",
"output": "72690238"
},
{
"input": "111000000101110011000110000\n3",
"output": "54271713"
},
{
"input": "1001000100000\n2",
"output": "1196"
},
{
"input": "10110100000101000110011000010\n3",
"output": "177315776"
},
{
"input": "111000010010111110010111011111001011011011011000110\n4",
"output": "131135624"
},
{
"input": "11001101101100010101011111100111001011010011\n4",
"output": "249690295"
},
{
"input": "101111101000011110011\n3",
"output": "818095"
},
{
"input": "11\n1",
"output": "1"
},
{
"input": "1101000100001110101110101011000100100111111110000011010101100111010\n3",
"output": "748765378"
},
{
"input": "1101011100011011000110101100111010011101001000100011111011011\n3",
"output": "541620851"
},
{
"input": "111000110101110110000001011000000011111011100000000101000011111100101000110101111111001110011100010101011010000001011110101100100101001101110101011101111000\n3",
"output": "154788917"
},
{
"input": "10000010000001111111011111010000101101101101010000100101000101011001011101111100001111001000100010111011101110111011000001110011111001100101101100000001011110010111101010001100111011110110111100100001110100100011101011011000010110010110101010100100000101001110101100110110100111110110100011111100010000011110000101010111111001001101101111\n4",
"output": "46847153"
},
{
"input": "1001100001011111100011111010001111001000000000110101100100011000111101111011010111110001001001111110011100100111011111011110101101001011111100101011000110100110011001101111001011101110011111101011100001011010100000100111011011\n4",
"output": "449157617"
},
{
"input": "1111110011110000001101111011001110111100001101111111110011101110111001001000011101100101001000000001110001010001101111001000010111110100110010001001110111100111000010111100011101001010010001111001100011100100111001101100010100111001000101100010100100101011010000011011010100101111011111101100001100010111111011111010\n3",
"output": "20014881"
},
{
"input": "11011101110100111111011101110111001101001001000111010010011100010100000101010011111101011000000110000110111101001111010101111110111011000011101111001101101100101110101010111011100010110111110001001011111110011110000011000111011010111100011000011011001101111100001101000010100011100000\n4",
"output": "545014668"
},
{
"input": "110100011111110101001011010110011010000010001111111011010011111100101000111000010000000001000010100101011001110101011100111111100101111011000011100100111100100100001101100000011010111110000101110110001100110011000111001101001101011101111101111111011000101010100111100101010111110011011111001100011011101110010100001110100010111\n4",
"output": "228787489"
},
{
"input": "111111011010010110111111\n4",
"output": "7297383"
},
{
"input": "111100111101110100010001110010001001001101110011011011011001110000000111111100100011001011100010001011100101100011010101100000101010000001110111100000111110100010011001111011101010001111011110111100100100101111100000010100110110101000111100001001000011110111101101001110010011111001011011110111111110110110010111101011001100010011100010001101001010100000100101001110111010011011101000011001101000011010110100111011101011001001001001110100000100111011011101010001\n3",
"output": "703566590"
},
{
"input": "111000100110111000010100000010001000001011100000000011101010101100010001010111101011110101000101110100000110110010001010101001000101000010010101101000000001110111100101111101010011100011000001101101101011101111100100011011111111101000101011101111101111111101000111101101101100000001000001111111011100110011000010100111011100000000111100001000111100000011110100011100101001001101110011101110111001010011100011111010010000001011001001010111100011111110010011000100101110\n4",
"output": "518347346"
},
{
"input": "11110011010101111001001000010111000101000100000010010001010110011100011100110110011011011111000101111100011101101010001011010000110000101111100011110101010011110001110001011001010000110111001101111101000000110010101110001100010000000101001001001000000010010100000110000010000111100110110001000110011011100\n1000",
"output": "0"
},
{
"input": "10011010111010010111111110001010001010001010110010110010010111101111000101110101010111100101001100011001001001111011111100011110101011011001101101001111111101010010110011111101110010001000111111100011000000111111111100011000000000110101111000001011101000110000111110110000010000010011000011011110101111111101100101000100000100010001010000110100111010110011000010001101011101101001010111101101110000101010111001011001100101000010110011110110011011001111110100011010010110011101011001111101\n208",
"output": "0"
},
{
"input": "1100101001110100100010011111001011101100101\n1000",
"output": "0"
},
{
"input": "10\n1",
"output": "1"
},
{
"input": "111\n1",
"output": "2"
},
{
"input": "11100001111100111110011100111100110111100111001101\n1",
"output": "49"
},
{
"input": "1000000000000000000001010100101\n1",
"output": "30"
},
{
"input": "110\n1",
"output": "2"
},
{
"input": "11011100\n1",
"output": "7"
},
{
"input": "10000000000000000000\n1",
"output": "19"
},
{
"input": "1111111011111110111\n1",
"output": "18"
},
{
"input": "1000\n1",
"output": "3"
},
{
"input": "100\n1",
"output": "2"
}
] | 1,557,902,661
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 141
| 171
| 6,041,600
|
R = lambda: map(int, input().split())
mod = 10 ** 9 + 7
maxn = 1001
c = [[0 for j in range(maxn)] for i in range(maxn)]
for i in range(maxn):
c[i][0] = 1
for i in range(1, maxn):
for j in range(i + 1):
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod
arr = list(map(int, input()))
k = int(input())
if k == 0:
print(1 if arr.count(1) else 0)
exit(0)
ops = [0] * (maxn + 1)
ans = 0
for i in range(2, maxn):
cnt = bin(i).count('1')
ops[i] = ops[cnt] + 1
for i in range(1, maxn):
if ops[i] == k - 1:
oc = i
for j, x in enumerate(arr):
if x and oc >= 0:
ans = (ans + c[len(arr) - j - 1][oc]) % mod
oc -= 1
ans = (ans + 1) % mod if arr.count(1) == i else ans
if k == 1:
ans = (ans + mod - 1) % mod
print(ans)
|
Title: Travelling Salesman and Special Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Travelling Salesman spends a lot of time travelling so he tends to get bored. To pass time, he likes to perform operations on numbers. One such operation is to take a positive integer *x* and reduce it to the number of bits set to 1 in the binary representation of *x*. For example for number 13 it's true that 1310<==<=11012, so it has 3 bits set and 13 will be reduced to 3 in one operation.
He calls a number special if the minimum number of operations to reduce it to 1 is *k*.
He wants to find out how many special numbers exist which are not greater than *n*. Please help the Travelling Salesman, as he is about to reach his destination!
Since the answer can be large, output it modulo 109<=+<=7.
Input Specification:
The first line contains integer *n* (1<=β€<=*n*<=<<=21000).
The second line contains integer *k* (0<=β€<=*k*<=β€<=1000).
Note that *n* is given in its binary representation without any leading zeros.
Output Specification:
Output a single integerΒ β the number of special numbers not greater than *n*, modulo 109<=+<=7.
Demo Input:
['110\n2\n', '111111011\n2\n']
Demo Output:
['3\n', '169\n']
Note:
In the first sample, the three special numbers are 3, 5 and 6. They get reduced to 2 in one operation (since there are two set bits in each of 3, 5 and 6) and then to 1 in one more operation (since there is only one set bit in 2).
|
```python
R = lambda: map(int, input().split())
mod = 10 ** 9 + 7
maxn = 1001
c = [[0 for j in range(maxn)] for i in range(maxn)]
for i in range(maxn):
c[i][0] = 1
for i in range(1, maxn):
for j in range(i + 1):
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod
arr = list(map(int, input()))
k = int(input())
if k == 0:
print(1 if arr.count(1) else 0)
exit(0)
ops = [0] * (maxn + 1)
ans = 0
for i in range(2, maxn):
cnt = bin(i).count('1')
ops[i] = ops[cnt] + 1
for i in range(1, maxn):
if ops[i] == k - 1:
oc = i
for j, x in enumerate(arr):
if x and oc >= 0:
ans = (ans + c[len(arr) - j - 1][oc]) % mod
oc -= 1
ans = (ans + 1) % mod if arr.count(1) == i else ans
if k == 1:
ans = (ans + mod - 1) % mod
print(ans)
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=Γ<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=Γ<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* β board sizes in squares (1<=β€<=*M*<=β€<=*N*<=β€<=16).
|
Output one number β the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,696,075,297
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
#!/usr/bin/env python
# coding: utf-8
# In[8]:
n, k = map(int, input().split())
out = int((n*k)/2)
print(out)
# In[ ]:
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=Γ<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=Γ<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* β board sizes in squares (1<=β€<=*M*<=β€<=*N*<=β€<=16).
Output Specification:
Output one number β the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
#!/usr/bin/env python
# coding: utf-8
# In[8]:
n, k = map(int, input().split())
out = int((n*k)/2)
print(out)
# In[ ]:
```
| 3.977
|
475
|
B
|
Strongly Connected City
|
PROGRAMMING
| 1,400
|
[
"brute force",
"dfs and similar",
"graphs",
"implementation"
] | null | null |
Imagine a city with *n* horizontal streets crossing *m* vertical streets, forming an (*n*<=-<=1)<=Γ<=(*m*<=-<=1) grid. In order to increase the traffic flow, mayor of the city has decided to make each street one way. This means in each horizontal street, the traffic moves only from west to east or only from east to west. Also, traffic moves only from north to south or only from south to north in each vertical street. It is possible to enter a horizontal street from a vertical street, or vice versa, at their intersection.
The mayor has received some street direction patterns. Your task is to check whether it is possible to reach any junction from any other junction in the proposed street direction pattern.
|
The first line of input contains two integers *n* and *m*, (2<=β€<=*n*,<=*m*<=β€<=20), denoting the number of horizontal streets and the number of vertical streets.
The second line contains a string of length *n*, made of characters '<' and '>', denoting direction of each horizontal street. If the *i*-th character is equal to '<', the street is directed from east to west otherwise, the street is directed from west to east. Streets are listed in order from north to south.
The third line contains a string of length *m*, made of characters '^' and 'v', denoting direction of each vertical street. If the *i*-th character is equal to '^', the street is directed from south to north, otherwise the street is directed from north to south. Streets are listed in order from west to east.
|
If the given pattern meets the mayor's criteria, print a single line containing "YES", otherwise print a single line containing "NO".
|
[
"3 3\n><>\nv^v\n",
"4 6\n<><>\nv^v^v^\n"
] |
[
"NO\n",
"YES\n"
] |
The figure above shows street directions in the second sample test case.
| 1,000
|
[
{
"input": "3 3\n><>\nv^v",
"output": "NO"
},
{
"input": "4 6\n<><>\nv^v^v^",
"output": "YES"
},
{
"input": "2 2\n<>\nv^",
"output": "YES"
},
{
"input": "2 2\n>>\n^v",
"output": "NO"
},
{
"input": "3 3\n>><\n^^v",
"output": "YES"
},
{
"input": "3 4\n>><\n^v^v",
"output": "YES"
},
{
"input": "3 8\n>><\nv^^^^^^^",
"output": "NO"
},
{
"input": "7 2\n<><<<<>\n^^",
"output": "NO"
},
{
"input": "4 5\n><<<\n^^^^v",
"output": "YES"
},
{
"input": "2 20\n><\n^v^^v^^v^^^v^vv^vv^^",
"output": "NO"
},
{
"input": "2 20\n<>\nv^vv^v^^vvv^^^v^vvv^",
"output": "YES"
},
{
"input": "20 2\n<><<><<>><<<>><><<<<\n^^",
"output": "NO"
},
{
"input": "20 2\n><>><>><>><<<><<><><\n^v",
"output": "YES"
},
{
"input": "11 12\n><<<><><<>>\nvv^^^^vvvvv^",
"output": "NO"
},
{
"input": "4 18\n<<>>\nv^v^v^^vvvv^v^^vv^",
"output": "YES"
},
{
"input": "16 11\n<<<<>><><<<<<><<\nvv^v^vvvv^v",
"output": "NO"
},
{
"input": "14 7\n><<<<>>>>>>><<\nvv^^^vv",
"output": "NO"
},
{
"input": "5 14\n<<><>\nv^vv^^vv^v^^^v",
"output": "NO"
},
{
"input": "8 18\n>>>><>>>\nv^vv^v^^^^^vvv^^vv",
"output": "NO"
},
{
"input": "18 18\n<<><>><<>><>><><<<\n^^v^v^vvvv^v^vv^vv",
"output": "NO"
},
{
"input": "4 18\n<<<>\n^^^^^vv^vv^^vv^v^v",
"output": "NO"
},
{
"input": "19 18\n><><>>><<<<<>>><<<>\n^^v^^v^^v^vv^v^vvv",
"output": "NO"
},
{
"input": "14 20\n<<<><><<>><><<\nvvvvvvv^v^vvvv^^^vv^",
"output": "NO"
},
{
"input": "18 18\n><>>><<<>><><>>>><\nvv^^^^v^v^^^^v^v^^",
"output": "NO"
},
{
"input": "8 18\n<><<<>>>\n^^^^^^v^^^vv^^vvvv",
"output": "NO"
},
{
"input": "11 12\n><><><<><><\n^^v^^^^^^^^v",
"output": "YES"
},
{
"input": "4 18\n<<>>\nv^v^v^^vvvv^v^^vv^",
"output": "YES"
},
{
"input": "16 11\n>><<><<<<>>><><<\n^^^^vvvv^vv",
"output": "YES"
},
{
"input": "14 7\n<><><<<>>>><>>\nvv^^v^^",
"output": "YES"
},
{
"input": "5 14\n>>>><\n^v^v^^^vv^vv^v",
"output": "YES"
},
{
"input": "8 18\n<<<><>>>\nv^^vvv^^v^v^vvvv^^",
"output": "YES"
},
{
"input": "18 18\n><><<><><>>><>>>><\n^^vvv^v^^^v^vv^^^v",
"output": "YES"
},
{
"input": "4 18\n<<>>\nv^v^v^^vvvv^v^^vv^",
"output": "YES"
},
{
"input": "19 18\n>>>><><<>>><<<><<<<\n^v^^^^vv^^v^^^^v^v",
"output": "YES"
},
{
"input": "14 20\n<>><<<><<>>>>>\nvv^^v^^^^v^^vv^^vvv^",
"output": "YES"
},
{
"input": "18 18\n><><<><><>>><>>>><\n^^vvv^v^^^v^vv^^^v",
"output": "YES"
},
{
"input": "8 18\n<<<><>>>\nv^^vvv^^v^v^vvvv^^",
"output": "YES"
},
{
"input": "20 19\n<><>>>>><<<<<><<>>>>\nv^vv^^vvvvvv^vvvv^v",
"output": "NO"
},
{
"input": "20 19\n<<<><<<>><<<>><><><>\nv^v^vvv^vvv^^^vvv^^",
"output": "YES"
},
{
"input": "19 20\n<><<<><><><<<<<<<<>\n^v^^^^v^^vvvv^^^^vvv",
"output": "NO"
},
{
"input": "19 20\n>>>>>>>><>>><><<<><\n^v^v^^^vvv^^^v^^vvvv",
"output": "YES"
},
{
"input": "20 20\n<<<>>>><>><<>><<>>>>\n^vvv^^^^vv^^^^^v^^vv",
"output": "NO"
},
{
"input": "20 20\n>>><><<><<<<<<<><<><\nvv^vv^vv^^^^^vv^^^^^",
"output": "NO"
},
{
"input": "20 20\n><<><<<<<<<>>><>>><<\n^^^^^^^^vvvv^vv^vvvv",
"output": "YES"
},
{
"input": "20 20\n<>>>>>>>><>>><>><<<>\nvv^^vv^^^^v^vv^v^^^^",
"output": "YES"
},
{
"input": "20 20\n><>><<>><>>>>>>>><<>\n^^v^vv^^^vvv^v^^^vv^",
"output": "NO"
},
{
"input": "20 20\n<<<<><<>><><<<>><<><\nv^^^^vvv^^^vvvv^v^vv",
"output": "NO"
},
{
"input": "20 20\n><<<><<><>>><><<<<<<\nvv^^vvv^^v^^v^vv^vvv",
"output": "NO"
},
{
"input": "20 20\n<<>>><>>>><<<<>>><<>\nv^vv^^^^^vvv^^v^^v^v",
"output": "NO"
},
{
"input": "20 20\n><<><<><<<<<<>><><>>\nv^^^v^vv^^v^^vvvv^vv",
"output": "NO"
},
{
"input": "20 20\n<<<<<<<<><>><><>><<<\n^vvv^^^v^^^vvv^^^^^v",
"output": "NO"
},
{
"input": "20 20\n>>><<<<<>>><><><<><<\n^^^vvv^^^v^^v^^v^vvv",
"output": "YES"
},
{
"input": "20 20\n<><<<><><>><><><<<<>\n^^^vvvv^vv^v^^^^v^vv",
"output": "NO"
},
{
"input": "20 20\n>>>>>>>>>><>>><>><>>\n^vvv^^^vv^^^^^^vvv^v",
"output": "NO"
},
{
"input": "20 20\n<><>><><<<<<>><<>>><\nv^^^v^v^v^vvvv^^^vv^",
"output": "NO"
},
{
"input": "20 20\n><<<><<<><<<><>>>><<\nvvvv^^^^^vv^v^^vv^v^",
"output": "NO"
},
{
"input": "20 20\n<<><<<<<<>>>>><<<>>>\nvvvvvv^v^vvv^^^^^^^^",
"output": "YES"
},
{
"input": "20 20\n><<><<>>>>><><>><>>>\nv^^^^vvv^^^^^v^v^vv^",
"output": "NO"
},
{
"input": "20 20\n<<>>><>><<>>>><<<><<\n^^vvv^^vvvv^vv^^v^v^",
"output": "NO"
},
{
"input": "20 20\n><<>><>>>><<><>><><<\n^v^^^^^^vvvv^v^v^v^^",
"output": "NO"
},
{
"input": "20 20\n<<><<<<><><<>>><>>>>\n^^vvvvv^v^^^^^^^vvv^",
"output": "NO"
},
{
"input": "20 20\n>><<<<<<><>>>><>>><>\n^^^v^v^vv^^vv^vvv^^^",
"output": "NO"
},
{
"input": "20 20\n>>>>>>>>>>>>>>>>>>>>\nvvvvvvvvvvvvvvvvvvvv",
"output": "NO"
},
{
"input": "2 2\n><\nv^",
"output": "NO"
},
{
"input": "2 2\n<>\n^v",
"output": "NO"
},
{
"input": "3 3\n>><\nvvv",
"output": "NO"
},
{
"input": "2 3\n<>\nv^^",
"output": "YES"
},
{
"input": "4 4\n>>><\nvvv^",
"output": "NO"
},
{
"input": "20 20\n<><><><><><><><><><>\nvvvvvvvvvvvvvvvvvvvv",
"output": "NO"
},
{
"input": "4 4\n<>>>\nv^^^",
"output": "YES"
},
{
"input": "20 20\n<><><><><><><><><><>\nv^v^v^v^v^v^v^v^v^v^",
"output": "YES"
},
{
"input": "2 3\n<>\n^v^",
"output": "NO"
},
{
"input": "4 3\n<><>\n^vv",
"output": "NO"
},
{
"input": "3 3\n<<>\nvv^",
"output": "YES"
},
{
"input": "2 3\n><\nvv^",
"output": "NO"
},
{
"input": "7 6\n>>><>><\n^vv^vv",
"output": "YES"
},
{
"input": "2 2\n<<\nv^",
"output": "NO"
},
{
"input": "3 3\n>><\n^^^",
"output": "NO"
},
{
"input": "3 3\n<><\nv^v",
"output": "NO"
},
{
"input": "20 20\n><><><><><><><><><><\n^v^v^v^v^v^v^v^v^v^v",
"output": "YES"
},
{
"input": "4 4\n<>>>\nvvv^",
"output": "YES"
}
] | 1,424,140,175
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 81
| 124
| 204,800
|
def main():
n, m = map(int, input().split())
nm = n * m
neigh = [[] for _ in range(nm)]
for y, c in enumerate(input()):
for x in range(y * m + 1, y * m + m):
if c == '<':
neigh[x].append(x - 1)
else:
neigh[x - 1].append(x)
for x, c in enumerate(input()):
for y in range(m + x, nm, m):
if c == '^':
neigh[y].append(y - m)
else:
neigh[y - m].append(y)
def dfs(yx):
l[yx] = False
for yx1 in neigh[yx]:
if l[yx1]:
dfs(yx1)
for i in range(nm):
l = [True] * nm
dfs(i)
if any(l):
print('NO')
return
print('YES')
if __name__ == '__main__':
main()
|
Title: Strongly Connected City
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Imagine a city with *n* horizontal streets crossing *m* vertical streets, forming an (*n*<=-<=1)<=Γ<=(*m*<=-<=1) grid. In order to increase the traffic flow, mayor of the city has decided to make each street one way. This means in each horizontal street, the traffic moves only from west to east or only from east to west. Also, traffic moves only from north to south or only from south to north in each vertical street. It is possible to enter a horizontal street from a vertical street, or vice versa, at their intersection.
The mayor has received some street direction patterns. Your task is to check whether it is possible to reach any junction from any other junction in the proposed street direction pattern.
Input Specification:
The first line of input contains two integers *n* and *m*, (2<=β€<=*n*,<=*m*<=β€<=20), denoting the number of horizontal streets and the number of vertical streets.
The second line contains a string of length *n*, made of characters '<' and '>', denoting direction of each horizontal street. If the *i*-th character is equal to '<', the street is directed from east to west otherwise, the street is directed from west to east. Streets are listed in order from north to south.
The third line contains a string of length *m*, made of characters '^' and 'v', denoting direction of each vertical street. If the *i*-th character is equal to '^', the street is directed from south to north, otherwise the street is directed from north to south. Streets are listed in order from west to east.
Output Specification:
If the given pattern meets the mayor's criteria, print a single line containing "YES", otherwise print a single line containing "NO".
Demo Input:
['3 3\n><>\nv^v\n', '4 6\n<><>\nv^v^v^\n']
Demo Output:
['NO\n', 'YES\n']
Note:
The figure above shows street directions in the second sample test case.
|
```python
def main():
n, m = map(int, input().split())
nm = n * m
neigh = [[] for _ in range(nm)]
for y, c in enumerate(input()):
for x in range(y * m + 1, y * m + m):
if c == '<':
neigh[x].append(x - 1)
else:
neigh[x - 1].append(x)
for x, c in enumerate(input()):
for y in range(m + x, nm, m):
if c == '^':
neigh[y].append(y - m)
else:
neigh[y - m].append(y)
def dfs(yx):
l[yx] = False
for yx1 in neigh[yx]:
if l[yx1]:
dfs(yx1)
for i in range(nm):
l = [True] * nm
dfs(i)
if any(l):
print('NO')
return
print('YES')
if __name__ == '__main__':
main()
```
| 3
|
|
431
|
A
|
Black Square
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
|
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=β€<=*a*1,<=*a*2,<=*a*3,<=*a*4<=β€<=104).
The second line contains string *s* (1<=β€<=|*s*|<=β€<=105), where the *Ρ*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
|
Print a single integer β the total number of calories that Jury wastes.
|
[
"1 2 3 4\n123214\n",
"1 5 3 2\n11221\n"
] |
[
"13\n",
"13\n"
] |
none
| 500
|
[
{
"input": "1 2 3 4\n123214",
"output": "13"
},
{
"input": "1 5 3 2\n11221",
"output": "13"
},
{
"input": "5 5 5 1\n3422",
"output": "16"
},
{
"input": "4 3 2 1\n2",
"output": "3"
},
{
"input": "5651 6882 6954 4733\n2442313421",
"output": "60055"
},
{
"input": "0 0 0 0\n4132",
"output": "0"
},
{
"input": "3163 5778 83 7640\n11141442444",
"output": "64270"
},
{
"input": "1809 1302 7164 6122\n3144121413113111223311232232114144321414421243443243422322144324121433444342231344234443332241322442",
"output": "420780"
},
{
"input": "0 0 0 0\n1",
"output": "0"
},
{
"input": "1 2 3 4\n4",
"output": "4"
},
{
"input": "2343 7653 1242 5432\n1",
"output": "2343"
},
{
"input": "2343 7653 1242 5432\n2",
"output": "7653"
},
{
"input": "2343 7653 1242 5432\n3",
"output": "1242"
},
{
"input": "2343 7653 1242 5432\n4",
"output": "5432"
},
{
"input": "1 2 3 4\n123412",
"output": "13"
},
{
"input": "50 50 50 50\n11111111111111111111111111111111111111111111111111111",
"output": "2650"
},
{
"input": "1 2 3 4\n11111111111111111111111111111111111111111111111111",
"output": "50"
},
{
"input": "1 2 3 4\n23123231321231231231231231221232123121312321",
"output": "87"
},
{
"input": "1 2 3 4\n1111111111111222222222233333333333444444444444444",
"output": "126"
},
{
"input": "2 3 1 4\n121321232412342112312313213123123412131231231232",
"output": "105"
}
] | 1,693,591,227
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 93
| 102,400
|
def main(arr, s):
n = 0
for i in range(len(s)):
n += arr[int(s[i]) - 1]
return n
if __name__ == "__main__":
arr = list(map(int, input().split()))
s = str(input())
print(main(arr, s))
|
Title: Black Square
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
Input Specification:
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=β€<=*a*1,<=*a*2,<=*a*3,<=*a*4<=β€<=104).
The second line contains string *s* (1<=β€<=|*s*|<=β€<=105), where the *Ρ*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
Output Specification:
Print a single integer β the total number of calories that Jury wastes.
Demo Input:
['1 2 3 4\n123214\n', '1 5 3 2\n11221\n']
Demo Output:
['13\n', '13\n']
Note:
none
|
```python
def main(arr, s):
n = 0
for i in range(len(s)):
n += arr[int(s[i]) - 1]
return n
if __name__ == "__main__":
arr = list(map(int, input().split()))
s = str(input())
print(main(arr, s))
```
| 3
|
|
424
|
A
|
Squats
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Pasha has many hamsters and he makes them work out. Today, *n* hamsters (*n* is even) came to work out. The hamsters lined up and each hamster either sat down or stood up.
For another exercise, Pasha needs exactly hamsters to stand up and the other hamsters to sit down. In one minute, Pasha can make some hamster ether sit down or stand up. How many minutes will he need to get what he wants if he acts optimally well?
|
The first line contains integer *n* (2<=β€<=*n*<=β€<=200; *n* is even). The next line contains *n* characters without spaces. These characters describe the hamsters' position: the *i*-th character equals 'X', if the *i*-th hamster in the row is standing, and 'x', if he is sitting.
|
In the first line, print a single integer β the minimum required number of minutes. In the second line, print a string that describes the hamsters' position after Pasha makes the required changes. If there are multiple optimal positions, print any of them.
|
[
"4\nxxXx\n",
"2\nXX\n",
"6\nxXXxXx\n"
] |
[
"1\nXxXx\n",
"1\nxX\n",
"0\nxXXxXx\n"
] |
none
| 500
|
[
{
"input": "4\nxxXx",
"output": "1\nXxXx"
},
{
"input": "2\nXX",
"output": "1\nxX"
},
{
"input": "6\nxXXxXx",
"output": "0\nxXXxXx"
},
{
"input": "4\nxXXX",
"output": "1\nxxXX"
},
{
"input": "2\nXx",
"output": "0\nXx"
},
{
"input": "22\nXXxXXxxXxXxXXXXXXXXXxx",
"output": "4\nxxxxxxxXxXxXXXXXXXXXxx"
},
{
"input": "30\nXXxXxxXXXXxxXXxxXXxxxxXxxXXXxx",
"output": "0\nXXxXxxXXXXxxXXxxXXxxxxXxxXXXxx"
},
{
"input": "104\nxxXxXxxXXXxxXxXxxXXXxxxXxxXXXxxXXXxXxXxXXxxXxxxxxXXXXxXXXXxXXXxxxXxxxxxxxXxxXxXXxxXXXXxXXXxxXXXXXXXXXxXX",
"output": "4\nxxxxxxxxxXxxXxXxxXXXxxxXxxXXXxxXXXxXxXxXXxxXxxxxxXXXXxXXXXxXXXxxxXxxxxxxxXxxXxXXxxXXXXxXXXxxXXXXXXXXXxXX"
},
{
"input": "78\nxxxXxxXxXxxXxxxxxXxXXXxXXXXxxxxxXxXXXxxXxXXXxxxxXxxXXXxxxxxxxxXXXXxXxXXxXXXxXX",
"output": "3\nXXXXxxXxXxxXxxxxxXxXXXxXXXXxxxxxXxXXXxxXxXXXxxxxXxxXXXxxxxxxxxXXXXxXxXXxXXXxXX"
},
{
"input": "200\nxxXXxxXXxXxxXxxXxXxxXxXxXxXxxxxxXXxXXxxXXXXxXXXxXXxXxXxxxxXxxXXXxxxXxXxxxXxxXXxXxXxxxxxxxXxxXxXxxXxXXXxxXxXXXXxxXxxxXxXXXXXXxXxXXxxxxXxxxXxxxXxXXXxXxXXXXxXXxxxXxXXxxXXxxxXxXxXXxXXXxXxXxxxXXxxxxXXxXXXX",
"output": "4\nXXXXXXXXxXxxXxxXxXxxXxXxXxXxxxxxXXxXXxxXXXXxXXXxXXxXxXxxxxXxxXXXxxxXxXxxxXxxXXxXxXxxxxxxxXxxXxXxxXxXXXxxXxXXXXxxXxxxXxXXXXXXxXxXXxxxxXxxxXxxxXxXXXxXxXXXXxXXxxxXxXXxxXXxxxXxXxXXxXXXxXxXxxxXXxxxxXXxXXXX"
},
{
"input": "198\nxXxxXxxXxxXXxXxXxXxxXXXxxXxxxxXXXXxxXxxxxXXXXxXxXXxxxXXXXXXXxXXXxxxxXXxXXxXxXXxxxxXxXXXXXXxXxxXxXxxxXxXXXXxxXXxxXxxxXXxXxXXxXxXXxXXXXxxxxxXxXXxxxXxXXXXxXxXXxxXxXXxXxXXxxxXxXXXXxXxxXxXXXxxxxXxXXXXxXx",
"output": "5\nxxxxxxxxxxxxxXxXxXxxXXXxxXxxxxXXXXxxXxxxxXXXXxXxXXxxxXXXXXXXxXXXxxxxXXxXXxXxXXxxxxXxXXXXXXxXxxXxXxxxXxXXXXxxXXxxXxxxXXxXxXXxXxXXxXXXXxxxxxXxXXxxxXxXXXXxXxXXxxXxXXxXxXXxxxXxXXXXxXxxXxXXXxxxxXxXXXXxXx"
},
{
"input": "200\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
"output": "100\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
},
{
"input": "198\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
"output": "99\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
},
{
"input": "200\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
"output": "100\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
},
{
"input": "198\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
"output": "99\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
},
{
"input": "2\nxx",
"output": "1\nXx"
},
{
"input": "2\nXx",
"output": "0\nXx"
},
{
"input": "2\nxX",
"output": "0\nxX"
},
{
"input": "4\nXXXX",
"output": "2\nxxXX"
},
{
"input": "4\nxxxx",
"output": "2\nXXxx"
},
{
"input": "4\nxxXX",
"output": "0\nxxXX"
},
{
"input": "4\nXXxx",
"output": "0\nXXxx"
},
{
"input": "4\nxXxx",
"output": "1\nXXxx"
},
{
"input": "4\nXxxx",
"output": "1\nXXxx"
},
{
"input": "4\nxxxX",
"output": "1\nXxxX"
},
{
"input": "4\nxxXx",
"output": "1\nXxXx"
},
{
"input": "4\nXXXx",
"output": "1\nxXXx"
},
{
"input": "4\nxXXX",
"output": "1\nxxXX"
},
{
"input": "4\nXxXX",
"output": "1\nxxXX"
},
{
"input": "4\nXXxX",
"output": "1\nxXxX"
},
{
"input": "4\nXxXx",
"output": "0\nXxXx"
},
{
"input": "6\nxXXxXX",
"output": "1\nxxXxXX"
}
] | 1,410,813,174
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 46
| 0
|
import math
a=int(input())
y=input()
smallxc=0
result=""
for i in range(0,a):
if(y[i:i+1]=="x"):
smallxc+=1
if smallxc==a//2:
print(0)
print(y)
else:
counter=0
if smallxc>a//2:
for j in range(0,a):
if(y[j:j+1]=="x"):
result+="X"
counter+=1
if counter==smallxc-(a//2):
break
else:
result+="X"
result+=y[j+1:]
else:
for j in range(0,a):
if(y[j:j+1]=="X"):
result+="x"
counter+=1
if counter==a//2-(smallxc):
break
else:
result+="x"
result+=y[j+1:]
print(abs(smallxc-(a//2)))
print(result)
|
Title: Squats
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pasha has many hamsters and he makes them work out. Today, *n* hamsters (*n* is even) came to work out. The hamsters lined up and each hamster either sat down or stood up.
For another exercise, Pasha needs exactly hamsters to stand up and the other hamsters to sit down. In one minute, Pasha can make some hamster ether sit down or stand up. How many minutes will he need to get what he wants if he acts optimally well?
Input Specification:
The first line contains integer *n* (2<=β€<=*n*<=β€<=200; *n* is even). The next line contains *n* characters without spaces. These characters describe the hamsters' position: the *i*-th character equals 'X', if the *i*-th hamster in the row is standing, and 'x', if he is sitting.
Output Specification:
In the first line, print a single integer β the minimum required number of minutes. In the second line, print a string that describes the hamsters' position after Pasha makes the required changes. If there are multiple optimal positions, print any of them.
Demo Input:
['4\nxxXx\n', '2\nXX\n', '6\nxXXxXx\n']
Demo Output:
['1\nXxXx\n', '1\nxX\n', '0\nxXXxXx\n']
Note:
none
|
```python
import math
a=int(input())
y=input()
smallxc=0
result=""
for i in range(0,a):
if(y[i:i+1]=="x"):
smallxc+=1
if smallxc==a//2:
print(0)
print(y)
else:
counter=0
if smallxc>a//2:
for j in range(0,a):
if(y[j:j+1]=="x"):
result+="X"
counter+=1
if counter==smallxc-(a//2):
break
else:
result+="X"
result+=y[j+1:]
else:
for j in range(0,a):
if(y[j:j+1]=="X"):
result+="x"
counter+=1
if counter==a//2-(smallxc):
break
else:
result+="x"
result+=y[j+1:]
print(abs(smallxc-(a//2)))
print(result)
```
| 3
|
|
248
|
A
|
Cupboards
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
One foggy Stockholm morning, Karlsson decided to snack on some jam in his friend Lillebror Svantenson's house. Fortunately for Karlsson, there wasn't anybody in his friend's house. Karlsson was not going to be hungry any longer, so he decided to get some food in the house.
Karlsson's gaze immediately fell on *n* wooden cupboards, standing in the kitchen. He immediately realized that these cupboards have hidden jam stocks. Karlsson began to fly greedily around the kitchen, opening and closing the cupboards' doors, grab and empty all the jars of jam that he could find.
And now all jars of jam are empty, Karlsson has had enough and does not want to leave traces of his stay, so as not to let down his friend. Each of the cupboards has two doors: the left one and the right one. Karlsson remembers that when he rushed to the kitchen, all the cupboards' left doors were in the same position (open or closed), similarly, all the cupboards' right doors were in the same position (open or closed). Karlsson wants the doors to meet this condition as well by the time the family returns. Karlsson does not remember the position of all the left doors, also, he cannot remember the position of all the right doors. Therefore, it does not matter to him in what position will be all left or right doors. It is important to leave all the left doors in the same position, and all the right doors in the same position. For example, all the left doors may be closed, and all the right ones may be open.
Karlsson needs one second to open or close a door of a cupboard. He understands that he has very little time before the family returns, so he wants to know the minimum number of seconds *t*, in which he is able to bring all the cupboard doors in the required position.
Your task is to write a program that will determine the required number of seconds *t*.
|
The first input line contains a single integer *n* β the number of cupboards in the kitchen (2<=β€<=*n*<=β€<=104). Then follow *n* lines, each containing two integers *l**i* and *r**i* (0<=β€<=*l**i*,<=*r**i*<=β€<=1). Number *l**i* equals one, if the left door of the *i*-th cupboard is opened, otherwise number *l**i* equals zero. Similarly, number *r**i* equals one, if the right door of the *i*-th cupboard is opened, otherwise number *r**i* equals zero.
The numbers in the lines are separated by single spaces.
|
In the only output line print a single integer *t* β the minimum number of seconds Karlsson needs to change the doors of all cupboards to the position he needs.
|
[
"5\n0 1\n1 0\n0 1\n1 1\n0 1\n"
] |
[
"3\n"
] |
none
| 500
|
[
{
"input": "5\n0 1\n1 0\n0 1\n1 1\n0 1",
"output": "3"
},
{
"input": "2\n0 0\n0 0",
"output": "0"
},
{
"input": "3\n0 1\n1 1\n1 1",
"output": "1"
},
{
"input": "8\n0 1\n1 0\n0 1\n1 1\n0 1\n1 0\n0 1\n1 0",
"output": "7"
},
{
"input": "8\n1 0\n1 0\n1 0\n0 1\n0 1\n1 1\n1 1\n0 1",
"output": "6"
},
{
"input": "15\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "5\n1 0\n1 0\n1 0\n0 1\n0 1",
"output": "4"
}
] | 1,680,812,091
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 57
| 312
| 5,222,400
|
t = int(input())
l = 0
r = 0
for _ in range(t):
a = [int(x) for x in input().split()]
l += a[0]
r += a[1]
print(min(t-l, l) + min(t-r,r))
|
Title: Cupboards
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One foggy Stockholm morning, Karlsson decided to snack on some jam in his friend Lillebror Svantenson's house. Fortunately for Karlsson, there wasn't anybody in his friend's house. Karlsson was not going to be hungry any longer, so he decided to get some food in the house.
Karlsson's gaze immediately fell on *n* wooden cupboards, standing in the kitchen. He immediately realized that these cupboards have hidden jam stocks. Karlsson began to fly greedily around the kitchen, opening and closing the cupboards' doors, grab and empty all the jars of jam that he could find.
And now all jars of jam are empty, Karlsson has had enough and does not want to leave traces of his stay, so as not to let down his friend. Each of the cupboards has two doors: the left one and the right one. Karlsson remembers that when he rushed to the kitchen, all the cupboards' left doors were in the same position (open or closed), similarly, all the cupboards' right doors were in the same position (open or closed). Karlsson wants the doors to meet this condition as well by the time the family returns. Karlsson does not remember the position of all the left doors, also, he cannot remember the position of all the right doors. Therefore, it does not matter to him in what position will be all left or right doors. It is important to leave all the left doors in the same position, and all the right doors in the same position. For example, all the left doors may be closed, and all the right ones may be open.
Karlsson needs one second to open or close a door of a cupboard. He understands that he has very little time before the family returns, so he wants to know the minimum number of seconds *t*, in which he is able to bring all the cupboard doors in the required position.
Your task is to write a program that will determine the required number of seconds *t*.
Input Specification:
The first input line contains a single integer *n* β the number of cupboards in the kitchen (2<=β€<=*n*<=β€<=104). Then follow *n* lines, each containing two integers *l**i* and *r**i* (0<=β€<=*l**i*,<=*r**i*<=β€<=1). Number *l**i* equals one, if the left door of the *i*-th cupboard is opened, otherwise number *l**i* equals zero. Similarly, number *r**i* equals one, if the right door of the *i*-th cupboard is opened, otherwise number *r**i* equals zero.
The numbers in the lines are separated by single spaces.
Output Specification:
In the only output line print a single integer *t* β the minimum number of seconds Karlsson needs to change the doors of all cupboards to the position he needs.
Demo Input:
['5\n0 1\n1 0\n0 1\n1 1\n0 1\n']
Demo Output:
['3\n']
Note:
none
|
```python
t = int(input())
l = 0
r = 0
for _ in range(t):
a = [int(x) for x in input().split()]
l += a[0]
r += a[1]
print(min(t-l, l) + min(t-r,r))
```
| 3
|
|
677
|
A
|
Vanya and Fence
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*.
Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
|
The first line of the input contains two integers *n* and *h* (1<=β€<=*n*<=β€<=1000, 1<=β€<=*h*<=β€<=1000)Β β the number of friends and the height of the fence, respectively.
The second line contains *n* integers *a**i* (1<=β€<=*a**i*<=β€<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
|
Print a single integerΒ β the minimum possible valid width of the road.
|
[
"3 7\n4 5 14\n",
"6 1\n1 1 1 1 1 1\n",
"6 5\n7 6 8 9 10 5\n"
] |
[
"4\n",
"6\n",
"11\n"
] |
In the first sample, only person number 3 must bend down, so the required width is equal to 1β+β1β+β2β=β4.
In the second sample, all friends are short enough and no one has to bend, so the width 1β+β1β+β1β+β1β+β1β+β1β=β6 is enough.
In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2β+β2β+β2β+β2β+β2β+β1β=β11.
| 500
|
[
{
"input": "3 7\n4 5 14",
"output": "4"
},
{
"input": "6 1\n1 1 1 1 1 1",
"output": "6"
},
{
"input": "6 5\n7 6 8 9 10 5",
"output": "11"
},
{
"input": "10 420\n214 614 297 675 82 740 174 23 255 15",
"output": "13"
},
{
"input": "10 561\n657 23 1096 487 785 66 481 554 1000 821",
"output": "15"
},
{
"input": "100 342\n478 143 359 336 162 333 385 515 117 496 310 538 469 539 258 676 466 677 1 296 150 560 26 213 627 221 255 126 617 174 279 178 24 435 70 145 619 46 669 566 300 67 576 251 58 176 441 564 569 194 24 669 73 262 457 259 619 78 400 579 222 626 269 47 80 315 160 194 455 186 315 424 197 246 683 220 68 682 83 233 290 664 273 598 362 305 674 614 321 575 362 120 14 534 62 436 294 351 485 396",
"output": "144"
},
{
"input": "100 290\n244 49 276 77 449 261 468 458 201 424 9 131 300 88 432 394 104 77 13 289 435 259 111 453 168 394 156 412 351 576 178 530 81 271 228 564 125 328 42 372 205 61 180 471 33 360 567 331 222 318 241 117 529 169 188 484 202 202 299 268 246 343 44 364 333 494 59 236 84 485 50 8 428 8 571 227 205 310 210 9 324 472 368 490 114 84 296 305 411 351 569 393 283 120 510 171 232 151 134 366",
"output": "145"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 1\n2",
"output": "2"
},
{
"input": "46 71\n30 26 56 138 123 77 60 122 73 45 79 10 130 3 14 1 38 46 128 50 82 16 32 68 28 98 62 106 2 49 131 11 114 39 139 70 40 50 45 137 33 30 35 136 135 19",
"output": "63"
},
{
"input": "20 723\n212 602 293 591 754 91 1135 640 80 495 845 928 1399 498 926 1431 1226 869 814 1386",
"output": "31"
},
{
"input": "48 864\n843 1020 751 1694 18 1429 1395 1174 272 1158 1628 1233 1710 441 765 561 778 748 1501 1200 563 1263 1398 1687 1518 1640 1591 839 500 466 1603 1587 1201 1209 432 868 1159 639 649 628 9 91 1036 147 896 1557 941 518",
"output": "75"
},
{
"input": "26 708\n549 241 821 734 945 1161 566 1268 216 30 1142 730 529 1014 255 168 796 1148 89 113 1328 286 743 871 1259 1397",
"output": "41"
},
{
"input": "75 940\n1620 1745 1599 441 64 1466 1496 1239 1716 1475 778 106 1136 1212 1261 444 781 257 1071 747 626 232 609 1544 682 1326 469 1361 1460 1450 1207 1319 922 625 1737 1057 1698 592 692 80 1016 541 1254 201 682 1007 847 206 1066 809 259 109 240 1611 219 1455 1326 1377 1827 786 42 1002 1382 1592 543 1866 1198 334 1524 1760 340 1566 955 257 1118",
"output": "116"
}
] | 1,695,026,622
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 46
| 0
|
n,h = map(int,input().split())
l = input().split()
res = 0
for p in l:
if int(p)<=h:
res+=1
else:
res+=2
print(res)
|
Title: Vanya and Fence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*.
Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
Input Specification:
The first line of the input contains two integers *n* and *h* (1<=β€<=*n*<=β€<=1000, 1<=β€<=*h*<=β€<=1000)Β β the number of friends and the height of the fence, respectively.
The second line contains *n* integers *a**i* (1<=β€<=*a**i*<=β€<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
Output Specification:
Print a single integerΒ β the minimum possible valid width of the road.
Demo Input:
['3 7\n4 5 14\n', '6 1\n1 1 1 1 1 1\n', '6 5\n7 6 8 9 10 5\n']
Demo Output:
['4\n', '6\n', '11\n']
Note:
In the first sample, only person number 3 must bend down, so the required width is equal to 1β+β1β+β2β=β4.
In the second sample, all friends are short enough and no one has to bend, so the width 1β+β1β+β1β+β1β+β1β+β1β=β6 is enough.
In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2β+β2β+β2β+β2β+β2β+β1β=β11.
|
```python
n,h = map(int,input().split())
l = input().split()
res = 0
for p in l:
if int(p)<=h:
res+=1
else:
res+=2
print(res)
```
| 3
|
|
41
|
A
|
Translation
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Translation
|
2
|
256
|
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the Β«translationΒ». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
|
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
|
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
|
[
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,655,724,911
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 92
| 0
|
text1 = input()
text2 = input()
if text1 == text2[::- 1]:
print("YES")
else:
print("NO")
# this worked the first time
|
Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the Β«translationΒ». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
text1 = input()
text2 = input()
if text1 == text2[::- 1]:
print("YES")
else:
print("NO")
# this worked the first time
```
| 3.977
|
431
|
A
|
Black Square
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
|
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=β€<=*a*1,<=*a*2,<=*a*3,<=*a*4<=β€<=104).
The second line contains string *s* (1<=β€<=|*s*|<=β€<=105), where the *Ρ*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
|
Print a single integer β the total number of calories that Jury wastes.
|
[
"1 2 3 4\n123214\n",
"1 5 3 2\n11221\n"
] |
[
"13\n",
"13\n"
] |
none
| 500
|
[
{
"input": "1 2 3 4\n123214",
"output": "13"
},
{
"input": "1 5 3 2\n11221",
"output": "13"
},
{
"input": "5 5 5 1\n3422",
"output": "16"
},
{
"input": "4 3 2 1\n2",
"output": "3"
},
{
"input": "5651 6882 6954 4733\n2442313421",
"output": "60055"
},
{
"input": "0 0 0 0\n4132",
"output": "0"
},
{
"input": "3163 5778 83 7640\n11141442444",
"output": "64270"
},
{
"input": "1809 1302 7164 6122\n3144121413113111223311232232114144321414421243443243422322144324121433444342231344234443332241322442",
"output": "420780"
},
{
"input": "0 0 0 0\n1",
"output": "0"
},
{
"input": "1 2 3 4\n4",
"output": "4"
},
{
"input": "2343 7653 1242 5432\n1",
"output": "2343"
},
{
"input": "2343 7653 1242 5432\n2",
"output": "7653"
},
{
"input": "2343 7653 1242 5432\n3",
"output": "1242"
},
{
"input": "2343 7653 1242 5432\n4",
"output": "5432"
},
{
"input": "1 2 3 4\n123412",
"output": "13"
},
{
"input": "50 50 50 50\n11111111111111111111111111111111111111111111111111111",
"output": "2650"
},
{
"input": "1 2 3 4\n11111111111111111111111111111111111111111111111111",
"output": "50"
},
{
"input": "1 2 3 4\n23123231321231231231231231221232123121312321",
"output": "87"
},
{
"input": "1 2 3 4\n1111111111111222222222233333333333444444444444444",
"output": "126"
},
{
"input": "2 3 1 4\n121321232412342112312313213123123412131231231232",
"output": "105"
}
] | 1,663,525,684
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 78
| 0
|
caloriesPerStrip = list(map(int,input().split(" ")))
strips = input()
calories = 0
for i in strips:
index = int(i) - 1
calories += caloriesPerStrip[index]
print(calories)
|
Title: Black Square
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
Input Specification:
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=β€<=*a*1,<=*a*2,<=*a*3,<=*a*4<=β€<=104).
The second line contains string *s* (1<=β€<=|*s*|<=β€<=105), where the *Ρ*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
Output Specification:
Print a single integer β the total number of calories that Jury wastes.
Demo Input:
['1 2 3 4\n123214\n', '1 5 3 2\n11221\n']
Demo Output:
['13\n', '13\n']
Note:
none
|
```python
caloriesPerStrip = list(map(int,input().split(" ")))
strips = input()
calories = 0
for i in strips:
index = int(i) - 1
calories += caloriesPerStrip[index]
print(calories)
```
| 3
|
|
26
|
B
|
Regular Bracket Sequence
|
PROGRAMMING
| 1,400
|
[
"greedy"
] |
B. Regular Bracket Sequence
|
5
|
256
|
A bracket sequence is called regular if it is possible to obtain correct arithmetic expression by inserting characters Β«+Β» and Β«1Β» into this sequence. For example, sequences Β«(())()Β», Β«()Β» and Β«(()(()))Β» are regular, while Β«)(Β», Β«(()Β» and Β«(()))(Β» are not.
One day Johnny got bracket sequence. He decided to remove some of the brackets from it in order to obtain a regular bracket sequence. What is the maximum length of a regular bracket sequence which can be obtained?
|
Input consists of a single line with non-empty string of Β«(Β» and Β«)Β» characters. Its length does not exceed 106.
|
Output the maximum possible length of a regular bracket sequence.
|
[
"(()))(\n",
"((()())\n"
] |
[
"4\n",
"6\n"
] |
none
| 1,000
|
[
{
"input": "(()))(",
"output": "4"
},
{
"input": "((()())",
"output": "6"
},
{
"input": "(",
"output": "0"
},
{
"input": ")",
"output": "0"
},
{
"input": ")(()(",
"output": "2"
},
{
"input": "))))))(",
"output": "0"
},
{
"input": "()()(()(((",
"output": "6"
},
{
"input": "()))(()((((()(())",
"output": "10"
},
{
"input": "())))((()())())))))())",
"output": "14"
},
{
"input": ")))((((())(()((()((((()()())((",
"output": "16"
},
{
"input": "))()()((()()))())()(((((((())((((((((())()()((())(",
"output": "32"
},
{
"input": "))())))))))())))))()()))()()))))())))))()))))))))))))(()))())(()))))(()))))())))((((()()))))()))()))",
"output": "48"
}
] | 1,671,243,915
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 38
| 654
| 97,484,800
|
a = list(input())
ans = 0
stack = []
for x in a:
if x == "(":
stack.append("(")
else:
if len(stack) == 0:
pass
else:
stack.pop()
ans += 1
print(ans*2)
|
Title: Regular Bracket Sequence
Time Limit: 5 seconds
Memory Limit: 256 megabytes
Problem Description:
A bracket sequence is called regular if it is possible to obtain correct arithmetic expression by inserting characters Β«+Β» and Β«1Β» into this sequence. For example, sequences Β«(())()Β», Β«()Β» and Β«(()(()))Β» are regular, while Β«)(Β», Β«(()Β» and Β«(()))(Β» are not.
One day Johnny got bracket sequence. He decided to remove some of the brackets from it in order to obtain a regular bracket sequence. What is the maximum length of a regular bracket sequence which can be obtained?
Input Specification:
Input consists of a single line with non-empty string of Β«(Β» and Β«)Β» characters. Its length does not exceed 106.
Output Specification:
Output the maximum possible length of a regular bracket sequence.
Demo Input:
['(()))(\n', '((()())\n']
Demo Output:
['4\n', '6\n']
Note:
none
|
```python
a = list(input())
ans = 0
stack = []
for x in a:
if x == "(":
stack.append("(")
else:
if len(stack) == 0:
pass
else:
stack.pop()
ans += 1
print(ans*2)
```
| 3.75302
|
707
|
A
|
Brain's Photos
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.
As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).
Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!
As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.
Photo can be represented as a matrix sized *n*<=Γ<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors:
- 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black)
The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
|
The first line of the input contains two integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=100)Β β the number of photo pixel matrix rows and columns respectively.
Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
|
Print the "#Black&White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
|
[
"2 2\nC M\nY Y\n",
"3 2\nW W\nW W\nB B\n",
"1 1\nW\n"
] |
[
"#Color",
"#Black&White",
"#Black&White"
] |
none
| 500
|
[
{
"input": "2 2\nC M\nY Y",
"output": "#Color"
},
{
"input": "3 2\nW W\nW W\nB B",
"output": "#Black&White"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "2 3\nW W W\nB G Y",
"output": "#Color"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "5 5\nW G B Y M\nG B Y M C\nB Y M C W\nY M C W G\nM C W G B",
"output": "#Color"
},
{
"input": "1 6\nC M Y W G B",
"output": "#Color"
},
{
"input": "1 3\nW G B",
"output": "#Black&White"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "5 5\nW G B W G\nG B W G B\nB W G B W\nW G B W G\nG B W G B",
"output": "#Black&White"
},
{
"input": "2 3\nW W W\nB G C",
"output": "#Color"
},
{
"input": "2 3\nW W W\nB G M",
"output": "#Color"
},
{
"input": "3 3\nC B W\nB Y M\nB B W",
"output": "#Color"
},
{
"input": "1 3\nW C W",
"output": "#Color"
},
{
"input": "3 3\nB W B\nB C W\nB W W",
"output": "#Color"
},
{
"input": "1 2\nW Y",
"output": "#Color"
},
{
"input": "1 1\nG",
"output": "#Black&White"
},
{
"input": "1 3\nB G W",
"output": "#Black&White"
},
{
"input": "2 2\nW W\nB C",
"output": "#Color"
},
{
"input": "1 1\nM",
"output": "#Color"
},
{
"input": "1 2\nW C",
"output": "#Color"
},
{
"input": "2 3\nW W M\nW W M",
"output": "#Color"
},
{
"input": "3 2\nW W\nW W\nB C",
"output": "#Color"
},
{
"input": "2 3\nW W C\nW W W",
"output": "#Color"
},
{
"input": "1 3\nG G G",
"output": "#Black&White"
},
{
"input": "1 1\nC",
"output": "#Color"
},
{
"input": "1 2\nC W",
"output": "#Color"
},
{
"input": "1 3\nW W C",
"output": "#Color"
},
{
"input": "2 2\nW B\nB G",
"output": "#Black&White"
},
{
"input": "2 2\nB B\nY Y",
"output": "#Color"
},
{
"input": "2 2\nG G\nC C",
"output": "#Color"
},
{
"input": "1 2\nB C",
"output": "#Color"
},
{
"input": "1 4\nG G G C",
"output": "#Color"
},
{
"input": "1 1\nB",
"output": "#Black&White"
},
{
"input": "2 1\nY\nB",
"output": "#Color"
}
] | 1,660,363,569
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 50
| 46
| 0
|
n,m=map(int,input().split())
ans='#Black&White'
for i in range(n):
l=input().split()
if 'C' in l or 'M' in l or 'Y' in l:
ans='#Color'
print(ans)
|
Title: Brain's Photos
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.
As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).
Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!
As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.
Photo can be represented as a matrix sized *n*<=Γ<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors:
- 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black)
The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
Input Specification:
The first line of the input contains two integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=100)Β β the number of photo pixel matrix rows and columns respectively.
Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
Output Specification:
Print the "#Black&White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
Demo Input:
['2 2\nC M\nY Y\n', '3 2\nW W\nW W\nB B\n', '1 1\nW\n']
Demo Output:
['#Color', '#Black&White', '#Black&White']
Note:
none
|
```python
n,m=map(int,input().split())
ans='#Black&White'
for i in range(n):
l=input().split()
if 'C' in l or 'M' in l or 'Y' in l:
ans='#Color'
print(ans)
```
| 3
|
|
952
|
A
|
Quirky Quantifiers
|
PROGRAMMING
| 800
|
[
"math"
] | null | null |
The input contains a single integer *a* (10<=β€<=*a*<=β€<=999).
Output 0 or 1.
|
The input contains a single integer *a* (10<=β€<=*a*<=β€<=999).
|
Output 0 or 1.
|
[
"13\n",
"927\n",
"48\n"
] |
[
"1\n",
"1\n",
"0\n"
] |
none
| 0
|
[
{
"input": "13",
"output": "1"
},
{
"input": "927",
"output": "1"
},
{
"input": "48",
"output": "0"
},
{
"input": "10",
"output": "0"
},
{
"input": "999",
"output": "1"
},
{
"input": "142",
"output": "0"
},
{
"input": "309",
"output": "1"
},
{
"input": "572",
"output": "0"
},
{
"input": "835",
"output": "1"
},
{
"input": "990",
"output": "0"
},
{
"input": "168",
"output": "0"
},
{
"input": "431",
"output": "1"
},
{
"input": "694",
"output": "0"
},
{
"input": "957",
"output": "1"
},
{
"input": "932",
"output": "0"
}
] | 1,600,865,839
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 15
| 202
| 0
|
n=int(input())
k=str(bin(n))[-1]
if k=='1':print(1)
else:print(0)
|
Title: Quirky Quantifiers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The input contains a single integer *a* (10<=β€<=*a*<=β€<=999).
Output 0 or 1.
Input Specification:
The input contains a single integer *a* (10<=β€<=*a*<=β€<=999).
Output Specification:
Output 0 or 1.
Demo Input:
['13\n', '927\n', '48\n']
Demo Output:
['1\n', '1\n', '0\n']
Note:
none
|
```python
n=int(input())
k=str(bin(n))[-1]
if k=='1':print(1)
else:print(0)
```
| 3
|
|
258
|
A
|
Little Elephant and Bits
|
PROGRAMMING
| 1,100
|
[
"greedy",
"math"
] | null | null |
The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper.
To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes).
The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation.
|
The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits.
|
In the single line print the number that is written without leading zeroes in the binary notation β the answer to the problem.
|
[
"101\n",
"110010\n"
] |
[
"11\n",
"11010\n"
] |
In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub>β=β3<sub class="lower-index">10</sub>.
In the second sample the best strategy is to delete the third or fourth digits β that results in number 11010<sub class="lower-index">2</sub>β=β26<sub class="lower-index">10</sub>.
| 500
|
[
{
"input": "101",
"output": "11"
},
{
"input": "110010",
"output": "11010"
},
{
"input": "10000",
"output": "1000"
},
{
"input": "1111111110",
"output": "111111111"
},
{
"input": "10100101011110101",
"output": "1100101011110101"
},
{
"input": "111010010111",
"output": "11110010111"
},
{
"input": "11110111011100000000",
"output": "1111111011100000000"
},
{
"input": "11110010010100001110110101110011110110100111101",
"output": "1111010010100001110110101110011110110100111101"
},
{
"input": "1001011111010010100111111",
"output": "101011111010010100111111"
},
{
"input": "1111111111",
"output": "111111111"
},
{
"input": "1111111111111111111100111101001110110111111000001111110101001101001110011000001011001111111000110101",
"output": "111111111111111111110111101001110110111111000001111110101001101001110011000001011001111111000110101"
},
{
"input": "11010110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100",
"output": "1110110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100"
},
{
"input": "11111111111111111111111110110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011",
"output": "1111111111111111111111111110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011"
},
{
"input": "11100010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011",
"output": "1110010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011"
},
{
"input": "11",
"output": "1"
},
{
"input": "111",
"output": "11"
},
{
"input": "111111",
"output": "11111"
},
{
"input": "11111",
"output": "1111"
},
{
"input": "1111",
"output": "111"
}
] | 1,683,601,842
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 92
| 204,800
|
x = input()
y=x.find('0')
if y != -1:
ans = x[:y]+x[y+1:]
else:
ans = x[1:]
print(ans)
|
Title: Little Elephant and Bits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper.
To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes).
The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation.
Input Specification:
The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits.
Output Specification:
In the single line print the number that is written without leading zeroes in the binary notation β the answer to the problem.
Demo Input:
['101\n', '110010\n']
Demo Output:
['11\n', '11010\n']
Note:
In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub>β=β3<sub class="lower-index">10</sub>.
In the second sample the best strategy is to delete the third or fourth digits β that results in number 11010<sub class="lower-index">2</sub>β=β26<sub class="lower-index">10</sub>.
|
```python
x = input()
y=x.find('0')
if y != -1:
ans = x[:y]+x[y+1:]
else:
ans = x[1:]
print(ans)
```
| 3
|
|
658
|
A
|
Bear and Reverse Radewoosh
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Limak and Radewoosh are going to compete against each other in the upcoming algorithmic contest. They are equally skilled but they won't solve problems in the same order.
There will be *n* problems. The *i*-th problem has initial score *p**i* and it takes exactly *t**i* minutes to solve it. Problems are sorted by difficultyΒ β it's guaranteed that *p**i*<=<<=*p**i*<=+<=1 and *t**i*<=<<=*t**i*<=+<=1.
A constant *c* is given too, representing the speed of loosing points. Then, submitting the *i*-th problem at time *x* (*x* minutes after the start of the contest) gives *max*(0,<= *p**i*<=-<=*c*Β·*x*) points.
Limak is going to solve problems in order 1,<=2,<=...,<=*n* (sorted increasingly by *p**i*). Radewoosh is going to solve them in order *n*,<=*n*<=-<=1,<=...,<=1 (sorted decreasingly by *p**i*). Your task is to predict the outcomeΒ β print the name of the winner (person who gets more points at the end) or a word "Tie" in case of a tie.
You may assume that the duration of the competition is greater or equal than the sum of all *t**i*. That means both Limak and Radewoosh will accept all *n* problems.
|
The first line contains two integers *n* and *c* (1<=β€<=*n*<=β€<=50,<=1<=β€<=*c*<=β€<=1000)Β β the number of problems and the constant representing the speed of loosing points.
The second line contains *n* integers *p*1,<=*p*2,<=...,<=*p**n* (1<=β€<=*p**i*<=β€<=1000,<=*p**i*<=<<=*p**i*<=+<=1)Β β initial scores.
The third line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=β€<=*t**i*<=β€<=1000,<=*t**i*<=<<=*t**i*<=+<=1) where *t**i* denotes the number of minutes one needs to solve the *i*-th problem.
|
Print "Limak" (without quotes) if Limak will get more points in total. Print "Radewoosh" (without quotes) if Radewoosh will get more points in total. Print "Tie" (without quotes) if Limak and Radewoosh will get the same total number of points.
|
[
"3 2\n50 85 250\n10 15 25\n",
"3 6\n50 85 250\n10 15 25\n",
"8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76\n"
] |
[
"Limak\n",
"Radewoosh\n",
"Tie\n"
] |
In the first sample, there are 3 problems. Limak solves them as follows:
1. Limak spends 10 minutes on the 1-st problem and he gets 50β-β*c*Β·10β=β50β-β2Β·10β=β30 points. 1. Limak spends 15 minutes on the 2-nd problem so he submits it 10β+β15β=β25 minutes after the start of the contest. For the 2-nd problem he gets 85β-β2Β·25β=β35 points. 1. He spends 25 minutes on the 3-rd problem so he submits it 10β+β15β+β25β=β50 minutes after the start. For this problem he gets 250β-β2Β·50β=β150 points.
So, Limak got 30β+β35β+β150β=β215 points.
Radewoosh solves problem in the reversed order:
1. Radewoosh solves 3-rd problem after 25 minutes so he gets 250β-β2Β·25β=β200 points. 1. He spends 15 minutes on the 2-nd problem so he submits it 25β+β15β=β40 minutes after the start. He gets 85β-β2Β·40β=β5 points for this problem. 1. He spends 10 minutes on the 1-st problem so he submits it 25β+β15β+β10β=β50 minutes after the start. He gets *max*(0,β50β-β2Β·50)β=β*max*(0,ββ-β50)β=β0 points.
Radewoosh got 200β+β5β+β0β=β205 points in total. Limak has 215 points so Limak wins.
In the second sample, Limak will get 0 points for each problem and Radewoosh will first solve the hardest problem and he will get 250β-β6Β·25β=β100 points for that. Radewoosh will get 0 points for other two problems but he is the winner anyway.
In the third sample, Limak will get 2 points for the 1-st problem and 2 points for the 2-nd problem. Radewoosh will get 4 points for the 8-th problem. They won't get points for other problems and thus there is a tie because 2β+β2β=β4.
| 500
|
[
{
"input": "3 2\n50 85 250\n10 15 25",
"output": "Limak"
},
{
"input": "3 6\n50 85 250\n10 15 25",
"output": "Radewoosh"
},
{
"input": "8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76",
"output": "Tie"
},
{
"input": "4 1\n3 5 6 9\n1 2 4 8",
"output": "Limak"
},
{
"input": "4 1\n1 3 6 10\n1 5 7 8",
"output": "Radewoosh"
},
{
"input": "4 1\n2 4 5 10\n2 3 9 10",
"output": "Tie"
},
{
"input": "18 4\n68 97 121 132 146 277 312 395 407 431 458 461 595 634 751 855 871 994\n1 2 3 4 9 10 13 21 22 29 31 34 37 38 39 41 48 49",
"output": "Radewoosh"
},
{
"input": "50 1\n5 14 18 73 137 187 195 197 212 226 235 251 262 278 287 304 310 322 342 379 393 420 442 444 448 472 483 485 508 515 517 523 559 585 618 627 636 646 666 682 703 707 780 853 937 951 959 989 991 992\n30 84 113 173 199 220 235 261 266 277 300 306 310 312 347 356 394 396 397 409 414 424 446 462 468 487 507 517 537 566 594 643 656 660 662 668 706 708 773 774 779 805 820 827 868 896 929 942 961 995",
"output": "Tie"
},
{
"input": "4 1\n4 6 9 10\n2 3 4 5",
"output": "Radewoosh"
},
{
"input": "4 1\n4 6 9 10\n3 4 5 7",
"output": "Radewoosh"
},
{
"input": "4 1\n1 6 7 10\n2 7 8 10",
"output": "Tie"
},
{
"input": "4 1\n4 5 7 9\n1 4 5 8",
"output": "Limak"
},
{
"input": "50 1\n6 17 44 82 94 127 134 156 187 211 212 252 256 292 294 303 352 355 379 380 398 409 424 434 480 524 584 594 631 714 745 756 777 778 789 793 799 821 841 849 859 878 879 895 925 932 944 952 958 990\n15 16 40 42 45 71 99 100 117 120 174 181 186 204 221 268 289 332 376 394 403 409 411 444 471 487 499 539 541 551 567 589 619 623 639 669 689 722 735 776 794 822 830 840 847 907 917 927 936 988",
"output": "Radewoosh"
},
{
"input": "50 10\n25 49 52 73 104 117 127 136 149 164 171 184 226 251 257 258 286 324 337 341 386 390 428 453 464 470 492 517 543 565 609 634 636 660 678 693 710 714 729 736 739 749 781 836 866 875 956 960 977 979\n2 4 7 10 11 22 24 26 27 28 31 35 37 38 42 44 45 46 52 53 55 56 57 59 60 61 64 66 67 68 69 71 75 76 77 78 79 81 83 85 86 87 89 90 92 93 94 98 99 100",
"output": "Limak"
},
{
"input": "50 10\n11 15 25 71 77 83 95 108 143 150 182 183 198 203 213 223 279 280 346 348 350 355 375 376 412 413 415 432 470 545 553 562 589 595 607 633 635 637 688 719 747 767 771 799 842 883 905 924 942 944\n1 3 5 6 7 10 11 12 13 14 15 16 19 20 21 23 25 32 35 36 37 38 40 41 42 43 47 50 51 54 55 56 57 58 59 60 62 63 64 65 66 68 69 70 71 72 73 75 78 80",
"output": "Radewoosh"
},
{
"input": "32 6\n25 77 141 148 157 159 192 196 198 244 245 255 332 392 414 457 466 524 575 603 629 700 738 782 838 841 845 847 870 945 984 985\n1 2 4 5 8 9 10 12 13 14 15 16 17 18 20 21 22 23 24 26 28 31 38 39 40 41 42 43 45 47 48 49",
"output": "Radewoosh"
},
{
"input": "5 1\n256 275 469 671 842\n7 9 14 17 26",
"output": "Limak"
},
{
"input": "2 1000\n1 2\n1 2",
"output": "Tie"
},
{
"input": "3 1\n1 50 809\n2 8 800",
"output": "Limak"
},
{
"input": "1 13\n866\n10",
"output": "Tie"
},
{
"input": "15 1\n9 11 66 128 199 323 376 386 393 555 585 718 935 960 971\n3 11 14 19 20 21 24 26 32 38 40 42 44 47 50",
"output": "Limak"
},
{
"input": "1 10\n546\n45",
"output": "Tie"
},
{
"input": "50 20\n21 43 51 99 117 119 158 167 175 190 196 244 250 316 335 375 391 403 423 428 451 457 460 480 487 522 539 559 566 584 598 602 604 616 626 666 675 730 771 787 828 841 861 867 886 889 898 970 986 991\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50",
"output": "Limak"
},
{
"input": "50 21\n13 20 22 38 62 84 118 135 141 152 170 175 194 218 227 229 232 253 260 263 278 313 329 357 396 402 422 452 454 533 575 576 580 594 624 644 653 671 676 759 789 811 816 823 831 833 856 924 933 987\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50",
"output": "Tie"
},
{
"input": "1 36\n312\n42",
"output": "Tie"
},
{
"input": "1 1000\n1\n1000",
"output": "Tie"
},
{
"input": "1 1\n1000\n1",
"output": "Tie"
},
{
"input": "50 35\n9 17 28 107 136 152 169 174 186 188 201 262 291 312 324 330 341 358 385 386 393 397 425 431 479 498 502 523 530 540 542 554 578 588 622 623 684 696 709 722 784 819 836 845 850 932 945 969 983 984\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50",
"output": "Tie"
},
{
"input": "50 20\n12 113 116 120 138 156 167 183 185 194 211 228 234 261 278 287 310 317 346 361 364 397 424 470 496 522 527 536 611 648 668 704 707 712 717 752 761 766 815 828 832 864 872 885 889 901 904 929 982 993\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50",
"output": "Limak"
}
] | 1,574,836,496
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 29
| 155
| 1,228,800
|
n, c = (int(x) for x in input().split())
p = [int(x) for x in input().split()]
t = [int(x) for x in input().split()]
l = sum([max(0, p[i] - c * sum(t[0:i + 1])) for i in range(n)])
p.reverse()
t.reverse()
r = sum([max(0, p[i] - c * sum(t[0:i + 1])) for i in range(n)])
if r > l:
print('Radewoosh')
elif r < l:
print('Limak')
else:
print('Tie')
|
Title: Bear and Reverse Radewoosh
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Limak and Radewoosh are going to compete against each other in the upcoming algorithmic contest. They are equally skilled but they won't solve problems in the same order.
There will be *n* problems. The *i*-th problem has initial score *p**i* and it takes exactly *t**i* minutes to solve it. Problems are sorted by difficultyΒ β it's guaranteed that *p**i*<=<<=*p**i*<=+<=1 and *t**i*<=<<=*t**i*<=+<=1.
A constant *c* is given too, representing the speed of loosing points. Then, submitting the *i*-th problem at time *x* (*x* minutes after the start of the contest) gives *max*(0,<= *p**i*<=-<=*c*Β·*x*) points.
Limak is going to solve problems in order 1,<=2,<=...,<=*n* (sorted increasingly by *p**i*). Radewoosh is going to solve them in order *n*,<=*n*<=-<=1,<=...,<=1 (sorted decreasingly by *p**i*). Your task is to predict the outcomeΒ β print the name of the winner (person who gets more points at the end) or a word "Tie" in case of a tie.
You may assume that the duration of the competition is greater or equal than the sum of all *t**i*. That means both Limak and Radewoosh will accept all *n* problems.
Input Specification:
The first line contains two integers *n* and *c* (1<=β€<=*n*<=β€<=50,<=1<=β€<=*c*<=β€<=1000)Β β the number of problems and the constant representing the speed of loosing points.
The second line contains *n* integers *p*1,<=*p*2,<=...,<=*p**n* (1<=β€<=*p**i*<=β€<=1000,<=*p**i*<=<<=*p**i*<=+<=1)Β β initial scores.
The third line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=β€<=*t**i*<=β€<=1000,<=*t**i*<=<<=*t**i*<=+<=1) where *t**i* denotes the number of minutes one needs to solve the *i*-th problem.
Output Specification:
Print "Limak" (without quotes) if Limak will get more points in total. Print "Radewoosh" (without quotes) if Radewoosh will get more points in total. Print "Tie" (without quotes) if Limak and Radewoosh will get the same total number of points.
Demo Input:
['3 2\n50 85 250\n10 15 25\n', '3 6\n50 85 250\n10 15 25\n', '8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76\n']
Demo Output:
['Limak\n', 'Radewoosh\n', 'Tie\n']
Note:
In the first sample, there are 3 problems. Limak solves them as follows:
1. Limak spends 10 minutes on the 1-st problem and he gets 50β-β*c*Β·10β=β50β-β2Β·10β=β30 points. 1. Limak spends 15 minutes on the 2-nd problem so he submits it 10β+β15β=β25 minutes after the start of the contest. For the 2-nd problem he gets 85β-β2Β·25β=β35 points. 1. He spends 25 minutes on the 3-rd problem so he submits it 10β+β15β+β25β=β50 minutes after the start. For this problem he gets 250β-β2Β·50β=β150 points.
So, Limak got 30β+β35β+β150β=β215 points.
Radewoosh solves problem in the reversed order:
1. Radewoosh solves 3-rd problem after 25 minutes so he gets 250β-β2Β·25β=β200 points. 1. He spends 15 minutes on the 2-nd problem so he submits it 25β+β15β=β40 minutes after the start. He gets 85β-β2Β·40β=β5 points for this problem. 1. He spends 10 minutes on the 1-st problem so he submits it 25β+β15β+β10β=β50 minutes after the start. He gets *max*(0,β50β-β2Β·50)β=β*max*(0,ββ-β50)β=β0 points.
Radewoosh got 200β+β5β+β0β=β205 points in total. Limak has 215 points so Limak wins.
In the second sample, Limak will get 0 points for each problem and Radewoosh will first solve the hardest problem and he will get 250β-β6Β·25β=β100 points for that. Radewoosh will get 0 points for other two problems but he is the winner anyway.
In the third sample, Limak will get 2 points for the 1-st problem and 2 points for the 2-nd problem. Radewoosh will get 4 points for the 8-th problem. They won't get points for other problems and thus there is a tie because 2β+β2β=β4.
|
```python
n, c = (int(x) for x in input().split())
p = [int(x) for x in input().split()]
t = [int(x) for x in input().split()]
l = sum([max(0, p[i] - c * sum(t[0:i + 1])) for i in range(n)])
p.reverse()
t.reverse()
r = sum([max(0, p[i] - c * sum(t[0:i + 1])) for i in range(n)])
if r > l:
print('Radewoosh')
elif r < l:
print('Limak')
else:
print('Tie')
```
| 3
|
|
817
|
C
|
Really Big Numbers
|
PROGRAMMING
| 1,600
|
[
"binary search",
"brute force",
"dp",
"math"
] | null | null |
Ivan likes to learn different things about numbers, but he is especially interested in really big numbers. Ivan thinks that a positive integer number *x* is really big if the difference between *x* and the sum of its digits (in decimal representation) is not less than *s*. To prove that these numbers may have different special properties, he wants to know how rare (or not rare) they are β in fact, he needs to calculate the quantity of really big numbers that are not greater than *n*.
Ivan tried to do the calculations himself, but soon realized that it's too difficult for him. So he asked you to help him in calculations.
|
The first (and the only) line contains two integers *n* and *s* (1<=β€<=*n*,<=*s*<=β€<=1018).
|
Print one integer β the quantity of really big numbers that are not greater than *n*.
|
[
"12 1\n",
"25 20\n",
"10 9\n"
] |
[
"3\n",
"0\n",
"1\n"
] |
In the first example numbers 10, 11 and 12 are really big.
In the second example there are no really big numbers that are not greater than 25 (in fact, the first really big number is 30: 30β-β3ββ₯β20).
In the third example 10 is the only really big number (10β-β1ββ₯β9).
| 0
|
[
{
"input": "12 1",
"output": "3"
},
{
"input": "25 20",
"output": "0"
},
{
"input": "10 9",
"output": "1"
},
{
"input": "300 1000",
"output": "0"
},
{
"input": "500 1000",
"output": "0"
},
{
"input": "1000 2000",
"output": "0"
},
{
"input": "10000 1000",
"output": "8991"
},
{
"input": "1000000000000000000 1000000000000000000",
"output": "0"
},
{
"input": "1000000000000000000 100000000000000000",
"output": "899999999999999991"
},
{
"input": "1000000000000000000 10000000000000000",
"output": "989999999999999991"
},
{
"input": "1000000000000000000 1000000000000000",
"output": "998999999999999991"
},
{
"input": "1000000000000000000 100000000000000",
"output": "999899999999999991"
},
{
"input": "1000000000000000000 200000000000000000",
"output": "799999999999999991"
},
{
"input": "10 5",
"output": "1"
},
{
"input": "20 5",
"output": "11"
},
{
"input": "20 9",
"output": "11"
},
{
"input": "100 9",
"output": "91"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "130 118",
"output": "1"
},
{
"input": "190 181",
"output": "0"
},
{
"input": "1999 1971",
"output": "10"
},
{
"input": "100 99",
"output": "1"
},
{
"input": "6909094398 719694282",
"output": "6189400069"
},
{
"input": "260 258",
"output": "0"
},
{
"input": "35 19",
"output": "6"
},
{
"input": "100 87",
"output": "1"
},
{
"input": "91 89",
"output": "0"
},
{
"input": "109 89",
"output": "10"
},
{
"input": "109 91",
"output": "10"
},
{
"input": "20331 11580",
"output": "8732"
},
{
"input": "405487470 255750281",
"output": "149737161"
},
{
"input": "17382 12863",
"output": "4493"
},
{
"input": "19725 14457",
"output": "5246"
},
{
"input": "24848 15384",
"output": "9449"
},
{
"input": "25727 15982",
"output": "9728"
},
{
"input": "109 90",
"output": "10"
},
{
"input": "1000000000000000000 999999999999999999",
"output": "1"
},
{
"input": "1000000000000000000 999999999999999998",
"output": "1"
},
{
"input": "1009 980",
"output": "10"
},
{
"input": "999999999999999999 999999999999999838",
"output": "0"
},
{
"input": "1000000000000000000 99999999999999800",
"output": "900000000000000061"
},
{
"input": "8785369357 3377262261",
"output": "5408107058"
},
{
"input": "110 109",
"output": "0"
},
{
"input": "999 777",
"output": "200"
},
{
"input": "327170000015578 77230000029054",
"output": "249939999986479"
},
{
"input": "12515000022229 1791000022317",
"output": "10723999999880"
},
{
"input": "9999999999999 9999999999882",
"output": "10"
},
{
"input": "213 196",
"output": "14"
},
{
"input": "92 82",
"output": "0"
},
{
"input": "148 136",
"output": "0"
},
{
"input": "8 9",
"output": "0"
},
{
"input": "309 299",
"output": "0"
},
{
"input": "9999 9963",
"output": "10"
},
{
"input": "82 81",
"output": "0"
},
{
"input": "9999999 9999936",
"output": "10"
},
{
"input": "171 155",
"output": "2"
},
{
"input": "999 972",
"output": "10"
},
{
"input": "999999999999 999999999891",
"output": "10"
},
{
"input": "9 9",
"output": "0"
},
{
"input": "6900 6885",
"output": "1"
},
{
"input": "96 57",
"output": "27"
},
{
"input": "5 4",
"output": "0"
},
{
"input": "17386 5814",
"output": "11557"
},
{
"input": "493679757404593 316259583979965",
"output": "177420173424564"
},
{
"input": "18474 9478",
"output": "8975"
},
{
"input": "270091571496186 250931112649966",
"output": "19160458846177"
},
{
"input": "565751690089037 381448507916936",
"output": "184303182172038"
},
{
"input": "19 10",
"output": "0"
}
] | 1,689,907,446
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 68
| 62
| 1,433,600
|
n,s=map(int,input().split())
def cal(x):
global s
ls=list(map(int,str(x)))
if (int(x)-sum(ls))>=s:
return True
return False
l=1
r=10**18
while l<=r:
mid=(l+r)//2
if cal(mid):
r=mid-1
else:
l=mid+1
if l>n:
print(0)
else:
print(n-l+1)
|
Title: Really Big Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ivan likes to learn different things about numbers, but he is especially interested in really big numbers. Ivan thinks that a positive integer number *x* is really big if the difference between *x* and the sum of its digits (in decimal representation) is not less than *s*. To prove that these numbers may have different special properties, he wants to know how rare (or not rare) they are β in fact, he needs to calculate the quantity of really big numbers that are not greater than *n*.
Ivan tried to do the calculations himself, but soon realized that it's too difficult for him. So he asked you to help him in calculations.
Input Specification:
The first (and the only) line contains two integers *n* and *s* (1<=β€<=*n*,<=*s*<=β€<=1018).
Output Specification:
Print one integer β the quantity of really big numbers that are not greater than *n*.
Demo Input:
['12 1\n', '25 20\n', '10 9\n']
Demo Output:
['3\n', '0\n', '1\n']
Note:
In the first example numbers 10, 11 and 12 are really big.
In the second example there are no really big numbers that are not greater than 25 (in fact, the first really big number is 30: 30β-β3ββ₯β20).
In the third example 10 is the only really big number (10β-β1ββ₯β9).
|
```python
n,s=map(int,input().split())
def cal(x):
global s
ls=list(map(int,str(x)))
if (int(x)-sum(ls))>=s:
return True
return False
l=1
r=10**18
while l<=r:
mid=(l+r)//2
if cal(mid):
r=mid-1
else:
l=mid+1
if l>n:
print(0)
else:
print(n-l+1)
```
| 3
|
|
573
|
B
|
Bear and Blocks
|
PROGRAMMING
| 1,600
|
[
"binary search",
"data structures",
"dp",
"math"
] | null | null |
Limak is a little bear who loves to play. Today he is playing by destroying block towers. He built *n* towers in a row. The *i*-th tower is made of *h**i* identical blocks. For clarification see picture for the first sample.
Limak will repeat the following operation till everything is destroyed.
Block is called internal if it has all four neighbors, i.e. it has each side (top, left, down and right) adjacent to other block or to the floor. Otherwise, block is boundary. In one operation Limak destroys all boundary blocks. His paws are very fast and he destroys all those blocks at the same time.
Limak is ready to start. You task is to count how many operations will it take him to destroy all towers.
|
The first line contains single integer *n* (1<=β€<=*n*<=β€<=105).
The second line contains *n* space-separated integers *h*1,<=*h*2,<=...,<=*h**n* (1<=β€<=*h**i*<=β€<=109) β sizes of towers.
|
Print the number of operations needed to destroy all towers.
|
[
"6\n2 1 4 6 2 2\n",
"7\n3 3 3 1 3 3 3\n"
] |
[
"3\n",
"2\n"
] |
The picture below shows all three operations for the first sample test. Each time boundary blocks are marked with red color.
| 1,000
|
[
{
"input": "6\n2 1 4 6 2 2",
"output": "3"
},
{
"input": "7\n3 3 3 1 3 3 3",
"output": "2"
},
{
"input": "7\n5128 5672 5805 5452 5882 5567 5032",
"output": "4"
},
{
"input": "10\n1 2 2 3 5 5 5 4 2 1",
"output": "5"
},
{
"input": "14\n20 20 20 20 20 20 3 20 20 20 20 20 20 20",
"output": "5"
},
{
"input": "50\n3 2 4 3 5 3 4 5 3 2 3 3 3 4 5 4 2 2 3 3 4 4 3 2 3 3 2 3 4 4 5 2 5 2 3 5 4 4 2 2 3 5 2 5 2 2 5 4 5 4",
"output": "4"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "1\n1000000000",
"output": "1"
},
{
"input": "2\n1 1",
"output": "1"
},
{
"input": "2\n1049 1098",
"output": "1"
},
{
"input": "2\n100 100",
"output": "1"
},
{
"input": "5\n1 2 3 2 1",
"output": "3"
},
{
"input": "15\n2 2 1 1 2 2 2 2 2 2 2 2 2 1 2",
"output": "2"
},
{
"input": "28\n415546599 415546599 415546599 415546599 415546599 415546599 415546599 415546599 415546599 2 802811737 802811737 802811737 802811737 802811737 802811737 802811737 802811737 1 550595901 550595901 550595901 550595901 550595901 550595901 550595901 550595901 550595901",
"output": "6"
},
{
"input": "45\n3 12 13 11 13 13 10 11 14 15 15 13 14 12 13 11 14 10 10 14 14 11 10 12 11 11 13 14 10 11 14 13 14 11 11 11 12 15 1 10 15 12 14 14 14",
"output": "13"
},
{
"input": "84\n1 3 4 5 6 5 6 7 8 9 7 4 5 4 2 5 1 1 1 3 2 7 7 8 10 9 5 6 5 2 3 3 3 3 3 2 4 8 6 5 8 9 8 7 9 3 4 4 4 2 2 1 6 4 9 5 9 9 10 7 10 4 5 4 2 4 3 3 4 4 6 6 6 9 10 12 7 5 9 8 5 3 3 2",
"output": "8"
},
{
"input": "170\n1 2 1 2 1 1 1 1 2 3 2 1 1 2 2 1 2 1 2 1 1 2 3 3 2 1 1 1 1 1 1 1 1 2 1 2 3 3 2 1 2 2 1 2 3 2 1 1 2 3 2 1 2 1 1 1 2 3 3 2 1 2 1 2 1 1 1 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 2 2 1 2 1 2 3 2 1 1 2 3 4 4 3 2 1 2 1 2 1 2 3 3 2 1 2 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 1 2 3 2 1 2 2 1 2 1 1 1 2 2 1 2 1 2 3 2 1 2 1 1 1 2 3 4 5 4 3 2 1 1 2 1 2 3 4 3 2 1",
"output": "5"
},
{
"input": "1\n5",
"output": "1"
}
] | 1,613,636,753
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 41
| 186
| 10,956,800
|
from sys import stdin,stdout
nmbr = lambda: int(stdin.readline())
lst = lambda: list(map(int,stdin.readline().split()))
PI=float('inf')
for _ in range(1):#nmbr()):
n=nmbr()
a=lst()
ans=0
pre=[0]*n
suf=[0]*n
pre[0]=suf[n-1]=1
for i in range(1,n):
pre[i]=min(1+pre[i-1],a[i])
for i in range(n-2,-1,-1):
suf[i]=min(1+suf[i+1],a[i])
for pp,ss in zip(pre,suf):
ans=max(ans,min(pp,ss))
print(ans)
|
Title: Bear and Blocks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Limak is a little bear who loves to play. Today he is playing by destroying block towers. He built *n* towers in a row. The *i*-th tower is made of *h**i* identical blocks. For clarification see picture for the first sample.
Limak will repeat the following operation till everything is destroyed.
Block is called internal if it has all four neighbors, i.e. it has each side (top, left, down and right) adjacent to other block or to the floor. Otherwise, block is boundary. In one operation Limak destroys all boundary blocks. His paws are very fast and he destroys all those blocks at the same time.
Limak is ready to start. You task is to count how many operations will it take him to destroy all towers.
Input Specification:
The first line contains single integer *n* (1<=β€<=*n*<=β€<=105).
The second line contains *n* space-separated integers *h*1,<=*h*2,<=...,<=*h**n* (1<=β€<=*h**i*<=β€<=109) β sizes of towers.
Output Specification:
Print the number of operations needed to destroy all towers.
Demo Input:
['6\n2 1 4 6 2 2\n', '7\n3 3 3 1 3 3 3\n']
Demo Output:
['3\n', '2\n']
Note:
The picture below shows all three operations for the first sample test. Each time boundary blocks are marked with red color.
|
```python
from sys import stdin,stdout
nmbr = lambda: int(stdin.readline())
lst = lambda: list(map(int,stdin.readline().split()))
PI=float('inf')
for _ in range(1):#nmbr()):
n=nmbr()
a=lst()
ans=0
pre=[0]*n
suf=[0]*n
pre[0]=suf[n-1]=1
for i in range(1,n):
pre[i]=min(1+pre[i-1],a[i])
for i in range(n-2,-1,-1):
suf[i]=min(1+suf[i+1],a[i])
for pp,ss in zip(pre,suf):
ans=max(ans,min(pp,ss))
print(ans)
```
| 3
|
|
964
|
A
|
Splits
|
PROGRAMMING
| 800
|
[
"math"
] | null | null |
Let's define a split of $n$ as a nonincreasing sequence of positive integers, the sum of which is $n$.
For example, the following sequences are splits of $8$: $[4, 4]$, $[3, 3, 2]$, $[2, 2, 1, 1, 1, 1]$, $[5, 2, 1]$.
The following sequences aren't splits of $8$: $[1, 7]$, $[5, 4]$, $[11, -3]$, $[1, 1, 4, 1, 1]$.
The weight of a split is the number of elements in the split that are equal to the first element. For example, the weight of the split $[1, 1, 1, 1, 1]$ is $5$, the weight of the split $[5, 5, 3, 3, 3]$ is $2$ and the weight of the split $[9]$ equals $1$.
For a given $n$, find out the number of different weights of its splits.
|
The first line contains one integer $n$ ($1 \leq n \leq 10^9$).
|
Output one integerΒ β the answer to the problem.
|
[
"7\n",
"8\n",
"9\n"
] |
[
"4\n",
"5\n",
"5\n"
] |
In the first sample, there are following possible weights of splits of $7$:
Weight 1: [$\textbf 7$]
Weight 2: [$\textbf 3$, $\textbf 3$, 1]
Weight 3: [$\textbf 2$, $\textbf 2$, $\textbf 2$, 1]
Weight 7: [$\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$]
| 500
|
[
{
"input": "7",
"output": "4"
},
{
"input": "8",
"output": "5"
},
{
"input": "9",
"output": "5"
},
{
"input": "1",
"output": "1"
},
{
"input": "286",
"output": "144"
},
{
"input": "48",
"output": "25"
},
{
"input": "941",
"output": "471"
},
{
"input": "45154",
"output": "22578"
},
{
"input": "60324",
"output": "30163"
},
{
"input": "91840",
"output": "45921"
},
{
"input": "41909",
"output": "20955"
},
{
"input": "58288",
"output": "29145"
},
{
"input": "91641",
"output": "45821"
},
{
"input": "62258",
"output": "31130"
},
{
"input": "79811",
"output": "39906"
},
{
"input": "88740",
"output": "44371"
},
{
"input": "12351",
"output": "6176"
},
{
"input": "1960",
"output": "981"
},
{
"input": "29239",
"output": "14620"
},
{
"input": "85801",
"output": "42901"
},
{
"input": "43255",
"output": "21628"
},
{
"input": "13439",
"output": "6720"
},
{
"input": "35668",
"output": "17835"
},
{
"input": "19122",
"output": "9562"
},
{
"input": "60169",
"output": "30085"
},
{
"input": "50588",
"output": "25295"
},
{
"input": "2467",
"output": "1234"
},
{
"input": "39315",
"output": "19658"
},
{
"input": "29950",
"output": "14976"
},
{
"input": "17286",
"output": "8644"
},
{
"input": "7359066",
"output": "3679534"
},
{
"input": "1016391",
"output": "508196"
},
{
"input": "7928871",
"output": "3964436"
},
{
"input": "3968891",
"output": "1984446"
},
{
"input": "2636452",
"output": "1318227"
},
{
"input": "5076901",
"output": "2538451"
},
{
"input": "9870265",
"output": "4935133"
},
{
"input": "2453786",
"output": "1226894"
},
{
"input": "7263670",
"output": "3631836"
},
{
"input": "1890845",
"output": "945423"
},
{
"input": "574128507",
"output": "287064254"
},
{
"input": "648476655",
"output": "324238328"
},
{
"input": "97349542",
"output": "48674772"
},
{
"input": "716489761",
"output": "358244881"
},
{
"input": "858771038",
"output": "429385520"
},
{
"input": "520778784",
"output": "260389393"
},
{
"input": "439004204",
"output": "219502103"
},
{
"input": "589992198",
"output": "294996100"
},
{
"input": "371106544",
"output": "185553273"
},
{
"input": "894241590",
"output": "447120796"
},
{
"input": "123957268",
"output": "61978635"
},
{
"input": "234149297",
"output": "117074649"
},
{
"input": "789954052",
"output": "394977027"
},
{
"input": "667978920",
"output": "333989461"
},
{
"input": "154647261",
"output": "77323631"
},
{
"input": "751453521",
"output": "375726761"
},
{
"input": "848862308",
"output": "424431155"
},
{
"input": "323926781",
"output": "161963391"
},
{
"input": "576768825",
"output": "288384413"
},
{
"input": "31293802",
"output": "15646902"
},
{
"input": "2",
"output": "2"
},
{
"input": "1000000000",
"output": "500000001"
},
{
"input": "3",
"output": "2"
}
] | 1,524,138,466
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 63
| 108
| 7,065,600
|
inp = int(input())
print(int(inp/2)+1)
|
Title: Splits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Let's define a split of $n$ as a nonincreasing sequence of positive integers, the sum of which is $n$.
For example, the following sequences are splits of $8$: $[4, 4]$, $[3, 3, 2]$, $[2, 2, 1, 1, 1, 1]$, $[5, 2, 1]$.
The following sequences aren't splits of $8$: $[1, 7]$, $[5, 4]$, $[11, -3]$, $[1, 1, 4, 1, 1]$.
The weight of a split is the number of elements in the split that are equal to the first element. For example, the weight of the split $[1, 1, 1, 1, 1]$ is $5$, the weight of the split $[5, 5, 3, 3, 3]$ is $2$ and the weight of the split $[9]$ equals $1$.
For a given $n$, find out the number of different weights of its splits.
Input Specification:
The first line contains one integer $n$ ($1 \leq n \leq 10^9$).
Output Specification:
Output one integerΒ β the answer to the problem.
Demo Input:
['7\n', '8\n', '9\n']
Demo Output:
['4\n', '5\n', '5\n']
Note:
In the first sample, there are following possible weights of splits of $7$:
Weight 1: [$\textbf 7$]
Weight 2: [$\textbf 3$, $\textbf 3$, 1]
Weight 3: [$\textbf 2$, $\textbf 2$, $\textbf 2$, 1]
Weight 7: [$\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$, $\textbf 1$]
|
```python
inp = int(input())
print(int(inp/2)+1)
```
| 3
|
|
932
|
A
|
Palindromic Supersequence
|
PROGRAMMING
| 800
|
[
"constructive algorithms"
] | null | null |
You are given a string *A*. Find a string *B*, where *B* is a palindrome and *A* is a subsequence of *B*.
A subsequence of a string is a string that can be derived from it by deleting some (not necessarily consecutive) characters without changing the order of the remaining characters. For example, "cotst" is a subsequence of "contest".
A palindrome is a string that reads the same forward or backward.
The length of string *B* should be at most 104. It is guaranteed that there always exists such string.
You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104.
|
First line contains a string *A* (1<=β€<=|*A*|<=β€<=103) consisting of lowercase Latin letters, where |*A*| is a length of *A*.
|
Output single line containing *B* consisting of only lowercase Latin letters. You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104. If there are many possible *B*, print any of them.
|
[
"aba\n",
"ab\n"
] |
[
"aba",
"aabaa"
] |
In the first example, "aba" is a subsequence of "aba" which is a palindrome.
In the second example, "ab" is a subsequence of "aabaa" which is a palindrome.
| 500
|
[
{
"input": "aba",
"output": "abaaba"
},
{
"input": "ab",
"output": "abba"
},
{
"input": "krnyoixirslfszfqivgkaflgkctvbvksipwomqxlyqxhlbceuhbjbfnhofcgpgwdseffycthmlpcqejgskwjkbkbbmifnurnwyhevsoqzmtvzgfiqajfrgyuzxnrtxectcnlyoisbglpdbjbslxlpoymrcxmdtqhcnlvtqdwftuzgbdxsyscwbrguostbelnvtaqdmkmihmoxqtqlxvlsssisvqvvzotoyqryuyqwoknnqcqggysrqpkrccvyhxsjmhoqoyocwcriplarjoyiqrmmpmueqbsbljddwrumauczfziodpudheexalbwpiypmdjlmwtgdrzhpxneofhqzjdmurgvmrwdotuwyknlrbvuvtnhiouvqitgyfgfieonbaapyhwpcrmehxcpkijzfiayfvoxkpa",
"output": "krnyoixirslfszfqivgkaflgkctvbvksipwomqxlyqxhlbceuhbjbfnhofcgpgwdseffycthmlpcqejgskwjkbkbbmifnurnwyhevsoqzmtvzgfiqajfrgyuzxnrtxectcnlyoisbglpdbjbslxlpoymrcxmdtqhcnlvtqdwftuzgbdxsyscwbrguostbelnvtaqdmkmihmoxqtqlxvlsssisvqvvzotoyqryuyqwoknnqcqggysrqpkrccvyhxsjmhoqoyocwcriplarjoyiqrmmpmueqbsbljddwrumauczfziodpudheexalbwpiypmdjlmwtgdrzhpxneofhqzjdmurgvmrwdotuwyknlrbvuvtnhiouvqitgyfgfieonbaapyhwpcrmehxcpkijzfiayfvoxkpaapkxovfyaifzjikpcxhemrcpwhypaabnoeifgfygtiqvuoihntvuvbrlnkywutodwrmvgrumdjzqhfoenxphzrdgtwmljdm..."
},
{
"input": "mgrfmzxqpejcixxppqgvuawutgrmezjkteofjbnrvzzkvjtacfxjjokisavsgrslryxfqgrmdsqwptajbqzvethuljbdatxghfzqrwvfgakwmoawlzqjypmhllbbuuhbpriqsnibywlgjlxowyzagrfnqafvcqwktkcjwejevzbnxhsfmwojshcdypnvbuhhuzqmgovmvgwiizatoxgblyudipahfbkewmuneoqhjmbpdtwnznblwvtjrniwlbyblhppndspojrouffazpoxtqdfpjuhitvijrohavpqatofxwmksvjcvhdecxwwmosqiczjpkfafqlboxosnjgzgdraehzdltthemeusxhiiimrdrugabnxwsygsktkcslhjebfexucsyvlwrptebkjhefsvfrmcqqdlanbetrgzwylizmrystvpgrkhlicfadco",
"output": "mgrfmzxqpejcixxppqgvuawutgrmezjkteofjbnrvzzkvjtacfxjjokisavsgrslryxfqgrmdsqwptajbqzvethuljbdatxghfzqrwvfgakwmoawlzqjypmhllbbuuhbpriqsnibywlgjlxowyzagrfnqafvcqwktkcjwejevzbnxhsfmwojshcdypnvbuhhuzqmgovmvgwiizatoxgblyudipahfbkewmuneoqhjmbpdtwnznblwvtjrniwlbyblhppndspojrouffazpoxtqdfpjuhitvijrohavpqatofxwmksvjcvhdecxwwmosqiczjpkfafqlboxosnjgzgdraehzdltthemeusxhiiimrdrugabnxwsygsktkcslhjebfexucsyvlwrptebkjhefsvfrmcqqdlanbetrgzwylizmrystvpgrkhlicfadcoocdafcilhkrgpvtsyrmzilywzgrtebnaldqqcmrfvsfehjkbetprwlvyscuxef..."
},
{
"input": "hdmasfcjuigrwjchmjslmpynewnzpphmudzcbxzdexjuhktdtcoibzvevsmwaxakrtdfoivkvoooypyemiidadquqepxwqkesdnakxkbzrcjkgvwwxtqxvfpxcwitljyehldgsjytmekimkkndjvnzqtjykiymkmdzpwakxdtkzcqcatlevppgfhyykgmipuodjrnfjzhcmjdbzvhywprbwdcfxiffpzbjbmbyijkqnosslqbfvvicxvoeuzruraetglthgourzhfpnubzvblfzmmbgepjjyshchthulxar",
"output": "hdmasfcjuigrwjchmjslmpynewnzpphmudzcbxzdexjuhktdtcoibzvevsmwaxakrtdfoivkvoooypyemiidadquqepxwqkesdnakxkbzrcjkgvwwxtqxvfpxcwitljyehldgsjytmekimkkndjvnzqtjykiymkmdzpwakxdtkzcqcatlevppgfhyykgmipuodjrnfjzhcmjdbzvhywprbwdcfxiffpzbjbmbyijkqnosslqbfvvicxvoeuzruraetglthgourzhfpnubzvblfzmmbgepjjyshchthulxarraxluhthchsyjjpegbmmzflbvzbunpfhzruoghtlgtearurzueovxcivvfbqlssonqkjiybmbjbzpffixfcdwbrpwyhvzbdjmchzjfnrjdoupimgkyyhfgppveltacqczktdxkawpzdmkmyikyjtqznvjdnkkmikemtyjsgdlheyjltiwcxpfvxqtxwwvgkjcrzbkxkandsekqwxpequ..."
},
{
"input": "fggbyzobbmxtwdajawqdywnppflkkmtxzjvxopqvliwdwhzepcuiwelhbuotlkvesexnwkytonfrpqcxzzqzdvsmbsjcxxeugavekozfjlolrtqgwzqxsfgrnvrgfrqpixhsskbpzghndesvwptpvvkasfalzsetopervpwzmkgpcexqnvtnoulprwnowmsorscecvvvrjfwumcjqyrounqsgdruxttvtmrkivtxauhosokdiahsyrftzsgvgyveqwkzhqstbgywrvmsgfcfyuxpphvmyydzpohgdicoxbtjnsbyhoidnkrialowvlvmjpxcfeygqzphmbcjkupojsmmuqlydixbaluwezvnfasjfxilbyllwyipsmovdzosuwotcxerzcfuvxprtziseshjfcosalyqglpotxvxaanpocypsiyazsejjoximnbvqucftuvdksaxutvjeunodbipsumlaymjnzljurefjg",
"output": "fggbyzobbmxtwdajawqdywnppflkkmtxzjvxopqvliwdwhzepcuiwelhbuotlkvesexnwkytonfrpqcxzzqzdvsmbsjcxxeugavekozfjlolrtqgwzqxsfgrnvrgfrqpixhsskbpzghndesvwptpvvkasfalzsetopervpwzmkgpcexqnvtnoulprwnowmsorscecvvvrjfwumcjqyrounqsgdruxttvtmrkivtxauhosokdiahsyrftzsgvgyveqwkzhqstbgywrvmsgfcfyuxpphvmyydzpohgdicoxbtjnsbyhoidnkrialowvlvmjpxcfeygqzphmbcjkupojsmmuqlydixbaluwezvnfasjfxilbyllwyipsmovdzosuwotcxerzcfuvxprtziseshjfcosalyqglpotxvxaanpocypsiyazsejjoximnbvqucftuvdksaxutvjeunodbipsumlaymjnzljurefjggjferujlznjmyalmuspib..."
},
{
"input": "qyyxqkbxsvfnjzttdqmpzinbdgayllxpfrpopwciejjjzadguurnnhvixgueukugkkjyghxknedojvmdrskswiotgatsajowionuiumuhyggjuoympuxyfahwftwufvocdguxmxabbxnfviscxtilzzauizsgugwcqtbqgoosefhkumhodwpgolfdkbuiwlzjydonwbgyzzrjwxnceltqgqelrrljmzdbftmaogiuosaqhngmdzxzlmyrwefzhqawmkdckfnyyjgdjgadtfjvrkdwysqofcgyqrnyzutycvspzbjmmesobvhshtqlrytztyieknnkporrbcmlopgtknlmsstzkigreqwgsvagmvbrvwypoxttmzzsgm",
"output": "qyyxqkbxsvfnjzttdqmpzinbdgayllxpfrpopwciejjjzadguurnnhvixgueukugkkjyghxknedojvmdrskswiotgatsajowionuiumuhyggjuoympuxyfahwftwufvocdguxmxabbxnfviscxtilzzauizsgugwcqtbqgoosefhkumhodwpgolfdkbuiwlzjydonwbgyzzrjwxnceltqgqelrrljmzdbftmaogiuosaqhngmdzxzlmyrwefzhqawmkdckfnyyjgdjgadtfjvrkdwysqofcgyqrnyzutycvspzbjmmesobvhshtqlrytztyieknnkporrbcmlopgtknlmsstzkigreqwgsvagmvbrvwypoxttmzzsgmmgszzmttxopywvrbvmgavsgwqergikztssmlnktgpolmcbrropknnkeiytztyrlqthshvbosemmjbzpsvcytuzynrqygcfoqsywdkrvjftdagjdgjyynfkcdkmwaqhzfewry..."
},
{
"input": "scvlhflaqvniyiyofonowwcuqajuwscdrzhbvasymvqfnthzvtjcfuaftrbjghhvslcohwpxkggrbtatjtgehuqtorwinwvrtdldyoeeozxwippuahgkuehvsmyqtodqvlufqqmqautaqirvwzvtodzxtgxiinubhrbeoiybidutrqamsdnasctxatzkvkjkrmavdravnsxyngjlugwftmhmcvvxdbfndurrbmcpuoigjpssqcortmqoqttrabhoqvopjkxvpbqdqsilvlplhgqazauyvnodsxtwnomlinjpozwhrgrkqwmlwcwdkxjxjftexiavwrejvdjcfptterblxysjcheesyqsbgdrzjxbfjqgjgmvccqcyj",
"output": "scvlhflaqvniyiyofonowwcuqajuwscdrzhbvasymvqfnthzvtjcfuaftrbjghhvslcohwpxkggrbtatjtgehuqtorwinwvrtdldyoeeozxwippuahgkuehvsmyqtodqvlufqqmqautaqirvwzvtodzxtgxiinubhrbeoiybidutrqamsdnasctxatzkvkjkrmavdravnsxyngjlugwftmhmcvvxdbfndurrbmcpuoigjpssqcortmqoqttrabhoqvopjkxvpbqdqsilvlplhgqazauyvnodsxtwnomlinjpozwhrgrkqwmlwcwdkxjxjftexiavwrejvdjcfptterblxysjcheesyqsbgdrzjxbfjqgjgmvccqcyjjycqccvmgjgqjfbxjzrdgbsqyseehcjsyxlbrettpfcjdvjerwvaixetfjxjxkdwcwlmwqkrgrhwzopjnilmonwtxsdonvyuazaqghlplvlisqdqbpvxkjpovqohbarttqoqm..."
},
{
"input": "oohkqxxtvxzmvfjjxyjwlbqmeqwwlienzkdbhswgfbkhfygltsucdijozwaiewpixapyazfztksjeoqjugjfhdbqzuezbuajfvvffkwprroyivfoocvslejffgxuiofisenroxoeixmdbzonmreikpflciwsbafrdqfvdfojgoziiibqhwwsvhnzmptgirqqulkgmyzrfekzqqujmdumxkudsgexisupedisgmdgebvlvrpyfrbrqjknrxyzfpwmsxjxismgd",
"output": "oohkqxxtvxzmvfjjxyjwlbqmeqwwlienzkdbhswgfbkhfygltsucdijozwaiewpixapyazfztksjeoqjugjfhdbqzuezbuajfvvffkwprroyivfoocvslejffgxuiofisenroxoeixmdbzonmreikpflciwsbafrdqfvdfojgoziiibqhwwsvhnzmptgirqqulkgmyzrfekzqqujmdumxkudsgexisupedisgmdgebvlvrpyfrbrqjknrxyzfpwmsxjxismgddgmsixjxsmwpfzyxrnkjqrbrfyprvlvbegdmgsidepusixegsdukxmudmjuqqzkefrzymgkluqqrigtpmznhvswwhqbiiizogjofdvfqdrfabswiclfpkiermnozbdmxieoxornesifoiuxgffjelsvcoofviyorrpwkffvvfjaubzeuzqbdhfjgujqoejsktzfzaypaxipweiawzojidcustlgyfhkbfgwshbdkzneilwwqemqblw..."
},
{
"input": "gilhoixzjgidfanqrmekjelnvicpuujlpxittgadgrhqallnkjlemwazntwfywjnrxdkgrnczlwzjyeyfktduzdjnivcldjjarfzmmdbyytvipbbnjqolfnlqjpidotxxfobgtgpvjmpddcyddwdcjsxxumuoyznhpvpqccgqnuouzojntanfwctthcgynrukcvshsuuqrxfdvqqggaatwytikkitywtaaggqqvdfxrquushsvckurnygchttcwfnatnjozuounqgccqpvphnzyoumuxxsjcdwddycddpmjvpgtgbofxxtodipjqlnfloqjnbbpivtyybdmmzfrajjdlcvinjdzudtkfyeyjzwlzcnrgkdxrnjwyfwtnzawmeljknllaqhrgdagttixpljuupcivnlejkemrqnafdigjzxiohlig",
"output": "gilhoixzjgidfanqrmekjelnvicpuujlpxittgadgrhqallnkjlemwazntwfywjnrxdkgrnczlwzjyeyfktduzdjnivcldjjarfzmmdbyytvipbbnjqolfnlqjpidotxxfobgtgpvjmpddcyddwdcjsxxumuoyznhpvpqccgqnuouzojntanfwctthcgynrukcvshsuuqrxfdvqqggaatwytikkitywtaaggqqvdfxrquushsvckurnygchttcwfnatnjozuounqgccqpvphnzyoumuxxsjcdwddycddpmjvpgtgbofxxtodipjqlnfloqjnbbpivtyybdmmzfrajjdlcvinjdzudtkfyeyjzwlzcnrgkdxrnjwyfwtnzawmeljknllaqhrgdagttixpljuupcivnlejkemrqnafdigjzxiohliggilhoixzjgidfanqrmekjelnvicpuujlpxittgadgrhqallnkjlemwazntwfywjnrxdkgrnczlw..."
},
{
"input": "abcab",
"output": "abcabbacba"
},
{
"input": "baaaaaaa",
"output": "baaaaaaaaaaaaaab"
},
{
"input": "baaaaaa",
"output": "baaaaaaaaaaaab"
},
{
"input": "baaaaaaaaa",
"output": "baaaaaaaaaaaaaaaaaab"
},
{
"input": "baaaaaaaa",
"output": "baaaaaaaaaaaaaaaab"
}
] | 1,518,712,258
| 6,958
|
Python 3
|
OK
|
TESTS
| 48
| 358
| 10,035,200
|
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 15 21:01:05 2018
@author: DNARNAprotein
"""
"""
CODEFORCES
http://codeforces.com/contest/932/problem/A
"""
def pikachu(a,c,n): #c is original string
prefixes=[a[0:i+1] for i in range(n+1)]
suffixes=[a[i:n+1] for i in range(n+1)]
maxi=0
for i in range(n//2):
for j in suffixes:
if prefixes[i]==j:
maxi=i+1
ans=c[maxi::][::-1]+c
l=len(ans)
return ((ans,l))
a=input()
c=a
b=a[::-1]+'#'+a
a=a+'#'+a[::-1]
n=len(c*2)
x=pikachu(a,c,n)
c=c[::-1]
y=pikachu(b,c,n)
if x[1]<y[1]:
print(x[0])
else:
print(y[0])
|
Title: Palindromic Supersequence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a string *A*. Find a string *B*, where *B* is a palindrome and *A* is a subsequence of *B*.
A subsequence of a string is a string that can be derived from it by deleting some (not necessarily consecutive) characters without changing the order of the remaining characters. For example, "cotst" is a subsequence of "contest".
A palindrome is a string that reads the same forward or backward.
The length of string *B* should be at most 104. It is guaranteed that there always exists such string.
You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104.
Input Specification:
First line contains a string *A* (1<=β€<=|*A*|<=β€<=103) consisting of lowercase Latin letters, where |*A*| is a length of *A*.
Output Specification:
Output single line containing *B* consisting of only lowercase Latin letters. You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104. If there are many possible *B*, print any of them.
Demo Input:
['aba\n', 'ab\n']
Demo Output:
['aba', 'aabaa']
Note:
In the first example, "aba" is a subsequence of "aba" which is a palindrome.
In the second example, "ab" is a subsequence of "aabaa" which is a palindrome.
|
```python
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 15 21:01:05 2018
@author: DNARNAprotein
"""
"""
CODEFORCES
http://codeforces.com/contest/932/problem/A
"""
def pikachu(a,c,n): #c is original string
prefixes=[a[0:i+1] for i in range(n+1)]
suffixes=[a[i:n+1] for i in range(n+1)]
maxi=0
for i in range(n//2):
for j in suffixes:
if prefixes[i]==j:
maxi=i+1
ans=c[maxi::][::-1]+c
l=len(ans)
return ((ans,l))
a=input()
c=a
b=a[::-1]+'#'+a
a=a+'#'+a[::-1]
n=len(c*2)
x=pikachu(a,c,n)
c=c[::-1]
y=pikachu(b,c,n)
if x[1]<y[1]:
print(x[0])
else:
print(y[0])
```
| 3
|
|
258
|
A
|
Little Elephant and Bits
|
PROGRAMMING
| 1,100
|
[
"greedy",
"math"
] | null | null |
The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper.
To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes).
The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation.
|
The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits.
|
In the single line print the number that is written without leading zeroes in the binary notation β the answer to the problem.
|
[
"101\n",
"110010\n"
] |
[
"11\n",
"11010\n"
] |
In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub>β=β3<sub class="lower-index">10</sub>.
In the second sample the best strategy is to delete the third or fourth digits β that results in number 11010<sub class="lower-index">2</sub>β=β26<sub class="lower-index">10</sub>.
| 500
|
[
{
"input": "101",
"output": "11"
},
{
"input": "110010",
"output": "11010"
},
{
"input": "10000",
"output": "1000"
},
{
"input": "1111111110",
"output": "111111111"
},
{
"input": "10100101011110101",
"output": "1100101011110101"
},
{
"input": "111010010111",
"output": "11110010111"
},
{
"input": "11110111011100000000",
"output": "1111111011100000000"
},
{
"input": "11110010010100001110110101110011110110100111101",
"output": "1111010010100001110110101110011110110100111101"
},
{
"input": "1001011111010010100111111",
"output": "101011111010010100111111"
},
{
"input": "1111111111",
"output": "111111111"
},
{
"input": "1111111111111111111100111101001110110111111000001111110101001101001110011000001011001111111000110101",
"output": "111111111111111111110111101001110110111111000001111110101001101001110011000001011001111111000110101"
},
{
"input": "11010110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100",
"output": "1110110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100"
},
{
"input": "11111111111111111111111110110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011",
"output": "1111111111111111111111111110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011"
},
{
"input": "11100010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011",
"output": "1110010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011"
},
{
"input": "11",
"output": "1"
},
{
"input": "111",
"output": "11"
},
{
"input": "111111",
"output": "11111"
},
{
"input": "11111",
"output": "1111"
},
{
"input": "1111",
"output": "111"
}
] | 1,607,159,485
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 404
| 1,740,800
|
a = list(input())
if a.count('0') > 0:
a.remove('0')
else:
a.remove('1')
print(*a,sep='')
|
Title: Little Elephant and Bits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper.
To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes).
The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation.
Input Specification:
The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits.
Output Specification:
In the single line print the number that is written without leading zeroes in the binary notation β the answer to the problem.
Demo Input:
['101\n', '110010\n']
Demo Output:
['11\n', '11010\n']
Note:
In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub>β=β3<sub class="lower-index">10</sub>.
In the second sample the best strategy is to delete the third or fourth digits β that results in number 11010<sub class="lower-index">2</sub>β=β26<sub class="lower-index">10</sub>.
|
```python
a = list(input())
if a.count('0') > 0:
a.remove('0')
else:
a.remove('1')
print(*a,sep='')
```
| 3
|
|
439
|
B
|
Devu, the Dumb Guy
|
PROGRAMMING
| 1,200
|
[
"implementation",
"sortings"
] | null | null |
Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously.
Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours.
Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour.
You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy.
Please be careful that answer might not fit in 32 bit data type.
|
The first line will contain two space separated integers *n*, *x* (1<=β€<=*n*,<=*x*<=β€<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=β€<=*c**i*<=β€<=105).
|
Output a single integer representing the answer to the problem.
|
[
"2 3\n4 1\n",
"4 2\n5 1 2 1\n",
"3 3\n1 1 1\n"
] |
[
"11\n",
"10\n",
"6\n"
] |
Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2βΓβ1β=β2 hours. Hence you will need to spend 12β+β2β=β14 hours.
Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3βΓβ1β=β3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2βΓβ4β=β8 hours. Hence you will need to spend 11 hours.
So overall, minimum of both the cases is 11 hours.
Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
| 1,000
|
[
{
"input": "2 3\n4 1",
"output": "11"
},
{
"input": "4 2\n5 1 2 1",
"output": "10"
},
{
"input": "3 3\n1 1 1",
"output": "6"
},
{
"input": "20 4\n1 1 3 5 5 1 3 4 2 5 2 4 3 1 3 3 3 3 4 3",
"output": "65"
},
{
"input": "20 10\n6 6 1 2 6 4 5 3 6 5 4 5 6 5 4 6 6 2 3 3",
"output": "196"
},
{
"input": "1 1\n9273",
"output": "9273"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 2\n1",
"output": "2"
},
{
"input": "1 2\n2",
"output": "4"
},
{
"input": "2 1\n1 2",
"output": "3"
}
] | 1,676,017,228
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 124
| 7,372,800
|
n,x = map(int,input().split())
l = list(map(int,input().split()))
l.sort()
ans = 0
for i in l:
if x > 1:
ans += (i*x)
x-=1
else:
x = 1
ans += (i*x)
print(ans)
|
Title: Devu, the Dumb Guy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously.
Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours.
Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour.
You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy.
Please be careful that answer might not fit in 32 bit data type.
Input Specification:
The first line will contain two space separated integers *n*, *x* (1<=β€<=*n*,<=*x*<=β€<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=β€<=*c**i*<=β€<=105).
Output Specification:
Output a single integer representing the answer to the problem.
Demo Input:
['2 3\n4 1\n', '4 2\n5 1 2 1\n', '3 3\n1 1 1\n']
Demo Output:
['11\n', '10\n', '6\n']
Note:
Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2βΓβ1β=β2 hours. Hence you will need to spend 12β+β2β=β14 hours.
Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3βΓβ1β=β3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2βΓβ4β=β8 hours. Hence you will need to spend 11 hours.
So overall, minimum of both the cases is 11 hours.
Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
|
```python
n,x = map(int,input().split())
l = list(map(int,input().split()))
l.sort()
ans = 0
for i in l:
if x > 1:
ans += (i*x)
x-=1
else:
x = 1
ans += (i*x)
print(ans)
```
| 3
|
|
583
|
B
|
Robot's Task
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation"
] | null | null |
Robot Doc is located in the hall, with *n* computers stand in a line, numbered from left to right from 1 to *n*. Each computer contains exactly one piece of information, each of which Doc wants to get eventually. The computers are equipped with a security system, so to crack the *i*-th of them, the robot needs to collect at least *a**i* any pieces of information from the other computers. Doc can hack the computer only if he is right next to it.
The robot is assembled using modern technologies and can move along the line of computers in either of the two possible directions, but the change of direction requires a large amount of resources from Doc. Tell the minimum number of changes of direction, which the robot will have to make to collect all *n* parts of information if initially it is next to computer with number 1.
It is guaranteed that there exists at least one sequence of the robot's actions, which leads to the collection of all information. Initially Doc doesn't have any pieces of information.
|
The first line contains number *n* (1<=β€<=*n*<=β€<=1000). The second line contains *n* non-negative integers *a*1,<=*a*2,<=...,<=*a**n* (0<=β€<=*a**i*<=<<=*n*), separated by a space. It is guaranteed that there exists a way for robot to collect all pieces of the information.
|
Print a single number β the minimum number of changes in direction that the robot will have to make in order to collect all *n* parts of information.
|
[
"3\n0 2 0\n",
"5\n4 2 3 0 1\n",
"7\n0 3 1 0 5 2 6\n"
] |
[
"1\n",
"3\n",
"2\n"
] |
In the first sample you can assemble all the pieces of information in the optimal manner by assembling first the piece of information in the first computer, then in the third one, then change direction and move to the second one, and then, having 2 pieces of information, collect the last piece.
In the second sample to collect all the pieces of information in the optimal manner, Doc can go to the fourth computer and get the piece of information, then go to the fifth computer with one piece and get another one, then go to the second computer in the same manner, then to the third one and finally, to the first one. Changes of direction will take place before moving from the fifth to the second computer, then from the second to the third computer, then from the third to the first computer.
In the third sample the optimal order of collecting parts from computers can look like that: 1->3->4->6->2->5->7.
| 1,000
|
[
{
"input": "3\n0 2 0",
"output": "1"
},
{
"input": "5\n4 2 3 0 1",
"output": "3"
},
{
"input": "7\n0 3 1 0 5 2 6",
"output": "2"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "2\n0 1",
"output": "0"
},
{
"input": "10\n0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "3\n0 2 1",
"output": "1"
},
{
"input": "10\n7 1 9 3 5 8 6 0 2 4",
"output": "9"
},
{
"input": "10\n1 3 5 7 9 8 6 4 2 0",
"output": "9"
},
{
"input": "10\n5 0 0 1 3 2 2 2 5 7",
"output": "1"
},
{
"input": "10\n8 6 5 3 9 7 1 4 2 0",
"output": "8"
},
{
"input": "10\n1 2 4 5 0 1 3 7 1 4",
"output": "2"
},
{
"input": "10\n3 4 8 9 5 1 2 0 6 7",
"output": "6"
},
{
"input": "10\n2 2 0 0 6 2 9 0 2 0",
"output": "2"
},
{
"input": "10\n1 7 5 3 2 6 0 8 4 9",
"output": "8"
},
{
"input": "9\n1 3 8 6 2 4 5 0 7",
"output": "7"
},
{
"input": "9\n1 3 5 7 8 6 4 2 0",
"output": "8"
},
{
"input": "9\n2 4 3 1 3 0 5 4 3",
"output": "3"
},
{
"input": "9\n3 5 6 8 7 0 4 2 1",
"output": "5"
},
{
"input": "9\n2 0 8 1 0 3 0 5 3",
"output": "2"
},
{
"input": "9\n6 2 3 7 4 8 5 1 0",
"output": "4"
},
{
"input": "9\n3 1 5 6 0 3 2 0 0",
"output": "2"
},
{
"input": "9\n2 6 4 1 0 8 5 3 7",
"output": "7"
},
{
"input": "100\n27 20 18 78 93 38 56 2 48 75 36 88 96 57 69 10 25 74 68 86 65 85 66 14 22 12 43 80 99 34 42 63 61 71 77 15 37 54 21 59 23 94 28 30 50 84 62 76 47 16 26 64 82 92 72 53 17 11 41 91 35 83 79 95 67 13 1 7 3 4 73 90 8 19 33 58 98 32 39 45 87 52 60 46 6 44 49 70 51 9 5 29 31 24 40 97 81 0 89 55",
"output": "69"
},
{
"input": "100\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0",
"output": "99"
},
{
"input": "100\n13 89 81 0 62 1 59 92 29 13 1 37 2 8 53 15 20 34 12 70 0 85 97 55 84 60 37 54 14 65 22 69 30 22 95 44 59 85 50 80 9 71 91 93 74 21 11 78 28 21 40 81 76 24 26 60 48 85 61 68 89 76 46 73 34 52 98 29 4 38 94 51 5 55 6 27 74 27 38 37 82 70 44 89 51 59 30 37 15 55 63 78 42 39 71 43 4 10 2 13",
"output": "21"
},
{
"input": "100\n1 3 5 7 58 11 13 15 17 19 45 23 25 27 29 31 33 35 37 39 41 43 21 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 81 79 83 85 87 89 91 93 95 97 48 98 96 94 92 90 88 44 84 82 80 78 76 74 72 70 68 66 64 62 60 9 56 54 52 50 99 46 86 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0",
"output": "96"
},
{
"input": "100\n32 47 74 8 14 4 12 68 18 0 44 80 14 38 6 57 4 72 69 3 21 78 74 22 39 32 58 63 34 33 23 6 39 11 6 12 18 4 0 11 20 28 16 1 22 12 57 55 13 48 43 1 50 18 87 6 11 45 38 67 37 14 7 56 6 41 1 55 5 73 78 64 38 18 38 8 37 0 18 61 37 58 58 62 86 5 0 2 15 43 34 61 2 21 15 9 69 1 11 24",
"output": "4"
},
{
"input": "100\n40 3 55 7 6 77 13 46 17 64 21 54 25 27 91 41 1 15 37 82 23 43 42 47 26 95 53 5 11 59 61 9 78 67 69 58 73 0 36 79 60 83 2 87 63 33 71 89 97 99 98 93 56 92 19 88 86 84 39 28 65 20 34 76 51 94 66 12 62 49 96 72 24 52 48 50 44 35 74 31 38 57 81 32 22 80 70 29 30 18 68 16 14 90 10 8 85 4 45 75",
"output": "75"
},
{
"input": "100\n34 16 42 21 84 27 11 7 82 16 95 39 36 64 26 0 38 37 2 2 16 56 16 61 55 42 26 5 61 8 30 20 19 15 9 78 5 34 15 0 3 17 36 36 1 5 4 26 18 0 14 25 7 5 91 7 43 26 79 37 17 27 40 55 66 7 0 2 16 23 68 35 2 5 9 21 1 7 2 9 4 3 22 15 27 6 0 47 5 0 12 9 20 55 36 10 6 8 5 1",
"output": "3"
},
{
"input": "100\n35 53 87 49 13 24 93 20 5 11 31 32 40 52 96 46 1 25 66 69 28 88 84 82 70 9 75 39 26 21 18 29 23 57 90 16 48 22 95 0 58 43 7 73 8 62 63 30 64 92 79 3 6 94 34 12 76 99 67 55 56 97 14 91 68 36 44 78 41 71 86 89 47 74 4 45 98 37 80 33 83 27 42 59 72 54 17 60 51 81 15 77 65 50 10 85 61 19 38 2",
"output": "67"
},
{
"input": "99\n89 96 56 31 32 14 9 66 87 34 69 5 92 54 41 52 46 30 22 26 16 18 20 68 62 73 90 43 79 33 58 98 37 45 10 78 94 51 19 0 91 39 28 47 17 86 3 61 77 7 15 64 55 83 65 71 97 88 6 48 24 11 8 42 81 4 63 93 50 74 35 12 95 27 53 82 29 85 84 60 72 40 36 57 23 13 38 59 49 1 75 44 76 2 21 25 70 80 67",
"output": "75"
},
{
"input": "99\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0",
"output": "98"
},
{
"input": "99\n82 7 6 77 17 28 90 3 68 12 63 60 24 20 4 81 71 85 57 45 11 84 3 91 49 34 89 82 0 50 48 88 36 76 36 5 62 48 20 2 20 45 69 27 37 62 42 31 57 51 92 84 89 25 7 62 12 23 23 56 30 90 27 10 77 58 48 38 56 68 57 15 33 1 34 67 16 47 75 70 69 28 38 16 5 61 85 76 44 90 37 22 77 94 55 1 97 8 69",
"output": "22"
},
{
"input": "99\n1 51 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 42 43 45 47 49 3 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 98 96 94 92 90 88 86 84 82 80 8 76 74 72 70 68 66 22 62 60 58 56 54 52 0 48 46 44 41 40 38 36 34 32 30 28 26 24 64 20 18 16 14 12 10 78 6 4 2 50",
"output": "96"
},
{
"input": "99\n22 3 19 13 65 87 28 17 41 40 31 21 8 37 29 65 65 53 16 33 13 5 76 4 72 9 2 76 57 72 50 15 75 0 30 13 83 36 12 31 49 51 65 22 48 31 60 15 2 17 6 1 8 0 1 63 3 16 7 7 2 1 47 28 26 21 2 36 1 5 20 25 44 0 2 39 46 30 33 11 15 34 34 4 84 52 0 39 7 3 17 15 6 38 52 64 26 1 0",
"output": "3"
},
{
"input": "99\n24 87 25 82 97 11 37 15 23 19 34 17 76 13 45 89 33 1 27 78 63 43 54 47 49 2 42 41 75 83 61 90 65 67 21 71 60 57 77 62 81 58 85 69 3 91 68 55 72 93 29 94 66 16 88 86 84 53 14 39 35 44 9 70 80 92 56 79 74 5 64 31 52 50 48 46 51 59 40 38 36 96 32 30 28 95 7 22 20 18 26 73 12 10 8 6 4 98 0",
"output": "74"
},
{
"input": "99\n22 14 0 44 6 17 6 6 37 45 0 48 19 8 57 8 10 0 3 12 25 2 5 53 9 49 15 6 38 14 9 40 38 22 27 12 64 10 11 35 89 19 46 39 12 24 48 0 52 1 27 27 24 4 64 24 5 0 67 3 5 39 0 1 13 37 2 8 46 1 28 70 6 79 14 15 33 6 7 34 6 18 4 71 1 55 33 71 18 11 47 23 72 53 65 32 2 7 28",
"output": "3"
},
{
"input": "99\n28 59 73 89 52 27 0 20 36 12 83 95 31 24 54 94 49 14 51 34 50 93 13 1 2 68 63 48 41 81 23 43 18 9 16 38 33 60 62 3 40 85 72 69 90 98 11 37 22 44 35 6 21 39 82 10 64 66 96 42 74 30 8 67 97 46 84 32 17 57 75 71 5 26 4 55 58 29 7 15 45 19 92 91 78 65 88 25 86 80 77 87 79 53 47 70 56 76 61",
"output": "63"
}
] | 1,443,892,970
| 2,270
|
Python 3
|
OK
|
TESTS
| 56
| 233
| 0
|
n = int(input())
a = list(map(int, input().split()))
turn = -1
current = 0
while(current < n):
turn += 1
for i in range(n):
if(a[i] >= 0 and a[i] <= current):
a[i] = -1
current += 1
a.reverse()
print(turn)
|
Title: Robot's Task
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Robot Doc is located in the hall, with *n* computers stand in a line, numbered from left to right from 1 to *n*. Each computer contains exactly one piece of information, each of which Doc wants to get eventually. The computers are equipped with a security system, so to crack the *i*-th of them, the robot needs to collect at least *a**i* any pieces of information from the other computers. Doc can hack the computer only if he is right next to it.
The robot is assembled using modern technologies and can move along the line of computers in either of the two possible directions, but the change of direction requires a large amount of resources from Doc. Tell the minimum number of changes of direction, which the robot will have to make to collect all *n* parts of information if initially it is next to computer with number 1.
It is guaranteed that there exists at least one sequence of the robot's actions, which leads to the collection of all information. Initially Doc doesn't have any pieces of information.
Input Specification:
The first line contains number *n* (1<=β€<=*n*<=β€<=1000). The second line contains *n* non-negative integers *a*1,<=*a*2,<=...,<=*a**n* (0<=β€<=*a**i*<=<<=*n*), separated by a space. It is guaranteed that there exists a way for robot to collect all pieces of the information.
Output Specification:
Print a single number β the minimum number of changes in direction that the robot will have to make in order to collect all *n* parts of information.
Demo Input:
['3\n0 2 0\n', '5\n4 2 3 0 1\n', '7\n0 3 1 0 5 2 6\n']
Demo Output:
['1\n', '3\n', '2\n']
Note:
In the first sample you can assemble all the pieces of information in the optimal manner by assembling first the piece of information in the first computer, then in the third one, then change direction and move to the second one, and then, having 2 pieces of information, collect the last piece.
In the second sample to collect all the pieces of information in the optimal manner, Doc can go to the fourth computer and get the piece of information, then go to the fifth computer with one piece and get another one, then go to the second computer in the same manner, then to the third one and finally, to the first one. Changes of direction will take place before moving from the fifth to the second computer, then from the second to the third computer, then from the third to the first computer.
In the third sample the optimal order of collecting parts from computers can look like that: 1->3->4->6->2->5->7.
|
```python
n = int(input())
a = list(map(int, input().split()))
turn = -1
current = 0
while(current < n):
turn += 1
for i in range(n):
if(a[i] >= 0 and a[i] <= current):
a[i] = -1
current += 1
a.reverse()
print(turn)
```
| 3
|
|
760
|
B
|
Frodo and pillows
|
PROGRAMMING
| 1,500
|
[
"binary search",
"greedy"
] | null | null |
*n* hobbits are planning to spend the night at Frodo's house. Frodo has *n* beds standing in a row and *m* pillows (*n*<=β€<=*m*). Each hobbit needs a bed and at least one pillow to sleep, however, everyone wants as many pillows as possible. Of course, it's not always possible to share pillows equally, but any hobbit gets hurt if he has at least two pillows less than some of his neighbors have.
Frodo will sleep on the *k*-th bed in the row. What is the maximum number of pillows he can have so that every hobbit has at least one pillow, every pillow is given to some hobbit and no one is hurt?
|
The only line contain three integers *n*, *m* and *k* (1<=β€<=*n*<=β€<=*m*<=β€<=109, 1<=β€<=*k*<=β€<=*n*)Β β the number of hobbits, the number of pillows and the number of Frodo's bed.
|
Print single integerΒ β the maximum number of pillows Frodo can have so that no one is hurt.
|
[
"4 6 2\n",
"3 10 3\n",
"3 6 1\n"
] |
[
"2\n",
"4\n",
"3\n"
] |
In the first example Frodo can have at most two pillows. In this case, he can give two pillows to the hobbit on the first bed, and one pillow to each of the hobbits on the third and the fourth beds.
In the second example Frodo can take at most four pillows, giving three pillows to each of the others.
In the third example Frodo can take three pillows, giving two pillows to the hobbit in the middle and one pillow to the hobbit on the third bed.
| 1,000
|
[
{
"input": "4 6 2",
"output": "2"
},
{
"input": "3 10 3",
"output": "4"
},
{
"input": "3 6 1",
"output": "3"
},
{
"input": "3 3 3",
"output": "1"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "1 1000000000 1",
"output": "1000000000"
},
{
"input": "100 1000000000 20",
"output": "10000034"
},
{
"input": "1000 1000 994",
"output": "1"
},
{
"input": "100000000 200000000 54345",
"output": "10001"
},
{
"input": "1000000000 1000000000 1",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 500000000",
"output": "1"
},
{
"input": "1000 1000 3",
"output": "1"
},
{
"input": "100000000 200020000 54345",
"output": "10001"
},
{
"input": "100 108037 18",
"output": "1115"
},
{
"input": "100000000 200020001 54345",
"output": "10002"
},
{
"input": "200 6585 2",
"output": "112"
},
{
"input": "30000 30593 5980",
"output": "25"
},
{
"input": "40000 42107 10555",
"output": "46"
},
{
"input": "50003 50921 192",
"output": "31"
},
{
"input": "100000 113611 24910",
"output": "117"
},
{
"input": "1000000 483447163 83104",
"output": "21965"
},
{
"input": "10000000 10021505 600076",
"output": "147"
},
{
"input": "100000000 102144805 2091145",
"output": "1465"
},
{
"input": "1000000000 1000000000 481982093",
"output": "1"
},
{
"input": "100 999973325 5",
"output": "9999778"
},
{
"input": "200 999999109 61",
"output": "5000053"
},
{
"input": "30000 999999384 5488",
"output": "43849"
},
{
"input": "40000 999997662 8976",
"output": "38038"
},
{
"input": "50003 999999649 405",
"output": "44320"
},
{
"input": "100000 999899822 30885",
"output": "31624"
},
{
"input": "1000000 914032367 528790",
"output": "30217"
},
{
"input": "10000000 999617465 673112",
"output": "31459"
},
{
"input": "100000000 993180275 362942",
"output": "29887"
},
{
"input": "1000000000 1000000000 331431458",
"output": "1"
},
{
"input": "100 10466 89",
"output": "144"
},
{
"input": "200 5701 172",
"output": "84"
},
{
"input": "30000 36932 29126",
"output": "84"
},
{
"input": "40000 40771 22564",
"output": "28"
},
{
"input": "50003 51705 49898",
"output": "42"
},
{
"input": "100000 149408 74707",
"output": "223"
},
{
"input": "1000000 194818222 998601",
"output": "18389"
},
{
"input": "10000000 10748901 8882081",
"output": "866"
},
{
"input": "100000000 106296029 98572386",
"output": "2510"
},
{
"input": "1000000000 1000000000 193988157",
"output": "1"
},
{
"input": "100 999981057 92",
"output": "9999852"
},
{
"input": "200 999989691 199",
"output": "5000046"
},
{
"input": "30000 999995411 24509",
"output": "43846"
},
{
"input": "40000 999998466 30827",
"output": "37930"
},
{
"input": "50003 999997857 48387",
"output": "43163"
},
{
"input": "100000 999731886 98615",
"output": "43371"
},
{
"input": "1000000 523220797 654341",
"output": "22853"
},
{
"input": "10000000 999922591 8157724",
"output": "31464"
},
{
"input": "100000000 999834114 93836827",
"output": "29998"
},
{
"input": "1000000000 1000000000 912549504",
"output": "1"
},
{
"input": "1000 97654978 234",
"output": "97976"
},
{
"input": "1000 97654977 234",
"output": "97975"
},
{
"input": "1000234 97653889 1",
"output": "13903"
},
{
"input": "1000234 97653890 1",
"output": "13904"
},
{
"input": "3450234 97656670 3000000",
"output": "9707"
},
{
"input": "3450234 97656669 3000000",
"output": "9706"
},
{
"input": "3 1000000000 2",
"output": "333333334"
},
{
"input": "2 1000000000 1",
"output": "500000000"
},
{
"input": "2 1000000000 2",
"output": "500000000"
},
{
"input": "3 1000000000 1",
"output": "333333334"
},
{
"input": "3 1000000000 3",
"output": "333333334"
},
{
"input": "2 999999999 1",
"output": "500000000"
},
{
"input": "2 999999999 2",
"output": "500000000"
},
{
"input": "1 999999999 1",
"output": "999999999"
}
] | 1,531,227,976
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 69
| 139
| 0
|
# from itertools import combinations
# from bisect import bisect_right
# from functools import *
# from collections import Counter
I = lambda: list(map(int, input().split()))
n, m, k = I()
l, r = 1, m + 1
onLeft, onRight = k - 1, n - k
while l < r - 1:
amount = (l + r) >> 1
s = amount
for neighbors in [onLeft, onRight]:
if neighbors > amount - 1:
s += (amount - 1) * amount // 2 + neighbors - amount + 1
else:
s += (amount - neighbors + amount - 1) * neighbors // 2
if s <= m:
l = amount
else:
r = amount
print(l)
|
Title: Frodo and pillows
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
*n* hobbits are planning to spend the night at Frodo's house. Frodo has *n* beds standing in a row and *m* pillows (*n*<=β€<=*m*). Each hobbit needs a bed and at least one pillow to sleep, however, everyone wants as many pillows as possible. Of course, it's not always possible to share pillows equally, but any hobbit gets hurt if he has at least two pillows less than some of his neighbors have.
Frodo will sleep on the *k*-th bed in the row. What is the maximum number of pillows he can have so that every hobbit has at least one pillow, every pillow is given to some hobbit and no one is hurt?
Input Specification:
The only line contain three integers *n*, *m* and *k* (1<=β€<=*n*<=β€<=*m*<=β€<=109, 1<=β€<=*k*<=β€<=*n*)Β β the number of hobbits, the number of pillows and the number of Frodo's bed.
Output Specification:
Print single integerΒ β the maximum number of pillows Frodo can have so that no one is hurt.
Demo Input:
['4 6 2\n', '3 10 3\n', '3 6 1\n']
Demo Output:
['2\n', '4\n', '3\n']
Note:
In the first example Frodo can have at most two pillows. In this case, he can give two pillows to the hobbit on the first bed, and one pillow to each of the hobbits on the third and the fourth beds.
In the second example Frodo can take at most four pillows, giving three pillows to each of the others.
In the third example Frodo can take three pillows, giving two pillows to the hobbit in the middle and one pillow to the hobbit on the third bed.
|
```python
# from itertools import combinations
# from bisect import bisect_right
# from functools import *
# from collections import Counter
I = lambda: list(map(int, input().split()))
n, m, k = I()
l, r = 1, m + 1
onLeft, onRight = k - 1, n - k
while l < r - 1:
amount = (l + r) >> 1
s = amount
for neighbors in [onLeft, onRight]:
if neighbors > amount - 1:
s += (amount - 1) * amount // 2 + neighbors - amount + 1
else:
s += (amount - neighbors + amount - 1) * neighbors // 2
if s <= m:
l = amount
else:
r = amount
print(l)
```
| 3
|
|
510
|
A
|
Fox And Snake
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
|
The only line contains two integers: *n* and *m* (3<=β€<=*n*,<=*m*<=β€<=50).
*n* is an odd number.
|
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
|
[
"3 3\n",
"3 4\n",
"5 3\n",
"9 9\n"
] |
[
"###\n..#\n###\n",
"####\n...#\n####\n",
"###\n..#\n###\n#..\n###\n",
"#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n"
] |
none
| 500
|
[
{
"input": "3 3",
"output": "###\n..#\n###"
},
{
"input": "3 4",
"output": "####\n...#\n####"
},
{
"input": "5 3",
"output": "###\n..#\n###\n#..\n###"
},
{
"input": "9 9",
"output": "#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########"
},
{
"input": "3 5",
"output": "#####\n....#\n#####"
},
{
"input": "3 6",
"output": "######\n.....#\n######"
},
{
"input": "7 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "7 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####"
},
{
"input": "49 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 27",
"output": "###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n....................."
},
{
"input": "11 15",
"output": "###############\n..............#\n###############\n#..............\n###############\n..............#\n###############\n#..............\n###############\n..............#\n###############"
},
{
"input": "11 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "19 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "23 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "49 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "33 43",
"output": "###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#.................."
},
{
"input": "33 44",
"output": "############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#......."
},
{
"input": "45 45",
"output": "#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#########################################..."
},
{
"input": "45 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "45 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###"
},
{
"input": "45 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####"
},
{
"input": "5 4",
"output": "####\n...#\n####\n#...\n####"
},
{
"input": "5 5",
"output": "#####\n....#\n#####\n#....\n#####"
},
{
"input": "5 6",
"output": "######\n.....#\n######\n#.....\n######"
},
{
"input": "7 5",
"output": "#####\n....#\n#####\n#....\n#####\n....#\n#####"
},
{
"input": "7 6",
"output": "######\n.....#\n######\n#.....\n######\n.....#\n######"
},
{
"input": "7 7",
"output": "#######\n......#\n#######\n#......\n#######\n......#\n#######"
}
] | 1,694,885,815
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 28
| 46
| 0
|
import sys
# sys.stdin = open("input.txt", "r")
# sys.stdout = open("output.txt", "w")
# sys.stderr = open("error.txt", "w")
# # your remaining code
n, m = map(int,input().split())
k = 1
for i in range(n):
if i%2 !=0 :
k=k*-1
for j in range(m):
if i % 2 == 0:
print('#',end="")
else:
if k == -1 :
if j == m-1 :
print('#',end="")
else :
print('.',end="")
else :
if(j==0):
print('#',end="")
else:
print('.',end="")
print('')
|
Title: Fox And Snake
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
Input Specification:
The only line contains two integers: *n* and *m* (3<=β€<=*n*,<=*m*<=β€<=50).
*n* is an odd number.
Output Specification:
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
Demo Input:
['3 3\n', '3 4\n', '5 3\n', '9 9\n']
Demo Output:
['###\n..#\n###\n', '####\n...#\n####\n', '###\n..#\n###\n#..\n###\n', '#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n']
Note:
none
|
```python
import sys
# sys.stdin = open("input.txt", "r")
# sys.stdout = open("output.txt", "w")
# sys.stderr = open("error.txt", "w")
# # your remaining code
n, m = map(int,input().split())
k = 1
for i in range(n):
if i%2 !=0 :
k=k*-1
for j in range(m):
if i % 2 == 0:
print('#',end="")
else:
if k == -1 :
if j == m-1 :
print('#',end="")
else :
print('.',end="")
else :
if(j==0):
print('#',end="")
else:
print('.',end="")
print('')
```
| 3
|
|
750
|
A
|
New Year and Hurry
|
PROGRAMMING
| 800
|
[
"binary search",
"brute force",
"implementation",
"math"
] | null | null |
Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5Β·*i* minutes to solve the *i*-th problem.
Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first.
How many problems can Limak solve if he wants to make it to the party?
|
The only line of the input contains two integers *n* and *k* (1<=β€<=*n*<=β€<=10, 1<=β€<=*k*<=β€<=240)Β β the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.
|
Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.
|
[
"3 222\n",
"4 190\n",
"7 1\n"
] |
[
"2\n",
"4\n",
"7\n"
] |
In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5β+β10β=β15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2.
In the second sample, Limak can solve all 4 problems in 5β+β10β+β15β+β20β=β50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight.
In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
| 500
|
[
{
"input": "3 222",
"output": "2"
},
{
"input": "4 190",
"output": "4"
},
{
"input": "7 1",
"output": "7"
},
{
"input": "10 135",
"output": "6"
},
{
"input": "10 136",
"output": "5"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1 240",
"output": "0"
},
{
"input": "10 1",
"output": "9"
},
{
"input": "10 240",
"output": "0"
},
{
"input": "9 240",
"output": "0"
},
{
"input": "9 1",
"output": "9"
},
{
"input": "9 235",
"output": "1"
},
{
"input": "9 236",
"output": "0"
},
{
"input": "5 225",
"output": "2"
},
{
"input": "5 226",
"output": "1"
},
{
"input": "4 210",
"output": "3"
},
{
"input": "4 211",
"output": "2"
},
{
"input": "4 191",
"output": "3"
},
{
"input": "10 165",
"output": "5"
},
{
"input": "10 166",
"output": "4"
},
{
"input": "8 100",
"output": "7"
},
{
"input": "8 101",
"output": "6"
},
{
"input": "8 60",
"output": "8"
},
{
"input": "8 61",
"output": "7"
},
{
"input": "10 15",
"output": "9"
},
{
"input": "10 16",
"output": "8"
},
{
"input": "4 100",
"output": "4"
},
{
"input": "4 101",
"output": "4"
},
{
"input": "7 167",
"output": "4"
},
{
"input": "10 164",
"output": "5"
},
{
"input": "9 170",
"output": "4"
},
{
"input": "8 160",
"output": "5"
},
{
"input": "1 100",
"output": "1"
},
{
"input": "8 123",
"output": "6"
},
{
"input": "2 99",
"output": "2"
},
{
"input": "10 88",
"output": "7"
},
{
"input": "1 235",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "4 240",
"output": "0"
},
{
"input": "1 55",
"output": "1"
},
{
"input": "1 240",
"output": "0"
},
{
"input": "3 240",
"output": "0"
},
{
"input": "10 240",
"output": "0"
},
{
"input": "2 240",
"output": "0"
},
{
"input": "10 1",
"output": "9"
},
{
"input": "9 1",
"output": "9"
},
{
"input": "2 236",
"output": "0"
},
{
"input": "10 2",
"output": "9"
},
{
"input": "3 239",
"output": "0"
},
{
"input": "1 237",
"output": "0"
},
{
"input": "7 8",
"output": "7"
},
{
"input": "10 235",
"output": "1"
}
] | 1,690,338,563
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 52
| 46
| 0
|
raw = input()
delim = raw.split()
n = int(delim[0])
k = int(delim[1])
minutes = 240 - k
possible = 0
for i in range(1,n+1):
if 5*i <= minutes:
possible += 1
minutes -= 5*i
else:
break
print(possible)
|
Title: New Year and Hurry
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5Β·*i* minutes to solve the *i*-th problem.
Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first.
How many problems can Limak solve if he wants to make it to the party?
Input Specification:
The only line of the input contains two integers *n* and *k* (1<=β€<=*n*<=β€<=10, 1<=β€<=*k*<=β€<=240)Β β the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.
Output Specification:
Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.
Demo Input:
['3 222\n', '4 190\n', '7 1\n']
Demo Output:
['2\n', '4\n', '7\n']
Note:
In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5β+β10β=β15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2.
In the second sample, Limak can solve all 4 problems in 5β+β10β+β15β+β20β=β50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight.
In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
|
```python
raw = input()
delim = raw.split()
n = int(delim[0])
k = int(delim[1])
minutes = 240 - k
possible = 0
for i in range(1,n+1):
if 5*i <= minutes:
possible += 1
minutes -= 5*i
else:
break
print(possible)
```
| 3
|
|
510
|
A
|
Fox And Snake
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
|
The only line contains two integers: *n* and *m* (3<=β€<=*n*,<=*m*<=β€<=50).
*n* is an odd number.
|
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
|
[
"3 3\n",
"3 4\n",
"5 3\n",
"9 9\n"
] |
[
"###\n..#\n###\n",
"####\n...#\n####\n",
"###\n..#\n###\n#..\n###\n",
"#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n"
] |
none
| 500
|
[
{
"input": "3 3",
"output": "###\n..#\n###"
},
{
"input": "3 4",
"output": "####\n...#\n####"
},
{
"input": "5 3",
"output": "###\n..#\n###\n#..\n###"
},
{
"input": "9 9",
"output": "#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########"
},
{
"input": "3 5",
"output": "#####\n....#\n#####"
},
{
"input": "3 6",
"output": "######\n.....#\n######"
},
{
"input": "7 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "7 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####"
},
{
"input": "49 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 27",
"output": "###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n....................."
},
{
"input": "11 15",
"output": "###############\n..............#\n###############\n#..............\n###############\n..............#\n###############\n#..............\n###############\n..............#\n###############"
},
{
"input": "11 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "19 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "23 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "49 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "33 43",
"output": "###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#.................."
},
{
"input": "33 44",
"output": "############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#......."
},
{
"input": "45 45",
"output": "#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#########################################..."
},
{
"input": "45 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "45 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###"
},
{
"input": "45 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####"
},
{
"input": "5 4",
"output": "####\n...#\n####\n#...\n####"
},
{
"input": "5 5",
"output": "#####\n....#\n#####\n#....\n#####"
},
{
"input": "5 6",
"output": "######\n.....#\n######\n#.....\n######"
},
{
"input": "7 5",
"output": "#####\n....#\n#####\n#....\n#####\n....#\n#####"
},
{
"input": "7 6",
"output": "######\n.....#\n######\n#.....\n######\n.....#\n######"
},
{
"input": "7 7",
"output": "#######\n......#\n#######\n#......\n#######\n......#\n#######"
}
] | 1,699,890,974
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 28
| 46
| 0
|
import sys
number = list(map(int, sys.stdin.readline().split()))
n = number[0]
m = number[1]
i = 0
k = 0
while i < n:
if i % 2 == 0:
j = 0
while j < m:
print('#', end='')
j += 1
else:
if k % 2 == 0:
j = 0
while j < m - 1:
print('.', end='')
j += 1
print('#', end='')
else:
print('#', end='')
j = 0
while j < m - 1:
print('.', end='')
j += 1
k += 1
print()
i += 1
|
Title: Fox And Snake
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
Input Specification:
The only line contains two integers: *n* and *m* (3<=β€<=*n*,<=*m*<=β€<=50).
*n* is an odd number.
Output Specification:
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
Demo Input:
['3 3\n', '3 4\n', '5 3\n', '9 9\n']
Demo Output:
['###\n..#\n###\n', '####\n...#\n####\n', '###\n..#\n###\n#..\n###\n', '#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n']
Note:
none
|
```python
import sys
number = list(map(int, sys.stdin.readline().split()))
n = number[0]
m = number[1]
i = 0
k = 0
while i < n:
if i % 2 == 0:
j = 0
while j < m:
print('#', end='')
j += 1
else:
if k % 2 == 0:
j = 0
while j < m - 1:
print('.', end='')
j += 1
print('#', end='')
else:
print('#', end='')
j = 0
while j < m - 1:
print('.', end='')
j += 1
k += 1
print()
i += 1
```
| 3
|
|
38
|
A
|
Army
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Army
|
2
|
256
|
The Berland Armed Forces System consists of *n* ranks that are numbered using natural numbers from 1 to *n*, where 1 is the lowest rank and *n* is the highest rank.
One needs exactly *d**i* years to rise from rank *i* to rank *i*<=+<=1. Reaching a certain rank *i* having not reached all the previous *i*<=-<=1 ranks is impossible.
Vasya has just reached a new rank of *a*, but he dreams of holding the rank of *b*. Find for how many more years Vasya should serve in the army until he can finally realize his dream.
|
The first input line contains an integer *n* (2<=β€<=*n*<=β€<=100). The second line contains *n*<=-<=1 integers *d**i* (1<=β€<=*d**i*<=β€<=100). The third input line contains two integers *a* and *b* (1<=β€<=*a*<=<<=*b*<=β€<=*n*). The numbers on the lines are space-separated.
|
Print the single number which is the number of years that Vasya needs to rise from rank *a* to rank *b*.
|
[
"3\n5 6\n1 2\n",
"3\n5 6\n1 3\n"
] |
[
"5\n",
"11\n"
] |
none
| 0
|
[
{
"input": "3\n5 6\n1 2",
"output": "5"
},
{
"input": "3\n5 6\n1 3",
"output": "11"
},
{
"input": "2\n55\n1 2",
"output": "55"
},
{
"input": "3\n85 78\n1 3",
"output": "163"
},
{
"input": "4\n63 4 49\n2 3",
"output": "4"
},
{
"input": "5\n93 83 42 56\n2 5",
"output": "181"
},
{
"input": "6\n22 9 87 89 57\n1 6",
"output": "264"
},
{
"input": "7\n52 36 31 23 74 78\n2 7",
"output": "242"
},
{
"input": "8\n82 14 24 5 91 49 94\n3 8",
"output": "263"
},
{
"input": "9\n12 40 69 39 59 21 59 5\n4 6",
"output": "98"
},
{
"input": "10\n95 81 32 59 71 30 50 61 100\n1 6",
"output": "338"
},
{
"input": "15\n89 55 94 4 15 69 19 60 91 77 3 94 91 62\n3 14",
"output": "617"
},
{
"input": "20\n91 1 41 51 95 67 92 35 23 70 44 91 57 50 21 8 9 71 40\n8 17",
"output": "399"
},
{
"input": "25\n70 95 21 84 97 39 12 98 53 24 78 29 84 65 70 22 100 17 69 27 62 48 35 80\n8 23",
"output": "846"
},
{
"input": "30\n35 69 50 44 19 56 86 56 98 24 21 2 61 24 85 30 2 22 57 35 59 84 12 77 92 53 50 92 9\n1 16",
"output": "730"
},
{
"input": "35\n2 34 47 15 27 61 6 88 67 20 53 65 29 68 77 5 78 86 44 98 32 81 91 79 54 84 95 23 65 97 22 33 42 87\n8 35",
"output": "1663"
},
{
"input": "40\n32 88 59 36 95 45 28 78 73 30 97 13 13 47 48 100 43 21 22 45 88 25 15 13 63 25 72 92 29 5 25 11 50 5 54 51 48 84 23\n7 26",
"output": "862"
},
{
"input": "45\n83 74 73 95 10 31 100 26 29 15 80 100 22 70 31 88 9 56 19 70 2 62 48 30 27 47 52 50 94 44 21 94 23 85 15 3 95 72 43 62 94 89 68 88\n17 40",
"output": "1061"
},
{
"input": "50\n28 8 16 29 19 82 70 51 96 84 74 72 17 69 12 21 37 21 39 3 18 66 19 49 86 96 94 93 2 90 96 84 59 88 58 15 61 33 55 22 35 54 51 29 64 68 29 38 40\n23 28",
"output": "344"
},
{
"input": "60\n24 28 25 21 43 71 64 73 71 90 51 83 69 43 75 43 78 72 56 61 99 7 23 86 9 16 16 94 23 74 18 56 20 72 13 31 75 34 35 86 61 49 4 72 84 7 65 70 66 52 21 38 6 43 69 40 73 46 5\n28 60",
"output": "1502"
},
{
"input": "70\n69 95 34 14 67 61 6 95 94 44 28 94 73 66 39 13 19 71 73 71 28 48 26 22 32 88 38 95 43 59 88 77 80 55 17 95 40 83 67 1 38 95 58 63 56 98 49 2 41 4 73 8 78 41 64 71 60 71 41 61 67 4 4 19 97 14 39 20 27\n9 41",
"output": "1767"
},
{
"input": "80\n65 15 43 6 43 98 100 16 69 98 4 54 25 40 2 35 12 23 38 29 10 89 30 6 4 8 7 96 64 43 11 49 89 38 20 59 54 85 46 16 16 89 60 54 28 37 32 34 67 9 78 30 50 87 58 53 99 48 77 3 5 6 19 99 16 20 31 10 80 76 82 56 56 83 72 81 84 60 28\n18 24",
"output": "219"
},
{
"input": "90\n61 35 100 99 67 87 42 90 44 4 81 65 29 63 66 56 53 22 55 87 39 30 34 42 27 80 29 97 85 28 81 22 50 22 24 75 67 86 78 79 94 35 13 97 48 76 68 66 94 13 82 1 22 85 5 36 86 73 65 97 43 56 35 26 87 25 74 47 81 67 73 75 99 75 53 38 70 21 66 78 38 17 57 40 93 57 68 55 1\n12 44",
"output": "1713"
},
{
"input": "95\n37 74 53 96 65 84 65 72 95 45 6 77 91 35 58 50 51 51 97 30 51 20 79 81 92 10 89 34 40 76 71 54 26 34 73 72 72 28 53 19 95 64 97 10 44 15 12 38 5 63 96 95 86 8 36 96 45 53 81 5 18 18 47 97 65 9 33 53 41 86 37 53 5 40 15 76 83 45 33 18 26 5 19 90 46 40 100 42 10 90 13 81 40 53\n6 15",
"output": "570"
},
{
"input": "96\n51 32 95 75 23 54 70 89 67 3 1 51 4 100 97 30 9 35 56 38 54 77 56 98 43 17 60 43 72 46 87 61 100 65 81 22 74 38 16 96 5 10 54 22 23 22 10 91 9 54 49 82 29 73 33 98 75 8 4 26 24 90 71 42 90 24 94 74 94 10 41 98 56 63 18 43 56 21 26 64 74 33 22 38 67 66 38 60 64 76 53 10 4 65 76\n21 26",
"output": "328"
},
{
"input": "97\n18 90 84 7 33 24 75 55 86 10 96 72 16 64 37 9 19 71 62 97 5 34 85 15 46 72 82 51 52 16 55 68 27 97 42 72 76 97 32 73 14 56 11 86 2 81 59 95 60 93 1 22 71 37 77 100 6 16 78 47 78 62 94 86 16 91 56 46 47 35 93 44 7 86 70 10 29 45 67 62 71 61 74 39 36 92 24 26 65 14 93 92 15 28 79 59\n6 68",
"output": "3385"
},
{
"input": "98\n32 47 26 86 43 42 79 72 6 68 40 46 29 80 24 89 29 7 21 56 8 92 13 33 50 79 5 7 84 85 24 23 1 80 51 21 26 55 96 51 24 2 68 98 81 88 57 100 64 84 54 10 14 2 74 1 89 71 1 20 84 85 17 31 42 58 69 67 48 60 97 90 58 10 21 29 2 21 60 61 68 89 77 39 57 18 61 44 67 100 33 74 27 40 83 29 6\n8 77",
"output": "3319"
},
{
"input": "99\n46 5 16 66 53 12 84 89 26 27 35 68 41 44 63 17 88 43 80 15 59 1 42 50 53 34 75 16 16 55 92 30 28 11 12 71 27 65 11 28 86 47 24 10 60 47 7 53 16 75 6 49 56 66 70 3 20 78 75 41 38 57 89 23 16 74 30 39 1 32 49 84 9 33 25 95 75 45 54 59 17 17 29 40 79 96 47 11 69 86 73 56 91 4 87 47 31 24\n23 36",
"output": "514"
},
{
"input": "100\n63 65 21 41 95 23 3 4 12 23 95 50 75 63 58 34 71 27 75 31 23 94 96 74 69 34 43 25 25 55 44 19 43 86 68 17 52 65 36 29 72 96 84 25 84 23 71 54 6 7 71 7 21 100 99 58 93 35 62 47 36 70 68 9 75 13 35 70 76 36 62 22 52 51 2 87 66 41 54 35 78 62 30 35 65 44 74 93 78 37 96 70 26 32 71 27 85 85 63\n43 92",
"output": "2599"
},
{
"input": "51\n85 38 22 38 42 36 55 24 36 80 49 15 66 91 88 61 46 82 1 61 89 92 6 56 28 8 46 80 56 90 91 38 38 17 69 64 57 68 13 44 45 38 8 72 61 39 87 2 73 88\n15 27",
"output": "618"
},
{
"input": "2\n3\n1 2",
"output": "3"
},
{
"input": "5\n6 8 22 22\n2 3",
"output": "8"
},
{
"input": "6\n3 12 27 28 28\n3 4",
"output": "27"
},
{
"input": "9\n1 2 2 2 2 3 3 5\n3 7",
"output": "9"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1\n6 8",
"output": "2"
},
{
"input": "20\n1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3\n5 17",
"output": "23"
},
{
"input": "25\n1 1 1 4 5 6 8 11 11 11 11 12 13 14 14 14 15 16 16 17 17 17 19 19\n4 8",
"output": "23"
},
{
"input": "35\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2\n30 31",
"output": "2"
},
{
"input": "45\n1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 8 8 8 9 9 9 9 9 10 10 10\n42 45",
"output": "30"
},
{
"input": "50\n1 8 8 13 14 15 15 16 19 21 22 24 26 31 32 37 45 47 47 47 50 50 51 54 55 56 58 61 61 61 63 63 64 66 66 67 67 70 71 80 83 84 85 92 92 94 95 95 100\n4 17",
"output": "285"
},
{
"input": "60\n1 2 4 4 4 6 6 8 9 10 10 13 14 18 20 20 21 22 23 23 26 29 30 32 33 34 35 38 40 42 44 44 46 48 52 54 56 56 60 60 66 67 68 68 69 73 73 74 80 80 81 81 82 84 86 86 87 89 89\n56 58",
"output": "173"
},
{
"input": "70\n1 2 3 3 4 5 5 7 7 7 8 8 8 8 9 9 10 12 12 12 12 13 16 16 16 16 16 16 17 17 18 18 20 20 21 23 24 25 25 26 29 29 29 29 31 32 32 34 35 36 36 37 37 38 39 39 40 40 40 40 41 41 42 43 44 44 44 45 45\n62 65",
"output": "126"
},
{
"input": "80\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12\n17 65",
"output": "326"
},
{
"input": "90\n1 1 3 5 8 9 10 11 11 11 11 12 13 14 15 15 15 16 16 19 19 20 22 23 24 25 25 28 29 29 30 31 33 34 35 37 37 38 41 43 43 44 45 47 51 54 55 56 58 58 59 59 60 62 66 67 67 67 68 68 69 70 71 72 73 73 76 77 77 78 78 78 79 79 79 82 83 84 85 85 87 87 89 93 93 93 95 99 99\n28 48",
"output": "784"
},
{
"input": "95\n2 2 3 3 4 6 6 7 7 7 9 10 12 12 12 12 13 14 15 16 17 18 20 20 20 20 21 21 21 21 22 22 22 22 22 23 23 23 25 26 26 27 27 27 28 29 29 30 30 31 32 33 34 36 37 37 38 39 39 39 42 43 43 43 45 47 48 50 50 51 52 53 54 54 54 55 55 55 58 59 60 61 61 61 61 62 62 63 64 65 66 67 67 67\n64 93",
"output": "1636"
},
{
"input": "96\n1 1 2 3 3 5 8 9 9 10 10 10 11 11 11 11 11 12 13 13 13 14 15 15 16 16 17 17 17 17 18 18 20 20 20 21 21 21 23 24 24 25 25 26 27 27 27 27 29 29 29 30 30 30 32 32 32 32 32 32 33 33 34 34 34 35 35 35 36 36 37 37 37 38 39 40 41 41 41 41 42 42 43 43 45 45 45 46 46 47 47 49 50 52 52\n76 96",
"output": "898"
},
{
"input": "98\n2 3 4 4 5 7 8 10 10 10 11 11 12 12 12 12 13 14 15 15 16 16 18 19 19 20 21 21 21 21 22 23 24 25 26 26 27 27 27 27 29 29 30 30 31 31 37 40 40 40 41 41 41 42 43 44 44 44 46 46 47 49 49 50 50 50 51 53 55 55 56 56 56 56 56 57 57 58 59 60 60 60 62 62 63 64 64 64 65 66 66 67 68 70 70 71 71\n8 90",
"output": "3016"
},
{
"input": "99\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n66 95",
"output": "29"
},
{
"input": "100\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 17\n39 52",
"output": "82"
},
{
"input": "51\n5 7 9 16 19 25 26 29 29 30 31 32 32 41 43 44 47 49 50 50 51 52 54 55 56 63 64 66 67 70 74 74 77 78 79 80 80 85 86 87 89 89 90 92 93 94 94 95 95 97\n3 44",
"output": "2268"
}
] | 1,639,072,009
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 50
| 92
| 0
|
n = int(input())
a = list(map(int, input().split()))
k, m = map(int, input().split())
ans = 0
for i in range(k - 1, m - 1):
ans += a[i]
print(ans)
# Thu Dec 09 2021 17:46:48 GMT+0000 (Coordinated Universal Time)
|
Title: Army
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The Berland Armed Forces System consists of *n* ranks that are numbered using natural numbers from 1 to *n*, where 1 is the lowest rank and *n* is the highest rank.
One needs exactly *d**i* years to rise from rank *i* to rank *i*<=+<=1. Reaching a certain rank *i* having not reached all the previous *i*<=-<=1 ranks is impossible.
Vasya has just reached a new rank of *a*, but he dreams of holding the rank of *b*. Find for how many more years Vasya should serve in the army until he can finally realize his dream.
Input Specification:
The first input line contains an integer *n* (2<=β€<=*n*<=β€<=100). The second line contains *n*<=-<=1 integers *d**i* (1<=β€<=*d**i*<=β€<=100). The third input line contains two integers *a* and *b* (1<=β€<=*a*<=<<=*b*<=β€<=*n*). The numbers on the lines are space-separated.
Output Specification:
Print the single number which is the number of years that Vasya needs to rise from rank *a* to rank *b*.
Demo Input:
['3\n5 6\n1 2\n', '3\n5 6\n1 3\n']
Demo Output:
['5\n', '11\n']
Note:
none
|
```python
n = int(input())
a = list(map(int, input().split()))
k, m = map(int, input().split())
ans = 0
for i in range(k - 1, m - 1):
ans += a[i]
print(ans)
# Thu Dec 09 2021 17:46:48 GMT+0000 (Coordinated Universal Time)
```
| 3.977
|
71
|
A
|
Way Too Long Words
|
PROGRAMMING
| 800
|
[
"strings"
] |
A. Way Too Long Words
|
1
|
256
|
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalizationΒ» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
|
The first line contains an integer *n* (1<=β€<=*n*<=β€<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
|
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
|
[
"4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n"
] |
[
"word\nl10n\ni18n\np43s\n"
] |
none
| 500
|
[
{
"input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis",
"output": "word\nl10n\ni18n\np43s"
},
{
"input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm",
"output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m"
},
{
"input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd",
"output": "n20n\nj27b\nk15d"
},
{
"input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt",
"output": "t41t"
},
{
"input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings",
"output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings"
},
{
"input": "1\na",
"output": "a"
},
{
"input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz",
"output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz"
},
{
"input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij",
"output": "a98j"
},
{
"input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco",
"output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco"
},
{
"input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt",
"output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t"
},
{
"input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr",
"output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr"
}
] | 1,692,344,872
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 46
| 0
|
res = []
for i in range(int(input())):
a = input()
if len(a) > 10:
res.append(a[0] + str((len(a) - 2)) + a[-1])
else:
res.append(a)
for i in res:
print(i)
|
Title: Way Too Long Words
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalizationΒ» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
Input Specification:
The first line contains an integer *n* (1<=β€<=*n*<=β€<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Output Specification:
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
Demo Input:
['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n']
Demo Output:
['word\nl10n\ni18n\np43s\n']
Note:
none
|
```python
res = []
for i in range(int(input())):
a = input()
if len(a) > 10:
res.append(a[0] + str((len(a) - 2)) + a[-1])
else:
res.append(a)
for i in res:
print(i)
```
| 3.977
|
653
|
A
|
Bear and Three Balls
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation",
"sortings"
] | null | null |
Limak is a little polar bear. He has *n* balls, the *i*-th ball has size *t**i*.
Limak wants to give one ball to each of his three friends. Giving gifts isn't easyΒ β there are two rules Limak must obey to make friends happy:
- No two friends can get balls of the same size. - No two friends can get balls of sizes that differ by more than 2.
For example, Limak can choose balls with sizes 4, 5 and 3, or balls with sizes 90, 91 and 92. But he can't choose balls with sizes 5, 5 and 6 (two friends would get balls of the same size), and he can't choose balls with sizes 30, 31 and 33 (because sizes 30 and 33 differ by more than 2).
Your task is to check whether Limak can choose three balls that satisfy conditions above.
|
The first line of the input contains one integer *n* (3<=β€<=*n*<=β€<=50)Β β the number of balls Limak has.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=β€<=*t**i*<=β€<=1000) where *t**i* denotes the size of the *i*-th ball.
|
Print "YES" (without quotes) if Limak can choose three balls of distinct sizes, such that any two of them differ by no more than 2. Otherwise, print "NO" (without quotes).
|
[
"4\n18 55 16 17\n",
"6\n40 41 43 44 44 44\n",
"8\n5 972 3 4 1 4 970 971\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
In the first sample, there are 4 balls and Limak is able to choose three of them to satisfy the rules. He must must choose balls with sizes 18, 16 and 17.
In the second sample, there is no way to give gifts to three friends without breaking the rules.
In the third sample, there is even more than one way to choose balls:
1. Choose balls with sizes 3, 4 and 5. 1. Choose balls with sizes 972, 970, 971.
| 500
|
[
{
"input": "4\n18 55 16 17",
"output": "YES"
},
{
"input": "6\n40 41 43 44 44 44",
"output": "NO"
},
{
"input": "8\n5 972 3 4 1 4 970 971",
"output": "YES"
},
{
"input": "3\n959 747 656",
"output": "NO"
},
{
"input": "4\n1 2 2 3",
"output": "YES"
},
{
"input": "50\n998 30 384 289 505 340 872 223 663 31 929 625 864 699 735 589 676 399 745 635 963 381 75 97 324 612 597 797 103 382 25 894 219 458 337 572 201 355 294 275 278 311 586 573 965 704 936 237 715 543",
"output": "NO"
},
{
"input": "50\n941 877 987 982 966 979 984 810 811 909 872 980 957 897 845 995 924 905 984 914 824 840 868 910 815 808 872 858 883 952 823 835 860 874 959 972 931 867 866 987 982 837 800 921 887 910 982 980 828 869",
"output": "YES"
},
{
"input": "3\n408 410 409",
"output": "YES"
},
{
"input": "3\n903 902 904",
"output": "YES"
},
{
"input": "3\n399 400 398",
"output": "YES"
},
{
"input": "3\n450 448 449",
"output": "YES"
},
{
"input": "3\n390 389 388",
"output": "YES"
},
{
"input": "3\n438 439 440",
"output": "YES"
},
{
"input": "11\n488 688 490 94 564 615 641 170 489 517 669",
"output": "YES"
},
{
"input": "24\n102 672 983 82 720 501 81 721 982 312 207 897 159 964 611 956 118 984 37 271 596 403 772 954",
"output": "YES"
},
{
"input": "36\n175 551 70 479 875 480 979 32 465 402 640 116 76 687 874 678 359 785 753 401 978 629 162 963 886 641 39 845 132 930 2 372 478 947 407 318",
"output": "YES"
},
{
"input": "6\n10 79 306 334 304 305",
"output": "YES"
},
{
"input": "34\n787 62 26 683 486 364 684 891 846 801 969 837 359 800 836 359 471 637 732 91 841 836 7 799 959 405 416 841 737 803 615 483 323 365",
"output": "YES"
},
{
"input": "30\n860 238 14 543 669 100 428 789 576 484 754 274 849 850 586 377 711 386 510 408 520 693 23 477 266 851 728 711 964 73",
"output": "YES"
},
{
"input": "11\n325 325 324 324 324 325 325 324 324 324 324",
"output": "NO"
},
{
"input": "7\n517 517 518 517 518 518 518",
"output": "NO"
},
{
"input": "20\n710 710 711 711 711 711 710 710 710 710 711 710 710 710 710 710 710 711 711 710",
"output": "NO"
},
{
"input": "48\n29 30 29 29 29 30 29 30 30 30 30 29 30 30 30 29 29 30 30 29 30 29 29 30 29 30 29 30 30 29 30 29 29 30 30 29 29 30 30 29 29 30 30 30 29 29 30 29",
"output": "NO"
},
{
"input": "7\n880 880 514 536 881 881 879",
"output": "YES"
},
{
"input": "15\n377 432 262 376 261 375 377 262 263 263 261 376 262 262 375",
"output": "YES"
},
{
"input": "32\n305 426 404 961 426 425 614 304 404 425 615 403 303 304 615 303 305 405 427 614 403 303 425 615 404 304 427 403 206 616 405 404",
"output": "YES"
},
{
"input": "41\n115 686 988 744 762 519 745 519 518 83 85 115 520 44 687 686 685 596 988 687 989 988 114 745 84 519 519 746 988 84 745 744 115 114 85 115 520 746 745 116 987",
"output": "YES"
},
{
"input": "47\n1 2 483 28 7 109 270 651 464 162 353 521 224 989 721 499 56 69 197 716 313 446 580 645 828 197 100 138 789 499 147 677 384 711 783 937 300 543 540 93 669 604 739 122 632 822 116",
"output": "NO"
},
{
"input": "31\n1 2 1 373 355 692 750 920 578 666 615 232 141 129 663 929 414 704 422 559 568 731 354 811 532 618 39 879 292 602 995",
"output": "NO"
},
{
"input": "50\n5 38 41 4 15 40 27 39 20 3 44 47 30 6 36 29 35 12 19 26 10 2 21 50 11 46 48 49 17 16 33 13 32 28 31 18 23 34 7 14 24 45 9 37 1 8 42 25 43 22",
"output": "YES"
},
{
"input": "50\n967 999 972 990 969 978 963 987 954 955 973 970 959 981 995 983 986 994 979 957 965 982 992 977 953 975 956 961 993 997 998 958 980 962 960 951 996 991 1000 966 971 988 976 968 989 984 974 964 985 952",
"output": "YES"
},
{
"input": "50\n850 536 761 506 842 898 857 723 583 637 536 943 895 929 890 612 832 633 696 731 553 880 710 812 665 877 915 636 711 540 748 600 554 521 813 796 568 513 543 809 798 820 928 504 999 646 907 639 550 911",
"output": "NO"
},
{
"input": "3\n3 1 2",
"output": "YES"
},
{
"input": "3\n500 999 1000",
"output": "NO"
},
{
"input": "10\n101 102 104 105 107 109 110 112 113 115",
"output": "NO"
},
{
"input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "NO"
},
{
"input": "50\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "NO"
},
{
"input": "3\n1000 999 998",
"output": "YES"
},
{
"input": "49\n343 322 248 477 53 156 245 493 209 141 370 66 229 184 434 137 276 472 216 456 147 180 140 114 493 323 393 262 380 314 222 124 98 441 129 346 48 401 347 460 122 125 114 106 189 260 374 165 456",
"output": "NO"
},
{
"input": "20\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3",
"output": "YES"
},
{
"input": "3\n999 999 1000",
"output": "NO"
},
{
"input": "9\n2 4 5 13 25 100 200 300 400",
"output": "NO"
},
{
"input": "9\n1 1 1 2 2 2 3 3 3",
"output": "YES"
},
{
"input": "3\n1 1 2",
"output": "NO"
},
{
"input": "3\n998 999 1000",
"output": "YES"
},
{
"input": "12\n1 1 1 1 1 1 1 1 1 2 2 4",
"output": "NO"
},
{
"input": "4\n4 3 4 5",
"output": "YES"
},
{
"input": "6\n1 1 1 2 2 2",
"output": "NO"
},
{
"input": "3\n2 3 2",
"output": "NO"
},
{
"input": "5\n10 5 6 3 2",
"output": "NO"
},
{
"input": "3\n1 2 1",
"output": "NO"
},
{
"input": "3\n1 2 3",
"output": "YES"
},
{
"input": "4\n998 999 1000 1000",
"output": "YES"
},
{
"input": "5\n2 3 9 9 4",
"output": "YES"
},
{
"input": "4\n1 2 4 4",
"output": "NO"
},
{
"input": "3\n1 1 1",
"output": "NO"
},
{
"input": "3\n2 2 3",
"output": "NO"
},
{
"input": "7\n1 2 2 2 4 5 6",
"output": "YES"
},
{
"input": "5\n1 3 10 3 10",
"output": "NO"
},
{
"input": "3\n1 2 2",
"output": "NO"
},
{
"input": "4\n1000 1000 999 998",
"output": "YES"
},
{
"input": "3\n5 3 7",
"output": "NO"
},
{
"input": "6\n1 1 2 2 3 3",
"output": "YES"
},
{
"input": "9\n6 6 6 5 5 5 4 4 4",
"output": "YES"
},
{
"input": "7\n5 6 6 6 7 7 7",
"output": "YES"
},
{
"input": "5\n2 3 3 3 4",
"output": "YES"
},
{
"input": "5\n2 1 2 1 3",
"output": "YES"
},
{
"input": "3\n1 2 7",
"output": "NO"
},
{
"input": "3\n1000 1000 1000",
"output": "NO"
},
{
"input": "5\n1 100 2 100 3",
"output": "YES"
},
{
"input": "5\n5 4 6 5 5",
"output": "YES"
},
{
"input": "12\n1 1 1 1 2 2 2 2 3 3 3 3",
"output": "YES"
},
{
"input": "5\n9 9 1 2 3",
"output": "YES"
},
{
"input": "6\n1 2 3 1 2 3",
"output": "YES"
},
{
"input": "7\n1 1 1 1 2 3 3",
"output": "YES"
},
{
"input": "3\n13 13 13",
"output": "NO"
},
{
"input": "3\n42 42 42",
"output": "NO"
},
{
"input": "8\n1 1 1 1 2 2 2 2",
"output": "NO"
},
{
"input": "6\n1 1 1 1 2 3",
"output": "YES"
},
{
"input": "6\n1 1 2 2 6 6",
"output": "NO"
},
{
"input": "6\n1 2 5 5 5 5",
"output": "NO"
},
{
"input": "9\n1 2 3 1 2 3 1 2 3",
"output": "YES"
},
{
"input": "4\n1 2 1 100",
"output": "NO"
},
{
"input": "5\n1 1 2 2 3",
"output": "YES"
}
] | 1,465,265,992
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 84
| 77
| 5,120,000
|
n = int(input())
a = [int(x) for x in input().split()]
a.sort()
cek = 1
temp = -1
for i in range (n):
if(a[i] == temp + 1):
cek += 1
temp = a[i]
elif(a[i] == temp):
pass
else:
cek = 1
temp = a[i]
if(cek >= 3):
break
if (cek>=3):
print ("YES")
else:
print ("NO")
|
Title: Bear and Three Balls
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Limak is a little polar bear. He has *n* balls, the *i*-th ball has size *t**i*.
Limak wants to give one ball to each of his three friends. Giving gifts isn't easyΒ β there are two rules Limak must obey to make friends happy:
- No two friends can get balls of the same size. - No two friends can get balls of sizes that differ by more than 2.
For example, Limak can choose balls with sizes 4, 5 and 3, or balls with sizes 90, 91 and 92. But he can't choose balls with sizes 5, 5 and 6 (two friends would get balls of the same size), and he can't choose balls with sizes 30, 31 and 33 (because sizes 30 and 33 differ by more than 2).
Your task is to check whether Limak can choose three balls that satisfy conditions above.
Input Specification:
The first line of the input contains one integer *n* (3<=β€<=*n*<=β€<=50)Β β the number of balls Limak has.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=β€<=*t**i*<=β€<=1000) where *t**i* denotes the size of the *i*-th ball.
Output Specification:
Print "YES" (without quotes) if Limak can choose three balls of distinct sizes, such that any two of them differ by no more than 2. Otherwise, print "NO" (without quotes).
Demo Input:
['4\n18 55 16 17\n', '6\n40 41 43 44 44 44\n', '8\n5 972 3 4 1 4 970 971\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
In the first sample, there are 4 balls and Limak is able to choose three of them to satisfy the rules. He must must choose balls with sizes 18, 16 and 17.
In the second sample, there is no way to give gifts to three friends without breaking the rules.
In the third sample, there is even more than one way to choose balls:
1. Choose balls with sizes 3, 4 and 5. 1. Choose balls with sizes 972, 970, 971.
|
```python
n = int(input())
a = [int(x) for x in input().split()]
a.sort()
cek = 1
temp = -1
for i in range (n):
if(a[i] == temp + 1):
cek += 1
temp = a[i]
elif(a[i] == temp):
pass
else:
cek = 1
temp = a[i]
if(cek >= 3):
break
if (cek>=3):
print ("YES")
else:
print ("NO")
```
| 3
|
|
681
|
A
|
A Good Contest
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Codeforces user' handle color depends on his ratingΒ β it is red if his rating is greater or equal to 2400; it is orange if his rating is less than 2400 but greater or equal to 2200, etc. Each time participant takes part in a rated contest, his rating is changed depending on his performance.
Anton wants the color of his handle to become red. He considers his performance in the rated contest to be good if he outscored some participant, whose handle was colored red before the contest and his rating has increased after it.
Anton has written a program that analyses contest results and determines whether he performed good or not. Are you able to do the same?
|
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=100)Β β the number of participants Anton has outscored in this contest .
The next *n* lines describe participants results: the *i*-th of them consists of a participant handle *name**i* and two integers *before**i* and *after**i* (<=-<=4000<=β€<=*before**i*,<=*after**i*<=β€<=4000)Β β participant's rating before and after the contest, respectively. Each handle is a non-empty string, consisting of no more than 10 characters, which might be lowercase and uppercase English letters, digits, characters Β«_Β» and Β«-Β» characters.
It is guaranteed that all handles are distinct.
|
Print Β«YESΒ» (quotes for clarity), if Anton has performed good in the contest and Β«NOΒ» (quotes for clarity) otherwise.
|
[
"3\nBurunduk1 2526 2537\nBudAlNik 2084 2214\nsubscriber 2833 2749\n",
"3\nApplejack 2400 2400\nFluttershy 2390 2431\nPinkie_Pie -2500 -2450\n"
] |
[
"YES",
"NO"
] |
In the first sample, Anton has outscored user with handle Burunduk1, whose handle was colored red before the contest and his rating has increased after the contest.
In the second sample, Applejack's rating has not increased after the contest, while both Fluttershy's and Pinkie_Pie's handles were not colored red before the contest.
| 500
|
[
{
"input": "3\nBurunduk1 2526 2537\nBudAlNik 2084 2214\nsubscriber 2833 2749",
"output": "YES"
},
{
"input": "3\nApplejack 2400 2400\nFluttershy 2390 2431\nPinkie_Pie -2500 -2450",
"output": "NO"
},
{
"input": "1\nDb -3373 3591",
"output": "NO"
},
{
"input": "5\nQ2bz 960 2342\nhmX 2710 -1348\ngbAe -1969 -963\nE -160 196\npsi 2665 -3155",
"output": "NO"
},
{
"input": "9\nmwAz9lQ 1786 -1631\nnYgYFXZQfY -1849 -1775\nKU4jF -1773 -3376\nopR 3752 2931\nGl -1481 -1002\nR -1111 3778\n0i9B21DC 3650 289\nQ8L2dS0 358 -3305\ng -2662 3968",
"output": "NO"
},
{
"input": "5\nzMSBcOUf -2883 -2238\nYN -3314 -1480\nfHpuccQn06 -1433 -589\naM1NVEPQi 399 3462\n_L 2516 -3290",
"output": "NO"
},
{
"input": "1\na 2400 2401",
"output": "YES"
},
{
"input": "1\nfucker 4000 4000",
"output": "NO"
},
{
"input": "1\nJora 2400 2401",
"output": "YES"
},
{
"input": "1\nACA 2400 2420",
"output": "YES"
},
{
"input": "1\nAca 2400 2420",
"output": "YES"
},
{
"input": "1\nSub_d 2401 2402",
"output": "YES"
},
{
"input": "2\nHack 2400 2401\nDum 1243 555",
"output": "YES"
},
{
"input": "1\nXXX 2400 2500",
"output": "YES"
},
{
"input": "1\nfucker 2400 2401",
"output": "YES"
},
{
"input": "1\nX 2400 2500",
"output": "YES"
},
{
"input": "1\nvineet 2400 2401",
"output": "YES"
},
{
"input": "1\nabc 2400 2500",
"output": "YES"
},
{
"input": "1\naaaaa 2400 2401",
"output": "YES"
},
{
"input": "1\nhoge 2400 2401",
"output": "YES"
},
{
"input": "1\nInfinity 2400 2468",
"output": "YES"
},
{
"input": "1\nBurunduk1 2400 2401",
"output": "YES"
},
{
"input": "1\nFuck 2400 2401",
"output": "YES"
},
{
"input": "1\nfuck 2400 2401",
"output": "YES"
},
{
"input": "3\nApplejack 2400 2401\nFluttershy 2390 2431\nPinkie_Pie -2500 -2450",
"output": "YES"
},
{
"input": "1\nalex 2400 2401",
"output": "YES"
},
{
"input": "1\nA 2400 2401",
"output": "YES"
},
{
"input": "1\na 2400 2455",
"output": "YES"
},
{
"input": "1\nlol 2400 2401",
"output": "YES"
},
{
"input": "2\nBurunduk1 2400 2537\nBudAlNik 2084 2214",
"output": "YES"
},
{
"input": "1\naaaaaa 2400 2401",
"output": "YES"
},
{
"input": "1\nBurunduk1 2400 2500",
"output": "YES"
},
{
"input": "1\nds 2400 2410",
"output": "YES"
},
{
"input": "1\nas 2400 2401",
"output": "YES"
},
{
"input": "1\nabc 2400 2401",
"output": "YES"
},
{
"input": "3\nBudAlNik 2084 2214\nsubscriber 2833 2749\nBurunduk1 2526 2537",
"output": "YES"
},
{
"input": "1\ncaonima 2400 2401",
"output": "YES"
},
{
"input": "1\narr 2400 2500",
"output": "YES"
},
{
"input": "1\nx 2400 2401",
"output": "YES"
},
{
"input": "1\narrr 2400 2500",
"output": "YES"
},
{
"input": "1\nabc 2400 2405",
"output": "YES"
},
{
"input": "3\nBurunduk1 2400 2420\nBudAlNik 2084 2214\nsubscriber 2833 2749",
"output": "YES"
},
{
"input": "1\nBurunduk1 2400 2537",
"output": "YES"
},
{
"input": "1\nHELLO 2400 2401",
"output": "YES"
},
{
"input": "1\neatmore 2400 2500",
"output": "YES"
},
{
"input": "1\nb 2400 2401",
"output": "YES"
},
{
"input": "3\nBurunduk1 2400 2537\nBudAlNik 2084 2214\nsubscriber 2833 2749",
"output": "YES"
},
{
"input": "1\nApplejack 2400 2410",
"output": "YES"
},
{
"input": "1\nabacaba 2400 2451",
"output": "YES"
},
{
"input": "1\nrekt_n00b 2500 2600",
"output": "YES"
}
] | 1,656,879,872
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 60
| 46
| 0
|
n = int(input())
for _ in range(n):
s, b, a = input().split()
if int(b) >= 2400 and int(a) > int(b):
print("YES")
quit()
print("NO")
|
Title: A Good Contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Codeforces user' handle color depends on his ratingΒ β it is red if his rating is greater or equal to 2400; it is orange if his rating is less than 2400 but greater or equal to 2200, etc. Each time participant takes part in a rated contest, his rating is changed depending on his performance.
Anton wants the color of his handle to become red. He considers his performance in the rated contest to be good if he outscored some participant, whose handle was colored red before the contest and his rating has increased after it.
Anton has written a program that analyses contest results and determines whether he performed good or not. Are you able to do the same?
Input Specification:
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=100)Β β the number of participants Anton has outscored in this contest .
The next *n* lines describe participants results: the *i*-th of them consists of a participant handle *name**i* and two integers *before**i* and *after**i* (<=-<=4000<=β€<=*before**i*,<=*after**i*<=β€<=4000)Β β participant's rating before and after the contest, respectively. Each handle is a non-empty string, consisting of no more than 10 characters, which might be lowercase and uppercase English letters, digits, characters Β«_Β» and Β«-Β» characters.
It is guaranteed that all handles are distinct.
Output Specification:
Print Β«YESΒ» (quotes for clarity), if Anton has performed good in the contest and Β«NOΒ» (quotes for clarity) otherwise.
Demo Input:
['3\nBurunduk1 2526 2537\nBudAlNik 2084 2214\nsubscriber 2833 2749\n', '3\nApplejack 2400 2400\nFluttershy 2390 2431\nPinkie_Pie -2500 -2450\n']
Demo Output:
['YES', 'NO']
Note:
In the first sample, Anton has outscored user with handle Burunduk1, whose handle was colored red before the contest and his rating has increased after the contest.
In the second sample, Applejack's rating has not increased after the contest, while both Fluttershy's and Pinkie_Pie's handles were not colored red before the contest.
|
```python
n = int(input())
for _ in range(n):
s, b, a = input().split()
if int(b) >= 2400 and int(a) > int(b):
print("YES")
quit()
print("NO")
```
| 3
|
|
770
|
A
|
New Password
|
PROGRAMMING
| 800
|
[
"*special",
"implementation"
] | null | null |
Innokentiy decides to change the password in the social net "Contact!", but he is too lazy to invent a new password by himself. That is why he needs your help.
Innokentiy decides that new password should satisfy the following conditions:
- the length of the password must be equal to *n*, - the password should consist only of lowercase Latin letters, - the number of distinct symbols in the password must be equal to *k*, - any two consecutive symbols in the password must be distinct.
Your task is to help Innokentiy and to invent a new password which will satisfy all given conditions.
|
The first line contains two positive integers *n* and *k* (2<=β€<=*n*<=β€<=100, 2<=β€<=*k*<=β€<=*min*(*n*,<=26)) β the length of the password and the number of distinct symbols in it.
Pay attention that a desired new password always exists.
|
Print any password which satisfies all conditions given by Innokentiy.
|
[
"4 3\n",
"6 6\n",
"5 2\n"
] |
[
"java\n",
"python\n",
"phphp\n"
] |
In the first test there is one of the appropriate new passwords β java, because its length is equal to 4 and 3 distinct lowercase letters a, j and v are used in it.
In the second test there is one of the appropriate new passwords β python, because its length is equal to 6 and it consists of 6 distinct lowercase letters.
In the third test there is one of the appropriate new passwords β phphp, because its length is equal to 5 and 2 distinct lowercase letters p and h are used in it.
Pay attention the condition that no two identical symbols are consecutive is correct for all appropriate passwords in tests.
| 500
|
[
{
"input": "4 3",
"output": "abca"
},
{
"input": "6 6",
"output": "abcdef"
},
{
"input": "5 2",
"output": "ababa"
},
{
"input": "3 2",
"output": "aba"
},
{
"input": "10 2",
"output": "ababababab"
},
{
"input": "26 13",
"output": "abcdefghijklmabcdefghijklm"
},
{
"input": "100 2",
"output": "abababababababababababababababababababababababababababababababababababababababababababababababababab"
},
{
"input": "100 10",
"output": "abcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij"
},
{
"input": "3 3",
"output": "abc"
},
{
"input": "6 3",
"output": "abcabc"
},
{
"input": "10 3",
"output": "abcabcabca"
},
{
"input": "50 3",
"output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcab"
},
{
"input": "90 2",
"output": "ababababababababababababababababababababababababababababababababababababababababababababab"
},
{
"input": "6 2",
"output": "ababab"
},
{
"input": "99 3",
"output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
},
{
"input": "4 2",
"output": "abab"
},
{
"input": "100 3",
"output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabca"
},
{
"input": "40 22",
"output": "abcdefghijklmnopqrstuvabcdefghijklmnopqr"
},
{
"input": "13 8",
"output": "abcdefghabcde"
},
{
"input": "16 15",
"output": "abcdefghijklmnoa"
},
{
"input": "17 17",
"output": "abcdefghijklmnopq"
},
{
"input": "19 4",
"output": "abcdabcdabcdabcdabc"
},
{
"input": "100 26",
"output": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv"
},
{
"input": "100 25",
"output": "abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxy"
},
{
"input": "26 26",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "27 26",
"output": "abcdefghijklmnopqrstuvwxyza"
},
{
"input": "2 2",
"output": "ab"
},
{
"input": "26 25",
"output": "abcdefghijklmnopqrstuvwxya"
},
{
"input": "99 2",
"output": "abababababababababababababababababababababababababababababababababababababababababababababababababa"
},
{
"input": "99 26",
"output": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstu"
},
{
"input": "4 4",
"output": "abcd"
},
{
"input": "5 3",
"output": "abcab"
},
{
"input": "5 4",
"output": "abcda"
},
{
"input": "5 5",
"output": "abcde"
},
{
"input": "24 22",
"output": "abcdefghijklmnopqrstuvab"
},
{
"input": "26 14",
"output": "abcdefghijklmnabcdefghijkl"
},
{
"input": "26 15",
"output": "abcdefghijklmnoabcdefghijk"
},
{
"input": "30 12",
"output": "abcdefghijklabcdefghijklabcdef"
},
{
"input": "35 4",
"output": "abcdabcdabcdabcdabcdabcdabcdabcdabc"
},
{
"input": "79 3",
"output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabca"
},
{
"input": "79 14",
"output": "abcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghi"
},
{
"input": "85 13",
"output": "abcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefg"
},
{
"input": "90 25",
"output": "abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmno"
},
{
"input": "90 19",
"output": "abcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmn"
},
{
"input": "26 24",
"output": "abcdefghijklmnopqrstuvwxab"
},
{
"input": "100 17",
"output": "abcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmno"
},
{
"input": "26 2",
"output": "ababababababababababababab"
}
] | 1,610,937,714
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 47
| 62
| 0
|
a,b=map(int,input().split())
x="abcdefghijklmnopqrstuvxwyz"
q=0
for i in range(a):
print(x[q],end='')
q+=1
if q==b:
q=0
|
Title: New Password
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Innokentiy decides to change the password in the social net "Contact!", but he is too lazy to invent a new password by himself. That is why he needs your help.
Innokentiy decides that new password should satisfy the following conditions:
- the length of the password must be equal to *n*, - the password should consist only of lowercase Latin letters, - the number of distinct symbols in the password must be equal to *k*, - any two consecutive symbols in the password must be distinct.
Your task is to help Innokentiy and to invent a new password which will satisfy all given conditions.
Input Specification:
The first line contains two positive integers *n* and *k* (2<=β€<=*n*<=β€<=100, 2<=β€<=*k*<=β€<=*min*(*n*,<=26)) β the length of the password and the number of distinct symbols in it.
Pay attention that a desired new password always exists.
Output Specification:
Print any password which satisfies all conditions given by Innokentiy.
Demo Input:
['4 3\n', '6 6\n', '5 2\n']
Demo Output:
['java\n', 'python\n', 'phphp\n']
Note:
In the first test there is one of the appropriate new passwords β java, because its length is equal to 4 and 3 distinct lowercase letters a, j and v are used in it.
In the second test there is one of the appropriate new passwords β python, because its length is equal to 6 and it consists of 6 distinct lowercase letters.
In the third test there is one of the appropriate new passwords β phphp, because its length is equal to 5 and 2 distinct lowercase letters p and h are used in it.
Pay attention the condition that no two identical symbols are consecutive is correct for all appropriate passwords in tests.
|
```python
a,b=map(int,input().split())
x="abcdefghijklmnopqrstuvxwyz"
q=0
for i in range(a):
print(x[q],end='')
q+=1
if q==b:
q=0
```
| 3
|
|
686
|
A
|
Free Ice Cream
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer.
At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue).
If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress.
Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
|
The first line contains two space-separated integers *n* and *x* (1<=β€<=*n*<=β€<=1000, 0<=β€<=*x*<=β€<=109).
Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=β€<=*d**i*<=β€<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
|
Print two space-separated integersΒ β number of ice cream packs left after all operations, and number of kids that left the house in distress.
|
[
"5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n",
"5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n"
] |
[
"22 1\n",
"3 2\n"
] |
Consider the first sample.
1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
| 500
|
[
{
"input": "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20",
"output": "22 1"
},
{
"input": "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98",
"output": "3 2"
},
{
"input": "6 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000",
"output": "7000000000 0"
},
{
"input": "5 12\n- 12\n+ 7\n- 6\n- 1\n+ 46",
"output": "46 0"
},
{
"input": "11 1000\n- 100\n+ 100\n+ 100\n+ 100\n+ 100\n- 100\n- 100\n- 100\n- 100\n- 100\n- 100",
"output": "700 0"
},
{
"input": "1 0\n- 526403222",
"output": "0 1"
},
{
"input": "1 897986543\n- 371188251",
"output": "526798292 0"
},
{
"input": "1 0\n+ 1",
"output": "1 0"
},
{
"input": "1 0\n- 1",
"output": "0 1"
},
{
"input": "1 10\n+ 10",
"output": "20 0"
},
{
"input": "1 3\n- 5",
"output": "3 1"
},
{
"input": "1 0\n- 5",
"output": "0 1"
},
{
"input": "1 0\n+ 5",
"output": "5 0"
}
] | 1,596,636,503
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 108
| 6,758,400
|
n, x = map(int, input().split())
count = 0
for i in range(n):
sign, packs = input().split()
packs = int(packs)
if sign == "+":
x += packs
elif sign == "-" and x < packs:
count += 1
else:
x -= packs
print(x, count)
|
Title: Free Ice Cream
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer.
At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue).
If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress.
Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
Input Specification:
The first line contains two space-separated integers *n* and *x* (1<=β€<=*n*<=β€<=1000, 0<=β€<=*x*<=β€<=109).
Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=β€<=*d**i*<=β€<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
Output Specification:
Print two space-separated integersΒ β number of ice cream packs left after all operations, and number of kids that left the house in distress.
Demo Input:
['5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n', '5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n']
Demo Output:
['22 1\n', '3 2\n']
Note:
Consider the first sample.
1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
|
```python
n, x = map(int, input().split())
count = 0
for i in range(n):
sign, packs = input().split()
packs = int(packs)
if sign == "+":
x += packs
elif sign == "-" and x < packs:
count += 1
else:
x -= packs
print(x, count)
```
| 3
|
|
71
|
A
|
Way Too Long Words
|
PROGRAMMING
| 800
|
[
"strings"
] |
A. Way Too Long Words
|
1
|
256
|
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalizationΒ» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
|
The first line contains an integer *n* (1<=β€<=*n*<=β€<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
|
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
|
[
"4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n"
] |
[
"word\nl10n\ni18n\np43s\n"
] |
none
| 500
|
[
{
"input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis",
"output": "word\nl10n\ni18n\np43s"
},
{
"input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm",
"output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m"
},
{
"input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd",
"output": "n20n\nj27b\nk15d"
},
{
"input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt",
"output": "t41t"
},
{
"input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings",
"output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings"
},
{
"input": "1\na",
"output": "a"
},
{
"input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz",
"output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz"
},
{
"input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij",
"output": "a98j"
},
{
"input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco",
"output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco"
},
{
"input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt",
"output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t"
},
{
"input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr",
"output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr"
}
] | 1,688,855,447
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 20
| 62
| 0
|
n = int(input())
i = 0
while i < n:
name = input()
i = i+1
if(len(name)<=10):
print(name)
else:
print(name[0]+ str(len(name)-2) + name[-1])
|
Title: Way Too Long Words
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalizationΒ» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
Input Specification:
The first line contains an integer *n* (1<=β€<=*n*<=β€<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Output Specification:
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
Demo Input:
['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n']
Demo Output:
['word\nl10n\ni18n\np43s\n']
Note:
none
|
```python
n = int(input())
i = 0
while i < n:
name = input()
i = i+1
if(len(name)<=10):
print(name)
else:
print(name[0]+ str(len(name)-2) + name[-1])
```
| 3.969
|
493
|
B
|
Vasya and Wrestling
|
PROGRAMMING
| 1,400
|
[
"implementation"
] | null | null |
Vasya has become interested in wrestling. In wrestling wrestlers use techniques for which they are awarded points by judges. The wrestler who gets the most points wins.
When the numbers of points of both wrestlers are equal, the wrestler whose sequence of points is lexicographically greater, wins.
If the sequences of the awarded points coincide, the wrestler who performed the last technique wins. Your task is to determine which wrestler won.
|
The first line contains number *n* β the number of techniques that the wrestlers have used (1<=β€<=*n*<=β€<=2Β·105).
The following *n* lines contain integer numbers *a**i* (|*a**i*|<=β€<=109, *a**i*<=β <=0). If *a**i* is positive, that means that the first wrestler performed the technique that was awarded with *a**i* points. And if *a**i* is negative, that means that the second wrestler performed the technique that was awarded with (<=-<=*a**i*) points.
The techniques are given in chronological order.
|
If the first wrestler wins, print string "first", otherwise print "second"
|
[
"5\n1\n2\n-3\n-4\n3\n",
"3\n-1\n-2\n3\n",
"2\n4\n-4\n"
] |
[
"second\n",
"first\n",
"second\n"
] |
Sequence *x*ββ=ββ*x*<sub class="lower-index">1</sub>*x*<sub class="lower-index">2</sub>... *x*<sub class="lower-index">|*x*|</sub> is lexicographically larger than sequence *y*ββ=ββ*y*<sub class="lower-index">1</sub>*y*<sub class="lower-index">2</sub>... *y*<sub class="lower-index">|*y*|</sub>, if either |*x*|ββ>ββ|*y*| and *x*<sub class="lower-index">1</sub>ββ=ββ*y*<sub class="lower-index">1</sub>,ββ*x*<sub class="lower-index">2</sub>ββ=ββ*y*<sub class="lower-index">2</sub>,β... ,ββ*x*<sub class="lower-index">|*y*|</sub>ββ=ββ*y*<sub class="lower-index">|*y*|</sub>, or there is such number *r* (*r*ββ<ββ|*x*|,β*r*ββ<ββ|*y*|), that *x*<sub class="lower-index">1</sub>ββ=ββ*y*<sub class="lower-index">1</sub>,ββ*x*<sub class="lower-index">2</sub>ββ=ββ*y*<sub class="lower-index">2</sub>,ββ... ,ββ*x*<sub class="lower-index">*r*</sub>ββ=ββ*y*<sub class="lower-index">*r*</sub> and *x*<sub class="lower-index">*r*ββ+ββ1</sub>ββ>ββ*y*<sub class="lower-index">*r*ββ+ββ1</sub>.
We use notation |*a*| to denote length of sequence *a*.
| 1,000
|
[
{
"input": "5\n1\n2\n-3\n-4\n3",
"output": "second"
},
{
"input": "3\n-1\n-2\n3",
"output": "first"
},
{
"input": "2\n4\n-4",
"output": "second"
},
{
"input": "7\n1\n2\n-3\n4\n5\n-6\n7",
"output": "first"
},
{
"input": "14\n1\n2\n3\n4\n5\n6\n7\n-8\n-9\n-10\n-11\n-12\n-13\n-14",
"output": "second"
},
{
"input": "4\n16\n12\n19\n-98",
"output": "second"
},
{
"input": "5\n-6\n-1\n-1\n5\n3",
"output": "second"
},
{
"input": "11\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1",
"output": "first"
},
{
"input": "1\n-534365",
"output": "second"
},
{
"input": "1\n10253033",
"output": "first"
},
{
"input": "3\n-1\n-2\n3",
"output": "first"
},
{
"input": "8\n1\n-2\n-3\n4\n5\n-6\n-7\n8",
"output": "second"
},
{
"input": "2\n1\n-1",
"output": "second"
},
{
"input": "5\n1\n2\n3\n4\n5",
"output": "first"
},
{
"input": "5\n-1\n-2\n-3\n-4\n-5",
"output": "second"
},
{
"input": "10\n-1\n-2\n-3\n-4\n-5\n5\n4\n3\n2\n1",
"output": "first"
},
{
"input": "131\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n-1\n-1\n2",
"output": "first"
},
{
"input": "6\n-1\n-2\n-3\n1\n2\n3",
"output": "first"
},
{
"input": "3\n1000000000\n1000000000\n1000000000",
"output": "first"
},
{
"input": "12\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000",
"output": "first"
},
{
"input": "4\n1000000000\n1000000000\n1000000000\n-1000000000",
"output": "first"
},
{
"input": "20\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000",
"output": "first"
},
{
"input": "5\n1000000000\n1000000000\n-1000000000\n-1000000000\n-1000000000",
"output": "second"
},
{
"input": "4\n1\n-1000000000\n-1000000000\n-1000000000",
"output": "second"
},
{
"input": "5\n1000000000\n1000000000\n1000000000\n-1000000000\n-1000000000",
"output": "first"
},
{
"input": "4\n-1\n1000000000\n1000000000\n1000000000",
"output": "first"
},
{
"input": "11\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000",
"output": "first"
},
{
"input": "2\n-4\n4",
"output": "first"
},
{
"input": "3\n-12\n3\n9",
"output": "second"
},
{
"input": "3\n9\n1\n-10",
"output": "second"
},
{
"input": "3\n1\n2\n-3",
"output": "second"
},
{
"input": "4\n55\n5\n-5\n-55",
"output": "first"
},
{
"input": "4\n5\n-1\n1\n-5",
"output": "first"
},
{
"input": "2\n-5\n6",
"output": "first"
},
{
"input": "4\n5\n-4\n3\n-40",
"output": "second"
},
{
"input": "4\n1000000000\n1000000000\n1000000000\n-5",
"output": "first"
},
{
"input": "6\n3\n2\n1\n-3\n-1\n-2",
"output": "first"
},
{
"input": "5\n4\n1\n1\n-3\n-3",
"output": "first"
},
{
"input": "5\n208\n-52\n-52\n-52\n-52",
"output": "first"
},
{
"input": "3\n-100\n-200\n300",
"output": "first"
},
{
"input": "3\n400\n-200\n-200",
"output": "first"
},
{
"input": "3\n208\n-207\n-1",
"output": "first"
},
{
"input": "3\n98888887\n98888888\n-197777775",
"output": "second"
}
] | 1,624,958,750
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 57
| 1,450
| 10,547,200
|
n = int(input())
first_moves = []
second_moves = []
last = None
for i in range(n):
move = int(input())
if move > 0:
first_moves.append(move)
else:
second_moves.append(-move)
if i == n-1:
last = move
first_score = sum(first_moves)
second_score = sum(second_moves)
if first_score > second_score:
print("first")
elif second_score > first_score:
print("second")
else:
if first_moves > second_moves:
print("first")
elif second_moves > first_moves:
print("second")
else:
if last > 0:
print("first")
else:
print("second")
|
Title: Vasya and Wrestling
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya has become interested in wrestling. In wrestling wrestlers use techniques for which they are awarded points by judges. The wrestler who gets the most points wins.
When the numbers of points of both wrestlers are equal, the wrestler whose sequence of points is lexicographically greater, wins.
If the sequences of the awarded points coincide, the wrestler who performed the last technique wins. Your task is to determine which wrestler won.
Input Specification:
The first line contains number *n* β the number of techniques that the wrestlers have used (1<=β€<=*n*<=β€<=2Β·105).
The following *n* lines contain integer numbers *a**i* (|*a**i*|<=β€<=109, *a**i*<=β <=0). If *a**i* is positive, that means that the first wrestler performed the technique that was awarded with *a**i* points. And if *a**i* is negative, that means that the second wrestler performed the technique that was awarded with (<=-<=*a**i*) points.
The techniques are given in chronological order.
Output Specification:
If the first wrestler wins, print string "first", otherwise print "second"
Demo Input:
['5\n1\n2\n-3\n-4\n3\n', '3\n-1\n-2\n3\n', '2\n4\n-4\n']
Demo Output:
['second\n', 'first\n', 'second\n']
Note:
Sequence *x*ββ=ββ*x*<sub class="lower-index">1</sub>*x*<sub class="lower-index">2</sub>... *x*<sub class="lower-index">|*x*|</sub> is lexicographically larger than sequence *y*ββ=ββ*y*<sub class="lower-index">1</sub>*y*<sub class="lower-index">2</sub>... *y*<sub class="lower-index">|*y*|</sub>, if either |*x*|ββ>ββ|*y*| and *x*<sub class="lower-index">1</sub>ββ=ββ*y*<sub class="lower-index">1</sub>,ββ*x*<sub class="lower-index">2</sub>ββ=ββ*y*<sub class="lower-index">2</sub>,β... ,ββ*x*<sub class="lower-index">|*y*|</sub>ββ=ββ*y*<sub class="lower-index">|*y*|</sub>, or there is such number *r* (*r*ββ<ββ|*x*|,β*r*ββ<ββ|*y*|), that *x*<sub class="lower-index">1</sub>ββ=ββ*y*<sub class="lower-index">1</sub>,ββ*x*<sub class="lower-index">2</sub>ββ=ββ*y*<sub class="lower-index">2</sub>,ββ... ,ββ*x*<sub class="lower-index">*r*</sub>ββ=ββ*y*<sub class="lower-index">*r*</sub> and *x*<sub class="lower-index">*r*ββ+ββ1</sub>ββ>ββ*y*<sub class="lower-index">*r*ββ+ββ1</sub>.
We use notation |*a*| to denote length of sequence *a*.
|
```python
n = int(input())
first_moves = []
second_moves = []
last = None
for i in range(n):
move = int(input())
if move > 0:
first_moves.append(move)
else:
second_moves.append(-move)
if i == n-1:
last = move
first_score = sum(first_moves)
second_score = sum(second_moves)
if first_score > second_score:
print("first")
elif second_score > first_score:
print("second")
else:
if first_moves > second_moves:
print("first")
elif second_moves > first_moves:
print("second")
else:
if last > 0:
print("first")
else:
print("second")
```
| 3
|
|
41
|
A
|
Translation
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Translation
|
2
|
256
|
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the Β«translationΒ». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
|
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
|
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
|
[
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,679,196,178
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 92
| 0
|
ai = input()
an = input()
if ai == an[::-1]:
print("YES")
else:
print("NO")
|
Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the Β«translationΒ». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
ai = input()
an = input()
if ai == an[::-1]:
print("YES")
else:
print("NO")
```
| 3.977
|
476
|
B
|
Dreamoon and WiFi
|
PROGRAMMING
| 1,300
|
[
"bitmasks",
"brute force",
"combinatorics",
"dp",
"math",
"probabilities"
] | null | null |
Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them.
Each command is one of the following two types:
1. Go 1 unit towards the positive direction, denoted as '+' 1. Go 1 unit towards the negative direction, denoted as '-'
But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5).
You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands?
|
The first line contains a string *s*1 β the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}.
The second line contains a string *s*2 β the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command.
Lengths of two strings are equal and do not exceed 10.
|
Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9.
|
[
"++-+-\n+-+-+\n",
"+-+-\n+-??\n",
"+++\n??-\n"
] |
[
"1.000000000000\n",
"0.500000000000\n",
"0.000000000000\n"
] |
For the first sample, both *s*<sub class="lower-index">1</sub> and *s*<sub class="lower-index">2</sub> will lead Dreamoon to finish at the same position β+β1.
For the second sample, *s*<sub class="lower-index">1</sub> will lead Dreamoon to finish at position 0, while there are four possibilites for *s*<sub class="lower-index">2</sub>: {"+-++", "+-+-", "+--+", "+---"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5.
For the third sample, *s*<sub class="lower-index">2</sub> could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position β+β3 is 0.
| 1,500
|
[
{
"input": "++-+-\n+-+-+",
"output": "1.000000000000"
},
{
"input": "+-+-\n+-??",
"output": "0.500000000000"
},
{
"input": "+++\n??-",
"output": "0.000000000000"
},
{
"input": "++++++++++\n+++??++?++",
"output": "0.125000000000"
},
{
"input": "--+++---+-\n??????????",
"output": "0.205078125000"
},
{
"input": "+--+++--+-\n??????????",
"output": "0.246093750000"
},
{
"input": "+\n+",
"output": "1.000000000000"
},
{
"input": "-\n?",
"output": "0.500000000000"
},
{
"input": "+\n-",
"output": "0.000000000000"
},
{
"input": "-\n-",
"output": "1.000000000000"
},
{
"input": "-\n+",
"output": "0.000000000000"
},
{
"input": "+\n?",
"output": "0.500000000000"
},
{
"input": "++++++++++\n++++++++++",
"output": "1.000000000000"
},
{
"input": "++++++++++\n++++-+++++",
"output": "0.000000000000"
},
{
"input": "----------\n++++++++++",
"output": "0.000000000000"
},
{
"input": "++++++++++\n++++??++++",
"output": "0.250000000000"
},
{
"input": "----------\n+++?++++-+",
"output": "0.000000000000"
},
{
"input": "++++++++++\n++++++++?+",
"output": "0.500000000000"
},
{
"input": "--++++--+\n?-+?-??+-",
"output": "0.250000000000"
},
{
"input": "----------\n??????????",
"output": "0.000976562500"
},
{
"input": "+--++\n+--+-",
"output": "0.000000000000"
},
{
"input": "-----++---\n????????+?",
"output": "0.017578125000"
},
{
"input": "------+--+\n??????????",
"output": "0.043945312500"
},
{
"input": "---++--\n???????",
"output": "0.164062500000"
},
{
"input": "-----++\n???????",
"output": "0.164062500000"
},
{
"input": "+---+--\n???????",
"output": "0.164062500000"
},
{
"input": "---+-+\n??????",
"output": "0.234375000000"
},
{
"input": "+++-+\n---++",
"output": "0.000000000000"
},
{
"input": "++-+--+\n?-?+??+",
"output": "0.375000000000"
},
{
"input": "----+++--\n-+?+++?--",
"output": "0.000000000000"
},
{
"input": "+-----\n+?----",
"output": "0.500000000000"
}
] | 1,667,030,463
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 31
| 77
| 614,400
|
from collections import defaultdict, deque
from math import gcd,ceil,sqrt,factorial
import sys
import heapq
from bisect import bisect_right as b_r
from bisect import bisect_left as b_l
from functools import reduce
import operator as op
INT_MAX = sys.maxsize-1
INT_MIN = -sys.maxsize
def ncr(n:int,r:int):
r=min(n,n-r)
nmtr = reduce(op.mul,range(n,n-r,-1),1)
dnmtr = reduce(op.mul,range(1,r+1),1)
return nmtr//dnmtr
def fact(n):
return factorial(n)
def myyy__answer():
s1=input()
s2=input()
n=len(s1)
c1=0
c2=0
cnt=0
for i in range(n):
c1+=(s1[i]=="+")
c2+=(s1[i]=="-")
c1-=(s2[i]=="+")
c2-=(s2[i]=="-")
cnt+=(s2[i]=="?")
if(c2<0):
c1+=(-c2)
if(c1<0):
c2+=(-c1)
# print(cnt,c1,c2)
if(cnt<c1+c2 or (cnt-(c1+c2))&1):
print(0)
else:
c1+=(cnt-c1-c2)//2
c2+=(cnt-c1-c2)//2
print(ncr(cnt,c1)/(2**cnt))
if __name__ == "__main__":
input = lambda: sys.stdin.readline().rstrip("\r\n")
# for _ in range(int(input())):
# print(myyy__answer())
myyy__answer()
|
Title: Dreamoon and WiFi
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them.
Each command is one of the following two types:
1. Go 1 unit towards the positive direction, denoted as '+' 1. Go 1 unit towards the negative direction, denoted as '-'
But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5).
You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands?
Input Specification:
The first line contains a string *s*1 β the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}.
The second line contains a string *s*2 β the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command.
Lengths of two strings are equal and do not exceed 10.
Output Specification:
Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9.
Demo Input:
['++-+-\n+-+-+\n', '+-+-\n+-??\n', '+++\n??-\n']
Demo Output:
['1.000000000000\n', '0.500000000000\n', '0.000000000000\n']
Note:
For the first sample, both *s*<sub class="lower-index">1</sub> and *s*<sub class="lower-index">2</sub> will lead Dreamoon to finish at the same position β+β1.
For the second sample, *s*<sub class="lower-index">1</sub> will lead Dreamoon to finish at position 0, while there are four possibilites for *s*<sub class="lower-index">2</sub>: {"+-++", "+-+-", "+--+", "+---"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5.
For the third sample, *s*<sub class="lower-index">2</sub> could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position β+β3 is 0.
|
```python
from collections import defaultdict, deque
from math import gcd,ceil,sqrt,factorial
import sys
import heapq
from bisect import bisect_right as b_r
from bisect import bisect_left as b_l
from functools import reduce
import operator as op
INT_MAX = sys.maxsize-1
INT_MIN = -sys.maxsize
def ncr(n:int,r:int):
r=min(n,n-r)
nmtr = reduce(op.mul,range(n,n-r,-1),1)
dnmtr = reduce(op.mul,range(1,r+1),1)
return nmtr//dnmtr
def fact(n):
return factorial(n)
def myyy__answer():
s1=input()
s2=input()
n=len(s1)
c1=0
c2=0
cnt=0
for i in range(n):
c1+=(s1[i]=="+")
c2+=(s1[i]=="-")
c1-=(s2[i]=="+")
c2-=(s2[i]=="-")
cnt+=(s2[i]=="?")
if(c2<0):
c1+=(-c2)
if(c1<0):
c2+=(-c1)
# print(cnt,c1,c2)
if(cnt<c1+c2 or (cnt-(c1+c2))&1):
print(0)
else:
c1+=(cnt-c1-c2)//2
c2+=(cnt-c1-c2)//2
print(ncr(cnt,c1)/(2**cnt))
if __name__ == "__main__":
input = lambda: sys.stdin.readline().rstrip("\r\n")
# for _ in range(int(input())):
# print(myyy__answer())
myyy__answer()
```
| 3
|
|
554
|
A
|
Kyoya and Photobooks
|
PROGRAMMING
| 900
|
[
"brute force",
"math",
"strings"
] | null | null |
Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He has 26 photos, labeled "a" to "z", and he has compiled them into a photo booklet with some photos in some order (possibly with some photos being duplicated). A photo booklet can be described as a string of lowercase letters, consisting of the photos in the booklet in order. He now wants to sell some "special edition" photobooks, each with one extra photo inserted anywhere in the book. He wants to make as many distinct photobooks as possible, so he can make more money. He asks Haruhi, how many distinct photobooks can he make by inserting one extra photo into the photobook he already has?
Please help Haruhi solve this problem.
|
The first line of input will be a single string *s* (1<=β€<=|*s*|<=β€<=20). String *s* consists only of lowercase English letters.
|
Output a single integer equal to the number of distinct photobooks Kyoya Ootori can make.
|
[
"a\n",
"hi\n"
] |
[
"51\n",
"76\n"
] |
In the first case, we can make 'ab','ac',...,'az','ba','ca',...,'za', and 'aa', producing a total of 51 distinct photo booklets.
| 250
|
[
{
"input": "a",
"output": "51"
},
{
"input": "hi",
"output": "76"
},
{
"input": "y",
"output": "51"
},
{
"input": "kgan",
"output": "126"
},
{
"input": "zoabkyuvus",
"output": "276"
},
{
"input": "spyemhyznjieyhhbk",
"output": "451"
},
{
"input": "xulsyfkuizjauadjjopu",
"output": "526"
},
{
"input": "e",
"output": "51"
},
{
"input": "zv",
"output": "76"
},
{
"input": "jgv",
"output": "101"
},
{
"input": "zsfo",
"output": "126"
},
{
"input": "jselr",
"output": "151"
},
{
"input": "dwemig",
"output": "176"
},
{
"input": "mddoxsf",
"output": "201"
},
{
"input": "jgirkrmi",
"output": "226"
},
{
"input": "spkxurcum",
"output": "251"
},
{
"input": "fykkiubdkt",
"output": "276"
},
{
"input": "fznbcxsxygs",
"output": "301"
},
{
"input": "qcrvrdqcbtou",
"output": "326"
},
{
"input": "qktrbjzrqgmlr",
"output": "351"
},
{
"input": "foamodbvptlxxg",
"output": "376"
},
{
"input": "ydzpjhsidipricw",
"output": "401"
},
{
"input": "lpfpndmjfvqejdgf",
"output": "426"
},
{
"input": "ofkvparuvjtggnmab",
"output": "451"
},
{
"input": "xxncfutrtxcwdzwbgs",
"output": "476"
},
{
"input": "zovhffccflkgqncsdte",
"output": "501"
},
{
"input": "cskgsxywlvfeicoueglr",
"output": "526"
},
{
"input": "gggggggggggggggggggg",
"output": "526"
},
{
"input": "qdqdddqddqqddqddqdqd",
"output": "526"
},
{
"input": "takttttaakaaktakttkt",
"output": "526"
},
{
"input": "coccoooogogcgocccmcg",
"output": "526"
},
{
"input": "kskkskkkssksssk",
"output": "401"
},
{
"input": "lllllllllllllll",
"output": "401"
}
] | 1,442,765,554
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 62
| 0
|
import sys
y = sys.stdin.readline().rstrip()
x = len(y)
print((x + 1) * 26 - x)
|
Title: Kyoya and Photobooks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He has 26 photos, labeled "a" to "z", and he has compiled them into a photo booklet with some photos in some order (possibly with some photos being duplicated). A photo booklet can be described as a string of lowercase letters, consisting of the photos in the booklet in order. He now wants to sell some "special edition" photobooks, each with one extra photo inserted anywhere in the book. He wants to make as many distinct photobooks as possible, so he can make more money. He asks Haruhi, how many distinct photobooks can he make by inserting one extra photo into the photobook he already has?
Please help Haruhi solve this problem.
Input Specification:
The first line of input will be a single string *s* (1<=β€<=|*s*|<=β€<=20). String *s* consists only of lowercase English letters.
Output Specification:
Output a single integer equal to the number of distinct photobooks Kyoya Ootori can make.
Demo Input:
['a\n', 'hi\n']
Demo Output:
['51\n', '76\n']
Note:
In the first case, we can make 'ab','ac',...,'az','ba','ca',...,'za', and 'aa', producing a total of 51 distinct photo booklets.
|
```python
import sys
y = sys.stdin.readline().rstrip()
x = len(y)
print((x + 1) * 26 - x)
```
| 3
|
|
129
|
A
|
Cookies
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Olga came to visit the twins Anna and Maria and saw that they have many cookies. The cookies are distributed into bags. As there are many cookies, Olga decided that it's no big deal if she steals a bag. However, she doesn't want the sisters to quarrel because of nothing when they divide the cookies. That's why Olga wants to steal a bag with cookies so that the number of cookies in the remaining bags was even, that is, so that Anna and Maria could evenly divide it into two (even 0 remaining cookies will do, just as any other even number). How many ways there are to steal exactly one cookie bag so that the total number of cookies in the remaining bags was even?
|
The first line contains the only integer *n* (1<=β€<=*n*<=β€<=100) β the number of cookie bags Anna and Maria have. The second line contains *n* integers *a**i* (1<=β€<=*a**i*<=β€<=100) β the number of cookies in the *i*-th bag.
|
Print in the only line the only number β the sought number of ways. If there are no such ways print 0.
|
[
"1\n1\n",
"10\n1 2 2 3 4 4 4 2 2 2\n",
"11\n2 2 2 2 2 2 2 2 2 2 99\n"
] |
[
"1\n",
"8\n",
"1\n"
] |
In the first sample Olga should take the only bag so that the twins ended up with the even number of cookies.
In the second sample Olga can take any of five bags with two cookies or any of three bags with four cookies β 5β+β3β=β8 ways in total.
In the third sample, no matter which bag with two cookies Olga chooses, the twins are left with 2β*β9β+β99β=β117 cookies. Thus, Olga has only one option: to take the bag with 99 cookies.
| 500
|
[
{
"input": "1\n1",
"output": "1"
},
{
"input": "10\n1 2 2 3 4 4 4 2 2 2",
"output": "8"
},
{
"input": "11\n2 2 2 2 2 2 2 2 2 2 99",
"output": "1"
},
{
"input": "2\n1 1",
"output": "0"
},
{
"input": "2\n2 2",
"output": "2"
},
{
"input": "2\n1 2",
"output": "1"
},
{
"input": "7\n7 7 7 7 7 7 7",
"output": "7"
},
{
"input": "8\n1 2 3 4 5 6 7 8",
"output": "4"
},
{
"input": "100\n1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2",
"output": "50"
},
{
"input": "99\n99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99",
"output": "49"
},
{
"input": "82\n43 44 96 33 23 42 33 66 53 87 8 90 43 91 40 88 51 18 48 62 59 10 22 20 54 6 13 63 2 56 31 52 98 42 54 32 26 77 9 24 33 91 16 30 39 34 78 82 73 90 12 15 67 76 30 18 44 86 84 98 65 54 100 79 28 34 40 56 11 43 72 35 86 59 89 40 30 33 7 19 44 15",
"output": "50"
},
{
"input": "17\n50 14 17 77 74 74 38 76 41 27 45 29 66 98 38 73 38",
"output": "7"
},
{
"input": "94\n81 19 90 99 26 11 86 44 78 36 80 59 99 90 78 72 71 20 94 56 42 40 71 84 10 85 10 70 52 27 39 55 90 16 48 25 7 79 99 100 38 10 99 56 3 4 78 9 16 57 14 40 52 54 57 70 30 86 56 84 97 60 59 69 49 66 23 92 90 46 86 73 53 47 1 83 14 20 24 66 13 45 41 14 86 75 55 88 48 95 82 24 47 87",
"output": "39"
},
{
"input": "88\n64 95 12 90 40 65 98 45 52 54 79 7 81 25 98 19 68 82 41 53 35 50 5 22 32 21 8 39 8 6 72 27 81 30 12 79 21 42 60 2 66 87 46 93 62 78 52 71 76 32 78 94 86 85 55 15 34 76 41 20 32 26 94 81 89 45 74 49 11 40 40 39 49 46 80 85 90 23 80 40 86 58 70 26 48 93 23 53",
"output": "37"
},
{
"input": "84\n95 9 43 43 13 84 60 90 1 8 97 99 54 34 59 83 33 15 51 26 40 12 66 65 19 30 29 78 92 60 25 13 19 84 71 73 12 24 54 49 16 41 11 40 57 59 34 40 39 9 71 83 1 77 79 53 94 47 78 55 77 85 29 52 80 90 53 77 97 97 27 79 28 23 83 25 26 22 49 86 63 56 3 32",
"output": "51"
},
{
"input": "47\n61 97 76 94 91 22 2 68 62 73 90 47 16 79 44 71 98 68 43 6 53 52 40 27 68 67 43 96 14 91 60 61 96 24 97 13 32 65 85 96 81 77 34 18 23 14 80",
"output": "21"
},
{
"input": "69\n71 1 78 74 58 89 30 6 100 90 22 61 11 59 14 74 27 25 78 61 45 19 25 33 37 4 52 43 53 38 9 100 56 67 69 38 76 91 63 60 93 52 28 61 9 98 8 14 57 63 89 64 98 51 36 66 36 86 13 82 50 91 52 64 86 78 78 83 81",
"output": "37"
},
{
"input": "52\n38 78 36 75 19 3 56 1 39 97 24 79 84 16 93 55 96 64 12 24 1 86 80 29 12 32 36 36 73 39 76 65 53 98 30 20 28 8 86 43 70 22 75 69 62 65 81 25 53 40 71 59",
"output": "28"
},
{
"input": "74\n81 31 67 97 26 75 69 81 11 13 13 74 77 88 52 20 52 64 66 75 72 28 41 54 26 75 41 91 75 15 18 36 13 83 63 61 14 48 53 63 19 67 35 48 23 65 73 100 44 55 92 88 99 17 73 25 83 7 31 89 12 80 98 39 42 75 14 29 81 35 77 87 33 94",
"output": "47"
},
{
"input": "44\n46 56 31 31 37 71 94 2 14 100 45 72 36 72 80 3 38 54 42 98 50 32 31 42 62 31 45 50 95 100 18 17 64 22 18 25 52 56 70 57 43 40 81 28",
"output": "15"
},
{
"input": "22\n28 57 40 74 51 4 45 84 99 12 95 14 92 60 47 81 84 51 31 91 59 42",
"output": "11"
},
{
"input": "59\n73 45 94 76 41 49 65 13 74 66 36 25 47 75 40 23 92 72 11 32 32 8 81 26 68 56 41 8 76 47 96 55 70 11 84 14 83 18 70 22 30 39 28 100 48 11 92 45 78 69 86 1 54 90 98 91 13 17 35",
"output": "33"
},
{
"input": "63\n20 18 44 94 68 57 16 43 74 55 68 24 21 95 76 84 50 50 47 86 86 12 58 55 28 72 86 18 34 45 81 88 3 72 41 9 60 90 81 93 12 6 9 6 2 41 1 7 9 29 81 14 64 80 20 36 67 54 7 5 35 81 22",
"output": "37"
},
{
"input": "28\n49 84 48 19 44 91 11 82 96 95 88 90 71 82 87 25 31 23 18 13 98 45 26 65 35 12 31 14",
"output": "15"
},
{
"input": "61\n34 18 28 64 28 45 9 77 77 20 63 92 79 16 16 100 86 2 91 91 57 15 31 95 10 88 84 5 82 83 53 98 59 17 97 80 76 80 81 3 91 81 87 93 61 46 10 49 6 22 21 75 63 89 21 81 30 19 67 38 77",
"output": "35"
},
{
"input": "90\n41 90 43 1 28 75 90 50 3 70 76 64 81 63 25 69 83 82 29 91 59 66 21 61 7 55 72 49 38 69 72 20 64 58 30 81 61 29 96 14 39 5 100 20 29 98 75 29 44 78 97 45 26 77 73 59 22 99 41 6 3 96 71 20 9 18 96 18 90 62 34 78 54 5 41 6 73 33 2 54 26 21 18 6 45 57 43 73 95 75",
"output": "42"
},
{
"input": "45\n93 69 4 27 20 14 71 48 79 3 32 26 49 30 57 88 13 56 49 61 37 32 47 41 41 70 45 68 82 18 8 6 25 20 15 13 71 99 28 6 52 34 19 59 26",
"output": "23"
},
{
"input": "33\n29 95 48 49 91 10 83 71 47 25 66 36 51 12 34 10 54 74 41 96 89 26 89 1 42 33 1 62 9 32 49 65 78",
"output": "15"
},
{
"input": "34\n98 24 42 36 41 82 28 58 89 34 77 70 76 44 74 54 66 100 13 79 4 88 21 1 11 45 91 29 87 100 29 54 82 78",
"output": "13"
},
{
"input": "29\n91 84 26 84 9 63 52 9 65 56 90 2 36 7 67 33 91 14 65 38 53 36 81 83 85 14 33 95 51",
"output": "17"
},
{
"input": "100\n2 88 92 82 87 100 78 28 84 43 78 32 43 33 97 19 15 52 29 84 57 72 54 13 99 28 82 79 40 70 34 92 91 53 9 88 27 43 14 92 72 37 26 37 20 95 19 34 49 64 33 37 34 27 80 79 9 54 99 68 25 4 68 73 46 66 24 78 3 87 26 52 50 84 4 95 23 83 39 58 86 36 33 16 98 2 84 19 53 12 69 60 10 11 78 17 79 92 77 59",
"output": "45"
},
{
"input": "100\n2 95 45 73 9 54 20 97 57 82 88 26 18 71 25 27 75 54 31 11 58 85 69 75 72 91 76 5 25 80 45 49 4 73 8 81 81 38 5 12 53 77 7 96 90 35 28 80 73 94 19 69 96 17 94 49 69 9 32 19 5 12 46 29 26 40 59 59 6 95 82 50 72 2 45 69 12 5 72 29 39 72 23 96 81 28 28 56 68 58 37 41 30 1 90 84 15 24 96 43",
"output": "53"
},
{
"input": "100\n27 72 35 91 13 10 35 45 24 55 83 84 63 96 29 79 34 67 63 92 48 83 18 77 28 27 49 66 29 88 55 15 6 58 14 67 94 36 77 7 7 64 61 52 71 18 36 99 76 6 50 67 16 13 41 7 89 73 61 51 78 22 78 32 76 100 3 31 89 71 63 53 15 85 77 54 89 33 68 74 3 23 57 5 43 89 75 35 9 86 90 11 31 46 48 37 74 17 77 8",
"output": "40"
},
{
"input": "100\n69 98 69 88 11 49 55 8 25 91 17 81 47 26 15 73 96 71 18 42 42 61 48 14 92 78 35 72 4 27 62 75 83 79 17 16 46 80 96 90 82 54 37 69 85 21 67 70 96 10 46 63 21 59 56 92 54 88 77 30 75 45 44 29 86 100 51 11 65 69 66 56 82 63 27 1 51 51 13 10 3 55 26 85 34 16 87 72 13 100 81 71 90 95 86 50 83 55 55 54",
"output": "53"
},
{
"input": "100\n34 35 99 64 2 66 78 93 20 48 12 79 19 10 87 7 42 92 60 79 5 2 24 89 57 48 63 92 74 4 16 51 7 12 90 48 87 17 18 73 51 58 97 97 25 38 15 97 96 73 67 91 6 75 14 13 87 79 75 3 15 55 35 95 71 45 10 13 20 37 82 26 2 22 13 83 97 84 39 79 43 100 54 59 98 8 61 34 7 65 75 44 24 77 73 88 34 95 44 77",
"output": "55"
},
{
"input": "100\n15 86 3 1 51 26 74 85 37 87 64 58 10 6 57 26 30 47 85 65 24 72 50 40 12 35 91 47 91 60 47 87 95 34 80 91 26 3 36 39 14 86 28 70 51 44 28 21 72 79 57 61 16 71 100 94 57 67 36 74 24 21 89 85 25 2 97 67 76 53 76 80 97 64 35 13 8 32 21 52 62 61 67 14 74 73 66 44 55 76 24 3 43 42 99 61 36 80 38 66",
"output": "52"
},
{
"input": "100\n45 16 54 54 80 94 74 93 75 85 58 95 79 30 81 2 84 4 57 23 92 64 78 1 50 36 13 27 56 54 10 77 87 1 5 38 85 74 94 82 30 45 72 83 82 30 81 82 82 3 69 82 7 92 39 60 94 42 41 5 3 17 67 21 79 44 79 96 28 3 53 68 79 89 63 83 1 44 4 31 84 15 73 77 19 66 54 6 73 1 67 24 91 11 86 45 96 82 20 89",
"output": "51"
},
{
"input": "100\n84 23 50 32 90 71 92 43 58 70 6 82 7 55 85 19 70 89 12 26 29 56 74 30 2 27 4 39 63 67 91 81 11 33 75 10 82 88 39 43 43 80 68 35 55 67 53 62 73 65 86 74 43 51 14 48 42 92 83 57 22 33 24 99 5 27 78 96 7 28 11 15 8 38 85 67 5 92 24 96 57 59 14 95 91 4 9 18 45 33 74 83 64 85 14 51 51 94 29 2",
"output": "53"
},
{
"input": "100\n77 56 56 45 73 55 32 37 39 50 30 95 79 21 44 34 51 43 86 91 39 30 85 15 35 93 100 14 57 31 80 79 38 40 88 4 91 54 7 95 76 26 62 84 17 33 67 47 6 82 69 51 17 2 59 24 11 12 31 90 12 11 55 38 72 49 30 50 42 46 5 97 9 9 30 45 86 23 19 82 40 42 5 40 35 98 35 32 60 60 5 28 84 35 21 49 68 53 68 23",
"output": "48"
},
{
"input": "100\n78 38 79 61 45 86 83 83 86 90 74 69 2 84 73 39 2 5 20 71 24 80 54 89 58 34 77 40 39 62 2 47 28 53 97 75 88 98 94 96 33 71 44 90 47 36 19 89 87 98 90 87 5 85 34 79 82 3 42 88 89 63 35 7 89 30 40 48 12 41 56 76 83 60 80 80 39 56 77 4 72 96 30 55 57 51 7 19 11 1 66 1 91 87 11 62 95 85 79 25",
"output": "48"
},
{
"input": "100\n5 34 23 20 76 75 19 51 17 82 60 13 83 6 65 16 20 43 66 54 87 10 87 73 50 24 16 98 33 28 80 52 54 82 26 92 14 13 84 92 94 29 61 21 60 20 48 94 24 20 75 70 58 27 68 45 86 89 29 8 67 38 83 48 18 100 11 22 46 84 52 97 70 19 50 75 3 7 52 53 72 41 18 31 1 38 49 53 11 64 99 76 9 87 48 12 100 32 44 71",
"output": "58"
},
{
"input": "100\n76 89 68 78 24 72 73 95 98 72 58 15 2 5 56 32 9 65 50 70 94 31 29 54 89 52 31 93 43 56 26 35 72 95 51 55 78 70 11 92 17 5 54 94 81 31 78 95 73 91 95 37 59 9 53 48 65 55 84 8 45 97 64 37 96 34 36 53 66 17 72 48 99 23 27 18 92 84 44 73 60 78 53 29 68 99 19 39 61 40 69 6 77 12 47 29 15 4 8 45",
"output": "53"
},
{
"input": "100\n82 40 31 53 8 50 85 93 3 84 54 17 96 59 51 42 18 19 35 84 79 31 17 46 54 82 72 49 35 73 26 89 61 73 3 50 12 29 25 77 88 21 58 24 22 89 96 54 82 29 96 56 77 16 1 68 90 93 20 23 57 22 31 18 92 90 51 14 50 72 31 54 12 50 66 62 2 34 17 45 68 50 87 97 23 71 1 72 17 82 42 15 20 78 4 49 66 59 10 17",
"output": "54"
},
{
"input": "100\n32 82 82 24 39 53 48 5 29 24 9 37 91 37 91 95 1 97 84 52 12 56 93 47 22 20 14 17 40 22 79 34 24 2 69 30 69 29 3 89 21 46 60 92 39 29 18 24 49 18 40 22 60 13 77 50 39 64 50 70 99 8 66 31 90 38 20 54 7 21 5 56 41 68 69 20 54 89 69 62 9 53 43 89 81 97 15 2 52 78 89 65 16 61 59 42 56 25 32 52",
"output": "49"
},
{
"input": "100\n72 54 23 24 97 14 99 87 15 25 7 23 17 87 72 31 71 87 34 82 51 77 74 85 62 38 24 7 84 48 98 21 29 71 70 84 25 58 67 92 18 44 32 9 81 15 53 29 63 18 86 16 7 31 38 99 70 32 89 16 23 11 66 96 69 82 97 59 6 9 49 80 85 19 6 9 52 51 85 74 53 46 73 55 31 63 78 61 34 80 77 65 87 77 92 52 89 8 52 31",
"output": "44"
},
{
"input": "100\n56 88 8 19 7 15 11 54 35 50 19 57 63 72 51 43 50 19 57 90 40 100 8 92 11 96 30 32 59 65 93 47 62 3 50 41 30 50 72 83 61 46 83 60 20 46 33 1 5 18 83 22 34 16 41 95 63 63 7 59 55 95 91 29 64 60 64 81 45 45 10 9 88 37 69 85 21 82 41 76 42 34 47 78 51 83 65 100 13 22 59 76 63 1 26 86 36 94 99 74",
"output": "46"
},
{
"input": "100\n27 89 67 60 62 80 43 50 28 88 72 5 94 11 63 91 18 78 99 3 71 26 12 97 74 62 23 24 22 3 100 72 98 7 94 32 12 75 61 88 42 48 10 14 45 9 48 56 73 76 70 70 79 90 35 39 96 37 81 11 19 65 99 39 23 79 34 61 35 74 90 37 73 23 46 21 94 84 73 58 11 89 13 9 10 85 42 78 73 32 53 39 49 90 43 5 28 31 97 75",
"output": "53"
},
{
"input": "100\n33 24 97 96 1 14 99 51 13 65 67 20 46 88 42 44 20 49 5 89 98 83 15 40 74 83 58 3 10 79 34 2 69 28 37 100 55 52 14 8 44 94 97 89 6 42 11 28 30 33 55 56 20 57 52 25 75 1 87 42 62 41 37 12 54 85 95 80 42 36 94 96 28 76 54 36 4 17 26 24 62 15 17 79 84 36 92 78 74 91 96 77 54 92 81 91 62 98 37 37",
"output": "43"
},
{
"input": "100\n86 24 61 15 11 85 1 31 47 36 23 36 59 34 3 27 16 29 82 28 58 52 52 66 71 61 98 39 60 20 67 41 67 90 73 29 92 17 70 95 58 98 58 32 21 73 46 56 87 72 80 75 40 27 94 31 59 92 93 37 14 99 96 21 97 23 81 91 52 52 96 94 92 28 38 29 52 16 57 27 17 24 91 21 79 55 96 98 95 94 23 78 79 12 77 35 32 75 100 82",
"output": "51"
},
{
"input": "100\n88 85 41 37 69 21 7 69 36 5 92 26 64 75 22 46 67 20 70 22 62 66 38 24 47 49 68 30 90 31 67 86 86 82 9 51 43 45 48 42 73 44 31 94 45 60 54 66 20 87 11 94 34 32 87 66 56 28 75 39 37 90 72 93 55 72 31 42 30 71 87 61 4 12 12 81 23 61 56 98 71 32 30 33 96 63 92 16 8 78 47 91 47 54 49 3 81 82 41 5",
"output": "47"
},
{
"input": "1\n2",
"output": "1"
},
{
"input": "5\n1 1 3 2 2",
"output": "3"
}
] | 1,591,646,334
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 52
| 312
| 0
|
n = int(input())
lst = list(map(int,input().split()))
k = 0
for i in range(n):
if lst[i] % 2 == 0:
k += 1
if sum(lst) % 2 == 0:
print(k)
else:
print(len(lst) - k)
|
Title: Cookies
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Olga came to visit the twins Anna and Maria and saw that they have many cookies. The cookies are distributed into bags. As there are many cookies, Olga decided that it's no big deal if she steals a bag. However, she doesn't want the sisters to quarrel because of nothing when they divide the cookies. That's why Olga wants to steal a bag with cookies so that the number of cookies in the remaining bags was even, that is, so that Anna and Maria could evenly divide it into two (even 0 remaining cookies will do, just as any other even number). How many ways there are to steal exactly one cookie bag so that the total number of cookies in the remaining bags was even?
Input Specification:
The first line contains the only integer *n* (1<=β€<=*n*<=β€<=100) β the number of cookie bags Anna and Maria have. The second line contains *n* integers *a**i* (1<=β€<=*a**i*<=β€<=100) β the number of cookies in the *i*-th bag.
Output Specification:
Print in the only line the only number β the sought number of ways. If there are no such ways print 0.
Demo Input:
['1\n1\n', '10\n1 2 2 3 4 4 4 2 2 2\n', '11\n2 2 2 2 2 2 2 2 2 2 99\n']
Demo Output:
['1\n', '8\n', '1\n']
Note:
In the first sample Olga should take the only bag so that the twins ended up with the even number of cookies.
In the second sample Olga can take any of five bags with two cookies or any of three bags with four cookies β 5β+β3β=β8 ways in total.
In the third sample, no matter which bag with two cookies Olga chooses, the twins are left with 2β*β9β+β99β=β117 cookies. Thus, Olga has only one option: to take the bag with 99 cookies.
|
```python
n = int(input())
lst = list(map(int,input().split()))
k = 0
for i in range(n):
if lst[i] % 2 == 0:
k += 1
if sum(lst) % 2 == 0:
print(k)
else:
print(len(lst) - k)
```
| 3
|
|
109
|
A
|
Lucky Sum of Digits
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation"
] |
A. Lucky Sum of Digits
|
2
|
256
|
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya wonders eagerly what minimum lucky number has the sum of digits equal to *n*. Help him cope with the task.
|
The single line contains an integer *n* (1<=β€<=*n*<=β€<=106) β the sum of digits of the required lucky number.
|
Print on the single line the result β the minimum lucky number, whose sum of digits equals *n*. If such number does not exist, print -1.
|
[
"11\n",
"10\n"
] |
[
"47\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "11",
"output": "47"
},
{
"input": "10",
"output": "-1"
},
{
"input": "64",
"output": "4477777777"
},
{
"input": "1",
"output": "-1"
},
{
"input": "4",
"output": "4"
},
{
"input": "7",
"output": "7"
},
{
"input": "12",
"output": "444"
},
{
"input": "1000000",
"output": "4477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "47",
"output": "44477777"
},
{
"input": "100",
"output": "4444777777777777"
},
{
"input": "700",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "485",
"output": "44447777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "111",
"output": "444447777777777777"
},
{
"input": "85",
"output": "4477777777777"
},
{
"input": "114",
"output": "444477777777777777"
},
{
"input": "474",
"output": "444777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "74",
"output": "47777777777"
},
{
"input": "1000",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "1024",
"output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "4444",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "45784",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "10000",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "9854",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "186",
"output": "477777777777777777777777777"
},
{
"input": "10416",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "10417",
"output": "4477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "3840",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "100000",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "9876",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "99999",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "777777",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "854759",
"output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "11000",
"output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "18951",
"output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999999",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "888887",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999998",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "40008",
"output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "10691",
"output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "5",
"output": "-1"
},
{
"input": "6",
"output": "-1"
},
{
"input": "9",
"output": "-1"
},
{
"input": "8",
"output": "44"
},
{
"input": "2",
"output": "-1"
},
{
"input": "3",
"output": "-1"
},
{
"input": "999997",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999996",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999990",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999980",
"output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "800000",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "980000",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
}
] | 1,551,786,665
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 51
| 810
| 409,600
|
n=int(input())
A=n//4
B=n//7
falg=False
s=""
for i in range(0,A+1):
for j in range(0,B+1):
if(i*4+j*7==n):
for g in range(i):
s+=str(4)
for r in range(j):
s+=str(7)
falg=True;
if falg:
break
if falg:
break
if falg:
print(s)
else :
print("-1")
|
Title: Lucky Sum of Digits
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya wonders eagerly what minimum lucky number has the sum of digits equal to *n*. Help him cope with the task.
Input Specification:
The single line contains an integer *n* (1<=β€<=*n*<=β€<=106) β the sum of digits of the required lucky number.
Output Specification:
Print on the single line the result β the minimum lucky number, whose sum of digits equals *n*. If such number does not exist, print -1.
Demo Input:
['11\n', '10\n']
Demo Output:
['47\n', '-1\n']
Note:
none
|
```python
n=int(input())
A=n//4
B=n//7
falg=False
s=""
for i in range(0,A+1):
for j in range(0,B+1):
if(i*4+j*7==n):
for g in range(i):
s+=str(4)
for r in range(j):
s+=str(7)
falg=True;
if falg:
break
if falg:
break
if falg:
print(s)
else :
print("-1")
```
| 3.796737
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=Γ<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=Γ<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* β board sizes in squares (1<=β€<=*M*<=β€<=*N*<=β€<=16).
|
Output one number β the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,666,697,538
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
l=list(map(int,input().split()))
print((l[0]*l[1])//2)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=Γ<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=Γ<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* β board sizes in squares (1<=β€<=*M*<=β€<=*N*<=β€<=16).
Output Specification:
Output one number β the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
l=list(map(int,input().split()))
print((l[0]*l[1])//2)
```
| 3.977
|
16
|
B
|
Burglar and Matches
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation",
"sortings"
] |
B. Burglar and Matches
|
0
|
64
|
A burglar got into a matches warehouse and wants to steal as many matches as possible. In the warehouse there are *m* containers, in the *i*-th container there are *a**i* matchboxes, and each matchbox contains *b**i* matches. All the matchboxes are of the same size. The burglar's rucksack can hold *n* matchboxes exactly. Your task is to find out the maximum amount of matches that a burglar can carry away. He has no time to rearrange matches in the matchboxes, that's why he just chooses not more than *n* matchboxes so that the total amount of matches in them is maximal.
|
The first line of the input contains integer *n* (1<=β€<=*n*<=β€<=2Β·108) and integer *m* (1<=β€<=*m*<=β€<=20). The *i*<=+<=1-th line contains a pair of numbers *a**i* and *b**i* (1<=β€<=*a**i*<=β€<=108,<=1<=β€<=*b**i*<=β€<=10). All the input numbers are integer.
|
Output the only number β answer to the problem.
|
[
"7 3\n5 10\n2 5\n3 6\n",
"3 3\n1 3\n2 2\n3 1\n"
] |
[
"62\n",
"7\n"
] |
none
| 0
|
[
{
"input": "7 3\n5 10\n2 5\n3 6",
"output": "62"
},
{
"input": "3 3\n1 3\n2 2\n3 1",
"output": "7"
},
{
"input": "1 1\n1 2",
"output": "2"
},
{
"input": "1 2\n1 9\n1 6",
"output": "9"
},
{
"input": "1 10\n1 1\n1 9\n1 3\n1 9\n1 7\n1 10\n1 4\n1 7\n1 3\n1 1",
"output": "10"
},
{
"input": "2 1\n2 1",
"output": "2"
},
{
"input": "2 2\n2 4\n1 4",
"output": "8"
},
{
"input": "2 3\n1 7\n1 2\n1 5",
"output": "12"
},
{
"input": "4 1\n2 2",
"output": "4"
},
{
"input": "4 2\n1 10\n4 4",
"output": "22"
},
{
"input": "4 3\n1 4\n6 4\n1 7",
"output": "19"
},
{
"input": "5 1\n10 5",
"output": "25"
},
{
"input": "5 2\n3 9\n2 2",
"output": "31"
},
{
"input": "5 5\n2 9\n3 1\n2 1\n1 8\n2 8",
"output": "42"
},
{
"input": "5 10\n1 3\n1 2\n1 9\n1 10\n1 1\n1 5\n1 10\n1 2\n1 3\n1 7",
"output": "41"
},
{
"input": "10 1\n9 4",
"output": "36"
},
{
"input": "10 2\n14 3\n1 3",
"output": "30"
},
{
"input": "10 7\n4 8\n1 10\n1 10\n1 2\n3 3\n1 3\n1 10",
"output": "71"
},
{
"input": "10 10\n1 8\n2 10\n1 9\n1 1\n1 9\n1 6\n1 4\n2 5\n1 2\n1 4",
"output": "70"
},
{
"input": "10 4\n1 5\n5 2\n1 9\n3 3",
"output": "33"
},
{
"input": "100 5\n78 6\n29 10\n3 6\n7 3\n2 4",
"output": "716"
},
{
"input": "1000 7\n102 10\n23 6\n79 4\n48 1\n34 10\n839 8\n38 4",
"output": "8218"
},
{
"input": "10000 10\n336 2\n2782 5\n430 10\n1893 7\n3989 10\n2593 8\n165 6\n1029 2\n2097 4\n178 10",
"output": "84715"
},
{
"input": "100000 3\n2975 2\n35046 4\n61979 9",
"output": "703945"
},
{
"input": "1000000 4\n314183 9\n304213 4\n16864 5\n641358 9",
"output": "8794569"
},
{
"input": "10000000 10\n360313 10\n416076 1\n435445 9\n940322 7\n1647581 7\n4356968 10\n3589256 2\n2967933 5\n2747504 7\n1151633 3",
"output": "85022733"
},
{
"input": "100000000 7\n32844337 7\n11210848 7\n47655987 1\n33900472 4\n9174763 2\n32228738 10\n29947408 5",
"output": "749254060"
},
{
"input": "200000000 10\n27953106 7\n43325979 4\n4709522 1\n10975786 4\n67786538 8\n48901838 7\n15606185 6\n2747583 1\n100000000 1\n633331 3",
"output": "1332923354"
},
{
"input": "200000000 9\n17463897 9\n79520463 1\n162407 4\n41017993 8\n71054118 4\n9447587 2\n5298038 9\n3674560 7\n20539314 5",
"output": "996523209"
},
{
"input": "200000000 8\n6312706 6\n2920548 2\n16843192 3\n1501141 2\n13394704 6\n10047725 10\n4547663 6\n54268518 6",
"output": "630991750"
},
{
"input": "200000000 7\n25621043 2\n21865270 1\n28833034 1\n22185073 5\n100000000 2\n13891017 9\n61298710 8",
"output": "931584598"
},
{
"input": "200000000 6\n7465600 6\n8453505 10\n4572014 8\n8899499 3\n86805622 10\n64439238 6",
"output": "1447294907"
},
{
"input": "200000000 5\n44608415 6\n100000000 9\n51483223 9\n44136047 1\n52718517 1",
"output": "1634907859"
},
{
"input": "200000000 4\n37758556 10\n100000000 6\n48268521 3\n20148178 10",
"output": "1305347138"
},
{
"input": "200000000 3\n65170000 7\n20790088 1\n74616133 4",
"output": "775444620"
},
{
"input": "200000000 2\n11823018 6\n100000000 9",
"output": "970938108"
},
{
"input": "200000000 1\n100000000 6",
"output": "600000000"
},
{
"input": "200000000 10\n12097724 9\n41745972 5\n26982098 9\n14916995 7\n21549986 7\n3786630 9\n8050858 7\n27994924 4\n18345001 5\n8435339 5",
"output": "1152034197"
},
{
"input": "200000000 10\n55649 8\n10980981 9\n3192542 8\n94994808 4\n3626106 1\n100000000 6\n5260110 9\n4121453 2\n15125061 4\n669569 6",
"output": "1095537357"
},
{
"input": "10 20\n1 7\n1 7\n1 8\n1 3\n1 10\n1 7\n1 7\n1 9\n1 3\n1 1\n1 2\n1 1\n1 3\n1 10\n1 9\n1 8\n1 8\n1 6\n1 7\n1 5",
"output": "83"
},
{
"input": "10000000 20\n4594 7\n520836 8\n294766 6\n298672 4\n142253 6\n450626 1\n1920034 9\n58282 4\n1043204 1\n683045 1\n1491746 5\n58420 4\n451217 2\n129423 4\n246113 5\n190612 8\n912923 6\n473153 6\n783733 6\n282411 10",
"output": "54980855"
},
{
"input": "200000000 20\n15450824 5\n839717 10\n260084 8\n1140850 8\n28744 6\n675318 3\n25161 2\n5487 3\n6537698 9\n100000000 5\n7646970 9\n16489 6\n24627 3\n1009409 5\n22455 1\n25488456 4\n484528 9\n32663641 3\n750968 4\n5152 6",
"output": "939368573"
},
{
"input": "200000000 20\n16896 2\n113 3\n277 2\n299 7\n69383562 2\n3929 8\n499366 4\n771846 5\n9 4\n1278173 7\n90 2\n54 7\n72199858 10\n17214 5\n3 10\n1981618 3\n3728 2\n141 8\n2013578 9\n51829246 5",
"output": "1158946383"
},
{
"input": "200000000 20\n983125 2\n7453215 9\n9193588 2\n11558049 7\n28666199 1\n34362244 1\n5241493 5\n15451270 4\n19945845 8\n6208681 3\n38300385 7\n6441209 8\n21046742 7\n577198 10\n3826434 8\n9764276 8\n6264675 7\n8567063 3\n3610303 4\n2908232 3",
"output": "1131379312"
},
{
"input": "10 15\n1 6\n2 6\n3 4\n1 3\n1 2\n1 5\n1 6\n1 2\n2 9\n1 10\n1 3\n1 7\n1 8\n1 2\n2 9",
"output": "79"
},
{
"input": "10000000 15\n111 5\n914124 3\n3 9\n177790 1\n2352 3\n32138 9\n104477 1\n1223 4\n18 6\n6655580 4\n57643 10\n94309 2\n37 1\n227002 10\n1733193 7",
"output": "45116295"
},
{
"input": "200000000 15\n7069868 1\n5567826 8\n2310059 10\n13539782 7\n38420939 4\n29911411 8\n52256316 1\n12265839 9\n2074265 1\n24896428 9\n72470695 5\n3236301 1\n3890243 2\n65168965 8\n65724 6",
"output": "1489289257"
},
{
"input": "200000000 15\n12044094 7\n2475138 10\n944451 7\n4854766 2\n3809145 10\n7727571 2\n43908937 6\n2745883 1\n427511 2\n100000000 5\n190914 6\n554889 3\n288798 4\n1848572 5\n893874 3",
"output": "961871671"
},
{
"input": "200000000 15\n6334191 7\n1927941 4\n5175933 10\n468389 1\n433043 10\n6863198 5\n7480646 4\n14774279 10\n2921129 8\n18325627 7\n6973152 9\n8277324 9\n21522856 2\n2058070 1\n2444742 4",
"output": "664376069"
}
] | 1,638,064,216
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 49
| 124
| 512,000
|
m,n = map(int,input().split())
num = []
for i in range(n):
num1 = list(map(int,input().split()))
num.append(num1)
d = 0
k = 0
while m > 0:
max = 0
x = 0
y = 0
for j in range(len(num)):
if num[j][1] >max:
max = num[j][1]
y = num[j][0]
x = j
k = k + 1
if max == 0:
break
if m > y:
m = m - y
d = d + y * num[x][1]
num[x][1] = 0
elif m == y:
m = m - y
d = d + y * num[x][1]
num[x][1] = 0
break
else:
d = d + m * num[x][1]
m = 0
break
print(d)
|
Title: Burglar and Matches
Time Limit: 0 seconds
Memory Limit: 64 megabytes
Problem Description:
A burglar got into a matches warehouse and wants to steal as many matches as possible. In the warehouse there are *m* containers, in the *i*-th container there are *a**i* matchboxes, and each matchbox contains *b**i* matches. All the matchboxes are of the same size. The burglar's rucksack can hold *n* matchboxes exactly. Your task is to find out the maximum amount of matches that a burglar can carry away. He has no time to rearrange matches in the matchboxes, that's why he just chooses not more than *n* matchboxes so that the total amount of matches in them is maximal.
Input Specification:
The first line of the input contains integer *n* (1<=β€<=*n*<=β€<=2Β·108) and integer *m* (1<=β€<=*m*<=β€<=20). The *i*<=+<=1-th line contains a pair of numbers *a**i* and *b**i* (1<=β€<=*a**i*<=β€<=108,<=1<=β€<=*b**i*<=β€<=10). All the input numbers are integer.
Output Specification:
Output the only number β answer to the problem.
Demo Input:
['7 3\n5 10\n2 5\n3 6\n', '3 3\n1 3\n2 2\n3 1\n']
Demo Output:
['62\n', '7\n']
Note:
none
|
```python
m,n = map(int,input().split())
num = []
for i in range(n):
num1 = list(map(int,input().split()))
num.append(num1)
d = 0
k = 0
while m > 0:
max = 0
x = 0
y = 0
for j in range(len(num)):
if num[j][1] >max:
max = num[j][1]
y = num[j][0]
x = j
k = k + 1
if max == 0:
break
if m > y:
m = m - y
d = d + y * num[x][1]
num[x][1] = 0
elif m == y:
m = m - y
d = d + y * num[x][1]
num[x][1] = 0
break
else:
d = d + m * num[x][1]
m = 0
break
print(d)
```
| 3
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.