contestId
int64 0
1.01k
| index
stringclasses 40
values | name
stringlengths 2
54
| type
stringclasses 2
values | rating
int64 0
3.4k
| tags
listlengths 0
7
| title
stringclasses 393
values | time-limit
stringclasses 7
values | memory-limit
stringclasses 6
values | problem-description
stringlengths 0
2.97k
| input-specification
stringlengths 4
1.87k
| output-specification
stringlengths 4
1.12k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
3.5k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 1
value | testset
stringclasses 9
values | passedTestCount
int64 1
402
| timeConsumedMillis
int64 15
8.06k
| memoryConsumedBytes
int64 0
514M
| code
stringlengths 11
61.4k
| prompt
stringlengths 297
7.35k
| response
stringlengths 25
61.4k
| score
float64 2.82
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
215
|
A
|
Bicycle Chain
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
Vasya's bicycle chain drive consists of two parts: *n* stars are attached to the pedal axle, *m* stars are attached to the rear wheel axle. The chain helps to rotate the rear wheel by transmitting the pedal rotation.
We know that the *i*-th star on the pedal axle has *a**i* (0<=<<=*a*1<=<<=*a*2<=<<=...<=<<=*a**n*) teeth, and the *j*-th star on the rear wheel axle has *b**j* (0<=<<=*b*1<=<<=*b*2<=<<=...<=<<=*b**m*) teeth. Any pair (*i*,<=*j*) (1<=β€<=*i*<=β€<=*n*;Β 1<=β€<=*j*<=β€<=*m*) is called a gear and sets the indexes of stars to which the chain is currently attached. Gear (*i*,<=*j*) has a gear ratio, equal to the value .
Since Vasya likes integers, he wants to find such gears (*i*,<=*j*), that their ratios are integers. On the other hand, Vasya likes fast driving, so among all "integer" gears (*i*,<=*j*) he wants to choose a gear with the maximum ratio. Help him to find the number of such gears.
In the problem, fraction denotes division in real numbers, that is, no rounding is performed.
|
The first input line contains integer *n* (1<=β€<=*n*<=β€<=50) β the number of stars on the bicycle's pedal axle. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=104) in the order of strict increasing.
The third input line contains integer *m* (1<=β€<=*m*<=β€<=50) β the number of stars on the rear wheel axle. The fourth line contains *m* integers *b*1,<=*b*2,<=...,<=*b**m* (1<=β€<=*b**i*<=β€<=104) in the order of strict increasing.
It is guaranteed that there exists at least one gear (*i*,<=*j*), that its gear ratio is an integer. The numbers on the lines are separated by spaces.
|
Print the number of "integer" gears with the maximum ratio among all "integer" gears.
|
[
"2\n4 5\n3\n12 13 15\n",
"4\n1 2 3 4\n5\n10 11 12 13 14\n"
] |
[
"2\n",
"1\n"
] |
In the first sample the maximum "integer" gear ratio equals 3. There are two gears that have such gear ratio. For one of them *a*<sub class="lower-index">1</sub>β=β4,β*b*<sub class="lower-index">1</sub>β=β12, and for the other *a*<sub class="lower-index">2</sub>β=β5,β*b*<sub class="lower-index">3</sub>β=β15.
| 500
|
[
{
"input": "2\n4 5\n3\n12 13 15",
"output": "2"
},
{
"input": "4\n1 2 3 4\n5\n10 11 12 13 14",
"output": "1"
},
{
"input": "1\n1\n1\n1",
"output": "1"
},
{
"input": "2\n1 2\n1\n1",
"output": "1"
},
{
"input": "1\n1\n2\n1 2",
"output": "1"
},
{
"input": "4\n3 7 11 13\n4\n51 119 187 221",
"output": "4"
},
{
"input": "4\n2 3 4 5\n3\n1 2 3",
"output": "2"
},
{
"input": "10\n6 12 13 20 48 53 74 92 96 97\n10\n1 21 32 36 47 54 69 75 95 97",
"output": "1"
},
{
"input": "10\n5 9 10 14 15 17 19 22 24 26\n10\n2 11 17 19 21 22 24 25 27 28",
"output": "1"
},
{
"input": "10\n24 53 56 126 354 432 442 740 795 856\n10\n273 438 494 619 689 711 894 947 954 958",
"output": "1"
},
{
"input": "10\n3 4 6 7 8 10 14 16 19 20\n10\n3 4 5 7 8 10 15 16 18 20",
"output": "1"
},
{
"input": "10\n1 6 8 14 15 17 25 27 34 39\n10\n1 8 16 17 19 22 32 39 44 50",
"output": "1"
},
{
"input": "10\n5 21 22 23 25 32 35 36 38 39\n10\n3 7 8 9 18 21 23 24 36 38",
"output": "4"
},
{
"input": "50\n5 8 13 16 19 20 21 22 24 27 28 29 30 32 33 34 35 43 45 48 50 51 54 55 58 59 60 61 62 65 70 71 72 76 78 79 80 81 83 84 85 87 89 91 92 94 97 98 99 100\n50\n2 3 5 6 7 10 15 16 17 20 23 28 29 30 31 34 36 37 40 42 45 46 48 54 55 56 58 59 61 62 69 70 71 72 75 76 78 82 84 85 86 87 88 89 90 91 92 97 99 100",
"output": "1"
},
{
"input": "50\n3 5 6 8 9 11 13 19 21 23 24 32 34 35 42 50 51 52 56 58 59 69 70 72 73 75 76 77 78 80 83 88 90 95 96 100 101 102 108 109 113 119 124 135 138 141 142 143 145 150\n50\n5 8 10 11 18 19 23 30 35 43 51 53 55 58 63 68 69 71 77 78 79 82 83 86 88 89 91 92 93 94 96 102 103 105 109 110 113 114 116 123 124 126 127 132 133 135 136 137 142 149",
"output": "1"
},
{
"input": "50\n6 16 24 25 27 33 36 40 51 60 62 65 71 72 75 77 85 87 91 93 98 102 103 106 117 118 120 121 122 123 125 131 134 136 143 148 155 157 160 161 164 166 170 178 184 187 188 192 194 197\n50\n5 9 17 23 27 34 40 44 47 59 62 70 81 82 87 88 89 90 98 101 102 110 113 114 115 116 119 122 124 128 130 137 138 140 144 150 152 155 159 164 166 169 171 175 185 186 187 189 190 193",
"output": "1"
},
{
"input": "50\n14 22 23 31 32 35 48 63 76 79 88 97 101 102 103 104 106 113 114 115 116 126 136 138 145 152 155 156 162 170 172 173 179 180 182 203 208 210 212 222 226 229 231 232 235 237 245 246 247 248\n50\n2 5 6 16 28 44 45 46 54 55 56 63 72 80 87 93 94 96 97 100 101 103 132 135 140 160 164 165 167 168 173 180 182 185 186 192 194 198 199 202 203 211 213 216 217 227 232 233 236 245",
"output": "1"
},
{
"input": "50\n14 19 33 35 38 41 51 54 69 70 71 73 76 80 84 94 102 104 105 106 107 113 121 128 131 168 180 181 187 191 195 201 205 207 210 216 220 238 249 251 263 271 272 275 281 283 285 286 291 294\n50\n2 3 5 20 21 35 38 40 43 48 49 52 55 64 73 77 82 97 109 113 119 121 125 132 137 139 145 146 149 180 182 197 203 229 234 241 244 251 264 271 274 281 284 285 287 291 292 293 294 298",
"output": "1"
},
{
"input": "50\n2 4 5 16 18 19 22 23 25 26 34 44 48 54 67 79 80 84 92 110 116 133 138 154 163 171 174 202 205 218 228 229 234 245 247 249 250 263 270 272 274 275 277 283 289 310 312 334 339 342\n50\n1 5 17 18 25 37 46 47 48 59 67 75 80 83 84 107 115 122 137 141 159 162 175 180 184 204 221 224 240 243 247 248 249 258 259 260 264 266 269 271 274 293 294 306 329 330 334 335 342 350",
"output": "1"
},
{
"input": "50\n6 9 11 21 28 39 42 56 60 63 81 88 91 95 105 110 117 125 149 165 174 176 185 189 193 196 205 231 233 268 278 279 281 286 289 292 298 303 305 306 334 342 350 353 361 371 372 375 376 378\n50\n6 17 20 43 45 52 58 59 82 83 88 102 111 118 121 131 145 173 190 191 200 216 224 225 232 235 243 256 260 271 290 291 321 322 323 329 331 333 334 341 343 348 351 354 356 360 366 379 387 388",
"output": "1"
},
{
"input": "10\n17 239 443 467 661 1069 1823 2333 3767 4201\n20\n51 83 97 457 593 717 997 1329 1401 1459 1471 1983 2371 2539 3207 3251 3329 5469 6637 6999",
"output": "8"
},
{
"input": "20\n179 359 401 467 521 601 919 941 1103 1279 1709 1913 1949 2003 2099 2143 2179 2213 2399 4673\n20\n151 181 191 251 421 967 1109 1181 1249 1447 1471 1553 1619 2327 2551 2791 3049 3727 6071 7813",
"output": "3"
},
{
"input": "20\n79 113 151 709 809 983 1291 1399 1409 1429 2377 2659 2671 2897 3217 3511 3557 3797 3823 4363\n10\n19 101 659 797 1027 1963 2129 2971 3299 9217",
"output": "3"
},
{
"input": "30\n19 47 109 179 307 331 389 401 461 509 547 569 617 853 883 1249 1361 1381 1511 1723 1741 1783 2459 2531 2621 3533 3821 4091 5557 6217\n20\n401 443 563 941 967 997 1535 1567 1655 1747 1787 1945 1999 2251 2305 2543 2735 4415 6245 7555",
"output": "8"
},
{
"input": "30\n3 43 97 179 257 313 353 359 367 389 397 457 547 599 601 647 1013 1021 1063 1433 1481 1531 1669 3181 3373 3559 3769 4157 4549 5197\n50\n13 15 17 19 29 79 113 193 197 199 215 223 271 293 359 485 487 569 601 683 895 919 941 967 1283 1285 1289 1549 1565 1765 1795 1835 1907 1931 1945 1985 1993 2285 2731 2735 2995 3257 4049 4139 5105 5315 7165 7405 7655 8345",
"output": "20"
},
{
"input": "50\n11 17 23 53 59 109 137 149 173 251 353 379 419 421 439 503 593 607 661 773 821 877 941 997 1061 1117 1153 1229 1289 1297 1321 1609 1747 2311 2389 2543 2693 3041 3083 3137 3181 3209 3331 3373 3617 3767 4201 4409 4931 6379\n50\n55 59 67 73 85 89 101 115 211 263 295 353 545 599 607 685 739 745 997 1031 1255 1493 1523 1667 1709 1895 1949 2161 2195 2965 3019 3035 3305 3361 3373 3673 3739 3865 3881 4231 4253 4385 4985 5305 5585 5765 6145 6445 8045 8735",
"output": "23"
},
{
"input": "5\n33 78 146 3055 4268\n5\n2211 2584 5226 9402 9782",
"output": "3"
},
{
"input": "5\n35 48 52 86 8001\n10\n332 3430 3554 4704 4860 5096 6215 7583 8228 8428",
"output": "4"
},
{
"input": "10\n97 184 207 228 269 2084 4450 6396 7214 9457\n16\n338 1179 1284 1545 1570 2444 3167 3395 3397 5550 6440 7245 7804 7980 9415 9959",
"output": "5"
},
{
"input": "30\n25 30 41 57 58 62 70 72 76 79 84 85 88 91 98 101 104 109 119 129 136 139 148 151 926 1372 3093 3936 5423 7350\n25\n1600 1920 2624 3648 3712 3968 4480 4608 4864 5056 5376 5440 5632 5824 6272 6464 6656 6934 6976 7616 8256 8704 8896 9472 9664",
"output": "24"
},
{
"input": "5\n33 78 146 3055 4268\n5\n2211 2584 5226 9402 9782",
"output": "3"
},
{
"input": "5\n35 48 52 86 8001\n10\n332 3430 3554 4704 4860 5096 6215 7583 8228 8428",
"output": "4"
},
{
"input": "10\n97 184 207 228 269 2084 4450 6396 7214 9457\n16\n338 1179 1284 1545 1570 2444 3167 3395 3397 5550 6440 7245 7804 7980 9415 9959",
"output": "5"
},
{
"input": "30\n25 30 41 57 58 62 70 72 76 79 84 85 88 91 98 101 104 109 119 129 136 139 148 151 926 1372 3093 3936 5423 7350\n25\n1600 1920 2624 3648 3712 3968 4480 4608 4864 5056 5376 5440 5632 5824 6272 6464 6656 6934 6976 7616 8256 8704 8896 9472 9664",
"output": "24"
},
{
"input": "47\n66 262 357 457 513 530 538 540 592 691 707 979 1015 1242 1246 1667 1823 1886 1963 2133 2649 2679 2916 2949 3413 3523 3699 3958 4393 4922 5233 5306 5799 6036 6302 6629 7208 7282 7315 7822 7833 7927 8068 8150 8870 8962 9987\n39\n167 199 360 528 1515 1643 1986 1988 2154 2397 2856 3552 3656 3784 3980 4096 4104 4240 4320 4736 4951 5266 5656 5849 5850 6169 6517 6875 7244 7339 7689 7832 8120 8716 9503 9509 9933 9936 9968",
"output": "12"
},
{
"input": "1\n94\n50\n423 446 485 1214 1468 1507 1853 1930 1999 2258 2271 2285 2425 2543 2715 2743 2992 3196 4074 4108 4448 4475 4652 5057 5250 5312 5356 5375 5731 5986 6298 6501 6521 7146 7255 7276 7332 7481 7998 8141 8413 8665 8908 9221 9336 9491 9504 9677 9693 9706",
"output": "1"
},
{
"input": "50\n51 67 75 186 194 355 512 561 720 876 1077 1221 1503 1820 2153 2385 2568 2608 2937 2969 3271 3311 3481 4081 4093 4171 4255 4256 4829 5020 5192 5636 5817 6156 6712 6717 7153 7436 7608 7612 7866 7988 8264 8293 8867 9311 9879 9882 9889 9908\n1\n5394",
"output": "1"
},
{
"input": "50\n26 367 495 585 675 789 855 1185 1312 1606 2037 2241 2587 2612 2628 2807 2873 2924 3774 4067 4376 4668 4902 5001 5082 5100 5104 5209 5345 5515 5661 5777 5902 5907 6155 6323 6675 6791 7503 8159 8207 8254 8740 8848 8855 8933 9069 9164 9171 9586\n5\n1557 6246 7545 8074 8284",
"output": "1"
},
{
"input": "5\n25 58 91 110 2658\n50\n21 372 909 1172 1517 1554 1797 1802 1843 1977 2006 2025 2137 2225 2317 2507 2645 2754 2919 3024 3202 3212 3267 3852 4374 4487 4553 4668 4883 4911 4916 5016 5021 5068 5104 5162 5683 5856 6374 6871 7333 7531 8099 8135 8173 8215 8462 8776 9433 9790",
"output": "4"
},
{
"input": "45\n37 48 56 59 69 70 79 83 85 86 99 114 131 134 135 145 156 250 1739 1947 2116 2315 2449 3104 3666 4008 4406 4723 4829 5345 5836 6262 6296 6870 7065 7110 7130 7510 7595 8092 8442 8574 9032 9091 9355\n50\n343 846 893 1110 1651 1837 2162 2331 2596 3012 3024 3131 3294 3394 3528 3717 3997 4125 4347 4410 4581 4977 5030 5070 5119 5229 5355 5413 5418 5474 5763 5940 6151 6161 6164 6237 6506 6519 6783 7182 7413 7534 8069 8253 8442 8505 9135 9308 9828 9902",
"output": "17"
},
{
"input": "50\n17 20 22 28 36 38 46 47 48 50 52 57 58 62 63 69 70 74 75 78 79 81 82 86 87 90 93 95 103 202 292 442 1756 1769 2208 2311 2799 2957 3483 4280 4324 4932 5109 5204 6225 6354 6561 7136 8754 9670\n40\n68 214 957 1649 1940 2078 2134 2716 3492 3686 4462 4559 4656 4756 4850 5044 5490 5529 5592 5626 6014 6111 6693 6790 7178 7275 7566 7663 7702 7857 7954 8342 8511 8730 8957 9021 9215 9377 9445 9991",
"output": "28"
},
{
"input": "39\n10 13 21 25 36 38 47 48 58 64 68 69 73 79 86 972 2012 2215 2267 2503 3717 3945 4197 4800 5266 6169 6612 6824 7023 7322 7582 7766 8381 8626 8879 9079 9088 9838 9968\n50\n432 877 970 1152 1202 1223 1261 1435 1454 1578 1843 1907 2003 2037 2183 2195 2215 2425 3065 3492 3615 3637 3686 3946 4189 4415 4559 4656 4665 4707 4886 4887 5626 5703 5955 6208 6521 6581 6596 6693 6985 7013 7081 7343 7663 8332 8342 8637 9207 9862",
"output": "15"
},
{
"input": "50\n7 144 269 339 395 505 625 688 709 950 1102 1152 1350 1381 1641 1830 1977 1999 2093 2180 2718 3308 3574 4168 4232 4259 4393 4689 4982 5154 5476 5581 5635 5721 6159 6302 6741 7010 7152 7315 7417 7482 8116 8239 8640 9347 9395 9614 9661 9822\n20\n84 162 292 1728 1866 2088 3228 3470 4068 5318 5470 6060 6380 6929 7500 8256 8399 8467 8508 9691",
"output": "8"
},
{
"input": "50\n159 880 1070 1139 1358 1608 1691 1841 2073 2171 2213 2597 2692 2759 2879 2931 3173 3217 3441 4201 4878 5106 5129 5253 5395 5647 5968 6019 6130 6276 6286 6330 6409 6728 7488 7713 7765 7828 7899 8064 8264 8457 8483 8685 8900 8946 8965 9133 9187 9638\n45\n57 159 1070 1139 1391 1608 1691 1841 2171 2213 2692 2759 2931 3173 3217 3441 4201 4878 5106 5129 5253 5647 5968 6130 6276 6286 6409 7488 7694 7713 7765 7828 7899 8003 8064 8081 8244 8264 8685 8900 8946 8965 9133 9638 9673",
"output": "38"
},
{
"input": "3\n3 4 5\n3\n6 20 25",
"output": "2"
},
{
"input": "4\n2 3 5 8\n4\n2 6 8 10",
"output": "1"
},
{
"input": "4\n3 5 7 11\n4\n3 5 7 22",
"output": "1"
},
{
"input": "2\n2 3\n3\n20 30 50",
"output": "1"
},
{
"input": "3\n1 2 3\n4\n2 4 6 49",
"output": "1"
},
{
"input": "2\n4 5\n3\n12 15 20",
"output": "1"
},
{
"input": "3\n2 5 7\n3\n4 5 7",
"output": "1"
},
{
"input": "3\n3 5 8\n3\n6 8 10",
"output": "2"
},
{
"input": "2\n2 3\n4\n4 6 9 33",
"output": "1"
},
{
"input": "2\n2 3\n4\n4 6 21 40",
"output": "1"
},
{
"input": "3\n4 9 10\n3\n8 9 10",
"output": "1"
},
{
"input": "5\n1 5 6 9 51\n5\n5 12 18 27 10000",
"output": "1"
},
{
"input": "13\n1 2 3 4 5 6 7 8 9 10 11 12 13\n1\n14",
"output": "1"
}
] | 1,518,388,184
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 57
| 156
| 5,632,000
|
from sys import stdin
import math
def read(): return map(int, stdin.readline().split())
read()
a = list(read())
read()
b = list(read())
magic = [ x // y for x in b for y in a if x % y == 0 ]
print(magic.count ( max(magic) ) )
|
Title: Bicycle Chain
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya's bicycle chain drive consists of two parts: *n* stars are attached to the pedal axle, *m* stars are attached to the rear wheel axle. The chain helps to rotate the rear wheel by transmitting the pedal rotation.
We know that the *i*-th star on the pedal axle has *a**i* (0<=<<=*a*1<=<<=*a*2<=<<=...<=<<=*a**n*) teeth, and the *j*-th star on the rear wheel axle has *b**j* (0<=<<=*b*1<=<<=*b*2<=<<=...<=<<=*b**m*) teeth. Any pair (*i*,<=*j*) (1<=β€<=*i*<=β€<=*n*;Β 1<=β€<=*j*<=β€<=*m*) is called a gear and sets the indexes of stars to which the chain is currently attached. Gear (*i*,<=*j*) has a gear ratio, equal to the value .
Since Vasya likes integers, he wants to find such gears (*i*,<=*j*), that their ratios are integers. On the other hand, Vasya likes fast driving, so among all "integer" gears (*i*,<=*j*) he wants to choose a gear with the maximum ratio. Help him to find the number of such gears.
In the problem, fraction denotes division in real numbers, that is, no rounding is performed.
Input Specification:
The first input line contains integer *n* (1<=β€<=*n*<=β€<=50) β the number of stars on the bicycle's pedal axle. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=104) in the order of strict increasing.
The third input line contains integer *m* (1<=β€<=*m*<=β€<=50) β the number of stars on the rear wheel axle. The fourth line contains *m* integers *b*1,<=*b*2,<=...,<=*b**m* (1<=β€<=*b**i*<=β€<=104) in the order of strict increasing.
It is guaranteed that there exists at least one gear (*i*,<=*j*), that its gear ratio is an integer. The numbers on the lines are separated by spaces.
Output Specification:
Print the number of "integer" gears with the maximum ratio among all "integer" gears.
Demo Input:
['2\n4 5\n3\n12 13 15\n', '4\n1 2 3 4\n5\n10 11 12 13 14\n']
Demo Output:
['2\n', '1\n']
Note:
In the first sample the maximum "integer" gear ratio equals 3. There are two gears that have such gear ratio. For one of them *a*<sub class="lower-index">1</sub>β=β4,β*b*<sub class="lower-index">1</sub>β=β12, and for the other *a*<sub class="lower-index">2</sub>β=β5,β*b*<sub class="lower-index">3</sub>β=β15.
|
```python
from sys import stdin
import math
def read(): return map(int, stdin.readline().split())
read()
a = list(read())
read()
b = list(read())
magic = [ x // y for x in b for y in a if x % y == 0 ]
print(magic.count ( max(magic) ) )
```
| 3
|
|
118
|
A
|
String Task
|
PROGRAMMING
| 1,000
|
[
"implementation",
"strings"
] | null | null |
Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it:
- deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones.
Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string.
Help Petya cope with this easy task.
|
The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.
|
Print the resulting string. It is guaranteed that this string is not empty.
|
[
"tour\n",
"Codeforces\n",
"aBAcAba\n"
] |
[
".t.r\n",
".c.d.f.r.c.s\n",
".b.c.b\n"
] |
none
| 500
|
[
{
"input": "tour",
"output": ".t.r"
},
{
"input": "Codeforces",
"output": ".c.d.f.r.c.s"
},
{
"input": "aBAcAba",
"output": ".b.c.b"
},
{
"input": "obn",
"output": ".b.n"
},
{
"input": "wpwl",
"output": ".w.p.w.l"
},
{
"input": "ggdvq",
"output": ".g.g.d.v.q"
},
{
"input": "pumesz",
"output": ".p.m.s.z"
},
{
"input": "g",
"output": ".g"
},
{
"input": "zjuotps",
"output": ".z.j.t.p.s"
},
{
"input": "jzbwuehe",
"output": ".j.z.b.w.h"
},
{
"input": "tnkgwuugu",
"output": ".t.n.k.g.w.g"
},
{
"input": "kincenvizh",
"output": ".k.n.c.n.v.z.h"
},
{
"input": "xattxjenual",
"output": ".x.t.t.x.j.n.l"
},
{
"input": "ktajqhpqsvhw",
"output": ".k.t.j.q.h.p.q.s.v.h.w"
},
{
"input": "xnhcigytnqcmy",
"output": ".x.n.h.c.g.t.n.q.c.m"
},
{
"input": "jfmtbejyilxcec",
"output": ".j.f.m.t.b.j.l.x.c.c"
},
{
"input": "D",
"output": ".d"
},
{
"input": "ab",
"output": ".b"
},
{
"input": "Ab",
"output": ".b"
},
{
"input": "aB",
"output": ".b"
},
{
"input": "AB",
"output": ".b"
},
{
"input": "ba",
"output": ".b"
},
{
"input": "bA",
"output": ".b"
},
{
"input": "Ba",
"output": ".b"
},
{
"input": "BA",
"output": ".b"
},
{
"input": "aab",
"output": ".b"
},
{
"input": "baa",
"output": ".b"
},
{
"input": "femOZeCArKCpUiHYnbBPTIOFmsHmcpObtPYcLCdjFrUMIyqYzAokKUiiKZRouZiNMoiOuGVoQzaaCAOkquRjmmKKElLNqCnhGdQM",
"output": ".f.m.z.c.r.k.c.p.h.n.b.b.p.t.f.m.s.h.m.c.p.b.t.p.c.l.c.d.j.f.r.m.q.z.k.k.k.z.r.z.n.m.g.v.q.z.c.k.q.r.j.m.m.k.k.l.l.n.q.c.n.h.g.d.q.m"
},
{
"input": "VMBPMCmMDCLFELLIISUJDWQRXYRDGKMXJXJHXVZADRZWVWJRKFRRNSAWKKDPZZLFLNSGUNIVJFBEQsMDHSBJVDTOCSCgZWWKvZZN",
"output": ".v.m.b.p.m.c.m.m.d.c.l.f.l.l.s.j.d.w.q.r.x.r.d.g.k.m.x.j.x.j.h.x.v.z.d.r.z.w.v.w.j.r.k.f.r.r.n.s.w.k.k.d.p.z.z.l.f.l.n.s.g.n.v.j.f.b.q.s.m.d.h.s.b.j.v.d.t.c.s.c.g.z.w.w.k.v.z.z.n"
},
{
"input": "MCGFQQJNUKuAEXrLXibVjClSHjSxmlkQGTKZrRaDNDomIPOmtSgjJAjNVIVLeUGUAOHNkCBwNObVCHOWvNkLFQQbFnugYVMkJruJ",
"output": ".m.c.g.f.q.q.j.n.k.x.r.l.x.b.v.j.c.l.s.h.j.s.x.m.l.k.q.g.t.k.z.r.r.d.n.d.m.p.m.t.s.g.j.j.j.n.v.v.l.g.h.n.k.c.b.w.n.b.v.c.h.w.v.n.k.l.f.q.q.b.f.n.g.v.m.k.j.r.j"
},
{
"input": "iyaiuiwioOyzUaOtAeuEYcevvUyveuyioeeueoeiaoeiavizeeoeyYYaaAOuouueaUioueauayoiuuyiuovyOyiyoyioaoyuoyea",
"output": ".w.z.t.c.v.v.v.v.z.v"
},
{
"input": "yjnckpfyLtzwjsgpcrgCfpljnjwqzgVcufnOvhxplvflxJzqxnhrwgfJmPzifgubvspffmqrwbzivatlmdiBaddiaktdsfPwsevl",
"output": ".j.n.c.k.p.f.l.t.z.w.j.s.g.p.c.r.g.c.f.p.l.j.n.j.w.q.z.g.v.c.f.n.v.h.x.p.l.v.f.l.x.j.z.q.x.n.h.r.w.g.f.j.m.p.z.f.g.b.v.s.p.f.f.m.q.r.w.b.z.v.t.l.m.d.b.d.d.k.t.d.s.f.p.w.s.v.l"
},
{
"input": "RIIIUaAIYJOiuYIUWFPOOAIuaUEZeIooyUEUEAoIyIHYOEAlVAAIiLUAUAeiUIEiUMuuOiAgEUOIAoOUYYEYFEoOIIVeOOAOIIEg",
"output": ".r.j.w.f.p.z.h.l.v.l.m.g.f.v.g"
},
{
"input": "VBKQCFBMQHDMGNSGBQVJTGQCNHHRJMNKGKDPPSQRRVQTZNKBZGSXBPBRXPMVFTXCHZMSJVBRNFNTHBHGJLMDZJSVPZZBCCZNVLMQ",
"output": ".v.b.k.q.c.f.b.m.q.h.d.m.g.n.s.g.b.q.v.j.t.g.q.c.n.h.h.r.j.m.n.k.g.k.d.p.p.s.q.r.r.v.q.t.z.n.k.b.z.g.s.x.b.p.b.r.x.p.m.v.f.t.x.c.h.z.m.s.j.v.b.r.n.f.n.t.h.b.h.g.j.l.m.d.z.j.s.v.p.z.z.b.c.c.z.n.v.l.m.q"
},
{
"input": "iioyoaayeuyoolyiyoeuouiayiiuyTueyiaoiueyioiouyuauouayyiaeoeiiigmioiououeieeeyuyyaYyioiiooaiuouyoeoeg",
"output": ".l.t.g.m.g"
},
{
"input": "ueyiuiauuyyeueykeioouiiauzoyoeyeuyiaoaiiaaoaueyaeydaoauexuueafouiyioueeaaeyoeuaueiyiuiaeeayaioeouiuy",
"output": ".k.z.d.x.f"
},
{
"input": "FSNRBXLFQHZXGVMKLQDVHWLDSLKGKFMDRQWMWSSKPKKQBNDZRSCBLRSKCKKFFKRDMZFZGCNSMXNPMZVDLKXGNXGZQCLRTTDXLMXQ",
"output": ".f.s.n.r.b.x.l.f.q.h.z.x.g.v.m.k.l.q.d.v.h.w.l.d.s.l.k.g.k.f.m.d.r.q.w.m.w.s.s.k.p.k.k.q.b.n.d.z.r.s.c.b.l.r.s.k.c.k.k.f.f.k.r.d.m.z.f.z.g.c.n.s.m.x.n.p.m.z.v.d.l.k.x.g.n.x.g.z.q.c.l.r.t.t.d.x.l.m.x.q"
},
{
"input": "EYAYAYIOIOYOOAUOEUEUOUUYIYUUMOEOIIIAOIUOAAOIYOIOEUIERCEYYAOIOIGYUIAOYUEOEUAEAYPOYEYUUAUOAOEIYIEYUEEY",
"output": ".m.r.c.g.p"
},
{
"input": "jvvzcdcxjstbbksmqjsngxkgtttdxrljjxtwptgwwqzpvqchvgrkqlzxmptzblxhhsmrkmzzmgdfskhtmmnqzzflpmqdctvrfgtx",
"output": ".j.v.v.z.c.d.c.x.j.s.t.b.b.k.s.m.q.j.s.n.g.x.k.g.t.t.t.d.x.r.l.j.j.x.t.w.p.t.g.w.w.q.z.p.v.q.c.h.v.g.r.k.q.l.z.x.m.p.t.z.b.l.x.h.h.s.m.r.k.m.z.z.m.g.d.f.s.k.h.t.m.m.n.q.z.z.f.l.p.m.q.d.c.t.v.r.f.g.t.x"
},
{
"input": "YB",
"output": ".b"
},
{
"input": "fly",
"output": ".f.l"
},
{
"input": "YyyYYYyyYxdwdawdDAWDdaddYYYY",
"output": ".x.d.w.d.w.d.d.w.d.d.d.d"
}
] | 1,695,071,876
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 92
| 0
|
vowels = 'aoyeui'
ans = []
for i in input().lower():
if i not in vowels:
ans.append('.')
ans.append(i)
print(''.join(ans))
|
Title: String Task
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it:
- deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones.
Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string.
Help Petya cope with this easy task.
Input Specification:
The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.
Output Specification:
Print the resulting string. It is guaranteed that this string is not empty.
Demo Input:
['tour\n', 'Codeforces\n', 'aBAcAba\n']
Demo Output:
['.t.r\n', '.c.d.f.r.c.s\n', '.b.c.b\n']
Note:
none
|
```python
vowels = 'aoyeui'
ans = []
for i in input().lower():
if i not in vowels:
ans.append('.')
ans.append(i)
print(''.join(ans))
```
| 3
|
|
492
|
B
|
Vanya and Lanterns
|
PROGRAMMING
| 1,200
|
[
"binary search",
"implementation",
"math",
"sortings"
] | null | null |
Vanya walks late at night along a straight street of length *l*, lit by *n* lanterns. Consider the coordinate system with the beginning of the street corresponding to the point 0, and its end corresponding to the point *l*. Then the *i*-th lantern is at the point *a**i*. The lantern lights all points of the street that are at the distance of at most *d* from it, where *d* is some positive number, common for all lanterns.
Vanya wonders: what is the minimum light radius *d* should the lanterns have to light the whole street?
|
The first line contains two integers *n*, *l* (1<=β€<=*n*<=β€<=1000, 1<=β€<=*l*<=β€<=109)Β β the number of lanterns and the length of the street respectively.
The next line contains *n* integers *a**i* (0<=β€<=*a**i*<=β€<=*l*). Multiple lanterns can be located at the same point. The lanterns may be located at the ends of the street.
|
Print the minimum light radius *d*, needed to light the whole street. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=9.
|
[
"7 15\n15 5 3 7 9 14 0\n",
"2 5\n2 5\n"
] |
[
"2.5000000000\n",
"2.0000000000\n"
] |
Consider the second sample. At *d*β=β2 the first lantern will light the segment [0,β4] of the street, and the second lantern will light segment [3,β5]. Thus, the whole street will be lit.
| 1,000
|
[
{
"input": "7 15\n15 5 3 7 9 14 0",
"output": "2.5000000000"
},
{
"input": "2 5\n2 5",
"output": "2.0000000000"
},
{
"input": "46 615683844\n431749087 271781274 274974690 324606253 480870261 401650581 13285442 478090364 266585394 425024433 588791449 492057200 391293435 563090494 317950 173675329 473068378 356306865 311731938 192959832 321180686 141984626 578985584 512026637 175885185 590844074 47103801 212211134 330150 509886963 565955809 315640375 612907074 500474373 524310737 568681652 315339618 478782781 518873818 271322031 74600969 539099112 85129347 222068995 106014720 77282307",
"output": "22258199.5000000000"
},
{
"input": "2 1000000000\n0 1000000000",
"output": "500000000.0000000000"
},
{
"input": "2 555\n200 300",
"output": "255.0000000000"
},
{
"input": "1 1\n1",
"output": "1.0000000000"
},
{
"input": "1 1\n0",
"output": "1.0000000000"
},
{
"input": "1 1000000000\n0",
"output": "1000000000.0000000000"
},
{
"input": "1 1000000000\n1000000000",
"output": "1000000000.0000000000"
},
{
"input": "1 999999999\n499999999",
"output": "500000000.0000000000"
},
{
"input": "4 700\n0 250 475 700",
"output": "125.0000000000"
},
{
"input": "4 700\n0 225 450 700",
"output": "125.0000000000"
},
{
"input": "5 1000\n0 250 500 750 1000",
"output": "125.0000000000"
},
{
"input": "5 2000\n1001 1001 1001 1001 1001",
"output": "1001.0000000000"
},
{
"input": "1 999\n501",
"output": "501.0000000000"
},
{
"input": "2 1000\n400 600",
"output": "400.0000000000"
},
{
"input": "4 15\n1 3 9 11",
"output": "4.0000000000"
},
{
"input": "1 5\n2",
"output": "3.0000000000"
}
] | 1,692,058,465
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 46
| 0
|
a = [int(a) for a in input().split(" ")]
lanterns = a[0]
streetlen = a[1]
b = [int(a) for a in input().split(" ")]
b.sort()
diff = []
diff.append(b[0])
diff.append( streetlen - b[-1])
for trums in range(lanterns -1):
diff.append((b[trums+1] - b[trums])/2)
diff.sort()
print(diff[-1])
|
Title: Vanya and Lanterns
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vanya walks late at night along a straight street of length *l*, lit by *n* lanterns. Consider the coordinate system with the beginning of the street corresponding to the point 0, and its end corresponding to the point *l*. Then the *i*-th lantern is at the point *a**i*. The lantern lights all points of the street that are at the distance of at most *d* from it, where *d* is some positive number, common for all lanterns.
Vanya wonders: what is the minimum light radius *d* should the lanterns have to light the whole street?
Input Specification:
The first line contains two integers *n*, *l* (1<=β€<=*n*<=β€<=1000, 1<=β€<=*l*<=β€<=109)Β β the number of lanterns and the length of the street respectively.
The next line contains *n* integers *a**i* (0<=β€<=*a**i*<=β€<=*l*). Multiple lanterns can be located at the same point. The lanterns may be located at the ends of the street.
Output Specification:
Print the minimum light radius *d*, needed to light the whole street. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=9.
Demo Input:
['7 15\n15 5 3 7 9 14 0\n', '2 5\n2 5\n']
Demo Output:
['2.5000000000\n', '2.0000000000\n']
Note:
Consider the second sample. At *d*β=β2 the first lantern will light the segment [0,β4] of the street, and the second lantern will light segment [3,β5]. Thus, the whole street will be lit.
|
```python
a = [int(a) for a in input().split(" ")]
lanterns = a[0]
streetlen = a[1]
b = [int(a) for a in input().split(" ")]
b.sort()
diff = []
diff.append(b[0])
diff.append( streetlen - b[-1])
for trums in range(lanterns -1):
diff.append((b[trums+1] - b[trums])/2)
diff.sort()
print(diff[-1])
```
| 3
|
|
71
|
A
|
Way Too Long Words
|
PROGRAMMING
| 800
|
[
"strings"
] |
A. Way Too Long Words
|
1
|
256
|
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalizationΒ» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
|
The first line contains an integer *n* (1<=β€<=*n*<=β€<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
|
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
|
[
"4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n"
] |
[
"word\nl10n\ni18n\np43s\n"
] |
none
| 500
|
[
{
"input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis",
"output": "word\nl10n\ni18n\np43s"
},
{
"input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm",
"output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m"
},
{
"input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd",
"output": "n20n\nj27b\nk15d"
},
{
"input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt",
"output": "t41t"
},
{
"input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings",
"output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings"
},
{
"input": "1\na",
"output": "a"
},
{
"input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz",
"output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz"
},
{
"input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij",
"output": "a98j"
},
{
"input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco",
"output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco"
},
{
"input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt",
"output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t"
},
{
"input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr",
"output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr"
}
] | 1,689,861,844
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 31
| 0
|
number_of_lines = int(input())
words = []
fixed_words = []
for x in range(number_of_lines):
words.append(input("\n"))
for w in words:
if len(w) > 10:
fixed_words.append(f"{w[0]}{(len(w) - 2)}{w[-1]}")
else:
fixed_words.append(w)
for x in fixed_words:
print(f"{x}")
|
Title: Way Too Long Words
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalizationΒ» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
Input Specification:
The first line contains an integer *n* (1<=β€<=*n*<=β€<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Output Specification:
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
Demo Input:
['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n']
Demo Output:
['word\nl10n\ni18n\np43s\n']
Note:
none
|
```python
number_of_lines = int(input())
words = []
fixed_words = []
for x in range(number_of_lines):
words.append(input("\n"))
for w in words:
if len(w) > 10:
fixed_words.append(f"{w[0]}{(len(w) - 2)}{w[-1]}")
else:
fixed_words.append(w)
for x in fixed_words:
print(f"{x}")
```
| 3.9845
|
427
|
A
|
Police Recruits
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
The police department of your city has just started its journey. Initially, they donβt have any manpower. So, they started hiring new recruits in groups.
Meanwhile, crimes keeps occurring within the city. One member of the police force can investigate only one crime during his/her lifetime.
If there is no police officer free (isn't busy with crime) during the occurrence of a crime, it will go untreated.
Given the chronological order of crime occurrences and recruit hirings, find the number of crimes which will go untreated.
|
The first line of input will contain an integer *n*Β (1<=β€<=*n*<=β€<=105), the number of events. The next line will contain *n* space-separated integers.
If the integer is -1 then it means a crime has occurred. Otherwise, the integer will be positive, the number of officers recruited together at that time. No more than 10 officers will be recruited at a time.
|
Print a single integer, the number of crimes which will go untreated.
|
[
"3\n-1 -1 1\n",
"8\n1 -1 1 -1 -1 1 1 1\n",
"11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1\n"
] |
[
"2\n",
"1\n",
"8\n"
] |
Lets consider the second example:
1. Firstly one person is hired. 1. Then crime appears, the last hired person will investigate this crime. 1. One more person is hired. 1. One more crime appears, the last hired person will investigate this crime. 1. Crime appears. There is no free policeman at the time, so this crime will go untreated. 1. One more person is hired. 1. One more person is hired. 1. One more person is hired.
The answer is one, as one crime (on step 5) will go untreated.
| 500
|
[
{
"input": "3\n-1 -1 1",
"output": "2"
},
{
"input": "8\n1 -1 1 -1 -1 1 1 1",
"output": "1"
},
{
"input": "11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1",
"output": "8"
},
{
"input": "7\n-1 -1 1 1 -1 -1 1",
"output": "2"
},
{
"input": "21\n-1 -1 -1 -1 -1 3 2 -1 6 -1 -1 2 1 -1 2 2 1 6 5 -1 5",
"output": "5"
},
{
"input": "98\n-1 -1 1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 1 1 1 1 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 1 1",
"output": "13"
},
{
"input": "3\n-1 5 4",
"output": "1"
},
{
"input": "146\n4 -1 -1 -1 -1 -1 -1 -1 -1 -1 4 -1 3 -1 3 -1 -1 1 4 -1 2 -1 -1 3 -1 -1 -1 4 1 -1 -1 -1 4 -1 -1 -1 -1 -1 -1 3 2 -1 3 2 4 5 2 4 1 5 -1 -1 2 -1 -1 1 -1 5 3 -1 1 2 2 3 5 3 -1 -1 3 -1 -1 3 5 5 -1 -1 5 -1 4 4 1 -1 -1 -1 2 1 -1 -1 -1 2 5 3 -1 -1 -1 3 -1 5 4 -1 1 -1 -1 3 -1 -1 3 1 1 2 -1 -1 -1 1 3 1 -1 2 -1 -1 5 5 -1 -1 3 4 5 1 -1 2 -1 -1 -1 3 -1 5 3 2 -1 2 -1 -1 5 -1 3 -1",
"output": "5"
},
{
"input": "1\n2",
"output": "0"
},
{
"input": "1\n-1",
"output": "1"
},
{
"input": "2\n1 -1",
"output": "0"
},
{
"input": "2\n-1 1",
"output": "1"
},
{
"input": "2\n1 1",
"output": "0"
},
{
"input": "2\n-1 -1",
"output": "2"
},
{
"input": "4\n10 -1 -1 -1",
"output": "0"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "4\n-1 -1 1 1",
"output": "2"
}
] | 1,687,441,282
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 63
| 62
| 9,932,800
|
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 22 15:31:20 2023
@author: RadmediX
"""
import sys
inp=[]
for line in sys.stdin:
inp += [int(x) for x in line.strip().split()]
n = inp[0]
freePolice = 0
untreated = 0
for i in inp[1:]:
if i > 0:
freePolice += i
else:
if freePolice:
freePolice-=1
else:
untreated+=1
print(untreated)
|
Title: Police Recruits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The police department of your city has just started its journey. Initially, they donβt have any manpower. So, they started hiring new recruits in groups.
Meanwhile, crimes keeps occurring within the city. One member of the police force can investigate only one crime during his/her lifetime.
If there is no police officer free (isn't busy with crime) during the occurrence of a crime, it will go untreated.
Given the chronological order of crime occurrences and recruit hirings, find the number of crimes which will go untreated.
Input Specification:
The first line of input will contain an integer *n*Β (1<=β€<=*n*<=β€<=105), the number of events. The next line will contain *n* space-separated integers.
If the integer is -1 then it means a crime has occurred. Otherwise, the integer will be positive, the number of officers recruited together at that time. No more than 10 officers will be recruited at a time.
Output Specification:
Print a single integer, the number of crimes which will go untreated.
Demo Input:
['3\n-1 -1 1\n', '8\n1 -1 1 -1 -1 1 1 1\n', '11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1\n']
Demo Output:
['2\n', '1\n', '8\n']
Note:
Lets consider the second example:
1. Firstly one person is hired. 1. Then crime appears, the last hired person will investigate this crime. 1. One more person is hired. 1. One more crime appears, the last hired person will investigate this crime. 1. Crime appears. There is no free policeman at the time, so this crime will go untreated. 1. One more person is hired. 1. One more person is hired. 1. One more person is hired.
The answer is one, as one crime (on step 5) will go untreated.
|
```python
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 22 15:31:20 2023
@author: RadmediX
"""
import sys
inp=[]
for line in sys.stdin:
inp += [int(x) for x in line.strip().split()]
n = inp[0]
freePolice = 0
untreated = 0
for i in inp[1:]:
if i > 0:
freePolice += i
else:
if freePolice:
freePolice-=1
else:
untreated+=1
print(untreated)
```
| 3
|
|
703
|
A
|
Mishka and Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Mishka is a little polar bear. As known, little bears loves spending their free time playing dice for chocolates. Once in a wonderful sunny morning, walking around blocks of ice, Mishka met her friend Chris, and they started playing the game.
Rules of the game are very simple: at first number of rounds *n* is defined. In every round each of the players throws a cubical dice with distinct numbers from 1 to 6 written on its faces. Player, whose value after throwing the dice is greater, wins the round. In case if player dice values are equal, no one of them is a winner.
In average, player, who won most of the rounds, is the winner of the game. In case if two players won the same number of rounds, the result of the game is draw.
Mishka is still very little and can't count wins and losses, so she asked you to watch their game and determine its result. Please help her!
|
The first line of the input contains single integer *n* *n* (1<=β€<=*n*<=β€<=100)Β β the number of game rounds.
The next *n* lines contains rounds description. *i*-th of them contains pair of integers *m**i* and *c**i* (1<=β€<=*m**i*,<=<=*c**i*<=β€<=6)Β β values on dice upper face after Mishka's and Chris' throws in *i*-th round respectively.
|
If Mishka is the winner of the game, print "Mishka" (without quotes) in the only line.
If Chris is the winner of the game, print "Chris" (without quotes) in the only line.
If the result of the game is draw, print "Friendship is magic!^^" (without quotes) in the only line.
|
[
"3\n3 5\n2 1\n4 2\n",
"2\n6 1\n1 6\n",
"3\n1 5\n3 3\n2 2\n"
] |
[
"Mishka",
"Friendship is magic!^^",
"Chris"
] |
In the first sample case Mishka loses the first round, but wins second and third rounds and thus she is the winner of the game.
In the second sample case Mishka wins the first round, Chris wins the second round, and the game ends with draw with score 1:1.
In the third sample case Chris wins the first round, but there is no winner of the next two rounds. The winner of the game is Chris.
| 500
|
[
{
"input": "3\n3 5\n2 1\n4 2",
"output": "Mishka"
},
{
"input": "2\n6 1\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "3\n1 5\n3 3\n2 2",
"output": "Chris"
},
{
"input": "6\n4 1\n4 2\n5 3\n5 1\n5 3\n4 1",
"output": "Mishka"
},
{
"input": "8\n2 4\n1 4\n1 5\n2 6\n2 5\n2 5\n2 4\n2 5",
"output": "Chris"
},
{
"input": "8\n4 1\n2 6\n4 2\n2 5\n5 2\n3 5\n5 2\n1 5",
"output": "Friendship is magic!^^"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n1 3",
"output": "Mishka"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "9\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "10\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n2 4\n6 6\n3 2\n1 5\n5 2\n1 5\n1 5\n3 1\n6 5\n4 3\n1 1\n5 1\n3 3\n2 4\n1 5\n3 4\n5 1\n5 5\n2 5\n2 1\n4 3\n6 5\n1 1\n2 1\n1 3\n1 1\n6 4\n4 6\n6 4\n2 1\n2 5\n6 2\n3 4\n5 5\n1 4\n4 6\n3 4\n1 6\n5 1\n4 3\n3 4\n2 2\n1 2\n2 3\n1 3\n4 4\n5 5\n4 5\n4 4\n3 1\n4 5\n2 3\n2 6\n6 5\n6 1\n6 6\n2 3\n6 4\n3 3\n2 5\n4 4\n3 1\n2 4\n6 1\n3 2\n1 3\n5 4\n6 6\n2 5\n5 1\n1 1\n2 5\n6 5\n3 6\n5 6\n4 3\n3 4\n3 4\n6 5\n5 2\n4 2\n1 1\n3 1\n2 6\n1 6\n1 2\n6 1\n3 4\n1 6\n3 1\n5 3\n1 3\n5 6\n2 1\n6 4\n3 1\n1 6\n6 3\n3 3\n4 3",
"output": "Chris"
},
{
"input": "100\n4 1\n3 4\n4 6\n4 5\n6 5\n5 3\n6 2\n6 3\n5 2\n4 5\n1 5\n5 4\n1 4\n4 5\n4 6\n1 6\n4 4\n5 1\n6 4\n6 4\n4 6\n2 3\n6 2\n4 6\n1 4\n2 3\n4 3\n1 3\n6 2\n3 1\n3 4\n2 6\n4 5\n5 4\n2 2\n2 5\n4 1\n2 2\n3 3\n1 4\n5 6\n6 4\n4 2\n6 1\n5 5\n4 1\n2 1\n6 4\n4 4\n4 3\n5 3\n4 5\n5 3\n3 5\n6 3\n1 1\n3 4\n6 3\n6 1\n5 1\n2 4\n4 3\n2 2\n5 5\n1 5\n5 3\n4 6\n1 4\n6 3\n4 3\n2 4\n3 2\n2 4\n3 4\n6 2\n5 6\n1 2\n1 5\n5 5\n2 6\n5 1\n1 6\n5 3\n3 5\n2 6\n4 6\n6 2\n3 1\n5 5\n6 1\n3 6\n4 4\n1 1\n4 6\n5 3\n4 2\n5 1\n3 3\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "100\n6 3\n4 5\n4 3\n5 4\n5 1\n6 3\n4 2\n4 6\n3 1\n2 4\n2 2\n4 6\n5 3\n5 5\n4 2\n6 2\n2 3\n4 4\n6 4\n3 5\n2 4\n2 2\n5 2\n3 5\n2 4\n4 4\n3 5\n6 5\n1 3\n1 6\n2 2\n2 4\n3 2\n5 4\n1 6\n3 4\n4 1\n1 5\n1 4\n5 3\n2 2\n4 5\n6 3\n4 4\n1 1\n4 1\n2 4\n4 1\n4 5\n5 3\n1 1\n1 6\n5 6\n6 6\n4 2\n4 3\n3 4\n3 6\n3 4\n6 5\n3 4\n5 4\n5 1\n5 3\n5 1\n1 2\n2 6\n3 4\n6 5\n4 3\n1 1\n5 5\n5 1\n3 3\n5 2\n1 3\n6 6\n5 6\n1 4\n4 4\n1 4\n3 6\n6 5\n3 3\n3 6\n1 5\n1 2\n3 6\n3 6\n4 1\n5 2\n1 2\n5 2\n3 3\n4 4\n4 2\n6 2\n5 4\n6 1\n6 3",
"output": "Mishka"
},
{
"input": "8\n4 1\n6 2\n4 1\n5 3\n4 1\n5 3\n6 2\n5 3",
"output": "Mishka"
},
{
"input": "5\n3 6\n3 5\n3 5\n1 6\n3 5",
"output": "Chris"
},
{
"input": "4\n4 1\n2 4\n5 3\n3 6",
"output": "Friendship is magic!^^"
},
{
"input": "6\n6 3\n5 1\n6 3\n4 3\n4 3\n5 2",
"output": "Mishka"
},
{
"input": "7\n3 4\n1 4\n2 5\n1 6\n1 6\n1 5\n3 4",
"output": "Chris"
},
{
"input": "6\n6 2\n2 5\n5 2\n3 6\n4 3\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "8\n6 1\n5 3\n4 3\n4 1\n5 1\n4 2\n4 2\n4 1",
"output": "Mishka"
},
{
"input": "9\n2 5\n2 5\n1 4\n2 6\n2 4\n2 5\n2 6\n1 5\n2 5",
"output": "Chris"
},
{
"input": "4\n6 2\n2 4\n4 2\n3 6",
"output": "Friendship is magic!^^"
},
{
"input": "9\n5 2\n4 1\n4 1\n5 1\n6 2\n6 1\n5 3\n6 1\n6 2",
"output": "Mishka"
},
{
"input": "8\n2 4\n3 6\n1 6\n1 6\n2 4\n3 4\n3 6\n3 4",
"output": "Chris"
},
{
"input": "6\n5 3\n3 6\n6 2\n1 6\n5 1\n3 5",
"output": "Friendship is magic!^^"
},
{
"input": "6\n5 2\n5 1\n6 1\n5 2\n4 2\n5 1",
"output": "Mishka"
},
{
"input": "5\n1 4\n2 5\n3 4\n2 6\n3 4",
"output": "Chris"
},
{
"input": "4\n6 2\n3 4\n5 1\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "93\n4 3\n4 1\n4 2\n5 2\n5 3\n6 3\n4 3\n6 2\n6 3\n5 1\n4 2\n4 2\n5 1\n6 2\n6 3\n6 1\n4 1\n6 2\n5 3\n4 3\n4 1\n4 2\n5 2\n6 3\n5 2\n5 2\n6 3\n5 1\n6 2\n5 2\n4 1\n5 2\n5 1\n4 1\n6 1\n5 2\n4 3\n5 3\n5 3\n5 1\n4 3\n4 3\n4 2\n4 1\n6 2\n6 1\n4 1\n5 2\n5 2\n6 2\n5 3\n5 1\n6 2\n5 1\n6 3\n5 2\n6 2\n6 2\n4 2\n5 2\n6 1\n6 3\n6 3\n5 1\n5 1\n4 1\n5 1\n4 3\n5 3\n6 3\n4 1\n4 3\n6 1\n6 1\n4 2\n6 2\n4 2\n5 2\n4 1\n5 2\n4 1\n5 1\n5 2\n5 1\n4 1\n6 3\n6 2\n4 3\n4 1\n5 2\n4 3\n5 2\n5 1",
"output": "Mishka"
},
{
"input": "11\n1 6\n1 6\n2 4\n2 5\n3 4\n1 5\n1 6\n1 5\n1 6\n2 6\n3 4",
"output": "Chris"
},
{
"input": "70\n6 1\n3 6\n4 3\n2 5\n5 2\n1 4\n6 2\n1 6\n4 3\n1 4\n5 3\n2 4\n5 3\n1 6\n5 1\n3 5\n4 2\n2 4\n5 1\n3 5\n6 2\n1 5\n4 2\n2 5\n5 3\n1 5\n4 2\n1 4\n5 2\n2 6\n4 3\n1 5\n6 2\n3 4\n4 2\n3 5\n6 3\n3 4\n5 1\n1 4\n4 2\n1 4\n6 3\n2 6\n5 2\n1 6\n6 1\n2 6\n5 3\n1 5\n5 1\n1 6\n4 1\n1 5\n4 2\n2 4\n5 1\n2 5\n6 3\n1 4\n6 3\n3 6\n5 1\n1 4\n5 3\n3 5\n4 2\n3 4\n6 2\n1 4",
"output": "Friendship is magic!^^"
},
{
"input": "59\n4 1\n5 3\n6 1\n4 2\n5 1\n4 3\n6 1\n5 1\n4 3\n4 3\n5 2\n5 3\n4 1\n6 2\n5 1\n6 3\n6 3\n5 2\n5 2\n6 1\n4 1\n6 1\n4 3\n5 3\n5 3\n4 3\n4 2\n4 2\n6 3\n6 3\n6 1\n4 3\n5 1\n6 2\n6 1\n4 1\n6 1\n5 3\n4 2\n5 1\n6 2\n6 2\n4 3\n5 3\n4 3\n6 3\n5 2\n5 2\n4 3\n5 1\n5 3\n6 1\n6 3\n6 3\n4 3\n5 2\n5 2\n5 2\n4 3",
"output": "Mishka"
},
{
"input": "42\n1 5\n1 6\n1 6\n1 4\n2 5\n3 6\n1 6\n3 4\n2 5\n2 5\n2 4\n1 4\n3 4\n2 4\n2 6\n1 5\n3 6\n2 6\n2 6\n3 5\n1 4\n1 5\n2 6\n3 6\n1 4\n3 4\n2 4\n1 6\n3 4\n2 4\n2 6\n1 6\n1 4\n1 6\n1 6\n2 4\n1 5\n1 6\n2 5\n3 6\n3 5\n3 4",
"output": "Chris"
},
{
"input": "78\n4 3\n3 5\n4 3\n1 5\n5 1\n1 5\n4 3\n1 4\n6 3\n1 5\n4 1\n2 4\n4 3\n2 4\n5 1\n3 6\n4 2\n3 6\n6 3\n3 4\n4 3\n3 6\n5 3\n1 5\n4 1\n2 6\n4 2\n2 4\n4 1\n3 5\n5 2\n3 6\n4 3\n2 4\n6 3\n1 6\n4 3\n3 5\n6 3\n2 6\n4 1\n2 4\n6 2\n1 6\n4 2\n1 4\n4 3\n1 4\n4 3\n2 4\n6 2\n3 5\n6 1\n3 6\n5 3\n1 6\n6 1\n2 6\n4 2\n1 5\n6 2\n2 6\n6 3\n2 4\n4 2\n3 5\n6 1\n2 5\n5 3\n2 6\n5 1\n3 6\n4 3\n3 6\n6 3\n2 5\n6 1\n2 6",
"output": "Friendship is magic!^^"
},
{
"input": "76\n4 1\n5 2\n4 3\n5 2\n5 3\n5 2\n6 1\n4 2\n6 2\n5 3\n4 2\n6 2\n4 1\n4 2\n5 1\n5 1\n6 2\n5 2\n5 3\n6 3\n5 2\n4 3\n6 3\n6 1\n4 3\n6 2\n6 1\n4 1\n6 1\n5 3\n4 1\n5 3\n4 2\n5 2\n4 3\n6 1\n6 2\n5 2\n6 1\n5 3\n4 3\n5 1\n5 3\n4 3\n5 1\n5 1\n4 1\n4 1\n4 1\n4 3\n5 3\n6 3\n6 3\n5 2\n6 2\n6 3\n5 1\n6 3\n5 3\n6 1\n5 3\n4 1\n5 3\n6 1\n4 2\n6 2\n4 3\n4 1\n6 2\n4 3\n5 3\n5 2\n5 3\n5 1\n6 3\n5 2",
"output": "Mishka"
},
{
"input": "84\n3 6\n3 4\n2 5\n2 4\n1 6\n3 4\n1 5\n1 6\n3 5\n1 6\n2 4\n2 6\n2 6\n2 4\n3 5\n1 5\n3 6\n3 6\n3 4\n3 4\n2 6\n1 6\n1 6\n3 5\n3 4\n1 6\n3 4\n3 5\n2 4\n2 5\n2 5\n3 5\n1 6\n3 4\n2 6\n2 6\n3 4\n3 4\n2 5\n2 5\n2 4\n3 4\n2 5\n3 4\n3 4\n2 6\n2 6\n1 6\n2 4\n1 5\n3 4\n2 5\n2 5\n3 4\n2 4\n2 6\n2 6\n1 4\n3 5\n3 5\n2 4\n2 5\n3 4\n1 5\n1 5\n2 6\n1 5\n3 5\n2 4\n2 5\n3 4\n2 6\n1 6\n2 5\n3 5\n3 5\n3 4\n2 5\n2 6\n3 4\n1 6\n2 5\n2 6\n1 4",
"output": "Chris"
},
{
"input": "44\n6 1\n1 6\n5 2\n1 4\n6 2\n2 5\n5 3\n3 6\n5 2\n1 6\n4 1\n2 4\n6 1\n3 4\n6 3\n3 6\n4 3\n2 4\n6 1\n3 4\n6 1\n1 6\n4 1\n3 5\n6 1\n3 6\n4 1\n1 4\n4 2\n2 6\n6 1\n2 4\n6 2\n1 4\n6 2\n2 4\n5 2\n3 6\n6 3\n2 6\n5 3\n3 4\n5 3\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "42\n5 3\n5 1\n5 2\n4 1\n6 3\n6 1\n6 2\n4 1\n4 3\n4 1\n5 1\n5 3\n5 1\n4 1\n4 2\n6 1\n6 3\n5 1\n4 1\n4 1\n6 3\n4 3\n6 3\n5 2\n6 1\n4 1\n5 3\n4 3\n5 2\n6 3\n6 1\n5 1\n4 2\n4 3\n5 2\n5 3\n6 3\n5 2\n5 1\n5 3\n6 2\n6 1",
"output": "Mishka"
},
{
"input": "50\n3 6\n2 6\n1 4\n1 4\n1 4\n2 5\n3 4\n3 5\n2 6\n1 6\n3 5\n1 5\n2 6\n2 4\n2 4\n3 5\n1 6\n1 5\n1 5\n1 4\n3 5\n1 6\n3 5\n1 4\n1 5\n1 4\n3 6\n1 6\n1 4\n1 4\n1 4\n1 5\n3 6\n1 6\n1 6\n2 4\n1 5\n2 6\n2 5\n3 5\n3 6\n3 4\n2 4\n2 6\n3 4\n2 5\n3 6\n3 5\n2 4\n2 4",
"output": "Chris"
},
{
"input": "86\n6 3\n2 4\n6 3\n3 5\n6 3\n1 5\n5 2\n2 4\n4 3\n2 6\n4 1\n2 6\n5 2\n1 4\n5 1\n2 4\n4 1\n1 4\n6 2\n3 5\n4 2\n2 4\n6 2\n1 5\n5 3\n2 5\n5 1\n1 6\n6 1\n1 4\n4 3\n3 4\n5 2\n2 4\n5 3\n2 5\n4 3\n3 4\n4 1\n1 5\n6 3\n3 4\n4 3\n3 4\n4 1\n3 4\n5 1\n1 6\n4 2\n1 6\n5 1\n2 4\n5 1\n3 6\n4 1\n1 5\n5 2\n1 4\n4 3\n2 5\n5 1\n1 5\n6 2\n2 6\n4 2\n2 4\n4 1\n2 5\n5 3\n3 4\n5 1\n3 4\n6 3\n3 4\n4 3\n2 6\n6 2\n2 5\n5 2\n3 5\n4 2\n3 6\n6 2\n3 4\n4 2\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "84\n6 1\n6 3\n6 3\n4 1\n4 3\n4 2\n6 3\n5 3\n6 1\n6 3\n4 3\n5 2\n5 3\n5 1\n6 2\n6 2\n6 1\n4 1\n6 3\n5 2\n4 1\n5 3\n6 3\n4 2\n6 2\n6 3\n4 3\n4 1\n4 3\n5 1\n5 1\n5 1\n4 1\n6 1\n4 3\n6 2\n5 1\n5 1\n6 2\n5 2\n4 1\n6 1\n6 1\n6 3\n6 2\n4 3\n6 3\n6 2\n5 2\n5 1\n4 3\n6 2\n4 1\n6 2\n6 1\n5 2\n5 1\n6 2\n6 1\n5 3\n5 2\n6 1\n6 3\n5 2\n6 1\n6 3\n4 3\n5 1\n6 3\n6 1\n5 3\n4 3\n5 2\n5 1\n6 2\n5 3\n6 1\n5 1\n4 1\n5 1\n5 1\n5 2\n5 2\n5 1",
"output": "Mishka"
},
{
"input": "92\n1 5\n2 4\n3 5\n1 6\n2 5\n1 6\n3 6\n1 6\n2 4\n3 4\n3 4\n3 6\n1 5\n2 5\n1 5\n1 5\n2 6\n2 4\n3 6\n1 4\n1 6\n2 6\n3 4\n2 6\n2 6\n1 4\n3 5\n2 5\n2 6\n1 5\n1 4\n1 5\n3 6\n3 5\n2 5\n1 5\n3 5\n3 6\n2 6\n2 6\n1 5\n3 4\n2 4\n3 6\n2 5\n1 5\n2 4\n1 4\n2 6\n2 6\n2 6\n1 5\n3 6\n3 6\n2 5\n1 4\n2 4\n3 4\n1 5\n2 5\n2 4\n2 5\n3 5\n3 4\n3 6\n2 6\n3 5\n1 4\n3 4\n1 6\n3 6\n2 6\n1 4\n3 6\n3 6\n2 5\n2 6\n1 6\n2 6\n3 5\n2 5\n3 6\n2 5\n2 6\n1 5\n2 4\n1 4\n2 4\n1 5\n2 5\n2 5\n2 6",
"output": "Chris"
},
{
"input": "20\n5 1\n1 4\n4 3\n1 5\n4 2\n3 6\n6 2\n1 6\n4 1\n1 4\n5 2\n3 4\n5 1\n1 6\n5 1\n2 6\n6 3\n2 5\n6 2\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "100\n4 3\n4 3\n4 2\n4 3\n4 1\n4 3\n5 2\n5 2\n6 2\n4 2\n5 1\n4 2\n5 2\n6 1\n4 1\n6 3\n5 3\n5 1\n5 1\n5 1\n5 3\n6 1\n6 1\n4 1\n5 2\n5 2\n6 1\n6 3\n4 2\n4 1\n5 3\n4 1\n5 3\n5 1\n6 3\n6 3\n6 1\n5 2\n5 3\n5 3\n6 1\n4 1\n6 2\n6 1\n6 2\n6 3\n4 3\n4 3\n6 3\n4 2\n4 2\n5 3\n5 2\n5 2\n4 3\n5 3\n5 2\n4 2\n5 1\n4 2\n5 1\n5 3\n6 3\n5 3\n5 3\n4 2\n4 1\n4 2\n4 3\n6 3\n4 3\n6 2\n6 1\n5 3\n5 2\n4 1\n6 1\n5 2\n6 2\n4 2\n6 3\n4 3\n5 1\n6 3\n5 2\n4 3\n5 3\n5 3\n4 3\n6 3\n4 3\n4 1\n5 1\n6 2\n6 3\n5 3\n6 1\n6 3\n5 3\n6 1",
"output": "Mishka"
},
{
"input": "100\n1 5\n1 4\n1 5\n2 4\n2 6\n3 6\n3 5\n1 5\n2 5\n3 6\n3 5\n1 6\n1 4\n1 5\n1 6\n2 6\n1 5\n3 5\n3 4\n2 6\n2 6\n2 5\n3 4\n1 6\n1 4\n2 4\n1 5\n1 6\n3 5\n1 6\n2 6\n3 5\n1 6\n3 4\n3 5\n1 6\n3 6\n2 4\n2 4\n3 5\n2 6\n1 5\n3 5\n3 6\n2 4\n2 4\n2 6\n3 4\n3 4\n1 5\n1 4\n2 5\n3 4\n1 4\n2 6\n2 5\n2 4\n2 4\n2 5\n1 5\n1 6\n1 5\n1 5\n1 5\n1 6\n3 4\n2 4\n3 5\n3 5\n1 6\n3 5\n1 5\n1 6\n3 6\n3 4\n1 5\n3 5\n3 6\n1 4\n3 6\n1 5\n3 5\n3 6\n3 5\n1 4\n3 4\n2 4\n2 4\n2 5\n3 6\n3 5\n1 5\n2 4\n1 4\n3 4\n1 5\n3 4\n3 6\n3 5\n3 4",
"output": "Chris"
},
{
"input": "100\n4 3\n3 4\n5 1\n2 5\n5 3\n1 5\n6 3\n2 4\n5 2\n2 6\n5 2\n1 5\n6 3\n1 5\n6 3\n3 4\n5 2\n1 5\n6 1\n1 5\n4 2\n3 5\n6 3\n2 6\n6 3\n1 4\n6 2\n3 4\n4 1\n3 6\n5 1\n2 4\n5 1\n3 4\n6 2\n3 5\n4 1\n2 6\n4 3\n2 6\n5 2\n3 6\n6 2\n3 5\n4 3\n1 5\n5 3\n3 6\n4 2\n3 4\n6 1\n3 4\n5 2\n2 6\n5 2\n2 4\n6 2\n3 6\n4 3\n2 4\n4 3\n2 6\n4 2\n3 4\n6 3\n2 4\n6 3\n3 5\n5 2\n1 5\n6 3\n3 6\n4 3\n1 4\n5 2\n1 6\n4 1\n2 5\n4 1\n2 4\n4 2\n2 5\n6 1\n2 4\n6 3\n1 5\n4 3\n2 6\n6 3\n2 6\n5 3\n1 5\n4 1\n1 5\n6 2\n2 5\n5 1\n3 6\n4 3\n3 4",
"output": "Friendship is magic!^^"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n1 3",
"output": "Mishka"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "99\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "84\n6 2\n1 5\n6 2\n2 3\n5 5\n1 2\n3 4\n3 4\n6 5\n6 4\n2 5\n4 1\n1 2\n1 1\n1 4\n2 5\n5 6\n6 3\n2 4\n5 5\n2 6\n3 4\n5 1\n3 3\n5 5\n4 6\n4 6\n2 4\n4 1\n5 2\n2 2\n3 6\n3 3\n4 6\n1 1\n2 4\n6 5\n5 2\n6 5\n5 5\n2 5\n6 4\n1 1\n6 2\n3 6\n6 5\n4 4\n1 5\n5 6\n4 4\n3 5\n6 1\n3 4\n1 5\n4 6\n4 6\n4 1\n3 6\n6 2\n1 1\n4 5\n5 4\n5 3\n3 4\n6 4\n1 1\n5 2\n6 5\n6 1\n2 2\n2 4\n3 3\n4 6\n1 3\n6 6\n5 2\n1 6\n6 2\n6 6\n4 1\n3 6\n6 4\n2 3\n3 4",
"output": "Chris"
},
{
"input": "70\n3 4\n2 3\n2 3\n6 5\n6 6\n4 3\n2 3\n3 1\n3 5\n5 6\n1 6\n2 5\n5 3\n2 5\n4 6\n5 1\n6 1\n3 1\n3 3\n5 3\n2 1\n3 3\n6 4\n6 3\n4 3\n4 5\n3 5\n5 5\n5 2\n1 6\n3 4\n5 2\n2 4\n1 6\n4 3\n4 3\n6 2\n1 3\n1 5\n6 1\n3 1\n1 1\n1 3\n2 2\n3 2\n6 4\n1 1\n4 4\n3 1\n4 5\n4 2\n6 3\n4 4\n3 2\n1 2\n2 6\n3 3\n1 5\n1 1\n6 5\n2 2\n3 1\n5 4\n5 2\n6 4\n6 3\n6 6\n6 3\n3 3\n5 4",
"output": "Mishka"
},
{
"input": "56\n6 4\n3 4\n6 1\n3 3\n1 4\n2 3\n1 5\n2 5\n1 5\n5 5\n2 3\n1 1\n3 2\n3 5\n4 6\n4 4\n5 2\n4 3\n3 1\n3 6\n2 3\n3 4\n5 6\n5 2\n5 6\n1 5\n1 5\n4 1\n6 3\n2 2\n2 1\n5 5\n2 1\n4 1\n5 4\n2 5\n4 1\n6 2\n3 4\n4 2\n6 4\n5 4\n4 2\n4 3\n6 2\n6 2\n3 1\n1 4\n3 6\n5 1\n5 5\n3 6\n6 4\n2 3\n6 5\n3 3",
"output": "Mishka"
},
{
"input": "94\n2 4\n6 4\n1 6\n1 4\n5 1\n3 3\n4 3\n6 1\n6 5\n3 2\n2 3\n5 1\n5 3\n1 2\n4 3\n3 2\n2 3\n4 6\n1 3\n6 3\n1 1\n3 2\n4 3\n1 5\n4 6\n3 2\n6 3\n1 6\n1 1\n1 2\n3 5\n1 3\n3 5\n4 4\n4 2\n1 4\n4 5\n1 3\n1 2\n1 1\n5 4\n5 5\n6 1\n2 1\n2 6\n6 6\n4 2\n3 6\n1 6\n6 6\n1 5\n3 2\n1 2\n4 4\n6 4\n4 1\n1 5\n3 3\n1 3\n3 4\n4 4\n1 1\n2 5\n4 5\n3 1\n3 1\n3 6\n3 2\n1 4\n1 6\n6 3\n2 4\n1 1\n2 2\n2 2\n2 1\n5 4\n1 2\n6 6\n2 2\n3 3\n6 3\n6 3\n1 6\n2 3\n2 4\n2 3\n6 6\n2 6\n6 3\n3 5\n1 4\n1 1\n3 5",
"output": "Chris"
},
{
"input": "81\n4 2\n1 2\n2 3\n4 5\n6 2\n1 6\n3 6\n3 4\n4 6\n4 4\n3 5\n4 6\n3 6\n3 5\n3 1\n1 3\n5 3\n3 4\n1 1\n4 1\n1 2\n6 1\n1 3\n6 5\n4 5\n4 2\n4 5\n6 2\n1 2\n2 6\n5 2\n1 5\n2 4\n4 3\n5 4\n1 2\n5 3\n2 6\n6 4\n1 1\n1 3\n3 1\n3 1\n6 5\n5 5\n6 1\n6 6\n5 2\n1 3\n1 4\n2 3\n5 5\n3 1\n3 1\n4 4\n1 6\n6 4\n2 2\n4 6\n4 4\n2 6\n2 4\n2 4\n4 1\n1 6\n1 4\n1 3\n6 5\n5 1\n1 3\n5 1\n1 4\n3 5\n2 6\n1 3\n5 6\n3 5\n4 4\n5 5\n5 6\n4 3",
"output": "Chris"
},
{
"input": "67\n6 5\n3 6\n1 6\n5 3\n5 4\n5 1\n1 6\n1 1\n3 2\n4 4\n3 1\n4 1\n1 5\n5 3\n3 3\n6 4\n2 4\n2 2\n4 3\n1 4\n1 4\n6 1\n1 2\n2 2\n5 1\n6 2\n3 5\n5 5\n2 2\n6 5\n6 2\n4 4\n3 1\n4 2\n6 6\n6 4\n5 1\n2 2\n4 5\n5 5\n4 6\n1 5\n6 3\n4 4\n1 5\n6 4\n3 6\n3 4\n1 6\n2 4\n2 1\n2 5\n6 5\n6 4\n4 1\n3 2\n1 2\n5 1\n5 6\n1 5\n3 5\n3 1\n5 3\n3 2\n5 1\n4 6\n6 6",
"output": "Mishka"
},
{
"input": "55\n6 6\n6 5\n2 2\n2 2\n6 4\n5 5\n6 5\n5 3\n1 3\n2 2\n5 6\n3 3\n3 3\n6 5\n3 5\n5 5\n1 2\n1 1\n4 6\n1 2\n5 5\n6 2\n6 3\n1 2\n5 1\n1 3\n3 3\n4 4\n2 5\n1 1\n5 3\n4 3\n2 2\n4 5\n5 6\n4 5\n6 3\n1 6\n6 4\n3 6\n1 6\n5 2\n6 3\n2 3\n5 5\n4 3\n3 1\n4 2\n1 1\n2 5\n5 3\n2 2\n6 3\n4 5\n2 2",
"output": "Mishka"
},
{
"input": "92\n2 3\n1 3\n2 6\n5 1\n5 5\n3 2\n5 6\n2 5\n3 1\n3 6\n4 5\n2 5\n1 2\n2 3\n6 5\n3 6\n4 4\n6 2\n4 5\n4 4\n5 1\n6 1\n3 4\n3 5\n6 6\n3 2\n6 4\n2 2\n3 5\n6 4\n6 3\n6 6\n3 4\n3 3\n6 1\n5 4\n6 2\n2 6\n5 6\n1 4\n4 6\n6 3\n3 1\n4 1\n6 6\n3 5\n6 3\n6 1\n1 6\n3 2\n6 6\n4 3\n3 4\n1 3\n3 5\n5 3\n6 5\n4 3\n5 5\n4 1\n1 5\n6 4\n2 3\n2 3\n1 5\n1 2\n5 2\n4 3\n3 6\n5 5\n5 4\n1 4\n3 3\n1 6\n5 6\n5 4\n5 3\n1 1\n6 2\n5 5\n2 5\n4 3\n6 6\n5 1\n1 1\n4 6\n4 6\n3 1\n6 4\n2 4\n2 2\n2 1",
"output": "Chris"
},
{
"input": "79\n5 3\n4 6\n3 6\n2 1\n5 2\n2 3\n4 4\n6 2\n2 5\n1 6\n6 6\n2 6\n3 3\n4 5\n6 2\n2 1\n1 5\n5 1\n2 1\n2 6\n5 3\n6 2\n2 6\n2 3\n1 5\n4 4\n6 3\n5 2\n3 2\n1 3\n1 3\n6 3\n2 6\n3 6\n5 3\n4 5\n6 1\n3 5\n3 5\n6 5\n1 5\n4 2\n6 2\n2 3\n4 6\n3 6\n2 5\n4 4\n1 1\n4 6\n2 6\n6 4\n3 2\n4 1\n1 2\n6 4\n5 6\n1 4\n2 2\n5 4\n3 2\n1 2\n2 4\n2 5\n2 1\n3 6\n3 3\n1 1\n2 2\n4 4\n4 5\n3 3\n5 3\n6 2\n4 5\n6 5\n2 5\n5 6\n2 2",
"output": "Chris"
},
{
"input": "65\n1 1\n5 1\n2 2\n5 4\n4 5\n2 5\n3 2\n5 6\n6 3\n1 1\n6 1\n1 5\n1 1\n5 2\n6 4\n1 6\n1 1\n4 3\n2 3\n5 6\n4 4\n6 2\n1 3\n4 3\n1 3\n6 3\n3 5\n4 2\n4 1\n6 1\n3 2\n2 6\n3 2\n3 5\n6 3\n4 3\n1 5\n2 6\n1 3\n4 1\n4 1\n2 5\n2 5\n6 2\n5 3\n3 1\n3 3\n5 1\n2 4\n5 3\n3 3\n1 1\n6 3\n3 3\n5 1\n1 6\n4 5\n6 6\n5 5\n2 5\n4 1\n2 2\n1 4\n1 6\n6 5",
"output": "Mishka"
},
{
"input": "1\n1 1",
"output": "Friendship is magic!^^"
}
] | 1,668,672,084
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 69
| 46
| 0
|
n=int(input())
a=0
b=0
for i in range(n):
y = list(map(int, input().split()))
if y[0] > y[1]:
a+=1
elif y[0] < y[1]:
b+=1
if a==b:
print("Friendship is magic!^^")
elif a > b:
print("Mishka")
elif a<b:
print("Chris")
|
Title: Mishka and Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mishka is a little polar bear. As known, little bears loves spending their free time playing dice for chocolates. Once in a wonderful sunny morning, walking around blocks of ice, Mishka met her friend Chris, and they started playing the game.
Rules of the game are very simple: at first number of rounds *n* is defined. In every round each of the players throws a cubical dice with distinct numbers from 1 to 6 written on its faces. Player, whose value after throwing the dice is greater, wins the round. In case if player dice values are equal, no one of them is a winner.
In average, player, who won most of the rounds, is the winner of the game. In case if two players won the same number of rounds, the result of the game is draw.
Mishka is still very little and can't count wins and losses, so she asked you to watch their game and determine its result. Please help her!
Input Specification:
The first line of the input contains single integer *n* *n* (1<=β€<=*n*<=β€<=100)Β β the number of game rounds.
The next *n* lines contains rounds description. *i*-th of them contains pair of integers *m**i* and *c**i* (1<=β€<=*m**i*,<=<=*c**i*<=β€<=6)Β β values on dice upper face after Mishka's and Chris' throws in *i*-th round respectively.
Output Specification:
If Mishka is the winner of the game, print "Mishka" (without quotes) in the only line.
If Chris is the winner of the game, print "Chris" (without quotes) in the only line.
If the result of the game is draw, print "Friendship is magic!^^" (without quotes) in the only line.
Demo Input:
['3\n3 5\n2 1\n4 2\n', '2\n6 1\n1 6\n', '3\n1 5\n3 3\n2 2\n']
Demo Output:
['Mishka', 'Friendship is magic!^^', 'Chris']
Note:
In the first sample case Mishka loses the first round, but wins second and third rounds and thus she is the winner of the game.
In the second sample case Mishka wins the first round, Chris wins the second round, and the game ends with draw with score 1:1.
In the third sample case Chris wins the first round, but there is no winner of the next two rounds. The winner of the game is Chris.
|
```python
n=int(input())
a=0
b=0
for i in range(n):
y = list(map(int, input().split()))
if y[0] > y[1]:
a+=1
elif y[0] < y[1]:
b+=1
if a==b:
print("Friendship is magic!^^")
elif a > b:
print("Mishka")
elif a<b:
print("Chris")
```
| 3
|
|
706
|
B
|
Interesting drink
|
PROGRAMMING
| 1,100
|
[
"binary search",
"dp",
"implementation"
] | null | null |
Vasiliy likes to rest after a hard work, so you may often meet him in some bar nearby. As all programmers do, he loves the famous drink "Beecola", which can be bought in *n* different shops in the city. It's known that the price of one bottle in the shop *i* is equal to *x**i* coins.
Vasiliy plans to buy his favorite drink for *q* consecutive days. He knows, that on the *i*-th day he will be able to spent *m**i* coins. Now, for each of the days he want to know in how many different shops he can buy a bottle of "Beecola".
|
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=100<=000)Β β the number of shops in the city that sell Vasiliy's favourite drink.
The second line contains *n* integers *x**i* (1<=β€<=*x**i*<=β€<=100<=000)Β β prices of the bottles of the drink in the *i*-th shop.
The third line contains a single integer *q* (1<=β€<=*q*<=β€<=100<=000)Β β the number of days Vasiliy plans to buy the drink.
Then follow *q* lines each containing one integer *m**i* (1<=β€<=*m**i*<=β€<=109)Β β the number of coins Vasiliy can spent on the *i*-th day.
|
Print *q* integers. The *i*-th of them should be equal to the number of shops where Vasiliy will be able to buy a bottle of the drink on the *i*-th day.
|
[
"5\n3 10 8 6 11\n4\n1\n10\n3\n11\n"
] |
[
"0\n4\n1\n5\n"
] |
On the first day, Vasiliy won't be able to buy a drink in any of the shops.
On the second day, Vasiliy can buy a drink in the shops 1, 2, 3 and 4.
On the third day, Vasiliy can buy a drink only in the shop number 1.
Finally, on the last day Vasiliy can buy a drink in any shop.
| 1,000
|
[
{
"input": "5\n3 10 8 6 11\n4\n1\n10\n3\n11",
"output": "0\n4\n1\n5"
},
{
"input": "5\n868 987 714 168 123\n10\n424\n192\n795\n873\n117\n914\n735\n158\n631\n471",
"output": "2\n2\n3\n4\n0\n4\n3\n1\n2\n2"
},
{
"input": "3\n435 482 309\n7\n245\n241\n909\n745\n980\n29\n521",
"output": "0\n0\n3\n3\n3\n0\n3"
},
{
"input": "1\n653\n9\n903\n980\n80\n770\n965\n874\n381\n657\n969",
"output": "1\n1\n0\n1\n1\n1\n0\n1\n1"
},
{
"input": "12\n35345 58181 32223 84621 35905 73863 99537 30666 67771 39229 36847 29038\n23\n55052824\n82504840\n35160556\n78141700\n73401989\n86305919\n39430705\n31939373\n23501765\n4406029\n61436920\n14295390\n34275309\n28028753\n85724689\n70158847\n2396455\n66994588\n84024224\n30175981\n65622319\n76517111\n76605341",
"output": "12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12"
},
{
"input": "4\n698 193 1584 76192\n4\n553640\n310518\n274280\n429192",
"output": "4\n4\n4\n4"
},
{
"input": "1\n1\n1\n1000000000",
"output": "1"
},
{
"input": "1\n1\n1\n100005",
"output": "1"
},
{
"input": "3\n1 2 3\n1\n100005",
"output": "3"
},
{
"input": "2\n1 2\n3\n100004\n100005\n100006",
"output": "2\n2\n2"
},
{
"input": "3\n1 1 1\n1\n1",
"output": "3"
},
{
"input": "1\n1\n1\n1",
"output": "1"
},
{
"input": "3\n1 2 3\n1\n100000",
"output": "3"
},
{
"input": "5\n1 1 1 1 10\n2\n1\n10",
"output": "4\n5"
},
{
"input": "5\n3 10 8 6 11\n1\n10000000",
"output": "5"
}
] | 1,695,673,337
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 103
| 1,028
| 13,516,800
|
def counter(arr, t):
l = 0
r = len(arr)
t += 1
while (l<r):
mid = l + (r-l)//2
if (arr[mid]<t):
l = mid+1
else:
r = mid
return l
n = int(input())
xarr = input().split()
xarr = [int(x) for x in xarr]
xarr.sort()
q = int(input())
for _ in range(q):
m = int(input())
print(counter(xarr, m))
|
Title: Interesting drink
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasiliy likes to rest after a hard work, so you may often meet him in some bar nearby. As all programmers do, he loves the famous drink "Beecola", which can be bought in *n* different shops in the city. It's known that the price of one bottle in the shop *i* is equal to *x**i* coins.
Vasiliy plans to buy his favorite drink for *q* consecutive days. He knows, that on the *i*-th day he will be able to spent *m**i* coins. Now, for each of the days he want to know in how many different shops he can buy a bottle of "Beecola".
Input Specification:
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=100<=000)Β β the number of shops in the city that sell Vasiliy's favourite drink.
The second line contains *n* integers *x**i* (1<=β€<=*x**i*<=β€<=100<=000)Β β prices of the bottles of the drink in the *i*-th shop.
The third line contains a single integer *q* (1<=β€<=*q*<=β€<=100<=000)Β β the number of days Vasiliy plans to buy the drink.
Then follow *q* lines each containing one integer *m**i* (1<=β€<=*m**i*<=β€<=109)Β β the number of coins Vasiliy can spent on the *i*-th day.
Output Specification:
Print *q* integers. The *i*-th of them should be equal to the number of shops where Vasiliy will be able to buy a bottle of the drink on the *i*-th day.
Demo Input:
['5\n3 10 8 6 11\n4\n1\n10\n3\n11\n']
Demo Output:
['0\n4\n1\n5\n']
Note:
On the first day, Vasiliy won't be able to buy a drink in any of the shops.
On the second day, Vasiliy can buy a drink in the shops 1, 2, 3 and 4.
On the third day, Vasiliy can buy a drink only in the shop number 1.
Finally, on the last day Vasiliy can buy a drink in any shop.
|
```python
def counter(arr, t):
l = 0
r = len(arr)
t += 1
while (l<r):
mid = l + (r-l)//2
if (arr[mid]<t):
l = mid+1
else:
r = mid
return l
n = int(input())
xarr = input().split()
xarr = [int(x) for x in xarr]
xarr.sort()
q = int(input())
for _ in range(q):
m = int(input())
print(counter(xarr, m))
```
| 3
|
|
686
|
A
|
Free Ice Cream
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer.
At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue).
If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress.
Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
|
The first line contains two space-separated integers *n* and *x* (1<=β€<=*n*<=β€<=1000, 0<=β€<=*x*<=β€<=109).
Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=β€<=*d**i*<=β€<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
|
Print two space-separated integersΒ β number of ice cream packs left after all operations, and number of kids that left the house in distress.
|
[
"5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n",
"5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n"
] |
[
"22 1\n",
"3 2\n"
] |
Consider the first sample.
1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
| 500
|
[
{
"input": "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20",
"output": "22 1"
},
{
"input": "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98",
"output": "3 2"
},
{
"input": "6 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000",
"output": "7000000000 0"
},
{
"input": "5 12\n- 12\n+ 7\n- 6\n- 1\n+ 46",
"output": "46 0"
},
{
"input": "11 1000\n- 100\n+ 100\n+ 100\n+ 100\n+ 100\n- 100\n- 100\n- 100\n- 100\n- 100\n- 100",
"output": "700 0"
},
{
"input": "1 0\n- 526403222",
"output": "0 1"
},
{
"input": "1 897986543\n- 371188251",
"output": "526798292 0"
},
{
"input": "1 0\n+ 1",
"output": "1 0"
},
{
"input": "1 0\n- 1",
"output": "0 1"
},
{
"input": "1 10\n+ 10",
"output": "20 0"
},
{
"input": "1 3\n- 5",
"output": "3 1"
},
{
"input": "1 0\n- 5",
"output": "0 1"
},
{
"input": "1 0\n+ 5",
"output": "5 0"
}
] | 1,657,474,954
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 46
| 0
|
n,x=map(int,input().split())
dist=0
for i in range(n):
a,b=input().split()
b=int(b)
if(a=='+'):
x+=b
elif(a=='-'):
if(x<b):
dist+=1
else:
x-=b
print(x,dist)
|
Title: Free Ice Cream
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer.
At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue).
If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress.
Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
Input Specification:
The first line contains two space-separated integers *n* and *x* (1<=β€<=*n*<=β€<=1000, 0<=β€<=*x*<=β€<=109).
Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=β€<=*d**i*<=β€<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
Output Specification:
Print two space-separated integersΒ β number of ice cream packs left after all operations, and number of kids that left the house in distress.
Demo Input:
['5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n', '5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n']
Demo Output:
['22 1\n', '3 2\n']
Note:
Consider the first sample.
1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
|
```python
n,x=map(int,input().split())
dist=0
for i in range(n):
a,b=input().split()
b=int(b)
if(a=='+'):
x+=b
elif(a=='-'):
if(x<b):
dist+=1
else:
x-=b
print(x,dist)
```
| 3
|
|
32
|
B
|
Borze
|
PROGRAMMING
| 800
|
[
"expression parsing",
"implementation"
] |
B. Borze
|
2
|
256
|
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as Β«.Β», 1 as Β«-.Β» and 2 as Β«--Β». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
|
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
|
Output the decoded ternary number. It can have leading zeroes.
|
[
".-.--\n",
"--.\n",
"-..-.--\n"
] |
[
"012",
"20",
"1012"
] |
none
| 1,000
|
[
{
"input": ".-.--",
"output": "012"
},
{
"input": "--.",
"output": "20"
},
{
"input": "-..-.--",
"output": "1012"
},
{
"input": "---..",
"output": "210"
},
{
"input": "..--.---..",
"output": "0020210"
},
{
"input": "-.....----.",
"output": "10000220"
},
{
"input": ".",
"output": "0"
},
{
"input": "-.",
"output": "1"
},
{
"input": "--",
"output": "2"
},
{
"input": "..",
"output": "00"
},
{
"input": "--.",
"output": "20"
},
{
"input": ".--.",
"output": "020"
},
{
"input": ".-.-..",
"output": "0110"
},
{
"input": "----.-.",
"output": "2201"
},
{
"input": "-..--.-.",
"output": "10201"
},
{
"input": "..--..--.",
"output": "0020020"
},
{
"input": "-.-.---.--..-..-.-.-..-..-.--.",
"output": "112120010111010120"
},
{
"input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.",
"output": "21112220010101011012011011221011"
},
{
"input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------",
"output": "11020111110111222212021020002022111100201121222020012022110010222"
},
{
"input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..",
"output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110"
},
{
"input": ".-..-.-.---.-----.--.---...-.--.-.-....-..",
"output": "01011212212021001201100010"
},
{
"input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..",
"output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210"
},
{
"input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.",
"output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220"
},
{
"input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----",
"output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122"
},
{
"input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..",
"output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110"
},
{
"input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.",
"output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020"
},
{
"input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..",
"output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200"
},
{
"input": "-.---...----...--.--...-.--.----",
"output": "121002200020200012022"
},
{
"input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.",
"output": "202020212012111010201021100001021221200011222112012201012220"
}
] | 1,540,959,987
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 30
| 404
| 0
|
s=input()
i=0
ans=""
while i<len(s):
if (i+1)<len(s):
if s[i]=='-':
if s[i+1]=='.':
ans+='1'
if s[i+1]=='-':
ans+='2'
i+=2
else:
ans+='0'
i+=1
else:
ans+='0'
i+=1
print(ans)
|
Title: Borze
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as Β«.Β», 1 as Β«-.Β» and 2 as Β«--Β». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
Input Specification:
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output Specification:
Output the decoded ternary number. It can have leading zeroes.
Demo Input:
['.-.--\n', '--.\n', '-..-.--\n']
Demo Output:
['012', '20', '1012']
Note:
none
|
```python
s=input()
i=0
ans=""
while i<len(s):
if (i+1)<len(s):
if s[i]=='-':
if s[i+1]=='.':
ans+='1'
if s[i+1]=='-':
ans+='2'
i+=2
else:
ans+='0'
i+=1
else:
ans+='0'
i+=1
print(ans)
```
| 3.899
|
884
|
C
|
Bertown Subway
|
PROGRAMMING
| 1,500
|
[
"dfs and similar",
"greedy",
"math"
] | null | null |
The construction of subway in Bertown is almost finished! The President of Berland will visit this city soon to look at the new subway himself.
There are *n* stations in the subway. It was built according to the Bertown Transport Law:
1. For each station *i* there exists exactly one train that goes from this station. Its destination station is *p**i*, possibly *p**i*<==<=*i*; 1. For each station *i* there exists exactly one station *j* such that *p**j*<==<=*i*.
The President will consider the convenience of subway after visiting it. The convenience is the number of ordered pairs (*x*,<=*y*) such that person can start at station *x* and, after taking some subway trains (possibly zero), arrive at station *y* (1<=β€<=*x*,<=*y*<=β€<=*n*).
The mayor of Bertown thinks that if the subway is not convenient enough, then the President might consider installing a new mayor (and, of course, the current mayor doesn't want it to happen). Before President visits the city mayor has enough time to rebuild some paths of subway, thus changing the values of *p**i* for not more than two subway stations. Of course, breaking the Bertown Transport Law is really bad, so the subway must be built according to the Law even after changes.
The mayor wants to do these changes in such a way that the convenience of the subway is maximized. Help him to calculate the maximum possible convenience he can get!
|
The first line contains one integer number *n* (1<=β€<=*n*<=β€<=100000) β the number of stations.
The second line contains *n* integer numbers *p*1, *p*2, ..., *p**n* (1<=β€<=*p**i*<=β€<=*n*) β the current structure of the subway. All these numbers are distinct.
|
Print one number β the maximum possible value of convenience.
|
[
"3\n2 1 3\n",
"5\n1 5 4 3 2\n"
] |
[
"9\n",
"17\n"
] |
In the first example the mayor can change *p*<sub class="lower-index">2</sub> to 3 and *p*<sub class="lower-index">3</sub> to 1, so there will be 9 pairs: (1,β1), (1,β2), (1,β3), (2,β1), (2,β2), (2,β3), (3,β1), (3,β2), (3,β3).
In the second example the mayor can change *p*<sub class="lower-index">2</sub> to 4 and *p*<sub class="lower-index">3</sub> to 5.
| 0
|
[
{
"input": "3\n2 1 3",
"output": "9"
},
{
"input": "5\n1 5 4 3 2",
"output": "17"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n1 2",
"output": "4"
},
{
"input": "2\n2 1",
"output": "4"
},
{
"input": "100\n98 52 63 2 18 96 31 58 84 40 41 45 66 100 46 71 26 48 81 20 73 91 68 76 13 93 17 29 64 95 79 21 55 75 19 85 54 51 89 78 15 87 43 59 36 1 90 35 65 56 62 28 86 5 82 49 3 99 33 9 92 32 74 69 27 22 77 16 44 94 34 6 57 70 23 12 61 25 8 11 67 47 83 88 10 14 30 7 97 60 42 37 24 38 53 50 4 80 72 39",
"output": "5416"
},
{
"input": "5\n1 4 2 3 5",
"output": "17"
},
{
"input": "6\n5 3 6 1 4 2",
"output": "36"
},
{
"input": "10\n5 1 6 2 8 3 4 10 9 7",
"output": "82"
},
{
"input": "20\n1 6 15 9 18 17 7 8 3 19 2 13 11 12 14 4 5 20 16 10",
"output": "326"
},
{
"input": "3\n1 2 3",
"output": "5"
}
] | 1,510,084,356
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 187
| 6,860,800
|
def dfs(i, Colour, P):
Stack = [i]
size = 0
while Stack:
v = Stack[-1]
if Colour[v] == 0:
Colour[v] = 1
size += 1
if Colour[P[v] - 1] == 0:
Stack.append(P[v] - 1)
else:
Colour[v] = 2
Stack.pop()
else:
Colour[v] = 2
Stack.pop()
return size
n = int(input())
P = list(map(int, input().split()))
Colour = [0] * n
Len = []
for i in range(n):
if Colour[i] == 0:
Len.append(dfs(i, Colour, P))
c1 = 0
c2 = 0
count = 0
for i in Len:
if c1 <= i:
c2 = c1
c1 = i
elif i > c2:
c2 = i
for i in Len:
count += i*i
count += c1*c2*2
print(count)
|
Title: Bertown Subway
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The construction of subway in Bertown is almost finished! The President of Berland will visit this city soon to look at the new subway himself.
There are *n* stations in the subway. It was built according to the Bertown Transport Law:
1. For each station *i* there exists exactly one train that goes from this station. Its destination station is *p**i*, possibly *p**i*<==<=*i*; 1. For each station *i* there exists exactly one station *j* such that *p**j*<==<=*i*.
The President will consider the convenience of subway after visiting it. The convenience is the number of ordered pairs (*x*,<=*y*) such that person can start at station *x* and, after taking some subway trains (possibly zero), arrive at station *y* (1<=β€<=*x*,<=*y*<=β€<=*n*).
The mayor of Bertown thinks that if the subway is not convenient enough, then the President might consider installing a new mayor (and, of course, the current mayor doesn't want it to happen). Before President visits the city mayor has enough time to rebuild some paths of subway, thus changing the values of *p**i* for not more than two subway stations. Of course, breaking the Bertown Transport Law is really bad, so the subway must be built according to the Law even after changes.
The mayor wants to do these changes in such a way that the convenience of the subway is maximized. Help him to calculate the maximum possible convenience he can get!
Input Specification:
The first line contains one integer number *n* (1<=β€<=*n*<=β€<=100000) β the number of stations.
The second line contains *n* integer numbers *p*1, *p*2, ..., *p**n* (1<=β€<=*p**i*<=β€<=*n*) β the current structure of the subway. All these numbers are distinct.
Output Specification:
Print one number β the maximum possible value of convenience.
Demo Input:
['3\n2 1 3\n', '5\n1 5 4 3 2\n']
Demo Output:
['9\n', '17\n']
Note:
In the first example the mayor can change *p*<sub class="lower-index">2</sub> to 3 and *p*<sub class="lower-index">3</sub> to 1, so there will be 9 pairs: (1,β1), (1,β2), (1,β3), (2,β1), (2,β2), (2,β3), (3,β1), (3,β2), (3,β3).
In the second example the mayor can change *p*<sub class="lower-index">2</sub> to 4 and *p*<sub class="lower-index">3</sub> to 5.
|
```python
def dfs(i, Colour, P):
Stack = [i]
size = 0
while Stack:
v = Stack[-1]
if Colour[v] == 0:
Colour[v] = 1
size += 1
if Colour[P[v] - 1] == 0:
Stack.append(P[v] - 1)
else:
Colour[v] = 2
Stack.pop()
else:
Colour[v] = 2
Stack.pop()
return size
n = int(input())
P = list(map(int, input().split()))
Colour = [0] * n
Len = []
for i in range(n):
if Colour[i] == 0:
Len.append(dfs(i, Colour, P))
c1 = 0
c2 = 0
count = 0
for i in Len:
if c1 <= i:
c2 = c1
c1 = i
elif i > c2:
c2 = i
for i in Len:
count += i*i
count += c1*c2*2
print(count)
```
| 3
|
|
864
|
B
|
Polycarp and Letters
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation",
"strings"
] | null | null |
Polycarp loves lowercase letters and dislikes uppercase ones. Once he got a string *s* consisting only of lowercase and uppercase Latin letters.
Let *A* be a set of positions in the string. Let's call it pretty if following conditions are met:
- letters on positions from *A* in the string are all distinct and lowercase; - there are no uppercase letters in the string which are situated between positions from *A* (i.e. there is no such *j* that *s*[*j*] is an uppercase letter, and *a*1<=<<=*j*<=<<=*a*2 for some *a*1 and *a*2 from *A*).
Write a program that will determine the maximum number of elements in a pretty set of positions.
|
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=200) β length of string *s*.
The second line contains a string *s* consisting of lowercase and uppercase Latin letters.
|
Print maximum number of elements in pretty set of positions for string *s*.
|
[
"11\naaaaBaabAbA\n",
"12\nzACaAbbaazzC\n",
"3\nABC\n"
] |
[
"2\n",
"3\n",
"0\n"
] |
In the first example the desired positions might be 6 and 8 or 7 and 8. Positions 6 and 7 contain letters 'a', position 8 contains letter 'b'. The pair of positions 1 and 8 is not suitable because there is an uppercase letter 'B' between these position.
In the second example desired positions can be 7, 8 and 11. There are other ways to choose pretty set consisting of three elements.
In the third example the given string *s* does not contain any lowercase letters, so the answer is 0.
| 1,000
|
[
{
"input": "11\naaaaBaabAbA",
"output": "2"
},
{
"input": "12\nzACaAbbaazzC",
"output": "3"
},
{
"input": "3\nABC",
"output": "0"
},
{
"input": "1\na",
"output": "1"
},
{
"input": "2\naz",
"output": "2"
},
{
"input": "200\nXbTJZqcbpYuZQEoUrbxlPXAPCtVLrRExpQzxzqzcqsqzsiisswqitswzCtJQxOavicSdBIodideVRKHPojCNHmbnrLgwJlwOpyrJJIhrUePszxSjJGeUgTtOfewPQnPVWhZAtogRPrJLwyShNQaeNsvrJwjuuBOMPCeSckBMISQzGngfOmeyfDObncyeNsihYVtQbSEh",
"output": "8"
},
{
"input": "2\nAZ",
"output": "0"
},
{
"input": "28\nAabcBabcCBNMaaaaabbbbbcccccc",
"output": "3"
},
{
"input": "200\nrsgraosldglhdoorwhkrsehjpuxrjuwgeanjgezhekprzarelduuaxdnspzjuooguuwnzkowkuhzduakdrzpnslauejhrrkalwpurpuuswdgeadlhjwzjgegwpknepazwwleulppwrlgrgedlwdzuodzropsrrkxusjnuzshdkjrxxpgzanzdrpnggdwxarpwohxdepJ",
"output": "17"
},
{
"input": "1\nk",
"output": "1"
},
{
"input": "1\nH",
"output": "0"
},
{
"input": "2\nzG",
"output": "1"
},
{
"input": "2\ngg",
"output": "1"
},
{
"input": "2\nai",
"output": "2"
},
{
"input": "20\npEjVrKWLIFCZjIHgggVU",
"output": "1"
},
{
"input": "20\niFSiiigiYFSKmDnMGcgM",
"output": "2"
},
{
"input": "20\nedxedxxxCQiIVmYEUtLi",
"output": "3"
},
{
"input": "20\nprnchweyabjvzkoqiltm",
"output": "20"
},
{
"input": "35\nQLDZNKFXKVSVLUVHRTDPQYMSTDXBELXBOTS",
"output": "0"
},
{
"input": "35\nbvZWiitgxodztelnYUyljYGnCoWluXTvBLp",
"output": "10"
},
{
"input": "35\nBTexnaeplecllxwlanarpcollawHLVMHIIF",
"output": "10"
},
{
"input": "35\nhhwxqysolegsthsvfcqiryenbujbrrScobu",
"output": "20"
},
{
"input": "26\npbgfqosklxjuzmdheyvawrictn",
"output": "26"
},
{
"input": "100\nchMRWwymTDuZDZuSTvUmmuxvSscnTasyjlwwodhzcoifeahnbmcifyeobbydwparebduoLDCgHlOsPtVRbYGGQXfnkdvrWKIwCRl",
"output": "20"
},
{
"input": "100\nhXYLXKUMBrGkjqQJTGbGWAfmztqqapdbjbhcualhypgnaieKXmhzGMnqXVlcPesskfaEVgvWQTTShRRnEtFahWDyuBzySMpugxCM",
"output": "19"
},
{
"input": "100\nucOgELrgjMrFOgtHzqgvUgtHngKJxdMFKBjfcCppciqmGZXXoiSZibgpadshyljqrwxbomzeutvnhTLGVckZUmyiFPLlwuLBFito",
"output": "23"
},
{
"input": "200\nWTCKAKLVGXSYFVMVJDUYERXNMVNTGWXUGRFCGMYXJQGLODYZTUIDENHYEGFKXFIEUILAMESAXAWZXVCZPJPEYUXBITHMTZOTMKWITGRSFHODKVJHPAHVVWTCTHIVAWAREQXWMPUWQSTPPJFHKGKELBTPUYDAVIUMGASPUEDIODRYXIWCORHOSLIBLOZUNJPHHMXEXOAY",
"output": "0"
},
{
"input": "200\neLCCuYMPPwQoNlCpPOtKWJaQJmWfHeZCKiMSpILHSKjFOYGpRMzMCfMXdDuQdBGNsCNrHIVJzEFfBZcNMwNcFjOFVJvEtUQmLbFNKVHgNDyFkFVQhUTUQDgXhMjJZgFSSiHhMKuTgZQYJqAqKBpHoHddddddddddddddddXSSYNKNnRrKuOjAVKZlRLzCjExPdHaDHBT",
"output": "1"
},
{
"input": "200\nitSYxgOLlwOoAkkkkkzzzzzzzzkzkzkzkkkkkzkzzkzUDJSKybRPBvaIDsNuWImPJvrHkKiMeYukWmtHtgZSyQsgYanZvXNbKXBlFLSUcqRnGWSriAvKxsTkDJfROqaKdzXhvJsPEDATueCraWOGEvRDWjPwXuiNpWsEnCuhDcKWOQxjBkdBqmFatWFkgKsbZuLtRGtY",
"output": "2"
},
{
"input": "200\noggqoqqogoqoggggoggqgooqggogogooogqqgggoqgggqoqogogggogggqgooqgqggqqqoqgqgoooqgqogqoggoqqgqoqgoooqoogooqoogqoqoqqgoqgoqgggogqqqoqoggoqoqqoqggqoggooqqqoqggoggqqqqqqqqqgogqgggggooogogqgggqogqgoqoqogoooq",
"output": "3"
},
{
"input": "200\nCtclUtUnmqFniaLqGRmMoUMeLyFfAgWxIZxdrBarcRQprSOGcdUYsmDbooSuOvBLgrYlgaIjJtFgcxJKHGkCXpYfVKmUbouuIqGstFrrwJzYQqjjqqppqqqqqpqqqjpjjpjqjXRYkfPhGAatOigFuItkKxkjCBLdiNMVGjmdWNMgOOvmaJEdGsWNoaERrINNKqKeQajv",
"output": "3"
},
{
"input": "200\nmeZNrhqtSTSmktGQnnNOTcnyAMTKSixxKQKiagrMqRYBqgbRlsbJhvtNeHVUuMCyZLCnsIixRYrYEAkfQOxSVqXkrPqeCZQksInzRsRKBgvIqlGVPxPQnypknSXjgMjsjElcqGsaJRbegJVAKtWcHoOnzHqzhoKReqBBsOhZYLaYJhmqOMQsizdCsQfjUDHcTtHoeYwu",
"output": "4"
},
{
"input": "200\nvFAYTHJLZaivWzSYmiuDBDUFACDSVbkImnVaXBpCgrbgmTfXKJfoglIkZxWPSeVSFPnHZDNUAqLyhjLXSuAqGLskBlDxjxGPJyGdwzlPfIekwsblIrkxzfhJeNoHywdfAGlJzqXOfQaKceSqViVFTRJEGfACnsFeSFpOYisIHJciqTMNAmgeXeublTvfWoPnddtvKIyF",
"output": "6"
},
{
"input": "200\ngnDdkqJjYvduVYDSsswZDvoCouyaYZTfhmpSakERWLhufZtthWsfbQdTGwhKYjEcrqWBOyxBbiFhdLlIjChLOPiOpYmcrJgDtXsJfmHtLrabyGKOfHQRukEtTzwoqBHfmyVXPebfcpGQacLkGWFwerszjdHpTBXGssYXmGHlcCBgBXyGJqxbVhvDffLyCrZnxonABEXV",
"output": "7"
},
{
"input": "200\nBmggKNRZBXPtJqlJaXLdKKQLDJvXpDuQGupiRQfDwCJCJvAlDDGpPZNOvXkrdKOFOEFBVfrsZjWyHPoKGzXmTAyPJGEmxCyCXpeAdTwbrMtWLmlmGNqxvuxmqpmtpuhrmxxtrquSLFYVlnSYgRJDYHWgHBbziBLZRwCIJNvbtsEdLLxmTbnjkoqSPAuzEeTYLlmejOUH",
"output": "9"
},
{
"input": "200\nMkuxcDWdcnqsrlTsejehQKrTwoOBRCUAywqSnZkDLRmVBDVoOqdZHbrInQQyeRFAjiYYmHGrBbWgWstCPfLPRdNVDXBdqFJsGQfSXbufsiogybEhKDlWfPazIuhpONwGzZWaQNwVnmhTqWdewaklgjwaumXYDGwjSeEcYXjkVtLiYSWULEnTFukIlWQGWsXwWRMJGTcI",
"output": "10"
},
{
"input": "200\nOgMBgYeuMJdjPtLybvwmGDrQEOhliaabEtwulzNEjsfnaznXUMoBbbxkLEwSQzcLrlJdjJCLGVNBxorghPxTYCoqniySJMcilpsqpBAbqdzqRUDVaYOgqGhGrxlIJkyYgkOdTUgRZwpgIkeZFXojLXpDilzirHVVadiHaMrxhzodzpdvhvrzdzxbhmhdpxqqpoDegfFQ",
"output": "11"
},
{
"input": "200\nOLaJOtwultZLiZPSYAVGIbYvbIuZkqFZXwfsqpsavCDmBMStAuUFLBVknWDXNzmiuUYIsUMGxtoadWlPYPqvqSvpYdOiJRxFzGGnnmstniltvitnrmyrblnqyruylummmlsqtqitlbulvtuitiqimuintbimqyurviuntqnnvslynlNYMpYVKYwKVTbIUVdlNGrcFZON",
"output": "12"
},
{
"input": "200\nGAcmlaqfjSAQLvXlkhxujXgSbxdFAwnoxDuldDvYmpUhTWJdcEQSdARLrozJzIgFVCkzPUztWIpaGfiKeqzoXinEjVuoKqyBHmtFjBWcRdBmyjviNlGAIkpikjAimmBgayfphrstfbjexjbttzfzfzaysxfyrjazfhtpghnbbeffjhxrjxpttesgzrnrfbgzzsRsCgmz",
"output": "15"
},
{
"input": "200\nYRvIopNqSTYDhViTqCLMwEbTTIdHkoeuBmAJWhgtOgVxlcHSsavDNzMfpwTghkBvYEtCYQxicLUxdgAcaCzOOgbQYsfnaTXFlFxbeEiGwdNvxwHzkTdKtWlqzalwniDDBDipkxfflpaqkfkgfezbkxdvzemlfohwtgytzzywmwhvzUgPlPdeAVqTPAUZbogQheRXetvT",
"output": "20"
},
{
"input": "200\nNcYVomemswLCUqVRSDKHCknlBmqeSWhVyRzQrnZaOANnTGqsRFMjpczllcEVebqpxdavzppvztxsnfmtcharzqlginndyjkawzurqkxJLXiXKNZTIIxhSQghDpjwzatEqnLMTLxwoEKpHytvWkKFDUcZjLShCiVdocxRvvJtbXHCDGpJvMwRKWLhcTFtswdLUHkbhfau",
"output": "25"
},
{
"input": "200\nDxNZuvkTkQEqdWIkLzcKAwfqvZQiptnTazydSCTIfGjDhLMrlPZiKEsqIdDhgKPAlEvXyzNwWtYorotgkcwydpabjqnzubaksdchucxtkmjzfretdmvlxgklyvicrtftvztsbiUaQorfNIYUOdwQDRsKpxLUiLknbLbinilpPXPTTwLAnXVpMHBaAcKWgDBeOFabPtXU",
"output": "26"
},
{
"input": "4\nabbc",
"output": "3"
},
{
"input": "3\naaa",
"output": "1"
},
{
"input": "3\naba",
"output": "2"
},
{
"input": "3\nabb",
"output": "2"
},
{
"input": "3\nbba",
"output": "2"
},
{
"input": "3\nAaa",
"output": "1"
},
{
"input": "3\nAba",
"output": "2"
},
{
"input": "3\naBa",
"output": "1"
},
{
"input": "3\naAa",
"output": "1"
},
{
"input": "3\naAb",
"output": "1"
},
{
"input": "3\nAaA",
"output": "1"
},
{
"input": "5\naBacd",
"output": "3"
},
{
"input": "5\naAabc",
"output": "3"
}
] | 1,603,728,725
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 55
| 156
| 716,800
|
from sys import stdin,stderr,maxsize
mod = int(1e9)+7
def I(): return int(stdin.readline())
def lint(): return [int(x) for x in stdin.readline().split()]
def S(): return input().strip()
def grid(r, c): return [lint() for i in range(r)]
def debug(*args, c=6): print('\033[3{}m'.format(c), *args, '\033[0m', file=stderr)
from collections import Counter,defaultdict
from itertools import permutations
import re
def bark():
n = I(); s =S()
a = re.split('[A-Z]+',s)
p = max(map(lambda x: len(set(x)),a))
return p
if __name__ == '__main__':
print(bark())
|
Title: Polycarp and Letters
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp loves lowercase letters and dislikes uppercase ones. Once he got a string *s* consisting only of lowercase and uppercase Latin letters.
Let *A* be a set of positions in the string. Let's call it pretty if following conditions are met:
- letters on positions from *A* in the string are all distinct and lowercase; - there are no uppercase letters in the string which are situated between positions from *A* (i.e. there is no such *j* that *s*[*j*] is an uppercase letter, and *a*1<=<<=*j*<=<<=*a*2 for some *a*1 and *a*2 from *A*).
Write a program that will determine the maximum number of elements in a pretty set of positions.
Input Specification:
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=200) β length of string *s*.
The second line contains a string *s* consisting of lowercase and uppercase Latin letters.
Output Specification:
Print maximum number of elements in pretty set of positions for string *s*.
Demo Input:
['11\naaaaBaabAbA\n', '12\nzACaAbbaazzC\n', '3\nABC\n']
Demo Output:
['2\n', '3\n', '0\n']
Note:
In the first example the desired positions might be 6 and 8 or 7 and 8. Positions 6 and 7 contain letters 'a', position 8 contains letter 'b'. The pair of positions 1 and 8 is not suitable because there is an uppercase letter 'B' between these position.
In the second example desired positions can be 7, 8 and 11. There are other ways to choose pretty set consisting of three elements.
In the third example the given string *s* does not contain any lowercase letters, so the answer is 0.
|
```python
from sys import stdin,stderr,maxsize
mod = int(1e9)+7
def I(): return int(stdin.readline())
def lint(): return [int(x) for x in stdin.readline().split()]
def S(): return input().strip()
def grid(r, c): return [lint() for i in range(r)]
def debug(*args, c=6): print('\033[3{}m'.format(c), *args, '\033[0m', file=stderr)
from collections import Counter,defaultdict
from itertools import permutations
import re
def bark():
n = I(); s =S()
a = re.split('[A-Z]+',s)
p = max(map(lambda x: len(set(x)),a))
return p
if __name__ == '__main__':
print(bark())
```
| 3
|
|
509
|
A
|
Maximum in Table
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
An *n*<=Γ<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=Γ<=*n* table defined by the rules above.
|
The only line of input contains a positive integer *n* (1<=β€<=*n*<=β€<=10) β the number of rows and columns of the table.
|
Print a single line containing a positive integer *m* β the maximum value in the table.
|
[
"1\n",
"5\n"
] |
[
"1",
"70"
] |
In the second test the rows of the table look as follows:
| 0
|
[
{
"input": "1",
"output": "1"
},
{
"input": "5",
"output": "70"
},
{
"input": "2",
"output": "2"
},
{
"input": "3",
"output": "6"
},
{
"input": "4",
"output": "20"
},
{
"input": "6",
"output": "252"
},
{
"input": "7",
"output": "924"
},
{
"input": "9",
"output": "12870"
},
{
"input": "10",
"output": "48620"
},
{
"input": "8",
"output": "3432"
}
] | 1,641,527,012
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 10
| 77
| 0
|
n = int(input())
dp = [[1 for _ in range(n)] for _ in range(n)]
ans = 0
for i in range(1, n):
for j in range(1, n):
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
print(dp[-1][-1])
|
Title: Maximum in Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An *n*<=Γ<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=Γ<=*n* table defined by the rules above.
Input Specification:
The only line of input contains a positive integer *n* (1<=β€<=*n*<=β€<=10) β the number of rows and columns of the table.
Output Specification:
Print a single line containing a positive integer *m* β the maximum value in the table.
Demo Input:
['1\n', '5\n']
Demo Output:
['1', '70']
Note:
In the second test the rows of the table look as follows:
|
```python
n = int(input())
dp = [[1 for _ in range(n)] for _ in range(n)]
ans = 0
for i in range(1, n):
for j in range(1, n):
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
print(dp[-1][-1])
```
| 3
|
|
279
|
B
|
Books
|
PROGRAMMING
| 1,400
|
[
"binary search",
"brute force",
"implementation",
"two pointers"
] | null | null |
When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book.
Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it.
Print the maximum number of books Valera can read.
|
The first line contains two integers *n* and *t* (1<=β€<=*n*<=β€<=105;Β 1<=β€<=*t*<=β€<=109) β the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book.
|
Print a single integer β the maximum number of books Valera can read.
|
[
"4 5\n3 1 2 1\n",
"3 3\n2 2 3\n"
] |
[
"3\n",
"1\n"
] |
none
| 1,000
|
[
{
"input": "4 5\n3 1 2 1",
"output": "3"
},
{
"input": "3 3\n2 2 3",
"output": "1"
},
{
"input": "1 3\n5",
"output": "0"
},
{
"input": "1 10\n4",
"output": "1"
},
{
"input": "2 10\n6 4",
"output": "2"
},
{
"input": "6 10\n2 3 4 2 1 1",
"output": "4"
},
{
"input": "7 13\n6 8 14 9 4 11 10",
"output": "2"
},
{
"input": "10 15\n10 9 1 1 5 10 5 3 7 2",
"output": "3"
},
{
"input": "20 30\n8 1 2 6 9 4 1 9 9 10 4 7 8 9 5 7 1 8 7 4",
"output": "6"
},
{
"input": "30 60\n16 13 22 38 13 35 17 17 20 38 12 19 9 22 20 3 35 34 34 21 35 40 22 3 27 19 12 4 8 19",
"output": "4"
},
{
"input": "100 100\n75 92 18 6 81 67 7 92 100 65 82 32 50 67 85 31 80 91 84 63 39 52 92 81 1 98 24 12 43 48 17 86 51 72 48 95 45 50 12 66 19 79 49 89 34 1 97 75 20 33 96 27 42 23 73 71 93 1 85 19 66 14 17 61 20 39 36 33 42 61 56 64 23 91 80 99 40 74 13 18 98 85 74 39 62 84 46 74 50 23 38 11 79 14 9 25 66 100 25 52",
"output": "3"
},
{
"input": "10 1\n4418 7528 8170 1736 1317 3205 8183 4995 8039 4708",
"output": "0"
},
{
"input": "50 2\n124 214 63 73 996 760 38 571 451 300 970 1 706 937 837 494 619 88 851 411 957 990 842 613 821 649 627 34 693 678 734 116 816 985 705 940 499 493 922 967 854 439 112 644 961 438 189 572 655 550",
"output": "1"
}
] | 1,682,257,720
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 38
| 498
| 6,451,200
|
n, t = map(int, input().split())
books = list(map(int, input().split()))
i = j = 0
time = ans = 0
while j <= n - 1:
time += books[j]
while time > t:
time -= books[i]
i += 1
if time <= t:
ans = max(ans, j - i + 1)
j += 1
print(ans)
|
Title: Books
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book.
Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it.
Print the maximum number of books Valera can read.
Input Specification:
The first line contains two integers *n* and *t* (1<=β€<=*n*<=β€<=105;Β 1<=β€<=*t*<=β€<=109) β the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book.
Output Specification:
Print a single integer β the maximum number of books Valera can read.
Demo Input:
['4 5\n3 1 2 1\n', '3 3\n2 2 3\n']
Demo Output:
['3\n', '1\n']
Note:
none
|
```python
n, t = map(int, input().split())
books = list(map(int, input().split()))
i = j = 0
time = ans = 0
while j <= n - 1:
time += books[j]
while time > t:
time -= books[i]
i += 1
if time <= t:
ans = max(ans, j - i + 1)
j += 1
print(ans)
```
| 3
|
|
166
|
E
|
Tetrahedron
|
PROGRAMMING
| 1,500
|
[
"dp",
"math",
"matrices"
] | null | null |
You are given a tetrahedron. Let's mark its vertices with letters *A*, *B*, *C* and *D* correspondingly.
An ant is standing in the vertex *D* of the tetrahedron. The ant is quite active and he wouldn't stay idle. At each moment of time he makes a step from one vertex to another one along some edge of the tetrahedron. The ant just can't stand on one place.
You do not have to do much to solve the problem: your task is to count the number of ways in which the ant can go from the initial vertex *D* to itself in exactly *n* steps. In other words, you are asked to find out the number of different cyclic paths with the length of *n* from vertex *D* to itself. As the number can be quite large, you should print it modulo 1000000007 (109<=+<=7).
|
The first line contains the only integer *n* (1<=β€<=*n*<=β€<=107) β the required length of the cyclic path.
|
Print the only integer β the required number of ways modulo 1000000007 (109<=+<=7).
|
[
"2\n",
"4\n"
] |
[
"3\n",
"21\n"
] |
The required paths in the first sample are:
- *D*β-β*A*β-β*D* - *D*β-β*B*β-β*D* - *D*β-β*C*β-β*D*
| 1,000
|
[
{
"input": "2",
"output": "3"
},
{
"input": "4",
"output": "21"
},
{
"input": "1",
"output": "0"
},
{
"input": "3",
"output": "6"
},
{
"input": "5",
"output": "60"
},
{
"input": "6",
"output": "183"
},
{
"input": "7",
"output": "546"
},
{
"input": "8",
"output": "1641"
},
{
"input": "9",
"output": "4920"
},
{
"input": "10",
"output": "14763"
},
{
"input": "15",
"output": "3587226"
},
{
"input": "30",
"output": "782663359"
},
{
"input": "10000000",
"output": "192336614"
},
{
"input": "100",
"output": "721510432"
},
{
"input": "300",
"output": "327873818"
},
{
"input": "900",
"output": "295068084"
},
{
"input": "1500",
"output": "451187545"
},
{
"input": "3000",
"output": "645417275"
},
{
"input": "5000",
"output": "755610910"
},
{
"input": "10000",
"output": "723907367"
},
{
"input": "50000",
"output": "969527595"
},
{
"input": "90000",
"output": "548978368"
},
{
"input": "99999",
"output": "909741855"
},
{
"input": "100000",
"output": "729225554"
},
{
"input": "300000",
"output": "93822635"
},
{
"input": "800000",
"output": "178940616"
},
{
"input": "1000000",
"output": "266233856"
},
{
"input": "4000000",
"output": "882155933"
},
{
"input": "9000000",
"output": "295060537"
},
{
"input": "9999999",
"output": "730778875"
},
{
"input": "1000000",
"output": "266233856"
},
{
"input": "9999999",
"output": "730778875"
},
{
"input": "10000000",
"output": "192336614"
},
{
"input": "9999998",
"output": "576926295"
},
{
"input": "30",
"output": "782663359"
},
{
"input": "31",
"output": "347990060"
}
] | 1,684,397,485
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 36
| 872
| 5,734,400
|
import sys,random,bisect
from collections import deque,defaultdict,Counter
from heapq import heapify,heappop,heappush
from math import gcd
from types import GeneratorType
#from functools import cache 3.9
mod = int(1e9 + 7) #998244353
inf = int(1e20)
input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())
ii = lambda :int(input())
py = lambda :print("YES")
pn = lambda :print("NO")
n=ii()
arr=[[0, [0, 0, 0, 1]], [1000000, [266233855, 266233855, 266233855, 266233856]], [2000000, [740458790, 740458790, 740458790, 740458791]], [3000000, [8248929, 8248929, 8248929, 8248930]], [4000000, [882155932, 882155932,
882155932, 882155933]], [5000000, [522227583, 522227583, 522227583, 522227584]], [6000000, [333180769, 333180769, 333180769, 333180770]], [7000000, [286640604, 286640604, 286640604, 286640605]], [8000000, [425892029, 425892029, 425892029, 425892030]], [9000000, [295060536, 295060536, 295060536, 295060537]], [10000000, [192336613, 192336613, 192336613, 192336614]]]
for i,a in arr[::-1]:
if i<=n:
n-=i
f=a
break
for i in range(n):
t=sum(f)
f[0],f[1],f[2],f[3]=(t-f[0])%mod,(t-f[1])%mod,(t-f[2])%mod,(t-f[3])%mod
print(f[-1])
|
Title: Tetrahedron
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a tetrahedron. Let's mark its vertices with letters *A*, *B*, *C* and *D* correspondingly.
An ant is standing in the vertex *D* of the tetrahedron. The ant is quite active and he wouldn't stay idle. At each moment of time he makes a step from one vertex to another one along some edge of the tetrahedron. The ant just can't stand on one place.
You do not have to do much to solve the problem: your task is to count the number of ways in which the ant can go from the initial vertex *D* to itself in exactly *n* steps. In other words, you are asked to find out the number of different cyclic paths with the length of *n* from vertex *D* to itself. As the number can be quite large, you should print it modulo 1000000007 (109<=+<=7).
Input Specification:
The first line contains the only integer *n* (1<=β€<=*n*<=β€<=107) β the required length of the cyclic path.
Output Specification:
Print the only integer β the required number of ways modulo 1000000007 (109<=+<=7).
Demo Input:
['2\n', '4\n']
Demo Output:
['3\n', '21\n']
Note:
The required paths in the first sample are:
- *D*β-β*A*β-β*D* - *D*β-β*B*β-β*D* - *D*β-β*C*β-β*D*
|
```python
import sys,random,bisect
from collections import deque,defaultdict,Counter
from heapq import heapify,heappop,heappush
from math import gcd
from types import GeneratorType
#from functools import cache 3.9
mod = int(1e9 + 7) #998244353
inf = int(1e20)
input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())
ii = lambda :int(input())
py = lambda :print("YES")
pn = lambda :print("NO")
n=ii()
arr=[[0, [0, 0, 0, 1]], [1000000, [266233855, 266233855, 266233855, 266233856]], [2000000, [740458790, 740458790, 740458790, 740458791]], [3000000, [8248929, 8248929, 8248929, 8248930]], [4000000, [882155932, 882155932,
882155932, 882155933]], [5000000, [522227583, 522227583, 522227583, 522227584]], [6000000, [333180769, 333180769, 333180769, 333180770]], [7000000, [286640604, 286640604, 286640604, 286640605]], [8000000, [425892029, 425892029, 425892029, 425892030]], [9000000, [295060536, 295060536, 295060536, 295060537]], [10000000, [192336613, 192336613, 192336613, 192336614]]]
for i,a in arr[::-1]:
if i<=n:
n-=i
f=a
break
for i in range(n):
t=sum(f)
f[0],f[1],f[2],f[3]=(t-f[0])%mod,(t-f[1])%mod,(t-f[2])%mod,(t-f[3])%mod
print(f[-1])
```
| 3
|
|
500
|
A
|
New Year Transportation
|
PROGRAMMING
| 1,000
|
[
"dfs and similar",
"graphs",
"implementation"
] | null | null |
New Year is coming in Line World! In this world, there are *n* cells numbered by integers from 1 to *n*, as a 1<=Γ<=*n* board. People live in cells. However, it was hard to move between distinct cells, because of the difficulty of escaping the cell. People wanted to meet people who live in other cells.
So, user tncks0121 has made a transportation system to move between these cells, to celebrate the New Year. First, he thought of *n*<=-<=1 positive integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1. For every integer *i* where 1<=β€<=*i*<=β€<=*n*<=-<=1 the condition 1<=β€<=*a**i*<=β€<=*n*<=-<=*i* holds. Next, he made *n*<=-<=1 portals, numbered by integers from 1 to *n*<=-<=1. The *i*-th (1<=β€<=*i*<=β€<=*n*<=-<=1) portal connects cell *i* and cell (*i*<=+<=*a**i*), and one can travel from cell *i* to cell (*i*<=+<=*a**i*) using the *i*-th portal. Unfortunately, one cannot use the portal backwards, which means one cannot move from cell (*i*<=+<=*a**i*) to cell *i* using the *i*-th portal. It is easy to see that because of condition 1<=β€<=*a**i*<=β€<=*n*<=-<=*i* one can't leave the Line World using portals.
Currently, I am standing at cell 1, and I want to go to cell *t*. However, I don't know whether it is possible to go there. Please determine whether I can go to cell *t* by only using the construted transportation system.
|
The first line contains two space-separated integers *n* (3<=β€<=*n*<=β€<=3<=Γ<=104) and *t* (2<=β€<=*t*<=β€<=*n*) β the number of cells, and the index of the cell which I want to go to.
The second line contains *n*<=-<=1 space-separated integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1 (1<=β€<=*a**i*<=β€<=*n*<=-<=*i*). It is guaranteed, that using the given transportation system, one cannot leave the Line World.
|
If I can go to cell *t* using the transportation system, print "YES". Otherwise, print "NO".
|
[
"8 4\n1 2 1 2 1 2 1\n",
"8 5\n1 2 1 2 1 1 1\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample, the visited cells are: 1,β2,β4; so we can successfully visit the cell 4.
In the second sample, the possible cells to visit are: 1,β2,β4,β6,β7,β8; so we can't visit the cell 5, which we want to visit.
| 500
|
[
{
"input": "8 4\n1 2 1 2 1 2 1",
"output": "YES"
},
{
"input": "8 5\n1 2 1 2 1 1 1",
"output": "NO"
},
{
"input": "20 19\n13 16 7 6 12 1 5 7 8 6 5 7 5 5 3 3 2 2 1",
"output": "YES"
},
{
"input": "50 49\n11 7 1 41 26 36 19 16 38 14 36 35 37 27 20 27 3 6 21 2 27 11 18 17 19 16 22 8 8 9 1 7 5 12 5 6 13 6 11 2 6 3 1 5 1 1 2 2 1",
"output": "YES"
},
{
"input": "120 104\n41 15 95 85 34 11 25 42 65 39 77 80 74 17 66 73 21 14 36 63 63 79 45 24 65 7 63 80 51 21 2 19 78 28 71 2 15 23 17 68 62 18 54 39 43 70 3 46 34 23 41 65 32 10 13 18 10 3 16 48 54 18 57 28 3 24 44 50 15 2 20 22 45 44 3 29 2 27 11 2 12 25 25 31 1 2 32 4 11 30 13 16 26 21 1 13 21 8 15 5 18 13 5 15 3 8 13 6 5 1 9 7 1 2 4 1 1 2 1",
"output": "NO"
},
{
"input": "10 3\n8 3 5 4 2 3 2 2 1",
"output": "NO"
},
{
"input": "10 9\n8 3 5 4 2 3 2 2 1",
"output": "YES"
},
{
"input": "3 2\n1 1",
"output": "YES"
},
{
"input": "3 2\n2 1",
"output": "NO"
},
{
"input": "4 2\n2 1 1",
"output": "NO"
},
{
"input": "4 4\n2 2 1",
"output": "YES"
},
{
"input": "8 8\n1 2 1 2 1 2 1",
"output": "YES"
},
{
"input": "3 3\n1 1",
"output": "YES"
},
{
"input": "8 8\n1 2 1 2 1 1 1",
"output": "YES"
},
{
"input": "3 3\n2 1",
"output": "YES"
},
{
"input": "4 4\n1 1 1",
"output": "YES"
},
{
"input": "8 8\n1 1 1 1 1 1 1",
"output": "YES"
},
{
"input": "5 5\n1 1 1 1",
"output": "YES"
}
] | 1,647,104,190
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 46
| 1,536,000
|
n,t=map(int,input().split())
l=input().split()
temp=1
l=[int(i) for i in l]
while(temp!=t):
k=l[temp-1]+temp
if k==t:
print("YES")
exit()
elif k>t:
break
else:
temp=k
print("NO")
|
Title: New Year Transportation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
New Year is coming in Line World! In this world, there are *n* cells numbered by integers from 1 to *n*, as a 1<=Γ<=*n* board. People live in cells. However, it was hard to move between distinct cells, because of the difficulty of escaping the cell. People wanted to meet people who live in other cells.
So, user tncks0121 has made a transportation system to move between these cells, to celebrate the New Year. First, he thought of *n*<=-<=1 positive integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1. For every integer *i* where 1<=β€<=*i*<=β€<=*n*<=-<=1 the condition 1<=β€<=*a**i*<=β€<=*n*<=-<=*i* holds. Next, he made *n*<=-<=1 portals, numbered by integers from 1 to *n*<=-<=1. The *i*-th (1<=β€<=*i*<=β€<=*n*<=-<=1) portal connects cell *i* and cell (*i*<=+<=*a**i*), and one can travel from cell *i* to cell (*i*<=+<=*a**i*) using the *i*-th portal. Unfortunately, one cannot use the portal backwards, which means one cannot move from cell (*i*<=+<=*a**i*) to cell *i* using the *i*-th portal. It is easy to see that because of condition 1<=β€<=*a**i*<=β€<=*n*<=-<=*i* one can't leave the Line World using portals.
Currently, I am standing at cell 1, and I want to go to cell *t*. However, I don't know whether it is possible to go there. Please determine whether I can go to cell *t* by only using the construted transportation system.
Input Specification:
The first line contains two space-separated integers *n* (3<=β€<=*n*<=β€<=3<=Γ<=104) and *t* (2<=β€<=*t*<=β€<=*n*) β the number of cells, and the index of the cell which I want to go to.
The second line contains *n*<=-<=1 space-separated integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1 (1<=β€<=*a**i*<=β€<=*n*<=-<=*i*). It is guaranteed, that using the given transportation system, one cannot leave the Line World.
Output Specification:
If I can go to cell *t* using the transportation system, print "YES". Otherwise, print "NO".
Demo Input:
['8 4\n1 2 1 2 1 2 1\n', '8 5\n1 2 1 2 1 1 1\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample, the visited cells are: 1,β2,β4; so we can successfully visit the cell 4.
In the second sample, the possible cells to visit are: 1,β2,β4,β6,β7,β8; so we can't visit the cell 5, which we want to visit.
|
```python
n,t=map(int,input().split())
l=input().split()
temp=1
l=[int(i) for i in l]
while(temp!=t):
k=l[temp-1]+temp
if k==t:
print("YES")
exit()
elif k>t:
break
else:
temp=k
print("NO")
```
| 3
|
|
456
|
A
|
Laptops
|
PROGRAMMING
| 1,100
|
[
"sortings"
] | null | null |
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
|
The first line contains an integer *n* (1<=β€<=*n*<=β€<=105) β the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=β€<=*a**i*,<=*b**i*<=β€<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct.
|
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
|
[
"2\n1 2\n2 1\n"
] |
[
"Happy Alex\n"
] |
none
| 500
|
[
{
"input": "2\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "2\n1 1\n2 2",
"output": "Poor Alex"
},
{
"input": "3\n2 2\n3 3\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n3 3\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "1\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n2 3\n1 1\n3 2",
"output": "Happy Alex"
},
{
"input": "4\n4 1\n3 2\n2 3\n1 4",
"output": "Happy Alex"
},
{
"input": "2\n2 1\n1 2",
"output": "Happy Alex"
},
{
"input": "3\n3 2\n1 1\n2 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 1\n3 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
}
] | 1,677,909,649
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 46
| 358
| 9,625,600
|
from math import *
import sys
n = int(input())
laps=[]
for i in range(n):
laps.append([int(x) for x in input().split()])
laps.sort(key=lambda x: x[1])
for i in range(n-1):
if (laps[i][0]>laps[i+1][0]):
print('Happy Alex')
sys.exit()
print('Poor Alex')
|
Title: Laptops
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
Input Specification:
The first line contains an integer *n* (1<=β€<=*n*<=β€<=105) β the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=β€<=*a**i*,<=*b**i*<=β€<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct.
Output Specification:
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
Demo Input:
['2\n1 2\n2 1\n']
Demo Output:
['Happy Alex\n']
Note:
none
|
```python
from math import *
import sys
n = int(input())
laps=[]
for i in range(n):
laps.append([int(x) for x in input().split()])
laps.sort(key=lambda x: x[1])
for i in range(n-1):
if (laps[i][0]>laps[i+1][0]):
print('Happy Alex')
sys.exit()
print('Poor Alex')
```
| 3
|
|
37
|
A
|
Towers
|
PROGRAMMING
| 1,000
|
[
"sortings"
] |
A. Towers
|
2
|
256
|
Little Vasya has received a young builderβs kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
|
The first line contains an integer *N* (1<=β€<=*N*<=β€<=1000) β the number of bars at Vasyaβs disposal. The second line contains *N* space-separated integers *l**i* β the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
|
In one line output two numbers β the height of the largest tower and their total number. Remember that Vasya should use all the bars.
|
[
"3\n1 2 3\n",
"4\n6 5 6 7\n"
] |
[
"1 3\n",
"2 3\n"
] |
none
| 500
|
[
{
"input": "3\n1 2 3",
"output": "1 3"
},
{
"input": "4\n6 5 6 7",
"output": "2 3"
},
{
"input": "4\n3 2 1 1",
"output": "2 3"
},
{
"input": "4\n1 2 3 3",
"output": "2 3"
},
{
"input": "3\n20 22 36",
"output": "1 3"
},
{
"input": "25\n47 30 94 41 45 20 96 51 110 129 24 116 9 47 32 82 105 114 116 75 154 151 70 42 162",
"output": "2 23"
},
{
"input": "45\n802 664 442 318 318 827 417 878 711 291 231 414 807 553 657 392 279 202 386 606 465 655 658 112 887 15 25 502 95 44 679 775 942 609 209 871 31 234 4 231 150 110 22 823 193",
"output": "2 43"
},
{
"input": "63\n93 180 116 7 8 179 268 279 136 94 221 153 264 190 278 19 19 63 153 26 158 225 25 49 89 218 111 149 255 225 197 122 243 80 3 224 107 178 202 17 53 92 69 42 228 24 81 205 95 8 265 82 228 156 127 241 172 159 106 60 67 155 111",
"output": "2 57"
},
{
"input": "83\n246 535 994 33 390 927 321 97 223 922 812 705 79 80 977 457 476 636 511 137 6 360 815 319 717 674 368 551 714 628 278 713 761 553 184 414 623 753 428 214 581 115 439 61 677 216 772 592 187 603 658 310 439 559 870 376 109 321 189 337 277 26 70 734 796 907 979 693 570 227 345 650 737 633 701 914 134 403 972 940 371 6 642",
"output": "2 80"
},
{
"input": "105\n246 57 12 204 165 123 246 68 191 310 3 152 386 333 374 257 158 104 333 50 80 290 8 340 101 76 221 316 388 289 138 359 316 26 93 290 105 178 81 195 41 196 218 180 244 292 187 97 315 323 174 119 248 239 92 312 31 2 101 180 307 170 338 314 163 281 217 31 142 238 280 190 190 156 70 74 329 113 151 8 141 313 366 40 253 116 168 124 135 230 294 266 353 389 371 359 195 200 183 237 93 102 315 118 188",
"output": "2 92"
},
{
"input": "123\n112 277 170 247 252 115 157 293 256 143 196 90 12 164 164 42 8 223 167 109 175 232 239 111 148 51 9 254 93 32 268 162 231 91 47 162 161 191 195 145 247 292 129 199 230 94 144 217 18 205 176 20 143 198 121 243 211 262 230 277 195 255 108 290 220 275 158 2 286 200 60 267 278 207 123 150 123 116 131 13 12 226 33 244 30 275 263 45 158 192 254 149 242 176 62 224 221 288 250 160 155 225 132 143 276 293 218 145 197 175 33 129 79 206 210 192 222 262 190 52 274 243 233",
"output": "3 101"
},
{
"input": "5\n5 5 5 5 5",
"output": "5 1"
},
{
"input": "3\n1000 1000 1000",
"output": "3 1"
},
{
"input": "1\n1000",
"output": "1 1"
},
{
"input": "1\n1",
"output": "1 1"
},
{
"input": "5\n1 1000 1000 1000 1000",
"output": "4 2"
},
{
"input": "5\n1000 1000 1000 8 7",
"output": "3 3"
}
] | 1,563,558,671
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 61
| 248
| 0
|
#Towers
n = int(input())
a = list(map(int, input().split()))
a.sort()
temp = a[0]
max = 1
h = 0
count = 1
for i in range(n):
if temp == a[i]:
h += 1
if h > max:
max = h
else:
count += 1
temp = a[i]
h = 1
print("{} {}".format(max, count))
|
Title: Towers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Vasya has received a young builderβs kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
Input Specification:
The first line contains an integer *N* (1<=β€<=*N*<=β€<=1000) β the number of bars at Vasyaβs disposal. The second line contains *N* space-separated integers *l**i* β the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
Output Specification:
In one line output two numbers β the height of the largest tower and their total number. Remember that Vasya should use all the bars.
Demo Input:
['3\n1 2 3\n', '4\n6 5 6 7\n']
Demo Output:
['1 3\n', '2 3\n']
Note:
none
|
```python
#Towers
n = int(input())
a = list(map(int, input().split()))
a.sort()
temp = a[0]
max = 1
h = 0
count = 1
for i in range(n):
if temp == a[i]:
h += 1
if h > max:
max = h
else:
count += 1
temp = a[i]
h = 1
print("{} {}".format(max, count))
```
| 3.938
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line β the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,574,440,614
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 102
| 140
| 0
|
x = input()
y = input()
N=int(x, 2)^int(y,2)
a = '{0:b}'.format(N)
if len(a)<len(x):
a = '0'*(len(x)-len(a))+a
print(a)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line β the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
x = input()
y = input()
N=int(x, 2)^int(y,2)
a = '{0:b}'.format(N)
if len(a)<len(x):
a = '0'*(len(x)-len(a))+a
print(a)
```
| 3.965
|
1,004
|
B
|
Sonya and Exhibition
|
PROGRAMMING
| 1,300
|
[
"constructive algorithms",
"greedy",
"implementation",
"math"
] | null | null |
Sonya decided to organize an exhibition of flowers. Since the girl likes only roses and lilies, she decided that only these two kinds of flowers should be in this exhibition.
There are $n$ flowers in a row in the exhibition. Sonya can put either a rose or a lily in the $i$-th position. Thus each of $n$ positions should contain exactly one flower: a rose or a lily.
She knows that exactly $m$ people will visit this exhibition. The $i$-th visitor will visit all flowers from $l_i$ to $r_i$ inclusive. The girl knows that each segment has its own beauty that is equal to the product of the number of roses and the number of lilies.
Sonya wants her exhibition to be liked by a lot of people. That is why she wants to put the flowers in such way that the sum of beauties of all segments would be maximum possible.
|
The first line contains two integers $n$ and $m$ ($1\leq n, m\leq 10^3$)Β β the number of flowers and visitors respectively.
Each of the next $m$ lines contains two integers $l_i$ and $r_i$ ($1\leq l_i\leq r_i\leq n$), meaning that $i$-th visitor will visit all flowers from $l_i$ to $r_i$ inclusive.
|
Print the string of $n$ characters. The $i$-th symbol should be Β«0Β» if you want to put a rose in the $i$-th position, otherwise Β«1Β» if you want to put a lily.
If there are multiple answers, print any.
|
[
"5 3\n1 3\n2 4\n2 5\n",
"6 3\n5 6\n1 4\n4 6\n"
] |
[
"01100",
"110010"
] |
In the first example, Sonya can put roses in the first, fourth, and fifth positions, and lilies in the second and third positions;
- in the segment $[1\ldots3]$, there are one rose and two lilies, so the beauty is equal to $1\cdot 2=2$; - in the segment $[2\ldots4]$, there are one rose and two lilies, so the beauty is equal to $1\cdot 2=2$; - in the segment $[2\ldots5]$, there are two roses and two lilies, so the beauty is equal to $2\cdot 2=4$.
The total beauty is equal to $2+2+4=8$.
In the second example, Sonya can put roses in the third, fourth, and sixth positions, and lilies in the first, second, and fifth positions;
- in the segment $[5\ldots6]$, there are one rose and one lily, so the beauty is equal to $1\cdot 1=1$; - in the segment $[1\ldots4]$, there are two roses and two lilies, so the beauty is equal to $2\cdot 2=4$; - in the segment $[4\ldots6]$, there are two roses and one lily, so the beauty is equal to $2\cdot 1=2$.
The total beauty is equal to $1+4+2=7$.
| 1,000
|
[
{
"input": "5 3\n1 3\n2 4\n2 5",
"output": "01010"
},
{
"input": "6 3\n5 6\n1 4\n4 6",
"output": "010101"
},
{
"input": "10 4\n3 3\n1 6\n9 9\n10 10",
"output": "0101010101"
},
{
"input": "1 1\n1 1",
"output": "0"
},
{
"input": "1000 10\n3 998\n2 1000\n1 999\n2 1000\n3 998\n2 1000\n3 998\n1 1000\n2 1000\n3 999",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "1000 20\n50 109\n317 370\n710 770\n440 488\n711 757\n236 278\n314 355\n131 190\n115 162\n784 834\n16 56\n677 730\n802 844\n632 689\n23 74\n647 702\n930 986\n926 983\n769 822\n508 558",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "1000 10\n138 238\n160 260\n716 816\n504 604\n98 198\n26 126\n114 214\n217 317\n121 221\n489 589",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "1000 5\n167 296\n613 753\n650 769\n298 439\n71 209",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "1000 5\n349 415\n714 773\n125 179\n1 80\n148 242",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "914 10\n587 646\n770 843\n825 875\n439 485\n465 521\n330 387\n405 480\n477 521\n336 376\n715 771",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "571 10\n13 94\n450 510\n230 293\n302 375\n304 354\n421 504\n24 87\n122 181\n221 296\n257 307",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "6 2\n1 6\n1 4",
"output": "010101"
},
{
"input": "2 1\n1 2",
"output": "01"
}
] | 1,530,860,201
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 124
| 0
|
n,k=input().split()
n=int(n)
strn=""
for i in range(0,n):
if(i%2==0):
strn+="1"
else:
strn+="0"
print(strn)
|
Title: Sonya and Exhibition
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sonya decided to organize an exhibition of flowers. Since the girl likes only roses and lilies, she decided that only these two kinds of flowers should be in this exhibition.
There are $n$ flowers in a row in the exhibition. Sonya can put either a rose or a lily in the $i$-th position. Thus each of $n$ positions should contain exactly one flower: a rose or a lily.
She knows that exactly $m$ people will visit this exhibition. The $i$-th visitor will visit all flowers from $l_i$ to $r_i$ inclusive. The girl knows that each segment has its own beauty that is equal to the product of the number of roses and the number of lilies.
Sonya wants her exhibition to be liked by a lot of people. That is why she wants to put the flowers in such way that the sum of beauties of all segments would be maximum possible.
Input Specification:
The first line contains two integers $n$ and $m$ ($1\leq n, m\leq 10^3$)Β β the number of flowers and visitors respectively.
Each of the next $m$ lines contains two integers $l_i$ and $r_i$ ($1\leq l_i\leq r_i\leq n$), meaning that $i$-th visitor will visit all flowers from $l_i$ to $r_i$ inclusive.
Output Specification:
Print the string of $n$ characters. The $i$-th symbol should be Β«0Β» if you want to put a rose in the $i$-th position, otherwise Β«1Β» if you want to put a lily.
If there are multiple answers, print any.
Demo Input:
['5 3\n1 3\n2 4\n2 5\n', '6 3\n5 6\n1 4\n4 6\n']
Demo Output:
['01100', '110010']
Note:
In the first example, Sonya can put roses in the first, fourth, and fifth positions, and lilies in the second and third positions;
- in the segment $[1\ldots3]$, there are one rose and two lilies, so the beauty is equal to $1\cdot 2=2$; - in the segment $[2\ldots4]$, there are one rose and two lilies, so the beauty is equal to $1\cdot 2=2$; - in the segment $[2\ldots5]$, there are two roses and two lilies, so the beauty is equal to $2\cdot 2=4$.
The total beauty is equal to $2+2+4=8$.
In the second example, Sonya can put roses in the third, fourth, and sixth positions, and lilies in the first, second, and fifth positions;
- in the segment $[5\ldots6]$, there are one rose and one lily, so the beauty is equal to $1\cdot 1=1$; - in the segment $[1\ldots4]$, there are two roses and two lilies, so the beauty is equal to $2\cdot 2=4$; - in the segment $[4\ldots6]$, there are two roses and one lily, so the beauty is equal to $2\cdot 1=2$.
The total beauty is equal to $1+4+2=7$.
|
```python
n,k=input().split()
n=int(n)
strn=""
for i in range(0,n):
if(i%2==0):
strn+="1"
else:
strn+="0"
print(strn)
```
| 3
|
|
292
|
B
|
Network Topology
|
PROGRAMMING
| 1,200
|
[
"graphs",
"implementation"
] | null | null |
This problem uses a simplified network topology model, please read the problem statement carefully and use it as a formal document as you develop the solution.
Polycarpus continues working as a system administrator in a large corporation. The computer network of this corporation consists of *n* computers, some of them are connected by a cable. The computers are indexed by integers from 1 to *n*. It's known that any two computers connected by cable directly or through other computers
Polycarpus decided to find out the network's topology. A network topology is the way of describing the network configuration, the scheme that shows the location and the connections of network devices.
Polycarpus knows three main network topologies: bus, ring and star. A bus is the topology that represents a shared cable with all computers connected with it. In the ring topology the cable connects each computer only with two other ones. A star is the topology where all computers of a network are connected to the single central node.
Let's represent each of these network topologies as a connected non-directed graph. A bus is a connected graph that is the only path, that is, the graph where all nodes are connected with two other ones except for some two nodes that are the beginning and the end of the path. A ring is a connected graph, where all nodes are connected with two other ones. A star is a connected graph, where a single central node is singled out and connected with all other nodes. For clarifications, see the picture.
You've got a connected non-directed graph that characterizes the computer network in Polycarpus' corporation. Help him find out, which topology type the given network is. If that is impossible to do, say that the network's topology is unknown.
|
The first line contains two space-separated integers *n* and *m* (4<=β€<=*n*<=β€<=105;Β 3<=β€<=*m*<=β€<=105) β the number of nodes and edges in the graph, correspondingly. Next *m* lines contain the description of the graph's edges. The *i*-th line contains a space-separated pair of integers *x**i*, *y**i* (1<=β€<=*x**i*,<=*y**i*<=β€<=*n*) β the numbers of nodes that are connected by the *i*-the edge.
It is guaranteed that the given graph is connected. There is at most one edge between any two nodes. No edge connects a node with itself.
|
In a single line print the network topology name of the given graph. If the answer is the bus, print "bus topology" (without the quotes), if the answer is the ring, print "ring topology" (without the quotes), if the answer is the star, print "star topology" (without the quotes). If no answer fits, print "unknown topology" (without the quotes).
|
[
"4 3\n1 2\n2 3\n3 4\n",
"4 4\n1 2\n2 3\n3 4\n4 1\n",
"4 3\n1 2\n1 3\n1 4\n",
"4 4\n1 2\n2 3\n3 1\n1 4\n"
] |
[
"bus topology\n",
"ring topology\n",
"star topology\n",
"unknown topology\n"
] |
none
| 1,000
|
[
{
"input": "4 3\n1 2\n2 3\n3 4",
"output": "bus topology"
},
{
"input": "4 4\n1 2\n2 3\n3 4\n4 1",
"output": "ring topology"
},
{
"input": "4 3\n1 2\n1 3\n1 4",
"output": "star topology"
},
{
"input": "4 4\n1 2\n2 3\n3 1\n1 4",
"output": "unknown topology"
},
{
"input": "5 4\n1 2\n3 5\n1 4\n5 4",
"output": "bus topology"
},
{
"input": "5 5\n3 4\n5 2\n2 1\n5 4\n3 1",
"output": "ring topology"
},
{
"input": "5 4\n4 2\n5 2\n1 2\n2 3",
"output": "star topology"
},
{
"input": "5 9\n5 3\n4 5\n3 1\n3 2\n2 1\n2 5\n1 5\n1 4\n4 2",
"output": "unknown topology"
},
{
"input": "4 3\n2 4\n1 3\n4 1",
"output": "bus topology"
},
{
"input": "4 4\n2 4\n4 1\n1 3\n2 3",
"output": "ring topology"
},
{
"input": "4 3\n1 2\n2 4\n3 2",
"output": "star topology"
},
{
"input": "4 4\n3 2\n2 4\n4 1\n1 2",
"output": "unknown topology"
},
{
"input": "10 9\n10 6\n3 4\n8 9\n8 4\n6 1\n2 9\n5 1\n7 5\n10 3",
"output": "bus topology"
},
{
"input": "10 10\n1 4\n3 6\n10 7\n5 8\n2 10\n3 4\n7 5\n9 6\n8 1\n2 9",
"output": "ring topology"
},
{
"input": "10 9\n1 4\n4 10\n4 9\n8 4\n4 7\n4 5\n4 2\n4 6\n4 3",
"output": "star topology"
},
{
"input": "10 14\n3 2\n7 2\n6 4\n8 1\n3 9\n5 6\n6 3\n4 1\n2 5\n7 10\n9 5\n7 1\n8 10\n3 4",
"output": "unknown topology"
},
{
"input": "4 4\n1 2\n2 3\n2 4\n3 4",
"output": "unknown topology"
},
{
"input": "5 4\n1 2\n1 3\n1 4\n4 5",
"output": "unknown topology"
},
{
"input": "10 9\n10 1\n10 2\n10 3\n10 4\n10 5\n10 6\n10 7\n10 8\n10 9",
"output": "star topology"
},
{
"input": "6 6\n1 2\n2 3\n3 1\n4 5\n5 6\n6 1",
"output": "unknown topology"
},
{
"input": "6 5\n1 2\n1 3\n1 4\n4 5\n4 6",
"output": "unknown topology"
},
{
"input": "4 4\n1 2\n2 3\n3 4\n4 2",
"output": "unknown topology"
},
{
"input": "4 6\n1 2\n1 3\n1 4\n2 3\n2 4\n3 4",
"output": "unknown topology"
}
] | 1,647,219,956
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 778
| 17,715,200
|
# Network Topology
ui = input().split()
n, m = int(ui[0]), int(ui[1])
graph = [set() for x in range(n+1)]
for _ in range(m):
ui = input().split()
n1, n2 = int(ui[0]), int(ui[1])
graph[n1].add(n2)
graph[n2].add(n1)
if(n == m):
# Check for ring topology
for i in range(1, n+1):
if(len(graph[i]) != 2):
print("unknown topology")
break
else:
print("ring topology")
elif(n - 1 == m):
# Check for bus or star topology
center_found = False
ends = 0
for i in range(1, n+1):
if(len(graph[i]) == 1):
ends += 1
elif(len(graph[i]) == n-1 and not center_found):
center_found = True
elif(len(graph[i]) != 2):
print("unknown topology")
break
else:
if(ends == 2):
print("bus topology")
elif(ends == n-1 and center_found):
print("star topology")
else:
print("unknown topology")
else:
print("unknown topology")
|
Title: Network Topology
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This problem uses a simplified network topology model, please read the problem statement carefully and use it as a formal document as you develop the solution.
Polycarpus continues working as a system administrator in a large corporation. The computer network of this corporation consists of *n* computers, some of them are connected by a cable. The computers are indexed by integers from 1 to *n*. It's known that any two computers connected by cable directly or through other computers
Polycarpus decided to find out the network's topology. A network topology is the way of describing the network configuration, the scheme that shows the location and the connections of network devices.
Polycarpus knows three main network topologies: bus, ring and star. A bus is the topology that represents a shared cable with all computers connected with it. In the ring topology the cable connects each computer only with two other ones. A star is the topology where all computers of a network are connected to the single central node.
Let's represent each of these network topologies as a connected non-directed graph. A bus is a connected graph that is the only path, that is, the graph where all nodes are connected with two other ones except for some two nodes that are the beginning and the end of the path. A ring is a connected graph, where all nodes are connected with two other ones. A star is a connected graph, where a single central node is singled out and connected with all other nodes. For clarifications, see the picture.
You've got a connected non-directed graph that characterizes the computer network in Polycarpus' corporation. Help him find out, which topology type the given network is. If that is impossible to do, say that the network's topology is unknown.
Input Specification:
The first line contains two space-separated integers *n* and *m* (4<=β€<=*n*<=β€<=105;Β 3<=β€<=*m*<=β€<=105) β the number of nodes and edges in the graph, correspondingly. Next *m* lines contain the description of the graph's edges. The *i*-th line contains a space-separated pair of integers *x**i*, *y**i* (1<=β€<=*x**i*,<=*y**i*<=β€<=*n*) β the numbers of nodes that are connected by the *i*-the edge.
It is guaranteed that the given graph is connected. There is at most one edge between any two nodes. No edge connects a node with itself.
Output Specification:
In a single line print the network topology name of the given graph. If the answer is the bus, print "bus topology" (without the quotes), if the answer is the ring, print "ring topology" (without the quotes), if the answer is the star, print "star topology" (without the quotes). If no answer fits, print "unknown topology" (without the quotes).
Demo Input:
['4 3\n1 2\n2 3\n3 4\n', '4 4\n1 2\n2 3\n3 4\n4 1\n', '4 3\n1 2\n1 3\n1 4\n', '4 4\n1 2\n2 3\n3 1\n1 4\n']
Demo Output:
['bus topology\n', 'ring topology\n', 'star topology\n', 'unknown topology\n']
Note:
none
|
```python
# Network Topology
ui = input().split()
n, m = int(ui[0]), int(ui[1])
graph = [set() for x in range(n+1)]
for _ in range(m):
ui = input().split()
n1, n2 = int(ui[0]), int(ui[1])
graph[n1].add(n2)
graph[n2].add(n1)
if(n == m):
# Check for ring topology
for i in range(1, n+1):
if(len(graph[i]) != 2):
print("unknown topology")
break
else:
print("ring topology")
elif(n - 1 == m):
# Check for bus or star topology
center_found = False
ends = 0
for i in range(1, n+1):
if(len(graph[i]) == 1):
ends += 1
elif(len(graph[i]) == n-1 and not center_found):
center_found = True
elif(len(graph[i]) != 2):
print("unknown topology")
break
else:
if(ends == 2):
print("bus topology")
elif(ends == n-1 and center_found):
print("star topology")
else:
print("unknown topology")
else:
print("unknown topology")
```
| 3
|
|
761
|
D
|
Dasha and Very Difficult Problem
|
PROGRAMMING
| 1,700
|
[
"binary search",
"brute force",
"constructive algorithms",
"greedy",
"sortings"
] | null | null |
Dasha logged into the system and began to solve problems. One of them is as follows:
Given two sequences *a* and *b* of length *n* each you need to write a sequence *c* of length *n*, the *i*-th element of which is calculated as follows: *c**i*<==<=*b**i*<=-<=*a**i*.
About sequences *a* and *b* we know that their elements are in the range from *l* to *r*. More formally, elements satisfy the following conditions: *l*<=β€<=*a**i*<=β€<=*r* and *l*<=β€<=*b**i*<=β€<=*r*. About sequence *c* we know that all its elements are distinct.
Dasha wrote a solution to that problem quickly, but checking her work on the standard test was not so easy. Due to an error in the test system only the sequence *a* and the compressed sequence of the sequence *c* were known from that test.
Let's give the definition to a compressed sequence. A compressed sequence of sequence *c* of length *n* is a sequence *p* of length *n*, so that *p**i* equals to the number of integers which are less than or equal to *c**i* in the sequence *c*. For example, for the sequence *c*<==<=[250,<=200,<=300,<=100,<=50] the compressed sequence will be *p*<==<=[4,<=3,<=5,<=2,<=1]. Pay attention that in *c* all integers are distinct. Consequently, the compressed sequence contains all integers from 1 to *n* inclusively.
Help Dasha to find any sequence *b* for which the calculated compressed sequence of sequence *c* is correct.
|
The first line contains three integers *n*, *l*, *r* (1<=β€<=*n*<=β€<=105,<=1<=β€<=*l*<=β€<=*r*<=β€<=109) β the length of the sequence and boundaries of the segment where the elements of sequences *a* and *b* are.
The next line contains *n* integers *a*1,<=<=*a*2,<=<=...,<=<=*a**n* (*l*<=β€<=*a**i*<=β€<=*r*) β the elements of the sequence *a*.
The next line contains *n* distinct integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n* (1<=β€<=*p**i*<=β€<=*n*) β the compressed sequence of the sequence *c*.
|
If there is no the suitable sequence *b*, then in the only line print "-1".
Otherwise, in the only line print *n* integers β the elements of any suitable sequence *b*.
|
[
"5 1 5\n1 1 1 1 1\n3 1 5 4 2\n",
"4 2 9\n3 4 8 9\n3 2 1 4\n",
"6 1 5\n1 1 1 1 1 1\n2 3 5 4 1 6\n"
] |
[
"3 1 5 4 2 ",
"2 2 2 9 ",
"-1\n"
] |
Sequence *b* which was found in the second sample is suitable, because calculated sequence *c*β=β[2β-β3,β2β-β4,β2β-β8,β9β-β9]β=β[β-β1,ββ-β2,ββ-β6,β0] (note that *c*<sub class="lower-index">*i*</sub>β=β*b*<sub class="lower-index">*i*</sub>β-β*a*<sub class="lower-index">*i*</sub>) has compressed sequence equals to *p*β=β[3,β2,β1,β4].
| 2,000
|
[
{
"input": "5 1 5\n1 1 1 1 1\n3 1 5 4 2",
"output": "3 1 5 4 2 "
},
{
"input": "4 2 9\n3 4 8 9\n3 2 1 4",
"output": "2 2 2 9 "
},
{
"input": "6 1 5\n1 1 1 1 1 1\n2 3 5 4 1 6",
"output": "-1"
},
{
"input": "5 1 7\n1 4 4 6 5\n5 2 1 4 3",
"output": "2 2 1 6 4 "
},
{
"input": "5 10 100\n12 14 15 11 13\n4 2 1 5 3",
"output": "10 10 10 10 10 "
},
{
"input": "2 1 1000000000\n1000000000 1\n2 1",
"output": "-1"
},
{
"input": "2 1 1000000000\n1000000000 1\n1 2",
"output": "1 1 "
},
{
"input": "5 1 5\n1 1 1 1 1\n1 2 3 4 5",
"output": "1 2 3 4 5 "
},
{
"input": "5 1 5\n1 1 1 1 1\n2 3 1 5 4",
"output": "2 3 1 5 4 "
},
{
"input": "1 1000000000 1000000000\n1000000000\n1",
"output": "1000000000 "
},
{
"input": "6 3 7\n6 7 5 5 5 5\n2 1 4 3 5 6",
"output": "3 3 4 3 5 6 "
},
{
"input": "3 5 100\n10 50 100\n3 2 1",
"output": "5 5 5 "
},
{
"input": "10 1 10\n9 2 9 5 5 2 6 8 2 8\n2 10 1 6 7 8 5 3 9 4",
"output": "2 3 1 2 3 1 2 2 2 3 "
},
{
"input": "30 100 200\n102 108 122 116 107 145 195 145 119 110 187 196 140 174 104 190 193 181 118 127 157 111 139 175 173 191 181 105 142 166\n30 26 20 23 27 15 2 14 21 25 6 1 17 10 29 5 3 7 22 19 13 24 18 9 11 4 8 28 16 12",
"output": "100 100 100 100 100 101 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 101 100 100 100 "
},
{
"input": "50 10 15\n13 14 12 14 12 15 13 10 11 11 15 10 14 11 14 12 11 10 10 13 11 13 12 15 14 15 13 15 13 10 12 10 15 15 10 14 11 11 10 14 11 12 13 12 10 11 13 15 14 11\n20 10 25 13 29 6 24 47 37 39 2 44 12 33 9 26 35 49 46 19 38 23 30 5 16 4 21 7 18 45 28 43 1 8 48 15 36 40 50 11 32 27 22 31 42 41 17 3 14 34",
"output": "-1"
},
{
"input": "10 8 10\n8 10 10 9 8 10 10 10 10 10\n9 5 6 8 10 2 7 3 1 4",
"output": "-1"
},
{
"input": "50 1 50\n6 20 27 26 46 35 41 41 4 12 48 13 20 5 35 7 37 3 18 17 22 42 28 1 30 46 38 38 42 29 33 42 8 45 22 40 11 33 12 15 16 49 30 19 29 40 5 12 32 22\n47 27 35 40 31 26 42 19 11 49 37 3 41 34 36 30 16 44 12 4 46 20 14 39 32 25 18 1 21 6 2 17 48 7 5 24 29 33 50 43 8 15 28 23 22 13 45 38 10 9",
"output": "-1"
},
{
"input": "11 5 11\n9 8 7 5 7 5 9 5 10 5 7\n3 4 6 9 5 11 2 10 1 8 7",
"output": "6 6 7 8 6 10 5 9 5 7 8 "
}
] | 1,593,491,240
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 63
| 624
| 37,785,600
|
n, l, r = map(int, input().split())
a = list(map(int, input().split()))
out = [-1] * n
p = list(map(int, input().split()))
pp = [(p[i],i) for i in range(n)]
pp.sort()
curr = -(l+r)
for v, i in pp:
best = curr + 1 + a[i]
if best < l:
best = l
out[i] = best
curr = best - a[i]
if max(out) > r:
print(-1)
else:
print(' '.join(map(str,out)))
|
Title: Dasha and Very Difficult Problem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Dasha logged into the system and began to solve problems. One of them is as follows:
Given two sequences *a* and *b* of length *n* each you need to write a sequence *c* of length *n*, the *i*-th element of which is calculated as follows: *c**i*<==<=*b**i*<=-<=*a**i*.
About sequences *a* and *b* we know that their elements are in the range from *l* to *r*. More formally, elements satisfy the following conditions: *l*<=β€<=*a**i*<=β€<=*r* and *l*<=β€<=*b**i*<=β€<=*r*. About sequence *c* we know that all its elements are distinct.
Dasha wrote a solution to that problem quickly, but checking her work on the standard test was not so easy. Due to an error in the test system only the sequence *a* and the compressed sequence of the sequence *c* were known from that test.
Let's give the definition to a compressed sequence. A compressed sequence of sequence *c* of length *n* is a sequence *p* of length *n*, so that *p**i* equals to the number of integers which are less than or equal to *c**i* in the sequence *c*. For example, for the sequence *c*<==<=[250,<=200,<=300,<=100,<=50] the compressed sequence will be *p*<==<=[4,<=3,<=5,<=2,<=1]. Pay attention that in *c* all integers are distinct. Consequently, the compressed sequence contains all integers from 1 to *n* inclusively.
Help Dasha to find any sequence *b* for which the calculated compressed sequence of sequence *c* is correct.
Input Specification:
The first line contains three integers *n*, *l*, *r* (1<=β€<=*n*<=β€<=105,<=1<=β€<=*l*<=β€<=*r*<=β€<=109) β the length of the sequence and boundaries of the segment where the elements of sequences *a* and *b* are.
The next line contains *n* integers *a*1,<=<=*a*2,<=<=...,<=<=*a**n* (*l*<=β€<=*a**i*<=β€<=*r*) β the elements of the sequence *a*.
The next line contains *n* distinct integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n* (1<=β€<=*p**i*<=β€<=*n*) β the compressed sequence of the sequence *c*.
Output Specification:
If there is no the suitable sequence *b*, then in the only line print "-1".
Otherwise, in the only line print *n* integers β the elements of any suitable sequence *b*.
Demo Input:
['5 1 5\n1 1 1 1 1\n3 1 5 4 2\n', '4 2 9\n3 4 8 9\n3 2 1 4\n', '6 1 5\n1 1 1 1 1 1\n2 3 5 4 1 6\n']
Demo Output:
['3 1 5 4 2 ', '2 2 2 9 ', '-1\n']
Note:
Sequence *b* which was found in the second sample is suitable, because calculated sequence *c*β=β[2β-β3,β2β-β4,β2β-β8,β9β-β9]β=β[β-β1,ββ-β2,ββ-β6,β0] (note that *c*<sub class="lower-index">*i*</sub>β=β*b*<sub class="lower-index">*i*</sub>β-β*a*<sub class="lower-index">*i*</sub>) has compressed sequence equals to *p*β=β[3,β2,β1,β4].
|
```python
n, l, r = map(int, input().split())
a = list(map(int, input().split()))
out = [-1] * n
p = list(map(int, input().split()))
pp = [(p[i],i) for i in range(n)]
pp.sort()
curr = -(l+r)
for v, i in pp:
best = curr + 1 + a[i]
if best < l:
best = l
out[i] = best
curr = best - a[i]
if max(out) > r:
print(-1)
else:
print(' '.join(map(str,out)))
```
| 3
|
|
381
|
A
|
Sereja and Dima
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"two pointers"
] | null | null |
Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins.
Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move.
Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her.
|
The first line contains integer *n* (1<=β€<=*n*<=β€<=1000) β the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000.
|
On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game.
|
[
"4\n4 1 2 10\n",
"7\n1 2 3 4 5 6 7\n"
] |
[
"12 5\n",
"16 12\n"
] |
In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
| 500
|
[
{
"input": "4\n4 1 2 10",
"output": "12 5"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "16 12"
},
{
"input": "42\n15 29 37 22 16 5 26 31 6 32 19 3 45 36 33 14 25 20 48 7 42 11 24 28 9 18 8 21 47 17 38 40 44 4 35 1 43 39 41 27 12 13",
"output": "613 418"
},
{
"input": "43\n32 1 15 48 38 26 25 14 20 44 11 30 3 42 49 19 18 46 5 45 10 23 34 9 29 41 2 52 6 17 35 4 50 22 33 51 7 28 47 13 39 37 24",
"output": "644 500"
},
{
"input": "1\n3",
"output": "3 0"
},
{
"input": "45\n553 40 94 225 415 471 126 190 647 394 515 303 189 159 308 6 139 132 326 78 455 75 85 295 135 613 360 614 351 228 578 259 258 591 444 29 33 463 561 174 368 183 140 168 646",
"output": "6848 6568"
},
{
"input": "44\n849 373 112 307 479 608 856 769 526 82 168 143 573 762 115 501 688 36 214 450 396 496 236 309 287 786 397 43 811 141 745 846 350 270 276 677 420 459 403 722 267 54 394 727",
"output": "9562 9561"
},
{
"input": "35\n10 15 18 1 28 16 2 33 6 22 23 4 9 25 35 8 7 26 3 20 30 14 31 19 27 32 11 5 29 24 21 34 13 17 12",
"output": "315 315"
},
{
"input": "17\n580 376 191 496 73 44 520 357 483 149 81 178 514 300 216 598 304",
"output": "3238 2222"
},
{
"input": "30\n334 443 223 424 168 549 189 303 429 559 516 220 459 134 344 346 316 446 209 148 487 526 69 286 102 366 518 280 392 325",
"output": "5246 4864"
},
{
"input": "95\n122 29 188 265 292 287 183 225 222 187 155 256 64 148 173 278 218 136 290 17 31 130 2 87 57 283 255 280 68 166 174 142 102 39 116 206 288 154 26 78 296 172 184 232 77 91 277 8 249 186 94 93 207 251 257 195 101 299 193 124 293 65 58 35 24 302 220 189 252 125 27 284 247 182 141 103 198 97 234 83 281 216 85 180 267 236 109 143 149 239 79 300 191 244 71",
"output": "8147 7807"
},
{
"input": "1\n1",
"output": "1 0"
}
] | 1,689,533,133
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 46
| 0
|
n = int(input())
data = list(map(int, input().split()))
l, r, d, s = 0, n - 1, 0, 0
while l <= r:
if (l + r) % 2 == (n - 1) % 2:
if data[l] > data[r]:
s += data[l]
l += 1
else:
s += data[r]
r -= 1
else:
if data[l] > data[r]:
d += data[l]
l += 1
else:
d += data[r]
r -= 1
print(s, d)
|
Title: Sereja and Dima
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins.
Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move.
Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her.
Input Specification:
The first line contains integer *n* (1<=β€<=*n*<=β€<=1000) β the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000.
Output Specification:
On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game.
Demo Input:
['4\n4 1 2 10\n', '7\n1 2 3 4 5 6 7\n']
Demo Output:
['12 5\n', '16 12\n']
Note:
In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
|
```python
n = int(input())
data = list(map(int, input().split()))
l, r, d, s = 0, n - 1, 0, 0
while l <= r:
if (l + r) % 2 == (n - 1) % 2:
if data[l] > data[r]:
s += data[l]
l += 1
else:
s += data[r]
r -= 1
else:
if data[l] > data[r]:
d += data[l]
l += 1
else:
d += data[r]
r -= 1
print(s, d)
```
| 3
|
|
1,003
|
A
|
Polycarp's Pockets
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.
For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$.
Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
|
The first line of the input contains one integer $n$ ($1 \le n \le 100$) β the number of coins.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) β values of coins.
|
Print only one integer β the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
|
[
"6\n1 2 4 3 3 2\n",
"1\n100\n"
] |
[
"2\n",
"1\n"
] |
none
| 0
|
[
{
"input": "6\n1 2 4 3 3 2",
"output": "2"
},
{
"input": "1\n100",
"output": "1"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100"
},
{
"input": "100\n59 47 39 47 47 71 47 28 58 47 35 79 58 47 38 47 47 47 47 27 47 43 29 95 47 49 46 71 47 74 79 47 47 32 45 67 47 47 30 37 47 47 16 67 22 76 47 86 84 10 5 47 47 47 47 47 1 51 47 54 47 8 47 47 9 47 47 47 47 28 47 47 26 47 47 47 47 47 47 92 47 47 77 47 47 24 45 47 10 47 47 89 47 27 47 89 47 67 24 71",
"output": "51"
},
{
"input": "100\n45 99 10 27 16 85 39 38 17 32 15 23 67 48 50 97 42 70 62 30 44 81 64 73 34 22 46 5 83 52 58 60 33 74 47 88 18 61 78 53 25 95 94 31 3 75 1 57 20 54 59 9 68 7 77 43 21 87 86 24 4 80 11 49 2 72 36 84 71 8 65 55 79 100 41 14 35 89 66 69 93 37 56 82 90 91 51 19 26 92 6 96 13 98 12 28 76 40 63 29",
"output": "1"
},
{
"input": "100\n45 29 5 2 6 50 22 36 14 15 9 48 46 20 8 37 7 47 12 50 21 38 18 27 33 19 40 10 5 49 38 42 34 37 27 30 35 24 10 3 40 49 41 3 4 44 13 25 28 31 46 36 23 1 1 23 7 22 35 26 21 16 48 42 32 8 11 16 34 11 39 32 47 28 43 41 39 4 14 19 26 45 13 18 15 25 2 44 17 29 17 33 43 6 12 30 9 20 31 24",
"output": "2"
},
{
"input": "50\n7 7 3 3 7 4 5 6 4 3 7 5 6 4 5 4 4 5 6 7 7 7 4 5 5 5 3 7 6 3 4 6 3 6 4 4 5 4 6 6 3 5 6 3 5 3 3 7 7 6",
"output": "10"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "99"
},
{
"input": "7\n1 2 3 3 3 1 2",
"output": "3"
},
{
"input": "5\n1 2 3 4 5",
"output": "1"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "1"
},
{
"input": "8\n1 2 3 4 5 6 7 8",
"output": "1"
},
{
"input": "9\n1 2 3 4 5 6 7 8 9",
"output": "1"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "1"
},
{
"input": "3\n2 1 1",
"output": "2"
},
{
"input": "11\n1 2 3 4 5 6 7 8 9 1 1",
"output": "3"
},
{
"input": "12\n1 2 1 1 1 1 1 1 1 1 1 1",
"output": "11"
},
{
"input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "13"
},
{
"input": "14\n1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "14"
},
{
"input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "15"
},
{
"input": "16\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "16"
},
{
"input": "3\n1 1 1",
"output": "3"
},
{
"input": "3\n1 2 3",
"output": "1"
},
{
"input": "10\n1 1 1 1 2 2 1 1 9 10",
"output": "6"
},
{
"input": "2\n1 1",
"output": "2"
},
{
"input": "56\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "56"
},
{
"input": "99\n35 96 73 72 70 83 22 93 98 75 45 32 81 82 45 54 25 7 53 72 29 2 94 19 21 98 34 28 39 99 55 85 44 23 6 47 98 2 33 34 19 57 49 35 67 4 60 4 4 23 55 6 57 66 16 68 34 45 84 79 48 63 4 9 46 88 98 13 19 27 83 12 4 63 57 22 44 77 44 62 28 52 44 64 9 24 55 22 48 4 2 9 80 76 45 1 56 22 92",
"output": "6"
},
{
"input": "10\n1 2 2 3 3 3 4 4 4 4",
"output": "4"
},
{
"input": "99\n97 44 33 56 42 10 61 85 64 26 40 39 82 34 75 9 51 51 39 73 58 38 74 31 13 99 58 1 28 89 76 19 52 7 40 56 12 27 72 72 67 75 62 46 22 55 35 16 18 39 60 63 92 42 85 69 34 61 73 50 57 95 30 4 45 63 76 58 32 35 48 81 10 78 95 79 55 97 21 21 22 94 30 17 78 57 89 93 100 44 16 89 68 55 19 46 42 73 21",
"output": "3"
},
{
"input": "5\n5 5 5 5 1",
"output": "4"
},
{
"input": "6\n2 3 2 5 2 6",
"output": "3"
},
{
"input": "3\n58 59 58",
"output": "2"
},
{
"input": "9\n1 2 3 4 5 6 7 8 8",
"output": "2"
},
{
"input": "97\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "97"
},
{
"input": "3\n95 95 4",
"output": "2"
},
{
"input": "3\n2 2 5",
"output": "2"
}
] | 1,663,150,115
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 46
| 102,400
|
from collections import Counter
l=int(input())
l1=[int(i) for i in input().split()]
s=Counter(l1)
val=list(s.values())
print(max(val))
|
Title: Polycarp's Pockets
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.
For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$.
Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
Input Specification:
The first line of the input contains one integer $n$ ($1 \le n \le 100$) β the number of coins.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) β values of coins.
Output Specification:
Print only one integer β the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
Demo Input:
['6\n1 2 4 3 3 2\n', '1\n100\n']
Demo Output:
['2\n', '1\n']
Note:
none
|
```python
from collections import Counter
l=int(input())
l1=[int(i) for i in input().split()]
s=Counter(l1)
val=list(s.values())
print(max(val))
```
| 3
|
|
785
|
A
|
Anton and Polyhedrons
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons:
- Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces.
All five kinds of polyhedrons are shown on the picture below:
Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number!
|
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=200<=000)Β β the number of polyhedrons in Anton's collection.
Each of the following *n* lines of the input contains a string *s**i*Β β the name of the *i*-th polyhedron in Anton's collection. The string can look like this:
- "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron.
|
Output one numberΒ β the total number of faces in all the polyhedrons in Anton's collection.
|
[
"4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n",
"3\nDodecahedron\nOctahedron\nOctahedron\n"
] |
[
"42\n",
"28\n"
] |
In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20β+β6β+β4β+β12β=β42 faces.
| 500
|
[
{
"input": "4\nIcosahedron\nCube\nTetrahedron\nDodecahedron",
"output": "42"
},
{
"input": "3\nDodecahedron\nOctahedron\nOctahedron",
"output": "28"
},
{
"input": "25\nIcosahedron\nOctahedron\nTetrahedron\nDodecahedron\nCube\nIcosahedron\nOctahedron\nCube\nTetrahedron\nIcosahedron\nIcosahedron\nTetrahedron\nOctahedron\nDodecahedron\nIcosahedron\nOctahedron\nIcosahedron\nTetrahedron\nDodecahedron\nTetrahedron\nOctahedron\nCube\nCube\nDodecahedron\nTetrahedron",
"output": "256"
},
{
"input": "1\nTetrahedron",
"output": "4"
},
{
"input": "1\nCube",
"output": "6"
},
{
"input": "1\nOctahedron",
"output": "8"
},
{
"input": "1\nDodecahedron",
"output": "12"
},
{
"input": "1\nIcosahedron",
"output": "20"
},
{
"input": "28\nOctahedron\nDodecahedron\nOctahedron\nOctahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nDodecahedron\nDodecahedron\nCube\nDodecahedron\nCube\nTetrahedron\nCube\nCube\nTetrahedron\nDodecahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nIcosahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron",
"output": "340"
}
] | 1,675,861,902
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 249
| 0
|
faces = {
"Tetrahedron": 4,
"Cube": 6,
"Octahedron": 8,
"Dodecahedron": 12,
"Icosahedron": 20
}
ans = 0
for _ in range(int(input())):
ans += faces[input()]
print(ans)
|
Title: Anton and Polyhedrons
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons:
- Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces.
All five kinds of polyhedrons are shown on the picture below:
Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number!
Input Specification:
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=200<=000)Β β the number of polyhedrons in Anton's collection.
Each of the following *n* lines of the input contains a string *s**i*Β β the name of the *i*-th polyhedron in Anton's collection. The string can look like this:
- "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron.
Output Specification:
Output one numberΒ β the total number of faces in all the polyhedrons in Anton's collection.
Demo Input:
['4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n', '3\nDodecahedron\nOctahedron\nOctahedron\n']
Demo Output:
['42\n', '28\n']
Note:
In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20β+β6β+β4β+β12β=β42 faces.
|
```python
faces = {
"Tetrahedron": 4,
"Cube": 6,
"Octahedron": 8,
"Dodecahedron": 12,
"Icosahedron": 20
}
ans = 0
for _ in range(int(input())):
ans += faces[input()]
print(ans)
```
| 3
|
|
894
|
A
|
QAQ
|
PROGRAMMING
| 800
|
[
"brute force",
"dp"
] | null | null |
"QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth.
Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!).
Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact.
|
The only line contains a string of length *n* (1<=β€<=*n*<=β€<=100). It's guaranteed that the string only contains uppercase English letters.
|
Print a single integerΒ β the number of subsequences "QAQ" in the string.
|
[
"QAQAQYSYIOIWIN\n",
"QAQQQZZYNOIWIN\n"
] |
[
"4\n",
"3\n"
] |
In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
| 500
|
[
{
"input": "QAQAQYSYIOIWIN",
"output": "4"
},
{
"input": "QAQQQZZYNOIWIN",
"output": "3"
},
{
"input": "QA",
"output": "0"
},
{
"input": "IAQVAQZLQBQVQFTQQQADAQJA",
"output": "24"
},
{
"input": "QQAAQASGAYAAAAKAKAQIQEAQAIAAIAQQQQQ",
"output": "378"
},
{
"input": "AMVFNFJIAVNQJWIVONQOAOOQSNQSONOASONAONQINAONAOIQONANOIQOANOQINAONOQINAONOXJCOIAQOAOQAQAQAQAQWWWAQQAQ",
"output": "1077"
},
{
"input": "AAQQAXBQQBQQXBNQRJAQKQNAQNQVDQASAGGANQQQQTJFFQQQTQQA",
"output": "568"
},
{
"input": "KAZXAVLPJQBQVQQQQQAPAQQGQTQVZQAAAOYA",
"output": "70"
},
{
"input": "W",
"output": "0"
},
{
"input": "DBA",
"output": "0"
},
{
"input": "RQAWNACASAAKAGAAAAQ",
"output": "10"
},
{
"input": "QJAWZAAOAAGIAAAAAOQATASQAEAAAAQFQQHPA",
"output": "111"
},
{
"input": "QQKWQAQAAAAAAAAGAAVAQUEQQUMQMAQQQNQLAMAAAUAEAAEMAAA",
"output": "411"
},
{
"input": "QQUMQAYAUAAGWAAAQSDAVAAQAAAASKQJJQQQQMAWAYYAAAAAAEAJAXWQQ",
"output": "625"
},
{
"input": "QORZOYAQ",
"output": "1"
},
{
"input": "QCQAQAGAWAQQQAQAVQAQQQQAQAQQQAQAAATQAAVAAAQQQQAAAUUQAQQNQQWQQWAQAAQQKQYAQAAQQQAAQRAQQQWBQQQQAPBAQGQA",
"output": "13174"
},
{
"input": "QQAQQAKQFAQLQAAWAMQAZQAJQAAQQOACQQAAAYANAQAQQAQAAQQAOBQQJQAQAQAQQQAAAAABQQQAVNZAQQQQAMQQAFAAEAQAQHQT",
"output": "10420"
},
{
"input": "AQEGQHQQKQAQQPQKAQQQAAAAQQQAQEQAAQAAQAQFSLAAQQAQOQQAVQAAAPQQAWAQAQAFQAXAQQQQTRLOQAQQJQNQXQQQQSQVDQQQ",
"output": "12488"
},
{
"input": "QNQKQQQLASQBAVQQQQAAQQOQRJQQAQQQEQZUOANAADAAQQJAQAQARAAAQQQEQBHTQAAQAAAAQQMKQQQIAOJJQQAQAAADADQUQQQA",
"output": "9114"
},
{
"input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ",
"output": "35937"
},
{
"input": "AMQQAAQAAQAAAAAAQQQBOAAANAAKQJCYQAE",
"output": "254"
},
{
"input": "AYQBAEQGAQEOAKGIXLQJAIAKQAAAQPUAJAKAATFWQQAOQQQUFQYAQQMQHOKAAJXGFCARAQSATHAUQQAATQJJQDQRAANQQAE",
"output": "2174"
},
{
"input": "AAQXAAQAYQAAAAGAQHVQYAGIVACADFAAQAAAAQZAAQMAKZAADQAQDAAQDAAAMQQOXYAQQQAKQBAAQQKAXQBJZDDLAAHQQ",
"output": "2962"
},
{
"input": "AYQQYAVAMNIAUAAKBBQVACWKTQSAQZAAQAAASZJAWBCAALAARHACQAKQQAQAARPAQAAQAQAAZQUSHQAMFVFZQQQQSAQQXAA",
"output": "2482"
},
{
"input": "LQMAQQARQAQBJQQQAGAAZQQXALQQAARQAQQQQAAQQAQQQAQQCAQQAQQAYQQQRAAZATQALYQQAAHHAAQHAAAAAAAAQQMAAQNAKQ",
"output": "7768"
},
{
"input": "MAQQWAQOYQMAAAQAQPQZAOAAQAUAQNAAQAAAITQSAQAKAQKAQQWSQAAQQAGUCDQMQWKQUXKWQQAAQQAAQQZQDQQQAABXQUUXQOA",
"output": "5422"
},
{
"input": "QTAAQDAQXAQQJQQQGAAAQQQQSBQZKAQQAQQQQEAQNUQBZCQLYQZQEQQAAQHQVAORKQVAQYQNASZQAARZAAGAAAAOQDCQ",
"output": "3024"
},
{
"input": "QQWAQQGQQUZQQQLZAAQYQXQVAQFQUAQZUQZZQUKBHSHTQYLQAOQXAQQGAQQTQOAQARQADAJRAAQPQAQQUQAUAMAUVQAAAQQAWQ",
"output": "4527"
},
{
"input": "QQAAQQAQVAQZQQQQAOEAQZPQIBQZACQQAFQQLAAQDATZQANHKYQQAQTAAFQRQAIQAJPWQAQTEIRXAEQQAYWAAAUKQQAQAQQQSQQH",
"output": "6416"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAAAA",
"output": "14270"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQ",
"output": "13136"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA",
"output": "14270"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQQAA",
"output": "14231"
},
{
"input": "QQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA",
"output": "15296"
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ",
"output": "0"
},
{
"input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "0"
},
{
"input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ",
"output": "0"
},
{
"input": "QAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQA",
"output": "20825"
},
{
"input": "AQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQ",
"output": "20825"
},
{
"input": "Q",
"output": "0"
},
{
"input": "A",
"output": "0"
},
{
"input": "FFF",
"output": "0"
},
{
"input": "AAAAAA",
"output": "0"
}
] | 1,592,640,004
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 109
| 307,200
|
def answer():
a = [x for x in list(input()) if x in "AQ"]
i=0
ans=0
while i<len(a):
if a[i]=="Q":
j=i+1
while j<len(a):
if a[j]=="A":
k=j+1
while k<len(a):
if a[k]=="Q":
ans+=1
k+=1
j+=1
i+=1
print(ans)
answer()
|
Title: QAQ
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
"QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth.
Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!).
Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact.
Input Specification:
The only line contains a string of length *n* (1<=β€<=*n*<=β€<=100). It's guaranteed that the string only contains uppercase English letters.
Output Specification:
Print a single integerΒ β the number of subsequences "QAQ" in the string.
Demo Input:
['QAQAQYSYIOIWIN\n', 'QAQQQZZYNOIWIN\n']
Demo Output:
['4\n', '3\n']
Note:
In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
|
```python
def answer():
a = [x for x in list(input()) if x in "AQ"]
i=0
ans=0
while i<len(a):
if a[i]=="Q":
j=i+1
while j<len(a):
if a[j]=="A":
k=j+1
while k<len(a):
if a[k]=="Q":
ans+=1
k+=1
j+=1
i+=1
print(ans)
answer()
```
| 3
|
|
353
|
A
|
Domino
|
PROGRAMMING
| 1,200
|
[
"implementation",
"math"
] | null | null |
Valera has got *n* domino pieces in a row. Each piece consists of two halves β the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even.
To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true.
|
The first line contains integer *n* (1<=β€<=*n*<=β€<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=β€<=*x**i*,<=*y**i*<=β€<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half.
|
Print a single number β the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1.
|
[
"2\n4 2\n6 4\n",
"1\n2 3\n",
"3\n1 4\n2 3\n4 4\n"
] |
[
"0\n",
"-1\n",
"1\n"
] |
In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything.
In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd.
In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
| 500
|
[
{
"input": "2\n4 2\n6 4",
"output": "0"
},
{
"input": "1\n2 3",
"output": "-1"
},
{
"input": "3\n1 4\n2 3\n4 4",
"output": "1"
},
{
"input": "5\n5 4\n5 4\n1 5\n5 5\n3 3",
"output": "1"
},
{
"input": "20\n1 3\n5 2\n5 2\n2 6\n2 4\n1 1\n1 3\n1 4\n2 6\n4 2\n5 6\n2 2\n6 2\n4 3\n2 1\n6 2\n6 5\n4 5\n2 4\n1 4",
"output": "-1"
},
{
"input": "100\n2 3\n2 4\n3 3\n1 4\n5 2\n5 4\n6 6\n3 4\n1 1\n4 2\n5 1\n5 5\n5 3\n3 6\n4 1\n1 6\n1 1\n3 2\n4 5\n6 1\n6 4\n1 1\n3 4\n3 3\n2 2\n1 1\n4 4\n6 4\n3 2\n5 2\n6 4\n3 2\n3 5\n4 4\n1 4\n5 2\n3 4\n1 4\n2 2\n5 6\n3 5\n6 1\n5 5\n1 6\n6 3\n1 4\n1 5\n5 5\n4 1\n3 2\n4 1\n5 5\n5 5\n1 5\n1 2\n6 4\n1 3\n3 6\n4 3\n3 5\n6 4\n2 6\n5 5\n1 4\n2 2\n2 3\n5 1\n2 5\n1 2\n2 6\n5 5\n4 6\n1 4\n3 6\n2 3\n6 1\n6 5\n3 2\n6 4\n4 5\n4 5\n2 6\n1 3\n6 2\n1 2\n2 3\n4 3\n5 4\n3 4\n1 6\n6 6\n2 4\n4 1\n3 1\n2 6\n5 4\n1 2\n6 5\n3 6\n2 4",
"output": "-1"
},
{
"input": "1\n2 4",
"output": "0"
},
{
"input": "1\n1 1",
"output": "-1"
},
{
"input": "1\n1 2",
"output": "-1"
},
{
"input": "2\n1 1\n3 3",
"output": "0"
},
{
"input": "2\n1 1\n2 2",
"output": "-1"
},
{
"input": "2\n1 1\n1 2",
"output": "-1"
},
{
"input": "5\n1 2\n6 6\n1 1\n3 3\n6 1",
"output": "1"
},
{
"input": "5\n5 4\n2 6\n6 2\n1 4\n6 2",
"output": "0"
},
{
"input": "10\n4 1\n3 2\n1 2\n2 6\n3 5\n2 1\n5 2\n4 6\n5 6\n3 1",
"output": "0"
},
{
"input": "10\n6 1\n4 4\n2 6\n6 5\n3 6\n6 3\n2 4\n5 1\n1 6\n1 5",
"output": "-1"
},
{
"input": "15\n1 2\n5 1\n6 4\n5 1\n1 6\n2 6\n3 1\n6 4\n3 1\n2 1\n6 4\n3 5\n6 2\n1 6\n1 1",
"output": "1"
},
{
"input": "15\n3 3\n2 1\n5 4\n3 3\n5 3\n5 4\n2 5\n1 3\n3 2\n3 3\n3 5\n2 5\n4 1\n2 3\n5 4",
"output": "-1"
},
{
"input": "20\n1 5\n6 4\n4 3\n6 2\n1 1\n1 5\n6 3\n2 3\n3 6\n3 6\n3 6\n2 5\n4 3\n4 6\n5 5\n4 6\n3 4\n4 2\n3 3\n5 2",
"output": "0"
},
{
"input": "20\n2 1\n6 5\n3 1\n2 5\n3 5\n4 1\n1 1\n5 4\n5 1\n2 4\n1 5\n3 2\n1 2\n3 5\n5 2\n1 2\n1 3\n4 2\n2 3\n4 5",
"output": "-1"
},
{
"input": "25\n4 1\n6 3\n1 3\n2 3\n2 4\n6 6\n4 2\n4 2\n1 5\n5 4\n1 2\n2 5\n3 6\n4 1\n3 4\n2 6\n6 1\n5 6\n6 6\n4 2\n1 5\n3 3\n3 3\n6 5\n1 4",
"output": "-1"
},
{
"input": "25\n5 5\n4 3\n2 5\n4 3\n4 6\n4 2\n5 6\n2 1\n5 4\n6 6\n1 3\n1 4\n2 3\n5 6\n5 4\n5 6\n5 4\n6 3\n3 5\n1 3\n2 5\n2 2\n4 4\n2 1\n4 4",
"output": "-1"
},
{
"input": "30\n3 5\n2 5\n1 6\n1 6\n2 4\n5 5\n5 4\n5 6\n5 4\n2 1\n2 4\n1 6\n3 5\n1 1\n3 6\n5 5\n1 6\n3 4\n1 4\n4 6\n2 1\n3 3\n1 3\n4 5\n1 4\n1 6\n2 1\n4 6\n3 5\n5 6",
"output": "1"
},
{
"input": "30\n2 3\n3 1\n6 6\n1 3\n5 5\n3 6\n4 5\n2 1\n1 3\n2 3\n4 4\n2 4\n6 4\n2 4\n5 4\n2 1\n2 5\n2 5\n4 2\n1 4\n2 6\n3 2\n3 2\n6 6\n4 2\n3 4\n6 3\n6 6\n6 6\n5 5",
"output": "1"
},
{
"input": "35\n6 1\n4 3\n1 2\n4 3\n6 4\n4 6\n3 1\n5 5\n3 4\n5 4\n4 6\n1 6\n2 4\n6 6\n5 4\n5 2\n1 3\n1 4\n3 5\n1 4\n2 3\n4 5\n4 3\n6 1\n5 3\n3 2\n5 6\n3 5\n6 5\n4 1\n1 3\n5 5\n4 6\n6 1\n1 3",
"output": "1"
},
{
"input": "35\n4 3\n5 6\n4 5\n2 5\n6 6\n4 1\n2 2\n4 2\n3 4\n4 1\n6 6\n6 3\n1 5\n1 5\n5 6\n4 2\n4 6\n5 5\n2 2\n5 2\n1 2\n4 6\n6 6\n6 5\n2 1\n3 5\n2 5\n3 1\n5 3\n6 4\n4 6\n5 6\n5 1\n3 4\n3 5",
"output": "1"
},
{
"input": "40\n5 6\n1 1\n3 3\n2 6\n6 6\n5 4\n6 4\n3 5\n1 3\n4 4\n4 4\n2 5\n1 3\n3 6\n5 2\n4 3\n4 4\n5 6\n2 3\n1 1\n3 1\n1 1\n1 5\n4 3\n5 5\n3 4\n6 6\n5 6\n2 2\n6 6\n2 1\n2 4\n5 2\n2 2\n1 1\n1 4\n4 2\n3 5\n5 5\n4 5",
"output": "-1"
},
{
"input": "40\n3 2\n5 3\n4 6\n3 5\n6 1\n5 2\n1 2\n6 2\n5 3\n3 2\n4 4\n3 3\n5 2\n4 5\n1 4\n5 1\n3 3\n1 3\n1 3\n2 1\n3 6\n4 2\n4 6\n6 2\n2 5\n2 2\n2 5\n3 3\n5 3\n2 1\n3 2\n2 3\n6 3\n6 3\n3 4\n3 2\n4 3\n5 4\n2 4\n4 6",
"output": "-1"
},
{
"input": "45\n2 4\n3 4\n6 1\n5 5\n1 1\n3 5\n4 3\n5 2\n3 6\n6 1\n4 4\n6 1\n2 1\n6 1\n3 6\n3 3\n6 1\n1 2\n1 5\n6 5\n1 3\n5 6\n6 1\n4 5\n3 6\n2 2\n1 2\n4 5\n5 6\n1 5\n6 2\n2 4\n3 3\n3 1\n6 5\n6 5\n2 1\n5 2\n2 1\n3 3\n2 2\n1 4\n2 2\n3 3\n2 1",
"output": "-1"
},
{
"input": "45\n6 6\n1 6\n1 2\n3 5\n4 4\n2 1\n5 3\n2 1\n5 2\n5 3\n1 4\n5 2\n4 2\n3 6\n5 2\n1 5\n4 4\n5 5\n6 5\n2 1\n2 6\n5 5\n2 1\n6 1\n1 6\n6 5\n2 4\n4 3\n2 6\n2 4\n6 5\n6 4\n6 3\n6 6\n2 1\n6 4\n5 6\n5 4\n1 5\n5 1\n3 3\n5 6\n2 5\n4 5\n3 6",
"output": "-1"
},
{
"input": "50\n4 4\n5 1\n6 4\n6 2\n6 2\n1 4\n5 5\n4 2\n5 5\n5 4\n1 3\n3 5\n6 1\n6 1\n1 4\n4 3\n5 1\n3 6\n2 2\n6 2\n4 4\n2 3\n4 2\n6 5\n5 6\n2 2\n2 4\n3 5\n1 5\n3 2\n3 4\n5 6\n4 6\n1 6\n4 5\n2 6\n2 2\n3 5\n6 4\n5 1\n4 3\n3 4\n3 5\n3 3\n2 3\n3 2\n2 2\n1 4\n3 1\n4 4",
"output": "1"
},
{
"input": "50\n1 2\n1 4\n1 1\n4 5\n4 4\n3 2\n4 5\n3 5\n1 1\n3 4\n3 2\n2 4\n2 6\n2 6\n3 2\n4 6\n1 6\n3 1\n1 6\n2 1\n4 1\n1 6\n4 3\n6 6\n5 2\n6 4\n2 1\n4 3\n6 4\n5 1\n5 5\n3 1\n1 1\n5 5\n2 2\n2 3\n2 3\n3 5\n5 5\n1 6\n1 5\n3 6\n3 6\n1 1\n3 3\n2 6\n5 5\n1 3\n6 3\n6 6",
"output": "-1"
},
{
"input": "55\n3 2\n5 6\n5 1\n3 5\n5 5\n1 5\n5 4\n6 3\n5 6\n4 2\n3 1\n1 2\n5 5\n1 1\n5 2\n6 3\n5 4\n3 6\n4 6\n2 6\n6 4\n1 4\n1 6\n4 1\n2 5\n4 3\n2 1\n2 1\n6 2\n3 1\n2 5\n4 4\n6 3\n2 2\n3 5\n5 1\n3 6\n5 4\n4 6\n6 5\n5 6\n2 2\n3 2\n5 2\n6 5\n2 2\n5 3\n3 1\n4 5\n6 4\n2 4\n1 2\n5 6\n2 6\n5 2",
"output": "0"
},
{
"input": "55\n4 6\n3 3\n6 5\n5 3\n5 6\n2 3\n2 2\n3 4\n3 1\n5 4\n5 4\n2 4\n3 4\n4 5\n1 5\n6 3\n1 1\n5 1\n3 4\n1 5\n3 1\n2 5\n3 3\n4 3\n3 3\n3 1\n6 6\n3 3\n3 3\n5 6\n5 3\n3 5\n1 4\n5 5\n1 3\n1 4\n3 5\n3 6\n2 4\n2 4\n5 1\n6 4\n5 1\n5 5\n1 1\n3 2\n4 3\n5 4\n5 1\n2 4\n4 3\n6 1\n3 4\n1 5\n6 3",
"output": "-1"
},
{
"input": "60\n2 6\n1 4\n3 2\n1 2\n3 2\n2 4\n6 4\n4 6\n1 3\n3 1\n6 5\n2 4\n5 4\n4 2\n1 6\n3 4\n4 5\n5 2\n1 5\n5 4\n3 4\n3 4\n4 4\n4 1\n6 6\n3 6\n2 4\n2 1\n4 4\n6 5\n3 1\n4 3\n1 3\n6 3\n5 5\n1 4\n3 1\n3 6\n1 5\n3 1\n1 5\n4 4\n1 3\n2 4\n6 2\n4 1\n5 3\n3 4\n5 6\n1 2\n1 6\n6 3\n1 6\n3 6\n3 4\n6 2\n4 6\n2 3\n3 3\n3 3",
"output": "-1"
},
{
"input": "60\n2 3\n4 6\n2 4\n1 3\n5 6\n1 5\n1 2\n1 3\n5 6\n4 3\n4 2\n3 1\n1 3\n3 5\n1 5\n3 4\n2 4\n3 5\n4 5\n1 2\n3 1\n1 5\n2 5\n6 2\n1 6\n3 3\n6 2\n5 3\n1 3\n1 4\n6 4\n6 3\n4 2\n4 2\n1 4\n1 3\n3 2\n3 1\n2 1\n1 2\n3 1\n2 6\n1 4\n3 6\n3 3\n1 5\n2 4\n5 5\n6 2\n5 2\n3 3\n5 3\n3 4\n4 5\n5 6\n2 4\n5 3\n3 1\n2 4\n5 4",
"output": "-1"
},
{
"input": "65\n5 4\n3 3\n1 2\n4 3\n3 5\n1 5\n4 5\n2 6\n1 2\n1 5\n6 3\n2 6\n4 3\n3 6\n1 5\n3 5\n4 6\n2 5\n6 5\n1 4\n3 4\n4 3\n1 4\n2 5\n6 5\n3 1\n4 3\n1 2\n1 1\n6 1\n5 2\n3 2\n1 6\n2 6\n3 3\n6 6\n4 6\n1 5\n5 1\n4 5\n1 4\n3 2\n5 4\n4 2\n6 2\n1 3\n4 2\n5 3\n6 4\n3 6\n1 2\n6 1\n6 6\n3 3\n4 2\n3 5\n4 6\n4 1\n5 4\n6 1\n5 1\n5 6\n6 1\n4 6\n5 5",
"output": "1"
},
{
"input": "65\n5 4\n6 3\n5 4\n4 5\n5 3\n3 6\n1 3\n3 1\n1 3\n6 1\n6 4\n1 3\n2 2\n4 6\n4 1\n5 6\n6 5\n1 1\n1 3\n6 6\n4 1\n2 4\n5 4\n4 1\n5 5\n5 3\n6 2\n2 6\n4 2\n2 2\n6 2\n3 3\n4 5\n4 3\n3 1\n1 4\n4 5\n3 2\n5 5\n4 6\n5 1\n3 4\n5 4\n5 2\n1 6\n4 2\n3 4\n3 4\n1 3\n1 2\n3 3\n3 6\n6 4\n4 6\n6 2\n6 5\n3 2\n2 1\n6 4\n2 1\n1 5\n5 2\n6 5\n3 6\n5 1",
"output": "1"
},
{
"input": "70\n4 1\n2 6\n1 1\n5 6\n5 1\n2 3\n3 5\n1 1\n1 1\n4 6\n4 3\n1 5\n2 2\n2 3\n3 1\n6 4\n3 1\n4 2\n5 4\n1 3\n3 5\n5 2\n5 6\n4 4\n4 5\n2 2\n4 5\n3 2\n3 5\n2 5\n2 6\n5 5\n2 6\n5 1\n1 1\n2 5\n3 1\n1 2\n6 4\n6 5\n5 5\n5 1\n1 5\n2 2\n6 3\n4 3\n6 2\n5 5\n1 1\n6 2\n6 6\n3 4\n2 2\n3 5\n1 5\n2 5\n4 5\n2 4\n6 3\n5 1\n2 6\n4 2\n1 4\n1 6\n6 2\n5 2\n5 6\n2 5\n5 6\n5 5",
"output": "-1"
},
{
"input": "70\n4 3\n6 4\n5 5\n3 1\n1 2\n2 5\n4 6\n4 2\n3 2\n4 2\n1 5\n2 2\n4 3\n1 2\n6 1\n6 6\n1 6\n5 1\n2 2\n6 3\n4 2\n4 3\n1 2\n6 6\n3 3\n6 5\n6 2\n3 6\n6 6\n4 6\n5 2\n5 4\n3 3\n1 6\n5 6\n2 3\n4 6\n1 1\n1 2\n6 6\n1 1\n3 4\n1 6\n2 6\n3 4\n6 3\n5 3\n1 2\n2 3\n4 6\n2 1\n6 4\n4 6\n4 6\n4 2\n5 5\n3 5\n3 2\n4 3\n3 6\n1 4\n3 6\n1 4\n1 6\n1 5\n5 6\n4 4\n3 3\n3 5\n2 2",
"output": "0"
},
{
"input": "75\n1 3\n4 5\n4 1\n6 5\n2 1\n1 4\n5 4\n1 5\n5 3\n1 2\n4 1\n1 1\n5 1\n5 3\n1 5\n4 2\n2 2\n6 3\n1 2\n4 3\n2 5\n5 3\n5 5\n4 1\n4 6\n2 5\n6 1\n2 4\n6 4\n5 2\n6 2\n2 4\n1 3\n5 4\n6 5\n5 4\n6 4\n1 5\n4 6\n1 5\n1 1\n4 4\n3 5\n6 3\n6 5\n1 5\n2 1\n1 5\n6 6\n2 2\n2 2\n4 4\n6 6\n5 4\n4 5\n3 2\n2 4\n1 1\n4 3\n3 2\n5 4\n1 6\n1 2\n2 2\n3 5\n2 6\n1 1\n2 2\n2 3\n6 2\n3 6\n4 4\n5 1\n4 1\n4 1",
"output": "0"
},
{
"input": "75\n1 1\n2 1\n5 5\n6 5\n6 3\n1 6\n6 1\n4 4\n2 1\n6 2\n3 1\n6 4\n1 6\n2 2\n4 3\n4 2\n1 2\n6 2\n4 2\n5 1\n1 2\n3 2\n6 6\n6 3\n2 4\n4 1\n4 1\n2 4\n5 5\n2 3\n5 5\n4 5\n3 1\n1 5\n4 3\n2 3\n3 5\n4 6\n5 6\n1 6\n2 3\n2 2\n1 2\n5 6\n1 4\n1 5\n1 3\n6 2\n1 2\n4 2\n2 1\n1 3\n6 4\n4 1\n5 2\n6 2\n3 5\n2 3\n4 2\n5 1\n5 6\n3 2\n2 1\n6 6\n2 1\n6 2\n1 1\n3 2\n1 2\n3 5\n4 6\n1 3\n3 4\n5 5\n6 2",
"output": "1"
},
{
"input": "80\n3 1\n6 3\n2 2\n2 2\n6 3\n6 1\n6 5\n1 4\n3 6\n6 5\n1 3\n2 4\n1 4\n3 1\n5 3\n5 3\n1 4\n2 5\n4 3\n4 4\n4 5\n6 1\n3 1\n2 6\n4 2\n3 1\n6 5\n2 6\n2 2\n5 1\n1 3\n5 1\n2 1\n4 3\n6 3\n3 5\n4 3\n5 6\n3 3\n4 1\n5 1\n6 5\n5 1\n2 5\n6 1\n3 2\n4 3\n3 3\n5 6\n1 6\n5 2\n1 5\n5 6\n6 4\n2 2\n4 2\n4 6\n4 2\n4 4\n6 5\n5 2\n6 2\n4 6\n6 4\n4 3\n5 1\n4 1\n3 5\n3 2\n3 2\n5 3\n5 4\n3 4\n1 3\n1 2\n6 6\n6 3\n6 1\n5 6\n3 2",
"output": "0"
},
{
"input": "80\n4 5\n3 3\n3 6\n4 5\n3 4\n6 5\n1 5\n2 5\n5 6\n5 1\n5 1\n1 2\n5 5\n5 1\n2 3\n1 1\n4 5\n4 1\n1 1\n5 5\n5 6\n5 2\n5 4\n4 2\n6 2\n5 3\n3 2\n4 2\n1 3\n1 6\n2 1\n6 6\n4 5\n6 4\n2 2\n1 6\n6 2\n4 3\n2 3\n4 6\n4 6\n6 2\n3 4\n4 3\n5 5\n1 6\n3 2\n4 6\n2 3\n1 6\n5 4\n4 2\n5 4\n1 1\n4 3\n5 1\n3 6\n6 2\n3 1\n4 1\n5 3\n2 2\n3 4\n3 6\n3 5\n5 5\n5 1\n3 5\n2 6\n6 3\n6 5\n3 3\n5 6\n1 2\n3 1\n6 3\n3 4\n6 6\n6 6\n1 2",
"output": "-1"
},
{
"input": "85\n6 3\n4 1\n1 2\n3 5\n6 4\n6 2\n2 6\n1 2\n1 5\n6 2\n1 4\n6 6\n2 4\n4 6\n4 5\n1 6\n3 1\n2 5\n5 1\n5 2\n3 5\n1 1\n4 1\n2 3\n1 1\n3 3\n6 4\n1 4\n1 1\n3 6\n1 5\n1 6\n2 5\n2 2\n5 1\n6 6\n1 3\n1 5\n5 6\n4 5\n4 3\n5 5\n1 3\n6 3\n4 6\n2 4\n5 6\n6 2\n4 5\n1 4\n1 4\n6 5\n1 6\n6 1\n1 6\n5 5\n2 1\n5 2\n2 3\n1 6\n1 6\n1 6\n5 6\n2 4\n6 5\n6 5\n4 2\n5 4\n3 4\n4 3\n6 6\n3 3\n3 2\n3 6\n2 5\n2 1\n2 5\n3 4\n1 2\n5 4\n6 2\n5 1\n1 4\n3 4\n4 5",
"output": "0"
},
{
"input": "85\n3 1\n3 2\n6 3\n1 3\n2 1\n3 6\n1 4\n2 5\n6 5\n1 6\n1 5\n1 1\n4 3\n3 5\n4 6\n3 2\n6 6\n4 4\n4 1\n5 5\n4 2\n6 2\n2 2\n4 5\n6 1\n3 4\n4 5\n3 5\n4 2\n3 5\n4 4\n3 1\n4 4\n6 4\n1 4\n5 5\n1 5\n2 2\n6 5\n5 6\n6 5\n3 2\n3 2\n6 1\n6 5\n2 1\n4 6\n2 1\n3 1\n5 6\n1 3\n5 4\n1 4\n1 4\n5 3\n2 3\n1 3\n2 2\n5 3\n2 3\n2 3\n1 3\n3 6\n4 4\n6 6\n6 2\n5 1\n5 5\n5 5\n1 2\n1 4\n2 4\n3 6\n4 6\n6 3\n6 4\n5 5\n3 2\n5 4\n5 4\n4 5\n6 4\n2 1\n5 2\n5 1",
"output": "-1"
},
{
"input": "90\n5 2\n5 5\n5 1\n4 6\n4 3\n5 3\n5 6\n5 1\n3 4\n1 3\n4 2\n1 6\n6 4\n1 2\n6 1\n4 1\n6 2\n6 5\n6 2\n5 4\n3 6\n1 1\n5 5\n2 2\n1 6\n3 5\n6 5\n1 6\n1 5\n2 3\n2 6\n2 3\n3 3\n1 3\n5 1\n2 5\n3 6\n1 2\n4 4\n1 6\n2 3\n1 5\n2 5\n1 3\n2 2\n4 6\n3 6\n6 3\n1 2\n4 3\n4 5\n4 6\n3 2\n6 5\n6 2\n2 5\n2 4\n1 3\n1 6\n4 3\n1 3\n6 4\n4 6\n4 1\n1 1\n4 1\n4 4\n6 2\n6 5\n1 1\n2 2\n3 1\n1 4\n6 2\n5 2\n1 4\n1 3\n6 5\n3 2\n6 4\n3 4\n2 6\n2 2\n6 3\n4 6\n1 2\n4 2\n3 4\n2 3\n1 5",
"output": "-1"
},
{
"input": "90\n1 4\n3 5\n4 2\n2 5\n4 3\n2 6\n2 6\n3 2\n4 4\n6 1\n4 3\n2 3\n5 3\n6 6\n2 2\n6 3\n4 1\n4 4\n5 6\n6 4\n4 2\n5 6\n4 6\n4 4\n6 4\n4 1\n5 3\n3 2\n4 4\n5 2\n5 4\n6 4\n1 2\n3 3\n3 4\n6 4\n1 6\n4 2\n3 2\n1 1\n2 2\n5 1\n6 6\n4 1\n5 2\n3 6\n2 1\n2 2\n4 6\n6 5\n4 4\n5 5\n5 6\n1 6\n1 4\n5 6\n3 6\n6 3\n5 6\n6 5\n5 1\n6 1\n6 6\n6 3\n1 5\n4 5\n3 1\n6 6\n3 4\n6 2\n1 4\n2 2\n3 2\n5 6\n2 4\n1 4\n6 3\n4 6\n1 4\n5 2\n1 2\n6 5\n1 5\n1 4\n4 2\n2 5\n3 2\n5 1\n5 4\n5 3",
"output": "-1"
},
{
"input": "95\n4 3\n3 2\n5 5\n5 3\n1 6\n4 4\n5 5\n6 5\n3 5\n1 5\n4 2\n5 1\n1 2\n2 3\n6 4\n2 3\n6 3\n6 5\n5 6\n1 4\n2 6\n2 6\n2 5\n2 1\n3 1\n3 5\n2 2\n6 1\n2 4\n4 6\n6 6\n6 4\n3 2\n5 1\n4 3\n6 5\n2 3\n4 1\n2 5\n6 5\n6 5\n6 5\n5 1\n5 4\n4 6\n3 2\n2 5\n2 6\n4 6\n6 3\n6 4\n5 6\n4 6\n2 4\n3 4\n1 4\n2 4\n2 3\n5 6\n6 4\n3 1\n5 1\n3 6\n3 5\n2 6\n6 3\n4 3\n3 1\n6 1\n2 2\n6 3\n2 2\n2 2\n6 4\n6 1\n2 1\n5 6\n5 4\n5 2\n3 4\n3 6\n2 1\n1 6\n5 5\n2 6\n2 3\n3 6\n1 3\n1 5\n5 1\n1 2\n2 2\n5 3\n6 4\n4 5",
"output": "0"
},
{
"input": "95\n4 5\n5 6\n3 2\n5 1\n4 3\n4 1\n6 1\n5 2\n2 4\n5 3\n2 3\n6 4\n4 1\n1 6\n2 6\n2 3\n4 6\n2 4\n3 4\n4 2\n5 5\n1 1\n1 5\n4 3\n4 5\n6 2\n6 1\n6 3\n5 5\n4 1\n5 1\n2 3\n5 1\n3 6\n6 6\n4 5\n4 4\n4 3\n1 6\n6 6\n4 6\n6 4\n1 2\n6 2\n4 6\n6 6\n5 5\n6 1\n5 2\n4 5\n6 6\n6 5\n4 4\n1 5\n4 6\n4 1\n3 6\n5 1\n3 1\n4 6\n4 5\n1 3\n5 4\n4 5\n2 2\n6 1\n5 2\n6 5\n2 2\n1 1\n6 3\n6 1\n2 6\n3 3\n2 1\n4 6\n2 4\n5 5\n5 2\n3 2\n1 2\n6 6\n6 2\n5 1\n2 6\n5 2\n2 2\n5 5\n3 5\n3 3\n2 6\n5 3\n4 3\n1 6\n5 4",
"output": "-1"
},
{
"input": "100\n1 1\n3 5\n2 1\n1 2\n3 4\n5 6\n5 6\n6 1\n5 5\n2 4\n5 5\n5 6\n6 2\n6 6\n2 6\n1 4\n2 2\n3 2\n1 3\n5 5\n6 3\n5 6\n1 1\n1 2\n1 2\n2 1\n2 3\n1 6\n4 3\n1 1\n2 5\n2 4\n4 4\n1 5\n3 3\n6 1\n3 5\n1 1\n3 6\n3 1\n4 2\n4 3\n3 6\n6 6\n1 6\n6 2\n2 5\n5 4\n6 3\n1 4\n2 6\n6 2\n3 4\n6 1\n6 5\n4 6\n6 5\n4 4\n3 1\n6 3\n5 1\n2 4\n5 1\n1 2\n2 4\n2 1\n6 6\n5 3\n4 6\n6 3\n5 5\n3 3\n1 1\n6 5\n4 3\n2 6\n1 5\n3 5\n2 4\n4 5\n1 6\n2 3\n6 3\n5 5\n2 6\n2 6\n3 4\n3 2\n6 1\n3 4\n6 4\n3 3\n2 3\n5 1\n3 1\n6 2\n2 3\n6 4\n1 4\n1 2",
"output": "-1"
},
{
"input": "100\n1 1\n5 5\n1 2\n5 3\n5 5\n2 2\n1 5\n3 4\n3 2\n1 3\n5 6\n4 5\n2 1\n5 5\n2 2\n1 6\n6 1\n5 1\n4 1\n4 6\n3 5\n6 1\n2 3\n5 6\n3 6\n2 3\n5 6\n1 6\n3 2\n2 2\n3 3\n6 5\n5 5\n1 4\n5 6\n6 4\n1 4\n1 2\n2 6\n3 2\n6 4\n5 3\n3 3\n6 4\n4 6\n2 2\n5 6\n5 1\n1 2\n3 4\n4 5\n1 1\n3 4\n5 2\n4 5\n3 3\n1 1\n3 4\n1 6\n2 4\n1 3\n3 2\n6 5\n1 6\n3 6\n2 3\n2 6\n5 1\n5 5\n5 6\n4 1\n6 2\n3 6\n5 3\n2 2\n2 4\n6 6\n3 6\n4 6\n2 5\n5 3\n1 2\n3 4\n3 4\n6 2\n2 4\n2 2\n4 6\n3 5\n4 2\n5 6\n4 2\n2 3\n6 2\n5 6\n2 1\n3 3\n6 6\n4 3\n4 2",
"output": "1"
},
{
"input": "1\n2 2",
"output": "0"
},
{
"input": "3\n2 4\n6 6\n3 3",
"output": "-1"
},
{
"input": "2\n3 6\n4 1",
"output": "1"
},
{
"input": "3\n1 1\n1 1\n3 3",
"output": "-1"
},
{
"input": "3\n2 3\n1 1\n2 3",
"output": "1"
},
{
"input": "3\n2 2\n2 1\n1 2",
"output": "1"
},
{
"input": "3\n1 1\n1 1\n1 1",
"output": "-1"
}
] | 1,453,562,515
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 59
| 124
| 0
|
n = int(input())
arr_a, arr_b = [], []
for _ in range(n):
a, b = map(int, input().split())
arr_a.append(a)
arr_b.append(b)
if sum(arr_a) % 2 + sum(arr_b) % 2 == 0:
print(0)
exit()
for i in range(n):
arr_a[i], arr_b[i] = arr_b[i], arr_a[i]
if sum(arr_a) % 2 + sum(arr_b) % 2 == 0:
print(1)
exit()
print(-1)
|
Title: Domino
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera has got *n* domino pieces in a row. Each piece consists of two halves β the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even.
To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true.
Input Specification:
The first line contains integer *n* (1<=β€<=*n*<=β€<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=β€<=*x**i*,<=*y**i*<=β€<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half.
Output Specification:
Print a single number β the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1.
Demo Input:
['2\n4 2\n6 4\n', '1\n2 3\n', '3\n1 4\n2 3\n4 4\n']
Demo Output:
['0\n', '-1\n', '1\n']
Note:
In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything.
In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd.
In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
|
```python
n = int(input())
arr_a, arr_b = [], []
for _ in range(n):
a, b = map(int, input().split())
arr_a.append(a)
arr_b.append(b)
if sum(arr_a) % 2 + sum(arr_b) % 2 == 0:
print(0)
exit()
for i in range(n):
arr_a[i], arr_b[i] = arr_b[i], arr_a[i]
if sum(arr_a) % 2 + sum(arr_b) % 2 == 0:
print(1)
exit()
print(-1)
```
| 3
|
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob β to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=β€<=*n*<=β€<=100) β amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,568,569,491
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 218
| 0
|
num = int(input())
x = list(map(int,input().strip().split()))[:num]
arry =[0]*101
for i in range(num):
if x[i] % 2 == 0:
arry[i] = "a"
elif x[i] % 2 == 1 :
arry[i] = "b"
if arry.count("b")>1:
print(arry.index("a")+1)
else:
print(arry.index("b")+1)
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob β to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=β€<=*n*<=β€<=100) β amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
num = int(input())
x = list(map(int,input().strip().split()))[:num]
arry =[0]*101
for i in range(num):
if x[i] % 2 == 0:
arry[i] = "a"
elif x[i] % 2 == 1 :
arry[i] = "b"
if arry.count("b")>1:
print(arry.index("a")+1)
else:
print(arry.index("b")+1)
```
| 3.9455
|
714
|
A
|
Meeting of Old Friends
|
PROGRAMMING
| 1,100
|
[
"implementation",
"math"
] | null | null |
Today an outstanding event is going to happen in the forestΒ β hedgehog Filya will come to his old fried Sonya!
Sonya is an owl and she sleeps during the day and stay awake from minute *l*1 to minute *r*1 inclusive. Also, during the minute *k* she prinks and is unavailable for Filya.
Filya works a lot and he plans to visit Sonya from minute *l*2 to minute *r*2 inclusive.
Calculate the number of minutes they will be able to spend together.
|
The only line of the input contains integers *l*1, *r*1, *l*2, *r*2 and *k* (1<=β€<=*l*1,<=*r*1,<=*l*2,<=*r*2,<=*k*<=β€<=1018, *l*1<=β€<=*r*1, *l*2<=β€<=*r*2), providing the segments of time for Sonya and Filya and the moment of time when Sonya prinks.
|
Print one integerΒ β the number of minutes Sonya and Filya will be able to spend together.
|
[
"1 10 9 20 1\n",
"1 100 50 200 75\n"
] |
[
"2\n",
"50\n"
] |
In the first sample, they will be together during minutes 9 and 10.
In the second sample, they will be together from minute 50 to minute 74 and from minute 76 to minute 100.
| 500
|
[
{
"input": "1 10 9 20 1",
"output": "2"
},
{
"input": "1 100 50 200 75",
"output": "50"
},
{
"input": "6 6 5 8 9",
"output": "1"
},
{
"input": "1 1000000000 1 1000000000 1",
"output": "999999999"
},
{
"input": "5 100 8 8 8",
"output": "0"
},
{
"input": "1 1000000000000000000 2 99999999999999999 1000000000",
"output": "99999999999999997"
},
{
"input": "1 1 1 1 1",
"output": "0"
},
{
"input": "1 2 3 4 5",
"output": "0"
},
{
"input": "1 1000000000 2 999999999 3141592",
"output": "999999997"
},
{
"input": "24648817341102 41165114064236 88046848035 13602161452932 10000831349205",
"output": "0"
},
{
"input": "1080184299348 34666828555290 6878390132365 39891656267344 15395310291636",
"output": "27788438422925"
},
{
"input": "11814 27385 22309 28354 23595",
"output": "5076"
},
{
"input": "4722316546398 36672578279675 796716437180 33840047334985 13411035401708",
"output": "29117730788587"
},
{
"input": "14300093617438 14381698008501 6957847034861 32510754974307 66056597033082",
"output": "81604391064"
},
{
"input": "700062402405871919 762322967106512617 297732773882447821 747309903322652819 805776739998108178",
"output": "47247500916780901"
},
{
"input": "59861796371397621 194872039092923459 668110259718450585 841148673332698972 928360292123223779",
"output": "0"
},
{
"input": "298248781360904821 346420922793050061 237084570581741798 726877079564549183 389611850470532358",
"output": "48172141432145241"
},
{
"input": "420745791717606818 864206437350900994 764928840030524015 966634105370748487 793326512080703489",
"output": "99277597320376979"
},
{
"input": "519325240668210886 776112702001665034 360568516809443669 875594219634943179 994594983925273138",
"output": "256787461333454149"
},
{
"input": "170331212821058551 891149660635282032 125964175621755330 208256491683509799 526532153531983174",
"output": "37925278862451249"
},
{
"input": "1 3 3 5 3",
"output": "0"
},
{
"input": "1 5 8 10 9",
"output": "0"
},
{
"input": "1 2 4 5 10",
"output": "0"
},
{
"input": "1 2 2 3 5",
"output": "1"
},
{
"input": "2 4 3 7 3",
"output": "1"
},
{
"input": "1 2 9 10 1",
"output": "0"
},
{
"input": "5 15 1 10 5",
"output": "5"
},
{
"input": "1 4 9 20 25",
"output": "0"
},
{
"input": "2 4 1 2 5",
"output": "1"
},
{
"input": "10 1000 1 100 2",
"output": "91"
},
{
"input": "1 3 3 8 10",
"output": "1"
},
{
"input": "4 6 6 8 9",
"output": "1"
},
{
"input": "2 3 1 4 3",
"output": "1"
},
{
"input": "1 2 2 3 100",
"output": "1"
},
{
"input": "1 2 100 120 2",
"output": "0"
},
{
"input": "1 3 5 7 4",
"output": "0"
},
{
"input": "1 3 5 7 5",
"output": "0"
},
{
"input": "1 4 8 10 6",
"output": "0"
},
{
"input": "1 2 5 6 100",
"output": "0"
},
{
"input": "1 2 5 10 20",
"output": "0"
},
{
"input": "1 2 5 6 7",
"output": "0"
},
{
"input": "2 5 7 12 6",
"output": "0"
},
{
"input": "10 20 50 100 80",
"output": "0"
},
{
"input": "1 2 5 10 2",
"output": "0"
},
{
"input": "1 2 5 6 4",
"output": "0"
},
{
"input": "5 9 1 2 3",
"output": "0"
},
{
"input": "50 100 1 20 3",
"output": "0"
},
{
"input": "10 20 3 7 30",
"output": "0"
},
{
"input": "1 5 10 10 100",
"output": "0"
},
{
"input": "100 101 1 2 3",
"output": "0"
},
{
"input": "1 5 10 20 6",
"output": "0"
},
{
"input": "1 10 15 25 5",
"output": "0"
},
{
"input": "1 2 5 10 3",
"output": "0"
},
{
"input": "2 3 5 6 100",
"output": "0"
},
{
"input": "1 2 4 5 6",
"output": "0"
},
{
"input": "6 10 1 2 40",
"output": "0"
},
{
"input": "20 30 1 5 1",
"output": "0"
},
{
"input": "20 40 50 100 50",
"output": "0"
},
{
"input": "1 1 4 9 2",
"output": "0"
},
{
"input": "1 2 5 6 1",
"output": "0"
},
{
"input": "1 100 400 500 450",
"output": "0"
},
{
"input": "5 6 1 2 5",
"output": "0"
},
{
"input": "1 10 21 30 50",
"output": "0"
},
{
"input": "100 200 300 400 101",
"output": "0"
},
{
"input": "2 8 12 16 9",
"output": "0"
},
{
"input": "1 5 7 9 6",
"output": "0"
},
{
"input": "300 400 100 200 101",
"output": "0"
},
{
"input": "1 2 2 3 10",
"output": "1"
},
{
"input": "1 10 100 200 5",
"output": "0"
},
{
"input": "1 3 3 4 4",
"output": "1"
},
{
"input": "10 20 30 40 25",
"output": "0"
},
{
"input": "1 2 5 10 1",
"output": "0"
},
{
"input": "2 4 8 10 1",
"output": "0"
},
{
"input": "2 5 10 15 7",
"output": "0"
},
{
"input": "100 200 5 10 1",
"output": "0"
},
{
"input": "1 2 100 200 300",
"output": "0"
},
{
"input": "30 100 10 20 25",
"output": "0"
},
{
"input": "10 20 1 5 6",
"output": "0"
},
{
"input": "4 5 1 2 4",
"output": "0"
},
{
"input": "11 100 1 9 1000",
"output": "0"
},
{
"input": "1 1 10 10 228",
"output": "0"
},
{
"input": "5 7 10 20 15",
"output": "0"
},
{
"input": "1 3 8 9 7",
"output": "0"
},
{
"input": "1 10 2 8 8",
"output": "6"
},
{
"input": "1 5 9 15 1",
"output": "0"
},
{
"input": "1 3 5 6 12",
"output": "0"
},
{
"input": "1 100 500 1000 3",
"output": "0"
},
{
"input": "1 1 1 1 2",
"output": "1"
},
{
"input": "1 1000 100 1000 200",
"output": "900"
},
{
"input": "4 5 1 4 1",
"output": "1"
},
{
"input": "1 5 5 7 3",
"output": "1"
},
{
"input": "1 4 4 10 11",
"output": "1"
},
{
"input": "1 1 3 4 100",
"output": "0"
},
{
"input": "1 4 3 5 6",
"output": "2"
},
{
"input": "10 100 20 30 40",
"output": "11"
},
{
"input": "5 9 1 11 7",
"output": "4"
}
] | 1,474,090,908
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 96
| 62
| 0
|
line = input()
l = line.split()
l1 = int(l[0])
r1 = int(l[1])
l2 = int(l[2])
r2 = int(l[3])
k = int(l[4])
spent = 0
if l2 > r1 or r2 < l1:
spent = 0
else:
if l1 > l2:
start = l1
else:
start = l2
if r1 < r2:
finish = r1
else:
finish = r2
spent = finish - start + 1
if k >= start and k <= finish:
spent -= 1
print(spent)
|
Title: Meeting of Old Friends
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today an outstanding event is going to happen in the forestΒ β hedgehog Filya will come to his old fried Sonya!
Sonya is an owl and she sleeps during the day and stay awake from minute *l*1 to minute *r*1 inclusive. Also, during the minute *k* she prinks and is unavailable for Filya.
Filya works a lot and he plans to visit Sonya from minute *l*2 to minute *r*2 inclusive.
Calculate the number of minutes they will be able to spend together.
Input Specification:
The only line of the input contains integers *l*1, *r*1, *l*2, *r*2 and *k* (1<=β€<=*l*1,<=*r*1,<=*l*2,<=*r*2,<=*k*<=β€<=1018, *l*1<=β€<=*r*1, *l*2<=β€<=*r*2), providing the segments of time for Sonya and Filya and the moment of time when Sonya prinks.
Output Specification:
Print one integerΒ β the number of minutes Sonya and Filya will be able to spend together.
Demo Input:
['1 10 9 20 1\n', '1 100 50 200 75\n']
Demo Output:
['2\n', '50\n']
Note:
In the first sample, they will be together during minutes 9 and 10.
In the second sample, they will be together from minute 50 to minute 74 and from minute 76 to minute 100.
|
```python
line = input()
l = line.split()
l1 = int(l[0])
r1 = int(l[1])
l2 = int(l[2])
r2 = int(l[3])
k = int(l[4])
spent = 0
if l2 > r1 or r2 < l1:
spent = 0
else:
if l1 > l2:
start = l1
else:
start = l2
if r1 < r2:
finish = r1
else:
finish = r2
spent = finish - start + 1
if k >= start and k <= finish:
spent -= 1
print(spent)
```
| 3
|
|
339
|
A
|
Helpful Maths
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"sortings",
"strings"
] | null | null |
Xenia the beginner mathematician is a third year student at elementary school. She is now learning the addition operation.
The teacher has written down the sum of multiple numbers. Pupils should calculate the sum. To make the calculation easier, the sum only contains numbers 1, 2 and 3. Still, that isn't enough for Xenia. She is only beginning to count, so she can calculate a sum only if the summands follow in non-decreasing order. For example, she can't calculate sum 1+3+2+1 but she can calculate sums 1+1+2 and 3+3.
You've got the sum that was written on the board. Rearrange the summans and print the sum in such a way that Xenia can calculate the sum.
|
The first line contains a non-empty string *s* β the sum Xenia needs to count. String *s* contains no spaces. It only contains digits and characters "+". Besides, string *s* is a correct sum of numbers 1, 2 and 3. String *s* is at most 100 characters long.
|
Print the new sum that Xenia can count.
|
[
"3+2+1\n",
"1+1+3+1+3\n",
"2\n"
] |
[
"1+2+3\n",
"1+1+1+3+3\n",
"2\n"
] |
none
| 500
|
[
{
"input": "3+2+1",
"output": "1+2+3"
},
{
"input": "1+1+3+1+3",
"output": "1+1+1+3+3"
},
{
"input": "2",
"output": "2"
},
{
"input": "2+2+1+1+3",
"output": "1+1+2+2+3"
},
{
"input": "2+1+2+2+2+3+1+3+1+2",
"output": "1+1+1+2+2+2+2+2+3+3"
},
{
"input": "1+2+1+2+2+2+2+1+3+3",
"output": "1+1+1+2+2+2+2+2+3+3"
},
{
"input": "2+3+3+1+2+2+2+1+1+2+1+3+2+2+3+3+2+2+3+3+3+1+1+1+3+3+3+2+1+3+2+3+2+1+1+3+3+3+1+2+2+1+2+2+1+2+1+3+1+1",
"output": "1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3"
},
{
"input": "1",
"output": "1"
},
{
"input": "2+1+2+2+1+3+2+3+1+1+2+1+2+2+3+1+1+3+3+3+2+2+3+2+2+2+1+2+1+2+3+2+2+2+1+3+1+3+3+3+1+2+1+2+2+2+2+3+1+1",
"output": "1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3"
},
{
"input": "2+2+1+1+1+3+1+1+3+3+2+3+1+3+1+1+3+1+1+2+2+2+2+1+2+1+2+1+1+1+3+1+3+2+3+2+3+3+1+1+1+2+3+2+1+3+1+3+2+2",
"output": "1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3+3"
},
{
"input": "3+2+3+3+2+2+1+2+1+2+3+1+2+3+2+3+2+1+2+2+1+1+2+2+3+2+1+3+1+1+3+2+2+2+2+3+3+2+2+3+3+1+1+2+3+3+2+3+3+3",
"output": "1+1+1+1+1+1+1+1+1+1+1+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3"
},
{
"input": "3",
"output": "3"
},
{
"input": "1+1",
"output": "1+1"
},
{
"input": "1+2",
"output": "1+2"
},
{
"input": "1+3",
"output": "1+3"
},
{
"input": "2+1",
"output": "1+2"
},
{
"input": "2+2",
"output": "2+2"
},
{
"input": "2+3",
"output": "2+3"
},
{
"input": "3+1",
"output": "1+3"
},
{
"input": "3+2",
"output": "2+3"
},
{
"input": "3+3",
"output": "3+3"
}
] | 1,694,969,119
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 21
| 122
| 0
|
start = sorted(str(input()).split("+"))
final = str()
for i in start:
final += str(i) + "+"
print(final[:-1])
|
Title: Helpful Maths
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Xenia the beginner mathematician is a third year student at elementary school. She is now learning the addition operation.
The teacher has written down the sum of multiple numbers. Pupils should calculate the sum. To make the calculation easier, the sum only contains numbers 1, 2 and 3. Still, that isn't enough for Xenia. She is only beginning to count, so she can calculate a sum only if the summands follow in non-decreasing order. For example, she can't calculate sum 1+3+2+1 but she can calculate sums 1+1+2 and 3+3.
You've got the sum that was written on the board. Rearrange the summans and print the sum in such a way that Xenia can calculate the sum.
Input Specification:
The first line contains a non-empty string *s* β the sum Xenia needs to count. String *s* contains no spaces. It only contains digits and characters "+". Besides, string *s* is a correct sum of numbers 1, 2 and 3. String *s* is at most 100 characters long.
Output Specification:
Print the new sum that Xenia can count.
Demo Input:
['3+2+1\n', '1+1+3+1+3\n', '2\n']
Demo Output:
['1+2+3\n', '1+1+1+3+3\n', '2\n']
Note:
none
|
```python
start = sorted(str(input()).split("+"))
final = str()
for i in start:
final += str(i) + "+"
print(final[:-1])
```
| 3
|
|
415
|
B
|
Mashmokh and Tokens
|
PROGRAMMING
| 1,500
|
[
"binary search",
"greedy",
"implementation",
"math"
] | null | null |
Bimokh is Mashmokh's boss. For the following *n* days he decided to pay to his workers in a new way. At the beginning of each day he will give each worker a certain amount of tokens. Then at the end of each day each worker can give some of his tokens back to get a certain amount of money. The worker can save the rest of tokens but he can't use it in any other day to get more money. If a worker gives back *w* tokens then he'll get dollars.
Mashmokh likes the tokens however he likes money more. That's why he wants to save as many tokens as possible so that the amount of money he gets is maximal possible each day. He has *n* numbers *x*1,<=*x*2,<=...,<=*x**n*. Number *x**i* is the number of tokens given to each worker on the *i*-th day. Help him calculate for each of *n* days the number of tokens he can save.
|
The first line of input contains three space-separated integers *n*,<=*a*,<=*b*Β (1<=β€<=*n*<=β€<=105;Β 1<=β€<=*a*,<=*b*<=β€<=109). The second line of input contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n*Β (1<=β€<=*x**i*<=β€<=109).
|
Output *n* space-separated integers. The *i*-th of them is the number of tokens Mashmokh can save on the *i*-th day.
|
[
"5 1 4\n12 6 11 9 1\n",
"3 1 2\n1 2 3\n",
"1 1 1\n1\n"
] |
[
"0 2 3 1 1 ",
"1 0 1 ",
"0 "
] |
none
| 1,000
|
[
{
"input": "5 1 4\n12 6 11 9 1",
"output": "0 2 3 1 1 "
},
{
"input": "3 1 2\n1 2 3",
"output": "1 0 1 "
},
{
"input": "1 1 1\n1",
"output": "0 "
},
{
"input": "1 1 1000000000\n1000000000",
"output": "0 "
},
{
"input": "1 1 1000000000\n999999999",
"output": "999999999 "
},
{
"input": "10 1 100000000\n999999999 999999999 999999999 999999999 999999999 999999999 999999999 999999999 999999999 999999999",
"output": "99999999 99999999 99999999 99999999 99999999 99999999 99999999 99999999 99999999 99999999 "
}
] | 1,398,169,740
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 47
| 327
| 9,625,600
|
import math
n,a,b=map(int,input().split())
xlist=[int(x) for x in input().split()]
savestring=''
for i in range(n):
maxmoney=math.floor(xlist[i]*a/b)
saves=xlist[i]-math.ceil(maxmoney*b/a)
savestring+=str(saves)+' '
print(savestring)
|
Title: Mashmokh and Tokens
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bimokh is Mashmokh's boss. For the following *n* days he decided to pay to his workers in a new way. At the beginning of each day he will give each worker a certain amount of tokens. Then at the end of each day each worker can give some of his tokens back to get a certain amount of money. The worker can save the rest of tokens but he can't use it in any other day to get more money. If a worker gives back *w* tokens then he'll get dollars.
Mashmokh likes the tokens however he likes money more. That's why he wants to save as many tokens as possible so that the amount of money he gets is maximal possible each day. He has *n* numbers *x*1,<=*x*2,<=...,<=*x**n*. Number *x**i* is the number of tokens given to each worker on the *i*-th day. Help him calculate for each of *n* days the number of tokens he can save.
Input Specification:
The first line of input contains three space-separated integers *n*,<=*a*,<=*b*Β (1<=β€<=*n*<=β€<=105;Β 1<=β€<=*a*,<=*b*<=β€<=109). The second line of input contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n*Β (1<=β€<=*x**i*<=β€<=109).
Output Specification:
Output *n* space-separated integers. The *i*-th of them is the number of tokens Mashmokh can save on the *i*-th day.
Demo Input:
['5 1 4\n12 6 11 9 1\n', '3 1 2\n1 2 3\n', '1 1 1\n1\n']
Demo Output:
['0 2 3 1 1 ', '1 0 1 ', '0 ']
Note:
none
|
```python
import math
n,a,b=map(int,input().split())
xlist=[int(x) for x in input().split()]
savestring=''
for i in range(n):
maxmoney=math.floor(xlist[i]*a/b)
saves=xlist[i]-math.ceil(maxmoney*b/a)
savestring+=str(saves)+' '
print(savestring)
```
| 3
|
|
1,009
|
A
|
Game Shopping
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Maxim wants to buy some games at the local game shop. There are $n$ games in the shop, the $i$-th game costs $c_i$.
Maxim has a wallet which can be represented as an array of integers. His wallet contains $m$ bills, the $j$-th bill has value $a_j$.
Games in the shop are ordered from left to right, Maxim tries to buy every game in that order.
When Maxim stands at the position $i$ in the shop, he takes the first bill from his wallet (if his wallet is empty then he proceeds to the next position immediately) and tries to buy the $i$-th game using this bill. After Maxim tried to buy the $n$-th game, he leaves the shop.
Maxim buys the $i$-th game if and only if the value of the first bill (which he takes) from his wallet is greater or equal to the cost of the $i$-th game. If he successfully buys the $i$-th game, the first bill from his wallet disappears and the next bill becomes first. Otherwise Maxim leaves the first bill in his wallet (this bill still remains the first one) and proceeds to the next game.
For example, for array $c = [2, 4, 5, 2, 4]$ and array $a = [5, 3, 4, 6]$ the following process takes place: Maxim buys the first game using the first bill (its value is $5$), the bill disappears, after that the second bill (with value $3$) becomes the first one in Maxim's wallet, then Maxim doesn't buy the second game because $c_2 > a_2$, the same with the third game, then he buys the fourth game using the bill of value $a_2$ (the third bill becomes the first one in Maxim's wallet) and buys the fifth game using the bill of value $a_3$.
Your task is to get the number of games Maxim will buy.
|
The first line of the input contains two integers $n$ and $m$ ($1 \le n, m \le 1000$) β the number of games and the number of bills in Maxim's wallet.
The second line of the input contains $n$ integers $c_1, c_2, \dots, c_n$ ($1 \le c_i \le 1000$), where $c_i$ is the cost of the $i$-th game.
The third line of the input contains $m$ integers $a_1, a_2, \dots, a_m$ ($1 \le a_j \le 1000$), where $a_j$ is the value of the $j$-th bill from the Maxim's wallet.
|
Print a single integer β the number of games Maxim will buy.
|
[
"5 4\n2 4 5 2 4\n5 3 4 6\n",
"5 2\n20 40 50 20 40\n19 20\n",
"6 4\n4 8 15 16 23 42\n1000 1000 1000 1000\n"
] |
[
"3\n",
"0\n",
"4\n"
] |
The first example is described in the problem statement.
In the second example Maxim cannot buy any game because the value of the first bill in his wallet is smaller than the cost of any game in the shop.
In the third example the values of the bills in Maxim's wallet are large enough to buy any game he encounter until he runs out of bills in his wallet.
| 0
|
[
{
"input": "5 4\n2 4 5 2 4\n5 3 4 6",
"output": "3"
},
{
"input": "5 2\n20 40 50 20 40\n19 20",
"output": "0"
},
{
"input": "6 4\n4 8 15 16 23 42\n1000 1000 1000 1000",
"output": "4"
},
{
"input": "5 1\n1 1 1 1 1\n5",
"output": "1"
},
{
"input": "5 1\n10 1 1 1 1\n1000",
"output": "1"
},
{
"input": "5 1\n100 100 100 100 100\n100",
"output": "1"
},
{
"input": "2 1\n2 1\n1",
"output": "1"
},
{
"input": "2 3\n3 1\n2 4 2",
"output": "1"
},
{
"input": "1 5\n4\n1 4 3 3 2",
"output": "0"
},
{
"input": "5 3\n4 2 3 1 1\n2 1 3",
"output": "3"
},
{
"input": "3 5\n5 2 5\n1 4 1 4 2",
"output": "0"
},
{
"input": "7 3\n9 7 10 2 1 1 1\n8 9 6",
"output": "3"
},
{
"input": "5 3\n2 5 3 3 2\n2 5 3",
"output": "3"
}
] | 1,564,741,525
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 19
| 109
| 0
|
n,m = map(int, input().split())
li = list(map(int, input().split()))
li2 = list(map(int, input().split()))
c = 0
for i in li:
c += (c < len(li2) and li2[c] >= i)
print(c)
|
Title: Game Shopping
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Maxim wants to buy some games at the local game shop. There are $n$ games in the shop, the $i$-th game costs $c_i$.
Maxim has a wallet which can be represented as an array of integers. His wallet contains $m$ bills, the $j$-th bill has value $a_j$.
Games in the shop are ordered from left to right, Maxim tries to buy every game in that order.
When Maxim stands at the position $i$ in the shop, he takes the first bill from his wallet (if his wallet is empty then he proceeds to the next position immediately) and tries to buy the $i$-th game using this bill. After Maxim tried to buy the $n$-th game, he leaves the shop.
Maxim buys the $i$-th game if and only if the value of the first bill (which he takes) from his wallet is greater or equal to the cost of the $i$-th game. If he successfully buys the $i$-th game, the first bill from his wallet disappears and the next bill becomes first. Otherwise Maxim leaves the first bill in his wallet (this bill still remains the first one) and proceeds to the next game.
For example, for array $c = [2, 4, 5, 2, 4]$ and array $a = [5, 3, 4, 6]$ the following process takes place: Maxim buys the first game using the first bill (its value is $5$), the bill disappears, after that the second bill (with value $3$) becomes the first one in Maxim's wallet, then Maxim doesn't buy the second game because $c_2 > a_2$, the same with the third game, then he buys the fourth game using the bill of value $a_2$ (the third bill becomes the first one in Maxim's wallet) and buys the fifth game using the bill of value $a_3$.
Your task is to get the number of games Maxim will buy.
Input Specification:
The first line of the input contains two integers $n$ and $m$ ($1 \le n, m \le 1000$) β the number of games and the number of bills in Maxim's wallet.
The second line of the input contains $n$ integers $c_1, c_2, \dots, c_n$ ($1 \le c_i \le 1000$), where $c_i$ is the cost of the $i$-th game.
The third line of the input contains $m$ integers $a_1, a_2, \dots, a_m$ ($1 \le a_j \le 1000$), where $a_j$ is the value of the $j$-th bill from the Maxim's wallet.
Output Specification:
Print a single integer β the number of games Maxim will buy.
Demo Input:
['5 4\n2 4 5 2 4\n5 3 4 6\n', '5 2\n20 40 50 20 40\n19 20\n', '6 4\n4 8 15 16 23 42\n1000 1000 1000 1000\n']
Demo Output:
['3\n', '0\n', '4\n']
Note:
The first example is described in the problem statement.
In the second example Maxim cannot buy any game because the value of the first bill in his wallet is smaller than the cost of any game in the shop.
In the third example the values of the bills in Maxim's wallet are large enough to buy any game he encounter until he runs out of bills in his wallet.
|
```python
n,m = map(int, input().split())
li = list(map(int, input().split()))
li2 = list(map(int, input().split()))
c = 0
for i in li:
c += (c < len(li2) and li2[c] >= i)
print(c)
```
| 3
|
|
320
|
A
|
Magic Numbers
|
PROGRAMMING
| 900
|
[
"brute force",
"greedy"
] | null | null |
A magic number is a number formed by concatenation of numbers 1, 14 and 144. We can use each of these numbers any number of times. Therefore 14144, 141414 and 1411 are magic numbers but 1444, 514 and 414 are not.
You're given a number. Determine if it is a magic number or not.
|
The first line of input contains an integer *n*, (1<=β€<=*n*<=β€<=109). This number doesn't contain leading zeros.
|
Print "YES" if *n* is a magic number or print "NO" if it's not.
|
[
"114114\n",
"1111\n",
"441231\n"
] |
[
"YES\n",
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "114114",
"output": "YES"
},
{
"input": "1111",
"output": "YES"
},
{
"input": "441231",
"output": "NO"
},
{
"input": "1",
"output": "YES"
},
{
"input": "14",
"output": "YES"
},
{
"input": "114",
"output": "YES"
},
{
"input": "9",
"output": "NO"
},
{
"input": "414",
"output": "NO"
},
{
"input": "1000000000",
"output": "NO"
},
{
"input": "144144144",
"output": "YES"
},
{
"input": "1444",
"output": "NO"
},
{
"input": "11",
"output": "YES"
},
{
"input": "141414141",
"output": "YES"
},
{
"input": "11110111",
"output": "NO"
},
{
"input": "114114144",
"output": "YES"
},
{
"input": "444",
"output": "NO"
},
{
"input": "9999",
"output": "NO"
},
{
"input": "111444",
"output": "NO"
},
{
"input": "11114",
"output": "YES"
},
{
"input": "41111",
"output": "NO"
},
{
"input": "114414441",
"output": "NO"
},
{
"input": "144414441",
"output": "NO"
},
{
"input": "144244144",
"output": "NO"
},
{
"input": "111111111",
"output": "YES"
},
{
"input": "144444444",
"output": "NO"
},
{
"input": "444444444",
"output": "NO"
},
{
"input": "141441441",
"output": "YES"
},
{
"input": "441",
"output": "NO"
},
{
"input": "15",
"output": "NO"
},
{
"input": "14444",
"output": "NO"
},
{
"input": "11444",
"output": "NO"
},
{
"input": "144",
"output": "YES"
},
{
"input": "1414414",
"output": "YES"
},
{
"input": "141444",
"output": "NO"
},
{
"input": "14144",
"output": "YES"
},
{
"input": "4",
"output": "NO"
},
{
"input": "1144",
"output": "YES"
},
{
"input": "141111444",
"output": "NO"
},
{
"input": "14414414",
"output": "YES"
},
{
"input": "141414144",
"output": "YES"
},
{
"input": "1414",
"output": "YES"
},
{
"input": "1441",
"output": "YES"
},
{
"input": "12",
"output": "NO"
},
{
"input": "144144141",
"output": "YES"
},
{
"input": "144144",
"output": "YES"
},
{
"input": "14414411",
"output": "YES"
},
{
"input": "14414",
"output": "YES"
}
] | 1,674,190,027
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 47
| 122
| 0
|
str_num = input()
store = ['1', '14', '141']
temp = ""
found = False
for i, n in enumerate(str_num):
temp += n
if temp == '1':
if i < len(str_num) - 1 and str_num[i + 1] != '4':
temp = ""
elif temp == '14':
if i < len(str_num) - 1 and str_num[i + 1] != '4':
temp = ""
elif temp == '144':
temp = ""
else:
print("NO")
found = True
break
if not found:
print("YES")
|
Title: Magic Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A magic number is a number formed by concatenation of numbers 1, 14 and 144. We can use each of these numbers any number of times. Therefore 14144, 141414 and 1411 are magic numbers but 1444, 514 and 414 are not.
You're given a number. Determine if it is a magic number or not.
Input Specification:
The first line of input contains an integer *n*, (1<=β€<=*n*<=β€<=109). This number doesn't contain leading zeros.
Output Specification:
Print "YES" if *n* is a magic number or print "NO" if it's not.
Demo Input:
['114114\n', '1111\n', '441231\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n']
Note:
none
|
```python
str_num = input()
store = ['1', '14', '141']
temp = ""
found = False
for i, n in enumerate(str_num):
temp += n
if temp == '1':
if i < len(str_num) - 1 and str_num[i + 1] != '4':
temp = ""
elif temp == '14':
if i < len(str_num) - 1 and str_num[i + 1] != '4':
temp = ""
elif temp == '144':
temp = ""
else:
print("NO")
found = True
break
if not found:
print("YES")
```
| 3
|
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,548,417,071
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 218
| 0
|
s = input()
lw = 0
up = 0
for i in range(len(s)):
if s[i].isupper():
up += 1
else:
lw += 1
if up <= lw:
print(s.lower())
else:
print(s.upper())
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
s = input()
lw = 0
up = 0
for i in range(len(s)):
if s[i].isupper():
up += 1
else:
lw += 1
if up <= lw:
print(s.lower())
else:
print(s.upper())
```
| 3.9455
|
734
|
A
|
Anton and Danik
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Anton likes to play chess, and so does his friend Danik.
Once they have played *n* games in a row. For each game it's known who was the winnerΒ β Anton or Danik. None of the games ended with a tie.
Now Anton wonders, who won more games, he or Danik? Help him determine this.
|
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=100<=000)Β β the number of games played.
The second line contains a string *s*, consisting of *n* uppercase English letters 'A' and 'D'Β β the outcome of each of the games. The *i*-th character of the string is equal to 'A' if the Anton won the *i*-th game and 'D' if Danik won the *i*-th game.
|
If Anton won more games than Danik, print "Anton" (without quotes) in the only line of the output.
If Danik won more games than Anton, print "Danik" (without quotes) in the only line of the output.
If Anton and Danik won the same number of games, print "Friendship" (without quotes).
|
[
"6\nADAAAA\n",
"7\nDDDAADA\n",
"6\nDADADA\n"
] |
[
"Anton\n",
"Danik\n",
"Friendship\n"
] |
In the first sample, Anton won 6 games, while DanikΒ β only 1. Hence, the answer is "Anton".
In the second sample, Anton won 3 games and Danik won 4 games, so the answer is "Danik".
In the third sample, both Anton and Danik won 3 games and the answer is "Friendship".
| 500
|
[
{
"input": "6\nADAAAA",
"output": "Anton"
},
{
"input": "7\nDDDAADA",
"output": "Danik"
},
{
"input": "6\nDADADA",
"output": "Friendship"
},
{
"input": "10\nDDDDADDADD",
"output": "Danik"
},
{
"input": "40\nAAAAAAAAADDAAAAAAAAAAADADDAAAAAAAAAAADAA",
"output": "Anton"
},
{
"input": "200\nDDDDDDDADDDDDDAADADAADAAADAADADAAADDDADDDDDDADDDAADDDAADADDDDDADDDAAAADAAADDDDDAAADAADDDAAAADDADADDDAADDAADAAADAADAAAADDAADDADAAAADADDDAAAAAADDAADAADAADADDDAAADAAAADADDADAAAAAADADADDDADDDAADDADDDAAAAD",
"output": "Friendship"
},
{
"input": "1\nA",
"output": "Anton"
},
{
"input": "1\nD",
"output": "Danik"
},
{
"input": "2\nDA",
"output": "Friendship"
},
{
"input": "4\nDADA",
"output": "Friendship"
},
{
"input": "4\nDAAD",
"output": "Friendship"
},
{
"input": "3\nADD",
"output": "Danik"
},
{
"input": "3\nDAD",
"output": "Danik"
},
{
"input": "2\nDA",
"output": "Friendship"
},
{
"input": "379\nAADAAAAAADDAAAAAADAADADADDAAAAADADDAADAAAADDDADAAAAAAADAADAAAAAAADAAAAAAAAADAAAAAAADAAAAAAAAAAADDDADAAAAAAAADAADADAAAADAAAAAAAAAAAAAAAAADAAAADDDAADAAAAAAADAAADAAADAADDDADDAAADAAAAAADDDADDDAAADAAAADAAAAAAAAADAAADAAAAAAAAADAAAAAAAAAAAAAAAAAADADAAAAAAAAAAADAAAAADAAAADAAAAAAAAAAAAADADAADAAAAAAAADAADAAAAAAAADAAAAAAAADDDAAAAAADAAADAAAAAADAADAAAAAADAAAADADAADAAAAAADAAAADAADDAADAADAAA",
"output": "Anton"
}
] | 1,698,685,558
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 46
| 102,400
|
n=int(input())
m=input()
a=0
d=0
for i in range(n):
if m[i]=="A":
a+=1
else:
d+=1
if a>d:
print("Anton")
elif a==d:
print("Friendship")
else:
print("Danik")
|
Title: Anton and Danik
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Anton likes to play chess, and so does his friend Danik.
Once they have played *n* games in a row. For each game it's known who was the winnerΒ β Anton or Danik. None of the games ended with a tie.
Now Anton wonders, who won more games, he or Danik? Help him determine this.
Input Specification:
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=100<=000)Β β the number of games played.
The second line contains a string *s*, consisting of *n* uppercase English letters 'A' and 'D'Β β the outcome of each of the games. The *i*-th character of the string is equal to 'A' if the Anton won the *i*-th game and 'D' if Danik won the *i*-th game.
Output Specification:
If Anton won more games than Danik, print "Anton" (without quotes) in the only line of the output.
If Danik won more games than Anton, print "Danik" (without quotes) in the only line of the output.
If Anton and Danik won the same number of games, print "Friendship" (without quotes).
Demo Input:
['6\nADAAAA\n', '7\nDDDAADA\n', '6\nDADADA\n']
Demo Output:
['Anton\n', 'Danik\n', 'Friendship\n']
Note:
In the first sample, Anton won 6 games, while DanikΒ β only 1. Hence, the answer is "Anton".
In the second sample, Anton won 3 games and Danik won 4 games, so the answer is "Danik".
In the third sample, both Anton and Danik won 3 games and the answer is "Friendship".
|
```python
n=int(input())
m=input()
a=0
d=0
for i in range(n):
if m[i]=="A":
a+=1
else:
d+=1
if a>d:
print("Anton")
elif a==d:
print("Friendship")
else:
print("Danik")
```
| 3
|
|
443
|
A
|
Anton and Letters
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line.
Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
|
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
|
Print a single number β the number of distinct letters in Anton's set.
|
[
"{a, b, c}\n",
"{b, a, b, a}\n",
"{}\n"
] |
[
"3\n",
"2\n",
"0\n"
] |
none
| 500
|
[
{
"input": "{a, b, c}",
"output": "3"
},
{
"input": "{b, a, b, a}",
"output": "2"
},
{
"input": "{}",
"output": "0"
},
{
"input": "{a, a, c, b, b, b, c, c, c, c}",
"output": "3"
},
{
"input": "{a, c, b, b}",
"output": "3"
},
{
"input": "{a, b}",
"output": "2"
},
{
"input": "{a}",
"output": "1"
},
{
"input": "{b, a, b, a, b, c, c, b, c, b}",
"output": "3"
},
{
"input": "{e, g, c, e}",
"output": "3"
},
{
"input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}",
"output": "1"
},
{
"input": "{a, a, b}",
"output": "2"
},
{
"input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}",
"output": "2"
},
{
"input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}",
"output": "16"
},
{
"input": "{x, i, w, c, p, e, h, z, k, i}",
"output": "9"
},
{
"input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}",
"output": "15"
},
{
"input": "{y}",
"output": "1"
},
{
"input": "{x}",
"output": "1"
},
{
"input": "{b, z, a, z}",
"output": "3"
},
{
"input": "{z}",
"output": "1"
},
{
"input": "{a, z}",
"output": "2"
},
{
"input": "{a, b, z}",
"output": "3"
},
{
"input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}",
"output": "11"
}
] | 1,692,158,586
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 27
| 109
| 0
|
a = input()
if a=='{}':
print(0)
else:
print(abs(len(set(a))-4))
|
Title: Anton and Letters
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line.
Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
Input Specification:
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Output Specification:
Print a single number β the number of distinct letters in Anton's set.
Demo Input:
['{a, b, c}\n', '{b, a, b, a}\n', '{}\n']
Demo Output:
['3\n', '2\n', '0\n']
Note:
none
|
```python
a = input()
if a=='{}':
print(0)
else:
print(abs(len(set(a))-4))
```
| 3
|
|
255
|
A
|
Greg's Workout
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times.
Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise.
Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training.
|
The first line contains integer *n* (1<=β€<=*n*<=β€<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=25) β the number of times Greg repeats the exercises.
|
Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise.
It is guaranteed that the input is such that the answer to the problem is unambiguous.
|
[
"2\n2 8\n",
"3\n5 1 10\n",
"7\n3 3 2 7 9 6 8\n"
] |
[
"biceps\n",
"back\n",
"chest\n"
] |
In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises.
In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises.
In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
| 500
|
[
{
"input": "2\n2 8",
"output": "biceps"
},
{
"input": "3\n5 1 10",
"output": "back"
},
{
"input": "7\n3 3 2 7 9 6 8",
"output": "chest"
},
{
"input": "4\n5 6 6 2",
"output": "chest"
},
{
"input": "5\n8 2 2 6 3",
"output": "chest"
},
{
"input": "6\n8 7 2 5 3 4",
"output": "chest"
},
{
"input": "8\n7 2 9 10 3 8 10 6",
"output": "chest"
},
{
"input": "9\n5 4 2 3 4 4 5 2 2",
"output": "chest"
},
{
"input": "10\n4 9 8 5 3 8 8 10 4 2",
"output": "biceps"
},
{
"input": "11\n10 9 7 6 1 3 9 7 1 3 5",
"output": "chest"
},
{
"input": "12\n24 22 6 16 5 21 1 7 2 19 24 5",
"output": "chest"
},
{
"input": "13\n24 10 5 7 16 17 2 7 9 20 15 2 24",
"output": "chest"
},
{
"input": "14\n13 14 19 8 5 17 9 16 15 9 5 6 3 7",
"output": "back"
},
{
"input": "15\n24 12 22 21 25 23 21 5 3 24 23 13 12 16 12",
"output": "chest"
},
{
"input": "16\n12 6 18 6 25 7 3 1 1 17 25 17 6 8 17 8",
"output": "biceps"
},
{
"input": "17\n13 8 13 4 9 21 10 10 9 22 14 23 22 7 6 14 19",
"output": "chest"
},
{
"input": "18\n1 17 13 6 11 10 25 13 24 9 21 17 3 1 17 12 25 21",
"output": "back"
},
{
"input": "19\n22 22 24 25 19 10 7 10 4 25 19 14 1 14 3 18 4 19 24",
"output": "chest"
},
{
"input": "20\n9 8 22 11 18 14 15 10 17 11 2 1 25 20 7 24 4 25 9 20",
"output": "chest"
},
{
"input": "1\n10",
"output": "chest"
},
{
"input": "2\n15 3",
"output": "chest"
},
{
"input": "3\n21 11 19",
"output": "chest"
},
{
"input": "4\n19 24 13 15",
"output": "chest"
},
{
"input": "5\n4 24 1 9 19",
"output": "biceps"
},
{
"input": "6\n6 22 24 7 15 24",
"output": "back"
},
{
"input": "7\n10 8 23 23 14 18 14",
"output": "chest"
},
{
"input": "8\n5 16 8 9 17 16 14 7",
"output": "biceps"
},
{
"input": "9\n12 3 10 23 6 4 22 13 12",
"output": "chest"
},
{
"input": "10\n1 9 20 18 20 17 7 24 23 2",
"output": "back"
},
{
"input": "11\n22 25 8 2 18 15 1 13 1 11 4",
"output": "biceps"
},
{
"input": "12\n20 12 14 2 15 6 24 3 11 8 11 14",
"output": "chest"
},
{
"input": "13\n2 18 8 8 8 20 5 22 15 2 5 19 18",
"output": "back"
},
{
"input": "14\n1 6 10 25 17 13 21 11 19 4 15 24 5 22",
"output": "biceps"
},
{
"input": "15\n13 5 25 13 17 25 19 21 23 17 12 6 14 8 6",
"output": "back"
},
{
"input": "16\n10 15 2 17 22 12 14 14 6 11 4 13 9 8 21 14",
"output": "chest"
},
{
"input": "17\n7 22 9 22 8 7 20 22 23 5 12 11 1 24 17 20 10",
"output": "biceps"
},
{
"input": "18\n18 15 4 25 5 11 21 25 12 14 25 23 19 19 13 6 9 17",
"output": "chest"
},
{
"input": "19\n3 1 3 15 15 25 10 25 23 10 9 21 13 23 19 3 24 21 14",
"output": "back"
},
{
"input": "20\n19 18 11 3 6 14 3 3 25 3 1 19 25 24 23 12 7 4 8 6",
"output": "back"
},
{
"input": "1\n19",
"output": "chest"
},
{
"input": "2\n1 7",
"output": "biceps"
},
{
"input": "3\n18 18 23",
"output": "back"
},
{
"input": "4\n12 15 1 13",
"output": "chest"
},
{
"input": "5\n11 14 25 21 21",
"output": "biceps"
},
{
"input": "6\n11 9 12 11 22 18",
"output": "biceps"
},
{
"input": "7\n11 1 16 20 21 25 20",
"output": "chest"
},
{
"input": "8\n1 2 20 9 3 22 17 4",
"output": "back"
},
{
"input": "9\n19 2 10 19 15 20 3 1 13",
"output": "back"
},
{
"input": "10\n11 2 11 8 21 16 2 3 19 9",
"output": "back"
},
{
"input": "20\n25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 24",
"output": "chest"
},
{
"input": "12\n4 24 21 3 13 24 22 13 12 21 1 15",
"output": "back"
},
{
"input": "13\n14 14 16 2 13 5 1 14 9 4 16 8 3",
"output": "biceps"
},
{
"input": "14\n1 9 15 4 11 8 25 3 9 14 13 2 1 11",
"output": "biceps"
},
{
"input": "15\n4 19 10 6 16 12 5 11 7 23 1 24 11 7 17",
"output": "back"
},
{
"input": "16\n2 8 2 8 13 22 20 12 22 23 18 13 18 22 11 17",
"output": "chest"
},
{
"input": "17\n24 5 5 16 10 8 22 6 4 13 10 10 5 23 8 20 8",
"output": "chest"
},
{
"input": "18\n14 8 9 12 11 18 24 1 14 24 18 5 12 17 1 10 1 22",
"output": "chest"
},
{
"input": "19\n21 2 10 6 9 1 24 5 2 19 10 13 10 7 19 2 6 13 24",
"output": "chest"
},
{
"input": "20\n7 1 14 17 6 6 18 13 12 3 25 4 3 19 22 24 16 14 1 23",
"output": "biceps"
},
{
"input": "1\n19",
"output": "chest"
},
{
"input": "20\n2 1 2 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 22",
"output": "biceps"
}
] | 1,655,064,780
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 61
| 92
| 0
|
u = int(input())
u2 = input()
u2 = u2.split(" ")
ch = 0
ba = 0
bi = 0
for i in range(0,u,3):
ch += int(u2[i])
for i in range(1,u,3):
bi += int(u2[i])
for i in range(2,u,3):
ba += int(u2[i])
if (ch >= ba and ch > bi) or (ch >= bi and ch > ba) :
print('chest')
elif (ba >= ch and ba > bi) or (ba >= bi and ba > ch):
print('back')
else:
print('biceps')
|
Title: Greg's Workout
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times.
Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise.
Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training.
Input Specification:
The first line contains integer *n* (1<=β€<=*n*<=β€<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=25) β the number of times Greg repeats the exercises.
Output Specification:
Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise.
It is guaranteed that the input is such that the answer to the problem is unambiguous.
Demo Input:
['2\n2 8\n', '3\n5 1 10\n', '7\n3 3 2 7 9 6 8\n']
Demo Output:
['biceps\n', 'back\n', 'chest\n']
Note:
In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises.
In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises.
In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
|
```python
u = int(input())
u2 = input()
u2 = u2.split(" ")
ch = 0
ba = 0
bi = 0
for i in range(0,u,3):
ch += int(u2[i])
for i in range(1,u,3):
bi += int(u2[i])
for i in range(2,u,3):
ba += int(u2[i])
if (ch >= ba and ch > bi) or (ch >= bi and ch > ba) :
print('chest')
elif (ba >= ch and ba > bi) or (ba >= bi and ba > ch):
print('back')
else:
print('biceps')
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
It is a balmy spring afternoon, and Farmer John's *n* cows are ruminating about link-cut cacti in their stalls. The cows, labeled 1 through *n*, are arranged so that the *i*-th cow occupies the *i*-th stall from the left. However, Elsie, after realizing that she will forever live in the shadows beyond Bessie's limelight, has formed the Mischievous Mess Makers and is plotting to disrupt this beautiful pastoral rhythm. While Farmer John takes his *k* minute long nap, Elsie and the Mess Makers plan to repeatedly choose two distinct stalls and swap the cows occupying those stalls, making no more than one swap each minute.
Being the meticulous pranksters that they are, the Mischievous Mess Makers would like to know the maximum messiness attainable in the *k* minutes that they have. We denote as *p**i* the label of the cow in the *i*-th stall. The messiness of an arrangement of cows is defined as the number of pairs (*i*,<=*j*) such that *i*<=<<=*j* and *p**i*<=><=*p**j*.
|
The first line of the input contains two integers *n* and *k* (1<=β€<=*n*,<=*k*<=β€<=100<=000)Β β the number of cows and the length of Farmer John's nap, respectively.
|
Output a single integer, the maximum messiness that the Mischievous Mess Makers can achieve by performing no more than *k* swaps.
|
[
"5 2\n",
"1 10\n"
] |
[
"10\n",
"0\n"
] |
In the first sample, the Mischievous Mess Makers can swap the cows in the stalls 1 and 5 during the first minute, then the cows in stalls 2 and 4 during the second minute. This reverses the arrangement of cows, giving us a total messiness of 10.
In the second sample, there is only one cow, so the maximum possible messiness is 0.
| 0
|
[
{
"input": "5 2",
"output": "10"
},
{
"input": "1 10",
"output": "0"
},
{
"input": "100000 2",
"output": "399990"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "8 3",
"output": "27"
},
{
"input": "7 1",
"output": "11"
},
{
"input": "100000 40000",
"output": "4799960000"
},
{
"input": "1 1000",
"output": "0"
},
{
"input": "100 45",
"output": "4905"
},
{
"input": "9 2",
"output": "26"
},
{
"input": "456 78",
"output": "58890"
},
{
"input": "100000 50000",
"output": "4999950000"
},
{
"input": "100000 50001",
"output": "4999950000"
},
{
"input": "100000 50002",
"output": "4999950000"
},
{
"input": "100000 50003",
"output": "4999950000"
},
{
"input": "100000 49998",
"output": "4999949994"
},
{
"input": "100000 49997",
"output": "4999949985"
},
{
"input": "99999 49998",
"output": "4999849998"
},
{
"input": "99999 49997",
"output": "4999849991"
},
{
"input": "99999 49996",
"output": "4999849980"
},
{
"input": "99999 50000",
"output": "4999850001"
},
{
"input": "99999 50001",
"output": "4999850001"
},
{
"input": "99999 50002",
"output": "4999850001"
},
{
"input": "30062 9",
"output": "540945"
},
{
"input": "13486 3",
"output": "80895"
},
{
"input": "29614 7",
"output": "414491"
},
{
"input": "13038 8",
"output": "208472"
},
{
"input": "96462 6",
"output": "1157466"
},
{
"input": "22599 93799",
"output": "255346101"
},
{
"input": "421 36817",
"output": "88410"
},
{
"input": "72859 65869",
"output": "2654180511"
},
{
"input": "37916 5241",
"output": "342494109"
},
{
"input": "47066 12852",
"output": "879423804"
},
{
"input": "84032 21951",
"output": "2725458111"
},
{
"input": "70454 75240",
"output": "2481847831"
},
{
"input": "86946 63967",
"output": "3779759985"
},
{
"input": "71128 11076",
"output": "1330260828"
},
{
"input": "46111 64940",
"output": "1063089105"
},
{
"input": "46111 64940",
"output": "1063089105"
},
{
"input": "56500 84184",
"output": "1596096750"
},
{
"input": "60108 83701",
"output": "1806455778"
},
{
"input": "1 2",
"output": "0"
},
{
"input": "1 3",
"output": "0"
},
{
"input": "1 4",
"output": "0"
},
{
"input": "1 5",
"output": "0"
},
{
"input": "1 6",
"output": "0"
},
{
"input": "2 1",
"output": "1"
},
{
"input": "2 2",
"output": "1"
},
{
"input": "2 3",
"output": "1"
},
{
"input": "2 4",
"output": "1"
},
{
"input": "2 5",
"output": "1"
},
{
"input": "3 1",
"output": "3"
},
{
"input": "3 2",
"output": "3"
},
{
"input": "3 3",
"output": "3"
},
{
"input": "3 4",
"output": "3"
},
{
"input": "3 5",
"output": "3"
},
{
"input": "4 1",
"output": "5"
},
{
"input": "4 2",
"output": "6"
},
{
"input": "4 3",
"output": "6"
},
{
"input": "4 4",
"output": "6"
},
{
"input": "4 5",
"output": "6"
},
{
"input": "5 1",
"output": "7"
},
{
"input": "5 3",
"output": "10"
},
{
"input": "5 4",
"output": "10"
},
{
"input": "5 5",
"output": "10"
},
{
"input": "6 1",
"output": "9"
},
{
"input": "6 2",
"output": "14"
},
{
"input": "6 3",
"output": "15"
},
{
"input": "7 2",
"output": "18"
},
{
"input": "7 3",
"output": "21"
},
{
"input": "7 4",
"output": "21"
},
{
"input": "10 2",
"output": "30"
},
{
"input": "60982 2",
"output": "243918"
},
{
"input": "23426 23",
"output": "1076515"
},
{
"input": "444 3",
"output": "2643"
},
{
"input": "18187 433",
"output": "15374531"
},
{
"input": "6895 3544",
"output": "23767065"
},
{
"input": "56204 22352",
"output": "1513297456"
},
{
"input": "41977 5207",
"output": "382917573"
},
{
"input": "78147 2321",
"output": "351981971"
},
{
"input": "99742 62198",
"output": "4974183411"
},
{
"input": "72099 38339",
"output": "2599096851"
},
{
"input": "82532 4838",
"output": "751762306"
},
{
"input": "79410 33144",
"output": "3066847464"
},
{
"input": "11021 3389",
"output": "51726307"
},
{
"input": "66900 7572",
"output": "898455660"
},
{
"input": "99999 49999",
"output": "4999850001"
},
{
"input": "100000 49999",
"output": "4999949999"
},
{
"input": "100000 100000",
"output": "4999950000"
},
{
"input": "100000 1",
"output": "199997"
},
{
"input": "4 100",
"output": "6"
},
{
"input": "100000 1234",
"output": "243753254"
}
] | 1,465,011,859
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 92
| 264
| 26,419,200
|
n, k = [int(i) for i in input().split()]
cow = [(i+1) for i in range(n)]
j = 0
q = n - 1
ans = 0
while j < q and k > 0:
ans += (2*n-3)
n -= 2
j += 1
q -= 1
k -= 1
print(ans)
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It is a balmy spring afternoon, and Farmer John's *n* cows are ruminating about link-cut cacti in their stalls. The cows, labeled 1 through *n*, are arranged so that the *i*-th cow occupies the *i*-th stall from the left. However, Elsie, after realizing that she will forever live in the shadows beyond Bessie's limelight, has formed the Mischievous Mess Makers and is plotting to disrupt this beautiful pastoral rhythm. While Farmer John takes his *k* minute long nap, Elsie and the Mess Makers plan to repeatedly choose two distinct stalls and swap the cows occupying those stalls, making no more than one swap each minute.
Being the meticulous pranksters that they are, the Mischievous Mess Makers would like to know the maximum messiness attainable in the *k* minutes that they have. We denote as *p**i* the label of the cow in the *i*-th stall. The messiness of an arrangement of cows is defined as the number of pairs (*i*,<=*j*) such that *i*<=<<=*j* and *p**i*<=><=*p**j*.
Input Specification:
The first line of the input contains two integers *n* and *k* (1<=β€<=*n*,<=*k*<=β€<=100<=000)Β β the number of cows and the length of Farmer John's nap, respectively.
Output Specification:
Output a single integer, the maximum messiness that the Mischievous Mess Makers can achieve by performing no more than *k* swaps.
Demo Input:
['5 2\n', '1 10\n']
Demo Output:
['10\n', '0\n']
Note:
In the first sample, the Mischievous Mess Makers can swap the cows in the stalls 1 and 5 during the first minute, then the cows in stalls 2 and 4 during the second minute. This reverses the arrangement of cows, giving us a total messiness of 10.
In the second sample, there is only one cow, so the maximum possible messiness is 0.
|
```python
n, k = [int(i) for i in input().split()]
cow = [(i+1) for i in range(n)]
j = 0
q = n - 1
ans = 0
while j < q and k > 0:
ans += (2*n-3)
n -= 2
j += 1
q -= 1
k -= 1
print(ans)
```
| 3
|
|
417
|
A
|
Elimination
|
PROGRAMMING
| 1,500
|
[
"dp",
"implementation",
"math"
] | null | null |
The finalists of the "Russian Code Cup" competition in 2214 will be the participants who win in one of the elimination rounds.
The elimination rounds are divided into main and additional. Each of the main elimination rounds consists of *c* problems, the winners of the round are the first *n* people in the rating list. Each of the additional elimination rounds consists of *d* problems. The winner of the additional round is one person. Besides, *k* winners of the past finals are invited to the finals without elimination.
As a result of all elimination rounds at least *n*Β·*m* people should go to the finals. You need to organize elimination rounds in such a way, that at least *n*Β·*m* people go to the finals, and the total amount of used problems in all rounds is as small as possible.
|
The first line contains two integers *c* and *d* (1<=β€<=*c*,<=*d*<=β€<=100)Β β the number of problems in the main and additional rounds, correspondingly. The second line contains two integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=100). Finally, the third line contains an integer *k* (1<=β€<=*k*<=β€<=100)Β β the number of the pre-chosen winners.
|
In the first line, print a single integer β the minimum number of problems the jury needs to prepare.
|
[
"1 10\n7 2\n1\n",
"2 2\n2 1\n2\n"
] |
[
"2\n",
"0\n"
] |
none
| 500
|
[
{
"input": "1 10\n7 2\n1",
"output": "2"
},
{
"input": "2 2\n2 1\n2",
"output": "0"
},
{
"input": "8 9\n2 2\n3",
"output": "8"
},
{
"input": "5 5\n8 8\n7",
"output": "40"
},
{
"input": "1 8\n8 10\n8",
"output": "9"
},
{
"input": "5 7\n9 1\n8",
"output": "5"
},
{
"input": "35 28\n35 60\n44",
"output": "2065"
},
{
"input": "19 76\n91 91\n87",
"output": "1729"
},
{
"input": "20 38\n38 70\n58",
"output": "1380"
},
{
"input": "2 81\n3 39\n45",
"output": "48"
},
{
"input": "7 63\n18 69\n30",
"output": "476"
},
{
"input": "89 69\n57 38\n15",
"output": "3382"
},
{
"input": "3 30\n10 83\n57",
"output": "234"
},
{
"input": "100 3\n93 23\n98",
"output": "2200"
},
{
"input": "2 78\n21 24\n88",
"output": "40"
},
{
"input": "40 80\n4 31\n63",
"output": "640"
},
{
"input": "1 48\n89 76\n24",
"output": "76"
},
{
"input": "5 25\n13 76\n86",
"output": "350"
},
{
"input": "23 86\n83 88\n62",
"output": "2024"
},
{
"input": "1 93\n76 40\n39",
"output": "40"
},
{
"input": "53 93\n10 70\n9",
"output": "3710"
},
{
"input": "100 100\n100 100\n100",
"output": "9900"
},
{
"input": "10 100\n100 100\n99",
"output": "1000"
},
{
"input": "1 100\n99 100\n1",
"output": "100"
},
{
"input": "10 2\n7 2\n3",
"output": "18"
},
{
"input": "4 1\n5 3\n8",
"output": "6"
},
{
"input": "2 2\n2 1\n20",
"output": "0"
},
{
"input": "7 5\n1 1\n10",
"output": "0"
},
{
"input": "4 5\n9 10\n100",
"output": "0"
},
{
"input": "10 1\n1 2\n1",
"output": "1"
},
{
"input": "16 6\n3 12\n7",
"output": "156"
},
{
"input": "10 1\n1 100\n1",
"output": "99"
},
{
"input": "2 1\n3 4\n2",
"output": "7"
},
{
"input": "2 1\n1 1\n10",
"output": "0"
},
{
"input": "100 1\n2 3\n1",
"output": "5"
},
{
"input": "10 2\n1 11\n1",
"output": "20"
},
{
"input": "10 10\n1 1\n100",
"output": "0"
},
{
"input": "100 1\n50 100\n1",
"output": "4999"
},
{
"input": "10 1\n2 2\n3",
"output": "1"
},
{
"input": "3 1\n9 10\n80",
"output": "4"
},
{
"input": "100 1\n1 100\n1",
"output": "99"
},
{
"input": "10 9\n10 10\n9",
"output": "99"
},
{
"input": "1 1\n1 1\n99",
"output": "0"
},
{
"input": "10 9\n1 1\n100",
"output": "0"
},
{
"input": "4 1\n5 1\n10",
"output": "0"
},
{
"input": "5 1\n6 3\n5",
"output": "11"
},
{
"input": "10 1\n1 1\n10",
"output": "0"
},
{
"input": "1 1\n1 1\n10",
"output": "0"
}
] | 1,547,381,107
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 48
| 109
| 0
|
c,d = list(map(int, input().split(" ")))
n, m = list(map(int, input().split(" ")))
k = int(input())
mini = n*m-k
if mini < 1:
print(0)
elif d * n <= c: # easier one at a time
print(d*mini)
else:
total = (mini // n) * c
mini = mini % n
total += min(c, d*mini)
print(total)
|
Title: Elimination
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The finalists of the "Russian Code Cup" competition in 2214 will be the participants who win in one of the elimination rounds.
The elimination rounds are divided into main and additional. Each of the main elimination rounds consists of *c* problems, the winners of the round are the first *n* people in the rating list. Each of the additional elimination rounds consists of *d* problems. The winner of the additional round is one person. Besides, *k* winners of the past finals are invited to the finals without elimination.
As a result of all elimination rounds at least *n*Β·*m* people should go to the finals. You need to organize elimination rounds in such a way, that at least *n*Β·*m* people go to the finals, and the total amount of used problems in all rounds is as small as possible.
Input Specification:
The first line contains two integers *c* and *d* (1<=β€<=*c*,<=*d*<=β€<=100)Β β the number of problems in the main and additional rounds, correspondingly. The second line contains two integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=100). Finally, the third line contains an integer *k* (1<=β€<=*k*<=β€<=100)Β β the number of the pre-chosen winners.
Output Specification:
In the first line, print a single integer β the minimum number of problems the jury needs to prepare.
Demo Input:
['1 10\n7 2\n1\n', '2 2\n2 1\n2\n']
Demo Output:
['2\n', '0\n']
Note:
none
|
```python
c,d = list(map(int, input().split(" ")))
n, m = list(map(int, input().split(" ")))
k = int(input())
mini = n*m-k
if mini < 1:
print(0)
elif d * n <= c: # easier one at a time
print(d*mini)
else:
total = (mini // n) * c
mini = mini % n
total += min(c, d*mini)
print(total)
```
| 3
|
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,646,068,063
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 62
| 0
|
a=str(input())
small=0
upper=0
for i in a:
if i.islower()== True:
small+=1
elif i.isupper() == True:
upper+=1
if small>=upper:
print(a.lower())
else:
print(a.upper())
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
a=str(input())
small=0
upper=0
for i in a:
if i.islower()== True:
small+=1
elif i.isupper() == True:
upper+=1
if small>=upper:
print(a.lower())
else:
print(a.upper())
```
| 3.9845
|
609
|
B
|
The Best Gift
|
PROGRAMMING
| 1,100
|
[
"constructive algorithms",
"implementation"
] | null | null |
Emily's birthday is next week and Jack has decided to buy a present for her. He knows she loves books so he goes to the local bookshop, where there are *n* books on sale from one of *m* genres.
In the bookshop, Jack decides to buy two books of different genres.
Based on the genre of books on sale in the shop, find the number of options available to Jack for choosing two books of different genres for Emily. Options are considered different if they differ in at least one book.
The books are given by indices of their genres. The genres are numbered from 1 to *m*.
|
The first line contains two positive integers *n* and *m* (2<=β€<=*n*<=β€<=2Β·105,<=2<=β€<=*m*<=β€<=10) β the number of books in the bookstore and the number of genres.
The second line contains a sequence *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (1<=β€<=*a**i*<=β€<=*m*) equals the genre of the *i*-th book.
It is guaranteed that for each genre there is at least one book of that genre.
|
Print the only integer β the number of ways in which Jack can choose books.
It is guaranteed that the answer doesn't exceed the value 2Β·109.
|
[
"4 3\n2 1 3 1\n",
"7 4\n4 2 3 1 2 4 3\n"
] |
[
"5\n",
"18\n"
] |
The answer to the first test sample equals 5 as Sasha can choose:
1. the first and second books, 1. the first and third books, 1. the first and fourth books, 1. the second and third books, 1. the third and fourth books.
| 0
|
[
{
"input": "4 3\n2 1 3 1",
"output": "5"
},
{
"input": "7 4\n4 2 3 1 2 4 3",
"output": "18"
},
{
"input": "2 2\n1 2",
"output": "1"
},
{
"input": "3 2\n1 2 2",
"output": "2"
},
{
"input": "10 10\n1 2 3 4 5 6 7 8 9 10",
"output": "45"
},
{
"input": "9 2\n1 1 1 1 2 1 1 1 1",
"output": "8"
},
{
"input": "12 3\n1 2 3 1 2 3 1 2 3 1 2 3",
"output": "48"
},
{
"input": "100 3\n2 1 1 1 3 2 3 3 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 3 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 1 3 1 3 1 3 1 1 3 3 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3",
"output": "3296"
},
{
"input": "100 5\n5 5 2 4 5 4 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5",
"output": "3953"
},
{
"input": "100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6",
"output": "4428"
}
] | 1,620,196,022
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 42
| 218
| 12,492,800
|
n,m=map(int,input().split())
a=list(map(int,input().split()))
result=0
for i in range(m):
count=a.count(i+1)
result+=count*(n-count)
print(result//2)
|
Title: The Best Gift
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Emily's birthday is next week and Jack has decided to buy a present for her. He knows she loves books so he goes to the local bookshop, where there are *n* books on sale from one of *m* genres.
In the bookshop, Jack decides to buy two books of different genres.
Based on the genre of books on sale in the shop, find the number of options available to Jack for choosing two books of different genres for Emily. Options are considered different if they differ in at least one book.
The books are given by indices of their genres. The genres are numbered from 1 to *m*.
Input Specification:
The first line contains two positive integers *n* and *m* (2<=β€<=*n*<=β€<=2Β·105,<=2<=β€<=*m*<=β€<=10) β the number of books in the bookstore and the number of genres.
The second line contains a sequence *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (1<=β€<=*a**i*<=β€<=*m*) equals the genre of the *i*-th book.
It is guaranteed that for each genre there is at least one book of that genre.
Output Specification:
Print the only integer β the number of ways in which Jack can choose books.
It is guaranteed that the answer doesn't exceed the value 2Β·109.
Demo Input:
['4 3\n2 1 3 1\n', '7 4\n4 2 3 1 2 4 3\n']
Demo Output:
['5\n', '18\n']
Note:
The answer to the first test sample equals 5 as Sasha can choose:
1. the first and second books, 1. the first and third books, 1. the first and fourth books, 1. the second and third books, 1. the third and fourth books.
|
```python
n,m=map(int,input().split())
a=list(map(int,input().split()))
result=0
for i in range(m):
count=a.count(i+1)
result+=count*(n-count)
print(result//2)
```
| 3
|
|
678
|
A
|
Johny Likes Numbers
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Johny likes numbers *n* and *k* very much. Now Johny wants to find the smallest integer *x* greater than *n*, so it is divisible by the number *k*.
|
The only line contains two integers *n* and *k* (1<=β€<=*n*,<=*k*<=β€<=109).
|
Print the smallest integer *x*<=><=*n*, so it is divisible by the number *k*.
|
[
"5 3\n",
"25 13\n",
"26 13\n"
] |
[
"6\n",
"26\n",
"39\n"
] |
none
| 0
|
[
{
"input": "5 3",
"output": "6"
},
{
"input": "25 13",
"output": "26"
},
{
"input": "26 13",
"output": "39"
},
{
"input": "1 1",
"output": "2"
},
{
"input": "8 8",
"output": "16"
},
{
"input": "14 15",
"output": "15"
},
{
"input": "197 894",
"output": "894"
},
{
"input": "6058 8581",
"output": "8581"
},
{
"input": "97259 41764",
"output": "125292"
},
{
"input": "453145 333625",
"output": "667250"
},
{
"input": "2233224 4394826",
"output": "4394826"
},
{
"input": "76770926 13350712",
"output": "80104272"
},
{
"input": "687355301 142098087",
"output": "710490435"
},
{
"input": "1000000000 999999999",
"output": "1999999998"
},
{
"input": "1000000000 1000000000",
"output": "2000000000"
},
{
"input": "999999999 1000000000",
"output": "1000000000"
},
{
"input": "1000000000 1",
"output": "1000000001"
},
{
"input": "1000000000 2",
"output": "1000000002"
},
{
"input": "999999999 1",
"output": "1000000000"
},
{
"input": "100000000 1",
"output": "100000001"
},
{
"input": "999999999 500000000",
"output": "1000000000"
},
{
"input": "999999990 10",
"output": "1000000000"
},
{
"input": "1000000000 999999997",
"output": "1999999994"
},
{
"input": "999999999 2",
"output": "1000000000"
},
{
"input": "999999984 1",
"output": "999999985"
},
{
"input": "999999983 1",
"output": "999999984"
},
{
"input": "666666666 1",
"output": "666666667"
},
{
"input": "1000000000 990000000",
"output": "1980000000"
},
{
"input": "41 48",
"output": "48"
},
{
"input": "123456 2",
"output": "123458"
},
{
"input": "111 111",
"output": "222"
},
{
"input": "878787 1",
"output": "878788"
},
{
"input": "121 1",
"output": "122"
},
{
"input": "114514 114514",
"output": "229028"
},
{
"input": "500000001 1000000000",
"output": "1000000000"
},
{
"input": "999999997 1",
"output": "999999998"
},
{
"input": "100000000 10",
"output": "100000010"
}
] | 1,636,267,737
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 46
| 4,300,800
|
n,k=[int(x) for x in input().split()]
if n%k==0:
print(((n//k)+1)*k)
else:
print(n+k-n%k)
|
Title: Johny Likes Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Johny likes numbers *n* and *k* very much. Now Johny wants to find the smallest integer *x* greater than *n*, so it is divisible by the number *k*.
Input Specification:
The only line contains two integers *n* and *k* (1<=β€<=*n*,<=*k*<=β€<=109).
Output Specification:
Print the smallest integer *x*<=><=*n*, so it is divisible by the number *k*.
Demo Input:
['5 3\n', '25 13\n', '26 13\n']
Demo Output:
['6\n', '26\n', '39\n']
Note:
none
|
```python
n,k=[int(x) for x in input().split()]
if n%k==0:
print(((n//k)+1)*k)
else:
print(n+k-n%k)
```
| 3
|
|
363
|
B
|
Fence
|
PROGRAMMING
| 1,100
|
[
"brute force",
"dp"
] | null | null |
There is a fence in front of Polycarpus's home. The fence consists of *n* planks of the same width which go one after another from left to right. The height of the *i*-th plank is *h**i* meters, distinct planks can have distinct heights.
Polycarpus has bought a posh piano and is thinking about how to get it into the house. In order to carry out his plan, he needs to take exactly *k* consecutive planks from the fence. Higher planks are harder to tear off the fence, so Polycarpus wants to find such *k* consecutive planks that the sum of their heights is minimal possible.
Write the program that finds the indexes of *k* consecutive planks with minimal total height. Pay attention, the fence is not around Polycarpus's home, it is in front of home (in other words, the fence isn't cyclic).
|
The first line of the input contains integers *n* and *k* (1<=β€<=*n*<=β€<=1.5Β·105,<=1<=β€<=*k*<=β€<=*n*) β the number of planks in the fence and the width of the hole for the piano. The second line contains the sequence of integers *h*1,<=*h*2,<=...,<=*h**n* (1<=β€<=*h**i*<=β€<=100), where *h**i* is the height of the *i*-th plank of the fence.
|
Print such integer *j* that the sum of the heights of planks *j*, *j*<=+<=1, ..., *j*<=+<=*k*<=-<=1 is the minimum possible. If there are multiple such *j*'s, print any of them.
|
[
"7 3\n1 2 6 1 1 7 1\n"
] |
[
"3\n"
] |
In the sample, your task is to find three consecutive planks with the minimum sum of heights. In the given case three planks with indexes 3, 4 and 5 have the required attribute, their total height is 8.
| 1,000
|
[
{
"input": "7 3\n1 2 6 1 1 7 1",
"output": "3"
},
{
"input": "1 1\n100",
"output": "1"
},
{
"input": "2 1\n10 20",
"output": "1"
},
{
"input": "10 5\n1 2 3 1 2 2 3 1 4 5",
"output": "1"
},
{
"input": "10 2\n3 1 4 1 4 6 2 1 4 6",
"output": "7"
},
{
"input": "2 2\n20 10",
"output": "1"
},
{
"input": "2 1\n20 1",
"output": "2"
},
{
"input": "3 1\n1 2 3",
"output": "1"
},
{
"input": "3 1\n2 1 3",
"output": "2"
},
{
"input": "3 1\n3 2 1",
"output": "3"
},
{
"input": "3 2\n1 2 3",
"output": "1"
},
{
"input": "3 2\n3 2 1",
"output": "2"
},
{
"input": "3 3\n1 2 3",
"output": "1"
},
{
"input": "4 2\n9 8 11 7",
"output": "1"
},
{
"input": "4 2\n10 1 2 3",
"output": "2"
},
{
"input": "6 3\n56 56 56 2 1 2",
"output": "4"
},
{
"input": "8 3\n1 1 1 1 2 60 90 1",
"output": "1"
},
{
"input": "4 1\n1 5 2 2",
"output": "1"
},
{
"input": "4 2\n4 6 7 4",
"output": "1"
},
{
"input": "10 4\n1 1 1 4 4 4 4 4 4 3",
"output": "1"
},
{
"input": "6 3\n1 2 1 3 1 1",
"output": "1"
},
{
"input": "5 2\n100 100 100 1 1",
"output": "4"
}
] | 1,691,647,076
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 51
| 140
| 13,414,400
|
n,k=map(int, input().split())
a=list(map(int, input().split()))
b=[]
b.append(0)
i=0
while i<n:
b.append(b[i]+a[i])
i+=1
# print(a)
# print(b)
s=sum(a)+1
# print(s)
ind=1
i=k
while i<n+1:
if b[i]-b[i-k]<s:
ind=i-k+1
s=b[i]-b[i-k]
i+=1
print(ind)
|
Title: Fence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There is a fence in front of Polycarpus's home. The fence consists of *n* planks of the same width which go one after another from left to right. The height of the *i*-th plank is *h**i* meters, distinct planks can have distinct heights.
Polycarpus has bought a posh piano and is thinking about how to get it into the house. In order to carry out his plan, he needs to take exactly *k* consecutive planks from the fence. Higher planks are harder to tear off the fence, so Polycarpus wants to find such *k* consecutive planks that the sum of their heights is minimal possible.
Write the program that finds the indexes of *k* consecutive planks with minimal total height. Pay attention, the fence is not around Polycarpus's home, it is in front of home (in other words, the fence isn't cyclic).
Input Specification:
The first line of the input contains integers *n* and *k* (1<=β€<=*n*<=β€<=1.5Β·105,<=1<=β€<=*k*<=β€<=*n*) β the number of planks in the fence and the width of the hole for the piano. The second line contains the sequence of integers *h*1,<=*h*2,<=...,<=*h**n* (1<=β€<=*h**i*<=β€<=100), where *h**i* is the height of the *i*-th plank of the fence.
Output Specification:
Print such integer *j* that the sum of the heights of planks *j*, *j*<=+<=1, ..., *j*<=+<=*k*<=-<=1 is the minimum possible. If there are multiple such *j*'s, print any of them.
Demo Input:
['7 3\n1 2 6 1 1 7 1\n']
Demo Output:
['3\n']
Note:
In the sample, your task is to find three consecutive planks with the minimum sum of heights. In the given case three planks with indexes 3, 4 and 5 have the required attribute, their total height is 8.
|
```python
n,k=map(int, input().split())
a=list(map(int, input().split()))
b=[]
b.append(0)
i=0
while i<n:
b.append(b[i]+a[i])
i+=1
# print(a)
# print(b)
s=sum(a)+1
# print(s)
ind=1
i=k
while i<n+1:
if b[i]-b[i-k]<s:
ind=i-k+1
s=b[i]-b[i-k]
i+=1
print(ind)
```
| 3
|
|
743
|
C
|
Vladik and fractions
|
PROGRAMMING
| 1,500
|
[
"brute force",
"constructive algorithms",
"math",
"number theory"
] | null | null |
Vladik and Chloe decided to determine who of them is better at math. Vladik claimed that for any positive integer *n* he can represent fraction as a sum of three distinct positive fractions in form .
Help Vladik with that, i.e for a given *n* find three distinct positive integers *x*, *y* and *z* such that . Because Chloe can't check Vladik's answer if the numbers are large, he asks you to print numbers not exceeding 109.
If there is no such answer, print -1.
|
The single line contains single integer *n* (1<=β€<=*n*<=β€<=104).
|
If the answer exists, print 3 distinct numbers *x*, *y* and *z* (1<=β€<=*x*,<=*y*,<=*z*<=β€<=109, *x*<=β <=*y*, *x*<=β <=*z*, *y*<=β <=*z*). Otherwise print -1.
If there are multiple answers, print any of them.
|
[
"3\n",
"7\n"
] |
[
"2 7 42\n",
"7 8 56\n"
] |
none
| 1,250
|
[
{
"input": "3",
"output": "2 7 42"
},
{
"input": "7",
"output": "7 8 56"
},
{
"input": "2",
"output": "2 3 6"
},
{
"input": "5",
"output": "5 6 30"
},
{
"input": "4",
"output": "4 5 20"
},
{
"input": "7",
"output": "7 8 56"
},
{
"input": "82",
"output": "82 83 6806"
},
{
"input": "56",
"output": "56 57 3192"
},
{
"input": "30",
"output": "30 31 930"
},
{
"input": "79",
"output": "79 80 6320"
},
{
"input": "28",
"output": "28 29 812"
},
{
"input": "4116",
"output": "4116 4117 16945572"
},
{
"input": "1",
"output": "-1"
},
{
"input": "6491",
"output": "6491 6492 42139572"
},
{
"input": "8865",
"output": "8865 8866 78597090"
},
{
"input": "1239",
"output": "1239 1240 1536360"
},
{
"input": "3614",
"output": "3614 3615 13064610"
},
{
"input": "5988",
"output": "5988 5989 35862132"
},
{
"input": "8363",
"output": "8363 8364 69948132"
},
{
"input": "737",
"output": "737 738 543906"
},
{
"input": "3112",
"output": "3112 3113 9687656"
},
{
"input": "9562",
"output": "9562 9563 91441406"
},
{
"input": "1936",
"output": "1936 1937 3750032"
},
{
"input": "4311",
"output": "4311 4312 18589032"
},
{
"input": "6685",
"output": "6685 6686 44695910"
},
{
"input": "9060",
"output": "9060 9061 82092660"
},
{
"input": "1434",
"output": "1434 1435 2057790"
},
{
"input": "3809",
"output": "3809 3810 14512290"
},
{
"input": "6183",
"output": "6183 6184 38235672"
},
{
"input": "8558",
"output": "8558 8559 73247922"
},
{
"input": "932",
"output": "932 933 869556"
},
{
"input": "7274",
"output": "7274 7275 52918350"
},
{
"input": "9648",
"output": "9648 9649 93093552"
},
{
"input": "2023",
"output": "2023 2024 4094552"
},
{
"input": "4397",
"output": "4397 4398 19338006"
},
{
"input": "6772",
"output": "6772 6773 45866756"
},
{
"input": "9146",
"output": "9146 9147 83658462"
},
{
"input": "1521",
"output": "1521 1522 2314962"
},
{
"input": "4938",
"output": "4938 4939 24388782"
},
{
"input": "6143",
"output": "6143 6144 37742592"
},
{
"input": "6230",
"output": "6230 6231 38819130"
},
{
"input": "10000",
"output": "10000 10001 100010000"
},
{
"input": "1",
"output": "-1"
},
{
"input": "101",
"output": "101 102 10302"
},
{
"input": "9999",
"output": "9999 10000 99990000"
},
{
"input": "512",
"output": "512 513 262656"
},
{
"input": "511",
"output": "511 512 261632"
},
{
"input": "513",
"output": "513 514 263682"
},
{
"input": "9973",
"output": "9973 9974 99470702"
},
{
"input": "9972",
"output": "9972 9973 99450756"
},
{
"input": "9974",
"output": "9974 9975 99490650"
},
{
"input": "9409",
"output": "9409 9410 88538690"
},
{
"input": "9408",
"output": "9408 9409 88519872"
},
{
"input": "9410",
"output": "9410 9411 88557510"
},
{
"input": "719",
"output": "719 720 517680"
},
{
"input": "720",
"output": "720 721 519120"
},
{
"input": "721",
"output": "721 722 520562"
},
{
"input": "9796",
"output": "9796 9797 95971412"
},
{
"input": "9797",
"output": "9797 9798 95991006"
},
{
"input": "9798",
"output": "9798 9799 96010602"
},
{
"input": "4999",
"output": "4999 5000 24995000"
},
{
"input": "9998",
"output": "9998 9999 99970002"
}
] | 1,490,721,133
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 62
| 62
| 4,608,000
|
a = int(input())
if a == 1:
print(-1)
else:
print(a, a+1, a*(a+1))
|
Title: Vladik and fractions
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vladik and Chloe decided to determine who of them is better at math. Vladik claimed that for any positive integer *n* he can represent fraction as a sum of three distinct positive fractions in form .
Help Vladik with that, i.e for a given *n* find three distinct positive integers *x*, *y* and *z* such that . Because Chloe can't check Vladik's answer if the numbers are large, he asks you to print numbers not exceeding 109.
If there is no such answer, print -1.
Input Specification:
The single line contains single integer *n* (1<=β€<=*n*<=β€<=104).
Output Specification:
If the answer exists, print 3 distinct numbers *x*, *y* and *z* (1<=β€<=*x*,<=*y*,<=*z*<=β€<=109, *x*<=β <=*y*, *x*<=β <=*z*, *y*<=β <=*z*). Otherwise print -1.
If there are multiple answers, print any of them.
Demo Input:
['3\n', '7\n']
Demo Output:
['2 7 42\n', '7 8 56\n']
Note:
none
|
```python
a = int(input())
if a == 1:
print(-1)
else:
print(a, a+1, a*(a+1))
```
| 3
|
|
977
|
C
|
Less or Equal
|
PROGRAMMING
| 1,200
|
[
"sortings"
] | null | null |
You are given a sequence of integers of length $n$ and integer number $k$. You should print any integer number $x$ in the range of $[1; 10^9]$ (i.e. $1 \le x \le 10^9$) such that exactly $k$ elements of given sequence are less than or equal to $x$.
Note that the sequence can contain equal elements.
If there is no such $x$, print "-1" (without quotes).
|
The first line of the input contains integer numbers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $0 \le k \le n$). The second line of the input contains $n$ integer numbers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$) β the sequence itself.
|
Print any integer number $x$ from range $[1; 10^9]$ such that exactly $k$ elements of given sequence is less or equal to $x$.
If there is no such $x$, print "-1" (without quotes).
|
[
"7 4\n3 7 5 1 10 3 20\n",
"7 2\n3 7 5 1 10 3 20\n"
] |
[
"6",
"-1\n"
] |
In the first example $5$ is also a valid answer because the elements with indices $[1, 3, 4, 6]$ is less than or equal to $5$ and obviously less than or equal to $6$.
In the second example you cannot choose any number that only $2$ elements of the given sequence will be less than or equal to this number because $3$ elements of the given sequence will be also less than or equal to this number.
| 0
|
[
{
"input": "7 4\n3 7 5 1 10 3 20",
"output": "5"
},
{
"input": "7 2\n3 7 5 1 10 3 20",
"output": "-1"
},
{
"input": "1 0\n1",
"output": "-1"
},
{
"input": "1 0\n2",
"output": "1"
},
{
"input": "1 1\n1000000000",
"output": "1000000000"
},
{
"input": "3 0\n3 3 3",
"output": "2"
},
{
"input": "3 0\n2 2 3",
"output": "1"
},
{
"input": "5 0\n3 4 5 6 7",
"output": "2"
},
{
"input": "4 0\n2 3 4 5",
"output": "1"
},
{
"input": "2 2\n1000000000 1000000000",
"output": "1000000000"
},
{
"input": "7 2\n2 7 5 1 10 2 20",
"output": "-1"
},
{
"input": "2 1\n1 1",
"output": "-1"
},
{
"input": "5 3\n1 3 3 4 5",
"output": "3"
},
{
"input": "4 4\n1000000000 1000000000 1000000000 1000000000",
"output": "1000000000"
}
] | 1,695,090,095
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 38
| 140
| 26,726,400
|
n,k = map(int, input().split())
a = list(map(int, input().split()))
a.sort()
if k == 0:
print(a[0] - 1 if a[0] - 1 > 0 else -1)
elif n == k:
print(a[-1])
else:
if a[k-1] < a[k]:
print(a[k-1])
else:
print(-1)
|
Title: Less or Equal
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a sequence of integers of length $n$ and integer number $k$. You should print any integer number $x$ in the range of $[1; 10^9]$ (i.e. $1 \le x \le 10^9$) such that exactly $k$ elements of given sequence are less than or equal to $x$.
Note that the sequence can contain equal elements.
If there is no such $x$, print "-1" (without quotes).
Input Specification:
The first line of the input contains integer numbers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $0 \le k \le n$). The second line of the input contains $n$ integer numbers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$) β the sequence itself.
Output Specification:
Print any integer number $x$ from range $[1; 10^9]$ such that exactly $k$ elements of given sequence is less or equal to $x$.
If there is no such $x$, print "-1" (without quotes).
Demo Input:
['7 4\n3 7 5 1 10 3 20\n', '7 2\n3 7 5 1 10 3 20\n']
Demo Output:
['6', '-1\n']
Note:
In the first example $5$ is also a valid answer because the elements with indices $[1, 3, 4, 6]$ is less than or equal to $5$ and obviously less than or equal to $6$.
In the second example you cannot choose any number that only $2$ elements of the given sequence will be less than or equal to this number because $3$ elements of the given sequence will be also less than or equal to this number.
|
```python
n,k = map(int, input().split())
a = list(map(int, input().split()))
a.sort()
if k == 0:
print(a[0] - 1 if a[0] - 1 > 0 else -1)
elif n == k:
print(a[-1])
else:
if a[k-1] < a[k]:
print(a[k-1])
else:
print(-1)
```
| 3
|
|
847
|
G
|
University Classes
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
There are *n* student groups at the university. During the study day, each group can take no more than 7 classes. Seven time slots numbered from 1 to 7 are allocated for the classes.
The schedule on Monday is known for each group, i. e. time slots when group will have classes are known.
Your task is to determine the minimum number of rooms needed to hold classes for all groups on Monday. Note that one room can hold at most one group class in a single time slot.
|
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=1000) β the number of groups.
Each of the following *n* lines contains a sequence consisting of 7 zeroes and ones β the schedule of classes on Monday for a group. If the symbol in a position equals to 1 then the group has class in the corresponding time slot. In the other case, the group has no class in the corresponding time slot.
|
Print minimum number of rooms needed to hold all groups classes on Monday.
|
[
"2\n0101010\n1010101\n",
"3\n0101011\n0011001\n0110111\n"
] |
[
"1\n",
"3\n"
] |
In the first example one room is enough. It will be occupied in each of the seven time slot by the first group or by the second group.
In the second example three rooms is enough, because in the seventh time slot all three groups have classes.
| 0
|
[
{
"input": "2\n0101010\n1010101",
"output": "1"
},
{
"input": "3\n0101011\n0011001\n0110111",
"output": "3"
},
{
"input": "1\n0111000",
"output": "1"
},
{
"input": "1\n0000000",
"output": "0"
},
{
"input": "1\n1111111",
"output": "1"
},
{
"input": "2\n1000000\n0101000",
"output": "1"
},
{
"input": "3\n0101111\n1101011\n1010011",
"output": "3"
},
{
"input": "5\n0100101\n0000001\n0110000\n0010000\n0011110",
"output": "3"
},
{
"input": "6\n1101110\n1111011\n1101110\n0100011\n1110110\n1110100",
"output": "6"
},
{
"input": "10\n0000000\n0010000\n0000000\n0000010\n0000000\n0100001\n1000000\n0000000\n0000000\n0000000",
"output": "1"
},
{
"input": "20\n1111111\n1101011\n1111011\n0111111\n1111111\n1110111\n1111111\n1111111\n1111111\n1111111\n1110111\n1111111\n0111111\n1011111\n1111111\n1111111\n1101110\n1111111\n1111111\n1111111",
"output": "20"
}
] | 1,544,797,451
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 21
| 124
| 102,400
|
print(max([sum(x) for x in list(zip(*[list(map(int,list(input()))) for x in range(int(input()))]))]))
|
Title: University Classes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* student groups at the university. During the study day, each group can take no more than 7 classes. Seven time slots numbered from 1 to 7 are allocated for the classes.
The schedule on Monday is known for each group, i. e. time slots when group will have classes are known.
Your task is to determine the minimum number of rooms needed to hold classes for all groups on Monday. Note that one room can hold at most one group class in a single time slot.
Input Specification:
The first line contains a single integer *n* (1<=β€<=*n*<=β€<=1000) β the number of groups.
Each of the following *n* lines contains a sequence consisting of 7 zeroes and ones β the schedule of classes on Monday for a group. If the symbol in a position equals to 1 then the group has class in the corresponding time slot. In the other case, the group has no class in the corresponding time slot.
Output Specification:
Print minimum number of rooms needed to hold all groups classes on Monday.
Demo Input:
['2\n0101010\n1010101\n', '3\n0101011\n0011001\n0110111\n']
Demo Output:
['1\n', '3\n']
Note:
In the first example one room is enough. It will be occupied in each of the seven time slot by the first group or by the second group.
In the second example three rooms is enough, because in the seventh time slot all three groups have classes.
|
```python
print(max([sum(x) for x in list(zip(*[list(map(int,list(input()))) for x in range(int(input()))]))]))
```
| 3
|
|
116
|
A
|
Tram
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
|
The first line contains a single number *n* (2<=β€<=*n*<=β€<=1000) β the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=β€<=*a**i*,<=*b**i*<=β€<=1000) β the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
|
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
|
[
"4\n0 3\n2 5\n4 2\n4 0\n"
] |
[
"6\n"
] |
For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
| 500
|
[
{
"input": "4\n0 3\n2 5\n4 2\n4 0",
"output": "6"
},
{
"input": "5\n0 4\n4 6\n6 5\n5 4\n4 0",
"output": "6"
},
{
"input": "10\n0 5\n1 7\n10 8\n5 3\n0 5\n3 3\n8 8\n0 6\n10 1\n9 0",
"output": "18"
},
{
"input": "3\n0 1\n1 1\n1 0",
"output": "1"
},
{
"input": "4\n0 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "3\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "3\n0 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "5\n0 73\n73 189\n189 766\n766 0\n0 0",
"output": "766"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 1\n1 0",
"output": "1"
},
{
"input": "5\n0 917\n917 923\n904 992\n1000 0\n11 0",
"output": "1011"
},
{
"input": "5\n0 1\n1 2\n2 1\n1 2\n2 0",
"output": "2"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "20\n0 7\n2 1\n2 2\n5 7\n2 6\n6 10\n2 4\n0 4\n7 4\n8 0\n10 6\n2 1\n6 1\n1 7\n0 3\n8 7\n6 3\n6 3\n1 1\n3 0",
"output": "22"
},
{
"input": "5\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "10\n0 592\n258 598\n389 203\n249 836\n196 635\n478 482\n994 987\n1000 0\n769 0\n0 0",
"output": "1776"
},
{
"input": "10\n0 1\n1 0\n0 0\n0 0\n0 0\n0 1\n1 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "10\n0 926\n926 938\n938 931\n931 964\n937 989\n983 936\n908 949\n997 932\n945 988\n988 0",
"output": "1016"
},
{
"input": "10\n0 1\n1 2\n1 2\n2 2\n2 2\n2 2\n1 1\n1 1\n2 1\n2 0",
"output": "3"
},
{
"input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "10\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "50\n0 332\n332 268\n268 56\n56 711\n420 180\n160 834\n149 341\n373 777\n763 93\n994 407\n86 803\n700 132\n471 608\n429 467\n75 5\n638 305\n405 853\n316 478\n643 163\n18 131\n648 241\n241 766\n316 847\n640 380\n923 759\n789 41\n125 421\n421 9\n9 388\n388 829\n408 108\n462 856\n816 411\n518 688\n290 7\n405 912\n397 772\n396 652\n394 146\n27 648\n462 617\n514 433\n780 35\n710 705\n460 390\n194 508\n643 56\n172 469\n1000 0\n194 0",
"output": "2071"
},
{
"input": "50\n0 0\n0 1\n1 1\n0 1\n0 0\n1 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 1\n1 0\n0 1\n0 0\n1 1\n1 0\n0 1\n0 0\n1 1\n0 1\n1 0\n1 1\n1 0\n0 0\n1 1\n1 0\n0 1\n0 0\n0 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 0\n0 1\n1 0\n0 0\n0 1\n1 1\n1 1\n0 1\n0 0\n1 0\n1 0",
"output": "3"
},
{
"input": "50\n0 926\n926 971\n915 980\n920 965\n954 944\n928 952\n955 980\n916 980\n906 935\n944 913\n905 923\n912 922\n965 934\n912 900\n946 930\n931 983\n979 905\n925 969\n924 926\n910 914\n921 977\n934 979\n962 986\n942 909\n976 903\n982 982\n991 941\n954 929\n902 980\n947 983\n919 924\n917 943\n916 905\n907 913\n964 977\n984 904\n905 999\n950 970\n986 906\n993 970\n960 994\n963 983\n918 986\n980 900\n931 986\n993 997\n941 909\n907 909\n1000 0\n278 0",
"output": "1329"
},
{
"input": "2\n0 863\n863 0",
"output": "863"
},
{
"input": "50\n0 1\n1 2\n2 2\n1 1\n1 1\n1 2\n1 2\n1 1\n1 2\n1 1\n1 1\n1 2\n1 2\n1 1\n2 1\n2 2\n1 2\n2 2\n1 2\n2 1\n2 1\n2 2\n2 1\n1 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n2 2\n2 1\n1 2\n2 2\n1 2\n1 1\n1 1\n2 1\n2 1\n2 2\n2 1\n2 1\n1 2\n1 2\n1 2\n1 2\n2 0\n2 0\n2 0\n0 0",
"output": "8"
},
{
"input": "50\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "100\n0 1\n0 0\n0 0\n1 0\n0 0\n0 1\n0 1\n1 1\n0 0\n0 0\n1 1\n0 0\n1 1\n0 1\n1 1\n0 1\n1 1\n1 0\n1 0\n0 0\n1 0\n0 1\n1 0\n0 0\n0 0\n1 1\n1 1\n0 1\n0 0\n1 0\n1 1\n0 1\n1 0\n1 1\n0 1\n1 1\n1 0\n0 0\n0 0\n0 1\n0 0\n0 1\n1 1\n0 0\n1 1\n1 1\n0 0\n0 1\n1 0\n0 1\n0 0\n0 1\n0 1\n1 1\n1 1\n1 1\n0 0\n0 0\n1 1\n0 1\n0 1\n1 0\n0 0\n0 0\n1 1\n0 1\n0 1\n1 1\n1 1\n0 1\n1 1\n1 1\n0 0\n1 0\n0 1\n0 0\n0 0\n1 1\n1 1\n1 1\n1 1\n0 1\n1 0\n1 0\n1 0\n1 0\n1 0\n0 0\n1 0\n1 0\n0 0\n1 0\n0 0\n0 1\n1 0\n0 1\n1 0\n1 0\n1 0\n1 0",
"output": "11"
},
{
"input": "100\n0 2\n1 2\n2 1\n1 2\n1 2\n2 1\n2 2\n1 1\n1 1\n2 1\n1 2\n2 1\n1 2\n2 2\n2 2\n2 2\n1 2\n2 2\n2 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 2\n1 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n1 1\n2 2\n2 1\n1 2\n1 1\n1 2\n2 1\n2 2\n1 1\n2 1\n1 1\n2 1\n1 1\n1 2\n2 2\n2 2\n1 1\n2 2\n1 2\n2 1\n2 1\n1 1\n1 1\n1 2\n1 2\n1 1\n1 1\n2 1\n1 2\n1 2\n2 1\n2 2\n2 2\n2 2\n2 1\n2 2\n1 1\n1 2\n1 2\n1 1\n2 2\n2 2\n1 1\n2 1\n1 1\n1 2\n1 2\n1 2\n1 1\n1 1\n2 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 1\n2 2\n1 2\n2 0\n2 0\n2 0\n1 0",
"output": "7"
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 900\n900 0",
"output": "900"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1000\n1000 0",
"output": "1000"
},
{
"input": "3\n0 802\n175 188\n815 0",
"output": "815"
},
{
"input": "3\n0 910\n910 976\n976 0",
"output": "976"
},
{
"input": "3\n0 2\n2 1\n1 0",
"output": "2"
}
] | 1,693,630,322
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 71
| 186
| 1,638,400
|
# Read the input values
n = int(input())
passenger_capacity = 0
max_capacity = 0
# Simulate the process at each stop
for _ in range(n):
passengers_exit, passengers_enter = map(int, input().split())
passenger_capacity = passenger_capacity - passengers_exit + passengers_enter
max_capacity = max(max_capacity, passenger_capacity)
# Print the maximum capacity observed during the journey
print(max_capacity)
|
Title: Tram
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
Input Specification:
The first line contains a single number *n* (2<=β€<=*n*<=β€<=1000) β the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=β€<=*a**i*,<=*b**i*<=β€<=1000) β the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
Output Specification:
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
Demo Input:
['4\n0 3\n2 5\n4 2\n4 0\n']
Demo Output:
['6\n']
Note:
For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
|
```python
# Read the input values
n = int(input())
passenger_capacity = 0
max_capacity = 0
# Simulate the process at each stop
for _ in range(n):
passengers_exit, passengers_enter = map(int, input().split())
passenger_capacity = passenger_capacity - passengers_exit + passengers_enter
max_capacity = max(max_capacity, passenger_capacity)
# Print the maximum capacity observed during the journey
print(max_capacity)
```
| 3
|
|
47
|
A
|
Triangular numbers
|
PROGRAMMING
| 800
|
[
"brute force",
"math"
] |
A. Triangular numbers
|
2
|
256
|
A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number).
Your task is to find out if a given integer is a triangular number.
|
The first line contains the single number *n* (1<=β€<=*n*<=β€<=500) β the given integer.
|
If the given integer is a triangular number output YES, otherwise output NO.
|
[
"1\n",
"2\n",
"3\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
none
| 500
|
[
{
"input": "1",
"output": "YES"
},
{
"input": "2",
"output": "NO"
},
{
"input": "3",
"output": "YES"
},
{
"input": "4",
"output": "NO"
},
{
"input": "5",
"output": "NO"
},
{
"input": "6",
"output": "YES"
},
{
"input": "7",
"output": "NO"
},
{
"input": "8",
"output": "NO"
},
{
"input": "12",
"output": "NO"
},
{
"input": "10",
"output": "YES"
},
{
"input": "11",
"output": "NO"
},
{
"input": "9",
"output": "NO"
},
{
"input": "14",
"output": "NO"
},
{
"input": "15",
"output": "YES"
},
{
"input": "16",
"output": "NO"
},
{
"input": "20",
"output": "NO"
},
{
"input": "21",
"output": "YES"
},
{
"input": "22",
"output": "NO"
},
{
"input": "121",
"output": "NO"
},
{
"input": "135",
"output": "NO"
},
{
"input": "136",
"output": "YES"
},
{
"input": "137",
"output": "NO"
},
{
"input": "152",
"output": "NO"
},
{
"input": "153",
"output": "YES"
},
{
"input": "154",
"output": "NO"
},
{
"input": "171",
"output": "YES"
},
{
"input": "189",
"output": "NO"
},
{
"input": "190",
"output": "YES"
},
{
"input": "191",
"output": "NO"
},
{
"input": "210",
"output": "YES"
},
{
"input": "211",
"output": "NO"
},
{
"input": "231",
"output": "YES"
},
{
"input": "232",
"output": "NO"
},
{
"input": "252",
"output": "NO"
},
{
"input": "253",
"output": "YES"
},
{
"input": "254",
"output": "NO"
},
{
"input": "275",
"output": "NO"
},
{
"input": "276",
"output": "YES"
},
{
"input": "277",
"output": "NO"
},
{
"input": "299",
"output": "NO"
},
{
"input": "300",
"output": "YES"
},
{
"input": "301",
"output": "NO"
},
{
"input": "324",
"output": "NO"
},
{
"input": "325",
"output": "YES"
},
{
"input": "326",
"output": "NO"
},
{
"input": "350",
"output": "NO"
},
{
"input": "351",
"output": "YES"
},
{
"input": "352",
"output": "NO"
},
{
"input": "377",
"output": "NO"
},
{
"input": "378",
"output": "YES"
},
{
"input": "406",
"output": "YES"
},
{
"input": "434",
"output": "NO"
},
{
"input": "435",
"output": "YES"
},
{
"input": "464",
"output": "NO"
},
{
"input": "465",
"output": "YES"
},
{
"input": "495",
"output": "NO"
},
{
"input": "496",
"output": "YES"
},
{
"input": "497",
"output": "NO"
},
{
"input": "331",
"output": "NO"
},
{
"input": "413",
"output": "NO"
},
{
"input": "177",
"output": "NO"
},
{
"input": "122",
"output": "NO"
},
{
"input": "478",
"output": "NO"
},
{
"input": "188",
"output": "NO"
},
{
"input": "21",
"output": "YES"
},
{
"input": "474",
"output": "NO"
},
{
"input": "21",
"output": "YES"
},
{
"input": "48",
"output": "NO"
},
{
"input": "498",
"output": "NO"
},
{
"input": "499",
"output": "NO"
},
{
"input": "500",
"output": "NO"
}
] | 1,680,233,392
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 71
| 124
| 0
|
def st():return str(input())
def ls():return list(map(int, input().split()))
def mx(a):return max(a)
def it():return int(input())
def mn(a):return min(a)
def yes():return print('YES')
def no():return print('NO')
def re(a):return range(a)
def pr(a):return print(a)
def prs(a):return print(str(a))
def mapa():return map(int, input().split())
a = it()
s = 0
m = []
for i in range(1, a+1):
s += i
m.append(s)
if a in m:
yes()
else:
no()
|
Title: Triangular numbers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number).
Your task is to find out if a given integer is a triangular number.
Input Specification:
The first line contains the single number *n* (1<=β€<=*n*<=β€<=500) β the given integer.
Output Specification:
If the given integer is a triangular number output YES, otherwise output NO.
Demo Input:
['1\n', '2\n', '3\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
none
|
```python
def st():return str(input())
def ls():return list(map(int, input().split()))
def mx(a):return max(a)
def it():return int(input())
def mn(a):return min(a)
def yes():return print('YES')
def no():return print('NO')
def re(a):return range(a)
def pr(a):return print(a)
def prs(a):return print(str(a))
def mapa():return map(int, input().split())
a = it()
s = 0
m = []
for i in range(1, a+1):
s += i
m.append(s)
if a in m:
yes()
else:
no()
```
| 3.969
|
427
|
A
|
Police Recruits
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
The police department of your city has just started its journey. Initially, they donβt have any manpower. So, they started hiring new recruits in groups.
Meanwhile, crimes keeps occurring within the city. One member of the police force can investigate only one crime during his/her lifetime.
If there is no police officer free (isn't busy with crime) during the occurrence of a crime, it will go untreated.
Given the chronological order of crime occurrences and recruit hirings, find the number of crimes which will go untreated.
|
The first line of input will contain an integer *n*Β (1<=β€<=*n*<=β€<=105), the number of events. The next line will contain *n* space-separated integers.
If the integer is -1 then it means a crime has occurred. Otherwise, the integer will be positive, the number of officers recruited together at that time. No more than 10 officers will be recruited at a time.
|
Print a single integer, the number of crimes which will go untreated.
|
[
"3\n-1 -1 1\n",
"8\n1 -1 1 -1 -1 1 1 1\n",
"11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1\n"
] |
[
"2\n",
"1\n",
"8\n"
] |
Lets consider the second example:
1. Firstly one person is hired. 1. Then crime appears, the last hired person will investigate this crime. 1. One more person is hired. 1. One more crime appears, the last hired person will investigate this crime. 1. Crime appears. There is no free policeman at the time, so this crime will go untreated. 1. One more person is hired. 1. One more person is hired. 1. One more person is hired.
The answer is one, as one crime (on step 5) will go untreated.
| 500
|
[
{
"input": "3\n-1 -1 1",
"output": "2"
},
{
"input": "8\n1 -1 1 -1 -1 1 1 1",
"output": "1"
},
{
"input": "11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1",
"output": "8"
},
{
"input": "7\n-1 -1 1 1 -1 -1 1",
"output": "2"
},
{
"input": "21\n-1 -1 -1 -1 -1 3 2 -1 6 -1 -1 2 1 -1 2 2 1 6 5 -1 5",
"output": "5"
},
{
"input": "98\n-1 -1 1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 1 1 1 1 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 1 1",
"output": "13"
},
{
"input": "3\n-1 5 4",
"output": "1"
},
{
"input": "146\n4 -1 -1 -1 -1 -1 -1 -1 -1 -1 4 -1 3 -1 3 -1 -1 1 4 -1 2 -1 -1 3 -1 -1 -1 4 1 -1 -1 -1 4 -1 -1 -1 -1 -1 -1 3 2 -1 3 2 4 5 2 4 1 5 -1 -1 2 -1 -1 1 -1 5 3 -1 1 2 2 3 5 3 -1 -1 3 -1 -1 3 5 5 -1 -1 5 -1 4 4 1 -1 -1 -1 2 1 -1 -1 -1 2 5 3 -1 -1 -1 3 -1 5 4 -1 1 -1 -1 3 -1 -1 3 1 1 2 -1 -1 -1 1 3 1 -1 2 -1 -1 5 5 -1 -1 3 4 5 1 -1 2 -1 -1 -1 3 -1 5 3 2 -1 2 -1 -1 5 -1 3 -1",
"output": "5"
},
{
"input": "1\n2",
"output": "0"
},
{
"input": "1\n-1",
"output": "1"
},
{
"input": "2\n1 -1",
"output": "0"
},
{
"input": "2\n-1 1",
"output": "1"
},
{
"input": "2\n1 1",
"output": "0"
},
{
"input": "2\n-1 -1",
"output": "2"
},
{
"input": "4\n10 -1 -1 -1",
"output": "0"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "4\n-1 -1 1 1",
"output": "2"
}
] | 1,677,687,333
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 63
| 77
| 13,721,600
|
dl = int(input())
lista = input().split()
for i in range(dl):
lista[i] = int(lista[i])
wynik = 0
dostepni = 0
for i in range(dl):
if lista[i] > 0:
dostepni += lista[i]
else:
if dostepni <= 0:
wynik += 1
else:
dostepni -= 1
print(wynik)
|
Title: Police Recruits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The police department of your city has just started its journey. Initially, they donβt have any manpower. So, they started hiring new recruits in groups.
Meanwhile, crimes keeps occurring within the city. One member of the police force can investigate only one crime during his/her lifetime.
If there is no police officer free (isn't busy with crime) during the occurrence of a crime, it will go untreated.
Given the chronological order of crime occurrences and recruit hirings, find the number of crimes which will go untreated.
Input Specification:
The first line of input will contain an integer *n*Β (1<=β€<=*n*<=β€<=105), the number of events. The next line will contain *n* space-separated integers.
If the integer is -1 then it means a crime has occurred. Otherwise, the integer will be positive, the number of officers recruited together at that time. No more than 10 officers will be recruited at a time.
Output Specification:
Print a single integer, the number of crimes which will go untreated.
Demo Input:
['3\n-1 -1 1\n', '8\n1 -1 1 -1 -1 1 1 1\n', '11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1\n']
Demo Output:
['2\n', '1\n', '8\n']
Note:
Lets consider the second example:
1. Firstly one person is hired. 1. Then crime appears, the last hired person will investigate this crime. 1. One more person is hired. 1. One more crime appears, the last hired person will investigate this crime. 1. Crime appears. There is no free policeman at the time, so this crime will go untreated. 1. One more person is hired. 1. One more person is hired. 1. One more person is hired.
The answer is one, as one crime (on step 5) will go untreated.
|
```python
dl = int(input())
lista = input().split()
for i in range(dl):
lista[i] = int(lista[i])
wynik = 0
dostepni = 0
for i in range(dl):
if lista[i] > 0:
dostepni += lista[i]
else:
if dostepni <= 0:
wynik += 1
else:
dostepni -= 1
print(wynik)
```
| 3
|
|
580
|
B
|
Kefa and Company
|
PROGRAMMING
| 1,500
|
[
"binary search",
"sortings",
"two pointers"
] | null | null |
Kefa wants to celebrate his first big salary by going to restaurant. However, he needs company.
Kefa has *n* friends, each friend will agree to go to the restaurant if Kefa asks. Each friend is characterized by the amount of money he has and the friendship factor in respect to Kefa. The parrot doesn't want any friend to feel poor compared to somebody else in the company (Kefa doesn't count). A friend feels poor if in the company there is someone who has at least *d* units of money more than he does. Also, Kefa wants the total friendship factor of the members of the company to be maximum. Help him invite an optimal company!
|
The first line of the input contains two space-separated integers, *n* and *d* (1<=β€<=*n*<=β€<=105, ) β the number of Kefa's friends and the minimum difference between the amount of money in order to feel poor, respectively.
Next *n* lines contain the descriptions of Kefa's friends, the (*i*<=+<=1)-th line contains the description of the *i*-th friend of type *m**i*, *s**i* (0<=β€<=*m**i*,<=*s**i*<=β€<=109) β the amount of money and the friendship factor, respectively.
|
Print the maximum total friendship factir that can be reached.
|
[
"4 5\n75 5\n0 100\n150 20\n75 1\n",
"5 100\n0 7\n11 32\n99 10\n46 8\n87 54\n"
] |
[
"100\n",
"111\n"
] |
In the first sample test the most profitable strategy is to form a company from only the second friend. At all other variants the total degree of friendship will be worse.
In the second sample test we can take all the friends.
| 1,250
|
[
{
"input": "4 5\n75 5\n0 100\n150 20\n75 1",
"output": "100"
},
{
"input": "5 100\n0 7\n11 32\n99 10\n46 8\n87 54",
"output": "111"
},
{
"input": "1 1000000000\n15 12",
"output": "12"
},
{
"input": "5 1\n5 9\n2 10\n8 5\n18 12\n1 1",
"output": "12"
},
{
"input": "3 3\n4 15\n0 17\n9 11",
"output": "17"
},
{
"input": "5 10\n8 90\n1009 1000000\n9 121\n10 298\n0 109092",
"output": "1000000"
},
{
"input": "5 9\n0 98\n2 1000000000\n8 1000000000\n5 999999999\n3 989898989",
"output": "3989899086"
},
{
"input": "4 2\n10909234 9\n10909236 8\n10909237 10\n10909235 98",
"output": "107"
},
{
"input": "3 1\n801 10101\n802 134509124\n801 1",
"output": "134509124"
},
{
"input": "4 1\n2 4\n2 2\n3 3\n3 3",
"output": "6"
},
{
"input": "8 5\n3 227589091\n12 131068951\n8 492784630\n20 918918112\n11 6972428\n20 585402296\n12 220234661\n1 225083234",
"output": "1504320408"
},
{
"input": "15 1234\n2738 322313356\n1160 970909702\n2594 902749351\n3126 324754476\n3151 177963947\n3424 396145897\n5578 737768323\n3423 687640543\n381 848813098\n1058 197211286\n936 650181776\n1025 776492538\n3598 142176544\n3595 680519527\n1191 32199940",
"output": "3634263641"
},
{
"input": "5 6\n5 11\n10 11\n11 11\n12 11\n100 1",
"output": "33"
},
{
"input": "7 6\n5 11\n9 11\n10 11\n11 11\n12 11\n13 11\n100 1",
"output": "55"
},
{
"input": "4 2\n1 1\n2 100\n3 100\n4 1",
"output": "200"
}
] | 1,695,144,959
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 35
| 514
| 16,998,400
|
import sys
input = sys.stdin.readline
n, d = map(int,input().split())
ls = []
for _ in range(n) :
ls.append(list(map(int,input().split())))
ls.sort()
i, j = 0, 0
sm, mx = 0, 0
while i < n :
while i < n and (ls[i][0]-ls[j][0]+1) <= d :
sm += ls[i][1]
i += 1
mx = max(mx,sm)
sm -= ls[j][1]
j += 1
print(mx)
|
Title: Kefa and Company
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kefa wants to celebrate his first big salary by going to restaurant. However, he needs company.
Kefa has *n* friends, each friend will agree to go to the restaurant if Kefa asks. Each friend is characterized by the amount of money he has and the friendship factor in respect to Kefa. The parrot doesn't want any friend to feel poor compared to somebody else in the company (Kefa doesn't count). A friend feels poor if in the company there is someone who has at least *d* units of money more than he does. Also, Kefa wants the total friendship factor of the members of the company to be maximum. Help him invite an optimal company!
Input Specification:
The first line of the input contains two space-separated integers, *n* and *d* (1<=β€<=*n*<=β€<=105, ) β the number of Kefa's friends and the minimum difference between the amount of money in order to feel poor, respectively.
Next *n* lines contain the descriptions of Kefa's friends, the (*i*<=+<=1)-th line contains the description of the *i*-th friend of type *m**i*, *s**i* (0<=β€<=*m**i*,<=*s**i*<=β€<=109) β the amount of money and the friendship factor, respectively.
Output Specification:
Print the maximum total friendship factir that can be reached.
Demo Input:
['4 5\n75 5\n0 100\n150 20\n75 1\n', '5 100\n0 7\n11 32\n99 10\n46 8\n87 54\n']
Demo Output:
['100\n', '111\n']
Note:
In the first sample test the most profitable strategy is to form a company from only the second friend. At all other variants the total degree of friendship will be worse.
In the second sample test we can take all the friends.
|
```python
import sys
input = sys.stdin.readline
n, d = map(int,input().split())
ls = []
for _ in range(n) :
ls.append(list(map(int,input().split())))
ls.sort()
i, j = 0, 0
sm, mx = 0, 0
while i < n :
while i < n and (ls[i][0]-ls[j][0]+1) <= d :
sm += ls[i][1]
i += 1
mx = max(mx,sm)
sm -= ls[j][1]
j += 1
print(mx)
```
| 3
|
|
58
|
B
|
Coins
|
PROGRAMMING
| 1,300
|
[
"greedy"
] |
B. Coins
|
2
|
256
|
In Berland a money reform is being prepared. New coins are being introduced. After long economic calculations was decided that the most expensive coin should possess the denomination of exactly *n* Berland dollars. Also the following restriction has been introduced for comfort: the denomination of each coin should be divisible by the denomination of any cheaper coin. It is known that among all the possible variants the variant with the largest number of new coins will be chosen. Find this variant. Print in the order of decreasing of the coins' denominations.
|
The first and only line contains an integer *n* (1<=β€<=*n*<=β€<=106) which represents the denomination of the most expensive coin.
|
Print the denominations of all the coins in the order of decreasing. The number of coins must be the largest possible (with the given denomination *n* of the most expensive coin). Also, the denomination of every coin must be divisible by the denomination of any cheaper coin. Naturally, the denominations of all the coins should be different. If there are several solutins to that problem, print any of them.
|
[
"10\n",
"4\n",
"3\n"
] |
[
"10 5 1\n",
"4 2 1\n",
"3 1\n"
] |
none
| 1,000
|
[
{
"input": "10",
"output": "10 5 1"
},
{
"input": "4",
"output": "4 2 1"
},
{
"input": "3",
"output": "3 1"
},
{
"input": "2",
"output": "2 1"
},
{
"input": "5",
"output": "5 1"
},
{
"input": "6",
"output": "6 3 1"
},
{
"input": "7",
"output": "7 1"
},
{
"input": "1",
"output": "1"
},
{
"input": "8",
"output": "8 4 2 1"
},
{
"input": "12",
"output": "12 6 3 1"
},
{
"input": "100",
"output": "100 50 25 5 1"
},
{
"input": "1000",
"output": "1000 500 250 125 25 5 1"
},
{
"input": "10000",
"output": "10000 5000 2500 1250 625 125 25 5 1"
},
{
"input": "100000",
"output": "100000 50000 25000 12500 6250 3125 625 125 25 5 1"
},
{
"input": "1000000",
"output": "1000000 500000 250000 125000 62500 31250 15625 3125 625 125 25 5 1"
},
{
"input": "509149",
"output": "509149 1"
},
{
"input": "572877",
"output": "572877 190959 63653 1201 1"
},
{
"input": "152956",
"output": "152956 76478 38239 1"
},
{
"input": "733035",
"output": "733035 244345 48869 1"
},
{
"input": "313114",
"output": "313114 156557 3331 1"
},
{
"input": "893193",
"output": "893193 297731 42533 1"
},
{
"input": "473273",
"output": "473273 2243 1"
},
{
"input": "537000",
"output": "537000 268500 134250 67125 22375 4475 895 179 1"
},
{
"input": "117079",
"output": "117079 6887 97 1"
},
{
"input": "784653",
"output": "784653 261551 9019 311 1"
},
{
"input": "627251",
"output": "627251 1"
},
{
"input": "9",
"output": "9 3 1"
},
{
"input": "999999",
"output": "999999 333333 111111 37037 5291 481 37 1"
},
{
"input": "120",
"output": "120 60 30 15 5 1"
},
{
"input": "720",
"output": "720 360 180 90 45 15 5 1"
},
{
"input": "648",
"output": "648 324 162 81 27 9 3 1"
},
{
"input": "2430",
"output": "2430 1215 405 135 45 15 5 1"
},
{
"input": "119070",
"output": "119070 59535 19845 6615 2205 735 245 49 7 1"
},
{
"input": "15",
"output": "15 5 1"
},
{
"input": "21",
"output": "21 7 1"
},
{
"input": "25",
"output": "25 5 1"
},
{
"input": "100",
"output": "100 50 25 5 1"
},
{
"input": "524287",
"output": "524287 1"
},
{
"input": "1000000",
"output": "1000000 500000 250000 125000 62500 31250 15625 3125 625 125 25 5 1"
},
{
"input": "600",
"output": "600 300 150 75 25 5 1"
},
{
"input": "1000000",
"output": "1000000 500000 250000 125000 62500 31250 15625 3125 625 125 25 5 1"
},
{
"input": "36",
"output": "36 18 9 3 1"
},
{
"input": "1000000",
"output": "1000000 500000 250000 125000 62500 31250 15625 3125 625 125 25 5 1"
},
{
"input": "20",
"output": "20 10 5 1"
},
{
"input": "999983",
"output": "999983 1"
},
{
"input": "9",
"output": "9 3 1"
},
{
"input": "999983",
"output": "999983 1"
},
{
"input": "20",
"output": "20 10 5 1"
},
{
"input": "121",
"output": "121 11 1"
},
{
"input": "1331",
"output": "1331 121 11 1"
}
] | 1,608,587,123
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 50
| 434
| 0
|
x=int(input(""))
ch=x
print(x)
for i in range((ch//2),0,-1):
if ch % i ==0 :
print(i)
ch=i
|
Title: Coins
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
In Berland a money reform is being prepared. New coins are being introduced. After long economic calculations was decided that the most expensive coin should possess the denomination of exactly *n* Berland dollars. Also the following restriction has been introduced for comfort: the denomination of each coin should be divisible by the denomination of any cheaper coin. It is known that among all the possible variants the variant with the largest number of new coins will be chosen. Find this variant. Print in the order of decreasing of the coins' denominations.
Input Specification:
The first and only line contains an integer *n* (1<=β€<=*n*<=β€<=106) which represents the denomination of the most expensive coin.
Output Specification:
Print the denominations of all the coins in the order of decreasing. The number of coins must be the largest possible (with the given denomination *n* of the most expensive coin). Also, the denomination of every coin must be divisible by the denomination of any cheaper coin. Naturally, the denominations of all the coins should be different. If there are several solutins to that problem, print any of them.
Demo Input:
['10\n', '4\n', '3\n']
Demo Output:
['10 5 1\n', '4 2 1\n', '3 1\n']
Note:
none
|
```python
x=int(input(""))
ch=x
print(x)
for i in range((ch//2),0,-1):
if ch % i ==0 :
print(i)
ch=i
```
| 3.8915
|
664
|
A
|
Complicated GCD
|
PROGRAMMING
| 800
|
[
"math",
"number theory"
] | null | null |
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm.
Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100Β β such number do not fit even in 64-bit integer type!
|
The only line of the input contains two integers *a* and *b* (1<=β€<=*a*<=β€<=*b*<=β€<=10100).
|
Output one integerΒ β greatest common divisor of all integers from *a* to *b* inclusive.
|
[
"1 2\n",
"61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n"
] |
[
"1\n",
"61803398874989484820458683436563811772030917980576\n"
] |
none
| 500
|
[
{
"input": "1 2",
"output": "1"
},
{
"input": "61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576",
"output": "61803398874989484820458683436563811772030917980576"
},
{
"input": "1 100",
"output": "1"
},
{
"input": "100 100000",
"output": "1"
},
{
"input": "12345 67890123456789123457",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158 8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158",
"output": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158"
},
{
"input": "1 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "1"
},
{
"input": "8328748239473982794239847237438782379810988324751 9328748239473982794239847237438782379810988324751",
"output": "1"
},
{
"input": "1029398958432734901284327523909481928483573793 1029398958432734901284327523909481928483573794",
"output": "1"
},
{
"input": "10000 1000000000",
"output": "1"
},
{
"input": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
},
{
"input": "11210171722243 65715435710585778347",
"output": "1"
},
{
"input": "2921881079263974825226940825843 767693191032295360887755303860323261471",
"output": "1"
},
{
"input": "8025352957265704896940312528736939363590612908210603 96027920417708260814607687034511406492969694925539085",
"output": "1"
},
{
"input": "23510978780782786207241069904470895053213996267165977112058175452757132930 210352653280909370107314249722987050753257161175393375412301228883856435481424",
"output": "1"
},
{
"input": "8150070767079366215626260746398623663859344142817267779361251788637547414925170226504788118262 49924902262298336032630839998470954964895251605110946547855439236151401194070172107435992986913614",
"output": "1"
},
{
"input": "15943150466658398903 15943150466658398903",
"output": "15943150466658398903"
},
{
"input": "410470228200245407491525399055972 410470228200245407491525399055972",
"output": "410470228200245407491525399055972"
},
{
"input": "51894705655711504622197349350106792045098781545973899451307 51894705655711504622197349350106792045098781545973899451307",
"output": "51894705655711504622197349350106792045098781545973899451307"
},
{
"input": "60353594589897438036015726222485085035927634677598681595162804007836722215668410 60353594589897438036015726222485085035927634677598681595162804007836722215668410",
"output": "60353594589897438036015726222485085035927634677598681595162804007836722215668410"
},
{
"input": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535 761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535",
"output": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535"
},
{
"input": "1 2000000000",
"output": "1"
},
{
"input": "13 1928834874",
"output": "1"
},
{
"input": "87 2938984237482934238",
"output": "1"
},
{
"input": "213 413",
"output": "1"
},
{
"input": "3 4",
"output": "1"
}
] | 1,653,568,249
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 28
| 46
| 0
|
a,b = input().split()
c=1
if a==b:
print(a)
else:
print(c)
|
Title: Complicated GCD
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm.
Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100Β β such number do not fit even in 64-bit integer type!
Input Specification:
The only line of the input contains two integers *a* and *b* (1<=β€<=*a*<=β€<=*b*<=β€<=10100).
Output Specification:
Output one integerΒ β greatest common divisor of all integers from *a* to *b* inclusive.
Demo Input:
['1 2\n', '61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n']
Demo Output:
['1\n', '61803398874989484820458683436563811772030917980576\n']
Note:
none
|
```python
a,b = input().split()
c=1
if a==b:
print(a)
else:
print(c)
```
| 3
|
|
471
|
A
|
MUH and Sticks
|
PROGRAMMING
| 1,100
|
[
"implementation"
] | null | null |
Two polar bears Menshykov and Uslada from the St.Petersburg zoo and elephant Horace from the Kiev zoo got six sticks to play with and assess the animals' creativity. Menshykov, Uslada and Horace decided to make either an elephant or a bear from those sticks. They can make an animal from sticks in the following way:
- Four sticks represent the animal's legs, these sticks should have the same length. - Two remaining sticks represent the animal's head and body. The bear's head stick must be shorter than the body stick. The elephant, however, has a long trunk, so his head stick must be as long as the body stick. Note that there are no limits on the relations between the leg sticks and the head and body sticks.
Your task is to find out which animal can be made from the given stick set. The zoo keeper wants the sticks back after the game, so they must never be broken, even bears understand it.
|
The single line contains six space-separated integers *l**i* (1<=β€<=*l**i*<=β€<=9) β the lengths of the six sticks. It is guaranteed that the input is such that you cannot make both animals from the sticks.
|
If you can make a bear from the given set, print string "Bear" (without the quotes). If you can make an elephant, print string "Elephant" (wΔ±thout the quotes). If you can make neither a bear nor an elephant, print string "Alien" (without the quotes).
|
[
"4 2 5 4 4 4\n",
"4 4 5 4 4 5\n",
"1 2 3 4 5 6\n"
] |
[
"Bear",
"Elephant",
"Alien"
] |
If you're out of creative ideas, see instructions below which show how to make a bear and an elephant in the first two samples. The stick of length 2 is in red, the sticks of length 4 are in green, the sticks of length 5 are in blue.
| 500
|
[
{
"input": "4 2 5 4 4 4",
"output": "Bear"
},
{
"input": "4 4 5 4 4 5",
"output": "Elephant"
},
{
"input": "1 2 3 4 5 6",
"output": "Alien"
},
{
"input": "5 5 5 5 5 5",
"output": "Elephant"
},
{
"input": "1 1 1 2 3 5",
"output": "Alien"
},
{
"input": "1 1 1 1 1 1",
"output": "Elephant"
},
{
"input": "9 9 9 9 9 9",
"output": "Elephant"
},
{
"input": "1 8 9 1 1 1",
"output": "Bear"
},
{
"input": "9 9 9 1 9 9",
"output": "Bear"
},
{
"input": "1 2 3 8 9 7",
"output": "Alien"
},
{
"input": "5 5 5 6 6 6",
"output": "Alien"
},
{
"input": "1 1 2 2 3 4",
"output": "Alien"
},
{
"input": "4 4 4 4 4 2",
"output": "Bear"
},
{
"input": "2 2 3 3 4 4",
"output": "Alien"
},
{
"input": "4 4 4 4 4 5",
"output": "Bear"
},
{
"input": "1 1 2 2 2 2",
"output": "Elephant"
},
{
"input": "1 2 5 5 5 5",
"output": "Bear"
},
{
"input": "4 4 2 2 2 2",
"output": "Elephant"
},
{
"input": "1 1 1 1 1 2",
"output": "Bear"
},
{
"input": "2 2 4 4 4 4",
"output": "Elephant"
},
{
"input": "4 4 4 4 4 3",
"output": "Bear"
},
{
"input": "4 4 5 6 7 8",
"output": "Alien"
},
{
"input": "4 4 4 4 2 2",
"output": "Elephant"
},
{
"input": "1 1 1 1 2 2",
"output": "Elephant"
},
{
"input": "1 1 3 3 3 5",
"output": "Alien"
},
{
"input": "1 2 2 3 3 3",
"output": "Alien"
},
{
"input": "1 2 2 2 2 2",
"output": "Bear"
},
{
"input": "1 3 3 3 4 5",
"output": "Alien"
},
{
"input": "5 1 1 1 1 1",
"output": "Bear"
}
] | 1,418,013,467
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 62
| 0
|
def main():
l = [0] * 10
for x in map(int, input().split()):
l[x] += 1
l.sort()
x = l[9] * 3 + l[8]
if x in (18, 14):
print('Elephant')
elif x in (16, 13):
print('Bear')
else:
print('Alien')
if __name__ == '__main__':
main()
|
Title: MUH and Sticks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two polar bears Menshykov and Uslada from the St.Petersburg zoo and elephant Horace from the Kiev zoo got six sticks to play with and assess the animals' creativity. Menshykov, Uslada and Horace decided to make either an elephant or a bear from those sticks. They can make an animal from sticks in the following way:
- Four sticks represent the animal's legs, these sticks should have the same length. - Two remaining sticks represent the animal's head and body. The bear's head stick must be shorter than the body stick. The elephant, however, has a long trunk, so his head stick must be as long as the body stick. Note that there are no limits on the relations between the leg sticks and the head and body sticks.
Your task is to find out which animal can be made from the given stick set. The zoo keeper wants the sticks back after the game, so they must never be broken, even bears understand it.
Input Specification:
The single line contains six space-separated integers *l**i* (1<=β€<=*l**i*<=β€<=9) β the lengths of the six sticks. It is guaranteed that the input is such that you cannot make both animals from the sticks.
Output Specification:
If you can make a bear from the given set, print string "Bear" (without the quotes). If you can make an elephant, print string "Elephant" (wΔ±thout the quotes). If you can make neither a bear nor an elephant, print string "Alien" (without the quotes).
Demo Input:
['4 2 5 4 4 4\n', '4 4 5 4 4 5\n', '1 2 3 4 5 6\n']
Demo Output:
['Bear', 'Elephant', 'Alien']
Note:
If you're out of creative ideas, see instructions below which show how to make a bear and an elephant in the first two samples. The stick of length 2 is in red, the sticks of length 4 are in green, the sticks of length 5 are in blue.
|
```python
def main():
l = [0] * 10
for x in map(int, input().split()):
l[x] += 1
l.sort()
x = l[9] * 3 + l[8]
if x in (18, 14):
print('Elephant')
elif x in (16, 13):
print('Bear')
else:
print('Alien')
if __name__ == '__main__':
main()
```
| 3
|
|
802
|
G
|
Fake News (easy)
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
As it's the first of April, Heidi is suspecting that the news she reads today are fake, and she does not want to look silly in front of all the contestants. She knows that a newspiece is fake if it contains heidi as a subsequence. Help Heidi assess whether the given piece is true, but please be discreet about it...
|
The first and only line of input contains a single nonempty string *s* of length at most 1000 composed of lowercase letters (a-z).
|
Output YES if the string *s* contains heidi as a subsequence and NO otherwise.
|
[
"abcheaibcdi\n",
"hiedi\n"
] |
[
"YES",
"NO"
] |
A string *s* contains another string *p* as a subsequence if it is possible to delete some characters from *s* and obtain *p*.
| 0
|
[
{
"input": "abcheaibcdi",
"output": "YES"
},
{
"input": "hiedi",
"output": "NO"
},
{
"input": "ihied",
"output": "NO"
},
{
"input": "diehi",
"output": "NO"
},
{
"input": "deiih",
"output": "NO"
},
{
"input": "iheid",
"output": "NO"
},
{
"input": "eihdi",
"output": "NO"
},
{
"input": "ehdii",
"output": "NO"
},
{
"input": "edhii",
"output": "NO"
},
{
"input": "deiih",
"output": "NO"
},
{
"input": "ehdii",
"output": "NO"
},
{
"input": "eufyajkssayhjhqcwxmctecaeepjwmfoscqprpcxsqfwnlgzsmmuwuoruantipholrauvxydfvftwfzhnckxswussvlidcojiciflpvkcxkkcmmvtfvxrkwcpeelwsuzqgamamdtdgzscmikvojfvqehblmjczkvtdeymgertgkwfwfukafqlfdhtedcctixhyetdypswgagrpyto",
"output": "YES"
},
{
"input": "arfbvxgdvqzuloojjrwoyqqbxamxybaqltfimofulusfebodjkwwrgwcppkwiodtpjaraglyplgerrpqjkpoggjmfxhwtqrijpijrcyxnoodvwpyjfpvqaoazllbrpzananbrvvybboedidtuvqquklkpeflfaltukjhzjgiofombhbmqbihgtapswykfvlgdoapjqntvqsaohmbvnphvyyhvhavslamczuqifxnwknkaenqmlvetrqogqxmlptgrmqvxzdxdmwobjesmgxckpmawtioavwdngyiwkzypfnxcovwzdohshwlavwsthdssiadhiwmhpvgkrbezm",
"output": "YES"
},
{
"input": "zcectngbqnejjjtsfrluummmqabzqbyccshjqbrjthzhlbmzjfxugvjouwhumsgrnopiyakfadjnbsesamhynsbfbfunupwbxvohfmpwlcpxhovwpfpciclatgmiufwdvtsqrsdcymvkldpnhfeisrzhyhhlkwdzthgprvkpyldeysvbmcibqkpudyrraqdlxpjecvwcvuiklcrsbgvqasmxmtxqzmawcjtozioqlfflinnxpeexbzloaeqjvglbdeufultpjqexvjjjkzemtzuzmxvawilcqdrcjzpqyhtwfphuonzwkotthsaxrmwtnlmcdylxqcfffyndqeouztluqwlhnkkvzwcfiscikv",
"output": "YES"
},
{
"input": "plqaykgovxkvsiahdbglktdlhcqwelxxmtlyymrsyubxdskvyjkrowvcbpdofpjqspsrgpakdczletxujzlsegepzleipiyycpinzxgwjsgslnxsotouddgfcybozfpjhhocpybfjbaywsehbcfrayvancbrumdfngqytnhihyxnlvilrqyhnxeckprqafofelospffhtwguzjbbjlzbqrtiielbvzutzgpqxosiaqznndgobcluuqlhmffiowkjdlkokehtjdyjvmxsiyxureflmdomerfekxdvtitvwzmdsdzplkpbtafxqfpudnhfqpoiwvjnylanunmagoweobdvfjgepbsymfutrjarlxclhgavpytiiqwvojrptofuvlohzeguxdsrihsbucelhhuedltnnjgzxwyblbqvnoliiydfinzlogbvucwykryzcyibnniggbkdkdcdgcsbvvnavtyhtkanrblpvomvjs",
"output": "YES"
},
{
"input": "fbldqzggeunkpwcfirxanmntbfrudijltoertsdvcvcmbwodbibsrxendzebvxwydpasaqnisrijctsuatihxxygbeovhxjdptdcppkvfytdpjspvrannxavmkmisqtygntxkdlousdypyfkrpzapysfpdbyprufwzhunlsfugojddkmxzinatiwfxdqmgyrnjnxvrclhxyuwxtshoqdjptmeecvgmrlvuwqtmnfnfeeiwcavwnqmyustawbjodzwsqmnjxhpqmgpysierlwbbdzcwprpsexyvreewcmlbvaiytjlxdqdaqftefdlmtmmjcwvfejshymhnouoshdzqcwzxpzupkbcievodzqkqvyjuuxxwepxjalvkzufnveji",
"output": "YES"
},
{
"input": "htsyljgoelbbuipivuzrhmfpkgderqpoprlxdpasxhpmxvaztccldtmujjzjmcpdvsdghzpretlsyyiljhjznseaacruriufswuvizwwuvdioazophhyytvbiogttnnouauxllbdn",
"output": "YES"
},
{
"input": "ikmxzqdzxqlvgeojsnhqzciujslwjyzzexnregabdqztpplosdakimjxmuqccbnwvzbajoiqgdobccwnrwmixohrbdarhoeeelzbpigiybtesybwefpcfx",
"output": "YES"
},
{
"input": "bpvbpjvbdfiodsmahxpcubjxdykesubnypalhypantshkjffmxjmelblqnjdmtaltneuyudyevkgedkqrdmrfeemgpghwrifcwincfixokfgurhqbcfzeajrgkgpwqwsepudxulywowwxzdxkumsicsvnzfxspmjpaixgejeaoyoibegosqoyoydmphfpbutrrewyjecowjckvpcceoamtfbitdneuwqfvnagswlskmsmkhmxyfsrpqwhxzocyffiumcy",
"output": "YES"
},
{
"input": "vllsexwrazvlfvhvrtqeohvzzresjdiuhomfpgqcxpqdevplecuaepixhlijatxzegciizpvyvxuembiplwklahlqibykfideysjygagjbgqkbhdhkatddcwlxboinfuomnpc",
"output": "YES"
},
{
"input": "pnjdwpxmvfoqkjtbhquqcuredrkwqzzfjmdvpnbqtypzdovemhhclkvigjvtprrpzbrbcbatkucaqteuciuozytsptvsskkeplaxdaqmjkmef",
"output": "NO"
},
{
"input": "jpwfhvlxvsdhtuozvlmnfiotrgapgjxtcsgcjnodcztupysvvvmjpzqkpommadppdrykuqkcpzojcwvlogvkddedwbggkrhuvtsvdiokehlkdlnukcufjvqxnikcdawvexxwffxtriqbdmkahxdtygodzohwtdmmuvmatdkvweqvaehaxiefpevkvqpyxsrhtmgjsdfcwzqobibeduooldrmglbinrepmunizheqzvgqvpdskhxfidxfnbisyizhepwyrcykcmjxnkyfjgrqlkixcvysa",
"output": "YES"
},
{
"input": "aftcrvuumeqbfvaqlltscnuhkpcifrrhnutjinxdhhdbzvizlrapzjdatuaynoplgjketupgaejciosofuhcgcjdcucarfvtsofgubtphijciswsvidnvpztlaarydkeqxzwdhfbmullkimerukusbrdnnujviydldrwhdfllsjtziwfeaiqotbiprespmxjulnyunkdtcghrzvhtcychkwatqqmladxpvmvlkzscthylbzkpgwlzfjqwarqvdeyngekqvrhrftpxnkfcibbowvnqdkulcdydspcubwlgoyinpnzgidbgunparnueddzwtzdiavbprbbg",
"output": "YES"
},
{
"input": "oagjghsidigeh",
"output": "NO"
},
{
"input": "chdhzpfzabupskiusjoefrwmjmqkbmdgboicnszkhdrlegeqjsldurmbshijadlwsycselhlnudndpdhcnhruhhvsgbthpruiqfirxkhpqhzhqdfpyozolbionodypfcqfeqbkcgmqkizgeyyelzeoothexcoaahedgrvoemqcwccbvoeqawqeuusyjxmgjkpfwcdttfmwunzuwvsihliexlzygqcgpbdiawfvqukikhbjerjkyhpcknlndaystrgsinghlmekbvhntcpypmchcwoglsmwwdulqneuabuuuvtyrnjxfcgoothalwkzzfxakneusezgnnepkpipzromqubraiggqndliz",
"output": "YES"
},
{
"input": "lgirxqkrkgjcutpqitmffvbujcljkqardlalyigxorscczuzikoylcxenryhskoavymexysvmhbsvhtycjlmzhijpuvcjshyfeycvvcfyzytzoyvxajpqdjtfiatnvxnyeqtfcagfftafllhhjhplbdsrfpctkqpinpdfrtlzyjllfbeffputywcckupyslkbbzpgcnxgbmhtqeqqehpdaokkjtatrhyiuusjhwgiiiikxpzdueasemosmmccoakafgvxduwiuflovhhfhffgnnjhoperhhjtvocpqytjxkmrknnknqeglffhfuplopmktykxuvcmbwpoeisrlyyhdpxfvzseucofyhziuiikihpqheqdyzwigeaqzhxzvporgisxgvhyicqyejovqloibhbunsvsunpvmdckkbuokitdzleilfwutcvuuytpupizinfjrzhxudsmjcjyfcpfgthujjowdwtgbvi",
"output": "YES"
},
{
"input": "uuehrvufgerqbzyzksmqnewacotuimawhlbycdbsmhshrsbqwybbkwjwsrkwptvlbbwjiivqugzrxxwgidrcrhrwsmwgeoleptfamzefgaeyxouxocrpvomjrazmxrnffdwrrmblgdiabdncvfougtmjgvvazasnygdrigbsrieoonirlivfyodvulouslxosswgpdexuldmkdbpdlgutiotvxjyecbrsvbmqxrlcpcipjjncduyqtohlzybvlemmfdeubihwlwqglkgjvnwrbgydcpwklmjeewqklmqdbajqgrpnynaxfvxjzgibqerxyhnxenrmcdqaaeksbzyrcaepozqpetaurlhjuxxhwppuhgoihxdxbmxeiahyaqkbknktlzkheaarjoqqrsyeducvoygwalgarldcdlqogfvsncejssmx",
"output": "YES"
},
{
"input": "iiopulfjxoitgiusqrhgbkiyzinphjtclodbkkydetylvuimkhdkklmyoacmekdvjpuxcrvqnjhqhhbfenlpzpwijtykqziocilvtpqhxuyrphdlamawjuzgjwiebkqyrzyqgtkcrhntjxqmcgkrqcslogjegfrivzidfedeegwbbsopvxvdoididlpypjogxaodtueebbwuwilacunqpozczcgrpaxxrtogpxgfkudtxchoravrrdtimhenwmnafxaruuojduxxglefejycfcyxllfimkszmbrhcwpnwjqgwvzysmlaaifdxfjjpgjmcksiigpanappjdloiolojmcqbnpnjjzaufdpjaknylmyvolhwypygwepmqwpiglpcnpypnudhdzpdvgzosyjthzcwtytxq",
"output": "YES"
}
] | 1,619,584,249
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 58
| 77
| 0
|
N=input()
S=""
N=N.lower()
A=0
for i in range(len(N)):
if(N[i]=="h"):
S=S+N[i]
A=i
break
for i in range(A+1,len(N)):
if(N[i]=="e"):
S=S+N[i]
A=i
break
for i in range(A+1,len(N)):
if(N[i]=="i"):
S=S+N[i]
A=i
break
for i in range(A+1,len(N)):
if(N[i]=="d"):
S=S+N[i]
A=i
break
for i in range(A+1,len(N)):
if(N[i]=="i"):
S=S+N[i]
break
if(S=="heidi"):
print("YES")
if not (S=="heidi"):
print("NO")
|
Title: Fake News (easy)
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
As it's the first of April, Heidi is suspecting that the news she reads today are fake, and she does not want to look silly in front of all the contestants. She knows that a newspiece is fake if it contains heidi as a subsequence. Help Heidi assess whether the given piece is true, but please be discreet about it...
Input Specification:
The first and only line of input contains a single nonempty string *s* of length at most 1000 composed of lowercase letters (a-z).
Output Specification:
Output YES if the string *s* contains heidi as a subsequence and NO otherwise.
Demo Input:
['abcheaibcdi\n', 'hiedi\n']
Demo Output:
['YES', 'NO']
Note:
A string *s* contains another string *p* as a subsequence if it is possible to delete some characters from *s* and obtain *p*.
|
```python
N=input()
S=""
N=N.lower()
A=0
for i in range(len(N)):
if(N[i]=="h"):
S=S+N[i]
A=i
break
for i in range(A+1,len(N)):
if(N[i]=="e"):
S=S+N[i]
A=i
break
for i in range(A+1,len(N)):
if(N[i]=="i"):
S=S+N[i]
A=i
break
for i in range(A+1,len(N)):
if(N[i]=="d"):
S=S+N[i]
A=i
break
for i in range(A+1,len(N)):
if(N[i]=="i"):
S=S+N[i]
break
if(S=="heidi"):
print("YES")
if not (S=="heidi"):
print("NO")
```
| 3
|
|
46
|
C
|
Hamsters and Tigers
|
PROGRAMMING
| 1,600
|
[
"two pointers"
] |
C. Hamsters and Tigers
|
2
|
256
|
Today there is going to be an unusual performance at the circus β hamsters and tigers will perform together! All of them stand in circle along the arena edge and now the trainer faces a difficult task: he wants to swap the animals' positions so that all the hamsters stood together and all the tigers also stood together. The trainer swaps the animals in pairs not to create a mess. He orders two animals to step out of the circle and swap places. As hamsters feel highly uncomfortable when tigers are nearby as well as tigers get nervous when there's so much potential prey around (consisting not only of hamsters but also of yummier spectators), the trainer wants to spend as little time as possible moving the animals, i.e. he wants to achieve it with the minimal number of swaps. Your task is to help him.
|
The first line contains number *n* (2<=β€<=*n*<=β€<=1000) which indicates the total number of animals in the arena. The second line contains the description of the animals' positions. The line consists of *n* symbols "H" and "T". The "H"s correspond to hamsters and the "T"s correspond to tigers. It is guaranteed that at least one hamster and one tiger are present on the arena. The animals are given in the order in which they are located circle-wise, in addition, the last animal stands near the first one.
|
Print the single number which is the minimal number of swaps that let the trainer to achieve his goal.
|
[
"3\nHTH\n",
"9\nHTHTHTHHT\n"
] |
[
"0\n",
"2\n"
] |
In the first example we shouldn't move anybody because the animals of each species already stand apart from the other species. In the second example you may swap, for example, the tiger in position 2 with the hamster in position 5 and then β the tiger in position 9 with the hamster in position 7.
| 0
|
[
{
"input": "3\nHTH",
"output": "0"
},
{
"input": "9\nHTHTHTHHT",
"output": "2"
},
{
"input": "2\nTH",
"output": "0"
},
{
"input": "4\nHTTH",
"output": "0"
},
{
"input": "4\nHTHT",
"output": "1"
},
{
"input": "7\nTTTHTTT",
"output": "0"
},
{
"input": "8\nHHTHHTHH",
"output": "1"
},
{
"input": "13\nHTTTHHHTTTTHH",
"output": "3"
},
{
"input": "20\nTTHTHTHHTHTTHHTTTHHH",
"output": "4"
},
{
"input": "35\nTTTTTTHTTHTTTTTHTTTTTTTTTTTHTHTTTTT",
"output": "3"
},
{
"input": "120\nTTTTTTTHTHTHTTTTTHTHTTTTHTTTTTTTTTTTTTTTTTTTTHTTHTTTTHTTHTTTTTTTTTTTTTTTHTTTTTTHTHTTHTTTTTTHTTTTTTTTTHTTHTTTTHTTTHTTTTTH",
"output": "14"
},
{
"input": "19\nHHHHHHHHHHHHHTTTHHH",
"output": "0"
},
{
"input": "87\nHTHHTTHHHHTHHHHHTTTHHTHHHHTTTTHHHTTHHTHTHTHHTTHTHHTHTHTTHHHTTTTTHTTHHHHHHTHHTHHTHTTHTHH",
"output": "17"
},
{
"input": "178\nTHHHTHTTTHTTHTTHHHHHTTTHTTHHTHTTTHTHTTTTTHHHTHTHHHTHHHTTTTTTTTHHHHTTHHTHHHHTHTTTHHHHHHTHHTHTTHTHTTTTTTTTTHHTTHHTHTTHHTHHHHHTTHHTTHHTTHHHTTHHTTTTHTHHHTHTTHTHTTTHHHHTHHTHHHTHTTTTTT",
"output": "40"
}
] | 1,687,898,287
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 27
| 248
| 8,601,600
|
import sys
input = lambda: sys.stdin.readline().rstrip()
from collections import deque,defaultdict
N = int(input())
S = [c for c in input()]
ans = float("inf")
for _ in range(N):
SS = S[::]
lib = defaultdict(list)
for i in range(N):
lib[S[i]].append(i)
cnt = 0
for i in range(N):
if SS[i]!=SS[0]:
j = lib[SS[0]].pop()
if j<=i:break
SS[i],SS[j]=SS[j],SS[i]
cnt+=1
ans = min(ans, cnt)
S = S[1:]+[S[0]]
print(ans)
|
Title: Hamsters and Tigers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Today there is going to be an unusual performance at the circus β hamsters and tigers will perform together! All of them stand in circle along the arena edge and now the trainer faces a difficult task: he wants to swap the animals' positions so that all the hamsters stood together and all the tigers also stood together. The trainer swaps the animals in pairs not to create a mess. He orders two animals to step out of the circle and swap places. As hamsters feel highly uncomfortable when tigers are nearby as well as tigers get nervous when there's so much potential prey around (consisting not only of hamsters but also of yummier spectators), the trainer wants to spend as little time as possible moving the animals, i.e. he wants to achieve it with the minimal number of swaps. Your task is to help him.
Input Specification:
The first line contains number *n* (2<=β€<=*n*<=β€<=1000) which indicates the total number of animals in the arena. The second line contains the description of the animals' positions. The line consists of *n* symbols "H" and "T". The "H"s correspond to hamsters and the "T"s correspond to tigers. It is guaranteed that at least one hamster and one tiger are present on the arena. The animals are given in the order in which they are located circle-wise, in addition, the last animal stands near the first one.
Output Specification:
Print the single number which is the minimal number of swaps that let the trainer to achieve his goal.
Demo Input:
['3\nHTH\n', '9\nHTHTHTHHT\n']
Demo Output:
['0\n', '2\n']
Note:
In the first example we shouldn't move anybody because the animals of each species already stand apart from the other species. In the second example you may swap, for example, the tiger in position 2 with the hamster in position 5 and then β the tiger in position 9 with the hamster in position 7.
|
```python
import sys
input = lambda: sys.stdin.readline().rstrip()
from collections import deque,defaultdict
N = int(input())
S = [c for c in input()]
ans = float("inf")
for _ in range(N):
SS = S[::]
lib = defaultdict(list)
for i in range(N):
lib[S[i]].append(i)
cnt = 0
for i in range(N):
if SS[i]!=SS[0]:
j = lib[SS[0]].pop()
if j<=i:break
SS[i],SS[j]=SS[j],SS[i]
cnt+=1
ans = min(ans, cnt)
S = S[1:]+[S[0]]
print(ans)
```
| 3.921978
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line β the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,512,691,539
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 77
| 5,529,600
|
L1=input()
L2=input()
res=""
for i in range(len(L1)):
if L1[i]!=L2[i]:
res+="1"
else:
res+="0"
print(res)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line β the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
L1=input()
L2=input()
res=""
for i in range(len(L1)):
if L1[i]!=L2[i]:
res+="1"
else:
res+="0"
print(res)
```
| 3.97045
|
946
|
C
|
String Transformation
|
PROGRAMMING
| 1,300
|
[
"greedy",
"strings"
] | null | null |
You are given a string *s* consisting of |*s*| small english letters.
In one move you can replace any character of this string to the next character in alphabetical order (a will be replaced with b, s will be replaced with t, etc.). You cannot replace letter z with any other letter.
Your target is to make some number of moves (not necessary minimal) to get string abcdefghijklmnopqrstuvwxyz (english alphabet) as a subsequence. Subsequence of the string is the string that is obtained by deleting characters at some positions. You need to print the string that will be obtained from the given string and will be contain english alphabet as a subsequence or say that it is impossible.
|
The only one line of the input consisting of the string *s* consisting of |*s*| (1<=β€<=|*s*|<=β€<=105) small english letters.
|
If you can get a string that can be obtained from the given string and will contain english alphabet as a subsequence, print it. Otherwise print Β«-1Β» (without quotes).
|
[
"aacceeggiikkmmooqqssuuwwyy\n",
"thereisnoanswer\n"
] |
[
"abcdefghijklmnopqrstuvwxyz\n",
"-1\n"
] |
none
| 0
|
[
{
"input": "aacceeggiikkmmooqqssuuwwyy",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "thereisnoanswer",
"output": "-1"
},
{
"input": "jqcfvsaveaixhioaaeephbmsmfcgdyawscpyioybkgxlcrhaxs",
"output": "-1"
},
{
"input": "rtdacjpsjjmjdhcoprjhaenlwuvpfqzurnrswngmpnkdnunaendlpbfuylqgxtndhmhqgbsknsy",
"output": "-1"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaa"
},
{
"input": "abcdefghijklmnopqrstuvwxxx",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "abcdefghijklmnopqrstuvwxya",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "cdaaaaaaaaabcdjklmnopqrstuvwxyzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz",
"output": "cdabcdefghijklmnopqrstuvwxyzxyzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
},
{
"input": "zazaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "zazbcdefghijklmnopqrstuvwxyz"
},
{
"input": "abcdefghijklmnopqrstuvwxyz",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "abbbefghijklmnopqrstuvwxyz",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaa"
},
{
"input": "abcdefghijklmaopqrstuvwxyz",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "abcdefghijklmnopqrstuvwxyx",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaz",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaz"
},
{
"input": "zaaaazaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "zabcdzefghijklmnopqrstuvwxyzaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaa"
},
{
"input": "aaaaaafghijklmnopqrstuvwxyz",
"output": "abcdefghijklmnopqrstuvwxyzz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaz",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaz"
},
{
"input": "abcdefghijklmnopqrstuvwaxy",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaa"
},
{
"input": "abcdefghijklmnapqrstuvwxyz",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "abcdefghijklmnopqrstuvnxyz",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaa"
},
{
"input": "abcdefghijklmnopqrstuvwxyzzzz",
"output": "abcdefghijklmnopqrstuvwxyzzzz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aacceeggiikkmmooqqssuuwwya",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aacdefghijklmnopqrstuvwxyyy",
"output": "abcdefghijklmnopqrstuvwxyzy"
},
{
"input": "abcaefghijklmnopqrstuvwxyz",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "zaaacaaaaaaaaaaaaaaaaaaaayy",
"output": "zabcdefghijklmnopqrstuvwxyz"
},
{
"input": "abcdedccdcdccdcdcdcdcdcddccdcdcdc",
"output": "abcdefghijklmnopqrstuvwxyzcdcdcdc"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "abcdecdcdcddcdcdcdcdcdcdcd",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "abaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "a",
"output": "-1"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaa"
},
{
"input": "aaadefghijklmnopqrstuvwxyz",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaa"
},
{
"input": "abbbbbbbbbbbbbbbbbbbbbbbbz",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "aacceeggiikkmmaacceeggiikkmmooaacceeggiikkmmaacceeggiikkmmooqqssuuwwzy",
"output": "abcdefghijklmnopqrstuvwxyzmmooaacceeggiikkmmaacceeggiikkmmooqqssuuwwzy"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "phqghumeaylnlfdxfircvscxggbwkfnqduxwfnfozvsrtkjprepggxrpnrvystmwcysyycqpevikeffmznimkkasvwsrenzkycxf",
"output": "-1"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaap",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "zabcdefghijklmnopqrstuvwxyz",
"output": "zabcdefghijklmnopqrstuvwxyz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyza"
},
{
"input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzabcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "rveviaomdienfygifatviahordebxazoxflfgzslhyzowhxbhqzpsgellkoimnwkvhpbijorhpggwfjexivpqbcbmqjyghkbq",
"output": "rveviaomdienfygifbtvichordefxgzoxhlijzslkyzowlxmnqzpsopqrstuvwxyzhpbijorhpggwfjexivpqbcbmqjyghkbq"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "xtlsgypsfadpooefxzbcoejuvpvaboygpoeylfpbnpljvrvipyamyehwqnqrqpmxujjloovaowuxwhmsncbxcoksfzkvatxdknly",
"output": "xtlsgypsfadpooefxzbcoejuvpvdeoygpofylgphnpljvrvipyjmyklwqnqrqpmxunopqrvstwuxwvwxyzbxcoksfzkvatxdknly"
},
{
"input": "jqcfvsaveaixhioaaeephbmsmfcgdyawscpyioybkgxlcrhaxsa",
"output": "jqcfvsavebixhiocdefphgmsmhijkylwsmpynoypqrxstuvwxyz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "wlrbbmqbhcdarzowkkyhiddqscdxrjmowfrxsjybldbefsarcbynecdyggxxpklorellnmpapqfwkhopkmcoqh",
"output": "wlrbbmqbhcdarzowkkyhiddqscdxrjmowfrxsjybldcefsdrefynghiyjkxxplmornopqrstuvwxyzopkmcoqh"
},
{
"input": "abadefghijklmnopqrstuvwxyz",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "zazsazcbbbbbbbbbbbbbbbbbbbbbbb",
"output": "zazsbzcdefghijklmnopqrstuvwxyz"
},
{
"input": "zazsazcbbbbbbbbbbbbbbbbbbbbbyb",
"output": "zazsbzcdefghijklmnopqrstuvwxyz"
},
{
"input": "bbcdefghijklmnopqrstuvwxyzzz",
"output": "-1"
},
{
"input": "zaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "zabcdefghijklmnopqrstuvwxyz"
},
{
"input": "zzzzzaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "zzzzzabcdefghijklmnopqrstuvwxyza"
},
{
"input": "kkimnfjbbgggicykcciwtoazomcvisigagkjwhyrmojmoebnqoadpmockfjxibdtvrbedrsdoundbcpkfdqdidqdmxdltink",
"output": "kkimnfjbbgggicykcciwtoazomcvisigbgkjwhyrmojmoecnqodepmofkgjxihitvrjklrsmounopqrstuvwxyzdmxdltink"
},
{
"input": "cawgathqceccscakbazmhwbefvygjbcfyihcbgga",
"output": "-1"
},
{
"input": "acrsbyszsbfslzbqzzamcmrypictkcheddehvxdipaxaannjodzyfxgtfnwababzjraapqbqbfzhbiewlzz",
"output": "acrsbyszscfslzdqzzemfmrypigtkhijklmnvxopqrxstuvwxyzyfxgtfnwababzjraapqbqbfzhbiewlzz"
},
{
"input": "ggcebbheeblbioxdvtlrtkxeuilonazpebcbqpzz",
"output": "-1"
},
{
"input": "zzzzabcdefghijklmnopqrstuvwxy",
"output": "-1"
},
{
"input": "zabcdefghijklmnopqrstuvwxy",
"output": "-1"
},
{
"input": "babcdefghijklmnopqrstuvwxyz",
"output": "babcdefghijklmnopqrstuvwxyz"
},
{
"input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz",
"output": "-1"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaz",
"output": "abcdefghijklmnopqrstuvwxyz"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
}
] | 1,601,115,203
| 803
|
PyPy 3
|
OK
|
TESTS
| 102
| 155
| 4,096,000
|
import sys
s = list(input())
cc = 97
for i in range(len(s)):
if cc >= ord(s[i]):
s[i] = chr(cc)
cc += 1
if cc > 122:
print(''.join(s))
break
else:
print(-1)
|
Title: String Transformation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a string *s* consisting of |*s*| small english letters.
In one move you can replace any character of this string to the next character in alphabetical order (a will be replaced with b, s will be replaced with t, etc.). You cannot replace letter z with any other letter.
Your target is to make some number of moves (not necessary minimal) to get string abcdefghijklmnopqrstuvwxyz (english alphabet) as a subsequence. Subsequence of the string is the string that is obtained by deleting characters at some positions. You need to print the string that will be obtained from the given string and will be contain english alphabet as a subsequence or say that it is impossible.
Input Specification:
The only one line of the input consisting of the string *s* consisting of |*s*| (1<=β€<=|*s*|<=β€<=105) small english letters.
Output Specification:
If you can get a string that can be obtained from the given string and will contain english alphabet as a subsequence, print it. Otherwise print Β«-1Β» (without quotes).
Demo Input:
['aacceeggiikkmmooqqssuuwwyy\n', 'thereisnoanswer\n']
Demo Output:
['abcdefghijklmnopqrstuvwxyz\n', '-1\n']
Note:
none
|
```python
import sys
s = list(input())
cc = 97
for i in range(len(s)):
if cc >= ord(s[i]):
s[i] = chr(cc)
cc += 1
if cc > 122:
print(''.join(s))
break
else:
print(-1)
```
| 3
|
|
811
|
A
|
Vladik and Courtesy
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
At regular competition Vladik and Valera won *a* and *b* candies respectively. Vladik offered 1 his candy to Valera. After that Valera gave Vladik 2 his candies, so that no one thought that he was less generous. Vladik for same reason gave 3 candies to Valera in next turn.
More formally, the guys take turns giving each other one candy more than they received in the previous turn.
This continued until the moment when one of them couldnβt give the right amount of candy. Candies, which guys got from each other, they donβt consider as their own. You need to know, who is the first who canβt give the right amount of candy.
|
Single line of input data contains two space-separated integers *a*, *b* (1<=β€<=*a*,<=*b*<=β€<=109) β number of Vladik and Valera candies respectively.
|
Pring a single line "Vladikββ in case, if Vladik first who canβt give right amount of candy, or "Valeraββ otherwise.
|
[
"1 1\n",
"7 6\n"
] |
[
"Valera\n",
"Vladik\n"
] |
Illustration for first test case:
<img class="tex-graphics" src="https://espresso.codeforces.com/ad9b7d0e481208de8e3a585aa1d96b9e1dda4fd7.png" style="max-width: 100.0%;max-height: 100.0%;"/>
Illustration for second test case:
<img class="tex-graphics" src="https://espresso.codeforces.com/9f4836d2ccdffaee5a63898e5d4e6caf2ed4678c.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 500
|
[
{
"input": "1 1",
"output": "Valera"
},
{
"input": "7 6",
"output": "Vladik"
},
{
"input": "25 38",
"output": "Vladik"
},
{
"input": "8311 2468",
"output": "Valera"
},
{
"input": "250708 857756",
"output": "Vladik"
},
{
"input": "957985574 24997558",
"output": "Valera"
},
{
"input": "999963734 999994456",
"output": "Vladik"
},
{
"input": "1000000000 1000000000",
"output": "Vladik"
},
{
"input": "946 879",
"output": "Valera"
},
{
"input": "10819 45238",
"output": "Vladik"
},
{
"input": "101357 236928",
"output": "Vladik"
},
{
"input": "1033090 7376359",
"output": "Vladik"
},
{
"input": "9754309 9525494",
"output": "Valera"
},
{
"input": "90706344 99960537",
"output": "Vladik"
},
{
"input": "965161805 908862070",
"output": "Valera"
},
{
"input": "9 11",
"output": "Valera"
},
{
"input": "3 2",
"output": "Vladik"
},
{
"input": "6 6",
"output": "Vladik"
},
{
"input": "4 4",
"output": "Valera"
},
{
"input": "5 5",
"output": "Valera"
},
{
"input": "5 4",
"output": "Valera"
},
{
"input": "12345680 1",
"output": "Valera"
},
{
"input": "9 10",
"output": "Valera"
},
{
"input": "678 76687",
"output": "Vladik"
},
{
"input": "1 678",
"output": "Vladik"
},
{
"input": "45 1678",
"output": "Vladik"
},
{
"input": "3 3",
"output": "Vladik"
},
{
"input": "10 11",
"output": "Valera"
},
{
"input": "2 1",
"output": "Valera"
},
{
"input": "1 2",
"output": "Vladik"
},
{
"input": "2 2",
"output": "Vladik"
},
{
"input": "4 5",
"output": "Valera"
},
{
"input": "9 6",
"output": "Valera"
},
{
"input": "1 5",
"output": "Vladik"
},
{
"input": "7 8",
"output": "Vladik"
},
{
"input": "1000000000 999982505",
"output": "Valera"
},
{
"input": "12 12",
"output": "Vladik"
},
{
"input": "1000 950",
"output": "Valera"
},
{
"input": "10 9",
"output": "Valera"
},
{
"input": "100 9",
"output": "Valera"
},
{
"input": "1000 996",
"output": "Vladik"
},
{
"input": "9 5",
"output": "Valera"
}
] | 1,495,880,698
| 2,998
|
Python 3
|
OK
|
TESTS
| 42
| 77
| 0
|
# -*- coding: utf-8 -*-
from sys import stdin
def regalar_dulces(dulces_vladik, dulces_valera):
cantidad_dulces = 1
dona_vladik = True
dona_valera = False
while True:
if dona_vladik is True:
if dulces_vladik >= cantidad_dulces:
dulces_vladik -= cantidad_dulces
dona_vladik = False
dona_valera = True
cantidad_dulces += 1
else:
print("Vladik")
break
if dona_valera is True:
if dulces_valera >= cantidad_dulces:
dulces_valera -= cantidad_dulces
dona_valera = False
dona_vladik = True
cantidad_dulces += 1
else:
print("Valera")
break
# Inicio del Programa
for line in stdin:
cant = line.splitlines()
break
a = cant[0].split()[0]
b = cant[0].split()[1]
regalar_dulces(int(a), int(b))
|
Title: Vladik and Courtesy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
At regular competition Vladik and Valera won *a* and *b* candies respectively. Vladik offered 1 his candy to Valera. After that Valera gave Vladik 2 his candies, so that no one thought that he was less generous. Vladik for same reason gave 3 candies to Valera in next turn.
More formally, the guys take turns giving each other one candy more than they received in the previous turn.
This continued until the moment when one of them couldnβt give the right amount of candy. Candies, which guys got from each other, they donβt consider as their own. You need to know, who is the first who canβt give the right amount of candy.
Input Specification:
Single line of input data contains two space-separated integers *a*, *b* (1<=β€<=*a*,<=*b*<=β€<=109) β number of Vladik and Valera candies respectively.
Output Specification:
Pring a single line "Vladikββ in case, if Vladik first who canβt give right amount of candy, or "Valeraββ otherwise.
Demo Input:
['1 1\n', '7 6\n']
Demo Output:
['Valera\n', 'Vladik\n']
Note:
Illustration for first test case:
<img class="tex-graphics" src="https://espresso.codeforces.com/ad9b7d0e481208de8e3a585aa1d96b9e1dda4fd7.png" style="max-width: 100.0%;max-height: 100.0%;"/>
Illustration for second test case:
<img class="tex-graphics" src="https://espresso.codeforces.com/9f4836d2ccdffaee5a63898e5d4e6caf2ed4678c.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
# -*- coding: utf-8 -*-
from sys import stdin
def regalar_dulces(dulces_vladik, dulces_valera):
cantidad_dulces = 1
dona_vladik = True
dona_valera = False
while True:
if dona_vladik is True:
if dulces_vladik >= cantidad_dulces:
dulces_vladik -= cantidad_dulces
dona_vladik = False
dona_valera = True
cantidad_dulces += 1
else:
print("Vladik")
break
if dona_valera is True:
if dulces_valera >= cantidad_dulces:
dulces_valera -= cantidad_dulces
dona_valera = False
dona_vladik = True
cantidad_dulces += 1
else:
print("Valera")
break
# Inicio del Programa
for line in stdin:
cant = line.splitlines()
break
a = cant[0].split()[0]
b = cant[0].split()[1]
regalar_dulces(int(a), int(b))
```
| 3
|
|
1,006
|
B
|
Polycarp's Practice
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
Polycarp is practicing his problem solving skill. He has a list of $n$ problems with difficulties $a_1, a_2, \dots, a_n$, respectively. His plan is to practice for exactly $k$ days. Each day he has to solve at least one problem from his list. Polycarp solves the problems in the order they are given in his list, he cannot skip any problem from his list. He has to solve all $n$ problems in exactly $k$ days.
Thus, each day Polycarp solves a contiguous sequence of (consecutive) problems from the start of the list. He can't skip problems or solve them multiple times. As a result, in $k$ days he will solve all the $n$ problems.
The profit of the $j$-th day of Polycarp's practice is the maximum among all the difficulties of problems Polycarp solves during the $j$-th day (i.e. if he solves problems with indices from $l$ to $r$ during a day, then the profit of the day is $\max\limits_{l \le i \le r}a_i$). The total profit of his practice is the sum of the profits over all $k$ days of his practice.
You want to help Polycarp to get the maximum possible total profit over all valid ways to solve problems. Your task is to distribute all $n$ problems between $k$ days satisfying the conditions above in such a way, that the total profit is maximum.
For example, if $n = 8, k = 3$ and $a = [5, 4, 2, 6, 5, 1, 9, 2]$, one of the possible distributions with maximum total profit is: $[5, 4, 2], [6, 5], [1, 9, 2]$. Here the total profit equals $5 + 6 + 9 = 20$.
|
The first line of the input contains two integers $n$ and $k$ ($1 \le k \le n \le 2000$) β the number of problems and the number of days, respectively.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2000$) β difficulties of problems in Polycarp's list, in the order they are placed in the list (i.e. in the order Polycarp will solve them).
|
In the first line of the output print the maximum possible total profit.
In the second line print exactly $k$ positive integers $t_1, t_2, \dots, t_k$ ($t_1 + t_2 + \dots + t_k$ must equal $n$), where $t_j$ means the number of problems Polycarp will solve during the $j$-th day in order to achieve the maximum possible total profit of his practice.
If there are many possible answers, you may print any of them.
|
[
"8 3\n5 4 2 6 5 1 9 2\n",
"5 1\n1 1 1 1 1\n",
"4 2\n1 2000 2000 2\n"
] |
[
"20\n3 2 3",
"1\n5\n",
"4000\n2 2\n"
] |
The first example is described in the problem statement.
In the second example there is only one possible distribution.
In the third example the best answer is to distribute problems in the following way: $[1, 2000], [2000, 2]$. The total profit of this distribution is $2000 + 2000 = 4000$.
| 0
|
[
{
"input": "8 3\n5 4 2 6 5 1 9 2",
"output": "20\n4 1 3"
},
{
"input": "5 1\n1 1 1 1 1",
"output": "1\n5"
},
{
"input": "4 2\n1 2000 2000 2",
"output": "4000\n2 2"
},
{
"input": "1 1\n2000",
"output": "2000\n1"
},
{
"input": "1 1\n1234",
"output": "1234\n1"
},
{
"input": "3 2\n1 1 1",
"output": "2\n2 1"
},
{
"input": "4 2\n3 5 1 1",
"output": "8\n1 3"
},
{
"input": "5 3\n5 5 6 7 1",
"output": "18\n2 1 2"
},
{
"input": "6 4\n1 1 1 1 2 2",
"output": "6\n3 1 1 1"
},
{
"input": "5 3\n5 5 6 6 4",
"output": "17\n2 1 2"
},
{
"input": "16 15\n14 4 9 12 17 1 1 8 12 13 6 9 17 2 18 12",
"output": "154\n1 1 1 1 1 2 1 1 1 1 1 1 1 1 1"
},
{
"input": "1 1\n1996",
"output": "1996\n1"
},
{
"input": "5 3\n5 5 5 9 10",
"output": "24\n3 1 1"
},
{
"input": "18 15\n18 2 13 1 18 3 2 18 18 20 9 2 20 20 4 20 9 12",
"output": "204\n1 2 2 1 2 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "5 3\n1 20 20 50 50",
"output": "120\n3 1 1"
},
{
"input": "8 3\n15 14 11 19 17 14 14 8",
"output": "51\n1 3 4"
},
{
"input": "5 2\n15 20 6 19 6",
"output": "39\n2 3"
},
{
"input": "6 3\n5 5 5 5 6 9",
"output": "20\n4 1 1"
},
{
"input": "5 3\n2 2 2 3 3",
"output": "8\n3 1 1"
},
{
"input": "7 3\n2 2 2 2 2 3 3",
"output": "8\n5 1 1"
},
{
"input": "6 5\n1 1 6 6 6 6",
"output": "25\n2 1 1 1 1"
},
{
"input": "8 4\n1 2 2 2 2 3 4 5",
"output": "14\n5 1 1 1"
},
{
"input": "6 4\n1 1 1 5 5 5",
"output": "16\n3 1 1 1"
},
{
"input": "6 3\n1 2 2 2 4 5",
"output": "11\n4 1 1"
},
{
"input": "18 6\n17 17 19 14 10 20 18 16 6 7 2 15 14 16 13 6 12 11",
"output": "107\n1 1 1 3 1 11"
},
{
"input": "6 3\n1 1 2 2 3 4",
"output": "9\n4 1 1"
},
{
"input": "8 3\n5 4 2 5 6 1 9 2",
"output": "20\n4 1 3"
}
] | 1,595,831,570
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 37
| 156
| 23,449,600
|
z,zz=input,lambda:map(int,z().split());n,k=zz()
l=sorted(zip(zz(),range(n)))[-k:]
print(sum(i[0] for i in l))
p=sorted(i[1] for i in l)+[n];p[0]=0
for x,y in zip(p,p[1:]):
print(y-x,end=' ')
|
Title: Polycarp's Practice
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp is practicing his problem solving skill. He has a list of $n$ problems with difficulties $a_1, a_2, \dots, a_n$, respectively. His plan is to practice for exactly $k$ days. Each day he has to solve at least one problem from his list. Polycarp solves the problems in the order they are given in his list, he cannot skip any problem from his list. He has to solve all $n$ problems in exactly $k$ days.
Thus, each day Polycarp solves a contiguous sequence of (consecutive) problems from the start of the list. He can't skip problems or solve them multiple times. As a result, in $k$ days he will solve all the $n$ problems.
The profit of the $j$-th day of Polycarp's practice is the maximum among all the difficulties of problems Polycarp solves during the $j$-th day (i.e. if he solves problems with indices from $l$ to $r$ during a day, then the profit of the day is $\max\limits_{l \le i \le r}a_i$). The total profit of his practice is the sum of the profits over all $k$ days of his practice.
You want to help Polycarp to get the maximum possible total profit over all valid ways to solve problems. Your task is to distribute all $n$ problems between $k$ days satisfying the conditions above in such a way, that the total profit is maximum.
For example, if $n = 8, k = 3$ and $a = [5, 4, 2, 6, 5, 1, 9, 2]$, one of the possible distributions with maximum total profit is: $[5, 4, 2], [6, 5], [1, 9, 2]$. Here the total profit equals $5 + 6 + 9 = 20$.
Input Specification:
The first line of the input contains two integers $n$ and $k$ ($1 \le k \le n \le 2000$) β the number of problems and the number of days, respectively.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2000$) β difficulties of problems in Polycarp's list, in the order they are placed in the list (i.e. in the order Polycarp will solve them).
Output Specification:
In the first line of the output print the maximum possible total profit.
In the second line print exactly $k$ positive integers $t_1, t_2, \dots, t_k$ ($t_1 + t_2 + \dots + t_k$ must equal $n$), where $t_j$ means the number of problems Polycarp will solve during the $j$-th day in order to achieve the maximum possible total profit of his practice.
If there are many possible answers, you may print any of them.
Demo Input:
['8 3\n5 4 2 6 5 1 9 2\n', '5 1\n1 1 1 1 1\n', '4 2\n1 2000 2000 2\n']
Demo Output:
['20\n3 2 3', '1\n5\n', '4000\n2 2\n']
Note:
The first example is described in the problem statement.
In the second example there is only one possible distribution.
In the third example the best answer is to distribute problems in the following way: $[1, 2000], [2000, 2]$. The total profit of this distribution is $2000 + 2000 = 4000$.
|
```python
z,zz=input,lambda:map(int,z().split());n,k=zz()
l=sorted(zip(zz(),range(n)))[-k:]
print(sum(i[0] for i in l))
p=sorted(i[1] for i in l)+[n];p[0]=0
for x,y in zip(p,p[1:]):
print(y-x,end=' ')
```
| 3
|
|
66
|
B
|
Petya and Countryside
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation"
] |
B. Petya and Countryside
|
2
|
256
|
Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=Γ<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section.
Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=Γ<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture:
As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him.
|
The first line contains a positive integer *n* (1<=β€<=*n*<=β€<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000.
|
Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section.
|
[
"1\n2\n",
"5\n1 2 1 2 1\n",
"8\n1 2 1 1 1 3 3 4\n"
] |
[
"1\n",
"3\n",
"6\n"
] |
none
| 1,000
|
[
{
"input": "1\n2",
"output": "1"
},
{
"input": "5\n1 2 1 2 1",
"output": "3"
},
{
"input": "8\n1 2 1 1 1 3 3 4",
"output": "6"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "10"
},
{
"input": "10\n10 9 8 7 6 5 4 3 2 1",
"output": "10"
},
{
"input": "2\n100 100",
"output": "2"
},
{
"input": "3\n100 100 100",
"output": "3"
},
{
"input": "11\n1 2 3 4 5 6 5 4 3 2 1",
"output": "11"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 100 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 1 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "61"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1 82 83 84 85 86 87 88 89 90 91 92 93 94 100 5 4 3 2 1",
"output": "81"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 1 86 87 88 89 90 91 92 93 100 6 5 4 3 2 1",
"output": "85"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 1 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 100 7 6 5 4 3 2 1",
"output": "61"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 100 8 7 6 1 4 3 2 1",
"output": "96"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 100 10 9 8 7 6 5 4 3 2 1",
"output": "100"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 1 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 100 11 10 9 8 7 6 5 4 3 2 1",
"output": "55"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 1 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 100 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "59"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 100 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "86"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 100 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "83"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 100 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 1 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "74"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 100 9 8 7 6 5 4 3 2 1",
"output": "100"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 100 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 1 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "52"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 100 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 2 1",
"output": "98"
},
{
"input": "10\n1 4 4 4 4 4 1 2 4 3",
"output": "7"
}
] | 1,628,868,384
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 80
| 218
| 21,708,800
|
n = int(input())
arr = list(map(int, input().split()))
mx = -1
for i in range(n):
j = i-1
last=arr[i]
p=0
while j>=0 and arr[j]<=last:
last=arr[j]
j-=1
p+=1
j=i+1
last=arr[i]
while j<n and arr[j]<=last:
last = arr[j]
j+=1
p += 1
p += 1
mx = max(p, mx)
print(mx)
|
Title: Petya and Countryside
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=Γ<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section.
Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=Γ<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture:
As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him.
Input Specification:
The first line contains a positive integer *n* (1<=β€<=*n*<=β€<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000.
Output Specification:
Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section.
Demo Input:
['1\n2\n', '5\n1 2 1 2 1\n', '8\n1 2 1 1 1 3 3 4\n']
Demo Output:
['1\n', '3\n', '6\n']
Note:
none
|
```python
n = int(input())
arr = list(map(int, input().split()))
mx = -1
for i in range(n):
j = i-1
last=arr[i]
p=0
while j>=0 and arr[j]<=last:
last=arr[j]
j-=1
p+=1
j=i+1
last=arr[i]
while j<n and arr[j]<=last:
last = arr[j]
j+=1
p += 1
p += 1
mx = max(p, mx)
print(mx)
```
| 3.905064
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line β the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,579,930,588
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 124
| 0
|
p=str(input())
q=str(input())
x=""
for i in range(len(p)):
if p[i]==q[i]:
x=x+"0"
else:
x=x+"1"
print(x)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length β (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line β the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
p=str(input())
q=str(input())
x=""
for i in range(len(p)):
if p[i]==q[i]:
x=x+"0"
else:
x=x+"1"
print(x)
```
| 3.969
|
366
|
B
|
Dima and To-do List
|
PROGRAMMING
| 1,200
|
[
"brute force",
"implementation"
] | null | null |
You helped Dima to have a great weekend, but it's time to work. Naturally, Dima, as all other men who have girlfriends, does everything wrong.
Inna and Dima are now in one room. Inna tells Dima off for everything he does in her presence. After Inna tells him off for something, she goes to another room, walks there in circles muttering about how useless her sweetheart is. During that time Dima has time to peacefully complete *k*<=-<=1 tasks. Then Inna returns and tells Dima off for the next task he does in her presence and goes to another room again. It continues until Dima is through with his tasks.
Overall, Dima has *n* tasks to do, each task has a unique number from 1 to *n*. Dima loves order, so he does tasks consecutively, starting from some task. For example, if Dima has 6 tasks to do in total, then, if he starts from the 5-th task, the order is like that: first Dima does the 5-th task, then the 6-th one, then the 1-st one, then the 2-nd one, then the 3-rd one, then the 4-th one.
Inna tells Dima off (only lovingly and appropriately!) so often and systematically that he's very well learned the power with which she tells him off for each task. Help Dima choose the first task so that in total he gets told off with as little power as possible.
|
The first line of the input contains two integers *n*,<=*k*Β (1<=β€<=*k*<=β€<=*n*<=β€<=105). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*Β (1<=β€<=*a**i*<=β€<=103), where *a**i* is the power Inna tells Dima off with if she is present in the room while he is doing the *i*-th task.
It is guaranteed that *n* is divisible by *k*.
|
In a single line print the number of the task Dima should start with to get told off with as little power as possible. If there are multiple solutions, print the one with the minimum number of the first task to do.
|
[
"6 2\n3 2 1 6 5 4\n",
"10 5\n1 3 5 7 9 9 4 1 8 5\n"
] |
[
"1\n",
"3\n"
] |
Explanation of the first example.
If Dima starts from the first task, Inna tells him off with power 3, then Dima can do one more task (as *k* = 2), then Inna tells him off for the third task with power 1, then she tells him off for the fifth task with power 5. Thus, Dima gets told off with total power 3 + 1 + 5 = 9. If Dima started from the second task, for example, then Inna would tell him off for tasks 2, 4 and 6 with power 2 + 6 + 4 = 12.
Explanation of the second example.
In the second example *k* = 5, thus, Dima manages to complete 4 tasks in-between the telling off sessions. Thus, Inna tells Dima off for tasks number 1 and 6 (if he starts from 1 or 6), 2 and 7 (if he starts from 2 or 7) and so on. The optimal answer is to start from task 3 or 8, 3 has a smaller number, so the answer is 3.
| 1,000
|
[
{
"input": "6 2\n3 2 1 6 5 4",
"output": "1"
},
{
"input": "10 5\n1 3 5 7 9 9 4 1 8 5",
"output": "3"
},
{
"input": "20 4\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "10 10\n8 4 5 7 6 9 2 2 3 5",
"output": "7"
},
{
"input": "50 10\n1 2 3 4 5 6 7 8 9 10 10 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1",
"output": "2"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "2 1\n1 1",
"output": "1"
},
{
"input": "4 2\n2 1 1 3",
"output": "1"
},
{
"input": "15 5\n5 5 5 5 5 1 2 3 4 5 1 2 3 4 5",
"output": "1"
},
{
"input": "20 10\n3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 6 4",
"output": "1"
}
] | 1,460,276,616
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 171
| 7,065,600
|
n, k = list(map(int, input().split()))
num = list(map(int, input().split()))
dp = [0] * (2 * n)
for i in range(n - 1, -1, -1):
dp[i] = dp[i + k] + num[i]
ans = 2**100
for i in range(0, k):
ans = min(ans, dp[i])
print(dp.index(ans) + 1)
|
Title: Dima and To-do List
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You helped Dima to have a great weekend, but it's time to work. Naturally, Dima, as all other men who have girlfriends, does everything wrong.
Inna and Dima are now in one room. Inna tells Dima off for everything he does in her presence. After Inna tells him off for something, she goes to another room, walks there in circles muttering about how useless her sweetheart is. During that time Dima has time to peacefully complete *k*<=-<=1 tasks. Then Inna returns and tells Dima off for the next task he does in her presence and goes to another room again. It continues until Dima is through with his tasks.
Overall, Dima has *n* tasks to do, each task has a unique number from 1 to *n*. Dima loves order, so he does tasks consecutively, starting from some task. For example, if Dima has 6 tasks to do in total, then, if he starts from the 5-th task, the order is like that: first Dima does the 5-th task, then the 6-th one, then the 1-st one, then the 2-nd one, then the 3-rd one, then the 4-th one.
Inna tells Dima off (only lovingly and appropriately!) so often and systematically that he's very well learned the power with which she tells him off for each task. Help Dima choose the first task so that in total he gets told off with as little power as possible.
Input Specification:
The first line of the input contains two integers *n*,<=*k*Β (1<=β€<=*k*<=β€<=*n*<=β€<=105). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*Β (1<=β€<=*a**i*<=β€<=103), where *a**i* is the power Inna tells Dima off with if she is present in the room while he is doing the *i*-th task.
It is guaranteed that *n* is divisible by *k*.
Output Specification:
In a single line print the number of the task Dima should start with to get told off with as little power as possible. If there are multiple solutions, print the one with the minimum number of the first task to do.
Demo Input:
['6 2\n3 2 1 6 5 4\n', '10 5\n1 3 5 7 9 9 4 1 8 5\n']
Demo Output:
['1\n', '3\n']
Note:
Explanation of the first example.
If Dima starts from the first task, Inna tells him off with power 3, then Dima can do one more task (as *k* = 2), then Inna tells him off for the third task with power 1, then she tells him off for the fifth task with power 5. Thus, Dima gets told off with total power 3 + 1 + 5 = 9. If Dima started from the second task, for example, then Inna would tell him off for tasks 2, 4 and 6 with power 2 + 6 + 4 = 12.
Explanation of the second example.
In the second example *k* = 5, thus, Dima manages to complete 4 tasks in-between the telling off sessions. Thus, Inna tells Dima off for tasks number 1 and 6 (if he starts from 1 or 6), 2 and 7 (if he starts from 2 or 7) and so on. The optimal answer is to start from task 3 or 8, 3 has a smaller number, so the answer is 3.
|
```python
n, k = list(map(int, input().split()))
num = list(map(int, input().split()))
dp = [0] * (2 * n)
for i in range(n - 1, -1, -1):
dp[i] = dp[i + k] + num[i]
ans = 2**100
for i in range(0, k):
ans = min(ans, dp[i])
print(dp.index(ans) + 1)
```
| 3
|
|
777
|
B
|
Game of Credit Cards
|
PROGRAMMING
| 1,300
|
[
"data structures",
"dp",
"greedy",
"sortings"
] | null | null |
After the fourth season Sherlock and Moriary have realized the whole foolishness of the battle between them and decided to continue their competitions in peaceful game of Credit Cards.
Rules of this game are simple: each player bring his favourite *n*-digit credit card. Then both players name the digits written on their cards one by one. If two digits are not equal, then the player, whose digit is smaller gets a flick (knock in the forehead usually made with a forefinger) from the other player. For example, if *n*<==<=3, Sherlock's card is 123 and Moriarty's card has number 321, first Sherlock names 1 and Moriarty names 3 so Sherlock gets a flick. Then they both digit 2 so no one gets a flick. Finally, Sherlock names 3, while Moriarty names 1 and gets a flick.
Of course, Sherlock will play honestly naming digits one by one in the order they are given, while Moriary, as a true villain, plans to cheat. He is going to name his digits in some other order (however, he is not going to change the overall number of occurences of each digit). For example, in case above Moriarty could name 1, 2, 3 and get no flicks at all, or he can name 2, 3 and 1 to give Sherlock two flicks.
Your goal is to find out the minimum possible number of flicks Moriarty will get (no one likes flicks) and the maximum possible number of flicks Sherlock can get from Moriarty. Note, that these two goals are different and the optimal result may be obtained by using different strategies.
|
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=1000)Β β the number of digits in the cards Sherlock and Moriarty are going to use.
The second line contains *n* digitsΒ β Sherlock's credit card number.
The third line contains *n* digitsΒ β Moriarty's credit card number.
|
First print the minimum possible number of flicks Moriarty will get. Then print the maximum possible number of flicks that Sherlock can get from Moriarty.
|
[
"3\n123\n321\n",
"2\n88\n00\n"
] |
[
"0\n2\n",
"2\n0\n"
] |
First sample is elaborated in the problem statement. In the second sample, there is no way Moriarty can avoid getting two flicks.
| 1,000
|
[
{
"input": "3\n123\n321",
"output": "0\n2"
},
{
"input": "2\n88\n00",
"output": "2\n0"
},
{
"input": "1\n4\n5",
"output": "0\n1"
},
{
"input": "1\n8\n7",
"output": "1\n0"
},
{
"input": "2\n55\n55",
"output": "0\n0"
},
{
"input": "3\n534\n432",
"output": "1\n1"
},
{
"input": "3\n486\n024",
"output": "2\n0"
},
{
"input": "5\n22222\n22222",
"output": "0\n0"
},
{
"input": "5\n72471\n05604",
"output": "2\n3"
},
{
"input": "5\n72471\n72471",
"output": "0\n3"
},
{
"input": "5\n72471\n41772",
"output": "0\n3"
},
{
"input": "8\n99999999\n99999999",
"output": "0\n0"
},
{
"input": "8\n01234567\n01234567",
"output": "0\n7"
},
{
"input": "8\n07070707\n76543210",
"output": "3\n4"
},
{
"input": "8\n88888888\n98769876",
"output": "4\n2"
},
{
"input": "8\n23456789\n01234567",
"output": "2\n5"
},
{
"input": "5\n11222\n22111",
"output": "1\n2"
},
{
"input": "9\n777777777\n777777777",
"output": "0\n0"
},
{
"input": "9\n353589343\n280419388",
"output": "3\n5"
},
{
"input": "10\n8104381743\n8104381743",
"output": "0\n8"
},
{
"input": "10\n8104381743\n8418134730",
"output": "0\n8"
},
{
"input": "10\n1111122222\n2222211111",
"output": "0\n5"
},
{
"input": "100\n6317494220822818719411404030346382869796138932712461187067886456209071515048745855973784223939110171\n6017563370120161528504797580620647099370814387367549926215651181421345104088127581963662589996747937",
"output": "2\n86"
},
{
"input": "200\n89017372169770060638462517044634884577600285180365791227828841983192945639410766634962149214165390392679430585962408483864914959904870801002680423351144765728677610509881245693518626747873607530273392\n34804385048475325130258121398275821439066233953856051421626677848150660724595847484466293487857039579239864150199164135152374201294909986469345076423004279983866383035554588630496127880705497919788390",
"output": "6\n175"
},
{
"input": "3\n112\n111",
"output": "1\n0"
},
{
"input": "5\n66666\n11119",
"output": "4\n1"
},
{
"input": "3\n232\n123",
"output": "1\n1"
}
] | 1,617,742,766
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 55
| 109
| 1,740,800
|
import sys
import itertools
import collections
def rs(x=''): return sys.stdin.readline().strip() if len(x) == 0 else input(x).strip()
def ri(x=''): return int(rs(x))
def rm(x=''): return map(str, rs(x).split())
def rl(x=''): return rs(x).split()
def rmi(x=''): return map(int, rs(x).split())
def rli(x=''): return [int(x) for x in rs(x).split()]
def println(val): sys.stdout.write(str(val) + '\n')
def solve(testCase):
n = ri()
sher, mor = list(rs()), list(rs())
sher = list(map(int, sher))
mor = list(map(int, mor))
sher.sort()
mor.sort()
i, j = 0, 0
while i < n and j < n:
if sher[i] > mor[j]:
j += 1
else:
i += 1
j += 1
minFlicks = n - i
i, j = 0, 0
while i < n and j < n:
if sher[i] >= mor[j]:
j += 1
else:
i += 1
j += 1
maxFlicks = i
print(minFlicks)
print(maxFlicks)
for _ in range(ri() if 0 else 1):
solve(_ + 1)
|
Title: Game of Credit Cards
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After the fourth season Sherlock and Moriary have realized the whole foolishness of the battle between them and decided to continue their competitions in peaceful game of Credit Cards.
Rules of this game are simple: each player bring his favourite *n*-digit credit card. Then both players name the digits written on their cards one by one. If two digits are not equal, then the player, whose digit is smaller gets a flick (knock in the forehead usually made with a forefinger) from the other player. For example, if *n*<==<=3, Sherlock's card is 123 and Moriarty's card has number 321, first Sherlock names 1 and Moriarty names 3 so Sherlock gets a flick. Then they both digit 2 so no one gets a flick. Finally, Sherlock names 3, while Moriarty names 1 and gets a flick.
Of course, Sherlock will play honestly naming digits one by one in the order they are given, while Moriary, as a true villain, plans to cheat. He is going to name his digits in some other order (however, he is not going to change the overall number of occurences of each digit). For example, in case above Moriarty could name 1, 2, 3 and get no flicks at all, or he can name 2, 3 and 1 to give Sherlock two flicks.
Your goal is to find out the minimum possible number of flicks Moriarty will get (no one likes flicks) and the maximum possible number of flicks Sherlock can get from Moriarty. Note, that these two goals are different and the optimal result may be obtained by using different strategies.
Input Specification:
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=1000)Β β the number of digits in the cards Sherlock and Moriarty are going to use.
The second line contains *n* digitsΒ β Sherlock's credit card number.
The third line contains *n* digitsΒ β Moriarty's credit card number.
Output Specification:
First print the minimum possible number of flicks Moriarty will get. Then print the maximum possible number of flicks that Sherlock can get from Moriarty.
Demo Input:
['3\n123\n321\n', '2\n88\n00\n']
Demo Output:
['0\n2\n', '2\n0\n']
Note:
First sample is elaborated in the problem statement. In the second sample, there is no way Moriarty can avoid getting two flicks.
|
```python
import sys
import itertools
import collections
def rs(x=''): return sys.stdin.readline().strip() if len(x) == 0 else input(x).strip()
def ri(x=''): return int(rs(x))
def rm(x=''): return map(str, rs(x).split())
def rl(x=''): return rs(x).split()
def rmi(x=''): return map(int, rs(x).split())
def rli(x=''): return [int(x) for x in rs(x).split()]
def println(val): sys.stdout.write(str(val) + '\n')
def solve(testCase):
n = ri()
sher, mor = list(rs()), list(rs())
sher = list(map(int, sher))
mor = list(map(int, mor))
sher.sort()
mor.sort()
i, j = 0, 0
while i < n and j < n:
if sher[i] > mor[j]:
j += 1
else:
i += 1
j += 1
minFlicks = n - i
i, j = 0, 0
while i < n and j < n:
if sher[i] >= mor[j]:
j += 1
else:
i += 1
j += 1
maxFlicks = i
print(minFlicks)
print(maxFlicks)
for _ in range(ri() if 0 else 1):
solve(_ + 1)
```
| 3
|
|
987
|
A
|
Infinity Gauntlet
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You took a peek on Thanos wearing Infinity Gauntlet. In the Gauntlet there is a place for six Infinity Gems:
- the Power Gem of purple color, - the Time Gem of green color, - the Space Gem of blue color, - the Soul Gem of orange color, - the Reality Gem of red color, - the Mind Gem of yellow color.
Using colors of Gems you saw in the Gauntlet determine the names of absent Gems.
|
In the first line of input there is one integer $n$ ($0 \le n \le 6$)Β β the number of Gems in Infinity Gauntlet.
In next $n$ lines there are colors of Gems you saw. Words used for colors are: purple, green, blue, orange, red, yellow. It is guaranteed that all the colors are distinct. All colors are given in lowercase English letters.
|
In the first line output one integer $m$ ($0 \le m \le 6$)Β β the number of absent Gems.
Then in $m$ lines print the names of absent Gems, each on its own line. Words used for names are: Power, Time, Space, Soul, Reality, Mind. Names can be printed in any order. Keep the first letter uppercase, others lowercase.
|
[
"4\nred\npurple\nyellow\norange\n",
"0\n"
] |
[
"2\nSpace\nTime\n",
"6\nTime\nMind\nSoul\nPower\nReality\nSpace\n"
] |
In the first sample Thanos already has Reality, Power, Mind and Soul Gems, so he needs two more: Time and Space.
In the second sample Thanos doesn't have any Gems, so he needs all six.
| 500
|
[
{
"input": "4\nred\npurple\nyellow\norange",
"output": "2\nSpace\nTime"
},
{
"input": "0",
"output": "6\nMind\nSpace\nPower\nTime\nReality\nSoul"
},
{
"input": "6\npurple\nblue\nyellow\nred\ngreen\norange",
"output": "0"
},
{
"input": "1\npurple",
"output": "5\nTime\nReality\nSoul\nSpace\nMind"
},
{
"input": "3\nblue\norange\npurple",
"output": "3\nTime\nReality\nMind"
},
{
"input": "2\nyellow\nred",
"output": "4\nPower\nSoul\nSpace\nTime"
},
{
"input": "1\ngreen",
"output": "5\nReality\nSpace\nPower\nSoul\nMind"
},
{
"input": "2\npurple\ngreen",
"output": "4\nReality\nMind\nSpace\nSoul"
},
{
"input": "1\nblue",
"output": "5\nPower\nReality\nSoul\nTime\nMind"
},
{
"input": "2\npurple\nblue",
"output": "4\nMind\nSoul\nTime\nReality"
},
{
"input": "2\ngreen\nblue",
"output": "4\nReality\nMind\nPower\nSoul"
},
{
"input": "3\npurple\ngreen\nblue",
"output": "3\nMind\nReality\nSoul"
},
{
"input": "1\norange",
"output": "5\nReality\nTime\nPower\nSpace\nMind"
},
{
"input": "2\npurple\norange",
"output": "4\nReality\nMind\nTime\nSpace"
},
{
"input": "2\norange\ngreen",
"output": "4\nSpace\nMind\nReality\nPower"
},
{
"input": "3\norange\npurple\ngreen",
"output": "3\nReality\nSpace\nMind"
},
{
"input": "2\norange\nblue",
"output": "4\nTime\nMind\nReality\nPower"
},
{
"input": "3\nblue\ngreen\norange",
"output": "3\nPower\nMind\nReality"
},
{
"input": "4\nblue\norange\ngreen\npurple",
"output": "2\nMind\nReality"
},
{
"input": "1\nred",
"output": "5\nTime\nSoul\nMind\nPower\nSpace"
},
{
"input": "2\nred\npurple",
"output": "4\nMind\nSpace\nTime\nSoul"
},
{
"input": "2\nred\ngreen",
"output": "4\nMind\nSpace\nPower\nSoul"
},
{
"input": "3\nred\npurple\ngreen",
"output": "3\nSoul\nSpace\nMind"
},
{
"input": "2\nblue\nred",
"output": "4\nMind\nTime\nPower\nSoul"
},
{
"input": "3\nred\nblue\npurple",
"output": "3\nTime\nMind\nSoul"
},
{
"input": "3\nred\nblue\ngreen",
"output": "3\nSoul\nPower\nMind"
},
{
"input": "4\npurple\nblue\ngreen\nred",
"output": "2\nMind\nSoul"
},
{
"input": "2\norange\nred",
"output": "4\nPower\nMind\nTime\nSpace"
},
{
"input": "3\nred\norange\npurple",
"output": "3\nMind\nSpace\nTime"
},
{
"input": "3\nred\norange\ngreen",
"output": "3\nMind\nSpace\nPower"
},
{
"input": "4\nred\norange\ngreen\npurple",
"output": "2\nSpace\nMind"
},
{
"input": "3\nblue\norange\nred",
"output": "3\nPower\nMind\nTime"
},
{
"input": "4\norange\nblue\npurple\nred",
"output": "2\nTime\nMind"
},
{
"input": "4\ngreen\norange\nred\nblue",
"output": "2\nMind\nPower"
},
{
"input": "5\npurple\norange\nblue\nred\ngreen",
"output": "1\nMind"
},
{
"input": "1\nyellow",
"output": "5\nPower\nSoul\nReality\nSpace\nTime"
},
{
"input": "2\npurple\nyellow",
"output": "4\nTime\nReality\nSpace\nSoul"
},
{
"input": "2\ngreen\nyellow",
"output": "4\nSpace\nReality\nPower\nSoul"
},
{
"input": "3\npurple\nyellow\ngreen",
"output": "3\nSoul\nReality\nSpace"
},
{
"input": "2\nblue\nyellow",
"output": "4\nTime\nReality\nPower\nSoul"
},
{
"input": "3\nyellow\nblue\npurple",
"output": "3\nSoul\nReality\nTime"
},
{
"input": "3\ngreen\nyellow\nblue",
"output": "3\nSoul\nReality\nPower"
},
{
"input": "4\nyellow\nblue\ngreen\npurple",
"output": "2\nReality\nSoul"
},
{
"input": "2\nyellow\norange",
"output": "4\nTime\nSpace\nReality\nPower"
},
{
"input": "3\nyellow\npurple\norange",
"output": "3\nSpace\nReality\nTime"
},
{
"input": "3\norange\nyellow\ngreen",
"output": "3\nSpace\nReality\nPower"
},
{
"input": "4\ngreen\nyellow\norange\npurple",
"output": "2\nSpace\nReality"
},
{
"input": "3\nyellow\nblue\norange",
"output": "3\nTime\nReality\nPower"
},
{
"input": "4\norange\npurple\nblue\nyellow",
"output": "2\nReality\nTime"
},
{
"input": "4\nblue\norange\nyellow\ngreen",
"output": "2\nReality\nPower"
},
{
"input": "5\ngreen\nyellow\norange\nblue\npurple",
"output": "1\nReality"
},
{
"input": "3\nyellow\npurple\nred",
"output": "3\nTime\nSoul\nSpace"
},
{
"input": "3\nred\ngreen\nyellow",
"output": "3\nPower\nSoul\nSpace"
},
{
"input": "4\nred\npurple\ngreen\nyellow",
"output": "2\nSpace\nSoul"
},
{
"input": "3\nred\nyellow\nblue",
"output": "3\nPower\nSoul\nTime"
},
{
"input": "4\nblue\nyellow\nred\npurple",
"output": "2\nTime\nSoul"
},
{
"input": "4\nblue\nyellow\nred\ngreen",
"output": "2\nSoul\nPower"
},
{
"input": "5\nred\nyellow\ngreen\nblue\npurple",
"output": "1\nSoul"
},
{
"input": "3\nred\nyellow\norange",
"output": "3\nPower\nSpace\nTime"
},
{
"input": "4\norange\ngreen\nyellow\nred",
"output": "2\nPower\nSpace"
},
{
"input": "5\norange\nred\ngreen\nyellow\npurple",
"output": "1\nSpace"
},
{
"input": "4\nyellow\nred\norange\nblue",
"output": "2\nTime\nPower"
},
{
"input": "5\npurple\nblue\norange\nyellow\nred",
"output": "1\nTime"
},
{
"input": "5\norange\nblue\nyellow\nred\ngreen",
"output": "1\nPower"
}
] | 1,700,318,384
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 64
| 46
| 0
|
a = int(input())
d = {"purple": "Power", "green": "Time", "blue": "Space", "orange": "Soul", "red": "Reality", "yellow": "Mind"}
for i in range(0, a):
b = input()
del d[b]
print(len(d))
for i in d:
print(d[i])
|
Title: Infinity Gauntlet
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You took a peek on Thanos wearing Infinity Gauntlet. In the Gauntlet there is a place for six Infinity Gems:
- the Power Gem of purple color, - the Time Gem of green color, - the Space Gem of blue color, - the Soul Gem of orange color, - the Reality Gem of red color, - the Mind Gem of yellow color.
Using colors of Gems you saw in the Gauntlet determine the names of absent Gems.
Input Specification:
In the first line of input there is one integer $n$ ($0 \le n \le 6$)Β β the number of Gems in Infinity Gauntlet.
In next $n$ lines there are colors of Gems you saw. Words used for colors are: purple, green, blue, orange, red, yellow. It is guaranteed that all the colors are distinct. All colors are given in lowercase English letters.
Output Specification:
In the first line output one integer $m$ ($0 \le m \le 6$)Β β the number of absent Gems.
Then in $m$ lines print the names of absent Gems, each on its own line. Words used for names are: Power, Time, Space, Soul, Reality, Mind. Names can be printed in any order. Keep the first letter uppercase, others lowercase.
Demo Input:
['4\nred\npurple\nyellow\norange\n', '0\n']
Demo Output:
['2\nSpace\nTime\n', '6\nTime\nMind\nSoul\nPower\nReality\nSpace\n']
Note:
In the first sample Thanos already has Reality, Power, Mind and Soul Gems, so he needs two more: Time and Space.
In the second sample Thanos doesn't have any Gems, so he needs all six.
|
```python
a = int(input())
d = {"purple": "Power", "green": "Time", "blue": "Space", "orange": "Soul", "red": "Reality", "yellow": "Mind"}
for i in range(0, a):
b = input()
del d[b]
print(len(d))
for i in d:
print(d[i])
```
| 3
|
|
71
|
A
|
Way Too Long Words
|
PROGRAMMING
| 800
|
[
"strings"
] |
A. Way Too Long Words
|
1
|
256
|
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalizationΒ» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
|
The first line contains an integer *n* (1<=β€<=*n*<=β€<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
|
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
|
[
"4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n"
] |
[
"word\nl10n\ni18n\np43s\n"
] |
none
| 500
|
[
{
"input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis",
"output": "word\nl10n\ni18n\np43s"
},
{
"input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm",
"output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m"
},
{
"input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd",
"output": "n20n\nj27b\nk15d"
},
{
"input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt",
"output": "t41t"
},
{
"input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings",
"output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings"
},
{
"input": "1\na",
"output": "a"
},
{
"input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz",
"output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz"
},
{
"input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij",
"output": "a98j"
},
{
"input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco",
"output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco"
},
{
"input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt",
"output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t"
},
{
"input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr",
"output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr"
}
] | 1,679,491,395
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 31
| 0
|
t=int(input())
def solve():
ch=input()
if(len(ch)<=10):
return ch
else:
return ch[0]+str(len(ch)-2)+ch[len(ch)-1]
answer=""
while(t!=0):
answer+=solve()+"\n"
t-=1
print(answer)
|
Title: Way Too Long Words
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalizationΒ» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
Input Specification:
The first line contains an integer *n* (1<=β€<=*n*<=β€<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Output Specification:
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
Demo Input:
['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n']
Demo Output:
['word\nl10n\ni18n\np43s\n']
Note:
none
|
```python
t=int(input())
def solve():
ch=input()
if(len(ch)<=10):
return ch
else:
return ch[0]+str(len(ch)-2)+ch[len(ch)-1]
answer=""
while(t!=0):
answer+=solve()+"\n"
t-=1
print(answer)
```
| 3.9845
|
510
|
A
|
Fox And Snake
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
|
The only line contains two integers: *n* and *m* (3<=β€<=*n*,<=*m*<=β€<=50).
*n* is an odd number.
|
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
|
[
"3 3\n",
"3 4\n",
"5 3\n",
"9 9\n"
] |
[
"###\n..#\n###\n",
"####\n...#\n####\n",
"###\n..#\n###\n#..\n###\n",
"#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n"
] |
none
| 500
|
[
{
"input": "3 3",
"output": "###\n..#\n###"
},
{
"input": "3 4",
"output": "####\n...#\n####"
},
{
"input": "5 3",
"output": "###\n..#\n###\n#..\n###"
},
{
"input": "9 9",
"output": "#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########"
},
{
"input": "3 5",
"output": "#####\n....#\n#####"
},
{
"input": "3 6",
"output": "######\n.....#\n######"
},
{
"input": "7 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "7 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####"
},
{
"input": "49 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 27",
"output": "###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n....................."
},
{
"input": "11 15",
"output": "###############\n..............#\n###############\n#..............\n###############\n..............#\n###############\n#..............\n###############\n..............#\n###############"
},
{
"input": "11 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "19 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "23 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "49 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "33 43",
"output": "###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#.................."
},
{
"input": "33 44",
"output": "############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#......."
},
{
"input": "45 45",
"output": "#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#########################################..."
},
{
"input": "45 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "45 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###"
},
{
"input": "45 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####"
},
{
"input": "5 4",
"output": "####\n...#\n####\n#...\n####"
},
{
"input": "5 5",
"output": "#####\n....#\n#####\n#....\n#####"
},
{
"input": "5 6",
"output": "######\n.....#\n######\n#.....\n######"
},
{
"input": "7 5",
"output": "#####\n....#\n#####\n#....\n#####\n....#\n#####"
},
{
"input": "7 6",
"output": "######\n.....#\n######\n#.....\n######\n.....#\n######"
},
{
"input": "7 7",
"output": "#######\n......#\n#######\n#......\n#######\n......#\n#######"
}
] | 1,678,362,466
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 28
| 77
| 3,584,000
|
a,b=map(int,input().split())
for i in range(1,a+1):
if i%2!=0:a='#'
else:
a='.'
print(end=' ');
if i%4==0:print('#',end='')
for j in range(b-1):
print(a,end='')
if i%4!=0:print('#',end='')
print('')
|
Title: Fox And Snake
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
Input Specification:
The only line contains two integers: *n* and *m* (3<=β€<=*n*,<=*m*<=β€<=50).
*n* is an odd number.
Output Specification:
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
Demo Input:
['3 3\n', '3 4\n', '5 3\n', '9 9\n']
Demo Output:
['###\n..#\n###\n', '####\n...#\n####\n', '###\n..#\n###\n#..\n###\n', '#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n']
Note:
none
|
```python
a,b=map(int,input().split())
for i in range(1,a+1):
if i%2!=0:a='#'
else:
a='.'
print(end=' ');
if i%4==0:print('#',end='')
for j in range(b-1):
print(a,end='')
if i%4!=0:print('#',end='')
print('')
```
| 3
|
|
472
|
A
|
Design Tutorial: Learn from Math
|
PROGRAMMING
| 800
|
[
"math",
"number theory"
] | null | null |
One way to create a task is to learn from math. You can generate some random math statement or modify some theorems to get something new and build a new task from that.
For example, there is a statement called the "Goldbach's conjecture". It says: "each even number no less than four can be expressed as the sum of two primes". Let's modify it. How about a statement like that: "each integer no less than 12 can be expressed as the sum of two composite numbers." Not like the Goldbach's conjecture, I can prove this theorem.
You are given an integer *n* no less than 12, express it as a sum of two composite numbers.
|
The only line contains an integer *n* (12<=β€<=*n*<=β€<=106).
|
Output two composite integers *x* and *y* (1<=<<=*x*,<=*y*<=<<=*n*) such that *x*<=+<=*y*<==<=*n*. If there are multiple solutions, you can output any of them.
|
[
"12\n",
"15\n",
"23\n",
"1000000\n"
] |
[
"4 8\n",
"6 9\n",
"8 15\n",
"500000 500000\n"
] |
In the first example, 12 = 4 + 8 and both 4, 8 are composite numbers. You can output "6 6" or "8 4" as well.
In the second example, 15 = 6 + 9. Note that you can't output "1 14" because 1 is not a composite number.
| 500
|
[
{
"input": "12",
"output": "4 8"
},
{
"input": "15",
"output": "6 9"
},
{
"input": "23",
"output": "8 15"
},
{
"input": "1000000",
"output": "500000 500000"
},
{
"input": "63874",
"output": "4 63870"
},
{
"input": "14568",
"output": "4 14564"
},
{
"input": "192",
"output": "4 188"
},
{
"input": "86",
"output": "4 82"
},
{
"input": "46220",
"output": "4 46216"
},
{
"input": "57114",
"output": "4 57110"
},
{
"input": "869",
"output": "4 865"
},
{
"input": "738457",
"output": "4 738453"
},
{
"input": "58113",
"output": "6 58107"
},
{
"input": "4864",
"output": "4 4860"
},
{
"input": "15",
"output": "6 9"
},
{
"input": "74752",
"output": "4 74748"
},
{
"input": "6073",
"output": "4 6069"
},
{
"input": "1289",
"output": "4 1285"
},
{
"input": "20",
"output": "4 16"
},
{
"input": "58134",
"output": "4 58130"
},
{
"input": "57756",
"output": "4 57752"
},
{
"input": "765",
"output": "6 759"
},
{
"input": "59",
"output": "4 55"
},
{
"input": "991666",
"output": "4 991662"
},
{
"input": "70761",
"output": "4 70757"
},
{
"input": "13",
"output": "4 9"
},
{
"input": "999999",
"output": "4 999995"
},
{
"input": "17",
"output": "8 9"
},
{
"input": "21",
"output": "6 15"
},
{
"input": "19",
"output": "4 15"
},
{
"input": "100007",
"output": "6 100001"
},
{
"input": "999987",
"output": "6 999981"
},
{
"input": "22",
"output": "4 18"
}
] | 1,676,352,450
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 33
| 62
| 1,331,200
|
def P(n):
d = 2
if n<=1:
return True
while n % d != 0:
d += 1
return d == n
a = int(input())
for x in range(a//2+1):
b = a - (x+1)
c = a-b
if P(b)==False and P(c)==False:
print(b,c)
break
|
Title: Design Tutorial: Learn from Math
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One way to create a task is to learn from math. You can generate some random math statement or modify some theorems to get something new and build a new task from that.
For example, there is a statement called the "Goldbach's conjecture". It says: "each even number no less than four can be expressed as the sum of two primes". Let's modify it. How about a statement like that: "each integer no less than 12 can be expressed as the sum of two composite numbers." Not like the Goldbach's conjecture, I can prove this theorem.
You are given an integer *n* no less than 12, express it as a sum of two composite numbers.
Input Specification:
The only line contains an integer *n* (12<=β€<=*n*<=β€<=106).
Output Specification:
Output two composite integers *x* and *y* (1<=<<=*x*,<=*y*<=<<=*n*) such that *x*<=+<=*y*<==<=*n*. If there are multiple solutions, you can output any of them.
Demo Input:
['12\n', '15\n', '23\n', '1000000\n']
Demo Output:
['4 8\n', '6 9\n', '8 15\n', '500000 500000\n']
Note:
In the first example, 12 = 4 + 8 and both 4, 8 are composite numbers. You can output "6 6" or "8 4" as well.
In the second example, 15 = 6 + 9. Note that you can't output "1 14" because 1 is not a composite number.
|
```python
def P(n):
d = 2
if n<=1:
return True
while n % d != 0:
d += 1
return d == n
a = int(input())
for x in range(a//2+1):
b = a - (x+1)
c = a-b
if P(b)==False and P(c)==False:
print(b,c)
break
```
| 3
|
|
443
|
A
|
Anton and Letters
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line.
Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
|
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
|
Print a single number β the number of distinct letters in Anton's set.
|
[
"{a, b, c}\n",
"{b, a, b, a}\n",
"{}\n"
] |
[
"3\n",
"2\n",
"0\n"
] |
none
| 500
|
[
{
"input": "{a, b, c}",
"output": "3"
},
{
"input": "{b, a, b, a}",
"output": "2"
},
{
"input": "{}",
"output": "0"
},
{
"input": "{a, a, c, b, b, b, c, c, c, c}",
"output": "3"
},
{
"input": "{a, c, b, b}",
"output": "3"
},
{
"input": "{a, b}",
"output": "2"
},
{
"input": "{a}",
"output": "1"
},
{
"input": "{b, a, b, a, b, c, c, b, c, b}",
"output": "3"
},
{
"input": "{e, g, c, e}",
"output": "3"
},
{
"input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}",
"output": "1"
},
{
"input": "{a, a, b}",
"output": "2"
},
{
"input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}",
"output": "2"
},
{
"input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}",
"output": "16"
},
{
"input": "{x, i, w, c, p, e, h, z, k, i}",
"output": "9"
},
{
"input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}",
"output": "15"
},
{
"input": "{y}",
"output": "1"
},
{
"input": "{x}",
"output": "1"
},
{
"input": "{b, z, a, z}",
"output": "3"
},
{
"input": "{z}",
"output": "1"
},
{
"input": "{a, z}",
"output": "2"
},
{
"input": "{a, b, z}",
"output": "3"
},
{
"input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}",
"output": "11"
}
] | 1,686,604,863
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 61
| 0
|
print(len(set((x := input()).strip('{}').split(', '))) - (x == '{}'))
|
Title: Anton and Letters
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line.
Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
Input Specification:
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Output Specification:
Print a single number β the number of distinct letters in Anton's set.
Demo Input:
['{a, b, c}\n', '{b, a, b, a}\n', '{}\n']
Demo Output:
['3\n', '2\n', '0\n']
Note:
none
|
```python
print(len(set((x := input()).strip('{}').split(', '))) - (x == '{}'))
```
| 3
|
|
501
|
A
|
Contest
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points.
Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.
|
The first line contains four integers *a*, *b*, *c*, *d* (250<=β€<=*a*,<=*b*<=β€<=3500, 0<=β€<=*c*,<=*d*<=β€<=180).
It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round).
|
Output on a single line:
"Misha" (without the quotes), if Misha got more points than Vasya.
"Vasya" (without the quotes), if Vasya got more points than Misha.
"Tie" (without the quotes), if both of them got the same number of points.
|
[
"500 1000 20 30\n",
"1000 1000 1 1\n",
"1500 1000 176 177\n"
] |
[
"Vasya\n",
"Tie\n",
"Misha\n"
] |
none
| 500
|
[
{
"input": "500 1000 20 30",
"output": "Vasya"
},
{
"input": "1000 1000 1 1",
"output": "Tie"
},
{
"input": "1500 1000 176 177",
"output": "Misha"
},
{
"input": "1500 1000 74 177",
"output": "Misha"
},
{
"input": "750 2500 175 178",
"output": "Vasya"
},
{
"input": "750 1000 54 103",
"output": "Tie"
},
{
"input": "2000 1250 176 130",
"output": "Tie"
},
{
"input": "1250 1750 145 179",
"output": "Tie"
},
{
"input": "2000 2000 176 179",
"output": "Tie"
},
{
"input": "1500 1500 148 148",
"output": "Tie"
},
{
"input": "2750 1750 134 147",
"output": "Misha"
},
{
"input": "3250 250 175 173",
"output": "Misha"
},
{
"input": "500 500 170 176",
"output": "Misha"
},
{
"input": "250 1000 179 178",
"output": "Vasya"
},
{
"input": "3250 1000 160 138",
"output": "Misha"
},
{
"input": "3000 2000 162 118",
"output": "Tie"
},
{
"input": "1500 1250 180 160",
"output": "Tie"
},
{
"input": "1250 2500 100 176",
"output": "Tie"
},
{
"input": "3500 3500 177 178",
"output": "Tie"
},
{
"input": "3000 3250 16 34",
"output": "Tie"
},
{
"input": "1750 3000 137 49",
"output": "Vasya"
},
{
"input": "500 1500 179 71",
"output": "Vasya"
},
{
"input": "1250 2000 101 180",
"output": "Misha"
},
{
"input": "250 750 180 176",
"output": "Vasya"
},
{
"input": "2250 2250 163 145",
"output": "Vasya"
},
{
"input": "3000 3000 176 78",
"output": "Vasya"
},
{
"input": "250 3500 8 178",
"output": "Vasya"
},
{
"input": "1750 1250 179 180",
"output": "Misha"
},
{
"input": "2750 1750 13 164",
"output": "Misha"
},
{
"input": "1750 2250 178 53",
"output": "Vasya"
},
{
"input": "2500 2750 73 179",
"output": "Misha"
},
{
"input": "1000 3500 178 175",
"output": "Vasya"
},
{
"input": "1000 500 7 162",
"output": "Misha"
},
{
"input": "1000 250 175 48",
"output": "Misha"
},
{
"input": "1750 500 166 177",
"output": "Misha"
},
{
"input": "250 250 0 0",
"output": "Tie"
},
{
"input": "250 3500 0 0",
"output": "Vasya"
},
{
"input": "250 3500 0 180",
"output": "Vasya"
},
{
"input": "3500 3500 180 180",
"output": "Tie"
},
{
"input": "3500 250 0 180",
"output": "Misha"
}
] | 1,584,711,898
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 40
| 155
| 0
|
a,b,c,d=map(int,input().split())
x=max((3*a//10),(a-(a*c//250)))
y=max((3*b//10),(b-(b*d//250)))
if(x>y):
print("Misha")
elif(x==y):
print("Tie")
elif(y>x):
print("Vasya")
|
Title: Contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points.
Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.
Input Specification:
The first line contains four integers *a*, *b*, *c*, *d* (250<=β€<=*a*,<=*b*<=β€<=3500, 0<=β€<=*c*,<=*d*<=β€<=180).
It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round).
Output Specification:
Output on a single line:
"Misha" (without the quotes), if Misha got more points than Vasya.
"Vasya" (without the quotes), if Vasya got more points than Misha.
"Tie" (without the quotes), if both of them got the same number of points.
Demo Input:
['500 1000 20 30\n', '1000 1000 1 1\n', '1500 1000 176 177\n']
Demo Output:
['Vasya\n', 'Tie\n', 'Misha\n']
Note:
none
|
```python
a,b,c,d=map(int,input().split())
x=max((3*a//10),(a-(a*c//250)))
y=max((3*b//10),(b-(b*d//250)))
if(x>y):
print("Misha")
elif(x==y):
print("Tie")
elif(y>x):
print("Vasya")
```
| 3
|
|
174
|
A
|
Problem About Equation
|
PROGRAMMING
| 1,100
|
[
"math"
] | null | null |
A group of *n* merry programmers celebrate Robert Floyd's birthday. Polucarpus has got an honourable task of pouring Ber-Cola to everybody. Pouring the same amount of Ber-Cola to everybody is really important. In other words, the drink's volume in each of the *n* mugs must be the same.
Polycarpus has already began the process and he partially emptied the Ber-Cola bottle. Now the first mug has *a*1 milliliters of the drink, the second one has *a*2 milliliters and so on. The bottle has *b* milliliters left and Polycarpus plans to pour them into the mugs so that the main equation was fulfilled.
Write a program that would determine what volume of the drink Polycarpus needs to add into each mug to ensure that the following two conditions were fulfilled simultaneously:
- there were *b* milliliters poured in total. That is, the bottle need to be emptied; - after the process is over, the volumes of the drink in the mugs should be equal.
|
The first line contains a pair of integers *n*, *b* (2<=β€<=*n*<=β€<=100,<=1<=β€<=*b*<=β€<=100), where *n* is the total number of friends in the group and *b* is the current volume of drink in the bottle. The second line contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=β€<=*a**i*<=β€<=100), where *a**i* is the current volume of drink in the *i*-th mug.
|
Print a single number "-1" (without the quotes), if there is no solution. Otherwise, print *n* float numbers *c*1,<=*c*2,<=...,<=*c**n*, where *c**i* is the volume of the drink to add in the *i*-th mug. Print the numbers with no less than 6 digits after the decimal point, print each *c**i* on a single line. Polycarpus proved that if a solution exists then it is unique.
Russian locale is installed by default on the testing computer. Make sure that your solution use the point to separate the integer part of a real number from the decimal, not a comma.
|
[
"5 50\n1 2 3 4 5\n",
"2 2\n1 100\n"
] |
[
"12.000000\n11.000000\n10.000000\n9.000000\n8.000000\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "5 50\n1 2 3 4 5",
"output": "12.000000\n11.000000\n10.000000\n9.000000\n8.000000"
},
{
"input": "2 2\n1 100",
"output": "-1"
},
{
"input": "2 2\n1 1",
"output": "1.000000\n1.000000"
},
{
"input": "3 2\n1 2 1",
"output": "1.000000\n0.000000\n1.000000"
},
{
"input": "3 5\n1 2 1",
"output": "2.000000\n1.000000\n2.000000"
},
{
"input": "10 95\n0 0 0 0 0 1 1 1 1 1",
"output": "10.000000\n10.000000\n10.000000\n10.000000\n10.000000\n9.000000\n9.000000\n9.000000\n9.000000\n9.000000"
},
{
"input": "3 5\n1 2 3",
"output": "2.666667\n1.666667\n0.666667"
},
{
"input": "3 5\n1 3 2",
"output": "2.666667\n0.666667\n1.666667"
},
{
"input": "3 5\n2 1 3",
"output": "1.666667\n2.666667\n0.666667"
},
{
"input": "3 5\n2 3 1",
"output": "1.666667\n0.666667\n2.666667"
},
{
"input": "3 5\n3 1 2",
"output": "0.666667\n2.666667\n1.666667"
},
{
"input": "3 5\n3 2 1",
"output": "0.666667\n1.666667\n2.666667"
},
{
"input": "2 1\n1 1",
"output": "0.500000\n0.500000"
},
{
"input": "2 1\n2 2",
"output": "0.500000\n0.500000"
},
{
"input": "3 2\n2 1 2",
"output": "0.333333\n1.333333\n0.333333"
},
{
"input": "3 3\n2 2 1",
"output": "0.666667\n0.666667\n1.666667"
},
{
"input": "3 3\n3 1 2",
"output": "0.000000\n2.000000\n1.000000"
},
{
"input": "100 100\n37 97 75 52 33 29 51 22 33 37 45 96 96 60 82 58 86 71 28 73 38 50 6 6 90 17 26 76 13 41 100 47 17 93 4 1 56 16 41 74 25 17 69 61 39 37 96 73 49 93 52 14 62 24 91 30 9 97 52 100 6 16 85 8 12 26 10 3 94 63 80 27 29 78 9 48 79 64 60 18 98 75 81 35 24 81 2 100 23 70 21 60 98 38 29 29 58 37 49 72",
"output": "-1"
},
{
"input": "100 100\n1 3 7 7 9 5 9 3 7 8 10 1 3 10 10 6 1 3 10 4 3 9 4 9 5 4 9 2 8 7 4 3 3 3 5 10 8 9 10 1 9 2 4 8 3 10 9 2 3 9 8 2 4 4 4 7 1 1 7 3 7 8 9 5 1 2 6 7 1 10 9 10 5 10 1 10 5 2 4 3 10 1 6 5 6 7 8 9 3 8 6 10 8 7 2 3 8 6 3 6",
"output": "-1"
},
{
"input": "100 61\n81 80 83 72 87 76 91 92 77 93 77 94 76 73 71 88 88 76 87 73 89 73 85 81 79 90 76 73 82 93 79 93 71 75 72 71 78 85 92 89 88 93 74 87 71 94 74 87 85 89 90 93 86 94 92 87 90 91 75 73 90 84 92 94 92 79 74 85 74 74 89 76 84 84 84 83 86 84 82 71 76 74 83 81 89 73 73 74 71 77 90 94 73 94 73 75 93 89 84 92",
"output": "-1"
},
{
"input": "100 100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1..."
},
{
"input": "100 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1.000000\n1..."
},
{
"input": "100 100\n99 100 99 100 100 100 99 99 99 100 100 100 99 100 99 100 100 100 100 100 99 99 99 99 100 99 100 99 100 99 99 100 100 100 100 100 99 99 99 100 99 99 100 99 100 99 100 99 99 99 99 100 100 99 99 99 100 100 99 100 100 100 99 99 100 100 100 100 100 100 99 99 99 99 99 100 99 99 100 99 100 100 100 99 100 99 99 100 99 100 100 100 99 100 99 100 100 100 100 99",
"output": "1.530000\n0.530000\n1.530000\n0.530000\n0.530000\n0.530000\n1.530000\n1.530000\n1.530000\n0.530000\n0.530000\n0.530000\n1.530000\n0.530000\n1.530000\n0.530000\n0.530000\n0.530000\n0.530000\n0.530000\n1.530000\n1.530000\n1.530000\n1.530000\n0.530000\n1.530000\n0.530000\n1.530000\n0.530000\n1.530000\n1.530000\n0.530000\n0.530000\n0.530000\n0.530000\n0.530000\n1.530000\n1.530000\n1.530000\n0.530000\n1.530000\n1.530000\n0.530000\n1.530000\n0.530000\n1.530000\n0.530000\n1.530000\n1.530000\n1.530000\n1.530000\n0..."
},
{
"input": "100 100\n100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100",
"output": "0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n1.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n1.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0.940000\n0..."
},
{
"input": "100 100\n99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99",
"output": "1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n1.020000\n0.020000\n1.020000\n1..."
},
{
"input": "10 100\n52 52 51 52 52 52 51 51 52 52",
"output": "9.700000\n9.700000\n10.700000\n9.700000\n9.700000\n9.700000\n10.700000\n10.700000\n9.700000\n9.700000"
},
{
"input": "10 100\n13 13 13 13 12 13 12 13 12 12",
"output": "9.600000\n9.600000\n9.600000\n9.600000\n10.600000\n9.600000\n10.600000\n9.600000\n10.600000\n10.600000"
},
{
"input": "10 100\n50 51 47 51 48 46 49 51 46 51",
"output": "9.000000\n8.000000\n12.000000\n8.000000\n11.000000\n13.000000\n10.000000\n8.000000\n13.000000\n8.000000"
},
{
"input": "10 100\n13 13 9 12 12 11 13 8 10 13",
"output": "8.400000\n8.400000\n12.400000\n9.400000\n9.400000\n10.400000\n8.400000\n13.400000\n11.400000\n8.400000"
},
{
"input": "93 91\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0.978495\n0..."
},
{
"input": "93 97\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1.043011\n1..."
},
{
"input": "91 99\n99 100 100 100 99 100 100 100 99 100 99 99 100 99 100 100 100 99 99 100 99 100 100 100 100 100 99 99 100 99 100 99 99 100 100 100 100 99 99 100 100 100 99 100 100 99 100 100 99 100 99 99 99 100 99 99 99 100 99 100 99 100 99 100 99 99 100 100 100 100 99 100 99 100 99 99 100 100 99 100 100 100 100 99 99 100 100 99 99 100 99",
"output": "1.648352\n0.648352\n0.648352\n0.648352\n1.648352\n0.648352\n0.648352\n0.648352\n1.648352\n0.648352\n1.648352\n1.648352\n0.648352\n1.648352\n0.648352\n0.648352\n0.648352\n1.648352\n1.648352\n0.648352\n1.648352\n0.648352\n0.648352\n0.648352\n0.648352\n0.648352\n1.648352\n1.648352\n0.648352\n1.648352\n0.648352\n1.648352\n1.648352\n0.648352\n0.648352\n0.648352\n0.648352\n1.648352\n1.648352\n0.648352\n0.648352\n0.648352\n1.648352\n0.648352\n0.648352\n1.648352\n0.648352\n0.648352\n1.648352\n0.648352\n1.648352\n1..."
},
{
"input": "99 98\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n1.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0.979798\n0..."
},
{
"input": "98 99\n99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99 100 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 99 99 99 99 99",
"output": "1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n0.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n1.051020\n0.051020\n1.051020\n1..."
},
{
"input": "13 97\n52 52 51 51 52 52 51 52 51 51 52 52 52",
"output": "7.076923\n7.076923\n8.076923\n8.076923\n7.076923\n7.076923\n8.076923\n7.076923\n8.076923\n8.076923\n7.076923\n7.076923\n7.076923"
},
{
"input": "17 99\n13 13 12 13 11 12 12 12 13 13 11 13 13 13 13 12 13",
"output": "5.294118\n5.294118\n6.294118\n5.294118\n7.294118\n6.294118\n6.294118\n6.294118\n5.294118\n5.294118\n7.294118\n5.294118\n5.294118\n5.294118\n5.294118\n6.294118\n5.294118"
},
{
"input": "9 91\n52 51 50 52 52 51 50 48 51",
"output": "8.888889\n9.888889\n10.888889\n8.888889\n8.888889\n9.888889\n10.888889\n12.888889\n9.888889"
},
{
"input": "17 91\n13 13 13 13 12 12 13 13 12 13 12 13 10 12 13 13 12",
"output": "4.823529\n4.823529\n4.823529\n4.823529\n5.823529\n5.823529\n4.823529\n4.823529\n5.823529\n4.823529\n5.823529\n4.823529\n7.823529\n5.823529\n4.823529\n4.823529\n5.823529"
},
{
"input": "2 3\n1 1",
"output": "1.500000\n1.500000"
},
{
"input": "2 90\n0 89",
"output": "89.500000\n0.500000"
},
{
"input": "4 17\n3 4 8 1",
"output": "5.250000\n4.250000\n0.250000\n7.250000"
},
{
"input": "2 9\n5 5",
"output": "4.500000\n4.500000"
},
{
"input": "7 28\n1 3 9 10 9 6 10",
"output": "9.857143\n7.857143\n1.857143\n0.857143\n1.857143\n4.857143\n0.857143"
},
{
"input": "5 11\n1 2 3 4 5",
"output": "4.200000\n3.200000\n2.200000\n1.200000\n0.200000"
},
{
"input": "2 1\n1 1",
"output": "0.500000\n0.500000"
},
{
"input": "5 3\n1 1 1 1 1",
"output": "0.600000\n0.600000\n0.600000\n0.600000\n0.600000"
},
{
"input": "3 1\n100 100 100",
"output": "0.333333\n0.333333\n0.333333"
},
{
"input": "5 50\n2 2 3 2 2",
"output": "10.200000\n10.200000\n9.200000\n10.200000\n10.200000"
},
{
"input": "3 3\n2 2 3",
"output": "1.333333\n1.333333\n0.333333"
},
{
"input": "2 52\n2 100",
"output": "-1"
},
{
"input": "3 2\n2 2 3",
"output": "1.000000\n1.000000\n0.000000"
},
{
"input": "5 1\n1 1 1 1 1",
"output": "0.200000\n0.200000\n0.200000\n0.200000\n0.200000"
},
{
"input": "2 4\n1 2",
"output": "2.500000\n1.500000"
},
{
"input": "5 49\n1 2 3 4 5",
"output": "11.800000\n10.800000\n9.800000\n8.800000\n7.800000"
}
] | 1,557,809,595
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 248
| 0
|
N, S = map(int, input().split())
A = list(map(int, input().split()))
ave = (S + sum(A)) / N
ans = []
for a in A:
if a > ave:
ans.append(-1)
break
else:
ans.append(ave - a)
if ans[-1] == -1:
print(-1)
else:
for a in ans:
print("%.6f" % a)
|
Title: Problem About Equation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A group of *n* merry programmers celebrate Robert Floyd's birthday. Polucarpus has got an honourable task of pouring Ber-Cola to everybody. Pouring the same amount of Ber-Cola to everybody is really important. In other words, the drink's volume in each of the *n* mugs must be the same.
Polycarpus has already began the process and he partially emptied the Ber-Cola bottle. Now the first mug has *a*1 milliliters of the drink, the second one has *a*2 milliliters and so on. The bottle has *b* milliliters left and Polycarpus plans to pour them into the mugs so that the main equation was fulfilled.
Write a program that would determine what volume of the drink Polycarpus needs to add into each mug to ensure that the following two conditions were fulfilled simultaneously:
- there were *b* milliliters poured in total. That is, the bottle need to be emptied; - after the process is over, the volumes of the drink in the mugs should be equal.
Input Specification:
The first line contains a pair of integers *n*, *b* (2<=β€<=*n*<=β€<=100,<=1<=β€<=*b*<=β€<=100), where *n* is the total number of friends in the group and *b* is the current volume of drink in the bottle. The second line contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=β€<=*a**i*<=β€<=100), where *a**i* is the current volume of drink in the *i*-th mug.
Output Specification:
Print a single number "-1" (without the quotes), if there is no solution. Otherwise, print *n* float numbers *c*1,<=*c*2,<=...,<=*c**n*, where *c**i* is the volume of the drink to add in the *i*-th mug. Print the numbers with no less than 6 digits after the decimal point, print each *c**i* on a single line. Polycarpus proved that if a solution exists then it is unique.
Russian locale is installed by default on the testing computer. Make sure that your solution use the point to separate the integer part of a real number from the decimal, not a comma.
Demo Input:
['5 50\n1 2 3 4 5\n', '2 2\n1 100\n']
Demo Output:
['12.000000\n11.000000\n10.000000\n9.000000\n8.000000\n', '-1\n']
Note:
none
|
```python
N, S = map(int, input().split())
A = list(map(int, input().split()))
ave = (S + sum(A)) / N
ans = []
for a in A:
if a > ave:
ans.append(-1)
break
else:
ans.append(ave - a)
if ans[-1] == -1:
print(-1)
else:
for a in ans:
print("%.6f" % a)
```
| 3
|
|
546
|
A
|
Soldier and Bananas
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation",
"math"
] | null | null |
A soldier wants to buy *w* bananas in the shop. He has to pay *k* dollars for the first banana, 2*k* dollars for the second one and so on (in other words, he has to pay *i*Β·*k* dollars for the *i*-th banana).
He has *n* dollars. How many dollars does he have to borrow from his friend soldier to buy *w* bananas?
|
The first line contains three positive integers *k*,<=*n*,<=*w* (1<=<=β€<=<=*k*,<=*w*<=<=β€<=<=1000, 0<=β€<=*n*<=β€<=109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants.
|
Output one integer β the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.
|
[
"3 17 4\n"
] |
[
"13"
] |
none
| 500
|
[
{
"input": "3 17 4",
"output": "13"
},
{
"input": "1 2 1",
"output": "0"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "1 5 6",
"output": "16"
},
{
"input": "1 1000000000 1",
"output": "0"
},
{
"input": "1000 0 1000",
"output": "500500000"
},
{
"input": "859 453892 543",
"output": "126416972"
},
{
"input": "1000 1000000000 1000",
"output": "0"
},
{
"input": "1000 500500000 1000",
"output": "0"
},
{
"input": "1000 500500001 1000",
"output": "0"
},
{
"input": "1000 500499999 1000",
"output": "1"
},
{
"input": "634 87973 214",
"output": "14497197"
},
{
"input": "432 10000 241",
"output": "12587552"
},
{
"input": "111 111111111 111",
"output": "0"
},
{
"input": "20 43 3",
"output": "77"
}
] | 1,696,136,518
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 15
| 62
| 0
|
k,n,w = map(int,input().split())
c = k*(w*(w+1)//2)
if c <=n:
print(0)
else:
print(abs(n-c))
|
Title: Soldier and Bananas
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A soldier wants to buy *w* bananas in the shop. He has to pay *k* dollars for the first banana, 2*k* dollars for the second one and so on (in other words, he has to pay *i*Β·*k* dollars for the *i*-th banana).
He has *n* dollars. How many dollars does he have to borrow from his friend soldier to buy *w* bananas?
Input Specification:
The first line contains three positive integers *k*,<=*n*,<=*w* (1<=<=β€<=<=*k*,<=*w*<=<=β€<=<=1000, 0<=β€<=*n*<=β€<=109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants.
Output Specification:
Output one integer β the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.
Demo Input:
['3 17 4\n']
Demo Output:
['13']
Note:
none
|
```python
k,n,w = map(int,input().split())
c = k*(w*(w+1)//2)
if c <=n:
print(0)
else:
print(abs(n-c))
```
| 3
|
|
35
|
A
|
Shell Game
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
A. Shell Game
|
2
|
64
|
Today the Β«ZΒ» city residents enjoy a shell game competition. The residents are gathered on the main square to watch the breath-taking performance. The performer puts 3 non-transparent cups upside down in a row. Then he openly puts a small ball under one of the cups and starts to shuffle the cups around very quickly so that on the whole he makes exactly 3 shuffles. After that the spectators have exactly one attempt to guess in which cup they think the ball is and if the answer is correct they get a prize. Maybe you can try to find the ball too?
|
The first input line contains an integer from 1 to 3 β index of the cup which covers the ball before the shuffles. The following three lines describe the shuffles. Each description of a shuffle contains two distinct integers from 1 to 3 β indexes of the cups which the performer shuffled this time. The cups are numbered from left to right and are renumbered after each shuffle from left to right again. In other words, the cup on the left always has index 1, the one in the middle β index 2 and the one on the right β index 3.
|
In the first line output an integer from 1 to 3 β index of the cup which will have the ball after all the shuffles.
|
[
"1\n1 2\n2 1\n2 1\n",
"1\n2 1\n3 1\n1 3\n"
] |
[
"2\n",
"2\n"
] |
none
| 500
|
[
{
"input": "1\n1 2\n2 1\n2 1",
"output": "2"
},
{
"input": "1\n2 1\n3 1\n1 3",
"output": "2"
},
{
"input": "3\n3 1\n2 1\n1 2",
"output": "1"
},
{
"input": "1\n1 3\n1 2\n2 3",
"output": "2"
},
{
"input": "3\n3 2\n3 1\n3 1",
"output": "2"
},
{
"input": "1\n2 1\n1 3\n1 3",
"output": "2"
},
{
"input": "3\n3 1\n2 3\n3 2",
"output": "1"
},
{
"input": "2\n1 3\n1 2\n2 1",
"output": "2"
},
{
"input": "1\n1 3\n3 2\n1 2",
"output": "1"
},
{
"input": "1\n1 3\n1 3\n2 3",
"output": "1"
},
{
"input": "2\n1 2\n2 3\n2 1",
"output": "2"
},
{
"input": "3\n1 3\n3 2\n2 1",
"output": "2"
},
{
"input": "1\n1 2\n2 1\n2 3",
"output": "1"
},
{
"input": "1\n2 3\n1 3\n1 2",
"output": "3"
},
{
"input": "2\n3 1\n3 2\n2 3",
"output": "2"
},
{
"input": "2\n1 3\n3 1\n3 1",
"output": "2"
},
{
"input": "1\n3 2\n1 3\n3 1",
"output": "1"
},
{
"input": "3\n1 3\n1 2\n1 3",
"output": "2"
},
{
"input": "1\n3 2\n3 1\n1 2",
"output": "3"
},
{
"input": "2\n2 3\n1 3\n1 3",
"output": "3"
}
] | 1,648,660,406
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 92
| 0
|
path = 'input.txt'
readFile = open(path, 'r')
pos = int(readFile.readline())
for i in range(3):
cup1, cup2 = [int(item) for item in readFile.readline().split(' ')]
if cup1 == pos:
pos = cup2
elif cup2 == pos:
pos = cup1
readFile.close()
writeFile = open("output.txt", 'w')
writeFile.write(str(pos))
writeFile.close()
|
Title: Shell Game
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
Today the Β«ZΒ» city residents enjoy a shell game competition. The residents are gathered on the main square to watch the breath-taking performance. The performer puts 3 non-transparent cups upside down in a row. Then he openly puts a small ball under one of the cups and starts to shuffle the cups around very quickly so that on the whole he makes exactly 3 shuffles. After that the spectators have exactly one attempt to guess in which cup they think the ball is and if the answer is correct they get a prize. Maybe you can try to find the ball too?
Input Specification:
The first input line contains an integer from 1 to 3 β index of the cup which covers the ball before the shuffles. The following three lines describe the shuffles. Each description of a shuffle contains two distinct integers from 1 to 3 β indexes of the cups which the performer shuffled this time. The cups are numbered from left to right and are renumbered after each shuffle from left to right again. In other words, the cup on the left always has index 1, the one in the middle β index 2 and the one on the right β index 3.
Output Specification:
In the first line output an integer from 1 to 3 β index of the cup which will have the ball after all the shuffles.
Demo Input:
['1\n1 2\n2 1\n2 1\n', '1\n2 1\n3 1\n1 3\n']
Demo Output:
['2\n', '2\n']
Note:
none
|
```python
path = 'input.txt'
readFile = open(path, 'r')
pos = int(readFile.readline())
for i in range(3):
cup1, cup2 = [int(item) for item in readFile.readline().split(' ')]
if cup1 == pos:
pos = cup2
elif cup2 == pos:
pos = cup1
readFile.close()
writeFile = open("output.txt", 'w')
writeFile.write(str(pos))
writeFile.close()
```
| 3.977
|
777
|
A
|
Shell Game
|
PROGRAMMING
| 1,000
|
[
"constructive algorithms",
"implementation",
"math"
] | null | null |
Bomboslav likes to look out of the window in his room and watch lads outside playing famous shell game. The game is played by two persons: operator and player. Operator takes three similar opaque shells and places a ball beneath one of them. Then he shuffles the shells by swapping some pairs and the player has to guess the current position of the ball.
Bomboslav noticed that guys are not very inventive, so the operator always swaps the left shell with the middle one during odd moves (first, third, fifth, etc.) and always swaps the middle shell with the right one during even moves (second, fourth, etc.).
Let's number shells from 0 to 2 from left to right. Thus the left shell is assigned number 0, the middle shell is 1 and the right shell is 2. Bomboslav has missed the moment when the ball was placed beneath the shell, but he knows that exactly *n* movements were made by the operator and the ball was under shell *x* at the end. Now he wonders, what was the initial position of the ball?
|
The first line of the input contains an integer *n* (1<=β€<=*n*<=β€<=2Β·109)Β β the number of movements made by the operator.
The second line contains a single integer *x* (0<=β€<=*x*<=β€<=2)Β β the index of the shell where the ball was found after *n* movements.
|
Print one integer from 0 to 2Β β the index of the shell where the ball was initially placed.
|
[
"4\n2\n",
"1\n1\n"
] |
[
"1\n",
"0\n"
] |
In the first sample, the ball was initially placed beneath the middle shell and the operator completed four movements.
1. During the first move operator swapped the left shell and the middle shell. The ball is now under the left shell. 1. During the second move operator swapped the middle shell and the right one. The ball is still under the left shell. 1. During the third move operator swapped the left shell and the middle shell again. The ball is again in the middle. 1. Finally, the operators swapped the middle shell and the right shell. The ball is now beneath the right shell.
| 500
|
[
{
"input": "4\n2",
"output": "1"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "2\n2",
"output": "0"
},
{
"input": "3\n1",
"output": "1"
},
{
"input": "3\n2",
"output": "0"
},
{
"input": "3\n0",
"output": "2"
},
{
"input": "2000000000\n0",
"output": "1"
},
{
"input": "2\n0",
"output": "1"
},
{
"input": "2\n1",
"output": "2"
},
{
"input": "4\n0",
"output": "2"
},
{
"input": "4\n1",
"output": "0"
},
{
"input": "5\n0",
"output": "0"
},
{
"input": "5\n1",
"output": "2"
},
{
"input": "5\n2",
"output": "1"
},
{
"input": "6\n0",
"output": "0"
},
{
"input": "6\n1",
"output": "1"
},
{
"input": "6\n2",
"output": "2"
},
{
"input": "7\n0",
"output": "1"
},
{
"input": "7\n1",
"output": "0"
},
{
"input": "7\n2",
"output": "2"
},
{
"input": "100000\n0",
"output": "2"
},
{
"input": "100000\n1",
"output": "0"
},
{
"input": "100000\n2",
"output": "1"
},
{
"input": "99999\n1",
"output": "1"
},
{
"input": "99998\n1",
"output": "2"
},
{
"input": "99997\n1",
"output": "0"
},
{
"input": "99996\n1",
"output": "1"
},
{
"input": "99995\n1",
"output": "2"
},
{
"input": "1999999995\n0",
"output": "2"
},
{
"input": "1999999995\n1",
"output": "1"
},
{
"input": "1999999995\n2",
"output": "0"
},
{
"input": "1999999996\n0",
"output": "2"
},
{
"input": "1999999996\n1",
"output": "0"
},
{
"input": "1999999996\n2",
"output": "1"
},
{
"input": "1999999997\n0",
"output": "0"
},
{
"input": "1999999997\n1",
"output": "2"
},
{
"input": "1999999997\n2",
"output": "1"
},
{
"input": "1999999998\n0",
"output": "0"
},
{
"input": "1999999998\n1",
"output": "1"
},
{
"input": "1999999998\n2",
"output": "2"
},
{
"input": "1999999999\n0",
"output": "1"
},
{
"input": "1999999999\n1",
"output": "0"
},
{
"input": "1999999999\n2",
"output": "2"
},
{
"input": "2000000000\n1",
"output": "2"
},
{
"input": "2000000000\n2",
"output": "0"
},
{
"input": "1234567890\n0",
"output": "0"
},
{
"input": "1234567890\n1",
"output": "1"
},
{
"input": "1234567890\n2",
"output": "2"
},
{
"input": "123456789\n0",
"output": "2"
},
{
"input": "123456789\n1",
"output": "1"
},
{
"input": "123456789\n2",
"output": "0"
},
{
"input": "123456790\n0",
"output": "2"
},
{
"input": "12\n2",
"output": "2"
},
{
"input": "32\n1",
"output": "2"
},
{
"input": "20\n2",
"output": "0"
},
{
"input": "10\n1",
"output": "0"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "76994383\n1",
"output": "0"
},
{
"input": "25\n2",
"output": "2"
},
{
"input": "1\n2",
"output": "2"
},
{
"input": "12\n0",
"output": "0"
},
{
"input": "150\n2",
"output": "2"
},
{
"input": "15\n0",
"output": "2"
},
{
"input": "21\n2",
"output": "0"
},
{
"input": "18\n2",
"output": "2"
},
{
"input": "8\n2",
"output": "0"
},
{
"input": "10\n0",
"output": "2"
},
{
"input": "16\n0",
"output": "2"
}
] | 1,573,723,457
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 68
| 109
| 0
|
n=int(input())
x=int(input())
seq=[[0,1,2],[1,0,2],[1,2,0],[2,1,0],[2,0,1],[0,2,1]]
p=n%6
print(seq[p][x])
|
Title: Shell Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bomboslav likes to look out of the window in his room and watch lads outside playing famous shell game. The game is played by two persons: operator and player. Operator takes three similar opaque shells and places a ball beneath one of them. Then he shuffles the shells by swapping some pairs and the player has to guess the current position of the ball.
Bomboslav noticed that guys are not very inventive, so the operator always swaps the left shell with the middle one during odd moves (first, third, fifth, etc.) and always swaps the middle shell with the right one during even moves (second, fourth, etc.).
Let's number shells from 0 to 2 from left to right. Thus the left shell is assigned number 0, the middle shell is 1 and the right shell is 2. Bomboslav has missed the moment when the ball was placed beneath the shell, but he knows that exactly *n* movements were made by the operator and the ball was under shell *x* at the end. Now he wonders, what was the initial position of the ball?
Input Specification:
The first line of the input contains an integer *n* (1<=β€<=*n*<=β€<=2Β·109)Β β the number of movements made by the operator.
The second line contains a single integer *x* (0<=β€<=*x*<=β€<=2)Β β the index of the shell where the ball was found after *n* movements.
Output Specification:
Print one integer from 0 to 2Β β the index of the shell where the ball was initially placed.
Demo Input:
['4\n2\n', '1\n1\n']
Demo Output:
['1\n', '0\n']
Note:
In the first sample, the ball was initially placed beneath the middle shell and the operator completed four movements.
1. During the first move operator swapped the left shell and the middle shell. The ball is now under the left shell. 1. During the second move operator swapped the middle shell and the right one. The ball is still under the left shell. 1. During the third move operator swapped the left shell and the middle shell again. The ball is again in the middle. 1. Finally, the operators swapped the middle shell and the right shell. The ball is now beneath the right shell.
|
```python
n=int(input())
x=int(input())
seq=[[0,1,2],[1,0,2],[1,2,0],[2,1,0],[2,0,1],[0,2,1]]
p=n%6
print(seq[p][x])
```
| 3
|
|
702
|
A
|
Maximum Increase
|
PROGRAMMING
| 800
|
[
"dp",
"greedy",
"implementation"
] | null | null |
You are given array consisting of *n* integers. Your task is to find the maximum length of an increasing subarray of the given array.
A subarray is the sequence of consecutive elements of the array. Subarray is called increasing if each element of this subarray strictly greater than previous.
|
The first line contains single positive integer *n* (1<=β€<=*n*<=β€<=105) β the number of integers.
The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=109).
|
Print the maximum length of an increasing subarray of the given array.
|
[
"5\n1 7 2 11 15\n",
"6\n100 100 100 100 100 100\n",
"3\n1 2 3\n"
] |
[
"3\n",
"1\n",
"3\n"
] |
none
| 0
|
[
{
"input": "5\n1 7 2 11 15",
"output": "3"
},
{
"input": "6\n100 100 100 100 100 100",
"output": "1"
},
{
"input": "3\n1 2 3",
"output": "3"
},
{
"input": "1\n1000000000",
"output": "1"
},
{
"input": "10\n802030518 598196518 640274071 983359971 71550121 96204862 799843967 446173607 796619138 402690754",
"output": "3"
},
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "5\n1 2 3 3 4",
"output": "3"
},
{
"input": "4\n1 2 2 3",
"output": "2"
},
{
"input": "3\n2 1 1",
"output": "1"
},
{
"input": "3\n1 2 1",
"output": "2"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n1 2",
"output": "2"
},
{
"input": "3\n1 1 2",
"output": "2"
},
{
"input": "11\n1 2 3 1 2 3 2 1 2 3 4",
"output": "4"
},
{
"input": "9\n1 2 3 4 5 6 7 8 9",
"output": "9"
},
{
"input": "9\n1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "3\n3 2 1",
"output": "1"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "7"
},
{
"input": "1\n1234394",
"output": "1"
}
] | 1,679,585,705
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 124
| 8,806,400
|
n = int(input())
entrada = input()
arreglo = entrada.split()
arreglo_ent = []
numero = float('inf')
contador = 1
maximo = contador
for i in range(n):
arreglo_ent.append(int(arreglo[i]))
for i in range(n):
if(arreglo_ent[i] > numero):
numero = arreglo_ent[i]
contador += 1
else:
if(maximo < contador):
maximo = contador
numero = arreglo_ent[i]
contador = 1
if(maximo < contador):
maximo = contador
print(maximo)
|
Title: Maximum Increase
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given array consisting of *n* integers. Your task is to find the maximum length of an increasing subarray of the given array.
A subarray is the sequence of consecutive elements of the array. Subarray is called increasing if each element of this subarray strictly greater than previous.
Input Specification:
The first line contains single positive integer *n* (1<=β€<=*n*<=β€<=105) β the number of integers.
The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=109).
Output Specification:
Print the maximum length of an increasing subarray of the given array.
Demo Input:
['5\n1 7 2 11 15\n', '6\n100 100 100 100 100 100\n', '3\n1 2 3\n']
Demo Output:
['3\n', '1\n', '3\n']
Note:
none
|
```python
n = int(input())
entrada = input()
arreglo = entrada.split()
arreglo_ent = []
numero = float('inf')
contador = 1
maximo = contador
for i in range(n):
arreglo_ent.append(int(arreglo[i]))
for i in range(n):
if(arreglo_ent[i] > numero):
numero = arreglo_ent[i]
contador += 1
else:
if(maximo < contador):
maximo = contador
numero = arreglo_ent[i]
contador = 1
if(maximo < contador):
maximo = contador
print(maximo)
```
| 3
|
|
433
|
B
|
Kuriyama Mirai's Stones
|
PROGRAMMING
| 1,200
|
[
"dp",
"implementation",
"sortings"
] | null | null |
Kuriyama Mirai has killed many monsters and got many (namely *n*) stones. She numbers the stones from 1 to *n*. The cost of the *i*-th stone is *v**i*. Kuriyama Mirai wants to know something about these stones so she will ask you two kinds of questions:
1. She will tell you two numbers, *l* and *r*Β (1<=β€<=*l*<=β€<=*r*<=β€<=*n*), and you should tell her . 1. Let *u**i* be the cost of the *i*-th cheapest stone (the cost that will be on the *i*-th place if we arrange all the stone costs in non-decreasing order). This time she will tell you two numbers, *l* and *r*Β (1<=β€<=*l*<=β€<=*r*<=β€<=*n*), and you should tell her .
For every question you should give the correct answer, or Kuriyama Mirai will say "fuyukai desu" and then become unhappy.
|
The first line contains an integer *n*Β (1<=β€<=*n*<=β€<=105). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n*Β (1<=β€<=*v**i*<=β€<=109) β costs of the stones.
The third line contains an integer *m*Β (1<=β€<=*m*<=β€<=105) β the number of Kuriyama Mirai's questions. Then follow *m* lines, each line contains three integers *type*, *l* and *r*Β (1<=β€<=*l*<=β€<=*r*<=β€<=*n*;Β 1<=β€<=*type*<=β€<=2), describing a question. If *type* equal to 1, then you should output the answer for the first question, else you should output the answer for the second one.
|
Print *m* lines. Each line must contain an integer β the answer to Kuriyama Mirai's question. Print the answers to the questions in the order of input.
|
[
"6\n6 4 2 7 2 7\n3\n2 3 6\n1 3 4\n1 1 6\n",
"4\n5 5 2 3\n10\n1 2 4\n2 1 4\n1 1 1\n2 1 4\n2 1 2\n1 1 1\n1 3 3\n1 1 3\n1 4 4\n1 2 2\n"
] |
[
"24\n9\n28\n",
"10\n15\n5\n15\n5\n5\n2\n12\n3\n5\n"
] |
Please note that the answers to the questions may overflow 32-bit integer type.
| 1,500
|
[
{
"input": "6\n6 4 2 7 2 7\n3\n2 3 6\n1 3 4\n1 1 6",
"output": "24\n9\n28"
},
{
"input": "4\n5 5 2 3\n10\n1 2 4\n2 1 4\n1 1 1\n2 1 4\n2 1 2\n1 1 1\n1 3 3\n1 1 3\n1 4 4\n1 2 2",
"output": "10\n15\n5\n15\n5\n5\n2\n12\n3\n5"
},
{
"input": "4\n2 2 3 6\n9\n2 2 3\n1 1 3\n2 2 3\n2 2 3\n2 2 2\n1 1 3\n1 1 3\n2 1 4\n1 1 2",
"output": "5\n7\n5\n5\n2\n7\n7\n13\n4"
},
{
"input": "18\n26 46 56 18 78 88 86 93 13 77 21 84 59 61 5 74 72 52\n25\n1 10 10\n1 9 13\n2 13 17\n1 8 14\n2 2 6\n1 12 16\n2 15 17\n2 3 6\n1 3 13\n2 8 9\n2 17 17\n1 17 17\n2 5 10\n2 1 18\n1 4 16\n1 1 13\n1 1 8\n2 7 11\n2 6 12\n1 5 9\n1 4 5\n2 7 15\n1 8 8\n1 8 14\n1 3 7",
"output": "77\n254\n413\n408\n124\n283\n258\n111\n673\n115\n88\n72\n300\n1009\n757\n745\n491\n300\n420\n358\n96\n613\n93\n408\n326"
},
{
"input": "56\n43 100 44 66 65 11 26 75 96 77 5 15 75 96 11 44 11 97 75 53 33 26 32 33 90 26 68 72 5 44 53 26 33 88 68 25 84 21 25 92 1 84 21 66 94 35 76 51 11 95 67 4 61 3 34 18\n27\n1 20 38\n1 11 46\n2 42 53\n1 8 11\n2 11 42\n2 35 39\n2 37 41\n1 48 51\n1 32 51\n1 36 40\n1 31 56\n1 18 38\n2 9 51\n1 7 48\n1 15 52\n1 27 31\n2 5 19\n2 35 50\n1 31 34\n1 2 7\n2 15 33\n2 46 47\n1 26 28\n2 3 29\n1 23 45\n2 29 55\n1 14 29",
"output": "880\n1727\n1026\n253\n1429\n335\n350\n224\n1063\n247\n1236\n1052\n2215\n2128\n1840\n242\n278\n1223\n200\n312\n722\n168\n166\n662\n1151\n2028\n772"
},
{
"input": "18\n38 93 48 14 69 85 26 47 71 11 57 9 38 65 72 78 52 47\n38\n2 10 12\n1 6 18\n2 2 2\n1 3 15\n2 1 16\n2 5 13\n1 9 17\n1 2 15\n2 5 17\n1 15 15\n2 4 11\n2 3 4\n2 2 5\n2 1 17\n2 6 16\n2 8 16\n2 8 14\n1 9 12\n2 8 13\n2 1 14\n2 5 13\n1 2 3\n1 9 14\n2 12 15\n2 3 3\n2 9 13\n2 4 12\n2 11 14\n2 6 16\n1 8 14\n1 12 15\n2 3 4\n1 3 5\n2 4 14\n1 6 6\n2 7 14\n2 7 18\n1 8 12",
"output": "174\n658\n11\n612\n742\n461\n453\n705\n767\n72\n353\n40\n89\n827\n644\n559\n409\n148\n338\n592\n461\n141\n251\n277\n14\n291\n418\n262\n644\n298\n184\n40\n131\n558\n85\n456\n784\n195"
},
{
"input": "1\n2\n10\n1 1 1\n1 1 1\n2 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n2 1 1\n1 1 1\n1 1 1",
"output": "2\n2\n2\n2\n2\n2\n2\n2\n2\n2"
},
{
"input": "2\n1 5\n8\n2 1 2\n1 1 1\n1 1 2\n1 1 1\n2 2 2\n2 1 2\n1 1 1\n1 2 2",
"output": "6\n1\n6\n1\n5\n6\n1\n5"
},
{
"input": "8\n2 6 4 6 8 4 7 7\n9\n2 6 8\n1 2 3\n2 3 4\n2 1 2\n2 4 5\n1 3 8\n2 4 4\n2 2 4\n1 2 4",
"output": "22\n10\n10\n6\n12\n36\n6\n14\n16"
},
{
"input": "4\n1 1 2 8\n9\n1 2 4\n1 2 4\n1 1 2\n2 3 4\n2 1 1\n1 2 3\n2 3 4\n1 1 4\n1 1 4",
"output": "11\n11\n2\n10\n1\n3\n10\n12\n12"
},
{
"input": "5\n8 8 1 10 7\n5\n1 2 2\n1 1 4\n1 3 3\n1 2 2\n1 2 5",
"output": "8\n27\n1\n8\n26"
},
{
"input": "10\n10 3 3 2 1 2 7 1 1 1\n4\n2 10 10\n2 6 6\n1 5 10\n1 6 8",
"output": "10\n2\n13\n10"
},
{
"input": "6\n6 6 3 8 5 4\n3\n2 2 3\n2 1 5\n1 1 5",
"output": "9\n24\n28"
},
{
"input": "1\n1\n2\n1 1 1\n2 1 1",
"output": "1\n1"
}
] | 1,647,261,092
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 46
| 639
| 22,528,000
|
import sys
input = sys.stdin.readline
def solve(L, pref, sorty_pref, t, l, r):
l -= 1
if t == 1: return pref[r] - pref[l]
return sorty_pref[r] - sorty_pref[l]
N = int(input())
L = list(map(int, input().split()))
sorty_L = sorted(L)
pref = [0]
sorty_pref = [0]
for i in range(N):
pref.append(pref[-1] + L[i])
sorty_pref.append(sorty_pref[-1] + sorty_L[i])
for _ in range(int(input())):
t, l, r = map(int, input().split())
answer = solve(L, pref, sorty_pref, t, l, r)
sys.stdout.write(str(answer) + '\n')
|
Title: Kuriyama Mirai's Stones
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kuriyama Mirai has killed many monsters and got many (namely *n*) stones. She numbers the stones from 1 to *n*. The cost of the *i*-th stone is *v**i*. Kuriyama Mirai wants to know something about these stones so she will ask you two kinds of questions:
1. She will tell you two numbers, *l* and *r*Β (1<=β€<=*l*<=β€<=*r*<=β€<=*n*), and you should tell her . 1. Let *u**i* be the cost of the *i*-th cheapest stone (the cost that will be on the *i*-th place if we arrange all the stone costs in non-decreasing order). This time she will tell you two numbers, *l* and *r*Β (1<=β€<=*l*<=β€<=*r*<=β€<=*n*), and you should tell her .
For every question you should give the correct answer, or Kuriyama Mirai will say "fuyukai desu" and then become unhappy.
Input Specification:
The first line contains an integer *n*Β (1<=β€<=*n*<=β€<=105). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n*Β (1<=β€<=*v**i*<=β€<=109) β costs of the stones.
The third line contains an integer *m*Β (1<=β€<=*m*<=β€<=105) β the number of Kuriyama Mirai's questions. Then follow *m* lines, each line contains three integers *type*, *l* and *r*Β (1<=β€<=*l*<=β€<=*r*<=β€<=*n*;Β 1<=β€<=*type*<=β€<=2), describing a question. If *type* equal to 1, then you should output the answer for the first question, else you should output the answer for the second one.
Output Specification:
Print *m* lines. Each line must contain an integer β the answer to Kuriyama Mirai's question. Print the answers to the questions in the order of input.
Demo Input:
['6\n6 4 2 7 2 7\n3\n2 3 6\n1 3 4\n1 1 6\n', '4\n5 5 2 3\n10\n1 2 4\n2 1 4\n1 1 1\n2 1 4\n2 1 2\n1 1 1\n1 3 3\n1 1 3\n1 4 4\n1 2 2\n']
Demo Output:
['24\n9\n28\n', '10\n15\n5\n15\n5\n5\n2\n12\n3\n5\n']
Note:
Please note that the answers to the questions may overflow 32-bit integer type.
|
```python
import sys
input = sys.stdin.readline
def solve(L, pref, sorty_pref, t, l, r):
l -= 1
if t == 1: return pref[r] - pref[l]
return sorty_pref[r] - sorty_pref[l]
N = int(input())
L = list(map(int, input().split()))
sorty_L = sorted(L)
pref = [0]
sorty_pref = [0]
for i in range(N):
pref.append(pref[-1] + L[i])
sorty_pref.append(sorty_pref[-1] + sorty_L[i])
for _ in range(int(input())):
t, l, r = map(int, input().split())
answer = solve(L, pref, sorty_pref, t, l, r)
sys.stdout.write(str(answer) + '\n')
```
| 3
|
|
499
|
A
|
Watching a movie
|
PROGRAMMING
| 1,000
|
[
"greedy",
"implementation"
] | null | null |
You have decided to watch the best moments of some movie. There are two buttons on your player:
1. Watch the current minute of the movie. By pressing this button, you watch the current minute of the movie and the player automatically proceeds to the next minute of the movie. 1. Skip exactly *x* minutes of the movie (*x* is some fixed positive integer). If the player is now at the *t*-th minute of the movie, then as a result of pressing this button, it proceeds to the minute (*t*<=+<=*x*).
Initially the movie is turned on in the player on the first minute, and you want to watch exactly *n* best moments of the movie, the *i*-th best moment starts at the *l**i*-th minute and ends at the *r**i*-th minute (more formally, the *i*-th best moment consists of minutes: *l**i*,<=*l**i*<=+<=1,<=...,<=*r**i*).
Determine, what is the minimum number of minutes of the movie you have to watch if you want to watch all the best moments?
|
The first line contains two space-separated integers *n*, *x* (1<=β€<=*n*<=β€<=50, 1<=β€<=*x*<=β€<=105) β the number of the best moments of the movie and the value of *x* for the second button.
The following *n* lines contain the descriptions of the best moments of the movie, the *i*-th line of the description contains two integers separated by a space *l**i*, *r**i* (1<=β€<=*l**i*<=β€<=*r**i*<=β€<=105).
It is guaranteed that for all integers *i* from 2 to *n* the following condition holds: *r**i*<=-<=1<=<<=*l**i*.
|
Output a single number β the answer to the problem.
|
[
"2 3\n5 6\n10 12\n",
"1 1\n1 100000\n"
] |
[
"6\n",
"100000\n"
] |
In the first sample, the player was initially standing on the first minute. As the minutes from the 1-st to the 4-th one don't contain interesting moments, we press the second button. Now we can not press the second button and skip 3 more minutes, because some of them contain interesting moments. Therefore, we watch the movie from the 4-th to the 6-th minute, after that the current time is 7. Similarly, we again skip 3 minutes and then watch from the 10-th to the 12-th minute of the movie. In total, we watch 6 minutes of the movie.
In the second sample, the movie is very interesting, so you'll have to watch all 100000 minutes of the movie.
| 500
|
[
{
"input": "2 3\n5 6\n10 12",
"output": "6"
},
{
"input": "1 1\n1 100000",
"output": "100000"
},
{
"input": "10 1\n2156 3497\n4784 7775\n14575 31932\n33447 35902\n36426 47202\n48772 60522\n63982 68417\n78537 79445\n90081 90629\n94325 95728",
"output": "53974"
},
{
"input": "10 3\n2156 3497\n4784 7775\n14575 31932\n33447 35902\n36426 47202\n48772 60522\n63982 68417\n78537 79445\n90081 90629\n94325 95728",
"output": "53983"
},
{
"input": "10 10\n2156 3497\n4784 7775\n14575 31932\n33447 35902\n36426 47202\n48772 60522\n63982 68417\n78537 79445\n90081 90629\n94325 95728",
"output": "54038"
},
{
"input": "10 1000\n2156 3497\n4784 7775\n14575 31932\n33447 35902\n36426 47202\n48772 60522\n63982 68417\n78537 79445\n90081 90629\n94325 95728",
"output": "58728"
},
{
"input": "12 14\n2156 3497\n4784 7775\n14575 23857\n29211 30739\n31932 33447\n35902 36426\n47202 48772\n60522 63982\n68417 78537\n79445 86918\n90081 90629\n94325 95728",
"output": "41870"
},
{
"input": "12 17\n2156 3497\n4784 7775\n14575 23857\n29211 30739\n31932 33447\n35902 36426\n47202 48772\n60522 63982\n68417 78537\n79445 86918\n90081 90629\n94325 95728",
"output": "41872"
},
{
"input": "18 111\n1449 2156\n3497 4784\n7775 14575\n23857 24593\n29211 30739\n31932 33447\n35902 36426\n36991 38506\n39679 47202\n48772 60016\n60522 61868\n63340 63982\n68417 78537\n79445 86568\n86918 87940\n90081 90310\n90629 94325\n95728 96263",
"output": "58967"
},
{
"input": "1 1\n14575 60522",
"output": "45948"
},
{
"input": "1 10\n14575 60522",
"output": "45952"
},
{
"input": "2 10\n14575 36426\n60522 79445",
"output": "40785"
},
{
"input": "3 1\n14575 36426\n48772 60522\n79445 90081",
"output": "44240"
},
{
"input": "1 100000\n1 100000",
"output": "100000"
},
{
"input": "1 2\n2 100000",
"output": "100000"
},
{
"input": "1 3\n4 100000",
"output": "99997"
},
{
"input": "2 100\n5 6\n7 7",
"output": "7"
},
{
"input": "1 10000\n500 600",
"output": "600"
},
{
"input": "2 3\n1 3\n4 8",
"output": "8"
},
{
"input": "3 1\n1 2\n3 4\n6 7",
"output": "6"
},
{
"input": "1 1\n1 1",
"output": "1"
},
{
"input": "1 3\n5 6",
"output": "3"
},
{
"input": "1 5\n7 10",
"output": "5"
},
{
"input": "1 100\n5 6",
"output": "6"
},
{
"input": "1 2\n1 1",
"output": "1"
},
{
"input": "1 100000\n100000 100000",
"output": "100000"
},
{
"input": "2 3\n1 1\n5 6",
"output": "3"
}
] | 1,591,537,343
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 41
| 140
| 0
|
n,x = map(int, input().split())
data = []
result = 0
for _ in range(n):
data.append(list(map(int, input().split())))
for i in range(n):
if i==0:
result += (data[i][0]-1)%x
else:
result += (data[i][0]-data[i-1][1]-1)%x
result += data[i][1]-data[i][0]+1
print(result)
|
Title: Watching a movie
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You have decided to watch the best moments of some movie. There are two buttons on your player:
1. Watch the current minute of the movie. By pressing this button, you watch the current minute of the movie and the player automatically proceeds to the next minute of the movie. 1. Skip exactly *x* minutes of the movie (*x* is some fixed positive integer). If the player is now at the *t*-th minute of the movie, then as a result of pressing this button, it proceeds to the minute (*t*<=+<=*x*).
Initially the movie is turned on in the player on the first minute, and you want to watch exactly *n* best moments of the movie, the *i*-th best moment starts at the *l**i*-th minute and ends at the *r**i*-th minute (more formally, the *i*-th best moment consists of minutes: *l**i*,<=*l**i*<=+<=1,<=...,<=*r**i*).
Determine, what is the minimum number of minutes of the movie you have to watch if you want to watch all the best moments?
Input Specification:
The first line contains two space-separated integers *n*, *x* (1<=β€<=*n*<=β€<=50, 1<=β€<=*x*<=β€<=105) β the number of the best moments of the movie and the value of *x* for the second button.
The following *n* lines contain the descriptions of the best moments of the movie, the *i*-th line of the description contains two integers separated by a space *l**i*, *r**i* (1<=β€<=*l**i*<=β€<=*r**i*<=β€<=105).
It is guaranteed that for all integers *i* from 2 to *n* the following condition holds: *r**i*<=-<=1<=<<=*l**i*.
Output Specification:
Output a single number β the answer to the problem.
Demo Input:
['2 3\n5 6\n10 12\n', '1 1\n1 100000\n']
Demo Output:
['6\n', '100000\n']
Note:
In the first sample, the player was initially standing on the first minute. As the minutes from the 1-st to the 4-th one don't contain interesting moments, we press the second button. Now we can not press the second button and skip 3 more minutes, because some of them contain interesting moments. Therefore, we watch the movie from the 4-th to the 6-th minute, after that the current time is 7. Similarly, we again skip 3 minutes and then watch from the 10-th to the 12-th minute of the movie. In total, we watch 6 minutes of the movie.
In the second sample, the movie is very interesting, so you'll have to watch all 100000 minutes of the movie.
|
```python
n,x = map(int, input().split())
data = []
result = 0
for _ in range(n):
data.append(list(map(int, input().split())))
for i in range(n):
if i==0:
result += (data[i][0]-1)%x
else:
result += (data[i][0]-data[i-1][1]-1)%x
result += data[i][1]-data[i][0]+1
print(result)
```
| 3
|
|
700
|
A
|
As Fast As Possible
|
PROGRAMMING
| 1,900
|
[
"binary search",
"math"
] | null | null |
On vacations *n* pupils decided to go on excursion and gather all together. They need to overcome the path with the length *l* meters. Each of the pupils will go with the speed equal to *v*1. To get to the excursion quickly, it was decided to rent a bus, which has seats for *k* people (it means that it can't fit more than *k* people at the same time) and the speed equal to *v*2. In order to avoid seasick, each of the pupils want to get into the bus no more than once.
Determine the minimum time required for all *n* pupils to reach the place of excursion. Consider that the embarkation and disembarkation of passengers, as well as the reversal of the bus, take place immediately and this time can be neglected.
|
The first line of the input contains five positive integers *n*, *l*, *v*1, *v*2 and *k* (1<=β€<=*n*<=β€<=10<=000, 1<=β€<=*l*<=β€<=109, 1<=β€<=*v*1<=<<=*v*2<=β€<=109, 1<=β€<=*k*<=β€<=*n*)Β β the number of pupils, the distance from meeting to the place of excursion, the speed of each pupil, the speed of bus and the number of seats in the bus.
|
Print the real numberΒ β the minimum time in which all pupils can reach the place of excursion. Your answer will be considered correct if its absolute or relative error won't exceed 10<=-<=6.
|
[
"5 10 1 2 5\n",
"3 6 1 2 1\n"
] |
[
"5.0000000000\n",
"4.7142857143\n"
] |
In the first sample we should immediately put all five pupils to the bus. The speed of the bus equals 2 and the distance is equal to 10, so the pupils will reach the place of excursion in time 10β/β2β=β5.
| 500
|
[
{
"input": "5 10 1 2 5",
"output": "5.0000000000"
},
{
"input": "3 6 1 2 1",
"output": "4.7142857143"
},
{
"input": "39 252 51 98 26",
"output": "3.5344336938"
},
{
"input": "59 96 75 98 9",
"output": "1.2315651330"
},
{
"input": "87 237 3 21 40",
"output": "33.8571428571"
},
{
"input": "11 81 31 90 1",
"output": "2.3331983806"
},
{
"input": "39 221 55 94 1",
"output": "3.9608012268"
},
{
"input": "59 770 86 94 2",
"output": "8.9269481589"
},
{
"input": "10000 1000000000 1 2 1",
"output": "999925003.7498125093"
},
{
"input": "10000 1 999999999 1000000000 1",
"output": "0.0000000010"
},
{
"input": "9102 808807765 95894 96529 2021",
"output": "8423.2676366126"
},
{
"input": "87 422 7 90 3",
"output": "49.2573051579"
},
{
"input": "15 563 38 51 5",
"output": "13.4211211456"
},
{
"input": "39 407 62 63 2",
"output": "6.5592662969"
},
{
"input": "18 518 99 100 4",
"output": "5.2218163471"
},
{
"input": "8367 515267305 49370 57124 723",
"output": "10310.3492287628"
},
{
"input": "6592 724149457 54877 85492 6302",
"output": "10543.9213545882"
},
{
"input": "8811 929128198 57528 84457 6629",
"output": "13306.2878107183"
},
{
"input": "8861 990217735 49933 64765 6526",
"output": "17403.1926037323"
},
{
"input": "9538 765513348 52584 86675 8268",
"output": "11295.6497404812"
},
{
"input": "9274 783669740 44989 60995 6973",
"output": "14946.9402371816"
},
{
"input": "9103 555078149 86703 93382 8235",
"output": "6168.7893283125"
},
{
"input": "9750 980765213 40044 94985 4226",
"output": "18012.2266672490"
},
{
"input": "5884 943590784 42695 98774 3117",
"output": "14275.9991046103"
},
{
"input": "1 1 1 2 1",
"output": "0.5000000000"
},
{
"input": "10000 1000000000 1 1000000000 1",
"output": "19998.6000479986"
},
{
"input": "10000 1000000000 1 1000000000 10000",
"output": "1.0000000000"
},
{
"input": "10000 1000000000 999999999 1000000000 3",
"output": "1.0000000010"
},
{
"input": "9999 1000000 10 20 3",
"output": "99977.5011249438"
},
{
"input": "1 1 1 1000000000 1",
"output": "0.0000000010"
},
{
"input": "1 1 999999999 1000000000 1",
"output": "0.0000000010"
},
{
"input": "1 1000000000 1 2 1",
"output": "500000000.0000000000"
},
{
"input": "1 1000000000 1 1000000000 1",
"output": "1.0000000000"
},
{
"input": "1 1000000000 999999999 1000000000 1",
"output": "1.0000000000"
},
{
"input": "10000 1 1 2 1",
"output": "0.9999250037"
},
{
"input": "10000 1 1 2 10000",
"output": "0.5000000000"
},
{
"input": "10000 1 1 1000000000 1",
"output": "0.0000199986"
},
{
"input": "10000 1 1 1000000000 10000",
"output": "0.0000000010"
},
{
"input": "10000 1 999999999 1000000000 10000",
"output": "0.0000000010"
},
{
"input": "10000 1000000000 1 2 10000",
"output": "500000000.0000000000"
},
{
"input": "10000 1000000000 999999999 1000000000 1",
"output": "1.0000000010"
},
{
"input": "10000 1000000000 999999999 1000000000 10000",
"output": "1.0000000000"
}
] | 1,656,584,579
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 46
| 0
|
n,l,v,r,k=map(int,input().split())
n=(n+k-1)//k
a=(n-1)*(r-v)/(v+r)
print(l/r/(n-a)*(n+a))
|
Title: As Fast As Possible
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
On vacations *n* pupils decided to go on excursion and gather all together. They need to overcome the path with the length *l* meters. Each of the pupils will go with the speed equal to *v*1. To get to the excursion quickly, it was decided to rent a bus, which has seats for *k* people (it means that it can't fit more than *k* people at the same time) and the speed equal to *v*2. In order to avoid seasick, each of the pupils want to get into the bus no more than once.
Determine the minimum time required for all *n* pupils to reach the place of excursion. Consider that the embarkation and disembarkation of passengers, as well as the reversal of the bus, take place immediately and this time can be neglected.
Input Specification:
The first line of the input contains five positive integers *n*, *l*, *v*1, *v*2 and *k* (1<=β€<=*n*<=β€<=10<=000, 1<=β€<=*l*<=β€<=109, 1<=β€<=*v*1<=<<=*v*2<=β€<=109, 1<=β€<=*k*<=β€<=*n*)Β β the number of pupils, the distance from meeting to the place of excursion, the speed of each pupil, the speed of bus and the number of seats in the bus.
Output Specification:
Print the real numberΒ β the minimum time in which all pupils can reach the place of excursion. Your answer will be considered correct if its absolute or relative error won't exceed 10<=-<=6.
Demo Input:
['5 10 1 2 5\n', '3 6 1 2 1\n']
Demo Output:
['5.0000000000\n', '4.7142857143\n']
Note:
In the first sample we should immediately put all five pupils to the bus. The speed of the bus equals 2 and the distance is equal to 10, so the pupils will reach the place of excursion in time 10β/β2β=β5.
|
```python
n,l,v,r,k=map(int,input().split())
n=(n+k-1)//k
a=(n-1)*(r-v)/(v+r)
print(l/r/(n-a)*(n+a))
```
| 3
|
|
556
|
A
|
Case of the Zeros and Ones
|
PROGRAMMING
| 900
|
[
"greedy"
] | null | null |
Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones.
Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result.
Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number.
|
First line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=2Β·105), the length of the string that Andreid has.
The second line contains the string of length *n* consisting only from zeros and ones.
|
Output the minimum length of the string that may remain after applying the described operations several times.
|
[
"4\n1100\n",
"5\n01010\n",
"8\n11101111\n"
] |
[
"0\n",
"1\n",
"6\n"
] |
In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 250
|
[
{
"input": "4\n1100",
"output": "0"
},
{
"input": "5\n01010",
"output": "1"
},
{
"input": "8\n11101111",
"output": "6"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n00",
"output": "2"
},
{
"input": "2\n01",
"output": "0"
},
{
"input": "2\n10",
"output": "0"
},
{
"input": "2\n11",
"output": "2"
},
{
"input": "3\n001",
"output": "1"
},
{
"input": "6\n110110",
"output": "2"
},
{
"input": "7\n0000011",
"output": "3"
},
{
"input": "6\n110010",
"output": "0"
},
{
"input": "6\n110100",
"output": "0"
},
{
"input": "3\n100",
"output": "1"
},
{
"input": "6\n010111",
"output": "2"
},
{
"input": "8\n01011100",
"output": "0"
},
{
"input": "6\n001011",
"output": "0"
},
{
"input": "7\n1110000",
"output": "1"
},
{
"input": "9\n011111101",
"output": "5"
}
] | 1,639,080,473
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 62
| 204,800
|
length = int(input())
astring = input()
one = astring.count("1")
print(length - 2*min(length - one, one))
|
Title: Case of the Zeros and Ones
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones.
Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result.
Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number.
Input Specification:
First line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=2Β·105), the length of the string that Andreid has.
The second line contains the string of length *n* consisting only from zeros and ones.
Output Specification:
Output the minimum length of the string that may remain after applying the described operations several times.
Demo Input:
['4\n1100\n', '5\n01010\n', '8\n11101111\n']
Demo Output:
['0\n', '1\n', '6\n']
Note:
In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
length = int(input())
astring = input()
one = astring.count("1")
print(length - 2*min(length - one, one))
```
| 3
|
|
910
|
A
|
The Way to Home
|
PROGRAMMING
| 800
|
[
"dfs and similar",
"dp",
"greedy",
"implementation"
] | null | null |
A frog lives on the axis *Ox* and needs to reach home which is in the point *n*. She starts from the point 1. The frog can jump to the right at a distance not more than *d*. So, after she jumped from the point *x* she can reach the point *x*<=+<=*a*, where *a* is an integer from 1 to *d*.
For each point from 1 to *n* is known if there is a lily flower in it. The frog can jump only in points with a lilies. Guaranteed that there are lilies in the points 1 and *n*.
Determine the minimal number of jumps that the frog needs to reach home which is in the point *n* from the point 1. Consider that initially the frog is in the point 1. If the frog can not reach home, print -1.
|
The first line contains two integers *n* and *d* (2<=β€<=*n*<=β€<=100, 1<=β€<=*d*<=β€<=*n*<=-<=1) β the point, which the frog wants to reach, and the maximal length of the frog jump.
The second line contains a string *s* of length *n*, consisting of zeros and ones. If a character of the string *s* equals to zero, then in the corresponding point there is no lily flower. In the other case, in the corresponding point there is a lily flower. Guaranteed that the first and the last characters of the string *s* equal to one.
|
If the frog can not reach the home, print -1.
In the other case, print the minimal number of jumps that the frog needs to reach the home which is in the point *n* from the point 1.
|
[
"8 4\n10010101\n",
"4 2\n1001\n",
"8 4\n11100101\n",
"12 3\n101111100101\n"
] |
[
"2\n",
"-1\n",
"3\n",
"4\n"
] |
In the first example the from can reach home in two jumps: the first jump from the point 1 to the point 4 (the length of the jump is three), and the second jump from the point 4 to the point 8 (the length of the jump is four).
In the second example the frog can not reach home, because to make it she need to jump on a distance three, but the maximum length of her jump equals to two.
| 500
|
[
{
"input": "8 4\n10010101",
"output": "2"
},
{
"input": "4 2\n1001",
"output": "-1"
},
{
"input": "8 4\n11100101",
"output": "3"
},
{
"input": "12 3\n101111100101",
"output": "4"
},
{
"input": "5 4\n11011",
"output": "1"
},
{
"input": "5 4\n10001",
"output": "1"
},
{
"input": "10 7\n1101111011",
"output": "2"
},
{
"input": "10 9\n1110000101",
"output": "1"
},
{
"input": "10 9\n1100000001",
"output": "1"
},
{
"input": "20 5\n11111111110111101001",
"output": "4"
},
{
"input": "20 11\n11100000111000011011",
"output": "2"
},
{
"input": "20 19\n10100000000000000001",
"output": "1"
},
{
"input": "50 13\n10011010100010100111010000010000000000010100000101",
"output": "5"
},
{
"input": "50 8\n11010100000011001100001100010001110000101100110011",
"output": "8"
},
{
"input": "99 4\n111111111111111111111111111111111111111111111111111111111011111111111111111111111111111111111111111",
"output": "25"
},
{
"input": "99 98\n100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "1"
},
{
"input": "100 5\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "20"
},
{
"input": "100 4\n1111111111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111",
"output": "25"
},
{
"input": "100 4\n1111111111111111111111111111111111111111111111111111111111111101111111011111111111111111111111111111",
"output": "25"
},
{
"input": "100 3\n1111110111111111111111111111111111111111101111111111111111111111111101111111111111111111111111111111",
"output": "34"
},
{
"input": "100 8\n1111111111101110111111111111111111111111111111111111111111111111111111110011111111111111011111111111",
"output": "13"
},
{
"input": "100 7\n1011111111111111111011101111111011111101111111111101111011110111111111111111111111110111111011111111",
"output": "15"
},
{
"input": "100 9\n1101111110111110101111111111111111011001110111011101011111111111010101111111100011011111111010111111",
"output": "12"
},
{
"input": "100 6\n1011111011111111111011010110011001010101111110111111000111011011111110101101110110101111110000100111",
"output": "18"
},
{
"input": "100 7\n1110001111101001110011111111111101111101101001010001101000101100000101101101011111111101101000100001",
"output": "16"
},
{
"input": "100 11\n1000010100011100011011100000010011001111011110100100001011010100011011111001101101110110010110001101",
"output": "10"
},
{
"input": "100 9\n1001001110000011100100000001000110111101101010101001000101001010011001101100110011011110110011011111",
"output": "13"
},
{
"input": "100 7\n1010100001110101111011000111000001110100100110110001110110011010100001100100001110111100110000101001",
"output": "18"
},
{
"input": "100 10\n1110110000000110000000101110100000111000001011100000100110010001110111001010101000011000000001011011",
"output": "12"
},
{
"input": "100 13\n1000000100000000100011000010010000101010011110000000001000011000110100001000010001100000011001011001",
"output": "9"
},
{
"input": "100 11\n1000000000100000010000100001000100000000010000100100000000100100001000000001011000110001000000000101",
"output": "12"
},
{
"input": "100 22\n1000100000001010000000000000000001000000100000000000000000010000000000001000000000000000000100000001",
"output": "7"
},
{
"input": "100 48\n1000000000000000011000000000000000000000000000000001100000000000000000000000000000000000000000000001",
"output": "3"
},
{
"input": "100 48\n1000000000000000000000100000000000000000000000000000000000000000000001000000000000000000100000000001",
"output": "3"
},
{
"input": "100 75\n1000000100000000000000000000000000000000000000000000000000000000000000000000000001000000000000000001",
"output": "3"
},
{
"input": "100 73\n1000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000001",
"output": "2"
},
{
"input": "100 99\n1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "1"
},
{
"input": "100 1\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "99"
},
{
"input": "100 2\n1111111111111111111111111111111110111111111111111111111111111111111111111111111111111111111111111111",
"output": "50"
},
{
"input": "100 1\n1111111111111111011111111111111111111111111111111111111111111111111101111111111111111111111111111111",
"output": "-1"
},
{
"input": "100 3\n1111111111111111111111111101111111111111111111111011111111111111111111111111111011111111111111111111",
"output": "33"
},
{
"input": "100 1\n1101111111111111111111101111111111111111111111111111111111111011111111101111101111111111111111111111",
"output": "-1"
},
{
"input": "100 6\n1111111111111111111111101111111101011110001111111111111111110111111111111111111111111110010111111111",
"output": "17"
},
{
"input": "100 2\n1111111101111010110111011011110111101111111011111101010101011111011111111111111011111001101111101111",
"output": "-1"
},
{
"input": "100 8\n1100110101111001101001111000111100110100011110111011001011111110000110101000001110111011100111011011",
"output": "14"
},
{
"input": "100 10\n1000111110100000001001101100000010011100010101001100010011111001001101111110110111101111001010001101",
"output": "11"
},
{
"input": "100 7\n1110000011010001110101011010000011110001000000011101110111010110001000011101111010010001101111110001",
"output": "-1"
},
{
"input": "100 3\n1111010001000001011011000011001111000100101000101101000010111101111000010000011110110011001101010111",
"output": "-1"
},
{
"input": "100 9\n1101010101101100010111011000010100001010000101010011001001100010110110000000010000101000000001101101",
"output": "13"
},
{
"input": "100 14\n1010100000000000010101000010001100000000000011100010000001000001011010001110001010100000100001101101",
"output": "9"
},
{
"input": "100 13\n1000000001101001110000010000011001000000000000001010000000100001001010000000000000000100010000000001",
"output": "-1"
},
{
"input": "100 18\n1000000000000000110000000000000000010000000001000001000001000000000100000000000010000000000000000001",
"output": "-1"
},
{
"input": "100 32\n1000000000000000000000000001000000000000000000000101000000000000000000000000000000000001000000000001",
"output": "-1"
},
{
"input": "100 79\n1000000001000000000101000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "2"
},
{
"input": "100 41\n1000000000000000000000000000000000010000000000000000000000000000000000000000100000000000000000000001",
"output": "3"
},
{
"input": "100 82\n1000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "2"
},
{
"input": "100 96\n1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "-1"
},
{
"input": "43 30\n1001000001111111010100100100110101011101101",
"output": "2"
},
{
"input": "7 1\n1111111",
"output": "6"
},
{
"input": "9 3\n101000001",
"output": "-1"
},
{
"input": "10 3\n1100000001",
"output": "-1"
},
{
"input": "8 2\n10000101",
"output": "-1"
},
{
"input": "2 1\n11",
"output": "1"
}
] | 1,588,907,977
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 63
| 109
| 6,963,200
|
"""
https://codeforces.com/problemset/problem/910/A
Input
n point that has to be reached
d max length of jump
s consisting of zeroes and ones
0 = no lily flower
1 = lily flower (frog can jump here)
Output
x min number of jumps needed to reach n
-1 if n can't be reached
"""
n, d = map(int, input().split())
s = input()
# index 0
n -= 1
reachable = True
reached = False
jumps = 0
i = 0
while reachable and not reached:
# can reach home now?
if n <= i + d:
reached = True
jumps += 1
break
# are there reachable flowers?
elif '1' not in s[i+1:i+d+1]:
reachable = False
# determine max jump
else:
jumps += 1
# get farthest reachable lily (1)
i += s[i+1:i+d+1].rfind('1') + 1
print(jumps if reached else -1)
|
Title: The Way to Home
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A frog lives on the axis *Ox* and needs to reach home which is in the point *n*. She starts from the point 1. The frog can jump to the right at a distance not more than *d*. So, after she jumped from the point *x* she can reach the point *x*<=+<=*a*, where *a* is an integer from 1 to *d*.
For each point from 1 to *n* is known if there is a lily flower in it. The frog can jump only in points with a lilies. Guaranteed that there are lilies in the points 1 and *n*.
Determine the minimal number of jumps that the frog needs to reach home which is in the point *n* from the point 1. Consider that initially the frog is in the point 1. If the frog can not reach home, print -1.
Input Specification:
The first line contains two integers *n* and *d* (2<=β€<=*n*<=β€<=100, 1<=β€<=*d*<=β€<=*n*<=-<=1) β the point, which the frog wants to reach, and the maximal length of the frog jump.
The second line contains a string *s* of length *n*, consisting of zeros and ones. If a character of the string *s* equals to zero, then in the corresponding point there is no lily flower. In the other case, in the corresponding point there is a lily flower. Guaranteed that the first and the last characters of the string *s* equal to one.
Output Specification:
If the frog can not reach the home, print -1.
In the other case, print the minimal number of jumps that the frog needs to reach the home which is in the point *n* from the point 1.
Demo Input:
['8 4\n10010101\n', '4 2\n1001\n', '8 4\n11100101\n', '12 3\n101111100101\n']
Demo Output:
['2\n', '-1\n', '3\n', '4\n']
Note:
In the first example the from can reach home in two jumps: the first jump from the point 1 to the point 4 (the length of the jump is three), and the second jump from the point 4 to the point 8 (the length of the jump is four).
In the second example the frog can not reach home, because to make it she need to jump on a distance three, but the maximum length of her jump equals to two.
|
```python
"""
https://codeforces.com/problemset/problem/910/A
Input
n point that has to be reached
d max length of jump
s consisting of zeroes and ones
0 = no lily flower
1 = lily flower (frog can jump here)
Output
x min number of jumps needed to reach n
-1 if n can't be reached
"""
n, d = map(int, input().split())
s = input()
# index 0
n -= 1
reachable = True
reached = False
jumps = 0
i = 0
while reachable and not reached:
# can reach home now?
if n <= i + d:
reached = True
jumps += 1
break
# are there reachable flowers?
elif '1' not in s[i+1:i+d+1]:
reachable = False
# determine max jump
else:
jumps += 1
# get farthest reachable lily (1)
i += s[i+1:i+d+1].rfind('1') + 1
print(jumps if reached else -1)
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
There is a rectangular grid of *n* rows of *m* initially-white cells each.
Arkady performed a certain number (possibly zero) of operations on it. In the *i*-th operation, a non-empty subset of rows *R**i* and a non-empty subset of columns *C**i* are chosen. For each row *r* in *R**i* and each column *c* in *C**i*, the intersection of row *r* and column *c* is coloured black.
There's another constraint: a row or a column can only be chosen at most once among all operations. In other words, it means that no pair of (*i*,<=*j*) (*i*<=<<=*j*) exists such that or , where denotes intersection of sets, and denotes the empty set.
You are to determine whether a valid sequence of operations exists that produces a given final grid.
|
The first line contains two space-separated integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=50)Β β the number of rows and columns of the grid, respectively.
Each of the following *n* lines contains a string of *m* characters, each being either '.' (denoting a white cell) or '#' (denoting a black cell), representing the desired setup.
|
If the given grid can be achieved by any valid sequence of operations, output "Yes"; otherwise output "No" (both without quotes).
You can print each character in any case (upper or lower).
|
[
"5 8\n.#.#..#.\n.....#..\n.#.#..#.\n#.#....#\n.....#..\n",
"5 5\n..#..\n..#..\n#####\n..#..\n..#..\n",
"5 9\n........#\n#........\n..##.#...\n.......#.\n....#.#.#\n"
] |
[
"Yes\n",
"No\n",
"No\n"
] |
For the first example, the desired setup can be produced by 3 operations, as is shown below.
For the second example, the desired setup cannot be produced, since in order to colour the center row, the third row and all columns must be selected in one operation, but after that no column can be selected again, hence it won't be possible to colour the other cells in the center column.
| 0
|
[
{
"input": "5 8\n.#.#..#.\n.....#..\n.#.#..#.\n#.#....#\n.....#..",
"output": "Yes"
},
{
"input": "5 5\n..#..\n..#..\n#####\n..#..\n..#..",
"output": "No"
},
{
"input": "5 9\n........#\n#........\n..##.#...\n.......#.\n....#.#.#",
"output": "No"
},
{
"input": "1 1\n#",
"output": "Yes"
},
{
"input": "2 1\n.\n#",
"output": "Yes"
},
{
"input": "2 5\n.####\n#..##",
"output": "No"
},
{
"input": "5 2\n##\n##\n..\n##\n..",
"output": "Yes"
},
{
"input": "5 2\n#.\n##\n##\n#.\n..",
"output": "No"
},
{
"input": "4 10\n###..#..##\n...##..#..\n.##..#..#.\n.........#",
"output": "No"
},
{
"input": "4 10\n..#......#\n.....##...\n#.........\n.#.......#",
"output": "No"
},
{
"input": "10 15\n.......#.......\n.....#.........\n....#..........\n....#..........\n.....#.........\n.....#.........\n#.............#\n...#..#........\n...............\n.............#.",
"output": "Yes"
},
{
"input": "50 1\n.\n.\n#\n.\n#\n.\n#\n.\n.\n#\n#\n#\n.\n#\n#\n#\n#\n.\n.\n.\n.\n.\n.\n.\n.\n.\n#\n#\n#\n#\n.\n.\n.\n.\n.\n#\n.\n.\n.\n#\n#\n.\n.\n#\n#\n.\n.\n#\n#\n.",
"output": "Yes"
},
{
"input": "2 50\n...#.##.###...#.#..##....##..........#.#..#.#####.\n...#.##.###...#.#..##....##..........#.#..#.#####.",
"output": "Yes"
},
{
"input": "50 2\n..\n..\n#.\n..\n.#\n..\n..\n..\n.#\n..\n..\n.#\n##\n..\n..\n..\n.#\n..\n..\n.#\n..\n..\n.#\n..\n..\n.#\n..\n.#\n..\n.#\n..\n.#\n.#\n.#\n..\n..\n..\n.#\n.#\n.#\n..\n..\n.#\n.#\n..\n..\n..\n..\n..\n..",
"output": "No"
},
{
"input": "1 1\n.",
"output": "Yes"
},
{
"input": "2 3\n#.#\n###",
"output": "No"
},
{
"input": "2 3\n#.#\n##.",
"output": "No"
},
{
"input": "4 4\n###.\n##.#\n#.##\n.###",
"output": "No"
},
{
"input": "3 3\n.##\n#.#\n##.",
"output": "No"
},
{
"input": "2 2\n##\n#.",
"output": "No"
}
] | 1,523,876,368
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 50
| 109
| 7,065,600
|
n,m = map(int, input().split())
x = []
for i in range(n):
l = list(input())
x.append(l)
for i in range(n):
for j in range(n):
if x[i] != x[j]:
for z in range(m):
if x[i][z] == x[j][z] == '#':
print('No')
exit()
print('Yes')
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There is a rectangular grid of *n* rows of *m* initially-white cells each.
Arkady performed a certain number (possibly zero) of operations on it. In the *i*-th operation, a non-empty subset of rows *R**i* and a non-empty subset of columns *C**i* are chosen. For each row *r* in *R**i* and each column *c* in *C**i*, the intersection of row *r* and column *c* is coloured black.
There's another constraint: a row or a column can only be chosen at most once among all operations. In other words, it means that no pair of (*i*,<=*j*) (*i*<=<<=*j*) exists such that or , where denotes intersection of sets, and denotes the empty set.
You are to determine whether a valid sequence of operations exists that produces a given final grid.
Input Specification:
The first line contains two space-separated integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=50)Β β the number of rows and columns of the grid, respectively.
Each of the following *n* lines contains a string of *m* characters, each being either '.' (denoting a white cell) or '#' (denoting a black cell), representing the desired setup.
Output Specification:
If the given grid can be achieved by any valid sequence of operations, output "Yes"; otherwise output "No" (both without quotes).
You can print each character in any case (upper or lower).
Demo Input:
['5 8\n.#.#..#.\n.....#..\n.#.#..#.\n#.#....#\n.....#..\n', '5 5\n..#..\n..#..\n#####\n..#..\n..#..\n', '5 9\n........#\n#........\n..##.#...\n.......#.\n....#.#.#\n']
Demo Output:
['Yes\n', 'No\n', 'No\n']
Note:
For the first example, the desired setup can be produced by 3 operations, as is shown below.
For the second example, the desired setup cannot be produced, since in order to colour the center row, the third row and all columns must be selected in one operation, but after that no column can be selected again, hence it won't be possible to colour the other cells in the center column.
|
```python
n,m = map(int, input().split())
x = []
for i in range(n):
l = list(input())
x.append(l)
for i in range(n):
for j in range(n):
if x[i] != x[j]:
for z in range(m):
if x[i][z] == x[j][z] == '#':
print('No')
exit()
print('Yes')
```
| 3
|
|
681
|
A
|
A Good Contest
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Codeforces user' handle color depends on his ratingΒ β it is red if his rating is greater or equal to 2400; it is orange if his rating is less than 2400 but greater or equal to 2200, etc. Each time participant takes part in a rated contest, his rating is changed depending on his performance.
Anton wants the color of his handle to become red. He considers his performance in the rated contest to be good if he outscored some participant, whose handle was colored red before the contest and his rating has increased after it.
Anton has written a program that analyses contest results and determines whether he performed good or not. Are you able to do the same?
|
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=100)Β β the number of participants Anton has outscored in this contest .
The next *n* lines describe participants results: the *i*-th of them consists of a participant handle *name**i* and two integers *before**i* and *after**i* (<=-<=4000<=β€<=*before**i*,<=*after**i*<=β€<=4000)Β β participant's rating before and after the contest, respectively. Each handle is a non-empty string, consisting of no more than 10 characters, which might be lowercase and uppercase English letters, digits, characters Β«_Β» and Β«-Β» characters.
It is guaranteed that all handles are distinct.
|
Print Β«YESΒ» (quotes for clarity), if Anton has performed good in the contest and Β«NOΒ» (quotes for clarity) otherwise.
|
[
"3\nBurunduk1 2526 2537\nBudAlNik 2084 2214\nsubscriber 2833 2749\n",
"3\nApplejack 2400 2400\nFluttershy 2390 2431\nPinkie_Pie -2500 -2450\n"
] |
[
"YES",
"NO"
] |
In the first sample, Anton has outscored user with handle Burunduk1, whose handle was colored red before the contest and his rating has increased after the contest.
In the second sample, Applejack's rating has not increased after the contest, while both Fluttershy's and Pinkie_Pie's handles were not colored red before the contest.
| 500
|
[
{
"input": "3\nBurunduk1 2526 2537\nBudAlNik 2084 2214\nsubscriber 2833 2749",
"output": "YES"
},
{
"input": "3\nApplejack 2400 2400\nFluttershy 2390 2431\nPinkie_Pie -2500 -2450",
"output": "NO"
},
{
"input": "1\nDb -3373 3591",
"output": "NO"
},
{
"input": "5\nQ2bz 960 2342\nhmX 2710 -1348\ngbAe -1969 -963\nE -160 196\npsi 2665 -3155",
"output": "NO"
},
{
"input": "9\nmwAz9lQ 1786 -1631\nnYgYFXZQfY -1849 -1775\nKU4jF -1773 -3376\nopR 3752 2931\nGl -1481 -1002\nR -1111 3778\n0i9B21DC 3650 289\nQ8L2dS0 358 -3305\ng -2662 3968",
"output": "NO"
},
{
"input": "5\nzMSBcOUf -2883 -2238\nYN -3314 -1480\nfHpuccQn06 -1433 -589\naM1NVEPQi 399 3462\n_L 2516 -3290",
"output": "NO"
},
{
"input": "1\na 2400 2401",
"output": "YES"
},
{
"input": "1\nfucker 4000 4000",
"output": "NO"
},
{
"input": "1\nJora 2400 2401",
"output": "YES"
},
{
"input": "1\nACA 2400 2420",
"output": "YES"
},
{
"input": "1\nAca 2400 2420",
"output": "YES"
},
{
"input": "1\nSub_d 2401 2402",
"output": "YES"
},
{
"input": "2\nHack 2400 2401\nDum 1243 555",
"output": "YES"
},
{
"input": "1\nXXX 2400 2500",
"output": "YES"
},
{
"input": "1\nfucker 2400 2401",
"output": "YES"
},
{
"input": "1\nX 2400 2500",
"output": "YES"
},
{
"input": "1\nvineet 2400 2401",
"output": "YES"
},
{
"input": "1\nabc 2400 2500",
"output": "YES"
},
{
"input": "1\naaaaa 2400 2401",
"output": "YES"
},
{
"input": "1\nhoge 2400 2401",
"output": "YES"
},
{
"input": "1\nInfinity 2400 2468",
"output": "YES"
},
{
"input": "1\nBurunduk1 2400 2401",
"output": "YES"
},
{
"input": "1\nFuck 2400 2401",
"output": "YES"
},
{
"input": "1\nfuck 2400 2401",
"output": "YES"
},
{
"input": "3\nApplejack 2400 2401\nFluttershy 2390 2431\nPinkie_Pie -2500 -2450",
"output": "YES"
},
{
"input": "1\nalex 2400 2401",
"output": "YES"
},
{
"input": "1\nA 2400 2401",
"output": "YES"
},
{
"input": "1\na 2400 2455",
"output": "YES"
},
{
"input": "1\nlol 2400 2401",
"output": "YES"
},
{
"input": "2\nBurunduk1 2400 2537\nBudAlNik 2084 2214",
"output": "YES"
},
{
"input": "1\naaaaaa 2400 2401",
"output": "YES"
},
{
"input": "1\nBurunduk1 2400 2500",
"output": "YES"
},
{
"input": "1\nds 2400 2410",
"output": "YES"
},
{
"input": "1\nas 2400 2401",
"output": "YES"
},
{
"input": "1\nabc 2400 2401",
"output": "YES"
},
{
"input": "3\nBudAlNik 2084 2214\nsubscriber 2833 2749\nBurunduk1 2526 2537",
"output": "YES"
},
{
"input": "1\ncaonima 2400 2401",
"output": "YES"
},
{
"input": "1\narr 2400 2500",
"output": "YES"
},
{
"input": "1\nx 2400 2401",
"output": "YES"
},
{
"input": "1\narrr 2400 2500",
"output": "YES"
},
{
"input": "1\nabc 2400 2405",
"output": "YES"
},
{
"input": "3\nBurunduk1 2400 2420\nBudAlNik 2084 2214\nsubscriber 2833 2749",
"output": "YES"
},
{
"input": "1\nBurunduk1 2400 2537",
"output": "YES"
},
{
"input": "1\nHELLO 2400 2401",
"output": "YES"
},
{
"input": "1\neatmore 2400 2500",
"output": "YES"
},
{
"input": "1\nb 2400 2401",
"output": "YES"
},
{
"input": "3\nBurunduk1 2400 2537\nBudAlNik 2084 2214\nsubscriber 2833 2749",
"output": "YES"
},
{
"input": "1\nApplejack 2400 2410",
"output": "YES"
},
{
"input": "1\nabacaba 2400 2451",
"output": "YES"
},
{
"input": "1\nrekt_n00b 2500 2600",
"output": "YES"
}
] | 1,657,044,670
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 60
| 46
| 0
|
n=int(input())
part=[]
for i in range(n):
x=input().split()
part.append([x[0]]+list(map(int,x[1:])))
for i in part:
if i[1]>=2400 and i[2]>i[1]:
print("YES")
break
else:
print("NO")
|
Title: A Good Contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Codeforces user' handle color depends on his ratingΒ β it is red if his rating is greater or equal to 2400; it is orange if his rating is less than 2400 but greater or equal to 2200, etc. Each time participant takes part in a rated contest, his rating is changed depending on his performance.
Anton wants the color of his handle to become red. He considers his performance in the rated contest to be good if he outscored some participant, whose handle was colored red before the contest and his rating has increased after it.
Anton has written a program that analyses contest results and determines whether he performed good or not. Are you able to do the same?
Input Specification:
The first line of the input contains a single integer *n* (1<=β€<=*n*<=β€<=100)Β β the number of participants Anton has outscored in this contest .
The next *n* lines describe participants results: the *i*-th of them consists of a participant handle *name**i* and two integers *before**i* and *after**i* (<=-<=4000<=β€<=*before**i*,<=*after**i*<=β€<=4000)Β β participant's rating before and after the contest, respectively. Each handle is a non-empty string, consisting of no more than 10 characters, which might be lowercase and uppercase English letters, digits, characters Β«_Β» and Β«-Β» characters.
It is guaranteed that all handles are distinct.
Output Specification:
Print Β«YESΒ» (quotes for clarity), if Anton has performed good in the contest and Β«NOΒ» (quotes for clarity) otherwise.
Demo Input:
['3\nBurunduk1 2526 2537\nBudAlNik 2084 2214\nsubscriber 2833 2749\n', '3\nApplejack 2400 2400\nFluttershy 2390 2431\nPinkie_Pie -2500 -2450\n']
Demo Output:
['YES', 'NO']
Note:
In the first sample, Anton has outscored user with handle Burunduk1, whose handle was colored red before the contest and his rating has increased after the contest.
In the second sample, Applejack's rating has not increased after the contest, while both Fluttershy's and Pinkie_Pie's handles were not colored red before the contest.
|
```python
n=int(input())
part=[]
for i in range(n):
x=input().split()
part.append([x[0]]+list(map(int,x[1:])))
for i in part:
if i[1]>=2400 and i[2]>i[1]:
print("YES")
break
else:
print("NO")
```
| 3
|
|
999
|
D
|
Equalize the Remainders
|
PROGRAMMING
| 1,900
|
[
"data structures",
"greedy",
"implementation"
] | null | null |
You are given an array consisting of $n$ integers $a_1, a_2, \dots, a_n$, and a positive integer $m$. It is guaranteed that $m$ is a divisor of $n$.
In a single move, you can choose any position $i$ between $1$ and $n$ and increase $a_i$ by $1$.
Let's calculate $c_r$ ($0 \le r \le m-1)$ β the number of elements having remainder $r$ when divided by $m$. In other words, for each remainder, let's find the number of corresponding elements in $a$ with that remainder.
Your task is to change the array in such a way that $c_0 = c_1 = \dots = c_{m-1} = \frac{n}{m}$.
Find the minimum number of moves to satisfy the above requirement.
|
The first line of input contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5, 1 \le m \le n$). It is guaranteed that $m$ is a divisor of $n$.
The second line of input contains $n$ integers $a_1, a_2, \dots, a_n$ ($0 \le a_i \le 10^9$), the elements of the array.
|
In the first line, print a single integer β the minimum number of moves required to satisfy the following condition: for each remainder from $0$ to $m - 1$, the number of elements of the array having this remainder equals $\frac{n}{m}$.
In the second line, print any array satisfying the condition and can be obtained from the given array with the minimum number of moves. The values of the elements of the resulting array must not exceed $10^{18}$.
|
[
"6 3\n3 2 0 6 10 12\n",
"4 2\n0 1 2 3\n"
] |
[
"3\n3 2 0 7 10 14 \n",
"0\n0 1 2 3 \n"
] |
none
| 0
|
[
{
"input": "6 3\n3 2 0 6 10 12",
"output": "3\n3 2 0 7 10 14 "
},
{
"input": "4 2\n0 1 2 3",
"output": "0\n0 1 2 3 "
},
{
"input": "1 1\n1000000000",
"output": "0\n1000000000 "
},
{
"input": "6 3\n3 2 0 6 10 11",
"output": "1\n3 2 0 7 10 11 "
},
{
"input": "100 25\n6745 2075 7499 7517 1776 5164 2335 2745 4465 1457 7565 2232 2486 9025 8059 9646 8017 7662 9690 3352 2306 366 7422 1073 7169 8966 4506 8225 5614 8628 2908 7452 9625 9332 7097 353 1043 8118 5794 4486 626 971 6731 6618 887 6354 4814 7307 7681 6160 9351 2579 411 3436 5570 2812 2726 4433 3220 577 5891 3861 528 2183 127 5579 6979 4005 9953 5038 9937 4792 3003 9417 8796 1565 11 2596 2486 3494 4464 9568 5512 5565 9822 9820 4848 2889 9527 2249 9860 8236 256 8434 8038 6407 5570 5922 7435 2815",
"output": "88\n6745 2075 7499 7517 1776 5164 2335 2745 4465 1457 7565 2232 2486 9025 8059 9646 8017 7662 9690 3352 2306 366 7422 1073 7169 8966 4506 8225 5614 8628 2908 7452 9625 9332 7097 353 1043 8118 5794 4486 626 971 6731 6618 887 6354 4814 7307 7681 6160 9351 2579 411 3436 5570 2812 2726 4433 3220 577 5891 3863 528 2183 127 5579 6979 4005 9953 5038 9937 4792 3005 9417 8796 1565 24 2596 2505 3494 4464 9568 5513 5566 9822 9823 4848 2899 9530 2249 9860 8259 259 8434 8038 6408 5573 5922 7435 2819 "
}
] | 1,659,819,056
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 47
| 389
| 53,862,400
|
from collections import *
from heapq import *
from bisect import *
from itertools import *
from functools import *
from math import *
from string import *
import sys
input = sys.stdin.readline
def main():
n, m = map(int, input().split())
A = list(map(int, input().split()))
target = n // m
locs = [[] for _ in range(m)]
for i, x in enumerate(A):
locs[x % m].append(i)
ans = 0
free = []
for _ in range(2):
for k in range(m):
while len(locs[k]) > target:
i = locs[k].pop()
free.append([i, k])
while len(locs[k]) < target and free:
pos, mod_class = free.pop()
dist = (k - mod_class) % m
A[pos] += dist
ans += dist
locs[k].append(pos)
print(ans)
print(*A)
if __name__ == "__main__":
main()
|
Title: Equalize the Remainders
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given an array consisting of $n$ integers $a_1, a_2, \dots, a_n$, and a positive integer $m$. It is guaranteed that $m$ is a divisor of $n$.
In a single move, you can choose any position $i$ between $1$ and $n$ and increase $a_i$ by $1$.
Let's calculate $c_r$ ($0 \le r \le m-1)$ β the number of elements having remainder $r$ when divided by $m$. In other words, for each remainder, let's find the number of corresponding elements in $a$ with that remainder.
Your task is to change the array in such a way that $c_0 = c_1 = \dots = c_{m-1} = \frac{n}{m}$.
Find the minimum number of moves to satisfy the above requirement.
Input Specification:
The first line of input contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5, 1 \le m \le n$). It is guaranteed that $m$ is a divisor of $n$.
The second line of input contains $n$ integers $a_1, a_2, \dots, a_n$ ($0 \le a_i \le 10^9$), the elements of the array.
Output Specification:
In the first line, print a single integer β the minimum number of moves required to satisfy the following condition: for each remainder from $0$ to $m - 1$, the number of elements of the array having this remainder equals $\frac{n}{m}$.
In the second line, print any array satisfying the condition and can be obtained from the given array with the minimum number of moves. The values of the elements of the resulting array must not exceed $10^{18}$.
Demo Input:
['6 3\n3 2 0 6 10 12\n', '4 2\n0 1 2 3\n']
Demo Output:
['3\n3 2 0 7 10 14 \n', '0\n0 1 2 3 \n']
Note:
none
|
```python
from collections import *
from heapq import *
from bisect import *
from itertools import *
from functools import *
from math import *
from string import *
import sys
input = sys.stdin.readline
def main():
n, m = map(int, input().split())
A = list(map(int, input().split()))
target = n // m
locs = [[] for _ in range(m)]
for i, x in enumerate(A):
locs[x % m].append(i)
ans = 0
free = []
for _ in range(2):
for k in range(m):
while len(locs[k]) > target:
i = locs[k].pop()
free.append([i, k])
while len(locs[k]) < target and free:
pos, mod_class = free.pop()
dist = (k - mod_class) % m
A[pos] += dist
ans += dist
locs[k].append(pos)
print(ans)
print(*A)
if __name__ == "__main__":
main()
```
| 3
|
|
509
|
A
|
Maximum in Table
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
An *n*<=Γ<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=Γ<=*n* table defined by the rules above.
|
The only line of input contains a positive integer *n* (1<=β€<=*n*<=β€<=10) β the number of rows and columns of the table.
|
Print a single line containing a positive integer *m* β the maximum value in the table.
|
[
"1\n",
"5\n"
] |
[
"1",
"70"
] |
In the second test the rows of the table look as follows:
| 0
|
[
{
"input": "1",
"output": "1"
},
{
"input": "5",
"output": "70"
},
{
"input": "2",
"output": "2"
},
{
"input": "3",
"output": "6"
},
{
"input": "4",
"output": "20"
},
{
"input": "6",
"output": "252"
},
{
"input": "7",
"output": "924"
},
{
"input": "9",
"output": "12870"
},
{
"input": "10",
"output": "48620"
},
{
"input": "8",
"output": "3432"
}
] | 1,608,171,709
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 10
| 108
| 307,200
|
n=int(input())
if n==1:
print("1")
else:
dic=dict()
L1=[1 for i in range(n)]
dic[0]=L1
for i in range(1,n):
L=[1 for i in range(n)]
dic[i]=L
for j in range(1,n):
dic[i][j]=dic[i-1][j]+dic[i][j-1]
print(max(dic[len(dic)-1]))
|
Title: Maximum in Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An *n*<=Γ<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=Γ<=*n* table defined by the rules above.
Input Specification:
The only line of input contains a positive integer *n* (1<=β€<=*n*<=β€<=10) β the number of rows and columns of the table.
Output Specification:
Print a single line containing a positive integer *m* β the maximum value in the table.
Demo Input:
['1\n', '5\n']
Demo Output:
['1', '70']
Note:
In the second test the rows of the table look as follows:
|
```python
n=int(input())
if n==1:
print("1")
else:
dic=dict()
L1=[1 for i in range(n)]
dic[0]=L1
for i in range(1,n):
L=[1 for i in range(n)]
dic[i]=L
for j in range(1,n):
dic[i][j]=dic[i-1][j]+dic[i][j-1]
print(max(dic[len(dic)-1]))
```
| 3
|
|
509
|
A
|
Maximum in Table
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
An *n*<=Γ<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=Γ<=*n* table defined by the rules above.
|
The only line of input contains a positive integer *n* (1<=β€<=*n*<=β€<=10) β the number of rows and columns of the table.
|
Print a single line containing a positive integer *m* β the maximum value in the table.
|
[
"1\n",
"5\n"
] |
[
"1",
"70"
] |
In the second test the rows of the table look as follows:
| 0
|
[
{
"input": "1",
"output": "1"
},
{
"input": "5",
"output": "70"
},
{
"input": "2",
"output": "2"
},
{
"input": "3",
"output": "6"
},
{
"input": "4",
"output": "20"
},
{
"input": "6",
"output": "252"
},
{
"input": "7",
"output": "924"
},
{
"input": "9",
"output": "12870"
},
{
"input": "10",
"output": "48620"
},
{
"input": "8",
"output": "3432"
}
] | 1,649,780,326
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 10
| 46
| 0
|
n=int(input())
if n<3:
print(n)
else:
l=[]
for i in range(n):
p=[]
for j in range(n):
if i==0 or j==0:
p.append(1)
else:
p.append(p[j-1]+l[i-1][j])
l.append(p)
print(l[n-1][n-1])
|
Title: Maximum in Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An *n*<=Γ<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=Γ<=*n* table defined by the rules above.
Input Specification:
The only line of input contains a positive integer *n* (1<=β€<=*n*<=β€<=10) β the number of rows and columns of the table.
Output Specification:
Print a single line containing a positive integer *m* β the maximum value in the table.
Demo Input:
['1\n', '5\n']
Demo Output:
['1', '70']
Note:
In the second test the rows of the table look as follows:
|
```python
n=int(input())
if n<3:
print(n)
else:
l=[]
for i in range(n):
p=[]
for j in range(n):
if i==0 or j==0:
p.append(1)
else:
p.append(p[j-1]+l[i-1][j])
l.append(p)
print(l[n-1][n-1])
```
| 3
|
|
869
|
A
|
The Artful Expedient
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation"
] | null | null |
Rock... Paper!
After Karen have found the deterministic winning (losing?) strategy for rock-paper-scissors, her brother, Koyomi, comes up with a new game as a substitute. The game works as follows.
A positive integer *n* is decided first. Both Koyomi and Karen independently choose *n* distinct positive integers, denoted by *x*1,<=*x*2,<=...,<=*x**n* and *y*1,<=*y*2,<=...,<=*y**n* respectively. They reveal their sequences, and repeat until all of 2*n* integers become distinct, which is the only final state to be kept and considered.
Then they count the number of ordered pairs (*i*,<=*j*) (1<=β€<=*i*,<=*j*<=β€<=*n*) such that the value *x**i* xor *y**j* equals to one of the 2*n* integers. Here xor means the [bitwise exclusive or](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) operation on two integers, and is denoted by operators ^ and/or xor in most programming languages.
Karen claims a win if the number of such pairs is even, and Koyomi does otherwise. And you're here to help determine the winner of their latest game.
|
The first line of input contains a positive integer *n* (1<=β€<=*n*<=β€<=2<=000) β the length of both sequences.
The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (1<=β€<=*x**i*<=β€<=2Β·106) β the integers finally chosen by Koyomi.
The third line contains *n* space-separated integers *y*1,<=*y*2,<=...,<=*y**n* (1<=β€<=*y**i*<=β€<=2Β·106) β the integers finally chosen by Karen.
Input guarantees that the given 2*n* integers are pairwise distinct, that is, no pair (*i*,<=*j*) (1<=β€<=*i*,<=*j*<=β€<=*n*) exists such that one of the following holds: *x**i*<==<=*y**j*; *i*<=β <=*j* and *x**i*<==<=*x**j*; *i*<=β <=*j* and *y**i*<==<=*y**j*.
|
Output one line β the name of the winner, that is, "Koyomi" or "Karen" (without quotes). Please be aware of the capitalization.
|
[
"3\n1 2 3\n4 5 6\n",
"5\n2 4 6 8 10\n9 7 5 3 1\n"
] |
[
"Karen\n",
"Karen\n"
] |
In the first example, there are 6 pairs satisfying the constraint: (1,β1), (1,β2), (2,β1), (2,β3), (3,β2) and (3,β3). Thus, Karen wins since 6 is an even number.
In the second example, there are 16 such pairs, and Karen wins again.
| 500
|
[
{
"input": "3\n1 2 3\n4 5 6",
"output": "Karen"
},
{
"input": "5\n2 4 6 8 10\n9 7 5 3 1",
"output": "Karen"
},
{
"input": "1\n1\n2000000",
"output": "Karen"
},
{
"input": "2\n97153 2000000\n1999998 254",
"output": "Karen"
},
{
"input": "15\n31 30 29 28 27 26 25 24 23 22 21 20 19 18 17\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15",
"output": "Karen"
},
{
"input": "30\n79656 68607 871714 1858841 237684 1177337 532141 161161 1111201 527235 323345 1979059 665353 507265 1290761 610606 1238375 743262 106355 1167830 180315 1233029 816465 752968 782570 1499881 1328457 1867240 13948 1302782\n322597 1868510 1958236 1348157 765908 1023636 874300 537124 631783 414906 886318 1931572 1381013 992451 1305644 1525745 716087 83173 303248 1572710 43084 333341 992413 267806 70390 644521 1014900 497068 178940 1920268",
"output": "Karen"
},
{
"input": "30\n1143673 436496 1214486 1315862 148404 724601 1430740 1433008 1654610 1635673 614673 1713408 1270999 1697 1463796 50027 525482 1659078 688200 842647 518551 877506 1017082 1807856 3280 759698 1208220 470180 829800 1960886\n1312613 1965095 967255 1289012 1950383 582960 856825 49684 808824 319418 1968270 190821 344545 211332 1219388 1773751 1876402 132626 541448 1584672 24276 1053225 1823073 1858232 1209173 1035991 1956373 1237148 1973608 848873",
"output": "Karen"
},
{
"input": "1\n2\n3",
"output": "Karen"
},
{
"input": "1\n1048576\n1020000",
"output": "Karen"
},
{
"input": "3\n9 33 69\n71 74 100",
"output": "Karen"
},
{
"input": "3\n1 2 3\n9 5 6",
"output": "Karen"
},
{
"input": "3\n1 7 8\n9 10 20",
"output": "Karen"
},
{
"input": "3\n1 3 2\n4 5 8",
"output": "Karen"
},
{
"input": "3\n2 1 100\n3 4 9",
"output": "Karen"
},
{
"input": "3\n3 1 100\n2 1000 100000",
"output": "Karen"
},
{
"input": "3\n1 2 5\n3 4 6",
"output": "Karen"
},
{
"input": "3\n3 1 8\n2 4 17",
"output": "Karen"
},
{
"input": "3\n1 5 6\n7 8 3",
"output": "Karen"
},
{
"input": "1\n1\n3",
"output": "Karen"
},
{
"input": "3\n1 3 10\n2 4 20",
"output": "Karen"
},
{
"input": "3\n7 8 10\n15 9 11",
"output": "Karen"
},
{
"input": "3\n5 6 8\n3 100 9",
"output": "Karen"
},
{
"input": "3\n1 2 3\n4 5 8",
"output": "Karen"
},
{
"input": "3\n1 2 19\n3 7 30",
"output": "Karen"
},
{
"input": "3\n1 2 3\n6 7 8",
"output": "Karen"
},
{
"input": "3\n1 4 55\n2 3 9",
"output": "Karen"
},
{
"input": "3\n1 100 200\n5 4 500",
"output": "Karen"
},
{
"input": "1\n6\n7",
"output": "Karen"
},
{
"input": "3\n1 3 5\n2 4 13",
"output": "Karen"
},
{
"input": "3\n3 1 100\n2 1000 10000",
"output": "Karen"
},
{
"input": "3\n1 3 9\n2 4 40",
"output": "Karen"
},
{
"input": "2\n1 199999\n1935807 2000000",
"output": "Karen"
},
{
"input": "3\n1 3 8\n2 4 24",
"output": "Karen"
},
{
"input": "2\n4 1\n7 3",
"output": "Karen"
},
{
"input": "3\n1 2 4\n3 7 8",
"output": "Karen"
},
{
"input": "3\n1 6 10000\n2 3 100000",
"output": "Karen"
}
] | 1,507,577,167
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 62
| 307,200
|
a = int(input())
b= input()
c = input()
print("Karen")
|
Title: The Artful Expedient
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Rock... Paper!
After Karen have found the deterministic winning (losing?) strategy for rock-paper-scissors, her brother, Koyomi, comes up with a new game as a substitute. The game works as follows.
A positive integer *n* is decided first. Both Koyomi and Karen independently choose *n* distinct positive integers, denoted by *x*1,<=*x*2,<=...,<=*x**n* and *y*1,<=*y*2,<=...,<=*y**n* respectively. They reveal their sequences, and repeat until all of 2*n* integers become distinct, which is the only final state to be kept and considered.
Then they count the number of ordered pairs (*i*,<=*j*) (1<=β€<=*i*,<=*j*<=β€<=*n*) such that the value *x**i* xor *y**j* equals to one of the 2*n* integers. Here xor means the [bitwise exclusive or](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) operation on two integers, and is denoted by operators ^ and/or xor in most programming languages.
Karen claims a win if the number of such pairs is even, and Koyomi does otherwise. And you're here to help determine the winner of their latest game.
Input Specification:
The first line of input contains a positive integer *n* (1<=β€<=*n*<=β€<=2<=000) β the length of both sequences.
The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (1<=β€<=*x**i*<=β€<=2Β·106) β the integers finally chosen by Koyomi.
The third line contains *n* space-separated integers *y*1,<=*y*2,<=...,<=*y**n* (1<=β€<=*y**i*<=β€<=2Β·106) β the integers finally chosen by Karen.
Input guarantees that the given 2*n* integers are pairwise distinct, that is, no pair (*i*,<=*j*) (1<=β€<=*i*,<=*j*<=β€<=*n*) exists such that one of the following holds: *x**i*<==<=*y**j*; *i*<=β <=*j* and *x**i*<==<=*x**j*; *i*<=β <=*j* and *y**i*<==<=*y**j*.
Output Specification:
Output one line β the name of the winner, that is, "Koyomi" or "Karen" (without quotes). Please be aware of the capitalization.
Demo Input:
['3\n1 2 3\n4 5 6\n', '5\n2 4 6 8 10\n9 7 5 3 1\n']
Demo Output:
['Karen\n', 'Karen\n']
Note:
In the first example, there are 6 pairs satisfying the constraint: (1,β1), (1,β2), (2,β1), (2,β3), (3,β2) and (3,β3). Thus, Karen wins since 6 is an even number.
In the second example, there are 16 such pairs, and Karen wins again.
|
```python
a = int(input())
b= input()
c = input()
print("Karen")
```
| 3
|
|
32
|
A
|
Reconnaissance
|
PROGRAMMING
| 800
|
[
"brute force"
] |
A. Reconnaissance
|
2
|
256
|
According to the regulations of Berland's army, a reconnaissance unit should consist of exactly two soldiers. Since these two soldiers shouldn't differ much, their heights can differ by at most *d* centimeters. Captain Bob has *n* soldiers in his detachment. Their heights are *a*1,<=*a*2,<=...,<=*a**n* centimeters. Some soldiers are of the same height. Bob wants to know, how many ways exist to form a reconnaissance unit of two soldiers from his detachment.
Ways (1,<=2) and (2,<=1) should be regarded as different.
|
The first line contains two integers *n* and *d* (1<=β€<=*n*<=β€<=1000,<=1<=β€<=*d*<=β€<=109) β amount of soldiers in Bob's detachment and the maximum allowed height difference respectively. The second line contains *n* space-separated integers β heights of all the soldiers in Bob's detachment. These numbers don't exceed 109.
|
Output one number β amount of ways to form a reconnaissance unit of two soldiers, whose height difference doesn't exceed *d*.
|
[
"5 10\n10 20 50 60 65\n",
"5 1\n55 30 29 31 55\n"
] |
[
"6\n",
"6\n"
] |
none
| 500
|
[
{
"input": "5 10\n10 20 50 60 65",
"output": "6"
},
{
"input": "5 1\n55 30 29 31 55",
"output": "6"
},
{
"input": "6 10\n4 6 4 1 9 3",
"output": "30"
},
{
"input": "7 100\n19 1694 261 162 1 234 513",
"output": "8"
},
{
"input": "8 42\n37 53 74 187 568 22 5 65",
"output": "20"
},
{
"input": "10 4\n11 6 76 49 28 20 57 152 5 32",
"output": "4"
},
{
"input": "100 100\n51 93 101 960 2 477 213 129 663 925 254 78 1486 274 160 481 132 156 412 372 5 57 152 298 1771 7 359 468 254 406 202 929 221 366 552 97 555 29 822 118 539 140 992 854 7 163 134 103 940 30 409 1003 398 43 555 79 107 40 23 103 643 171 310 382 770 337 18 189 570 177 29 54 855 171 205 291 299 935 620 180 114 358 88 292 118 400 218 537 369 60 683 192 13 537 59 824 264 191 3 300",
"output": "2404"
}
] | 1,558,289,754
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 778
| 307,200
|
n,d = input().split()
l = list(map(int,input().split()))
l.sort()
c=0
for i in range(0,len(l)):
for j in range(i+1,len(l)):
if l[j]-l[i] <= int(d): c=c+1
else:break
print(2*c)
|
Title: Reconnaissance
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
According to the regulations of Berland's army, a reconnaissance unit should consist of exactly two soldiers. Since these two soldiers shouldn't differ much, their heights can differ by at most *d* centimeters. Captain Bob has *n* soldiers in his detachment. Their heights are *a*1,<=*a*2,<=...,<=*a**n* centimeters. Some soldiers are of the same height. Bob wants to know, how many ways exist to form a reconnaissance unit of two soldiers from his detachment.
Ways (1,<=2) and (2,<=1) should be regarded as different.
Input Specification:
The first line contains two integers *n* and *d* (1<=β€<=*n*<=β€<=1000,<=1<=β€<=*d*<=β€<=109) β amount of soldiers in Bob's detachment and the maximum allowed height difference respectively. The second line contains *n* space-separated integers β heights of all the soldiers in Bob's detachment. These numbers don't exceed 109.
Output Specification:
Output one number β amount of ways to form a reconnaissance unit of two soldiers, whose height difference doesn't exceed *d*.
Demo Input:
['5 10\n10 20 50 60 65\n', '5 1\n55 30 29 31 55\n']
Demo Output:
['6\n', '6\n']
Note:
none
|
```python
n,d = input().split()
l = list(map(int,input().split()))
l.sort()
c=0
for i in range(0,len(l)):
for j in range(i+1,len(l)):
if l[j]-l[i] <= int(d): c=c+1
else:break
print(2*c)
```
| 3.804928
|
126
|
B
|
Password
|
PROGRAMMING
| 1,700
|
[
"binary search",
"dp",
"hashing",
"string suffix structures",
"strings"
] | null | null |
Asterix, Obelix and their temporary buddies Suffix and Prefix has finally found the Harmony temple. However, its doors were firmly locked and even Obelix had no luck opening them.
A little later they found a string *s*, carved on a rock below the temple's gates. Asterix supposed that that's the password that opens the temple and read the string aloud. However, nothing happened. Then Asterix supposed that a password is some substring *t* of the string *s*.
Prefix supposed that the substring *t* is the beginning of the string *s*; Suffix supposed that the substring *t* should be the end of the string *s*; and Obelix supposed that *t* should be located somewhere inside the string *s*, that is, *t* is neither its beginning, nor its end.
Asterix chose the substring *t* so as to please all his companions. Besides, from all acceptable variants Asterix chose the longest one (as Asterix loves long strings). When Asterix read the substring *t* aloud, the temple doors opened.
You know the string *s*. Find the substring *t* or determine that such substring does not exist and all that's been written above is just a nice legend.
|
You are given the string *s* whose length can vary from 1 to 106 (inclusive), consisting of small Latin letters.
|
Print the string *t*. If a suitable *t* string does not exist, then print "Just a legend" without the quotes.
|
[
"fixprefixsuffix\n",
"abcdabc\n"
] |
[
"fix",
"Just a legend"
] |
none
| 1,000
|
[
{
"input": "fixprefixsuffix",
"output": "fix"
},
{
"input": "abcdabc",
"output": "Just a legend"
},
{
"input": "qwertyqwertyqwerty",
"output": "qwerty"
},
{
"input": "papapapap",
"output": "papap"
},
{
"input": "aaaaaaaaaa",
"output": "aaaaaaaa"
},
{
"input": "ghbdtn",
"output": "Just a legend"
},
{
"input": "a",
"output": "Just a legend"
},
{
"input": "aa",
"output": "Just a legend"
},
{
"input": "ab",
"output": "Just a legend"
},
{
"input": "aaa",
"output": "a"
},
{
"input": "aba",
"output": "Just a legend"
},
{
"input": "aab",
"output": "Just a legend"
},
{
"input": "abb",
"output": "Just a legend"
},
{
"input": "abc",
"output": "Just a legend"
},
{
"input": "aaabaabaaaaab",
"output": "Just a legend"
},
{
"input": "aabaaabaaaaab",
"output": "aab"
},
{
"input": "aaabaaaabab",
"output": "Just a legend"
},
{
"input": "abcabcabcabcabc",
"output": "abcabcabc"
},
{
"input": "aaaaabaaaa",
"output": "aaaa"
},
{
"input": "aaaabaaaaaaa",
"output": "aaaa"
},
{
"input": "ghghghgxghghghg",
"output": "ghghg"
},
{
"input": "kincenvizh",
"output": "Just a legend"
},
{
"input": "amcksgurlgqzqizdauqminfzshiweejkevbazyzylrrghumnvqeqqdedyopgtvxakqwpvxntxgrkrcxabhrgoxngrwrxrvcguuyw",
"output": "Just a legend"
},
{
"input": "kwuaizneqxfflhmyruotjlkqksinoanvkyvqptkkntnpjdyzicceelgooajdgpkneuhyvhdtmasiglplajxolxovlhkwuaizneqx",
"output": "Just a legend"
},
{
"input": "nfbdzgdlbjhrlvfryyjbvtsmzacxglcvukmyexdgpuiwvqbnfbdzgdlbjhrlvfryyjbtuomcwbwvlhefnfbdzgdlbjhrlvfryyjb",
"output": "nfbdzgdlbjhrlvfryyjb"
},
{
"input": "btbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgpmvbxbyszdugvmoyjeeqsywcvuqskcjotyhvdijyslgfvyujxthngnonasgnbzzygyikheelirdfsvuicbiazfdeqecbtbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgpccdtdteohtjjuicfjfcbzpynlqhecyqqrjpmexgfqywnfmusldgzvgnzdmuuujtkdfnlytzgstquwqpuccxbtbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgp",
"output": "btbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgp"
},
{
"input": "abcazabca",
"output": "a"
}
] | 1,538,008,691
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 97
| 1,900
| 34,099,200
|
def kmpTable(s, n):
res = [0]*n
check_idx = 0
for i in range(1, n):
while check_idx > 0 and s[check_idx] != s[i]:
check_idx = res[check_idx-1]
if s[check_idx] == s[i]:
check_idx += 1
res[i] = check_idx
return res
s = input()
n = len(s)
kmp_table = kmpTable(s, n)
psize = kmp_table[n-1]
if psize > 0 and psize in kmp_table[:-1]:
print(s[:psize])
else:
psize = kmp_table[psize-1]
if psize > 0 and psize in kmp_table[:-1]:
print(s[:psize])
else:
print("Just a legend")
|
Title: Password
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Asterix, Obelix and their temporary buddies Suffix and Prefix has finally found the Harmony temple. However, its doors were firmly locked and even Obelix had no luck opening them.
A little later they found a string *s*, carved on a rock below the temple's gates. Asterix supposed that that's the password that opens the temple and read the string aloud. However, nothing happened. Then Asterix supposed that a password is some substring *t* of the string *s*.
Prefix supposed that the substring *t* is the beginning of the string *s*; Suffix supposed that the substring *t* should be the end of the string *s*; and Obelix supposed that *t* should be located somewhere inside the string *s*, that is, *t* is neither its beginning, nor its end.
Asterix chose the substring *t* so as to please all his companions. Besides, from all acceptable variants Asterix chose the longest one (as Asterix loves long strings). When Asterix read the substring *t* aloud, the temple doors opened.
You know the string *s*. Find the substring *t* or determine that such substring does not exist and all that's been written above is just a nice legend.
Input Specification:
You are given the string *s* whose length can vary from 1 to 106 (inclusive), consisting of small Latin letters.
Output Specification:
Print the string *t*. If a suitable *t* string does not exist, then print "Just a legend" without the quotes.
Demo Input:
['fixprefixsuffix\n', 'abcdabc\n']
Demo Output:
['fix', 'Just a legend']
Note:
none
|
```python
def kmpTable(s, n):
res = [0]*n
check_idx = 0
for i in range(1, n):
while check_idx > 0 and s[check_idx] != s[i]:
check_idx = res[check_idx-1]
if s[check_idx] == s[i]:
check_idx += 1
res[i] = check_idx
return res
s = input()
n = len(s)
kmp_table = kmpTable(s, n)
psize = kmp_table[n-1]
if psize > 0 and psize in kmp_table[:-1]:
print(s[:psize])
else:
psize = kmp_table[psize-1]
if psize > 0 and psize in kmp_table[:-1]:
print(s[:psize])
else:
print("Just a legend")
```
| 3
|
|
75
|
A
|
Life Without Zeros
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
A. Life Without Zeros
|
2
|
256
|
Can you imagine our life if we removed all zeros from it? For sure we will have many problems.
In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros?
For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation.
But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation.
|
The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=β€<=*a*,<=*b*<=β€<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*.
|
The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise.
|
[
"101\n102\n",
"105\n106\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "101\n102",
"output": "YES"
},
{
"input": "105\n106",
"output": "NO"
},
{
"input": "544\n397",
"output": "YES"
},
{
"input": "822\n280",
"output": "NO"
},
{
"input": "101\n413",
"output": "NO"
},
{
"input": "309\n139",
"output": "NO"
},
{
"input": "693\n970",
"output": "NO"
},
{
"input": "981\n1",
"output": "YES"
},
{
"input": "352\n276",
"output": "YES"
},
{
"input": "164\n691",
"output": "YES"
},
{
"input": "110036\n43",
"output": "YES"
},
{
"input": "100\n1000",
"output": "NO"
},
{
"input": "1000000000\n1000000000",
"output": "YES"
},
{
"input": "999999999\n999999999",
"output": "YES"
},
{
"input": "6\n4",
"output": "NO"
},
{
"input": "123456\n876543",
"output": "YES"
},
{
"input": "1234567\n9876543",
"output": "NO"
},
{
"input": "1111111\n1119111",
"output": "NO"
},
{
"input": "10502405\n40403403",
"output": "YES"
},
{
"input": "1\n1",
"output": "YES"
},
{
"input": "5\n4",
"output": "YES"
},
{
"input": "1\n6",
"output": "YES"
},
{
"input": "40\n17",
"output": "NO"
},
{
"input": "35\n81",
"output": "YES"
},
{
"input": "347\n908",
"output": "NO"
},
{
"input": "2081\n7450",
"output": "NO"
},
{
"input": "84355694\n373629503",
"output": "NO"
},
{
"input": "885992048\n510468672",
"output": "NO"
},
{
"input": "540144752\n647307841",
"output": "NO"
},
{
"input": "341781108\n784147010",
"output": "NO"
},
{
"input": "960440938\n572334653",
"output": "NO"
},
{
"input": "657414510\n768771903",
"output": "NO"
},
{
"input": "501871728\n725074574",
"output": "NO"
},
{
"input": "968\n851",
"output": "YES"
},
{
"input": "943\n939",
"output": "YES"
},
{
"input": "347\n908",
"output": "NO"
},
{
"input": "611\n41",
"output": "YES"
},
{
"input": "737\n289",
"output": "NO"
},
{
"input": "168\n571",
"output": "YES"
},
{
"input": "868\n463",
"output": "YES"
},
{
"input": "815732007\n913882008",
"output": "NO"
},
{
"input": "459039901\n453033850",
"output": "NO"
},
{
"input": "975305404\n484601256",
"output": "NO"
}
] | 1,583,404,690
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 248
| 307,200
|
def remove_zero(arg)->int:
return int("".join(list(filter(lambda v : v!='0',str(arg)))))
a = int(input())
b = int(input())
c = a + b
# print(remove_zero(c) == remove_zero(a) + remove_zero(b))
if ( remove_zero(c) == remove_zero(a) + remove_zero(b) ):
print("YES")
pass
else :
print("NO")
|
Title: Life Without Zeros
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Can you imagine our life if we removed all zeros from it? For sure we will have many problems.
In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros?
For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation.
But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation.
Input Specification:
The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=β€<=*a*,<=*b*<=β€<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*.
Output Specification:
The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise.
Demo Input:
['101\n102\n', '105\n106\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
def remove_zero(arg)->int:
return int("".join(list(filter(lambda v : v!='0',str(arg)))))
a = int(input())
b = int(input())
c = a + b
# print(remove_zero(c) == remove_zero(a) + remove_zero(b))
if ( remove_zero(c) == remove_zero(a) + remove_zero(b) ):
print("YES")
pass
else :
print("NO")
```
| 3.937428
|
452
|
A
|
Eevee
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation",
"strings"
] | null | null |
You are solving the crossword problem K from IPSC 2014. You solved all the clues except for one: who does Eevee evolve into? You are not very into pokemons, but quick googling helped you find out, that Eevee can evolve into eight different pokemons: Vaporeon, Jolteon, Flareon, Espeon, Umbreon, Leafeon, Glaceon, and Sylveon.
You know the length of the word in the crossword, and you already know some letters. Designers of the crossword made sure that the answer is unambiguous, so you can assume that exactly one pokemon out of the 8 that Eevee evolves into fits the length and the letters given. Your task is to find it.
|
First line contains an integer *n* (6<=β€<=*n*<=β€<=8) β the length of the string.
Next line contains a string consisting of *n* characters, each of which is either a lower case english letter (indicating a known letter) or a dot character (indicating an empty cell in the crossword).
|
Print a name of the pokemon that Eevee can evolve into that matches the pattern in the input. Use lower case letters only to print the name (in particular, do not capitalize the first letter).
|
[
"7\nj......\n",
"7\n...feon\n",
"7\n.l.r.o.\n"
] |
[
"jolteon\n",
"leafeon\n",
"flareon\n"
] |
Here's a set of names in a form you can paste into your solution:
["vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"]
{"vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"}
| 500
|
[
{
"input": "7\n...feon",
"output": "leafeon"
},
{
"input": "7\n.l.r.o.",
"output": "flareon"
},
{
"input": "6\n.s..o.",
"output": "espeon"
},
{
"input": "7\nglaceon",
"output": "glaceon"
},
{
"input": "8\n.a.o.e.n",
"output": "vaporeon"
},
{
"input": "7\n.laceon",
"output": "glaceon"
},
{
"input": "7\n..lveon",
"output": "sylveon"
},
{
"input": "7\n.l.ceon",
"output": "glaceon"
},
{
"input": "7\n..areon",
"output": "flareon"
}
] | 1,406,484,628
| 4,228
|
Python 3
|
OK
|
TESTS
| 20
| 77
| 0
|
import re
t = int(input())
pat = input();
pat ='^'+pat+'$'
if re.match( pat, "vaporeon", re.M|re.I):
print ("vaporeon")
elif re.match( pat, "jolteon", re.M|re.I):
print ("jolteon")
elif re.match( pat, "flareon", re.M|re.I):
print ("flareon")
elif re.match( pat, "espeon", re.M|re.I):
print ("espeon")
elif re.match( pat, "umbreon", re.M|re.I):
print ("umbreon")
elif re.match( pat, "leafeon", re.M|re.I):
print ("leafeon")
elif re.match( pat, "glaceon", re.M|re.I):
print ("glaceon")
elif re.match( pat, "sylveon", re.M|re.I):
print ("sylveon")
|
Title: Eevee
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are solving the crossword problem K from IPSC 2014. You solved all the clues except for one: who does Eevee evolve into? You are not very into pokemons, but quick googling helped you find out, that Eevee can evolve into eight different pokemons: Vaporeon, Jolteon, Flareon, Espeon, Umbreon, Leafeon, Glaceon, and Sylveon.
You know the length of the word in the crossword, and you already know some letters. Designers of the crossword made sure that the answer is unambiguous, so you can assume that exactly one pokemon out of the 8 that Eevee evolves into fits the length and the letters given. Your task is to find it.
Input Specification:
First line contains an integer *n* (6<=β€<=*n*<=β€<=8) β the length of the string.
Next line contains a string consisting of *n* characters, each of which is either a lower case english letter (indicating a known letter) or a dot character (indicating an empty cell in the crossword).
Output Specification:
Print a name of the pokemon that Eevee can evolve into that matches the pattern in the input. Use lower case letters only to print the name (in particular, do not capitalize the first letter).
Demo Input:
['7\nj......\n', '7\n...feon\n', '7\n.l.r.o.\n']
Demo Output:
['jolteon\n', 'leafeon\n', 'flareon\n']
Note:
Here's a set of names in a form you can paste into your solution:
["vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"]
{"vaporeon", "jolteon", "flareon", "espeon", "umbreon", "leafeon", "glaceon", "sylveon"}
|
```python
import re
t = int(input())
pat = input();
pat ='^'+pat+'$'
if re.match( pat, "vaporeon", re.M|re.I):
print ("vaporeon")
elif re.match( pat, "jolteon", re.M|re.I):
print ("jolteon")
elif re.match( pat, "flareon", re.M|re.I):
print ("flareon")
elif re.match( pat, "espeon", re.M|re.I):
print ("espeon")
elif re.match( pat, "umbreon", re.M|re.I):
print ("umbreon")
elif re.match( pat, "leafeon", re.M|re.I):
print ("leafeon")
elif re.match( pat, "glaceon", re.M|re.I):
print ("glaceon")
elif re.match( pat, "sylveon", re.M|re.I):
print ("sylveon")
```
| 3
|
|
501
|
A
|
Contest
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points.
Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.
|
The first line contains four integers *a*, *b*, *c*, *d* (250<=β€<=*a*,<=*b*<=β€<=3500, 0<=β€<=*c*,<=*d*<=β€<=180).
It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round).
|
Output on a single line:
"Misha" (without the quotes), if Misha got more points than Vasya.
"Vasya" (without the quotes), if Vasya got more points than Misha.
"Tie" (without the quotes), if both of them got the same number of points.
|
[
"500 1000 20 30\n",
"1000 1000 1 1\n",
"1500 1000 176 177\n"
] |
[
"Vasya\n",
"Tie\n",
"Misha\n"
] |
none
| 500
|
[
{
"input": "500 1000 20 30",
"output": "Vasya"
},
{
"input": "1000 1000 1 1",
"output": "Tie"
},
{
"input": "1500 1000 176 177",
"output": "Misha"
},
{
"input": "1500 1000 74 177",
"output": "Misha"
},
{
"input": "750 2500 175 178",
"output": "Vasya"
},
{
"input": "750 1000 54 103",
"output": "Tie"
},
{
"input": "2000 1250 176 130",
"output": "Tie"
},
{
"input": "1250 1750 145 179",
"output": "Tie"
},
{
"input": "2000 2000 176 179",
"output": "Tie"
},
{
"input": "1500 1500 148 148",
"output": "Tie"
},
{
"input": "2750 1750 134 147",
"output": "Misha"
},
{
"input": "3250 250 175 173",
"output": "Misha"
},
{
"input": "500 500 170 176",
"output": "Misha"
},
{
"input": "250 1000 179 178",
"output": "Vasya"
},
{
"input": "3250 1000 160 138",
"output": "Misha"
},
{
"input": "3000 2000 162 118",
"output": "Tie"
},
{
"input": "1500 1250 180 160",
"output": "Tie"
},
{
"input": "1250 2500 100 176",
"output": "Tie"
},
{
"input": "3500 3500 177 178",
"output": "Tie"
},
{
"input": "3000 3250 16 34",
"output": "Tie"
},
{
"input": "1750 3000 137 49",
"output": "Vasya"
},
{
"input": "500 1500 179 71",
"output": "Vasya"
},
{
"input": "1250 2000 101 180",
"output": "Misha"
},
{
"input": "250 750 180 176",
"output": "Vasya"
},
{
"input": "2250 2250 163 145",
"output": "Vasya"
},
{
"input": "3000 3000 176 78",
"output": "Vasya"
},
{
"input": "250 3500 8 178",
"output": "Vasya"
},
{
"input": "1750 1250 179 180",
"output": "Misha"
},
{
"input": "2750 1750 13 164",
"output": "Misha"
},
{
"input": "1750 2250 178 53",
"output": "Vasya"
},
{
"input": "2500 2750 73 179",
"output": "Misha"
},
{
"input": "1000 3500 178 175",
"output": "Vasya"
},
{
"input": "1000 500 7 162",
"output": "Misha"
},
{
"input": "1000 250 175 48",
"output": "Misha"
},
{
"input": "1750 500 166 177",
"output": "Misha"
},
{
"input": "250 250 0 0",
"output": "Tie"
},
{
"input": "250 3500 0 0",
"output": "Vasya"
},
{
"input": "250 3500 0 180",
"output": "Vasya"
},
{
"input": "3500 3500 180 180",
"output": "Tie"
},
{
"input": "3500 250 0 180",
"output": "Misha"
}
] | 1,615,490,352
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 62
| 0
|
liste=input('').split()
M = int(liste[0])
V = int(liste[1])
Mt = int(liste[2])
Vt = int(liste[3])
p1 = max(3/10*M, M -M/250*Mt)
p2 = max(3/10*V, V -V/250*Vt)
if p1>p2:
print('Misha')
elif p2>p1:
print('Vasya')
else:
print('Tie')
|
Title: Contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points.
Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.
Input Specification:
The first line contains four integers *a*, *b*, *c*, *d* (250<=β€<=*a*,<=*b*<=β€<=3500, 0<=β€<=*c*,<=*d*<=β€<=180).
It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round).
Output Specification:
Output on a single line:
"Misha" (without the quotes), if Misha got more points than Vasya.
"Vasya" (without the quotes), if Vasya got more points than Misha.
"Tie" (without the quotes), if both of them got the same number of points.
Demo Input:
['500 1000 20 30\n', '1000 1000 1 1\n', '1500 1000 176 177\n']
Demo Output:
['Vasya\n', 'Tie\n', 'Misha\n']
Note:
none
|
```python
liste=input('').split()
M = int(liste[0])
V = int(liste[1])
Mt = int(liste[2])
Vt = int(liste[3])
p1 = max(3/10*M, M -M/250*Mt)
p2 = max(3/10*V, V -V/250*Vt)
if p1>p2:
print('Misha')
elif p2>p1:
print('Vasya')
else:
print('Tie')
```
| 3
|
|
550
|
C
|
Divisibility by Eight
|
PROGRAMMING
| 1,500
|
[
"brute force",
"dp",
"math"
] | null | null |
You are given a non-negative integer *n*, its decimal representation consists of at most 100 digits and doesn't contain leading zeroes.
Your task is to determine if it is possible in this case to remove some of the digits (possibly not remove any digit at all) so that the result contains at least one digit, forms a non-negative integer, doesn't have leading zeroes and is divisible by 8. After the removing, it is forbidden to rearrange the digits.
If a solution exists, you should print it.
|
The single line of the input contains a non-negative integer *n*. The representation of number *n* doesn't contain any leading zeroes and its length doesn't exceed 100 digits.
|
Print "NO" (without quotes), if there is no such way to remove some digits from number *n*.
Otherwise, print "YES" in the first line and the resulting number after removing digits from number *n* in the second line. The printed number must be divisible by 8.
If there are multiple possible answers, you may print any of them.
|
[
"3454\n",
"10\n",
"111111\n"
] |
[
"YES\n344\n",
"YES\n0\n",
"NO\n"
] |
none
| 1,000
|
[
{
"input": "3454",
"output": "YES\n344"
},
{
"input": "10",
"output": "YES\n0"
},
{
"input": "111111",
"output": "NO"
},
{
"input": "8996988892",
"output": "YES\n8"
},
{
"input": "5555555555",
"output": "NO"
},
{
"input": "1",
"output": "NO"
},
{
"input": "8147522776919916277306861346922924221557534659480258977017038624458370459299847590937757625791239188",
"output": "YES\n8"
},
{
"input": "8",
"output": "YES\n8"
},
{
"input": "14",
"output": "NO"
},
{
"input": "2363",
"output": "NO"
},
{
"input": "3554",
"output": "NO"
},
{
"input": "312",
"output": "YES\n32"
},
{
"input": "7674",
"output": "YES\n64"
},
{
"input": "126",
"output": "YES\n16"
},
{
"input": "344",
"output": "YES\n344"
},
{
"input": "976",
"output": "YES\n96"
},
{
"input": "3144",
"output": "YES\n344"
},
{
"input": "1492",
"output": "YES\n192"
},
{
"input": "1000",
"output": "YES\n0"
},
{
"input": "303",
"output": "YES\n0"
},
{
"input": "111111111111111111111171111111111111111111111111111112",
"output": "YES\n72"
},
{
"input": "3111111111111111111111411111111111111111111141111111441",
"output": "YES\n344"
},
{
"input": "7486897358699809313898215064443112428113331907121460549315254356705507612143346801724124391167293733",
"output": "YES\n8"
},
{
"input": "1787075866",
"output": "YES\n8"
},
{
"input": "836501278190105055089734832290981",
"output": "YES\n8"
},
{
"input": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "NO"
},
{
"input": "2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222",
"output": "NO"
},
{
"input": "3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333",
"output": "NO"
},
{
"input": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "YES\n0"
},
{
"input": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555",
"output": "NO"
},
{
"input": "66666666666666666666666666666666666666666666666666666666666666666666666666666",
"output": "NO"
},
{
"input": "88888888888888888888888888888888888888888888888888888888888888888888888888888888",
"output": "YES\n8"
},
{
"input": "9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999",
"output": "NO"
},
{
"input": "353",
"output": "NO"
},
{
"input": "39",
"output": "NO"
},
{
"input": "3697519",
"output": "NO"
},
{
"input": "6673177113",
"output": "NO"
},
{
"input": "6666351371557713735",
"output": "NO"
},
{
"input": "17943911115335733153157373517",
"output": "NO"
},
{
"input": "619715515939999957957971971757533319177373",
"output": "NO"
},
{
"input": "4655797151375799393395377959959573533195153397997597195199777159133",
"output": "NO"
},
{
"input": "5531399953495399131957773999751571911139197159755793777773799119333593915333593153173775755771193715",
"output": "NO"
},
{
"input": "1319571733331774579193199551977735199771153997797535591739153377377111795579371959933533573517995559",
"output": "NO"
},
{
"input": "3313393139519343957311771319713797711159791515393917539133957799131393735795317131513557337319131993",
"output": "NO"
},
{
"input": "526",
"output": "YES\n56"
},
{
"input": "513",
"output": "NO"
},
{
"input": "674",
"output": "YES\n64"
},
{
"input": "8353",
"output": "YES\n8"
},
{
"input": "3957",
"output": "NO"
},
{
"input": "4426155776626276881222352363321488266188669874572115686737742545442766138617391954346963915982759371",
"output": "YES\n8"
},
{
"input": "9592419524227735697379444145348135927975358347769514686865768941989693174565893724972575152874281772",
"output": "YES\n8"
},
{
"input": "94552498866729239313265973246288189853135485783461",
"output": "YES\n8"
},
{
"input": "647934465937812",
"output": "YES\n8"
},
{
"input": "1327917795375366484539554526312125336",
"output": "YES\n8"
},
{
"input": "295971811535848297878828225646878276486982655866912496735794542",
"output": "YES\n8"
},
{
"input": "7217495392264549817889283233368819844137671271383133997418139697797385729777632527678136",
"output": "YES\n8"
},
{
"input": "11111111111111111111112111111111",
"output": "YES\n112"
},
{
"input": "262626262626262626262626262626262626",
"output": "NO"
},
{
"input": "1000000000000000000000000000000000000",
"output": "YES\n0"
},
{
"input": "9969929446",
"output": "YES\n96"
},
{
"input": "43523522125549722432232256557771715456345544922144",
"output": "YES\n32"
},
{
"input": "9344661521956564755454992376342544254667536539463277572111263273131199437332443253296774957",
"output": "YES\n96"
},
{
"input": "1946374341357914632311595531429723377642197432217137651552992479954116463332543456759911377223599715",
"output": "YES\n16"
},
{
"input": "461259",
"output": "NO"
},
{
"input": "461592",
"output": "YES\n152"
},
{
"input": "46159237",
"output": "YES\n152"
},
{
"input": "42367",
"output": "NO"
},
{
"input": "42376",
"output": "YES\n376"
},
{
"input": "42376159",
"output": "YES\n376"
},
{
"input": "444444444444444444444444444444666666666666666666666666666666222222222222222222222222222222",
"output": "NO"
},
{
"input": "0",
"output": "YES\n0"
},
{
"input": "33332",
"output": "YES\n32"
},
{
"input": "6499999999",
"output": "YES\n64"
}
] | 1,698,468,091
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 73
| 77
| 1,945,600
|
n = list(input())
f = 0
s = len(n)
for i in range (0, s):
if f == 1:
break
if (int(n[i])) % 8 == 0:
print ("YES")
print (n[i])
f = 1
break
for j in range (i + 1, s):
if f == 1:
break
if (int(n[i]) * 10 + int(n[j])) % 8 == 0:
print ("YES")
print (n[i], end = "")
print (n[j])
f = 1
break
for k in range (j + 1, s):
if (int(n[i]) * 100 + int(n[j]) * 10 + int (n[k])) % 8 == 0:
print ("YES")
print (n[i], end = "")
print (n[j], end = "")
print (n[k])
f = 1
break
if f == 0:
print ("NO")
|
Title: Divisibility by Eight
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a non-negative integer *n*, its decimal representation consists of at most 100 digits and doesn't contain leading zeroes.
Your task is to determine if it is possible in this case to remove some of the digits (possibly not remove any digit at all) so that the result contains at least one digit, forms a non-negative integer, doesn't have leading zeroes and is divisible by 8. After the removing, it is forbidden to rearrange the digits.
If a solution exists, you should print it.
Input Specification:
The single line of the input contains a non-negative integer *n*. The representation of number *n* doesn't contain any leading zeroes and its length doesn't exceed 100 digits.
Output Specification:
Print "NO" (without quotes), if there is no such way to remove some digits from number *n*.
Otherwise, print "YES" in the first line and the resulting number after removing digits from number *n* in the second line. The printed number must be divisible by 8.
If there are multiple possible answers, you may print any of them.
Demo Input:
['3454\n', '10\n', '111111\n']
Demo Output:
['YES\n344\n', 'YES\n0\n', 'NO\n']
Note:
none
|
```python
n = list(input())
f = 0
s = len(n)
for i in range (0, s):
if f == 1:
break
if (int(n[i])) % 8 == 0:
print ("YES")
print (n[i])
f = 1
break
for j in range (i + 1, s):
if f == 1:
break
if (int(n[i]) * 10 + int(n[j])) % 8 == 0:
print ("YES")
print (n[i], end = "")
print (n[j])
f = 1
break
for k in range (j + 1, s):
if (int(n[i]) * 100 + int(n[j]) * 10 + int (n[k])) % 8 == 0:
print ("YES")
print (n[i], end = "")
print (n[j], end = "")
print (n[k])
f = 1
break
if f == 0:
print ("NO")
```
| 3
|
|
814
|
B
|
An express train to reveries
|
PROGRAMMING
| 1,300
|
[
"constructive algorithms"
] | null | null |
Sengoku still remembers the mysterious "colourful meteoroids" she discovered with Lala-chan when they were little. In particular, one of the nights impressed her deeply, giving her the illusion that all her fancies would be realized.
On that night, Sengoku constructed a permutation *p*1,<=*p*2,<=...,<=*p**n* of integers from 1 to *n* inclusive, with each integer representing a colour, wishing for the colours to see in the coming meteor outburst. Two incredible outbursts then arrived, each with *n* meteorids, colours of which being integer sequences *a*1,<=*a*2,<=...,<=*a**n* and *b*1,<=*b*2,<=...,<=*b**n* respectively. Meteoroids' colours were also between 1 and *n* inclusive, and the two sequences were not identical, that is, at least one *i* (1<=β€<=*i*<=β€<=*n*) exists, such that *a**i*<=β <=*b**i* holds.
Well, she almost had it all β each of the sequences *a* and *b* matched exactly *n*<=-<=1 elements in Sengoku's permutation. In other words, there is exactly one *i* (1<=β€<=*i*<=β€<=*n*) such that *a**i*<=β <=*p**i*, and exactly one *j* (1<=β€<=*j*<=β€<=*n*) such that *b**j*<=β <=*p**j*.
For now, Sengoku is able to recover the actual colour sequences *a* and *b* through astronomical records, but her wishes have been long forgotten. You are to reconstruct any possible permutation Sengoku could have had on that night.
|
The first line of input contains a positive integer *n* (2<=β€<=*n*<=β€<=1<=000) β the length of Sengoku's permutation, being the length of both meteor outbursts at the same time.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=*n*) β the sequence of colours in the first meteor outburst.
The third line contains *n* space-separated integers *b*1,<=*b*2,<=...,<=*b**n* (1<=β€<=*b**i*<=β€<=*n*) β the sequence of colours in the second meteor outburst. At least one *i* (1<=β€<=*i*<=β€<=*n*) exists, such that *a**i*<=β <=*b**i* holds.
|
Output *n* space-separated integers *p*1,<=*p*2,<=...,<=*p**n*, denoting a possible permutation Sengoku could have had. If there are more than one possible answer, output any one of them.
Input guarantees that such permutation exists.
|
[
"5\n1 2 3 4 3\n1 2 5 4 5\n",
"5\n4 4 2 3 1\n5 4 5 3 1\n",
"4\n1 1 3 4\n1 4 3 4\n"
] |
[
"1 2 5 4 3\n",
"5 4 2 3 1\n",
"1 2 3 4\n"
] |
In the first sample, both 1,β2,β5,β4,β3 and 1,β2,β3,β4,β5 are acceptable outputs.
In the second sample, 5,β4,β2,β3,β1 is the only permutation to satisfy the constraints.
| 1,000
|
[
{
"input": "5\n1 2 3 4 3\n1 2 5 4 5",
"output": "1 2 5 4 3"
},
{
"input": "5\n4 4 2 3 1\n5 4 5 3 1",
"output": "5 4 2 3 1"
},
{
"input": "4\n1 1 3 4\n1 4 3 4",
"output": "1 2 3 4"
},
{
"input": "10\n1 2 3 4 7 6 7 8 9 10\n1 2 3 4 5 6 5 8 9 10",
"output": "1 2 3 4 5 6 7 8 9 10"
},
{
"input": "10\n1 2 3 4 5 6 7 8 7 10\n1 2 3 4 5 6 7 8 9 9",
"output": "1 2 3 4 5 6 7 8 9 10"
},
{
"input": "10\n1 2 3 4 5 6 7 8 4 10\n1 2 3 4 5 6 7 6 9 10",
"output": "1 2 3 4 5 6 7 8 9 10"
},
{
"input": "10\n8 6 1 7 9 3 5 2 10 9\n8 6 1 7 4 3 5 2 10 4",
"output": "8 6 1 7 4 3 5 2 10 9"
},
{
"input": "10\n2 9 7 7 8 5 4 10 6 1\n2 8 7 3 8 5 4 10 6 1",
"output": "2 9 7 3 8 5 4 10 6 1"
},
{
"input": "2\n2 2\n1 1",
"output": "1 2"
},
{
"input": "3\n1 2 2\n1 3 3",
"output": "1 3 2"
},
{
"input": "3\n2 2 3\n1 2 1",
"output": "1 2 3"
},
{
"input": "3\n1 3 3\n1 1 3",
"output": "1 2 3"
},
{
"input": "3\n2 1 1\n2 3 3",
"output": "2 3 1"
},
{
"input": "3\n3 3 2\n1 1 2",
"output": "1 3 2"
},
{
"input": "3\n1 3 3\n3 3 2",
"output": "1 3 2"
},
{
"input": "4\n3 2 3 4\n1 2 1 4",
"output": "1 2 3 4"
},
{
"input": "4\n2 2 3 4\n1 2 3 2",
"output": "1 2 3 4"
},
{
"input": "4\n1 2 4 4\n2 2 3 4",
"output": "1 2 3 4"
},
{
"input": "4\n4 1 3 4\n2 1 3 2",
"output": "2 1 3 4"
},
{
"input": "4\n3 2 1 3\n4 2 1 2",
"output": "4 2 1 3"
},
{
"input": "4\n1 4 1 3\n2 4 1 4",
"output": "2 4 1 3"
},
{
"input": "4\n1 3 4 4\n3 3 2 4",
"output": "1 3 2 4"
},
{
"input": "5\n5 4 5 3 1\n4 4 2 3 1",
"output": "5 4 2 3 1"
},
{
"input": "5\n4 1 2 4 5\n3 1 2 5 5",
"output": "3 1 2 4 5"
},
{
"input": "3\n2 2 3\n1 3 3",
"output": "1 2 3"
},
{
"input": "3\n1 1 3\n2 3 3",
"output": "2 1 3"
},
{
"input": "5\n5 4 5 3 1\n2 4 4 3 1",
"output": "2 4 5 3 1"
},
{
"input": "3\n3 3 1\n2 1 1",
"output": "2 3 1"
},
{
"input": "5\n5 4 3 5 2\n5 4 1 1 2",
"output": "5 4 3 1 2"
},
{
"input": "6\n1 2 3 4 2 5\n1 6 3 4 4 5",
"output": "1 6 3 4 2 5"
},
{
"input": "4\n1 3 2 1\n2 3 2 1",
"output": "4 3 2 1"
},
{
"input": "4\n1 3 3 4\n1 4 3 4",
"output": "1 2 3 4"
},
{
"input": "11\n1 2 3 4 5 6 7 8 9 10 10\n1 2 3 4 5 6 7 8 9 10 3",
"output": "1 2 3 4 5 6 7 8 9 10 11"
},
{
"input": "5\n1 2 3 2 5\n1 4 3 3 5",
"output": "1 4 3 2 5"
},
{
"input": "5\n1 2 3 4 3\n1 2 5 4 2",
"output": "1 2 5 4 3"
},
{
"input": "5\n1 2 3 4 4\n1 2 3 4 3",
"output": "1 2 3 4 5"
},
{
"input": "4\n1 3 1 4\n1 3 4 4",
"output": "1 3 2 4"
},
{
"input": "5\n2 5 3 2 1\n4 5 3 3 1",
"output": "4 5 3 2 1"
},
{
"input": "5\n1 2 3 2 5\n1 3 3 4 5",
"output": "1 2 3 4 5"
},
{
"input": "5\n5 2 3 4 5\n2 2 3 4 5",
"output": "1 2 3 4 5"
},
{
"input": "5\n5 4 1 1 2\n5 4 3 5 2",
"output": "5 4 3 1 2"
},
{
"input": "4\n1 4 3 4\n1 3 3 4",
"output": "1 2 3 4"
},
{
"input": "4\n1 2 3 1\n1 2 3 2",
"output": "1 2 3 4"
},
{
"input": "5\n4 5 3 3 1\n2 5 3 2 1",
"output": "4 5 3 2 1"
},
{
"input": "5\n1 2 3 5 5\n1 2 3 4 3",
"output": "1 2 3 4 5"
},
{
"input": "4\n2 3 3 4\n2 4 3 4",
"output": "2 1 3 4"
}
] | 1,584,474,018
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 54
| 155
| 1,945,600
|
def solve(p, q):
return sum(p[i] != q[i] for i in range(n)) == 1
n = int(input())
a = [int(i) for i in input().split()]
b = [int(i) for i in input().split()]
wa = [0 for i in range(n + 1)]
wb = wa.copy()
for i in a:
wa[i] += 1
for i in b:
wb[i] += 1
ta = []
for i in range(1, n + 1):
if wa[i] == 0:
sa = i
for i in range(n):
if wa[a[i]] == 2:
ta.append(i)
p = a.copy()
p[ta[0]] = sa
if solve(p, b):
ans = p.copy()
else:
p = a.copy()
p[ta[1]] = sa
if solve(p, b):
ans = p.copy()
print(*ans)
|
Title: An express train to reveries
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sengoku still remembers the mysterious "colourful meteoroids" she discovered with Lala-chan when they were little. In particular, one of the nights impressed her deeply, giving her the illusion that all her fancies would be realized.
On that night, Sengoku constructed a permutation *p*1,<=*p*2,<=...,<=*p**n* of integers from 1 to *n* inclusive, with each integer representing a colour, wishing for the colours to see in the coming meteor outburst. Two incredible outbursts then arrived, each with *n* meteorids, colours of which being integer sequences *a*1,<=*a*2,<=...,<=*a**n* and *b*1,<=*b*2,<=...,<=*b**n* respectively. Meteoroids' colours were also between 1 and *n* inclusive, and the two sequences were not identical, that is, at least one *i* (1<=β€<=*i*<=β€<=*n*) exists, such that *a**i*<=β <=*b**i* holds.
Well, she almost had it all β each of the sequences *a* and *b* matched exactly *n*<=-<=1 elements in Sengoku's permutation. In other words, there is exactly one *i* (1<=β€<=*i*<=β€<=*n*) such that *a**i*<=β <=*p**i*, and exactly one *j* (1<=β€<=*j*<=β€<=*n*) such that *b**j*<=β <=*p**j*.
For now, Sengoku is able to recover the actual colour sequences *a* and *b* through astronomical records, but her wishes have been long forgotten. You are to reconstruct any possible permutation Sengoku could have had on that night.
Input Specification:
The first line of input contains a positive integer *n* (2<=β€<=*n*<=β€<=1<=000) β the length of Sengoku's permutation, being the length of both meteor outbursts at the same time.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=β€<=*a**i*<=β€<=*n*) β the sequence of colours in the first meteor outburst.
The third line contains *n* space-separated integers *b*1,<=*b*2,<=...,<=*b**n* (1<=β€<=*b**i*<=β€<=*n*) β the sequence of colours in the second meteor outburst. At least one *i* (1<=β€<=*i*<=β€<=*n*) exists, such that *a**i*<=β <=*b**i* holds.
Output Specification:
Output *n* space-separated integers *p*1,<=*p*2,<=...,<=*p**n*, denoting a possible permutation Sengoku could have had. If there are more than one possible answer, output any one of them.
Input guarantees that such permutation exists.
Demo Input:
['5\n1 2 3 4 3\n1 2 5 4 5\n', '5\n4 4 2 3 1\n5 4 5 3 1\n', '4\n1 1 3 4\n1 4 3 4\n']
Demo Output:
['1 2 5 4 3\n', '5 4 2 3 1\n', '1 2 3 4\n']
Note:
In the first sample, both 1,β2,β5,β4,β3 and 1,β2,β3,β4,β5 are acceptable outputs.
In the second sample, 5,β4,β2,β3,β1 is the only permutation to satisfy the constraints.
|
```python
def solve(p, q):
return sum(p[i] != q[i] for i in range(n)) == 1
n = int(input())
a = [int(i) for i in input().split()]
b = [int(i) for i in input().split()]
wa = [0 for i in range(n + 1)]
wb = wa.copy()
for i in a:
wa[i] += 1
for i in b:
wb[i] += 1
ta = []
for i in range(1, n + 1):
if wa[i] == 0:
sa = i
for i in range(n):
if wa[a[i]] == 2:
ta.append(i)
p = a.copy()
p[ta[0]] = sa
if solve(p, b):
ans = p.copy()
else:
p = a.copy()
p[ta[1]] = sa
if solve(p, b):
ans = p.copy()
print(*ans)
```
| 3
|
|
667
|
A
|
Pouring Rain
|
PROGRAMMING
| 1,100
|
[
"geometry",
"math"
] | null | null |
A lot of people in Berland hates rain, but you do not. Rain pacifies, puts your thoughts in order. By these years you have developed a good tradition β when it rains, you go on the street and stay silent for a moment, contemplate all around you, enjoy freshness, think about big deeds you have to do.
Today everything had changed quietly. You went on the street with a cup contained water, your favorite drink. In a moment when you were drinking a water you noticed that the process became quite long: the cup still contained water because of rain. You decided to make a formal model of what was happening and to find if it was possible to drink all water in that situation.
Thus, your cup is a cylinder with diameter equals *d* centimeters. Initial level of water in cup equals *h* centimeters from the bottom.
You drink a water with a speed equals *v* milliliters per second. But rain goes with such speed that if you do not drink a water from the cup, the level of water increases on *e* centimeters per second. The process of drinking water from the cup and the addition of rain to the cup goes evenly and continuously.
Find the time needed to make the cup empty or find that it will never happen. It is guaranteed that if it is possible to drink all water, it will happen not later than after 104 seconds.
Note one milliliter equals to one cubic centimeter.
|
The only line of the input contains four integer numbers *d*,<=*h*,<=*v*,<=*e* (1<=β€<=*d*,<=*h*,<=*v*,<=*e*<=β€<=104), where:
- *d* β the diameter of your cylindrical cup, - *h* β the initial level of water in the cup, - *v* β the speed of drinking process from the cup in milliliters per second, - *e* β the growth of water because of rain if you do not drink from the cup.
|
If it is impossible to make the cup empty, print "NO" (without quotes).
Otherwise print "YES" (without quotes) in the first line. In the second line print a real number β time in seconds needed the cup will be empty. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=4. It is guaranteed that if the answer exists, it doesn't exceed 104.
|
[
"1 2 3 100\n",
"1 1 1 1\n"
] |
[
"NO\n",
"YES\n3.659792366325\n"
] |
In the first example the water fills the cup faster than you can drink from it.
In the second example area of the cup's bottom equals to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/419dc74dcd7bc392019c9fe748fe1fdb08ab521a.png" style="max-width: 100.0%;max-height: 100.0%;"/>, thus we can conclude that you decrease the level of water by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e8edb237e1f805fe83c2f47e48d3a9d03f2ee304.png" style="max-width: 100.0%;max-height: 100.0%;"/> centimeters per second. At the same time water level increases by 1 centimeter per second due to rain. Thus, cup will be empty in <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9dae615d7e2c5c7c03cb478848fb06aba1a8942e.png" style="max-width: 100.0%;max-height: 100.0%;"/> seconds.
| 500
|
[
{
"input": "1 2 3 100",
"output": "NO"
},
{
"input": "1 1 1 1",
"output": "YES\n3.659792366325"
},
{
"input": "48 7946 7992 72",
"output": "NO"
},
{
"input": "72 6791 8546 46",
"output": "NO"
},
{
"input": "100 5635 9099 23",
"output": "NO"
},
{
"input": "20 287 3845 5",
"output": "YES\n39.646277165210"
},
{
"input": "48 6428 9807 83",
"output": "NO"
},
{
"input": "72 5272 4552 64",
"output": "NO"
},
{
"input": "100 4117 5106 34",
"output": "NO"
},
{
"input": "20 2961 9852 15",
"output": "YES\n180.991437129723"
},
{
"input": "48 1805 3109 93",
"output": "NO"
},
{
"input": "72 8534 7042 65",
"output": "NO"
},
{
"input": "1 47 80 68",
"output": "YES\n1.388102806810"
},
{
"input": "4 495 8813 1",
"output": "YES\n0.706823517575"
},
{
"input": "5 2797 5925 9",
"output": "YES\n9.553973511669"
},
{
"input": "1 8324 4362 23",
"output": "YES\n1.505007106354"
},
{
"input": "6 1976 8455 3",
"output": "YES\n6.674898722265"
},
{
"input": "7 2644 8080 5",
"output": "YES\n12.900417790197"
},
{
"input": "3 4183 5491 98",
"output": "YES\n6.162185601824"
},
{
"input": "2 8591 320 101",
"output": "YES\n9999.259991757254"
},
{
"input": "10000 10000 10000 10000",
"output": "NO"
},
{
"input": "2 5000 12 3",
"output": "YES\n6099.653943875812"
},
{
"input": "10 1000 100 1",
"output": "YES\n3659.792366325487"
}
] | 1,634,780,400
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 23
| 62
| 28,364,800
|
from math import pi
d,h,v,e = [int(i) for i in input().split()]
v = v / (pi * (d/2)**2)
if v <= e:
print("NO")
else:
print("YES")
print(h / (v-e))
|
Title: Pouring Rain
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A lot of people in Berland hates rain, but you do not. Rain pacifies, puts your thoughts in order. By these years you have developed a good tradition β when it rains, you go on the street and stay silent for a moment, contemplate all around you, enjoy freshness, think about big deeds you have to do.
Today everything had changed quietly. You went on the street with a cup contained water, your favorite drink. In a moment when you were drinking a water you noticed that the process became quite long: the cup still contained water because of rain. You decided to make a formal model of what was happening and to find if it was possible to drink all water in that situation.
Thus, your cup is a cylinder with diameter equals *d* centimeters. Initial level of water in cup equals *h* centimeters from the bottom.
You drink a water with a speed equals *v* milliliters per second. But rain goes with such speed that if you do not drink a water from the cup, the level of water increases on *e* centimeters per second. The process of drinking water from the cup and the addition of rain to the cup goes evenly and continuously.
Find the time needed to make the cup empty or find that it will never happen. It is guaranteed that if it is possible to drink all water, it will happen not later than after 104 seconds.
Note one milliliter equals to one cubic centimeter.
Input Specification:
The only line of the input contains four integer numbers *d*,<=*h*,<=*v*,<=*e* (1<=β€<=*d*,<=*h*,<=*v*,<=*e*<=β€<=104), where:
- *d* β the diameter of your cylindrical cup, - *h* β the initial level of water in the cup, - *v* β the speed of drinking process from the cup in milliliters per second, - *e* β the growth of water because of rain if you do not drink from the cup.
Output Specification:
If it is impossible to make the cup empty, print "NO" (without quotes).
Otherwise print "YES" (without quotes) in the first line. In the second line print a real number β time in seconds needed the cup will be empty. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=4. It is guaranteed that if the answer exists, it doesn't exceed 104.
Demo Input:
['1 2 3 100\n', '1 1 1 1\n']
Demo Output:
['NO\n', 'YES\n3.659792366325\n']
Note:
In the first example the water fills the cup faster than you can drink from it.
In the second example area of the cup's bottom equals to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/419dc74dcd7bc392019c9fe748fe1fdb08ab521a.png" style="max-width: 100.0%;max-height: 100.0%;"/>, thus we can conclude that you decrease the level of water by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e8edb237e1f805fe83c2f47e48d3a9d03f2ee304.png" style="max-width: 100.0%;max-height: 100.0%;"/> centimeters per second. At the same time water level increases by 1 centimeter per second due to rain. Thus, cup will be empty in <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9dae615d7e2c5c7c03cb478848fb06aba1a8942e.png" style="max-width: 100.0%;max-height: 100.0%;"/> seconds.
|
```python
from math import pi
d,h,v,e = [int(i) for i in input().split()]
v = v / (pi * (d/2)**2)
if v <= e:
print("NO")
else:
print("YES")
print(h / (v-e))
```
| 3
|
|
707
|
A
|
Brain's Photos
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.
As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).
Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!
As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.
Photo can be represented as a matrix sized *n*<=Γ<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors:
- 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black)
The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
|
The first line of the input contains two integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=100)Β β the number of photo pixel matrix rows and columns respectively.
Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
|
Print the "#Black&White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
|
[
"2 2\nC M\nY Y\n",
"3 2\nW W\nW W\nB B\n",
"1 1\nW\n"
] |
[
"#Color",
"#Black&White",
"#Black&White"
] |
none
| 500
|
[
{
"input": "2 2\nC M\nY Y",
"output": "#Color"
},
{
"input": "3 2\nW W\nW W\nB B",
"output": "#Black&White"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "2 3\nW W W\nB G Y",
"output": "#Color"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "5 5\nW G B Y M\nG B Y M C\nB Y M C W\nY M C W G\nM C W G B",
"output": "#Color"
},
{
"input": "1 6\nC M Y W G B",
"output": "#Color"
},
{
"input": "1 3\nW G B",
"output": "#Black&White"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "5 5\nW G B W G\nG B W G B\nB W G B W\nW G B W G\nG B W G B",
"output": "#Black&White"
},
{
"input": "2 3\nW W W\nB G C",
"output": "#Color"
},
{
"input": "2 3\nW W W\nB G M",
"output": "#Color"
},
{
"input": "3 3\nC B W\nB Y M\nB B W",
"output": "#Color"
},
{
"input": "1 3\nW C W",
"output": "#Color"
},
{
"input": "3 3\nB W B\nB C W\nB W W",
"output": "#Color"
},
{
"input": "1 2\nW Y",
"output": "#Color"
},
{
"input": "1 1\nG",
"output": "#Black&White"
},
{
"input": "1 3\nB G W",
"output": "#Black&White"
},
{
"input": "2 2\nW W\nB C",
"output": "#Color"
},
{
"input": "1 1\nM",
"output": "#Color"
},
{
"input": "1 2\nW C",
"output": "#Color"
},
{
"input": "2 3\nW W M\nW W M",
"output": "#Color"
},
{
"input": "3 2\nW W\nW W\nB C",
"output": "#Color"
},
{
"input": "2 3\nW W C\nW W W",
"output": "#Color"
},
{
"input": "1 3\nG G G",
"output": "#Black&White"
},
{
"input": "1 1\nC",
"output": "#Color"
},
{
"input": "1 2\nC W",
"output": "#Color"
},
{
"input": "1 3\nW W C",
"output": "#Color"
},
{
"input": "2 2\nW B\nB G",
"output": "#Black&White"
},
{
"input": "2 2\nB B\nY Y",
"output": "#Color"
},
{
"input": "2 2\nG G\nC C",
"output": "#Color"
},
{
"input": "1 2\nB C",
"output": "#Color"
},
{
"input": "1 4\nG G G C",
"output": "#Color"
},
{
"input": "1 1\nB",
"output": "#Black&White"
},
{
"input": "2 1\nY\nB",
"output": "#Color"
}
] | 1,676,392,216
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 50
| 61
| 0
|
n,m=map(int,input().split())
arr=[]
for i in range(n):
input_arr=list(map(str,input().split()))
arr=arr+input_arr
c_ct=arr.count('C')
m_ct=arr.count('M')
y_ct=arr.count('Y')
if c_ct != 0 or m_ct != 0 or y_ct != 0:
print('#Color')
else:
print('#Black&White')
|
Title: Brain's Photos
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.
As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).
Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!
As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.
Photo can be represented as a matrix sized *n*<=Γ<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors:
- 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black)
The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
Input Specification:
The first line of the input contains two integers *n* and *m* (1<=β€<=*n*,<=*m*<=β€<=100)Β β the number of photo pixel matrix rows and columns respectively.
Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
Output Specification:
Print the "#Black&White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
Demo Input:
['2 2\nC M\nY Y\n', '3 2\nW W\nW W\nB B\n', '1 1\nW\n']
Demo Output:
['#Color', '#Black&White', '#Black&White']
Note:
none
|
```python
n,m=map(int,input().split())
arr=[]
for i in range(n):
input_arr=list(map(str,input().split()))
arr=arr+input_arr
c_ct=arr.count('C')
m_ct=arr.count('M')
y_ct=arr.count('Y')
if c_ct != 0 or m_ct != 0 or y_ct != 0:
print('#Color')
else:
print('#Black&White')
```
| 3
|
|
551
|
A
|
GukiZ and Contest
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation",
"sortings"
] | null | null |
Professor GukiZ likes programming contests. He especially likes to rate his students on the contests he prepares. Now, he has decided to prepare a new contest.
In total, *n* students will attend, and before the start, every one of them has some positive integer rating. Students are indexed from 1 to *n*. Let's denote the rating of *i*-th student as *a**i*. After the contest ends, every student will end up with some positive integer position. GukiZ expects that his students will take places according to their ratings.
He thinks that each student will take place equal to . In particular, if student *A* has rating strictly lower then student *B*, *A* will get the strictly better position than *B*, and if two students have equal ratings, they will share the same position.
GukiZ would like you to reconstruct the results by following his expectations. Help him and determine the position after the end of the contest for each of his students if everything goes as expected.
|
The first line contains integer *n* (1<=β€<=*n*<=β€<=2000), number of GukiZ's students.
The second line contains *n* numbers *a*1,<=*a*2,<=... *a**n* (1<=β€<=*a**i*<=β€<=2000) where *a**i* is the rating of *i*-th student (1<=β€<=*i*<=β€<=*n*).
|
In a single line, print the position after the end of the contest for each of *n* students in the same order as they appear in the input.
|
[
"3\n1 3 3\n",
"1\n1\n",
"5\n3 5 3 4 5\n"
] |
[
"3 1 1\n",
"1\n",
"4 1 4 3 1\n"
] |
In the first sample, students 2 and 3 are positioned first (there is no other student with higher rating), and student 1 is positioned third since there are two students with higher rating.
In the second sample, first student is the only one on the contest.
In the third sample, students 2 and 5 share the first position with highest rating, student 4 is next with third position, and students 1 and 3 are the last sharing fourth position.
| 500
|
[
{
"input": "3\n1 3 3",
"output": "3 1 1"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "5\n3 5 3 4 5",
"output": "4 1 4 3 1"
},
{
"input": "7\n1 3 5 4 2 2 1",
"output": "6 3 1 2 4 4 6"
},
{
"input": "11\n5 6 4 2 9 7 6 6 6 6 7",
"output": "9 4 10 11 1 2 4 4 4 4 2"
},
{
"input": "1\n2000",
"output": "1"
},
{
"input": "2\n2000 2000",
"output": "1 1"
},
{
"input": "3\n500 501 502",
"output": "3 2 1"
},
{
"input": "10\n105 106 1 1 1 11 1000 999 1000 999",
"output": "6 5 8 8 8 7 1 3 1 3"
},
{
"input": "6\n1 2 3 4 5 6",
"output": "6 5 4 3 2 1"
},
{
"input": "7\n6 5 4 3 2 1 1",
"output": "1 2 3 4 5 6 6"
},
{
"input": "8\n153 100 87 14 10 8 6 5",
"output": "1 2 3 4 5 6 7 8"
},
{
"input": "70\n11 54 37 62 1 46 13 17 38 47 28 15 63 5 61 34 49 66 32 59 3 41 58 28 23 62 41 64 20 5 14 41 10 37 51 32 65 46 61 8 15 19 16 44 31 42 19 46 66 25 26 58 60 5 19 18 69 53 20 40 45 27 24 41 32 23 57 56 62 10",
"output": "62 18 35 7 70 23 61 56 34 22 42 58 6 66 10 37 21 2 38 13 69 29 14 42 48 7 29 5 50 66 60 29 63 35 20 38 4 23 10 65 58 52 57 27 41 28 52 23 2 46 45 14 12 66 52 55 1 19 50 33 26 44 47 29 38 48 16 17 7 63"
},
{
"input": "5\n1 2000 1 1 2000",
"output": "3 1 3 3 1"
}
] | 1,598,650,918
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 124
| 307,200
|
n = int(input())
a = [int(s) for s in input().split(' ')]
a_sorted = sorted(a, reverse=True)
predictions = []
for score in a:
predictions.append(str(a_sorted.index(score) + 1))
print(' '.join(predictions))
|
Title: GukiZ and Contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Professor GukiZ likes programming contests. He especially likes to rate his students on the contests he prepares. Now, he has decided to prepare a new contest.
In total, *n* students will attend, and before the start, every one of them has some positive integer rating. Students are indexed from 1 to *n*. Let's denote the rating of *i*-th student as *a**i*. After the contest ends, every student will end up with some positive integer position. GukiZ expects that his students will take places according to their ratings.
He thinks that each student will take place equal to . In particular, if student *A* has rating strictly lower then student *B*, *A* will get the strictly better position than *B*, and if two students have equal ratings, they will share the same position.
GukiZ would like you to reconstruct the results by following his expectations. Help him and determine the position after the end of the contest for each of his students if everything goes as expected.
Input Specification:
The first line contains integer *n* (1<=β€<=*n*<=β€<=2000), number of GukiZ's students.
The second line contains *n* numbers *a*1,<=*a*2,<=... *a**n* (1<=β€<=*a**i*<=β€<=2000) where *a**i* is the rating of *i*-th student (1<=β€<=*i*<=β€<=*n*).
Output Specification:
In a single line, print the position after the end of the contest for each of *n* students in the same order as they appear in the input.
Demo Input:
['3\n1 3 3\n', '1\n1\n', '5\n3 5 3 4 5\n']
Demo Output:
['3 1 1\n', '1\n', '4 1 4 3 1\n']
Note:
In the first sample, students 2 and 3 are positioned first (there is no other student with higher rating), and student 1 is positioned third since there are two students with higher rating.
In the second sample, first student is the only one on the contest.
In the third sample, students 2 and 5 share the first position with highest rating, student 4 is next with third position, and students 1 and 3 are the last sharing fourth position.
|
```python
n = int(input())
a = [int(s) for s in input().split(' ')]
a_sorted = sorted(a, reverse=True)
predictions = []
for score in a:
predictions.append(str(a_sorted.index(score) + 1))
print(' '.join(predictions))
```
| 3
|
|
32
|
B
|
Borze
|
PROGRAMMING
| 800
|
[
"expression parsing",
"implementation"
] |
B. Borze
|
2
|
256
|
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as Β«.Β», 1 as Β«-.Β» and 2 as Β«--Β». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
|
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
|
Output the decoded ternary number. It can have leading zeroes.
|
[
".-.--\n",
"--.\n",
"-..-.--\n"
] |
[
"012",
"20",
"1012"
] |
none
| 1,000
|
[
{
"input": ".-.--",
"output": "012"
},
{
"input": "--.",
"output": "20"
},
{
"input": "-..-.--",
"output": "1012"
},
{
"input": "---..",
"output": "210"
},
{
"input": "..--.---..",
"output": "0020210"
},
{
"input": "-.....----.",
"output": "10000220"
},
{
"input": ".",
"output": "0"
},
{
"input": "-.",
"output": "1"
},
{
"input": "--",
"output": "2"
},
{
"input": "..",
"output": "00"
},
{
"input": "--.",
"output": "20"
},
{
"input": ".--.",
"output": "020"
},
{
"input": ".-.-..",
"output": "0110"
},
{
"input": "----.-.",
"output": "2201"
},
{
"input": "-..--.-.",
"output": "10201"
},
{
"input": "..--..--.",
"output": "0020020"
},
{
"input": "-.-.---.--..-..-.-.-..-..-.--.",
"output": "112120010111010120"
},
{
"input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.",
"output": "21112220010101011012011011221011"
},
{
"input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------",
"output": "11020111110111222212021020002022111100201121222020012022110010222"
},
{
"input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..",
"output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110"
},
{
"input": ".-..-.-.---.-----.--.---...-.--.-.-....-..",
"output": "01011212212021001201100010"
},
{
"input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..",
"output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210"
},
{
"input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.",
"output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220"
},
{
"input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----",
"output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122"
},
{
"input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..",
"output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110"
},
{
"input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.",
"output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020"
},
{
"input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..",
"output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200"
},
{
"input": "-.---...----...--.--...-.--.----",
"output": "121002200020200012022"
},
{
"input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.",
"output": "202020212012111010201021100001021221200011222112012201012220"
}
] | 1,635,499,518
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 92
| 4,505,600
|
k = input()
n = len(k)
i = 0
ans = ""
while i < n:
if k[i] == '.':
ans += '0'
i += 1
else:
if k[i+1] == '.':
ans += '1'
else:
ans += '2'
i += 2
print(ans)
|
Title: Borze
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as Β«.Β», 1 as Β«-.Β» and 2 as Β«--Β». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
Input Specification:
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output Specification:
Output the decoded ternary number. It can have leading zeroes.
Demo Input:
['.-.--\n', '--.\n', '-..-.--\n']
Demo Output:
['012', '20', '1012']
Note:
none
|
```python
k = input()
n = len(k)
i = 0
ans = ""
while i < n:
if k[i] == '.':
ans += '0'
i += 1
else:
if k[i+1] == '.':
ans += '1'
else:
ans += '2'
i += 2
print(ans)
```
| 3.968608
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,695,112,950
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 92
| 0
|
s = input()
a = s.upper()
b = s.lower()
n = 0
m = 0
v = 0
for i in range(len(a)):
n = n + ord(a[i])
for i in range(len(b)):
m = m + ord(b[i])
for i in range(len(s)):
v = v + ord(s[i])
if abs(n-v) < abs(m-v):
print(a)
else:
print(b)
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP β with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* β it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
s = input()
a = s.upper()
b = s.lower()
n = 0
m = 0
v = 0
for i in range(len(a)):
n = n + ord(a[i])
for i in range(len(b)):
m = m + ord(b[i])
for i in range(len(s)):
v = v + ord(s[i])
if abs(n-v) < abs(m-v):
print(a)
else:
print(b)
```
| 3.977
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob β to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=β€<=*n*<=β€<=100) β amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,606,492,981
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 216
| 307,200
|
n=int(input())
a=list(map(int,input().split()))
e=0
o=0
c=0
if(a[0]%2==0):
e=1
else:
o=1
if(a[1]%2==0):
if(e==0):
if(a[2]%2==0):
print(1)
else:
print(2)
if(e==1):
c=1
else:
if(o==0):
if(a[2]%2!=0):
print(1)
else:
print(2)
else:
c=2
if(c==1):
for i in range(2,n):
if(a[i]%2!=0):
print(i+1)
break
elif(c==2):
for i in range(2,n):
if(a[i]%2==0):
print(i+1)
break
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob β to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=β€<=*n*<=β€<=100) β amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
n=int(input())
a=list(map(int,input().split()))
e=0
o=0
c=0
if(a[0]%2==0):
e=1
else:
o=1
if(a[1]%2==0):
if(e==0):
if(a[2]%2==0):
print(1)
else:
print(2)
if(e==1):
c=1
else:
if(o==0):
if(a[2]%2!=0):
print(1)
else:
print(2)
else:
c=2
if(c==1):
for i in range(2,n):
if(a[i]%2!=0):
print(i+1)
break
elif(c==2):
for i in range(2,n):
if(a[i]%2==0):
print(i+1)
break
```
| 3.945428
|
258
|
A
|
Little Elephant and Bits
|
PROGRAMMING
| 1,100
|
[
"greedy",
"math"
] | null | null |
The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper.
To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes).
The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation.
|
The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits.
|
In the single line print the number that is written without leading zeroes in the binary notation β the answer to the problem.
|
[
"101\n",
"110010\n"
] |
[
"11\n",
"11010\n"
] |
In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub>β=β3<sub class="lower-index">10</sub>.
In the second sample the best strategy is to delete the third or fourth digits β that results in number 11010<sub class="lower-index">2</sub>β=β26<sub class="lower-index">10</sub>.
| 500
|
[
{
"input": "101",
"output": "11"
},
{
"input": "110010",
"output": "11010"
},
{
"input": "10000",
"output": "1000"
},
{
"input": "1111111110",
"output": "111111111"
},
{
"input": "10100101011110101",
"output": "1100101011110101"
},
{
"input": "111010010111",
"output": "11110010111"
},
{
"input": "11110111011100000000",
"output": "1111111011100000000"
},
{
"input": "11110010010100001110110101110011110110100111101",
"output": "1111010010100001110110101110011110110100111101"
},
{
"input": "1001011111010010100111111",
"output": "101011111010010100111111"
},
{
"input": "1111111111",
"output": "111111111"
},
{
"input": "1111111111111111111100111101001110110111111000001111110101001101001110011000001011001111111000110101",
"output": "111111111111111111110111101001110110111111000001111110101001101001110011000001011001111111000110101"
},
{
"input": "11010110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100",
"output": "1110110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100"
},
{
"input": "11111111111111111111111110110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011",
"output": "1111111111111111111111111110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011"
},
{
"input": "11100010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011",
"output": "1110010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011"
},
{
"input": "11",
"output": "1"
},
{
"input": "111",
"output": "11"
},
{
"input": "111111",
"output": "11111"
},
{
"input": "11111",
"output": "1111"
},
{
"input": "1111",
"output": "111"
}
] | 1,582,142,126
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 37
| 310
| 4,608,000
|
bin_num=list(input())
if "0" in bin_num:
for i in range(len(bin_num)):
if bin_num[i]=="0":
del bin_num[i]
break
print(''.join(bin_num))
else:
del bin_num[0]
print(''.join(bin_num))
|
Title: Little Elephant and Bits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper.
To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes).
The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation.
Input Specification:
The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits.
Output Specification:
In the single line print the number that is written without leading zeroes in the binary notation β the answer to the problem.
Demo Input:
['101\n', '110010\n']
Demo Output:
['11\n', '11010\n']
Note:
In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub>β=β3<sub class="lower-index">10</sub>.
In the second sample the best strategy is to delete the third or fourth digits β that results in number 11010<sub class="lower-index">2</sub>β=β26<sub class="lower-index">10</sub>.
|
```python
bin_num=list(input())
if "0" in bin_num:
for i in range(len(bin_num)):
if bin_num[i]=="0":
del bin_num[i]
break
print(''.join(bin_num))
else:
del bin_num[0]
print(''.join(bin_num))
```
| 3
|
|
439
|
A
|
Devu, the Singer and Churu, the Joker
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation"
] | null | null |
Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited.
Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly.
The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly.
People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest.
You as one of the organizers should make an optimal sΡhedule for the event. For some reasons you must follow the conditions:
- The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible.
If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event.
|
The first line contains two space separated integers *n*, *d* (1<=β€<=*n*<=β€<=100;Β 1<=β€<=*d*<=β€<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=β€<=*t**i*<=β€<=100).
|
If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event.
|
[
"3 30\n2 2 1\n",
"3 20\n2 1 1\n"
] |
[
"5\n",
"-1\n"
] |
Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way:
- First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes.
Total time spent is 5β+β2β+β10β+β2β+β10β+β1β=β30 minutes.
Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
| 500
|
[
{
"input": "3 30\n2 2 1",
"output": "5"
},
{
"input": "3 20\n2 1 1",
"output": "-1"
},
{
"input": "50 10000\n5 4 10 9 9 6 7 7 7 3 3 7 7 4 7 4 10 10 1 7 10 3 1 4 5 7 2 10 10 10 2 3 4 7 6 1 8 4 7 3 8 8 4 10 1 1 9 2 6 1",
"output": "1943"
},
{
"input": "50 10000\n4 7 15 9 11 12 20 9 14 14 10 13 6 13 14 17 6 8 20 12 10 15 13 17 5 12 13 11 7 5 5 2 3 15 13 7 14 14 19 2 13 14 5 15 3 19 15 16 4 1",
"output": "1891"
},
{
"input": "100 9000\n5 2 3 1 1 3 4 9 9 6 7 10 10 10 2 10 6 8 8 6 7 9 9 5 6 2 1 10 10 9 4 5 9 2 4 3 8 5 6 1 1 5 3 6 2 6 6 6 5 8 3 6 7 3 1 10 9 1 8 3 10 9 5 6 3 4 1 1 10 10 2 3 4 8 10 10 5 1 5 3 6 8 10 6 10 2 1 8 10 1 7 6 9 10 5 2 3 5 3 2",
"output": "1688"
},
{
"input": "100 8007\n5 19 14 18 9 6 15 8 1 14 11 20 3 17 7 12 2 6 3 17 7 20 1 14 20 17 2 10 13 7 18 18 9 10 16 8 1 11 11 9 13 18 9 20 12 12 7 15 12 17 11 5 11 15 9 2 15 1 18 3 18 16 15 4 10 5 18 13 13 12 3 8 17 2 12 2 13 3 1 13 2 4 9 10 18 10 14 4 4 17 12 19 2 9 6 5 5 20 18 12",
"output": "1391"
},
{
"input": "39 2412\n1 1 1 1 1 1 26 1 1 1 99 1 1 1 1 1 1 1 1 1 1 88 7 1 1 1 1 76 1 1 1 93 40 1 13 1 68 1 32",
"output": "368"
},
{
"input": "39 2617\n47 1 1 1 63 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 70 1 99 63 1 1 1 1 1 1 1 1 64 1 1",
"output": "435"
},
{
"input": "39 3681\n83 77 1 94 85 47 1 98 29 16 1 1 1 71 96 85 31 97 96 93 40 50 98 1 60 51 1 96 100 72 1 1 1 89 1 93 1 92 100",
"output": "326"
},
{
"input": "45 894\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 99 3 1 1",
"output": "139"
},
{
"input": "45 4534\n1 99 65 99 4 46 54 80 51 30 96 1 28 30 44 70 78 1 1 100 1 62 1 1 1 85 1 1 1 61 1 46 75 1 61 77 97 26 67 1 1 63 81 85 86",
"output": "514"
},
{
"input": "72 3538\n52 1 8 1 1 1 7 1 1 1 1 48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 40 1 1 38 1 1 1 1 1 1 1 1 1 1 1 35 1 93 79 1 1 1 1 1 1 1 1 1 51 1 1 1 1 1 1 1 1 1 1 1 1 96 1",
"output": "586"
},
{
"input": "81 2200\n1 59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1",
"output": "384"
},
{
"input": "81 2577\n85 91 1 1 2 1 1 100 1 80 1 1 17 86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 37 1 66 24 1 1 96 49 1 66 1 44 1 1 1 1 98 1 1 1 1 35 1 37 3 35 1 1 87 64 1 24 1 58 1 1 42 83 5 1 1 1 1 1 95 1 94 1 50 1 1",
"output": "174"
},
{
"input": "81 4131\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "807"
},
{
"input": "81 6315\n1 1 67 100 1 99 36 1 92 5 1 96 42 12 1 57 91 1 1 66 41 30 74 95 1 37 1 39 91 69 1 52 77 47 65 1 1 93 96 74 90 35 85 76 71 92 92 1 1 67 92 74 1 1 86 76 35 1 56 16 27 57 37 95 1 40 20 100 51 1 80 60 45 79 95 1 46 1 25 100 96",
"output": "490"
},
{
"input": "96 1688\n1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 71 1 1 1 30 1 1 1",
"output": "284"
},
{
"input": "96 8889\n1 1 18 1 1 1 1 1 1 1 1 1 99 1 1 1 1 88 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 96 1 1 1 1 21 1 1 1 1 1 1 1 73 1 1 1 1 1 10 1 1 1 1 1 1 1 46 43 1 1 1 1 1 98 1 1 1 1 1 1 6 1 1 1 1 1 74 1 25 1 55 1 1 1 13 1 1 54 1 1 1",
"output": "1589"
},
{
"input": "10 100\n1 1 1 1 1 1 1 1 1 1",
"output": "18"
},
{
"input": "100 10000\n54 46 72 94 79 83 91 54 73 3 24 55 54 31 28 20 19 6 25 19 47 23 1 70 15 87 51 39 54 77 55 5 60 3 15 99 56 88 22 78 79 21 38 27 28 86 7 88 12 59 55 70 25 1 70 49 1 45 69 72 50 17 4 56 8 100 90 34 35 20 61 76 88 79 4 74 65 68 75 26 40 72 59 94 10 67 96 85 29 90 47 24 44 1 66 93 55 36 1 99",
"output": "1017"
},
{
"input": "100 6000\n41 31 23 17 24 78 26 96 93 48 46 2 49 33 35 9 73 100 34 48 83 36 33 69 43 24 3 74 8 81 27 33 94 38 77 9 76 90 62 90 21 67 22 22 12 2 17 27 61 18 72 85 59 65 71 38 90 75 74 66 60 47 58 50 90 95 75 10 5 100 97 29 83 88 65 26 93 90 22 98 36 55 70 38 50 92 88 72 99 96 25 14 74 16 25 92 67 94 77 96",
"output": "-1"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "1 6\n1",
"output": "1"
},
{
"input": "1 5\n1",
"output": "0"
},
{
"input": "1 3\n4",
"output": "-1"
},
{
"input": "3 24\n2 1 2",
"output": "-1"
}
] | 1,597,667,933
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 109
| 307,200
|
t = input()
temp = t.split()
n = int(temp[0])
d = int(temp[1])
songLenthList = []
songLength = input()
List = songLength.split()
songLenthList = [int(i) for i in List]
devuBreaktime = (n-1)*10
devuTotalTime = devuBreaktime + sum(songLenthList)
churuTime = d - devuTotalTime + devuBreaktime
if (devuTotalTime > d):
print(-1)
else:
print(int(churuTime/5))
|
Title: Devu, the Singer and Churu, the Joker
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited.
Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly.
The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly.
People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest.
You as one of the organizers should make an optimal sΡhedule for the event. For some reasons you must follow the conditions:
- The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible.
If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event.
Input Specification:
The first line contains two space separated integers *n*, *d* (1<=β€<=*n*<=β€<=100;Β 1<=β€<=*d*<=β€<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=β€<=*t**i*<=β€<=100).
Output Specification:
If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event.
Demo Input:
['3 30\n2 2 1\n', '3 20\n2 1 1\n']
Demo Output:
['5\n', '-1\n']
Note:
Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way:
- First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes.
Total time spent is 5β+β2β+β10β+β2β+β10β+β1β=β30 minutes.
Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
|
```python
t = input()
temp = t.split()
n = int(temp[0])
d = int(temp[1])
songLenthList = []
songLength = input()
List = songLength.split()
songLenthList = [int(i) for i in List]
devuBreaktime = (n-1)*10
devuTotalTime = devuBreaktime + sum(songLenthList)
churuTime = d - devuTotalTime + devuBreaktime
if (devuTotalTime > d):
print(-1)
else:
print(int(churuTime/5))
```
| 3
|
|
714
|
B
|
Filya and Homework
|
PROGRAMMING
| 1,200
|
[
"implementation",
"sortings"
] | null | null |
Today, hedgehog Filya went to school for the very first time! Teacher gave him a homework which Filya was unable to complete without your help.
Filya is given an array of non-negative integers *a*1,<=*a*2,<=...,<=*a**n*. First, he pick an integer *x* and then he adds *x* to some elements of the array (no more than once), subtract *x* from some other elements (also, no more than once) and do no change other elements. He wants all elements of the array to be equal.
Now he wonders if it's possible to pick such integer *x* and change some elements of the array using this *x* in order to make all elements equal.
|
The first line of the input contains an integer *n* (1<=β€<=*n*<=β€<=100<=000)Β β the number of integers in the Filya's array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=β€<=*a**i*<=β€<=109)Β β elements of the array.
|
If it's impossible to make all elements of the array equal using the process given in the problem statement, then print "NO" (without quotes) in the only line of the output. Otherwise print "YES" (without quotes).
|
[
"5\n1 3 3 2 1\n",
"5\n1 2 3 4 5\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample Filya should select *x*β=β1, then add it to the first and the last elements of the array and subtract from the second and the third elements.
| 1,000
|
[
{
"input": "5\n1 3 3 2 1",
"output": "YES"
},
{
"input": "5\n1 2 3 4 5",
"output": "NO"
},
{
"input": "2\n1 2",
"output": "YES"
},
{
"input": "3\n1 2 3",
"output": "YES"
},
{
"input": "3\n1 1 1",
"output": "YES"
},
{
"input": "2\n1 1000000000",
"output": "YES"
},
{
"input": "4\n1 2 3 4",
"output": "NO"
},
{
"input": "10\n1 1 1 1 1 2 2 2 2 2",
"output": "YES"
},
{
"input": "2\n4 2",
"output": "YES"
},
{
"input": "4\n1 1 4 7",
"output": "YES"
},
{
"input": "3\n99999999 1 50000000",
"output": "YES"
},
{
"input": "1\n0",
"output": "YES"
},
{
"input": "5\n0 0 0 0 0",
"output": "YES"
},
{
"input": "4\n4 2 2 1",
"output": "NO"
},
{
"input": "3\n1 4 2",
"output": "NO"
},
{
"input": "3\n1 4 100",
"output": "NO"
},
{
"input": "3\n2 5 11",
"output": "NO"
},
{
"input": "3\n1 4 6",
"output": "NO"
},
{
"input": "3\n1 2 4",
"output": "NO"
},
{
"input": "3\n1 2 7",
"output": "NO"
},
{
"input": "5\n1 1 1 4 5",
"output": "NO"
},
{
"input": "2\n100000001 100000003",
"output": "YES"
},
{
"input": "3\n7 4 5",
"output": "NO"
},
{
"input": "3\n2 3 5",
"output": "NO"
},
{
"input": "3\n1 2 5",
"output": "NO"
},
{
"input": "2\n2 3",
"output": "YES"
},
{
"input": "3\n2 100 29",
"output": "NO"
},
{
"input": "3\n0 1 5",
"output": "NO"
},
{
"input": "3\n1 3 6",
"output": "NO"
},
{
"input": "3\n2 1 3",
"output": "YES"
},
{
"input": "3\n1 5 100",
"output": "NO"
},
{
"input": "3\n1 4 8",
"output": "NO"
},
{
"input": "3\n1 7 10",
"output": "NO"
},
{
"input": "3\n5 4 1",
"output": "NO"
},
{
"input": "3\n1 6 10",
"output": "NO"
},
{
"input": "4\n1 3 4 5",
"output": "NO"
},
{
"input": "3\n1 5 4",
"output": "NO"
},
{
"input": "5\n1 2 3 3 5",
"output": "NO"
},
{
"input": "3\n2 3 1",
"output": "YES"
},
{
"input": "3\n2 3 8",
"output": "NO"
},
{
"input": "3\n0 3 5",
"output": "NO"
},
{
"input": "3\n1 5 10",
"output": "NO"
},
{
"input": "3\n1 7 2",
"output": "NO"
},
{
"input": "3\n1 3 9",
"output": "NO"
},
{
"input": "3\n1 1 2",
"output": "YES"
},
{
"input": "7\n1 1 1 1 1 2 4",
"output": "NO"
},
{
"input": "5\n1 4 4 4 6",
"output": "NO"
},
{
"input": "5\n1 2 2 4 4",
"output": "NO"
},
{
"input": "3\n1 9 10",
"output": "NO"
},
{
"input": "8\n1 1 1 1 1 1 2 3",
"output": "YES"
},
{
"input": "3\n1 2 100",
"output": "NO"
},
{
"input": "3\n1 3 4",
"output": "NO"
},
{
"input": "3\n1 15 14",
"output": "NO"
},
{
"input": "3\n1 3 8",
"output": "NO"
},
{
"input": "3\n1 2 10",
"output": "NO"
},
{
"input": "4\n2 2 4 5",
"output": "NO"
},
{
"input": "3\n1 3 5",
"output": "YES"
},
{
"input": "5\n3 6 7 8 9",
"output": "NO"
},
{
"input": "3\n7 6 8",
"output": "YES"
},
{
"input": "3\n3 2 1",
"output": "YES"
},
{
"input": "5\n1 2 2 2 3",
"output": "YES"
},
{
"input": "3\n4 6 7",
"output": "NO"
},
{
"input": "3\n2 0 4",
"output": "YES"
},
{
"input": "4\n10 20 21 30",
"output": "NO"
},
{
"input": "4\n0 2 3 4",
"output": "NO"
},
{
"input": "3\n3 6 12",
"output": "NO"
},
{
"input": "5\n0 0 1 3 5",
"output": "NO"
},
{
"input": "3\n3 5 8",
"output": "NO"
},
{
"input": "3\n1 4 4",
"output": "YES"
},
{
"input": "4\n2 4 5 6",
"output": "NO"
}
] | 1,601,386,910
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 79
| 139
| 9,216,000
|
n = int(input())
arr = list(map(int,input().split()))
if len(set(arr)) == 1 :
print('YES')
elif len(set(arr)) == 2 :
print('YES')
elif len(set(arr)) >= 4 :
print('NO')
else:
st = set(arr)
#print(st)
arr2 = list(sorted(st))
#print(arr2)
if (arr2[1] * 2 == arr2[0] + arr2[2]):
print('YES')
else:
print('NO')
|
Title: Filya and Homework
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today, hedgehog Filya went to school for the very first time! Teacher gave him a homework which Filya was unable to complete without your help.
Filya is given an array of non-negative integers *a*1,<=*a*2,<=...,<=*a**n*. First, he pick an integer *x* and then he adds *x* to some elements of the array (no more than once), subtract *x* from some other elements (also, no more than once) and do no change other elements. He wants all elements of the array to be equal.
Now he wonders if it's possible to pick such integer *x* and change some elements of the array using this *x* in order to make all elements equal.
Input Specification:
The first line of the input contains an integer *n* (1<=β€<=*n*<=β€<=100<=000)Β β the number of integers in the Filya's array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=β€<=*a**i*<=β€<=109)Β β elements of the array.
Output Specification:
If it's impossible to make all elements of the array equal using the process given in the problem statement, then print "NO" (without quotes) in the only line of the output. Otherwise print "YES" (without quotes).
Demo Input:
['5\n1 3 3 2 1\n', '5\n1 2 3 4 5\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample Filya should select *x*β=β1, then add it to the first and the last elements of the array and subtract from the second and the third elements.
|
```python
n = int(input())
arr = list(map(int,input().split()))
if len(set(arr)) == 1 :
print('YES')
elif len(set(arr)) == 2 :
print('YES')
elif len(set(arr)) >= 4 :
print('NO')
else:
st = set(arr)
#print(st)
arr2 = list(sorted(st))
#print(arr2)
if (arr2[1] * 2 == arr2[0] + arr2[2]):
print('YES')
else:
print('NO')
```
| 3
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.