_id
stringlengths 1
5
| text
stringlengths 0
5.25k
| title
stringlengths 0
162
|
|---|---|---|
21088
|
نمودار من در مورد آتش سوزی ها (منطقه سوخته) در طول 12 سال است که در یک نمودار فهرست تاریخ ارائه شده است. از آنجا که بیشتر آتش سوزی ها در تابستان است (همانطور که انتظار می رود) من می خواهم آن را با رنگ های پس زمینه مختلف برجسته کنم. چگونه می توانم فصل ها را در Date List Plot با رنگ های مختلف رنگ آمیزی کنم؟ من می خواهم رنگ زمینه های مختلف را برای زمستان، بهار بگذارم ... ممنون!
|
چگونه بخشی از DateListPlot را نقاشی کنیم؟
|
14458
|
من می خواهم بتوانم چندین راه حل عددی یک ODE به اضافه حل تحلیلی آن را در یک نمودار رسم کنم تا ببینم چگونه جواب های عددی به سمت حل تحلیلی w.r.t همگرا می شوند. تعداد مراحل روشهایی که من استفاده میکنم روش اویلر برای معادله $ y'(t) = 1-t +4y(t), y(0)=1$ کدی است که من تا کنون دارم: y[0]=1; آیا[y[n+1]=y[n]+0.01(1-0.01n+4y[n])، {n,0،99}] y[100] آیا این قابل انجام است؟ پیشاپیش از هرگونه کمکی متشکرم :)
|
رسم چندین راه حل عددی به اضافه حل تحلیلی ODE در یک نمودار
|
55126
|
در حالت ایدهآل، من میخواهم ظاهر(های) نشانگر ماوس را در سطح نوت بوک، از یک styleseet تغییر دهم. با این حال، من فقط با تغییر رنگ آن راضی خواهم بود. این مسئله اصلی است که مرا از موضوعات تاریک دور نگه میدارد: یافتن نشانگر سخت میشود. به نظر می رسد گزینه MousePointerAppearance وجود دارد، اما نمی دانم چگونه/اگر کار می کند.
|
تغییر ظاهر ماوس در سطح نوت بوک
|
38386
|
هنگام کار در یک دفترچه یادداشت Mathematica، اغلب می خواهم سلول ها را دوباره مرتب کنم. بیشتر اوقات، سلولهایی را در پایین دفترچه اضافه میکنم، تا زمانی که متوجه میشوم شاید بهتر باشد این محاسبه را در نقطهای زودتر، بین سلولهای موجود درج کنم. > آیا راه مناسبی برای ترتیب دادن مجدد سلول ها در دفتر یادداشت Mathematica بدون > نیاز به برش و چسباندن وجود دارد؟ در حالت ایدهآل، من میخواهم بتوانم سلولها را با براکت آنها بکشم، احتمالاً یک کلید اصلاحکننده را نگه دارم. من از طریق اینترنت به طور کلی و این StackExchange به طور خاص جستجو کردم و به چیزی نرسیدم.
|
سلول ها را بدون برش خمیر مرتب کنید
|
55121
|
من نسخه جدیدم از Mathematica 10 را در حال انجام مراحل آن هستم و متوجه تغییر عجیبی در طرح رنگآمیزی شدم که به نظرم بسیار آزاردهنده است، و میخواهم بینشی در مورد دلیل این اتفاق بیابم. تا آنجایی که من می توانم بگویم این تغییر برای متغیرهایی که در ساختار محدوده تنظیم شده اند و سپس در داخل یک دستور Manipulate استفاده می شوند، اتفاق می افتد. بنابراین، برای مثال، کد ماژول[ {A = 1}, Manipulate[ Plot[ A Sin[k x] , {x, 0, 20} ] , {k, 1, 10} ] ] در Mathematica 9 و 10 فرانتند:  در حال پخش در Edit > Preferences > Appearance > Syntax Coloring > Errors and Warnings، کلاس خطایی که به آن نسبت داده می شود عبارت است از > Variables که قبل از استفاده از محدوده خارج می شوند، هرچند که دقیقاً معنای آن برای من خیلی واضح نیست. بنابراین، من چند سوال دارم: * آیا این در واقع یک استفاده نادرست است؟ اگر چنین است، چرا و از چه ساختار جایگزینی باید استفاده کنم؟ (به ویژه متوجه شدم که در نسخه 10 رنگ قرمز برای Block و Module نمایش داده می شود اما برای With نمایش داده نمی شود.) * چرا این فقط در نسخه 10 شروع شد؟ کدام نسخه درست است؟ * اگر این نوع کد درست است، آیا می توانم با خیال راحت این نوع علامت گذاری خطا را غیرفعال کنم؟ چه خطراتی در پی دارد؟
|
هایلایتر نحوی خطای Manipulate را هنگامی که در داخل یک بلوک یا یک ماژول قرار دارد نشان می دهد
|
32133
|
من یک معادله دارم: eq = 1 + ( 9 / ( s*(s + 9) ) )*( k/(s + b) ) == 0; که در آن `s == -2 + 2I` ('I' واحد خیالی است). من می دانم که می توان آن را با جدا کردن به بخش های واقعی و خیالی، جایگزینی مقدار 's' و سپس معادل سازی هر دو معادله با صفر و حل معادلات همزمان برای یافتن مقادیر 'b' و 'k' حل کرد. اما چگونه می توانم _Mathematica_ را وادار کنم این کار را برای من انجام دهد زیرا روی کاغذ خیلی طول می کشد. برای کسانی که مشکل مشابهی دارند، این برای من کار کرد: FindInstance [{ComplexExpand[Re[eq]] == 0, ComplexExpand[Im[eq]] == 0}, {k, b}, Reals] {{k -> 9.04063، b -> 5.54344}}
|
معادله با اعداد مختلط و 2 متغیر
|
24639
|
من سعی می کنم انتگرال زیر را با استفاده از _Mathematica 9.0.1.0_ a11=Integrate[Abs[Sin[b+x]],{x,0,2*\[Pi]}] محاسبه کنم این باید یک مشکل ساده باشد. با این حال، برای _Mathematica_ زمان بسیار زیادی طول کشید تا پاسخ را بدست آورد، که **4** است. من از یکی از همکاران خواستم که این کار را با _Maple_ انجام دهد، بلافاصله پاسخ دریافت می شود. فکر کردم ممکن است این ربطی به این واقعیت داشته باشد که _Mathematica_ همه چیز را به عنوان مقدار مختلط تلقی می کند، بنابراین برنامه را به صورت a1=Integrate[Abs[Sin[b+x]],{x,0,2*\[Pi بازنویسی کردم. ]}، فرضیات->{Element[{b,x},Reals]}] متأسفانه، اجرای این دستور به _Mathematica_ زمان بیشتری نیاز داشت. جای تاسف بیشتر این است که پاسخ به دست آمده **اشتباه** است: 4 Abs[Sin[b]] Cot[b] کسی میداند اینجا چه اشکالی دارد؟
|
رفتار عجیب Integrate
|
34189
|
من باید برای هر سطر برچسب هایی را در سمت راست از ArrayPlot اضافه کنم و مربع سیاه هر سطر را بسته به مقادیر دو لیست رنگ کنم. لیست رنگ دارای اعدادی در محدوده ای است و باید با استفاده از طرح رنگ نگاشت شود. s={{1، 1، 1، 1، 1، 1، 1، 1، 1، 1}، {1، 1، 1، 1، 1، 1، 0، 1، 1، 0}، {1، 1، 1، 1، 0، 1، 1، 1، 1، 0}، {1، 1، 1، 1، 0، 1، 1، 0، 1، 1}، {1، 1، 0، 1، 1، 1، 1، 1، 1، 0}، {1، 1، 0، 1، 1، 1، 1، 0، 1، 1}، {1، 1، 0، 1، 1، 0، 1، 1، 1، 1}، {0، 1، 1، 1، 1، 1، 1، 1، 1، 0}، {0، 1، 1، 1، 1، 1، 1، 0، 1، 1}، {0، 1، 1، 1، 1، 0، 1، 1، 1، 1}، {0، 1، 1، 0، 1، 1، 1، 1، 1، 1}، {0، 1، 1، 0، 1، 1، 0، 1، 1، 0}}؛ برچسبهای ArrayPlot[s، Mesh -> True] = {638/2835، 37/432، 3/40، 1/16، 1/14، 1/20، 1/16، 8/81، 1/14، 3/ 40، 37/432، 1/27}; رنگها = {0.00، 0.74، 0.79، 0.86، 0.81، 0.93، 0.86، 0.67، 0.81، 0.79، 0.74، 1.00}؛
|
افزودن برچسب روی ArrayPlot و رنگ آمیزی ردیف ها
|
37431
|
فرض کنید من یک لیست تک بعدی d با طول L دارم. محور x$ در نمودار از «{2013, 8, 28 + start}» شروع میشود و به «{2013, 8, 28 + end}» ختم میشود، و من میخواهم «شروع» و «پایان» را تغییر دهم. تاریخ با «دستکاری». بنابراین d[[1]] (*--> 2013/8/28*) d[[2]] (*--> 2013/8/29*) بنابراین فکر میکنم اینطور باشد: Manipulate[DateListPlot[d, {{2013، 8، 28 + شروع}، {2013، 8، 28 + پایان}}]، {{شروع، 0}، 0، L}, {{end, L}, 0, L} ] اما وقتی آن را رسم میکنم، زمانی که 'a>3' به من خطایی میدهد، زیرا روز تاریخ بزرگتر از «31» است (فکر میکنم). روش صحیح انجام این کار چگونه خواهد بود؟
|
چگونه تاریخ شروع و پایان DateListPlot را با Manipulate تغییر دهیم؟
|
37314
|
من یک جدول اسکریپت Mathematica=ParallelTable[f[u],{u,0,40,.5}] Export[filename.csv,table] دارم که جدولی از یک تابع نسبتاً پیچیده f را محاسبه و صادر می کند. من آن را با استفاده از دستور math -script table.m& اجرا می کنم. از آنجایی که محاسبه این جدول زمان بسیار زیادی می برد، می خواهم محاسبه را لغو کنم. آیا راهی برای به دست آوردن اطلاعاتی که قبلاً محاسبه شده است وجود دارد؟
|
چگونه در حین ارزیابی یک اسکریپت Mathematica اطلاعات بدست آوریم؟
|
15586
|
چرا تعیین دستی متریک فاصله تا «نزدیکترین» محاسبه را بسیار کند میکند؟ این مربوط به سوال قبلی من است. من از «انتخاب» برای یافتن مجموعههایی از نقاط نزدیک به یک نقطه مرکزی استفاده کردهام، اما متوجه شدم که راهحل جایگزین (اگرچه غیرقابل کامپایل) ممکن است استفاده از «نزدیکترین» با «فاصله تخته شطرنج» باشد. با این حال، متوجه شدهام که اگر «تابع فاصله» را در نزدیکترین نقطه مشخص کنید، محاسبات را بهشدت کاهش میدهید، به طوری که «فاصله تخته شطرنج» بدترین آن دسته با مرتبهای دیگر است. این نتایج در یک بعدی، دو بعدی و سه بعدی با داده های تصادفی مشاهده شد. من مطمئن نیستم که اگر وجود داشته باشد، داده های ساختاریافته چه تاثیری خواهد داشت. در اینجا کد مثال برای نقاط سه بعدی آمده است. تمام زمانبندیها را در زیر میگویم. من به سادگی مجموعه ای از 1000 امتیاز ایجاد کرده ام و نزدیکترین تابع را محاسبه کرده ام و سپس نزدیکترین نقطه را در مجموعه اول 1000 امتیازی به هر نقطه در مجموعه دوم 1000 امتیازی دیگر محاسبه کرده ام. data1 = RandomReal[10, {10^3, 3}]; data2 = RandomReal[10, {10^3, 3}]; nf1 = نزدیکترین[داده1]; nf1 /@ data2; // AbsoluteTiming nf2 = نزدیکترین[data1, DistanceFunction -> EuclideanDistance]; nf2 /@ data2; // AbsoluteTiming nf3 = نزدیکترین[data1, DistanceFunction -> ManhattanDistance]; nf3 /@ data2; // AbsoluteTiming nf4 = نزدیکترین[data1, DistanceFunction -> Chessboard Distance]; nf4 /@ data2; // AbsoluteTiming در اینجا زمانبندیها آمده است: nf1 {0.0160009، Null} nf2 {1.1730671، Null} nf3 {1.1720671، Null} nf4 {26.4165109، Null} زمانبندی بسیار مشابهی برای همه آنها یافت نشد. اینجا مستندات می گوید: اگر عناصر بردار یا ماتریس اعداد باشند، Nearest به طور پیش فرض _in effect_ از متریک «Norm[#1-#2]&» استفاده می کند. بنابراین سعی کردم به صورت دستی از «Norm[#1-#2]&» به عنوان «DistanceFunction» استفاده کنم. nf5 = نزدیکترین[داده1، تابع فاصله -> (هنجار[#1 - #2] &)]; nf5 /@ data2; // AbsoluteTiming این، به طور شگفت انگیزی، حتی کندتر است. nf5 {3.9752274، Null} من متوجه شدم که شاید تبدیل فاصله پیشفرض، حتی اگر در مستندات آمده است، کامپایل شده باشد. بیایید آن را امتحان کنیم. euclideandistanceC = Compile[{{pt1, _Real, 1}, {pt2, _Real, 1}}, Norm[pt1 - pt2], CompilationTarget -> C, RuntimeAttributes -> {Listable}, Parallelization -> True, RuntimeOptions - > سرعت]؛ nf6 = نزدیکترین[داده، تابع فاصله -> euclideandistanceC]; nf6 /@ data2; // AbsoluteTiming nf6 {0.8990514، Null} بهتر است اما همچنان کندتر است. چه خبر است؟ چرا روش پیشفرض بسیار سریعتر است و مهمتر از همه، چگونه میتوانم از معیارهای دیگر فاصله بدون جریمه عملکرد زیاد استفاده کنم؟
|
تعیین دستی متریک فاصله به نزدیکترین، محاسبه را کند می کند
|
6235
|
آیا می توان یک منوی کاملاً جدید اضافه کرد، مثلاً منوی «CustomApp» در حال پرواز؟ به عنوان مثال یک بسته _CustomApp_ می تواند منوی خود را CustomApp با زیر منوها، و غیره، یک بار _نیاز_ اضافه کند. نمونههای قبلی که من دیدهام، فقط با افزودن به منوی موجود سروکار داشتند.
|
چگونه یک منو کاملا جدید اضافه کنیم
|
13867
|
قبل از افزودن «Locator» به «Manipulate»، میتوانم به راحتی نتیجه را با استفاده از منوی زمینه چاپ یا صادر کنم:  اما پس از افزودن «مکان یاب»، حتی نمی توانم یک منوی زمینه ظاهر شود. چگونه می توانم گرافیک های تولید شده با Locators را فعال کنم تا عملکرد منوی زمینه بازیابی شود؟ دستکاری[نمایش[ParametricPlot[BezierFunction[{{0, 0}, c1, {1, 1}}][x], {x, 0, 1}]], {{c1,{.2, .2}} ، مکان یاب}]
|
چگونه می توانم عملکرد منوی زمینه را به یک Manipulate که حاوی Locators است بازیابی کنم؟
|
8861
|
این یک معادله رسانایی گرما یک بعدی بسیار ساده است، تنها بخش ویژه آن شرط اولیه تکه ای است: b = NDSolve[{D[tes[t, x], t] == D[tes[t, x ]، x، x] + Exp[-1/(tes[t، x])]، تس[t، 0] == 1، تس[t، 1] == 1، تس[0، x] == تکه[{{-100 (x - 0.1)^2 + 2، 0 <= x <= 0.1}، {2، 0.1 <= x <= 0.9}، {-100 (x - 0.9)^ 2 + 2، 0.9 <= x <= 1}}]}، {tes[t، x]}، {t، 0، 100}، {x, 0, 1}] اگر کد را اجرا کنید، این پیام هشدار را دریافت خواهید کرد: > NDSolve::mxsst: استفاده از حداکثر تعداد نقاط شبکه 10000 مجاز توسط گزینه های > MaxPoints یا MinStepSize برای متغیر مستقل x چرا این پیام بیرون آمدن؟ من راهنما را خواندم اما فکر نمیکنم شرایط اولیهام چنین ایرادی داشته باشد: تکهتکه اما صاف است، درست است؟ * * * من می خواهم نمونه دیگری را در اینجا اضافه کنم زیرا رفتار آن تضاد جالبی با نمونه بالا ایجاد می کند: c = NDSolve[{D[tes[t, x], t] == D[tes[t, x] , x, x] + Exp[-1/(tes[t، x])]، تس[t، 0] == 1، تس[t، 1] == 1، تس[0، x] == تکهای[{{-Exp[-1000 x] + 2، 0 <= x <= 0.1}، {2، 0.1 <= x <= 0.9}، {-Exp[-1000 (1 - x)] + 2، 0.9 <= x <= 1}}]}، {tes[t، x]}، {t، 0، 100}، {x، 0، 1}] این مثال «Exp» را بهعنوان انتقال بین شرط اولیه و شرایط مرزی انتخاب میکند، در واقع این شرط اولیه حتی در «x=0.1» و «x=0.9» از نظر ریاضیات پیوسته نیست، و من فکر میکنم تغییر Exp شدیدتر از تابع چند جمله ای است، اما هیچ پیام هشداری دریافت نمی کند. خوب، باید بگویم، پس از این همه زمان (به زمانی که این سوال را پست کردم توجه کنید) من قبلاً این را به عنوان نوعی اشکال در نظر گرفته ام، اما همچنان انتظار دارم توضیحی عمیق برای آن ارائه دهم.
|
هنگامی که می خواستم یک PDE را با یک شرط اولیه تکه تکه توسط NDSolve حل کنم با خطا مواجه شدم.
|
13861
|
من در حال حاضر با یک ماتریس مجاورت وزنی برای یک گراف جهت دار کار می کنم و شامل چندین ستون و سطر 0 است. با ماتریس بدون تغییر، می توانم روابط بین رئوس را با TableForm[Normal @ WeightedAdjacencyMatrix[graph]، TableHeadings -> {a = VertexList[graph]، a}] نظارت کنم. ردیف ها و ستون ها من میخواهم 0 سطر و ستون را حذف کنم، در حالی که برچسبها را تغییر میدهم تا تغییرات را منعکس کنند. ماتریس من در حال حاضر 85$\ برابر 85$ است و با حذف سطرها و ستونهای لازم اندازه آن به 77$\ برابر 38$ کاهش مییابد. من از نظر تئوری میتوانم با دست مرور کنم و ورودیهای حذف شده را ردیابی کنم، اما برای چیزی که مطمئنم راهحل سادهای دارد، خیلی وقتگیر به نظر میرسد. هر کمکی قابل تقدیر است.
|
حذف یک سطر یا ستون از یک ماتریس مجاورت با حفظ برچسب مرتبط
|
37315
|
من با دادن تمام کدهایی که تا الان دارم پستم را ویرایش می کنم. من می خواهم برنامه ای بنویسم که به صورت تصادفی و قطعه قطعه یک تصویر داده شده را باز کند. در حال حاضر، من از تصویری استفاده می کنم که به طور تصادفی با Image[] (endImage) ایجاد شده است، و با پس زمینه خاکستری (whitePart و beginImage) شروع می کنم. من تصویر را به قسمت های partNumber x partNumber تقسیم می کنم (اینجا 10): partNumber = 10; allParts = Flatten[Outer[List, Range[1, partNumber], Range[1, partNumber]], 1]; endImage = ImagePartition[ Image@RandomReal[1, {400, 400}] , 400/partNumber]; whitePart = Image@Table[0.5، {400/partNumber}، {400/partNumber}]; beginImage = جدول[whitePart, {partNumber}, {partNumber}]; (* پس از آن، من یک ترتیب تصادفی از باز شدن قطعات با * ایجاد می کنم) replaceOrdering = RandomSample[allParts]; (* سپس، یک تابع کوتاه که جایگزین «beginImage» شماره قطعه «indexNumber» با «endImage» قسمت «indexNumber» می شود: *) replacePartWithNumber[tableOfParts_, indexNumber_] := ReplacePart[tableOfParts, replaceOrdering[[ -index>EndImage] [اعمال[دنباله، replaceOrdering[[indexNumber]]]]]] (* ایجاد لیست با بازگشت: *) stage[1] = replacePartWithNumber[ beginImage, 1]; stage[n_] := replacePartWithNumber[stage[n - 1], n] (* که در نهایت دستور Animate را می دهد: *) Animate[ ImageAssemble@stage[n] , {n, 1, Length@replaceOrdering, 1} , DefaultDuration -> 10 , AnimationRepetitions -> 1] این برای مقادیر از PartNumber تا حدود 25. اما با «partNumber = 40» یا «=50»، Mathematica بلافاصله خراب میشود... آیا میدانید چرا این اتفاق میافتد؟ هر گونه کمک تا حد زیادی قدردانی!
|
متحرک سازی Mathematica را خراب می کند
|
900
|
فرض کنید فهرست زیر را داشته باشم {{10,b,30}, {100,a,40}, {1000,b,10}, {1000,b,70}, {100,b,20}, {10, b,70} } چگونه ردیفهایی را پیدا کنیم که دارای حداکثر مقدار در ستون سوم هستند، در این مورد {{1000,b,70}, {10,b,70} }
|
چگونه ردیف هایی را پیدا کنیم که دارای حداکثر ارزش هستند؟
|
28409
|
من در یک پروژه اوقات فراغت با شخص دیگری که به Mathematica دسترسی دارد همکاری می کنم. من نمی کنم. او فایل دفترچه اش را در اختیار من قرار داده است. آیا امکان باز کردن یا وارد کردن این فایل در نرم افزار دیگری وجود دارد؟ اگر نه، آیا گزینه ای برای صادرات از Mathematica به فرمت یا زبان دیگری وجود دارد؟ من شنیده ام که امکان صادرات از یک فایل nb به کد C/C++ وجود دارد، اما نمی دانم که آیا همکار من می تواند این کار را انجام دهد یا بهترین گزینه ها کدام است. برای مورد خاص من، صادرات به C++ ایده آل خواهد بود.
|
باز کردن nb. در نرم افزارهای دیگر یا صادرات به زبان های دیگر
|
46660
|
عنوان گویای همه چیز است چگونه تعدادی اعداد اول (مثلاً کوچکتر از N) را که دارای 5 نیستند بشمارم؟
|
چگونه تعدادی اعداد اول (مثلاً کوچکتر از N) را که دارای 5 نیستند بشمارم؟
|
31977
|
بگویید من یک عبارت $a+b+a\times b$ دارم و $c:= a\times b$ را تعریف می کنم. چگونه می توانم _Mathematica_ را وادار کنم که $a+b+a\times b$ را بر حسب $c$، یعنی $a+b+c$ بنویسد؟
|
بیان نمادین را بر حسب ثابت ها ساده کنید
|
38382
|
من از Mathematica 9.0 در اوبونتو استفاده می کنم. من اولین مثال را از این صفحه مستندات امتحان کردم، اما بدون ارزیابی باز می گردد: Needs[DifferentialEquations`NDSolveProblems`]; نیازهای [DifferentialEquations`NDSolveUtilities]; NDSolve`ImplicitRungeKuttaGaussCoefficients[4, 50] (* ==> NDSolve`ImplicitRungeKuttaGaussCoefficients[4, 50] *) مشکل چیست؟
|
NDSolve`ImplicitRungeKuttaGaussCoefficients کار نمی کند
|
47009
|
من باید سیستمی از معادلات دیفرانسیل را حل کنم که حداقل شامل ده هزار معادله دیفرانسیل باشد. در واقع، من در تلاش برای حل معادله ماتریس چگالی هستم. مانند چیزی $ \frac{\partial}{\partial t}\rho(t) = \frac{-I}{\hbar}(H(t)\rho(t) -\rho(t)H(t )) دلار. اگر بعد فضای هیلبرت $N$ باشد، معادلات دیفرانسیل جفت شده $N^2$ وجود دارد. می خواهم بدانم آیا می توان این سیستم معادلات دیفرانسیل را به صورت موازی در Mathematica حل کرد؟ cpu من شش هسته دارد، بنابراین حدس میزنم اگر معادلات را به صورت موازی حل کنم، میتوانم سرعت شش برابری داشته باشم.
|
محاسبات موازی یک سیستم معادلات دیفرانسیل
|
11155
|
> **تکراری احتمالی:** > تعیین کنید که آیا برخی از عبارت ها دارای یک نماد معین است یا خیر، فرض کنید من مقداری عبارت دارم: نمونه = {1, 1/q, f[m]} و می خواهم آن را بررسی کنم که آیا علامت m` در آن. سوال من: آیا روشی تمیز یا سریع برای بررسی وجود m در معادله وجود دارد؟ * * * آنچه تاکنون به آن رسیده ام: Do[StringFreeQ[ToString[sample]، m]، {i، 300}] // AbsoluteTiming (* {0.0120007، Null} *) و Do[(نمونه /. m -> منحصر به فرد[]) === (نمونه /. m -> منحصر به فرد[])، {i، 300}] // AbsoluteTiming (* {0.0100005، Null} *) این راه حل ها کار می کنند، اما من احساس می کنم ممکن است یک راه سریعتر و کاربردی برای انجام این کار وجود داشته باشد.
|
زیباترین راه برای دیدن اینکه آیا یک عبارت تحت تأثیر نماد خاصی قرار می گیرد چیست؟
|
17983
|
چگونه می توانم با استفاده از گرافیک های ابتدایی _Mathematica_ تصویری مانند تصویر زیر بکشم؟ 
|
چگونه می توانم چنین تصویری بکشم؟
|
3020
|
من در برنامه نویسی Mathematica 8 بسیار مبتدی هستم. در حالی که سعی می کردم کمی با آنالیز تانسور بازی کنم با مشکلی مواجه شدم. چگونه برای مثال بردار را به این صورت تعریف کنیم: **v** ={$v_1,v_2,v_3$} در حال حاضر من تعریف بازگشتی را دریافت می کنم، به دلیل موقعیتی که در آن متغیر **v** در سمت راست است. - سمت چپ و دست
|
چرا نمی توانم بردار v را به عنوان دارای عناصر مشترک v_1، v_2، v_3... تعریف کنم؟
|
5677
|
با روحیه ای مشابه به سوالی که چند روز پیش ارائه شد، و همانطور که آن سوال بیان شد، > از آنجایی که قسمت جلویی کاملا قابل تمدید است، سوال من این است... آیا قسمت جلویی راهی برای استفاده از تب ها در کد ارائه می دهد؟ اعتراف می کنم که کمی پیش پا افتاده است، اما برای من استفاده از برگه ها برای تراز کردن بخش هایی از عبارات مختلف یا طرح بندی یک «شبکه» برای آسان کردن خواندن و اشکال زدایی کد بسیار مفید است. **ویرایش به سوال اصلی به شرح زیر است:** من تا زمانی که پاسخ لئونید را دیدم متوجه نشدم که آنچه که فکر میکردم پرسیده بودم و آنچه دیگران فکر میکردند من پرسیدم شباهت کمی دارند. کاری که من می خواهم انجام دهم شاید ساده تر و شاید احمقانه تر باشد. یک مثال بسیار ساده از Grid[] Grid[{{First , Second , Third, Fourth, Fifth }, 1st , 2nd , 3rd , 4th , 5th }}] چیزی که من می خواهم در یک سلول با استایل StandardForm یا InputForm ببینم به این شکل است:  من می خواهم قابلیت استفاده از یک برگه در هر خط کد معینی را در هر عبارت دیگر داشته باشد. این موضوع کمی به یکی از ویژگی های مفید «برنامه نویسی جدول گرا» کمک می کند. من فکر میکنم این میتواند راهاندازی Grid[]های پیچیده یا خواندن کدها و توابع پیچیده را آسانتر کند و در نتیجه یافتن باگها و ناسازگاریها را آسانتر کند. امیدوارم این سوال را واضح تر کند.
|
زبانه ها در داخل عبارت برای قالب بندی کد
|
44763
|
کد _Mathematica_ من به کندی اجرا می شود MinimalPolynomial[Sqrt[2] + Sqrt[3]+ Sqrt[5]+ Sqrt[7]+ Sqrt[11]+ Sqrt[13]، x] به کندی اجرا می شود، اما نسخه Maple evala(Norm(convert(x-(sqrt(2)+sqrt(3)+sqrt(5)+sqrt(7)+sqrt(11)+sqrt(13)), rootOf))); خیلی سریع اجرا می شود آیا راه سریع تری برای این کار در _Mathematica_ وجود دارد؟
|
افزایش سرعت Minimal Polynomial
|
33958
|
یک نوت بوک جدید با دو سلول ورودی زیر ایجاد کنید: NotebookWrite[EvaluationNotebook[]، Cell[BoxData[ToBoxes[Manipulator[Dynamic[x]]]]، Output]] و y = 10 (* سلول ساختگی *) اگر شما کل نوت بوک را ارزیابی کنید (منوی ارزیابی\ارزیابی نوت بوک)، خواهید دید که دستکاری کننده به سرعت ظاهر می شود ناپدید می شوند. اگر اولین سلول را به صورت دستی ارزیابی کنید، دستکاری کننده ناپدید نخواهد شد. چرا این اتفاق می افتد؟
|
سلول خروجی نوشته شده با NotebookWrite در ارزیابی کل نوت بوک ناپدید می شود، اما اگر به صورت جداگانه آن را ارزیابی کنم باقی می ماند.
|
23240
|
با توجه به ماتریس زیر: m = آرایه[Subscript[a, #, #2] &, {4, 4}]  چگونه می توانم مورب چوله یا مورب ضد مورب یا پشت ماتریس (با رنگ قرمز نشان داده شده است) را پیدا کنم
|
آیا تابعی برای بدست آوردن قطر پشتی یک ماتریس وجود دارد؟
|
29367
|
این یک مثال در سند راهنمای Mathematica است. NDSsolve[{y''[t] == -9.81، y[0] == 5، y'[0] == 0، WhenEvent[y[t] == 0، y'[t] -> -0.95 y'[t]]}، y، {t، 0، 10}]; نمودار[y[t] /. %, {t, 0, 10}] من اصلاحی مانند این انجام می دهم: NDSolve[{y''[t] == -9.81, y[0] == 5, y'[0] == 0, a = y[t]; b=y'[t]; WhenEvent[a == 0, b -> -0.95 b]}, y, {t, 0, 10}]; نمودار[y[t] /. %, {t, 0, 10}] کار نمی کند. اگر بخواهم یک نماد جدید را دقیقاً در اینجا «a» برای نشان دادن «y[t]» یا عبارتی درباره «y[t]» در «WhenEvent» نگه دارم، برای رسیدن به این هدف چه کاری می توانم انجام دهم؟ (خطا ممکن است ناشی از ویژگی HoldAll از «WhenEvent» باشد. چرا میخواهم «y[t]» را با «a» جایگزین کنم؟ این برای من مهم است. زیرا من از «a» پویا در آن استفاده خواهم کرد. WhenEvent)
|
استفاده از نماد جدید در WhenEvent در NDSolve
|
23245
|
با ارائه دو نمودار _بدون برچسب، $G$ و $H$، میخواهم آزمایش کنم که $H$ زیرگرافی از $G$ است. به عبارت دیگر، میخواهم آزمایش کنم که آیا میتوانیم تعداد ثابتی از رئوس یا یالها را از $G$ هرس کنیم تا آن را به نمودار $H$ تبدیل کنیم. آیا پیاده سازی برای چیزی شبیه به این در _Mathematica_ 9 وجود دارد، یا شاید در جای دیگری موجود باشد؟ کارایی، در حد منطق، برای من خیلی مهم نیست. توجه - من تا حدودی می توانم مثبت های کاذب را تحمل کنم، اما منفی های کاذب را نه.
|
آیا چیزی شبیه به SubgraphIsomorphismQ در Mathematica 9 وجود دارد؟
|
23714
|
یکی از بسیاری از جذابیت های Mathematica این است که اعداد صحیح عموماً به عنوان موجودات نمادین دقیق و نه فقط به عنوان اعداد در نظر گرفته می شوند. من فقط داشتم با Sqrt بازی میکردم و از آنچه به نظرم ناهماهنگی بود که باید از روز اول وجود داشته باشد، متحیر بودم، اما قبلاً به نوعی متوجه آن نشده بودم. این همانطور که انتظار می رود کار می کند: Sqrt[x^2] Sqrt[x^2] به طوری که به درستی ارزیابی می شود: حل[y == Sqrt[x^2]، x] {{x -> -y}، {x -> y}} اما، اگر اعداد صحیح دقیق را وارد کنم، تنها جواب شاخه مثبت برمی گردد: Sqrt[9] 3 و به این ترتیب: Sqrt[(-3)^2] 3 * * * به طور خلاصه: نظرات مختلف زیر مشخص می کند که تابع Sqrt: * فقط شاخه مثبت را بر اساس طراحی برمی گرداند. * Sqrt[x^2] بدون ارزیابی رها می شود، به طوری که شاخه مثبت را می توان با مفروضات مناسب انتخاب کرد، به شرح زیر شاید یک نوع Sqrt (یا گزینه) وجود دارد که هر دو راه حلی را که من از دست داده ام را ارائه می دهد؟ چرا به نظر نمی رسد که تابعی در Mathematica وجود داشته باشد که مجموعه راه حل های دقیق ریاضی {شاخه منفی، شاخه مثبت} را برمی گرداند ... به جای اینکه فقط شاخه مثبت را که به نظر می رسد بیشتر شبیه یک ماشین حساب جیبی 20thC عمل می کند برگرداند؟ به عنوان مثال: Sqrt[ فاصله[{-2, 0}]^2 ] -> فاصله[{0, 2}] ... با توجه به نحوه تعریف تابع Sqrt (برای برگرداندن همیشه شاخه مثبت) صحیح است، اما بیشتر با توجه به اینکه ما در واقع به دنبال مجموعه ای از راه حل های ممکن هستیم، گیج کننده است. با تشکر فراوان برای پیشنهادات زیر! خوب است که چیزی شبیه به این به عملکرد Sqrt در mma اضافه شود.
|
Sqrt -- چگونه شاخه منفی دریافت کنیم؟
|
45926
|
من در حال تلاش برای پیدا کردن میانگین لیست داده های دما هستم. لیست داده های دما دارای مراحل 3 ساعته است که به این معنی است که من 365*8=2920 اندازه گیری دما در سال دارم. داده های من دمای 13 سال است. ابتدا میانگین دمای 13 سال t را یک به یک در لیست زیر پیدا کردم: MeanTemp={Mean[Transpose[Partition[t[[1 ;; 365*8]]، 8]، {2، 1}]]، میانگین[Transpose[Partition[t[[365*8 + 1 ;; 365*8*2]]، 8]، {2، 1}]]، میانگین[Transpose[Partition[t[[365*8*2 + 1 ;; 365*8*3]]، 8]، {2، 1}]]، میانگین[Transpose[Partition[t[[365*8*3 + 1 ;; 365*8*4]]، 8]، {2، 1}]]، میانگین[Transpose[Partition[t[[365*8*4 + 1 ;; 365*8*5]]، 8]، {2، 1}]]، میانگین[Transpose[Partition[t[[365*8*5 + 1 ;; 365*8*6]]، 8]، {2، 1}]]، میانگین[Transpose[Partition[t[[365*8*6 + 1 ;; 365*8*7]]، 8]، {2، 1}]]، میانگین[Transpose[Partition[t[[365*8*7 + 1 ;; 365*8*8]]، 8]، {2، 1}]]، میانگین[Transpose[Partition[t[[365*8*8 + 1 ;; 365*8*9]]، 8]، {2، 1}]]، میانگین[Transpose[Partition[t[[365*8*9 + 1 ;; 365*8*10]]، 8]، {2، 1}]]، میانگین[Transpose[Partition[t[[365*8*10 + 1 ;; 365*8*11]], 8], {2, 1}]], Mean[Transpose[ Partition[n[[365*8*11 + 1 ;; 365*8*12]]، 8]، {2، 1}]]، میانگین[Transpose[Partition[n[[365*8*12 + 1 ;; 365*8*13]]، 8]، {2، 1}]]}؛ سپس میانگین دمای تمام سال ها را از آن کم می کنم. یعنی من واریانس دما را پیدا کردم: TempVariance={Mean[Transpose[Partition[t[[1 ;; 365*8]]، 8]، {2، 1}]] - میانگین سال، میانگین[Transpose[Partition[t[[365*8 + 1 ;; 365*8*2]]، 8]، {2، 1}]] - میانگین سال، میانگین[Transpose[Partition[t[[365*8*2 + 1 ;; 365*8*3]]، 8]، {2، 1}]] - میانگین سال، میانگین[Transpose[Partition[t[[365*8*3 + 1 ;; 365*8*4]]، 8]، {2، 1}]] - میانگین سال، میانگین[Transpose[Partition[t[[365*8*4 + 1 ;; 365*8*5]]، 8]، {2، 1}]] - میانگین سال، میانگین[Transpose[Partition[t[[365*8*5 + 1 ;; 365*8*6]]، 8]، {2، 1}]] - میانگین سال، میانگین[Transpose[Partition[t[[365*8*6 + 1 ;; 365*8*7]]، 8]، {2، 1}]] - میانگین سال، میانگین[Transpose[Partition[t[[365*8*7 + 1 ;; 365*8*8]]، 8]، {2، 1}]] - meanofyear، Mean[Transpose[Partition[t[[365*8*8 + 1;; 365*8*9]]، 8]، {2، 1}]] - meanofyear، Mean[Transpose[Partition[t[[365*8*9 + 1 ;; 365*8*10]]، 8]، {2، 1}]] - میانگین سال، میانگین[Transpose[ Partition[t[[365*8*10 + 1 ;; 365*8*11]]، 8]، {2، 1}]] - میانگین سال، میانگین[Transpose[ Partition[t[[365*8*11 + 1 ;; 365*8*12]]، 8]، {2، 1}]] - meanofyear، Mean[Transpose[ Partition[t[[365*8*12 + 1 ;; 365*8*13]]، 8]، {2، 1}]] - meanofyear} فکر میکنم اگر دادهها افزایش یابد، این دستنوشته آنقدر طولانی خواهد بود. چگونه میتوان دستنوشته را کاهش داد و انعطافپذیری را افزایش داد؟
|
چگونه داده های سه ساله را به نمونه های روزانه تقسیم کنیم
|
56805
|
من به دنبال ساخت یک جدول اکسل ساده با چهار ستون هستم. من مدتی را صرف تحقیق درباره مستندات _Mathematica_ کرده ام، اما راهی برای پیاده سازی آن پیدا نکرده ام. در اینجا تصویری از هدف من برای دستیابی به آن است: 1. من می خواهم بتوانم ردیف های جدیدی را با تعیین مقادیر فراوانی و احتمال به این جدول اضافه کنم. 2. می خواهم نتیجه حاصل ضرب فرکانس باشد. . و احتمال 3. میخواهم با افزودن ردیفهای جدید به جدول، ایندکس را افزایش دهم و با حذف ردیفها کاهش دهم. آیا کسی می تواند لطفاً به من در جهت درست اشاره کند که از کجا شروع کنم. به عنوان مثال، اسناد _Mathematica_ یا موضوعات _Mathematica_ SE 
|
چگونه می توانم جدولی شبیه اکسل بسازم؟
|
23718
|
من می خواهم معادله $$x^y + y = y^x + x$$ را با $x$ حل کنم، $y$ اعداد صحیح هستند. من حل [x^y + y == y^x + x, {x, y}، اعداد صحیح را امتحان کردم] چگونه معادله بالا را حل کنیم؟
|
چگونه این معادله را با اعداد صحیح به عنوان راه حل حل کنیم؟
|
52052
|
به نظر می رسد که رابط پیش بینی در محیط صفحه نمایش اسلاید کار نمی کند.
|
چگونه می توانم رابط پیش بینی کننده را در محیط نمایش اسلاید کار کنم؟
|
6908
|
من مجموعه ای از نقاط داده سه بعدی تصادفی دارم. چگونه می توانم حجم بدنه محدب را محاسبه کنم؟
|
نحوه محاسبه حجم بدنه محدب و حجم یک جسم سه بعدی
|
13862
|
من با Mathematica7 با استفاده از NonlinearModelFit تنظیمات را انجام می دادم. برنامه برای انجام تناسب بسیار طولانی است و به همین دلیل است که من اینجا را نمایش نمی دهم ... اوکی می شود و می توانم پارامترهای fit و همچنین ماتریس کوواریانس را در[81]:= {Subscript[a, 0] دریافت کنم. , Subscript[a, 1]}/.fitCCBA34[BestFitParameters] In[78]:= fitCCBA34[CovarianceMatrix] هنگام آزمایش متقارن بودن، درست می شود، همانطور که با ساخت ماتریس باید انجام شود: In[80]:= SymmetricMatrixQ[b] Out[80]= True، اما، معلوم می شود، زمانی که سعی می کنید مقداری توزیع چند نرمال به دست آورید. از پارامترها، از ماتریسی که نامتقارن است شکایت می کند... In[84]:= MultinormalDistribution[{Subscript[a, 0]، زیرنویس[a, 1]} /. fitCCBA34[ BestFitParameters]، {{fitCCBA34[CovarianceMatrix][[1، 1]]، fitCCBA34[CovarianceMatrix][[1، 2]]}، {fitCCBA34[CovarianceMatrix][[2، 1] ]]، fitCCBA34[CovarianceMatrix][[2، 2]]}}] در طول ارزیابی In[84]:= MultinormalDistribution::cmsym: ماتریس کوواریانس باید متقارن باشد. >> Out[84]= MultinormalDistribution[{0.275723, 0.246948}, {{0.00001521, -0.0000535383}, {-0.0000535383, 11.6061}] البته خوب است، اگر الان کارتان را انجام دهید کاملاً خوب است. مشکل عددی، هیچ سرنخی در مورد چگونگی رفع این مشکل دارید؟ من باید هر بار به جای کپی پیست، این را در داخل یک تابع رمزگذاری کنم... پیشاپیش متشکرم!
|
Mathematica از ماتریس کوواریانس غیر متقارن شکایت می کند، در حالی که اینطور نیست
|
34746
|
من حدود 1,000,000,000 نقطه دارم که طول و عرض جغرافیایی برخی از نقاط یک شهر است که به این صورت است: $(106.1231233,41.43234234)$. من هم حدود 20000 نقطه دارم که طول و عرض جغرافیایی چند مکان خاص در این شهر است. برای هر مورد در مجموعه داده 1,000,000,000 نقطه، باید محاسبه کنم که کدام نقطه در مجموعه داده 20,000 نقطه نزدیکترین است. اگر بخواهم به صورت brute-force محاسبه کنم، یک به یک، ممکن است در طول زندگی ام کامل نشود. آیا الگوریتمی وجود دارد که بتواند این کار را کمتر وقت گیر کند؟ کسی میتونه کمکم کنه؟
|
از چه الگوریتم و ابزاری برای جستجوی مجموعه داده برای نزدیکترین نقطه به نقطه معین استفاده کنم؟
|
23242
|
من در حال حاضر سعی می کنم از داده های جمع آوری شده به عنوان تابعی از زمان استفاده کنم (در اینجا، فلورسانس یک نمونه بیولوژیکی)، اما در _Mathematica_ جدید هستم و نمی دانم چگونه روابط محوری (و واحدها و غیره) را به درستی مشخص کنم. با استفاده از ExcelLink 3.5، من دادههای یکی از داروهای متعددی را وارد کردهام که میخواهم آن را تجزیه و تحلیل کنم که تأثیر آن بر عملکرد فلورسانس است. به دلیل نحوه وارد کردن اطلاعات، دادههای فهرستشدهای که برای $f(t)$ جمعآوری کردهام، در یک لیست هستند، بدون اشاره به مقادیر متغیر مستقل (محور x) چه باید باشد. من نمودارم را با ListPlot[{28,32,37,66}] ساختم که مقادیر محور x '{1, 2, 3, 4}' را به طور پیشفرض تولید میکند و نه t را در دقیقه، که «{300» میشود، 600، 1200، 1440}` در مورد من). چگونه می توانم نموداری با مقادیر مناسب محور x ایجاد کنم؟
|
نمودارهای سری زمانی
|
46453
|
بسیاری از توابع، معمولاً آنهایی که شامل یکپارچه سازی هستند، گزینه «GenerateConditions» را انتخاب می کنند که اغلب به صورت پیش فرض «نادرست» است، یا حداقل برای توابع مربوط به «Expectation» و تبدیل فوریه انجام می شود. در چه شرایطی باید پیش فرض را تغییر داد؟ مزایا و معایب چیست؟
|
زمان استفاده از GenerateConditions -> True
|
27230
|
من یک مشکل خسته کننده با تغییر پارامترها در خروجی چاپ دارم. اگر معادله eq = Plus[Times[a1، مشتق[2،0][q2][x،y]]،Times[a2، مشتق[3،1][q1][x،y]]] داشته باشم؛ من می خواهم همه مشتقات را با متغیرهای جدید جایگزین کنم، برای مثال این مشتق[2, 0][q2][x, y] می خواهم آن را با $C_{\mathrm{q2}}^{2,0}$ و جایگزین کنم برای همه آنها به یک روش برای دریافت خروجی eq به طور خودکار در این فرم $\mathrm{a1}\,C_{\mathrm{q2}}^{2,0}+\mathrm{a2}\,C_{\mathrm{q1}}^{3,1}$
|
نحوه ایجاد قوانین برای تغییر پارامترها
|
8199
|
من این کد Plot[{(V^2/360)/0.4, ConditionalExpression[(V^2/860)/0.4, V < 12], ConditionalExpression[(V^2/860)/0.4, V > را دارم 12]}، {V، 8، 18}، PlotRange -> {0، 1.5}، PlotStyle -> {{ضخامت مطلق[3]}، {ضخامت مطلق[3]، خط چین}، {ضخامت مطلق[3]، دادههای رنگی[1، 2]}}، GridLines -> خودکار، Epilog -> {{ضخیم، چیندار، سیاه، خط[ {{12، 0}، {12، 2}}]}، {ضخیم، چین دار، سیاه، خط[{{8, 1}, {18, 1}}]}}] برای رسم یک تابع در دو قطعه، هر کدام به سبک متفاوت:  این برای من خوب عمل می کند، اگرچه دوست نداشتم که مجبور شوم از «ColorData[1, 2]» استفاده کنم تا قسمت دوم را همرنگ کنم. آیا راههای بهتری برای انجام این کار وجود دارد (احتمالاً چیزی با «Piecewise»)؟
|
روش مناسب برای رسم یک تابع واحد در دو سبک مختلف؟
|
8733
|
من برخی از کدها را بر اساس پاسخ @R.M. به **این سوال** اجرا میکنم تا چند نمودار در کنار هم ایجاد کنم. من می خواهم نمودارهای شطرنجی شده را به یک png صادر کنم. با این حال، وقتی طرح را با یک «RasterSize» یا «ImageResolution» «Rasterize» میکنم، ردیف را به دو خط جداگانه تقسیم میکند. مثال ساده شده زیر را ببینید: Rasterize[ With[{size = 250}, Row[Show[#, ImageSize -> {Automatic, size}, ImagePadding -> {{30, 15}, {40, 5}}] و /@ {Plot[Sin[x], {x, -1, 1}], Plot[Sin[x], {x, -1, 1}]}]]، ImageResolution -> 200] به نظر می رسد:  من هر دو طرح را در یک خط می خواهم اما با وضوح بالاتر، مانند این:  چه مشکلی دارد؟
|
صادر کردن یک ردیف گرافیکی شطرنجی شده
|
18921
|
چگونه می توانم PDE را با مقدار مرزی مانند $$u(t,x,y)=0, \textrm{وقتی } F(x,y)=0$$ با استفاده از DSolve حل کنم؟ به عنوان یک مثال خاص، من می خواهم معادله گرما $$\frac{\partial u}{\partial t}=\alpha\left(\frac{\partial^2 u}{\partial x^2}+\frac را حل کنم {\partial^2 u}{\partial y^2}\right)$$ با یک شرط مرزی عجیب $u(t,x,y)=0$ که $x^6+y^4=1$. (یا می خواهم آن را به صورت عددی با یک منحنی بسته عجیب حل کنم.)
|
چگونه یک PDE را با یک شرط مرزی عجیب حل کنم؟
|
5679
|
من با مشکل زیر مواجه هستم. f[x_,y_] = a[x] u[y] + b[x] v[y] اکنون میتوانم از Mathematica بخواهم که g[x_] = یکپارچه شود[ Expand[f[x,y]^2]، y] که به درستی نشان می دهد. در بسط عبارتی مانند Integrate[a[x]^2 u[y]^2 + 2 a[x] b[x] u[v] v[y] + b[x]^2 v[y داریم ]^2، y] اکنون در خروجی میخواهم Integrate[u[y]^2,y] را با «I11» و غیره جایگزین کنم. استفاده از «/.» این کار را انجام نداد. کسی میتونه لطفا منو روشن کنه؟
|
ساده سازی یک دستکاری نمادین شامل توابع بیش از یک متغیر
|
27003
|
نمونه زیر یک نمونه اسباب بازی است که امیدواریم مشکل را به اندازه کافی واضح نشان دهد. چرا کد زیر یک خروجی خوب و قابل دستکاری ایجاد می کند: simulationOutput = {1337, 2337, 30, 3337}; Clear[tmax] {irrelevantOutput1, irrelevantOutput2, tmax, irrelevantOutput3} = simulationOutput; دستکاری[ Plot[t^2, {t, startTime, endTime}], {startTime, Manipulator[Dynamic[startTime, (startTime = Min[tmax - 1, #]; endTime = Max[endTime, Min[# + 1, tmax]]) و]، {0، tmax}] و}، {endTime، Manipulator[Dynamic[endTime, (endTime = Max[1, #]; startTime = Min[startTime, Max[0, # - 1]]) &], {0, tmax}] &}, Initialization :> ({startTime , endTime} = {0, 1})]  اما این کد (تقریباً یکسان)، با Block[] اضافی، simulationOutput = {1337, 2337, 30, 3337}; Clear[tmax] Block[{irrelevantOutput1, irrelevantOutput2, tmax, irrelevantOutput3}, {irrelevantOutput1, irrelevantOutput2, tmax, irrelevantOutput3} = simulationOutput; دستکاری[ Plot[t^2, {t, startTime, endTime}], {startTime, Manipulator[Dynamic[startTime, (startTime = Min[tmax - 1, #]; endTime = Max[endTime, Min[# + 1, tmax]]) و]، {0، tmax}] و}، {endTime، Manipulator[Dynamic[endTime, (endTime = Max[1, #]; startTime = Min[startTime, Max[0, # - 1]]) &], {0, tmax}] &}, Initialization :> ({startTime , endTime} = {0, 1})]] منجر به این خروجی غیرقابل دستکاری می شود؟  اگر علاقه دارید، پس زمینه پشت سوال من به شرح زیر است. من شبیه سازی سیستم نوسانگرها را دارم. سپس رفتار این سیستم با ارائه شرایط اولیه مورد مطالعه قرار می گیرد، سپس با استفاده از NDSolve رفتار از `t=0` به t=tmax` را پیدا می کنیم. خروجی شبیهسازی (بهعنوان «خروجی شبیهسازی») سپس به یک تابع (که مثال زیر یک مثال سادهشده از آن است) وارد میشود تا بتوانم نتایج را ببینم - این دلیلی است که من محدوده زمانی را محدود میکنم. «StartTime» و «endTime» میتوانند برای حفظ مقادیر در محدوده «InterpolatingFunction» متفاوت باشند.
|
تأثیر Block[] بر تکرارکنندهها در Manipulate[]
|
55122
|
من سعی می کنم مدل SIR را به صورت عددی حل کنم. این باید ساده باشد اما نمیتوانم بفهمم چرا این کار نمیکند: b = 1; g = 0.4; NDSsolve[ {S'[t] == -b *X[t] * S[t]، X'[t] == b*X[t]*S[t] - g*X[t]، R '[t] == g*X[t]، X[0] == 0.01، S[0] == 0.99، R[0] == 0}، {S[t]، X[t]، R [t]}، {t, 0, 20} ] {{S[t]->InterpolatingFunction[{{0.,20.}}،<>][t],X[t]->InterpolatingFunction[{{0.,20. }}، <>][t]، R[t]->InterpolatingFunction[{{0.,20.}}،<>][t]}}
|
حل عددی NDSolve برای مدل SIR
|
15329
|
با توجه به «list1» و «list2» که عناصر آنها بردارهای یک بعد معین (ثابت) هستند، من به رفتار یک تابع اسکالر «cfn[list1[[i]],list2[[j]]]» علاقهمندم. همانطور که تعریف کردم، این تابع برای من فهرستی از ورودیهای فرمتبندیشده بهصورت «{list1[[i]]، list2[[j]]، اسکالار}» برای من خروجی میدهد، زیرا من همچنین میخواهم پیگیری کنم که عدد اسکالر از کدام بردارها آمده است. . سریعترین راه برای تولید چنین فهرستی البته استفاده از Outer برای ترسیم عملکرد من روی دو لیست Outer[cfn[#1,#2]&, list1,list2,1] است، اما این کار برای من فهرست کاملی از مقادیر برای تابع پس از اسکن لیست های من و از آنجایی که لیست های من بسیار طولانی هستند، فرآیند طولانی است و اگر بعد را افزایش دهم، حافظه من تمام می شود (معمولا list1*list2 تابعی از بعد ثابت است و من به نظر می رسد انجام 10 میلیون محاسبات خوب است). اگر من به همه مقادیر توابع علاقهای ندارم، اما بگویم فقط آنهایی که در یک محدوده مشخص هستند «cmin < cfn[list1,list2] < cmax» آیا روش کارآمدی برای اسکن لیستها و انتخاب فقط اینها وجود دارد؟ من حلقه های تو تو در تو آشکار For را امتحان کردم و همانطور که انتظار می رفت در نهایت سرعت محاسبات را به میزان قابل توجهی کاهش دادم. با تشکر ویرایش: همانطور که در نظرات درخواست شده است، یک نسخه ساده شده از کد خود را پیوست میکنم که فقط حاصلضرب داخلی دو بردار را پس از چند تعریف مجدد محاسبه میکند. «n» عددی است که ما مشخص میکنیم و «list1» و «list2» فهرستهایی هستند که ورودیهای آنها بردارهای با مقدار صحیح با طول «(n-1)» هستند، بهعنوان مثال، «list1[[1]] = {0, 0, 0 , 4}` و غیره cfn[list1_List, list2_List, n_] := Module[{rhow}, rhow = Table[1, {i, 1, n - 1}]; Lambda = list1 - list2 + rhow; hdim = Lambda.Lambda; بازگشت[{list1, list2, hdim}]]; زمانبندی[داده = مسطح[بیرونی[cfn[#1 , #2, n] &, list1 , list2, 1], 1]; selectdata = Select[data, cmin < #[[3]] < cmax &];] کد دومی که حلقههای For را در خود جای میدهد: rhow = جدول[1, {i, 1, n - 1}]; sampledataAlt[list1_List, list2_List, n_] := ماژول[{}, sampledata2 = {}; برای[i = 1، i <= طول[list1]، i++، برای[j = 1، j <= طول[list2]، j++، Lambda = list1[[i]] - list2[[j]] + rhow; hdim = Lambda.Lambda; اگر [cmin < hdim < cmax، dataNEW = {list1[[i]]، list2[[j]]، hdim}، dataNEW = {}]; sampledata2 = Join[sampledata2, dataNEW];]]; Return[sampledata2];] Timing[test = Partition[sampledataAlt[list1, list2, 5], 3];] که در آن چند دستکاری لیست انجام داده ام تا همه چیز را تقسیم کنم. برای آزمایشی من با «طول[list1] = 126» و «طول[list2] = 210»، کد دوم تا حدی سریعتر است، اما وقتی اندازه فهرست را افزایش میدهم، سرعت آن کاهش مییابد.
|
سرعت تکرار با شرطی ها به علاوه بهینه سازی استفاده از حافظه
|
39388
|
این تا حدی در پاسخ به سؤالی است که قبلاً ارسال کردم، اگرچه به نظر می رسد مشکل در این مورد از مشکل آنجا متمایز است، بنابراین من به طور موقت این را به عنوان یک سؤال جداگانه مطرح می کنم. Executing Length[Reduce[Abs[c1] + Abs[c2] + Abs[c3] + Abs[c4] <= 19, {c1, c2, c3, c4}, اعداد صحیح]] 97281 را به دست میدهد که مطابقت کامل با نتیجه ای که وقتی «کاهش» با «حل» جایگزین می شود، به دست می آید. با این حال، اجرای Length[Reduce[Abs[c1] + Abs[c2] + Abs[c3] + Abs[c4] <= 22, {c1, c2, c3, c4}, اعداد صحیح]] 42736 به دست میآید. بدیهی است که غیرممکن است ، از آنجایی که تعداد $\mathbb{Z}^4$ نقاط شبکه درون یک توپ تاکسی یک تابع کاملاً فزاینده از شعاع کسی میدونه اینجا چه خبره؟ من میخواهم بهطور موقت مشکل را از طریق رویکردهای جایگزین و ظریفتر حل کنم، زیرا هر دو «حل[]» و «کاهش[]» نتوانستهاند پاسخهای درستی برای $r\geq20$ بدهند، اما هیچ بینشی در مورد این ناپیوستگی رفتاری ناگهانی وجود ندارد. قدردانی خواهد شد. ویرایش: ممکن است نتیجه پایینتر از حد انتظار از «طول» به دلیل «کاهش» باشد که مجموعه راهحلی را به دست میدهد که عمق بیان آن فقط ساختار ساده «یا[...]» نیست که معمولاً ارائه میکند. برای مقادیر کوچکتر $r$. اگر کسی می تواند این را تایید کند، این سوال را می بندم.
|
کاهش [] که نتیجه نادرست را برای معادله بیش از $\mathbb{Z}^4$ می دهد
|
22556
|
من می خواهم با استفاده از ماوس روی یک ماتریس نوشتن کنم. یعنی من می خواهم از مقدار صحیح مختصات مکان یاب (p) برای نمایه سازی یک ماتریس استفاده کنم. سپس، اگر دکمه ماوس پایین است، یک عدد 1 در آن مکان بنویسید. به نظر می رسد که این رویکرد کار نمی کند زیرا، هنگام تلاش برای انجام کاری مانند M[[Sequence @@ Round [p]]]، مختصات p در واقع یک کمیت دینامیکی است که نمی توان آن را با ترتیب به دو شاخص صحیح تبدیل کرد. @@ گرد. آیا راهی برای این کار وجود دارد؟ یا، آیا راه حل معادلی وجود دارد که به همان نتیجه برسد. سادهترین مثال استفاده از ماوس برای وارد کردن یک نقاشی سیاه و سفید بهعنوان پیکسل در یک ماتریس است که بعداً میتواند تحت الگوریتمهای پردازش تصویر قرار گیرد.
|
استفاده از مختصات ماوس برای نمایه سازی یک ماتریس
|
4197
|
من یک تصویر دارم که میخواهم آن را به «.dxf» تبدیل کنم و برای انجام این کار به یک شی «Graphics3D» نیاز دارم. آیا به هر حال من می توانم این کار را انجام دهم؟ آیا ریاضیات می تواند به نوعی تصویر دو بعدی را بردارید؟ من سعی کردم تصویر را بهعنوان PDF ذخیره کنم، سپس «Export[path.dxf,Import[path.pdf]]» را پس از ذخیره «EdgeDetect[Image]» بهعنوان PDF، اما AutoCad گفت که DXF بدی است و آن را قبول نکرد. هیچ راه حلی؟ ویرایش: توضیح: من یک تصویر 2 بعدی دارم که می خواهم آن را با فرمت dxf. که فکر می کنم 3 بعدی است قرار دهم. برای انجام این کار، Mathematica یک Export[path.dxf,3DGraphics] می خواهد. هر چند این یک تصویر 2 بعدی است. این برای وارد کردن به اتوکد است. وقتی Export[path.dxf,Image] را انجام میدهم، میگوید شکل نادرست است زیرا تصور میکنم Image شی 2DGraphics است
|
چگونه یک تصویر دو بعدی را به گرافیک سه بعدی تبدیل کنیم؟
|
6433
|
من سعی می کنم یک فایل CSV را در Mathematica 8 با هدف ترسیم نمودار با دستور TradingChart وارد کنم. این کاری است که من انجام دادهام: Take[Import[EURUSD_2004.csv] ] // TableForm (* {{DATE، LOW، MAX، VOLUME، OPEN, CLOSE}, {1998.01.05, 1.0815, 1.0985, 0, 1.0834, 1.0834}، {1998.01.06، 1.0795، 1.0875، 0، 1.08، 1.08}، {1998.01.07، 1.0778، 1.0865، 0، 1.0881.8، 0، 1.0881. 1.0792، 1.088، 0، 1.0844، 1.0844}، {1998.01.09، 1.0823، 1.0926، 0، 1.0829، 1.0829}، {1998.01.09، 1.0829، 1.0829}، {1998.01.10، 1.0835، 1.0835}، {1998.01.13، 1.083، 1.09، 0، 1.0858، 1.0858}، {1998.01.14، 1.0812، 1.0859، 1.0859، 1.0859، 0.808، 0.8. {1998.01.15، 1.0785، 1.0872، 0، 1.0789، 1.0789}، {1998.01.16، 1.0787، 1.0838، 0، 1.0788، 1.0789، 1.0789، {1.0789} 1.0739، 1.0812، 0، 1.0772، 1.0772}، {1998.01.20، 1.0733، 1.0779، 0، 1.075، 1.075}، {1998.01.20، 1.075، 1.075}، {1998.01.20، 25. 1.0849، 1.0849}، {1998.01.22، 1.0849، 1.0962، 0، 1.0921، 1.0921}، {1998.01.23، 1.0919، 1.0849، 1.0962، 1.0921. {1998.01.26, 1.0919, 1.1203, 0, 1.0983, 1.0983} } *) TradingChart[EURUSD] TradingChart::ldata: <<اصلی داده>> مجموعه داده یا فهرستی از مجموعه داده معتبر نیست. >> بنابراین مجموعه داده به شکل معتبری نیست. راهنمایی در مورد چگونگی رفع این مشکل وجود دارد؟
|
وارد کردن داده های مالی CSV در Mathematica
|
57610
|
من می خواهم داده های خود را در پایگاه داده 'SQLite' ذخیره کنم، اما نوشتن تعداد زیادی داده بسیار کند است. به عنوان مثال: db = JDBC[SQLite, f:\\test1.db]; conn = OpenSQLCConnection[db]; SQLCreateTable[conn، SQLTable[TEST]، {SQLColumn[COL1، DataTypeName -> INTEGER]، SQLColumn[COL2، DataTypeName -> DOUBLE]}]; SQLInsert[conn، TEST، {COL1، COL2}، RandomReal[{-10، 10}، {100، 2}]]; // AbsoluteTiming (*{11.814676، Null}*) درج 100 خط داده در رایانه شخصی من بیش از 10 ثانیه طول می کشد، اما وقتی از «مرورگر پایگاه داده SQLite» (نرم افزار خارجی) برای ایجاد جدول با بیش از «80000» خط استفاده می کنم، این کار لازم است. کمتر از 1 دقیقه چرا درج کردن از «Mathematica» اینقدر کند است؟ **ویرایش** اما «HSQL» 3.5 ثانیه بسیار سریعتر برای خطوط «80000»
|
کار آهسته SQLInsert با SQLite
|
34320
|
der[x_]:=قطعه[{{E^((-4 - 4*x - x^2 - Log[2]^2)/8)/(2^(x/4)*Sqrt[Pi]* (2*Sqrt[2/E]*Erf[Log[2]/(2*Sqrt[2])] + Erfc[(-2 + Log[2])/(2*Sqrt[2])] + 2*Erfc[(2 + Log[2])/(2*Sqrt[2])]))، x >= 0}}، (2 ^(x/4)*E^((-4 - 4*x - x^2 - Log[2]^2)/8))/(Sqrt[Pi]*(2*Sqrt[2/E]*Erf[Log[2]/(2*Sqrt[2])] + Erfc[(-2) + Log[2])/(2*Sqrt[2])] + 2*Erfc[(2 + Log[2])/(2*Sqrt[2])))] pdf[x_]:=0.2015152271993863*DiracDelta[x] + تکه[{{E^((-4 - 4*x - x^2 - Log[2]^2)/8)/(2^(x/4)*Sqrt[Pi]*(2*Sqrt[2/E]*Erf[Log[2]/(2*Sqrt[2]) ] + Erfc[(-2 + Log[2])/(2*Sqrt[2])] + 2*Erfc[(2 + Log[2])/(2*Sqrt[2])]))، x >= 0}}، (2^(x/4)*E^((-4 - 4*x - x^2 - Log [2]^2)/8))/(Sqrt[Pi]*(2*Sqrt[2/E]*Erf[Log[2]/(2*Sqrt[2])] + Erfc[(-2 + Log[2])/(2*Sqrt[2])] + 2*Erfc[(2 + Log[2])/(2*Sqrt[2])))] N[Integrate[der[x]، {x, -Infinity, Infinity}]] 0.798485 N[Integrate[0.2015152271993863` DiracDelta[x], {x, -Infinity, Infinity}]] 0.201515 N[Integrate[pdf[x], {x, -Infinity, Infinity}]] 0.798485 EDIT (بخش کد مربوط به کانولوشن) یکپارچه سازی[pdf[x - w] pdf[w]، {w، -2، 2}، فرضیات -> x ∈ واقعی && x ∈ Reals] آخرین پیچش شامل یک دلتای دیراک و همچنین یک چگالی پیوسته است. هر دو نسخه 7 و 9 هیچ راه حلی تولید نمی کنند. آیا ایده ای برای یافتن راه حل دارید؟
|
آیا نسخه دانشجویی Mathematica 7.0 من دیوانه است؟
|
26314
|
من می خواهم به طور خودکار برخی از معادلات طولانی را در محدوده حساب متغیر خطی کنم. در اینجا مثالی از کاری که باید انجام دهم به شرح زیر است: با توجه به دو متغیر $a_1 = q_1 + \delta q_1$ و $a_2 = q_2 + \delta q_2$ و یک محصول $${a_1}^2\، a_2 = {q_1} ^2 q_2 + 2q_1q_2\delta q_1 + q_2{\delta q_1}^2 + {q_1}^2\delta q_2 + 2q_1\delta q_1 \delta q_2 + {\delta q_1}^2 \delta q_2$$ میخواهم هر متغیری را که قبل از نماد $\delta$ که قدرت آن برتر از 1 است حذف کنم. (آن را برابر با صفر کنید)، و هر حاصل ضرب دو متغیر که قبل از آن نماد $\delta$ باشد (ضرب را نیز برابر با صفر کنید). برای به دست آوردن : $${a_1}^2\, a_2 = {q_1}^2 q_2 + 2q_1q_2\delta q_1 + {q_1}^2\delta q_2$$ ابتدا گزینههای فرضها را در حین گسترش : a1 امتحان کردم = زیرنویس[q, 1] + زیرنویس[\[Delta]q, 1]; a2 = زیرنویس[q, 2] + زیرنویس[\[Delta]q, 2]; Expand[a1^2*a2، فرضیات -> زیرنویس[\[Delta]q، 1]^2 = 0] که موارد زیر را برگرداند: Set::write: Tag Rule در فرضیات->زیرنویس[\[Delta]q، 1، 2] محافظت می شود. >> (Subscript[q, 1] + Subscript[\[Delta]q, 1])^2 (Subscript[q, 2] + Subscript[\[Delta]q, 2]) البته کار نکرد. حقیقت این است که من نمی دانم چگونه این کار را شروع کنم... آیا کسی ایده ای دارد؟ من همچنین امتحان کردم: a1 = Subscript[q, 1] + Subscript[\[Delta]q, 1]; a2 = زیرنویس[q, 2] + زیرنویس[\[Delta]q, 2]; b = Expand[a1^2*a2]; با فرض [Subscript[\[Delta]q, 1]^2 == 0, b] که هم کار نکرد و برگشت: \!\( \*SubsuperscriptBox[\(q\), \(1\), \ (2\)]\ \*SubscriptBox[\(q\), \(2\)]\) + 2 زیرنویس[q, 1] زیرنویس[q, 2] زیرنویس[\[Delta]q, 1] + زیرنویس[q, 2] \!\(\*SubsuperscriptBox[\(\[Delta]q\), \(1\), \(2\)]\) + \!\( \*SubsuperscriptBox[\(q\)، \(1\)، \(2\)]\ \*SubscriptBox[\(\[Delta]q\), \(2\)]\) + 2 زیرنویس[q, 1] زیرنویس[\[Delta]q, 1] زیرنویس[\[Delta]q, 2] + \!\( \*SubsuperscriptBox[\(\[Delta ]q\)، \(1\)، \(2\)]\ \*SubscriptBox[\(\[Delta]q\)، \(2\)]\)
|
چگونه یک عبارت را به صورت خودکار خطی کنیم؟
|
5675
|
من توانستم با موفقیت از Mathlink برای فراخوانی یک زیربرنامه ساده فرترن استفاده کنم. با این حال، وقتی به یک مشکل واقع بینانه رفتم، شکست خوردم. به طور خاص، من میخواهم مجموعهای از دادهها را با برخی از عملکردها با استفاده از بسته cernlib MINUIT (برای به حداقل رساندن عملکرد و تجزیه و تحلیل خطا) تنظیم کنم. سپس در FORTRAN، می توانم بهترین مجموعه پارامترها و خطاهای آنها و بسیاری موارد دیگر را دریافت کنم. اکنون، میخواهم برخی از ارقام را با بهترین پارامترهای حاصل در Mathematica ترسیم کنم. البته من میتونم پارامترها رو با چشم بخونم... اما خوبه که با Mathlink این کار رو انجام بدم. با این حال، من شکست خوردم. من یک فایل اجرایی ایجاد کردم، اما توسط Mathlink قابل شناسایی نیست. نصب کنید تا زمانی که من آن را سقط کنم به سادگی آویزان کنید. این کمی عجیب است، زیرا زمانی که Mathlink از Mathlink استفاده نمی کرد، کد fortran با موفقیت در C فراخوانی شد. در اینجا کد FORTRAN کوتاه شده است که «myprog.f» نامیده می شود، (هنوز تا حدودی طولانی است) برای مثال MINUIT در اینجا: ! n استفاده نمی شود، فقط برای دادن یک آرگومان به تابع Mathlink زیربرنامه myprog(n, fmin) !برنامه myprog ضمنی هیچ عدد صحیح SYSIN/1/, SYSRD/5/, SYSWR/6/, SYSPU/7/ عدد صحیح n, ndat, npari، nparx، istat real(8) fmin، fedm، errdef خارجی myfcn ! مقداردهی اولیه شماره واحد تماس mintio (SYSRD, SYSWR, SYSPU) !کارت رانده شده با فیت باز (unit=SYSRD, file='myprog.mincards', status='OLD') !خروجی، اگر نظر داده شود، خروجی نوشته می شود به ترمینال باز (واحد=SYSWR، فایل='myprog.out'، وضعیت='ناشناخته') ! فراخوانی minuit فراخوانی minuit(myfcn، 0)! وضعیت فعلی کمینه سازی CALL mnstat (fmin، fedm، errdef، npari، nparx، istat) زیربرنامه پایانی myfcn(npar، g، f، x، iflag، futil) ضمنی هیچ عدد صحیح npar، iflag، i، ndat، n عدد صحیح SYSIN/ 1/، SYSRD/5/، SYSWR/6/، پارامتر SYSPU/7/ (ndat=5) real*8 f، g(*)، x(*)، xdat(ndat)، ydat(ndat)، edat(ndat)، func، & answer/15.7/، rms، میانگین، تفاوت، بیهوده! تمام داده هایی که باید بین تماس ها حفظ شوند را ذخیره کنید! ذخیره xdat، ydat، edat! MUST if (iflag .eq. 1) سپس ! حالت اولیه do i=1,ndat xdat(i) = i ydat(i) = answer + i - float(ndat + 1) / 2. edat(i) = 1. end do end if ! محاسبه LSQ f = 0 do i = 1، ndat f = f + (ydat(i) - func(xdat(i)، x(1)))**2 / edat(i) end do end func(x، par) ضمنی هیچ واقعی*8 x، par(*)، func func = par(1) end کارت هدایت شده _myprog.mincards_، که در آن مقادیر اولیه پارامترها هستند مجموعه، شامل عنوان مجموعه کارتهای داده Minuit برای پارامترهای برنامه نمونه myprog 1 «متوسط» 0.0 1.0 تنظیم چاپ 1 mig mino توقف بازگشت. در C با کد زیر فراخوانی می شود #include stdio.h #ifdef __cplusplus extern C{ #endif double myprog(int n) { double fmin; myprog_(&n، &fmin); بازگشت fmin; } #ifdef __cplusplus } #endif int main(void) { printf(%f\n, myprog()); بازگشت 0; } نتیجه 10 است. من فکر کردم تا زمانی که می توان زیر روال FORTRAN را در C فراخوانی کرد، باید بتوان آن را در Mathematica با Mathlink فراخوانی کرد. در اینجا بسته بندی C است (من کد کامل را جایگذاری می کنم زیرا ممکن است برای دیگران مفید باشد): #include mathlink.h #ifdef __cplusplus extern C{ #endif double myprog(int n) { double fmin; myprog_(&n، &fmin); MLPutDouble (stdlink، fmin)؛ بازگشت fmin; } #ifdef __cplusplus } #endif #if WINDOWS_MATHLINK #if __BORLANDC__ #pragma argsused #endif int PASCAL WinMain( HINSTANCE hinstCurrent, HINSTANCE hinstPrevious, LPSTR lpszCmnCine, int ; char FAR * buff_start = buff; char FAR * argv[32]; char FAR * FAR * argv_end = argv + 32; hinstPrevious = hinstPrevious; /* سرکوب هشدار */ if( !MLInitializeIcon( hinstCurrent، nCmdShow)) بازگشت 1; MLScanString(argv، &argv_end، &lpszCmdLine، &buff_start); return MLMain( (int)(argv_end - argv), argv); } #else int main(int argc, char* argv[]) { return MLMain(argc, argv); } #endif فایل الگوی Mathlink _myprog.tm_ است :Begin: :Function: myprog :Pattern: Minuit[n_Integer] :Arguments: { n } :ArgumentTypes: { Integer } :ReturnType: Manual:End: MinuE usage = Minuit[n] انجام می دهد fit با استفاده از MINUIT می تواند یک عدد صحیح دلخواه باشد. من از ویندوز 7 با MinGW استفاده می کنم. من math.bat را نوشتم تا یک فایل اجرایی برای Ma ایجاد کنم
|
استفاده از Mathlink با بسته cernlib FORTRAN MINUIT
|
39386
|
f[x_] = گناه[x]; x0 = 0; a = -3 π. b = 3 π; c = -1.3; d = 1.3; a0 = -10; b0 = 10; نیازهای [Graphics`Colors]; Cdot = گرافیک[{{قرمز، PointSize[0.02]، نقطه[{x0، f[x0]}]}}]; Rends = گرافیک[{{سبز، خط[{{a0، c}، {a0، d}}]}، {قرمز، خط[{{x0، c}، {x0، d}}]}، {سبز، خط[{{b0، c}، {b0، d}}]}}]; برای[n = 2، n <= 5، n++، P[x_] = عادی[سری[f[x]، {x، x0، 2 n + 1}]]؛ نمودار = Plot[{f[x]، P[x]}، {x، a، b}، PlotStyle -> {Magenta، Blue}، PlotRange -> {{a، b}، {c، d}}، Ticks -> {Range[-3 π, 3 π, π], Range[-0.5, 1, 0.5]}, DisplayFunction -> Identity]; نمایش[گراف، Cdot، Rends، DisplayFunction -> $DisplayFunction]; Print[f[x] = , f[x], \n, P[x] = , P[x]];] وقتی کد بالا را ارزیابی می کنم، پیام زیر را دریافت می کنم. > Get::noopen: Graphics`Colors` باز نمی شود. >> مشکل این کد چیست؟ لطفا کمکم کنید.
|
پیام خطا مربوط به Graphics `Colors`
|
5676
|
چگونه می توانم برچسب را از شیشه زیر جدا کنم (POV، شعاع سیلندر، محتویات شیشه همه ناشناخته هستند)  برای دریافت چیزی شبیه این، برچسب اصلی قبل از چسباندن روی شیشه کدام است؟ 
|
چگونه با استفاده از Mathematica برچسب ها را از شیشه های مارمالاد جدا کنیم؟
|
6435
|
از آنجایی که Frontend زیاد خراب می شود، برای کارهای مهم خوب است که نوت بوک به طور خودکار منشعب شود و هر چند دقیقه خودش را ذخیره کند. به عنوان مثال، دستوراتی مانند StartSavingCopies[5] هر 5 دقیقه یک کپی با نام جدید BackupFileNumberX.nb ذخیره می کند. چگونه می توانیم این کار را در پشت صحنه به صورت پویا انجام دهیم؟
|
چگونه می توانم یک سیستم نسخه سازی را در یک نوت بوک راه اندازی کنم؟
|
15918
|
من از استایل شیت جدید default.nb در نسخه 9 خوشم نمیآید و میخواهم از سبک قدیمیتری که در نسخه 8 استفاده میشد برای هر نوتبوک جدید و برای هر نوتبوکی که از زمانی که استفاده از V9 را شروع کردم، استفاده کنم. من در پوشه «StyleSheets» دیدم که V8 default.nb هنوز وجود دارد بنابراین به تنظیمات برگزیده رفتم و موارد زیر را به تغییر دادم. بگویید «Default_8.0.nb»  و دوباره راه اندازی شد ریاضیات. اکنون وقتی یک نوت بوک جدید را باز می کنم، به نظر می رسد Default_8.0.nb است زیرا هدرهای «بخش» سیاه هستند و فونت متن برابر با Roman جدید است. بنابراین فکر کردم که خوب است. مشکل رفع شد. (حتی فکر می کنم که Style sheet Default علامت _check_ را در کنار آن ندارد، بنابراین من نگران هستم که باید کار بیشتری انجام دهم)  با این حال، وقتی یک نوت بوک موجود را باز کردم که از زمان نصب V9 تغییراتی در آن ایجاد کردم، متوجه شدم که هنوز از V9 default.nb استفاده می کند. حتی اگر برگه سبک «پیشفرض» را نوشته باشد.  _سوال این است_ مراحل صحیح و توصیه شده برای استفاده از نسخه 8 default.nb در نسخه 9 چیست، به طوری که هر نوت بوکی که بود نسخه استفاده شده 9 default.nb اکنون به طور خودکار از «Default.8.0.nb» استفاده می کند (من واقعاً نمی دانم چگونه WRI می تواند این تغییر را برای کاربران بدون درخواست از آنها انجام دهد. من نمی خواهم کسی تغییر کند. شیوه نامه اسناد من حداقل بدون اینکه از من بپرسد این باید گزینه ای برای تصمیم گیری کاربر داشته باشد) با تشکر
|
نحوه استفاده از شیوه نامه نسخه 8 default.nb به جای نسخه 9 default.nb
|
6437
|
Maple می تواند یک تابع را در یک سیستم معادلات PDE با «casessplit» در بسته «PDEtools» جدا کرده و حذف کند. چگونه در Mathematica این کار را انجام دهیم؟ PDE های شروع عبارتند از: $$ -A\frac{\partial ^2Q(x,y)}{\partial x^2}+B\frac{\partial ^3P(x,y)}{\partial x^3} +C Q(x,y)-C\frac{\partial P(x,y)}{\partial x}+D\frac{\partial ^2Q(x,y)}{\partial y^2}=0 $$ $$ -B\frac{\partial ^3Q(x,y)}{\partial x^3}+E\frac{\partial ^4P(x,y)}{\partial x^4}-C \frac{\partial Q(x,y)}{\partial x}+C\frac{\partial ^2P(x,y)}{\partial x^2}-F\frac{\partial ^2P(x,y)}{\partial y^2}=0 $$ کد افرا des:= {-A*diff(Q(x,y),x, x)+B*تفاوت(P(x،y)،x،x،x)+C*Q(x،y) -C*diff(P(x,y),x)+D*diff(Q(x,y),y,y)=0, -B*diff(Q(x,y),x,x,x )+E*تفاوت(P(x,y),x,x,x,x)-C*diff(Q(x,y,x) + C*diff(P(x,y),x,x)-F*diff(P(x,y),y,y)=0}; PDEtools:-casesplit(des,[Q,P]); خروجی Maple $$\left( -{B}^{2}+EA \right) {\frac {\partial ^{6}}{\partial {x}^{6}}}P \left( x, y \right) + \left( - D C-AF \right) {\frac { \partial ^{4}}{\partial {y}^{2}\partial {x}^{2}}}P \ چپ( x,y \right) \+ \left( AC-CE \right) {\frac {\partial ^{4}}{\partial {x}^{4}}}P \left(x,y \right) + D F{\frac {\partial ^{4}}{ \partial {y}^{4}}}P \left(x,y \right) - D E { \frac {\partial ^{6}}{\ جزئی {y}^{2}\partial {x}^{4}}}P \left(x,y \right) +CF{\frac {\partial ^{2}}{\partial {y}^{2 }}}P \left(x,y \right) = 0 $$
|
چگونه می توانم یک تابع را در سیستمی از PDE ها، به سبک Maple حذف کنم؟
|
32967
|
چگونه می توانم جفت یال بین گره ها در این نوع نمودارها داشته باشم؟ شهرها = CityData[{All, #}] & /@ {Germany}; bigcities = انتخاب[انتخاب[پیوستن به @@ شهرها، FreeQ[#، ] &]، CityData[#، جمعیت] > 100000 &]; cityCoords = انتخاب[CityData[#، Coordinates] & /@ bigcities، FreeQ[#، ] &]; Needs[ComputationalGeometry]; pts = معکوس[cityCoords, 2]; dt = DelaunayTriangulation[pts]; toPairs[{m_, ns_List}] := نقشه[{m, #} &, ns]; edges = Union[Sort /@ Flatten[toPairs /@ dt, 1]]; نمودار[لبهها، ImagePadding -> 20، VertexCoordinates -> pts، VertexStyle -> LightBlue، VertexLabels -> bigcities[[All, 1]]، Prolog -> {LightBrown، EdgeForm[{Thick، Black}]، CountryData[Germany ، FullPolygon]}، ImageSize -> 800]
|
چگونه می توانم UndirectedEdges را به جفت DirectedEdge دو طرفه در یک نمودار جایگزین کنم؟
|
32586
|
من یک اجرای قضیه باقیمانده چینی برای چند جملهای در $\mathbb{Z}[x]$ میخواهم، یعنی یک تابع PolynomialCRT[{f_1,...,f_n},{m_1,...,m_n} ,x] چند جملهای $f\in\mathbb{Z}[x]$ را با کوچکترین درجه برمیگرداند به طوری که $$ f(x)\equiv f_i(x)\mod m_i(x)، $$ که در آن $f_i,m_i\in\mathbb{Z}[x]$ و $m_i$ به صورت زوجی coprime هستند. هر ایده ای؟ پیشاپیش ممنون
|
اجرای قضیه چند جمله ای باقیمانده چینی
|
32587
|
من فهرستی از متغیرها دارم (`c1`,`c2`,`c3`,`c4`) که هر کدام محدوده خاص خود را از مقادیر ممکن دارد و هر کدام یک کنترل ممکن است. من باید دو تا از آنها را انتخاب کنم و بقیه را در DynamicModule کنترل کنم. من سعی کردم از پیشنهادات اینجا استفاده کنم اما موفق نشدم آخرین مرحله را انجام دهم. DynamicModule[{allC, lC, fC, sC}, allC = {{{c1, 1, c1}, {1, 2}}, {{c2, 10, c2}, {10, 20}} , {{c3, 100, c3}, {100, 200}}, {{c4, 1000, c4}، {1000، 2000}}}؛ lC = محدوده[طول[allC]]; با[{controlGenerate = تابع[{var, initialValue, str, range}, Control[{{var, initialValue, str}, range}], HoldAll]}, Column[{controlGenerate[fC, 1, First, lC ]، controlGenerate[sC، 2، Second، DeleteCases[lC، _?(MemberQ[{fC}، #] و)]]، (* خط زیر همانطور که انتظار داشتم کار می کند *) Dynamic@allC[[DeleteCases[lC,_?(MemberQ[{fC,sC}،#] و )]]]، (* خط زیر آنطور که می خواستم کار نمی کند *) (controlGenerate[#[[1, 1]], #[[1, 2]], #[[1, 3]]، #[[2]]] و /@ (allC[[Delete Cases[lC, _?(MemberQ[{fC, sC}, #] &)]]])) } ] ] ]
|
کنترل های پویا را از لیست موجود ایجاد کنید
|
8737
|
موارد زیر را در نظر بگیرید testadj = RandomVariate[BernoulliDistribution[0.15], {50, 50}]; AdjacencyGraph[testadj, VertexSize -> Large]  گره ها تقریباً به طور کامل در درهم ریختگی لبه ها پنهان شده اند. با محو کردن لبهها در پسزمینه میتوان آنها را آسانتر کرد. AdjacencyGraph[testadj, EdgeStyle -> Directive[Opacity[0.4]، Gray]، VertexSize -> Large]  اما ما هنوز داریم مشکلی که خطوط روی بالای گره ها ترسیم می کنند. آیا راهی وجود دارد که گره ها را مجبور کنیم بالای خطوط بکشند؟
|
آیا می توانم جلوی ترسیم یال ها در نمودارها را در بالای رئوس بگیرم؟
|
23711
|
من می خواهم معادله زیر را به صورت نمادین حل کنم: DSsolve[{c1[x, y] + c2[x, y] == 0, D[c1[x, y], {x, 1}] == a*Sin [Pi*(y - 1/2)]*Cos[Pi*(y - 1/2)]^3، D[c2[x، y]، {y، 1}] == b*Sin[Pi*(x - 1/2)]*Cos[Pi*(x - 1/2)]^3}، {c1[x، y]، c2[x، y]}، {x، y}] که باید با یک سیستم مطابقت داشته باشد: $$ \begin{align} c_1\left(x,y\right)+c_2\left(x,y\right) & = 0\\\ \frac{\partial c_2}{\partial y} & = a\sin x\cdot\left(\cos x\right)^3 ,\\\ \frac{\partial c_1}{\partial x} & = b \sin y\cdot\left(\cos y\right)^3 \end{align} $$ اما Mathematica به من یک خطا می دهد: DSolve::overdet: وجود دارد متغیرهای وابسته کمتر از معادلات، بنابراین سیستم بیش از حد تعیین می شود. این چیه؟
|
DSolve::overdet برای سیستم PDE های خطی
|
41571
|
من رفتار تابع Sign را در کد زیر عجیب دیدم. وقتی $T=10$ T = 10; A = 1; Fk0 = 2; m1 = 1; x0[t_] = A Sin[2 Pi t]; Fk[t_] = -Fk0 علامت[x1'[t]]; sol = NDSحل[{ m1 x1''[t] == -m1 x0''[t] + Fk[t]، x1'[0] == 10، x1[0] == 0}، {x0، x1 }، {t، 0، T}، MaxSteps -> Infinity] Plot[{x0''[t]، x1'[t] /. sol // Evaluate}, {t, 0, T}, Frame -> True]  اما وقتی $T=40$ دریافت کردم! [](http://i.stack.imgur.com/h5eeB.jpg) که قرار است اینطور باشد. تعجب می کنم که اینجا چه اشتباهی کردم.
|
اصطکاک جنبشی در ریاضیات، رفتار عجیب و غریب
|
42286
|
من یک لیست تودرتو از {x,y,z} دارم و میخواهم مقادیر x و y را در جایی که z حداقل است پیدا کنم. می توانم یک حلقه For تودرتو بنویسم و آن را انجام دهم mya = {{0, 1, 10}, {1, 1, 20}, {0, 2, 5}, {1, 2, 15}} برای[i = 1 , i <= طول[mya[[همه، 3]]]، i++، اگر[mya[[همه، 3]][[i]] == Min[mya[[All, 3]]], Print[mya[[i]]]]] من خروجی مورد نظر را دریافت می کنم: {0، 2، 5} می دانم که این مشکل ساده است، اما اگر کسی می تواند به من بگوید روشی زیباتر برای انجام آن، مفید خواهد بود زیرا من می خواهم آن را برای یک لیست بسیار بزرگ انجام دهم.
|
حداقل در یک لیست تودرتو
|
35581
|
آیا راهی برای تنظیم کانال شفافیت در یک تصویر شطرنجی برای بافت در گرافیک سه بعدی وجود دارد؟ این یک تصویر شطرنجی با یک کانال شفاف ایجاد می کند: img = SetAlphaChannel[Image@Table[0, {400}, {400}], Graphics[{GrayLevel[0], Disk[]}]]; این در گرافیک دوبعدی به خوبی کار میکند: گرافیک[{ضخیم، قرمز، خط[{{0, 0}, {1, 1}}]، داخل[img]، ضخیم، آبی، خط[{{1، 0} , {0, 1}}]}] (با عرض پوزش. من نمی توانم گرافیک ارسال کنم). اما در سه بعدی، ناحیه شفاف من فقط سفید است. ، چند ضلعی[{{0، 0، 1}، {1، 0، 1}، {1، 1، 1}، {0، 1، 1}}، VertexTextureCoordinates -> {{0, 0, 1}, {1, 0, 1}, {1, 1, 1},{0,1, 0}}]}, Lighting -> Neutral] ایده ای دارید؟ من قبلاً گزینههای رندر را در اینجا بدون هیچ لذتی بررسی کردهام: بافتهای شفاف نشان نمیدهند \-- هدف از این کار وارد کردن تصاویر واقعی شطرنجی و تنظیم یک ماسک شفافیت است.
|
شفافیت در تصویر مورد استفاده برای بافت؟
|
50599
|
**انحراف عمده از پست اصلی** من متوجه شدم که کد طولانی ای که در ابتدا داشتم برای اشکال زدایی بسیار دلسرد کننده بود و هیچ پاسخی را جذب نکرد. بنابراین من تصمیم گرفتم این سوال را به طور قابل توجهی اصلاح کنم (امیدوارم این مورد قابل قبول باشد). لطفاً از تاریخچه ویرایش برای نسخههای قدیمیتر این سؤال دیدن کنید. **طرح بازی** من فرض می کنم که چندین خطا در اسکریپت من وجود دارد که باعث خرابی هسته می شود. اما از آنجایی که در حال حاضر نمی توانم همه آنها را شناسایی کنم، قصد دارم یک مشکل را در یک زمان شناسایی کنم، راه حل را دریافت کنم، آن را در کد خود پیاده سازی کنم و روند شناسایی مشکل بعدی و ارسال آن در این صفحه را تا تمام مشکلات تکرار کنم. حل می شوند. **مشکل 1.** کد زیر به خوبی کامپایل می شود: a=Compile[{{p1,_Real,0},{p2,_Real,0}},Max[0.,Min[p1,10.]-p2] ,RuntimeAttributes->{Listable}]; b=Compile[{{p1,_Real,0},{p2,_Real,0},{p3,_Real,0},{p4,_Real,0}}, Max[0.,Min[(20.-p1 ) 5.-p2-p3,10.]-p4],RuntimeAttributes->{Listable}]; ab=Compile[{{p1,_Real,0},{p2,_Real,0},{p3,_Real,0},{p4,_Real,0},{p5,_Real,0}}, Min[a[ p1,p5],b[p2,p3,p4,p5]],RuntimeAttributes->{Listable}, CompilationOptions->{InlineExternalDefinitions->True}]; f=Compile[{},Module[{k0=Table[0.,{10}]}, ab[k0,k0,k0,k0,k0]],CompilationTarget->C, CompilationOptions->{InlineExternalDefinitions ->درست}]؛ اما وقتی «f[]» را اجرا میکنم، هسته از کار میافتد. من حدس میزنم که مربوط به مخلوط کردن اسکالرها با بردارها در توابع «a» و «b» باشد. اما این همان چیزی است که من فکر می کردم «Listable» از آن مراقبت می کند. هر فکری؟
|
CompilationTarget->C هسته را خراب می کند
|
39383
|
من با اشیاء بدون رفت و آمد کار می کنم و اساساً از Mathematica برای مرتب کردن عبارات بزرگ با ترتیب عادی و ساده کردن آنها استفاده می کنم. برای این منظور، من ابتدا یک شی به نام Boson ایجاد می کنم (اینها $[a,a^\dagger]=1$ را برآورده می کنند): Clear[Boson, BosonC, BosonA] Boson /: MakeBoxes[Boson[cr : (True | نادرست)، sym_]، fmt_] := با[{sbox = If[StringQ[sym]، sym، ToBoxs[sym]]}، با[{abox = If[cr, SuperscriptBox[#, FormBox[\[Dagger], Bold]], #] &@sbox}, InterpretationBox[abox, Boson[cr, sym]]] BosonA[sym_: رشته a] := بوزون[نادرست، علامت] BosonC[sym_: رشته a] := بوزون[درست، sym] بعد من نام مستعار محصول غیر جابهجایی با «CenterDot» به شرح زیر است: Unprotect[NonCommutativeMultiply]; Clear[NonCommutativeMultiply, CenterDot]; CenterDot[a__] := NonCommutativeMultiply[a]; NonCommutativeMultiply /: MakeBoxs[NonCommutativeMultiply[a__]، fmt_] := با[{cbox = Toboxs[HoldForm[CenterDot[a]]]}، InterpretationBox[cbox، NonCommutativeMultiply[a]]] Commutative[N] Clear[CRule] CRule = {NonCommutativeMultiply[a_] :> a}; سپس عملکرد پاک را تعریف می کنم که ترتیب عادی را انجام می دهد. بر حسب «گسترش» تعریف شده است. تعریف اصلی «expand» ClearAll@expand SetAttributes[expand, HoldAll] Unevaluated[ expand[expr_] := Block[ {NonCommutativeMultiply (*or times*)}، expr // است. (*ReplaceRepeated به جای ReplaceAll*) {times[left___, cnum_ /; FreeQ[cnum، (_Boson)]، right___] :> cnum*times[چپ، راست]، بار[left___، cnum_ /; (! FreeQ[cnum, Times[n___?NumericQ, ___Boson]]), right___] :> Times @@ Apply[Power, Drop[FactorList[cnum], -1], 2]* بار[سمت چپ، اولین[آخرین[ FactorList[cnum]]]، سمت راست]، بار[چپ___، بوزون[نادرست، s_]، بوزون[درست، s_]، راست___] :> بار[چپ، راست] + بار[چپ، بوزون[درست، s]، بوزون[نادرست، s]، راست]، بار[چپ___، fst : بوزون[_، s_ ]، ثانیه : بوزون[_، t_]، راست___] :> بار[چپ، ثانیه، fst، راست] /; FreeQ[Ordering[{s, t}]، {1، 2}]، بار[b_Boson] :> b، بار[] -> 1 } ] ] /. {HoldPattern[times] -> NonCommutativeMultiply } تعاریف بیشتر برای expand expand هستند[Alternatives[NonCommutativeMultiply, CenterDot][ a1_, (a2_ + a3_)]] := expand[a1 ** a2] + expand[a1 ** a3] گسترش [گزینههای جایگزین[NonCommutativeMultiply، CenterDot][(a1_ + a2_)، a3_]] := گسترش[a1 ** a3] + گسترش[a2 ** a3] در نهایت، تعریف «پاک» عبارت است از Clear[clean] clean = Simplify[FixedPoint[expand, Distribute //@ #] //. CRule] &; این برای محاسبه اصطلاحات کوارتیک بسیار خوب کار میکند، اما اکنون مشکل این است که من شرایط مرتبه بالاتر را محاسبه میکنم که میتواند شامل محصولات حداکثر 16 اسیلاتور باشد. وقتی از تابع «پاک[]» در آن شرایط استفاده میکنم، محاسبات برای مدتی درست پیش میرود، اما سپس هسته تقریباً از تمام حافظه استفاده میکند و کار دیگری را متوقف میکند و من از هسته خارج شدهام. من فرض میکنم که تابع 'Module[]' متغیرهای موقت را حذف نمیکند و حافظه را نشت میکند. من سعی کردم «$HistoryLength=0» را تنظیم کنم اما این نیز کمکی نکرد. چه کار دیگری می توانم برای جلوگیری از این کار انجام دهم؟ **به روز رسانی:** فکر می کنم مشکل در پیاده سازی 'FixedPoint' در 'clean' باشد. اگر بهصورت دستی «بسط» و «توزیع» را اعمال کنم و سپس حافظه پنهان را پاک کنم و تا زمانی که محاسبات طول نکشد به انجام آن ادامه دهم (من آن را به عنوان نشانهای در نظر میگیرم که تغییر زیادی نکرده است)، میتوانم محاسبه را تمام کنم. این یک راه حل کثیف است، اما خوب است بدانیم آیا راهی وجود دارد که بتوانم حافظه پنهان را در clean و FixedPoint پاکسازی کنم. **به روز رسانی:** داده ها در یکی از محاسبات آنقدر بزرگ شدند که حافظه من برای همه چیز تمام می شد و مجبور شدم به تقسیم عبارت به قسمت های کوچکتر و کوچکتر ادامه دهم تا جایی که مدیریت آن سخت شد. آیا ممکن است عبارات خیلی بزرگ هستند و من حافظه کافی ندارم؟ همچنین آخرین بلوک کد را برای حذف یک کد سرگردان ویرایش کرد. **به روز رسانی:** این دفترچه کامل کار در pastebin است.
|
مشکلات نشت حافظه
|
31553
|
من روی قالب بندی یک سلول برای قالب نمایش اسلاید کار می کنم به طوری که یک شی گرافیکی نیمه چپ سلول را اشغال کند و گلوله ها یا موارد دیگر سمت راست را اشغال کنند. توابع قدیمی «AuthorTools» به اندازه کافی برای من مستند نشده اند تا بتوانم تشخیص دهم که آیا این کار با سلول های دوطرفه امکان پذیر است یا نه، اما اولین تلاش زیر نسخه حذف شده «ToBilateral» CellPrint@Cell[BoxData@GridBox[ {{ Cell[BoxData[ Toboxs[Plot[Sin[x]، {x، 0، 2 Pi}]]]، Output]، GridBox[{ {Cell[section, Section]}, {Cell[subsection, Subsection]}, {Cell[item, Item]} }, ColumnAlignments -> Left] }} , ColumnSpacings -> 3, RowAlignments -> Top]] خروجی زیر را با شیوه نامه پیش فرض می دهد  بوکس در Mathematica میتواند شما را خیلی سریع مست کنید، بنابراین برای دریافت این ردیف به «Row» و «Column» برگشتم[ {Plot[Sin] [x]، {x، 0، 2 Pi}، ImageSize -> 300]، Column[{ Style[section، Section]، Style[subsection, Subsection], Style[item, Item] }, Left, 2] }, \t]  در هر دو مورد dingbat برای سبک آیتم خورده می شود و هیچ تورفتگی سبک وجود ندارد. من سعی کردم شیوه نامه را ویرایش کنم و به بازرس گزینه ها بروید. با این حال، تغییرات ایجاد شده روی خروجی هر یک از این کدها تأثیری ندارد، مگر اینکه تغییر قالب مربوط به رنگ قلم، اندازه، وزن و غیره باشد. قطعه سطر/ستون. برای واضح بودن، من به دنبال چیزی شبیه به این هستم:  که فقط با کد زیر توانستم آن را بدست بیاورم: LoadMicrosoftPowerPoint [] CutandPaste[] بنابراین من به دنبال راه حل بهتری هستم.
|
حفظ اطلاعات شیوه نامه در سلول[]
|
39385
|
من مجموعه بردارهای شبکه را در $\mathbb{Z}^4$ محاسبه میکردم که دارای هنجار تاکسی $r$ هستند. برای مثال، اجرای Solve[Abs[c1] + Abs[c2] + Abs[c3] + Abs[c4] <= 2, {c1, c2, c3, c4}, اعداد صحیح] 41 بردار شبکه تاکسی 2 را به دست میدهد. یا کمتر این تا $r=19$ به خوبی کار می کند، در این مرحله 97281 راه حل وجود دارد. با این حال، در $r=20$، Solve[Abs[c1] + Abs[c2] + Abs[c3] + Abs[c4] <= 20, {c1, c2, c3, c4}, اعداد صحیح] به سادگی {{ }}. با توجه به مستندات، Solve[] {{}} «اگر مجموعه راهحلها تمامبعدی باشد» را به دست میدهد، که واضح است که در مورد بالا، که تعداد راهحلهای محدود، هرچند زیاد، دارد، صادق نیست. همچنین، تا آنجا که من می توانم بگویم، در هیچ کجای مستندات مشخص نشده است که روی تعداد راه حل های ممکن محدودیت وجود دارد. سوال: _این کار دلیلی دارد؟ و آیا راهی برای متقاعد کردن Solve[] برای برگرداندن پاسخ صحیح وجود دارد؟_ من از ترفندهای ریاضی واضح و البته خسته کننده برای کاهش مسئله به چندین مسئله با ابعاد پایین تر می دانم، اما می خواهم در صورت امکان مستقیماً آن را حل کنم.
|
حل[] به طور غیرمنتظره دادن مجموعه های حل خالی برای مسائل بسیار بزرگ
|
48610
|
آیا راهی وجود دارد که بتوان کلید تب را طوری تنظیم کرد که به سادگی کاراکتر تب را در دفترچه یادداشت وارد کند؟ من اغلب «ویژگیهای» اسرارآمیز مرتبط با آن کلید را مضر میدانم.
|
آیا تب فقط می تواند به معنای درج کاراکتر برگه باشد؟
|
33316
|
فقط به عنوان یک مثال ساده، بگویید میخواستم Sin[x] == a را برای x با قیود -1<=a<=1 و 0 <x <Pi حل کنم. آیا راهی برای این کار وجود دارد؟
|
حل یک معادله جبری با یک یا چند قید؟
|
33092
|
می بینم که می خواهم بارها و بارها بتوانم جستجوی عبارات منظم و جایگزینی در راهنمای Mathematica را انجام دهم. با استفاده از یک ویرایشگر با قابلیت regex (مانند vim)، میتوانم کاری مانند: :,$ s/ *+ *s\>//cg برای جستجوی درخواستی و جایگزینی «+s»، «+s»، «+» انجام دهم. s'، ...، اما نه '+ sa' (بگوییم). آیا چیزی وجود دارد که قابلیت مشابهی را در رابط کاربری گرافیکی Mathematica ارائه دهد؟
|
آیا امکان استفاده از عبارات منظم در جستجو و جایگزینی دیالوگ وجود دارد؟
|
49240
|
من s = {2، 3، 5، 7، 1، 4، 6} دارم (* همیشه با عناصر مختلف در {1،2...7}*) l = طول[s] n = 3 و `n ` به ما می گوید که می خواهیم 3 موقعیت را در لیست `s` انتخاب کرده و آنها را در لیست کامل جابجا کنیم. به عنوان مثال، a = RandomSample[Range[l], n] فرض کنید «a = {2، 6، 4}» را به دست می آوریم و یک جایگشت تصادفی برای این موقعیت ها اعمال می کنیم و «{4، 6، 2}» را به دست می آوریم. سپس موقعیت 2 به موقعیت 4 می رود موقعیت 6 به موقعیت 6 می رود موقعیت 4 به موقعیت 2 می رود و s = {2, 7, 5, 3, 1, 4, 6} بدون استفاده از ابزار کمکی چه راهی ساده (و قابل درک) است. فهرست ### ویرایش پس از خواندن MrWizard، یی وانگ پاسخ می دهد: (من s[[a]] =s[[b]] MWizard و استفاده از جایگشت و قانون یی وانگ را دوست دارم، اما فکر می کنم که یک راه ساده تر و قابل درک تر s = {2, 3, 5, 7, 1, 4, 6} n = 3 Print[BEFORE -> ، s] Choice = RandomSample[Random[Length[s]], n] Choicepermuted = RandomSample[انتخاب، n] s[[انتخاب]] = s[[choicepermuted]] Print[AFTER -> ، s]
|
تغییر عناصر در یک لیست
|
38381
|
PetersenGraph[5, 2, EdgeLabels -> {8 \[UndirectedEdge] 9 -> hello}] به نظر می رسد که همانطور که انتظار می رود کاملاً ارزیابی می شود، اما در نسخه 9.0.1.0 من، گزینه `EdgeLabels -> {8 \[UndirectedEdge ] 9 -> hello}` با رنگ قرمز (و همچنین کاما قبل) مشخص شده است، مثل اینکه یک خطای نحوی این برای تمام نمودارهای از پیش تعریف شده ای که تاکنون امتحان کرده ام اتفاق می افتد. یا این یک اشکال رابط است، یا من توانسته ام به نحوی برجسته سازی نحوم را به هم بزنم. آیا کسی می تواند این رفتار را تایید یا رد کند؟
|
آیا واقعاً اشکالی در کد زیر وجود دارد که از مستندات مرجع PetersenGraph گرفته شده است؟
|
19935
|
Union[FullSimplify[Flatten[ Table[Sum[Exp[2 \[Pi] I Subscript[n, i]/5], {i, 0, 6}], {Subscript[n, 0], 0, 4}, {Subscript[n, 1], 0, 4}, {Subscript[n, 2], 0, 4}, {Subscript[n, 3], 0, 4}, {Subscript[n, 4], 0, 4}, {Subscript[n, 5], 0, 4}, {Subscript[n, 6], 0, 4}]]]] این جدول ادامه دارد از طریق بسیاری از محاسبات اضافی، بی مورد منفجر می شود و سپس آنها را دور می اندازد. _آیا راه کارآمدتری برای تولید مقادیر منحصر به فرد از این نوع وجود دارد؟_ تمام تلاش من در اینجا این است که لیستی از نقاط پیچیده را ایجاد کنم که می تواند به صورت مجموع دلخواه، در این مورد، شش پنجمین ریشه وحدت بیان شود. . آن کار هنوز در مدت زمان معقولی به پایان رسید، اما من می خواهم همین کار را برای تعداد بیشتری از ریشه های درجه بالاتر وحدت انجام دهم. در حالت ایدهآل، من میخواهم بتوانم الگوی محدودکننده عمومی را، در صورت وجود، برای تعداد نامحدودی از ریشههای مرتبه n ایجاد کنم. - برای ریشه های مرتبه 2، 3، 4 و 6 که به ترتیب، همه اعداد صحیح، یک شبکه مثلثی، یک شبکه مربع و یک شبکه مثلثی دیگر را تولید می کند. من تعجب می کنم که چگونه موارد به نظر می رسد که نمی تواند چنین شبکه های منظمی داشته باشد - بنابراین هر عدد صحیح دیگری، اساسا.
|
چگونه می توانم جدول بعدی با ابعاد بالا را با تعداد زیادی تکراری بهینه کنم؟
|
28423
|
 داشتم چند فرمول را تایپ می کردم و با شماره فرمولی که با عدد اول مشخص شده بود مواجه شدم. من از سبک سلول «DisplayFormulaNumbered» استفاده می کنم. چگونه می توانم یک سلول با شماره 7'$ اضافه کنم؟ در اینجا گزیده ای از یکی از دفترچه های من است که نشان می دهد چگونه می خواهم یک فرمول شماره گذاری شود. 
|
سفارشی کردن اعداد مورد استفاده توسط سلول های DisplayFormulaNumbered
|
16747
|
این کد من برای ساخت لیبل است. من از عبارت «دکمه» برای ساخت آن استفاده کردم. آیا راه بهتری برای ساخت برچسب وجود دارد؟ اعتراض من به انجام این کار این است که وقتی «Enabled -> True» را تنظیم می کنم، دکمه قابل کلیک می شود. برای برنامهام، هیچ چیز قابل کلیکی نمیخواهم. دکمه[StringJoin[Label، ToString[3]]، Null، Background -> Black, BaseStyle -> {White, 16, Bold}, Enabled -> False]
|
چگونه باید یک برچسب درست کنم؟
|
8198
|
این احتمالاً یک سؤال آسان است: من نتایج یک محاسبه طولانیتر را به یک فایل dat صادر میکنم، سپس سلول را روی غیرقابل ارزیابی تنظیم میکنم و یک Import را در جلو قرار میدهم، بنابراین میتوانم بعداً حتی پس از بسته شدن با نتایج کار کنم. و باز کردن نوت بوک: results = Import[results.dat] (غیر قابل ارزیابی) نتایج = makeLongCalculation[پارامترها] (غیر قابل ارزیابی) Export[results.dat,results] doSomethingwithResults[نتایج] (آیا راه ظریف تری وجود دارد؟) اکنون، من این مشکل را دارم که اعداد مختلط به عنوان رشته وارد می شوند. نتایج من معمولاً به شکل {{0.01،3*10^-6+5*10^-4*I}،...} است. آیا راهی ساده تر از اعمال چیزی مانند ToExpression در Import وجود دارد؟ من آن ریاضی بومی را احساس می کنم
|
وارد کردن آرایه با اعداد مختلط
|
19930
|
در برنامه درسی ریاضی کلاس هفتم اینجا در آلبرتا ما تقسیم پذیری را آموزش می دهیم. من سعی می کنم برنامه ای بنویسم تا بر اساس این ایده که به دانش آموزی 4 رقم داده می شود، سؤال ایجاد کنم و سپس یکی از آنها را برای ایجاد «بزرگترین عدد قابل تقسیم بر 5» انتخاب کنم. من چند ایده ساده دارم. لیستی از 4 عدد دریافت کنید... RandomInteger[{0, 9}, 4] آنها را مرتب کنید جایگشتها[لیست] آنها را به اعداد تبدیل کنید... FromDigits /@ Permutations[list] مطمئن هستم که باید روشی زیبا برای برای این کار از Mathematica استفاده کنید. من باید 4 رقم اصلی و پاسخ را داشته باشم تا بتوانم سوال را تحت کنترل برنامه ایجاد کنم. I.E. با توجه به ارقام 9، 0، 0، 2 و 1 رقم دیگر انتخابی خود، بزرگترین عدد 5 رقمی را که بر 5 بخش پذیر است ایجاد کنید.
|
ایجاد یک عدد بر اساس شرایط داده شده
|
35274
|
لطفا بفرمایید مشکل کد زیر چیست؟ ابعاد[Subscript[R, 2]] > > {201, 161, 53} > Table[ If[Subscript[R, 2][[x, y, z]] != 2, Subscript[R, 2 ][[ x، y، z]] = 0]، {x، 1، 201}، {y، 1، 161}، {z، 1، 53}]؛ من این خطا را دریافت می کنم: > Set::setps: Subscript[R, 2] در انتساب قطعه یک نماد نیست. >>
|
دریافت پیام: تخصیص Set::setps یک نماد نیست
|
32058
|
پاک کردن[`*]; cf = کامپایل[{{A, _Real, 2}, {n, _Integer}}, With[{a = A[[1]], b = A[[2]], c = A[[3]]} , If[n < 1, {{a, b, c}}, Join[cf[{a, (a + b)/2, (a + c)/2}, n - 1], cf[{( b + a)/2، b، (b + c)/2}، n - 1]، cf[{(c + a)/2، (c + b)/2، c}، n - 1] ] ; ] ]؛ cf[{{0, 0}, {1, 0}, {.5, 0.8}} // N, 3] این کدی که من نوشتم قابل کامپایل نیست، _Mathematica_ CompiledFunction::cfex: نمی تواند خارجی کامل شود ارزشیابی در دستورالعمل 19; ادامه با ارزیابی جمع آوری نشده >> چگونه می توانم آن را به درستی کامپایل کنم؟ نسخه کامپایل نشده: پاک کردن[`*]; f[{a_, b_, c_}, n_] := اگر[n < 1, {{a, b, c}}, Join[f[{a, (a + c)/2, (a + b) /2}، n - 1]، f[{(b + a)/2، b، (b + c)/2}، n - 1]، f[{(c + a)/2، (c + ب)/2، ج}، n - 1]] ]; n = 3; داده = f[{{0، 0}، {1، 0}، {.5، 0.8}} // N، n]; ListLinePlot[داده /. {a_, b_, c_} :> {a, b, c, a}]
|
چرا کد من کامپایل نمی شود؟
|
55786
|
من با این طرحی که می خواهم بسازم مشکل دارم. من از NDSolve در سیستم معادلات دیفرانسیل استفاده می کنم و وقتی آن را با ParametricPlot رسم می کنم، مقیاس ها یا طول محورهای نمودارها به شکلی نامطلوب ظاهر می شوند. وقتی از ParametricPlot استفاده می کنم چگونه می توانم حداقل و حداکثر محدوده را برای محورها تنظیم کنم؟
|
محدوده حداقل و حداکثر را برای محورها در ParametricPlot تنظیم کنید
|
45185
|
من در حال ساختن یک برنامه بزرگتر هستم، بنابراین ترجیح می دهم یک مثال کوتاه از مشکل خود ارائه دهم: soba={2.45649، 4.04015، 4.92679، 4.03324، 0.761532، 2.41486، 1.96081، 4.37296، 4.37201} در حالی که[NumberQ[Select[soba, Function[{a}, a > 2], 1][[1]]], soba = (soba /. [soba, Function[{a}, a > 2], 1 را انتخاب کنید ][[1]] -> 1)] خروجی مورد نظر: {1، 1، 1، 1، 0.761532، 1، 1.96081، 1، 1، 1} دلیل اینکه من می خواهم این اتفاق بیفتد این است: اول می خواهم اولین مقدار را در لیست پیدا کنم که با معیارها مطابقت دارد، دوم می خواهم قانونی اعمال شود که در این مورد فقط مقدار را به 1 تغییر می دهم. اما در کد واقعی چندین مقدار را بر اساس برخی قوانین دیگر تغییر میدهد، برای مثال میتواند «2.45649، 4.04015، 4.92679، 4.03324» را تغییر دهد. 1. سپس میخواهم دوباره روی لیست اجرا شود، اما از آنجایی که اکنون همه این مقادیر «2.45649، 4.04015، 4.92679، 4.03324» را به 1 تغییر داده است، مقدار بعدی من «2.41486» است. سپس فهرست را بر اساس برخی قوانین تغییر دهید. و دوباره کد را در لیست به روز شده اجرا کنید. اول از همه می بینید که کد کار نمی کند، دوم اینکه باید راه بهتری وجود داشته باشد!
|
عملکرد در حال اجرا - به روز رسانی لیست - عملکرد اجرا و غیره
|
16214
|
تابعی که میخواهم رسم کنم به صورت $\sum\limits_{p\leq x}\log p.$ تعریف میشود. 0$ و بنابراین اساساً یک تابع مرحله ای بین اعداد اول است. آیا راهی برای افزودن موارد زیر برای گنجاندن مراحل وجود دارد؟ a8 = جدول[Sum[Log[Prime[i]], {i, 1, j}], {j, 1, 10}]; a7 = جدول[Prime[i], {i, 1, 10}]; a9 = جدول[{a7[[i]]، a8[[i]]}، {i، 1، 10}]; ListPlot[a9] با تشکر از هر گونه پیشنهاد.
|
رسم تابع تتا چبیشف $\vartheta(x)$
|
35275
|
چگونه می توانم دنباله ای از تصاویر را با متغیرهای دوبعدی با استفاده از Table ذخیره کنم. من یک > Iterator {r,{-1,-1},{1,1},{0.1,0.1}} کرانهای مناسبی ندارد. خطا هنگام ارزیابی کد زیر. pgrid = گرافیک[Flatten[Table[Point[{i,j}], {i, -2, 2, 0.1}, {j, -2,2, 0.1}]], Axes-> True, AxesOrigin -> { -2، -2}، PlotRange -> {{-2، 2}، {-2، 2}}] ; dat1 = جدول[ نمایش[ pgrid، گرافیک[{ {زرد، تیرگی[0.5]، دیسک[{r[[1]] + q[[1]]، r[[2]]+ q[[2]]} , 0.85]}، دایره[{0، 0}، 0.85]، {داخلی، دایره[{0، 0}، 1.7]}، {آبی، ضخیم، پیکان[{{0، 0}، {r[[1]]، r[[2]]}}]}، {قرمز، ضخیم، پیکان[{{0، 0}، {q[ [1]]، q[[2]]}}]}، {آبی، ضخیم، پیکان[{{q[[1]]، q[[2]]}، {r[[1]] + q[[1]]، r[[2]] + q[[2]]}}]، سبز، پیکان[{{0، 0}، {r[[1]] + q[[1]]، r[[2]] + q[[2]]}}]}، {بنفش، ضخیم، دایره[{q[[1]]، q[[2]}، 0.85]}}]]، {r ، {-1، -1}، {1، 1}، {0.1، 0.1}}، {q، {-2، -2}، {2، 2}، {0.1، 0.1}}]؛ SetDirectory @ NotebookDirectory[] صادرات[gif.gif، dat1]
|
دنباله ای از تصاویر را با استفاده از جدول با متغیرهای دو بعدی ذخیره کنید
|
30970
|
من سعی می کنم فهرست های فرعی یک لیست را که با یک الگو مطابقت دارند فیلتر کنم. test = {{String1، a}، {String2، b}، {String3، a}، {String4، a}}; نتیجه باید این باشد: result = {{String1, a}, {String3, a}, {String4, a}} یعنی اولین ورودی باید هر رشته و دومی باشد. باید الف باشد. من امتحان کردم: [test, (# == {_, a}) &] را انتخاب کنید که به {} ارزیابی می شود.
|
را انتخاب کنید و خالی کنید
|
55788
|
آیا این اشتباه من است؟ من در حال تلاش برای حل فرض هستم[0 < a < 1 && 0 < b < 1 && 0 < c < 1 && 0 < n < 2 && Q > 0 && 0 < p <= 1 && Element[a | b | ج | n | p | Q، Reals]، Reduce[2*a*b*n*c*Q - 3*a*b*n*p*c*Q + a*b*n*p^2*c*Q - 4*a ^2*b*n*p*Q^2 - 4*a*b^2*n*p*Q^2 + 6*a^2*b*n*p^2*Q^2 + 6*a*b^2*n*p^2*Q^2 - 2*a^2*b*n*p^3*Q^2 - 2*a*b^2*n*p^3* Q^2 + a^2*b*c*Q^2 + a*b^2*c*Q^2 - 2*a^2*b*p*c*Q^2 - 2*a*b^ 2*p*c*Q^2 == 0]] با این حال، به نظر می رسد پاسخ ارائه شده با فرض من مطابقت ندارد. به عنوان مثال، من به وضوح بیان می کنم که $0<p<=1$. اما در پاسخ به من $p=2$ و همچنین $p=0$ می دهد. چگونه این مقادیر ناخواسته را فیلتر کنم؟ برنامه برمی گرداند، (Q == 0 && (p == 1 || p == 2)) || ((-c + 2 c p + 4 n p - 6 n p^2 + 2 n p^3) Q != 0 && a == (2 c n - 3 c n p + c n p^2 + b c Q - 2 b c p Q - 4 b n p Q + 6 b n p^2 Q - 2 b n p^3 Q)/((-c + 2 c p + 4 n p - 6 n p^2 + 2 n p^3) Q)) || (p == 1/2 && n == 0 && Q != 0) || (Q == 0 && 2 - 3 p + p^2 != 0 && n == 0) || (Q == 0 && n (2 - 3 p + p^2) != 0 && c == 0) || ((p == 1 || p == 2) && c == 0 && Q != 0) || (n == 0 && -1 + 2 p != 0 && c == 0 && 2 p Q - 3 p^2 Q + p^3 Q != 0) || (p == 0 && n == 0 && c == 0 && Q != 0) || (Q != 0 && p == 0 && 2 n != 0 && c == 0) || a == 0 || b == 0 || Q == 0
|
چند سوال در مورد کاهش
|
238
|
در حال حاضر ما تعداد محدودی راه برای انجام ارزیابی ناهمزمان داریم. رایج ترین آنها از طریق Dynamic و Manipulate است. با استفاده از «Dynamic»، میتوانیم بخشی از یک بهروزرسانی سلولی را مستقل از هر کاری که روی آن کار میکنیم داشته باشیم: Dynamic[x = <> ToString@x] برای[i = 0، i < 100، i++، Pause[0.05] ; x = i^2]; به طور مشابه، میتوانیم از Manipulate برای ارزیابی مداوم یک عبارت و خروجی نتیجه استفاده کنیم: Manipulate[{r, v} = {r + dt v, v - dt r}; نمایش[Graphics@Point[r]، PlotRange -> {{-2، +2}، {-2، +2}}]، {{dt، 0.01}، 0.01، 1}، مقداردهی اولیه -> { r = { 0، 1}; v = {1, 0}; }] ما همچنین راهی برای ارسال شغلها داریم و میخواهیم آنها مستقل از هرکدام کار کنند، با این حال هرگونه ورودی بیشتر را مسدود میکند: jobs = Table[ ParallelSubmit[ SingularValueList[RandomReal[1, {1000, 1000}]]]، {10} ]؛ WaitAll[jobs] گزینه سوم به ارزیابی ناهمزمان نزدیکترین گزینه است، اما از این جهت که نیاز به مسدود کردن ورودیهای بیشتر دارد، شکست میخورد. چیزی که من دوست دارم ببینم تابعی است که نام آزمایشی آن AsynchronousEvaluate است، که دقیقاً همان کاری را که نامش می گوید انجام می دهد: AsynchronousEvaluate[Pause[10];] Print[Hello!]; (* بلافاصله چاپ شد *) آیا راهی وجود دارد که بتوانیم به این امر نزدیک شویم؟ رویای من این است که بتوانم یک کار را برای پردازش روی یک هسته موازی با محدودیتهای خاص (مانند «MemoryConstrained») در صف قرار دهم و بتوانم فقط «تنظیم و فراموش کنم». هنگامی که پردازش به پایان رسید، نتیجه به من برگردانده می شود. اما در این میان من هنوز می توانم با انجام کار دیگری سازنده باشم. ارزیابی ناهمزمان تنها قطعه ای است که در این مورد کم است، و من می خواهم در صورت امکان آن را انجام دهم.
|
ارزیابی ناهمزمان: آیا ممکن است؟
|
51579
|
من در ریاضیات زیاد جبر انجام نمیدهم و با تعجب متوجه شدم، در حین تلاش برای پاسخ به این سؤال، که نمیدانم چگونه یک عبارت را از یک چند جملهای فاکتور بگیرم. سوال با توجه به τ = (1 + Sqrt[5])/2 (* نسبت طلایی *) و coords = {{0,0,1},{0,1/2 (1+Sqrt[5]) بود. -1}، {1/2 (1+Sqrt[5])، 1/2 (-1-Sqrt[5])، 1/2 (1+Sqrt[5])}، {1/2 (-1-Sqrt[5])، 0,1/2 (1+Sqrt[5])}،{1/2 (1+Sqrt[5])،1،1/2 (-1-Sqrt[5) ])}، {1/2 (-1-Sqrt[5])، 1/2 (3+Sqrt[5])، 1/2 (-1-Sqrt[5])}،{1/2 (3+Sqrt[5])،-1,0}،{1،1/2 (-3-Sqrt[5])، 1/2 (3+Sqrt[5])}،{1/2 (- 3-Sqrt[5])، 1/2 (1+Sqrt[5])،0}،{-1،1/2 (-1-Sqrt[5])، 1/2 (3+Sqrt[5] )}، {1,1/2 (1+Sqrt[5]),1/2 (-3-Sqrt[5])},{-1,1/2 (3+Sqrt[5]),1/2 (- 3-Sqrt[5])}، {1/2 (3+Sqrt[5])، 1/2 (-1-Sqrt[5])، 0}،{1/2 (1+Sqrt[5]) 1/2 (-3-Sqrt[5])، 1/2 (1+Sqrt[5])}، {1/2 (-3-Sqrt[5])، 1,0}، {1/2 (-1- Sqrt[5])، -1,1/2 (1+Sqrt[5])}،{1/2 (1+Sqrt[5])، 0.1/2 (-1-Sqrt[5])} ،{1/2 (-1-Sqrt[5])، 1/2 (1+Sqrt[5])، 1/2 (-1-Sqrt[5])}، {0,1/2 (-1-Sqrt[5] ),1},{0,0,-1}} چگونه می توان «کوردها» را بر حسب «τ» بیان کرد. من با Map[ If[ AtomQ@#، #، (Simplify[#/τ]*HoldForm@τ) / آمدم. { τ -> HoldForm@τ, -τ -> HoldForm@-τ}] &, coords, {2}]  اما بدیهی است که این یک راه حل به طور کلی قوی نیست، و زشت است. من فکر می کنم باید راه های بهتری برای این کار وجود داشته باشد. این تا حدودی با سؤال اصلی همپوشانی دارد، اما امیدوارم توضیح جامعتری نسبت به آن سؤال ارائه شود.
|
فاکتورگیری عبارات از یک چند جمله ای
|
6751
|
من می خواهم تابع 'fcc' را کوچک کنم. وقتی «fcc» برای یک نقطه مشخص محاسبه میشود، پاسخ صحیح است: In[70]:= fcc[0.5، 0.5، 0.004، 0.006، 0.0025، 0.5] Out[70]= 2.96667*10^6 اما زمانی که میخواهم بهینه سازی «fcc» با «NMinimize» مشکلی در زیر وجود دارد: N به حداقل رساندن[{fcc[q1، q2، q3، q4، q5، q6]، 0.5 <= q1 <= 1.5، 0.5 <= q2 <= 1.5، 0.003 <= q3 <= 0.01، 0.003 <= q4 <= 0.01، 0.002 <= q5 <= 0.005، 0.5 <= q6 <= 1}, {q1, q2, q3, q4, q5, q6}] > NDSolve::ndsv: نمی توان مقدار شروع را برای متغیر ws پیدا کرد. >> > > ReplaceAll::reps: {NDSolve[{-((0.00011318 (q2+q3) > (-0.0174073+ws[<<1>>]))/(q3 q4 > q6))+(ws^[Prime])[x]==0,ws[q1]==0.012529},{ws},{x,0,q1}]} نه فهرستی از قوانین جایگزینی است و نه جدول اعزام معتبر، و بنابراین نمی توان برای جایگزینی استفاده کرد. >> > > ReplaceAll::reps: {NDSolve[{-((0.00011318 (q2+q3) > (-0.0174073+ws[<<1>>]))/(q3 q4 > q6))+(ws^[Prime])[x]==0,ws[q1]==0.012529},{ws},{x,0,q1}]} نه فهرستی از قوانین جایگزینی است و نه جدول اعزام معتبر، و بنابراین نمی توان برای جایگزینی استفاده کرد. >> > > ReplaceAll::reps: {NDSolve[{-((0.00011318 (q2+q3) > (-0.0174073+ws[<<1>>]))/(q3 q4 > q6))+(ws^[Prime])[x]==0,ws[q1]==0.012529},{ws},{x,0,q1}]} نه فهرستی از قوانین جایگزینی است و نه جدول اعزام معتبر، و بنابراین نمی توان برای جایگزینی استفاده کرد. >>>> عمومی::stop: خروجی بیشتر ReplaceAll::reps در طول > این محاسبه متوقف می شود. >> > > NDSolve::ndsv: نمی توان مقدار شروع را برای متغیر ts پیدا کرد. >> > > NMinimize::nnum: مقدار تابع 2.18625*10^6+6618.38 (-0.012529+ws[0]) > عددی در {q1,q2,q3,q4,q5,q6} نیست = > {1.4748,1.12029,0.0074076,0.00951558,0.00291973,0.810076}. >> و این تابع 'fcc' است: ta = 30; rha = 0.4; ارتفاع = 1361; p = 101325*(1 - ارتفاع*2.25577*10^-5)^5.2559; tka = 273.15 + ta; c1 = -5.8002206*10^3; c2 = 1.3914993; c3 = \ -4.8640239*10^-2; c4 = 4.1764768*10^-5; c5 = -1.4452093*10^-8; c6 = 6.5459673; psata = Exp[c1/tka + c2 + c3*tka + c4*tka^2 + c5*tka^3 + c6*log[tka]]; pva = rha*psata; wa = 0.621945*pva/(p - pva); tr = 26; rsh = 1500; nu = 7.54; چپ = 0.894; tsin = ta; \ tpin = ta; دوقلو = 20; wsin = wa; wpin = wa; tkw = 273.17 + دوقلو; psatw = Exp[c1/tkw + c2 + c3*tkw + c4*tkw^2 + c5*tkw^3 + c6*log[tkw]]; pvw = psatw; wsat = 0.621945*pvw/(p - pvw); cps = 1006; cpp = 1006; cpv = 1873; cpw = 4183; ks = \ 0.027; kp = 0.027; کیلو آب = 0.6; kwall = 237; hfg = 2501000; lwall = \ 0.0005; آب = 0.001; fcc[lx_, ly_, lp_, mp_, mw_, ratio_] := ماژول[{}, ms = نسبت*mp; ls = lp; dhs = 2*ly*ls/(ly + ls); dhp = 2*ly*lp/(ly + lp); hs = nu*ks/dhs; hp = nu*kp/dhp; hm = hs/(lef*cps); u = 1/(1/hp + lwall/kwall + lwater/kwater)؛ dels = -1; delp = -1; wss = NDSsolve[{(dels hm ly (ws[x] - wsat))/ms + مشتق[1][ws][x] == 0، ws[lx] == wsin}، {ws}، {x , 0, lx}]; tstptw = NDSsolve[{(dels ly (ts[x] - tw[x]) (hs + cpv hm (-Evaluate[{ws[x]} /. wss] + wsat)))/(ms (cps + cpv ارزیابی [{ws[x]} / (tp[x] - tw[x]) u)/(mp (cpp + cpv wpin)) + مشتق[1][tp][x] == 0، 1/(cpw mw) ly (delp (-tp [x] + tw[x]) u + dels (hs (-ts[x] + tw[x]) - hm (hfg + cpv tw[x] - cpw tw[x]) (ارزیابی[{ws[x]} /. wss] - wsat))) + مشتق[1][tw][x] == 0، ts[lx] == tsin، tp[lx] == tpin، tw[0] == twin}، {ts، tp، tw}، {x، 0، lx}]; (*Plot[Evaluate[{{ts[x],tp[x],tw[x]}/.tstptw}],{x,0,lx}]*) tpout = Evaluate[tp[0] /. tstptw]؛ tpout = tpout[[1]]; tsout = ارزیابی[ts[0] /. tstptw]؛ تسوت = تسوت[[1]]; wsout = ارزیابی[ws[0] /. wss]؛ wsout = wsout[[1]]; cp = 1006; اگر [(tr - tpout) < 0.5، mt = 20، mt = rsh/(cp*(tr - tpout))]؛ np = گرد[mt/mp]; ca = 100; at = lx*((np + 1)*(ly + 4*lp) + ly); n = 0.6; cinv = ca*at^n; کل = 120; کیلو وات = 1.5; \[تاو] = 3000; \[اتا] = 0.5; ro1 = 1.17; v1 = ms/(ro1*ls*ly); miu1 = 10^-5; re1 = ro1*v1*dhs/miu1; \[آلفا]1 = ls/ly; f1 = 24*(1 - 1.355*\[آلفا]1 + 1.9467*\[آلفا]1^2 - 1.7012*\[آلفا]1^3 + 0.9564*\[آلفا]1^4 - 0.2537*\[آلفا ]1^5)/ re1; dps = 2*f1*ro1*(v1^2)*lx/dhs; smd = 1.17; mst = ms*np/smd; cos = kel*\[Tau]*((dps*mst)/(\[Eta]*10^6)); ro2 = 1.17; v2 = ms/(ro2*lp*ly); miu2 = 10^-5; re2 = ro2*v2*dhp/miu2; \[آلفا]2 = lp/ly; f2 = 24*(1 - 1.355*\[Alpha]2 + 1.9467*\[Alpha]2^2 - 1.7012*\[Alpha]2^3 + 0.9564*\[Alpha]2^4 - 0.2537*\[آلفا ]2^5)/ re2; dpp = 2*f2*ro2*(v2^2)*lx/dhp; pmd = 1.17; mpt = mp*np/pmd; پلیس = کل*\
|
مشکل بهینه سازی با NDSolve
|
28420
|
گرفتن میله عمودی با طول مساوی برای | یک || b | در یک دفترچه یادداشت
|
|
20608
|
مقایسه رشته های نرم-مچ
|
|
24043
|
از مستندات به نظر می رسد که ما سبک ها را از طریق شیوه نامه ها به اشتراک می گذاریم. من سعی می کنم یک شیوه نامه پیش فرض سفارشی شده برای نوت بوک خود تنظیم کنم. من ایده های ساده و پیچیده تر را بدون موفقیت امتحان کرده ام. 1. اگر default.nb ارائه شده را ویرایش کنم، تغییرات من در آن ذخیره نمی شود. 2. اگر من مدل نوت بوک خود را بسازم، مثلا aModel.nb، و استایل های آن نوت بوک را سفارشی کنم، یک کپی از آن مدل آن سبک ها را ندارد. 3. اگر شیوه نامه aModel.nb را نصب کنم و آن را روی نوت بوک دیگری اعمال کنم، تاثیری ندارد.
|
به اشتراک گذاری سبک ها بین نوت بوک ها (Mathematica v9)
|
56479
|
من برای یافتن راهی برای به حداقل رساندن یک تابع با برخی محدودیت های پیچیده به کمک نیاز دارم. من در این زمینه متخصص نیستم، اما همچنان سعی می کنم بفهمم که آیا می توانم کاری برای مشکلم انجام دهم یا خیر. بنابراین، این توابع است: \begin{equation} \min z = \\{ds_1*[(cp_{11}*qp_1*pp_{11}+...+(cp_{n1}*qp_n*pp_{n1})]+...+ds_m*[(cp_{1m} *qp_1*pp_{1m}+...+(cp_{nm}*qp_n*pp_{nm})]\\} \پایان{معادله} با آن **ثابت** \begin{equation} ds_x > 0, qp_x > 0, pp_{xy} > 0 \end{equation} and $$ cp_{yx} = \begin{cases} 1 \\\ 0 \end {cases}، \begin{equation} \sum\limits_{i=1}^m cp_{iy} = 1 \text{ (فقط یک عنصر می تواند 1 در کل ستون باشد)} \end{equation} $$ کاری که من باید انجام دهم این است که مقادیر آن cp را پیدا کنم تا تابع را به حداقل برسانم (ساده، شاخه و باند و مواردی از این دست) اما من هرگز به این عمق نرفتم و این یکی از نظر من واقعاً پیچیده به نظر میرسد، به این فکر میکردم که نوعی چیزهای عقبنشینی بسازم، اما حتی با چیزهای کوچک به عنوان مثال (مثلاً n=3 و m=7) من باید روی \begin{equation} 2^{3*7}=2097152 \end{equation} ترکیبهای مختلف کار کنم که واقعاً زیاد است آیا پیشنهادی در این مورد دارید: بر اساس پاسخ @DumpsterDoofus، این همان چیزی است که من امتحان کردم (با برخی از مقادیر واقعی) \begin{equation}. d=[7، 5، 11]، \text{بردار با } ds_j \text{ ثابت} \end{معادله} \begin{equation} p= \begin{bmatrix} 5 & 2 & 5 & 3 & 7 & 1 و 1\\\2 و 8 و 3 و 2 و 7 و 2 و 3\\\3 و 6 و 4 و 5 و 9 & 1 & 1 \end{bmatrix} , \text{ماتریس با }pp_{ij} \text{ثابت} \end{معادله} با فرض اینکه \begin{equation} qp_i = 1, \forall i \end{معادله } داریم \begin{equation} k= \begin{bmatrix} 7*5 & 7*2 & 7*5 & 7*3 و 7*7 و 7*1 و 7*1\\\5*2 و 5*8 و 5*3 و 5*2 و 5*7 و 5*2 و 5*3\\\11* 3 و 11*6 و 11*4 و 11*5 و 11*9 و 11*1 و 11*1 \end{bmatrix} = \begin{bmatrix} 35 و 14 و 35 و 21 و 49 و 7 و 7\\\10 و 40 و 15 و 10 و 35 و 10 و 15\\\33 و 66 و 44 و 55 و 99 و 11 و 11 \end{bmatrix} \end{equation} که به vecotr ترجمه میشود، \begin{equation} میشود. k=[35,10,33,14,40,66,35,15,44,21,10,55,49,35,99,7,10,11,7,15,11] \پایان معادله} (من این کار را به صورت دستی انجام دادم و اکنون پس از توضیح مناسب تابع vec() آن را تصحیح کردم) اکنون که مقدار k را دریافت کردم، آماده اجرای این کار هستم. _Mathematica_ : n=3; m=7; j[k_]:=ConstantArray[1,k]; k={35,10,33,14,40,66,35,15,44,21,10,55,49,35,99,7,10,11,7,15,11}; A=ArrayFlatten[{IdentityMatrix[m]\[TensorProduct]j[n]}]; b=j[m]\[TensorProduct]{1,0}; Round@LinearProgramming[k,A,b] > خروجی: {0,1,0,1,0,0,0,1,0,0,1,0,0,1,0,1,0,0, 1,0,0} [ویرایش شده پس از تغییر k > به مقدار صحیح آن] تغییر خروجی به یک ماتریس منجر به این می شود: \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 1 \\\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} که به وضوح اشتباه است زیرا ما یکی داریم ستون پر از صفر و یکی دیگر پر از یک.~~ اکنون درست به نظر می رسد.
|
به حداقل رساندن یک تابع با برخی محدودیت ها
|
39038
|
من می خواهم مجانبی Sum[Binomial[n,i]*1/i^((n+1)/2) را پیدا کنم،{i,1,n}] یافتم مجانبی از Sum[2^i* را دیدم دوجمله ای[n-i-1,2*n/3-1]،{i,0,n/3}] اما من نمی توانم چیزی شبیه به کار در مثالم بدست بیاورم. راه درست برای این کار چیست؟
|
مجانبی از مجموع دوجمله ای ها
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.