fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
continuous_coe_iff {f : α → ℝ} : (Continuous fun a => (f a : EReal)) ↔ Continuous f := isEmbedding_coe.continuous_iff.symm
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuous_coe_iff
null
nhds_coe {r : ℝ} : 𝓝 (r : EReal) = (𝓝 r).map (↑) := (isOpenEmbedding_coe.map_nhds_eq r).symm
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
nhds_coe
null
nhds_coe_coe {r p : ℝ} : 𝓝 ((r : EReal), (p : EReal)) = (𝓝 (r, p)).map fun p : ℝ × ℝ => (↑p.1, ↑p.2) := ((isOpenEmbedding_coe.prodMap isOpenEmbedding_coe).map_nhds_eq (r, p)).symm
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
nhds_coe_coe
null
tendsto_toReal {a : EReal} (ha : a ≠ ⊤) (h'a : a ≠ ⊥) : Tendsto EReal.toReal (𝓝 a) (𝓝 a.toReal) := by lift a to ℝ using ⟨ha, h'a⟩ rw [nhds_coe, tendsto_map'_iff] exact tendsto_id
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
tendsto_toReal
null
continuousOn_toReal : ContinuousOn EReal.toReal ({⊥, ⊤}ᶜ : Set EReal) := fun _a ha => ContinuousAt.continuousWithinAt (tendsto_toReal (mt Or.inr ha) (mt Or.inl ha))
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousOn_toReal
null
neBotTopHomeomorphReal : ({⊥, ⊤}ᶜ : Set EReal) ≃ₜ ℝ where toEquiv := neTopBotEquivReal continuous_toFun := continuousOn_iff_continuous_restrict.1 continuousOn_toReal continuous_invFun := continuous_coe_real_ereal.subtype_mk _ /-! ### ENNReal coercion -/
def
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
neBotTopHomeomorphReal
The set of finite `EReal` numbers is homeomorphic to `ℝ`.
isEmbedding_coe_ennreal : IsEmbedding ((↑) : ℝ≥0∞ → EReal) := coe_ennreal_strictMono.isEmbedding_of_ordConnected <| by rw [range_coe_ennreal]; exact ordConnected_Ici
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
isEmbedding_coe_ennreal
null
isClosedEmbedding_coe_ennreal : IsClosedEmbedding ((↑) : ℝ≥0∞ → EReal) := ⟨isEmbedding_coe_ennreal, by rw [range_coe_ennreal]; exact isClosed_Ici⟩ @[norm_cast]
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
isClosedEmbedding_coe_ennreal
null
tendsto_coe_ennreal {α : Type*} {f : Filter α} {m : α → ℝ≥0∞} {a : ℝ≥0∞} : Tendsto (fun a => (m a : EReal)) f (𝓝 ↑a) ↔ Tendsto m f (𝓝 a) := isEmbedding_coe_ennreal.tendsto_nhds_iff.symm
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
tendsto_coe_ennreal
null
_root_.continuous_coe_ennreal_ereal : Continuous ((↑) : ℝ≥0∞ → EReal) := isEmbedding_coe_ennreal.continuous
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
_root_.continuous_coe_ennreal_ereal
null
continuous_coe_ennreal_iff {f : α → ℝ≥0∞} : (Continuous fun a => (f a : EReal)) ↔ Continuous f := isEmbedding_coe_ennreal.continuous_iff.symm /-! ### Neighborhoods of infinity -/
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuous_coe_ennreal_iff
null
nhds_top : 𝓝 (⊤ : EReal) = ⨅ (a) (_ : a ≠ ⊤), 𝓟 (Ioi a) := nhds_top_order.trans <| by simp only [lt_top_iff_ne_top] nonrec theorem nhds_top_basis : (𝓝 (⊤ : EReal)).HasBasis (fun _ : ℝ ↦ True) (Ioi ·) := by refine (nhds_top_basis (α := EReal)).to_hasBasis (fun x hx => ?_) fun _ _ ↦ ⟨_, coe_lt_top _, Subset.rfl⟩ rcases exists_rat_btwn_of_lt hx with ⟨y, hxy, -⟩ exact ⟨_, trivial, Ioi_subset_Ioi hxy.le⟩
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
nhds_top
null
nhds_top' : 𝓝 (⊤ : EReal) = ⨅ a : ℝ, 𝓟 (Ioi ↑a) := nhds_top_basis.eq_iInf
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
nhds_top'
null
mem_nhds_top_iff {s : Set EReal} : s ∈ 𝓝 (⊤ : EReal) ↔ ∃ y : ℝ, Ioi (y : EReal) ⊆ s := nhds_top_basis.mem_iff.trans <| by simp only [true_and]
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
mem_nhds_top_iff
null
tendsto_nhds_top_iff_real {α : Type*} {m : α → EReal} {f : Filter α} : Tendsto m f (𝓝 ⊤) ↔ ∀ x : ℝ, ∀ᶠ a in f, ↑x < m a := nhds_top_basis.tendsto_right_iff.trans <| by simp only [true_implies, mem_Ioi]
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
tendsto_nhds_top_iff_real
null
nhds_bot : 𝓝 (⊥ : EReal) = ⨅ (a) (_ : a ≠ ⊥), 𝓟 (Iio a) := nhds_bot_order.trans <| by simp only [bot_lt_iff_ne_bot]
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
nhds_bot
null
nhds_bot_basis : (𝓝 (⊥ : EReal)).HasBasis (fun _ : ℝ ↦ True) (Iio ·) := by refine (_root_.nhds_bot_basis (α := EReal)).to_hasBasis (fun x hx => ?_) fun _ _ ↦ ⟨_, bot_lt_coe _, Subset.rfl⟩ rcases exists_rat_btwn_of_lt hx with ⟨y, -, hxy⟩ exact ⟨_, trivial, Iio_subset_Iio hxy.le⟩
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
nhds_bot_basis
null
nhds_bot' : 𝓝 (⊥ : EReal) = ⨅ a : ℝ, 𝓟 (Iio ↑a) := nhds_bot_basis.eq_iInf
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
nhds_bot'
null
mem_nhds_bot_iff {s : Set EReal} : s ∈ 𝓝 (⊥ : EReal) ↔ ∃ y : ℝ, Iio (y : EReal) ⊆ s := nhds_bot_basis.mem_iff.trans <| by simp only [true_and]
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
mem_nhds_bot_iff
null
tendsto_nhds_bot_iff_real {α : Type*} {m : α → EReal} {f : Filter α} : Tendsto m f (𝓝 ⊥) ↔ ∀ x : ℝ, ∀ᶠ a in f, m a < x := nhds_bot_basis.tendsto_right_iff.trans <| by simp only [true_implies, mem_Iio]
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
tendsto_nhds_bot_iff_real
null
nhdsWithin_top : 𝓝[≠] (⊤ : EReal) = (atTop).map Real.toEReal := by apply (nhdsWithin_hasBasis nhds_top_basis_Ici _).ext (atTop_basis.map Real.toEReal) · simp only [EReal.image_coe_Ici, true_and] intro x hx by_cases hx_bot : x = ⊥ · simp [hx_bot] lift x to ℝ using ⟨hx.ne_top, hx_bot⟩ refine ⟨x, fun x ⟨h1, h2⟩ ↦ ?_⟩ simp [h1, h2.ne_top] · simp only [EReal.image_coe_Ici, true_implies] refine fun x ↦ ⟨x, ⟨EReal.coe_lt_top x, fun x ⟨(h1 : _ ≤ x), h2⟩ ↦ ?_⟩⟩ simp [h1, Ne.lt_top' fun a ↦ h2 a.symm]
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
nhdsWithin_top
null
nhdsWithin_bot : 𝓝[≠] (⊥ : EReal) = (atBot).map Real.toEReal := by apply (nhdsWithin_hasBasis nhds_bot_basis_Iic _).ext (atBot_basis.map Real.toEReal) · simp only [EReal.image_coe_Iic, true_and] intro x hx by_cases hx_top : x = ⊤ · simp [hx_top] lift x to ℝ using ⟨hx_top, hx.ne_bot⟩ refine ⟨x, fun x ⟨h1, h2⟩ ↦ ?_⟩ simp [h2, h1.ne_bot] · simp only [EReal.image_coe_Iic, true_implies] refine fun x ↦ ⟨x, ⟨EReal.bot_lt_coe x, fun x ⟨(h1 : x ≤ _), h2⟩ ↦ ?_⟩⟩ simp [h1, Ne.bot_lt' fun a ↦ h2 a.symm] omit [TopologicalSpace α] in @[simp]
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
nhdsWithin_bot
null
tendsto_coe_nhds_top_iff {f : α → ℝ} {l : Filter α} : Tendsto (fun x ↦ Real.toEReal (f x)) l (𝓝 ⊤) ↔ Tendsto f l atTop := by rw [tendsto_nhds_top_iff_real, atTop_basis_Ioi.tendsto_right_iff]; simp
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
tendsto_coe_nhds_top_iff
null
tendsto_coe_atTop : Tendsto Real.toEReal atTop (𝓝 ⊤) := tendsto_coe_nhds_top_iff.2 tendsto_id omit [TopologicalSpace α] in @[simp]
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
tendsto_coe_atTop
null
tendsto_coe_nhds_bot_iff {f : α → ℝ} {l : Filter α} : Tendsto (fun x ↦ Real.toEReal (f x)) l (𝓝 ⊥) ↔ Tendsto f l atBot := by rw [tendsto_nhds_bot_iff_real, atBot_basis_Iio.tendsto_right_iff]; simp
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
tendsto_coe_nhds_bot_iff
null
tendsto_coe_atBot : Tendsto Real.toEReal atBot (𝓝 ⊥) := tendsto_coe_nhds_bot_iff.2 tendsto_id
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
tendsto_coe_atBot
null
tendsto_toReal_atTop : Tendsto EReal.toReal (𝓝[≠] ⊤) atTop := by rw [nhdsWithin_top, tendsto_map'_iff] exact tendsto_id
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
tendsto_toReal_atTop
null
tendsto_toReal_atBot : Tendsto EReal.toReal (𝓝[≠] ⊥) atBot := by rw [nhdsWithin_bot, tendsto_map'_iff] exact tendsto_id /-! ### toENNReal -/
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
tendsto_toReal_atBot
null
continuous_toENNReal : Continuous EReal.toENNReal := by refine continuous_iff_continuousAt.mpr fun x ↦ ?_ by_cases h_top : x = ⊤ · simp only [ContinuousAt, h_top, toENNReal_top] refine ENNReal.tendsto_nhds_top fun n ↦ ?_ filter_upwards [eventually_gt_nhds (coe_lt_top n)] with y hy exact toENNReal_coe (x := n) ▸ toENNReal_lt_toENNReal (coe_ennreal_nonneg _) hy refine ContinuousOn.continuousAt ?_ (compl_singleton_mem_nhds_iff.mpr h_top) refine (continuousOn_of_forall_continuousAt fun x hx ↦ ?_).congr (fun _ h ↦ toENNReal_of_ne_top h) by_cases h_bot : x = ⊥ · refine tendsto_nhds_of_eventually_eq ?_ rw [h_bot, nhds_bot_basis.eventually_iff] simpa [toReal_bot, ENNReal.ofReal_zero, ENNReal.ofReal_eq_zero, true_and] using ⟨0, fun _ hx ↦ toReal_nonpos hx.le⟩ refine ENNReal.continuous_ofReal.continuousAt.comp' <| continuousOn_toReal.continuousAt <| (toFinite _).isClosed.compl_mem_nhds ?_ simp_all only [mem_compl_iff, mem_singleton_iff, mem_insert_iff, or_self, not_false_eq_true] @[fun_prop]
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuous_toENNReal
null
_root_.Continuous.ereal_toENNReal {α : Type*} [TopologicalSpace α] {f : α → EReal} (hf : Continuous f) : Continuous fun x => (f x).toENNReal := continuous_toENNReal.comp hf @[deprecated (since := "2025-03-05")] alias _root_.Continous.ereal_toENNReal := _root_.Continuous.ereal_toENNReal @[fun_prop]
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
_root_.Continuous.ereal_toENNReal
null
_root_.ContinuousOn.ereal_toENNReal {α : Type*} [TopologicalSpace α] {s : Set α} {f : α → EReal} (hf : ContinuousOn f s) : ContinuousOn (fun x => (f x).toENNReal) s := continuous_toENNReal.comp_continuousOn hf @[fun_prop]
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
_root_.ContinuousOn.ereal_toENNReal
null
_root_.ContinuousWithinAt.ereal_toENNReal {α : Type*} [TopologicalSpace α] {f : α → EReal} {s : Set α} {x : α} (hf : ContinuousWithinAt f s x) : ContinuousWithinAt (fun x => (f x).toENNReal) s x := continuous_toENNReal.continuousAt.comp_continuousWithinAt hf @[fun_prop]
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
_root_.ContinuousWithinAt.ereal_toENNReal
null
_root_.ContinuousAt.ereal_toENNReal {α : Type*} [TopologicalSpace α] {f : α → EReal} {x : α} (hf : ContinuousAt f x) : ContinuousAt (fun x => (f x).toENNReal) x := continuous_toENNReal.continuousAt.comp hf /-! ### Infs and Sups -/ variable {α : Type*} {u v : α → EReal}
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
_root_.ContinuousAt.ereal_toENNReal
null
add_iInf_le_iInf_add : (⨅ x, u x) + ⨅ x, v x ≤ ⨅ x, (u + v) x := le_iInf fun i ↦ add_le_add (iInf_le u i) (iInf_le v i)
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
add_iInf_le_iInf_add
null
iSup_add_le_add_iSup : ⨆ x, (u + v) x ≤ (⨆ x, u x) + ⨆ x, v x := iSup_le fun i ↦ add_le_add (le_iSup u i) (le_iSup v i) /-! ### Liminfs and Limsups -/
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
iSup_add_le_add_iSup
null
liminf_neg : liminf (- v) f = - limsup v f := EReal.negOrderIso.limsup_apply.symm
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
liminf_neg
null
limsup_neg : limsup (- v) f = - liminf v f := EReal.negOrderIso.liminf_apply.symm
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
limsup_neg
null
le_liminf_add : (liminf u f) + (liminf v f) ≤ liminf (u + v) f := by refine add_le_of_forall_lt fun a a_u b b_v ↦ (le_liminf_iff).2 fun c c_ab ↦ ?_ filter_upwards [eventually_lt_of_lt_liminf a_u, eventually_lt_of_lt_liminf b_v] with x a_x b_x exact c_ab.trans (add_lt_add a_x b_x)
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
le_liminf_add
null
limsup_add_le (h : limsup u f ≠ ⊥ ∨ limsup v f ≠ ⊤) (h' : limsup u f ≠ ⊤ ∨ limsup v f ≠ ⊥) : limsup (u + v) f ≤ (limsup u f) + (limsup v f) := by refine le_add_of_forall_gt h h' fun a a_u b b_v ↦ (limsup_le_iff).2 fun c c_ab ↦ ?_ filter_upwards [eventually_lt_of_limsup_lt a_u, eventually_lt_of_limsup_lt b_v] with x a_x b_x exact (add_lt_add a_x b_x).trans c_ab
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
limsup_add_le
null
le_limsup_add : (limsup u f) + (liminf v f) ≤ limsup (u + v) f := add_le_of_forall_lt fun _ a_u _ b_v ↦ (le_limsup_iff).2 fun _ c_ab ↦ (((frequently_lt_of_lt_limsup) a_u).and_eventually ((eventually_lt_of_lt_liminf) b_v)).mono fun _ ab_x ↦ c_ab.trans (add_lt_add ab_x.1 ab_x.2)
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
le_limsup_add
null
liminf_add_le (h : limsup u f ≠ ⊥ ∨ liminf v f ≠ ⊤) (h' : limsup u f ≠ ⊤ ∨ liminf v f ≠ ⊥) : liminf (u + v) f ≤ (limsup u f) + (liminf v f) := le_add_of_forall_gt h h' fun _ a_u _ b_v ↦ (liminf_le_iff).2 fun _ c_ab ↦ (((frequently_lt_of_liminf_lt) b_v).and_eventually ((eventually_lt_of_limsup_lt) a_u)).mono fun _ ab_x ↦ (add_lt_add ab_x.2 ab_x.1).trans c_ab
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
liminf_add_le
null
limsup_add_bot_of_ne_top (h : limsup u f = ⊥) (h' : limsup v f ≠ ⊤) : limsup (u + v) f = ⊥ := by apply le_bot_iff.1 ((limsup_add_le (.inr h') _).trans _) · rw [h]; exact .inl bot_ne_top · rw [h, bot_add]
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
limsup_add_bot_of_ne_top
null
limsup_add_le_of_le {a b : EReal} (ha : limsup u f < a) (hb : limsup v f ≤ b) : limsup (u + v) f ≤ a + b := by rcases eq_top_or_lt_top b with rfl | h · rw [add_top_of_ne_bot ha.ne_bot]; exact le_top · exact (limsup_add_le (.inr (hb.trans_lt h).ne) (.inl ha.ne_top)).trans (add_le_add ha.le hb)
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
limsup_add_le_of_le
null
liminf_add_gt_of_gt {a b : EReal} (ha : a < liminf u f) (hb : b < liminf v f) : a + b < liminf (u + v) f := (add_lt_add ha hb).trans_le le_liminf_add
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
liminf_add_gt_of_gt
null
liminf_add_top_of_ne_bot (h : liminf u f = ⊤) (h' : liminf v f ≠ ⊥) : liminf (u + v) f = ⊤ := by apply top_le_iff.1 (le_trans _ le_liminf_add) rw [h, top_add_of_ne_bot h']
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
liminf_add_top_of_ne_bot
null
le_limsup_mul (hu : ∃ᶠ x in f, 0 ≤ u x) (hv : 0 ≤ᶠ[f] v) : limsup u f * liminf v f ≤ limsup (u * v) f := by rcases f.eq_or_neBot with rfl | _ · rw [limsup_bot, limsup_bot, liminf_bot, bot_mul_top] have u0 : 0 ≤ limsup u f := le_limsup_of_frequently_le hu have uv0 : 0 ≤ limsup (u * v) f := le_limsup_of_frequently_le <| (hu.and_eventually hv).mono fun _ ⟨hu, hv⟩ ↦ mul_nonneg hu hv refine mul_le_of_forall_lt_of_nonneg u0 uv0 fun a ha b hb ↦ (le_limsup_iff).2 fun c c_ab ↦ ?_ refine (((frequently_lt_of_lt_limsup) (mem_Ioo.1 ha).2).and_eventually <| (eventually_lt_of_lt_liminf (mem_Ioo.1 hb).2).and <| hv).mono fun x ⟨xa, ⟨xb, vx⟩⟩ ↦ ?_ exact c_ab.trans_le (mul_le_mul xa.le xb.le (mem_Ioo.1 hb).1.le ((mem_Ioo.1 ha).1.le.trans xa.le))
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
le_limsup_mul
null
limsup_mul_le (hu : ∃ᶠ x in f, 0 ≤ u x) (hv : 0 ≤ᶠ[f] v) (h₁ : limsup u f ≠ 0 ∨ limsup v f ≠ ⊤) (h₂ : limsup u f ≠ ⊤ ∨ limsup v f ≠ 0) : limsup (u * v) f ≤ limsup u f * limsup v f := by rcases f.eq_or_neBot with rfl | _ · rw [limsup_bot]; exact bot_le have u_0 : 0 ≤ limsup u f := le_limsup_of_frequently_le hu replace h₁ : 0 < limsup u f ∨ limsup v f ≠ ⊤ := h₁.imp_left fun h ↦ lt_of_le_of_ne u_0 h.symm replace h₂ : limsup u f ≠ ⊤ ∨ 0 < limsup v f := h₂.imp_right fun h ↦ lt_of_le_of_ne (le_limsup_of_frequently_le hv.frequently) h.symm refine le_mul_of_forall_lt h₁ h₂ fun a a_u b b_v ↦ (limsup_le_iff).2 fun c c_ab ↦ ?_ filter_upwards [eventually_lt_of_limsup_lt a_u, eventually_lt_of_limsup_lt b_v, hv] with x x_a x_b v_0 apply lt_of_le_of_lt _ c_ab rcases lt_or_ge (u x) 0 with hux | hux · apply (mul_nonpos_iff.2 (.inr ⟨hux.le, v_0⟩)).trans exact mul_nonneg (u_0.trans a_u.le) (v_0.trans x_b.le) · exact mul_le_mul x_a.le x_b.le v_0 (hux.trans x_a.le)
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
limsup_mul_le
null
le_liminf_mul (hu : 0 ≤ᶠ[f] u) (hv : 0 ≤ᶠ[f] v) : liminf u f * liminf v f ≤ liminf (u * v) f := by apply mul_le_of_forall_lt_of_nonneg ((le_liminf_of_le) hu) <| (le_liminf_of_le) ((hu.and hv).mono fun x ⟨u0, v0⟩ ↦ mul_nonneg u0 v0) refine fun a ha b hb ↦ (le_liminf_iff).2 fun c c_ab ↦ ?_ filter_upwards [eventually_lt_of_lt_liminf (mem_Ioo.1 ha).2, eventually_lt_of_lt_liminf (mem_Ioo.1 hb).2] with x xa xb exact c_ab.trans_le (mul_le_mul xa.le xb.le (mem_Ioo.1 hb).1.le ((mem_Ioo.1 ha).1.le.trans xa.le))
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
le_liminf_mul
null
liminf_mul_le [NeBot f] (hu : 0 ≤ᶠ[f] u) (hv : 0 ≤ᶠ[f] v) (h₁ : limsup u f ≠ 0 ∨ liminf v f ≠ ⊤) (h₂ : limsup u f ≠ ⊤ ∨ liminf v f ≠ 0) : liminf (u * v) f ≤ limsup u f * liminf v f := by replace h₁ : 0 < limsup u f ∨ liminf v f ≠ ⊤ := by refine h₁.imp_left fun h ↦ lt_of_le_of_ne ?_ h.symm exact le_of_eq_of_le (limsup_const 0).symm (limsup_le_limsup hu) replace h₂ : limsup u f ≠ ⊤ ∨ 0 < liminf v f := by refine h₂.imp_right fun h ↦ lt_of_le_of_ne ?_ h.symm exact le_of_eq_of_le (liminf_const 0).symm (liminf_le_liminf hv) refine le_mul_of_forall_lt h₁ h₂ fun a a_u b b_v ↦ (liminf_le_iff).2 fun c c_ab ↦ ?_ refine (((frequently_lt_of_liminf_lt) b_v).and_eventually <| (eventually_lt_of_limsup_lt a_u).and <| hu.and hv).mono fun x ⟨x_v, x_u, u_0, v_0⟩ ↦ ?_ exact (mul_le_mul x_u.le x_v.le v_0 (u_0.trans x_u.le)).trans_lt c_ab
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
liminf_mul_le
null
continuousAt_add_coe_coe (a b : ℝ) : ContinuousAt (fun p : EReal × EReal => p.1 + p.2) (a, b) := by simp only [ContinuousAt, nhds_coe_coe, ← coe_add, tendsto_map'_iff, Function.comp_def, tendsto_coe, tendsto_add]
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_add_coe_coe
null
continuousAt_add_top_coe (a : ℝ) : ContinuousAt (fun p : EReal × EReal => p.1 + p.2) (⊤, a) := by simp only [ContinuousAt, tendsto_nhds_top_iff_real, top_add_coe] refine fun r ↦ ((lt_mem_nhds (coe_lt_top (r - (a - 1)))).prod_nhds (lt_mem_nhds <| EReal.coe_lt_coe_iff.2 <| sub_one_lt _)).mono fun _ h ↦ ?_ simpa only [← coe_add, _root_.sub_add_cancel] using add_lt_add h.1 h.2
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_add_top_coe
null
continuousAt_add_coe_top (a : ℝ) : ContinuousAt (fun p : EReal × EReal => p.1 + p.2) (a, ⊤) := by simpa only [add_comm, Function.comp_def, ContinuousAt, Prod.swap] using Tendsto.comp (continuousAt_add_top_coe a) (continuous_swap.tendsto ((a : EReal), ⊤))
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_add_coe_top
null
continuousAt_add_top_top : ContinuousAt (fun p : EReal × EReal => p.1 + p.2) (⊤, ⊤) := by simp only [ContinuousAt, tendsto_nhds_top_iff_real, top_add_top] refine fun r ↦ ((lt_mem_nhds (coe_lt_top 0)).prod_nhds (lt_mem_nhds <| coe_lt_top r)).mono fun _ h ↦ ?_ simpa only [coe_zero, zero_add] using add_lt_add h.1 h.2
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_add_top_top
null
continuousAt_add_bot_coe (a : ℝ) : ContinuousAt (fun p : EReal × EReal => p.1 + p.2) (⊥, a) := by simp only [ContinuousAt, tendsto_nhds_bot_iff_real, bot_add] refine fun r ↦ ((gt_mem_nhds (bot_lt_coe (r - (a + 1)))).prod_nhds (gt_mem_nhds <| EReal.coe_lt_coe_iff.2 <| lt_add_one _)).mono fun _ h ↦ ?_ simpa only [← coe_add, _root_.sub_add_cancel] using add_lt_add h.1 h.2
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_add_bot_coe
null
continuousAt_add_coe_bot (a : ℝ) : ContinuousAt (fun p : EReal × EReal => p.1 + p.2) (a, ⊥) := by simpa only [add_comm, Function.comp_def, ContinuousAt, Prod.swap] using Tendsto.comp (continuousAt_add_bot_coe a) (continuous_swap.tendsto ((a : EReal), ⊥))
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_add_coe_bot
null
continuousAt_add_bot_bot : ContinuousAt (fun p : EReal × EReal => p.1 + p.2) (⊥, ⊥) := by simp only [ContinuousAt, tendsto_nhds_bot_iff_real, bot_add] refine fun r ↦ ((gt_mem_nhds (bot_lt_coe 0)).prod_nhds (gt_mem_nhds <| bot_lt_coe r)).mono fun _ h ↦ ?_ simpa only [coe_zero, zero_add] using add_lt_add h.1 h.2
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_add_bot_bot
null
continuousAt_add {p : EReal × EReal} (h : p.1 ≠ ⊤ ∨ p.2 ≠ ⊥) (h' : p.1 ≠ ⊥ ∨ p.2 ≠ ⊤) : ContinuousAt (fun p : EReal × EReal => p.1 + p.2) p := by rcases p with ⟨x, y⟩ induction x <;> induction y · exact continuousAt_add_bot_bot · exact continuousAt_add_bot_coe _ · simp at h' · exact continuousAt_add_coe_bot _ · exact continuousAt_add_coe_coe _ _ · exact continuousAt_add_coe_top _ · simp at h · exact continuousAt_add_top_coe _ · exact continuousAt_add_top_top
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_add
The addition on `EReal` is continuous except where it doesn't make sense (i.e., at `(⊥, ⊤)` and at `(⊤, ⊥)`).
lowerSemicontinuous_add : LowerSemicontinuous fun p : EReal × EReal ↦ p.1 + p.2 := by intro x y by_cases hx₁ : x.1 = ⊥ · simp [hx₁] by_cases hx₂ : x.2 = ⊥ · simp [hx₂] · exact continuousAt_add (.inr hx₂) (.inl hx₁) |>.lowerSemicontinuousAt _ /-! ### Continuity of multiplication -/ /- Outside of indeterminacies `(0, ±∞)` and `(±∞, 0)`, the multiplication on `EReal` is continuous. There are many different cases to consider, so we first prove some special cases and leverage as much as possible the symmetries of the multiplication. -/
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
lowerSemicontinuous_add
null
private continuousAt_mul_swap {a b : EReal} (h : ContinuousAt (fun p : EReal × EReal ↦ p.1 * p.2) (a, b)) : ContinuousAt (fun p : EReal × EReal ↦ p.1 * p.2) (b, a) := by convert h.comp continuous_swap.continuousAt (x := (b, a)) simp [mul_comm]
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_mul_swap
null
private continuousAt_mul_symm1 {a b : EReal} (h : ContinuousAt (fun p : EReal × EReal ↦ p.1 * p.2) (a, b)) : ContinuousAt (fun p : EReal × EReal ↦ p.1 * p.2) (-a, b) := by have : (fun p : EReal × EReal ↦ p.1 * p.2) = (fun x : EReal ↦ -x) ∘ (fun p : EReal × EReal ↦ p.1 * p.2) ∘ (fun p : EReal × EReal ↦ (-p.1, p.2)) := by ext p simp rw [this] apply ContinuousAt.comp (Continuous.continuousAt continuous_neg) <| ContinuousAt.comp _ (ContinuousAt.prodMap (Continuous.continuousAt continuous_neg) (Continuous.continuousAt continuous_id)) simp [h]
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_mul_symm1
null
private continuousAt_mul_symm2 {a b : EReal} (h : ContinuousAt (fun p : EReal × EReal ↦ p.1 * p.2) (a, b)) : ContinuousAt (fun p : EReal × EReal ↦ p.1 * p.2) (a, -b) := continuousAt_mul_swap (continuousAt_mul_symm1 (continuousAt_mul_swap h))
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_mul_symm2
null
private continuousAt_mul_symm3 {a b : EReal} (h : ContinuousAt (fun p : EReal × EReal ↦ p.1 * p.2) (a, b)) : ContinuousAt (fun p : EReal × EReal ↦ p.1 * p.2) (-a, -b) := continuousAt_mul_symm1 (continuousAt_mul_symm2 h)
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_mul_symm3
null
private continuousAt_mul_coe_coe (a b : ℝ) : ContinuousAt (fun p : EReal × EReal ↦ p.1 * p.2) (a, b) := by simp [ContinuousAt, EReal.nhds_coe_coe, ← EReal.coe_mul, Filter.tendsto_map'_iff, Function.comp_def, EReal.tendsto_coe, tendsto_mul]
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_mul_coe_coe
null
private continuousAt_mul_top_top : ContinuousAt (fun p : EReal × EReal ↦ p.1 * p.2) (⊤, ⊤) := by simp only [ContinuousAt, EReal.top_mul_top, EReal.tendsto_nhds_top_iff_real] intro x rw [_root_.eventually_nhds_iff] use (Set.Ioi ((max x 0) : EReal)) ×ˢ (Set.Ioi 1) split_ands · intro p p_in_prod simp only [Set.mem_prod, Set.mem_Ioi, max_lt_iff] at p_in_prod rcases p_in_prod with ⟨⟨p1_gt_x, p1_pos⟩, p2_gt_1⟩ have := mul_le_mul_of_nonneg_left (le_of_lt p2_gt_1) (le_of_lt p1_pos) rw [mul_one p.1] at this exact lt_of_lt_of_le p1_gt_x this · exact IsOpen.prod isOpen_Ioi isOpen_Ioi · simp · rw [Set.mem_Ioi, ← EReal.coe_one]; exact EReal.coe_lt_top 1
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_mul_top_top
null
private continuousAt_mul_top_pos {a : ℝ} (h : 0 < a) : ContinuousAt (fun p : EReal × EReal ↦ p.1 * p.2) (⊤, a) := by simp only [ContinuousAt, EReal.top_mul_coe_of_pos h, EReal.tendsto_nhds_top_iff_real] intro x rw [_root_.eventually_nhds_iff] use (Set.Ioi ((2*(max (x+1) 0)/a : ℝ) : EReal)) ×ˢ (Set.Ioi ((a/2 : ℝ) : EReal)) split_ands · intro p p_in_prod simp only [Set.mem_prod, Set.mem_Ioi] at p_in_prod rcases p_in_prod with ⟨p1_gt, p2_gt⟩ have p1_pos : 0 < p.1 := by apply lt_of_le_of_lt _ p1_gt rw [EReal.coe_nonneg] apply mul_nonneg _ (le_of_lt (inv_pos_of_pos h)) simp only [Nat.ofNat_pos, mul_nonneg_iff_of_pos_left, le_max_iff, le_refl, or_true] have a2_pos : 0 < ((a/2 : ℝ) : EReal) := by rw [EReal.coe_pos]; linarith have lock := mul_le_mul_of_nonneg_right (le_of_lt p1_gt) (le_of_lt a2_pos) have key := mul_le_mul_of_nonneg_left (le_of_lt p2_gt) (le_of_lt p1_pos) replace lock := le_trans lock key apply lt_of_lt_of_le _ lock rw [← EReal.coe_mul, EReal.coe_lt_coe_iff, _root_.div_mul_div_comm, mul_comm, ← _root_.div_mul_div_comm, mul_div_right_comm] simp only [ne_eq, Ne.symm (ne_of_lt h), not_false_eq_true, _root_.div_self, OfNat.ofNat_ne_zero, one_mul, lt_max_iff, lt_add_iff_pos_right, zero_lt_one, true_or] · exact IsOpen.prod isOpen_Ioi isOpen_Ioi · simp · simp [h]
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_mul_top_pos
null
private continuousAt_mul_top_ne_zero {a : ℝ} (h : a ≠ 0) : ContinuousAt (fun p : EReal × EReal ↦ p.1 * p.2) (⊤, a) := by rcases lt_or_gt_of_ne h with a_neg | a_pos · exact neg_neg a ▸ continuousAt_mul_symm2 (continuousAt_mul_top_pos (neg_pos.2 a_neg)) · exact continuousAt_mul_top_pos a_pos
lemma
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_mul_top_ne_zero
null
continuousAt_mul {p : EReal × EReal} (h₁ : p.1 ≠ 0 ∨ p.2 ≠ ⊥) (h₂ : p.1 ≠ 0 ∨ p.2 ≠ ⊤) (h₃ : p.1 ≠ ⊥ ∨ p.2 ≠ 0) (h₄ : p.1 ≠ ⊤ ∨ p.2 ≠ 0) : ContinuousAt (fun p : EReal × EReal ↦ p.1 * p.2) p := by rcases p with ⟨x, y⟩ induction x <;> induction y · exact continuousAt_mul_symm3 continuousAt_mul_top_top · simp only [ne_eq, not_true_eq_false, EReal.coe_eq_zero, false_or] at h₃ exact continuousAt_mul_symm1 (continuousAt_mul_top_ne_zero h₃) · exact EReal.neg_top ▸ continuousAt_mul_symm1 continuousAt_mul_top_top · simp only [ne_eq, EReal.coe_eq_zero, not_true_eq_false, or_false] at h₁ exact continuousAt_mul_symm2 (continuousAt_mul_swap (continuousAt_mul_top_ne_zero h₁)) · exact continuousAt_mul_coe_coe _ _ · simp only [ne_eq, EReal.coe_eq_zero, not_true_eq_false, or_false] at h₂ exact continuousAt_mul_swap (continuousAt_mul_top_ne_zero h₂) · exact continuousAt_mul_symm2 continuousAt_mul_top_top · simp only [ne_eq, not_true_eq_false, EReal.coe_eq_zero, false_or] at h₄ exact continuousAt_mul_top_ne_zero h₄ · exact continuousAt_mul_top_top variable {a b : EReal}
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
continuousAt_mul
The multiplication on `EReal` is continuous except at indeterminacies (i.e. whenever one value is zero and the other infinite).
protected tendsto_mul (h₁ : a ≠ 0 ∨ b ≠ ⊥) (h₂ : a ≠ 0 ∨ b ≠ ⊤) (h₃ : a ≠ ⊥ ∨ b ≠ 0) (h₄ : a ≠ ⊤ ∨ b ≠ 0) : Tendsto (fun p : EReal × EReal ↦ p.1 * p.2) (𝓝 (a, b)) (𝓝 (a * b)) := (continuousAt_mul h₁ h₂ h₃ h₄).tendsto
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
tendsto_mul
null
protected Tendsto.mul {f : Filter α} {ma : α → EReal} {mb : α → EReal} {a b : EReal} (hma : Tendsto ma f (𝓝 a)) (hmb : Tendsto mb f (𝓝 b)) (h₁ : a ≠ 0 ∨ b ≠ ⊥) (h₂ : a ≠ 0 ∨ b ≠ ⊤) (h₃ : a ≠ ⊥ ∨ b ≠ 0) (h₄ : a ≠ ⊤ ∨ b ≠ 0) : Tendsto (fun x ↦ ma x * mb x) f (𝓝 (a * b)) := (EReal.tendsto_mul h₁ h₂ h₃ h₄).comp (hma.prodMk_nhds hmb)
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
Tendsto.mul
null
protected Tendsto.const_mul {f : Filter α} {m : α → EReal} {a b : EReal} (hm : Tendsto m f (𝓝 b)) (h₁ : a ≠ ⊥ ∨ b ≠ 0) (h₂ : a ≠ ⊤ ∨ b ≠ 0) : Tendsto (fun b ↦ a * m b) f (𝓝 (a * b)) := by_cases (fun (this : a = 0) => by simp [this, tendsto_const_nhds]) fun ha : a ≠ 0 => EReal.Tendsto.mul tendsto_const_nhds hm (Or.inl ha) (Or.inl ha) h₁ h₂
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
Tendsto.const_mul
null
protected Tendsto.mul_const {f : Filter α} {m : α → EReal} {a b : EReal} (hm : Tendsto m f (𝓝 a)) (h₁ : a ≠ 0 ∨ b ≠ ⊥) (h₂ : a ≠ 0 ∨ b ≠ ⊤) : Tendsto (fun x ↦ m x * b) f (𝓝 (a * b)) := by simpa only [mul_comm] using EReal.Tendsto.const_mul hm h₁.symm h₂.symm
theorem
Topology
[ "Mathlib.Data.EReal.Inv", "Mathlib.Topology.Semicontinuous" ]
Mathlib/Topology/Instances/EReal/Lemmas.lean
Tendsto.mul_const
null
isOpen_Ico_zero {x : NNReal} : IsOpen (Set.Ico 0 x) := Ico_bot (a := x) ▸ isOpen_Iio open Filter Finset @[fun_prop]
lemma
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
isOpen_Ico_zero
null
_root_.continuous_real_toNNReal : Continuous Real.toNNReal := (continuous_id.max continuous_const).subtype_mk _
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
_root_.continuous_real_toNNReal
null
@[simps -fullyApplied] noncomputable _root_.ContinuousMap.realToNNReal : C(ℝ, ℝ≥0) := .mk Real.toNNReal continuous_real_toNNReal
def
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
_root_.ContinuousMap.realToNNReal
`Real.toNNReal` bundled as a continuous map for convenience.
_root_.ContinuousOn.ofReal_map_toNNReal {f : ℝ≥0 → ℝ≥0} {s : Set ℝ} {t : Set ℝ≥0} (hf : ContinuousOn f t) (h : Set.MapsTo Real.toNNReal s t) : ContinuousOn (fun x ↦ f x.toNNReal : ℝ → ℝ) s := continuous_subtype_val.comp_continuousOn <| hf.comp continuous_real_toNNReal.continuousOn h @[simp, norm_cast]
lemma
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
_root_.ContinuousOn.ofReal_map_toNNReal
null
tendsto_coe {f : Filter α} {m : α → ℝ≥0} {x : ℝ≥0} : Tendsto (fun a => (m a : ℝ)) f (𝓝 (x : ℝ)) ↔ Tendsto m f (𝓝 x) := tendsto_subtype_rng.symm
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
tendsto_coe
null
tendsto_coe' {f : Filter α} [NeBot f] {m : α → ℝ≥0} {x : ℝ} : Tendsto (fun a => m a : α → ℝ) f (𝓝 x) ↔ ∃ hx : 0 ≤ x, Tendsto m f (𝓝 ⟨x, hx⟩) := ⟨fun h => ⟨ge_of_tendsto' h fun c => (m c).2, tendsto_coe.1 h⟩, fun ⟨_, hm⟩ => tendsto_coe.2 hm⟩ @[simp] theorem map_coe_atTop : map toReal atTop = atTop := map_val_Ici_atTop 0 @[simp]
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
tendsto_coe'
null
comap_coe_atTop : comap toReal atTop = atTop := (atTop_Ici_eq 0).symm @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
comap_coe_atTop
null
tendsto_coe_atTop {f : Filter α} {m : α → ℝ≥0} : Tendsto (fun a => (m a : ℝ)) f atTop ↔ Tendsto m f atTop := tendsto_Ici_atTop.symm
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
tendsto_coe_atTop
null
_root_.tendsto_real_toNNReal {f : Filter α} {m : α → ℝ} {x : ℝ} (h : Tendsto m f (𝓝 x)) : Tendsto (fun a => Real.toNNReal (m a)) f (𝓝 (Real.toNNReal x)) := (continuous_real_toNNReal.tendsto _).comp h @[simp]
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
_root_.tendsto_real_toNNReal
null
_root_.Real.map_toNNReal_atTop : map Real.toNNReal atTop = atTop := by rw [← map_coe_atTop, Function.LeftInverse.filter_map @Real.toNNReal_coe]
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
_root_.Real.map_toNNReal_atTop
null
_root_.tendsto_real_toNNReal_atTop : Tendsto Real.toNNReal atTop atTop := Real.map_toNNReal_atTop.le @[simp]
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
_root_.tendsto_real_toNNReal_atTop
null
_root_.Real.comap_toNNReal_atTop : comap Real.toNNReal atTop = atTop := by refine le_antisymm ?_ tendsto_real_toNNReal_atTop.le_comap refine (atTop_basis_Ioi' 0).ge_iff.2 fun a ha ↦ ?_ filter_upwards [preimage_mem_comap (Ioi_mem_atTop a.toNNReal)] with x hx exact (Real.toNNReal_lt_toNNReal_iff_of_nonneg ha.le).1 hx @[simp]
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
_root_.Real.comap_toNNReal_atTop
null
_root_.Real.tendsto_toNNReal_atTop_iff {l : Filter α} {f : α → ℝ} : Tendsto (fun x ↦ (f x).toNNReal) l atTop ↔ Tendsto f l atTop := by rw [← Real.comap_toNNReal_atTop, tendsto_comap_iff, Function.comp_def]
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
_root_.Real.tendsto_toNNReal_atTop_iff
null
_root_.Real.tendsto_toNNReal_atTop : Tendsto Real.toNNReal atTop atTop := Real.tendsto_toNNReal_atTop_iff.2 tendsto_id
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
_root_.Real.tendsto_toNNReal_atTop
null
nhds_zero : 𝓝 (0 : ℝ≥0) = ⨅ (a : ℝ≥0) (_ : a ≠ 0), 𝓟 (Iio a) := nhds_bot_order.trans <| by simp only [bot_lt_iff_ne_bot]; rfl
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
nhds_zero
null
nhds_zero_basis : (𝓝 (0 : ℝ≥0)).HasBasis (fun a : ℝ≥0 => 0 < a) fun a => Iio a := nhds_bot_basis @[norm_cast]
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
nhds_zero_basis
null
hasSum_coe {f : α → ℝ≥0} {r : ℝ≥0} : HasSum (fun a => (f a : ℝ)) (r : ℝ) ↔ HasSum f r := by simp only [HasSum, ← coe_sum, tendsto_coe]
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
hasSum_coe
null
protected _root_.HasSum.toNNReal {f : α → ℝ} {y : ℝ} (hf₀ : ∀ n, 0 ≤ f n) (hy : HasSum f y) : HasSum (fun x => Real.toNNReal (f x)) y.toNNReal := by lift y to ℝ≥0 using hy.nonneg hf₀ lift f to α → ℝ≥0 using hf₀ simpa [hasSum_coe] using hy
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
_root_.HasSum.toNNReal
null
hasSum_real_toNNReal_of_nonneg {f : α → ℝ} (hf_nonneg : ∀ n, 0 ≤ f n) (hf : Summable f) : HasSum (fun n => Real.toNNReal (f n)) (Real.toNNReal (∑' n, f n)) := hf.hasSum.toNNReal hf_nonneg @[norm_cast]
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
hasSum_real_toNNReal_of_nonneg
null
summable_coe {f : α → ℝ≥0} : (Summable fun a => (f a : ℝ)) ↔ Summable f := by constructor · exact fun ⟨a, ha⟩ => ⟨⟨a, ha.nonneg fun x => (f x).2⟩, hasSum_coe.1 ha⟩ · exact fun ⟨a, ha⟩ => ⟨a.1, hasSum_coe.2 ha⟩
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
summable_coe
null
summable_mk {f : α → ℝ} (hf : ∀ n, 0 ≤ f n) : (@Summable ℝ≥0 _ _ _ fun n => ⟨f n, hf n⟩) ↔ Summable f := Iff.symm <| summable_coe (f := fun x => ⟨f x, hf x⟩) @[norm_cast]
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
summable_mk
null
coe_tsum {f : α → ℝ≥0} : ↑(∑' a, f a) = ∑' a, (f a : ℝ) := by classical exact if hf : Summable f then Eq.symm <| (hasSum_coe.2 <| hf.hasSum).tsum_eq else by simp [tsum_def, hf, mt summable_coe.1 hf]
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
coe_tsum
null
coe_tsum_of_nonneg {f : α → ℝ} (hf₁ : ∀ n, 0 ≤ f n) : (⟨∑' n, f n, tsum_nonneg hf₁⟩ : ℝ≥0) = (∑' n, ⟨f n, hf₁ n⟩ : ℝ≥0) := NNReal.eq <| Eq.symm <| coe_tsum (f := fun x => ⟨f x, hf₁ x⟩) nonrec theorem tsum_mul_left (a : ℝ≥0) (f : α → ℝ≥0) : ∑' x, a * f x = a * ∑' x, f x := NNReal.eq <| by simp only [coe_tsum, NNReal.coe_mul, tsum_mul_left] nonrec theorem tsum_mul_right (f : α → ℝ≥0) (a : ℝ≥0) : ∑' x, f x * a = (∑' x, f x) * a := NNReal.eq <| by simp only [coe_tsum, NNReal.coe_mul, tsum_mul_right]
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
coe_tsum_of_nonneg
null
summable_comp_injective {β : Type*} {f : α → ℝ≥0} (hf : Summable f) {i : β → α} (hi : Function.Injective i) : Summable (f ∘ i) := by rw [← summable_coe] at hf ⊢ exact hf.comp_injective hi
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
summable_comp_injective
null
summable_nat_add (f : ℕ → ℝ≥0) (hf : Summable f) (k : ℕ) : Summable fun i => f (i + k) := summable_comp_injective hf <| add_left_injective k nonrec theorem summable_nat_add_iff {f : ℕ → ℝ≥0} (k : ℕ) : (Summable fun i => f (i + k)) ↔ Summable f := by rw [← summable_coe, ← summable_coe] exact @summable_nat_add_iff ℝ _ _ _ (fun i => (f i : ℝ)) k nonrec theorem hasSum_nat_add_iff {f : ℕ → ℝ≥0} (k : ℕ) {a : ℝ≥0} : HasSum (fun n => f (n + k)) a ↔ HasSum f (a + ∑ i ∈ range k, f i) := by rw [← hasSum_coe, hasSum_nat_add_iff (f := fun n => toReal (f n)) k]; norm_cast
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
summable_nat_add
null
sum_add_tsum_nat_add {f : ℕ → ℝ≥0} (k : ℕ) (hf : Summable f) : ∑' i, f i = (∑ i ∈ range k, f i) + ∑' i, f (i + k) := (((summable_nat_add_iff k).2 hf).sum_add_tsum_nat_add').symm
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
sum_add_tsum_nat_add
null
iInf_real_pos_eq_iInf_nnreal_pos [CompleteLattice α] {f : ℝ → α} : ⨅ (n : ℝ) (_ : 0 < n), f n = ⨅ (n : ℝ≥0) (_ : 0 < n), f n := le_antisymm (iInf_mono' fun r => ⟨r, le_rfl⟩) (iInf₂_mono' fun r hr => ⟨⟨r, hr.le⟩, hr, le_rfl⟩)
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
iInf_real_pos_eq_iInf_nnreal_pos
null
tendsto_cofinite_zero_of_summable {α} {f : α → ℝ≥0} (hf : Summable f) : Tendsto f cofinite (𝓝 0) := by simp only [← summable_coe, ← tendsto_coe] at hf ⊢ exact hf.tendsto_cofinite_zero
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
tendsto_cofinite_zero_of_summable
null
tendsto_atTop_zero_of_summable {f : ℕ → ℝ≥0} (hf : Summable f) : Tendsto f atTop (𝓝 0) := by rw [← Nat.cofinite_eq_atTop] exact tendsto_cofinite_zero_of_summable hf
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
tendsto_atTop_zero_of_summable
null