fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
powOrderIso (n : ℕ) (hn : n ≠ 0) : ℝ≥0 ≃o ℝ≥0 := StrictMono.orderIsoOfSurjective (fun x ↦ x ^ n) (fun x y h => pow_left_strictMonoOn₀ hn (zero_le x) (zero_le y) h) <| (continuous_id.pow _).surjective (tendsto_pow_atTop hn) <| by simpa [OrderBot.atBot_eq, pos_iff_ne_zero]
def
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
powOrderIso
The sum over the complement of a finset tends to `0` when the finset grows to cover the whole space. This does not need a summability assumption, as otherwise all sums are zero. -/ nonrec theorem tendsto_tsum_compl_atTop_zero {α : Type*} (f : α → ℝ≥0) : Tendsto (fun s : Finset α => ∑' b : { x // x ∉ s }, f b) atTop (𝓝 0) := by simp_rw [← tendsto_coe, coe_tsum, NNReal.coe_zero] exact tendsto_tsum_compl_atTop_zero fun a : α => (f a : ℝ) /-- `x ↦ x ^ n` as an order isomorphism of `ℝ≥0`.
_root_.Real.tendsto_of_bddAbove_monotone {f : ℕ → ℝ} (h_bdd : BddAbove (Set.range f)) (h_mon : Monotone f) : ∃ r : ℝ, Tendsto f atTop (𝓝 r) := by obtain ⟨B, hB⟩ := Real.exists_isLUB (Set.range_nonempty f) h_bdd exact ⟨B, tendsto_atTop_isLUB h_mon hB⟩
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
_root_.Real.tendsto_of_bddAbove_monotone
A monotone, bounded above sequence `f : ℕ → ℝ` has a finite limit.
_root_.Real.tendsto_of_bddBelow_antitone {f : ℕ → ℝ} (h_bdd : BddBelow (Set.range f)) (h_ant : Antitone f) : ∃ r : ℝ, Tendsto f atTop (𝓝 r) := by obtain ⟨B, hB⟩ := Real.exists_isGLB (Set.range_nonempty f) h_bdd exact ⟨B, tendsto_atTop_isGLB h_ant hB⟩
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
_root_.Real.tendsto_of_bddBelow_antitone
An antitone, bounded below sequence `f : ℕ → ℝ` has a finite limit.
tendsto_of_antitone {f : ℕ → ℝ≥0} (h_ant : Antitone f) : ∃ r : ℝ≥0, Tendsto f atTop (𝓝 r) := by have h_bdd_0 : (0 : ℝ) ∈ lowerBounds (Set.range fun n : ℕ => (f n : ℝ)) := by rintro r ⟨n, hn⟩ simp_rw [← hn] exact NNReal.coe_nonneg _ obtain ⟨L, hL⟩ := Real.tendsto_of_bddBelow_antitone ⟨0, h_bdd_0⟩ h_ant have hL0 : 0 ≤ L := haveI h_glb : IsGLB (Set.range fun n => (f n : ℝ)) L := isGLB_of_tendsto_atTop h_ant hL (le_isGLB_iff h_glb).mpr h_bdd_0 exact ⟨⟨L, hL0⟩, NNReal.tendsto_coe.mp hL⟩
theorem
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
tendsto_of_antitone
An antitone sequence `f : ℕ → ℝ≥0` has a finite limit.
iSup_pow_of_ne_zero (hn : n ≠ 0) (f : ι → ℝ≥0) : (⨆ i, f i) ^ n = ⨆ i, f i ^ n := (NNReal.powOrderIso n hn).map_ciSup' _
lemma
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
iSup_pow_of_ne_zero
null
iSup_pow [Nonempty ι] (f : ι → ℝ≥0) (n : ℕ) : (⨆ i, f i) ^ n = ⨆ i, f i ^ n := by by_cases hn : n = 0 · simp [hn] · exact iSup_pow_of_ne_zero hn _
lemma
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
iSup_pow
null
powOrderIso (n : ℕ) (hn : n ≠ 0) : ℝ≥0∞ ≃o ℝ≥0∞ := (NNReal.powOrderIso n hn).withTopCongr.copy (· ^ n) _ (by cases n; (· cases hn rfl); · ext (_ | _) <;> rfl) rfl
def
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
powOrderIso
`x ↦ x ^ n` as an order isomorphism of `ℝ≥0∞`. See also `ENNReal.orderIsoRpow`.
iSup_pow_of_ne_zero (hn : n ≠ 0) (f : ι → ℝ≥0∞) : (⨆ i, f i) ^ n = ⨆ i, f i ^ n := (powOrderIso n hn).map_iSup _
lemma
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
iSup_pow_of_ne_zero
null
iSup_pow [Nonempty ι] (f : ι → ℝ≥0∞) (n : ℕ) : (⨆ i, f i) ^ n = ⨆ i, f i ^ n := by by_cases hn : n = 0 · simp [hn] · exact iSup_pow_of_ne_zero hn _
lemma
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
iSup_pow
null
iSup₂_pow_of_ne_zero {κ : ι → Sort*} (f : (i : ι) → κ i → ℝ≥0∞) {n : ℕ} (hn : n ≠ 0) : (⨆ i, ⨆ j, f i j) ^ n = ⨆ i, ⨆ j, f i j ^ n := (powOrderIso n hn).map_iSup₂ f
lemma
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
iSup₂_pow_of_ne_zero
null
Real.iSup_pow [Nonempty ι] {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) (n : ℕ) : (⨆ i, f i) ^ n = ⨆ i, f i ^ n := by lift f to ι → ℝ≥0 using hf; dsimp; exact mod_cast NNReal.iSup_pow f n
lemma
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
Real.iSup_pow
null
Real.iSup_pow_of_ne_zero {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) (hn : n ≠ 0) : (⨆ i, f i) ^ n = ⨆ i, f i ^ n := by cases isEmpty_or_nonempty ι · simp [hn] · exact iSup_pow hf _
lemma
Topology
[ "Mathlib.Data.NNReal.Basic", "Mathlib.Topology.Algebra.InfiniteSum.Order", "Mathlib.Topology.Algebra.InfiniteSum.Ring", "Mathlib.Topology.Algebra.Ring.Real", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Instances/NNReal/Lemmas.lean
Real.iSup_pow_of_ne_zero
null
Real.isTopologicalBasis_Ioo_rat : @IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) := isTopologicalBasis_of_isOpen_of_nhds (by simp +contextual [isOpen_Ioo]) fun a _ hav hv => let ⟨_, _, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav) let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl let ⟨p, hap, hpu⟩ := exists_rat_btwn hu ⟨Ioo q p, by simp only [mem_iUnion] exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun _ ⟨hqa', ha'p⟩ => h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩ @[simp]
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
Real.isTopologicalBasis_Ioo_rat
null
Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop] /- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
Real.cobounded_eq
null
uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) := _
lemma
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
uniform_embedding_add_rat
null
uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) := _ -/
lemma
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
uniform_embedding_mul_rat
null
Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε := by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
Real.mem_closure_iff
null
Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) : UniformContinuous fun p : s => p.1⁻¹ := Metric.uniformContinuous_iff.2 fun _ε ε0 => let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0 ⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
Real.uniformContinuous_inv
null
Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) := Metric.uniformContinuous_iff.2 fun ε ε0 => ⟨ε, ε0, fun _ _ ↦ lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
Real.uniformContinuous_abs
null
Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ := continuousOn_inv₀.restrict
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
Real.continuous_inv
null
Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ} (H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) : UniformContinuous fun p : s => p.1.1 * p.1.2 := Metric.uniformContinuous_iff.2 fun _ε ε0 => let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0 ⟨δ, δ0, fun {a b} h => let ⟨h₁, h₂⟩ := max_lt_iff.1 h Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
Real.uniformContinuous_mul
null
Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
Real.totallyBounded_ball
null
Real.subfield_eq_of_closed {K : Subfield ℝ} (hc : IsClosed (K : Set ℝ)) : K = ⊤ := by rw [SetLike.ext'_iff, Subfield.coe_top, ← hc.closure_eq] refine Rat.denseRange_cast.mono ?_ |>.closure_eq rintro - ⟨_, rfl⟩ exact SubfieldClass.ratCast_mem K _
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
Real.subfield_eq_of_closed
null
Real.exists_seq_rat_strictMono_tendsto (x : ℝ) : ∃ u : ℕ → ℚ, StrictMono u ∧ (∀ n, u n < x) ∧ Tendsto (u · : ℕ → ℝ) atTop (𝓝 x) := Rat.denseRange_cast.exists_seq_strictMono_tendsto Rat.cast_strictMono.monotone x
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
Real.exists_seq_rat_strictMono_tendsto
null
Real.exists_seq_rat_strictAnti_tendsto (x : ℝ) : ∃ u : ℕ → ℚ, StrictAnti u ∧ (∀ n, x < u n) ∧ Tendsto (u · : ℕ → ℝ) atTop (𝓝 x) := Rat.denseRange_cast.exists_seq_strictAnti_tendsto Rat.cast_strictMono.monotone x
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
Real.exists_seq_rat_strictAnti_tendsto
null
closure_ordConnected_inter_rat {s : Set ℝ} (conn : s.OrdConnected) (nt : s.Nontrivial) : closure (s ∩ .range Rat.cast) = closure s := (closure_mono inter_subset_left).antisymm <| isClosed_closure.closure_subset_iff.mpr fun x hx ↦ Real.mem_closure_iff.mpr fun ε ε_pos ↦ by have ⟨z, hz, ne⟩ := nt.exists_ne x refine ne.lt_or_gt.elim (fun lt ↦ ?_) fun lt ↦ ?_ · have ⟨q, h₁, h₂⟩ := exists_rat_btwn (max_lt lt (sub_lt_self x ε_pos)) rw [max_lt_iff] at h₁ refine ⟨q, ⟨conn.out hz hx ⟨h₁.1.le, h₂.le⟩, q, rfl⟩, ?_⟩ simpa only [abs_sub_comm, abs_of_pos (sub_pos.mpr h₂), sub_lt_comm] using h₁.2 · have ⟨q, h₁, h₂⟩ := exists_rat_btwn (lt_min lt (lt_add_of_pos_right x ε_pos)) rw [lt_min_iff] at h₂ refine ⟨q, ⟨conn.out hx hz ⟨h₁.le, h₂.1.le⟩, q, rfl⟩, ?_⟩ simpa only [abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'] using h₂.2
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
closure_ordConnected_inter_rat
null
closure_of_rat_image_lt {q : ℚ} : closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } := by convert closure_ordConnected_inter_rat (ordConnected_Ioi (a := (q : ℝ))) _ using 1 · congr!; aesop · exact (closure_Ioi _).symm · exact ⟨q + 1, show (q : ℝ) < _ by linarith, q + 2, show (q : ℝ) < _ by linarith, by simp⟩ /- TODO(Mario): Put these back only if needed later
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
closure_of_rat_image_lt
null
closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} := _
lemma
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
closure_of_rat_image_le_eq
null
closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) : closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} := _ -/
lemma
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
closure_of_rat_image_le_le_eq
null
Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by rw [← hp.image_uIcc hc 0] exact isCompact_uIcc.image hf
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
Periodic.compact_of_continuous
A continuous, periodic function has compact range.
Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) := (hp.compact_of_continuous hc hf).isBounded
theorem
Topology
[ "Mathlib.Algebra.Field.Periodic", "Mathlib.Algebra.Field.Subfield.Basic", "Mathlib.Topology.Algebra.Order.Archimedean", "Mathlib.Topology.Algebra.Ring.Real" ]
Mathlib/Topology/Instances/Real/Lemmas.lean
Periodic.isBounded_of_continuous
A continuous, periodic function is bounded.
@[mk_iff isProperMap_iff_clusterPt, fun_prop] IsProperMap (f : X → Y) : Prop extends Continuous f where /-- By definition, if `f` is a proper map and `ℱ` is any filter on `X`, then any cluster point of `map f ℱ` is the image by `f` of some cluster point of `ℱ`. -/ clusterPt_of_mapClusterPt : ∀ ⦃ℱ : Filter X⦄, ∀ ⦃y : Y⦄, MapClusterPt y ℱ f → ∃ x, f x = y ∧ ClusterPt x ℱ
structure
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
IsProperMap
A map `f : X → Y` between two topological spaces is said to be **proper** if it is continuous and, for all `ℱ : Filter X`, any cluster point of `map f ℱ` is the image by `f` of a cluster point of `ℱ`.
@[fun_prop] IsProperMap.continuous (h : IsProperMap f) : Continuous f := h.toContinuous
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
IsProperMap.continuous
Definition of proper maps. See also `isClosedMap_iff_clusterPt` for a related criterion for closed maps. -/ add_decl_doc isProperMap_iff_clusterPt /-- By definition, a proper map is continuous.
IsProperMap.isClosedMap (h : IsProperMap f) : IsClosedMap f := by rw [isClosedMap_iff_clusterPt] exact fun s y ↦ h.clusterPt_of_mapClusterPt (ℱ := 𝓟 s) (y := y)
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
IsProperMap.isClosedMap
A proper map is closed.
isProperMap_iff_ultrafilter : IsProperMap f ↔ Continuous f ∧ ∀ ⦃𝒰 : Ultrafilter X⦄, ∀ ⦃y : Y⦄, Tendsto f 𝒰 (𝓝 y) → ∃ x, f x = y ∧ 𝒰 ≤ 𝓝 x := by rw [isProperMap_iff_clusterPt] refine and_congr_right (fun _ ↦ ?_) constructor <;> intro H · intro 𝒰 y (hY : (Ultrafilter.map f 𝒰 : Filter Y) ≤ _) simp_rw [← Ultrafilter.clusterPt_iff] at hY ⊢ exact H hY · simp_rw [MapClusterPt, ClusterPt, ← Filter.push_pull', map_neBot_iff, ← exists_ultrafilter_iff, forall_exists_index] intro ℱ y 𝒰 hy rcases H (tendsto_iff_comap.mpr <| hy.trans inf_le_left) with ⟨x, hxy, hx⟩ exact ⟨x, hxy, 𝒰, le_inf hx (hy.trans inf_le_right)⟩
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
isProperMap_iff_ultrafilter
Characterization of proper maps by ultrafilters.
isProperMap_iff_ultrafilter_of_t2 [T2Space Y] : IsProperMap f ↔ Continuous f ∧ ∀ ⦃𝒰 : Ultrafilter X⦄, ∀ ⦃y : Y⦄, Tendsto f 𝒰 (𝓝 y) → ∃ x, 𝒰.1 ≤ 𝓝 x := isProperMap_iff_ultrafilter.trans <| and_congr_right fun hc ↦ forall₃_congr fun _𝒰 _y hy ↦ exists_congr fun x ↦ and_iff_right_of_imp fun h ↦ tendsto_nhds_unique ((hc.tendsto x).mono_left h) hy
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
isProperMap_iff_ultrafilter_of_t2
null
IsProperMap.ultrafilter_le_nhds_of_tendsto (h : IsProperMap f) ⦃𝒰 : Ultrafilter X⦄ ⦃y : Y⦄ (hy : Tendsto f 𝒰 (𝓝 y)) : ∃ x, f x = y ∧ 𝒰 ≤ 𝓝 x := (isProperMap_iff_ultrafilter.mp h).2 hy
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
IsProperMap.ultrafilter_le_nhds_of_tendsto
If `f` is proper and converges to `y` along some ultrafilter `𝒰`, then `𝒰` converges to some `x` such that `f x = y`.
IsProperMap.comp (hf : IsProperMap f) (hg : IsProperMap g) : IsProperMap (g ∘ f) := by refine ⟨by fun_prop, fun ℱ z h ↦ ?_⟩ rw [mapClusterPt_comp] at h rcases hg.clusterPt_of_mapClusterPt h with ⟨y, rfl, hy⟩ rcases hf.clusterPt_of_mapClusterPt hy with ⟨x, rfl, hx⟩ use x, rfl
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
IsProperMap.comp
The composition of two proper maps is proper.
isProperMap_of_comp_of_surj (hf : Continuous f) (hg : Continuous g) (hgf : IsProperMap (g ∘ f)) (f_surj : f.Surjective) : IsProperMap g := by refine ⟨hg, fun ℱ z h ↦ ?_⟩ rw [← ℱ.map_comap_of_surjective f_surj, ← mapClusterPt_comp] at h rcases hgf.clusterPt_of_mapClusterPt h with ⟨x, rfl, hx⟩ rw [← ℱ.map_comap_of_surjective f_surj] exact ⟨f x, rfl, hx.map hf.continuousAt tendsto_map⟩
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
isProperMap_of_comp_of_surj
If the composition of two continuous functions `g ∘ f` is proper and `f` is surjective, then `g` is proper.
isProperMap_of_comp_of_inj {f : X → Y} {g : Y → Z} (hf : Continuous f) (hg : Continuous g) (hgf : IsProperMap (g ∘ f)) (g_inj : g.Injective) : IsProperMap f := by refine ⟨hf, fun ℱ y h ↦ ?_⟩ rcases hgf.clusterPt_of_mapClusterPt (h.map hg.continuousAt tendsto_map) with ⟨x, hx1, hx2⟩ exact ⟨x, g_inj hx1, hx2⟩
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
isProperMap_of_comp_of_inj
If the composition of two continuous functions `g ∘ f` is proper and `g` is injective, then `f` is proper.
isProperMap_of_comp_of_t2 [T2Space Y] (hf : Continuous f) (hg : Continuous g) (hgf : IsProperMap (g ∘ f)) : IsProperMap f := by rw [isProperMap_iff_ultrafilter_of_t2] refine ⟨hf, fun 𝒰 y h ↦ ?_⟩ rw [isProperMap_iff_ultrafilter] at hgf rcases hgf.2 ((hg.tendsto y).comp h) with ⟨x, -, hx⟩ exact ⟨x, hx⟩
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
isProperMap_of_comp_of_t2
If the composition of two continuous functions `f : X → Y` and `g : Y → Z` is proper and `Y` is T2, then `f` is proper.
IsProperMap.prodMap {g : Z → W} (hf : IsProperMap f) (hg : IsProperMap g) : IsProperMap (Prod.map f g) := by simp_rw [isProperMap_iff_ultrafilter] at hf hg ⊢ constructor · exact hf.1.prodMap hg.1 · intro 𝒰 ⟨y, w⟩ hyw simp_rw [nhds_prod_eq, tendsto_prod_iff'] at hyw rcases hf.2 (show Tendsto f (Ultrafilter.map fst 𝒰) (𝓝 y) by simpa using hyw.1) with ⟨x, hxy, hx⟩ rcases hg.2 (show Tendsto g (Ultrafilter.map snd 𝒰) (𝓝 w) by simpa using hyw.2) with ⟨z, hzw, hz⟩ refine ⟨⟨x, z⟩, Prod.ext hxy hzw, ?_⟩ rw [nhds_prod_eq, le_prod] exact ⟨hx, hz⟩
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
IsProperMap.prodMap
A binary product of proper maps is proper.
IsProperMap.pi_map {X Y : ι → Type*} [∀ i, TopologicalSpace (X i)] [∀ i, TopologicalSpace (Y i)] {f : (i : ι) → X i → Y i} (h : ∀ i, IsProperMap (f i)) : IsProperMap (fun (x : ∀ i, X i) i ↦ f i (x i)) := by simp_rw [isProperMap_iff_ultrafilter] at h ⊢ constructor · exact continuous_pi fun i ↦ (h i).1.comp (continuous_apply i) · intro 𝒰 y hy have : ∀ i, Tendsto (f i) (Ultrafilter.map (eval i) 𝒰) (𝓝 (y i)) := by simpa [tendsto_pi_nhds] using hy choose x hxy hx using fun i ↦ (h i).2 (this i) refine ⟨x, funext hxy, ?_⟩ rwa [nhds_pi, le_pi]
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
IsProperMap.pi_map
Any product of proper maps is proper.
IsProperMap.isCompact_preimage (h : IsProperMap f) {K : Set Y} (hK : IsCompact K) : IsCompact (f ⁻¹' K) := by rw [isCompact_iff_ultrafilter_le_nhds] intro 𝒰 h𝒰 rw [← comap_principal, ← map_le_iff_le_comap, ← Ultrafilter.coe_map] at h𝒰 rcases hK.ultrafilter_le_nhds _ h𝒰 with ⟨y, hyK, hy⟩ rcases h.ultrafilter_le_nhds_of_tendsto hy with ⟨x, rfl, hx⟩ exact ⟨x, hyK, hx⟩
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
IsProperMap.isCompact_preimage
The preimage of a compact set by a proper map is again compact. See also `isProperMap_iff_isCompact_preimage` which proves that this property completely characterizes proper map when the codomain is compactly generated and Hausdorff.
isProperMap_iff_isClosedMap_and_compact_fibers : IsProperMap f ↔ Continuous f ∧ IsClosedMap f ∧ ∀ y, IsCompact (f ⁻¹' {y}) := by constructor <;> intro H · exact ⟨H.continuous, H.isClosedMap, fun y ↦ H.isCompact_preimage isCompact_singleton⟩ · rw [isProperMap_iff_clusterPt] refine ⟨H.1, fun ℱ y hy ↦ ?_⟩ rw [H.2.1.mapClusterPt_iff_lift'_closure H.1] at hy rcases H.2.2 y (f := Filter.lift' ℱ closure ⊓ 𝓟 (f ⁻¹' {y})) inf_le_right with ⟨x, hxy, hx⟩ refine ⟨x, hxy, ?_⟩ rw [← clusterPt_lift'_closure_iff] exact hx.mono inf_le_left
theorem
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
isProperMap_iff_isClosedMap_and_compact_fibers
A map is proper if and only if it is closed and its fibers are compact.
isProperMap_iff_isClosedMap_of_inj (f_cont : Continuous f) (f_inj : f.Injective) : IsProperMap f ↔ IsClosedMap f := by refine ⟨fun h ↦ h.isClosedMap, fun h ↦ ?_⟩ rw [isProperMap_iff_isClosedMap_and_compact_fibers] exact ⟨f_cont, h, fun y ↦ (subsingleton_singleton.preimage f_inj).isCompact⟩
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
isProperMap_iff_isClosedMap_of_inj
An injective and continuous function is proper if and only if it is closed.
isProperMap_of_isClosedMap_of_inj (f_cont : Continuous f) (f_inj : f.Injective) (f_closed : IsClosedMap f) : IsProperMap f := (isProperMap_iff_isClosedMap_of_inj f_cont f_inj).2 f_closed
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
isProperMap_of_isClosedMap_of_inj
A injective continuous and closed map is proper.
@[simp] Homeomorph.isProperMap (e : X ≃ₜ Y) : IsProperMap e := isProperMap_of_isClosedMap_of_inj e.continuous e.injective e.isClosedMap
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
Homeomorph.isProperMap
A homeomorphism is proper.
protected IsHomeomorph.isProperMap (hf : IsHomeomorph f) : IsProperMap f := isProperMap_of_isClosedMap_of_inj hf.continuous hf.injective hf.isClosedMap
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
IsHomeomorph.isProperMap
null
@[simp] isProperMap_id : IsProperMap (id : X → X) := IsHomeomorph.id.isProperMap
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
isProperMap_id
The identity is proper.
Topology.IsClosedEmbedding.isProperMap (hf : IsClosedEmbedding f) : IsProperMap f := isProperMap_of_isClosedMap_of_inj hf.continuous hf.injective hf.isClosedMap
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
Topology.IsClosedEmbedding.isProperMap
A closed embedding is proper.
IsClosed.isProperMap_subtypeVal {C : Set X} (hC : IsClosed C) : IsProperMap ((↑) : C → X) := hC.isClosedEmbedding_subtypeVal.isProperMap
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
IsClosed.isProperMap_subtypeVal
The coercion from a closed subset is proper.
IsProperMap.restrict {C : Set X} (hf : IsProperMap f) (hC : IsClosed C) : IsProperMap fun x : C ↦ f x := hC.isProperMap_subtypeVal.comp hf
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
IsProperMap.restrict
The restriction of a proper map to a closed subset is proper.
IsProperMap.isClosed_range (hf : IsProperMap f) : IsClosed (range f) := hf.isClosedMap.isClosed_range
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
IsProperMap.isClosed_range
The range of a proper map is closed.
isProperMap_iff_isClosedMap_and_tendsto_cofinite [T1Space Y] : IsProperMap f ↔ Continuous f ∧ IsClosedMap f ∧ Tendsto f (cocompact X) cofinite := by simp_rw [isProperMap_iff_isClosedMap_and_compact_fibers, Tendsto, le_cofinite_iff_compl_singleton_mem, mem_map, preimage_compl] refine and_congr_right fun f_cont ↦ and_congr_right fun _ ↦ ⟨fun H y ↦ (H y).compl_mem_cocompact, fun H y ↦ ?_⟩ rcases mem_cocompact.mp (H y) with ⟨K, hK, hKy⟩ exact hK.of_isClosed_subset (isClosed_singleton.preimage f_cont) (compl_le_compl_iff_le.mp hKy)
lemma
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
isProperMap_iff_isClosedMap_and_tendsto_cofinite
Version of `isProperMap_iff_isClosedMap_and_compact_fibers` in terms of `cofinite` and `cocompact`. Only works when the codomain is `T1`.
Continuous.isProperMap [CompactSpace X] [T2Space Y] (hf : Continuous f) : IsProperMap f := isProperMap_iff_isClosedMap_and_tendsto_cofinite.2 ⟨hf, hf.isClosedMap, by simp⟩
theorem
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
Continuous.isProperMap
A continuous map from a compact space to a T₂ space is a proper map.
IsProperMap.universally_closed (Z) [TopologicalSpace Z] (h : IsProperMap f) : IsClosedMap (Prod.map f id : X × Z → Y × Z) := (h.prodMap isProperMap_id).isClosedMap
theorem
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
IsProperMap.universally_closed
A proper map `f : X → Y` is **universally closed**: for any topological space `Z`, the map `Prod.map f id : X × Z → Y × Z` is closed. We will prove in `isProperMap_iff_universally_closed` that proper maps are exactly continuous maps which have this property, but this result should be easier to use because it allows `Z` to live in any universe.
isProperMap_iff_isClosedMap_filter {X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {f : X → Y} : IsProperMap f ↔ Continuous f ∧ IsClosedMap (Prod.map f id : X × Filter X → Y × Filter X) := by constructor <;> intro H · exact ⟨H.continuous, H.universally_closed _⟩ · rw [isProperMap_iff_ultrafilter] refine ⟨H.1, fun 𝒰 y hy ↦ ?_⟩ let F : Set (X × Filter X) := closure {xℱ | xℱ.2 = pure xℱ.1} have := H.2 F isClosed_closure have : (y, ↑𝒰) ∈ Prod.map f id '' F := this.mem_of_tendsto (hy.prodMk_nhds (Filter.tendsto_pure_self (𝒰 : Filter X))) (Eventually.of_forall fun x ↦ ⟨⟨x, pure x⟩, subset_closure rfl, rfl⟩) rcases this with ⟨⟨x, _⟩, hx, ⟨_, _⟩⟩ refine ⟨x, rfl, fun U hU ↦ Ultrafilter.compl_notMem_iff.mp fun hUc ↦ ?_⟩ rw [mem_closure_iff_nhds] at hx rcases hx (U ×ˢ {𝒢 | Uᶜ ∈ 𝒢}) (prod_mem_nhds hU (isOpen_setOf_mem.mem_nhds hUc)) with ⟨⟨z, 𝒢⟩, ⟨⟨hz : z ∈ U, hz' : Uᶜ ∈ 𝒢⟩, rfl : 𝒢 = pure z⟩⟩ exact hz' hz
theorem
Topology
[ "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Filter" ]
Mathlib/Topology/Maps/Proper/Basic.lean
isProperMap_iff_isClosedMap_filter
A map `f : X → Y` is proper if and only if it is continuous and the map `(Prod.map f id : X × Filter X → Y × Filter X)` is closed. This is stronger than `isProperMap_iff_universally_closed` since it shows that there's only one space to check to get properness, but in most cases it doesn't matter.
isProperMap_iff_isCompact_preimage : IsProperMap f ↔ Continuous f ∧ ∀ ⦃K⦄, IsCompact K → IsCompact (f ⁻¹' K) where mp hf := ⟨hf.continuous, fun _ ↦ hf.isCompact_preimage⟩ mpr := fun ⟨hf, h⟩ ↦ isProperMap_iff_isClosedMap_and_compact_fibers.2 ⟨hf, fun _ hs ↦ CompactlyGeneratedSpace.isClosed fun _ hK ↦ image_inter_preimage .. ▸ (((h hK).inter_left hs).image hf).isClosed, fun _ ↦ h isCompact_singleton⟩
theorem
Topology
[ "Mathlib.Topology.Compactness.CompactlyGeneratedSpace", "Mathlib.Topology.Maps.Proper.Basic" ]
Mathlib/Topology/Maps/Proper/CompactlyGenerated.lean
isProperMap_iff_isCompact_preimage
If `Y` is Hausdorff and compactly generated, then proper maps `X → Y` are exactly continuous maps such that the preimage of any compact set is compact. This is in particular true if `Y` is Hausdorff and sequential or locally compact. There was an older version of this theorem which was changed to this one to make use of the `CompactlyGeneratedSpace` typeclass. (since 2024-11-10)
isProperMap_iff_tendsto_cocompact : IsProperMap f ↔ Continuous f ∧ Tendsto f (cocompact X) (cocompact Y) := by simp_rw [isProperMap_iff_isCompact_preimage, hasBasis_cocompact.tendsto_right_iff, ← mem_preimage, eventually_mem_set, preimage_compl] refine and_congr_right fun f_cont ↦ ⟨fun H K hK ↦ (H hK).compl_mem_cocompact, fun H K hK ↦ ?_⟩ rcases mem_cocompact.mp (H K hK) with ⟨K', hK', hK'y⟩ exact hK'.of_isClosed_subset (hK.isClosed.preimage f_cont) (compl_le_compl_iff_le.mp hK'y)
lemma
Topology
[ "Mathlib.Topology.Compactness.CompactlyGeneratedSpace", "Mathlib.Topology.Maps.Proper.Basic" ]
Mathlib/Topology/Maps/Proper/CompactlyGenerated.lean
isProperMap_iff_tendsto_cocompact
Version of `isProperMap_iff_isCompact_preimage` in terms of `cocompact`. There was an older version of this theorem which was changed to this one to make use of the `CompactlyGeneratedSpace` typeclass. (since 2024-11-10)
isProperMap_iff_isClosedMap_ultrafilter {X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {f : X → Y} : IsProperMap f ↔ Continuous f ∧ IsClosedMap (Prod.map f id : X × Ultrafilter X → Y × Ultrafilter X) := by constructor <;> intro H · exact ⟨H.continuous, H.universally_closed _⟩ · rw [isProperMap_iff_ultrafilter] refine ⟨H.1, fun 𝒰 y hy ↦ ?_⟩ let F : Set (X × Ultrafilter X) := closure {xℱ | xℱ.2 = pure xℱ.1} have := H.2 F isClosed_closure have : (y, 𝒰) ∈ Prod.map f id '' F := this.mem_of_tendsto (hy.prodMk_nhds (Ultrafilter.tendsto_pure_self 𝒰)) (Eventually.of_forall fun x ↦ ⟨⟨x, pure x⟩, subset_closure rfl, rfl⟩) rcases this with ⟨⟨x, _⟩, hx, ⟨_, _⟩⟩ refine ⟨x, rfl, fun U hU ↦ Ultrafilter.compl_notMem_iff.mp fun hUc ↦ ?_⟩ rw [mem_closure_iff_nhds] at hx rcases hx (U ×ˢ {𝒢 | Uᶜ ∈ 𝒢}) (prod_mem_nhds hU ((ultrafilter_isOpen_basic _).mem_nhds hUc)) with ⟨⟨y, 𝒢⟩, ⟨⟨hy : y ∈ U, hy' : Uᶜ ∈ 𝒢⟩, rfl : 𝒢 = pure y⟩⟩ exact hy' hy
theorem
Topology
[ "Mathlib.Topology.Maps.Proper.Basic", "Mathlib.Topology.Compactification.StoneCech" ]
Mathlib/Topology/Maps/Proper/UniversallyClosed.lean
isProperMap_iff_isClosedMap_ultrafilter
A map `f : X → Y` is proper if and only if it is continuous and the map `(Prod.map f id : X × Ultrafilter X → Y × Ultrafilter X)` is closed. This is stronger than `isProperMap_iff_universally_closed` since it shows that there's only one space to check to get properness, but in most cases it doesn't matter.
isProperMap_iff_universally_closed {X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {f : X → Y} : IsProperMap f ↔ Continuous f ∧ ∀ (Z : Type u) [TopologicalSpace Z], IsClosedMap (Prod.map f id : X × Z → Y × Z) := by constructor <;> intro H · exact ⟨H.continuous, fun Z ↦ H.universally_closed _⟩ · rw [isProperMap_iff_isClosedMap_ultrafilter] exact ⟨H.1, H.2 _⟩
theorem
Topology
[ "Mathlib.Topology.Maps.Proper.Basic", "Mathlib.Topology.Compactification.StoneCech" ]
Mathlib/Topology/Maps/Proper/UniversallyClosed.lean
isProperMap_iff_universally_closed
A map `f : X → Y` is proper if and only if it is continuous and **universally closed**, in the sense that for any topological space `Z`, the map `Prod.map f id : X × Z → Y × Z` is closed. Note that `Z` lives in the same universe as `X` here, but `IsProperMap.universally_closed` does not have this restriction. This is taken as the definition of properness in [N. Bourbaki, *General Topology*][bourbaki1966].
exists_pos_lt_subset_ball (hr : 0 < r) (hs : IsClosed s) (h : s ⊆ ball x r) : ∃ r' ∈ Ioo 0 r, s ⊆ ball x r' := by rcases eq_empty_or_nonempty s with (rfl | hne) · exact ⟨r / 2, ⟨half_pos hr, half_lt_self hr⟩, empty_subset _⟩ have : IsCompact s := (isCompact_closedBall x r).of_isClosed_subset hs (h.trans ball_subset_closedBall) obtain ⟨y, hys, hy⟩ : ∃ y ∈ s, s ⊆ closedBall x (dist y x) := this.exists_isMaxOn (β := α) (α := ℝ) hne (continuous_id.dist continuous_const).continuousOn have hyr : dist y x < r := h hys rcases exists_between hyr with ⟨r', hyr', hrr'⟩ exact ⟨r', ⟨dist_nonneg.trans_lt hyr', hrr'⟩, hy.trans <| closedBall_subset_ball hyr'⟩
theorem
Topology
[ "Mathlib.Topology.Order.Compact", "Mathlib.Topology.MetricSpace.ProperSpace", "Mathlib.Topology.Order.IntermediateValue", "Mathlib.Topology.Order.LocalExtr" ]
Mathlib/Topology/MetricSpace/ProperSpace/Lemmas.lean
exists_pos_lt_subset_ball
If a nonempty ball in a proper space includes a closed set `s`, then there exists a nonempty ball with the same center and a strictly smaller radius that includes `s`.
exists_lt_subset_ball (hs : IsClosed s) (h : s ⊆ ball x r) : ∃ r' < r, s ⊆ ball x r' := by rcases le_or_gt r 0 with hr | hr · rw [ball_eq_empty.2 hr, subset_empty_iff] at h subst s exact (exists_lt r).imp fun r' hr' => ⟨hr', empty_subset _⟩ · exact (exists_pos_lt_subset_ball hr hs h).imp fun r' hr' => ⟨hr'.1.2, hr'.2⟩
theorem
Topology
[ "Mathlib.Topology.Order.Compact", "Mathlib.Topology.MetricSpace.ProperSpace", "Mathlib.Topology.Order.IntermediateValue", "Mathlib.Topology.Order.LocalExtr" ]
Mathlib/Topology/MetricSpace/ProperSpace/Lemmas.lean
exists_lt_subset_ball
If a ball in a proper space includes a closed set `s`, then there exists a ball with the same center and a strictly smaller radius that includes `s`.
Metric.exists_isLocalMin_mem_ball [TopologicalSpace β] [ConditionallyCompleteLinearOrder β] [OrderTopology β] {f : α → β} {a z : α} {r : ℝ} (hf : ContinuousOn f (closedBall a r)) (hz : z ∈ closedBall a r) (hf1 : ∀ z' ∈ sphere a r, f z < f z') : ∃ z ∈ ball a r, IsLocalMin f z := by simp_rw [← closedBall_diff_ball] at hf1 exact (isCompact_closedBall a r).exists_isLocalMin_mem_open ball_subset_closedBall hf hz hf1 isOpen_ball
theorem
Topology
[ "Mathlib.Topology.Order.Compact", "Mathlib.Topology.MetricSpace.ProperSpace", "Mathlib.Topology.Order.IntermediateValue", "Mathlib.Topology.Order.LocalExtr" ]
Mathlib/Topology/MetricSpace/ProperSpace/Lemmas.lean
Metric.exists_isLocalMin_mem_ball
null
instProperSpace : ProperSpace ℝ≥0 where isCompact_closedBall x r := by have emb : IsClosedEmbedding ((↑) : ℝ≥0 → ℝ) := Isometry.isClosedEmbedding fun _ ↦ congrFun rfl exact emb.isCompact_preimage (K := Metric.closedBall x r) (isCompact_closedBall _ _)
instance
Topology
[ "Mathlib.Data.Rat.Encodable", "Mathlib.Topology.MetricSpace.Isometry", "Mathlib.Topology.MetricSpace.ProperSpace", "Mathlib.Topology.Order.Compact", "Mathlib.Topology.Order.MonotoneContinuity", "Mathlib.Topology.Order.Real", "Mathlib.Topology.UniformSpace.Real" ]
Mathlib/Topology/MetricSpace/ProperSpace/Real.lean
instProperSpace
null
dist_le_Ico_sum_dist (f : ℕ → α) {m n} (h : m ≤ n) : dist (f m) (f n) ≤ ∑ i ∈ Finset.Ico m n, dist (f i) (f (i + 1)) := by induction n, h using Nat.le_induction with | base => rw [Finset.Ico_self, Finset.sum_empty, dist_self] | succ n hle ihn => calc dist (f m) (f (n + 1)) ≤ dist (f m) (f n) + dist (f n) (f (n + 1)) := dist_triangle _ _ _ _ ≤ (∑ i ∈ Finset.Ico m n, _) + _ := add_le_add ihn le_rfl _ = ∑ i ∈ Finset.Ico m (n + 1), _ := by rw [← Finset.insert_Ico_right_eq_Ico_add_one hle, Finset.sum_insert, add_comm]; simp
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
dist_le_Ico_sum_dist
The triangle (polygon) inequality for sequences of points; `Finset.Ico` version.
dist_le_range_sum_dist (f : ℕ → α) (n : ℕ) : dist (f 0) (f n) ≤ ∑ i ∈ Finset.range n, dist (f i) (f (i + 1)) := Nat.Ico_zero_eq_range ▸ dist_le_Ico_sum_dist f (Nat.zero_le n)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
dist_le_range_sum_dist
The triangle (polygon) inequality for sequences of points; `Finset.range` version.
dist_le_Ico_sum_of_dist_le {f : ℕ → α} {m n} (hmn : m ≤ n) {d : ℕ → ℝ} (hd : ∀ {k}, m ≤ k → k < n → dist (f k) (f (k + 1)) ≤ d k) : dist (f m) (f n) ≤ ∑ i ∈ Finset.Ico m n, d i := le_trans (dist_le_Ico_sum_dist f hmn) <| Finset.sum_le_sum fun _k hk => hd (Finset.mem_Ico.1 hk).1 (Finset.mem_Ico.1 hk).2
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
dist_le_Ico_sum_of_dist_le
A version of `dist_le_Ico_sum_dist` with each intermediate distance replaced with an upper estimate.
dist_le_range_sum_of_dist_le {f : ℕ → α} (n : ℕ) {d : ℕ → ℝ} (hd : ∀ {k}, k < n → dist (f k) (f (k + 1)) ≤ d k) : dist (f 0) (f n) ≤ ∑ i ∈ Finset.range n, d i := Nat.Ico_zero_eq_range ▸ dist_le_Ico_sum_of_dist_le (zero_le n) fun _ => hd
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
dist_le_range_sum_of_dist_le
A version of `dist_le_range_sum_dist` with each intermediate distance replaced with an upper estimate.
controlled_of_isUniformEmbedding [PseudoMetricSpace β] {f : α → β} (h : IsUniformEmbedding f) : (∀ ε > 0, ∃ δ > 0, ∀ {a b : α}, dist a b < δ → dist (f a) (f b) < ε) ∧ ∀ δ > 0, ∃ ε > 0, ∀ {a b : α}, dist (f a) (f b) < ε → dist a b < δ := ⟨uniformContinuous_iff.1 h.uniformContinuous, (isUniformEmbedding_iff.1 h).2.2⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
controlled_of_isUniformEmbedding
If a map between pseudometric spaces is a uniform embedding then the distance between `f x` and `f y` is controlled in terms of the distance between `x` and `y`.
totallyBounded_iff {s : Set α} : TotallyBounded s ↔ ∀ ε > 0, ∃ t : Set α, t.Finite ∧ s ⊆ ⋃ y ∈ t, ball y ε := uniformity_basis_dist.totallyBounded_iff
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
totallyBounded_iff
null
totallyBounded_of_finite_discretization {s : Set α} (H : ∀ ε > (0 : ℝ), ∃ (β : Type u) (_ : Fintype β) (F : s → β), ∀ x y, F x = F y → dist (x : α) y < ε) : TotallyBounded s := by rcases s.eq_empty_or_nonempty with hs | hs · rw [hs] exact totallyBounded_empty rcases hs with ⟨x0, hx0⟩ haveI : Inhabited s := ⟨⟨x0, hx0⟩⟩ refine totallyBounded_iff.2 fun ε ε0 => ?_ rcases H ε ε0 with ⟨β, fβ, F, hF⟩ let Finv := Function.invFun F refine ⟨range (Subtype.val ∘ Finv), finite_range _, fun x xs => ?_⟩ let x' := Finv (F ⟨x, xs⟩) have : F x' = F ⟨x, xs⟩ := Function.invFun_eq ⟨⟨x, xs⟩, rfl⟩ simp only [Set.mem_iUnion, Set.mem_range] exact ⟨_, ⟨F ⟨x, xs⟩, rfl⟩, hF _ _ this.symm⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
totallyBounded_of_finite_discretization
A pseudometric space is totally bounded if one can reconstruct up to any ε>0 any element of the space from finitely many data.
finite_approx_of_totallyBounded {s : Set α} (hs : TotallyBounded s) : ∀ ε > 0, ∃ t, t ⊆ s ∧ Set.Finite t ∧ s ⊆ ⋃ y ∈ t, ball y ε := by intro ε ε_pos rw [totallyBounded_iff_subset] at hs exact hs _ (dist_mem_uniformity ε_pos)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
finite_approx_of_totallyBounded
null
tendstoUniformlyOnFilter_iff {F : ι → β → α} {f : β → α} {p : Filter ι} {p' : Filter β} : TendstoUniformlyOnFilter F f p p' ↔ ∀ ε > 0, ∀ᶠ n : ι × β in p ×ˢ p', dist (f n.snd) (F n.fst n.snd) < ε := by refine ⟨fun H ε hε => H _ (dist_mem_uniformity hε), fun H u hu => ?_⟩ rcases mem_uniformity_dist.1 hu with ⟨ε, εpos, hε⟩ exact (H ε εpos).mono fun n hn => hε hn
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
tendstoUniformlyOnFilter_iff
Expressing uniform convergence using `dist`
tendstoLocallyUniformlyOn_iff [TopologicalSpace β] {F : ι → β → α} {f : β → α} {p : Filter ι} {s : Set β} : TendstoLocallyUniformlyOn F f p s ↔ ∀ ε > 0, ∀ x ∈ s, ∃ t ∈ 𝓝[s] x, ∀ᶠ n in p, ∀ y ∈ t, dist (f y) (F n y) < ε := by refine ⟨fun H ε hε => H _ (dist_mem_uniformity hε), fun H u hu x hx => ?_⟩ rcases mem_uniformity_dist.1 hu with ⟨ε, εpos, hε⟩ rcases H ε εpos x hx with ⟨t, ht, Ht⟩ exact ⟨t, ht, Ht.mono fun n hs x hx => hε (hs x hx)⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
tendstoLocallyUniformlyOn_iff
Expressing locally uniform convergence on a set using `dist`.
tendstoUniformlyOn_iff {F : ι → β → α} {f : β → α} {p : Filter ι} {s : Set β} : TendstoUniformlyOn F f p s ↔ ∀ ε > 0, ∀ᶠ n in p, ∀ x ∈ s, dist (f x) (F n x) < ε := by refine ⟨fun H ε hε => H _ (dist_mem_uniformity hε), fun H u hu => ?_⟩ rcases mem_uniformity_dist.1 hu with ⟨ε, εpos, hε⟩ exact (H ε εpos).mono fun n hs x hx => hε (hs x hx)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
tendstoUniformlyOn_iff
Expressing uniform convergence on a set using `dist`.
tendstoLocallyUniformly_iff [TopologicalSpace β] {F : ι → β → α} {f : β → α} {p : Filter ι} : TendstoLocallyUniformly F f p ↔ ∀ ε > 0, ∀ x : β, ∃ t ∈ 𝓝 x, ∀ᶠ n in p, ∀ y ∈ t, dist (f y) (F n y) < ε := by simp only [← tendstoLocallyUniformlyOn_univ, tendstoLocallyUniformlyOn_iff, nhdsWithin_univ, mem_univ, forall_const]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
tendstoLocallyUniformly_iff
Expressing locally uniform convergence using `dist`.
tendstoUniformly_iff {F : ι → β → α} {f : β → α} {p : Filter ι} : TendstoUniformly F f p ↔ ∀ ε > 0, ∀ᶠ n in p, ∀ x, dist (f x) (F n x) < ε := by rw [← tendstoUniformlyOn_univ, tendstoUniformlyOn_iff] simp
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
tendstoUniformly_iff
Expressing uniform convergence using `dist`.
protected cauchy_iff {f : Filter α} : Cauchy f ↔ NeBot f ∧ ∀ ε > 0, ∃ t ∈ f, ∀ x ∈ t, ∀ y ∈ t, dist x y < ε := uniformity_basis_dist.cauchy_iff variable {s : Set α}
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
cauchy_iff
null
exists_ball_inter_eq_singleton_of_mem_discrete [DiscreteTopology s] {x : α} (hx : x ∈ s) : ∃ ε > 0, Metric.ball x ε ∩ s = {x} := nhds_basis_ball.exists_inter_eq_singleton_of_mem_discrete hx
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
exists_ball_inter_eq_singleton_of_mem_discrete
Given a point `x` in a discrete subset `s` of a pseudometric space, there is an open ball centered at `x` and intersecting `s` only at `x`.
exists_closedBall_inter_eq_singleton_of_discrete [DiscreteTopology s] {x : α} (hx : x ∈ s) : ∃ ε > 0, Metric.closedBall x ε ∩ s = {x} := nhds_basis_closedBall.exists_inter_eq_singleton_of_mem_discrete hx
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
exists_closedBall_inter_eq_singleton_of_discrete
Given a point `x` in a discrete subset `s` of a pseudometric space, there is a closed ball of positive radius centered at `x` and intersecting `s` only at `x`.
Metric.inseparable_iff_nndist {x y : α} : Inseparable x y ↔ nndist x y = 0 := by rw [EMetric.inseparable_iff, edist_nndist, ENNReal.coe_eq_zero] alias ⟨Inseparable.nndist_eq_zero, _⟩ := Metric.inseparable_iff_nndist
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
Metric.inseparable_iff_nndist
null
Metric.inseparable_iff {x y : α} : Inseparable x y ↔ dist x y = 0 := by rw [Metric.inseparable_iff_nndist, dist_nndist, NNReal.coe_eq_zero] alias ⟨Inseparable.dist_eq_zero, _⟩ := Metric.inseparable_iff
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
Metric.inseparable_iff
null
tendsto_nhds_unique_dist {f : β → α} {l : Filter β} {x y : α} [NeBot l] (ha : Tendsto f l (𝓝 x)) (hb : Tendsto f l (𝓝 y)) : dist x y = 0 := (tendsto_nhds_unique_inseparable ha hb).dist_eq_zero
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
tendsto_nhds_unique_dist
A weaker version of `tendsto_nhds_unique` for `PseudoMetricSpace`.
cauchySeq_iff_tendsto_dist_atTop_0 [Nonempty β] [SemilatticeSup β] {u : β → α} : CauchySeq u ↔ Tendsto (fun n : β × β => dist (u n.1) (u n.2)) atTop (𝓝 0) := by rw [cauchySeq_iff_tendsto, Metric.uniformity_eq_comap_nhds_zero, tendsto_comap_iff, Function.comp_def] simp_rw [Prod.map_fst, Prod.map_snd]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
cauchySeq_iff_tendsto_dist_atTop_0
null
protected IsInducing.isSeparable_preimage {f : β → α} [TopologicalSpace β] (hf : IsInducing f) {s : Set α} (hs : IsSeparable s) : IsSeparable (f ⁻¹' s) := by have : SeparableSpace s := hs.separableSpace have : SecondCountableTopology s := UniformSpace.secondCountable_of_separable _ have : IsInducing ((mapsTo_preimage f s).restrict _ _ _) := (hf.comp IsInducing.subtypeVal).codRestrict _ have := this.secondCountableTopology exact .of_subtype _
lemma
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
IsInducing.isSeparable_preimage
The preimage of a separable set by an inducing map is separable.
protected IsEmbedding.isSeparable_preimage {f : β → α} [TopologicalSpace β] (hf : IsEmbedding f) {s : Set α} (hs : IsSeparable s) : IsSeparable (f ⁻¹' s) := hf.isInducing.isSeparable_preimage hs
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
IsEmbedding.isSeparable_preimage
null
IsCompact.isSeparable {s : Set α} (hs : IsCompact s) : IsSeparable s := haveI : CompactSpace s := isCompact_iff_compactSpace.mp hs .of_subtype s
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
IsCompact.isSeparable
A compact set is separable.
secondCountable_of_almost_dense_set (H : ∀ ε > (0 : ℝ), ∃ s : Set α, s.Countable ∧ ∀ x, ∃ y ∈ s, dist x y ≤ ε) : SecondCountableTopology α := by refine EMetric.secondCountable_of_almost_dense_set fun ε ε0 => ?_ rcases ENNReal.lt_iff_exists_nnreal_btwn.1 ε0 with ⟨ε', ε'0, ε'ε⟩ choose s hsc y hys hyx using H ε' (mod_cast ε'0) refine ⟨s, hsc, iUnion₂_eq_univ_iff.2 fun x => ⟨y x, hys _, le_trans ?_ ε'ε.le⟩⟩ exact mod_cast hyx x
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
secondCountable_of_almost_dense_set
A pseudometric space is second countable if, for every `ε > 0`, there is a countable set which is `ε`-dense.
finite_cover_balls_of_compact (hs : IsCompact s) {e : ℝ} (he : 0 < e) : ∃ t ⊆ s, t.Finite ∧ s ⊆ ⋃ x ∈ t, ball x e := let ⟨t, hts, ht⟩ := hs.elim_nhds_subcover _ (fun x _ => ball_mem_nhds x he) ⟨t, hts, t.finite_toSet, ht⟩ alias IsCompact.finite_cover_balls := finite_cover_balls_of_compact
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
finite_cover_balls_of_compact
Any compact set in a pseudometric space can be covered by finitely many balls of a given positive radius
exists_finite_cover_balls_of_isCompact_closure (hs : IsCompact (closure s)) (hε : 0 < ε) : ∃ t ⊆ s, t.Finite ∧ s ⊆ ⋃ x ∈ t, ball x ε := by obtain ⟨t, hst⟩ := hs.elim_finite_subcover (fun x : s ↦ ball x ε) (fun _ ↦ isOpen_ball) fun x hx ↦ let ⟨y, hy, hxy⟩ := Metric.mem_closure_iff.1 hx _ hε; mem_iUnion.2 ⟨⟨y, hy⟩, hxy⟩ refine ⟨t.map ⟨Subtype.val, Subtype.val_injective⟩, by simp, Finset.finite_toSet _, ?_⟩ simpa using subset_closure.trans hst
lemma
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
exists_finite_cover_balls_of_isCompact_closure
Any relatively compact set in a pseudometric space can be covered by finitely many balls of a given positive radius.
ContinuousOn.isSeparable_image [TopologicalSpace β] {f : α → β} {s : Set α} (hf : ContinuousOn f s) (hs : IsSeparable s) : IsSeparable (f '' s) := by rw [image_eq_range, ← image_univ] exact (isSeparable_univ_iff.2 hs.separableSpace).image hf.restrict
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.EMetricSpace.Basic", "Mathlib.Topology.MetricSpace.Pseudo.Defs" ]
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
ContinuousOn.isSeparable_image
If a map is continuous on a separable set `s`, then the image of `s` is also separable.
PseudoMetricSpace.induced {α β} (f : α → β) (m : PseudoMetricSpace β) : PseudoMetricSpace α where dist x y := dist (f x) (f y) dist_self _ := dist_self _ dist_comm _ _ := dist_comm _ _ dist_triangle _ _ _ := dist_triangle _ _ _ edist x y := edist (f x) (f y) edist_dist _ _ := edist_dist _ _ toUniformSpace := UniformSpace.comap f m.toUniformSpace uniformity_dist := (uniformity_basis_dist.comap _).eq_biInf toBornology := Bornology.induced f cobounded_sets := Set.ext fun s => mem_comap_iff_compl.trans <| by simp only [← isBounded_def, isBounded_iff, forall_mem_image, mem_setOf]
abbrev
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
PseudoMetricSpace.induced
Pseudometric space structure pulled back by a function.
Topology.IsInducing.comapPseudoMetricSpace {α β : Type*} [TopologicalSpace α] [m : PseudoMetricSpace β] {f : α → β} (hf : IsInducing f) : PseudoMetricSpace α := .replaceTopology (.induced f m) hf.eq_induced
def
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
Topology.IsInducing.comapPseudoMetricSpace
Pull back a pseudometric space structure by an inducing map. This is a version of `PseudoMetricSpace.induced` useful in case if the domain already has a `TopologicalSpace` structure.
IsUniformInducing.comapPseudoMetricSpace {α β} [UniformSpace α] [m : PseudoMetricSpace β] (f : α → β) (h : IsUniformInducing f) : PseudoMetricSpace α := .replaceUniformity (.induced f m) h.comap_uniformity.symm
def
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
IsUniformInducing.comapPseudoMetricSpace
Pull back a pseudometric space structure by a uniform inducing map. This is a version of `PseudoMetricSpace.induced` useful in case if the domain already has a `UniformSpace` structure.
Subtype.pseudoMetricSpace {p : α → Prop} : PseudoMetricSpace (Subtype p) := PseudoMetricSpace.induced Subtype.val ‹_›
instance
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
Subtype.pseudoMetricSpace
null
Subtype.dist_eq {p : α → Prop} (x y : Subtype p) : dist x y = dist (x : α) y := rfl
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
Subtype.dist_eq
null
Subtype.nndist_eq {p : α → Prop} (x y : Subtype p) : nndist x y = nndist (x : α) y := rfl
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
Subtype.nndist_eq
null
@[to_additive] instPseudoMetricSpace : PseudoMetricSpace αᵐᵒᵖ := PseudoMetricSpace.induced MulOpposite.unop ‹_› @[to_additive (attr := simp)]
instance
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
instPseudoMetricSpace
null