fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
dist_unop (x y : αᵐᵒᵖ) : dist (unop x) (unop y) = dist x y := rfl @[to_additive (attr := simp)]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
dist_unop
null
dist_op (x y : α) : dist (op x) (op y) = dist x y := rfl @[to_additive (attr := simp)]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
dist_op
null
nndist_unop (x y : αᵐᵒᵖ) : nndist (unop x) (unop y) = nndist x y := rfl @[to_additive (attr := simp)]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
nndist_unop
null
nndist_op (x y : α) : nndist (op x) (op y) = nndist x y := rfl
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
nndist_op
null
NNReal.dist_eq (a b : ℝ≥0) : dist a b = |(a : ℝ) - b| := rfl
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
NNReal.dist_eq
null
NNReal.nndist_eq (a b : ℝ≥0) : nndist a b = max (a - b) (b - a) := eq_of_forall_ge_iff fun _ => by simp only [max_le_iff, tsub_le_iff_right (α := ℝ≥0)] simp only [← NNReal.coe_le_coe, coe_nndist, dist_eq, abs_sub_le_iff, tsub_le_iff_right, NNReal.coe_add] @[simp]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
NNReal.nndist_eq
null
NNReal.nndist_zero_eq_val (z : ℝ≥0) : nndist 0 z = z := by simp only [NNReal.nndist_eq, max_eq_right, tsub_zero, zero_tsub, zero_le'] @[simp]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
NNReal.nndist_zero_eq_val
null
NNReal.nndist_zero_eq_val' (z : ℝ≥0) : nndist z 0 = z := by rw [nndist_comm] exact NNReal.nndist_zero_eq_val z
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
NNReal.nndist_zero_eq_val'
null
NNReal.le_add_nndist (a b : ℝ≥0) : a ≤ b + nndist a b := by suffices (a : ℝ) ≤ (b : ℝ) + dist a b by rwa [← NNReal.coe_le_coe, NNReal.coe_add, coe_nndist] rw [← sub_le_iff_le_add'] exact le_of_abs_le (dist_eq a b).ge
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
NNReal.le_add_nndist
null
NNReal.ball_zero_eq_Ico' (c : ℝ≥0) : Metric.ball (0 : ℝ≥0) c.toReal = Set.Ico 0 c := by ext x; simp
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
NNReal.ball_zero_eq_Ico'
null
NNReal.ball_zero_eq_Ico (c : ℝ) : Metric.ball (0 : ℝ≥0) c = Set.Ico 0 c.toNNReal := by by_cases c_pos : 0 < c · convert NNReal.ball_zero_eq_Ico' ⟨c, c_pos.le⟩ simp [Real.toNNReal, c_pos.le] simp [not_lt.mp c_pos]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
NNReal.ball_zero_eq_Ico
null
NNReal.closedBall_zero_eq_Icc' (c : ℝ≥0) : Metric.closedBall (0 : ℝ≥0) c.toReal = Set.Icc 0 c := by ext x; simp
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
NNReal.closedBall_zero_eq_Icc'
null
NNReal.closedBall_zero_eq_Icc {c : ℝ} (c_nn : 0 ≤ c) : Metric.closedBall (0 : ℝ≥0) c = Set.Icc 0 c.toNNReal := by convert NNReal.closedBall_zero_eq_Icc' ⟨c, c_nn⟩ simp [Real.toNNReal, c_nn]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
NNReal.closedBall_zero_eq_Icc
null
dist_eq (x y : ULift β) : dist x y = dist x.down y.down := rfl
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
dist_eq
null
nndist_eq (x y : ULift β) : nndist x y = nndist x.down y.down := rfl @[simp] lemma dist_up_up (x y : β) : dist (ULift.up x) (ULift.up y) = dist x y := rfl @[simp] lemma nndist_up_up (x y : β) : nndist (ULift.up x) (ULift.up y) = nndist x y := rfl
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
nndist_eq
null
Prod.pseudoMetricSpaceMax : PseudoMetricSpace (α × β) := let i := PseudoEMetricSpace.toPseudoMetricSpaceOfDist (fun x y : α × β => dist x.1 y.1 ⊔ dist x.2 y.2) (fun _ _ => (max_lt (edist_lt_top _ _) (edist_lt_top _ _)).ne) fun x y => by simp only [dist_edist, ← ENNReal.toReal_max (edist_ne_top _ _) (edist_ne_top _ _), Prod.edist_eq] i.replaceBornology fun s => by simp only [← isBounded_image_fst_and_snd, isBounded_iff_eventually, forall_mem_image, ← eventually_and, ← forall_and, ← max_le_iff] rfl
instance
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
Prod.pseudoMetricSpaceMax
null
Prod.dist_eq {x y : α × β} : dist x y = max (dist x.1 y.1) (dist x.2 y.2) := rfl @[simp]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
Prod.dist_eq
null
dist_prod_same_left {x : α} {y₁ y₂ : β} : dist (x, y₁) (x, y₂) = dist y₁ y₂ := by simp [Prod.dist_eq] @[simp]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
dist_prod_same_left
null
dist_prod_same_right {x₁ x₂ : α} {y : β} : dist (x₁, y) (x₂, y) = dist x₁ x₂ := by simp [Prod.dist_eq]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
dist_prod_same_right
null
ball_prod_same (x : α) (y : β) (r : ℝ) : ball x r ×ˢ ball y r = ball (x, y) r := ext fun z => by simp [Prod.dist_eq]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
ball_prod_same
null
closedBall_prod_same (x : α) (y : β) (r : ℝ) : closedBall x r ×ˢ closedBall y r = closedBall (x, y) r := ext fun z => by simp [Prod.dist_eq]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
closedBall_prod_same
null
sphere_prod (x : α × β) (r : ℝ) : sphere x r = sphere x.1 r ×ˢ closedBall x.2 r ∪ closedBall x.1 r ×ˢ sphere x.2 r := by obtain hr | rfl | hr := lt_trichotomy r 0 · simp [hr] · cases x simp_rw [← closedBall_eq_sphere_of_nonpos le_rfl, union_self, closedBall_prod_same] · ext ⟨x', y'⟩ simp_rw [Set.mem_union, Set.mem_prod, Metric.mem_closedBall, Metric.mem_sphere, Prod.dist_eq, max_eq_iff] refine or_congr (and_congr_right ?_) (and_comm.trans (and_congr_left ?_)) all_goals rintro rfl; rfl
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
sphere_prod
null
uniformContinuous_dist : UniformContinuous fun p : α × α => dist p.1 p.2 := Metric.uniformContinuous_iff.2 fun ε ε0 => ⟨ε / 2, half_pos ε0, fun {a b} h => calc dist (dist a.1 a.2) (dist b.1 b.2) ≤ dist a.1 b.1 + dist a.2 b.2 := dist_dist_dist_le _ _ _ _ _ ≤ dist a b + dist a b := add_le_add (le_max_left _ _) (le_max_right _ _) _ < ε / 2 + ε / 2 := add_lt_add h h _ = ε := add_halves ε⟩
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
uniformContinuous_dist
null
protected UniformContinuous.dist [UniformSpace β] {f g : β → α} (hf : UniformContinuous f) (hg : UniformContinuous g) : UniformContinuous fun b => dist (f b) (g b) := uniformContinuous_dist.comp (hf.prodMk hg) @[continuity]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
UniformContinuous.dist
null
continuous_dist : Continuous fun p : α × α ↦ dist p.1 p.2 := uniformContinuous_dist.continuous @[continuity, fun_prop]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
continuous_dist
null
protected Continuous.dist [TopologicalSpace β] {f g : β → α} (hf : Continuous f) (hg : Continuous g) : Continuous fun b => dist (f b) (g b) := continuous_dist.comp₂ hf hg
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
Continuous.dist
null
protected Filter.Tendsto.dist {f g : β → α} {x : Filter β} {a b : α} (hf : Tendsto f x (𝓝 a)) (hg : Tendsto g x (𝓝 b)) : Tendsto (fun x => dist (f x) (g x)) x (𝓝 (dist a b)) := (continuous_dist.tendsto (a, b)).comp (hf.prodMk_nhds hg)
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
Filter.Tendsto.dist
null
continuous_iff_continuous_dist [TopologicalSpace β] {f : β → α} : Continuous f ↔ Continuous fun x : β × β => dist (f x.1) (f x.2) := ⟨fun h => h.fst'.dist h.snd', fun h => continuous_iff_continuousAt.2 fun _ => tendsto_iff_dist_tendsto_zero.2 <| (h.comp (.prodMk_left _)).tendsto' _ _ <| dist_self _⟩
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
continuous_iff_continuous_dist
null
uniformContinuous_nndist : UniformContinuous fun p : α × α => nndist p.1 p.2 := uniformContinuous_dist.subtype_mk _
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
uniformContinuous_nndist
null
protected UniformContinuous.nndist [UniformSpace β] {f g : β → α} (hf : UniformContinuous f) (hg : UniformContinuous g) : UniformContinuous fun b => nndist (f b) (g b) := uniformContinuous_nndist.comp (hf.prodMk hg)
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
UniformContinuous.nndist
null
continuous_nndist : Continuous fun p : α × α => nndist p.1 p.2 := uniformContinuous_nndist.continuous @[fun_prop]
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
continuous_nndist
null
protected Continuous.nndist [TopologicalSpace β] {f g : β → α} (hf : Continuous f) (hg : Continuous g) : Continuous fun b => nndist (f b) (g b) := continuous_nndist.comp₂ hf hg
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
Continuous.nndist
null
protected Filter.Tendsto.nndist {f g : β → α} {x : Filter β} {a b : α} (hf : Tendsto f x (𝓝 a)) (hg : Tendsto g x (𝓝 b)) : Tendsto (fun x => nndist (f x) (g x)) x (𝓝 (nndist a b)) := (continuous_nndist.tendsto (a, b)).comp (hf.prodMk_nhds hg)
lemma
Topology
[ "Mathlib.Topology.Bornology.Constructions", "Mathlib.Topology.MetricSpace.Pseudo.Defs", "Mathlib.Topology.UniformSpace.UniformEmbedding" ]
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
Filter.Tendsto.nndist
null
UniformSpace.ofDist_aux (ε : ℝ) (hε : 0 < ε) : ∃ δ > (0 : ℝ), ∀ x < δ, ∀ y < δ, x + y < ε := ⟨ε / 2, half_pos hε, fun _x hx _y hy => add_halves ε ▸ add_lt_add hx hy⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
UniformSpace.ofDist_aux
null
UniformSpace.ofDist (dist : α → α → ℝ) (dist_self : ∀ x : α, dist x x = 0) (dist_comm : ∀ x y : α, dist x y = dist y x) (dist_triangle : ∀ x y z : α, dist x z ≤ dist x y + dist y z) : UniformSpace α := .ofFun dist dist_self dist_comm dist_triangle ofDist_aux
def
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
UniformSpace.ofDist
Construct a uniform structure from a distance function and metric space axioms
Bornology.ofDist {α : Type*} (dist : α → α → ℝ) (dist_comm : ∀ x y, dist x y = dist y x) (dist_triangle : ∀ x y z, dist x z ≤ dist x y + dist y z) : Bornology α := Bornology.ofBounded { s : Set α | ∃ C, ∀ ⦃x⦄, x ∈ s → ∀ ⦃y⦄, y ∈ s → dist x y ≤ C } ⟨0, fun _ hx _ => hx.elim⟩ (fun _ ⟨c, hc⟩ _ h => ⟨c, fun _ hx _ hy => hc (h hx) (h hy)⟩) (fun s hs t ht => by rcases s.eq_empty_or_nonempty with rfl | ⟨x, hx⟩ · rwa [empty_union] rcases t.eq_empty_or_nonempty with rfl | ⟨y, hy⟩ · rwa [union_empty] rsuffices ⟨C, hC⟩ : ∃ C, ∀ z ∈ s ∪ t, dist x z ≤ C · refine ⟨C + C, fun a ha b hb => (dist_triangle a x b).trans ?_⟩ simpa only [dist_comm] using add_le_add (hC _ ha) (hC _ hb) rcases hs with ⟨Cs, hs⟩; rcases ht with ⟨Ct, ht⟩ refine ⟨max Cs (dist x y + Ct), fun z hz => hz.elim (fun hz => (hs hx hz).trans (le_max_left _ _)) (fun hz => (dist_triangle x y z).trans <| (add_le_add le_rfl (ht hy hz)).trans (le_max_right _ _))⟩) fun z => ⟨dist z z, forall_eq.2 <| forall_eq.2 le_rfl⟩
abbrev
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Bornology.ofDist
Construct a bornology from a distance function and metric space axioms.
@[ext] Dist (α : Type*) where /-- Distance between two points -/ dist : α → α → ℝ export Dist (dist)
class
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Dist
The distance function (given an ambient metric space on `α`), which returns a nonnegative real number `dist x y` given `x y : α`.
private dist_nonneg' {α} {x y : α} (dist : α → α → ℝ) (dist_self : ∀ x : α, dist x x = 0) (dist_comm : ∀ x y : α, dist x y = dist y x) (dist_triangle : ∀ x y z : α, dist x z ≤ dist x y + dist y z) : 0 ≤ dist x y := have : 0 ≤ 2 * dist x y := calc 0 = dist x x := (dist_self _).symm _ ≤ dist x y + dist y x := dist_triangle _ _ _ _ = 2 * dist x y := by rw [two_mul, dist_comm] nonneg_of_mul_nonneg_right this two_pos
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_nonneg'
This is an internal lemma used inside the default of `PseudoMetricSpace.edist`.
PseudoMetricSpace (α : Type u) : Type u extends Dist α where dist_self : ∀ x : α, dist x x = 0 dist_comm : ∀ x y : α, dist x y = dist y x dist_triangle : ∀ x y z : α, dist x z ≤ dist x y + dist y z /-- Extended distance between two points -/ edist : α → α → ℝ≥0∞ := fun x y => ENNReal.ofNNReal ⟨dist x y, dist_nonneg' _ ‹_› ‹_› ‹_›⟩ edist_dist : ∀ x y : α, edist x y = ENNReal.ofReal (dist x y) := by intro x y; exact ENNReal.coe_nnreal_eq _ toUniformSpace : UniformSpace α := .ofDist dist dist_self dist_comm dist_triangle uniformity_dist : 𝓤 α = ⨅ ε > 0, 𝓟 { p : α × α | dist p.1 p.2 < ε } := by intros; rfl toBornology : Bornology α := Bornology.ofDist dist dist_comm dist_triangle cobounded_sets : (Bornology.cobounded α).sets = { s | ∃ C : ℝ, ∀ x ∈ sᶜ, ∀ y ∈ sᶜ, dist x y ≤ C } := by intros; rfl
class
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
PseudoMetricSpace
A pseudometric space is a type endowed with a `ℝ`-valued distance `dist` satisfying reflexivity `dist x x = 0`, commutativity `dist x y = dist y x`, and the triangle inequality `dist x z ≤ dist x y + dist y z`. Note that we do not require `dist x y = 0 → x = y`. See metric spaces (`MetricSpace`) for the similar class with that stronger assumption. Any pseudometric space is a topological space and a uniform space (see `TopologicalSpace`, `UniformSpace`), where the topology and uniformity come from the metric. Note that a T1 pseudometric space is just a metric space. We make the uniformity/topology part of the data instead of deriving it from the metric. This e.g. ensures that we do not get a diamond when doing `[PseudoMetricSpace α] [PseudoMetricSpace β] : TopologicalSpace (α × β)`: The product metric and product topology agree, but not definitionally so. See Note [forgetful inheritance].
@[ext] PseudoMetricSpace.ext {α : Type*} {m m' : PseudoMetricSpace α} (h : m.toDist = m'.toDist) : m = m' := by let d := m.toDist obtain ⟨_, _, _, _, hed, _, hU, _, hB⟩ := m let d' := m'.toDist obtain ⟨_, _, _, _, hed', _, hU', _, hB'⟩ := m' obtain rfl : d = d' := h congr · ext x y : 2 rw [hed, hed'] · exact UniformSpace.ext (hU.trans hU'.symm) · ext : 2 rw [← Filter.mem_sets, ← Filter.mem_sets, hB, hB'] variable [PseudoMetricSpace α] attribute [instance] PseudoMetricSpace.toUniformSpace PseudoMetricSpace.toBornology
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
PseudoMetricSpace.ext
Two pseudo metric space structures with the same distance function coincide.
PseudoMetricSpace.ofDistTopology {α : Type u} [TopologicalSpace α] (dist : α → α → ℝ) (dist_self : ∀ x : α, dist x x = 0) (dist_comm : ∀ x y : α, dist x y = dist y x) (dist_triangle : ∀ x y z : α, dist x z ≤ dist x y + dist y z) (H : ∀ s : Set α, IsOpen s ↔ ∀ x ∈ s, ∃ ε > 0, ∀ y, dist x y < ε → y ∈ s) : PseudoMetricSpace α := { dist := dist dist_self := dist_self dist_comm := dist_comm dist_triangle := dist_triangle toUniformSpace := (UniformSpace.ofDist dist dist_self dist_comm dist_triangle).replaceTopology <| TopologicalSpace.ext_iff.2 fun s ↦ (H s).trans <| forall₂_congr fun x _ ↦ ((UniformSpace.hasBasis_ofFun (exists_gt (0 : ℝ)) dist dist_self dist_comm dist_triangle UniformSpace.ofDist_aux).comap (Prod.mk x)).mem_iff.symm uniformity_dist := rfl toBornology := Bornology.ofDist dist dist_comm dist_triangle cobounded_sets := rfl } @[simp]
def
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
PseudoMetricSpace.ofDistTopology
Construct a pseudo-metric space structure whose underlying topological space structure (definitionally) agrees which a pre-existing topology which is compatible with a given distance function.
dist_self (x : α) : dist x x = 0 := PseudoMetricSpace.dist_self x
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_self
null
dist_comm (x y : α) : dist x y = dist y x := PseudoMetricSpace.dist_comm x y
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_comm
null
edist_dist (x y : α) : edist x y = ENNReal.ofReal (dist x y) := PseudoMetricSpace.edist_dist x y @[bound]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
edist_dist
null
dist_triangle (x y z : α) : dist x z ≤ dist x y + dist y z := PseudoMetricSpace.dist_triangle x y z
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_triangle
null
dist_triangle_left (x y z : α) : dist x y ≤ dist z x + dist z y := by rw [dist_comm z]; apply dist_triangle
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_triangle_left
null
dist_triangle_right (x y z : α) : dist x y ≤ dist x z + dist y z := by rw [dist_comm y]; apply dist_triangle
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_triangle_right
null
dist_triangle4 (x y z w : α) : dist x w ≤ dist x y + dist y z + dist z w := calc dist x w ≤ dist x z + dist z w := dist_triangle x z w _ ≤ dist x y + dist y z + dist z w := by gcongr; apply dist_triangle x y z
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_triangle4
null
dist_triangle4_left (x₁ y₁ x₂ y₂ : α) : dist x₂ y₂ ≤ dist x₁ y₁ + (dist x₁ x₂ + dist y₁ y₂) := by rw [add_left_comm, dist_comm x₁, ← add_assoc] apply dist_triangle4
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_triangle4_left
null
dist_triangle4_right (x₁ y₁ x₂ y₂ : α) : dist x₁ y₁ ≤ dist x₁ x₂ + dist y₁ y₂ + dist x₂ y₂ := by rw [add_right_comm, dist_comm y₁] apply dist_triangle4
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_triangle4_right
null
dist_triangle8 (a b c d e f g h : α) : dist a h ≤ dist a b + dist b c + dist c d + dist d e + dist e f + dist f g + dist g h := by apply le_trans (dist_triangle4 a f g h) gcongr apply le_trans (dist_triangle4 a d e f) gcongr exact dist_triangle4 a b c d
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_triangle8
null
swap_dist : Function.swap (@dist α _) = dist := by funext x y; exact dist_comm _ _
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
swap_dist
null
abs_dist_sub_le (x y z : α) : |dist x z - dist y z| ≤ dist x y := abs_sub_le_iff.2 ⟨sub_le_iff_le_add.2 (dist_triangle _ _ _), sub_le_iff_le_add.2 (dist_triangle_left _ _ _)⟩ @[simp, bound]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
abs_dist_sub_le
null
dist_nonneg {x y : α} : 0 ≤ dist x y := dist_nonneg' dist dist_self dist_comm dist_triangle
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_nonneg
null
@[positivity Dist.dist _ _] evalDist : PositivityExt where eval {u α} _zα _pα e := do match u, α, e with | 0, ~q(ℝ), ~q(@Dist.dist $β $inst $a $b) => let _inst ← synthInstanceQ q(PseudoMetricSpace $β) assertInstancesCommute pure (.nonnegative q(dist_nonneg)) | _, _, _ => throwError "not dist"
def
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
evalDist
Extension for the `positivity` tactic: distances are nonnegative.
@[simp] abs_dist {a b : α} : |dist a b| = dist a b := abs_of_nonneg dist_nonneg
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
abs_dist
null
NNDist (α : Type*) where /-- Nonnegative distance between two points -/ nndist : α → α → ℝ≥0 export NNDist (nndist)
class
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
NNDist
A version of `Dist` that takes value in `ℝ≥0`.
dist_nndist (x y : α) : dist x y = nndist x y := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_nndist
Distance as a nonnegative real number. -/ instance (priority := 100) PseudoMetricSpace.toNNDist : NNDist α := ⟨fun a b => ⟨dist a b, dist_nonneg⟩⟩ /-- Express `dist` in terms of `nndist`
coe_nndist (x y : α) : ↑(nndist x y) = dist x y := rfl
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
coe_nndist
null
edist_nndist (x y : α) : edist x y = nndist x y := by rw [edist_dist, dist_nndist, ENNReal.ofReal_coe_nnreal]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
edist_nndist
Express `edist` in terms of `nndist`
nndist_edist (x y : α) : nndist x y = (edist x y).toNNReal := by simp [edist_nndist] @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nndist_edist
Express `nndist` in terms of `edist`
coe_nnreal_ennreal_nndist (x y : α) : ↑(nndist x y) = edist x y := (edist_nndist x y).symm @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
coe_nnreal_ennreal_nndist
null
edist_lt_coe {x y : α} {c : ℝ≥0} : edist x y < c ↔ nndist x y < c := by rw [edist_nndist, ENNReal.coe_lt_coe] @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
edist_lt_coe
null
edist_le_coe {x y : α} {c : ℝ≥0} : edist x y ≤ c ↔ nndist x y ≤ c := by rw [edist_nndist, ENNReal.coe_le_coe]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
edist_le_coe
null
edist_lt_top {α : Type*} [PseudoMetricSpace α] (x y : α) : edist x y < ⊤ := (edist_dist x y).symm ▸ ENNReal.ofReal_lt_top
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
edist_lt_top
In a pseudometric space, the extended distance is always finite
@[simp] nndist_self (a : α) : nndist a a = 0 := NNReal.coe_eq_zero.1 (dist_self a) @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nndist_self
In a pseudometric space, the extended distance is always finite -/ @[aesop (rule_sets := [finiteness]) safe apply] theorem edist_ne_top (x y : α) : edist x y ≠ ⊤ := (edist_lt_top x y).ne /-- `nndist x x` vanishes
dist_lt_coe {x y : α} {c : ℝ≥0} : dist x y < c ↔ nndist x y < c := Iff.rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_lt_coe
null
dist_le_coe {x y : α} {c : ℝ≥0} : dist x y ≤ c ↔ nndist x y ≤ c := Iff.rfl @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_le_coe
null
edist_lt_ofReal {x y : α} {r : ℝ} : edist x y < ENNReal.ofReal r ↔ dist x y < r := by rw [edist_dist, ENNReal.ofReal_lt_ofReal_iff_of_nonneg dist_nonneg] @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
edist_lt_ofReal
null
edist_le_ofReal {x y : α} {r : ℝ} (hr : 0 ≤ r) : edist x y ≤ ENNReal.ofReal r ↔ dist x y ≤ r := by rw [edist_dist, ENNReal.ofReal_le_ofReal_iff hr]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
edist_le_ofReal
null
nndist_dist (x y : α) : nndist x y = Real.toNNReal (dist x y) := by rw [dist_nndist, Real.toNNReal_coe]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nndist_dist
Express `nndist` in terms of `dist`
nndist_comm (x y : α) : nndist x y = nndist y x := NNReal.eq <| dist_comm x y
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nndist_comm
null
nndist_triangle (x y z : α) : nndist x z ≤ nndist x y + nndist y z := dist_triangle _ _ _
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nndist_triangle
Triangle inequality for the nonnegative distance
nndist_triangle_left (x y z : α) : nndist x y ≤ nndist z x + nndist z y := dist_triangle_left _ _ _
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nndist_triangle_left
null
nndist_triangle_right (x y z : α) : nndist x y ≤ nndist x z + nndist y z := dist_triangle_right _ _ _
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nndist_triangle_right
null
dist_edist (x y : α) : dist x y = (edist x y).toReal := by rw [edist_dist, ENNReal.toReal_ofReal dist_nonneg]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_edist
Express `dist` in terms of `edist`
ball (x : α) (ε : ℝ) : Set α := { y | dist y x < ε } @[simp]
def
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball
`ball x ε` is the set of all points `y` with `dist y x < ε`
mem_ball : y ∈ ball x ε ↔ dist y x < ε := Iff.rfl
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_ball
null
mem_ball' : y ∈ ball x ε ↔ dist x y < ε := by rw [dist_comm, mem_ball]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_ball'
null
pos_of_mem_ball (hy : y ∈ ball x ε) : 0 < ε := dist_nonneg.trans_lt hy
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
pos_of_mem_ball
null
mem_ball_self (h : 0 < ε) : x ∈ ball x ε := by rwa [mem_ball, dist_self] @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_ball_self
null
nonempty_ball : (ball x ε).Nonempty ↔ 0 < ε := ⟨fun ⟨_x, hx⟩ => pos_of_mem_ball hx, fun h => ⟨x, mem_ball_self h⟩⟩ @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nonempty_ball
null
ball_eq_empty : ball x ε = ∅ ↔ ε ≤ 0 := by rw [← not_nonempty_iff_eq_empty, nonempty_ball, not_lt] @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_eq_empty
null
ball_zero : ball x 0 = ∅ := by rw [ball_eq_empty]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_zero
null
exists_lt_mem_ball_of_mem_ball (h : x ∈ ball y ε) : ∃ ε' < ε, x ∈ ball y ε' := by simp only [mem_ball] at h ⊢ exact ⟨(dist x y + ε) / 2, by linarith, by linarith⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
exists_lt_mem_ball_of_mem_ball
If a point belongs to an open ball, then there is a strictly smaller radius whose ball also contains it. See also `exists_lt_subset_ball`.
ball_eq_ball (ε : ℝ) (x : α) : UniformSpace.ball x { p | dist p.2 p.1 < ε } = Metric.ball x ε := rfl
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_eq_ball
null
ball_eq_ball' (ε : ℝ) (x : α) : UniformSpace.ball x { p | dist p.1 p.2 < ε } = Metric.ball x ε := by ext simp [dist_comm, UniformSpace.ball] @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_eq_ball'
null
iUnion_ball_nat (x : α) : ⋃ n : ℕ, ball x n = univ := iUnion_eq_univ_iff.2 fun y => exists_nat_gt (dist y x) @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
iUnion_ball_nat
null
iUnion_ball_nat_succ (x : α) : ⋃ n : ℕ, ball x (n + 1) = univ := iUnion_eq_univ_iff.2 fun y => (exists_nat_gt (dist y x)).imp fun _ h => h.trans (lt_add_one _)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
iUnion_ball_nat_succ
null
closedBall (x : α) (ε : ℝ) := { y | dist y x ≤ ε } @[simp] theorem mem_closedBall : y ∈ closedBall x ε ↔ dist y x ≤ ε := Iff.rfl
def
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall
`closedBall x ε` is the set of all points `y` with `dist y x ≤ ε`
mem_closedBall' : y ∈ closedBall x ε ↔ dist x y ≤ ε := by rw [dist_comm, mem_closedBall]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_closedBall'
null
sphere (x : α) (ε : ℝ) := { y | dist y x = ε } @[simp] theorem mem_sphere : y ∈ sphere x ε ↔ dist y x = ε := Iff.rfl
def
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
sphere
`sphere x ε` is the set of all points `y` with `dist y x = ε`
mem_sphere' : y ∈ sphere x ε ↔ dist x y = ε := by rw [dist_comm, mem_sphere]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_sphere'
null
ne_of_mem_sphere (h : y ∈ sphere x ε) (hε : ε ≠ 0) : y ≠ x := ne_of_mem_of_not_mem h <| by simpa using hε.symm
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ne_of_mem_sphere
null
nonneg_of_mem_sphere (hy : y ∈ sphere x ε) : 0 ≤ ε := dist_nonneg.trans_eq hy @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nonneg_of_mem_sphere
null
sphere_eq_empty_of_neg (hε : ε < 0) : sphere x ε = ∅ := Set.eq_empty_iff_forall_notMem.mpr fun _y hy => (nonneg_of_mem_sphere hy).not_gt hε
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
sphere_eq_empty_of_neg
null
sphere_eq_empty_of_subsingleton [Subsingleton α] (hε : ε ≠ 0) : sphere x ε = ∅ := Set.eq_empty_iff_forall_notMem.mpr fun _ h => ne_of_mem_sphere h hε (Subsingleton.elim _ _)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
sphere_eq_empty_of_subsingleton
null
sphere_isEmpty_of_subsingleton [Subsingleton α] [NeZero ε] : IsEmpty (sphere x ε) := by rw [sphere_eq_empty_of_subsingleton (NeZero.ne ε)]; infer_instance
instance
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
sphere_isEmpty_of_subsingleton
null
closedBall_eq_singleton_of_subsingleton [Subsingleton α] (h : 0 ≤ ε) : closedBall x ε = {x} := by ext x' simpa [Subsingleton.allEq x x']
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_eq_singleton_of_subsingleton
null
ball_eq_singleton_of_subsingleton [Subsingleton α] (h : 0 < ε) : ball x ε = {x} := by ext x' simpa [Subsingleton.allEq x x']
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_eq_singleton_of_subsingleton
null