fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
mem_closedBall_self (h : 0 ≤ ε) : x ∈ closedBall x ε := by rwa [mem_closedBall, dist_self] @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_closedBall_self
null
nonempty_closedBall : (closedBall x ε).Nonempty ↔ 0 ≤ ε := ⟨fun ⟨_x, hx⟩ => dist_nonneg.trans hx, fun h => ⟨x, mem_closedBall_self h⟩⟩ @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nonempty_closedBall
null
closedBall_eq_empty : closedBall x ε = ∅ ↔ ε < 0 := by rw [← not_nonempty_iff_eq_empty, nonempty_closedBall, not_le] @[simp] alias ⟨_, closedBall_of_neg⟩ := closedBall_eq_empty
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_eq_empty
null
closedBall_eq_sphere_of_nonpos (hε : ε ≤ 0) : closedBall x ε = sphere x ε := Set.ext fun _ => (hε.trans dist_nonneg).ge_iff_eq'
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_eq_sphere_of_nonpos
Closed balls and spheres coincide when the radius is non-positive
ball_subset_closedBall : ball x ε ⊆ closedBall x ε := fun _y hy => mem_closedBall.2 (le_of_lt hy)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_subset_closedBall
null
sphere_subset_closedBall : sphere x ε ⊆ closedBall x ε := fun _ => le_of_eq
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
sphere_subset_closedBall
null
sphere_subset_ball {r R : ℝ} (h : r < R) : sphere x r ⊆ ball x R := fun _x hx ↦ (mem_sphere.1 hx).trans_lt h
lemma
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
sphere_subset_ball
null
closedBall_disjoint_ball (h : δ + ε ≤ dist x y) : Disjoint (closedBall x δ) (ball y ε) := Set.disjoint_left.mpr fun _a ha1 ha2 => (h.trans <| dist_triangle_left _ _ _).not_gt <| add_lt_add_of_le_of_lt ha1 ha2
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_disjoint_ball
null
ball_disjoint_closedBall (h : δ + ε ≤ dist x y) : Disjoint (ball x δ) (closedBall y ε) := (closedBall_disjoint_ball <| by rwa [add_comm, dist_comm]).symm
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_disjoint_closedBall
null
ball_disjoint_ball (h : δ + ε ≤ dist x y) : Disjoint (ball x δ) (ball y ε) := (closedBall_disjoint_ball h).mono_left ball_subset_closedBall
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_disjoint_ball
null
closedBall_disjoint_closedBall (h : δ + ε < dist x y) : Disjoint (closedBall x δ) (closedBall y ε) := Set.disjoint_left.mpr fun _a ha1 ha2 => h.not_ge <| (dist_triangle_left _ _ _).trans <| add_le_add ha1 ha2
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_disjoint_closedBall
null
sphere_disjoint_ball : Disjoint (sphere x ε) (ball x ε) := Set.disjoint_left.mpr fun _y hy₁ hy₂ => absurd hy₁ <| ne_of_lt hy₂ @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
sphere_disjoint_ball
null
ball_union_sphere : ball x ε ∪ sphere x ε = closedBall x ε := Set.ext fun _y => (@le_iff_lt_or_eq ℝ _ _ _).symm @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_union_sphere
null
sphere_union_ball : sphere x ε ∪ ball x ε = closedBall x ε := by rw [union_comm, ball_union_sphere] @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
sphere_union_ball
null
closedBall_diff_sphere : closedBall x ε \ sphere x ε = ball x ε := by rw [← ball_union_sphere, Set.union_diff_cancel_right sphere_disjoint_ball.symm.le_bot] @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_diff_sphere
null
closedBall_diff_ball : closedBall x ε \ ball x ε = sphere x ε := by rw [← ball_union_sphere, Set.union_diff_cancel_left sphere_disjoint_ball.symm.le_bot]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_diff_ball
null
mem_ball_comm : x ∈ ball y ε ↔ y ∈ ball x ε := by rw [mem_ball', mem_ball]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_ball_comm
null
mem_closedBall_comm : x ∈ closedBall y ε ↔ y ∈ closedBall x ε := by rw [mem_closedBall', mem_closedBall]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_closedBall_comm
null
mem_sphere_comm : x ∈ sphere y ε ↔ y ∈ sphere x ε := by rw [mem_sphere', mem_sphere] @[gcongr]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_sphere_comm
null
ball_subset_ball (h : ε₁ ≤ ε₂) : ball x ε₁ ⊆ ball x ε₂ := fun _y yx => lt_of_lt_of_le (mem_ball.1 yx) h
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_subset_ball
null
closedBall_eq_bInter_ball : closedBall x ε = ⋂ δ > ε, ball x δ := by ext y; rw [mem_closedBall, ← forall_gt_iff_le, mem_iInter₂]; rfl
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_eq_bInter_ball
null
ball_subset_ball' (h : ε₁ + dist x y ≤ ε₂) : ball x ε₁ ⊆ ball y ε₂ := fun z hz => calc dist z y ≤ dist z x + dist x y := dist_triangle _ _ _ _ < ε₁ + dist x y := add_lt_add_right (mem_ball.1 hz) _ _ ≤ ε₂ := h @[gcongr]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_subset_ball'
null
closedBall_subset_closedBall (h : ε₁ ≤ ε₂) : closedBall x ε₁ ⊆ closedBall x ε₂ := fun _y (yx : _ ≤ ε₁) => le_trans yx h
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_subset_closedBall
null
closedBall_subset_closedBall' (h : ε₁ + dist x y ≤ ε₂) : closedBall x ε₁ ⊆ closedBall y ε₂ := fun z hz => calc dist z y ≤ dist z x + dist x y := dist_triangle _ _ _ _ ≤ ε₁ + dist x y := add_le_add_right (mem_closedBall.1 hz) _ _ ≤ ε₂ := h
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_subset_closedBall'
null
closedBall_subset_ball (h : ε₁ < ε₂) : closedBall x ε₁ ⊆ ball x ε₂ := fun y (yh : dist y x ≤ ε₁) => lt_of_le_of_lt yh h
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_subset_ball
null
closedBall_subset_ball' (h : ε₁ + dist x y < ε₂) : closedBall x ε₁ ⊆ ball y ε₂ := fun z hz => calc dist z y ≤ dist z x + dist x y := dist_triangle _ _ _ _ ≤ ε₁ + dist x y := add_le_add_right (mem_closedBall.1 hz) _ _ < ε₂ := h
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_subset_ball'
null
dist_le_add_of_nonempty_closedBall_inter_closedBall (h : (closedBall x ε₁ ∩ closedBall y ε₂).Nonempty) : dist x y ≤ ε₁ + ε₂ := let ⟨z, hz⟩ := h calc dist x y ≤ dist z x + dist z y := dist_triangle_left _ _ _ _ ≤ ε₁ + ε₂ := add_le_add hz.1 hz.2
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_le_add_of_nonempty_closedBall_inter_closedBall
null
dist_lt_add_of_nonempty_closedBall_inter_ball (h : (closedBall x ε₁ ∩ ball y ε₂).Nonempty) : dist x y < ε₁ + ε₂ := let ⟨z, hz⟩ := h calc dist x y ≤ dist z x + dist z y := dist_triangle_left _ _ _ _ < ε₁ + ε₂ := add_lt_add_of_le_of_lt hz.1 hz.2
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_lt_add_of_nonempty_closedBall_inter_ball
null
dist_lt_add_of_nonempty_ball_inter_closedBall (h : (ball x ε₁ ∩ closedBall y ε₂).Nonempty) : dist x y < ε₁ + ε₂ := by rw [inter_comm] at h rw [add_comm, dist_comm] exact dist_lt_add_of_nonempty_closedBall_inter_ball h
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_lt_add_of_nonempty_ball_inter_closedBall
null
dist_lt_add_of_nonempty_ball_inter_ball (h : (ball x ε₁ ∩ ball y ε₂).Nonempty) : dist x y < ε₁ + ε₂ := dist_lt_add_of_nonempty_closedBall_inter_ball <| h.mono (inter_subset_inter ball_subset_closedBall Subset.rfl) @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_lt_add_of_nonempty_ball_inter_ball
null
iUnion_closedBall_nat (x : α) : ⋃ n : ℕ, closedBall x n = univ := iUnion_eq_univ_iff.2 fun y => exists_nat_ge (dist y x)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
iUnion_closedBall_nat
null
iUnion_inter_closedBall_nat (s : Set α) (x : α) : ⋃ n : ℕ, s ∩ closedBall x n = s := by rw [← inter_iUnion, iUnion_closedBall_nat, inter_univ]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
iUnion_inter_closedBall_nat
null
ball_subset (h : dist x y ≤ ε₂ - ε₁) : ball x ε₁ ⊆ ball y ε₂ := fun z zx => by rw [← add_sub_cancel ε₁ ε₂] exact lt_of_le_of_lt (dist_triangle z x y) (add_lt_add_of_lt_of_le zx h)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_subset
null
ball_half_subset (y) (h : y ∈ ball x (ε / 2)) : ball y (ε / 2) ⊆ ball x ε := ball_subset <| by rw [sub_self_div_two]; exact le_of_lt h
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_half_subset
null
exists_ball_subset_ball (h : y ∈ ball x ε) : ∃ ε' > 0, ball y ε' ⊆ ball x ε := ⟨_, sub_pos.2 h, ball_subset <| by rw [sub_sub_self]⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
exists_ball_subset_ball
null
forall_of_forall_mem_closedBall (p : α → Prop) (x : α) (H : ∃ᶠ R : ℝ in atTop, ∀ y ∈ closedBall x R, p y) (y : α) : p y := by obtain ⟨R, hR, h⟩ : ∃ R ≥ dist y x, ∀ z : α, z ∈ closedBall x R → p z := frequently_iff.1 H (Ici_mem_atTop (dist y x)) exact h _ hR
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
forall_of_forall_mem_closedBall
If a property holds for all points in closed balls of arbitrarily large radii, then it holds for all points.
forall_of_forall_mem_ball (p : α → Prop) (x : α) (H : ∃ᶠ R : ℝ in atTop, ∀ y ∈ ball x R, p y) (y : α) : p y := by obtain ⟨R, hR, h⟩ : ∃ R > dist y x, ∀ z : α, z ∈ ball x R → p z := frequently_iff.1 H (Ioi_mem_atTop (dist y x)) exact h _ hR
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
forall_of_forall_mem_ball
If a property holds for all points in balls of arbitrarily large radii, then it holds for all points.
isBounded_iff {s : Set α} : IsBounded s ↔ ∃ C : ℝ, ∀ ⦃x⦄, x ∈ s → ∀ ⦃y⦄, y ∈ s → dist x y ≤ C := by rw [isBounded_def, ← Filter.mem_sets, @PseudoMetricSpace.cobounded_sets α, mem_setOf_eq, compl_compl]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
isBounded_iff
null
isBounded_iff_eventually {s : Set α} : IsBounded s ↔ ∀ᶠ C in atTop, ∀ ⦃x⦄, x ∈ s → ∀ ⦃y⦄, y ∈ s → dist x y ≤ C := isBounded_iff.trans ⟨fun ⟨C, h⟩ => eventually_atTop.2 ⟨C, fun _C' hC' _x hx _y hy => (h hx hy).trans hC'⟩, Eventually.exists⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
isBounded_iff_eventually
null
isBounded_iff_exists_ge {s : Set α} (c : ℝ) : IsBounded s ↔ ∃ C, c ≤ C ∧ ∀ ⦃x⦄, x ∈ s → ∀ ⦃y⦄, y ∈ s → dist x y ≤ C := ⟨fun h => ((eventually_ge_atTop c).and (isBounded_iff_eventually.1 h)).exists, fun h => isBounded_iff.2 <| h.imp fun _ => And.right⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
isBounded_iff_exists_ge
null
isBounded_iff_nndist {s : Set α} : IsBounded s ↔ ∃ C : ℝ≥0, ∀ ⦃x⦄, x ∈ s → ∀ ⦃y⦄, y ∈ s → nndist x y ≤ C := by simp only [isBounded_iff_exists_ge 0, NNReal.exists, ← NNReal.coe_le_coe, ← dist_nndist, NNReal.coe_mk, exists_prop]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
isBounded_iff_nndist
null
toUniformSpace_eq : ‹PseudoMetricSpace α›.toUniformSpace = .ofDist dist dist_self dist_comm dist_triangle := UniformSpace.ext PseudoMetricSpace.uniformity_dist
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
toUniformSpace_eq
null
uniformity_basis_dist : (𝓤 α).HasBasis (fun ε : ℝ => 0 < ε) fun ε => { p : α × α | dist p.1 p.2 < ε } := by rw [toUniformSpace_eq] exact UniformSpace.hasBasis_ofFun (exists_gt _) _ _ _ _ _
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
uniformity_basis_dist
null
protected mk_uniformity_basis {β : Type*} {p : β → Prop} {f : β → ℝ} (hf₀ : ∀ i, p i → 0 < f i) (hf : ∀ ⦃ε⦄, 0 < ε → ∃ i, p i ∧ f i ≤ ε) : (𝓤 α).HasBasis p fun i => { p : α × α | dist p.1 p.2 < f i } := by refine ⟨fun s => uniformity_basis_dist.mem_iff.trans ?_⟩ constructor · rintro ⟨ε, ε₀, hε⟩ rcases hf ε₀ with ⟨i, hi, H⟩ exact ⟨i, hi, fun x (hx : _ < _) => hε <| lt_of_lt_of_le hx H⟩ · exact fun ⟨i, hi, H⟩ => ⟨f i, hf₀ i hi, H⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mk_uniformity_basis
Given `f : β → ℝ`, if `f` sends `{i | p i}` to a set of positive numbers accumulating to zero, then `f i`-neighborhoods of the diagonal form a basis of `𝓤 α`. For specific bases see `uniformity_basis_dist`, `uniformity_basis_dist_inv_nat_succ`, and `uniformity_basis_dist_inv_nat_pos`.
uniformity_basis_dist_rat : (𝓤 α).HasBasis (fun r : ℚ => 0 < r) fun r => { p : α × α | dist p.1 p.2 < r } := Metric.mk_uniformity_basis (fun _ => Rat.cast_pos.2) fun _ε hε => let ⟨r, hr0, hrε⟩ := exists_rat_btwn hε ⟨r, Rat.cast_pos.1 hr0, hrε.le⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
uniformity_basis_dist_rat
null
uniformity_basis_dist_inv_nat_succ : (𝓤 α).HasBasis (fun _ => True) fun n : ℕ => { p : α × α | dist p.1 p.2 < 1 / (↑n + 1) } := Metric.mk_uniformity_basis (fun n _ => div_pos zero_lt_one <| Nat.cast_add_one_pos n) fun _ε ε0 => (exists_nat_one_div_lt ε0).imp fun _n hn => ⟨trivial, le_of_lt hn⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
uniformity_basis_dist_inv_nat_succ
null
uniformity_basis_dist_inv_nat_pos : (𝓤 α).HasBasis (fun n : ℕ => 0 < n) fun n : ℕ => { p : α × α | dist p.1 p.2 < 1 / ↑n } := Metric.mk_uniformity_basis (fun _ hn => div_pos zero_lt_one <| Nat.cast_pos.2 hn) fun _ ε0 => let ⟨n, hn⟩ := exists_nat_one_div_lt ε0 ⟨n + 1, Nat.succ_pos n, mod_cast hn.le⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
uniformity_basis_dist_inv_nat_pos
null
uniformity_basis_dist_pow {r : ℝ} (h0 : 0 < r) (h1 : r < 1) : (𝓤 α).HasBasis (fun _ : ℕ => True) fun n : ℕ => { p : α × α | dist p.1 p.2 < r ^ n } := Metric.mk_uniformity_basis (fun _ _ => pow_pos h0 _) fun _ε ε0 => let ⟨n, hn⟩ := exists_pow_lt_of_lt_one ε0 h1 ⟨n, trivial, hn.le⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
uniformity_basis_dist_pow
null
uniformity_basis_dist_lt {R : ℝ} (hR : 0 < R) : (𝓤 α).HasBasis (fun r : ℝ => 0 < r ∧ r < R) fun r => { p : α × α | dist p.1 p.2 < r } := Metric.mk_uniformity_basis (fun _ => And.left) fun r hr => ⟨min r (R / 2), ⟨lt_min hr (half_pos hR), min_lt_iff.2 <| Or.inr (half_lt_self hR)⟩, min_le_left _ _⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
uniformity_basis_dist_lt
null
protected mk_uniformity_basis_le {β : Type*} {p : β → Prop} {f : β → ℝ} (hf₀ : ∀ x, p x → 0 < f x) (hf : ∀ ε, 0 < ε → ∃ x, p x ∧ f x ≤ ε) : (𝓤 α).HasBasis p fun x => { p : α × α | dist p.1 p.2 ≤ f x } := by refine ⟨fun s => uniformity_basis_dist.mem_iff.trans ?_⟩ constructor · rintro ⟨ε, ε₀, hε⟩ rcases exists_between ε₀ with ⟨ε', hε'⟩ rcases hf ε' hε'.1 with ⟨i, hi, H⟩ exact ⟨i, hi, fun x (hx : _ ≤ _) => hε <| lt_of_le_of_lt (le_trans hx H) hε'.2⟩ · exact fun ⟨i, hi, H⟩ => ⟨f i, hf₀ i hi, fun x (hx : _ < _) => H (mem_setOf.2 hx.le)⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mk_uniformity_basis_le
Given `f : β → ℝ`, if `f` sends `{i | p i}` to a set of positive numbers accumulating to zero, then closed neighborhoods of the diagonal of sizes `{f i | p i}` form a basis of `𝓤 α`. Currently we have only one specific basis `uniformity_basis_dist_le` based on this constructor. More can be easily added if needed in the future.
uniformity_basis_dist_le : (𝓤 α).HasBasis ((0 : ℝ) < ·) fun ε => { p : α × α | dist p.1 p.2 ≤ ε } := Metric.mk_uniformity_basis_le (fun _ => id) fun ε ε₀ => ⟨ε, ε₀, le_refl ε⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
uniformity_basis_dist_le
Constant size closed neighborhoods of the diagonal form a basis of the uniformity filter.
uniformity_basis_dist_le_pow {r : ℝ} (h0 : 0 < r) (h1 : r < 1) : (𝓤 α).HasBasis (fun _ : ℕ => True) fun n : ℕ => { p : α × α | dist p.1 p.2 ≤ r ^ n } := Metric.mk_uniformity_basis_le (fun _ _ => pow_pos h0 _) fun _ε ε0 => let ⟨n, hn⟩ := exists_pow_lt_of_lt_one ε0 h1 ⟨n, trivial, hn.le⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
uniformity_basis_dist_le_pow
null
mem_uniformity_dist {s : Set (α × α)} : s ∈ 𝓤 α ↔ ∃ ε > 0, ∀ ⦃a b : α⦄, dist a b < ε → (a, b) ∈ s := uniformity_basis_dist.mem_uniformity_iff
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_uniformity_dist
null
dist_mem_uniformity {ε : ℝ} (ε0 : 0 < ε) : { p : α × α | dist p.1 p.2 < ε } ∈ 𝓤 α := mem_uniformity_dist.2 ⟨ε, ε0, fun _ _ ↦ id⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
dist_mem_uniformity
A constant size neighborhood of the diagonal is an entourage.
uniformContinuous_iff [PseudoMetricSpace β] {f : α → β} : UniformContinuous f ↔ ∀ ε > 0, ∃ δ > 0, ∀ ⦃a b : α⦄, dist a b < δ → dist (f a) (f b) < ε := uniformity_basis_dist.uniformContinuous_iff uniformity_basis_dist
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
uniformContinuous_iff
null
uniformContinuousOn_iff [PseudoMetricSpace β] {f : α → β} {s : Set α} : UniformContinuousOn f s ↔ ∀ ε > 0, ∃ δ > 0, ∀ x ∈ s, ∀ y ∈ s, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformity_basis_dist.uniformContinuousOn_iff Metric.uniformity_basis_dist
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
uniformContinuousOn_iff
null
uniformContinuousOn_iff_le [PseudoMetricSpace β] {f : α → β} {s : Set α} : UniformContinuousOn f s ↔ ∀ ε > 0, ∃ δ > 0, ∀ x ∈ s, ∀ y ∈ s, dist x y ≤ δ → dist (f x) (f y) ≤ ε := Metric.uniformity_basis_dist_le.uniformContinuousOn_iff Metric.uniformity_basis_dist_le
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
uniformContinuousOn_iff_le
null
nhds_basis_ball : (𝓝 x).HasBasis (0 < ·) (ball x) := nhds_basis_uniformity uniformity_basis_dist
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nhds_basis_ball
null
mem_nhds_iff : s ∈ 𝓝 x ↔ ∃ ε > 0, ball x ε ⊆ s := nhds_basis_ball.mem_iff
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_nhds_iff
null
eventually_nhds_iff {p : α → Prop} : (∀ᶠ y in 𝓝 x, p y) ↔ ∃ ε > 0, ∀ ⦃y⦄, dist y x < ε → p y := mem_nhds_iff
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
eventually_nhds_iff
null
eventually_nhds_iff_ball {p : α → Prop} : (∀ᶠ y in 𝓝 x, p y) ↔ ∃ ε > 0, ∀ y ∈ ball x ε, p y := mem_nhds_iff
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
eventually_nhds_iff_ball
null
eventually_nhds_prod_iff {f : Filter ι} {x₀ : α} {p : α × ι → Prop} : (∀ᶠ x in 𝓝 x₀ ×ˢ f, p x) ↔ ∃ ε > (0 : ℝ), ∃ pa : ι → Prop, (∀ᶠ i in f, pa i) ∧ ∀ ⦃x⦄, dist x x₀ < ε → ∀ ⦃i⦄, pa i → p (x, i) := by refine (nhds_basis_ball.prod f.basis_sets).eventually_iff.trans ?_ simp only [Prod.exists, forall_prod_set, id, mem_ball, and_assoc, exists_and_left] rfl
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
eventually_nhds_prod_iff
A version of `Filter.eventually_prod_iff` where the first filter consists of neighborhoods in a pseudo-metric space.
eventually_prod_nhds_iff {f : Filter ι} {x₀ : α} {p : ι × α → Prop} : (∀ᶠ x in f ×ˢ 𝓝 x₀, p x) ↔ ∃ pa : ι → Prop, (∀ᶠ i in f, pa i) ∧ ∃ ε > 0, ∀ ⦃i⦄, pa i → ∀ ⦃x⦄, dist x x₀ < ε → p (i, x) := by rw [eventually_swap_iff, Metric.eventually_nhds_prod_iff] constructor <;> · rintro ⟨a1, a2, a3, a4, a5⟩ exact ⟨a3, a4, a1, a2, fun _ b1 b2 b3 => a5 b3 b1⟩
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
eventually_prod_nhds_iff
A version of `Filter.eventually_prod_iff` where the second filter consists of neighborhoods in a pseudo-metric space.
nhds_basis_closedBall : (𝓝 x).HasBasis (fun ε : ℝ => 0 < ε) (closedBall x) := nhds_basis_uniformity uniformity_basis_dist_le
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nhds_basis_closedBall
null
nhds_basis_ball_inv_nat_succ : (𝓝 x).HasBasis (fun _ => True) fun n : ℕ => ball x (1 / (↑n + 1)) := nhds_basis_uniformity uniformity_basis_dist_inv_nat_succ
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nhds_basis_ball_inv_nat_succ
null
nhds_basis_ball_inv_nat_pos : (𝓝 x).HasBasis (fun n => 0 < n) fun n : ℕ => ball x (1 / ↑n) := nhds_basis_uniformity uniformity_basis_dist_inv_nat_pos
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nhds_basis_ball_inv_nat_pos
null
nhds_basis_ball_pow {r : ℝ} (h0 : 0 < r) (h1 : r < 1) : (𝓝 x).HasBasis (fun _ => True) fun n : ℕ => ball x (r ^ n) := nhds_basis_uniformity (uniformity_basis_dist_pow h0 h1)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nhds_basis_ball_pow
null
nhds_basis_closedBall_pow {r : ℝ} (h0 : 0 < r) (h1 : r < 1) : (𝓝 x).HasBasis (fun _ => True) fun n : ℕ => closedBall x (r ^ n) := nhds_basis_uniformity (uniformity_basis_dist_le_pow h0 h1)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nhds_basis_closedBall_pow
null
isOpen_iff : IsOpen s ↔ ∀ x ∈ s, ∃ ε > 0, ball x ε ⊆ s := by simp only [isOpen_iff_mem_nhds, mem_nhds_iff] @[simp] theorem isOpen_ball : IsOpen (ball x ε) := isOpen_iff.2 fun _ => exists_ball_subset_ball
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
isOpen_iff
null
ball_mem_nhds (x : α) {ε : ℝ} (ε0 : 0 < ε) : ball x ε ∈ 𝓝 x := isOpen_ball.mem_nhds (mem_ball_self ε0)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
ball_mem_nhds
null
closedBall_mem_nhds (x : α) {ε : ℝ} (ε0 : 0 < ε) : closedBall x ε ∈ 𝓝 x := mem_of_superset (ball_mem_nhds x ε0) ball_subset_closedBall
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_mem_nhds
null
closedBall_mem_nhds_of_mem {x c : α} {ε : ℝ} (h : x ∈ ball c ε) : closedBall c ε ∈ 𝓝 x := mem_of_superset (isOpen_ball.mem_nhds h) ball_subset_closedBall
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
closedBall_mem_nhds_of_mem
null
nhdsWithin_basis_ball {s : Set α} : (𝓝[s] x).HasBasis (fun ε : ℝ => 0 < ε) fun ε => ball x ε ∩ s := nhdsWithin_hasBasis nhds_basis_ball s
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
nhdsWithin_basis_ball
null
mem_nhdsWithin_iff {t : Set α} : s ∈ 𝓝[t] x ↔ ∃ ε > 0, ball x ε ∩ t ⊆ s := nhdsWithin_basis_ball.mem_iff
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
mem_nhdsWithin_iff
null
tendsto_nhdsWithin_nhdsWithin [PseudoMetricSpace β] {t : Set β} {f : α → β} {a b} : Tendsto f (𝓝[s] a) (𝓝[t] b) ↔ ∀ ε > 0, ∃ δ > 0, ∀ ⦃x : α⦄, x ∈ s → dist x a < δ → f x ∈ t ∧ dist (f x) b < ε := (nhdsWithin_basis_ball.tendsto_iff nhdsWithin_basis_ball).trans <| by simp only [inter_comm _ s, inter_comm _ t, mem_inter_iff, and_imp, gt_iff_lt, mem_ball]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
tendsto_nhdsWithin_nhdsWithin
null
tendsto_nhdsWithin_nhds [PseudoMetricSpace β] {f : α → β} {a b} : Tendsto f (𝓝[s] a) (𝓝 b) ↔ ∀ ε > 0, ∃ δ > 0, ∀ ⦃x : α⦄, x ∈ s → dist x a < δ → dist (f x) b < ε := by rw [← nhdsWithin_univ b, tendsto_nhdsWithin_nhdsWithin] simp only [mem_univ, true_and]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
tendsto_nhdsWithin_nhds
null
tendsto_nhds_nhds [PseudoMetricSpace β] {f : α → β} {a b} : Tendsto f (𝓝 a) (𝓝 b) ↔ ∀ ε > 0, ∃ δ > 0, ∀ ⦃x : α⦄, dist x a < δ → dist (f x) b < ε := nhds_basis_ball.tendsto_iff nhds_basis_ball
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
tendsto_nhds_nhds
null
continuousAt_iff [PseudoMetricSpace β] {f : α → β} {a : α} : ContinuousAt f a ↔ ∀ ε > 0, ∃ δ > 0, ∀ ⦃x : α⦄, dist x a < δ → dist (f x) (f a) < ε := by rw [ContinuousAt, tendsto_nhds_nhds]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
continuousAt_iff
null
continuousWithinAt_iff [PseudoMetricSpace β] {f : α → β} {a : α} {s : Set α} : ContinuousWithinAt f s a ↔ ∀ ε > 0, ∃ δ > 0, ∀ ⦃x : α⦄, x ∈ s → dist x a < δ → dist (f x) (f a) < ε := by rw [ContinuousWithinAt, tendsto_nhdsWithin_nhds]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
continuousWithinAt_iff
null
continuousOn_iff [PseudoMetricSpace β] {f : α → β} {s : Set α} : ContinuousOn f s ↔ ∀ b ∈ s, ∀ ε > 0, ∃ δ > 0, ∀ a ∈ s, dist a b < δ → dist (f a) (f b) < ε := by simp [ContinuousOn, continuousWithinAt_iff]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
continuousOn_iff
null
continuous_iff [PseudoMetricSpace β] {f : α → β} : Continuous f ↔ ∀ b, ∀ ε > 0, ∃ δ > 0, ∀ a, dist a b < δ → dist (f a) (f b) < ε := continuous_iff_continuousAt.trans <| forall_congr' fun _ => tendsto_nhds_nhds
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
continuous_iff
null
tendsto_nhds {f : Filter β} {u : β → α} {a : α} : Tendsto u f (𝓝 a) ↔ ∀ ε > 0, ∀ᶠ x in f, dist (u x) a < ε := nhds_basis_ball.tendsto_right_iff
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
tendsto_nhds
null
continuousAt_iff' [TopologicalSpace β] {f : β → α} {b : β} : ContinuousAt f b ↔ ∀ ε > 0, ∀ᶠ x in 𝓝 b, dist (f x) (f b) < ε := by rw [ContinuousAt, tendsto_nhds]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
continuousAt_iff'
null
continuousWithinAt_iff' [TopologicalSpace β] {f : β → α} {b : β} {s : Set β} : ContinuousWithinAt f s b ↔ ∀ ε > 0, ∀ᶠ x in 𝓝[s] b, dist (f x) (f b) < ε := by rw [ContinuousWithinAt, tendsto_nhds]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
continuousWithinAt_iff'
null
continuousOn_iff' [TopologicalSpace β] {f : β → α} {s : Set β} : ContinuousOn f s ↔ ∀ b ∈ s, ∀ ε > 0, ∀ᶠ x in 𝓝[s] b, dist (f x) (f b) < ε := by simp [ContinuousOn, continuousWithinAt_iff']
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
continuousOn_iff'
null
continuous_iff' [TopologicalSpace β] {f : β → α} : Continuous f ↔ ∀ (a), ∀ ε > 0, ∀ᶠ x in 𝓝 a, dist (f x) (f a) < ε := continuous_iff_continuousAt.trans <| forall_congr' fun _ => tendsto_nhds
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
continuous_iff'
null
tendsto_atTop [Nonempty β] [SemilatticeSup β] {u : β → α} {a : α} : Tendsto u atTop (𝓝 a) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (u n) a < ε := (atTop_basis.tendsto_iff nhds_basis_ball).trans <| by simp only [true_and, mem_ball, mem_Ici]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
tendsto_atTop
null
tendsto_atTop' [Nonempty β] [SemilatticeSup β] [NoMaxOrder β] {u : β → α} {a : α} : Tendsto u atTop (𝓝 a) ↔ ∀ ε > 0, ∃ N, ∀ n > N, dist (u n) a < ε := (atTop_basis_Ioi.tendsto_iff nhds_basis_ball).trans <| by simp only [true_and, gt_iff_lt, mem_Ioi, mem_ball]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
tendsto_atTop'
A variant of `tendsto_atTop` that uses `∃ N, ∀ n > N, ...` rather than `∃ N, ∀ n ≥ N, ...`
isOpen_singleton_iff {α : Type*} [PseudoMetricSpace α] {x : α} : IsOpen ({x} : Set α) ↔ ∃ ε > 0, ∀ y, dist y x < ε → y = x := by simp [isOpen_iff, subset_singleton_iff, mem_ball]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
isOpen_singleton_iff
null
_root_.Dense.exists_dist_lt {s : Set α} (hs : Dense s) (x : α) {ε : ℝ} (hε : 0 < ε) : ∃ y ∈ s, dist x y < ε := by have : (ball x ε).Nonempty := by simp [hε] simpa only [mem_ball'] using hs.exists_mem_open isOpen_ball this nonrec theorem _root_.DenseRange.exists_dist_lt {β : Type*} {f : β → α} (hf : DenseRange f) (x : α) {ε : ℝ} (hε : 0 < ε) : ∃ y, dist x (f y) < ε := exists_range_iff.1 (hf.exists_dist_lt x hε)
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
_root_.Dense.exists_dist_lt
null
protected uniformSpace_eq_bot : ‹PseudoMetricSpace α›.toUniformSpace = ⊥ ↔ ∃ r : ℝ, 0 < r ∧ Pairwise (r ≤ dist · · : α → α → Prop) := by simp only [uniformity_basis_dist.uniformSpace_eq_bot, mem_setOf_eq, not_lt]
lemma
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
uniformSpace_eq_bot
(Pseudo) metric space has discrete `UniformSpace` structure iff the distances between distinct points are uniformly bounded away from zero.
DiscreteTopology.of_forall_le_dist {α} [PseudoMetricSpace α] {r : ℝ} (hpos : 0 < r) (hr : Pairwise (r ≤ dist · · : α → α → Prop)) : DiscreteTopology α := ⟨by rw [Metric.uniformSpace_eq_bot.2 ⟨r, hpos, hr⟩, UniformSpace.toTopologicalSpace_bot]⟩ /- Instantiate a pseudometric space as a pseudoemetric space. Before we can state the instance, we need to show that the uniform structure coming from the edistance and the distance coincide. -/
lemma
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
DiscreteTopology.of_forall_le_dist
If the distances between distinct points in a (pseudo) metric space are uniformly bounded away from zero, then the space has discrete topology.
Metric.uniformity_edist_aux {α} (d : α → α → ℝ≥0) : ⨅ ε > (0 : ℝ), 𝓟 { p : α × α | ↑(d p.1 p.2) < ε } = ⨅ ε > (0 : ℝ≥0∞), 𝓟 { p : α × α | ↑(d p.1 p.2) < ε } := by simp only [le_antisymm_iff, le_iInf_iff, le_principal_iff] refine ⟨fun ε hε => ?_, fun ε hε => ?_⟩ · rcases ENNReal.lt_iff_exists_nnreal_btwn.1 hε with ⟨ε', ε'0, ε'ε⟩ refine mem_iInf_of_mem (ε' : ℝ) (mem_iInf_of_mem (ENNReal.coe_pos.1 ε'0) ?_) exact fun x hx => lt_trans (ENNReal.coe_lt_coe.2 hx) ε'ε · lift ε to ℝ≥0 using le_of_lt hε refine mem_iInf_of_mem (ε : ℝ≥0∞) (mem_iInf_of_mem (ENNReal.coe_pos.2 hε) ?_) exact fun _ => ENNReal.coe_lt_coe.1
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Metric.uniformity_edist_aux
null
Metric.uniformity_edist : 𝓤 α = ⨅ ε > 0, 𝓟 { p : α × α | edist p.1 p.2 < ε } := by simp only [PseudoMetricSpace.uniformity_dist, dist_nndist, edist_nndist, Metric.uniformity_edist_aux]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Metric.uniformity_edist
null
Metric.eball_top_eq_univ (x : α) : EMetric.ball x ∞ = Set.univ := Set.eq_univ_iff_forall.mpr fun y => edist_lt_top y x
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Metric.eball_top_eq_univ
A pseudometric space induces a pseudoemetric space -/ instance (priority := 100) PseudoMetricSpace.toPseudoEMetricSpace : PseudoEMetricSpace α := { ‹PseudoMetricSpace α› with edist_self := by simp [edist_dist] edist_comm := fun _ _ => by simp only [edist_dist, dist_comm] edist_triangle := fun x y z => by simp only [edist_dist, ← ENNReal.ofReal_add, dist_nonneg] rw [ENNReal.ofReal_le_ofReal_iff _] · exact dist_triangle _ _ _ · simpa using add_le_add (dist_nonneg : 0 ≤ dist x y) dist_nonneg uniformity_edist := Metric.uniformity_edist } /-- In a pseudometric space, an open ball of infinite radius is the whole space
@[simp] Metric.emetric_ball {x : α} {ε : ℝ} : EMetric.ball x (ENNReal.ofReal ε) = ball x ε := by ext y simp only [EMetric.mem_ball, mem_ball, edist_dist] exact ENNReal.ofReal_lt_ofReal_iff_of_nonneg dist_nonneg
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Metric.emetric_ball
Balls defined using the distance or the edistance coincide
@[simp] Metric.emetric_ball_nnreal {x : α} {ε : ℝ≥0} : EMetric.ball x ε = ball x ε := by rw [← Metric.emetric_ball] simp
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Metric.emetric_ball_nnreal
Balls defined using the distance or the edistance coincide
Metric.emetric_closedBall {x : α} {ε : ℝ} (h : 0 ≤ ε) : EMetric.closedBall x (ENNReal.ofReal ε) = closedBall x ε := by ext y; simp [edist_le_ofReal h]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Metric.emetric_closedBall
Closed balls defined using the distance or the edistance coincide
@[simp] Metric.emetric_closedBall_nnreal {x : α} {ε : ℝ≥0} : EMetric.closedBall x ε = closedBall x ε := by rw [← Metric.emetric_closedBall ε.coe_nonneg, ENNReal.ofReal_coe_nnreal] @[simp]
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Metric.emetric_closedBall_nnreal
Closed balls defined using the distance or the edistance coincide
Metric.emetric_ball_top (x : α) : EMetric.ball x ⊤ = univ := eq_univ_of_forall fun _ => edist_lt_top _ _
theorem
Topology
[ "Mathlib.Data.ENNReal.Real", "Mathlib.Tactic.Bound.Attribute", "Mathlib.Topology.Bornology.Basic", "Mathlib.Topology.EMetricSpace.Defs", "Mathlib.Topology.UniformSpace.Basic" ]
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
Metric.emetric_ball_top
null