fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
sub_modEq_zero : a - b ≡ 0 [PMOD p] ↔ a ≡ b [PMOD p] := by simp [sub_modEq_iff_modEq_add] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
sub_modEq_zero
null
add_modEq_left : a + b ≡ a [PMOD p] ↔ b ≡ 0 [PMOD p] := by simp [← modEq_sub_iff_add_modEq'] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
add_modEq_left
null
add_modEq_right : a + b ≡ b [PMOD p] ↔ a ≡ 0 [PMOD p] := by simp [← modEq_sub_iff_add_modEq]
theorem
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
add_modEq_right
null
modEq_iff_eq_add_zsmul : a ≡ b [PMOD p] ↔ ∃ z : ℤ, b = a + z • p := by simp_rw [ModEq, sub_eq_iff_eq_add']
theorem
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
modEq_iff_eq_add_zsmul
null
modEq_zero_iff_eq_zsmul : a ≡ 0 [PMOD p] ↔ ∃ z : ℤ, a = z • p := by rw [modEq_comm, modEq_iff_eq_add_zsmul] simp_rw [zero_add]
theorem
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
modEq_zero_iff_eq_zsmul
null
not_modEq_iff_ne_add_zsmul : ¬a ≡ b [PMOD p] ↔ ∀ z : ℤ, b ≠ a + z • p := by rw [modEq_iff_eq_add_zsmul, not_exists]
theorem
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
not_modEq_iff_ne_add_zsmul
null
modEq_iff_eq_mod_zmultiples : a ≡ b [PMOD p] ↔ (a : α ⧸ AddSubgroup.zmultiples p) = b := by rw [modEq_comm] simp_rw [modEq_iff_eq_add_zsmul, QuotientAddGroup.eq_iff_sub_mem, AddSubgroup.mem_zmultiples_iff, eq_sub_iff_add_eq', eq_comm]
theorem
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
modEq_iff_eq_mod_zmultiples
null
not_modEq_iff_ne_mod_zmultiples : ¬a ≡ b [PMOD p] ↔ (a : α ⧸ AddSubgroup.zmultiples p) ≠ b := modEq_iff_eq_mod_zmultiples.not
theorem
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
not_modEq_iff_ne_mod_zmultiples
null
modEq_nsmul_cases (n : ℕ) (hn : n ≠ 0) : a ≡ b [PMOD p] ↔ ∃ i < n, a ≡ b + i • p [PMOD (n • p)] := by simp_rw [← sub_modEq_iff_modEq_add, modEq_comm (b := b)] simp_rw [AddCommGroup.ModEq, sub_right_comm, sub_eq_iff_eq_add (b := _ • _), ← natCast_zsmul, smul_smul, ← add_smul] constructor · rintro ⟨k, hk⟩ refine ⟨(k % n).toNat, ?_⟩ rw [← Int.ofNat_lt, Int.toNat_of_nonneg (Int.emod_nonneg _ (mod_cast hn))] refine ⟨?_, k / n, ?_⟩ · refine Int.emod_lt_of_pos _ ?_ cutsat · rw [hk, Int.ediv_mul_add_emod] · rintro ⟨k, _, j, hj⟩ rw [hj] exact ⟨_, rfl⟩ alias ⟨ModEq.nsmul_cases, _⟩ := AddCommGroup.modEq_nsmul_cases
theorem
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
modEq_nsmul_cases
If `a ≡ b [PMOD p]`, then mod `n • p` there are `n` cases.
@[simp] modEq_iff_int_modEq {a b z : ℤ} : a ≡ b [PMOD z] ↔ a ≡ b [ZMOD z] := by simp [ModEq, dvd_iff_exists_eq_mul_left, Int.modEq_iff_dvd]
theorem
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
modEq_iff_int_modEq
null
@[simp, norm_cast] intCast_modEq_intCast {a b z : ℤ} : a ≡ b [PMOD (z : α)] ↔ a ≡ b [PMOD z] := by simp_rw [ModEq, ← Int.cast_mul_eq_zsmul_cast] norm_cast @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
intCast_modEq_intCast
null
intCast_modEq_intCast' {a b : ℤ} {n : ℕ} : a ≡ b [PMOD (n : α)] ↔ a ≡ b [PMOD (n : ℤ)] := by simpa using intCast_modEq_intCast (α := α) (z := n) @[simp, norm_cast]
lemma
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
intCast_modEq_intCast'
null
natCast_modEq_natCast {a b n : ℕ} : a ≡ b [PMOD (n : α)] ↔ a ≡ b [MOD n] := by simp_rw [← Int.natCast_modEq_iff, ← modEq_iff_int_modEq, ← @intCast_modEq_intCast α, Int.cast_natCast] alias ⟨ModEq.of_intCast, ModEq.intCast⟩ := intCast_modEq_intCast alias ⟨_root_.Nat.ModEq.of_natCast, ModEq.natCast⟩ := natCast_modEq_natCast
theorem
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
natCast_modEq_natCast
null
@[simp] div_modEq_div (hc : c ≠ 0) : a / c ≡ b / c [PMOD p] ↔ a ≡ b [PMOD (p * c)] := by simp [ModEq, ← sub_div, div_eq_iff hc, mul_assoc] @[simp] lemma mul_modEq_mul_right (hc : c ≠ 0) : a * c ≡ b * c [PMOD p] ↔ a ≡ b [PMOD (p / c)] := by rw [div_eq_mul_inv, ← div_modEq_div (inv_ne_zero hc), div_inv_eq_mul, div_inv_eq_mul]
lemma
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
div_modEq_div
null
@[simp] mul_modEq_mul_left (hc : c ≠ 0) : c * a ≡ c * b [PMOD p] ↔ a ≡ b [PMOD (p / c)] := by simp [mul_comm c, hc]
lemma
Algebra
[ "Mathlib.Algebra.Field.Basic", "Mathlib.Algebra.NoZeroSMulDivisors.Basic", "Mathlib.Data.Int.ModEq", "Mathlib.GroupTheory.QuotientGroup.Defs", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic" ]
Mathlib/Algebra/ModEq.lean
mul_modEq_mul_left
null
not_neZero {n : R} : ¬NeZero n ↔ n = 0 := by simp [neZero_iff]
theorem
Algebra
[ "Mathlib.Logic.Basic", "Mathlib.Order.Defs.PartialOrder" ]
Mathlib/Algebra/NeZero.lean
not_neZero
null
eq_zero_or_neZero (a : R) : a = 0 ∨ NeZero a := (eq_or_ne a 0).imp_right NeZero.mk
theorem
Algebra
[ "Mathlib.Logic.Basic", "Mathlib.Order.Defs.PartialOrder" ]
Mathlib/Algebra/NeZero.lean
eq_zero_or_neZero
null
@[simp] zero_ne_one [One α] [NeZero (1 : α)] : (0 : α) ≠ 1 := NeZero.ne' (1 : α) @[simp] lemma one_ne_zero [One α] [NeZero (1 : α)] : (1 : α) ≠ 0 := NeZero.ne (1 : α)
lemma
Algebra
[ "Mathlib.Logic.Basic", "Mathlib.Order.Defs.PartialOrder" ]
Mathlib/Algebra/NeZero.lean
zero_ne_one
null
ne_zero_of_eq_one [One α] [NeZero (1 : α)] {a : α} (h : a = 1) : a ≠ 0 := h ▸ one_ne_zero
lemma
Algebra
[ "Mathlib.Logic.Basic", "Mathlib.Order.Defs.PartialOrder" ]
Mathlib/Algebra/NeZero.lean
ne_zero_of_eq_one
null
two_ne_zero [OfNat α 2] [NeZero (2 : α)] : (2 : α) ≠ 0 := NeZero.ne (2 : α)
lemma
Algebra
[ "Mathlib.Logic.Basic", "Mathlib.Order.Defs.PartialOrder" ]
Mathlib/Algebra/NeZero.lean
two_ne_zero
null
three_ne_zero [OfNat α 3] [NeZero (3 : α)] : (3 : α) ≠ 0 := NeZero.ne (3 : α)
lemma
Algebra
[ "Mathlib.Logic.Basic", "Mathlib.Order.Defs.PartialOrder" ]
Mathlib/Algebra/NeZero.lean
three_ne_zero
null
four_ne_zero [OfNat α 4] [NeZero (4 : α)] : (4 : α) ≠ 0 := NeZero.ne (4 : α) variable (α)
lemma
Algebra
[ "Mathlib.Logic.Basic", "Mathlib.Order.Defs.PartialOrder" ]
Mathlib/Algebra/NeZero.lean
four_ne_zero
null
zero_ne_one' [One α] [NeZero (1 : α)] : (0 : α) ≠ 1 := zero_ne_one
lemma
Algebra
[ "Mathlib.Logic.Basic", "Mathlib.Order.Defs.PartialOrder" ]
Mathlib/Algebra/NeZero.lean
zero_ne_one'
null
one_ne_zero' [One α] [NeZero (1 : α)] : (1 : α) ≠ 0 := one_ne_zero
lemma
Algebra
[ "Mathlib.Logic.Basic", "Mathlib.Order.Defs.PartialOrder" ]
Mathlib/Algebra/NeZero.lean
one_ne_zero'
null
two_ne_zero' [OfNat α 2] [NeZero (2 : α)] : (2 : α) ≠ 0 := two_ne_zero
lemma
Algebra
[ "Mathlib.Logic.Basic", "Mathlib.Order.Defs.PartialOrder" ]
Mathlib/Algebra/NeZero.lean
two_ne_zero'
null
three_ne_zero' [OfNat α 3] [NeZero (3 : α)] : (3 : α) ≠ 0 := three_ne_zero
lemma
Algebra
[ "Mathlib.Logic.Basic", "Mathlib.Order.Defs.PartialOrder" ]
Mathlib/Algebra/NeZero.lean
three_ne_zero'
null
four_ne_zero' [OfNat α 4] [NeZero (4 : α)] : (4 : α) ≠ 0 := four_ne_zero
lemma
Algebra
[ "Mathlib.Logic.Basic", "Mathlib.Order.Defs.PartialOrder" ]
Mathlib/Algebra/NeZero.lean
four_ne_zero'
null
of_pos [Preorder M] [Zero M] (h : 0 < x) : NeZero x := ⟨ne_of_gt h⟩
theorem
Algebra
[ "Mathlib.Logic.Basic", "Mathlib.Order.Defs.PartialOrder" ]
Mathlib/Algebra/NeZero.lean
of_pos
null
PosPart (α : Type*) where /-- The *positive part* of an element `a`. -/ posPart : α → α
class
Algebra
[ "Mathlib.Tactic.TypeStar", "Mathlib.Tactic.ToAdditive" ]
Mathlib/Algebra/Notation.lean
PosPart
A notation class for the *positive part* function: `a⁺`.
@[to_additive] OneLePart (α : Type*) where /-- The *positive part* of an element `a`. -/ oneLePart : α → α
class
Algebra
[ "Mathlib.Tactic.TypeStar", "Mathlib.Tactic.ToAdditive" ]
Mathlib/Algebra/Notation.lean
OneLePart
A notation class for the *positive part* function (multiplicative version): `a⁺ᵐ`.
NegPart (α : Type*) where /-- The *negative part* of an element `a`. -/ negPart : α → α
class
Algebra
[ "Mathlib.Tactic.TypeStar", "Mathlib.Tactic.ToAdditive" ]
Mathlib/Algebra/Notation.lean
NegPart
A notation class for the *negative part* function: `a⁻`.
@[to_additive] LeOnePart (α : Type*) where /-- The *negative part* of an element `a`. -/ leOnePart : α → α export OneLePart (oneLePart) export LeOnePart (leOnePart) export PosPart (posPart) export NegPart (negPart) @[inherit_doc] postfix:max "⁺ᵐ" => OneLePart.oneLePart @[inherit_doc] postfix:max "⁻ᵐ" => LeOnePart.leOnePart @[inherit_doc] postfix:max "⁺" => PosPart.posPart @[inherit_doc] postfix:max "⁻" => NegPart.negPart
class
Algebra
[ "Mathlib.Tactic.TypeStar", "Mathlib.Tactic.ToAdditive" ]
Mathlib/Algebra/Notation.lean
LeOnePart
A notation class for the *negative part* function (multiplicative version): `a⁻ᵐ`.
PreOpposite (α : Type*) : Type _ where /-- The element of `PreOpposite α` that represents `x : α`. -/ op' :: /-- The element of `α` represented by `x : PreOpposite α`. -/ unop' : α
structure
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
PreOpposite
Auxiliary type to implement `MulOpposite` and `AddOpposite`. It turns out to be convenient to have `MulOpposite α = AddOpposite α` true by definition, in the same way that it is convenient to have `Additive α = α`; this means that we also get the defeq `AddOpposite (Additive α) = MulOpposite α`, which is convenient when working with quotients. This is a compromise between making `MulOpposite α = AddOpposite α = α` (what we had in Lean 3) and having no defeqs within those three types (which we had as of https://github.com/leanprover-community/mathlib4/pull/1036).
@[to_additive /-- Additive opposite of a type. This type inherits all multiplicative structures on `α` and reverses left and right in addition. -/] MulOpposite (α : Type*) : Type _ := PreOpposite α
def
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
MulOpposite
Multiplicative opposite of a type. This type inherits all additive structures on `α` and reverses left and right in multiplication.
@[to_additive /-- The element of `αᵃᵒᵖ` that represents `x : α`. -/] op : α → αᵐᵒᵖ := PreOpposite.op'
def
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
op
Multiplicative opposite of a type. -/ postfix:max "ᵐᵒᵖ" => MulOpposite /-- Additive opposite of a type. -/ postfix:max "ᵃᵒᵖ" => AddOpposite namespace MulOpposite /-- The element of `MulOpposite α` that represents `x : α`.
@[to_additive (attr := pp_nodot) /-- The element of `α` represented by `x : αᵃᵒᵖ`. -/] unop : αᵐᵒᵖ → α := PreOpposite.unop' @[to_additive (attr := simp)]
def
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
unop
The element of `α` represented by `x : αᵐᵒᵖ`.
unop_op (x : α) : unop (op x) = x := rfl @[to_additive (attr := simp)]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
unop_op
null
op_unop (x : αᵐᵒᵖ) : op (unop x) = x := rfl @[to_additive (attr := simp)]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
op_unop
null
op_comp_unop : (op : α → αᵐᵒᵖ) ∘ unop = id := rfl @[to_additive (attr := simp)]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
op_comp_unop
null
unop_comp_op : (unop : αᵐᵒᵖ → α) ∘ op = id := rfl
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
unop_comp_op
null
@[to_additive (attr := simp, elab_as_elim, induction_eliminator, cases_eliminator) /-- A recursor for `AddOpposite`. Use as `induction x`. -/] protected rec' {F : αᵐᵒᵖ → Sort*} (h : ∀ X, F (op X)) : ∀ X, F X := fun X ↦ h (unop X)
def
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
rec'
A recursor for `MulOpposite`. Use as `induction x`.
@[to_additive (attr := simps -fullyApplied apply symm_apply) /-- The canonical bijection between `α` and `αᵃᵒᵖ`. -/] opEquiv : α ≃ αᵐᵒᵖ := ⟨op, unop, unop_op, op_unop⟩ @[to_additive]
def
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
opEquiv
The canonical bijection between `α` and `αᵐᵒᵖ`.
op_bijective : Bijective (op : α → αᵐᵒᵖ) := opEquiv.bijective @[to_additive]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
op_bijective
null
unop_bijective : Bijective (unop : αᵐᵒᵖ → α) := opEquiv.symm.bijective @[to_additive]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
unop_bijective
null
op_injective : Injective (op : α → αᵐᵒᵖ) := op_bijective.injective @[to_additive]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
op_injective
null
op_surjective : Surjective (op : α → αᵐᵒᵖ) := op_bijective.surjective @[to_additive]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
op_surjective
null
unop_injective : Injective (unop : αᵐᵒᵖ → α) := unop_bijective.injective @[to_additive]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
unop_injective
null
unop_surjective : Surjective (unop : αᵐᵒᵖ → α) := unop_bijective.surjective @[to_additive (attr := simp)]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
unop_surjective
null
op_inj {x y : α} : op x = op y ↔ x = y := iff_of_eq <| PreOpposite.op'.injEq _ _ @[to_additive (attr := simp, nolint simpComm)]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
op_inj
null
unop_inj {x y : αᵐᵒᵖ} : unop x = unop y ↔ x = y := unop_injective.eq_iff attribute [nolint simpComm] AddOpposite.unop_inj @[to_additive (attr := simp)] lemma «forall» {p : αᵐᵒᵖ → Prop} : (∀ a, p a) ↔ ∀ a, p (op a) := op_surjective.forall @[to_additive (attr := simp)] lemma «exists» {p : αᵐᵒᵖ → Prop} : (∃ a, p a) ↔ ∃ a, p (op a) := op_surjective.exists @[to_additive] instance instNontrivial [Nontrivial α] : Nontrivial αᵐᵒᵖ := op_injective.nontrivial @[to_additive] instance instInhabited [Inhabited α] : Inhabited αᵐᵒᵖ := ⟨op default⟩ @[to_additive]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
unop_inj
null
instSubsingleton [Subsingleton α] : Subsingleton αᵐᵒᵖ := unop_injective.subsingleton @[to_additive] instance instUnique [Unique α] : Unique αᵐᵒᵖ := Unique.mk' _ @[to_additive] instance instIsEmpty [IsEmpty α] : IsEmpty αᵐᵒᵖ := Function.isEmpty unop @[to_additive]
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
instSubsingleton
null
instDecidableEq [DecidableEq α] : DecidableEq αᵐᵒᵖ := unop_injective.decidableEq
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
instDecidableEq
null
instZero [Zero α] : Zero αᵐᵒᵖ where zero := op 0 @[to_additive] instance instOne [One α] : One αᵐᵒᵖ where one := op 1
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
instZero
null
instAdd [Add α] : Add αᵐᵒᵖ where add x y := op (unop x + unop y)
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
instAdd
null
instSub [Sub α] : Sub αᵐᵒᵖ where sub x y := op (unop x - unop y)
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
instSub
null
instNeg [Neg α] : Neg αᵐᵒᵖ where neg x := op <| -unop x
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
instNeg
null
instInvolutiveNeg [InvolutiveNeg α] : InvolutiveNeg αᵐᵒᵖ where neg_neg _ := unop_injective <| neg_neg _ @[to_additive] instance instMul [Mul α] : Mul αᵐᵒᵖ where mul x y := op (unop y * unop x) @[to_additive] instance instInv [Inv α] : Inv αᵐᵒᵖ where inv x := op <| (unop x)⁻¹ @[to_additive]
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
instInvolutiveNeg
null
instInvolutiveInv [InvolutiveInv α] : InvolutiveInv αᵐᵒᵖ where inv_inv _ := unop_injective <| inv_inv _
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
instInvolutiveInv
null
isLeftCancelAdd_iff [Add α] : IsLeftCancelAdd αᵐᵒᵖ ↔ IsLeftCancelAdd α where mp _ := ⟨fun _ _ _ eq ↦ op_injective <| add_left_cancel (congr_arg op eq)⟩ mpr _ := inferInstance
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
isLeftCancelAdd_iff
null
isRightCancelAdd_iff [Add α] : IsRightCancelAdd αᵐᵒᵖ ↔ IsRightCancelAdd α where mp _ := ⟨fun _ _ _ eq ↦ op_injective <| add_right_cancel (congr_arg op eq)⟩ mpr _ := inferInstance
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
isRightCancelAdd_iff
null
protected isCancelAdd_iff [Add α] : IsCancelAdd αᵐᵒᵖ ↔ IsCancelAdd α := by simp_rw [isCancelAdd_iff, isLeftCancelAdd_iff, isRightCancelAdd_iff] @[to_additive] instance instSMul [SMul α β] : SMul α βᵐᵒᵖ where smul c x := op (c • unop x) @[simp] lemma op_zero [Zero α] : op (0 : α) = 0 := rfl @[simp] lemma unop_zero [Zero α] : unop (0 : αᵐᵒᵖ) = 0 := rfl @[to_additive (attr := simp)] lemma op_one [One α] : op (1 : α) = 1 := rfl @[to_additive (attr := simp)] lemma unop_one [One α] : unop (1 : αᵐᵒᵖ) = 1 := rfl @[simp] lemma op_add [Add α] (x y : α) : op (x + y) = op x + op y := rfl @[simp] lemma unop_add [Add α] (x y : αᵐᵒᵖ) : unop (x + y) = unop x + unop y := rfl @[simp] lemma op_neg [Neg α] (x : α) : op (-x) = -op x := rfl @[simp] lemma unop_neg [Neg α] (x : αᵐᵒᵖ) : unop (-x) = -unop x := rfl @[to_additive (attr := simp)] lemma op_mul [Mul α] (x y : α) : op (x * y) = op y * op x := rfl @[to_additive (attr := simp)]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
isCancelAdd_iff
null
unop_mul [Mul α] (x y : αᵐᵒᵖ) : unop (x * y) = unop y * unop x := rfl @[to_additive (attr := simp)] lemma op_inv [Inv α] (x : α) : op x⁻¹ = (op x)⁻¹ := rfl @[to_additive (attr := simp)] lemma unop_inv [Inv α] (x : αᵐᵒᵖ) : unop x⁻¹ = (unop x)⁻¹ := rfl @[simp] lemma op_sub [Sub α] (x y : α) : op (x - y) = op x - op y := rfl @[simp] lemma unop_sub [Sub α] (x y : αᵐᵒᵖ) : unop (x - y) = unop x - unop y := rfl @[to_additive (attr := simp)]
lemma
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
unop_mul
null
op_smul [SMul α β] (a : α) (b : β) : op (a • b) = a • op b := rfl @[to_additive (attr := simp)]
lemma
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
op_smul
null
unop_smul [SMul α β] (a : α) (b : βᵐᵒᵖ) : unop (a • b) = a • unop b := rfl @[simp, nolint simpComm]
lemma
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
unop_smul
null
unop_eq_zero_iff [Zero α] (a : αᵐᵒᵖ) : a.unop = (0 : α) ↔ a = (0 : αᵐᵒᵖ) := unop_injective.eq_iff' rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
unop_eq_zero_iff
null
op_eq_zero_iff [Zero α] (a : α) : op a = (0 : αᵐᵒᵖ) ↔ a = (0 : α) := op_injective.eq_iff' rfl
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
op_eq_zero_iff
null
unop_ne_zero_iff [Zero α] (a : αᵐᵒᵖ) : a.unop ≠ (0 : α) ↔ a ≠ (0 : αᵐᵒᵖ) := not_congr <| unop_eq_zero_iff a
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
unop_ne_zero_iff
null
op_ne_zero_iff [Zero α] (a : α) : op a ≠ (0 : αᵐᵒᵖ) ↔ a ≠ (0 : α) := not_congr <| op_eq_zero_iff a @[to_additive (attr := simp, nolint simpComm)]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
op_ne_zero_iff
null
unop_eq_one_iff [One α] (a : αᵐᵒᵖ) : a.unop = 1 ↔ a = 1 := unop_injective.eq_iff' rfl attribute [nolint simpComm] AddOpposite.unop_eq_zero_iff @[to_additive (attr := simp)]
theorem
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
unop_eq_one_iff
null
op_eq_one_iff [One α] (a : α) : op a = 1 ↔ a = 1 := op_injective.eq_iff
lemma
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
op_eq_one_iff
null
instOne [One α] : One αᵃᵒᵖ where one := op 1 @[simp] lemma op_one [One α] : op (1 : α) = 1 := rfl @[simp] lemma unop_one [One α] : unop 1 = (1 : α) := rfl @[simp] lemma op_eq_one_iff [One α] {a : α} : op a = 1 ↔ a = 1 := op_injective.eq_iff @[simp] lemma unop_eq_one_iff [One α] {a : αᵃᵒᵖ} : unop a = 1 ↔ a = 1 := unop_injective.eq_iff attribute [nolint simpComm] unop_eq_one_iff
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
instOne
null
instMul [Mul α] : Mul αᵃᵒᵖ where mul a b := op (unop a * unop b) @[simp] lemma op_mul [Mul α] (a b : α) : op (a * b) = op a * op b := rfl @[simp] lemma unop_mul [Mul α] (a b : αᵃᵒᵖ) : unop (a * b) = unop a * unop b := rfl
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
instMul
null
instInv [Inv α] : Inv αᵃᵒᵖ where inv a := op (unop a)⁻¹
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
instInv
null
instInvolutiveInv [InvolutiveInv α] : InvolutiveInv αᵃᵒᵖ where inv_inv _ := unop_injective <| inv_inv _ @[simp] lemma op_inv [Inv α] (a : α) : op a⁻¹ = (op a)⁻¹ := rfl @[simp] lemma unop_inv [Inv α] (a : αᵃᵒᵖ) : unop a⁻¹ = (unop a)⁻¹ := rfl
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
instInvolutiveInv
null
instDiv [Div α] : Div αᵃᵒᵖ where div a b := op (unop a / unop b) @[simp] lemma op_div [Div α] (a b : α) : op (a / b) = op a / op b := rfl @[simp] lemma unop_div [Div α] (a b : αᵃᵒᵖ) : unop (a / b) = unop a / unop b := rfl
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Logic.Equiv.Defs", "Mathlib.Logic.Nontrivial.Basic", "Mathlib.Logic.IsEmpty" ]
Mathlib/Algebra/Opposites.lean
instDiv
null
@[to_additive] SemigroupPEmpty : Semigroup PEmpty.{u + 1} where mul x _ := by cases x mul_assoc x y z := by cases x
instance
Algebra
[ "Mathlib.Algebra.Group.Defs", "Mathlib.Tactic.ToAdditive" ]
Mathlib/Algebra/PEmptyInstances.lean
SemigroupPEmpty
null
@[ext] QuadraticAlgebra (R : Type u) (a b : R) : Type u where /-- Real part of an element in quadratic algebra -/ re : R /-- Imaginary part of an element in quadratic algebra -/ im : R deriving DecidableEq initialize_simps_projections QuadraticAlgebra (as_prefix re, as_prefix im) variable {R : Type*}
structure
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
QuadraticAlgebra
Quadratic algebra over a type with fixed coefficient where $i^2 = a + bi$, implemented as a structure with two fields, `re` and `im`. When `R` is a commutative ring, this is isomorphic to `R[X]/(X^2-b*X-a)`.
@[simps symm_apply] equivProd (a b : R) : QuadraticAlgebra R a b ≃ R × R where toFun z := (z.re, z.im) invFun p := ⟨p.1, p.2⟩ @[simp]
def
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
equivProd
The equivalence between quadratic algebra over `R` and `R × R`.
mk_eta {a b} (z : QuadraticAlgebra R a b) : mk z.re z.im = z := rfl variable {S T : Type*} {a b} (r : R) (x y : QuadraticAlgebra R a b)
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
mk_eta
null
@[coe] coe (x : R) : QuadraticAlgebra R a b := ⟨x, 0⟩
def
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe
Coercion `R → QuadraticAlgebra R a b`.
@[simp, norm_cast] re_coe : (r : QuadraticAlgebra R a b).re = r := rfl @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
re_coe
null
im_coe : (r : QuadraticAlgebra R a b).im = 0 := rfl
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
im_coe
null
coe_injective : Function.Injective (coe : R → QuadraticAlgebra R a b) := fun _ _ h => congr_arg re h @[simp]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_injective
null
coe_inj {x y : R} : (x : QuadraticAlgebra R a b) = y ↔ x = y := coe_injective.eq_iff
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_inj
null
@[simp] re_zero : (0 : QuadraticAlgebra R a b).re = 0 := rfl @[simp] theorem im_zero : (0 : QuadraticAlgebra R a b).im = 0 := rfl @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
re_zero
null
coe_zero : ((0 : R) : QuadraticAlgebra R a b) = 0 := rfl
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_zero
null
@[scoped simp] re_one : (1 : QuadraticAlgebra R a b).re = 1 := rfl @[scoped simp] theorem im_one : (1 : QuadraticAlgebra R a b).im = 0 := rfl @[simp, norm_cast]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
re_one
null
coe_one : ((1 : R) : QuadraticAlgebra R a b) = 1 := rfl
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_one
null
@[simp] re_add (z w : QuadraticAlgebra R a b) : (z + w).re = z.re + w.re := rfl @[simp] theorem im_add (z w : QuadraticAlgebra R a b) : (z + w).im = z.im + w.im := rfl @[simp]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
re_add
null
mk_add_mk (z w : QuadraticAlgebra R a b) : mk z.re z.im + mk w.re w.im = (mk (z.re + w.re) (z.im + w.im) : QuadraticAlgebra R a b) := rfl
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
mk_add_mk
null
@[simp] coe_add (x y : R) : ((x + y : R) : QuadraticAlgebra R a b) = x + y := by ext <;> simp
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_add
null
@[simp] re_neg (z : QuadraticAlgebra R a b) : (-z).re = -z.re := rfl @[simp] theorem im_neg (z : QuadraticAlgebra R a b) : (-z).im = -z.im := rfl @[simp]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
re_neg
null
neg_mk (x y : R) : - (mk x y : QuadraticAlgebra R a b) = ⟨-x, -y⟩ := rfl
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
neg_mk
null
@[simp] coe_neg [NegZeroClass R] (x : R) : ((-x : R) : QuadraticAlgebra R a b) = -x := by ext <;> simp
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_neg
null
@[simp] re_sub [Sub R] (z w : QuadraticAlgebra R a b) : (z - w).re = z.re - w.re := rfl @[simp] theorem im_sub [Sub R] (z w : QuadraticAlgebra R a b) : (z - w).im = z.im - w.im := rfl @[simp]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
re_sub
null
mk_sub_mk [Sub R] (x1 y1 x2 y2 : R) : (mk x1 y1 : QuadraticAlgebra R a b) - mk x2 y2 = mk (x1 - x2) (y1 - y2) := rfl @[norm_cast, simp]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
mk_sub_mk
null
coe_sub (r1 r2 : R) [SubNegZeroMonoid R] : ((r1 - r2 : R) : QuadraticAlgebra R a b) = r1 - r2 := QuadraticAlgebra.ext rfl zero_sub_zero.symm
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
coe_sub
null
@[simp] re_mul (z w : QuadraticAlgebra R a b) : (z * w).re = z.re * w.re + a * z.im * w.im := rfl @[simp] theorem im_mul (z w : QuadraticAlgebra R a b) : (z * w).im = z.re * w.im + z.im * w.re + b * z.im * w.im := rfl @[simp]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
re_mul
null
mk_mul_mk (x1 y1 x2 y2 : R) : (mk x1 y1 : QuadraticAlgebra R a b) * mk x2 y2 = mk (x1 * x2 + a * y1 * y2) (x1 * y2 + y1 * x2 + b * y1 * y2) := rfl
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
mk_mul_mk
null
@[simp] re_smul (s : S) (z : QuadraticAlgebra R a b) : (s • z).re = s • z.re := rfl @[simp] theorem im_smul (s : S) (z : QuadraticAlgebra R a b) : (s • z).im = s • z.im := rfl @[simp]
theorem
Algebra
[ "Mathlib.LinearAlgebra.Dimension.StrongRankCondition", "Mathlib.LinearAlgebra.FreeModule.Finite.Basic" ]
Mathlib/Algebra/QuadraticAlgebra.lean
re_smul
null