fact
stringlengths 6
3.84k
| type
stringclasses 11
values | library
stringclasses 32
values | imports
listlengths 1
14
| filename
stringlengths 20
95
| symbolic_name
stringlengths 1
90
| docstring
stringlengths 7
20k
⌀ |
|---|---|---|---|---|---|---|
SetLike.coe_gnpow {S : Type*} [SetLike S R] [Monoid R] [AddMonoid ι] (A : ι → S)
[SetLike.GradedMonoid A] {i : ι} (x : A i) (n : ℕ) :
↑(@GradedMonoid.GMonoid.gnpow _ (fun i => A i) _ _ n _ x) = (x:R)^n :=
rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.Group.List.Lemmas",
"Mathlib.Algebra.Group.Action.Hom",
"Mathlib.Algebra.Group.Submonoid.Defs",
"Mathlib.Data.List.FinRange",
"Mathlib.Data.SetLike.Basic",
"Mathlib.Data.Sigma.Basic",
"Lean.Elab.Tactic",
"Mathlib.Algebra.BigOperators.Group.Finset.Basic"
] |
Mathlib/Algebra/GradedMonoid.lean
|
SetLike.coe_gnpow
| null |
SetLike.gCommMonoid {S : Type*} [SetLike S R] [CommMonoid R] [AddCommMonoid ι] (A : ι → S)
[SetLike.GradedMonoid A] : GradedMonoid.GCommMonoid fun i => A i :=
{ SetLike.gMonoid A with
mul_comm := fun ⟨_, _, _⟩ ⟨_, _, _⟩ => Sigma.subtype_ext (add_comm _ _) (mul_comm _ _) }
|
instance
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.Group.List.Lemmas",
"Mathlib.Algebra.Group.Action.Hom",
"Mathlib.Algebra.Group.Submonoid.Defs",
"Mathlib.Data.List.FinRange",
"Mathlib.Data.SetLike.Basic",
"Mathlib.Data.Sigma.Basic",
"Lean.Elab.Tactic",
"Mathlib.Algebra.BigOperators.Group.Finset.Basic"
] |
Mathlib/Algebra/GradedMonoid.lean
|
SetLike.gCommMonoid
|
Build a `GCommMonoid` instance for a collection of subobjects.
|
@[simp]
SetLike.coe_list_dProd (A : ι → S) [SetLike.GradedMonoid A] (fι : α → ι)
(fA : ∀ a, A (fι a)) (l : List α) : ↑(@List.dProd _ _ (fun i => ↥(A i)) _ _ l fι fA)
= (List.prod (l.map fun a => fA a) : R) := by
match l with
| [] =>
rw [List.dProd_nil, coe_gOne, List.map_nil, List.prod_nil]
| head::tail =>
rw [List.dProd_cons, coe_gMul, List.map_cons, List.prod_cons,
SetLike.coe_list_dProd _ _ _ tail]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.Group.List.Lemmas",
"Mathlib.Algebra.Group.Action.Hom",
"Mathlib.Algebra.Group.Submonoid.Defs",
"Mathlib.Data.List.FinRange",
"Mathlib.Data.SetLike.Basic",
"Mathlib.Data.Sigma.Basic",
"Lean.Elab.Tactic",
"Mathlib.Algebra.BigOperators.Group.Finset.Basic"
] |
Mathlib/Algebra/GradedMonoid.lean
|
SetLike.coe_list_dProd
| null |
SetLike.list_dProd_eq (A : ι → S) [SetLike.GradedMonoid A] (fι : α → ι) (fA : ∀ a, A (fι a))
(l : List α) :
(@List.dProd _ _ (fun i => ↥(A i)) _ _ l fι fA) =
⟨List.prod (l.map fun a => fA a),
(l.dProdIndex_eq_map_sum fι).symm ▸
list_prod_map_mem_graded l _ _ fun i _ => (fA i).prop⟩ :=
Subtype.ext <| SetLike.coe_list_dProd _ _ _ _
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.Group.List.Lemmas",
"Mathlib.Algebra.Group.Action.Hom",
"Mathlib.Algebra.Group.Submonoid.Defs",
"Mathlib.Data.List.FinRange",
"Mathlib.Data.SetLike.Basic",
"Mathlib.Data.Sigma.Basic",
"Lean.Elab.Tactic",
"Mathlib.Algebra.BigOperators.Group.Finset.Basic"
] |
Mathlib/Algebra/GradedMonoid.lean
|
SetLike.list_dProd_eq
|
A version of `List.coe_dProd_set_like` with `Subtype.mk`.
|
SetLike.IsHomogeneousElem (A : ι → S) (a : R) : Prop :=
∃ i, a ∈ A i
@[simp]
|
def
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.Group.List.Lemmas",
"Mathlib.Algebra.Group.Action.Hom",
"Mathlib.Algebra.Group.Submonoid.Defs",
"Mathlib.Data.List.FinRange",
"Mathlib.Data.SetLike.Basic",
"Mathlib.Data.Sigma.Basic",
"Lean.Elab.Tactic",
"Mathlib.Algebra.BigOperators.Group.Finset.Basic"
] |
Mathlib/Algebra/GradedMonoid.lean
|
SetLike.IsHomogeneousElem
|
An element `a : R` is said to be homogeneous if there is some `i : ι` such that `a ∈ A i`.
|
SetLike.isHomogeneousElem_coe {A : ι → S} {i} (x : A i) :
SetLike.IsHomogeneousElem A (x : R) :=
⟨i, x.prop⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.Group.List.Lemmas",
"Mathlib.Algebra.Group.Action.Hom",
"Mathlib.Algebra.Group.Submonoid.Defs",
"Mathlib.Data.List.FinRange",
"Mathlib.Data.SetLike.Basic",
"Mathlib.Data.Sigma.Basic",
"Lean.Elab.Tactic",
"Mathlib.Algebra.BigOperators.Group.Finset.Basic"
] |
Mathlib/Algebra/GradedMonoid.lean
|
SetLike.isHomogeneousElem_coe
| null |
SetLike.isHomogeneousElem_one [Zero ι] [One R] (A : ι → S) [SetLike.GradedOne A] :
SetLike.IsHomogeneousElem A (1 : R) :=
⟨0, SetLike.one_mem_graded _⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.Group.List.Lemmas",
"Mathlib.Algebra.Group.Action.Hom",
"Mathlib.Algebra.Group.Submonoid.Defs",
"Mathlib.Data.List.FinRange",
"Mathlib.Data.SetLike.Basic",
"Mathlib.Data.Sigma.Basic",
"Lean.Elab.Tactic",
"Mathlib.Algebra.BigOperators.Group.Finset.Basic"
] |
Mathlib/Algebra/GradedMonoid.lean
|
SetLike.isHomogeneousElem_one
| null |
SetLike.IsHomogeneousElem.mul [Add ι] [Mul R] {A : ι → S} [SetLike.GradedMul A] {a b : R} :
SetLike.IsHomogeneousElem A a → SetLike.IsHomogeneousElem A b →
SetLike.IsHomogeneousElem A (a * b)
| ⟨i, hi⟩, ⟨j, hj⟩ => ⟨i + j, SetLike.mul_mem_graded hi hj⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.Group.List.Lemmas",
"Mathlib.Algebra.Group.Action.Hom",
"Mathlib.Algebra.Group.Submonoid.Defs",
"Mathlib.Data.List.FinRange",
"Mathlib.Data.SetLike.Basic",
"Mathlib.Data.Sigma.Basic",
"Lean.Elab.Tactic",
"Mathlib.Algebra.BigOperators.Group.Finset.Basic"
] |
Mathlib/Algebra/GradedMonoid.lean
|
SetLike.IsHomogeneousElem.mul
| null |
SetLike.homogeneousSubmonoid [AddMonoid ι] [Monoid R] (A : ι → S) [SetLike.GradedMonoid A] :
Submonoid R where
carrier := { a | SetLike.IsHomogeneousElem A a }
one_mem' := SetLike.isHomogeneousElem_one A
mul_mem' a b := SetLike.IsHomogeneousElem.mul a b
|
def
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.Group.List.Lemmas",
"Mathlib.Algebra.Group.Action.Hom",
"Mathlib.Algebra.Group.Submonoid.Defs",
"Mathlib.Data.List.FinRange",
"Mathlib.Data.SetLike.Basic",
"Mathlib.Data.Sigma.Basic",
"Lean.Elab.Tactic",
"Mathlib.Algebra.BigOperators.Group.Finset.Basic"
] |
Mathlib/Algebra/GradedMonoid.lean
|
SetLike.homogeneousSubmonoid
|
When `A` is a `SetLike.GradedMonoid A`, then the homogeneous elements forms a submonoid.
|
prod_mem_graded (hF : ∀ k ∈ F, g k ∈ A (i k)) : ∏ k ∈ F, g k ∈ A (∑ k ∈ F, i k) := by
classical
induction F using Finset.induction_on
· simp [GradedOne.one_mem]
· case insert j F' hF2 h3 =>
rw [Finset.prod_insert hF2, Finset.sum_insert hF2]
apply SetLike.mul_mem_graded (by grind)
grind
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.Group.List.Lemmas",
"Mathlib.Algebra.Group.Action.Hom",
"Mathlib.Algebra.Group.Submonoid.Defs",
"Mathlib.Data.List.FinRange",
"Mathlib.Data.SetLike.Basic",
"Mathlib.Data.Sigma.Basic",
"Lean.Elab.Tactic",
"Mathlib.Algebra.BigOperators.Group.Finset.Basic"
] |
Mathlib/Algebra/GradedMonoid.lean
|
prod_mem_graded
| null |
prod_pow_mem_graded (n : κ → ℕ) (hF : ∀ k ∈ F, g k ∈ A (i k)) :
∏ k ∈ F, g k ^ n k ∈ A (∑ k ∈ F, n k • i k) :=
prod_mem_graded A _ _ fun k hk ↦ pow_mem_graded _ (hF k hk)
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.BigOperators.Group.List.Lemmas",
"Mathlib.Algebra.Group.Action.Hom",
"Mathlib.Algebra.Group.Submonoid.Defs",
"Mathlib.Data.List.FinRange",
"Mathlib.Data.SetLike.Basic",
"Mathlib.Data.Sigma.Basic",
"Lean.Elab.Tactic",
"Mathlib.Algebra.BigOperators.Group.Finset.Basic"
] |
Mathlib/Algebra/GradedMonoid.lean
|
prod_pow_mem_graded
| null |
GSMul [VAdd ιA ιM] where
/-- The homogeneous multiplication map `smul` -/
smul {i j} : A i → M j → M (i +ᵥ j)
|
class
|
Algebra
|
[
"Mathlib.Algebra.GradedMonoid"
] |
Mathlib/Algebra/GradedMulAction.lean
|
GSMul
|
A graded version of `SMul`. Scalar multiplication combines grades additively, i.e.
if `a ∈ A i` and `m ∈ M j`, then `a • b` must be in `M (i + j)`.
|
GMul.toGSMul [Add ιA] [GMul A] : GSMul A A where smul := GMul.mul
|
instance
|
Algebra
|
[
"Mathlib.Algebra.GradedMonoid"
] |
Mathlib/Algebra/GradedMulAction.lean
|
GMul.toGSMul
|
A graded version of `Mul.toSMul`
|
GSMul.toSMul [VAdd ιA ιM] [GSMul A M] : SMul (GradedMonoid A) (GradedMonoid M) :=
⟨fun x y ↦ ⟨_, GSMul.smul x.snd y.snd⟩⟩
|
instance
|
Algebra
|
[
"Mathlib.Algebra.GradedMonoid"
] |
Mathlib/Algebra/GradedMulAction.lean
|
GSMul.toSMul
| null |
mk_smul_mk [VAdd ιA ιM] [GSMul A M] {i j} (a : A i) (b : M j) :
mk i a • mk j b = mk (i +ᵥ j) (GSMul.smul a b) :=
rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.GradedMonoid"
] |
Mathlib/Algebra/GradedMulAction.lean
|
mk_smul_mk
| null |
GMulAction [AddMonoid ιA] [VAdd ιA ιM] [GMonoid A] extends GSMul A M where
/-- One is the neutral element for `•` -/
one_smul (b : GradedMonoid M) : (1 : GradedMonoid A) • b = b
/-- Associativity of `•` and `*` -/
mul_smul (a a' : GradedMonoid A) (b : GradedMonoid M) : (a * a') • b = a • a' • b
|
class
|
Algebra
|
[
"Mathlib.Algebra.GradedMonoid"
] |
Mathlib/Algebra/GradedMulAction.lean
|
GMulAction
|
A graded version of `MulAction`.
|
GMonoid.toGMulAction [AddMonoid ιA] [GMonoid A] : GMulAction A A :=
{ GMul.toGSMul _ with
one_smul := GMonoid.one_mul
mul_smul := GMonoid.mul_assoc }
|
instance
|
Algebra
|
[
"Mathlib.Algebra.GradedMonoid"
] |
Mathlib/Algebra/GradedMulAction.lean
|
GMonoid.toGMulAction
|
The graded version of `Monoid.toMulAction`.
|
GMulAction.toMulAction [AddMonoid ιA] [GMonoid A] [VAdd ιA ιM] [GMulAction A M] :
MulAction (GradedMonoid A) (GradedMonoid M) where
one_smul := GMulAction.one_smul
mul_smul := GMulAction.mul_smul
|
instance
|
Algebra
|
[
"Mathlib.Algebra.GradedMonoid"
] |
Mathlib/Algebra/GradedMulAction.lean
|
GMulAction.toMulAction
| null |
SetLike.GradedSMul {S R N M : Type*} [SetLike S R] [SetLike N M] [SMul R M] [VAdd ιA ιB]
(A : ιA → S) (B : ιB → N) : Prop where
/-- Multiplication is homogeneous -/
smul_mem : ∀ ⦃i : ιA⦄ ⦃j : ιB⦄ {ai bj}, ai ∈ A i → bj ∈ B j → ai • bj ∈ B (i +ᵥ j)
|
class
|
Algebra
|
[
"Mathlib.Algebra.GradedMonoid"
] |
Mathlib/Algebra/GradedMulAction.lean
|
SetLike.GradedSMul
|
A version of `GradedMonoid.GSMul` for internally graded objects.
|
SetLike.toGSMul {S R N M : Type*} [SetLike S R] [SetLike N M] [SMul R M] [VAdd ιA ιB]
(A : ιA → S) (B : ιB → N) [SetLike.GradedSMul A B] :
GradedMonoid.GSMul (fun i ↦ A i) fun i ↦ B i where
smul a b := ⟨a.1 • b.1, SetLike.GradedSMul.smul_mem a.2 b.2⟩
@[simp]
|
instance
|
Algebra
|
[
"Mathlib.Algebra.GradedMonoid"
] |
Mathlib/Algebra/GradedMulAction.lean
|
SetLike.toGSMul
| null |
SetLike.coe_GSMul {S R N M : Type*} [SetLike S R] [SetLike N M] [SMul R M] [VAdd ιA ιB]
(A : ιA → S) (B : ιB → N) [SetLike.GradedSMul A B] {i : ιA} {j : ιB} (x : A i) (y : B j) :
(@GradedMonoid.GSMul.smul ιA ιB (fun i ↦ A i) (fun i ↦ B i) _ _ i j x y : M) = x.1 • y.1 :=
rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.GradedMonoid"
] |
Mathlib/Algebra/GradedMulAction.lean
|
SetLike.coe_GSMul
| null |
SetLike.GradedMul.toGradedSMul [AddMonoid ιA] [Monoid R] {S : Type*} [SetLike S R]
(A : ιA → S) [SetLike.GradedMonoid A] : SetLike.GradedSMul A A where
smul_mem _ _ _ _ hi hj := SetLike.GradedMonoid.toGradedMul.mul_mem hi hj
|
instance
|
Algebra
|
[
"Mathlib.Algebra.GradedMonoid"
] |
Mathlib/Algebra/GradedMulAction.lean
|
SetLike.GradedMul.toGradedSMul
|
Internally graded version of `Mul.toSMul`.
|
SetLike.IsHomogeneousElem.graded_smul [VAdd ιA ιB] [SMul R M] {A : ιA → S} {B : ιB → N}
[SetLike.GradedSMul A B] {a : R} {b : M} :
SetLike.IsHomogeneousElem A a → SetLike.IsHomogeneousElem B b →
SetLike.IsHomogeneousElem B (a • b)
| ⟨i, hi⟩, ⟨j, hj⟩ => ⟨i +ᵥ j, SetLike.GradedSMul.smul_mem hi hj⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.GradedMonoid"
] |
Mathlib/Algebra/GradedMulAction.lean
|
SetLike.IsHomogeneousElem.graded_smul
| null |
SubY.toZ [Z α] : Z (SubY α) :=
coe_injective.Z coe ...
```
|
instance
|
Algebra
|
[
"Mathlib.Init",
"Batteries.Util.LibraryNote"
] |
Mathlib/Algebra/HierarchyDesign.lean
|
SubY.toZ
| null |
IsPrimePow : Prop :=
∃ (p : R) (k : ℕ), Prime p ∧ 0 < k ∧ p ^ k = n
|
def
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
IsPrimePow
|
`n` is a prime power if there is a prime `p` and a positive natural `k` such that `n` can be
written as `p^k`.
|
isPrimePow_def : IsPrimePow n ↔ ∃ (p : R) (k : ℕ), Prime p ∧ 0 < k ∧ p ^ k = n :=
Iff.rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
isPrimePow_def
| null |
isPrimePow_iff_pow_succ : IsPrimePow n ↔ ∃ (p : R) (k : ℕ), Prime p ∧ p ^ (k + 1) = n :=
(isPrimePow_def _).trans
⟨fun ⟨p, k, hp, hk, hn⟩ => ⟨p, k - 1, hp, by rwa [Nat.sub_add_cancel hk]⟩, fun ⟨_, _, hp, hn⟩ =>
⟨_, _, hp, Nat.succ_pos', hn⟩⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
isPrimePow_iff_pow_succ
|
An equivalent definition for prime powers: `n` is a prime power iff there is a prime `p` and a
natural `k` such that `n` can be written as `p^(k+1)`.
|
not_isPrimePow_zero [NoZeroDivisors R] : ¬IsPrimePow (0 : R) := by
simp only [isPrimePow_def, not_exists, not_and', and_imp]
intro x n _hn hx
rw [pow_eq_zero hx]
simp
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
not_isPrimePow_zero
| null |
IsPrimePow.not_unit {n : R} (h : IsPrimePow n) : ¬IsUnit n :=
let ⟨_p, _k, hp, hk, hn⟩ := h
hn ▸ (isUnit_pow_iff hk.ne').not.mpr hp.not_unit
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
IsPrimePow.not_unit
| null |
IsUnit.not_isPrimePow {n : R} (h : IsUnit n) : ¬IsPrimePow n := fun h' => h'.not_unit h
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
IsUnit.not_isPrimePow
| null |
not_isPrimePow_one : ¬IsPrimePow (1 : R) :=
isUnit_one.not_isPrimePow
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
not_isPrimePow_one
| null |
Prime.isPrimePow {p : R} (hp : Prime p) : IsPrimePow p :=
⟨p, 1, hp, zero_lt_one, by simp⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
Prime.isPrimePow
| null |
IsPrimePow.pow {n : R} (hn : IsPrimePow n) {k : ℕ} (hk : k ≠ 0) : IsPrimePow (n ^ k) :=
let ⟨p, k', hp, hk', hn⟩ := hn
⟨p, k * k', hp, mul_pos hk.bot_lt hk', by rw [pow_mul', hn]⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
IsPrimePow.pow
| null |
IsPrimePow.ne_zero [NoZeroDivisors R] {n : R} (h : IsPrimePow n) : n ≠ 0 := fun t =>
not_isPrimePow_zero (t ▸ h)
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
IsPrimePow.ne_zero
| null |
IsPrimePow.ne_one {n : R} (h : IsPrimePow n) : n ≠ 1 := fun t =>
not_isPrimePow_one (t ▸ h)
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
IsPrimePow.ne_one
| null |
isPrimePow_nat_iff (n : ℕ) : IsPrimePow n ↔ ∃ p k : ℕ, Nat.Prime p ∧ 0 < k ∧ p ^ k = n := by
simp only [isPrimePow_def, Nat.prime_iff]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
isPrimePow_nat_iff
| null |
Nat.Prime.isPrimePow {p : ℕ} (hp : p.Prime) : IsPrimePow p :=
_root_.Prime.isPrimePow (prime_iff.mp hp)
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
Nat.Prime.isPrimePow
| null |
isPrimePow_nat_iff_bounded (n : ℕ) :
IsPrimePow n ↔ ∃ p : ℕ, p ≤ n ∧ ∃ k : ℕ, k ≤ n ∧ p.Prime ∧ 0 < k ∧ p ^ k = n := by
rw [isPrimePow_nat_iff]
refine Iff.symm ⟨fun ⟨p, _, k, _, hp, hk, hn⟩ => ⟨p, k, hp, hk, hn⟩, ?_⟩
rintro ⟨p, k, hp, hk, rfl⟩
refine ⟨p, ?_, k, (Nat.lt_pow_self hp.one_lt).le, hp, hk, rfl⟩
conv => { lhs; rw [← (pow_one p)] }
exact Nat.pow_le_pow_right hp.one_lt.le hk
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
isPrimePow_nat_iff_bounded
| null |
isPrimePow_nat_iff_bounded_log (n : ℕ) :
IsPrimePow n
↔ ∃ k : ℕ, k ≤ Nat.log 2 n ∧ 0 < k ∧ ∃ p : ℕ, p ≤ n ∧ n = p ^ k ∧ p.Prime := by
rw [isPrimePow_nat_iff]
constructor
· rintro ⟨p, k, hp', hk', rfl⟩
refine ⟨k, ?_, hk', ⟨p, Nat.le_pow hk', rfl, hp'⟩⟩
· calc
k = Nat.log 2 (2 ^ k) := by simp
_ ≤ Nat.log 2 (p ^ k) := Nat.log_mono Nat.one_lt_two Nat.AtLeastTwo.prop
(Nat.pow_le_pow_left (Nat.Prime.two_le hp') k)
· rintro ⟨k, hk, hk', ⟨p, hp, rfl, hp'⟩⟩
exact ⟨p, k, hp', hk', rfl⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
isPrimePow_nat_iff_bounded_log
| null |
isPrimePow_nat_iff_bounded_log_minFac (n : ℕ) :
IsPrimePow n
↔ ∃ k : ℕ, k ≤ Nat.log 2 n ∧ 0 < k ∧ n = n.minFac ^ k := by
rw [isPrimePow_nat_iff_bounded_log]
obtain rfl | h := eq_or_ne n 1
· simp
constructor
· rintro ⟨k, hkle, hk_pos, p, hle, heq, hprime⟩
refine ⟨k, hkle, hk_pos, ?_⟩
rw [heq, hprime.pow_minFac hk_pos.ne']
· rintro ⟨k, hkle, hk_pos, heq⟩
refine ⟨k, hkle, hk_pos, n.minFac, Nat.minFac_le ?_, heq, ?_⟩
· grind [Nat.minFac_prime_iff, nonpos_iff_eq_zero, Nat.log_zero_right, lt_self_iff_false]
· grind [Nat.minFac_prime_iff]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
isPrimePow_nat_iff_bounded_log_minFac
| null |
IsPrimePow.dvd {n m : ℕ} (hn : IsPrimePow n) (hm : m ∣ n) (hm₁ : m ≠ 1) : IsPrimePow m := by
grind [isPrimePow_nat_iff, Nat.dvd_prime_pow, Nat.pow_eq_one]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
IsPrimePow.dvd
| null |
IsPrimePow.two_le : ∀ {n : ℕ}, IsPrimePow n → 2 ≤ n
| 0, h => (not_isPrimePow_zero h).elim
| 1, h => (not_isPrimePow_one h).elim
| _n + 2, _ => le_add_self
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
IsPrimePow.two_le
| null |
IsPrimePow.pos {n : ℕ} (hn : IsPrimePow n) : 0 < n :=
pos_of_gt hn.two_le
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
IsPrimePow.pos
| null |
IsPrimePow.one_lt {n : ℕ} (h : IsPrimePow n) : 1 < n :=
h.two_le
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Order.Ring.Nat",
"Mathlib.Order.Nat",
"Mathlib.Data.Nat.Prime.Basic",
"Mathlib.Data.Nat.Log",
"Mathlib.Data.Nat.Prime.Pow"
] |
Mathlib/Algebra/IsPrimePow.lean
|
IsPrimePow.one_lt
| null |
LinearRecurrence (R : Type*) [CommSemiring R] where
/-- Order of the linear recurrence -/
order : ℕ
/-- Coefficients of the linear recurrence -/
coeffs : Fin order → R
|
structure
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
LinearRecurrence
|
A "linear recurrence relation" over a commutative semiring is given by its
order `n` and `n` coefficients.
|
IsSolution (u : ℕ → R) :=
∀ n, u (n + E.order) = ∑ i, E.coeffs i * u (n + i)
|
def
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
IsSolution
|
We say that a sequence `u` is solution of `LinearRecurrence order coeffs` when we have
`u (n + order) = ∑ i : Fin order, coeffs i * u (n + i)` for any `n`.
|
mkSol (init : Fin E.order → R) : ℕ → R
| n =>
if h : n < E.order then init ⟨n, h⟩
else
∑ k : Fin E.order,
have _ : n - E.order + k < n := by omega
E.coeffs k * mkSol init (n - E.order + k)
|
def
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
mkSol
|
A solution of a `LinearRecurrence` which satisfies certain initial conditions.
We will prove this is the only such solution.
|
is_sol_mkSol (init : Fin E.order → R) : E.IsSolution (E.mkSol init) := by
intro n
rw [mkSol]
simp
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
is_sol_mkSol
|
`E.mkSol` indeed gives solutions to `E`.
|
mkSol_eq_init (init : Fin E.order → R) : ∀ n : Fin E.order, E.mkSol init n = init n := by
intro n
rw [mkSol]
simp only [n.is_lt, dif_pos, Fin.mk_val]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
mkSol_eq_init
|
`E.mkSol init`'s first `E.order` terms are `init`.
|
eq_mk_of_is_sol_of_eq_init {u : ℕ → R} {init : Fin E.order → R} (h : E.IsSolution u)
(heq : ∀ n : Fin E.order, u n = init n) : ∀ n, u n = E.mkSol init n := by
intro n
rw [mkSol]
split_ifs with h'
· exact mod_cast heq ⟨n, h'⟩
· dsimp only
rw [← tsub_add_cancel_of_le (le_of_not_gt h'), h (n - E.order)]
congr with k
rw [eq_mk_of_is_sol_of_eq_init h heq (n - E.order + k)]
simp
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
eq_mk_of_is_sol_of_eq_init
|
If `u` is a solution to `E` and `init` designates its first `E.order` values,
then `∀ n, u n = E.mkSol init n`.
|
eq_mk_of_is_sol_of_eq_init' {u : ℕ → R} {init : Fin E.order → R} (h : E.IsSolution u)
(heq : ∀ n : Fin E.order, u n = init n) : u = E.mkSol init :=
funext (E.eq_mk_of_is_sol_of_eq_init h heq)
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
eq_mk_of_is_sol_of_eq_init'
|
If `u` is a solution to `E` and `init` designates its first `E.order` values,
then `u = E.mkSol init`. This proves that `E.mkSol init` is the only solution
of `E` whose first `E.order` values are given by `init`.
|
solSpace : Submodule R (ℕ → R) where
carrier := { u | E.IsSolution u }
zero_mem' n := by simp
add_mem' {u v} hu hv n := by simp [mul_add, sum_add_distrib, hu n, hv n]
smul_mem' a u hu n := by simp [hu n, mul_sum]; congr; ext; ac_rfl
|
def
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
solSpace
|
The space of solutions of `E`, as a `Submodule` over `R` of the module `ℕ → R`.
|
is_sol_iff_mem_solSpace (u : ℕ → R) : E.IsSolution u ↔ u ∈ E.solSpace :=
Iff.rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
is_sol_iff_mem_solSpace
|
Defining property of the solution space : `u` is a solution
iff it belongs to the solution space.
|
toInit : E.solSpace ≃ₗ[R] Fin E.order → R where
toFun u x := (u : ℕ → R) x
map_add' u v := by
ext
simp
map_smul' a u := by
ext
simp
invFun u := ⟨E.mkSol u, E.is_sol_mkSol u⟩
left_inv u := by ext n; symm; apply E.eq_mk_of_is_sol_of_eq_init u.2; intro k; rfl
right_inv u := funext_iff.mpr fun n ↦ E.mkSol_eq_init u n
|
def
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
toInit
|
The function that maps a solution `u` of `E` to its first
`E.order` terms as a `LinearEquiv`.
|
sol_eq_of_eq_init (u v : ℕ → R) (hu : E.IsSolution u) (hv : E.IsSolution v) :
u = v ↔ Set.EqOn u v ↑(range E.order) := by
refine Iff.intro (fun h x _ ↦ h ▸ rfl) ?_
intro h
set u' : ↥E.solSpace := ⟨u, hu⟩
set v' : ↥E.solSpace := ⟨v, hv⟩
change u'.val = v'.val
suffices h' : u' = v' from h' ▸ rfl
rw [← E.toInit.toEquiv.apply_eq_iff_eq, LinearEquiv.coe_toEquiv]
ext x
exact mod_cast h (mem_range.mpr x.2)
/-! `E.tupleSucc` maps `![s₀, s₁, ..., sₙ]` to `![s₁, ..., sₙ, ∑ (E.coeffs i) * sᵢ]`,
where `n := E.order`. This operation is quite useful for determining closed-form
solutions of `E`. -/
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
sol_eq_of_eq_init
|
Two solutions are equal iff they are equal on `range E.order`.
|
tupleSucc : (Fin E.order → R) →ₗ[R] Fin E.order → R where
toFun X i := if h : (i : ℕ) + 1 < E.order then X ⟨i + 1, h⟩ else ∑ i, E.coeffs i * X i
map_add' x y := by
ext i
split_ifs with h <;> simp [h, mul_add, sum_add_distrib]
map_smul' x y := by
ext i
split_ifs with h <;> simp [h, mul_sum]
exact sum_congr rfl fun x _ ↦ by ac_rfl
|
def
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
tupleSucc
|
`E.tupleSucc` maps `![s₀, s₁, ..., sₙ]` to `![s₁, ..., sₙ, ∑ (E.coeffs i) * sᵢ]`,
where `n := E.order`.
|
solSpace_rank : Module.rank R E.solSpace = E.order :=
letI := nontrivial_of_invariantBasisNumber R
@rank_fin_fun R _ _ E.order ▸ E.toInit.rank_eq
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
solSpace_rank
|
The dimension of `E.solSpace` is `E.order`.
|
charPoly : R[X] :=
Polynomial.monomial E.order 1 - ∑ i : Fin E.order, Polynomial.monomial i (E.coeffs i)
|
def
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
charPoly
|
The characteristic polynomial of `E` is
`X ^ E.order - ∑ i : Fin E.order, (E.coeffs i) * X ^ i`.
|
geom_sol_iff_root_charPoly (q : R) :
(E.IsSolution fun n ↦ q ^ n) ↔ E.charPoly.IsRoot q := by
rw [charPoly, Polynomial.IsRoot.def, Polynomial.eval]
simp only [Polynomial.eval₂_finset_sum, one_mul, RingHom.id_apply, Polynomial.eval₂_monomial,
Polynomial.eval₂_sub]
constructor
· intro h
simpa [sub_eq_zero] using h 0
· intro h n
simp only [pow_add, sub_eq_zero.mp h, mul_sum]
exact sum_congr rfl fun _ _ ↦ by ring
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Polynomial.Eval.Defs",
"Mathlib.LinearAlgebra.Dimension.Constructions"
] |
Mathlib/Algebra/LinearRecurrence.lean
|
geom_sol_iff_root_charPoly
|
The geometric sequence `q^n` is a solution of `E` iff
`q` is a root of `E`'s characteristic polynomial.
|
ModEq (p a b : α) : Prop :=
∃ z : ℤ, b - a = z • p
@[inherit_doc]
notation:50 a " ≡ " b " [PMOD " p "]" => ModEq p a b
@[refl, simp]
|
def
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
ModEq
|
`a ≡ b [PMOD p]` means that `b` is congruent to `a` modulo `p`.
Equivalently (as shown in `Algebra.Order.ToIntervalMod`), `b` does not lie in the open interval
`(a, a + p)` modulo `p`, or `toIcoMod hp a` disagrees with `toIocMod hp a` at `b`, or
`toIcoDiv hp a` disagrees with `toIocDiv hp a` at `b`.
|
modEq_refl (a : α) : a ≡ a [PMOD p] :=
⟨0, by simp⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
modEq_refl
| null |
modEq_rfl : a ≡ a [PMOD p] :=
modEq_refl _
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
modEq_rfl
| null |
modEq_comm : a ≡ b [PMOD p] ↔ b ≡ a [PMOD p] :=
(Equiv.neg _).exists_congr_left.trans <| by simp [ModEq, ← neg_eq_iff_eq_neg]
alias ⟨ModEq.symm, _⟩ := modEq_comm
attribute [symm] ModEq.symm
@[trans]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
modEq_comm
| null |
ModEq.trans : a ≡ b [PMOD p] → b ≡ c [PMOD p] → a ≡ c [PMOD p] := fun ⟨m, hm⟩ ⟨n, hn⟩ =>
⟨m + n, by simp [add_smul, ← hm, ← hn]⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
ModEq.trans
| null |
@[simp]
neg_modEq_neg : -a ≡ -b [PMOD p] ↔ a ≡ b [PMOD p] :=
modEq_comm.trans <| by simp [ModEq, neg_add_eq_sub]
alias ⟨ModEq.of_neg, ModEq.neg⟩ := neg_modEq_neg
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
neg_modEq_neg
| null |
modEq_neg : a ≡ b [PMOD -p] ↔ a ≡ b [PMOD p] :=
modEq_comm.trans <| by simp [ModEq, ← neg_eq_iff_eq_neg]
alias ⟨ModEq.of_neg', ModEq.neg'⟩ := modEq_neg
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
modEq_neg
| null |
modEq_sub (a b : α) : a ≡ b [PMOD b - a] :=
⟨1, (one_smul _ _).symm⟩
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
modEq_sub
| null |
modEq_zero : a ≡ b [PMOD 0] ↔ a = b := by simp [ModEq, sub_eq_zero, eq_comm]
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
modEq_zero
| null |
self_modEq_zero : p ≡ 0 [PMOD p] :=
⟨-1, by simp⟩
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
self_modEq_zero
| null |
zsmul_modEq_zero (z : ℤ) : z • p ≡ 0 [PMOD p] :=
⟨-z, by simp⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
zsmul_modEq_zero
| null |
add_zsmul_modEq (z : ℤ) : a + z • p ≡ a [PMOD p] :=
⟨-z, by simp⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
add_zsmul_modEq
| null |
zsmul_add_modEq (z : ℤ) : z • p + a ≡ a [PMOD p] :=
⟨-z, by simp⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
zsmul_add_modEq
| null |
add_nsmul_modEq (n : ℕ) : a + n • p ≡ a [PMOD p] :=
⟨-n, by simp⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
add_nsmul_modEq
| null |
nsmul_add_modEq (n : ℕ) : n • p + a ≡ a [PMOD p] :=
⟨-n, by simp⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
nsmul_add_modEq
| null |
protected add_zsmul (z : ℤ) : a ≡ b [PMOD p] → a + z • p ≡ b [PMOD p] :=
(add_zsmul_modEq _).trans
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
add_zsmul
| null |
protected zsmul_add (z : ℤ) : a ≡ b [PMOD p] → z • p + a ≡ b [PMOD p] :=
(zsmul_add_modEq _).trans
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
zsmul_add
| null |
protected add_nsmul (n : ℕ) : a ≡ b [PMOD p] → a + n • p ≡ b [PMOD p] :=
(add_nsmul_modEq _).trans
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
add_nsmul
| null |
protected nsmul_add (n : ℕ) : a ≡ b [PMOD p] → n • p + a ≡ b [PMOD p] :=
(nsmul_add_modEq _).trans
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
nsmul_add
| null |
protected of_zsmul : a ≡ b [PMOD z • p] → a ≡ b [PMOD p] := fun ⟨m, hm⟩ =>
⟨m * z, by rwa [mul_smul]⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
of_zsmul
| null |
protected of_nsmul : a ≡ b [PMOD n • p] → a ≡ b [PMOD p] := fun ⟨m, hm⟩ =>
⟨m * n, by rwa [mul_smul, natCast_zsmul]⟩
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
of_nsmul
| null |
protected zsmul : a ≡ b [PMOD p] → z • a ≡ z • b [PMOD z • p] :=
Exists.imp fun m hm => by rw [← smul_sub, hm, smul_comm]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
zsmul
| null |
protected nsmul : a ≡ b [PMOD p] → n • a ≡ n • b [PMOD n • p] :=
Exists.imp fun m hm => by rw [← smul_sub, hm, smul_comm]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
nsmul
| null |
@[simp]
zsmul_modEq_zsmul [NoZeroSMulDivisors ℤ α] (hn : z ≠ 0) :
z • a ≡ z • b [PMOD z • p] ↔ a ≡ b [PMOD p] :=
exists_congr fun m => by rw [← smul_sub, smul_comm, smul_right_inj hn]
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
zsmul_modEq_zsmul
| null |
nsmul_modEq_nsmul [NoZeroSMulDivisors ℕ α] (hn : n ≠ 0) :
n • a ≡ n • b [PMOD n • p] ↔ a ≡ b [PMOD p] :=
exists_congr fun m => by rw [← smul_sub, smul_comm, smul_right_inj hn]
alias ⟨ModEq.zsmul_cancel, _⟩ := zsmul_modEq_zsmul
alias ⟨ModEq.nsmul_cancel, _⟩ := nsmul_modEq_nsmul
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
nsmul_modEq_nsmul
| null |
@[simp]
protected add_iff_left :
a₁ ≡ b₁ [PMOD p] → (a₁ + a₂ ≡ b₁ + b₂ [PMOD p] ↔ a₂ ≡ b₂ [PMOD p]) := fun ⟨m, hm⟩ =>
(Equiv.addLeft m).symm.exists_congr_left.trans <| by simp [add_sub_add_comm, hm, add_smul, ModEq]
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
add_iff_left
| null |
protected add_iff_right :
a₂ ≡ b₂ [PMOD p] → (a₁ + a₂ ≡ b₁ + b₂ [PMOD p] ↔ a₁ ≡ b₁ [PMOD p]) := fun ⟨m, hm⟩ =>
(Equiv.addRight m).symm.exists_congr_left.trans <| by simp [add_sub_add_comm, hm, add_smul, ModEq]
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
add_iff_right
| null |
protected sub_iff_left :
a₁ ≡ b₁ [PMOD p] → (a₁ - a₂ ≡ b₁ - b₂ [PMOD p] ↔ a₂ ≡ b₂ [PMOD p]) := fun ⟨m, hm⟩ =>
(Equiv.subLeft m).symm.exists_congr_left.trans <| by simp [sub_sub_sub_comm, hm, sub_smul, ModEq]
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
sub_iff_left
| null |
protected sub_iff_right :
a₂ ≡ b₂ [PMOD p] → (a₁ - a₂ ≡ b₁ - b₂ [PMOD p] ↔ a₁ ≡ b₁ [PMOD p]) := fun ⟨m, hm⟩ =>
(Equiv.subRight m).symm.exists_congr_left.trans <| by simp [sub_sub_sub_comm, hm, sub_smul, ModEq]
protected alias ⟨add_left_cancel, add⟩ := ModEq.add_iff_left
protected alias ⟨add_right_cancel, _⟩ := ModEq.add_iff_right
protected alias ⟨sub_left_cancel, sub⟩ := ModEq.sub_iff_left
protected alias ⟨sub_right_cancel, _⟩ := ModEq.sub_iff_right
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
sub_iff_right
| null |
protected add_left (c : α) (h : a ≡ b [PMOD p]) : c + a ≡ c + b [PMOD p] :=
modEq_rfl.add h
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
add_left
| null |
protected sub_left (c : α) (h : a ≡ b [PMOD p]) : c - a ≡ c - b [PMOD p] :=
modEq_rfl.sub h
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
sub_left
| null |
protected add_right (c : α) (h : a ≡ b [PMOD p]) : a + c ≡ b + c [PMOD p] :=
h.add modEq_rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
add_right
| null |
protected sub_right (c : α) (h : a ≡ b [PMOD p]) : a - c ≡ b - c [PMOD p] :=
h.sub modEq_rfl
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
sub_right
| null |
protected add_left_cancel' (c : α) : c + a ≡ c + b [PMOD p] → a ≡ b [PMOD p] :=
modEq_rfl.add_left_cancel
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
add_left_cancel'
| null |
protected add_right_cancel' (c : α) : a + c ≡ b + c [PMOD p] → a ≡ b [PMOD p] :=
modEq_rfl.add_right_cancel
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
add_right_cancel'
| null |
protected sub_left_cancel' (c : α) : c - a ≡ c - b [PMOD p] → a ≡ b [PMOD p] :=
modEq_rfl.sub_left_cancel
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
sub_left_cancel'
| null |
protected sub_right_cancel' (c : α) : a - c ≡ b - c [PMOD p] → a ≡ b [PMOD p] :=
modEq_rfl.sub_right_cancel
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
sub_right_cancel'
| null |
modEq_sub_iff_add_modEq' : a ≡ b - c [PMOD p] ↔ c + a ≡ b [PMOD p] := by
simp [ModEq, sub_sub]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
modEq_sub_iff_add_modEq'
| null |
modEq_sub_iff_add_modEq : a ≡ b - c [PMOD p] ↔ a + c ≡ b [PMOD p] :=
modEq_sub_iff_add_modEq'.trans <| by rw [add_comm]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
modEq_sub_iff_add_modEq
| null |
sub_modEq_iff_modEq_add' : a - b ≡ c [PMOD p] ↔ a ≡ b + c [PMOD p] :=
modEq_comm.trans <| modEq_sub_iff_add_modEq'.trans modEq_comm
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
sub_modEq_iff_modEq_add'
| null |
sub_modEq_iff_modEq_add : a - b ≡ c [PMOD p] ↔ a ≡ c + b [PMOD p] :=
modEq_comm.trans <| modEq_sub_iff_add_modEq.trans modEq_comm
@[simp]
|
theorem
|
Algebra
|
[
"Mathlib.Algebra.Field.Basic",
"Mathlib.Algebra.NoZeroSMulDivisors.Basic",
"Mathlib.Data.Int.ModEq",
"Mathlib.GroupTheory.QuotientGroup.Defs",
"Mathlib.Algebra.Group.Subgroup.ZPowers.Basic"
] |
Mathlib/Algebra/ModEq.lean
|
sub_modEq_iff_modEq_add
| null |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.