contestId
int64
0
1.01k
index
stringclasses
40 values
name
stringlengths
2
54
type
stringclasses
2 values
rating
int64
0
3.4k
tags
listlengths
0
7
title
stringclasses
393 values
time-limit
stringclasses
7 values
memory-limit
stringclasses
6 values
problem-description
stringlengths
0
2.97k
input-specification
stringlengths
4
1.87k
output-specification
stringlengths
4
1.12k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
3.5k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
1 value
testset
stringclasses
9 values
passedTestCount
int64
1
402
timeConsumedMillis
int64
15
8.06k
memoryConsumedBytes
int64
0
514M
code
stringlengths
11
61.4k
prompt
stringlengths
297
7.35k
response
stringlengths
25
61.4k
score
float64
2.82
3.99
41
A
Translation
PROGRAMMING
800
[ "implementation", "strings" ]
A. Translation
2
256
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
[ "code\nedoc\n", "abb\naba\n", "code\ncode\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "code\nedoc", "output": "YES" }, { "input": "abb\naba", "output": "NO" }, { "input": "code\ncode", "output": "NO" }, { "input": "abacaba\nabacaba", "output": "YES" }, { "input": "q\nq", "output": "YES" }, { "input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk", "output": "NO" }, { "input": "z\na", "output": "NO" }, { "input": "asd\ndsa", "output": "YES" }, { "input": "abcdef\nfecdba", "output": "NO" }, { "input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu", "output": "NO" }, { "input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf", "output": "NO" }, { "input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp", "output": "NO" }, { "input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb", "output": "NO" }, { "input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom", "output": "NO" }, { "input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh", "output": "NO" }, { "input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy", "output": "NO" }, { "input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko", "output": "NO" }, { "input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv", "output": "NO" }, { "input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd", "output": "NO" }, { "input": "w\nw", "output": "YES" }, { "input": "vz\nzv", "output": "YES" }, { "input": "ry\nyr", "output": "YES" }, { "input": "xou\nuox", "output": "YES" }, { "input": "axg\ngax", "output": "NO" }, { "input": "zdsl\nlsdz", "output": "YES" }, { "input": "kudl\nldku", "output": "NO" }, { "input": "zzlzwnqlcl\nlclqnwzlzz", "output": "YES" }, { "input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv", "output": "YES" }, { "input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar", "output": "NO" }, { "input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn", "output": "YES" }, { "input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum", "output": "YES" }, { "input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv", "output": "YES" }, { "input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm", "output": "NO" }, { "input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd", "output": "NO" }, { "input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg", "output": "YES" }, { "input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis", "output": "YES" }, { "input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy", "output": "NO" }, { "input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw", "output": "YES" }, { "input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi", "output": "YES" }, { "input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib", "output": "YES" } ]
1,514,874,881
2,147,483,647
Python 3
OK
TESTS
40
154
5,632,000
s=input();t=input();print(["NO","YES"][s[::-1]==t])
Title: Translation Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. Input Specification: The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. Output Specification: If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. Demo Input: ['code\nedoc\n', 'abb\naba\n', 'code\ncode\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python s=input();t=input();print(["NO","YES"][s[::-1]==t]) ```
3.95101
761
A
Dasha and Stairs
PROGRAMMING
1,000
[ "brute force", "constructive algorithms", "implementation", "math" ]
null
null
On her way to programming school tiger Dasha faced her first test — a huge staircase! The steps were numbered from one to infinity. As we know, tigers are very fond of all striped things, it is possible that it has something to do with their color. So on some interval of her way she calculated two values — the number of steps with even and odd numbers. You need to check whether there is an interval of steps from the *l*-th to the *r*-th (1<=≤<=*l*<=≤<=*r*), for which values that Dasha has found are correct.
In the only line you are given two integers *a*, *b* (0<=≤<=*a*,<=*b*<=≤<=100) — the number of even and odd steps, accordingly.
In the only line print "YES", if the interval of steps described above exists, and "NO" otherwise.
[ "2 3\n", "3 1\n" ]
[ "YES\n", "NO\n" ]
In the first example one of suitable intervals is from 1 to 5. The interval contains two even steps — 2 and 4, and three odd: 1, 3 and 5.
500
[ { "input": "2 3", "output": "YES" }, { "input": "3 1", "output": "NO" }, { "input": "5 4", "output": "YES" }, { "input": "9 9", "output": "YES" }, { "input": "85 95", "output": "NO" }, { "input": "0 1", "output": "YES" }, { "input": "89 25", "output": "NO" }, { "input": "74 73", "output": "YES" }, { "input": "62 39", "output": "NO" }, { "input": "57 57", "output": "YES" }, { "input": "100 99", "output": "YES" }, { "input": "0 0", "output": "NO" }, { "input": "98 100", "output": "NO" }, { "input": "99 100", "output": "YES" }, { "input": "1 0", "output": "YES" }, { "input": "100 0", "output": "NO" }, { "input": "0 100", "output": "NO" }, { "input": "100 98", "output": "NO" }, { "input": "100 100", "output": "YES" }, { "input": "0 5", "output": "NO" }, { "input": "2 2", "output": "YES" } ]
1,485,877,866
4,566
Python 3
OK
TESTS
21
62
4,608,000
a,b = input().split() c = int(a) - int(b) if int(a)+int(b) != 0 and (c == 1 or c == 0 or c == -1): print("YES") else: print("NO")
Title: Dasha and Stairs Time Limit: None seconds Memory Limit: None megabytes Problem Description: On her way to programming school tiger Dasha faced her first test — a huge staircase! The steps were numbered from one to infinity. As we know, tigers are very fond of all striped things, it is possible that it has something to do with their color. So on some interval of her way she calculated two values — the number of steps with even and odd numbers. You need to check whether there is an interval of steps from the *l*-th to the *r*-th (1<=≤<=*l*<=≤<=*r*), for which values that Dasha has found are correct. Input Specification: In the only line you are given two integers *a*, *b* (0<=≤<=*a*,<=*b*<=≤<=100) — the number of even and odd steps, accordingly. Output Specification: In the only line print "YES", if the interval of steps described above exists, and "NO" otherwise. Demo Input: ['2 3\n', '3 1\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first example one of suitable intervals is from 1 to 5. The interval contains two even steps — 2 and 4, and three odd: 1, 3 and 5.
```python a,b = input().split() c = int(a) - int(b) if int(a)+int(b) != 0 and (c == 1 or c == 0 or c == -1): print("YES") else: print("NO") ```
3
939
A
Love Triangle
PROGRAMMING
800
[ "graphs" ]
null
null
As you could know there are no male planes nor female planes. However, each plane on Earth likes some other plane. There are *n* planes on Earth, numbered from 1 to *n*, and the plane with number *i* likes the plane with number *f**i*, where 1<=≤<=*f**i*<=≤<=*n* and *f**i*<=≠<=*i*. We call a love triangle a situation in which plane *A* likes plane *B*, plane *B* likes plane *C* and plane *C* likes plane *A*. Find out if there is any love triangle on Earth.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=5000) — the number of planes. The second line contains *n* integers *f*1,<=*f*2,<=...,<=*f**n* (1<=≤<=*f**i*<=≤<=*n*, *f**i*<=≠<=*i*), meaning that the *i*-th plane likes the *f**i*-th.
Output «YES» if there is a love triangle consisting of planes on Earth. Otherwise, output «NO». You can output any letter in lower case or in upper case.
[ "5\n2 4 5 1 3\n", "5\n5 5 5 5 1\n" ]
[ "YES\n", "NO\n" ]
In first example plane 2 likes plane 4, plane 4 likes plane 1, plane 1 likes plane 2 and that is a love triangle. In second example there are no love triangles.
500
[ { "input": "5\n2 4 5 1 3", "output": "YES" }, { "input": "5\n5 5 5 5 1", "output": "NO" }, { "input": "3\n3 1 2", "output": "YES" }, { "input": "10\n4 10 9 5 3 1 5 10 6 4", "output": "NO" }, { "input": "10\n5 5 4 9 10 9 9 5 3 1", "output": "YES" }, { "input": "100\n50 40 60 87 39 58 44 84 46 68 16 57 77 87 92 95 42 31 74 15 36 84 30 3 47 15 87 90 76 66 6 63 74 19 40 49 6 84 41 9 77 34 7 12 11 73 58 24 81 14 81 29 65 100 1 85 64 32 38 4 54 67 32 81 80 7 100 71 29 80 4 52 47 7 78 56 52 75 81 37 16 41 27 28 58 60 62 47 29 40 37 14 59 91 12 54 25 58 12 43", "output": "NO" }, { "input": "100\n25 6 46 37 87 99 70 31 46 12 94 40 87 56 28 8 94 39 13 12 67 13 71 39 83 48 40 14 62 41 16 71 20 41 83 41 68 98 23 82 62 83 62 35 49 22 31 21 66 98 54 39 34 52 11 28 47 89 25 44 68 36 91 46 82 86 88 48 27 93 7 9 53 36 16 100 84 84 44 25 58 66 16 46 72 21 91 78 4 17 44 17 47 67 93 89 75 44 56 50", "output": "YES" }, { "input": "2\n2 1", "output": "NO" }, { "input": "3\n2 3 1", "output": "YES" }, { "input": "5\n2 1 4 5 3", "output": "YES" }, { "input": "5\n5 4 5 5 2", "output": "YES" } ]
1,637,360,380
2,147,483,647
Python 3
OK
TESTS
16
46
0
n=int(input()) L=list(map(int,input().split())) #print(L[0],L[L[L[L[0]-1]-1]-1]) flage=0 for i in range(n): if L[i]==L[L[L[L[i]-1]-1]-1]: flage=1 break if flage==1: print('YES') else: print('NO')
Title: Love Triangle Time Limit: None seconds Memory Limit: None megabytes Problem Description: As you could know there are no male planes nor female planes. However, each plane on Earth likes some other plane. There are *n* planes on Earth, numbered from 1 to *n*, and the plane with number *i* likes the plane with number *f**i*, where 1<=≤<=*f**i*<=≤<=*n* and *f**i*<=≠<=*i*. We call a love triangle a situation in which plane *A* likes plane *B*, plane *B* likes plane *C* and plane *C* likes plane *A*. Find out if there is any love triangle on Earth. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=5000) — the number of planes. The second line contains *n* integers *f*1,<=*f*2,<=...,<=*f**n* (1<=≤<=*f**i*<=≤<=*n*, *f**i*<=≠<=*i*), meaning that the *i*-th plane likes the *f**i*-th. Output Specification: Output «YES» if there is a love triangle consisting of planes on Earth. Otherwise, output «NO». You can output any letter in lower case or in upper case. Demo Input: ['5\n2 4 5 1 3\n', '5\n5 5 5 5 1\n'] Demo Output: ['YES\n', 'NO\n'] Note: In first example plane 2 likes plane 4, plane 4 likes plane 1, plane 1 likes plane 2 and that is a love triangle. In second example there are no love triangles.
```python n=int(input()) L=list(map(int,input().split())) #print(L[0],L[L[L[L[0]-1]-1]-1]) flage=0 for i in range(n): if L[i]==L[L[L[L[i]-1]-1]-1]: flage=1 break if flage==1: print('YES') else: print('NO') ```
3
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,672,419,875
2,147,483,647
PyPy 3
OK
TESTS
35
278
0
me,nu=map(int,input().split()) print(me*nu//2)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python me,nu=map(int,input().split()) print(me*nu//2) ```
3.9305
653
B
Bear and Compressing
PROGRAMMING
1,300
[ "brute force", "dfs and similar", "dp", "strings" ]
null
null
Limak is a little polar bear. Polar bears hate long strings and thus they like to compress them. You should also know that Limak is so young that he knows only first six letters of the English alphabet: 'a', 'b', 'c', 'd', 'e' and 'f'. You are given a set of *q* possible operations. Limak can perform them in any order, any operation may be applied any number of times. The *i*-th operation is described by a string *a**i* of length two and a string *b**i* of length one. No two of *q* possible operations have the same string *a**i*. When Limak has a string *s* he can perform the *i*-th operation on *s* if the first two letters of *s* match a two-letter string *a**i*. Performing the *i*-th operation removes first two letters of *s* and inserts there a string *b**i*. See the notes section for further clarification. You may note that performing an operation decreases the length of a string *s* exactly by 1. Also, for some sets of operations there may be a string that cannot be compressed any further, because the first two letters don't match any *a**i*. Limak wants to start with a string of length *n* and perform *n*<=-<=1 operations to finally get a one-letter string "a". In how many ways can he choose the starting string to be able to get "a"? Remember that Limak can use only letters he knows.
The first line contains two integers *n* and *q* (2<=≤<=*n*<=≤<=6, 1<=≤<=*q*<=≤<=36) — the length of the initial string and the number of available operations. The next *q* lines describe the possible operations. The *i*-th of them contains two strings *a**i* and *b**i* (|*a**i*|<==<=2,<=|*b**i*|<==<=1). It's guaranteed that *a**i*<=≠<=*a**j* for *i*<=≠<=*j* and that all *a**i* and *b**i* consist of only first six lowercase English letters.
Print the number of strings of length *n* that Limak will be able to transform to string "a" by applying only operations given in the input.
[ "3 5\nab a\ncc c\nca a\nee c\nff d\n", "2 8\naf e\ndc d\ncc f\nbc b\nda b\neb a\nbb b\nff c\n", "6 2\nbb a\nba a\n" ]
[ "4\n", "1\n", "0\n" ]
In the first sample, we count initial strings of length 3 from which Limak can get a required string "a". There are 4 such strings: "abb", "cab", "cca", "eea". The first one Limak can compress using operation 1 two times (changing "ab" to a single "a"). The first operation would change "abb" to "ab" and the second operation would change "ab" to "a". Other three strings may be compressed as follows: - "cab" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ab" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "a" - "cca" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ca" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "a" - "eea" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ca" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "a" In the second sample, the only correct initial string is "eb" because it can be immediately compressed to "a".
1,000
[ { "input": "3 5\nab a\ncc c\nca a\nee c\nff d", "output": "4" }, { "input": "2 8\naf e\ndc d\ncc f\nbc b\nda b\neb a\nbb b\nff c", "output": "1" }, { "input": "6 2\nbb a\nba a", "output": "0" }, { "input": "2 5\nfe b\nbb a\naf b\nfd b\nbf c", "output": "1" }, { "input": "3 4\neb b\nbd a\ncd d\nbb b", "output": "2" }, { "input": "3 36\nab b\nbb a\naf c\nbd b\ncd a\nff c\nce a\nae a\ncb a\nba a\nad d\ndb a\nbf a\nbe a\ncc b\ndc a\nbc a\nca e\naa e\nec b\nac e\ned b\ndf d\nfa b\nea a\nef b\nee a\nda c\ncf a\nfe d\ndd f\nde a\neb f\nfd a\nfc a\nfb a", "output": "86" }, { "input": "4 20\naf a\nad a\nac a\nbe a\nbc a\naa a\nab a\nbb a\neb a\nbd a\nbf a\ndc a\nea a\ncf a\ncd a\ncb a\nee a\nca a\nba a\nce a", "output": "500" }, { "input": "6 4\nca a\nbe f\nad a\ncf a", "output": "3" }, { "input": "2 15\nbc c\nbd a\nab b\nca a\ndf b\naa c\nae b\nac c\ncd a\nba e\nad d\nbb d\ned a\nfa a\nbf b", "output": "5" }, { "input": "2 36\nad a\nae f\nac a\naa a\ncb b\nde e\nbe a\nea d\ncd b\nab a\nbf a\nba d\ncc c\ndc a\naf a\nca e\nda c\nbb c\nee b\nbd a\ned b\ndf b\nfd c\ndb d\nbc a\ncf d\nff d\ndd a\neb c\nce a\nfa c\nfe b\nec c\nef b\nfb a\nfc a", "output": "14" }, { "input": "3 20\nca a\nbf d\nac a\nad b\neb a\naf a\nbe c\nbd a\ncb a\ncd c\nce b\nbc c\nbb a\ndd f\ndc e\ncf e\nfc e\naa d\nba c\nae d", "output": "29" }, { "input": "4 35\nae f\nad d\naa a\neb d\nfb a\nce b\naf c\nfe c\nca a\nab a\nbd d\nbc a\nbe a\nbb f\nba c\ncb a\ncd a\nac c\ncc b\nbf b\ndb a\nfa a\ned b\nea a\nee d\nec a\ncf d\ndd a\nfc a\ndf a\nff a\ndc b\nef d\nde e\nda b", "output": "529" }, { "input": "5 10\nba a\nbb c\nad a\nac c\nbc b\nfa b\nab b\nbe a\nbf a\naa b", "output": "184" }, { "input": "5 20\nbd a\nac a\nad a\ncc a\naf a\nbe a\nbb a\ncb a\nca a\nab a\nbc a\nae a\ndb a\naa a\nbf a\nde a\nba a\ncf a\nda a\ned a", "output": "4320" }, { "input": "5 20\naf f\nae f\naa f\nbd f\nfc f\ndd f\nba f\nac f\nbe f\neb f\nad f\ncb f\nce f\ncf f\nbc f\nca f\nde f\nab f\nbf f\ncc f", "output": "0" }, { "input": "5 36\nac a\ncc c\nae f\nca a\nba a\nbe c\ndc e\nbc a\naa a\nad d\naf b\ncd c\ndf c\nbf b\nfb e\nef a\nbb b\nbd a\nce b\nab b\ndb c\nda b\ncf d\nfd c\nfa a\ncb c\nfe a\nea a\nfc e\ndd d\nde a\neb a\nec a\ned d\nee c\nff a", "output": "2694" }, { "input": "6 1\nbf a", "output": "0" }, { "input": "6 5\naa b\nad d\nba b\ndc d\nac a", "output": "1" }, { "input": "6 15\nad b\ncb b\naf b\nae c\nbc e\nbd a\nac a\nda b\nab c\ncc d\nce f\ndc b\nca a\nba c\nbb a", "output": "744" }, { "input": "6 15\naf a\nae a\nbc a\ncc a\nbe a\nff a\nab a\nbd a\nce a\nad a\ndb a\nee a\nba a\nda a\naa a", "output": "9375" }, { "input": "6 15\nab b\nbd b\nae b\ncd b\nac b\nba b\ndc b\nbc b\nbb b\nbf b\nef b\naa b\ndd b\ncf b\nfc b", "output": "0" }, { "input": "6 24\nab b\ncb b\naf a\nde c\ndb c\nad b\nca c\nbe c\nda e\nbb a\nbf a\nae a\nbc c\nba a\naa a\ncc f\ndc a\nac b\ncf c\ndd b\ndf a\ncd d\nbd d\neb b", "output": "7993" }, { "input": "6 35\ndc c\nba b\nae e\nab a\naa b\nbb a\nbe b\ndb b\naf b\ncd b\nde b\ncf d\nac b\neb a\ndd a\nce b\nad c\ncc a\ncb c\nbc a\nbd b\ndf d\nea e\nfe c\nbf a\nfc a\nef d\nec b\nda c\ned b\nca a\nff a\nee b\nfb b\nfa e", "output": "15434" }, { "input": "6 36\nbf f\nbb d\nff f\nac a\nad c\nbd e\ndd a\naa c\nab a\nba b\naf a\nda c\nce f\nea c\nde a\nca f\ndc f\nec b\ncc a\nae b\nbe b\nbc c\nee e\ncb b\nfb a\ncd d\ndb a\nef a\ncf d\neb c\ndf b\nfd a\ned a\nfe c\nfa b\nfc a", "output": "15314" }, { "input": "6 1\naa a", "output": "1" }, { "input": "6 1\nbb a", "output": "0" }, { "input": "6 1\nba a", "output": "0" }, { "input": "6 1\nab a", "output": "1" }, { "input": "6 36\nac a\naf a\ndb a\nab a\ncb a\nef a\nad a\nbd a\nfe a\nde a\nbe a\nbb a\naa a\nae a\ndf a\nbc a\nbf a\nce a\nba a\nfd a\ndc a\neb a\ncd a\nca a\nee a\ncc a\ncf a\ndd a\nda a\nec a\nfc a\nfa a\nea a\ned a\nff a\nfb a", "output": "46656" }, { "input": "6 36\naf f\nbd f\nba f\nbf f\nac f\nbe f\nbc f\nef f\naa f\neb f\nab f\nae f\nda f\ndc f\ncd f\nea f\ncb f\nad f\nbb f\ncc f\nce f\ndf f\nfa f\ncf f\ned f\nfe f\nfd f\nee f\ndb f\nde f\ndd f\nca f\nfb f\nec f\nff f\nfc f", "output": "0" }, { "input": "6 36\naa a\nab f\nac a\nad b\nae c\naf d\nba f\nbb a\nbc b\nbd c\nbe d\nbf e\nca f\ncb a\ncc b\ncd c\nce d\ncf e\nda f\ndb a\ndc b\ndd c\nde d\ndf e\nea f\neb a\nec b\ned c\nee d\nef e\nfa f\nfb a\nfc b\nfd c\nfe d\nff e", "output": "9331" }, { "input": "5 5\nab a\ncc c\nca a\nee c\nff d", "output": "8" } ]
1,591,344,332
2,147,483,647
Python 3
OK
TESTS
32
1,778
6,246,400
from itertools import product def bear_and_compressing(): n, q = input().split() n, q = int(n), int(q) o = [] j = [] for _ in range(q): o.append(list(input())) s = list(product('abcdef', repeat=n)) for i in s: j.append(list(i)) for _ in range(n): for i in j: for x in o: try: if i[0] == x[0] and i[1] == x[1]: i.pop(0) i[0] = x[3] except IndexError: continue count = j.count(['a']) print(count) if __name__ == '__main__': bear_and_compressing()
Title: Bear and Compressing Time Limit: None seconds Memory Limit: None megabytes Problem Description: Limak is a little polar bear. Polar bears hate long strings and thus they like to compress them. You should also know that Limak is so young that he knows only first six letters of the English alphabet: 'a', 'b', 'c', 'd', 'e' and 'f'. You are given a set of *q* possible operations. Limak can perform them in any order, any operation may be applied any number of times. The *i*-th operation is described by a string *a**i* of length two and a string *b**i* of length one. No two of *q* possible operations have the same string *a**i*. When Limak has a string *s* he can perform the *i*-th operation on *s* if the first two letters of *s* match a two-letter string *a**i*. Performing the *i*-th operation removes first two letters of *s* and inserts there a string *b**i*. See the notes section for further clarification. You may note that performing an operation decreases the length of a string *s* exactly by 1. Also, for some sets of operations there may be a string that cannot be compressed any further, because the first two letters don't match any *a**i*. Limak wants to start with a string of length *n* and perform *n*<=-<=1 operations to finally get a one-letter string "a". In how many ways can he choose the starting string to be able to get "a"? Remember that Limak can use only letters he knows. Input Specification: The first line contains two integers *n* and *q* (2<=≤<=*n*<=≤<=6, 1<=≤<=*q*<=≤<=36) — the length of the initial string and the number of available operations. The next *q* lines describe the possible operations. The *i*-th of them contains two strings *a**i* and *b**i* (|*a**i*|<==<=2,<=|*b**i*|<==<=1). It's guaranteed that *a**i*<=≠<=*a**j* for *i*<=≠<=*j* and that all *a**i* and *b**i* consist of only first six lowercase English letters. Output Specification: Print the number of strings of length *n* that Limak will be able to transform to string "a" by applying only operations given in the input. Demo Input: ['3 5\nab a\ncc c\nca a\nee c\nff d\n', '2 8\naf e\ndc d\ncc f\nbc b\nda b\neb a\nbb b\nff c\n', '6 2\nbb a\nba a\n'] Demo Output: ['4\n', '1\n', '0\n'] Note: In the first sample, we count initial strings of length 3 from which Limak can get a required string "a". There are 4 such strings: "abb", "cab", "cca", "eea". The first one Limak can compress using operation 1 two times (changing "ab" to a single "a"). The first operation would change "abb" to "ab" and the second operation would change "ab" to "a". Other three strings may be compressed as follows: - "cab" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ab" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "a" - "cca" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ca" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "a" - "eea" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ca" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "a" In the second sample, the only correct initial string is "eb" because it can be immediately compressed to "a".
```python from itertools import product def bear_and_compressing(): n, q = input().split() n, q = int(n), int(q) o = [] j = [] for _ in range(q): o.append(list(input())) s = list(product('abcdef', repeat=n)) for i in s: j.append(list(i)) for _ in range(n): for i in j: for x in o: try: if i[0] == x[0] and i[1] == x[1]: i.pop(0) i[0] = x[3] except IndexError: continue count = j.count(['a']) print(count) if __name__ == '__main__': bear_and_compressing() ```
3
9
A
Die Roll
PROGRAMMING
800
[ "math", "probabilities" ]
A. Die Roll
1
64
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
[ "4 2\n" ]
[ "1/2\n" ]
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
0
[ { "input": "4 2", "output": "1/2" }, { "input": "1 1", "output": "1/1" }, { "input": "1 2", "output": "5/6" }, { "input": "1 3", "output": "2/3" }, { "input": "1 4", "output": "1/2" }, { "input": "1 5", "output": "1/3" }, { "input": "1 6", "output": "1/6" }, { "input": "2 1", "output": "5/6" }, { "input": "2 2", "output": "5/6" }, { "input": "2 3", "output": "2/3" }, { "input": "2 4", "output": "1/2" }, { "input": "2 5", "output": "1/3" }, { "input": "2 6", "output": "1/6" }, { "input": "3 1", "output": "2/3" }, { "input": "3 2", "output": "2/3" }, { "input": "3 3", "output": "2/3" }, { "input": "3 4", "output": "1/2" }, { "input": "3 5", "output": "1/3" }, { "input": "3 6", "output": "1/6" }, { "input": "4 1", "output": "1/2" }, { "input": "4 3", "output": "1/2" }, { "input": "4 4", "output": "1/2" }, { "input": "4 5", "output": "1/3" }, { "input": "4 6", "output": "1/6" }, { "input": "5 1", "output": "1/3" }, { "input": "5 2", "output": "1/3" }, { "input": "5 3", "output": "1/3" }, { "input": "5 4", "output": "1/3" }, { "input": "5 5", "output": "1/3" }, { "input": "5 6", "output": "1/6" }, { "input": "6 1", "output": "1/6" }, { "input": "6 2", "output": "1/6" }, { "input": "6 3", "output": "1/6" }, { "input": "6 4", "output": "1/6" }, { "input": "6 5", "output": "1/6" }, { "input": "6 6", "output": "1/6" } ]
1,614,682,518
2,147,483,647
Python 3
OK
TESTS
36
124
307,200
y,w = [int(x) for x in input().split()] import math dice = [1,2,3,4,5,6] x = dice.index(max(y,w)) new = dice[x:] i = len(new) if i==6: print("1/1") elif i==0: print("0/1") else: g = math.gcd(i,6) print("{}/{}".format(str(i//g),str(6//g)))
Title: Die Roll Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win. Input Specification: The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls. Output Specification: Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1». Demo Input: ['4 2\n'] Demo Output: ['1/2\n'] Note: Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
```python y,w = [int(x) for x in input().split()] import math dice = [1,2,3,4,5,6] x = dice.index(max(y,w)) new = dice[x:] i = len(new) if i==6: print("1/1") elif i==0: print("0/1") else: g = math.gcd(i,6) print("{}/{}".format(str(i//g),str(6//g))) ```
3.935711
447
B
DZY Loves Strings
PROGRAMMING
1,000
[ "greedy", "implementation" ]
null
null
DZY loves collecting special strings which only contain lowercase letters. For each lowercase letter *c* DZY knows its value *w**c*. For each special string *s*<==<=*s*1*s*2... *s*|*s*| (|*s*| is the length of the string) he represents its value with a function *f*(*s*), where Now DZY has a string *s*. He wants to insert *k* lowercase letters into this string in order to get the largest possible value of the resulting string. Can you help him calculate the largest possible value he could get?
The first line contains a single string *s* (1<=≤<=|*s*|<=≤<=103). The second line contains a single integer *k* (0<=≤<=*k*<=≤<=103). The third line contains twenty-six integers from *w**a* to *w**z*. Each such number is non-negative and doesn't exceed 1000.
Print a single integer — the largest possible value of the resulting string DZY could get.
[ "abc\n3\n1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n" ]
[ "41\n" ]
In the test sample DZY can obtain "abcbbc", *value* = 1·1 + 2·2 + 3·2 + 4·2 + 5·2 + 6·2 = 41.
1,000
[ { "input": "abc\n3\n1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "41" }, { "input": "mmzhr\n3\n443 497 867 471 195 670 453 413 579 466 553 881 847 642 269 996 666 702 487 209 257 741 974 133 519 453", "output": "29978" }, { "input": "ajeeseerqnpaujubmajpibxrccazaawetywxmifzehojf\n23\n359 813 772 413 733 654 33 87 890 433 395 311 801 852 376 148 914 420 636 695 583 733 664 394 407 314", "output": "1762894" }, { "input": "uahngxejpomhbsebcxvelfsojbaouynnlsogjyvktpwwtcyddkcdqcqs\n34\n530 709 150 660 947 830 487 142 208 276 885 542 138 214 76 184 273 753 30 195 722 236 82 691 572 585", "output": "2960349" }, { "input": "xnzeqmouqyzvblcidmhbkqmtusszuczadpooslqxegldanwopilmdwzbczvrwgnwaireykwpugvpnpafbxlyggkgawghysufuegvmzvpgcqyjkoadcreaguzepbendwnowsuekxxivkziibxvxfoilofxcgnxvfefyezfhevfvtetsuhwtyxdlkccdkvqjl\n282\n170 117 627 886 751 147 414 187 150 960 410 70 576 681 641 729 798 877 611 108 772 643 683 166 305 933", "output": "99140444" }, { "input": "pplkqmluhfympkjfjnfdkwrkpumgdmbkfbbldpepicbbmdgafttpopzdxsevlqbtywzkoxyviglbbxsohycbdqksrhlumsldiwzjmednbkcjishkiekfrchzuztkcxnvuykhuenqojrmzaxlaoxnljnvqgnabtmcftisaazzgbmubmpsorygyusmeonrhrgphnfhlaxrvyhuxsnnezjxmdoklpquzpvjbxgbywppmegzxknhfzyygrmejleesoqfwheulmqhonqaukyuejtwxskjldplripyihbfpookxkuehiwqthbfafyrgmykuxglpplozycgydyecqkgfjljfqvigqhuxssqqtfanwszduwbsoytnrtgc\n464\n838 95 473 955 690 84 436 19 179 437 674 626 377 365 781 4 733 776 462 203 119 256 381 668 855 686", "output": "301124161" }, { "input": "qkautnuilwlhjsldfcuwhiqtgtoihifszlyvfaygrnivzgvwthkrzzdtfjcirrjjlrmjtbjlzmjeqmuffsjorjyggzefwgvmblvotvzffnwjhqxorpowzdcnfksdibezdtfjjxfozaghieksbmowrbeehuxlesmvqjsphlvauxiijm\n98\n121 622 0 691 616 959 838 161 581 862 876 830 267 812 598 106 337 73 588 323 999 17 522 399 657 495", "output": "30125295" }, { "input": "tghyxqfmhz\n8\n191 893 426 203 780 326 148 259 182 140 847 636 778 97 167 773 219 891 758 993 695 603 223 779 368 165", "output": "136422" }, { "input": "nyawbfjxnxjiyhwkydaruozobpphgjqdpfdqzezcsoyvurnapu\n30\n65 682 543 533 990 148 815 821 315 916 632 771 332 513 472 864 12 73 548 687 660 572 507 192 226 348", "output": "2578628" }, { "input": "pylrnkrbcjgoytvdnhmlvnkknijkdgdhworlvtwuonrkhrilkewcnofodaumgvnsisxooswgrgtvdeauyxhkipfoxrrtysuepjcf\n60\n894 206 704 179 272 337 413 828 119 182 330 46 440 102 250 191 242 539 678 783 843 431 612 567 33 338", "output": "9168707" }, { "input": "vhjnkrxbyhjhnjrxvwxmhxwoxttbtqosfxtcuvhfjlkyfspeypthsdkkwnqdpxdlnxsgtzvkrgqosgfjrwetqbxgoarkjhrjbspzgblsapifltkfxbfdbxqwoohlgyzijmiwnpmveybyzvasoctxsmgjehpyysmqblwnmkappbecklqjfmxhlyceordroflnposohfplrvijxbwvqdtvzhobtrumiujnyrfbwthvciinuveoizkccelxtaveiiagryqnyvsgfnipnavrtmdqlcnldepocbpzmqnarkdvykds\n276\n364 244 798 82 582 9 309 950 286 547 892 371 569 159 705 975 740 845 655 179 130 993 255 552 882 657", "output": "144901921" }, { "input": "gsaddmezrnttfalbwlqbnedumvikplfosw\n12\n290 850 872 361 483 895 152 118 974 619 701 154 899 285 328 712 669 984 407 340 851 775 324 892 554 860", "output": "809931" }, { "input": "a\n0\n5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "5" }, { "input": "lol\n3\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "21" } ]
1,587,867,824
2,147,483,647
PyPy 3
OK
TESTS
24
218
2,355,200
from string import ascii_lowercase def main(): s = input() k = int(input()) w = list(map(int,input().split())) func = dict(zip(ascii_lowercase,w)) z = max(w) score = 0 j = 1 for i in s: score += func[i]*j j += 1 score += ((len(s)*k + (k*(k+1))//2)*z) print(score) if __name__ == '__main__': main()
Title: DZY Loves Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: DZY loves collecting special strings which only contain lowercase letters. For each lowercase letter *c* DZY knows its value *w**c*. For each special string *s*<==<=*s*1*s*2... *s*|*s*| (|*s*| is the length of the string) he represents its value with a function *f*(*s*), where Now DZY has a string *s*. He wants to insert *k* lowercase letters into this string in order to get the largest possible value of the resulting string. Can you help him calculate the largest possible value he could get? Input Specification: The first line contains a single string *s* (1<=≤<=|*s*|<=≤<=103). The second line contains a single integer *k* (0<=≤<=*k*<=≤<=103). The third line contains twenty-six integers from *w**a* to *w**z*. Each such number is non-negative and doesn't exceed 1000. Output Specification: Print a single integer — the largest possible value of the resulting string DZY could get. Demo Input: ['abc\n3\n1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n'] Demo Output: ['41\n'] Note: In the test sample DZY can obtain "abcbbc", *value* = 1·1 + 2·2 + 3·2 + 4·2 + 5·2 + 6·2 = 41.
```python from string import ascii_lowercase def main(): s = input() k = int(input()) w = list(map(int,input().split())) func = dict(zip(ascii_lowercase,w)) z = max(w) score = 0 j = 1 for i in s: score += func[i]*j j += 1 score += ((len(s)*k + (k*(k+1))//2)*z) print(score) if __name__ == '__main__': main() ```
3
721
B
Passwords
PROGRAMMING
1,100
[ "implementation", "math", "sortings", "strings" ]
null
null
Vanya is managed to enter his favourite site Codehorses. Vanya uses *n* distinct passwords for sites at all, however he can't remember which one exactly he specified during Codehorses registration. Vanya will enter passwords in order of non-decreasing their lengths, and he will enter passwords of same length in arbitrary order. Just when Vanya will have entered the correct password, he is immediately authorized on the site. Vanya will not enter any password twice. Entering any passwords takes one second for Vanya. But if Vanya will enter wrong password *k* times, then he is able to make the next try only 5 seconds after that. Vanya makes each try immediately, that is, at each moment when Vanya is able to enter password, he is doing that. Determine how many seconds will Vanya need to enter Codehorses in the best case for him (if he spends minimum possible number of second) and in the worst case (if he spends maximum possible amount of seconds).
The first line of the input contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of Vanya's passwords and the number of failed tries, after which the access to the site is blocked for 5 seconds. The next *n* lines contains passwords, one per line — pairwise distinct non-empty strings consisting of latin letters and digits. Each password length does not exceed 100 characters. The last line of the input contains the Vanya's Codehorses password. It is guaranteed that the Vanya's Codehorses password is equal to some of his *n* passwords.
Print two integers — time (in seconds), Vanya needs to be authorized to Codehorses in the best case for him and in the worst case respectively.
[ "5 2\ncba\nabc\nbb1\nabC\nABC\nabc\n", "4 100\n11\n22\n1\n2\n22\n" ]
[ "1 15\n", "3 4\n" ]
Consider the first sample case. As soon as all passwords have the same length, Vanya can enter the right password at the first try as well as at the last try. If he enters it at the first try, he spends exactly 1 second. Thus in the best case the answer is 1. If, at the other hand, he enters it at the last try, he enters another 4 passwords before. He spends 2 seconds to enter first 2 passwords, then he waits 5 seconds as soon as he made 2 wrong tries. Then he spends 2 more seconds to enter 2 wrong passwords, again waits 5 seconds and, finally, enters the correct password spending 1 more second. In summary in the worst case he is able to be authorized in 15 seconds. Consider the second sample case. There is no way of entering passwords and get the access to the site blocked. As soon as the required password has length of 2, Vanya enters all passwords of length 1 anyway, spending 2 seconds for that. Then, in the best case, he immediately enters the correct password and the answer for the best case is 3, but in the worst case he enters wrong password of length 2 and only then the right one, spending 4 seconds at all.
1,000
[ { "input": "5 2\ncba\nabc\nbb1\nabC\nABC\nabc", "output": "1 15" }, { "input": "4 100\n11\n22\n1\n2\n22", "output": "3 4" }, { "input": "1 1\na1\na1", "output": "1 1" }, { "input": "1 100\na1\na1", "output": "1 1" }, { "input": "2 1\nabc\nAbc\nAbc", "output": "1 7" }, { "input": "2 2\nabc\nAbc\nabc", "output": "1 2" }, { "input": "2 1\nab\nabc\nab", "output": "1 1" }, { "input": "2 2\nab\nabc\nab", "output": "1 1" }, { "input": "2 1\nab\nabc\nabc", "output": "7 7" }, { "input": "2 2\nab\nabc\nabc", "output": "2 2" }, { "input": "10 3\nOIbV1igi\no\nZS\nQM\n9woLzI\nWreboD\nQ7yl\nA5Rb\nS9Lno72TkP\nfT97o\no", "output": "1 1" }, { "input": "10 3\nHJZNMsT\nLaPcH2C\nlrhqIO\n9cxw\noTC1XwjW\nGHL9Ul6\nUyIs\nPuzwgR4ZKa\nyIByoKR5\nd3QA\nPuzwgR4ZKa", "output": "25 25" }, { "input": "20 5\nvSyC787KlIL8kZ2Uv5sw\nWKWOP\n7i8J3E8EByIq\nNW2VyGweL\nmyR2sRNu\nmXusPP0\nf4jgGxra\n4wHRzRhOCpEt\npPz9kybGb\nOtSpePCRoG5nkjZ2VxRy\nwHYsSttWbJkg\nKBOP9\nQfiOiFyHPPsw3GHo8J8\nxB8\nqCpehZEeEhdq\niOLjICK6\nQ91\nHmCsfMGTFKoFFnv238c\nJKjhg\ngkEUh\nKBOP9", "output": "3 11" }, { "input": "15 2\nw6S9WyU\nMVh\nkgUhQHW\nhGQNOF\nUuym\n7rGQA\nBM8vLPRB\n9E\nDs32U\no\nz1aV2C5T\n8\nzSXjrqQ\n1FO\n3kIt\nBM8vLPRB", "output": "44 50" }, { "input": "20 2\ni\n5Rp6\nE4vsr\nSY\nORXx\nh13C\nk6tzC\ne\nN\nKQf4C\nWZcdL\ndiA3v\n0InQT\nuJkAr\nGCamp\nBuIRd\nY\nM\nxZYx7\n0a5A\nWZcdL", "output": "36 65" }, { "input": "20 2\naWLQ6\nSgQ9r\nHcPdj\n2BNaO\n3TjNb\nnvwFM\nqsKt7\nFnb6N\nLoc0p\njxuLq\nBKAjf\nEKgZB\nBfOSa\nsMIvr\nuIWcR\nIura3\nLAqSf\ntXq3G\n8rQ8I\n8otAO\nsMIvr", "output": "1 65" }, { "input": "20 15\n0ZpQugVlN7\nm0SlKGnohN\nRFXTqhNGcn\n1qm2ZbB\nQXtJWdf78P\nbc2vH\nP21dty2Z1P\nm2c71LFhCk\n23EuP1Dvh3\nanwri5RhQN\n55v6HYv288\n1u5uKOjM5r\n6vg0GC1\nDAPYiA3ns1\nUZaaJ3Gmnk\nwB44x7V4Zi\n4hgB2oyU8P\npYFQpy8gGK\ndbz\nBv\n55v6HYv288", "output": "6 25" }, { "input": "3 1\na\nb\naa\naa", "output": "13 13" }, { "input": "6 3\nab\nac\nad\nabc\nabd\nabe\nabc", "output": "9 11" }, { "input": "4 2\n1\n2\n11\n22\n22", "output": "8 9" }, { "input": "2 1\n1\n12\n12", "output": "7 7" }, { "input": "3 1\nab\nabc\nabd\nabc", "output": "7 13" }, { "input": "2 1\na\nab\nab", "output": "7 7" }, { "input": "5 2\na\nb\nc\nab\naa\naa", "output": "9 15" }, { "input": "6 1\n1\n2\n11\n22\n111\n2222\n22", "output": "13 19" }, { "input": "3 1\n1\n2\n11\n11", "output": "13 13" }, { "input": "10 4\na\nb\nc\nd\ne\nf\nab\ncd\nac\nad\nac", "output": "12 20" }, { "input": "4 2\na\nb\nc\nd\na", "output": "1 9" }, { "input": "4 1\n1\n2\n3\n4\n4", "output": "1 19" }, { "input": "5 1\na\nb\nc\nd\nef\nef", "output": "25 25" }, { "input": "6 4\n1\n2\n22\n33\n44\n555\n555", "output": "11 11" }, { "input": "5 2\na\nb\nc\nd\nab\nab", "output": "15 15" }, { "input": "6 2\n1\n2\n3\n4\n5\n23\n23", "output": "16 16" }, { "input": "4 2\na\nb\naa\nbb\naa", "output": "8 9" }, { "input": "5 4\na\nbb\ncc\ndd\nee\nbb", "output": "2 10" }, { "input": "4 1\na\nb\nc\nab\nab", "output": "19 19" }, { "input": "7 100\na\nb\nc\nd\ne\ng\nab\nab", "output": "7 7" }, { "input": "6 1\na\nb\nc\nd\ne\naa\naa", "output": "31 31" }, { "input": "4 1\na\nas\nasd\nasde\nasde", "output": "19 19" }, { "input": "5 2\n1\n2\n3\n11\n22\n22", "output": "9 15" }, { "input": "10 2\na\nb\nc\nd\nee\nff\ngg\nhh\nii\njj\nii", "output": "15 30" }, { "input": "3 1\na\nab\nbc\nab", "output": "7 13" }, { "input": "6 4\na\nb\nc\nbb\nbc\ncc\ncc", "output": "4 11" } ]
1,590,430,412
2,147,483,647
Python 3
OK
TESTS
66
124
307,200
a = input().split(" ") n = int(a[0]) k = int(a[1]) a = [] for i in range(n): a.append(len(input())) a.sort() tar = len(input()) res_min = 0 res_max = 0 for i in range(n): if a[i] == tar and (i == 0 or a[i-1] != tar): t = i + 1 res_min = t if (t % k == 0): res_min += (t // k - 1) * 5 else: res_min += (t // k) * 5 if a[i] == tar and (i == n - 1 or a[i + 1] > tar): t = i + 1 res_max = t if (t % k == 0): res_max += (t // k - 1) * 5 else: res_max += (t // k) * 5 print(res_min, res_max)
Title: Passwords Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya is managed to enter his favourite site Codehorses. Vanya uses *n* distinct passwords for sites at all, however he can't remember which one exactly he specified during Codehorses registration. Vanya will enter passwords in order of non-decreasing their lengths, and he will enter passwords of same length in arbitrary order. Just when Vanya will have entered the correct password, he is immediately authorized on the site. Vanya will not enter any password twice. Entering any passwords takes one second for Vanya. But if Vanya will enter wrong password *k* times, then he is able to make the next try only 5 seconds after that. Vanya makes each try immediately, that is, at each moment when Vanya is able to enter password, he is doing that. Determine how many seconds will Vanya need to enter Codehorses in the best case for him (if he spends minimum possible number of second) and in the worst case (if he spends maximum possible amount of seconds). Input Specification: The first line of the input contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of Vanya's passwords and the number of failed tries, after which the access to the site is blocked for 5 seconds. The next *n* lines contains passwords, one per line — pairwise distinct non-empty strings consisting of latin letters and digits. Each password length does not exceed 100 characters. The last line of the input contains the Vanya's Codehorses password. It is guaranteed that the Vanya's Codehorses password is equal to some of his *n* passwords. Output Specification: Print two integers — time (in seconds), Vanya needs to be authorized to Codehorses in the best case for him and in the worst case respectively. Demo Input: ['5 2\ncba\nabc\nbb1\nabC\nABC\nabc\n', '4 100\n11\n22\n1\n2\n22\n'] Demo Output: ['1 15\n', '3 4\n'] Note: Consider the first sample case. As soon as all passwords have the same length, Vanya can enter the right password at the first try as well as at the last try. If he enters it at the first try, he spends exactly 1 second. Thus in the best case the answer is 1. If, at the other hand, he enters it at the last try, he enters another 4 passwords before. He spends 2 seconds to enter first 2 passwords, then he waits 5 seconds as soon as he made 2 wrong tries. Then he spends 2 more seconds to enter 2 wrong passwords, again waits 5 seconds and, finally, enters the correct password spending 1 more second. In summary in the worst case he is able to be authorized in 15 seconds. Consider the second sample case. There is no way of entering passwords and get the access to the site blocked. As soon as the required password has length of 2, Vanya enters all passwords of length 1 anyway, spending 2 seconds for that. Then, in the best case, he immediately enters the correct password and the answer for the best case is 3, but in the worst case he enters wrong password of length 2 and only then the right one, spending 4 seconds at all.
```python a = input().split(" ") n = int(a[0]) k = int(a[1]) a = [] for i in range(n): a.append(len(input())) a.sort() tar = len(input()) res_min = 0 res_max = 0 for i in range(n): if a[i] == tar and (i == 0 or a[i-1] != tar): t = i + 1 res_min = t if (t % k == 0): res_min += (t // k - 1) * 5 else: res_min += (t // k) * 5 if a[i] == tar and (i == n - 1 or a[i + 1] > tar): t = i + 1 res_max = t if (t % k == 0): res_max += (t // k - 1) * 5 else: res_max += (t // k) * 5 print(res_min, res_max) ```
3
312
B
Archer
PROGRAMMING
1,300
[ "math", "probabilities" ]
null
null
SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner. Output the probability that SmallR will win the match.
A single line contains four integers .
Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10<=-<=6.
[ "1 2 1 2\n" ]
[ "0.666666666667" ]
none
1,000
[ { "input": "1 2 1 2", "output": "0.666666666667" }, { "input": "1 3 1 3", "output": "0.600000000000" }, { "input": "1 3 2 3", "output": "0.428571428571" }, { "input": "3 4 3 4", "output": "0.800000000000" }, { "input": "1 2 10 11", "output": "0.523809523810" }, { "input": "4 5 4 5", "output": "0.833333333333" }, { "input": "466 701 95 721", "output": "0.937693791148" }, { "input": "268 470 444 885", "output": "0.725614009325" }, { "input": "632 916 713 821", "output": "0.719292895126" }, { "input": "269 656 918 992", "output": "0.428937461623" }, { "input": "71 657 187 695", "output": "0.310488463257" }, { "input": "435 852 973 978", "output": "0.511844133157" }, { "input": "518 816 243 359", "output": "0.719734031025" }, { "input": "882 962 311 811", "output": "0.966386645447" }, { "input": "684 774 580 736", "output": "0.906051574446" }, { "input": "486 868 929 999", "output": "0.577723252958" }, { "input": "132 359 996 998", "output": "0.368154532345" }, { "input": "933 977 266 450", "output": "0.972879407907" }, { "input": "298 833 615 872", "output": "0.441270817024" }, { "input": "34 554 14 958", "output": "0.817324099167" }, { "input": "836 934 800 905", "output": "0.906105535462" }, { "input": "482 815 69 509", "output": "0.914365577772" }, { "input": "284 423 137 521", "output": "0.885974839378" }, { "input": "648 881 486 703", "output": "0.800911421248" }, { "input": "450 885 755 836", "output": "0.533901011176" }, { "input": "533 773 823 998", "output": "0.729222130525" }, { "input": "897 957 92 898", "output": "0.993193806364" }, { "input": "699 925 441 928", "output": "0.866816866175" }, { "input": "64 704 148 603", "output": "0.289486317811" }, { "input": "719 735 626 990", "output": "0.986124079764" }, { "input": "1 1000 1 1000", "output": "0.500250125063" } ]
1,682,844,299
2,147,483,647
PyPy 3-64
OK
TESTS
31
62
0
a,b,c,d = [int(i) for i in input().split()] print(a/b/(1-(1-a/b)*(1-c/d)))
Title: Archer Time Limit: None seconds Memory Limit: None megabytes Problem Description: SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner. Output the probability that SmallR will win the match. Input Specification: A single line contains four integers . Output Specification: Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10<=-<=6. Demo Input: ['1 2 1 2\n'] Demo Output: ['0.666666666667'] Note: none
```python a,b,c,d = [int(i) for i in input().split()] print(a/b/(1-(1-a/b)*(1-c/d))) ```
3
61
D
Eternal Victory
PROGRAMMING
1,800
[ "dfs and similar", "graphs", "greedy", "shortest paths", "trees" ]
D. Eternal Victory
2
256
Valerian was captured by Shapur. The victory was such a great one that Shapur decided to carve a scene of Valerian's defeat on a mountain. So he had to find the best place to make his victory eternal! He decided to visit all *n* cities of Persia to find the best available mountain, but after the recent war he was too tired and didn't want to traverse a lot. So he wanted to visit each of these *n* cities at least once with smallest possible traverse. Persian cities are connected with bidirectional roads. You can go from any city to any other one using these roads and there is a unique path between each two cities. All cities are numbered 1 to *n*. Shapur is currently in the city 1 and he wants to visit all other cities with minimum possible traverse. He can finish his travels in any city. Help Shapur find how much He should travel.
First line contains a single natural number *n* (1<=≤<=*n*<=≤<=105) — the amount of cities. Next *n*<=-<=1 lines contain 3 integer numbers each *x**i*, *y**i* and *w**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*,<=0<=≤<=*w**i*<=≤<=2<=×<=104). *x**i* and *y**i* are two ends of a road and *w**i* is the length of that road.
A single integer number, the minimal length of Shapur's travel. Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cout (also you may use %I64d).
[ "3\n1 2 3\n2 3 4\n", "3\n1 2 3\n1 3 3\n" ]
[ "7\n", "9\n" ]
none
2,000
[ { "input": "3\n1 2 3\n2 3 4", "output": "7" }, { "input": "3\n1 2 3\n1 3 3", "output": "9" }, { "input": "5\n5 3 60\n4 3 63\n2 1 97\n3 1 14", "output": "371" }, { "input": "3\n2 1 63\n3 1 78", "output": "204" }, { "input": "13\n8 2 58\n2 1 49\n13 10 41\n11 9 67\n6 4 18\n7 1 79\n3 2 58\n9 7 92\n10 6 62\n4 3 5\n12 4 87\n5 3 66", "output": "1126" }, { "input": "2\n2 1 89", "output": "89" }, { "input": "12\n3 1 31\n5 2 94\n9 8 37\n10 9 45\n7 5 75\n4 2 77\n6 3 31\n11 6 14\n8 7 19\n2 1 68\n12 1 60", "output": "764" }, { "input": "2\n2 1 5", "output": "5" }, { "input": "12\n3 2 52\n4 1 2\n5 2 68\n6 1 93\n8 5 60\n2 1 88\n9 8 44\n7 5 48\n11 2 31\n10 4 45\n12 7 58", "output": "916" }, { "input": "15\n12 1 52\n3 2 10\n4 1 45\n11 7 20\n10 3 54\n13 9 44\n15 2 8\n14 5 55\n9 3 32\n2 1 32\n8 4 14\n6 5 24\n5 3 74\n7 6 88", "output": "856" }, { "input": "1", "output": "0" }, { "input": "3\n1 2 0\n2 3 0", "output": "0" }, { "input": "6\n1 2 3\n1 3 1\n3 4 1\n4 5 1\n5 6 1", "output": "10" } ]
1,622,124,909
2,147,483,647
PyPy 3
OK
TESTS
56
514
19,251,200
# Legends Always Come Up with Solution # Author: Manvir Singh import os import sys from io import BytesIO, IOBase from heapq import * from math import inf def main(): n=int(input()) tree,su=[[] for _ in range(n+1)],0 for i in range(n-1): x,y,w=map(int,input().split()) tree[x].append((y,w)) tree[y].append((x,w)) su+=w d,b=[inf]*(n+1),[] d[1]=0 heappush(b,(0,1)) while b: c,ch=heappop(b) if d[ch]<c: continue for i in tree[ch]: if d[i[0]]>c+i[1]: d[i[0]]=c+i[1] heappush(b,(c+i[1],i[0])) print(2*su-max(d[1:])) # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") if __name__ == "__main__": main()
Title: Eternal Victory Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Valerian was captured by Shapur. The victory was such a great one that Shapur decided to carve a scene of Valerian's defeat on a mountain. So he had to find the best place to make his victory eternal! He decided to visit all *n* cities of Persia to find the best available mountain, but after the recent war he was too tired and didn't want to traverse a lot. So he wanted to visit each of these *n* cities at least once with smallest possible traverse. Persian cities are connected with bidirectional roads. You can go from any city to any other one using these roads and there is a unique path between each two cities. All cities are numbered 1 to *n*. Shapur is currently in the city 1 and he wants to visit all other cities with minimum possible traverse. He can finish his travels in any city. Help Shapur find how much He should travel. Input Specification: First line contains a single natural number *n* (1<=≤<=*n*<=≤<=105) — the amount of cities. Next *n*<=-<=1 lines contain 3 integer numbers each *x**i*, *y**i* and *w**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*,<=0<=≤<=*w**i*<=≤<=2<=×<=104). *x**i* and *y**i* are two ends of a road and *w**i* is the length of that road. Output Specification: A single integer number, the minimal length of Shapur's travel. Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cout (also you may use %I64d). Demo Input: ['3\n1 2 3\n2 3 4\n', '3\n1 2 3\n1 3 3\n'] Demo Output: ['7\n', '9\n'] Note: none
```python # Legends Always Come Up with Solution # Author: Manvir Singh import os import sys from io import BytesIO, IOBase from heapq import * from math import inf def main(): n=int(input()) tree,su=[[] for _ in range(n+1)],0 for i in range(n-1): x,y,w=map(int,input().split()) tree[x].append((y,w)) tree[y].append((x,w)) su+=w d,b=[inf]*(n+1),[] d[1]=0 heappush(b,(0,1)) while b: c,ch=heappop(b) if d[ch]<c: continue for i in tree[ch]: if d[i[0]]>c+i[1]: d[i[0]]=c+i[1] heappush(b,(c+i[1],i[0])) print(2*su-max(d[1:])) # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") if __name__ == "__main__": main() ```
3.835642
837
A
Text Volume
PROGRAMMING
800
[ "implementation" ]
null
null
You are given a text of single-space separated words, consisting of small and capital Latin letters. Volume of the word is number of capital letters in the word. Volume of the text is maximum volume of all words in the text. Calculate the volume of the given text.
The first line contains one integer number *n* (1<=≤<=*n*<=≤<=200) — length of the text. The second line contains text of single-space separated words *s*1,<=*s*2,<=...,<=*s**i*, consisting only of small and capital Latin letters.
Print one integer number — volume of text.
[ "7\nNonZERO\n", "24\nthis is zero answer text\n", "24\nHarbour Space University\n" ]
[ "5\n", "0\n", "1\n" ]
In the first example there is only one word, there are 5 capital letters in it. In the second example all of the words contain 0 capital letters.
0
[ { "input": "7\nNonZERO", "output": "5" }, { "input": "24\nthis is zero answer text", "output": "0" }, { "input": "24\nHarbour Space University", "output": "1" }, { "input": "2\nWM", "output": "2" }, { "input": "200\nLBmJKQLCKUgtTxMoDsEerwvLOXsxASSydOqWyULsRcjMYDWdDCgaDvBfATIWPVSXlbcCLHPYahhxMEYUiaxoCebghJqvmRnaNHYTKLeOiaLDnATPZAOgSNfBzaxLymTGjfzvTegbXsAthTxyDTcmBUkqyGlVGZhoazQzVSoKbTFcCRvYsgSCwjGMxBfWEwMHuagTBxkz", "output": "105" }, { "input": "199\no A r v H e J q k J k v w Q F p O R y R Z o a K R L Z E H t X y X N y y p b x B m r R S q i A x V S u i c L y M n N X c C W Z m S j e w C w T r I S X T D F l w o k f t X u n W w p Z r A k I Y E h s g", "output": "1" }, { "input": "200\nhCyIdivIiISmmYIsCLbpKcTyHaOgTUQEwnQACXnrLdHAVFLtvliTEMlzBVzTesQbhXmcqvwPDeojglBMIjOXANfyQxCSjOJyO SIqOTnRzVzseGIDDYNtrwIusScWSuEhPyEmgQIVEzXofRptjeMzzhtUQxJgcUWILUhEaaRmYRBVsjoqgmyPIKwSajdlNPccOOtWrez", "output": "50" }, { "input": "1\ne", "output": "0" }, { "input": "1\nA", "output": "1" }, { "input": "200\nABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ KLMNOPRSTU KLMNOPRSTU KLMNOPRSTU VWXYZABCDE KLMNOPRSTU KLMNOPRSTU KLMNOPRSTU KLMNOPRSTU KZ", "output": "10" }, { "input": "200\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "200" }, { "input": "200\nffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff", "output": "0" }, { "input": "24\nHarbour Space UniversitY", "output": "2" }, { "input": "5\naA AA", "output": "2" }, { "input": "10\nas AS ASDA", "output": "4" }, { "input": "10\nas AS ASDZ", "output": "4" }, { "input": "3\na A", "output": "1" }, { "input": "24\nHarbour space UniversitY", "output": "2" }, { "input": "10\nas AS ASAa", "output": "3" }, { "input": "15\naAb ABCDFGRHTJS", "output": "11" }, { "input": "53\nsdfAZEZR AZE dfdf dsdRFGSDF ZZDZSD dfsd ERBGF dsfsdfR", "output": "6" }, { "input": "10\nABC ABc AB", "output": "3" }, { "input": "10\nA c de CDE", "output": "3" }, { "input": "4\nA AB", "output": "2" }, { "input": "18\nHARbour Space UNIV", "output": "4" }, { "input": "13\na b c d e f A", "output": "1" }, { "input": "6\nA B CA", "output": "2" }, { "input": "4\naa A", "output": "1" }, { "input": "3\nA a", "output": "1" } ]
1,612,350,146
2,147,483,647
PyPy 3
OK
TESTS
29
93
0
l = int(input()) mx = 0 for i in input().split(): mx = max(mx, len(list(filter(lambda s: s.isupper(), i)))) print(mx)
Title: Text Volume Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a text of single-space separated words, consisting of small and capital Latin letters. Volume of the word is number of capital letters in the word. Volume of the text is maximum volume of all words in the text. Calculate the volume of the given text. Input Specification: The first line contains one integer number *n* (1<=≤<=*n*<=≤<=200) — length of the text. The second line contains text of single-space separated words *s*1,<=*s*2,<=...,<=*s**i*, consisting only of small and capital Latin letters. Output Specification: Print one integer number — volume of text. Demo Input: ['7\nNonZERO\n', '24\nthis is zero answer text\n', '24\nHarbour Space University\n'] Demo Output: ['5\n', '0\n', '1\n'] Note: In the first example there is only one word, there are 5 capital letters in it. In the second example all of the words contain 0 capital letters.
```python l = int(input()) mx = 0 for i in input().split(): mx = max(mx, len(list(filter(lambda s: s.isupper(), i)))) print(mx) ```
3
488
A
Giga Tower
PROGRAMMING
1,100
[ "brute force" ]
null
null
Giga Tower is the tallest and deepest building in Cyberland. There are 17<=777<=777<=777 floors, numbered from <=-<=8<=888<=888<=888 to 8<=888<=888<=888. In particular, there is floor 0 between floor <=-<=1 and floor 1. Every day, thousands of tourists come to this place to enjoy the wonderful view. In Cyberland, it is believed that the number "8" is a lucky number (that's why Giga Tower has 8<=888<=888<=888 floors above the ground), and, an integer is lucky, if and only if its decimal notation contains at least one digit "8". For example, 8,<=<=-<=180,<=808 are all lucky while 42,<=<=-<=10 are not. In the Giga Tower, if you write code at a floor with lucky floor number, good luck will always be with you (Well, this round is #278, also lucky, huh?). Tourist Henry goes to the tower to seek good luck. Now he is at the floor numbered *a*. He wants to find the minimum positive integer *b*, such that, if he walks *b* floors higher, he will arrive at a floor with a lucky number.
The only line of input contains an integer *a* (<=-<=109<=≤<=*a*<=≤<=109).
Print the minimum *b* in a line.
[ "179\n", "-1\n", "18\n" ]
[ "1\n", "9\n", "10\n" ]
For the first sample, he has to arrive at the floor numbered 180. For the second sample, he will arrive at 8. Note that *b* should be positive, so the answer for the third sample is 10, not 0.
500
[ { "input": "179", "output": "1" }, { "input": "-1", "output": "9" }, { "input": "18", "output": "10" }, { "input": "-410058385", "output": "1" }, { "input": "-586825624", "output": "1" }, { "input": "852318890", "output": "1" }, { "input": "919067153", "output": "5" }, { "input": "690422411", "output": "7" }, { "input": "-408490162", "output": "1" }, { "input": "-8", "output": "16" }, { "input": "-6", "output": "14" }, { "input": "-4", "output": "12" }, { "input": "-2", "output": "10" }, { "input": "0", "output": "8" }, { "input": "2", "output": "6" }, { "input": "4", "output": "4" }, { "input": "6", "output": "2" }, { "input": "8", "output": "10" }, { "input": "1000000000", "output": "8" }, { "input": "-1000000000", "output": "2" }, { "input": "88888", "output": "1" }, { "input": "89", "output": "9" }, { "input": "-80000000", "output": "2" }, { "input": "-8888", "output": "1" }, { "input": "-17", "output": "9" }, { "input": "78", "output": "2" }, { "input": "-19", "output": "1" }, { "input": "-999999998", "output": "9" }, { "input": "-999999997", "output": "8" }, { "input": "999999997", "output": "1" }, { "input": "811111111", "output": "1" }, { "input": "-8", "output": "16" }, { "input": "-5", "output": "13" }, { "input": "-7", "output": "15" }, { "input": "1000000000", "output": "8" } ]
1,535,048,245
2,147,483,647
Python 3
OK
TESTS
35
124
0
a,b=int(input()),1 while str(a+b).find('8')==-1: b+=1 print(b) # Made By Mostafa_Khaled
Title: Giga Tower Time Limit: None seconds Memory Limit: None megabytes Problem Description: Giga Tower is the tallest and deepest building in Cyberland. There are 17<=777<=777<=777 floors, numbered from <=-<=8<=888<=888<=888 to 8<=888<=888<=888. In particular, there is floor 0 between floor <=-<=1 and floor 1. Every day, thousands of tourists come to this place to enjoy the wonderful view. In Cyberland, it is believed that the number "8" is a lucky number (that's why Giga Tower has 8<=888<=888<=888 floors above the ground), and, an integer is lucky, if and only if its decimal notation contains at least one digit "8". For example, 8,<=<=-<=180,<=808 are all lucky while 42,<=<=-<=10 are not. In the Giga Tower, if you write code at a floor with lucky floor number, good luck will always be with you (Well, this round is #278, also lucky, huh?). Tourist Henry goes to the tower to seek good luck. Now he is at the floor numbered *a*. He wants to find the minimum positive integer *b*, such that, if he walks *b* floors higher, he will arrive at a floor with a lucky number. Input Specification: The only line of input contains an integer *a* (<=-<=109<=≤<=*a*<=≤<=109). Output Specification: Print the minimum *b* in a line. Demo Input: ['179\n', '-1\n', '18\n'] Demo Output: ['1\n', '9\n', '10\n'] Note: For the first sample, he has to arrive at the floor numbered 180. For the second sample, he will arrive at 8. Note that *b* should be positive, so the answer for the third sample is 10, not 0.
```python a,b=int(input()),1 while str(a+b).find('8')==-1: b+=1 print(b) # Made By Mostafa_Khaled ```
3
334
A
Candy Bags
PROGRAMMING
1,000
[ "implementation" ]
null
null
Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies. Help him give *n* bags of candies to each brother so that all brothers got the same number of candies.
The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers.
Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order. It is guaranteed that the solution exists at the given limits.
[ "2\n" ]
[ "1 4\n2 3\n" ]
The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
500
[ { "input": "2", "output": "1 4\n2 3" }, { "input": "4", "output": "1 16 2 15\n3 14 4 13\n5 12 6 11\n7 10 8 9" }, { "input": "6", "output": "1 36 2 35 3 34\n4 33 5 32 6 31\n7 30 8 29 9 28\n10 27 11 26 12 25\n13 24 14 23 15 22\n16 21 17 20 18 19" }, { "input": "8", "output": "1 64 2 63 3 62 4 61\n5 60 6 59 7 58 8 57\n9 56 10 55 11 54 12 53\n13 52 14 51 15 50 16 49\n17 48 18 47 19 46 20 45\n21 44 22 43 23 42 24 41\n25 40 26 39 27 38 28 37\n29 36 30 35 31 34 32 33" }, { "input": "10", "output": "1 100 2 99 3 98 4 97 5 96\n6 95 7 94 8 93 9 92 10 91\n11 90 12 89 13 88 14 87 15 86\n16 85 17 84 18 83 19 82 20 81\n21 80 22 79 23 78 24 77 25 76\n26 75 27 74 28 73 29 72 30 71\n31 70 32 69 33 68 34 67 35 66\n36 65 37 64 38 63 39 62 40 61\n41 60 42 59 43 58 44 57 45 56\n46 55 47 54 48 53 49 52 50 51" }, { "input": "100", "output": "1 10000 2 9999 3 9998 4 9997 5 9996 6 9995 7 9994 8 9993 9 9992 10 9991 11 9990 12 9989 13 9988 14 9987 15 9986 16 9985 17 9984 18 9983 19 9982 20 9981 21 9980 22 9979 23 9978 24 9977 25 9976 26 9975 27 9974 28 9973 29 9972 30 9971 31 9970 32 9969 33 9968 34 9967 35 9966 36 9965 37 9964 38 9963 39 9962 40 9961 41 9960 42 9959 43 9958 44 9957 45 9956 46 9955 47 9954 48 9953 49 9952 50 9951\n51 9950 52 9949 53 9948 54 9947 55 9946 56 9945 57 9944 58 9943 59 9942 60 9941 61 9940 62 9939 63 9938 64 9937 65 993..." }, { "input": "62", "output": "1 3844 2 3843 3 3842 4 3841 5 3840 6 3839 7 3838 8 3837 9 3836 10 3835 11 3834 12 3833 13 3832 14 3831 15 3830 16 3829 17 3828 18 3827 19 3826 20 3825 21 3824 22 3823 23 3822 24 3821 25 3820 26 3819 27 3818 28 3817 29 3816 30 3815 31 3814\n32 3813 33 3812 34 3811 35 3810 36 3809 37 3808 38 3807 39 3806 40 3805 41 3804 42 3803 43 3802 44 3801 45 3800 46 3799 47 3798 48 3797 49 3796 50 3795 51 3794 52 3793 53 3792 54 3791 55 3790 56 3789 57 3788 58 3787 59 3786 60 3785 61 3784 62 3783\n63 3782 64 3781 65 378..." }, { "input": "66", "output": "1 4356 2 4355 3 4354 4 4353 5 4352 6 4351 7 4350 8 4349 9 4348 10 4347 11 4346 12 4345 13 4344 14 4343 15 4342 16 4341 17 4340 18 4339 19 4338 20 4337 21 4336 22 4335 23 4334 24 4333 25 4332 26 4331 27 4330 28 4329 29 4328 30 4327 31 4326 32 4325 33 4324\n34 4323 35 4322 36 4321 37 4320 38 4319 39 4318 40 4317 41 4316 42 4315 43 4314 44 4313 45 4312 46 4311 47 4310 48 4309 49 4308 50 4307 51 4306 52 4305 53 4304 54 4303 55 4302 56 4301 57 4300 58 4299 59 4298 60 4297 61 4296 62 4295 63 4294 64 4293 65 4292..." }, { "input": "18", "output": "1 324 2 323 3 322 4 321 5 320 6 319 7 318 8 317 9 316\n10 315 11 314 12 313 13 312 14 311 15 310 16 309 17 308 18 307\n19 306 20 305 21 304 22 303 23 302 24 301 25 300 26 299 27 298\n28 297 29 296 30 295 31 294 32 293 33 292 34 291 35 290 36 289\n37 288 38 287 39 286 40 285 41 284 42 283 43 282 44 281 45 280\n46 279 47 278 48 277 49 276 50 275 51 274 52 273 53 272 54 271\n55 270 56 269 57 268 58 267 59 266 60 265 61 264 62 263 63 262\n64 261 65 260 66 259 67 258 68 257 69 256 70 255 71 254 72 253\n73 252 7..." }, { "input": "68", "output": "1 4624 2 4623 3 4622 4 4621 5 4620 6 4619 7 4618 8 4617 9 4616 10 4615 11 4614 12 4613 13 4612 14 4611 15 4610 16 4609 17 4608 18 4607 19 4606 20 4605 21 4604 22 4603 23 4602 24 4601 25 4600 26 4599 27 4598 28 4597 29 4596 30 4595 31 4594 32 4593 33 4592 34 4591\n35 4590 36 4589 37 4588 38 4587 39 4586 40 4585 41 4584 42 4583 43 4582 44 4581 45 4580 46 4579 47 4578 48 4577 49 4576 50 4575 51 4574 52 4573 53 4572 54 4571 55 4570 56 4569 57 4568 58 4567 59 4566 60 4565 61 4564 62 4563 63 4562 64 4561 65 4560..." }, { "input": "86", "output": "1 7396 2 7395 3 7394 4 7393 5 7392 6 7391 7 7390 8 7389 9 7388 10 7387 11 7386 12 7385 13 7384 14 7383 15 7382 16 7381 17 7380 18 7379 19 7378 20 7377 21 7376 22 7375 23 7374 24 7373 25 7372 26 7371 27 7370 28 7369 29 7368 30 7367 31 7366 32 7365 33 7364 34 7363 35 7362 36 7361 37 7360 38 7359 39 7358 40 7357 41 7356 42 7355 43 7354\n44 7353 45 7352 46 7351 47 7350 48 7349 49 7348 50 7347 51 7346 52 7345 53 7344 54 7343 55 7342 56 7341 57 7340 58 7339 59 7338 60 7337 61 7336 62 7335 63 7334 64 7333 65 7332..." }, { "input": "96", "output": "1 9216 2 9215 3 9214 4 9213 5 9212 6 9211 7 9210 8 9209 9 9208 10 9207 11 9206 12 9205 13 9204 14 9203 15 9202 16 9201 17 9200 18 9199 19 9198 20 9197 21 9196 22 9195 23 9194 24 9193 25 9192 26 9191 27 9190 28 9189 29 9188 30 9187 31 9186 32 9185 33 9184 34 9183 35 9182 36 9181 37 9180 38 9179 39 9178 40 9177 41 9176 42 9175 43 9174 44 9173 45 9172 46 9171 47 9170 48 9169\n49 9168 50 9167 51 9166 52 9165 53 9164 54 9163 55 9162 56 9161 57 9160 58 9159 59 9158 60 9157 61 9156 62 9155 63 9154 64 9153 65 9152..." }, { "input": "12", "output": "1 144 2 143 3 142 4 141 5 140 6 139\n7 138 8 137 9 136 10 135 11 134 12 133\n13 132 14 131 15 130 16 129 17 128 18 127\n19 126 20 125 21 124 22 123 23 122 24 121\n25 120 26 119 27 118 28 117 29 116 30 115\n31 114 32 113 33 112 34 111 35 110 36 109\n37 108 38 107 39 106 40 105 41 104 42 103\n43 102 44 101 45 100 46 99 47 98 48 97\n49 96 50 95 51 94 52 93 53 92 54 91\n55 90 56 89 57 88 58 87 59 86 60 85\n61 84 62 83 63 82 64 81 65 80 66 79\n67 78 68 77 69 76 70 75 71 74 72 73" }, { "input": "88", "output": "1 7744 2 7743 3 7742 4 7741 5 7740 6 7739 7 7738 8 7737 9 7736 10 7735 11 7734 12 7733 13 7732 14 7731 15 7730 16 7729 17 7728 18 7727 19 7726 20 7725 21 7724 22 7723 23 7722 24 7721 25 7720 26 7719 27 7718 28 7717 29 7716 30 7715 31 7714 32 7713 33 7712 34 7711 35 7710 36 7709 37 7708 38 7707 39 7706 40 7705 41 7704 42 7703 43 7702 44 7701\n45 7700 46 7699 47 7698 48 7697 49 7696 50 7695 51 7694 52 7693 53 7692 54 7691 55 7690 56 7689 57 7688 58 7687 59 7686 60 7685 61 7684 62 7683 63 7682 64 7681 65 7680..." }, { "input": "28", "output": "1 784 2 783 3 782 4 781 5 780 6 779 7 778 8 777 9 776 10 775 11 774 12 773 13 772 14 771\n15 770 16 769 17 768 18 767 19 766 20 765 21 764 22 763 23 762 24 761 25 760 26 759 27 758 28 757\n29 756 30 755 31 754 32 753 33 752 34 751 35 750 36 749 37 748 38 747 39 746 40 745 41 744 42 743\n43 742 44 741 45 740 46 739 47 738 48 737 49 736 50 735 51 734 52 733 53 732 54 731 55 730 56 729\n57 728 58 727 59 726 60 725 61 724 62 723 63 722 64 721 65 720 66 719 67 718 68 717 69 716 70 715\n71 714 72 713 73 712 74 7..." }, { "input": "80", "output": "1 6400 2 6399 3 6398 4 6397 5 6396 6 6395 7 6394 8 6393 9 6392 10 6391 11 6390 12 6389 13 6388 14 6387 15 6386 16 6385 17 6384 18 6383 19 6382 20 6381 21 6380 22 6379 23 6378 24 6377 25 6376 26 6375 27 6374 28 6373 29 6372 30 6371 31 6370 32 6369 33 6368 34 6367 35 6366 36 6365 37 6364 38 6363 39 6362 40 6361\n41 6360 42 6359 43 6358 44 6357 45 6356 46 6355 47 6354 48 6353 49 6352 50 6351 51 6350 52 6349 53 6348 54 6347 55 6346 56 6345 57 6344 58 6343 59 6342 60 6341 61 6340 62 6339 63 6338 64 6337 65 6336..." }, { "input": "48", "output": "1 2304 2 2303 3 2302 4 2301 5 2300 6 2299 7 2298 8 2297 9 2296 10 2295 11 2294 12 2293 13 2292 14 2291 15 2290 16 2289 17 2288 18 2287 19 2286 20 2285 21 2284 22 2283 23 2282 24 2281\n25 2280 26 2279 27 2278 28 2277 29 2276 30 2275 31 2274 32 2273 33 2272 34 2271 35 2270 36 2269 37 2268 38 2267 39 2266 40 2265 41 2264 42 2263 43 2262 44 2261 45 2260 46 2259 47 2258 48 2257\n49 2256 50 2255 51 2254 52 2253 53 2252 54 2251 55 2250 56 2249 57 2248 58 2247 59 2246 60 2245 61 2244 62 2243 63 2242 64 2241 65 224..." }, { "input": "54", "output": "1 2916 2 2915 3 2914 4 2913 5 2912 6 2911 7 2910 8 2909 9 2908 10 2907 11 2906 12 2905 13 2904 14 2903 15 2902 16 2901 17 2900 18 2899 19 2898 20 2897 21 2896 22 2895 23 2894 24 2893 25 2892 26 2891 27 2890\n28 2889 29 2888 30 2887 31 2886 32 2885 33 2884 34 2883 35 2882 36 2881 37 2880 38 2879 39 2878 40 2877 41 2876 42 2875 43 2874 44 2873 45 2872 46 2871 47 2870 48 2869 49 2868 50 2867 51 2866 52 2865 53 2864 54 2863\n55 2862 56 2861 57 2860 58 2859 59 2858 60 2857 61 2856 62 2855 63 2854 64 2853 65 285..." }, { "input": "58", "output": "1 3364 2 3363 3 3362 4 3361 5 3360 6 3359 7 3358 8 3357 9 3356 10 3355 11 3354 12 3353 13 3352 14 3351 15 3350 16 3349 17 3348 18 3347 19 3346 20 3345 21 3344 22 3343 23 3342 24 3341 25 3340 26 3339 27 3338 28 3337 29 3336\n30 3335 31 3334 32 3333 33 3332 34 3331 35 3330 36 3329 37 3328 38 3327 39 3326 40 3325 41 3324 42 3323 43 3322 44 3321 45 3320 46 3319 47 3318 48 3317 49 3316 50 3315 51 3314 52 3313 53 3312 54 3311 55 3310 56 3309 57 3308 58 3307\n59 3306 60 3305 61 3304 62 3303 63 3302 64 3301 65 330..." }, { "input": "64", "output": "1 4096 2 4095 3 4094 4 4093 5 4092 6 4091 7 4090 8 4089 9 4088 10 4087 11 4086 12 4085 13 4084 14 4083 15 4082 16 4081 17 4080 18 4079 19 4078 20 4077 21 4076 22 4075 23 4074 24 4073 25 4072 26 4071 27 4070 28 4069 29 4068 30 4067 31 4066 32 4065\n33 4064 34 4063 35 4062 36 4061 37 4060 38 4059 39 4058 40 4057 41 4056 42 4055 43 4054 44 4053 45 4052 46 4051 47 4050 48 4049 49 4048 50 4047 51 4046 52 4045 53 4044 54 4043 55 4042 56 4041 57 4040 58 4039 59 4038 60 4037 61 4036 62 4035 63 4034 64 4033\n65 403..." }, { "input": "44", "output": "1 1936 2 1935 3 1934 4 1933 5 1932 6 1931 7 1930 8 1929 9 1928 10 1927 11 1926 12 1925 13 1924 14 1923 15 1922 16 1921 17 1920 18 1919 19 1918 20 1917 21 1916 22 1915\n23 1914 24 1913 25 1912 26 1911 27 1910 28 1909 29 1908 30 1907 31 1906 32 1905 33 1904 34 1903 35 1902 36 1901 37 1900 38 1899 39 1898 40 1897 41 1896 42 1895 43 1894 44 1893\n45 1892 46 1891 47 1890 48 1889 49 1888 50 1887 51 1886 52 1885 53 1884 54 1883 55 1882 56 1881 57 1880 58 1879 59 1878 60 1877 61 1876 62 1875 63 1874 64 1873 65 187..." } ]
1,660,820,246
2,147,483,647
Python 3
OK
TESTS
21
124
204,800
n = int(input()) sps_L = [] sps_R = [] temp = [] for i in range (1, (n**2)//2 + 1): if len(temp) != n // 2: temp.append(str(i)) else: sps_L.append(temp) temp = [] temp.append(str(i)) else: sps_L.append(temp) temp = [] for i in range (n ** 2, (n**2)//2, -1): if len(temp) != n // 2: temp.append(str(i)) else: sps_R.append(temp) temp = [] temp.append(str(i)) else: sps_R.append(temp) for i in range (n): temp = sps_L[i] + sps_R[i] for j in temp: print (j + ' ', end='') print ()
Title: Candy Bags Time Limit: None seconds Memory Limit: None megabytes Problem Description: Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies. Help him give *n* bags of candies to each brother so that all brothers got the same number of candies. Input Specification: The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers. Output Specification: Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order. It is guaranteed that the solution exists at the given limits. Demo Input: ['2\n'] Demo Output: ['1 4\n2 3\n'] Note: The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
```python n = int(input()) sps_L = [] sps_R = [] temp = [] for i in range (1, (n**2)//2 + 1): if len(temp) != n // 2: temp.append(str(i)) else: sps_L.append(temp) temp = [] temp.append(str(i)) else: sps_L.append(temp) temp = [] for i in range (n ** 2, (n**2)//2, -1): if len(temp) != n // 2: temp.append(str(i)) else: sps_R.append(temp) temp = [] temp.append(str(i)) else: sps_R.append(temp) for i in range (n): temp = sps_L[i] + sps_R[i] for j in temp: print (j + ' ', end='') print () ```
3
677
A
Vanya and Fence
PROGRAMMING
800
[ "implementation" ]
null
null
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
Print a single integer — the minimum possible valid width of the road.
[ "3 7\n4 5 14\n", "6 1\n1 1 1 1 1 1\n", "6 5\n7 6 8 9 10 5\n" ]
[ "4\n", "6\n", "11\n" ]
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
500
[ { "input": "3 7\n4 5 14", "output": "4" }, { "input": "6 1\n1 1 1 1 1 1", "output": "6" }, { "input": "6 5\n7 6 8 9 10 5", "output": "11" }, { "input": "10 420\n214 614 297 675 82 740 174 23 255 15", "output": "13" }, { "input": "10 561\n657 23 1096 487 785 66 481 554 1000 821", "output": "15" }, { "input": "100 342\n478 143 359 336 162 333 385 515 117 496 310 538 469 539 258 676 466 677 1 296 150 560 26 213 627 221 255 126 617 174 279 178 24 435 70 145 619 46 669 566 300 67 576 251 58 176 441 564 569 194 24 669 73 262 457 259 619 78 400 579 222 626 269 47 80 315 160 194 455 186 315 424 197 246 683 220 68 682 83 233 290 664 273 598 362 305 674 614 321 575 362 120 14 534 62 436 294 351 485 396", "output": "144" }, { "input": "100 290\n244 49 276 77 449 261 468 458 201 424 9 131 300 88 432 394 104 77 13 289 435 259 111 453 168 394 156 412 351 576 178 530 81 271 228 564 125 328 42 372 205 61 180 471 33 360 567 331 222 318 241 117 529 169 188 484 202 202 299 268 246 343 44 364 333 494 59 236 84 485 50 8 428 8 571 227 205 310 210 9 324 472 368 490 114 84 296 305 411 351 569 393 283 120 510 171 232 151 134 366", "output": "145" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 1\n2", "output": "2" }, { "input": "46 71\n30 26 56 138 123 77 60 122 73 45 79 10 130 3 14 1 38 46 128 50 82 16 32 68 28 98 62 106 2 49 131 11 114 39 139 70 40 50 45 137 33 30 35 136 135 19", "output": "63" }, { "input": "20 723\n212 602 293 591 754 91 1135 640 80 495 845 928 1399 498 926 1431 1226 869 814 1386", "output": "31" }, { "input": "48 864\n843 1020 751 1694 18 1429 1395 1174 272 1158 1628 1233 1710 441 765 561 778 748 1501 1200 563 1263 1398 1687 1518 1640 1591 839 500 466 1603 1587 1201 1209 432 868 1159 639 649 628 9 91 1036 147 896 1557 941 518", "output": "75" }, { "input": "26 708\n549 241 821 734 945 1161 566 1268 216 30 1142 730 529 1014 255 168 796 1148 89 113 1328 286 743 871 1259 1397", "output": "41" }, { "input": "75 940\n1620 1745 1599 441 64 1466 1496 1239 1716 1475 778 106 1136 1212 1261 444 781 257 1071 747 626 232 609 1544 682 1326 469 1361 1460 1450 1207 1319 922 625 1737 1057 1698 592 692 80 1016 541 1254 201 682 1007 847 206 1066 809 259 109 240 1611 219 1455 1326 1377 1827 786 42 1002 1382 1592 543 1866 1198 334 1524 1760 340 1566 955 257 1118", "output": "116" } ]
1,694,406,146
2,147,483,647
Python 3
OK
TESTS
29
46
0
n,h=map(int,input().split()) ans=0 li=list(map(int,input().split())) # print(li) for i in li: if i>h: # print("+2(",i,")") ans=ans+2 else: # print("+1(",i,")") ans=ans+1 print(ans)
Title: Vanya and Fence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard? Input Specification: The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person. Output Specification: Print a single integer — the minimum possible valid width of the road. Demo Input: ['3 7\n4 5 14\n', '6 1\n1 1 1 1 1 1\n', '6 5\n7 6 8 9 10 5\n'] Demo Output: ['4\n', '6\n', '11\n'] Note: In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
```python n,h=map(int,input().split()) ans=0 li=list(map(int,input().split())) # print(li) for i in li: if i>h: # print("+2(",i,")") ans=ans+2 else: # print("+1(",i,")") ans=ans+1 print(ans) ```
3
865
A
Save the problem!
PROGRAMMING
1,400
[ "constructive algorithms" ]
null
null
Attention: we lost all the test cases for this problem, so instead of solving the problem, we need you to generate test cases. We're going to give you the answer, and you need to print a test case that produces the given answer. The original problem is in the following paragraph. People don't use cash as often as they used to. Having a credit card solves some of the hassles of cash, such as having to receive change when you can't form the exact amount of money needed to purchase an item. Typically cashiers will give you as few coins as possible in change, but they don't have to. For example, if your change is 30 cents, a cashier could give you a 5 cent piece and a 25 cent piece, or they could give you three 10 cent pieces, or ten 1 cent pieces, two 5 cent pieces, and one 10 cent piece. Altogether there are 18 different ways to make 30 cents using only 1 cent pieces, 5 cent pieces, 10 cent pieces, and 25 cent pieces. Two ways are considered different if they contain a different number of at least one type of coin. Given the denominations of the coins and an amount of change to be made, how many different ways are there to make change? As we mentioned before, we lost all the test cases for this problem, so we're actually going to give you the number of ways, and want you to produce a test case for which the number of ways is the given number. There could be many ways to achieve this (we guarantee there's always at least one), so you can print any, as long as it meets the constraints described below.
Input will consist of a single integer *A* (1<=≤<=*A*<=≤<=105), the desired number of ways.
In the first line print integers *N* and *M* (1<=≤<=*N*<=≤<=106,<=1<=≤<=*M*<=≤<=10), the amount of change to be made, and the number of denominations, respectively. Then print *M* integers *D*1,<=*D*2,<=...,<=*D**M* (1<=≤<=*D**i*<=≤<=106), the denominations of the coins. All denominations must be distinct: for any *i*<=≠<=*j* we must have *D**i*<=≠<=*D**j*. If there are multiple tests, print any of them. You can print denominations in atbitrary order.
[ "18\n", "3\n", "314\n" ]
[ "30 4\n1 5 10 25\n", "20 2\n5 2\n", "183 4\n6 5 2 139\n" ]
none
500
[ { "input": "18", "output": "30 4\n1 5 10 25" }, { "input": "3", "output": "20 2\n5 2" }, { "input": "314", "output": "183 4\n6 5 2 139" }, { "input": "1023", "output": "2045 2\n1 2" }, { "input": "100000", "output": "199999 2\n1 2" }, { "input": "1", "output": "1 2\n1 2" }, { "input": "2", "output": "3 2\n1 2" }, { "input": "3", "output": "20 2\n5 2" }, { "input": "4", "output": "7 2\n1 2" }, { "input": "5", "output": "9 2\n1 2" }, { "input": "6", "output": "11 2\n1 2" }, { "input": "7", "output": "13 2\n1 2" }, { "input": "8", "output": "15 2\n1 2" }, { "input": "9", "output": "17 2\n1 2" }, { "input": "10", "output": "19 2\n1 2" }, { "input": "11", "output": "21 2\n1 2" }, { "input": "12", "output": "23 2\n1 2" }, { "input": "13", "output": "25 2\n1 2" }, { "input": "14", "output": "27 2\n1 2" }, { "input": "15", "output": "29 2\n1 2" }, { "input": "16", "output": "31 2\n1 2" }, { "input": "17", "output": "33 2\n1 2" }, { "input": "18", "output": "30 4\n1 5 10 25" }, { "input": "19", "output": "37 2\n1 2" }, { "input": "20", "output": "39 2\n1 2" }, { "input": "239", "output": "477 2\n1 2" }, { "input": "4063", "output": "8125 2\n1 2" }, { "input": "65536", "output": "131071 2\n1 2" }, { "input": "65535", "output": "131069 2\n1 2" }, { "input": "65537", "output": "131073 2\n1 2" }, { "input": "99991", "output": "199981 2\n1 2" }, { "input": "99990", "output": "199979 2\n1 2" }, { "input": "99992", "output": "199983 2\n1 2" }, { "input": "99971", "output": "199941 2\n1 2" }, { "input": "99990", "output": "199979 2\n1 2" }, { "input": "2", "output": "3 2\n1 2" }, { "input": "99991", "output": "199981 2\n1 2" } ]
1,696,400,307
2,147,483,647
Python 3
OK
TESTS
37
46
0
# LUOGU_RID: 127490172 print(int(input())*2-1,end=" 2\n") print("1 2")
Title: Save the problem! Time Limit: None seconds Memory Limit: None megabytes Problem Description: Attention: we lost all the test cases for this problem, so instead of solving the problem, we need you to generate test cases. We're going to give you the answer, and you need to print a test case that produces the given answer. The original problem is in the following paragraph. People don't use cash as often as they used to. Having a credit card solves some of the hassles of cash, such as having to receive change when you can't form the exact amount of money needed to purchase an item. Typically cashiers will give you as few coins as possible in change, but they don't have to. For example, if your change is 30 cents, a cashier could give you a 5 cent piece and a 25 cent piece, or they could give you three 10 cent pieces, or ten 1 cent pieces, two 5 cent pieces, and one 10 cent piece. Altogether there are 18 different ways to make 30 cents using only 1 cent pieces, 5 cent pieces, 10 cent pieces, and 25 cent pieces. Two ways are considered different if they contain a different number of at least one type of coin. Given the denominations of the coins and an amount of change to be made, how many different ways are there to make change? As we mentioned before, we lost all the test cases for this problem, so we're actually going to give you the number of ways, and want you to produce a test case for which the number of ways is the given number. There could be many ways to achieve this (we guarantee there's always at least one), so you can print any, as long as it meets the constraints described below. Input Specification: Input will consist of a single integer *A* (1<=≤<=*A*<=≤<=105), the desired number of ways. Output Specification: In the first line print integers *N* and *M* (1<=≤<=*N*<=≤<=106,<=1<=≤<=*M*<=≤<=10), the amount of change to be made, and the number of denominations, respectively. Then print *M* integers *D*1,<=*D*2,<=...,<=*D**M* (1<=≤<=*D**i*<=≤<=106), the denominations of the coins. All denominations must be distinct: for any *i*<=≠<=*j* we must have *D**i*<=≠<=*D**j*. If there are multiple tests, print any of them. You can print denominations in atbitrary order. Demo Input: ['18\n', '3\n', '314\n'] Demo Output: ['30 4\n1 5 10 25\n', '20 2\n5 2\n', '183 4\n6 5 2 139\n'] Note: none
```python # LUOGU_RID: 127490172 print(int(input())*2-1,end=" 2\n") print("1 2") ```
3
682
A
Alyona and Numbers
PROGRAMMING
1,100
[ "constructive algorithms", "math", "number theory" ]
null
null
After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5. Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0. As usual, Alyona has some troubles and asks you to help.
The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000).
Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5.
[ "6 12\n", "11 14\n", "1 5\n", "3 8\n", "5 7\n", "21 21\n" ]
[ "14\n", "31\n", "1\n", "5\n", "7\n", "88\n" ]
Following pairs are suitable in the first sample case: - for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9. Only the pair (1, 4) is suitable in the third sample case.
500
[ { "input": "6 12", "output": "14" }, { "input": "11 14", "output": "31" }, { "input": "1 5", "output": "1" }, { "input": "3 8", "output": "5" }, { "input": "5 7", "output": "7" }, { "input": "21 21", "output": "88" }, { "input": "10 15", "output": "30" }, { "input": "1 1", "output": "0" }, { "input": "1 1000000", "output": "200000" }, { "input": "1000000 1", "output": "200000" }, { "input": "1000000 1000000", "output": "200000000000" }, { "input": "944 844", "output": "159348" }, { "input": "368 984", "output": "72423" }, { "input": "792 828", "output": "131155" }, { "input": "920 969", "output": "178296" }, { "input": "640 325", "output": "41600" }, { "input": "768 170", "output": "26112" }, { "input": "896 310", "output": "55552" }, { "input": "320 154", "output": "9856" }, { "input": "744 999", "output": "148652" }, { "input": "630 843", "output": "106218" }, { "input": "54 688", "output": "7431" }, { "input": "478 828", "output": "79157" }, { "input": "902 184", "output": "33194" }, { "input": "31 29", "output": "180" }, { "input": "751 169", "output": "25384" }, { "input": "879 14", "output": "2462" }, { "input": "7 858", "output": "1201" }, { "input": "431 702", "output": "60512" }, { "input": "855 355", "output": "60705" }, { "input": "553 29", "output": "3208" }, { "input": "721767 525996", "output": "75929310986" }, { "input": "805191 74841", "output": "12052259926" }, { "input": "888615 590981", "output": "105030916263" }, { "input": "4743 139826", "output": "132638943" }, { "input": "88167 721374", "output": "12720276292" }, { "input": "171591 13322", "output": "457187060" }, { "input": "287719 562167", "output": "32349225415" }, { "input": "371143 78307", "output": "5812618980" }, { "input": "487271 627151", "output": "61118498984" }, { "input": "261436 930642", "output": "48660664382" }, { "input": "377564 446782", "output": "33737759810" }, { "input": "460988 28330", "output": "2611958008" }, { "input": "544412 352983", "output": "38433636199" }, { "input": "660540 869123", "output": "114818101284" }, { "input": "743964 417967", "output": "62190480238" }, { "input": "827388 966812", "output": "159985729411" }, { "input": "910812 515656", "output": "93933134534" }, { "input": "26940 64501", "output": "347531388" }, { "input": "110364 356449", "output": "7867827488" }, { "input": "636358 355531", "output": "45248999219" }, { "input": "752486 871672", "output": "131184195318" }, { "input": "803206 420516", "output": "67552194859" }, { "input": "919334 969361", "output": "178233305115" }, { "input": "35462 261309", "output": "1853307952" }, { "input": "118887 842857", "output": "20040948031" }, { "input": "202311 358998", "output": "14525848875" }, { "input": "285735 907842", "output": "51880446774" }, { "input": "401863 456686", "output": "36705041203" }, { "input": "452583 972827", "output": "88056992428" }, { "input": "235473 715013", "output": "33673251230" }, { "input": "318897 263858", "output": "16828704925" }, { "input": "402321 812702", "output": "65393416268" }, { "input": "518449 361546", "output": "37488632431" }, { "input": "634577 910391", "output": "115542637921" }, { "input": "685297 235043", "output": "32214852554" }, { "input": "801425 751183", "output": "120403367155" }, { "input": "884849 300028", "output": "53095895155" }, { "input": "977 848872", "output": "165869588" }, { "input": "51697 397716", "output": "4112144810" }, { "input": "834588 107199", "output": "17893399803" }, { "input": "918012 688747", "output": "126455602192" }, { "input": "1436 237592", "output": "68236422" }, { "input": "117564 753732", "output": "17722349770" }, { "input": "200988 302576", "output": "12162829017" }, { "input": "284412 818717", "output": "46570587880" }, { "input": "400540 176073", "output": "14104855884" }, { "input": "483964 724917", "output": "70166746198" }, { "input": "567388 241058", "output": "27354683301" }, { "input": "650812 789902", "output": "102815540084" }, { "input": "400999 756281", "output": "60653584944" }, { "input": "100 101", "output": "2020" }, { "input": "100 102", "output": "2040" }, { "input": "103 100", "output": "2060" }, { "input": "100 104", "output": "2080" }, { "input": "3 4", "output": "3" }, { "input": "11 23", "output": "50" }, { "input": "8 14", "output": "23" }, { "input": "23423 34234", "output": "160372597" }, { "input": "1 4", "output": "1" }, { "input": "999999 999999", "output": "199999600001" }, { "input": "82 99", "output": "1624" }, { "input": "21 18", "output": "75" }, { "input": "234 234", "output": "10952" }, { "input": "4 4", "output": "4" }, { "input": "6 13", "output": "15" }, { "input": "3 9", "output": "6" }, { "input": "99999 99999", "output": "1999960001" }, { "input": "34 33", "output": "225" }, { "input": "2 2", "output": "0" }, { "input": "333 1", "output": "66" }, { "input": "3 3", "output": "2" }, { "input": "8 2", "output": "3" }, { "input": "2179 2218", "output": "966605" }, { "input": "1000000 999999", "output": "199999800000" }, { "input": "873828 774207", "output": "135304750879" }, { "input": "13 19", "output": "50" }, { "input": "1648 576469", "output": "190004183" }, { "input": "11 13", "output": "28" }, { "input": "5 8", "output": "8" }, { "input": "650074 943659", "output": "122689636154" }, { "input": "1 3", "output": "0" }, { "input": "54 43", "output": "465" }, { "input": "14 9", "output": "26" }, { "input": "2 3", "output": "1" }, { "input": "543 534", "output": "57993" }, { "input": "321 123", "output": "7896" }, { "input": "21 3", "output": "12" }, { "input": "2 1", "output": "0" }, { "input": "4 3", "output": "3" }, { "input": "47474 74747", "output": "709707816" }, { "input": "4 9", "output": "8" }, { "input": "7 4", "output": "6" }, { "input": "9 4", "output": "8" }, { "input": "12414 4214", "output": "10462520" }, { "input": "2 9", "output": "4" }, { "input": "253 821", "output": "41542" }, { "input": "2 4", "output": "2" } ]
1,687,623,764
2,147,483,647
Python 3
OK
TESTS
128
639
0
def take_down(number): number = int(number) return int(number-number%5) c1, c2 = map(int, input().split()) res = 0 for i in range(1, c1+1): max = i + c2 res += (take_down(max)/5 - take_down(i)/5) print(int(res))
Title: Alyona and Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5. Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0. As usual, Alyona has some troubles and asks you to help. Input Specification: The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000). Output Specification: Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5. Demo Input: ['6 12\n', '11 14\n', '1 5\n', '3 8\n', '5 7\n', '21 21\n'] Demo Output: ['14\n', '31\n', '1\n', '5\n', '7\n', '88\n'] Note: Following pairs are suitable in the first sample case: - for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9. Only the pair (1, 4) is suitable in the third sample case.
```python def take_down(number): number = int(number) return int(number-number%5) c1, c2 = map(int, input().split()) res = 0 for i in range(1, c1+1): max = i + c2 res += (take_down(max)/5 - take_down(i)/5) print(int(res)) ```
3
30
C
Shooting Gallery
PROGRAMMING
1,800
[ "dp", "probabilities" ]
C. Shooting Gallery
2
256
One warm and sunny day king Copa decided to visit the shooting gallery, located at the Central Park, and try to win the main prize — big pink plush panda. The king is not good at shooting, so he invited you to help him. The shooting gallery is an infinite vertical plane with Cartesian coordinate system on it. The targets are points on this plane. Each target is described by it's coordinates *x**i*, and *y**i*, by the time of it's appearance *t**i* and by the number *p**i*, which gives the probability that Copa hits this target if he aims at it. A target appears and disappears instantly, so Copa can hit the target only if at the moment *t**i* his gun sight aimed at (*x**i*,<=*y**i*). Speed of movement of the gun sight on the plane is equal to 1. Copa knows all the information about the targets beforehand (remember, he is a king!). He wants to play in the optimal way, which maximizes the expected value of the amount of hit targets. He can aim at any target at the moment 0.
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — amount of targets in the shooting gallery. Then *n* lines follow, each describing one target. Each description consists of four numbers *x**i*, *y**i*, *t**i*, *p**i* (where *x**i*, *y**i*, *t**i* — integers, <=-<=1000<=≤<=*x**i*,<=*y**i*<=≤<=1000,<=0<=≤<=*t**i*<=≤<=109, real number *p**i* is given with no more than 6 digits after the decimal point, 0<=≤<=*p**i*<=≤<=1). No two targets may be at the same point.
Output the maximum expected value of the amount of targets that was shot by the king. Your answer will be accepted if it differs from the correct answer by not more than 10<=-<=6.
[ "1\n0 0 0 0.5\n", "2\n0 0 0 0.6\n5 0 5 0.7\n" ]
[ "0.5000000000\n", "1.3000000000\n" ]
none
1,500
[ { "input": "1\n0 0 0 0.5", "output": "0.5000000000" }, { "input": "2\n0 0 0 0.6\n5 0 5 0.7", "output": "1.3000000000" }, { "input": "1\n-5 2 3 0.886986", "output": "0.8869860000" }, { "input": "4\n10 -7 14 0.926305\n-7 -8 12 0.121809\n-7 7 14 0.413446\n3 -8 6 0.859061", "output": "1.7853660000" }, { "input": "5\n-2 -2 34 0.127276\n5 -5 4 0.459998\n10 3 15 0.293766\n1 -3 7 0.089869\n-4 -7 11 0.772515", "output": "0.8997910000" }, { "input": "5\n2 5 1 0.955925\n9 -9 14 0.299977\n0 1 97 0.114582\n-4 -2 66 0.561033\n0 -10 75 0.135937", "output": "1.7674770000" }, { "input": "10\n-4 7 39 0.921693\n3 -1 50 0.111185\n-2 -8 27 0.976475\n-9 -2 25 0.541029\n6 -4 21 0.526054\n-7 2 19 0.488637\n-6 -5 50 0.819011\n-7 3 39 0.987596\n-3 -8 16 0.685997\n4 10 1 0.246686", "output": "3.0829590000" } ]
1,608,039,527
2,147,483,647
PyPy 3
OK
TESTS
50
840
2,560,000
########################################################## from collections import Counter def nCk(n, k): res = 1 for i in range(1, k + 1): res = res * (n - i + 1) // i return res import math inf=10**20 n=int(input()) c=[] dp=[0]*(n+1) for i in range(n): x,y, t,p = map(float, input().split()) c.append([int(x),int(y),int(t),p]) c.sort(key=lambda x:x[2]) for i in range(n): dp[i]=c[i][3] for j in range(i): if (c[i][0]-c[j][0])**2+(c[i][1]-c[j][1])**2 <= (c[i][2]-c[j][2])**2: dp[i]=max(dp[i],dp[j]+c[i][-1]) print(max(dp))
Title: Shooting Gallery Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: One warm and sunny day king Copa decided to visit the shooting gallery, located at the Central Park, and try to win the main prize — big pink plush panda. The king is not good at shooting, so he invited you to help him. The shooting gallery is an infinite vertical plane with Cartesian coordinate system on it. The targets are points on this plane. Each target is described by it's coordinates *x**i*, and *y**i*, by the time of it's appearance *t**i* and by the number *p**i*, which gives the probability that Copa hits this target if he aims at it. A target appears and disappears instantly, so Copa can hit the target only if at the moment *t**i* his gun sight aimed at (*x**i*,<=*y**i*). Speed of movement of the gun sight on the plane is equal to 1. Copa knows all the information about the targets beforehand (remember, he is a king!). He wants to play in the optimal way, which maximizes the expected value of the amount of hit targets. He can aim at any target at the moment 0. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — amount of targets in the shooting gallery. Then *n* lines follow, each describing one target. Each description consists of four numbers *x**i*, *y**i*, *t**i*, *p**i* (where *x**i*, *y**i*, *t**i* — integers, <=-<=1000<=≤<=*x**i*,<=*y**i*<=≤<=1000,<=0<=≤<=*t**i*<=≤<=109, real number *p**i* is given with no more than 6 digits after the decimal point, 0<=≤<=*p**i*<=≤<=1). No two targets may be at the same point. Output Specification: Output the maximum expected value of the amount of targets that was shot by the king. Your answer will be accepted if it differs from the correct answer by not more than 10<=-<=6. Demo Input: ['1\n0 0 0 0.5\n', '2\n0 0 0 0.6\n5 0 5 0.7\n'] Demo Output: ['0.5000000000\n', '1.3000000000\n'] Note: none
```python ########################################################## from collections import Counter def nCk(n, k): res = 1 for i in range(1, k + 1): res = res * (n - i + 1) // i return res import math inf=10**20 n=int(input()) c=[] dp=[0]*(n+1) for i in range(n): x,y, t,p = map(float, input().split()) c.append([int(x),int(y),int(t),p]) c.sort(key=lambda x:x[2]) for i in range(n): dp[i]=c[i][3] for j in range(i): if (c[i][0]-c[j][0])**2+(c[i][1]-c[j][1])**2 <= (c[i][2]-c[j][2])**2: dp[i]=max(dp[i],dp[j]+c[i][-1]) print(max(dp)) ```
3.785232
489
B
BerSU Ball
PROGRAMMING
1,200
[ "dfs and similar", "dp", "graph matchings", "greedy", "sortings", "two pointers" ]
null
null
The Berland State University is hosting a ballroom dance in celebration of its 100500-th anniversary! *n* boys and *m* girls are already busy rehearsing waltz, minuet, polonaise and quadrille moves. We know that several boy&amp;girl pairs are going to be invited to the ball. However, the partners' dancing skill in each pair must differ by at most one. For each boy, we know his dancing skills. Similarly, for each girl we know her dancing skills. Write a code that can determine the largest possible number of pairs that can be formed from *n* boys and *m* girls.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of boys. The second line contains sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100), where *a**i* is the *i*-th boy's dancing skill. Similarly, the third line contains an integer *m* (1<=≤<=*m*<=≤<=100) — the number of girls. The fourth line contains sequence *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**j*<=≤<=100), where *b**j* is the *j*-th girl's dancing skill.
Print a single number — the required maximum possible number of pairs.
[ "4\n1 4 6 2\n5\n5 1 5 7 9\n", "4\n1 2 3 4\n4\n10 11 12 13\n", "5\n1 1 1 1 1\n3\n1 2 3\n" ]
[ "3\n", "0\n", "2\n" ]
none
1,000
[ { "input": "4\n1 4 6 2\n5\n5 1 5 7 9", "output": "3" }, { "input": "4\n1 2 3 4\n4\n10 11 12 13", "output": "0" }, { "input": "5\n1 1 1 1 1\n3\n1 2 3", "output": "2" }, { "input": "1\n1\n1\n1", "output": "1" }, { "input": "2\n1 10\n1\n9", "output": "1" }, { "input": "4\n4 5 4 4\n5\n5 3 4 2 4", "output": "4" }, { "input": "1\n2\n1\n1", "output": "1" }, { "input": "1\n3\n2\n3 2", "output": "1" }, { "input": "1\n4\n3\n4 4 4", "output": "1" }, { "input": "1\n2\n4\n3 1 4 2", "output": "1" }, { "input": "1\n4\n5\n2 5 5 3 1", "output": "1" }, { "input": "2\n2 2\n1\n2", "output": "1" }, { "input": "2\n4 2\n2\n4 4", "output": "1" }, { "input": "2\n4 1\n3\n2 3 2", "output": "2" }, { "input": "2\n4 3\n4\n5 5 5 6", "output": "1" }, { "input": "2\n5 7\n5\n4 6 7 2 5", "output": "2" }, { "input": "3\n1 2 3\n1\n1", "output": "1" }, { "input": "3\n5 4 5\n2\n2 1", "output": "0" }, { "input": "3\n6 3 4\n3\n4 5 2", "output": "3" }, { "input": "3\n7 7 7\n4\n2 7 2 4", "output": "1" }, { "input": "3\n1 3 3\n5\n1 3 4 1 2", "output": "3" }, { "input": "4\n1 2 1 3\n1\n4", "output": "1" }, { "input": "4\n4 4 6 6\n2\n2 1", "output": "0" }, { "input": "4\n3 1 1 1\n3\n1 6 7", "output": "1" }, { "input": "4\n2 5 1 2\n4\n2 3 3 1", "output": "3" }, { "input": "4\n9 1 7 1\n5\n9 9 9 8 4", "output": "2" }, { "input": "5\n1 6 5 5 6\n1\n2", "output": "1" }, { "input": "5\n5 2 4 5 6\n2\n7 4", "output": "2" }, { "input": "5\n4 1 3 1 4\n3\n6 3 6", "output": "1" }, { "input": "5\n5 2 3 1 4\n4\n1 3 1 7", "output": "3" }, { "input": "5\n9 8 10 9 10\n5\n2 1 5 4 6", "output": "0" }, { "input": "1\n48\n100\n76 90 78 44 29 30 35 85 98 38 27 71 51 100 15 98 78 45 85 26 48 66 98 71 45 85 83 77 92 17 23 95 98 43 11 15 39 53 71 25 74 53 77 41 39 35 66 4 92 44 44 55 35 87 91 6 44 46 57 24 46 82 15 44 81 40 65 17 64 24 42 52 13 12 64 82 26 7 66 85 93 89 58 92 92 77 37 91 47 73 35 69 31 22 60 60 97 21 52 6", "output": "1" }, { "input": "100\n9 90 66 62 60 9 10 97 47 73 26 81 97 60 80 84 19 4 25 77 19 17 91 12 1 27 15 54 18 45 71 79 96 90 51 62 9 13 92 34 7 52 55 8 16 61 96 12 52 38 50 9 60 3 30 3 48 46 77 64 90 35 16 16 21 42 67 70 23 19 90 14 50 96 98 92 82 62 7 51 93 38 84 82 37 78 99 3 20 69 44 96 94 71 3 55 27 86 92 82\n1\n58", "output": "0" }, { "input": "10\n20 87 3 39 20 20 8 40 70 51\n100\n69 84 81 84 35 97 69 68 63 97 85 80 95 58 70 91 100 65 72 80 41 87 87 87 22 49 96 96 78 96 97 56 90 31 62 98 89 74 100 86 95 88 66 54 93 62 41 60 95 79 29 69 63 70 52 63 87 58 54 52 48 57 26 75 39 61 98 78 52 73 99 49 74 50 59 90 31 97 16 85 63 72 81 68 75 59 70 67 73 92 10 88 57 95 3 71 80 95 84 96", "output": "6" }, { "input": "100\n10 10 9 18 56 64 92 66 54 42 66 65 58 5 74 68 80 57 58 30 58 69 70 13 38 19 34 63 38 17 26 24 66 83 48 77 44 37 78 97 13 90 51 56 60 23 49 32 14 86 90 100 13 14 52 69 85 95 81 53 5 3 91 66 2 64 45 59 7 30 80 42 61 82 70 10 62 82 5 34 50 28 24 47 85 68 27 50 24 61 76 17 63 24 3 67 83 76 42 60\n10\n66 74 40 67 28 82 99 57 93 64", "output": "9" }, { "input": "100\n4 1 1 1 3 3 2 5 1 2 1 2 1 1 1 6 1 3 1 1 1 1 2 4 1 1 4 2 2 8 2 2 1 8 2 4 3 3 8 1 3 2 3 2 1 3 8 2 2 3 1 1 2 2 5 1 4 3 1 1 3 1 3 1 7 1 1 1 3 2 1 2 2 3 7 2 1 4 3 2 1 1 3 4 1 1 3 5 1 8 4 1 1 1 3 10 2 2 1 2\n100\n1 1 5 2 13 2 2 3 6 12 1 13 8 1 1 16 1 1 5 6 2 4 6 4 2 7 4 1 7 3 3 9 5 3 1 7 4 1 6 6 8 2 2 5 2 3 16 3 6 3 8 6 1 8 1 2 6 5 3 4 11 3 4 8 2 13 2 5 2 7 3 3 1 8 1 4 4 2 4 7 7 1 5 7 6 3 6 9 1 1 1 3 1 11 5 2 5 11 13 1", "output": "76" }, { "input": "4\n1 6 9 15\n2\n5 8", "output": "2" }, { "input": "2\n2 4\n2\n3 1", "output": "2" }, { "input": "3\n2 3 5\n3\n3 4 6", "output": "3" }, { "input": "3\n1 3 4\n3\n2 1 5", "output": "3" }, { "input": "2\n5 5\n4\n1 1 1 5", "output": "1" }, { "input": "2\n3 2\n2\n3 4", "output": "2" }, { "input": "2\n3 1\n2\n2 4", "output": "2" }, { "input": "2\n2 3\n2\n2 1", "output": "2" }, { "input": "2\n10 12\n2\n11 9", "output": "2" }, { "input": "3\n1 2 3\n3\n3 2 1", "output": "3" }, { "input": "2\n1 3\n2\n2 1", "output": "2" }, { "input": "2\n4 5\n2\n5 3", "output": "2" }, { "input": "2\n7 5\n2\n6 8", "output": "2" }, { "input": "4\n4 3 2 1\n4\n1 2 3 4", "output": "4" }, { "input": "2\n2 3\n2\n3 1", "output": "2" }, { "input": "2\n2 4\n3\n3 1 8", "output": "2" }, { "input": "3\n3 1 1\n3\n2 4 4", "output": "2" }, { "input": "2\n5 3\n2\n4 6", "output": "2" }, { "input": "4\n1 1 3 3\n4\n2 2 1 1", "output": "4" }, { "input": "3\n3 2 1\n3\n2 4 3", "output": "3" }, { "input": "5\n1 2 3 4 5\n5\n2 3 4 5 1", "output": "5" }, { "input": "3\n3 2 1\n3\n1 2 3", "output": "3" }, { "input": "2\n5 4\n2\n4 6", "output": "2" }, { "input": "4\n3 3 5 5\n4\n4 4 2 2", "output": "4" }, { "input": "3\n2 7 5\n3\n2 4 8", "output": "3" }, { "input": "100\n2 3 3 4 2 1 4 4 5 5 2 1 5 2 3 3 5 4 3 2 4 2 3 3 2 2 3 4 2 2 2 3 1 2 3 2 2 3 5 3 3 3 3 4 5 2 2 1 1 1 3 1 2 2 3 5 5 2 5 1 3 4 5 3 5 4 1 1 2 3 4 4 5 3 2 4 5 5 5 2 1 4 2 4 5 4 4 5 5 3 2 5 1 4 4 2 2 2 5 3\n100\n4 5 3 3 2 2 4 3 1 5 4 3 3 2 2 4 5 2 5 2 1 4 3 4 2 3 5 3 4 4 1 2 3 5 2 2 1 5 4 2 4 3 4 3 4 2 3 1 3 3 4 1 1 1 4 4 5 3 1 4 2 3 2 1 3 3 2 3 2 1 1 2 3 2 1 3 3 4 3 3 1 1 3 3 3 1 1 3 5 3 3 3 3 4 4 5 2 5 4 5", "output": "100" }, { "input": "1\n3\n2\n2 3", "output": "1" }, { "input": "2\n5 6\n3\n1 5 100", "output": "1" }, { "input": "2\n2 7\n2\n6 8", "output": "1" }, { "input": "4\n4 10 15 17\n4\n3 12 16 16", "output": "3" }, { "input": "2\n2 3\n2\n1 2", "output": "2" } ]
1,686,596,301
2,147,483,647
Python 3
OK
TESTS
81
46
0
n = int(input()) a = [int(i) for i in input().split()] a.sort() m = int(input()) b = [int(i) for i in input().split()] b.sort() cnt = 0 if len(b)>=len(a) : for i in range(min(n,m)) : for j in range(max(n,m)) : if abs(a[i]-b[j])<=1 : cnt+=1 a[i] = -1 b[j] = -1 else : for j in range(min(n,m)) : for i in range(max(n,m)) : if abs(a[i]-b[j])<=1 : cnt+=1 a[i] = -1 b[j] = -1 print(cnt)
Title: BerSU Ball Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Berland State University is hosting a ballroom dance in celebration of its 100500-th anniversary! *n* boys and *m* girls are already busy rehearsing waltz, minuet, polonaise and quadrille moves. We know that several boy&amp;girl pairs are going to be invited to the ball. However, the partners' dancing skill in each pair must differ by at most one. For each boy, we know his dancing skills. Similarly, for each girl we know her dancing skills. Write a code that can determine the largest possible number of pairs that can be formed from *n* boys and *m* girls. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of boys. The second line contains sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100), where *a**i* is the *i*-th boy's dancing skill. Similarly, the third line contains an integer *m* (1<=≤<=*m*<=≤<=100) — the number of girls. The fourth line contains sequence *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**j*<=≤<=100), where *b**j* is the *j*-th girl's dancing skill. Output Specification: Print a single number — the required maximum possible number of pairs. Demo Input: ['4\n1 4 6 2\n5\n5 1 5 7 9\n', '4\n1 2 3 4\n4\n10 11 12 13\n', '5\n1 1 1 1 1\n3\n1 2 3\n'] Demo Output: ['3\n', '0\n', '2\n'] Note: none
```python n = int(input()) a = [int(i) for i in input().split()] a.sort() m = int(input()) b = [int(i) for i in input().split()] b.sort() cnt = 0 if len(b)>=len(a) : for i in range(min(n,m)) : for j in range(max(n,m)) : if abs(a[i]-b[j])<=1 : cnt+=1 a[i] = -1 b[j] = -1 else : for j in range(min(n,m)) : for i in range(max(n,m)) : if abs(a[i]-b[j])<=1 : cnt+=1 a[i] = -1 b[j] = -1 print(cnt) ```
3
535
B
Tavas and SaDDas
PROGRAMMING
1,100
[ "bitmasks", "brute force", "combinatorics", "implementation" ]
null
null
Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you." The problem is: You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. If we sort all lucky numbers in increasing order, what's the 1-based index of *n*? Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back.
The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109).
Print the index of *n* among all lucky numbers.
[ "4\n", "7\n", "77\n" ]
[ "1\n", "2\n", "6\n" ]
none
1,000
[ { "input": "4", "output": "1" }, { "input": "7", "output": "2" }, { "input": "77", "output": "6" }, { "input": "4", "output": "1" }, { "input": "474744", "output": "83" }, { "input": "777774", "output": "125" }, { "input": "447", "output": "8" }, { "input": "774", "output": "13" }, { "input": "4", "output": "1" }, { "input": "4447747", "output": "140" }, { "input": "7747474", "output": "233" }, { "input": "4444", "output": "15" }, { "input": "4447", "output": "16" }, { "input": "7", "output": "2" }, { "input": "4", "output": "1" }, { "input": "4447744", "output": "139" }, { "input": "77474", "output": "57" }, { "input": "7747", "output": "28" }, { "input": "444", "output": "7" }, { "input": "7", "output": "2" }, { "input": "7774477", "output": "242" }, { "input": "4477774", "output": "157" }, { "input": "7444", "output": "23" }, { "input": "7474747", "output": "212" }, { "input": "77", "output": "6" }, { "input": "774477", "output": "114" }, { "input": "7", "output": "2" }, { "input": "47", "output": "4" }, { "input": "747777", "output": "110" }, { "input": "444444444", "output": "511" }, { "input": "777777777", "output": "1022" }, { "input": "477477447", "output": "728" }, { "input": "777744747", "output": "996" } ]
1,594,372,567
2,147,483,647
Python 3
OK
TESTS
33
108
6,656,000
s=input() k=0 m=1 for i in s[::-1]: if(i=='4'): k+=m else: k+=2*m m*=2 print(k)
Title: Tavas and SaDDas Time Limit: None seconds Memory Limit: None megabytes Problem Description: Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you." The problem is: You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. If we sort all lucky numbers in increasing order, what's the 1-based index of *n*? Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back. Input Specification: The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109). Output Specification: Print the index of *n* among all lucky numbers. Demo Input: ['4\n', '7\n', '77\n'] Demo Output: ['1\n', '2\n', '6\n'] Note: none
```python s=input() k=0 m=1 for i in s[::-1]: if(i=='4'): k+=m else: k+=2*m m*=2 print(k) ```
3
999
A
Mishka and Contest
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
Mishka started participating in a programming contest. There are $n$ problems in the contest. Mishka's problem-solving skill is equal to $k$. Mishka arranges all problems from the contest into a list. Because of his weird principles, Mishka only solves problems from one of the ends of the list. Every time, he chooses which end (left or right) he will solve the next problem from. Thus, each problem Mishka solves is either the leftmost or the rightmost problem in the list. Mishka cannot solve a problem with difficulty greater than $k$. When Mishka solves the problem, it disappears from the list, so the length of the list decreases by $1$. Mishka stops when he is unable to solve any problem from any end of the list. How many problems can Mishka solve?
The first line of input contains two integers $n$ and $k$ ($1 \le n, k \le 100$) — the number of problems in the contest and Mishka's problem-solving skill. The second line of input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$), where $a_i$ is the difficulty of the $i$-th problem. The problems are given in order from the leftmost to the rightmost in the list.
Print one integer — the maximum number of problems Mishka can solve.
[ "8 4\n4 2 3 1 5 1 6 4\n", "5 2\n3 1 2 1 3\n", "5 100\n12 34 55 43 21\n" ]
[ "5\n", "0\n", "5\n" ]
In the first example, Mishka can solve problems in the following order: $[4, 2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6] \rightarrow [3, 1, 5, 1, 6] \rightarrow [1, 5, 1, 6] \rightarrow [5, 1, 6]$, so the number of solved problems will be equal to $5$. In the second example, Mishka can't solve any problem because the difficulties of problems from both ends are greater than $k$. In the third example, Mishka's solving skill is so amazing that he can solve all the problems.
0
[ { "input": "8 4\n4 2 3 1 5 1 6 4", "output": "5" }, { "input": "5 2\n3 1 2 1 3", "output": "0" }, { "input": "5 100\n12 34 55 43 21", "output": "5" }, { "input": "100 100\n44 47 36 83 76 94 86 69 31 2 22 77 37 51 10 19 25 78 53 25 1 29 48 95 35 53 22 72 49 86 60 38 13 91 89 18 54 19 71 2 25 33 65 49 53 5 95 90 100 68 25 5 87 48 45 72 34 14 100 44 94 75 80 26 25 7 57 82 49 73 55 43 42 60 34 8 51 11 71 41 81 23 20 89 12 72 68 26 96 92 32 63 13 47 19 9 35 56 79 62", "output": "100" }, { "input": "100 99\n84 82 43 4 71 3 30 92 15 47 76 43 2 17 76 4 1 33 24 96 44 98 75 99 59 11 73 27 67 17 8 88 69 41 44 22 91 48 4 46 42 21 21 67 85 51 57 84 11 100 100 59 39 72 89 82 74 19 98 14 37 97 20 78 38 52 44 83 19 83 69 32 56 6 93 13 98 80 80 2 33 71 11 15 55 51 98 58 16 91 39 32 83 58 77 79 88 81 17 98", "output": "98" }, { "input": "100 69\n80 31 12 89 16 35 8 28 39 12 32 51 42 67 64 53 17 88 63 97 29 41 57 28 51 33 82 75 93 79 57 86 32 100 83 82 99 33 1 27 86 22 65 15 60 100 42 37 38 85 26 43 90 62 91 13 1 92 16 20 100 19 28 30 23 6 5 69 24 22 9 1 10 14 28 14 25 9 32 8 67 4 39 7 10 57 15 7 8 35 62 6 53 59 62 13 24 7 53 2", "output": "39" }, { "input": "100 2\n2 2 2 2 1 1 1 2 1 2 2 2 1 2 2 2 2 1 2 1 2 1 1 1 2 1 2 1 2 1 1 2 2 2 2 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 2 1 2 1 2 1 1 2 1 2 2 1 1 2 2 2 1 1 2 1 1 2 2 2 1 1 1 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 16", "output": "99" }, { "input": "100 3\n86 53 82 40 2 20 59 2 46 63 75 49 24 81 70 22 9 9 93 72 47 23 29 77 78 51 17 59 19 71 35 3 20 60 70 9 11 96 71 94 91 19 88 93 50 49 72 19 53 30 38 67 62 71 81 86 5 26 5 32 63 98 1 97 22 32 87 65 96 55 43 85 56 37 56 67 12 100 98 58 77 54 18 20 33 53 21 66 24 64 42 71 59 32 51 69 49 79 10 1", "output": "1" }, { "input": "13 7\n1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "13" }, { "input": "1 5\n4", "output": "1" }, { "input": "3 2\n1 4 1", "output": "2" }, { "input": "1 2\n100", "output": "0" }, { "input": "7 4\n4 2 3 4 4 2 3", "output": "7" }, { "input": "1 2\n1", "output": "1" }, { "input": "1 2\n15", "output": "0" }, { "input": "2 1\n1 1", "output": "2" }, { "input": "5 3\n3 4 3 2 1", "output": "4" }, { "input": "1 1\n2", "output": "0" }, { "input": "1 5\n1", "output": "1" }, { "input": "6 6\n7 1 1 1 1 1", "output": "5" }, { "input": "5 5\n6 5 5 5 5", "output": "4" }, { "input": "1 4\n2", "output": "1" }, { "input": "9 4\n1 2 1 2 4 2 1 2 1", "output": "9" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 10\n5", "output": "1" }, { "input": "5 5\n1 1 1 1 1", "output": "5" }, { "input": "100 10\n2 5 1 10 10 2 7 7 9 4 1 8 1 1 8 4 7 9 10 5 7 9 5 6 7 2 7 5 3 2 1 82 4 80 9 8 6 1 10 7 5 7 1 5 6 7 19 4 2 4 6 2 1 8 31 6 2 2 57 42 3 2 7 1 9 5 10 8 5 4 10 8 3 5 8 7 2 7 6 5 3 3 4 10 6 7 10 8 7 10 7 2 4 6 8 10 10 2 6 4", "output": "71" }, { "input": "100 90\n17 16 5 51 17 62 24 45 49 41 90 30 19 78 67 66 59 34 28 47 42 8 33 77 90 41 61 16 86 33 43 71 90 95 23 9 56 41 24 90 31 12 77 36 90 67 47 15 92 50 79 88 42 19 21 79 86 60 41 26 47 4 70 62 44 90 82 89 84 91 54 16 90 53 29 69 21 44 18 28 88 74 56 43 12 76 10 22 34 24 27 52 28 76 90 75 5 29 50 90", "output": "63" }, { "input": "100 10\n6 4 8 4 1 9 4 8 5 2 2 5 2 6 10 2 2 5 3 5 2 3 10 5 2 9 1 1 6 1 5 9 16 42 33 49 26 31 81 27 53 63 81 90 55 97 70 51 87 21 79 62 60 91 54 95 26 26 30 61 87 79 47 11 59 34 40 82 37 40 81 2 7 1 8 4 10 7 1 10 8 7 3 5 2 8 3 3 9 2 1 1 5 7 8 7 1 10 9 8", "output": "61" }, { "input": "100 90\n45 57 52 69 17 81 85 60 59 39 55 14 87 90 90 31 41 57 35 89 74 20 53 4 33 49 71 11 46 90 71 41 71 90 63 74 51 13 99 92 99 91 100 97 93 40 93 96 100 99 100 92 98 96 78 91 91 91 91 100 94 97 95 97 96 95 17 13 45 35 54 26 2 74 6 51 20 3 73 90 90 42 66 43 86 28 84 70 37 27 90 30 55 80 6 58 57 51 10 22", "output": "72" }, { "input": "100 10\n10 2 10 10 10 10 10 10 10 7 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 7 9 10 10 10 37 10 4 10 10 10 59 5 95 10 10 10 10 39 10 10 10 10 10 10 10 5 10 10 10 10 10 10 10 10 10 10 10 10 66 10 10 10 10 10 5 10 10 10 10 10 10 44 10 10 10 10 10 10 10 10 10 10 10 7 10 10 10 10 10 10 10 10 10 2", "output": "52" }, { "input": "100 90\n57 90 90 90 90 90 90 90 81 90 3 90 39 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 92 90 90 90 90 90 90 90 90 98 90 90 90 90 90 90 90 90 90 90 90 90 90 54 90 90 90 90 90 62 90 90 91 90 90 90 90 90 90 91 90 90 90 90 90 90 90 3 90 90 90 90 90 90 90 2 90 90 90 90 90 90 90 90 90 2 90 90 90 90 90", "output": "60" }, { "input": "100 10\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 6 10 10 10 10 10 10 78 90 61 40 87 39 91 50 64 30 10 24 10 55 28 11 28 35 26 26 10 57 45 67 14 99 96 51 67 79 59 11 21 55 70 33 10 16 92 70 38 50 66 52 5 10 10 10 2 4 10 10 10 10 10 10 10 10 10 6 10 10 10 10 10 10 10 10 10 10 8 10 10 10 10 10", "output": "56" }, { "input": "100 90\n90 90 90 90 90 90 55 21 90 90 90 90 90 90 90 90 90 90 69 83 90 90 90 90 90 90 90 90 93 95 92 98 92 97 91 92 92 91 91 95 94 95 100 100 96 97 94 93 90 90 95 95 97 99 90 95 98 91 94 96 99 99 94 95 95 97 99 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 12 90 3 90 90 90 90 90 90 90", "output": "61" }, { "input": "100 49\n71 25 14 36 36 48 36 49 28 40 49 49 49 38 40 49 33 22 49 49 14 46 8 44 49 11 37 49 40 49 2 49 3 49 37 49 49 11 25 49 49 32 49 11 49 30 16 21 49 49 23 24 30 49 49 49 49 49 49 27 49 42 49 49 20 32 30 29 35 49 30 49 9 49 27 25 5 49 49 42 49 20 49 35 49 22 15 49 49 49 19 49 29 28 13 49 22 7 6 24", "output": "99" }, { "input": "100 50\n38 68 9 6 50 18 19 50 50 20 33 34 43 50 24 50 50 2 50 50 50 50 50 21 30 50 41 40 50 50 50 50 50 7 50 21 19 23 1 50 24 50 50 50 25 50 50 50 50 50 50 50 7 24 28 18 50 5 43 50 20 50 13 50 50 16 50 3 2 24 50 50 18 5 50 4 50 50 38 50 33 49 12 33 11 14 50 50 50 33 50 50 50 50 50 50 7 4 50 50", "output": "99" }, { "input": "100 48\n8 6 23 47 29 48 48 48 48 48 48 26 24 48 48 48 3 48 27 28 41 45 9 29 48 48 48 48 48 48 48 48 48 48 47 23 48 48 48 5 48 22 40 48 48 48 20 48 48 57 48 32 19 48 33 2 4 19 48 48 39 48 16 48 48 44 48 48 48 48 29 14 25 43 46 7 48 19 30 48 18 8 39 48 30 47 35 18 48 45 48 48 30 13 48 48 48 17 9 48", "output": "99" }, { "input": "100 57\n57 9 57 4 43 57 57 57 57 26 57 18 57 57 57 57 57 57 57 47 33 57 57 43 57 57 55 57 14 57 57 4 1 57 57 57 57 57 46 26 57 57 57 57 57 57 57 39 57 57 57 5 57 12 11 57 57 57 25 37 34 57 54 18 29 57 39 57 5 57 56 34 57 24 7 57 57 57 2 57 57 57 57 1 55 39 19 57 57 57 57 21 3 40 13 3 57 57 62 57", "output": "99" }, { "input": "100 51\n51 51 38 51 51 45 51 51 51 18 51 36 51 19 51 26 37 51 11 51 45 34 51 21 51 51 33 51 6 51 51 51 21 47 51 13 51 51 30 29 50 51 51 51 51 51 51 45 14 51 2 51 51 23 9 51 50 23 51 29 34 51 40 32 1 36 31 51 11 51 51 47 51 51 51 51 51 51 51 50 39 51 14 4 4 12 3 11 51 51 51 51 41 51 51 51 49 37 5 93", "output": "99" }, { "input": "100 50\n87 91 95 73 50 50 16 97 39 24 58 50 33 89 42 37 50 50 12 71 3 55 50 50 80 10 76 50 52 36 88 44 66 69 86 71 77 50 72 50 21 55 50 50 78 61 75 89 65 2 50 69 62 47 11 92 97 77 41 31 55 29 35 51 36 48 50 91 92 86 50 36 50 94 51 74 4 27 55 63 50 36 87 50 67 7 65 75 20 96 88 50 41 73 35 51 66 21 29 33", "output": "3" }, { "input": "100 50\n50 37 28 92 7 76 50 50 50 76 100 57 50 50 50 32 76 50 8 72 14 8 50 91 67 50 55 82 50 50 24 97 88 50 59 61 68 86 44 15 61 67 88 50 40 50 36 99 1 23 63 50 88 59 76 82 99 76 68 50 50 30 31 68 57 98 71 12 15 60 35 79 90 6 67 50 50 50 50 68 13 6 50 50 16 87 84 50 67 67 50 64 50 58 50 50 77 51 50 51", "output": "3" }, { "input": "100 50\n43 50 50 91 97 67 6 50 86 50 76 60 50 59 4 56 11 38 49 50 37 50 50 20 60 47 33 54 95 58 22 50 77 77 72 9 57 40 81 57 95 50 81 63 62 76 13 87 50 39 74 69 50 99 63 1 11 62 84 31 97 99 56 73 70 36 45 100 28 91 93 9 19 52 73 50 83 58 84 52 86 12 50 44 64 52 97 50 12 71 97 52 87 66 83 66 86 50 9 49", "output": "6" }, { "input": "88 10\n10 8 1 10 10 1 3 7 10 5 8 8 10 2 7 10 10 10 10 10 1 10 10 10 10 1 2 9 10 9 10 10 10 64 100 25 10 12 9 52 13 8 10 56 10 4 10 7 10 3 10 79 74 8 73 10 10 10 9 10 3 5 10 10 10 5 1 10 10 4 3 10 10 10 4 10 6 4 10 10 10 10 3 3 8 5 6 8", "output": "66" }, { "input": "100 50\n80 39 33 69 75 50 23 88 50 50 67 90 87 50 29 15 55 32 60 50 50 50 38 95 62 50 50 88 8 97 45 50 42 12 22 93 49 50 24 50 50 71 60 4 50 72 57 57 50 50 50 83 69 17 1 31 72 55 50 11 50 80 93 41 91 94 20 60 50 50 51 48 53 56 76 73 50 72 19 98 50 50 50 50 50 28 48 45 62 11 16 67 93 88 63 50 50 66 48 95", "output": "0" }, { "input": "100 50\n70 50 38 50 38 50 32 30 50 31 26 42 50 33 34 50 50 50 28 21 50 44 50 47 50 50 9 40 50 50 50 50 50 42 50 50 16 50 50 3 24 50 50 50 4 26 50 2 50 50 33 1 27 50 50 50 8 29 50 23 33 50 6 29 50 50 15 50 50 50 32 50 43 50 50 50 31 50 4 50 50 31 50 50 31 16 50 17 50 17 31 13 25 16 50 10 50 47 50 66", "output": "0" }, { "input": "2 8\n8 8", "output": "2" }, { "input": "1 6\n3", "output": "1" }, { "input": "1 5\n5", "output": "1" } ]
1,697,470,567
2,147,483,647
PyPy 3-64
OK
TESTS
48
61
0
a, b = map(int, input().split()) l = list(map(int, input().split())) i = 0 while i < a and l[i] <= b: i += 1 j = a-1 while l[j] <= b and j > i: j -= 1 print(a-(j-i+1))
Title: Mishka and Contest Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mishka started participating in a programming contest. There are $n$ problems in the contest. Mishka's problem-solving skill is equal to $k$. Mishka arranges all problems from the contest into a list. Because of his weird principles, Mishka only solves problems from one of the ends of the list. Every time, he chooses which end (left or right) he will solve the next problem from. Thus, each problem Mishka solves is either the leftmost or the rightmost problem in the list. Mishka cannot solve a problem with difficulty greater than $k$. When Mishka solves the problem, it disappears from the list, so the length of the list decreases by $1$. Mishka stops when he is unable to solve any problem from any end of the list. How many problems can Mishka solve? Input Specification: The first line of input contains two integers $n$ and $k$ ($1 \le n, k \le 100$) — the number of problems in the contest and Mishka's problem-solving skill. The second line of input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$), where $a_i$ is the difficulty of the $i$-th problem. The problems are given in order from the leftmost to the rightmost in the list. Output Specification: Print one integer — the maximum number of problems Mishka can solve. Demo Input: ['8 4\n4 2 3 1 5 1 6 4\n', '5 2\n3 1 2 1 3\n', '5 100\n12 34 55 43 21\n'] Demo Output: ['5\n', '0\n', '5\n'] Note: In the first example, Mishka can solve problems in the following order: $[4, 2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6, 4] \rightarrow [2, 3, 1, 5, 1, 6] \rightarrow [3, 1, 5, 1, 6] \rightarrow [1, 5, 1, 6] \rightarrow [5, 1, 6]$, so the number of solved problems will be equal to $5$. In the second example, Mishka can't solve any problem because the difficulties of problems from both ends are greater than $k$. In the third example, Mishka's solving skill is so amazing that he can solve all the problems.
```python a, b = map(int, input().split()) l = list(map(int, input().split())) i = 0 while i < a and l[i] <= b: i += 1 j = a-1 while l[j] <= b and j > i: j -= 1 print(a-(j-i+1)) ```
3
439
A
Devu, the Singer and Churu, the Joker
PROGRAMMING
900
[ "greedy", "implementation" ]
null
null
Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited. Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly. The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly. People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest. You as one of the organizers should make an optimal sсhedule for the event. For some reasons you must follow the conditions: - The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible. If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event.
The first line contains two space separated integers *n*, *d* (1<=≤<=*n*<=≤<=100; 1<=≤<=*d*<=≤<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=100).
If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event.
[ "3 30\n2 2 1\n", "3 20\n2 1 1\n" ]
[ "5\n", "-1\n" ]
Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way: - First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes. Total time spent is 5 + 2 + 10 + 2 + 10 + 1 = 30 minutes. Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
500
[ { "input": "3 30\n2 2 1", "output": "5" }, { "input": "3 20\n2 1 1", "output": "-1" }, { "input": "50 10000\n5 4 10 9 9 6 7 7 7 3 3 7 7 4 7 4 10 10 1 7 10 3 1 4 5 7 2 10 10 10 2 3 4 7 6 1 8 4 7 3 8 8 4 10 1 1 9 2 6 1", "output": "1943" }, { "input": "50 10000\n4 7 15 9 11 12 20 9 14 14 10 13 6 13 14 17 6 8 20 12 10 15 13 17 5 12 13 11 7 5 5 2 3 15 13 7 14 14 19 2 13 14 5 15 3 19 15 16 4 1", "output": "1891" }, { "input": "100 9000\n5 2 3 1 1 3 4 9 9 6 7 10 10 10 2 10 6 8 8 6 7 9 9 5 6 2 1 10 10 9 4 5 9 2 4 3 8 5 6 1 1 5 3 6 2 6 6 6 5 8 3 6 7 3 1 10 9 1 8 3 10 9 5 6 3 4 1 1 10 10 2 3 4 8 10 10 5 1 5 3 6 8 10 6 10 2 1 8 10 1 7 6 9 10 5 2 3 5 3 2", "output": "1688" }, { "input": "100 8007\n5 19 14 18 9 6 15 8 1 14 11 20 3 17 7 12 2 6 3 17 7 20 1 14 20 17 2 10 13 7 18 18 9 10 16 8 1 11 11 9 13 18 9 20 12 12 7 15 12 17 11 5 11 15 9 2 15 1 18 3 18 16 15 4 10 5 18 13 13 12 3 8 17 2 12 2 13 3 1 13 2 4 9 10 18 10 14 4 4 17 12 19 2 9 6 5 5 20 18 12", "output": "1391" }, { "input": "39 2412\n1 1 1 1 1 1 26 1 1 1 99 1 1 1 1 1 1 1 1 1 1 88 7 1 1 1 1 76 1 1 1 93 40 1 13 1 68 1 32", "output": "368" }, { "input": "39 2617\n47 1 1 1 63 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 70 1 99 63 1 1 1 1 1 1 1 1 64 1 1", "output": "435" }, { "input": "39 3681\n83 77 1 94 85 47 1 98 29 16 1 1 1 71 96 85 31 97 96 93 40 50 98 1 60 51 1 96 100 72 1 1 1 89 1 93 1 92 100", "output": "326" }, { "input": "45 894\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 99 3 1 1", "output": "139" }, { "input": "45 4534\n1 99 65 99 4 46 54 80 51 30 96 1 28 30 44 70 78 1 1 100 1 62 1 1 1 85 1 1 1 61 1 46 75 1 61 77 97 26 67 1 1 63 81 85 86", "output": "514" }, { "input": "72 3538\n52 1 8 1 1 1 7 1 1 1 1 48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 40 1 1 38 1 1 1 1 1 1 1 1 1 1 1 35 1 93 79 1 1 1 1 1 1 1 1 1 51 1 1 1 1 1 1 1 1 1 1 1 1 96 1", "output": "586" }, { "input": "81 2200\n1 59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1", "output": "384" }, { "input": "81 2577\n85 91 1 1 2 1 1 100 1 80 1 1 17 86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 37 1 66 24 1 1 96 49 1 66 1 44 1 1 1 1 98 1 1 1 1 35 1 37 3 35 1 1 87 64 1 24 1 58 1 1 42 83 5 1 1 1 1 1 95 1 94 1 50 1 1", "output": "174" }, { "input": "81 4131\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "807" }, { "input": "81 6315\n1 1 67 100 1 99 36 1 92 5 1 96 42 12 1 57 91 1 1 66 41 30 74 95 1 37 1 39 91 69 1 52 77 47 65 1 1 93 96 74 90 35 85 76 71 92 92 1 1 67 92 74 1 1 86 76 35 1 56 16 27 57 37 95 1 40 20 100 51 1 80 60 45 79 95 1 46 1 25 100 96", "output": "490" }, { "input": "96 1688\n1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 71 1 1 1 30 1 1 1", "output": "284" }, { "input": "96 8889\n1 1 18 1 1 1 1 1 1 1 1 1 99 1 1 1 1 88 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 96 1 1 1 1 21 1 1 1 1 1 1 1 73 1 1 1 1 1 10 1 1 1 1 1 1 1 46 43 1 1 1 1 1 98 1 1 1 1 1 1 6 1 1 1 1 1 74 1 25 1 55 1 1 1 13 1 1 54 1 1 1", "output": "1589" }, { "input": "10 100\n1 1 1 1 1 1 1 1 1 1", "output": "18" }, { "input": "100 10000\n54 46 72 94 79 83 91 54 73 3 24 55 54 31 28 20 19 6 25 19 47 23 1 70 15 87 51 39 54 77 55 5 60 3 15 99 56 88 22 78 79 21 38 27 28 86 7 88 12 59 55 70 25 1 70 49 1 45 69 72 50 17 4 56 8 100 90 34 35 20 61 76 88 79 4 74 65 68 75 26 40 72 59 94 10 67 96 85 29 90 47 24 44 1 66 93 55 36 1 99", "output": "1017" }, { "input": "100 6000\n41 31 23 17 24 78 26 96 93 48 46 2 49 33 35 9 73 100 34 48 83 36 33 69 43 24 3 74 8 81 27 33 94 38 77 9 76 90 62 90 21 67 22 22 12 2 17 27 61 18 72 85 59 65 71 38 90 75 74 66 60 47 58 50 90 95 75 10 5 100 97 29 83 88 65 26 93 90 22 98 36 55 70 38 50 92 88 72 99 96 25 14 74 16 25 92 67 94 77 96", "output": "-1" }, { "input": "1 1\n1", "output": "0" }, { "input": "1 6\n1", "output": "1" }, { "input": "1 5\n1", "output": "0" }, { "input": "1 3\n4", "output": "-1" }, { "input": "3 24\n2 1 2", "output": "-1" } ]
1,603,086,365
2,147,483,647
Python 3
OK
TESTS
26
109
0
I=lambda:map(int,input().split());n,d=I();a=sum(I())+(n-1)*10;print((n-1)*2+(d-a)//5if d>=a else-1)
Title: Devu, the Singer and Churu, the Joker Time Limit: None seconds Memory Limit: None megabytes Problem Description: Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited. Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly. The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly. People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest. You as one of the organizers should make an optimal sсhedule for the event. For some reasons you must follow the conditions: - The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible. If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event. Input Specification: The first line contains two space separated integers *n*, *d* (1<=≤<=*n*<=≤<=100; 1<=≤<=*d*<=≤<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=100). Output Specification: If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event. Demo Input: ['3 30\n2 2 1\n', '3 20\n2 1 1\n'] Demo Output: ['5\n', '-1\n'] Note: Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way: - First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes. Total time spent is 5 + 2 + 10 + 2 + 10 + 1 = 30 minutes. Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
```python I=lambda:map(int,input().split());n,d=I();a=sum(I())+(n-1)*10;print((n-1)*2+(d-a)//5if d>=a else-1) ```
3
660
C
Hard Process
PROGRAMMING
1,600
[ "binary search", "dp", "two pointers" ]
null
null
You are given an array *a* with *n* elements. Each element of *a* is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in *a*, consisting of only numbers one, as *f*(*a*). You can change no more than *k* zeroes to ones to maximize *f*(*a*).
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=3·105,<=0<=≤<=*k*<=≤<=*n*) — the number of elements in *a* and the parameter *k*. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1) — the elements of *a*.
On the first line print a non-negative integer *z* — the maximal value of *f*(*a*) after no more than *k* changes of zeroes to ones. On the second line print *n* integers *a**j* — the elements of the array *a* after the changes. If there are multiple answers, you can print any one of them.
[ "7 1\n1 0 0 1 1 0 1\n", "10 2\n1 0 0 1 0 1 0 1 0 1\n" ]
[ "4\n1 0 0 1 1 1 1\n", "5\n1 0 0 1 1 1 1 1 0 1\n" ]
none
0
[ { "input": "7 1\n1 0 0 1 1 0 1", "output": "4\n1 0 0 1 1 1 1" }, { "input": "10 2\n1 0 0 1 0 1 0 1 0 1", "output": "5\n1 0 0 1 1 1 1 1 0 1" }, { "input": "1 0\n0", "output": "0\n0" }, { "input": "1 0\n0", "output": "0\n0" }, { "input": "7 0\n0 1 0 0 0 1 0", "output": "1\n0 1 0 0 0 1 0" }, { "input": "7 2\n1 0 1 1 0 0 0", "output": "5\n1 1 1 1 1 0 0" }, { "input": "7 3\n1 0 0 0 0 1 0", "output": "4\n1 1 1 1 0 1 0" }, { "input": "3 0\n1 1 1", "output": "3\n1 1 1" }, { "input": "1 0\n1", "output": "1\n1" }, { "input": "2 0\n0 1", "output": "1\n0 1" }, { "input": "1 1\n0", "output": "1\n1" }, { "input": "3 1\n0 0 1", "output": "2\n0 1 1" }, { "input": "2 0\n0 0", "output": "0\n0 0" }, { "input": "3 1\n0 0 0", "output": "1\n1 0 0" }, { "input": "7 7\n1 0 1 0 0 0 0", "output": "7\n1 1 1 1 1 1 1" }, { "input": "1 1\n1", "output": "1\n1" }, { "input": "3 0\n0 0 0", "output": "0\n0 0 0" }, { "input": "7 3\n1 1 1 1 1 1 1", "output": "7\n1 1 1 1 1 1 1" }, { "input": "10 3\n0 0 1 0 0 1 0 0 1 1", "output": "6\n0 0 1 0 1 1 1 1 1 1" }, { "input": "2 1\n0 0", "output": "1\n1 0" }, { "input": "2 2\n1 0", "output": "2\n1 1" } ]
1,692,182,302
2,147,483,647
Python 3
OK
TESTS
38
249
28,262,400
def maximize_subsegment(n, k, a): left = 0 right = 0 max_len = 0 max_len_index = 0 num_zeroes = 0 while right < n: if a[right] == 0: num_zeroes += 1 while num_zeroes > k: if a[left] == 0: num_zeroes -= 1 left += 1 if right - left + 1 > max_len: max_len = right - left + 1 max_len_index = left right += 1 for i in range(max_len_index, max_len_index + max_len): a[i] = 1 return max_len, a # Read input n, k = map(int, input().split()) a = list(map(int, input().split())) # Calculate and print the result result_length, result_array = maximize_subsegment(n, k, a) print(result_length) print(" ".join(map(str, result_array)))
Title: Hard Process Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an array *a* with *n* elements. Each element of *a* is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in *a*, consisting of only numbers one, as *f*(*a*). You can change no more than *k* zeroes to ones to maximize *f*(*a*). Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=3·105,<=0<=≤<=*k*<=≤<=*n*) — the number of elements in *a* and the parameter *k*. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1) — the elements of *a*. Output Specification: On the first line print a non-negative integer *z* — the maximal value of *f*(*a*) after no more than *k* changes of zeroes to ones. On the second line print *n* integers *a**j* — the elements of the array *a* after the changes. If there are multiple answers, you can print any one of them. Demo Input: ['7 1\n1 0 0 1 1 0 1\n', '10 2\n1 0 0 1 0 1 0 1 0 1\n'] Demo Output: ['4\n1 0 0 1 1 1 1\n', '5\n1 0 0 1 1 1 1 1 0 1\n'] Note: none
```python def maximize_subsegment(n, k, a): left = 0 right = 0 max_len = 0 max_len_index = 0 num_zeroes = 0 while right < n: if a[right] == 0: num_zeroes += 1 while num_zeroes > k: if a[left] == 0: num_zeroes -= 1 left += 1 if right - left + 1 > max_len: max_len = right - left + 1 max_len_index = left right += 1 for i in range(max_len_index, max_len_index + max_len): a[i] = 1 return max_len, a # Read input n, k = map(int, input().split()) a = list(map(int, input().split())) # Calculate and print the result result_length, result_array = maximize_subsegment(n, k, a) print(result_length) print(" ".join(map(str, result_array))) ```
3
677
A
Vanya and Fence
PROGRAMMING
800
[ "implementation" ]
null
null
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
Print a single integer — the minimum possible valid width of the road.
[ "3 7\n4 5 14\n", "6 1\n1 1 1 1 1 1\n", "6 5\n7 6 8 9 10 5\n" ]
[ "4\n", "6\n", "11\n" ]
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
500
[ { "input": "3 7\n4 5 14", "output": "4" }, { "input": "6 1\n1 1 1 1 1 1", "output": "6" }, { "input": "6 5\n7 6 8 9 10 5", "output": "11" }, { "input": "10 420\n214 614 297 675 82 740 174 23 255 15", "output": "13" }, { "input": "10 561\n657 23 1096 487 785 66 481 554 1000 821", "output": "15" }, { "input": "100 342\n478 143 359 336 162 333 385 515 117 496 310 538 469 539 258 676 466 677 1 296 150 560 26 213 627 221 255 126 617 174 279 178 24 435 70 145 619 46 669 566 300 67 576 251 58 176 441 564 569 194 24 669 73 262 457 259 619 78 400 579 222 626 269 47 80 315 160 194 455 186 315 424 197 246 683 220 68 682 83 233 290 664 273 598 362 305 674 614 321 575 362 120 14 534 62 436 294 351 485 396", "output": "144" }, { "input": "100 290\n244 49 276 77 449 261 468 458 201 424 9 131 300 88 432 394 104 77 13 289 435 259 111 453 168 394 156 412 351 576 178 530 81 271 228 564 125 328 42 372 205 61 180 471 33 360 567 331 222 318 241 117 529 169 188 484 202 202 299 268 246 343 44 364 333 494 59 236 84 485 50 8 428 8 571 227 205 310 210 9 324 472 368 490 114 84 296 305 411 351 569 393 283 120 510 171 232 151 134 366", "output": "145" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 1\n2", "output": "2" }, { "input": "46 71\n30 26 56 138 123 77 60 122 73 45 79 10 130 3 14 1 38 46 128 50 82 16 32 68 28 98 62 106 2 49 131 11 114 39 139 70 40 50 45 137 33 30 35 136 135 19", "output": "63" }, { "input": "20 723\n212 602 293 591 754 91 1135 640 80 495 845 928 1399 498 926 1431 1226 869 814 1386", "output": "31" }, { "input": "48 864\n843 1020 751 1694 18 1429 1395 1174 272 1158 1628 1233 1710 441 765 561 778 748 1501 1200 563 1263 1398 1687 1518 1640 1591 839 500 466 1603 1587 1201 1209 432 868 1159 639 649 628 9 91 1036 147 896 1557 941 518", "output": "75" }, { "input": "26 708\n549 241 821 734 945 1161 566 1268 216 30 1142 730 529 1014 255 168 796 1148 89 113 1328 286 743 871 1259 1397", "output": "41" }, { "input": "75 940\n1620 1745 1599 441 64 1466 1496 1239 1716 1475 778 106 1136 1212 1261 444 781 257 1071 747 626 232 609 1544 682 1326 469 1361 1460 1450 1207 1319 922 625 1737 1057 1698 592 692 80 1016 541 1254 201 682 1007 847 206 1066 809 259 109 240 1611 219 1455 1326 1377 1827 786 42 1002 1382 1592 543 1866 1198 334 1524 1760 340 1566 955 257 1118", "output": "116" } ]
1,694,984,083
2,147,483,647
Python 3
OK
TESTS
29
46
0
n,h = map(int,input().split(" ")) height = map(int, input().split(" ")) count = 0 for i in height : if i <= h : count +=1 if i > h : count +=2 print(count)
Title: Vanya and Fence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard? Input Specification: The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person. Output Specification: Print a single integer — the minimum possible valid width of the road. Demo Input: ['3 7\n4 5 14\n', '6 1\n1 1 1 1 1 1\n', '6 5\n7 6 8 9 10 5\n'] Demo Output: ['4\n', '6\n', '11\n'] Note: In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
```python n,h = map(int,input().split(" ")) height = map(int, input().split(" ")) count = 0 for i in height : if i <= h : count +=1 if i > h : count +=2 print(count) ```
3
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,684,146,209
2,147,483,647
Python 3
OK
TESTS
35
92
0
n,m =list(map(int,input().split())) p=n*m a=2 c=0 while p>=a: c+=1 a+=2 print(c)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python n,m =list(map(int,input().split())) p=n*m a=2 c=0 while p>=a: c+=1 a+=2 print(c) ```
3.977
1,003
A
Polycarp's Pockets
PROGRAMMING
800
[ "implementation" ]
null
null
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket. For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$. Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
[ "6\n1 2 4 3 3 2\n", "1\n100\n" ]
[ "2\n", "1\n" ]
none
0
[ { "input": "6\n1 2 4 3 3 2", "output": "2" }, { "input": "1\n100", "output": "1" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100" }, { "input": "100\n59 47 39 47 47 71 47 28 58 47 35 79 58 47 38 47 47 47 47 27 47 43 29 95 47 49 46 71 47 74 79 47 47 32 45 67 47 47 30 37 47 47 16 67 22 76 47 86 84 10 5 47 47 47 47 47 1 51 47 54 47 8 47 47 9 47 47 47 47 28 47 47 26 47 47 47 47 47 47 92 47 47 77 47 47 24 45 47 10 47 47 89 47 27 47 89 47 67 24 71", "output": "51" }, { "input": "100\n45 99 10 27 16 85 39 38 17 32 15 23 67 48 50 97 42 70 62 30 44 81 64 73 34 22 46 5 83 52 58 60 33 74 47 88 18 61 78 53 25 95 94 31 3 75 1 57 20 54 59 9 68 7 77 43 21 87 86 24 4 80 11 49 2 72 36 84 71 8 65 55 79 100 41 14 35 89 66 69 93 37 56 82 90 91 51 19 26 92 6 96 13 98 12 28 76 40 63 29", "output": "1" }, { "input": "100\n45 29 5 2 6 50 22 36 14 15 9 48 46 20 8 37 7 47 12 50 21 38 18 27 33 19 40 10 5 49 38 42 34 37 27 30 35 24 10 3 40 49 41 3 4 44 13 25 28 31 46 36 23 1 1 23 7 22 35 26 21 16 48 42 32 8 11 16 34 11 39 32 47 28 43 41 39 4 14 19 26 45 13 18 15 25 2 44 17 29 17 33 43 6 12 30 9 20 31 24", "output": "2" }, { "input": "50\n7 7 3 3 7 4 5 6 4 3 7 5 6 4 5 4 4 5 6 7 7 7 4 5 5 5 3 7 6 3 4 6 3 6 4 4 5 4 6 6 3 5 6 3 5 3 3 7 7 6", "output": "10" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "99" }, { "input": "7\n1 2 3 3 3 1 2", "output": "3" }, { "input": "5\n1 2 3 4 5", "output": "1" }, { "input": "7\n1 2 3 4 5 6 7", "output": "1" }, { "input": "8\n1 2 3 4 5 6 7 8", "output": "1" }, { "input": "9\n1 2 3 4 5 6 7 8 9", "output": "1" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "1" }, { "input": "3\n2 1 1", "output": "2" }, { "input": "11\n1 2 3 4 5 6 7 8 9 1 1", "output": "3" }, { "input": "12\n1 2 1 1 1 1 1 1 1 1 1 1", "output": "11" }, { "input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "13" }, { "input": "14\n1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "14" }, { "input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "15" }, { "input": "16\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "16" }, { "input": "3\n1 1 1", "output": "3" }, { "input": "3\n1 2 3", "output": "1" }, { "input": "10\n1 1 1 1 2 2 1 1 9 10", "output": "6" }, { "input": "2\n1 1", "output": "2" }, { "input": "56\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "56" }, { "input": "99\n35 96 73 72 70 83 22 93 98 75 45 32 81 82 45 54 25 7 53 72 29 2 94 19 21 98 34 28 39 99 55 85 44 23 6 47 98 2 33 34 19 57 49 35 67 4 60 4 4 23 55 6 57 66 16 68 34 45 84 79 48 63 4 9 46 88 98 13 19 27 83 12 4 63 57 22 44 77 44 62 28 52 44 64 9 24 55 22 48 4 2 9 80 76 45 1 56 22 92", "output": "6" }, { "input": "10\n1 2 2 3 3 3 4 4 4 4", "output": "4" }, { "input": "99\n97 44 33 56 42 10 61 85 64 26 40 39 82 34 75 9 51 51 39 73 58 38 74 31 13 99 58 1 28 89 76 19 52 7 40 56 12 27 72 72 67 75 62 46 22 55 35 16 18 39 60 63 92 42 85 69 34 61 73 50 57 95 30 4 45 63 76 58 32 35 48 81 10 78 95 79 55 97 21 21 22 94 30 17 78 57 89 93 100 44 16 89 68 55 19 46 42 73 21", "output": "3" }, { "input": "5\n5 5 5 5 1", "output": "4" }, { "input": "6\n2 3 2 5 2 6", "output": "3" }, { "input": "3\n58 59 58", "output": "2" }, { "input": "9\n1 2 3 4 5 6 7 8 8", "output": "2" }, { "input": "97\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "97" }, { "input": "3\n95 95 4", "output": "2" }, { "input": "3\n2 2 5", "output": "2" } ]
1,688,941,722
2,147,483,647
Python 3
OK
TESTS
37
46
0
n = int(input()) n_list = [int(i) for i in input().split()] max_count = 0 for i in range(len(n_list)): if n_list.count(n_list[i]) > max_count: max_count = n_list.count(n_list[i]) print(max_count)
Title: Polycarp's Pockets Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket. For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$. Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that. Input Specification: The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins. Output Specification: Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket. Demo Input: ['6\n1 2 4 3 3 2\n', '1\n100\n'] Demo Output: ['2\n', '1\n'] Note: none
```python n = int(input()) n_list = [int(i) for i in input().split()] max_count = 0 for i in range(len(n_list)): if n_list.count(n_list[i]) > max_count: max_count = n_list.count(n_list[i]) print(max_count) ```
3
405
A
Gravity Flip
PROGRAMMING
900
[ "greedy", "implementation", "sortings" ]
null
null
Little Chris is bored during his physics lessons (too easy), so he has built a toy box to keep himself occupied. The box is special, since it has the ability to change gravity. There are *n* columns of toy cubes in the box arranged in a line. The *i*-th column contains *a**i* cubes. At first, the gravity in the box is pulling the cubes downwards. When Chris switches the gravity, it begins to pull all the cubes to the right side of the box. The figure shows the initial and final configurations of the cubes in the box: the cubes that have changed their position are highlighted with orange. Given the initial configuration of the toy cubes in the box, find the amounts of cubes in each of the *n* columns after the gravity switch!
The first line of input contains an integer *n* (1<=≤<=*n*<=≤<=100), the number of the columns in the box. The next line contains *n* space-separated integer numbers. The *i*-th number *a**i* (1<=≤<=*a**i*<=≤<=100) denotes the number of cubes in the *i*-th column.
Output *n* integer numbers separated by spaces, where the *i*-th number is the amount of cubes in the *i*-th column after the gravity switch.
[ "4\n3 2 1 2\n", "3\n2 3 8\n" ]
[ "1 2 2 3 \n", "2 3 8 \n" ]
The first example case is shown on the figure. The top cube of the first column falls to the top of the last column; the top cube of the second column falls to the top of the third column; the middle cube of the first column falls to the top of the second column. In the second example case the gravity switch does not change the heights of the columns.
500
[ { "input": "4\n3 2 1 2", "output": "1 2 2 3 " }, { "input": "3\n2 3 8", "output": "2 3 8 " }, { "input": "5\n2 1 2 1 2", "output": "1 1 2 2 2 " }, { "input": "1\n1", "output": "1 " }, { "input": "2\n4 3", "output": "3 4 " }, { "input": "6\n100 40 60 20 1 80", "output": "1 20 40 60 80 100 " }, { "input": "10\n10 8 6 7 5 3 4 2 9 1", "output": "1 2 3 4 5 6 7 8 9 10 " }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "1 2 3 4 5 6 7 8 9 10 " }, { "input": "100\n82 51 81 14 37 17 78 92 64 15 8 86 89 8 87 77 66 10 15 12 100 25 92 47 21 78 20 63 13 49 41 36 41 79 16 87 87 69 3 76 80 60 100 49 70 59 72 8 38 71 45 97 71 14 76 54 81 4 59 46 39 29 92 3 49 22 53 99 59 52 74 31 92 43 42 23 44 9 82 47 7 40 12 9 3 55 37 85 46 22 84 52 98 41 21 77 63 17 62 91", "output": "3 3 3 4 7 8 8 8 9 9 10 12 12 13 14 14 15 15 16 17 17 20 21 21 22 22 23 25 29 31 36 37 37 38 39 40 41 41 41 42 43 44 45 46 46 47 47 49 49 49 51 52 52 53 54 55 59 59 59 60 62 63 63 64 66 69 70 71 71 72 74 76 76 77 77 78 78 79 80 81 81 82 82 84 85 86 87 87 87 89 91 92 92 92 92 97 98 99 100 100 " }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 " }, { "input": "10\n1 9 7 6 2 4 7 8 1 3", "output": "1 1 2 3 4 6 7 7 8 9 " }, { "input": "20\n53 32 64 20 41 97 50 20 66 68 22 60 74 61 97 54 80 30 72 59", "output": "20 20 22 30 32 41 50 53 54 59 60 61 64 66 68 72 74 80 97 97 " }, { "input": "30\n7 17 4 18 16 12 14 10 1 13 2 16 13 17 8 16 13 14 9 17 17 5 13 5 1 7 6 20 18 12", "output": "1 1 2 4 5 5 6 7 7 8 9 10 12 12 13 13 13 13 14 14 16 16 16 17 17 17 17 18 18 20 " }, { "input": "40\n22 58 68 58 48 53 52 1 16 78 75 17 63 15 36 32 78 75 49 14 42 46 66 54 49 82 40 43 46 55 12 73 5 45 61 60 1 11 31 84", "output": "1 1 5 11 12 14 15 16 17 22 31 32 36 40 42 43 45 46 46 48 49 49 52 53 54 55 58 58 60 61 63 66 68 73 75 75 78 78 82 84 " }, { "input": "70\n1 3 3 1 3 3 1 1 1 3 3 2 3 3 1 1 1 2 3 1 3 2 3 3 3 2 2 3 1 3 3 2 1 1 2 1 2 1 2 2 1 1 1 3 3 2 3 2 3 2 3 3 2 2 2 3 2 3 3 3 1 1 3 3 1 1 1 1 3 1", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " }, { "input": "90\n17 75 51 30 100 5 50 95 51 73 66 5 7 76 43 49 23 55 3 24 95 79 10 11 44 93 17 99 53 66 82 66 63 76 19 4 51 71 75 43 27 5 24 19 48 7 91 15 55 21 7 6 27 10 2 91 64 58 18 21 16 71 90 88 21 20 6 6 95 85 11 7 40 65 52 49 92 98 46 88 17 48 85 96 77 46 100 34 67 52", "output": "2 3 4 5 5 5 6 6 6 7 7 7 7 10 10 11 11 15 16 17 17 17 18 19 19 20 21 21 21 23 24 24 27 27 30 34 40 43 43 44 46 46 48 48 49 49 50 51 51 51 52 52 53 55 55 58 63 64 65 66 66 66 67 71 71 73 75 75 76 76 77 79 82 85 85 88 88 90 91 91 92 93 95 95 95 96 98 99 100 100 " }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " }, { "input": "100\n1 1 1 1 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 2 2 2 1 1 2 1 1 1 2 2 2 1 1 1 2 1 2 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 2 1 2 1", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 " }, { "input": "100\n2 1 1 1 3 2 3 3 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 3 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 1 3 1 3 1 3 1 1 3 3 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " }, { "input": "100\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6", "output": "1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 " }, { "input": "100\n12 10 5 11 13 12 14 13 7 15 15 12 13 19 12 18 14 10 10 3 1 10 16 11 19 8 10 15 5 10 12 16 11 13 11 15 14 12 16 8 11 8 15 2 18 2 14 13 15 20 8 8 4 12 14 7 10 3 9 1 7 19 6 7 2 14 8 20 7 17 18 20 3 18 18 9 6 10 4 1 4 19 9 13 3 3 12 11 11 20 8 2 13 6 7 12 1 4 17 3", "output": "1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 17 18 18 18 18 18 19 19 19 19 20 20 20 20 " }, { "input": "100\n5 13 1 40 30 10 23 32 33 12 6 4 15 29 31 17 23 5 36 31 32 38 24 11 34 39 19 21 6 19 31 35 1 15 6 29 22 15 17 15 1 17 2 34 20 8 27 2 29 26 13 9 22 27 27 3 20 40 4 40 33 29 36 30 35 16 19 28 26 11 36 24 29 5 40 10 38 34 33 23 34 39 31 7 10 31 22 6 36 24 14 31 34 23 2 4 26 16 2 32", "output": "1 1 1 2 2 2 2 3 4 4 4 5 5 5 6 6 6 6 7 8 9 10 10 10 11 11 12 13 13 14 15 15 15 15 16 16 17 17 17 19 19 19 20 20 21 22 22 22 23 23 23 23 24 24 24 26 26 26 27 27 27 28 29 29 29 29 29 30 30 31 31 31 31 31 31 32 32 32 33 33 33 34 34 34 34 34 35 35 36 36 36 36 38 38 39 39 40 40 40 40 " }, { "input": "100\n72 44 34 74 9 60 26 37 55 77 74 69 28 66 54 55 8 36 57 31 31 48 32 66 40 70 77 43 64 28 37 10 21 58 51 32 60 28 51 52 28 35 7 33 1 68 38 70 57 71 8 20 42 57 59 4 58 10 17 47 22 48 16 3 76 67 32 37 64 47 33 41 75 69 2 76 39 9 27 75 20 21 52 25 71 21 11 29 38 10 3 1 45 55 63 36 27 7 59 41", "output": "1 1 2 3 3 4 7 7 8 8 9 9 10 10 10 11 16 17 20 20 21 21 21 22 25 26 27 27 28 28 28 28 29 31 31 32 32 32 33 33 34 35 36 36 37 37 37 38 38 39 40 41 41 42 43 44 45 47 47 48 48 51 51 52 52 54 55 55 55 57 57 57 58 58 59 59 60 60 63 64 64 66 66 67 68 69 69 70 70 71 71 72 74 74 75 75 76 76 77 77 " }, { "input": "100\n75 18 61 10 56 53 42 57 79 80 31 2 50 45 54 99 84 52 71 21 86 3 19 98 14 37 40 62 63 68 5 10 87 8 81 85 52 52 57 94 2 7 56 96 19 76 1 13 81 6 80 47 22 59 99 32 9 5 36 88 98 91 70 70 12 93 12 22 85 1 97 48 94 16 84 84 51 34 62 7 68 51 30 2 37 82 4 7 27 1 80 9 61 16 59 55 12 96 94 82", "output": "1 1 1 2 2 2 3 4 5 5 6 7 7 7 8 9 9 10 10 12 12 12 13 14 16 16 18 19 19 21 22 22 27 30 31 32 34 36 37 37 40 42 45 47 48 50 51 51 52 52 52 53 54 55 56 56 57 57 59 59 61 61 62 62 63 68 68 70 70 71 75 76 79 80 80 80 81 81 82 82 84 84 84 85 85 86 87 88 91 93 94 94 94 96 96 97 98 98 99 99 " }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 " }, { "input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 " }, { "input": "100\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50", "output": "50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 " }, { "input": "49\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97", "output": "1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 " }, { "input": "30\n1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88", "output": "1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 " }, { "input": "100\n100 51 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 51 100 " }, { "input": "10\n100 90 80 70 60 50 40 30 20 10", "output": "10 20 30 40 50 60 70 80 90 100 " }, { "input": "1\n10", "output": "10 " } ]
1,696,870,416
2,147,483,647
Python 3
OK
TESTS
32
46
0
# Input: Number of columns in the box n = int(input()) # Input: Number of cubes in each column columns = list(map(int, input().split())) # Sort the columns in ascending order columns.sort() # Output: Print the sorted columns print(*columns)
Title: Gravity Flip Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Chris is bored during his physics lessons (too easy), so he has built a toy box to keep himself occupied. The box is special, since it has the ability to change gravity. There are *n* columns of toy cubes in the box arranged in a line. The *i*-th column contains *a**i* cubes. At first, the gravity in the box is pulling the cubes downwards. When Chris switches the gravity, it begins to pull all the cubes to the right side of the box. The figure shows the initial and final configurations of the cubes in the box: the cubes that have changed their position are highlighted with orange. Given the initial configuration of the toy cubes in the box, find the amounts of cubes in each of the *n* columns after the gravity switch! Input Specification: The first line of input contains an integer *n* (1<=≤<=*n*<=≤<=100), the number of the columns in the box. The next line contains *n* space-separated integer numbers. The *i*-th number *a**i* (1<=≤<=*a**i*<=≤<=100) denotes the number of cubes in the *i*-th column. Output Specification: Output *n* integer numbers separated by spaces, where the *i*-th number is the amount of cubes in the *i*-th column after the gravity switch. Demo Input: ['4\n3 2 1 2\n', '3\n2 3 8\n'] Demo Output: ['1 2 2 3 \n', '2 3 8 \n'] Note: The first example case is shown on the figure. The top cube of the first column falls to the top of the last column; the top cube of the second column falls to the top of the third column; the middle cube of the first column falls to the top of the second column. In the second example case the gravity switch does not change the heights of the columns.
```python # Input: Number of columns in the box n = int(input()) # Input: Number of cubes in each column columns = list(map(int, input().split())) # Sort the columns in ascending order columns.sort() # Output: Print the sorted columns print(*columns) ```
3
171
C
A Piece of Cake
PROGRAMMING
2,000
[ "*special", "implementation" ]
null
null
How to make a cake you'll never eat. Ingredients. - 2 carrots - 0 calories - 100 g chocolate spread - 1 pack of flour - 1 egg Method. 1. Put calories into the mixing bowl. 1. Take carrots from refrigerator. 1. Chop carrots. 1. Take chocolate spread from refrigerator. 1. Put chocolate spread into the mixing bowl. 1. Combine pack of flour into the mixing bowl. 1. Fold chocolate spread into the mixing bowl. 1. Add chocolate spread into the mixing bowl. 1. Put pack of flour into the mixing bowl. 1. Add egg into the mixing bowl. 1. Fold pack of flour into the mixing bowl. 1. Chop carrots until choped. 1. Pour contents of the mixing bowl into the baking dish. Serves 1.
The only line of input contains a sequence of integers *a*0,<=*a*1,<=... (1<=≤<=*a*0<=≤<=100, 0<=≤<=*a**i*<=≤<=1000 for *i*<=≥<=1).
Output a single integer.
[ "4 1 2 3 4\n" ]
[ "30\n" ]
none
0
[ { "input": "4 1 2 3 4", "output": "30" }, { "input": "4 802 765 992 1", "output": "5312" }, { "input": "4 220 380 729 969", "output": "7043" }, { "input": "3 887 104 641", "output": "3018" }, { "input": "12 378 724 582 387 583 241 294 159 198 653 369 418", "output": "30198" }, { "input": "14 36 901 516 623 703 971 304 394 491 525 464 219 183 648", "output": "49351" }, { "input": "3 287 979 395", "output": "3430" }, { "input": "19 702 667 743 976 908 728 134 106 380 193 214 71 920 114 587 543 817 248 537", "output": "87024" }, { "input": "11 739 752 364 649 626 702 444 913 681 529 959", "output": "45653" }, { "input": "19 196 392 738 103 119 872 900 189 65 113 260 985 228 537 217 735 785 445 636", "output": "92576" }, { "input": "22 196 690 553 822 392 687 425 763 216 73 525 412 155 263 205 965 825 105 153 580 218 103", "output": "96555" }, { "input": "10 136 641 472 872 115 607 197 19 494 577", "output": "22286" }, { "input": "10 5 659 259 120 421 165 194 637 577 39", "output": "17712" }, { "input": "5 472 4 724 577 157", "output": "5745" }, { "input": "23 486 261 249 312 592 411 874 397 18 70 417 512 338 679 517 997 938 328 418 793 522 745 59", "output": "141284" }, { "input": "17 644 532 255 57 108 413 51 284 364 300 597 646 712 470 42 730 231", "output": "61016" }, { "input": "26 932 569 829 138 565 766 466 673 559 678 417 618 930 751 840 184 809 639 287 550 923 341 851 209 987 252", "output": "207547" }, { "input": "16 29 672 601 178 603 860 6 431 114 463 588 788 712 956 895 19", "output": "73502" }, { "input": "5 336 860 760 835 498", "output": "10166" }, { "input": "29 384 110 78 925 320 755 176 690 784 848 981 653 140 840 659 262 954 812 850 431 523 495 16 233 70 352 92 520 877", "output": "216056" }, { "input": "21 256 260 390 24 185 400 780 51 89 253 900 760 906 730 599 565 992 243 66 531 364", "output": "114365" }, { "input": "19 26 380 823 787 422 605 306 298 885 562 249 965 277 124 365 56 175 144 309", "output": "67719" }, { "input": "41 595 215 495 884 470 176 126 536 398 181 816 114 251 328 901 674 933 206 662 507 458 601 162 735 725 217 481 591 51 791 355 646 696 540 530 165 717 346 391 114 527", "output": "406104" }, { "input": "20 228 779 225 819 142 849 24 494 45 172 95 207 908 510 424 78 100 166 869 456", "output": "78186" }, { "input": "15 254 996 341 109 402 688 501 206 905 398 124 373 313 943 515", "output": "57959" }, { "input": "45 657 700 898 830 795 104 427 995 219 505 95 385 64 241 196 318 927 228 428 329 606 619 535 200 707 660 574 19 292 88 872 950 788 769 779 272 563 896 267 782 400 52 857 154 293", "output": "507143" }, { "input": "41 473 219 972 591 238 267 209 464 467 916 814 40 625 105 820 496 54 297 264 523 570 828 418 527 299 509 269 156 663 562 900 826 471 561 416 710 828 315 864 985 230", "output": "463602" }, { "input": "48 25 856 782 535 41 527 832 306 49 91 824 158 618 122 357 887 969 710 138 868 536 610 118 642 9 946 958 873 931 878 549 646 733 20 180 775 547 11 771 287 103 594 135 411 406 492 989 375", "output": "597376" }, { "input": "57 817 933 427 116 51 69 125 687 717 688 307 594 927 643 17 638 823 482 184 525 943 161 318 226 296 419 632 478 97 697 370 915 320 797 30 371 556 847 748 272 224 746 557 151 388 264 789 211 746 663 426 688 825 744 914 811 853", "output": "900997" }, { "input": "55 980 951 933 349 865 252 836 585 313 392 431 751 354 656 496 601 497 885 865 976 786 300 638 211 678 152 645 281 654 187 517 633 137 139 672 692 81 507 968 84 589 398 835 944 744 331 234 931 906 99 906 691 89 234 592", "output": "810147" }, { "input": "100 768 386 927 48 730 113 255 362 942 394 33 323 165 231 290 249 820 379 775 763 813 796 688 744 701 787 339 81 566 573 363 333 650 980 382 379 783 327 432 724 722 155 47 577 386 27 827 206 406 601 659 219 86 346 963 787 823 301 558 389 565 921 412 214 590 484 283 372 812 715 787 533 871 524 109 947 551 626 843 958 917 502 176 2 538 829 479 51 820 36 130 384 647 542 288 236 26 572 609 838", "output": "2547238" }, { "input": "100 977 395 60 537 919 860 484 159 486 326 116 92 518 983 95 747 501 264 798 321 301 928 395 948 469 374 875 185 636 173 22 612 568 82 149 176 633 323 335 118 339 142 901 858 124 686 604 626 951 91 637 251 709 722 889 177 95 453 363 731 626 75 33 193 849 182 59 481 505 395 289 844 537 189 391 351 876 685 667 826 466 994 767 174 716 345 352 501 799 405 923 424 480 956 308 18 828 367 499 22", "output": "2437955" }, { "input": "100 452 788 556 679 978 638 30 543 322 697 368 789 691 825 653 96 169 4 287 968 99 209 392 270 855 700 288 682 757 788 394 209 265 951 888 242 588 918 785 600 305 843 78 686 667 732 472 837 426 759 494 216 969 886 486 513 275 464 886 32 942 279 932 207 920 819 449 197 427 925 798 422 457 566 107 124 988 579 651 414 337 144 320 996 721 806 509 686 960 394 408 902 363 339 108 283 849 247 480 275", "output": "2696135" }, { "input": "100 862 968 697 319 224 494 133 211 763 784 315 99 618 635 786 28 130 985 715 90 68 122 992 431 152 99 404 0 36 575 275 899 542 662 217 456 846 350 668 608 824 673 707 131 308 182 160 438 166 565 218 234 377 209 356 529 999 760 529 35 334 494 624 567 846 841 22 691 881 380 298 394 53 696 215 51 878 375 489 735 630 398 659 7 607 14 536 296 465 756 21 799 249 645 365 786 485 78 476 55", "output": "2232342" }, { "input": "100 458 775 449 511 160 354 252 37 730 432 462 49 830 121 56 126 826 283 422 290 38 443 780 978 87 835 763 262 913 930 317 371 394 456 572 554 811 825 281 230 256 744 970 776 555 26 902 380 1000 324 361 37 457 140 705 545 975 158 497 578 87 505 949 171 651 210 725 151 725 5 71 671 749 41 446 994 67 38 374 66 362 425 794 509 565 188 744 229 346 241 807 123 746 445 294 86 346 709 238 70", "output": "2200721" }, { "input": "100 715 309 432 153 350 568 147 107 606 211 173 658 636 657 167 891 846 911 810 882 842 617 696 277 752 680 364 97 389 602 859 794 601 290 947 952 548 784 58 154 995 923 502 320 579 359 901 424 270 711 997 802 17 692 79 769 371 443 867 760 735 725 553 335 705 190 977 252 974 35 96 659 648 599 669 226 648 570 341 918 971 337 410 988 719 489 446 89 622 312 540 46 727 783 381 431 663 48 374 327", "output": "2688801" }, { "input": "100 774 470 986 421 759 654 647 407 914 678 14 574 705 424 561 423 603 7 203 224 9 743 270 737 215 342 858 569 80 231 896 854 392 881 274 150 224 611 247 829 289 953 402 994 376 654 417 670 351 310 584 360 743 545 787 958 887 645 526 657 876 421 510 267 992 784 108 907 84 355 735 373 307 136 57 374 480 164 43 831 474 317 191 216 862 668 864 438 312 80 94 188 501 604 145 183 77 253 89 162", "output": "2204266" }, { "input": "100 299 824 225 296 650 282 360 130 136 93 651 610 411 842 516 272 200 380 711 512 460 805 390 651 99 536 524 176 479 613 28 468 126 254 765 777 226 124 597 363 218 247 663 629 780 870 901 980 249 301 491 399 106 572 740 205 107 264 71 276 877 791 745 3 44 509 470 961 323 66 13 541 3 367 860 783 236 451 762 175 752 944 574 858 515 313 753 312 577 515 588 454 305 22 147 39 221 617 1000 545", "output": "2316930" }, { "input": "100 373 704 776 376 70 326 850 997 777 611 171 528 244 745 76 449 748 519 451 15 33 730 159 338 752 306 377 974 613 67 208 986 461 984 51 221 309 901 217 776 202 388 304 136 823 70 586 260 589 36 275 623 766 434 651 208 430 28 181 42 786 389 718 246 62 770 467 62 670 684 838 562 762 832 699 274 902 284 224 181 10 500 804 467 624 454 675 54 172 546 96 958 625 505 203 687 274 360 439 634", "output": "2297827" }, { "input": "100 734 968 887 495 799 585 459 391 559 684 572 569 874 375 726 187 519 400 241 382 636 28 339 260 533 233 638 497 283 76 821 17 43 707 512 533 291 662 924 540 35 185 800 599 250 525 786 769 616 27 150 251 746 180 512 969 103 149 465 386 916 976 403 960 683 606 182 664 958 796 204 993 981 3 591 230 218 66 689 834 784 840 85 529 710 597 497 503 746 652 889 661 318 983 310 691 278 182 354 235", "output": "2604711" }, { "input": "100 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "5050000" } ]
1,522,612,195
2,147,483,647
Python 3
OK
TESTS
41
184
7,065,600
l1=list(map(int,input().split())) s=0 for i in range(len(l1)): s+=(l1[i]*i) print(s)
Title: A Piece of Cake Time Limit: None seconds Memory Limit: None megabytes Problem Description: How to make a cake you'll never eat. Ingredients. - 2 carrots - 0 calories - 100 g chocolate spread - 1 pack of flour - 1 egg Method. 1. Put calories into the mixing bowl. 1. Take carrots from refrigerator. 1. Chop carrots. 1. Take chocolate spread from refrigerator. 1. Put chocolate spread into the mixing bowl. 1. Combine pack of flour into the mixing bowl. 1. Fold chocolate spread into the mixing bowl. 1. Add chocolate spread into the mixing bowl. 1. Put pack of flour into the mixing bowl. 1. Add egg into the mixing bowl. 1. Fold pack of flour into the mixing bowl. 1. Chop carrots until choped. 1. Pour contents of the mixing bowl into the baking dish. Serves 1. Input Specification: The only line of input contains a sequence of integers *a*0,<=*a*1,<=... (1<=≤<=*a*0<=≤<=100, 0<=≤<=*a**i*<=≤<=1000 for *i*<=≥<=1). Output Specification: Output a single integer. Demo Input: ['4 1 2 3 4\n'] Demo Output: ['30\n'] Note: none
```python l1=list(map(int,input().split())) s=0 for i in range(len(l1)): s+=(l1[i]*i) print(s) ```
3
984
A
Game
PROGRAMMING
800
[ "sortings" ]
null
null
Two players play a game. Initially there are $n$ integers $a_1, a_2, \ldots, a_n$ written on the board. Each turn a player selects one number and erases it from the board. This continues until there is only one number left on the board, i. e. $n - 1$ turns are made. The first player makes the first move, then players alternate turns. The first player wants to minimize the last number that would be left on the board, while the second player wants to maximize it. You want to know what number will be left on the board after $n - 1$ turns if both players make optimal moves.
The first line contains one integer $n$ ($1 \le n \le 1000$) — the number of numbers on the board. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^6$).
Print one number that will be left on the board.
[ "3\n2 1 3\n", "3\n2 2 2\n" ]
[ "2", "2" ]
In the first sample, the first player erases $3$ and the second erases $1$. $2$ is left on the board. In the second sample, $2$ is left on the board regardless of the actions of the players.
500
[ { "input": "3\n2 1 3", "output": "2" }, { "input": "3\n2 2 2", "output": "2" }, { "input": "9\n44 53 51 80 5 27 74 79 94", "output": "53" }, { "input": "10\n38 82 23 37 96 4 81 60 67 86", "output": "60" }, { "input": "10\n58 26 77 15 53 81 68 48 22 65", "output": "53" }, { "input": "1\n124", "output": "124" }, { "input": "2\n2 1", "output": "1" }, { "input": "3\n1 1 1000", "output": "1" }, { "input": "2\n322 322", "output": "322" }, { "input": "3\n9 92 12", "output": "12" }, { "input": "3\n1 2 2", "output": "2" } ]
1,612,406,403
2,147,483,647
PyPy 3
OK
TESTS
35
124
1,536,000
n=int(input()) intlist=list(map(int,input().split())) for i in range(1,n): if(i%2!=0): intlist.remove(max(intlist)) else: intlist.remove(min(intlist)) print(intlist[0])
Title: Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two players play a game. Initially there are $n$ integers $a_1, a_2, \ldots, a_n$ written on the board. Each turn a player selects one number and erases it from the board. This continues until there is only one number left on the board, i. e. $n - 1$ turns are made. The first player makes the first move, then players alternate turns. The first player wants to minimize the last number that would be left on the board, while the second player wants to maximize it. You want to know what number will be left on the board after $n - 1$ turns if both players make optimal moves. Input Specification: The first line contains one integer $n$ ($1 \le n \le 1000$) — the number of numbers on the board. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^6$). Output Specification: Print one number that will be left on the board. Demo Input: ['3\n2 1 3\n', '3\n2 2 2\n'] Demo Output: ['2', '2'] Note: In the first sample, the first player erases $3$ and the second erases $1$. $2$ is left on the board. In the second sample, $2$ is left on the board regardless of the actions of the players.
```python n=int(input()) intlist=list(map(int,input().split())) for i in range(1,n): if(i%2!=0): intlist.remove(max(intlist)) else: intlist.remove(min(intlist)) print(intlist[0]) ```
3
41
A
Translation
PROGRAMMING
800
[ "implementation", "strings" ]
A. Translation
2
256
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
[ "code\nedoc\n", "abb\naba\n", "code\ncode\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "code\nedoc", "output": "YES" }, { "input": "abb\naba", "output": "NO" }, { "input": "code\ncode", "output": "NO" }, { "input": "abacaba\nabacaba", "output": "YES" }, { "input": "q\nq", "output": "YES" }, { "input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk", "output": "NO" }, { "input": "z\na", "output": "NO" }, { "input": "asd\ndsa", "output": "YES" }, { "input": "abcdef\nfecdba", "output": "NO" }, { "input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu", "output": "NO" }, { "input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf", "output": "NO" }, { "input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp", "output": "NO" }, { "input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb", "output": "NO" }, { "input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom", "output": "NO" }, { "input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh", "output": "NO" }, { "input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy", "output": "NO" }, { "input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko", "output": "NO" }, { "input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv", "output": "NO" }, { "input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd", "output": "NO" }, { "input": "w\nw", "output": "YES" }, { "input": "vz\nzv", "output": "YES" }, { "input": "ry\nyr", "output": "YES" }, { "input": "xou\nuox", "output": "YES" }, { "input": "axg\ngax", "output": "NO" }, { "input": "zdsl\nlsdz", "output": "YES" }, { "input": "kudl\nldku", "output": "NO" }, { "input": "zzlzwnqlcl\nlclqnwzlzz", "output": "YES" }, { "input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv", "output": "YES" }, { "input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar", "output": "NO" }, { "input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn", "output": "YES" }, { "input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum", "output": "YES" }, { "input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv", "output": "YES" }, { "input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm", "output": "NO" }, { "input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd", "output": "NO" }, { "input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg", "output": "YES" }, { "input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis", "output": "YES" }, { "input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy", "output": "NO" }, { "input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw", "output": "YES" }, { "input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi", "output": "YES" }, { "input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib", "output": "YES" } ]
1,647,437,477
2,147,483,647
Python 3
OK
TESTS
40
92
0
s=input() t=input() s1=s[::-1] if(t==s1): print("YES") else: print("NO")
Title: Translation Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. Input Specification: The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. Output Specification: If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. Demo Input: ['code\nedoc\n', 'abb\naba\n', 'code\ncode\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python s=input() t=input() s1=s[::-1] if(t==s1): print("YES") else: print("NO") ```
3.977
1,006
C
Three Parts of the Array
PROGRAMMING
1,200
[ "binary search", "data structures", "two pointers" ]
null
null
You are given an array $d_1, d_2, \dots, d_n$ consisting of $n$ integer numbers. Your task is to split this array into three parts (some of which may be empty) in such a way that each element of the array belongs to exactly one of the three parts, and each of the parts forms a consecutive contiguous subsegment (possibly, empty) of the original array. Let the sum of elements of the first part be $sum_1$, the sum of elements of the second part be $sum_2$ and the sum of elements of the third part be $sum_3$. Among all possible ways to split the array you have to choose a way such that $sum_1 = sum_3$ and $sum_1$ is maximum possible. More formally, if the first part of the array contains $a$ elements, the second part of the array contains $b$ elements and the third part contains $c$ elements, then: $$sum_1 = \sum\limits_{1 \le i \le a}d_i,$$ $$sum_2 = \sum\limits_{a + 1 \le i \le a + b}d_i,$$ $$sum_3 = \sum\limits_{a + b + 1 \le i \le a + b + c}d_i.$$ The sum of an empty array is $0$. Your task is to find a way to split the array such that $sum_1 = sum_3$ and $sum_1$ is maximum possible.
The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the number of elements in the array $d$. The second line of the input contains $n$ integers $d_1, d_2, \dots, d_n$ ($1 \le d_i \le 10^9$) — the elements of the array $d$.
Print a single integer — the maximum possible value of $sum_1$, considering that the condition $sum_1 = sum_3$ must be met. Obviously, at least one valid way to split the array exists (use $a=c=0$ and $b=n$).
[ "5\n1 3 1 1 4\n", "5\n1 3 2 1 4\n", "3\n4 1 2\n" ]
[ "5\n", "4\n", "0\n" ]
In the first example there is only one possible splitting which maximizes $sum_1$: $[1, 3, 1], [~], [1, 4]$. In the second example the only way to have $sum_1=4$ is: $[1, 3], [2, 1], [4]$. In the third example there is only one way to split the array: $[~], [4, 1, 2], [~]$.
0
[ { "input": "5\n1 3 1 1 4", "output": "5" }, { "input": "5\n1 3 2 1 4", "output": "4" }, { "input": "3\n4 1 2", "output": "0" }, { "input": "1\n1000000000", "output": "0" }, { "input": "2\n1 1", "output": "1" }, { "input": "5\n1 3 5 4 5", "output": "9" } ]
1,691,676,744
2,147,483,647
PyPy 3-64
OK
TESTS
27
140
27,648,000
n = int(input()) ar = list(map(int, input().split())) i, j, maxx = 0, n - 1, 0 while i < j: if ar[i] == ar[j]: maxx = ar[i] if ar[i] < ar[j]: i+=1 ar[i] += ar[i - 1] else: j-=1 ar[j] += ar[j + 1] print(maxx)
Title: Three Parts of the Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an array $d_1, d_2, \dots, d_n$ consisting of $n$ integer numbers. Your task is to split this array into three parts (some of which may be empty) in such a way that each element of the array belongs to exactly one of the three parts, and each of the parts forms a consecutive contiguous subsegment (possibly, empty) of the original array. Let the sum of elements of the first part be $sum_1$, the sum of elements of the second part be $sum_2$ and the sum of elements of the third part be $sum_3$. Among all possible ways to split the array you have to choose a way such that $sum_1 = sum_3$ and $sum_1$ is maximum possible. More formally, if the first part of the array contains $a$ elements, the second part of the array contains $b$ elements and the third part contains $c$ elements, then: $$sum_1 = \sum\limits_{1 \le i \le a}d_i,$$ $$sum_2 = \sum\limits_{a + 1 \le i \le a + b}d_i,$$ $$sum_3 = \sum\limits_{a + b + 1 \le i \le a + b + c}d_i.$$ The sum of an empty array is $0$. Your task is to find a way to split the array such that $sum_1 = sum_3$ and $sum_1$ is maximum possible. Input Specification: The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the number of elements in the array $d$. The second line of the input contains $n$ integers $d_1, d_2, \dots, d_n$ ($1 \le d_i \le 10^9$) — the elements of the array $d$. Output Specification: Print a single integer — the maximum possible value of $sum_1$, considering that the condition $sum_1 = sum_3$ must be met. Obviously, at least one valid way to split the array exists (use $a=c=0$ and $b=n$). Demo Input: ['5\n1 3 1 1 4\n', '5\n1 3 2 1 4\n', '3\n4 1 2\n'] Demo Output: ['5\n', '4\n', '0\n'] Note: In the first example there is only one possible splitting which maximizes $sum_1$: $[1, 3, 1], [~], [1, 4]$. In the second example the only way to have $sum_1=4$ is: $[1, 3], [2, 1], [4]$. In the third example there is only one way to split the array: $[~], [4, 1, 2], [~]$.
```python n = int(input()) ar = list(map(int, input().split())) i, j, maxx = 0, n - 1, 0 while i < j: if ar[i] == ar[j]: maxx = ar[i] if ar[i] < ar[j]: i+=1 ar[i] += ar[i - 1] else: j-=1 ar[j] += ar[j + 1] print(maxx) ```
3
750
A
New Year and Hurry
PROGRAMMING
800
[ "binary search", "brute force", "implementation", "math" ]
null
null
Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem. Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first. How many problems can Limak solve if he wants to make it to the party?
The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.
Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.
[ "3 222\n", "4 190\n", "7 1\n" ]
[ "2\n", "4\n", "7\n" ]
In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2. In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight. In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
500
[ { "input": "3 222", "output": "2" }, { "input": "4 190", "output": "4" }, { "input": "7 1", "output": "7" }, { "input": "10 135", "output": "6" }, { "input": "10 136", "output": "5" }, { "input": "1 1", "output": "1" }, { "input": "1 240", "output": "0" }, { "input": "10 1", "output": "9" }, { "input": "10 240", "output": "0" }, { "input": "9 240", "output": "0" }, { "input": "9 1", "output": "9" }, { "input": "9 235", "output": "1" }, { "input": "9 236", "output": "0" }, { "input": "5 225", "output": "2" }, { "input": "5 226", "output": "1" }, { "input": "4 210", "output": "3" }, { "input": "4 211", "output": "2" }, { "input": "4 191", "output": "3" }, { "input": "10 165", "output": "5" }, { "input": "10 166", "output": "4" }, { "input": "8 100", "output": "7" }, { "input": "8 101", "output": "6" }, { "input": "8 60", "output": "8" }, { "input": "8 61", "output": "7" }, { "input": "10 15", "output": "9" }, { "input": "10 16", "output": "8" }, { "input": "4 100", "output": "4" }, { "input": "4 101", "output": "4" }, { "input": "7 167", "output": "4" }, { "input": "10 164", "output": "5" }, { "input": "9 170", "output": "4" }, { "input": "8 160", "output": "5" }, { "input": "1 100", "output": "1" }, { "input": "8 123", "output": "6" }, { "input": "2 99", "output": "2" }, { "input": "10 88", "output": "7" }, { "input": "1 235", "output": "1" }, { "input": "1 1", "output": "1" }, { "input": "4 240", "output": "0" }, { "input": "1 55", "output": "1" }, { "input": "1 240", "output": "0" }, { "input": "3 240", "output": "0" }, { "input": "10 240", "output": "0" }, { "input": "2 240", "output": "0" }, { "input": "10 1", "output": "9" }, { "input": "9 1", "output": "9" }, { "input": "2 236", "output": "0" }, { "input": "10 2", "output": "9" }, { "input": "3 239", "output": "0" }, { "input": "1 237", "output": "0" }, { "input": "7 8", "output": "7" }, { "input": "10 235", "output": "1" } ]
1,681,921,568
2,147,483,647
Python 3
OK
TESTS
52
62
0
a,b=map(int,input().split()) c=4*60 c=c-b ans=0 for i in range(a+1): c=c-i*5 if(c<0): ans=i-1 break elif(c==0): ans=i break if(c>0): ans=a print(ans)
Title: New Year and Hurry Time Limit: None seconds Memory Limit: None megabytes Problem Description: Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem. Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first. How many problems can Limak solve if he wants to make it to the party? Input Specification: The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house. Output Specification: Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier. Demo Input: ['3 222\n', '4 190\n', '7 1\n'] Demo Output: ['2\n', '4\n', '7\n'] Note: In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2. In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight. In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
```python a,b=map(int,input().split()) c=4*60 c=c-b ans=0 for i in range(a+1): c=c-i*5 if(c<0): ans=i-1 break elif(c==0): ans=i break if(c>0): ans=a print(ans) ```
3
935
A
Fafa and his Company
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
Fafa owns a company that works on huge projects. There are *n* employees in Fafa's company. Whenever the company has a new project to start working on, Fafa has to divide the tasks of this project among all the employees. Fafa finds doing this every time is very tiring for him. So, he decided to choose the best *l* employees in his company as team leaders. Whenever there is a new project, Fafa will divide the tasks among only the team leaders and each team leader will be responsible of some positive number of employees to give them the tasks. To make this process fair for the team leaders, each one of them should be responsible for the same number of employees. Moreover, every employee, who is not a team leader, has to be under the responsibility of exactly one team leader, and no team leader is responsible for another team leader. Given the number of employees *n*, find in how many ways Fafa could choose the number of team leaders *l* in such a way that it is possible to divide employees between them evenly.
The input consists of a single line containing a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of employees in Fafa's company.
Print a single integer representing the answer to the problem.
[ "2\n", "10\n" ]
[ "1\n", "3\n" ]
In the second sample Fafa has 3 ways: - choose only 1 employee as a team leader with 9 employees under his responsibility. - choose 2 employees as team leaders with 4 employees under the responsibility of each of them. - choose 5 employees as team leaders with 1 employee under the responsibility of each of them.
500
[ { "input": "2", "output": "1" }, { "input": "10", "output": "3" }, { "input": "3", "output": "1" }, { "input": "4", "output": "2" }, { "input": "6", "output": "3" }, { "input": "13", "output": "1" }, { "input": "100000", "output": "35" }, { "input": "1024", "output": "10" }, { "input": "99999", "output": "11" }, { "input": "10007", "output": "1" }, { "input": "4096", "output": "12" }, { "input": "65536", "output": "16" }, { "input": "40320", "output": "95" }, { "input": "30030", "output": "63" }, { "input": "161", "output": "3" }, { "input": "1000", "output": "15" }, { "input": "10000", "output": "24" }, { "input": "777", "output": "7" }, { "input": "121", "output": "2" }, { "input": "25", "output": "2" }, { "input": "40000", "output": "34" }, { "input": "99990", "output": "47" }, { "input": "98765", "output": "3" }, { "input": "56789", "output": "3" }, { "input": "13579", "output": "3" }, { "input": "97531", "output": "3" }, { "input": "12345", "output": "7" }, { "input": "54321", "output": "7" }, { "input": "83160", "output": "127" }, { "input": "9", "output": "2" }, { "input": "21", "output": "3" }, { "input": "11", "output": "1" }, { "input": "15", "output": "3" } ]
1,665,351,668
2,147,483,647
PyPy 3
OK
TESTS
33
93
1,024,000
n=int(input()) print(len([x for x in range(1,n) if not n%x ]))
Title: Fafa and his Company Time Limit: None seconds Memory Limit: None megabytes Problem Description: Fafa owns a company that works on huge projects. There are *n* employees in Fafa's company. Whenever the company has a new project to start working on, Fafa has to divide the tasks of this project among all the employees. Fafa finds doing this every time is very tiring for him. So, he decided to choose the best *l* employees in his company as team leaders. Whenever there is a new project, Fafa will divide the tasks among only the team leaders and each team leader will be responsible of some positive number of employees to give them the tasks. To make this process fair for the team leaders, each one of them should be responsible for the same number of employees. Moreover, every employee, who is not a team leader, has to be under the responsibility of exactly one team leader, and no team leader is responsible for another team leader. Given the number of employees *n*, find in how many ways Fafa could choose the number of team leaders *l* in such a way that it is possible to divide employees between them evenly. Input Specification: The input consists of a single line containing a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of employees in Fafa's company. Output Specification: Print a single integer representing the answer to the problem. Demo Input: ['2\n', '10\n'] Demo Output: ['1\n', '3\n'] Note: In the second sample Fafa has 3 ways: - choose only 1 employee as a team leader with 9 employees under his responsibility. - choose 2 employees as team leaders with 4 employees under the responsibility of each of them. - choose 5 employees as team leaders with 1 employee under the responsibility of each of them.
```python n=int(input()) print(len([x for x in range(1,n) if not n%x ])) ```
3
609
A
USB Flash Drives
PROGRAMMING
800
[ "greedy", "implementation", "sortings" ]
null
null
Sean is trying to save a large file to a USB flash drive. He has *n* USB flash drives with capacities equal to *a*1,<=*a*2,<=...,<=*a**n* megabytes. The file size is equal to *m* megabytes. Find the minimum number of USB flash drives needed to write Sean's file, if he can split the file between drives.
The first line contains positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of USB flash drives. The second line contains positive integer *m* (1<=≤<=*m*<=≤<=105) — the size of Sean's file. Each of the next *n* lines contains positive integer *a**i* (1<=≤<=*a**i*<=≤<=1000) — the sizes of USB flash drives in megabytes. It is guaranteed that the answer exists, i. e. the sum of all *a**i* is not less than *m*.
Print the minimum number of USB flash drives to write Sean's file, if he can split the file between drives.
[ "3\n5\n2\n1\n3\n", "3\n6\n2\n3\n2\n", "2\n5\n5\n10\n" ]
[ "2\n", "3\n", "1\n" ]
In the first example Sean needs only two USB flash drives — the first and the third. In the second example Sean needs all three USB flash drives. In the third example Sean needs only one USB flash drive and he can use any available USB flash drive — the first or the second.
0
[ { "input": "3\n5\n2\n1\n3", "output": "2" }, { "input": "3\n6\n2\n3\n2", "output": "3" }, { "input": "2\n5\n5\n10", "output": "1" }, { "input": "5\n16\n8\n1\n3\n4\n9", "output": "2" }, { "input": "10\n121\n10\n37\n74\n56\n42\n39\n6\n68\n8\n100", "output": "2" }, { "input": "12\n4773\n325\n377\n192\n780\n881\n816\n839\n223\n215\n125\n952\n8", "output": "7" }, { "input": "15\n7758\n182\n272\n763\n910\n24\n359\n583\n890\n735\n819\n66\n992\n440\n496\n227", "output": "15" }, { "input": "30\n70\n6\n2\n10\n4\n7\n10\n5\n1\n8\n10\n4\n3\n5\n9\n3\n6\n6\n4\n2\n6\n5\n10\n1\n9\n7\n2\n1\n10\n7\n5", "output": "8" }, { "input": "40\n15705\n702\n722\n105\n873\n417\n477\n794\n300\n869\n496\n572\n232\n456\n298\n473\n584\n486\n713\n934\n121\n303\n956\n934\n840\n358\n201\n861\n497\n131\n312\n957\n96\n914\n509\n60\n300\n722\n658\n820\n103", "output": "21" }, { "input": "50\n18239\n300\n151\n770\n9\n200\n52\n247\n753\n523\n263\n744\n463\n540\n244\n608\n569\n771\n32\n425\n777\n624\n761\n628\n124\n405\n396\n726\n626\n679\n237\n229\n49\n512\n18\n671\n290\n768\n632\n739\n18\n136\n413\n117\n83\n413\n452\n767\n664\n203\n404", "output": "31" }, { "input": "70\n149\n5\n3\n3\n4\n6\n1\n2\n9\n8\n3\n1\n8\n4\n4\n3\n6\n10\n7\n1\n10\n8\n4\n9\n3\n8\n3\n2\n5\n1\n8\n6\n9\n10\n4\n8\n6\n9\n9\n9\n3\n4\n2\n2\n5\n8\n9\n1\n10\n3\n4\n3\n1\n9\n3\n5\n1\n3\n7\n6\n9\n8\n9\n1\n7\n4\n4\n2\n3\n5\n7", "output": "17" }, { "input": "70\n2731\n26\n75\n86\n94\n37\n25\n32\n35\n92\n1\n51\n73\n53\n66\n16\n80\n15\n81\n100\n87\n55\n48\n30\n71\n39\n87\n77\n25\n70\n22\n75\n23\n97\n16\n75\n95\n61\n61\n28\n10\n78\n54\n80\n51\n25\n24\n90\n58\n4\n77\n40\n54\n53\n47\n62\n30\n38\n71\n97\n71\n60\n58\n1\n21\n15\n55\n99\n34\n88\n99", "output": "35" }, { "input": "70\n28625\n34\n132\n181\n232\n593\n413\n862\n887\n808\n18\n35\n89\n356\n640\n339\n280\n975\n82\n345\n398\n948\n372\n91\n755\n75\n153\n948\n603\n35\n694\n722\n293\n363\n884\n264\n813\n175\n169\n646\n138\n449\n488\n828\n417\n134\n84\n763\n288\n845\n801\n556\n972\n332\n564\n934\n699\n842\n942\n644\n203\n406\n140\n37\n9\n423\n546\n675\n491\n113\n587", "output": "45" }, { "input": "80\n248\n3\n9\n4\n5\n10\n7\n2\n6\n2\n2\n8\n2\n1\n3\n7\n9\n2\n8\n4\n4\n8\n5\n4\n4\n10\n2\n1\n4\n8\n4\n10\n1\n2\n10\n2\n3\n3\n1\n1\n8\n9\n5\n10\n2\n8\n10\n5\n3\n6\n1\n7\n8\n9\n10\n5\n10\n10\n2\n10\n1\n2\n4\n1\n9\n4\n7\n10\n8\n5\n8\n1\n4\n2\n2\n3\n9\n9\n9\n10\n6", "output": "27" }, { "input": "80\n2993\n18\n14\n73\n38\n14\n73\n77\n18\n81\n6\n96\n65\n77\n86\n76\n8\n16\n81\n83\n83\n34\n69\n58\n15\n19\n1\n16\n57\n95\n35\n5\n49\n8\n15\n47\n84\n99\n94\n93\n55\n43\n47\n51\n61\n57\n13\n7\n92\n14\n4\n83\n100\n60\n75\n41\n95\n74\n40\n1\n4\n95\n68\n59\n65\n15\n15\n75\n85\n46\n77\n26\n30\n51\n64\n75\n40\n22\n88\n68\n24", "output": "38" }, { "input": "80\n37947\n117\n569\n702\n272\n573\n629\n90\n337\n673\n589\n576\n205\n11\n284\n645\n719\n777\n271\n567\n466\n251\n402\n3\n97\n288\n699\n208\n173\n530\n782\n266\n395\n957\n159\n463\n43\n316\n603\n197\n386\n132\n799\n778\n905\n784\n71\n851\n963\n883\n705\n454\n275\n425\n727\n223\n4\n870\n833\n431\n463\n85\n505\n800\n41\n954\n981\n242\n578\n336\n48\n858\n702\n349\n929\n646\n528\n993\n506\n274\n227", "output": "70" }, { "input": "90\n413\n5\n8\n10\n7\n5\n7\n5\n7\n1\n7\n8\n4\n3\n9\n4\n1\n10\n3\n1\n10\n9\n3\n1\n8\n4\n7\n5\n2\n9\n3\n10\n10\n3\n6\n3\n3\n10\n7\n5\n1\n1\n2\n4\n8\n2\n5\n5\n3\n9\n5\n5\n3\n10\n2\n3\n8\n5\n9\n1\n3\n6\n5\n9\n2\n3\n7\n10\n3\n4\n4\n1\n5\n9\n2\n6\n9\n1\n1\n9\n9\n7\n7\n7\n8\n4\n5\n3\n4\n6\n9", "output": "59" }, { "input": "90\n4226\n33\n43\n83\n46\n75\n14\n88\n36\n8\n25\n47\n4\n96\n19\n33\n49\n65\n17\n59\n72\n1\n55\n94\n92\n27\n33\n39\n14\n62\n79\n12\n89\n22\n86\n13\n19\n77\n53\n96\n74\n24\n25\n17\n64\n71\n81\n87\n52\n72\n55\n49\n74\n36\n65\n86\n91\n33\n61\n97\n38\n87\n61\n14\n73\n95\n43\n67\n42\n67\n22\n12\n62\n32\n96\n24\n49\n82\n46\n89\n36\n75\n91\n11\n10\n9\n33\n86\n28\n75\n39", "output": "64" }, { "input": "90\n40579\n448\n977\n607\n745\n268\n826\n479\n59\n330\n609\n43\n301\n970\n726\n172\n632\n600\n181\n712\n195\n491\n312\n849\n722\n679\n682\n780\n131\n404\n293\n387\n567\n660\n54\n339\n111\n833\n612\n911\n869\n356\n884\n635\n126\n639\n712\n473\n663\n773\n435\n32\n973\n484\n662\n464\n699\n274\n919\n95\n904\n253\n589\n543\n454\n250\n349\n237\n829\n511\n536\n36\n45\n152\n626\n384\n199\n877\n941\n84\n781\n115\n20\n52\n726\n751\n920\n291\n571\n6\n199", "output": "64" }, { "input": "100\n66\n7\n9\n10\n5\n2\n8\n6\n5\n4\n10\n10\n6\n5\n2\n2\n1\n1\n5\n8\n7\n8\n10\n5\n6\n6\n5\n9\n9\n6\n3\n8\n7\n10\n5\n9\n6\n7\n3\n5\n8\n6\n8\n9\n1\n1\n1\n2\n4\n5\n5\n1\n1\n2\n6\n7\n1\n5\n8\n7\n2\n1\n7\n10\n9\n10\n2\n4\n10\n4\n10\n10\n5\n3\n9\n1\n2\n1\n10\n5\n1\n7\n4\n4\n5\n7\n6\n10\n4\n7\n3\n4\n3\n6\n2\n5\n2\n4\n9\n5\n3", "output": "7" }, { "input": "100\n4862\n20\n47\n85\n47\n76\n38\n48\n93\n91\n81\n31\n51\n23\n60\n59\n3\n73\n72\n57\n67\n54\n9\n42\n5\n32\n46\n72\n79\n95\n61\n79\n88\n33\n52\n97\n10\n3\n20\n79\n82\n93\n90\n38\n80\n18\n21\n43\n60\n73\n34\n75\n65\n10\n84\n100\n29\n94\n56\n22\n59\n95\n46\n22\n57\n69\n67\n90\n11\n10\n61\n27\n2\n48\n69\n86\n91\n69\n76\n36\n71\n18\n54\n90\n74\n69\n50\n46\n8\n5\n41\n96\n5\n14\n55\n85\n39\n6\n79\n75\n87", "output": "70" }, { "input": "100\n45570\n14\n881\n678\n687\n993\n413\n760\n451\n426\n787\n503\n343\n234\n530\n294\n725\n941\n524\n574\n441\n798\n399\n360\n609\n376\n525\n229\n995\n478\n347\n47\n23\n468\n525\n749\n601\n235\n89\n995\n489\n1\n239\n415\n122\n671\n128\n357\n886\n401\n964\n212\n968\n210\n130\n871\n360\n661\n844\n414\n187\n21\n824\n266\n713\n126\n496\n916\n37\n193\n755\n894\n641\n300\n170\n176\n383\n488\n627\n61\n897\n33\n242\n419\n881\n698\n107\n391\n418\n774\n905\n87\n5\n896\n835\n318\n373\n916\n393\n91\n460", "output": "78" }, { "input": "100\n522\n1\n5\n2\n4\n2\n6\n3\n4\n2\n10\n10\n6\n7\n9\n7\n1\n7\n2\n5\n3\n1\n5\n2\n3\n5\n1\n7\n10\n10\n4\n4\n10\n9\n10\n6\n2\n8\n2\n6\n10\n9\n2\n7\n5\n9\n4\n6\n10\n7\n3\n1\n1\n9\n5\n10\n9\n2\n8\n3\n7\n5\n4\n7\n5\n9\n10\n6\n2\n9\n2\n5\n10\n1\n7\n7\n10\n5\n6\n2\n9\n4\n7\n10\n10\n8\n3\n4\n9\n3\n6\n9\n10\n2\n9\n9\n3\n4\n1\n10\n2", "output": "74" }, { "input": "100\n32294\n414\n116\n131\n649\n130\n476\n630\n605\n213\n117\n757\n42\n109\n85\n127\n635\n629\n994\n410\n764\n204\n161\n231\n577\n116\n936\n537\n565\n571\n317\n722\n819\n229\n284\n487\n649\n304\n628\n727\n816\n854\n91\n111\n549\n87\n374\n417\n3\n868\n882\n168\n743\n77\n534\n781\n75\n956\n910\n734\n507\n568\n802\n946\n891\n659\n116\n678\n375\n380\n430\n627\n873\n350\n930\n285\n6\n183\n96\n517\n81\n794\n235\n360\n551\n6\n28\n799\n226\n996\n894\n981\n551\n60\n40\n460\n479\n161\n318\n952\n433", "output": "42" }, { "input": "100\n178\n71\n23\n84\n98\n8\n14\n4\n42\n56\n83\n87\n28\n22\n32\n50\n5\n96\n90\n1\n59\n74\n56\n96\n77\n88\n71\n38\n62\n36\n85\n1\n97\n98\n98\n32\n99\n42\n6\n81\n20\n49\n57\n71\n66\n9\n45\n41\n29\n28\n32\n68\n38\n29\n35\n29\n19\n27\n76\n85\n68\n68\n41\n32\n78\n72\n38\n19\n55\n83\n83\n25\n46\n62\n48\n26\n53\n14\n39\n31\n94\n84\n22\n39\n34\n96\n63\n37\n42\n6\n78\n76\n64\n16\n26\n6\n79\n53\n24\n29\n63", "output": "2" }, { "input": "100\n885\n226\n266\n321\n72\n719\n29\n121\n533\n85\n672\n225\n830\n783\n822\n30\n791\n618\n166\n487\n922\n434\n814\n473\n5\n741\n947\n910\n305\n998\n49\n945\n588\n868\n809\n803\n168\n280\n614\n434\n634\n538\n591\n437\n540\n445\n313\n177\n171\n799\n778\n55\n617\n554\n583\n611\n12\n94\n599\n182\n765\n556\n965\n542\n35\n460\n177\n313\n485\n744\n384\n21\n52\n879\n792\n411\n614\n811\n565\n695\n428\n587\n631\n794\n461\n258\n193\n696\n936\n646\n756\n267\n55\n690\n730\n742\n734\n988\n235\n762\n440", "output": "1" }, { "input": "100\n29\n9\n2\n10\n8\n6\n7\n7\n3\n3\n10\n4\n5\n2\n5\n1\n6\n3\n2\n5\n10\n10\n9\n1\n4\n5\n2\n2\n3\n1\n2\n2\n9\n6\n9\n7\n8\n8\n1\n5\n5\n3\n1\n5\n6\n1\n9\n2\n3\n8\n10\n8\n3\n2\n7\n1\n2\n1\n2\n8\n10\n5\n2\n3\n1\n10\n7\n1\n7\n4\n9\n6\n6\n4\n7\n1\n2\n7\n7\n9\n9\n7\n10\n4\n10\n8\n2\n1\n5\n5\n10\n5\n8\n1\n5\n6\n5\n1\n5\n6\n8", "output": "3" }, { "input": "100\n644\n94\n69\n43\n36\n54\n93\n30\n74\n56\n95\n70\n49\n11\n36\n57\n30\n59\n3\n52\n59\n90\n82\n39\n67\n32\n8\n80\n64\n8\n65\n51\n48\n89\n90\n35\n4\n54\n66\n96\n68\n90\n30\n4\n13\n97\n41\n90\n85\n17\n45\n94\n31\n58\n4\n39\n76\n95\n92\n59\n67\n46\n96\n55\n82\n64\n20\n20\n83\n46\n37\n15\n60\n37\n79\n45\n47\n63\n73\n76\n31\n52\n36\n32\n49\n26\n61\n91\n31\n25\n62\n90\n65\n65\n5\n94\n7\n15\n97\n88\n68", "output": "7" }, { "input": "100\n1756\n98\n229\n158\n281\n16\n169\n149\n239\n235\n182\n147\n215\n49\n270\n194\n242\n295\n289\n249\n19\n12\n144\n157\n92\n270\n122\n212\n97\n152\n14\n42\n12\n198\n98\n295\n154\n229\n191\n294\n5\n156\n43\n185\n184\n20\n125\n23\n10\n257\n244\n264\n79\n46\n277\n13\n22\n97\n212\n77\n293\n20\n51\n17\n109\n37\n68\n117\n51\n248\n10\n149\n179\n192\n239\n161\n13\n173\n297\n73\n43\n109\n288\n198\n81\n70\n254\n187\n277\n1\n295\n113\n95\n291\n293\n119\n205\n191\n37\n34\n116", "output": "6" }, { "input": "100\n20562\n721\n452\n11\n703\n376\n183\n197\n203\n406\n642\n346\n446\n256\n760\n201\n360\n702\n707\n388\n779\n653\n610\n497\n768\n670\n134\n780\n306\n661\n180\n259\n256\n362\n6\n121\n415\n747\n170\n67\n439\n728\n193\n622\n481\n38\n225\n343\n303\n253\n436\n305\n68\n794\n247\n291\n600\n750\n188\n199\n757\n28\n776\n749\n253\n351\n53\n629\n129\n578\n209\n89\n651\n262\n638\n353\n469\n31\n144\n460\n176\n535\n562\n366\n639\n234\n577\n364\n761\n617\n303\n450\n778\n311\n289\n221\n274\n239\n626\n194\n36", "output": "30" }, { "input": "100\n32630\n548\n21\n756\n138\n56\n719\n97\n86\n599\n531\n464\n137\n737\n239\n626\n179\n170\n271\n335\n178\n298\n597\n616\n104\n190\n216\n333\n606\n621\n310\n70\n286\n593\n655\n472\n556\n77\n625\n744\n395\n487\n762\n316\n469\n258\n475\n596\n651\n180\n737\n101\n511\n708\n163\n713\n475\n557\n649\n705\n583\n97\n447\n119\n91\n372\n194\n394\n667\n384\n635\n611\n746\n758\n613\n54\n508\n405\n188\n570\n254\n28\n599\n767\n115\n737\n194\n148\n686\n705\n236\n762\n613\n770\n633\n401\n773\n448\n274\n141\n718", "output": "52" }, { "input": "1\n1\n1", "output": "1" } ]
1,616,675,664
2,147,483,647
Python 3
OK
TESTS
34
77
0
n = int(input()) m = int(input()) a = [] for i in range(n): a.append(int(input())) a = sorted(a) a = a[::-1] temp = 0 for i in range(n): temp += a[i] if temp >= m: print(i + 1) break
Title: USB Flash Drives Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sean is trying to save a large file to a USB flash drive. He has *n* USB flash drives with capacities equal to *a*1,<=*a*2,<=...,<=*a**n* megabytes. The file size is equal to *m* megabytes. Find the minimum number of USB flash drives needed to write Sean's file, if he can split the file between drives. Input Specification: The first line contains positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of USB flash drives. The second line contains positive integer *m* (1<=≤<=*m*<=≤<=105) — the size of Sean's file. Each of the next *n* lines contains positive integer *a**i* (1<=≤<=*a**i*<=≤<=1000) — the sizes of USB flash drives in megabytes. It is guaranteed that the answer exists, i. e. the sum of all *a**i* is not less than *m*. Output Specification: Print the minimum number of USB flash drives to write Sean's file, if he can split the file between drives. Demo Input: ['3\n5\n2\n1\n3\n', '3\n6\n2\n3\n2\n', '2\n5\n5\n10\n'] Demo Output: ['2\n', '3\n', '1\n'] Note: In the first example Sean needs only two USB flash drives — the first and the third. In the second example Sean needs all three USB flash drives. In the third example Sean needs only one USB flash drive and he can use any available USB flash drive — the first or the second.
```python n = int(input()) m = int(input()) a = [] for i in range(n): a.append(int(input())) a = sorted(a) a = a[::-1] temp = 0 for i in range(n): temp += a[i] if temp >= m: print(i + 1) break ```
3
248
A
Cupboards
PROGRAMMING
800
[ "implementation" ]
null
null
One foggy Stockholm morning, Karlsson decided to snack on some jam in his friend Lillebror Svantenson's house. Fortunately for Karlsson, there wasn't anybody in his friend's house. Karlsson was not going to be hungry any longer, so he decided to get some food in the house. Karlsson's gaze immediately fell on *n* wooden cupboards, standing in the kitchen. He immediately realized that these cupboards have hidden jam stocks. Karlsson began to fly greedily around the kitchen, opening and closing the cupboards' doors, grab and empty all the jars of jam that he could find. And now all jars of jam are empty, Karlsson has had enough and does not want to leave traces of his stay, so as not to let down his friend. Each of the cupboards has two doors: the left one and the right one. Karlsson remembers that when he rushed to the kitchen, all the cupboards' left doors were in the same position (open or closed), similarly, all the cupboards' right doors were in the same position (open or closed). Karlsson wants the doors to meet this condition as well by the time the family returns. Karlsson does not remember the position of all the left doors, also, he cannot remember the position of all the right doors. Therefore, it does not matter to him in what position will be all left or right doors. It is important to leave all the left doors in the same position, and all the right doors in the same position. For example, all the left doors may be closed, and all the right ones may be open. Karlsson needs one second to open or close a door of a cupboard. He understands that he has very little time before the family returns, so he wants to know the minimum number of seconds *t*, in which he is able to bring all the cupboard doors in the required position. Your task is to write a program that will determine the required number of seconds *t*.
The first input line contains a single integer *n* — the number of cupboards in the kitchen (2<=≤<=*n*<=≤<=104). Then follow *n* lines, each containing two integers *l**i* and *r**i* (0<=≤<=*l**i*,<=*r**i*<=≤<=1). Number *l**i* equals one, if the left door of the *i*-th cupboard is opened, otherwise number *l**i* equals zero. Similarly, number *r**i* equals one, if the right door of the *i*-th cupboard is opened, otherwise number *r**i* equals zero. The numbers in the lines are separated by single spaces.
In the only output line print a single integer *t* — the minimum number of seconds Karlsson needs to change the doors of all cupboards to the position he needs.
[ "5\n0 1\n1 0\n0 1\n1 1\n0 1\n" ]
[ "3\n" ]
none
500
[ { "input": "5\n0 1\n1 0\n0 1\n1 1\n0 1", "output": "3" }, { "input": "2\n0 0\n0 0", "output": "0" }, { "input": "3\n0 1\n1 1\n1 1", "output": "1" }, { "input": "8\n0 1\n1 0\n0 1\n1 1\n0 1\n1 0\n0 1\n1 0", "output": "7" }, { "input": "8\n1 0\n1 0\n1 0\n0 1\n0 1\n1 1\n1 1\n0 1", "output": "6" }, { "input": "15\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "5\n1 0\n1 0\n1 0\n0 1\n0 1", "output": "4" } ]
1,594,070,761
2,147,483,647
Python 3
OK
TESTS
57
280
6,860,800
l = [] r = [] for _ in range(int(input())): x, y = map(int, input().split()) l.append(x) r.append(y) print(min(l.count(1), l.count(0)) + min(r.count(1), r.count(0)))
Title: Cupboards Time Limit: None seconds Memory Limit: None megabytes Problem Description: One foggy Stockholm morning, Karlsson decided to snack on some jam in his friend Lillebror Svantenson's house. Fortunately for Karlsson, there wasn't anybody in his friend's house. Karlsson was not going to be hungry any longer, so he decided to get some food in the house. Karlsson's gaze immediately fell on *n* wooden cupboards, standing in the kitchen. He immediately realized that these cupboards have hidden jam stocks. Karlsson began to fly greedily around the kitchen, opening and closing the cupboards' doors, grab and empty all the jars of jam that he could find. And now all jars of jam are empty, Karlsson has had enough and does not want to leave traces of his stay, so as not to let down his friend. Each of the cupboards has two doors: the left one and the right one. Karlsson remembers that when he rushed to the kitchen, all the cupboards' left doors were in the same position (open or closed), similarly, all the cupboards' right doors were in the same position (open or closed). Karlsson wants the doors to meet this condition as well by the time the family returns. Karlsson does not remember the position of all the left doors, also, he cannot remember the position of all the right doors. Therefore, it does not matter to him in what position will be all left or right doors. It is important to leave all the left doors in the same position, and all the right doors in the same position. For example, all the left doors may be closed, and all the right ones may be open. Karlsson needs one second to open or close a door of a cupboard. He understands that he has very little time before the family returns, so he wants to know the minimum number of seconds *t*, in which he is able to bring all the cupboard doors in the required position. Your task is to write a program that will determine the required number of seconds *t*. Input Specification: The first input line contains a single integer *n* — the number of cupboards in the kitchen (2<=≤<=*n*<=≤<=104). Then follow *n* lines, each containing two integers *l**i* and *r**i* (0<=≤<=*l**i*,<=*r**i*<=≤<=1). Number *l**i* equals one, if the left door of the *i*-th cupboard is opened, otherwise number *l**i* equals zero. Similarly, number *r**i* equals one, if the right door of the *i*-th cupboard is opened, otherwise number *r**i* equals zero. The numbers in the lines are separated by single spaces. Output Specification: In the only output line print a single integer *t* — the minimum number of seconds Karlsson needs to change the doors of all cupboards to the position he needs. Demo Input: ['5\n0 1\n1 0\n0 1\n1 1\n0 1\n'] Demo Output: ['3\n'] Note: none
```python l = [] r = [] for _ in range(int(input())): x, y = map(int, input().split()) l.append(x) r.append(y) print(min(l.count(1), l.count(0)) + min(r.count(1), r.count(0))) ```
3
732
B
Cormen --- The Best Friend Of a Man
PROGRAMMING
1,000
[ "dp", "greedy" ]
null
null
Recently a dog was bought for Polycarp. The dog's name is Cormen. Now Polycarp has a lot of troubles. For example, Cormen likes going for a walk. Empirically Polycarp learned that the dog needs at least *k* walks for any two consecutive days in order to feel good. For example, if *k*<==<=5 and yesterday Polycarp went for a walk with Cormen 2 times, today he has to go for a walk at least 3 times. Polycarp analysed all his affairs over the next *n* days and made a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* is the number of times Polycarp will walk with the dog on the *i*-th day while doing all his affairs (for example, he has to go to a shop, throw out the trash, etc.). Help Polycarp determine the minimum number of walks he needs to do additionaly in the next *n* days so that Cormen will feel good during all the *n* days. You can assume that on the day before the first day and on the day after the *n*-th day Polycarp will go for a walk with Cormen exactly *k* times. Write a program that will find the minumum number of additional walks and the appropriate schedule — the sequence of integers *b*1,<=*b*2,<=...,<=*b**n* (*b**i*<=≥<=*a**i*), where *b**i* means the total number of walks with the dog on the *i*-th day.
The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=500) — the number of days and the minimum number of walks with Cormen for any two consecutive days. The second line contains integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=500) — the number of walks with Cormen on the *i*-th day which Polycarp has already planned.
In the first line print the smallest number of additional walks that Polycarp should do during the next *n* days so that Cormen will feel good during all days. In the second line print *n* integers *b*1,<=*b*2,<=...,<=*b**n*, where *b**i* — the total number of walks on the *i*-th day according to the found solutions (*a**i*<=≤<=*b**i* for all *i* from 1 to *n*). If there are multiple solutions, print any of them.
[ "3 5\n2 0 1\n", "3 1\n0 0 0\n", "4 6\n2 4 3 5\n" ]
[ "4\n2 3 2\n", "1\n0 1 0\n", "0\n2 4 3 5\n" ]
none
1,000
[ { "input": "3 5\n2 0 1", "output": "4\n2 3 2" }, { "input": "3 1\n0 0 0", "output": "1\n0 1 0" }, { "input": "4 6\n2 4 3 5", "output": "0\n2 4 3 5" }, { "input": "5 1\n0 0 0 0 1", "output": "2\n0 1 0 1 1" }, { "input": "10 500\n164 44 238 205 373 249 87 30 239 90", "output": "903\n164 336 238 262 373 249 251 249 251 249" }, { "input": "1 1\n1", "output": "0\n1" }, { "input": "5 1\n0 0 0 0 0", "output": "2\n0 1 0 1 0" }, { "input": "5 1\n0 0 0 0 1", "output": "2\n0 1 0 1 1" }, { "input": "5 2\n0 0 0 1 0", "output": "3\n0 2 0 2 0" }, { "input": "5 5\n1 4 0 0 0", "output": "6\n1 4 1 4 1" }, { "input": "5 10\n1 2 1 0 1", "output": "16\n1 9 1 9 1" }, { "input": "5 10\n0 1 0 1 0", "output": "18\n0 10 0 10 0" }, { "input": "10 5\n0 2 3 0 0 1 0 2 3 1", "output": "13\n0 5 3 2 3 2 3 2 3 2" }, { "input": "10 1\n0 0 0 0 0 0 0 0 1 0", "output": "4\n0 1 0 1 0 1 0 1 1 0" }, { "input": "10 436\n13 16 45 9 10 17 5 26 10 12", "output": "2017\n13 423 45 391 45 391 45 391 45 391" }, { "input": "10 438\n71 160 43 326 128 35 41 247 30 49", "output": "1060\n71 367 71 367 128 310 128 310 128 310" }, { "input": "10 431\n121 24 93 59 243 147 1 254 75 168", "output": "1036\n121 310 121 310 243 188 243 254 177 254" }, { "input": "10 10\n0 0 0 0 0 0 0 0 0 0", "output": "50\n0 10 0 10 0 10 0 10 0 10" }, { "input": "10 10\n0 0 1 0 0 0 1 0 0 0", "output": "48\n0 10 1 9 1 9 1 9 1 9" }, { "input": "10 10\n0 0 0 1 0 0 1 0 0 0", "output": "48\n0 10 0 10 0 10 1 9 1 9" }, { "input": "10 10\n1 1 0 2 0 1 1 1 2 0", "output": "41\n1 9 1 9 1 9 1 9 2 8" }, { "input": "10 10\n1 2 2 0 0 2 0 1 0 0", "output": "42\n1 9 2 8 2 8 2 8 2 8" }, { "input": "10 10\n1 0 1 0 0 5 2 0 0 1", "output": "40\n1 9 1 9 1 9 2 8 2 8" }, { "input": "10 10\n2 3 5 0 2 0 15 6 5 0", "output": "23\n2 8 5 5 5 5 15 6 5 5" }, { "input": "10 10\n16 15 4 10 14 2 18 11 24 5", "output": "0\n16 15 4 10 14 2 18 11 24 5" }, { "input": "100 100\n48 19 63 8 18 22 5 5 12 7 9 37 17 22 58 14 53 25 24 16 22 36 4 2 9 63 52 43 22 72 0 9 12 26 50 1 21 9 40 9 5 6 2 24 1 88 50 7 9 1 3 16 0 17 3 32 47 9 32 87 20 3 45 41 16 43 41 31 28 30 2 31 72 16 74 59 20 34 25 18 48 10 34 20 22 16 3 32 8 34 8 4 45 65 48 42 1 45 11 15", "output": "2588\n48 52 63 37 63 37 63 37 63 37 63 37 63 37 63 37 63 37 63 37 63 37 63 37 63 63 52 48 52 72 28 72 28 72 50 50 50 50 50 50 50 50 50 50 50 88 50 50 50 50 50 50 50 50 50 50 50 50 50 87 20 80 45 55 45 55 45 55 45 55 45 55 72 28 74 59 41 59 41 59 48 52 48 52 48 52 48 52 48 52 48 52 48 65 48 52 48 52 48 52" }, { "input": "100 200\n28 52 65 37 1 64 13 57 44 12 37 0 9 68 17 5 28 4 2 12 8 47 7 33 1 27 50 59 9 0 4 27 31 31 49 1 35 43 36 12 5 0 49 40 19 12 39 3 41 25 19 15 57 24 3 9 4 31 42 55 11 13 1 8 0 25 34 52 47 59 74 43 36 47 2 3 1 13 56 48 42 24 4 32 12 3 33 12 14 14 84 32 1 3 8 49 9 18 43 43", "output": "7390\n28 172 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 65 135 74 126 74 126 74 126 74 126 74 126 74 126 74 126 74 126 74 126 74 126 84 116 84 116 84 116 84 116 84 116" }, { "input": "100 10\n1 2 7 0 2 0 0 0 2 5 3 2 2 1 0 7 1 6 1 1 5 1 2 3 5 0 0 0 0 0 1 0 1 0 2 1 3 0 1 1 0 0 3 1 6 3 2 2 1 3 1 0 9 1 3 2 3 0 5 1 0 5 5 5 2 1 3 0 1 3 5 2 4 4 1 2 3 0 2 1 3 6 4 3 1 0 9 1 0 3 3 6 7 2 5 2 2 6 0 2", "output": "288\n1 9 7 3 7 3 7 3 7 5 5 5 5 5 5 7 3 7 3 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 4 6 4 6 4 6 4 9 1 9 2 8 2 8 2 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 4 6 4 6 9 1 9 3 7 6 7 3 7 3 7 6 4 6" }, { "input": "100 500\n207 27 83 171 129 204 11 55 58 115 43 280 208 169 23 79 36 59 132 28 13 136 246 134 29 135 176 21 155 175 127 288 68 68 41 156 194 31 44 131 30 31 89 46 180 184 12 29 2 58 70 157 329 294 126 55 79 19 125 15 39 30 2 137 36 151 5 246 176 1 158 31 4 99 192 200 124 66 10 195 180 165 8 79 257 68 5 175 43 141 0 106 38 32 0 56 33 221 144 226", "output": "14863\n207 293 207 293 207 293 207 293 207 293 207 293 208 292 208 292 208 292 208 292 208 292 246 254 246 254 246 254 246 254 246 288 212 288 212 288 212 288 212 288 212 288 212 288 212 288 212 288 212 288 212 288 329 294 206 294 206 294 206 294 206 294 206 294 206 294 206 294 206 294 206 294 206 294 206 294 206 294 206 294 206 294 206 294 257 243 257 243 257 243 257 243 257 243 257 243 257 243 257 243" }, { "input": "100 500\n64 140 15 221 24 106 73 30 275 97 296 55 5 30 47 199 130 44 72 170 7 204 359 40 128 117 45 192 344 112 0 11 196 78 73 53 222 93 88 151 99 283 60 71 4 87 226 46 66 74 23 89 77 60 397 181 0 101 358 54 124 155 19 218 9 140 161 130 308 85 103 85 300 128 19 108 225 136 100 54 30 24 129 245 128 88 160 120 51 154 19 129 114 32 256 30 102 207 115 49", "output": "13634\n64 436 64 436 64 436 73 427 275 225 296 204 296 204 296 204 296 204 296 204 296 204 359 141 359 141 359 192 344 156 344 156 344 156 344 156 344 156 344 156 344 283 217 283 217 283 226 274 226 274 226 274 226 274 397 181 319 181 358 142 358 155 345 218 282 218 282 218 308 192 308 192 308 192 308 192 308 192 308 192 308 192 308 245 255 245 255 245 255 245 255 245 255 245 256 244 256 244 256 244" }, { "input": "1 500\n500", "output": "0\n500" }, { "input": "2 1\n0 0", "output": "1\n0 1" }, { "input": "1 10\n1", "output": "0\n1" }, { "input": "1 4\n2", "output": "0\n2" }, { "input": "1 10\n2", "output": "0\n2" }, { "input": "1 10\n0", "output": "0\n0" }, { "input": "1 5\n1", "output": "0\n1" }, { "input": "1 2\n1", "output": "0\n1" }, { "input": "1 5\n2", "output": "0\n2" }, { "input": "1 3\n0", "output": "0\n0" }, { "input": "1 3\n1", "output": "0\n1" }, { "input": "1 5\n0", "output": "0\n0" }, { "input": "1 7\n0", "output": "0\n0" }, { "input": "1 7\n1", "output": "0\n1" }, { "input": "1 3\n2", "output": "0\n2" }, { "input": "1 5\n3", "output": "0\n3" }, { "input": "1 4\n3", "output": "0\n3" }, { "input": "1 6\n1", "output": "0\n1" }, { "input": "1 6\n2", "output": "0\n2" }, { "input": "1 500\n0", "output": "0\n0" }, { "input": "3 7\n2 3 1", "output": "3\n2 5 2" }, { "input": "1 10\n5", "output": "0\n5" }, { "input": "5 10\n1 2 3 4 5", "output": "10\n1 9 3 7 5" }, { "input": "2 6\n1 2", "output": "3\n1 5" }, { "input": "1 10\n3", "output": "0\n3" }, { "input": "1 6\n3", "output": "0\n3" }, { "input": "1 100\n1", "output": "0\n1" }, { "input": "1 7\n2", "output": "0\n2" }, { "input": "2 10\n1 2", "output": "7\n1 9" }, { "input": "1 9\n1", "output": "0\n1" } ]
1,686,765,645
2,147,483,647
PyPy 3-64
OK
TESTS
70
62
0
n, k = [int(el) for el in input().split(' ')] a_arr = [int(el) for el in input().split(' ')] additional = 0 res = [0] * n res[0] = a_arr[0] res[-1] = a_arr[-1] for i in range(1, n): prev = res[i - 1] already = a_arr[i] cur_to_add = max(0, k - (prev + already)) res[i] = a_arr[i] + cur_to_add additional += cur_to_add print(str(additional)) print(' '.join([str(el) for el in res]))
Title: Cormen --- The Best Friend Of a Man Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently a dog was bought for Polycarp. The dog's name is Cormen. Now Polycarp has a lot of troubles. For example, Cormen likes going for a walk. Empirically Polycarp learned that the dog needs at least *k* walks for any two consecutive days in order to feel good. For example, if *k*<==<=5 and yesterday Polycarp went for a walk with Cormen 2 times, today he has to go for a walk at least 3 times. Polycarp analysed all his affairs over the next *n* days and made a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* is the number of times Polycarp will walk with the dog on the *i*-th day while doing all his affairs (for example, he has to go to a shop, throw out the trash, etc.). Help Polycarp determine the minimum number of walks he needs to do additionaly in the next *n* days so that Cormen will feel good during all the *n* days. You can assume that on the day before the first day and on the day after the *n*-th day Polycarp will go for a walk with Cormen exactly *k* times. Write a program that will find the minumum number of additional walks and the appropriate schedule — the sequence of integers *b*1,<=*b*2,<=...,<=*b**n* (*b**i*<=≥<=*a**i*), where *b**i* means the total number of walks with the dog on the *i*-th day. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=500) — the number of days and the minimum number of walks with Cormen for any two consecutive days. The second line contains integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=500) — the number of walks with Cormen on the *i*-th day which Polycarp has already planned. Output Specification: In the first line print the smallest number of additional walks that Polycarp should do during the next *n* days so that Cormen will feel good during all days. In the second line print *n* integers *b*1,<=*b*2,<=...,<=*b**n*, where *b**i* — the total number of walks on the *i*-th day according to the found solutions (*a**i*<=≤<=*b**i* for all *i* from 1 to *n*). If there are multiple solutions, print any of them. Demo Input: ['3 5\n2 0 1\n', '3 1\n0 0 0\n', '4 6\n2 4 3 5\n'] Demo Output: ['4\n2 3 2\n', '1\n0 1 0\n', '0\n2 4 3 5\n'] Note: none
```python n, k = [int(el) for el in input().split(' ')] a_arr = [int(el) for el in input().split(' ')] additional = 0 res = [0] * n res[0] = a_arr[0] res[-1] = a_arr[-1] for i in range(1, n): prev = res[i - 1] already = a_arr[i] cur_to_add = max(0, k - (prev + already)) res[i] = a_arr[i] + cur_to_add additional += cur_to_add print(str(additional)) print(' '.join([str(el) for el in res])) ```
3
1,003
A
Polycarp's Pockets
PROGRAMMING
800
[ "implementation" ]
null
null
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket. For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$. Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
[ "6\n1 2 4 3 3 2\n", "1\n100\n" ]
[ "2\n", "1\n" ]
none
0
[ { "input": "6\n1 2 4 3 3 2", "output": "2" }, { "input": "1\n100", "output": "1" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100" }, { "input": "100\n59 47 39 47 47 71 47 28 58 47 35 79 58 47 38 47 47 47 47 27 47 43 29 95 47 49 46 71 47 74 79 47 47 32 45 67 47 47 30 37 47 47 16 67 22 76 47 86 84 10 5 47 47 47 47 47 1 51 47 54 47 8 47 47 9 47 47 47 47 28 47 47 26 47 47 47 47 47 47 92 47 47 77 47 47 24 45 47 10 47 47 89 47 27 47 89 47 67 24 71", "output": "51" }, { "input": "100\n45 99 10 27 16 85 39 38 17 32 15 23 67 48 50 97 42 70 62 30 44 81 64 73 34 22 46 5 83 52 58 60 33 74 47 88 18 61 78 53 25 95 94 31 3 75 1 57 20 54 59 9 68 7 77 43 21 87 86 24 4 80 11 49 2 72 36 84 71 8 65 55 79 100 41 14 35 89 66 69 93 37 56 82 90 91 51 19 26 92 6 96 13 98 12 28 76 40 63 29", "output": "1" }, { "input": "100\n45 29 5 2 6 50 22 36 14 15 9 48 46 20 8 37 7 47 12 50 21 38 18 27 33 19 40 10 5 49 38 42 34 37 27 30 35 24 10 3 40 49 41 3 4 44 13 25 28 31 46 36 23 1 1 23 7 22 35 26 21 16 48 42 32 8 11 16 34 11 39 32 47 28 43 41 39 4 14 19 26 45 13 18 15 25 2 44 17 29 17 33 43 6 12 30 9 20 31 24", "output": "2" }, { "input": "50\n7 7 3 3 7 4 5 6 4 3 7 5 6 4 5 4 4 5 6 7 7 7 4 5 5 5 3 7 6 3 4 6 3 6 4 4 5 4 6 6 3 5 6 3 5 3 3 7 7 6", "output": "10" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "99" }, { "input": "7\n1 2 3 3 3 1 2", "output": "3" }, { "input": "5\n1 2 3 4 5", "output": "1" }, { "input": "7\n1 2 3 4 5 6 7", "output": "1" }, { "input": "8\n1 2 3 4 5 6 7 8", "output": "1" }, { "input": "9\n1 2 3 4 5 6 7 8 9", "output": "1" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "1" }, { "input": "3\n2 1 1", "output": "2" }, { "input": "11\n1 2 3 4 5 6 7 8 9 1 1", "output": "3" }, { "input": "12\n1 2 1 1 1 1 1 1 1 1 1 1", "output": "11" }, { "input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "13" }, { "input": "14\n1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "14" }, { "input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "15" }, { "input": "16\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "16" }, { "input": "3\n1 1 1", "output": "3" }, { "input": "3\n1 2 3", "output": "1" }, { "input": "10\n1 1 1 1 2 2 1 1 9 10", "output": "6" }, { "input": "2\n1 1", "output": "2" }, { "input": "56\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "56" }, { "input": "99\n35 96 73 72 70 83 22 93 98 75 45 32 81 82 45 54 25 7 53 72 29 2 94 19 21 98 34 28 39 99 55 85 44 23 6 47 98 2 33 34 19 57 49 35 67 4 60 4 4 23 55 6 57 66 16 68 34 45 84 79 48 63 4 9 46 88 98 13 19 27 83 12 4 63 57 22 44 77 44 62 28 52 44 64 9 24 55 22 48 4 2 9 80 76 45 1 56 22 92", "output": "6" }, { "input": "10\n1 2 2 3 3 3 4 4 4 4", "output": "4" }, { "input": "99\n97 44 33 56 42 10 61 85 64 26 40 39 82 34 75 9 51 51 39 73 58 38 74 31 13 99 58 1 28 89 76 19 52 7 40 56 12 27 72 72 67 75 62 46 22 55 35 16 18 39 60 63 92 42 85 69 34 61 73 50 57 95 30 4 45 63 76 58 32 35 48 81 10 78 95 79 55 97 21 21 22 94 30 17 78 57 89 93 100 44 16 89 68 55 19 46 42 73 21", "output": "3" }, { "input": "5\n5 5 5 5 1", "output": "4" }, { "input": "6\n2 3 2 5 2 6", "output": "3" }, { "input": "3\n58 59 58", "output": "2" }, { "input": "9\n1 2 3 4 5 6 7 8 8", "output": "2" }, { "input": "97\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "97" }, { "input": "3\n95 95 4", "output": "2" }, { "input": "3\n2 2 5", "output": "2" } ]
1,590,937,052
2,147,483,647
Python 3
OK
TESTS
37
108
0
n = int(input()) li = list(map(int,input().split())) li1 = [li.count(i) for i in set(li)] print(max(li1))
Title: Polycarp's Pockets Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket. For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$. Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that. Input Specification: The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins. Output Specification: Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket. Demo Input: ['6\n1 2 4 3 3 2\n', '1\n100\n'] Demo Output: ['2\n', '1\n'] Note: none
```python n = int(input()) li = list(map(int,input().split())) li1 = [li.count(i) for i in set(li)] print(max(li1)) ```
3
216
A
Tiling with Hexagons
PROGRAMMING
1,200
[ "implementation", "math" ]
null
null
Several ages ago Berland was a kingdom. The King of Berland adored math. That's why, when he first visited one of his many palaces, he first of all paid attention to the floor in one hall. The floor was tiled with hexagonal tiles. The hall also turned out hexagonal in its shape. The King walked along the perimeter of the hall and concluded that each of the six sides has *a*, *b*, *c*, *a*, *b* and *c* adjacent tiles, correspondingly. To better visualize the situation, look at the picture showing a similar hexagon for *a*<==<=2, *b*<==<=3 and *c*<==<=4. According to the legend, as the King of Berland obtained the values *a*, *b* and *c*, he almost immediately calculated the total number of tiles on the hall floor. Can you do the same?
The first line contains three integers: *a*, *b* and *c* (2<=≤<=*a*,<=*b*,<=*c*<=≤<=1000).
Print a single number — the total number of tiles on the hall floor.
[ "2 3 4\n" ]
[ "18" ]
none
500
[ { "input": "2 3 4", "output": "18" }, { "input": "2 2 2", "output": "7" }, { "input": "7 8 13", "output": "224" }, { "input": "14 7 75", "output": "1578" }, { "input": "201 108 304", "output": "115032" }, { "input": "999 998 996", "output": "2983022" }, { "input": "2 2 3", "output": "10" }, { "input": "2 3 2", "output": "10" }, { "input": "3 2 2", "output": "10" }, { "input": "2 3 3", "output": "14" }, { "input": "3 2 3", "output": "14" }, { "input": "3 3 2", "output": "14" }, { "input": "3 3 3", "output": "19" }, { "input": "4 5 3", "output": "36" }, { "input": "2 2 856", "output": "2569" }, { "input": "2 986 2", "output": "2959" }, { "input": "985 2 2", "output": "2956" }, { "input": "2 958 983", "output": "943654" }, { "input": "992 2 912", "output": "906607" }, { "input": "789 894 2", "output": "707048" }, { "input": "1000 1000 1000", "output": "2997001" }, { "input": "384 458 284", "output": "413875" }, { "input": "709 14 290", "output": "218584" }, { "input": "485 117 521", "output": "369265" }, { "input": "849 333 102", "output": "401998" }, { "input": "998 999 1000", "output": "2991006" }, { "input": "2 2 1000", "output": "3001" }, { "input": "2 1000 2", "output": "3001" }, { "input": "1000 2 2", "output": "3001" }, { "input": "1000 2 1000", "output": "1001999" }, { "input": "865 291 383", "output": "692925" }, { "input": "41 49 28", "output": "4412" }, { "input": "34 86 90", "output": "13515" }, { "input": "39 23 56", "output": "4252" }, { "input": "14 99 81", "output": "10346" }, { "input": "48 38 193", "output": "18144" }, { "input": "395 85 22", "output": "43634" }, { "input": "38 291 89", "output": "39922" }, { "input": "7 23 595", "output": "17387" }, { "input": "948 48 3", "output": "47494" } ]
1,628,991,851
2,147,483,647
Python 3
OK
TESTS
40
154
6,758,400
a,b,c=map(int,input().split()) print(b*c+((a-1)*(b+c-1)))
Title: Tiling with Hexagons Time Limit: None seconds Memory Limit: None megabytes Problem Description: Several ages ago Berland was a kingdom. The King of Berland adored math. That's why, when he first visited one of his many palaces, he first of all paid attention to the floor in one hall. The floor was tiled with hexagonal tiles. The hall also turned out hexagonal in its shape. The King walked along the perimeter of the hall and concluded that each of the six sides has *a*, *b*, *c*, *a*, *b* and *c* adjacent tiles, correspondingly. To better visualize the situation, look at the picture showing a similar hexagon for *a*<==<=2, *b*<==<=3 and *c*<==<=4. According to the legend, as the King of Berland obtained the values *a*, *b* and *c*, he almost immediately calculated the total number of tiles on the hall floor. Can you do the same? Input Specification: The first line contains three integers: *a*, *b* and *c* (2<=≤<=*a*,<=*b*,<=*c*<=≤<=1000). Output Specification: Print a single number — the total number of tiles on the hall floor. Demo Input: ['2 3 4\n'] Demo Output: ['18'] Note: none
```python a,b,c=map(int,input().split()) print(b*c+((a-1)*(b+c-1))) ```
3
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,652,961,876
2,147,483,647
Python 3
OK
TESTS
35
92
4,300,800
m, n = input().split() if 1 <= int(m) <= int(n) <= 16: b_s = int(m) * int(n) print(b_s // 2)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python m, n = input().split() if 1 <= int(m) <= int(n) <= 16: b_s = int(m) * int(n) print(b_s // 2) ```
3.968989
82
A
Double Cola
PROGRAMMING
1,100
[ "implementation", "math" ]
A. Double Cola
1
256
Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a "Double Cola" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum. For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny. Write a program that will print the name of a man who will drink the *n*-th can. Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon.
The input data consist of a single integer *n* (1<=≤<=*n*<=≤<=109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers.
Print the single line — the name of the person who drinks the *n*-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: "Sheldon", "Leonard", "Penny", "Rajesh", "Howard" (without the quotes). In that order precisely the friends are in the queue initially.
[ "1\n", "6\n", "1802\n" ]
[ "Sheldon\n", "Sheldon\n", "Penny\n" ]
none
500
[ { "input": "1", "output": "Sheldon" }, { "input": "6", "output": "Sheldon" }, { "input": "1802", "output": "Penny" }, { "input": "1", "output": "Sheldon" }, { "input": "2", "output": "Leonard" }, { "input": "3", "output": "Penny" }, { "input": "4", "output": "Rajesh" }, { "input": "5", "output": "Howard" }, { "input": "10", "output": "Penny" }, { "input": "534", "output": "Rajesh" }, { "input": "5033", "output": "Howard" }, { "input": "10010", "output": "Howard" }, { "input": "500000000", "output": "Penny" }, { "input": "63", "output": "Rajesh" }, { "input": "841", "output": "Leonard" }, { "input": "3667", "output": "Penny" }, { "input": "38614", "output": "Howard" }, { "input": "282798", "output": "Rajesh" }, { "input": "9266286", "output": "Rajesh" }, { "input": "27385966", "output": "Leonard" }, { "input": "121580142", "output": "Penny" }, { "input": "5", "output": "Howard" }, { "input": "300", "output": "Howard" }, { "input": "1745", "output": "Leonard" }, { "input": "8302", "output": "Rajesh" }, { "input": "184518", "output": "Sheldon" }, { "input": "1154414", "output": "Rajesh" }, { "input": "28643950", "output": "Leonard" }, { "input": "159222638", "output": "Howard" }, { "input": "24", "output": "Penny" }, { "input": "505", "output": "Penny" }, { "input": "4425", "output": "Rajesh" }, { "input": "12079", "output": "Sheldon" }, { "input": "469726", "output": "Penny" }, { "input": "3961838", "output": "Penny" }, { "input": "57710446", "output": "Leonard" }, { "input": "80719470", "output": "Howard" }, { "input": "1000000000", "output": "Penny" }, { "input": "999999999", "output": "Penny" }, { "input": "999999998", "output": "Penny" }, { "input": "5", "output": "Howard" } ]
1,659,293,043
2,147,483,647
Python 3
OK
TESTS
41
46
0
nombres = ['Sheldon', 'Leonard', 'Penny', 'Rajesh', 'Howard'] t = 1 i = 0 v = 0 n = int(input()) if n <= 5: print(nombres[n-1]) else: while v <= n: v+=5*t i+=1 if v>n: v-=5*t break #print(v,i,t) t*=2 #print(v, t) #print("A partir de {} y va a crecer en razón de {}".format(v,t)) p = 0 for i in range(1,6): p = i z = v+t*i if z > n: break print(nombres[p-1])
Title: Double Cola Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a "Double Cola" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum. For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny. Write a program that will print the name of a man who will drink the *n*-th can. Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon. Input Specification: The input data consist of a single integer *n* (1<=≤<=*n*<=≤<=109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers. Output Specification: Print the single line — the name of the person who drinks the *n*-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: "Sheldon", "Leonard", "Penny", "Rajesh", "Howard" (without the quotes). In that order precisely the friends are in the queue initially. Demo Input: ['1\n', '6\n', '1802\n'] Demo Output: ['Sheldon\n', 'Sheldon\n', 'Penny\n'] Note: none
```python nombres = ['Sheldon', 'Leonard', 'Penny', 'Rajesh', 'Howard'] t = 1 i = 0 v = 0 n = int(input()) if n <= 5: print(nombres[n-1]) else: while v <= n: v+=5*t i+=1 if v>n: v-=5*t break #print(v,i,t) t*=2 #print(v, t) #print("A partir de {} y va a crecer en razón de {}".format(v,t)) p = 0 for i in range(1,6): p = i z = v+t*i if z > n: break print(nombres[p-1]) ```
3.977
791
A
Bear and Big Brother
PROGRAMMING
800
[ "implementation" ]
null
null
Bear Limak wants to become the largest of bears, or at least to become larger than his brother Bob. Right now, Limak and Bob weigh *a* and *b* respectively. It's guaranteed that Limak's weight is smaller than or equal to his brother's weight. Limak eats a lot and his weight is tripled after every year, while Bob's weight is doubled after every year. After how many full years will Limak become strictly larger (strictly heavier) than Bob?
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10) — the weight of Limak and the weight of Bob respectively.
Print one integer, denoting the integer number of years after which Limak will become strictly larger than Bob.
[ "4 7\n", "4 9\n", "1 1\n" ]
[ "2\n", "3\n", "1\n" ]
In the first sample, Limak weighs 4 and Bob weighs 7 initially. After one year their weights are 4·3 = 12 and 7·2 = 14 respectively (one weight is tripled while the other one is doubled). Limak isn't larger than Bob yet. After the second year weights are 36 and 28, so the first weight is greater than the second one. Limak became larger than Bob after two years so you should print 2. In the second sample, Limak's and Bob's weights in next years are: 12 and 18, then 36 and 36, and finally 108 and 72 (after three years). The answer is 3. Remember that Limak wants to be larger than Bob and he won't be satisfied with equal weights. In the third sample, Limak becomes larger than Bob after the first year. Their weights will be 3 and 2 then.
500
[ { "input": "4 7", "output": "2" }, { "input": "4 9", "output": "3" }, { "input": "1 1", "output": "1" }, { "input": "4 6", "output": "2" }, { "input": "1 10", "output": "6" }, { "input": "1 1", "output": "1" }, { "input": "1 2", "output": "2" }, { "input": "1 3", "output": "3" }, { "input": "1 4", "output": "4" }, { "input": "1 5", "output": "4" }, { "input": "1 6", "output": "5" }, { "input": "1 7", "output": "5" }, { "input": "1 8", "output": "6" }, { "input": "1 9", "output": "6" }, { "input": "1 10", "output": "6" }, { "input": "2 2", "output": "1" }, { "input": "2 3", "output": "2" }, { "input": "2 4", "output": "2" }, { "input": "2 5", "output": "3" }, { "input": "2 6", "output": "3" }, { "input": "2 7", "output": "4" }, { "input": "2 8", "output": "4" }, { "input": "2 9", "output": "4" }, { "input": "2 10", "output": "4" }, { "input": "3 3", "output": "1" }, { "input": "3 4", "output": "1" }, { "input": "3 5", "output": "2" }, { "input": "3 6", "output": "2" }, { "input": "3 7", "output": "3" }, { "input": "3 8", "output": "3" }, { "input": "3 9", "output": "3" }, { "input": "3 10", "output": "3" }, { "input": "4 4", "output": "1" }, { "input": "4 5", "output": "1" }, { "input": "4 6", "output": "2" }, { "input": "4 7", "output": "2" }, { "input": "4 8", "output": "2" }, { "input": "4 9", "output": "3" }, { "input": "4 10", "output": "3" }, { "input": "5 5", "output": "1" }, { "input": "5 6", "output": "1" }, { "input": "5 7", "output": "1" }, { "input": "5 8", "output": "2" }, { "input": "5 9", "output": "2" }, { "input": "5 10", "output": "2" }, { "input": "6 6", "output": "1" }, { "input": "6 7", "output": "1" }, { "input": "6 8", "output": "1" }, { "input": "6 9", "output": "2" }, { "input": "6 10", "output": "2" }, { "input": "7 7", "output": "1" }, { "input": "7 8", "output": "1" }, { "input": "7 9", "output": "1" }, { "input": "7 10", "output": "1" }, { "input": "8 8", "output": "1" }, { "input": "8 9", "output": "1" }, { "input": "8 10", "output": "1" }, { "input": "9 9", "output": "1" }, { "input": "9 10", "output": "1" }, { "input": "10 10", "output": "1" }, { "input": "10 10", "output": "1" }, { "input": "1 2", "output": "2" } ]
1,695,987,313
2,147,483,647
Python 3
OK
TESTS
62
46
0
l = input().split() year = 0 for i in range(len(l)): l[i] = int(l[i]) limak = l[0] bob = l[1] while limak <= bob: limak *= 3 bob *= 2 year += 1 print(year)
Title: Bear and Big Brother Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bear Limak wants to become the largest of bears, or at least to become larger than his brother Bob. Right now, Limak and Bob weigh *a* and *b* respectively. It's guaranteed that Limak's weight is smaller than or equal to his brother's weight. Limak eats a lot and his weight is tripled after every year, while Bob's weight is doubled after every year. After how many full years will Limak become strictly larger (strictly heavier) than Bob? Input Specification: The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10) — the weight of Limak and the weight of Bob respectively. Output Specification: Print one integer, denoting the integer number of years after which Limak will become strictly larger than Bob. Demo Input: ['4 7\n', '4 9\n', '1 1\n'] Demo Output: ['2\n', '3\n', '1\n'] Note: In the first sample, Limak weighs 4 and Bob weighs 7 initially. After one year their weights are 4·3 = 12 and 7·2 = 14 respectively (one weight is tripled while the other one is doubled). Limak isn't larger than Bob yet. After the second year weights are 36 and 28, so the first weight is greater than the second one. Limak became larger than Bob after two years so you should print 2. In the second sample, Limak's and Bob's weights in next years are: 12 and 18, then 36 and 36, and finally 108 and 72 (after three years). The answer is 3. Remember that Limak wants to be larger than Bob and he won't be satisfied with equal weights. In the third sample, Limak becomes larger than Bob after the first year. Their weights will be 3 and 2 then.
```python l = input().split() year = 0 for i in range(len(l)): l[i] = int(l[i]) limak = l[0] bob = l[1] while limak <= bob: limak *= 3 bob *= 2 year += 1 print(year) ```
3
342
A
Xenia and Divisors
PROGRAMMING
1,200
[ "greedy", "implementation" ]
null
null
Xenia the mathematician has a sequence consisting of *n* (*n* is divisible by 3) positive integers, each of them is at most 7. She wants to split the sequence into groups of three so that for each group of three *a*,<=*b*,<=*c* the following conditions held: - *a*<=&lt;<=*b*<=&lt;<=*c*; - *a* divides *b*, *b* divides *c*. Naturally, Xenia wants each element of the sequence to belong to exactly one group of three. Thus, if the required partition exists, then it has groups of three. Help Xenia, find the required partition or else say that it doesn't exist.
The first line contains integer *n* (3<=≤<=*n*<=≤<=99999) — the number of elements in the sequence. The next line contains *n* positive integers, each of them is at most 7. It is guaranteed that *n* is divisible by 3.
If the required partition exists, print groups of three. Print each group as values of the elements it contains. You should print values in increasing order. Separate the groups and integers in groups by whitespaces. If there are multiple solutions, you can print any of them. If there is no solution, print -1.
[ "6\n1 1 1 2 2 2\n", "6\n2 2 1 1 4 6\n" ]
[ "-1\n", "1 2 4\n1 2 6\n" ]
none
500
[ { "input": "6\n1 1 1 2 2 2", "output": "-1" }, { "input": "6\n2 2 1 1 4 6", "output": "1 2 4\n1 2 6" }, { "input": "3\n1 2 3", "output": "-1" }, { "input": "3\n7 5 7", "output": "-1" }, { "input": "3\n1 3 4", "output": "-1" }, { "input": "3\n1 1 1", "output": "-1" }, { "input": "9\n1 3 6 6 3 1 3 1 6", "output": "1 3 6\n1 3 6\n1 3 6" }, { "input": "6\n1 2 4 1 3 5", "output": "-1" }, { "input": "3\n1 3 7", "output": "-1" }, { "input": "3\n1 1 1", "output": "-1" }, { "input": "9\n1 2 4 1 2 4 1 3 6", "output": "1 2 4\n1 2 4\n1 3 6" }, { "input": "12\n3 6 1 1 3 6 1 1 2 6 2 6", "output": "1 3 6\n1 3 6\n1 2 6\n1 2 6" }, { "input": "9\n1 1 1 4 4 4 6 2 2", "output": "-1" }, { "input": "9\n1 2 4 6 3 1 3 1 5", "output": "-1" }, { "input": "15\n2 1 2 1 3 6 1 2 1 6 1 3 4 6 4", "output": "1 2 4\n1 2 4\n1 3 6\n1 3 6\n1 2 6" }, { "input": "3\n2 3 6", "output": "-1" }, { "input": "3\n2 4 6", "output": "-1" }, { "input": "3\n2 5 6", "output": "-1" }, { "input": "3\n2 4 7", "output": "-1" }, { "input": "6\n1 2 3 4 5 6", "output": "-1" }, { "input": "3\n7 7 7", "output": "-1" }, { "input": "6\n1 2 4 7 7 7", "output": "-1" }, { "input": "6\n1 1 2 6 6 6", "output": "-1" }, { "input": "9\n1 1 1 3 3 2 4 4 6", "output": "-1" }, { "input": "6\n1 2 4 5 5 5", "output": "-1" }, { "input": "15\n1 1 1 1 1 2 2 2 2 4 4 6 6 6 6", "output": "-1" }, { "input": "6\n1 1 5 5 7 7", "output": "-1" }, { "input": "9\n1 1 1 2 3 4 5 6 7", "output": "-1" }, { "input": "6\n1 1 4 4 7 7", "output": "-1" }, { "input": "24\n1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 4 4 4 6 6 6", "output": "-1" }, { "input": "3\n1 7 6", "output": "-1" }, { "input": "6\n1 1 2 4 7 7", "output": "-1" }, { "input": "9\n1 1 1 7 7 7 7 7 7", "output": "-1" }, { "input": "9\n1 1 1 2 3 4 6 5 5", "output": "-1" } ]
1,676,414,539
2,147,483,647
PyPy 3-64
OK
TESTS
45
155
13,209,600
n=int(input()) l=list(map(int,input().split())) for i in l: if i==5 or i==7: print("-1") quit() a,b,c,d,e=l.count(1),l.count(2),l.count(3),l.count(4),l.count(6) if a!=b+c: print(-1) elif a!=(d+e): print(-1) elif c>e or d>b: print(-1) else: while c: print("1 3 6") c-=1 a-=1 e-=1 while e: print("1 2 6") e-=1 a-=1 c-=1 while d: print("1 2 4") d-=1
Title: Xenia and Divisors Time Limit: None seconds Memory Limit: None megabytes Problem Description: Xenia the mathematician has a sequence consisting of *n* (*n* is divisible by 3) positive integers, each of them is at most 7. She wants to split the sequence into groups of three so that for each group of three *a*,<=*b*,<=*c* the following conditions held: - *a*<=&lt;<=*b*<=&lt;<=*c*; - *a* divides *b*, *b* divides *c*. Naturally, Xenia wants each element of the sequence to belong to exactly one group of three. Thus, if the required partition exists, then it has groups of three. Help Xenia, find the required partition or else say that it doesn't exist. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=99999) — the number of elements in the sequence. The next line contains *n* positive integers, each of them is at most 7. It is guaranteed that *n* is divisible by 3. Output Specification: If the required partition exists, print groups of three. Print each group as values of the elements it contains. You should print values in increasing order. Separate the groups and integers in groups by whitespaces. If there are multiple solutions, you can print any of them. If there is no solution, print -1. Demo Input: ['6\n1 1 1 2 2 2\n', '6\n2 2 1 1 4 6\n'] Demo Output: ['-1\n', '1 2 4\n1 2 6\n'] Note: none
```python n=int(input()) l=list(map(int,input().split())) for i in l: if i==5 or i==7: print("-1") quit() a,b,c,d,e=l.count(1),l.count(2),l.count(3),l.count(4),l.count(6) if a!=b+c: print(-1) elif a!=(d+e): print(-1) elif c>e or d>b: print(-1) else: while c: print("1 3 6") c-=1 a-=1 e-=1 while e: print("1 2 6") e-=1 a-=1 c-=1 while d: print("1 2 4") d-=1 ```
3
41
A
Translation
PROGRAMMING
800
[ "implementation", "strings" ]
A. Translation
2
256
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
[ "code\nedoc\n", "abb\naba\n", "code\ncode\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "code\nedoc", "output": "YES" }, { "input": "abb\naba", "output": "NO" }, { "input": "code\ncode", "output": "NO" }, { "input": "abacaba\nabacaba", "output": "YES" }, { "input": "q\nq", "output": "YES" }, { "input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk", "output": "NO" }, { "input": "z\na", "output": "NO" }, { "input": "asd\ndsa", "output": "YES" }, { "input": "abcdef\nfecdba", "output": "NO" }, { "input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu", "output": "NO" }, { "input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf", "output": "NO" }, { "input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp", "output": "NO" }, { "input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb", "output": "NO" }, { "input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom", "output": "NO" }, { "input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh", "output": "NO" }, { "input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy", "output": "NO" }, { "input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko", "output": "NO" }, { "input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv", "output": "NO" }, { "input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd", "output": "NO" }, { "input": "w\nw", "output": "YES" }, { "input": "vz\nzv", "output": "YES" }, { "input": "ry\nyr", "output": "YES" }, { "input": "xou\nuox", "output": "YES" }, { "input": "axg\ngax", "output": "NO" }, { "input": "zdsl\nlsdz", "output": "YES" }, { "input": "kudl\nldku", "output": "NO" }, { "input": "zzlzwnqlcl\nlclqnwzlzz", "output": "YES" }, { "input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv", "output": "YES" }, { "input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar", "output": "NO" }, { "input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn", "output": "YES" }, { "input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum", "output": "YES" }, { "input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv", "output": "YES" }, { "input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm", "output": "NO" }, { "input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd", "output": "NO" }, { "input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg", "output": "YES" }, { "input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis", "output": "YES" }, { "input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy", "output": "NO" }, { "input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw", "output": "YES" }, { "input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi", "output": "YES" }, { "input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib", "output": "YES" } ]
1,665,384,655
2,147,483,647
Python 3
OK
TESTS
40
92
0
s1 = input() s2 = input() l = list() s = "" i = len(s1)-1 while not i == -1: l.append(s1[i]) i = i - 1 for k in l: s = s + k if s2 == s: print("YES") else: print("NO")
Title: Translation Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. Input Specification: The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. Output Specification: If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. Demo Input: ['code\nedoc\n', 'abb\naba\n', 'code\ncode\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python s1 = input() s2 = input() l = list() s = "" i = len(s1)-1 while not i == -1: l.append(s1[i]) i = i - 1 for k in l: s = s + k if s2 == s: print("YES") else: print("NO") ```
3.977
25
A
IQ test
PROGRAMMING
1,300
[ "brute force" ]
A. IQ test
2
256
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
[ "5\n2 4 7 8 10\n", "4\n1 2 1 1\n" ]
[ "3\n", "2\n" ]
none
0
[ { "input": "5\n2 4 7 8 10", "output": "3" }, { "input": "4\n1 2 1 1", "output": "2" }, { "input": "3\n1 2 2", "output": "1" }, { "input": "3\n100 99 100", "output": "2" }, { "input": "3\n5 3 2", "output": "3" }, { "input": "4\n43 28 1 91", "output": "2" }, { "input": "4\n75 13 94 77", "output": "3" }, { "input": "4\n97 8 27 3", "output": "2" }, { "input": "10\n95 51 12 91 85 3 1 31 25 7", "output": "3" }, { "input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46", "output": "4" }, { "input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36", "output": "26" }, { "input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83", "output": "48" }, { "input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25", "output": "1" }, { "input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46", "output": "25" }, { "input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73", "output": "13" }, { "input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76", "output": "99" }, { "input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14", "output": "1" }, { "input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22", "output": "93" }, { "input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23", "output": "1" }, { "input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98", "output": "1" }, { "input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94", "output": "93" }, { "input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29", "output": "32" }, { "input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47", "output": "26" }, { "input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72", "output": "56" }, { "input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86", "output": "97" }, { "input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42", "output": "79" }, { "input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52", "output": "25" }, { "input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86", "output": "78" }, { "input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68", "output": "70" }, { "input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81", "output": "39" }, { "input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83", "output": "88" }, { "input": "3\n100 100 1", "output": "3" } ]
1,653,800,278
2,147,483,647
PyPy 3-64
OK
TESTS
32
124
0
a = input() arr = [int(i) for i in input().split()] oddList = [] for i in range(len(arr)): if arr[i]%2 == 1: oddList.append(i) else: even = i if len(oddList) != 1: print(even+1) else: print(oddList[0]+1)
Title: IQ test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness. Output Specification: Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order. Demo Input: ['5\n2 4 7 8 10\n', '4\n1 2 1 1\n'] Demo Output: ['3\n', '2\n'] Note: none
```python a = input() arr = [int(i) for i in input().split()] oddList = [] for i in range(len(arr)): if arr[i]%2 == 1: oddList.append(i) else: even = i if len(oddList) != 1: print(even+1) else: print(oddList[0]+1) ```
3.969
110
A
Nearly Lucky Number
PROGRAMMING
800
[ "implementation" ]
A. Nearly Lucky Number
2
256
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number *n* is a nearly lucky number.
The only line contains an integer *n* (1<=≤<=*n*<=≤<=1018). Please do not use the %lld specificator to read or write 64-bit numbers in С++. It is preferred to use the cin, cout streams or the %I64d specificator.
Print on the single line "YES" if *n* is a nearly lucky number. Otherwise, print "NO" (without the quotes).
[ "40047\n", "7747774\n", "1000000000000000000\n" ]
[ "NO\n", "YES\n", "NO\n" ]
In the first sample there are 3 lucky digits (first one and last two), so the answer is "NO". In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is "YES". In the third sample there are no lucky digits, so the answer is "NO".
500
[ { "input": "40047", "output": "NO" }, { "input": "7747774", "output": "YES" }, { "input": "1000000000000000000", "output": "NO" }, { "input": "7", "output": "NO" }, { "input": "4", "output": "NO" }, { "input": "474404774", "output": "NO" }, { "input": "4744000695826", "output": "YES" }, { "input": "10000000004744744", "output": "YES" }, { "input": "446486416781684178", "output": "YES" }, { "input": "999999999", "output": "NO" }, { "input": "7777", "output": "YES" }, { "input": "87414417444", "output": "NO" }, { "input": "111222333444555667", "output": "YES" }, { "input": "1", "output": "NO" }, { "input": "4700", "output": "NO" }, { "input": "3794555488744477", "output": "NO" }, { "input": "444444444444444444", "output": "NO" }, { "input": "474447447774444774", "output": "NO" }, { "input": "777777777777777", "output": "NO" }, { "input": "34777745021000000", "output": "NO" }, { "input": "963", "output": "NO" }, { "input": "855474448854788540", "output": "NO" }, { "input": "999999999999994744", "output": "YES" }, { "input": "400000000474", "output": "YES" }, { "input": "123456789123456789", "output": "YES" }, { "input": "740577777584945874", "output": "NO" }, { "input": "7777777", "output": "YES" }, { "input": "4444000111222333", "output": "YES" }, { "input": "9847745885202111", "output": "YES" }, { "input": "123456000000", "output": "NO" }, { "input": "4744447444444", "output": "NO" }, { "input": "7477", "output": "YES" }, { "input": "4747477", "output": "YES" }, { "input": "777777777444444444", "output": "NO" } ]
1,698,012,743
2,147,483,647
PyPy 3-64
OK
TESTS
34
124
0
num_lucky = 0 for c in input(): if c in ["4", "7"]: num_lucky += 1 for c in str(num_lucky): if c not in ["4", "7"]: print("NO") exit() print("YES")
Title: Nearly Lucky Number Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number *n* is a nearly lucky number. Input Specification: The only line contains an integer *n* (1<=≤<=*n*<=≤<=1018). Please do not use the %lld specificator to read or write 64-bit numbers in С++. It is preferred to use the cin, cout streams or the %I64d specificator. Output Specification: Print on the single line "YES" if *n* is a nearly lucky number. Otherwise, print "NO" (without the quotes). Demo Input: ['40047\n', '7747774\n', '1000000000000000000\n'] Demo Output: ['NO\n', 'YES\n', 'NO\n'] Note: In the first sample there are 3 lucky digits (first one and last two), so the answer is "NO". In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is "YES". In the third sample there are no lucky digits, so the answer is "NO".
```python num_lucky = 0 for c in input(): if c in ["4", "7"]: num_lucky += 1 for c in str(num_lucky): if c not in ["4", "7"]: print("NO") exit() print("YES") ```
3.969
989
A
A Blend of Springtime
PROGRAMMING
900
[ "implementation", "strings" ]
null
null
"What a pity it's already late spring," sighs Mino with regret, "one more drizzling night and they'd be gone." "But these blends are at their best, aren't they?" Absorbed in the landscape, Kanno remains optimistic. The landscape can be expressed as a row of consecutive cells, each of which either contains a flower of colour amber or buff or canary yellow, or is empty. When a flower withers, it disappears from the cell that it originally belonged to, and it spreads petals of its colour in its two neighbouring cells (or outside the field if the cell is on the side of the landscape). In case petals fall outside the given cells, they simply become invisible. You are to help Kanno determine whether it's possible that after some (possibly none or all) flowers shed their petals, at least one of the cells contains all three colours, considering both petals and flowers. Note that flowers can wither in arbitrary order.
The first and only line of input contains a non-empty string $s$ consisting of uppercase English letters 'A', 'B', 'C' and characters '.' (dots) only ($\lvert s \rvert \leq 100$) — denoting cells containing an amber flower, a buff one, a canary yellow one, and no flowers, respectively.
Output "Yes" if it's possible that all three colours appear in some cell, and "No" otherwise. You can print each letter in any case (upper or lower).
[ ".BAC.\n", "AA..CB\n" ]
[ "Yes\n", "No\n" ]
In the first example, the buff and canary yellow flowers can leave their petals in the central cell, blending all three colours in it. In the second example, it's impossible to satisfy the requirement because there is no way that amber and buff meet in any cell.
500
[ { "input": ".BAC.", "output": "Yes" }, { "input": "AA..CB", "output": "No" }, { "input": ".", "output": "No" }, { "input": "ACB.AAAAAA", "output": "Yes" }, { "input": "B.BC.BBBCA", "output": "Yes" }, { "input": "BA..CAB..B", "output": "Yes" }, { "input": "CACCBAA.BC", "output": "Yes" }, { "input": ".CAACCBBA.CBB.AC..BABCCBCCB..B.BC..CBC.CA.CC.C.CC.B.A.CC.BBCCBB..ACAACAC.CBCCB.AABAAC.CBCC.BA..CCBC.", "output": "Yes" }, { "input": "A", "output": "No" }, { "input": "..", "output": "No" }, { "input": "BC", "output": "No" }, { "input": "CAB", "output": "Yes" }, { "input": "A.CB", "output": "No" }, { "input": "B.ACAA.CA..CBCBBAA.B.CCBCB.CAC.ABC...BC.BCCC.BC.CB", "output": "Yes" }, { "input": "B.B...CC.B..CCCB.CB..CBCB..CBCC.CCBC.B.CB..CA.C.C.", "output": "No" }, { "input": "AA.CBAABABCCC..B..B.ABBABAB.B.B.CCA..CB.B...A..CBC", "output": "Yes" }, { "input": "CA.ABB.CC.B.C.BBBABAAB.BBBAACACAAA.C.AACA.AAC.C.BCCB.CCBC.C..CCACA.CBCCB.CCAABAAB.AACAA..A.AAA.", "output": "No" }, { "input": "CBC...AC.BBBB.BBABABA.CAAACC.AAABB..A.BA..BC.CBBBC.BBBBCCCAA.ACCBB.AB.C.BA..CC..AAAC...AB.A.AAABBA.A", "output": "No" }, { "input": "CC.AAAC.BA.BBB.AABABBCCAA.A.CBCCB.B.BC.ABCBCBBAA.CACA.CCCA.CB.CCB.A.BCCCB...C.A.BCCBC..B.ABABB.C.BCB", "output": "Yes" }, { "input": "CCC..A..CACACCA.CA.ABAAB.BBA..C.AAA...ACB.ACA.CA.B.AB.A..C.BC.BC.A.C....ABBCCACCCBCC.BBBAA.ACCACB.BB", "output": "Yes" }, { "input": "BC.ABACAACC..AC.A..CCCAABBCCACAC.AA.CC.BAABABABBCBB.BA..C.C.C.A.BBA.C..BC.ACACCC.AAAACCCCC.AAC.AC.AB", "output": "Yes" }, { "input": "ACAC.BAA.C..CAAC..ABBAACC..BAA...CC...ACCBBCA.BAABABAACCAC.A.BBCACCC..BCB.BABAAAACCBCB.BCAABBC.C.BBB", "output": "Yes" }, { "input": "CCAC.BCBC.A.ABBAB.C.C.BC.CCABBCBCCBC..B.AA.C.BC...B..BAA.ACCCCBBB.AAAACA.CAACCB.CCB.CC.BCCAB.BBBBABB", "output": "Yes" }, { "input": ".AACAA.AAAAC.BBBB.BC...CCACCACAAA.A..CCA..BCC.AB.ABAAB..AABA...B.C.CBAB.BAAB.A.C.AAC.BBBA.ACAAA.BB.C", "output": "Yes" }, { "input": "CC.ACCC.BCCCCAA.BBAACB.ABABAAAA.A.CBAB.CBACBBC..C.CA.AAA..AA..ABBB.A.C..CBBCAAACC.B..CC.AC..CAABACB.", "output": "Yes" }, { "input": ".BAB.", "output": "No" }, { "input": "BBBBBBBBB", "output": "No" }, { "input": "..AAC..", "output": "No" }, { "input": ".AAABBBCCC.", "output": "No" }, { "input": "AAABC", "output": "Yes" }, { "input": "BBB", "output": "No" }, { "input": "AAAAABABAAAAA", "output": "No" }, { "input": "AABBCC", "output": "No" }, { "input": ".BA", "output": "No" }, { "input": "CAAAAB", "output": "No" } ]
1,528,812,629
2,147,483,647
Python 3
OK
TESTS
37
93
0
s = input() for i in range(len(s) - 2): st = s[i:i+3] if ''.join(sorted(st)) == 'ABC': print('Yes') exit(0) print('No')
Title: A Blend of Springtime Time Limit: None seconds Memory Limit: None megabytes Problem Description: "What a pity it's already late spring," sighs Mino with regret, "one more drizzling night and they'd be gone." "But these blends are at their best, aren't they?" Absorbed in the landscape, Kanno remains optimistic. The landscape can be expressed as a row of consecutive cells, each of which either contains a flower of colour amber or buff or canary yellow, or is empty. When a flower withers, it disappears from the cell that it originally belonged to, and it spreads petals of its colour in its two neighbouring cells (or outside the field if the cell is on the side of the landscape). In case petals fall outside the given cells, they simply become invisible. You are to help Kanno determine whether it's possible that after some (possibly none or all) flowers shed their petals, at least one of the cells contains all three colours, considering both petals and flowers. Note that flowers can wither in arbitrary order. Input Specification: The first and only line of input contains a non-empty string $s$ consisting of uppercase English letters 'A', 'B', 'C' and characters '.' (dots) only ($\lvert s \rvert \leq 100$) — denoting cells containing an amber flower, a buff one, a canary yellow one, and no flowers, respectively. Output Specification: Output "Yes" if it's possible that all three colours appear in some cell, and "No" otherwise. You can print each letter in any case (upper or lower). Demo Input: ['.BAC.\n', 'AA..CB\n'] Demo Output: ['Yes\n', 'No\n'] Note: In the first example, the buff and canary yellow flowers can leave their petals in the central cell, blending all three colours in it. In the second example, it's impossible to satisfy the requirement because there is no way that amber and buff meet in any cell.
```python s = input() for i in range(len(s) - 2): st = s[i:i+3] if ''.join(sorted(st)) == 'ABC': print('Yes') exit(0) print('No') ```
3
160
A
Twins
PROGRAMMING
900
[ "greedy", "sortings" ]
null
null
Imagine that you have a twin brother or sister. Having another person that looks exactly like you seems very unusual. It's hard to say if having something of an alter ego is good or bad. And if you do have a twin, then you very well know what it's like. Now let's imagine a typical morning in your family. You haven't woken up yet, and Mom is already going to work. She has been so hasty that she has nearly forgotten to leave the two of her darling children some money to buy lunches in the school cafeteria. She fished in the purse and found some number of coins, or to be exact, *n* coins of arbitrary values *a*1,<=*a*2,<=...,<=*a**n*. But as Mom was running out of time, she didn't split the coins for you two. So she scribbled a note asking you to split the money equally. As you woke up, you found Mom's coins and read her note. "But why split the money equally?" — you thought. After all, your twin is sleeping and he won't know anything. So you decided to act like that: pick for yourself some subset of coins so that the sum of values of your coins is strictly larger than the sum of values of the remaining coins that your twin will have. However, you correctly thought that if you take too many coins, the twin will suspect the deception. So, you've decided to stick to the following strategy to avoid suspicions: you take the minimum number of coins, whose sum of values is strictly more than the sum of values of the remaining coins. On this basis, determine what minimum number of coins you need to take to divide them in the described manner.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of coins. The second line contains a sequence of *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=100) — the coins' values. All numbers are separated with spaces.
In the single line print the single number — the minimum needed number of coins.
[ "2\n3 3\n", "3\n2 1 2\n" ]
[ "2\n", "2\n" ]
In the first sample you will have to take 2 coins (you and your twin have sums equal to 6, 0 correspondingly). If you take 1 coin, you get sums 3, 3. If you take 0 coins, you get sums 0, 6. Those variants do not satisfy you as your sum should be strictly more that your twins' sum. In the second sample one coin isn't enough for us, too. You can pick coins with values 1, 2 or 2, 2. In any case, the minimum number of coins equals 2.
500
[ { "input": "2\n3 3", "output": "2" }, { "input": "3\n2 1 2", "output": "2" }, { "input": "1\n5", "output": "1" }, { "input": "5\n4 2 2 2 2", "output": "3" }, { "input": "7\n1 10 1 2 1 1 1", "output": "1" }, { "input": "5\n3 2 3 3 1", "output": "3" }, { "input": "2\n2 1", "output": "1" }, { "input": "3\n2 1 3", "output": "2" }, { "input": "6\n1 1 1 1 1 1", "output": "4" }, { "input": "7\n10 10 5 5 5 5 1", "output": "3" }, { "input": "20\n2 1 2 2 2 1 1 2 1 2 2 1 1 1 1 2 1 1 1 1", "output": "8" }, { "input": "20\n4 2 4 4 3 4 2 2 4 2 3 1 1 2 2 3 3 3 1 4", "output": "8" }, { "input": "20\n35 26 41 40 45 46 22 26 39 23 11 15 47 42 18 15 27 10 45 40", "output": "8" }, { "input": "20\n7 84 100 10 31 35 41 2 63 44 57 4 63 11 23 49 98 71 16 90", "output": "6" }, { "input": "50\n19 2 12 26 17 27 10 26 17 17 5 24 11 15 3 9 16 18 19 1 25 23 18 6 2 7 25 7 21 25 13 29 16 9 25 3 14 30 18 4 10 28 6 10 8 2 2 4 8 28", "output": "14" }, { "input": "70\n2 18 18 47 25 5 14 9 19 46 36 49 33 32 38 23 32 39 8 29 31 17 24 21 10 15 33 37 46 21 22 11 20 35 39 13 11 30 28 40 39 47 1 17 24 24 21 46 12 2 20 43 8 16 44 11 45 10 13 44 31 45 45 46 11 10 33 35 23 42", "output": "22" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "51" }, { "input": "100\n1 2 2 1 2 1 1 2 1 1 1 2 2 1 1 1 2 2 2 1 2 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1 1 1 1 2 2 1 2 1 2 1 2 2 2 1 2 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 1 1 1 2 1 1 1 1 2 2 2 2", "output": "37" }, { "input": "100\n1 2 3 2 1 2 2 3 1 3 3 2 2 1 1 2 2 1 1 1 1 2 3 3 2 1 1 2 2 2 3 3 3 2 1 3 1 3 3 2 3 1 2 2 2 3 2 1 1 3 3 3 3 2 1 1 2 3 2 2 3 2 3 2 2 3 2 2 2 2 3 3 3 1 3 3 1 1 2 3 2 2 2 2 3 3 3 2 1 2 3 1 1 2 3 3 1 3 3 2", "output": "36" }, { "input": "100\n5 5 4 3 5 1 2 5 1 1 3 5 4 4 1 1 1 1 5 4 4 5 1 5 5 1 2 1 3 1 5 1 3 3 3 2 2 2 1 1 5 1 3 4 1 1 3 2 5 2 2 5 5 4 4 1 3 4 3 3 4 5 3 3 3 1 2 1 4 2 4 4 1 5 1 3 5 5 5 5 3 4 4 3 1 2 5 2 3 5 4 2 4 5 3 2 4 2 4 3", "output": "33" }, { "input": "100\n3 4 8 10 8 6 4 3 7 7 6 2 3 1 3 10 1 7 9 3 5 5 2 6 2 9 1 7 4 2 4 1 6 1 7 10 2 5 3 7 6 4 6 2 8 8 8 6 6 10 3 7 4 3 4 1 7 9 3 6 3 6 1 4 9 3 8 1 10 1 4 10 7 7 9 5 3 8 10 2 1 10 8 7 10 8 5 3 1 2 1 10 6 1 5 3 3 5 7 2", "output": "30" }, { "input": "100\n16 9 11 8 11 4 9 17 4 8 4 10 9 10 6 3 3 15 1 6 1 15 12 18 6 14 13 18 1 7 18 4 10 7 10 12 3 16 14 4 10 8 10 7 19 13 15 1 4 8 16 10 6 4 3 16 11 10 7 3 4 16 1 20 1 11 4 16 10 7 7 12 18 19 3 17 19 3 4 19 2 12 11 3 18 20 2 2 14 4 20 13 13 11 16 20 19 14 7 2", "output": "29" }, { "input": "100\n2 46 4 6 38 19 15 34 10 35 37 30 3 25 5 45 40 45 33 31 6 20 10 44 11 9 2 14 35 5 9 23 20 2 48 22 25 35 38 31 24 33 35 16 4 30 27 10 12 22 6 24 12 30 23 21 14 12 32 21 7 12 25 43 18 34 34 28 47 13 28 43 18 39 44 42 35 26 35 14 8 29 32 20 29 3 20 6 20 9 9 27 8 42 10 37 42 27 8 1", "output": "30" }, { "input": "100\n85 50 17 89 65 89 5 20 86 26 16 21 85 14 44 31 87 31 6 2 48 67 8 80 79 1 48 36 97 1 5 30 79 50 78 12 2 55 76 100 54 40 26 81 97 96 68 56 87 14 51 17 54 37 52 33 69 62 38 63 74 15 62 78 9 19 67 2 60 58 93 60 18 96 55 48 34 7 79 82 32 58 90 67 20 50 27 15 7 89 98 10 11 15 99 49 4 51 77 52", "output": "29" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "30" }, { "input": "1\n1", "output": "1" }, { "input": "4\n4 1 2 3", "output": "2" }, { "input": "5\n2 2 2 4 4", "output": "2" }, { "input": "4\n100 99 99 100", "output": "2" } ]
1,690,538,120
2,147,483,647
Python 3
OK
TESTS
29
92
0
n = int(input()) a = sorted(map(int,input().split()),reverse = True) z = sum(a) t = z//2 + 1 m = 0 q = 0 for x in a: q += x m += 1 if q >= t: break print(m)
Title: Twins Time Limit: None seconds Memory Limit: None megabytes Problem Description: Imagine that you have a twin brother or sister. Having another person that looks exactly like you seems very unusual. It's hard to say if having something of an alter ego is good or bad. And if you do have a twin, then you very well know what it's like. Now let's imagine a typical morning in your family. You haven't woken up yet, and Mom is already going to work. She has been so hasty that she has nearly forgotten to leave the two of her darling children some money to buy lunches in the school cafeteria. She fished in the purse and found some number of coins, or to be exact, *n* coins of arbitrary values *a*1,<=*a*2,<=...,<=*a**n*. But as Mom was running out of time, she didn't split the coins for you two. So she scribbled a note asking you to split the money equally. As you woke up, you found Mom's coins and read her note. "But why split the money equally?" — you thought. After all, your twin is sleeping and he won't know anything. So you decided to act like that: pick for yourself some subset of coins so that the sum of values of your coins is strictly larger than the sum of values of the remaining coins that your twin will have. However, you correctly thought that if you take too many coins, the twin will suspect the deception. So, you've decided to stick to the following strategy to avoid suspicions: you take the minimum number of coins, whose sum of values is strictly more than the sum of values of the remaining coins. On this basis, determine what minimum number of coins you need to take to divide them in the described manner. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of coins. The second line contains a sequence of *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=100) — the coins' values. All numbers are separated with spaces. Output Specification: In the single line print the single number — the minimum needed number of coins. Demo Input: ['2\n3 3\n', '3\n2 1 2\n'] Demo Output: ['2\n', '2\n'] Note: In the first sample you will have to take 2 coins (you and your twin have sums equal to 6, 0 correspondingly). If you take 1 coin, you get sums 3, 3. If you take 0 coins, you get sums 0, 6. Those variants do not satisfy you as your sum should be strictly more that your twins' sum. In the second sample one coin isn't enough for us, too. You can pick coins with values 1, 2 or 2, 2. In any case, the minimum number of coins equals 2.
```python n = int(input()) a = sorted(map(int,input().split()),reverse = True) z = sum(a) t = z//2 + 1 m = 0 q = 0 for x in a: q += x m += 1 if q >= t: break print(m) ```
3
715
A
Plus and Square Root
PROGRAMMING
1,600
[ "constructive algorithms", "math" ]
null
null
ZS the Coder is playing a game. There is a number displayed on the screen and there are two buttons, '<=+<=' (plus) and '' (square root). Initially, the number 2 is displayed on the screen. There are *n*<=+<=1 levels in the game and ZS the Coder start at the level 1. When ZS the Coder is at level *k*, he can : 1. Press the '<=+<=' button. This increases the number on the screen by exactly *k*. So, if the number on the screen was *x*, it becomes *x*<=+<=*k*.1. Press the '' button. Let the number on the screen be *x*. After pressing this button, the number becomes . After that, ZS the Coder levels up, so his current level becomes *k*<=+<=1. This button can only be pressed when *x* is a perfect square, i.e. *x*<==<=*m*2 for some positive integer *m*. Additionally, after each move, if ZS the Coder is at level *k*, and the number on the screen is *m*, then *m* must be a multiple of *k*. Note that this condition is only checked after performing the press. For example, if ZS the Coder is at level 4 and current number is 100, he presses the '' button and the number turns into 10. Note that at this moment, 10 is not divisible by 4, but this press is still valid, because after it, ZS the Coder is at level 5, and 10 is divisible by 5. ZS the Coder needs your help in beating the game — he wants to reach level *n*<=+<=1. In other words, he needs to press the '' button *n* times. Help him determine the number of times he should press the '<=+<=' button before pressing the '' button at each level. Please note that ZS the Coder wants to find just any sequence of presses allowing him to reach level *n*<=+<=1, but not necessarily a sequence minimizing the number of presses.
The first and only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000), denoting that ZS the Coder wants to reach level *n*<=+<=1.
Print *n* non-negative integers, one per line. *i*-th of them should be equal to the number of times that ZS the Coder needs to press the '<=+<=' button before pressing the '' button at level *i*. Each number in the output should not exceed 1018. However, the number on the screen can be greater than 1018. It is guaranteed that at least one solution exists. If there are multiple solutions, print any of them.
[ "3\n", "2\n", "4\n" ]
[ "14\n16\n46\n", "999999999999999998\n44500000000\n", "2\n17\n46\n97\n" ]
In the first sample case: On the first level, ZS the Coder pressed the ' + ' button 14 times (and the number on screen is initially 2), so the number became 2 + 14·1 = 16. Then, ZS the Coder pressed the '<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c77ded9b8209a8cb488cc2ec7b7fe1dae32a5309.png" style="max-width: 100.0%;max-height: 100.0%;"/>' button, and the number became <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c3d2663f5f74e9220fd5cbccbfaf4ca76ef7284f.png" style="max-width: 100.0%;max-height: 100.0%;"/>. After that, on the second level, ZS pressed the ' + ' button 16 times, so the number becomes 4 + 16·2 = 36. Then, ZS pressed the '<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c77ded9b8209a8cb488cc2ec7b7fe1dae32a5309.png" style="max-width: 100.0%;max-height: 100.0%;"/>' button, levelling up and changing the number into <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/49ab1d31f1435b7c7b96550d63a35be671d3d85a.png" style="max-width: 100.0%;max-height: 100.0%;"/>. After that, on the third level, ZS pressed the ' + ' button 46 times, so the number becomes 6 + 46·3 = 144. Then, ZS pressed the '<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c77ded9b8209a8cb488cc2ec7b7fe1dae32a5309.png" style="max-width: 100.0%;max-height: 100.0%;"/>' button, levelling up and changing the number into <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/499b57d4b7ba5e1e0957767cc182808ca48ef722.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Note that 12 is indeed divisible by 4, so ZS the Coder can reach level 4. Also, note that pressing the ' + ' button 10 times on the third level before levelling up does not work, because the number becomes 6 + 10·3 = 36, and when the '<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c77ded9b8209a8cb488cc2ec7b7fe1dae32a5309.png" style="max-width: 100.0%;max-height: 100.0%;"/>' button is pressed, the number becomes <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/49ab1d31f1435b7c7b96550d63a35be671d3d85a.png" style="max-width: 100.0%;max-height: 100.0%;"/> and ZS the Coder is at Level 4. However, 6 is not divisible by 4 now, so this is not a valid solution. In the second sample case: On the first level, ZS the Coder pressed the ' + ' button 999999999999999998 times (and the number on screen is initially 2), so the number became 2 + 999999999999999998·1 = 10<sup class="upper-index">18</sup>. Then, ZS the Coder pressed the '<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c77ded9b8209a8cb488cc2ec7b7fe1dae32a5309.png" style="max-width: 100.0%;max-height: 100.0%;"/>' button, and the number became <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f07f2a60ab6cecbd2507861a0df57a16a015fd86.png" style="max-width: 100.0%;max-height: 100.0%;"/>. After that, on the second level, ZS pressed the ' + ' button 44500000000 times, so the number becomes 10<sup class="upper-index">9</sup> + 44500000000·2 = 9·10<sup class="upper-index">10</sup>. Then, ZS pressed the '<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c77ded9b8209a8cb488cc2ec7b7fe1dae32a5309.png" style="max-width: 100.0%;max-height: 100.0%;"/>' button, levelling up and changing the number into <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4c4d8829d987a7bcfd597cd1aa101327a66c0eca.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Note that 300000 is a multiple of 3, so ZS the Coder can reach level 3.
500
[ { "input": "3", "output": "2\n17\n46" }, { "input": "2", "output": "2\n17" }, { "input": "4", "output": "2\n17\n46\n97" }, { "input": "1", "output": "2" }, { "input": "100000", "output": "2\n17\n46\n97\n176\n289\n442\n641\n892\n1201\n1574\n2017\n2536\n3137\n3826\n4609\n5492\n6481\n7582\n8801\n10144\n11617\n13226\n14977\n16876\n18929\n21142\n23521\n26072\n28801\n31714\n34817\n38116\n41617\n45326\n49249\n53392\n57761\n62362\n67201\n72284\n77617\n83206\n89057\n95176\n101569\n108242\n115201\n122452\n130001\n137854\n146017\n154496\n163297\n172426\n181889\n191692\n201841\n212342\n223201\n234424\n246017\n257986\n270337\n283076\n296209\n309742\n323681\n338032\n352801\n367994\n383617\n399676\n416177..." }, { "input": "2016", "output": "2\n17\n46\n97\n176\n289\n442\n641\n892\n1201\n1574\n2017\n2536\n3137\n3826\n4609\n5492\n6481\n7582\n8801\n10144\n11617\n13226\n14977\n16876\n18929\n21142\n23521\n26072\n28801\n31714\n34817\n38116\n41617\n45326\n49249\n53392\n57761\n62362\n67201\n72284\n77617\n83206\n89057\n95176\n101569\n108242\n115201\n122452\n130001\n137854\n146017\n154496\n163297\n172426\n181889\n191692\n201841\n212342\n223201\n234424\n246017\n257986\n270337\n283076\n296209\n309742\n323681\n338032\n352801\n367994\n383617\n399676\n416177..." }, { "input": "12345", "output": "2\n17\n46\n97\n176\n289\n442\n641\n892\n1201\n1574\n2017\n2536\n3137\n3826\n4609\n5492\n6481\n7582\n8801\n10144\n11617\n13226\n14977\n16876\n18929\n21142\n23521\n26072\n28801\n31714\n34817\n38116\n41617\n45326\n49249\n53392\n57761\n62362\n67201\n72284\n77617\n83206\n89057\n95176\n101569\n108242\n115201\n122452\n130001\n137854\n146017\n154496\n163297\n172426\n181889\n191692\n201841\n212342\n223201\n234424\n246017\n257986\n270337\n283076\n296209\n309742\n323681\n338032\n352801\n367994\n383617\n399676\n416177..." }, { "input": "99997", "output": "2\n17\n46\n97\n176\n289\n442\n641\n892\n1201\n1574\n2017\n2536\n3137\n3826\n4609\n5492\n6481\n7582\n8801\n10144\n11617\n13226\n14977\n16876\n18929\n21142\n23521\n26072\n28801\n31714\n34817\n38116\n41617\n45326\n49249\n53392\n57761\n62362\n67201\n72284\n77617\n83206\n89057\n95176\n101569\n108242\n115201\n122452\n130001\n137854\n146017\n154496\n163297\n172426\n181889\n191692\n201841\n212342\n223201\n234424\n246017\n257986\n270337\n283076\n296209\n309742\n323681\n338032\n352801\n367994\n383617\n399676\n416177..." }, { "input": "99998", "output": "2\n17\n46\n97\n176\n289\n442\n641\n892\n1201\n1574\n2017\n2536\n3137\n3826\n4609\n5492\n6481\n7582\n8801\n10144\n11617\n13226\n14977\n16876\n18929\n21142\n23521\n26072\n28801\n31714\n34817\n38116\n41617\n45326\n49249\n53392\n57761\n62362\n67201\n72284\n77617\n83206\n89057\n95176\n101569\n108242\n115201\n122452\n130001\n137854\n146017\n154496\n163297\n172426\n181889\n191692\n201841\n212342\n223201\n234424\n246017\n257986\n270337\n283076\n296209\n309742\n323681\n338032\n352801\n367994\n383617\n399676\n416177..." }, { "input": "9999", "output": "2\n17\n46\n97\n176\n289\n442\n641\n892\n1201\n1574\n2017\n2536\n3137\n3826\n4609\n5492\n6481\n7582\n8801\n10144\n11617\n13226\n14977\n16876\n18929\n21142\n23521\n26072\n28801\n31714\n34817\n38116\n41617\n45326\n49249\n53392\n57761\n62362\n67201\n72284\n77617\n83206\n89057\n95176\n101569\n108242\n115201\n122452\n130001\n137854\n146017\n154496\n163297\n172426\n181889\n191692\n201841\n212342\n223201\n234424\n246017\n257986\n270337\n283076\n296209\n309742\n323681\n338032\n352801\n367994\n383617\n399676\n416177..." }, { "input": "99999", "output": "2\n17\n46\n97\n176\n289\n442\n641\n892\n1201\n1574\n2017\n2536\n3137\n3826\n4609\n5492\n6481\n7582\n8801\n10144\n11617\n13226\n14977\n16876\n18929\n21142\n23521\n26072\n28801\n31714\n34817\n38116\n41617\n45326\n49249\n53392\n57761\n62362\n67201\n72284\n77617\n83206\n89057\n95176\n101569\n108242\n115201\n122452\n130001\n137854\n146017\n154496\n163297\n172426\n181889\n191692\n201841\n212342\n223201\n234424\n246017\n257986\n270337\n283076\n296209\n309742\n323681\n338032\n352801\n367994\n383617\n399676\n416177..." }, { "input": "17823", "output": "2\n17\n46\n97\n176\n289\n442\n641\n892\n1201\n1574\n2017\n2536\n3137\n3826\n4609\n5492\n6481\n7582\n8801\n10144\n11617\n13226\n14977\n16876\n18929\n21142\n23521\n26072\n28801\n31714\n34817\n38116\n41617\n45326\n49249\n53392\n57761\n62362\n67201\n72284\n77617\n83206\n89057\n95176\n101569\n108242\n115201\n122452\n130001\n137854\n146017\n154496\n163297\n172426\n181889\n191692\n201841\n212342\n223201\n234424\n246017\n257986\n270337\n283076\n296209\n309742\n323681\n338032\n352801\n367994\n383617\n399676\n416177..." }, { "input": "22222", "output": "2\n17\n46\n97\n176\n289\n442\n641\n892\n1201\n1574\n2017\n2536\n3137\n3826\n4609\n5492\n6481\n7582\n8801\n10144\n11617\n13226\n14977\n16876\n18929\n21142\n23521\n26072\n28801\n31714\n34817\n38116\n41617\n45326\n49249\n53392\n57761\n62362\n67201\n72284\n77617\n83206\n89057\n95176\n101569\n108242\n115201\n122452\n130001\n137854\n146017\n154496\n163297\n172426\n181889\n191692\n201841\n212342\n223201\n234424\n246017\n257986\n270337\n283076\n296209\n309742\n323681\n338032\n352801\n367994\n383617\n399676\n416177..." }, { "input": "29137", "output": "2\n17\n46\n97\n176\n289\n442\n641\n892\n1201\n1574\n2017\n2536\n3137\n3826\n4609\n5492\n6481\n7582\n8801\n10144\n11617\n13226\n14977\n16876\n18929\n21142\n23521\n26072\n28801\n31714\n34817\n38116\n41617\n45326\n49249\n53392\n57761\n62362\n67201\n72284\n77617\n83206\n89057\n95176\n101569\n108242\n115201\n122452\n130001\n137854\n146017\n154496\n163297\n172426\n181889\n191692\n201841\n212342\n223201\n234424\n246017\n257986\n270337\n283076\n296209\n309742\n323681\n338032\n352801\n367994\n383617\n399676\n416177..." }, { "input": "7", "output": "2\n17\n46\n97\n176\n289\n442" } ]
1,489,075,874
2,147,483,647
Python 3
OK
TESTS
15
530
4,915,200
import math num = 2 n = int(input()) k = 1 while k < n + 1: inc = ((k*(k + 1))**2 - num) // k print(inc) num = k * (k + 1) k = k + 1
Title: Plus and Square Root Time Limit: None seconds Memory Limit: None megabytes Problem Description: ZS the Coder is playing a game. There is a number displayed on the screen and there are two buttons, '<=+<=' (plus) and '' (square root). Initially, the number 2 is displayed on the screen. There are *n*<=+<=1 levels in the game and ZS the Coder start at the level 1. When ZS the Coder is at level *k*, he can : 1. Press the '<=+<=' button. This increases the number on the screen by exactly *k*. So, if the number on the screen was *x*, it becomes *x*<=+<=*k*.1. Press the '' button. Let the number on the screen be *x*. After pressing this button, the number becomes . After that, ZS the Coder levels up, so his current level becomes *k*<=+<=1. This button can only be pressed when *x* is a perfect square, i.e. *x*<==<=*m*2 for some positive integer *m*. Additionally, after each move, if ZS the Coder is at level *k*, and the number on the screen is *m*, then *m* must be a multiple of *k*. Note that this condition is only checked after performing the press. For example, if ZS the Coder is at level 4 and current number is 100, he presses the '' button and the number turns into 10. Note that at this moment, 10 is not divisible by 4, but this press is still valid, because after it, ZS the Coder is at level 5, and 10 is divisible by 5. ZS the Coder needs your help in beating the game — he wants to reach level *n*<=+<=1. In other words, he needs to press the '' button *n* times. Help him determine the number of times he should press the '<=+<=' button before pressing the '' button at each level. Please note that ZS the Coder wants to find just any sequence of presses allowing him to reach level *n*<=+<=1, but not necessarily a sequence minimizing the number of presses. Input Specification: The first and only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000), denoting that ZS the Coder wants to reach level *n*<=+<=1. Output Specification: Print *n* non-negative integers, one per line. *i*-th of them should be equal to the number of times that ZS the Coder needs to press the '<=+<=' button before pressing the '' button at level *i*. Each number in the output should not exceed 1018. However, the number on the screen can be greater than 1018. It is guaranteed that at least one solution exists. If there are multiple solutions, print any of them. Demo Input: ['3\n', '2\n', '4\n'] Demo Output: ['14\n16\n46\n', '999999999999999998\n44500000000\n', '2\n17\n46\n97\n'] Note: In the first sample case: On the first level, ZS the Coder pressed the ' + ' button 14 times (and the number on screen is initially 2), so the number became 2 + 14·1 = 16. Then, ZS the Coder pressed the '<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c77ded9b8209a8cb488cc2ec7b7fe1dae32a5309.png" style="max-width: 100.0%;max-height: 100.0%;"/>' button, and the number became <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c3d2663f5f74e9220fd5cbccbfaf4ca76ef7284f.png" style="max-width: 100.0%;max-height: 100.0%;"/>. After that, on the second level, ZS pressed the ' + ' button 16 times, so the number becomes 4 + 16·2 = 36. Then, ZS pressed the '<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c77ded9b8209a8cb488cc2ec7b7fe1dae32a5309.png" style="max-width: 100.0%;max-height: 100.0%;"/>' button, levelling up and changing the number into <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/49ab1d31f1435b7c7b96550d63a35be671d3d85a.png" style="max-width: 100.0%;max-height: 100.0%;"/>. After that, on the third level, ZS pressed the ' + ' button 46 times, so the number becomes 6 + 46·3 = 144. Then, ZS pressed the '<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c77ded9b8209a8cb488cc2ec7b7fe1dae32a5309.png" style="max-width: 100.0%;max-height: 100.0%;"/>' button, levelling up and changing the number into <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/499b57d4b7ba5e1e0957767cc182808ca48ef722.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Note that 12 is indeed divisible by 4, so ZS the Coder can reach level 4. Also, note that pressing the ' + ' button 10 times on the third level before levelling up does not work, because the number becomes 6 + 10·3 = 36, and when the '<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c77ded9b8209a8cb488cc2ec7b7fe1dae32a5309.png" style="max-width: 100.0%;max-height: 100.0%;"/>' button is pressed, the number becomes <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/49ab1d31f1435b7c7b96550d63a35be671d3d85a.png" style="max-width: 100.0%;max-height: 100.0%;"/> and ZS the Coder is at Level 4. However, 6 is not divisible by 4 now, so this is not a valid solution. In the second sample case: On the first level, ZS the Coder pressed the ' + ' button 999999999999999998 times (and the number on screen is initially 2), so the number became 2 + 999999999999999998·1 = 10<sup class="upper-index">18</sup>. Then, ZS the Coder pressed the '<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c77ded9b8209a8cb488cc2ec7b7fe1dae32a5309.png" style="max-width: 100.0%;max-height: 100.0%;"/>' button, and the number became <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f07f2a60ab6cecbd2507861a0df57a16a015fd86.png" style="max-width: 100.0%;max-height: 100.0%;"/>. After that, on the second level, ZS pressed the ' + ' button 44500000000 times, so the number becomes 10<sup class="upper-index">9</sup> + 44500000000·2 = 9·10<sup class="upper-index">10</sup>. Then, ZS pressed the '<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c77ded9b8209a8cb488cc2ec7b7fe1dae32a5309.png" style="max-width: 100.0%;max-height: 100.0%;"/>' button, levelling up and changing the number into <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4c4d8829d987a7bcfd597cd1aa101327a66c0eca.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Note that 300000 is a multiple of 3, so ZS the Coder can reach level 3.
```python import math num = 2 n = int(input()) k = 1 while k < n + 1: inc = ((k*(k + 1))**2 - num) // k print(inc) num = k * (k + 1) k = k + 1 ```
3
0
none
none
none
0
[ "none" ]
null
null
Dreamoon loves summing up something for no reason. One day he obtains two integers *a* and *b* occasionally. He wants to calculate the sum of all nice integers. Positive integer *x* is called nice if and , where *k* is some integer number in range [1,<=*a*]. By we denote the quotient of integer division of *x* and *y*. By we denote the remainder of integer division of *x* and *y*. You can read more about these operations here: http://goo.gl/AcsXhT. The answer may be large, so please print its remainder modulo 1<=000<=000<=007 (109<=+<=7). Can you compute it faster than Dreamoon?
The single line of the input contains two integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=107).
Print a single integer representing the answer modulo 1<=000<=000<=007 (109<=+<=7).
[ "1 1\n", "2 2\n" ]
[ "0\n", "8\n" ]
For the first sample, there are no nice integers because <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/03b1dc6bae5180f8a2d8eb85789e8b393e585970.png" style="max-width: 100.0%;max-height: 100.0%;"/> is always zero. For the second sample, the set of nice integers is {3, 5}.
0
[ { "input": "1 1", "output": "0" }, { "input": "2 2", "output": "8" }, { "input": "4 1", "output": "0" }, { "input": "4 2", "output": "24" }, { "input": "4 3", "output": "102" }, { "input": "4 4", "output": "264" }, { "input": "3 4", "output": "162" }, { "input": "2 4", "output": "84" }, { "input": "1 4", "output": "30" }, { "input": "1000 1000", "output": "247750000" }, { "input": "10000000 10000000", "output": "425362313" }, { "input": "10000000 9999999", "output": "930564389" }, { "input": "2 10000000", "output": "990423507" }, { "input": "10000000 2", "output": "19300000" }, { "input": "9999999 2", "output": "999300006" }, { "input": "9999999 9999999", "output": "957764103" }, { "input": "10000000 10000", "output": "723127969" }, { "input": "10000 10000000", "output": "372369289" }, { "input": "2 9999999", "output": "48573499" }, { "input": "123456 123456", "output": "417111819" }, { "input": "6407688 3000816", "output": "895399645" }, { "input": "9956532 1084240", "output": "554368769" }, { "input": "3505377 9167664", "output": "80435138" }, { "input": "7054221 7251088", "output": "7849970" }, { "input": "346169 367216", "output": "358144298" }, { "input": "3895014 8450640", "output": "627604019" }, { "input": "861392 6200826", "output": "180835815" }, { "input": "4410236 9316955", "output": "602743722" }, { "input": "2926377 2367675", "output": "395740917" }, { "input": "1507925 5483803", "output": "727607740" }, { "input": "9832578 8599931", "output": "428281878" }, { "input": "8348718 6683355", "output": "275994807" }, { "input": "1897562 4766779", "output": "148050609" }, { "input": "413703 2850203", "output": "76966774" }, { "input": "8995251 5966331", "output": "451718548" }, { "input": "7319903 9017051", "output": "975259203" }, { "input": "9253578 1799941", "output": "868664771" }, { "input": "7835126 9883365", "output": "119844544" }, { "input": "6351267 7966789", "output": "683811063" }, { "input": "9900111 1082917", "output": "539539383" }, { "input": "1 10000000", "output": "995024507" }, { "input": "123456 234567", "output": "93010021" }, { "input": "888888 888888", "output": "456888843" }, { "input": "1001 1500126", "output": "45074025" }, { "input": "9243243 432434", "output": "203891513" }, { "input": "3 10000000", "output": "986197007" }, { "input": "4108931 211273", "output": "142398939" }, { "input": "999999 92321", "output": "286549418" }, { "input": "999999 999999", "output": "691690639" }, { "input": "191919 123123", "output": "358196438" }, { "input": "999999 1000000", "output": "725921292" }, { "input": "31623 10000000", "output": "382702377" }, { "input": "1000023 1000043", "output": "175442768" }, { "input": "666666 666666", "output": "869302791" }, { "input": "7672285 753250", "output": "461773059" }, { "input": "1000000 1000000", "output": "249917764" }, { "input": "6340794 6874449", "output": "930977735" }, { "input": "9998486 9998486", "output": "988877388" }, { "input": "9999997 9999998", "output": "946983076" } ]
1,413,124,798
2,398
Python 3
OK
TESTS
59
77
0
a, b = map(int, input().split()) ans = b * (b - 1) // 2 * (a + (1 + a) * a * b // 2) % 1000000007 print(ans)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Dreamoon loves summing up something for no reason. One day he obtains two integers *a* and *b* occasionally. He wants to calculate the sum of all nice integers. Positive integer *x* is called nice if and , where *k* is some integer number in range [1,<=*a*]. By we denote the quotient of integer division of *x* and *y*. By we denote the remainder of integer division of *x* and *y*. You can read more about these operations here: http://goo.gl/AcsXhT. The answer may be large, so please print its remainder modulo 1<=000<=000<=007 (109<=+<=7). Can you compute it faster than Dreamoon? Input Specification: The single line of the input contains two integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=107). Output Specification: Print a single integer representing the answer modulo 1<=000<=000<=007 (109<=+<=7). Demo Input: ['1 1\n', '2 2\n'] Demo Output: ['0\n', '8\n'] Note: For the first sample, there are no nice integers because <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/03b1dc6bae5180f8a2d8eb85789e8b393e585970.png" style="max-width: 100.0%;max-height: 100.0%;"/> is always zero. For the second sample, the set of nice integers is {3, 5}.
```python a, b = map(int, input().split()) ans = b * (b - 1) // 2 * (a + (1 + a) * a * b // 2) % 1000000007 print(ans) ```
3
334
A
Candy Bags
PROGRAMMING
1,000
[ "implementation" ]
null
null
Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies. Help him give *n* bags of candies to each brother so that all brothers got the same number of candies.
The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers.
Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order. It is guaranteed that the solution exists at the given limits.
[ "2\n" ]
[ "1 4\n2 3\n" ]
The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
500
[ { "input": "2", "output": "1 4\n2 3" }, { "input": "4", "output": "1 16 2 15\n3 14 4 13\n5 12 6 11\n7 10 8 9" }, { "input": "6", "output": "1 36 2 35 3 34\n4 33 5 32 6 31\n7 30 8 29 9 28\n10 27 11 26 12 25\n13 24 14 23 15 22\n16 21 17 20 18 19" }, { "input": "8", "output": "1 64 2 63 3 62 4 61\n5 60 6 59 7 58 8 57\n9 56 10 55 11 54 12 53\n13 52 14 51 15 50 16 49\n17 48 18 47 19 46 20 45\n21 44 22 43 23 42 24 41\n25 40 26 39 27 38 28 37\n29 36 30 35 31 34 32 33" }, { "input": "10", "output": "1 100 2 99 3 98 4 97 5 96\n6 95 7 94 8 93 9 92 10 91\n11 90 12 89 13 88 14 87 15 86\n16 85 17 84 18 83 19 82 20 81\n21 80 22 79 23 78 24 77 25 76\n26 75 27 74 28 73 29 72 30 71\n31 70 32 69 33 68 34 67 35 66\n36 65 37 64 38 63 39 62 40 61\n41 60 42 59 43 58 44 57 45 56\n46 55 47 54 48 53 49 52 50 51" }, { "input": "100", "output": "1 10000 2 9999 3 9998 4 9997 5 9996 6 9995 7 9994 8 9993 9 9992 10 9991 11 9990 12 9989 13 9988 14 9987 15 9986 16 9985 17 9984 18 9983 19 9982 20 9981 21 9980 22 9979 23 9978 24 9977 25 9976 26 9975 27 9974 28 9973 29 9972 30 9971 31 9970 32 9969 33 9968 34 9967 35 9966 36 9965 37 9964 38 9963 39 9962 40 9961 41 9960 42 9959 43 9958 44 9957 45 9956 46 9955 47 9954 48 9953 49 9952 50 9951\n51 9950 52 9949 53 9948 54 9947 55 9946 56 9945 57 9944 58 9943 59 9942 60 9941 61 9940 62 9939 63 9938 64 9937 65 993..." }, { "input": "62", "output": "1 3844 2 3843 3 3842 4 3841 5 3840 6 3839 7 3838 8 3837 9 3836 10 3835 11 3834 12 3833 13 3832 14 3831 15 3830 16 3829 17 3828 18 3827 19 3826 20 3825 21 3824 22 3823 23 3822 24 3821 25 3820 26 3819 27 3818 28 3817 29 3816 30 3815 31 3814\n32 3813 33 3812 34 3811 35 3810 36 3809 37 3808 38 3807 39 3806 40 3805 41 3804 42 3803 43 3802 44 3801 45 3800 46 3799 47 3798 48 3797 49 3796 50 3795 51 3794 52 3793 53 3792 54 3791 55 3790 56 3789 57 3788 58 3787 59 3786 60 3785 61 3784 62 3783\n63 3782 64 3781 65 378..." }, { "input": "66", "output": "1 4356 2 4355 3 4354 4 4353 5 4352 6 4351 7 4350 8 4349 9 4348 10 4347 11 4346 12 4345 13 4344 14 4343 15 4342 16 4341 17 4340 18 4339 19 4338 20 4337 21 4336 22 4335 23 4334 24 4333 25 4332 26 4331 27 4330 28 4329 29 4328 30 4327 31 4326 32 4325 33 4324\n34 4323 35 4322 36 4321 37 4320 38 4319 39 4318 40 4317 41 4316 42 4315 43 4314 44 4313 45 4312 46 4311 47 4310 48 4309 49 4308 50 4307 51 4306 52 4305 53 4304 54 4303 55 4302 56 4301 57 4300 58 4299 59 4298 60 4297 61 4296 62 4295 63 4294 64 4293 65 4292..." }, { "input": "18", "output": "1 324 2 323 3 322 4 321 5 320 6 319 7 318 8 317 9 316\n10 315 11 314 12 313 13 312 14 311 15 310 16 309 17 308 18 307\n19 306 20 305 21 304 22 303 23 302 24 301 25 300 26 299 27 298\n28 297 29 296 30 295 31 294 32 293 33 292 34 291 35 290 36 289\n37 288 38 287 39 286 40 285 41 284 42 283 43 282 44 281 45 280\n46 279 47 278 48 277 49 276 50 275 51 274 52 273 53 272 54 271\n55 270 56 269 57 268 58 267 59 266 60 265 61 264 62 263 63 262\n64 261 65 260 66 259 67 258 68 257 69 256 70 255 71 254 72 253\n73 252 7..." }, { "input": "68", "output": "1 4624 2 4623 3 4622 4 4621 5 4620 6 4619 7 4618 8 4617 9 4616 10 4615 11 4614 12 4613 13 4612 14 4611 15 4610 16 4609 17 4608 18 4607 19 4606 20 4605 21 4604 22 4603 23 4602 24 4601 25 4600 26 4599 27 4598 28 4597 29 4596 30 4595 31 4594 32 4593 33 4592 34 4591\n35 4590 36 4589 37 4588 38 4587 39 4586 40 4585 41 4584 42 4583 43 4582 44 4581 45 4580 46 4579 47 4578 48 4577 49 4576 50 4575 51 4574 52 4573 53 4572 54 4571 55 4570 56 4569 57 4568 58 4567 59 4566 60 4565 61 4564 62 4563 63 4562 64 4561 65 4560..." }, { "input": "86", "output": "1 7396 2 7395 3 7394 4 7393 5 7392 6 7391 7 7390 8 7389 9 7388 10 7387 11 7386 12 7385 13 7384 14 7383 15 7382 16 7381 17 7380 18 7379 19 7378 20 7377 21 7376 22 7375 23 7374 24 7373 25 7372 26 7371 27 7370 28 7369 29 7368 30 7367 31 7366 32 7365 33 7364 34 7363 35 7362 36 7361 37 7360 38 7359 39 7358 40 7357 41 7356 42 7355 43 7354\n44 7353 45 7352 46 7351 47 7350 48 7349 49 7348 50 7347 51 7346 52 7345 53 7344 54 7343 55 7342 56 7341 57 7340 58 7339 59 7338 60 7337 61 7336 62 7335 63 7334 64 7333 65 7332..." }, { "input": "96", "output": "1 9216 2 9215 3 9214 4 9213 5 9212 6 9211 7 9210 8 9209 9 9208 10 9207 11 9206 12 9205 13 9204 14 9203 15 9202 16 9201 17 9200 18 9199 19 9198 20 9197 21 9196 22 9195 23 9194 24 9193 25 9192 26 9191 27 9190 28 9189 29 9188 30 9187 31 9186 32 9185 33 9184 34 9183 35 9182 36 9181 37 9180 38 9179 39 9178 40 9177 41 9176 42 9175 43 9174 44 9173 45 9172 46 9171 47 9170 48 9169\n49 9168 50 9167 51 9166 52 9165 53 9164 54 9163 55 9162 56 9161 57 9160 58 9159 59 9158 60 9157 61 9156 62 9155 63 9154 64 9153 65 9152..." }, { "input": "12", "output": "1 144 2 143 3 142 4 141 5 140 6 139\n7 138 8 137 9 136 10 135 11 134 12 133\n13 132 14 131 15 130 16 129 17 128 18 127\n19 126 20 125 21 124 22 123 23 122 24 121\n25 120 26 119 27 118 28 117 29 116 30 115\n31 114 32 113 33 112 34 111 35 110 36 109\n37 108 38 107 39 106 40 105 41 104 42 103\n43 102 44 101 45 100 46 99 47 98 48 97\n49 96 50 95 51 94 52 93 53 92 54 91\n55 90 56 89 57 88 58 87 59 86 60 85\n61 84 62 83 63 82 64 81 65 80 66 79\n67 78 68 77 69 76 70 75 71 74 72 73" }, { "input": "88", "output": "1 7744 2 7743 3 7742 4 7741 5 7740 6 7739 7 7738 8 7737 9 7736 10 7735 11 7734 12 7733 13 7732 14 7731 15 7730 16 7729 17 7728 18 7727 19 7726 20 7725 21 7724 22 7723 23 7722 24 7721 25 7720 26 7719 27 7718 28 7717 29 7716 30 7715 31 7714 32 7713 33 7712 34 7711 35 7710 36 7709 37 7708 38 7707 39 7706 40 7705 41 7704 42 7703 43 7702 44 7701\n45 7700 46 7699 47 7698 48 7697 49 7696 50 7695 51 7694 52 7693 53 7692 54 7691 55 7690 56 7689 57 7688 58 7687 59 7686 60 7685 61 7684 62 7683 63 7682 64 7681 65 7680..." }, { "input": "28", "output": "1 784 2 783 3 782 4 781 5 780 6 779 7 778 8 777 9 776 10 775 11 774 12 773 13 772 14 771\n15 770 16 769 17 768 18 767 19 766 20 765 21 764 22 763 23 762 24 761 25 760 26 759 27 758 28 757\n29 756 30 755 31 754 32 753 33 752 34 751 35 750 36 749 37 748 38 747 39 746 40 745 41 744 42 743\n43 742 44 741 45 740 46 739 47 738 48 737 49 736 50 735 51 734 52 733 53 732 54 731 55 730 56 729\n57 728 58 727 59 726 60 725 61 724 62 723 63 722 64 721 65 720 66 719 67 718 68 717 69 716 70 715\n71 714 72 713 73 712 74 7..." }, { "input": "80", "output": "1 6400 2 6399 3 6398 4 6397 5 6396 6 6395 7 6394 8 6393 9 6392 10 6391 11 6390 12 6389 13 6388 14 6387 15 6386 16 6385 17 6384 18 6383 19 6382 20 6381 21 6380 22 6379 23 6378 24 6377 25 6376 26 6375 27 6374 28 6373 29 6372 30 6371 31 6370 32 6369 33 6368 34 6367 35 6366 36 6365 37 6364 38 6363 39 6362 40 6361\n41 6360 42 6359 43 6358 44 6357 45 6356 46 6355 47 6354 48 6353 49 6352 50 6351 51 6350 52 6349 53 6348 54 6347 55 6346 56 6345 57 6344 58 6343 59 6342 60 6341 61 6340 62 6339 63 6338 64 6337 65 6336..." }, { "input": "48", "output": "1 2304 2 2303 3 2302 4 2301 5 2300 6 2299 7 2298 8 2297 9 2296 10 2295 11 2294 12 2293 13 2292 14 2291 15 2290 16 2289 17 2288 18 2287 19 2286 20 2285 21 2284 22 2283 23 2282 24 2281\n25 2280 26 2279 27 2278 28 2277 29 2276 30 2275 31 2274 32 2273 33 2272 34 2271 35 2270 36 2269 37 2268 38 2267 39 2266 40 2265 41 2264 42 2263 43 2262 44 2261 45 2260 46 2259 47 2258 48 2257\n49 2256 50 2255 51 2254 52 2253 53 2252 54 2251 55 2250 56 2249 57 2248 58 2247 59 2246 60 2245 61 2244 62 2243 63 2242 64 2241 65 224..." }, { "input": "54", "output": "1 2916 2 2915 3 2914 4 2913 5 2912 6 2911 7 2910 8 2909 9 2908 10 2907 11 2906 12 2905 13 2904 14 2903 15 2902 16 2901 17 2900 18 2899 19 2898 20 2897 21 2896 22 2895 23 2894 24 2893 25 2892 26 2891 27 2890\n28 2889 29 2888 30 2887 31 2886 32 2885 33 2884 34 2883 35 2882 36 2881 37 2880 38 2879 39 2878 40 2877 41 2876 42 2875 43 2874 44 2873 45 2872 46 2871 47 2870 48 2869 49 2868 50 2867 51 2866 52 2865 53 2864 54 2863\n55 2862 56 2861 57 2860 58 2859 59 2858 60 2857 61 2856 62 2855 63 2854 64 2853 65 285..." }, { "input": "58", "output": "1 3364 2 3363 3 3362 4 3361 5 3360 6 3359 7 3358 8 3357 9 3356 10 3355 11 3354 12 3353 13 3352 14 3351 15 3350 16 3349 17 3348 18 3347 19 3346 20 3345 21 3344 22 3343 23 3342 24 3341 25 3340 26 3339 27 3338 28 3337 29 3336\n30 3335 31 3334 32 3333 33 3332 34 3331 35 3330 36 3329 37 3328 38 3327 39 3326 40 3325 41 3324 42 3323 43 3322 44 3321 45 3320 46 3319 47 3318 48 3317 49 3316 50 3315 51 3314 52 3313 53 3312 54 3311 55 3310 56 3309 57 3308 58 3307\n59 3306 60 3305 61 3304 62 3303 63 3302 64 3301 65 330..." }, { "input": "64", "output": "1 4096 2 4095 3 4094 4 4093 5 4092 6 4091 7 4090 8 4089 9 4088 10 4087 11 4086 12 4085 13 4084 14 4083 15 4082 16 4081 17 4080 18 4079 19 4078 20 4077 21 4076 22 4075 23 4074 24 4073 25 4072 26 4071 27 4070 28 4069 29 4068 30 4067 31 4066 32 4065\n33 4064 34 4063 35 4062 36 4061 37 4060 38 4059 39 4058 40 4057 41 4056 42 4055 43 4054 44 4053 45 4052 46 4051 47 4050 48 4049 49 4048 50 4047 51 4046 52 4045 53 4044 54 4043 55 4042 56 4041 57 4040 58 4039 59 4038 60 4037 61 4036 62 4035 63 4034 64 4033\n65 403..." }, { "input": "44", "output": "1 1936 2 1935 3 1934 4 1933 5 1932 6 1931 7 1930 8 1929 9 1928 10 1927 11 1926 12 1925 13 1924 14 1923 15 1922 16 1921 17 1920 18 1919 19 1918 20 1917 21 1916 22 1915\n23 1914 24 1913 25 1912 26 1911 27 1910 28 1909 29 1908 30 1907 31 1906 32 1905 33 1904 34 1903 35 1902 36 1901 37 1900 38 1899 39 1898 40 1897 41 1896 42 1895 43 1894 44 1893\n45 1892 46 1891 47 1890 48 1889 49 1888 50 1887 51 1886 52 1885 53 1884 54 1883 55 1882 56 1881 57 1880 58 1879 59 1878 60 1877 61 1876 62 1875 63 1874 64 1873 65 187..." } ]
1,401,886,400
2,147,483,647
Python 3
OK
TESTS
21
404
102,400
n = int(input()) part = n * (1 + n * n) // 2 bags = [1] * (n * n) #gifts = [] k = n // 2 for i in range(0, n * n): bags[i] += i rev_bags = bags[::-1] for i in range(0, n): #gifts.append(bags[i * k: (i + 1) * k] + rev_bags[i * k: (i + 1) * k]) print(" ".join(str(s) for s in (bags[i * k: (i + 1) * k] + rev_bags[i * k: (i + 1) * k])))
Title: Candy Bags Time Limit: None seconds Memory Limit: None megabytes Problem Description: Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies. Help him give *n* bags of candies to each brother so that all brothers got the same number of candies. Input Specification: The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers. Output Specification: Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order. It is guaranteed that the solution exists at the given limits. Demo Input: ['2\n'] Demo Output: ['1 4\n2 3\n'] Note: The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
```python n = int(input()) part = n * (1 + n * n) // 2 bags = [1] * (n * n) #gifts = [] k = n // 2 for i in range(0, n * n): bags[i] += i rev_bags = bags[::-1] for i in range(0, n): #gifts.append(bags[i * k: (i + 1) * k] + rev_bags[i * k: (i + 1) * k]) print(" ".join(str(s) for s in (bags[i * k: (i + 1) * k] + rev_bags[i * k: (i + 1) * k]))) ```
3
306
A
Candies
PROGRAMMING
800
[ "implementation" ]
null
null
Polycarpus has got *n* candies and *m* friends (*n*<=≥<=*m*). He wants to make a New Year present with candies to each friend. Polycarpus is planning to present all candies and he wants to do this in the fairest (that is, most equal) manner. He wants to choose such *a**i*, where *a**i* is the number of candies in the *i*-th friend's present, that the maximum *a**i* differs from the least *a**i* as little as possible. For example, if *n* is divisible by *m*, then he is going to present the same number of candies to all his friends, that is, the maximum *a**i* won't differ from the minimum one.
The single line of the input contains a pair of space-separated positive integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100;*n*<=≥<=*m*) — the number of candies and the number of Polycarpus's friends.
Print the required sequence *a*1,<=*a*2,<=...,<=*a**m*, where *a**i* is the number of candies in the *i*-th friend's present. All numbers *a**i* must be positive integers, total up to *n*, the maximum one should differ from the minimum one by the smallest possible value.
[ "12 3\n", "15 4\n", "18 7\n" ]
[ "4 4 4 ", "3 4 4 4 ", "2 2 2 3 3 3 3 " ]
Print *a*<sub class="lower-index">*i*</sub> in any order, separate the numbers by spaces.
500
[ { "input": "12 4", "output": "3 3 3 3 " }, { "input": "15 6", "output": "2 2 2 3 3 3 " }, { "input": "18 8", "output": "2 2 2 2 2 2 3 3 " }, { "input": "1 1", "output": "1 " }, { "input": "2 1", "output": "2 " }, { "input": "100 1", "output": "100 " }, { "input": "100 100", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " }, { "input": "100 10", "output": "10 10 10 10 10 10 10 10 10 10 " }, { "input": "64 8", "output": "8 8 8 8 8 8 8 8 " }, { "input": "81 27", "output": "3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " }, { "input": "100 99", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 " }, { "input": "100 51", "output": "1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 " }, { "input": "100 49", "output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 " }, { "input": "100 13", "output": "7 7 7 7 8 8 8 8 8 8 8 8 8 " }, { "input": "97 11", "output": "8 8 9 9 9 9 9 9 9 9 9 " }, { "input": "19 3", "output": "6 6 7 " }, { "input": "99 10", "output": "9 10 10 10 10 10 10 10 10 10 " }, { "input": "88 5", "output": "17 17 18 18 18 " }, { "input": "87 34", "output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " }, { "input": "97 55", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 " } ]
1,627,482,610
2,147,483,647
PyPy 3
OK
TESTS
20
218
20,172,800
[n,m]=map(int,input().split()) l=[n//m]*m r=n%m for i in range(m-r,m): l[i]=l[i]+1 print(*l)
Title: Candies Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus has got *n* candies and *m* friends (*n*<=≥<=*m*). He wants to make a New Year present with candies to each friend. Polycarpus is planning to present all candies and he wants to do this in the fairest (that is, most equal) manner. He wants to choose such *a**i*, where *a**i* is the number of candies in the *i*-th friend's present, that the maximum *a**i* differs from the least *a**i* as little as possible. For example, if *n* is divisible by *m*, then he is going to present the same number of candies to all his friends, that is, the maximum *a**i* won't differ from the minimum one. Input Specification: The single line of the input contains a pair of space-separated positive integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100;*n*<=≥<=*m*) — the number of candies and the number of Polycarpus's friends. Output Specification: Print the required sequence *a*1,<=*a*2,<=...,<=*a**m*, where *a**i* is the number of candies in the *i*-th friend's present. All numbers *a**i* must be positive integers, total up to *n*, the maximum one should differ from the minimum one by the smallest possible value. Demo Input: ['12 3\n', '15 4\n', '18 7\n'] Demo Output: ['4 4 4 ', '3 4 4 4 ', '2 2 2 3 3 3 3 '] Note: Print *a*<sub class="lower-index">*i*</sub> in any order, separate the numbers by spaces.
```python [n,m]=map(int,input().split()) l=[n//m]*m r=n%m for i in range(m-r,m): l[i]=l[i]+1 print(*l) ```
3
263
A
Beautiful Matrix
PROGRAMMING
800
[ "implementation" ]
null
null
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix: 1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=&lt;<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=&lt;<=5). You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
[ "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n", "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n" ]
[ "3\n", "1\n" ]
none
500
[ { "input": "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "0" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1", "output": "4" }, { "input": "0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "4" }, { "input": "0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "4" }, { "input": "0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0", "output": "4" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0", "output": "3" } ]
1,694,878,883
2,147,483,647
PyPy 3-64
OK
TESTS
25
122
0
ind=0 jnd=0 k=0 l=[[0]*5]*5 for i in range(5): l[i]=list(map(int,input().split())) for j in range(5): if l[i][j]==1: ind=i jnd=j print(abs(ind-2)+abs(jnd-2))
Title: Beautiful Matrix Time Limit: None seconds Memory Limit: None megabytes Problem Description: You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix: 1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=&lt;<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=&lt;<=5). You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful. Input Specification: The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one. Output Specification: Print a single integer — the minimum number of moves needed to make the matrix beautiful. Demo Input: ['0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n', '0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n'] Demo Output: ['3\n', '1\n'] Note: none
```python ind=0 jnd=0 k=0 l=[[0]*5]*5 for i in range(5): l[i]=list(map(int,input().split())) for j in range(5): if l[i][j]==1: ind=i jnd=j print(abs(ind-2)+abs(jnd-2)) ```
3
4
C
Registration System
PROGRAMMING
1,300
[ "data structures", "hashing", "implementation" ]
C. Registration system
5
64
A new e-mail service "Berlandesk" is going to be opened in Berland in the near future. The site administration wants to launch their project as soon as possible, that's why they ask you to help. You're suggested to implement the prototype of site registration system. The system should work on the following principle. Each time a new user wants to register, he sends to the system a request with his name. If such a name does not exist in the system database, it is inserted into the database, and the user gets the response OK, confirming the successful registration. If the name already exists in the system database, the system makes up a new user name, sends it to the user as a prompt and also inserts the prompt into the database. The new name is formed by the following rule. Numbers, starting with 1, are appended one after another to name (name1, name2, ...), among these numbers the least *i* is found so that name*i* does not yet exist in the database.
The first line contains number *n* (1<=≤<=*n*<=≤<=105). The following *n* lines contain the requests to the system. Each request is a non-empty line, and consists of not more than 32 characters, which are all lowercase Latin letters.
Print *n* lines, which are system responses to the requests: OK in case of successful registration, or a prompt with a new name, if the requested name is already taken.
[ "4\nabacaba\nacaba\nabacaba\nacab\n", "6\nfirst\nfirst\nsecond\nsecond\nthird\nthird\n" ]
[ "OK\nOK\nabacaba1\nOK\n", "OK\nfirst1\nOK\nsecond1\nOK\nthird1\n" ]
none
0
[ { "input": "4\nabacaba\nacaba\nabacaba\nacab", "output": "OK\nOK\nabacaba1\nOK" }, { "input": "6\nfirst\nfirst\nsecond\nsecond\nthird\nthird", "output": "OK\nfirst1\nOK\nsecond1\nOK\nthird1" }, { "input": "1\nn", "output": "OK" }, { "input": "2\nu\nu", "output": "OK\nu1" }, { "input": "3\nb\nb\nb", "output": "OK\nb1\nb2" }, { "input": "2\nc\ncn", "output": "OK\nOK" }, { "input": "3\nvhn\nvhn\nh", "output": "OK\nvhn1\nOK" }, { "input": "4\nd\nhd\nd\nh", "output": "OK\nOK\nd1\nOK" }, { "input": "10\nbhnqaptmp\nbhnqaptmp\nbhnqaptmp\nbhnqaptmp\nbhnqaptmp\nbhnqaptmp\nbhnqaptmp\nbhnqaptmp\nbhnqaptmp\nbhnqaptmp", "output": "OK\nbhnqaptmp1\nbhnqaptmp2\nbhnqaptmp3\nbhnqaptmp4\nbhnqaptmp5\nbhnqaptmp6\nbhnqaptmp7\nbhnqaptmp8\nbhnqaptmp9" }, { "input": "10\nfpqhfouqdldravpjttarh\nfpqhfouqdldravpjttarh\nfpqhfouqdldravpjttarh\nfpqhfouqdldravpjttarh\nfpqhfouqdldravpjttarh\nfpqhfouqdldravpjttarh\njmvlplnrmba\nfpqhfouqdldravpjttarh\njmvlplnrmba\nfpqhfouqdldravpjttarh", "output": "OK\nfpqhfouqdldravpjttarh1\nfpqhfouqdldravpjttarh2\nfpqhfouqdldravpjttarh3\nfpqhfouqdldravpjttarh4\nfpqhfouqdldravpjttarh5\nOK\nfpqhfouqdldravpjttarh6\njmvlplnrmba1\nfpqhfouqdldravpjttarh7" }, { "input": "10\niwexcrupuubwzbooj\niwexcrupuubwzbooj\njzsyjnxttliyfpunxyhsouhunenzxedi\njzsyjnxttliyfpunxyhsouhunenzxedi\njzsyjnxttliyfpunxyhsouhunenzxedi\njzsyjnxttliyfpunxyhsouhunenzxedi\njzsyjnxttliyfpunxyhsouhunenzxedi\niwexcrupuubwzbooj\niwexcrupuubwzbooj\niwexcrupuubwzbooj", "output": "OK\niwexcrupuubwzbooj1\nOK\njzsyjnxttliyfpunxyhsouhunenzxedi1\njzsyjnxttliyfpunxyhsouhunenzxedi2\njzsyjnxttliyfpunxyhsouhunenzxedi3\njzsyjnxttliyfpunxyhsouhunenzxedi4\niwexcrupuubwzbooj2\niwexcrupuubwzbooj3\niwexcrupuubwzbooj4" }, { "input": "10\nzzzzzzzzzzzzzzzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "OK\nzzzzzzzzzzzzzzzzzzzzzzzzzzz1\nOK\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz1\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz2\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz3\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz4\nzzzzzzzzzzzzzzzzzzzzzzzzzzz2\nzzzzzzzzzzzzzzzzzzzzzzzzzzz3\nzzzzzzzzzzzzzzzzzzzzzzzzzzz4" }, { "input": "20\nzzzzzzzzz\nzzzzzzzzzzzzz\nz\nzzzzzzzzzzzzz\nzzzzzzzzz\nzzzzzzzzz\nzzzzzzzzzzzzz\nzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzz\nzzzzzzzzzzzzz\nzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzz\nzzzzzzzzzzzzz\nzzzzzzzzzzzzz\nz\nzzzzzzzzz\nzzzzzzzzz\nzzzzzzzzzzzzz\nzzzzzzzzzzzzzzzzzzzzzzzz", "output": "OK\nOK\nOK\nzzzzzzzzzzzzz1\nzzzzzzzzz1\nzzzzzzzzz2\nzzzzzzzzzzzzz2\nzzzzzzzzzzzzz3\nOK\nzzzzzzzzzzzzz4\nzzzzzzzzzzzzz5\nzzzzzzzzzzzzzzzzzzzzzzzz1\nzzzzzzzzzzzzzzzzzzzzzzzz2\nzzzzzzzzzzzzz6\nzzzzzzzzzzzzz7\nz1\nzzzzzzzzz3\nzzzzzzzzz4\nzzzzzzzzzzzzz8\nzzzzzzzzzzzzzzzzzzzzzzzz3" } ]
1,694,708,051
2,147,483,647
Python 3
OK
TESTS
25
1,432
1,228,800
n=int(input()) total=0 dictionary=dict() for i in range(n): string=input() dictionary[string]=dictionary.get(string,-1)+1 if dictionary[string]==0: print('OK') else: print(string+str(dictionary[string]))
Title: Registration System Time Limit: 5 seconds Memory Limit: 64 megabytes Problem Description: A new e-mail service "Berlandesk" is going to be opened in Berland in the near future. The site administration wants to launch their project as soon as possible, that's why they ask you to help. You're suggested to implement the prototype of site registration system. The system should work on the following principle. Each time a new user wants to register, he sends to the system a request with his name. If such a name does not exist in the system database, it is inserted into the database, and the user gets the response OK, confirming the successful registration. If the name already exists in the system database, the system makes up a new user name, sends it to the user as a prompt and also inserts the prompt into the database. The new name is formed by the following rule. Numbers, starting with 1, are appended one after another to name (name1, name2, ...), among these numbers the least *i* is found so that name*i* does not yet exist in the database. Input Specification: The first line contains number *n* (1<=≤<=*n*<=≤<=105). The following *n* lines contain the requests to the system. Each request is a non-empty line, and consists of not more than 32 characters, which are all lowercase Latin letters. Output Specification: Print *n* lines, which are system responses to the requests: OK in case of successful registration, or a prompt with a new name, if the requested name is already taken. Demo Input: ['4\nabacaba\nacaba\nabacaba\nacab\n', '6\nfirst\nfirst\nsecond\nsecond\nthird\nthird\n'] Demo Output: ['OK\nOK\nabacaba1\nOK\n', 'OK\nfirst1\nOK\nsecond1\nOK\nthird1\n'] Note: none
```python n=int(input()) total=0 dictionary=dict() for i in range(n): string=input() dictionary[string]=dictionary.get(string,-1)+1 if dictionary[string]==0: print('OK') else: print(string+str(dictionary[string])) ```
3.847645
918
A
Eleven
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
Eleven wants to choose a new name for herself. As a bunch of geeks, her friends suggested an algorithm to choose a name for her. Eleven wants her name to have exactly *n* characters. Her friend suggested that her name should only consist of uppercase and lowercase letters 'O'. More precisely, they suggested that the *i*-th letter of her name should be 'O' (uppercase) if *i* is a member of Fibonacci sequence, and 'o' (lowercase) otherwise. The letters in the name are numbered from 1 to *n*. Fibonacci sequence is the sequence *f* where - *f*1<==<=1, - *f*2<==<=1, - *f**n*<==<=*f**n*<=-<=2<=+<=*f**n*<=-<=1 (*n*<=&gt;<=2). As her friends are too young to know what Fibonacci sequence is, they asked you to help Eleven determine her new name.
The first and only line of input contains an integer *n* (1<=≤<=*n*<=≤<=1000).
Print Eleven's new name on the first and only line of output.
[ "8\n", "15\n" ]
[ "OOOoOooO\n", "OOOoOooOooooOoo\n" ]
none
500
[ { "input": "8", "output": "OOOoOooO" }, { "input": "15", "output": "OOOoOooOooooOoo" }, { "input": "85", "output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooo" }, { "input": "381", "output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooo" }, { "input": "805", "output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo..." }, { "input": "1000", "output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo..." }, { "input": "1", "output": "O" }, { "input": "2", "output": "OO" }, { "input": "3", "output": "OOO" }, { "input": "5", "output": "OOOoO" }, { "input": "17", "output": "OOOoOooOooooOoooo" }, { "input": "49", "output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooo" }, { "input": "256", "output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooo" }, { "input": "512", "output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo..." }, { "input": "933", "output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo..." }, { "input": "61", "output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooo" }, { "input": "781", "output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo..." }, { "input": "999", "output": "OOOoOooOooooOoooooooOooooooooooooOooooooooooooooooooooOoooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooOooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo..." } ]
1,673,707,066
2,147,483,647
Python 3
OK
TESTS
18
31
0
b = [False for _ in range(1001)] b[1] = True n1 = 1 n2 = 1 while True: n1, n2 = n2, n1+n2 try: b[n2] = True except IndexError: break n = int(input()) for i in range(1, n+1): print('O' if b[i] else 'o', end='') """"""""""""""""""""""""""""""""""""""""" ///////////////////////////////////////// // // // Coded by brownfox2k6 // // // ///////////////////////////////////////// """""""""""""""""""""""""""""""""""""""""
Title: Eleven Time Limit: None seconds Memory Limit: None megabytes Problem Description: Eleven wants to choose a new name for herself. As a bunch of geeks, her friends suggested an algorithm to choose a name for her. Eleven wants her name to have exactly *n* characters. Her friend suggested that her name should only consist of uppercase and lowercase letters 'O'. More precisely, they suggested that the *i*-th letter of her name should be 'O' (uppercase) if *i* is a member of Fibonacci sequence, and 'o' (lowercase) otherwise. The letters in the name are numbered from 1 to *n*. Fibonacci sequence is the sequence *f* where - *f*1<==<=1, - *f*2<==<=1, - *f**n*<==<=*f**n*<=-<=2<=+<=*f**n*<=-<=1 (*n*<=&gt;<=2). As her friends are too young to know what Fibonacci sequence is, they asked you to help Eleven determine her new name. Input Specification: The first and only line of input contains an integer *n* (1<=≤<=*n*<=≤<=1000). Output Specification: Print Eleven's new name on the first and only line of output. Demo Input: ['8\n', '15\n'] Demo Output: ['OOOoOooO\n', 'OOOoOooOooooOoo\n'] Note: none
```python b = [False for _ in range(1001)] b[1] = True n1 = 1 n2 = 1 while True: n1, n2 = n2, n1+n2 try: b[n2] = True except IndexError: break n = int(input()) for i in range(1, n+1): print('O' if b[i] else 'o', end='') """"""""""""""""""""""""""""""""""""""""" ///////////////////////////////////////// // // // Coded by brownfox2k6 // // // ///////////////////////////////////////// """"""""""""""""""""""""""""""""""""""""" ```
3
0
none
none
none
0
[ "none" ]
null
null
The main road in Bytecity is a straight line from south to north. Conveniently, there are coordinates measured in meters from the southernmost building in north direction. At some points on the road there are *n* friends, and *i*-th of them is standing at the point *x**i* meters and can move with any speed no greater than *v**i* meters per second in any of the two directions along the road: south or north. You are to compute the minimum time needed to gather all the *n* friends at some point on the road. Note that the point they meet at doesn't need to have integer coordinate.
The first line contains single integer *n* (2<=≤<=*n*<=≤<=60<=000) — the number of friends. The second line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=109) — the current coordinates of the friends, in meters. The third line contains *n* integers *v*1,<=*v*2,<=...,<=*v**n* (1<=≤<=*v**i*<=≤<=109) — the maximum speeds of the friends, in meters per second.
Print the minimum time (in seconds) needed for all the *n* friends to meet at some point on the road. Your answer will be considered correct, if its absolute or relative error isn't greater than 10<=-<=6. Formally, let your answer be *a*, while jury's answer be *b*. Your answer will be considered correct if holds.
[ "3\n7 1 3\n1 2 1\n", "4\n5 10 3 2\n2 3 2 4\n" ]
[ "2.000000000000\n", "1.400000000000\n" ]
In the first sample, all friends can gather at the point 5 within 2 seconds. In order to achieve this, the first friend should go south all the time at his maximum speed, while the second and the third friends should go north at their maximum speeds.
0
[ { "input": "3\n7 1 3\n1 2 1", "output": "2.000000000000" }, { "input": "4\n5 10 3 2\n2 3 2 4", "output": "1.400000000000" }, { "input": "3\n1 1000000000 2\n1 2 1000000000", "output": "333333332.999999999971" }, { "input": "2\n4 5\n10 8", "output": "0.055555555556" }, { "input": "4\n14 12 10 17\n8 6 5 10", "output": "0.466666666667" }, { "input": "5\n1 15 61 29 43\n15 11 19 19 19", "output": "1.764705882353" }, { "input": "10\n20 11 17 38 15 27 2 40 24 37\n22 30 22 30 28 16 7 20 22 13", "output": "1.750000000000" }, { "input": "2\n1000000000 1000000000\n1 1", "output": "0.000000000000" }, { "input": "3\n1 1 1\n1 1 1", "output": "0.000000000000" } ]
1,614,438,239
2,147,483,647
PyPy 3
OK
TESTS
46
280
11,776,000
n=int(input()) x=[int(i) for i in input().split()] v=[int(i) for i in input().split()] l=min(x) r=max(x) while r-l>1e-6: q=(r-l)/3 m1=l+q m2=r-q t1=0 for i in range(len(x)): if abs(x[i]-m1)/v[i]>t1: t1=abs(x[i]-m1)/v[i] t2=0 for i in range(len(x)): if abs(x[i]-m2)/v[i]>t2: t2=abs(x[i]-m2)/v[i] if t1>t2: l=m1 elif t2>t1: r=m2 else: l=m1 r=m2 t=0 for i in range(n): if abs(x[i]-l)/v[i]>t: t=abs(x[i]-l)/v[i] print(t)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: The main road in Bytecity is a straight line from south to north. Conveniently, there are coordinates measured in meters from the southernmost building in north direction. At some points on the road there are *n* friends, and *i*-th of them is standing at the point *x**i* meters and can move with any speed no greater than *v**i* meters per second in any of the two directions along the road: south or north. You are to compute the minimum time needed to gather all the *n* friends at some point on the road. Note that the point they meet at doesn't need to have integer coordinate. Input Specification: The first line contains single integer *n* (2<=≤<=*n*<=≤<=60<=000) — the number of friends. The second line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=109) — the current coordinates of the friends, in meters. The third line contains *n* integers *v*1,<=*v*2,<=...,<=*v**n* (1<=≤<=*v**i*<=≤<=109) — the maximum speeds of the friends, in meters per second. Output Specification: Print the minimum time (in seconds) needed for all the *n* friends to meet at some point on the road. Your answer will be considered correct, if its absolute or relative error isn't greater than 10<=-<=6. Formally, let your answer be *a*, while jury's answer be *b*. Your answer will be considered correct if holds. Demo Input: ['3\n7 1 3\n1 2 1\n', '4\n5 10 3 2\n2 3 2 4\n'] Demo Output: ['2.000000000000\n', '1.400000000000\n'] Note: In the first sample, all friends can gather at the point 5 within 2 seconds. In order to achieve this, the first friend should go south all the time at his maximum speed, while the second and the third friends should go north at their maximum speeds.
```python n=int(input()) x=[int(i) for i in input().split()] v=[int(i) for i in input().split()] l=min(x) r=max(x) while r-l>1e-6: q=(r-l)/3 m1=l+q m2=r-q t1=0 for i in range(len(x)): if abs(x[i]-m1)/v[i]>t1: t1=abs(x[i]-m1)/v[i] t2=0 for i in range(len(x)): if abs(x[i]-m2)/v[i]>t2: t2=abs(x[i]-m2)/v[i] if t1>t2: l=m1 elif t2>t1: r=m2 else: l=m1 r=m2 t=0 for i in range(n): if abs(x[i]-l)/v[i]>t: t=abs(x[i]-l)/v[i] print(t) ```
3
978
B
File Name
PROGRAMMING
800
[ "greedy", "strings" ]
null
null
You can not just take the file and send it. When Polycarp trying to send a file in the social network "Codehorses", he encountered an unexpected problem. If the name of the file contains three or more "x" (lowercase Latin letters "x") in a row, the system considers that the file content does not correspond to the social network topic. In this case, the file is not sent and an error message is displayed. Determine the minimum number of characters to remove from the file name so after that the name does not contain "xxx" as a substring. Print 0 if the file name does not initially contain a forbidden substring "xxx". You can delete characters in arbitrary positions (not necessarily consecutive). If you delete a character, then the length of a string is reduced by $1$. For example, if you delete the character in the position $2$ from the string "exxxii", then the resulting string is "exxii".
The first line contains integer $n$ $(3 \le n \le 100)$ — the length of the file name. The second line contains a string of length $n$ consisting of lowercase Latin letters only — the file name.
Print the minimum number of characters to remove from the file name so after that the name does not contain "xxx" as a substring. If initially the file name dost not contain a forbidden substring "xxx", print 0.
[ "6\nxxxiii\n", "5\nxxoxx\n", "10\nxxxxxxxxxx\n" ]
[ "1\n", "0\n", "8\n" ]
In the first example Polycarp tried to send a file with name contains number $33$, written in Roman numerals. But he can not just send the file, because it name contains three letters "x" in a row. To send the file he needs to remove any one of this letters.
0
[ { "input": "6\nxxxiii", "output": "1" }, { "input": "5\nxxoxx", "output": "0" }, { "input": "10\nxxxxxxxxxx", "output": "8" }, { "input": "100\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", "output": "98" }, { "input": "99\nxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxaxxa", "output": "0" }, { "input": "3\nxxx", "output": "1" }, { "input": "77\naaabbbcccdddeeefffggghhhiiijjjkkklllmmmnnnooopppqqqrrrssstttuuuvvvwwwxxyyyzzz", "output": "0" }, { "input": "100\nuxxxxxlmexxxxxxxwnxxexxxxxcxxfydxxxxxxvmdxxxxxxisxxxxxxxxidkxxxpxxxxxxxxmnuxxxxjxxxqcxxwmxxxxxxxxmrx", "output": "41" }, { "input": "100\nxxxxxxxxxxxjtxxxxxxxxcxxxxxxcfxxxxzxxxxxxgxxxxxbxxxxbxxxxxxxxdycxxxxokixxxkizxxgcxxxxxxxxexxxxxfxxxc", "output": "49" }, { "input": "100\nuxxxxxlmexxxxxxxwnxxexxxxxcxxfydxxxxxxvmdxxxxxxisxxxxxxxxidkxxxpxxxxxxxxmnuxxxxjxxxqcxxwmxxxxxwxxxxx", "output": "41" }, { "input": "34\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "0" }, { "input": "5\nfcyju", "output": "0" }, { "input": "100\nihygyvdvyeifomhxhkhdkimquvgallbqharcyriyqkidnwykozuhvkwdldlztpabgyuflikychqpdenwzgtlzotyumjgdsrbxxxx", "output": "2" } ]
1,694,258,260
2,147,483,647
PyPy 3-64
OK
TESTS
13
62
0
n = int(input()) file_name = input() count = 0 removals = 0 for char in file_name: if char == 'x': count += 1 if count >= 3: removals += 1 else: count = 0 print(removals)
Title: File Name Time Limit: None seconds Memory Limit: None megabytes Problem Description: You can not just take the file and send it. When Polycarp trying to send a file in the social network "Codehorses", he encountered an unexpected problem. If the name of the file contains three or more "x" (lowercase Latin letters "x") in a row, the system considers that the file content does not correspond to the social network topic. In this case, the file is not sent and an error message is displayed. Determine the minimum number of characters to remove from the file name so after that the name does not contain "xxx" as a substring. Print 0 if the file name does not initially contain a forbidden substring "xxx". You can delete characters in arbitrary positions (not necessarily consecutive). If you delete a character, then the length of a string is reduced by $1$. For example, if you delete the character in the position $2$ from the string "exxxii", then the resulting string is "exxii". Input Specification: The first line contains integer $n$ $(3 \le n \le 100)$ — the length of the file name. The second line contains a string of length $n$ consisting of lowercase Latin letters only — the file name. Output Specification: Print the minimum number of characters to remove from the file name so after that the name does not contain "xxx" as a substring. If initially the file name dost not contain a forbidden substring "xxx", print 0. Demo Input: ['6\nxxxiii\n', '5\nxxoxx\n', '10\nxxxxxxxxxx\n'] Demo Output: ['1\n', '0\n', '8\n'] Note: In the first example Polycarp tried to send a file with name contains number $33$, written in Roman numerals. But he can not just send the file, because it name contains three letters "x" in a row. To send the file he needs to remove any one of this letters.
```python n = int(input()) file_name = input() count = 0 removals = 0 for char in file_name: if char == 'x': count += 1 if count >= 3: removals += 1 else: count = 0 print(removals) ```
3
231
A
Team
PROGRAMMING
800
[ "brute force", "greedy" ]
null
null
One day three best friends Petya, Vasya and Tonya decided to form a team and take part in programming contests. Participants are usually offered several problems during programming contests. Long before the start the friends decided that they will implement a problem if at least two of them are sure about the solution. Otherwise, the friends won't write the problem's solution. This contest offers *n* problems to the participants. For each problem we know, which friend is sure about the solution. Help the friends find the number of problems for which they will write a solution.
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of problems in the contest. Then *n* lines contain three integers each, each integer is either 0 or 1. If the first number in the line equals 1, then Petya is sure about the problem's solution, otherwise he isn't sure. The second number shows Vasya's view on the solution, the third number shows Tonya's view. The numbers on the lines are separated by spaces.
Print a single integer — the number of problems the friends will implement on the contest.
[ "3\n1 1 0\n1 1 1\n1 0 0\n", "2\n1 0 0\n0 1 1\n" ]
[ "2\n", "1\n" ]
In the first sample Petya and Vasya are sure that they know how to solve the first problem and all three of them know how to solve the second problem. That means that they will write solutions for these problems. Only Petya is sure about the solution for the third problem, but that isn't enough, so the friends won't take it. In the second sample the friends will only implement the second problem, as Vasya and Tonya are sure about the solution.
500
[ { "input": "3\n1 1 0\n1 1 1\n1 0 0", "output": "2" }, { "input": "2\n1 0 0\n0 1 1", "output": "1" }, { "input": "1\n1 0 0", "output": "0" }, { "input": "2\n1 0 0\n1 1 1", "output": "1" }, { "input": "5\n1 0 0\n0 1 0\n1 1 1\n0 0 1\n0 0 0", "output": "1" }, { "input": "10\n0 1 0\n0 1 0\n1 1 0\n1 0 0\n0 0 1\n0 1 1\n1 1 1\n1 1 0\n0 0 0\n0 0 0", "output": "4" }, { "input": "15\n0 1 0\n1 0 0\n1 1 0\n1 1 1\n0 1 0\n0 0 1\n1 0 1\n1 0 1\n1 0 1\n0 0 0\n1 1 1\n1 1 0\n0 1 1\n1 1 0\n1 1 1", "output": "10" }, { "input": "50\n0 0 0\n0 1 1\n1 1 1\n0 1 0\n1 0 1\n1 1 1\n0 0 1\n1 0 0\n1 1 0\n1 0 1\n0 1 0\n0 0 1\n1 1 0\n0 1 0\n1 1 0\n0 0 0\n1 1 1\n1 0 1\n0 0 1\n1 1 0\n1 1 1\n0 1 1\n1 1 0\n0 0 0\n0 0 0\n1 1 1\n0 0 0\n1 1 1\n0 1 1\n0 0 1\n0 0 0\n0 0 0\n1 1 0\n1 1 0\n1 0 1\n1 0 0\n1 0 1\n1 0 1\n0 1 1\n1 1 0\n1 1 0\n0 1 0\n1 0 1\n0 0 0\n0 0 0\n0 0 0\n0 0 1\n1 1 1\n0 1 1\n1 0 1", "output": "29" }, { "input": "1\n1 1 1", "output": "1" }, { "input": "8\n0 0 0\n0 0 1\n0 0 0\n0 1 1\n1 0 0\n1 0 1\n1 1 0\n1 1 1", "output": "4" }, { "input": "16\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1", "output": "16" } ]
1,696,922,647
2,147,483,647
Python 3
OK
TESTS
21
92
0
ProblemCount = int(input()) AcceptedSolutions = 0 for i in range(ProblemCount): Problems = input().split(" ") Votes = 0 for Vote in Problems: if Vote == "1": Votes += 1 if Votes >= 2: AcceptedSolutions += 1 print(AcceptedSolutions)
Title: Team Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day three best friends Petya, Vasya and Tonya decided to form a team and take part in programming contests. Participants are usually offered several problems during programming contests. Long before the start the friends decided that they will implement a problem if at least two of them are sure about the solution. Otherwise, the friends won't write the problem's solution. This contest offers *n* problems to the participants. For each problem we know, which friend is sure about the solution. Help the friends find the number of problems for which they will write a solution. Input Specification: The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of problems in the contest. Then *n* lines contain three integers each, each integer is either 0 or 1. If the first number in the line equals 1, then Petya is sure about the problem's solution, otherwise he isn't sure. The second number shows Vasya's view on the solution, the third number shows Tonya's view. The numbers on the lines are separated by spaces. Output Specification: Print a single integer — the number of problems the friends will implement on the contest. Demo Input: ['3\n1 1 0\n1 1 1\n1 0 0\n', '2\n1 0 0\n0 1 1\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample Petya and Vasya are sure that they know how to solve the first problem and all three of them know how to solve the second problem. That means that they will write solutions for these problems. Only Petya is sure about the solution for the third problem, but that isn't enough, so the friends won't take it. In the second sample the friends will only implement the second problem, as Vasya and Tonya are sure about the solution.
```python ProblemCount = int(input()) AcceptedSolutions = 0 for i in range(ProblemCount): Problems = input().split(" ") Votes = 0 for Vote in Problems: if Vote == "1": Votes += 1 if Votes >= 2: AcceptedSolutions += 1 print(AcceptedSolutions) ```
3
39
B
Company Income Growth
PROGRAMMING
1,300
[ "greedy" ]
B. Company Income Growth
2
64
Petya works as a PR manager for a successful Berland company BerSoft. He needs to prepare a presentation on the company income growth since 2001 (the year of its founding) till now. Petya knows that in 2001 the company income amounted to *a*1 billion bourles, in 2002 — to *a*2 billion, ..., and in the current (2000<=+<=*n*)-th year — *a**n* billion bourles. On the base of the information Petya decided to show in his presentation the linear progress history which is in his opinion perfect. According to a graph Petya has already made, in the first year BerSoft company income must amount to 1 billion bourles, in the second year — 2 billion bourles etc., each following year the income increases by 1 billion bourles. Unfortunately, the real numbers are different from the perfect ones. Among the numbers *a**i* can even occur negative ones that are a sign of the company’s losses in some years. That is why Petya wants to ignore some data, in other words, cross some numbers *a**i* from the sequence and leave only some subsequence that has perfect growth. Thus Petya has to choose a sequence of years *y*1, *y*2, ..., *y**k*,so that in the year *y*1 the company income amounted to 1 billion bourles, in the year *y*2 — 2 billion bourles etc., in accordance with the perfect growth dynamics. Help him to choose the longest such sequence.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). The next line contains *n* integers *a**i* (<=-<=100<=≤<=*a**i*<=≤<=100). The number *a**i* determines the income of BerSoft company in the (2000<=+<=*i*)-th year. The numbers in the line are separated by spaces.
Output *k* — the maximum possible length of a perfect sequence. In the next line output the sequence of years *y*1, *y*2, ..., *y**k*. Separate the numbers by spaces. If the answer is not unique, output any. If no solution exist, output one number 0.
[ "10\n-2 1 1 3 2 3 4 -10 -2 5\n", "3\n-1 -2 -3\n" ]
[ "5\n2002 2005 2006 2007 2010\n", "0\n" ]
none
0
[ { "input": "10\n-2 1 1 3 2 3 4 -10 -2 5", "output": "5\n2002 2005 2006 2007 2010 " }, { "input": "3\n-1 -2 -3", "output": "0" }, { "input": "1\n0", "output": "0" }, { "input": "1\n0", "output": "0" }, { "input": "2\n-1 1", "output": "1\n2002 " }, { "input": "2\n-1 1", "output": "1\n2002 " }, { "input": "2\n-2 0", "output": "0" }, { "input": "2\n3 -3", "output": "0" }, { "input": "3\n1 1 1", "output": "1\n2001 " }, { "input": "3\n-2 -2 1", "output": "1\n2003 " }, { "input": "4\n-4 2 3 -1", "output": "0" }, { "input": "5\n-3 -3 -4 2 -2", "output": "0" }, { "input": "100\n-1 -9 0 -2 -7 -3 -1 -1 6 -5 -3 5 10 -5 7 7 4 9 -6 1 0 3 0 1 -9 -9 6 -8 3 7 -9 -4 -5 -6 8 2 2 7 2 2 0 -6 5 3 9 7 -7 -7 -2 6 -3 -4 10 3 3 -4 2 -9 9 9 -6 -1 -7 -3 -6 10 10 -1 -8 -3 8 1 10 9 -9 10 4 -10 -6 9 7 8 5 -3 2 2 2 -7 -6 0 -4 -1 4 -2 -4 -1 2 -8 10 9", "output": "5\n2020 2036 2044 2077 2083 " }, { "input": "100\n5 -1 6 0 2 10 -6 6 -10 0 10 6 -10 3 8 4 2 6 3 -9 1 -1 -8 6 -6 -10 0 -3 -1 -6 -7 -9 -5 -5 5 -10 -3 4 -6 8 -4 2 2 8 2 -7 -4 -4 -9 4 -9 6 -4 -10 -8 -6 2 6 -4 3 3 4 -1 -9 8 9 -6 5 3 9 -4 0 -9 -10 3 -10 2 5 7 0 9 4 5 -3 5 -5 9 -4 6 -7 4 -1 -10 -1 -2 2 -1 4 -10 6", "output": "6\n2021 2042 2060 2062 2068 2089 " }, { "input": "100\n10 9 -10 0 -9 1 10 -6 -3 8 0 5 -7 -9 9 -1 1 4 9 0 4 -7 3 10 -3 -10 -6 4 -3 0 -7 8 -6 -1 5 0 -6 1 5 -7 10 10 -2 -10 -4 -1 -1 2 5 1 6 -7 3 -1 1 10 4 2 4 -3 -10 9 4 5 1 -10 -1 -9 -8 -2 4 -4 -10 -9 -5 -9 -1 -3 -3 -8 -8 -3 6 -3 6 10 -4 -1 -3 8 -9 0 -2 2 1 6 -4 -7 -9 3", "output": "6\n2006 2048 2053 2057 2064 2083 " }, { "input": "100\n-8 -3 -4 2 1 -9 5 4 4 -8 -8 6 -7 -1 9 -6 -1 1 -5 9 6 10 -8 -5 -2 10 7 10 -5 8 -7 5 -4 0 3 9 -9 -5 -4 -2 4 -1 -4 -5 -9 6 2 7 0 -2 2 3 -9 6 -10 6 5 -4 -9 -9 1 -7 -9 -3 -5 -8 4 0 4 10 -8 -6 -8 -9 5 -8 -6 -9 10 5 -6 -7 6 -5 8 3 1 3 7 3 -1 0 5 4 4 7 -7 5 -8 -2", "output": "7\n2005 2047 2052 2067 2075 2083 2089 " }, { "input": "100\n-15 8 -20 -2 -16 3 -19 -15 16 19 -1 -17 -14 9 7 2 20 -16 8 20 10 3 17 -3 2 5 9 15 3 3 -17 12 7 17 -19 -15 -5 16 -10 -4 10 -15 -16 9 -15 15 -16 7 -15 12 -17 7 4 -8 9 -2 -19 14 12 -1 17 -6 19 14 19 -9 -12 3 14 -10 5 7 19 11 5 10 18 2 -6 -12 7 5 -9 20 10 2 -20 6 -10 -16 -6 -5 -15 -2 15 -12 0 -18 2 -5", "output": "0" }, { "input": "100\n11 18 14 -19 -12 -5 -14 -3 13 14 -20 11 -6 12 -2 19 -16 -2 -4 -4 -18 -2 -15 5 -7 -18 11 5 -8 16 17 1 6 8 -20 13 17 -15 -20 7 16 -3 -17 -1 1 -18 2 9 4 2 -18 13 16 -14 -18 -14 16 19 13 4 -14 3 5 -7 5 -17 -14 13 20 16 -13 7 12 15 0 4 16 -16 -6 -15 18 -19 2 8 -4 -8 14 -4 20 -15 -20 14 7 -10 -17 -20 13 -1 -11 -4", "output": "4\n2032 2047 2062 2076 " }, { "input": "100\n3 99 47 -26 96 90 21 -74 -19 -17 80 -43 -24 -82 -39 -40 44 84 87 72 -78 -94 -82 -87 96 71 -29 -90 66 49 -87 19 -31 97 55 -29 -98 16 -23 68 84 -54 74 -71 -60 -32 -72 95 -55 -17 -49 -73 63 39 -31 -91 40 -29 -60 -33 -33 49 93 -56 -81 -18 38 45 -29 63 -37 27 75 13 -100 52 -51 75 -38 -49 28 39 -7 -37 -86 100 -8 28 -89 -57 -17 -52 -98 -92 56 -49 -24 92 28 31", "output": "0" }, { "input": "100\n-36 -88 -23 -71 33 53 21 49 97 -50 -91 24 -83 -100 -77 88 -56 -31 -27 7 -74 -69 -75 -59 78 -66 53 21 -41 72 -31 -93 26 98 58 78 -95 -64 -2 34 74 14 23 -25 -51 -94 -46 100 -44 79 46 -8 79 25 -55 16 35 67 29 58 49 75 -53 80 63 -50 -59 -5 -71 -72 -57 75 -71 6 -5 -44 34 -2 -10 -58 -98 67 -42 22 95 46 -58 88 62 82 85 -74 -94 -5 -64 12 -8 44 -57 87", "output": "0" }, { "input": "100\n-76 -73 -93 85 -30 66 -29 -79 13 -82 -12 90 8 -68 86 15 -5 55 -91 92 80 5 83 19 59 -1 -17 83 52 44 25 -3 83 -51 62 -66 -91 58 20 51 15 -70 -77 22 -92 -4 -70 55 -33 -27 -59 6 94 60 -79 -28 -20 -38 -83 100 -20 100 51 -35 -44 -82 44 -5 88 -6 -26 -79 -16 -2 -61 12 -81 -80 68 -68 -23 96 -77 80 -75 -57 93 97 12 20 -65 -46 -90 81 16 -77 -43 -3 8 -58", "output": "0" }, { "input": "100\n-64 -18 -21 46 28 -100 21 -98 49 -44 -38 52 -85 62 42 -85 19 -27 88 -45 28 -86 -20 15 34 61 17 88 95 21 -40 -2 -12 90 -61 30 7 -13 -74 43 -57 43 -30 51 -19 -51 -22 -2 -76 85 1 -53 -31 -77 96 -61 61 88 -62 88 -6 -59 -70 18 -65 90 91 -27 -86 37 8 -92 -82 -78 -57 -81 17 -53 3 29 -88 -92 -28 49 -2 -41 32 -89 -38 49 22 37 -17 -1 -78 -80 -12 36 -95 30", "output": "1\n2051 " }, { "input": "1\n1", "output": "1\n2001 " }, { "input": "2\n1 2", "output": "2\n2001 2002 " }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "100\n2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 " }, { "input": "100\n-29 -92 -94 81 -100 1 -29 2 3 97 -37 4 5 -52 6 7 -81 86 8 9 10 98 36 -99 11 -18 12 -46 13 14 15 16 17 18 19 20 21 23 53 22 23 24 6 17 45 25 99 26 -53 -51 48 -11 71 27 -56 28 29 -36 30 31 61 -53 -64 32 33 89 -90 34 35 54 36 -89 13 -89 5 37 38 39 -57 26 55 80 40 63 41 42 43 44 92 45 46 47 -10 -10 -32 48 49 50 -10 -99", "output": "50\n2006 2008 2009 2012 2013 2015 2016 2019 2020 2021 2025 2027 2029 2030 2031 2032 2033 2034 2035 2036 2037 2040 2041 2042 2046 2048 2054 2056 2057 2059 2060 2064 2065 2068 2069 2071 2076 2077 2078 2083 2085 2086 2087 2088 2090 2091 2092 2096 2097 2098 " }, { "input": "100\n1 2 84 -97 3 -59 30 -55 4 -6 80 5 6 7 -8 8 3 -96 88 9 10 -20 -95 11 12 67 5 4 -15 -62 -74 13 14 15 16 17 18 19 20 21 22 -15 23 -35 -17 24 25 -99 26 27 69 2 -92 -96 -77 28 29 -95 -75 30 -36 31 17 -88 10 52 32 33 34 -94 35 -38 -16 36 37 38 31 -58 39 -81 83 46 40 41 42 43 -44 44 4 49 -60 17 64 45 46 47 48 49 -38 50", "output": "50\n2001 2002 2005 2009 2012 2013 2014 2016 2020 2021 2024 2025 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2043 2046 2047 2049 2050 2056 2057 2060 2062 2067 2068 2069 2071 2074 2075 2076 2079 2083 2084 2085 2086 2088 2094 2095 2096 2097 2098 2100 " }, { "input": "100\n1 2 80 30 95 51 -3 -12 3 -11 4 -90 5 6 7 8 -18 52 77 -82 9 10 11 -51 -16 70 12 13 14 15 16 17 58 18 36 19 -86 20 21 40 -53 94 22 23 27 67 24 -90 -38 17 -71 40 25 72 -82 26 27 -4 28 29 30 31 32 67 33 34 90 42 -52 35 36 37 -6 38 39 -11 30 40 41 42 -42 21 -96 43 -50 44 -73 16 45 90 46 47 48 2 -37 -88 49 -27 -43 50", "output": "50\n2001 2002 2009 2011 2013 2014 2015 2016 2021 2022 2023 2027 2028 2029 2030 2031 2032 2034 2036 2038 2039 2043 2044 2047 2053 2056 2057 2059 2060 2061 2062 2063 2065 2066 2070 2071 2072 2074 2075 2078 2079 2080 2084 2086 2089 2091 2092 2093 2097 2100 " }, { "input": "100\n1 2 3 -72 6 4 5 6 7 8 9 10 11 -57 12 13 14 -37 74 15 16 17 3 18 19 20 21 22 -6 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 -24 39 40 41 42 43 44 45 -52 46 -65 47 -82 48 49 50 47 -28 51 52 53 54 55 -30 56 57 58 59 12 60 61 62 63 -14 64 65 66 67 -77 68 69 70 71 72 73 74 -4 -6 -75 75 -26 76 49 77 -86", "output": "77\n2001 2002 2003 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2017 2020 2021 2022 2024 2025 2026 2027 2028 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2047 2048 2049 2050 2051 2052 2053 2055 2057 2059 2060 2061 2064 2065 2066 2067 2068 2070 2071 2072 2073 2075 2076 2077 2078 2080 2081 2082 2083 2085 2086 2087 2088 2089 2090 2091 2095 2097 2099 " }, { "input": "100\n10 5 -69 1 -79 -57 -80 87 -38 -54 -91 33 29 81 20 -58 -97 70 2 -13 71 57 -15 98 -18 100 34 -25 -39 75 100 -88 3 95 48 -92 -20 -13 5 4 -19 -99 4 -46 -35 12 -43 -30 -37 -51 77 90 -47 -87 3 -84 -62 -51 69 -38 74 -63 -5 5 6 7 -65 90 -33 -23 8 19 -69 -98 24 28 100 9 -90 -34 -69 72 -15 8 27 -80 6 33 62 -57 -4 10 40 81 -78 58 43 83 57 21", "output": "10\n2004 2019 2033 2040 2064 2065 2066 2071 2078 2092 " }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "10\n2 3 1 3 3 2 1 2 1 2", "output": "2\n2003 2006 " }, { "input": "15\n4 1 4 6 3 2 1 1 3 2 4 4 1 4 1", "output": "4\n2002 2006 2009 2011 " }, { "input": "15\n3 3 3 2 2 2 1 1 1 2 2 2 4 4 4", "output": "2\n2007 2010 " }, { "input": "15\n6 5 2 3 4 1 3 2 4 5 1 2 6 4 4", "output": "2\n2006 2008 " } ]
1,582,375,003
2,147,483,647
Python 3
OK
TESTS
35
218
0
n = int(input()) a = list(map(int, input().split())) j = 1 ans = [] for i in range(len(a)): if a[i] == j: ans.append(2000 + i + 1) j += 1 if len(ans) == 0: print(0) else: print(len(ans)) print(*ans)
Title: Company Income Growth Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: Petya works as a PR manager for a successful Berland company BerSoft. He needs to prepare a presentation on the company income growth since 2001 (the year of its founding) till now. Petya knows that in 2001 the company income amounted to *a*1 billion bourles, in 2002 — to *a*2 billion, ..., and in the current (2000<=+<=*n*)-th year — *a**n* billion bourles. On the base of the information Petya decided to show in his presentation the linear progress history which is in his opinion perfect. According to a graph Petya has already made, in the first year BerSoft company income must amount to 1 billion bourles, in the second year — 2 billion bourles etc., each following year the income increases by 1 billion bourles. Unfortunately, the real numbers are different from the perfect ones. Among the numbers *a**i* can even occur negative ones that are a sign of the company’s losses in some years. That is why Petya wants to ignore some data, in other words, cross some numbers *a**i* from the sequence and leave only some subsequence that has perfect growth. Thus Petya has to choose a sequence of years *y*1, *y*2, ..., *y**k*,so that in the year *y*1 the company income amounted to 1 billion bourles, in the year *y*2 — 2 billion bourles etc., in accordance with the perfect growth dynamics. Help him to choose the longest such sequence. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). The next line contains *n* integers *a**i* (<=-<=100<=≤<=*a**i*<=≤<=100). The number *a**i* determines the income of BerSoft company in the (2000<=+<=*i*)-th year. The numbers in the line are separated by spaces. Output Specification: Output *k* — the maximum possible length of a perfect sequence. In the next line output the sequence of years *y*1, *y*2, ..., *y**k*. Separate the numbers by spaces. If the answer is not unique, output any. If no solution exist, output one number 0. Demo Input: ['10\n-2 1 1 3 2 3 4 -10 -2 5\n', '3\n-1 -2 -3\n'] Demo Output: ['5\n2002 2005 2006 2007 2010\n', '0\n'] Note: none
```python n = int(input()) a = list(map(int, input().split())) j = 1 ans = [] for i in range(len(a)): if a[i] == j: ans.append(2000 + i + 1) j += 1 if len(ans) == 0: print(0) else: print(len(ans)) print(*ans) ```
3.9455
811
A
Vladik and Courtesy
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
At regular competition Vladik and Valera won *a* and *b* candies respectively. Vladik offered 1 his candy to Valera. After that Valera gave Vladik 2 his candies, so that no one thought that he was less generous. Vladik for same reason gave 3 candies to Valera in next turn. More formally, the guys take turns giving each other one candy more than they received in the previous turn. This continued until the moment when one of them couldn’t give the right amount of candy. Candies, which guys got from each other, they don’t consider as their own. You need to know, who is the first who can’t give the right amount of candy.
Single line of input data contains two space-separated integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=109) — number of Vladik and Valera candies respectively.
Pring a single line "Vladik’’ in case, if Vladik first who can’t give right amount of candy, or "Valera’’ otherwise.
[ "1 1\n", "7 6\n" ]
[ "Valera\n", "Vladik\n" ]
Illustration for first test case: <img class="tex-graphics" src="https://espresso.codeforces.com/ad9b7d0e481208de8e3a585aa1d96b9e1dda4fd7.png" style="max-width: 100.0%;max-height: 100.0%;"/> Illustration for second test case: <img class="tex-graphics" src="https://espresso.codeforces.com/9f4836d2ccdffaee5a63898e5d4e6caf2ed4678c.png" style="max-width: 100.0%;max-height: 100.0%;"/>
500
[ { "input": "1 1", "output": "Valera" }, { "input": "7 6", "output": "Vladik" }, { "input": "25 38", "output": "Vladik" }, { "input": "8311 2468", "output": "Valera" }, { "input": "250708 857756", "output": "Vladik" }, { "input": "957985574 24997558", "output": "Valera" }, { "input": "999963734 999994456", "output": "Vladik" }, { "input": "1000000000 1000000000", "output": "Vladik" }, { "input": "946 879", "output": "Valera" }, { "input": "10819 45238", "output": "Vladik" }, { "input": "101357 236928", "output": "Vladik" }, { "input": "1033090 7376359", "output": "Vladik" }, { "input": "9754309 9525494", "output": "Valera" }, { "input": "90706344 99960537", "output": "Vladik" }, { "input": "965161805 908862070", "output": "Valera" }, { "input": "9 11", "output": "Valera" }, { "input": "3 2", "output": "Vladik" }, { "input": "6 6", "output": "Vladik" }, { "input": "4 4", "output": "Valera" }, { "input": "5 5", "output": "Valera" }, { "input": "5 4", "output": "Valera" }, { "input": "12345680 1", "output": "Valera" }, { "input": "9 10", "output": "Valera" }, { "input": "678 76687", "output": "Vladik" }, { "input": "1 678", "output": "Vladik" }, { "input": "45 1678", "output": "Vladik" }, { "input": "3 3", "output": "Vladik" }, { "input": "10 11", "output": "Valera" }, { "input": "2 1", "output": "Valera" }, { "input": "1 2", "output": "Vladik" }, { "input": "2 2", "output": "Vladik" }, { "input": "4 5", "output": "Valera" }, { "input": "9 6", "output": "Valera" }, { "input": "1 5", "output": "Vladik" }, { "input": "7 8", "output": "Vladik" }, { "input": "1000000000 999982505", "output": "Valera" }, { "input": "12 12", "output": "Vladik" }, { "input": "1000 950", "output": "Valera" }, { "input": "10 9", "output": "Valera" }, { "input": "100 9", "output": "Valera" }, { "input": "1000 996", "output": "Vladik" }, { "input": "9 5", "output": "Valera" } ]
1,534,007,188
2,147,483,647
Python 3
OK
TESTS
42
109
0
a, b = map(int, input().split()) temp = int(b ** 0.5) A = int(a ** 0.5) B = temp - (temp * (temp + 1) > b) print(('Vladik', 'Valera')[A > B])
Title: Vladik and Courtesy Time Limit: None seconds Memory Limit: None megabytes Problem Description: At regular competition Vladik and Valera won *a* and *b* candies respectively. Vladik offered 1 his candy to Valera. After that Valera gave Vladik 2 his candies, so that no one thought that he was less generous. Vladik for same reason gave 3 candies to Valera in next turn. More formally, the guys take turns giving each other one candy more than they received in the previous turn. This continued until the moment when one of them couldn’t give the right amount of candy. Candies, which guys got from each other, they don’t consider as their own. You need to know, who is the first who can’t give the right amount of candy. Input Specification: Single line of input data contains two space-separated integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=109) — number of Vladik and Valera candies respectively. Output Specification: Pring a single line "Vladik’’ in case, if Vladik first who can’t give right amount of candy, or "Valera’’ otherwise. Demo Input: ['1 1\n', '7 6\n'] Demo Output: ['Valera\n', 'Vladik\n'] Note: Illustration for first test case: <img class="tex-graphics" src="https://espresso.codeforces.com/ad9b7d0e481208de8e3a585aa1d96b9e1dda4fd7.png" style="max-width: 100.0%;max-height: 100.0%;"/> Illustration for second test case: <img class="tex-graphics" src="https://espresso.codeforces.com/9f4836d2ccdffaee5a63898e5d4e6caf2ed4678c.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python a, b = map(int, input().split()) temp = int(b ** 0.5) A = int(a ** 0.5) B = temp - (temp * (temp + 1) > b) print(('Vladik', 'Valera')[A > B]) ```
3
242
B
Big Segment
PROGRAMMING
1,100
[ "implementation", "sortings" ]
null
null
A coordinate line has *n* segments, the *i*-th segment starts at the position *l**i* and ends at the position *r**i*. We will denote such a segment as [*l**i*,<=*r**i*]. You have suggested that one of the defined segments covers all others. In other words, there is such segment in the given set, which contains all other ones. Now you want to test your assumption. Find in the given set the segment which covers all other segments, and print its number. If such a segment doesn't exist, print -1. Formally we will assume that segment [*a*,<=*b*] covers segment [*c*,<=*d*], if they meet this condition *a*<=≤<=*c*<=≤<=*d*<=≤<=*b*.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of segments. Next *n* lines contain the descriptions of the segments. The *i*-th line contains two space-separated integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=109) — the borders of the *i*-th segment. It is guaranteed that no two segments coincide.
Print a single integer — the number of the segment that covers all other segments in the set. If there's no solution, print -1. The segments are numbered starting from 1 in the order in which they appear in the input.
[ "3\n1 1\n2 2\n3 3\n", "6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10\n" ]
[ "-1\n", "3\n" ]
none
1,000
[ { "input": "3\n1 1\n2 2\n3 3", "output": "-1" }, { "input": "6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10", "output": "3" }, { "input": "4\n1 5\n2 2\n2 4\n2 5", "output": "1" }, { "input": "5\n3 3\n1 3\n2 2\n2 3\n1 2", "output": "2" }, { "input": "7\n7 7\n8 8\n3 7\n1 6\n1 7\n4 7\n2 8", "output": "-1" }, { "input": "3\n2 5\n3 4\n2 3", "output": "1" }, { "input": "16\n15 15\n8 12\n6 9\n15 16\n8 14\n3 12\n7 19\n9 13\n5 16\n9 17\n10 15\n9 14\n9 9\n18 19\n5 15\n6 19", "output": "-1" }, { "input": "9\n1 10\n7 8\n6 7\n1 4\n5 9\n2 8\n3 10\n1 1\n2 3", "output": "1" }, { "input": "1\n1 100000", "output": "1" }, { "input": "6\n2 2\n3 3\n3 5\n4 5\n1 1\n1 5", "output": "6" }, { "input": "33\n2 18\n4 14\n2 16\n10 12\n4 6\n9 17\n2 8\n4 12\n8 20\n1 10\n11 14\n11 17\n8 15\n3 16\n3 4\n6 9\n6 19\n4 17\n17 19\n6 16\n3 12\n1 7\n6 20\n8 16\n12 19\n1 3\n12 18\n6 11\n7 20\n16 18\n4 15\n3 15\n15 19", "output": "-1" }, { "input": "34\n3 8\n5 9\n2 9\n1 4\n3 7\n3 3\n8 9\n6 10\n4 7\n6 7\n5 8\n5 10\n1 5\n8 8\n2 5\n3 5\n7 7\n2 8\n4 5\n1 1\n7 9\n5 6\n2 3\n1 2\n2 4\n8 10\n7 8\n1 3\n4 8\n9 10\n1 7\n10 10\n2 2\n1 8", "output": "-1" }, { "input": "55\n3 4\n6 8\n9 10\n3 9\n9 9\n2 5\n4 8\n3 8\n8 10\n1 1\n4 9\n10 10\n6 6\n8 8\n1 8\n5 5\n4 5\n5 9\n2 2\n3 10\n4 6\n3 6\n1 6\n1 7\n6 10\n2 6\n3 7\n2 4\n4 4\n5 10\n1 4\n2 9\n1 3\n7 9\n7 8\n1 9\n1 10\n2 8\n8 9\n6 7\n1 2\n6 9\n7 7\n4 7\n3 3\n2 7\n4 10\n7 10\n2 3\n2 10\n5 7\n3 5\n5 8\n1 5\n5 6", "output": "37" }, { "input": "1\n999999999 1000000000", "output": "1" }, { "input": "3\n1 20\n2 22\n3 18", "output": "-1" }, { "input": "1\n1000000000 1000000000", "output": "1" }, { "input": "2\n100001 100008\n100005 100006", "output": "1" }, { "input": "1\n1000000 10000000", "output": "1" }, { "input": "3\n3 6\n2 4\n1 5", "output": "-1" }, { "input": "2\n3 5\n1 2", "output": "-1" } ]
1,669,272,624
2,147,483,647
PyPy 3-64
OK
TESTS
45
1,496
31,539,200
from collections import Counter as cnt l,x=[],[] for pratyush in range(int(input())): a,b=list(map(int,input().split())) x.append([a,b]) l.append(b-a) c,m=cnt(l),max(l) if c[m]==1: r,f=l.index(m),0 a,b=x[r] for i,j in x: if a<=i and b>=j: continue else: f=1 break if f: print(-1) else: print(r+1) else: print(-1)
Title: Big Segment Time Limit: None seconds Memory Limit: None megabytes Problem Description: A coordinate line has *n* segments, the *i*-th segment starts at the position *l**i* and ends at the position *r**i*. We will denote such a segment as [*l**i*,<=*r**i*]. You have suggested that one of the defined segments covers all others. In other words, there is such segment in the given set, which contains all other ones. Now you want to test your assumption. Find in the given set the segment which covers all other segments, and print its number. If such a segment doesn't exist, print -1. Formally we will assume that segment [*a*,<=*b*] covers segment [*c*,<=*d*], if they meet this condition *a*<=≤<=*c*<=≤<=*d*<=≤<=*b*. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of segments. Next *n* lines contain the descriptions of the segments. The *i*-th line contains two space-separated integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=109) — the borders of the *i*-th segment. It is guaranteed that no two segments coincide. Output Specification: Print a single integer — the number of the segment that covers all other segments in the set. If there's no solution, print -1. The segments are numbered starting from 1 in the order in which they appear in the input. Demo Input: ['3\n1 1\n2 2\n3 3\n', '6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10\n'] Demo Output: ['-1\n', '3\n'] Note: none
```python from collections import Counter as cnt l,x=[],[] for pratyush in range(int(input())): a,b=list(map(int,input().split())) x.append([a,b]) l.append(b-a) c,m=cnt(l),max(l) if c[m]==1: r,f=l.index(m),0 a,b=x[r] for i,j in x: if a<=i and b>=j: continue else: f=1 break if f: print(-1) else: print(r+1) else: print(-1) ```
3
478
B
Random Teams
PROGRAMMING
1,300
[ "combinatorics", "constructive algorithms", "greedy", "math" ]
null
null
*n* participants of the competition were split into *m* teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends. Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.
The only line of input contains two integers *n* and *m*, separated by a single space (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the number of participants and the number of teams respectively.
The only line of the output should contain two integers *k**min* and *k**max* — the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively.
[ "5 1\n", "3 2\n", "6 3\n" ]
[ "10 10\n", "1 1\n", "3 6\n" ]
In the first sample all the participants get into one team, so there will be exactly ten pairs of friends. In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one. In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people.
1,000
[ { "input": "5 1", "output": "10 10" }, { "input": "3 2", "output": "1 1" }, { "input": "6 3", "output": "3 6" }, { "input": "5 3", "output": "2 3" }, { "input": "10 2", "output": "20 36" }, { "input": "10 6", "output": "4 10" }, { "input": "1000000000 1", "output": "499999999500000000 499999999500000000" }, { "input": "5000000 12", "output": "1041664166668 12499942500066" }, { "input": "1833 195", "output": "7722 1342341" }, { "input": "1000000000 1000000000", "output": "0 0" }, { "input": "1000000000 1000000", "output": "499500000000 499000500499500000" }, { "input": "1000000000 32170", "output": "15541930838100 499967831017438365" }, { "input": "1000000 1000", "output": "499500000 499000999500" }, { "input": "1234 1123", "output": "111 6216" }, { "input": "599222887 298488", "output": "601178656545 179355218158217800" }, { "input": "999999999 500000000", "output": "499999999 124999999750000000" }, { "input": "1000000000 384842119", "output": "845473643 189209609585784021" }, { "input": "1000000000 384842119", "output": "845473643 189209609585784021" }, { "input": "1000000000 2", "output": "249999999500000000 499999998500000001" }, { "input": "1000000000 999999999", "output": "1 1" }, { "input": "38447 383", "output": "1910550 724453080" }, { "input": "100000000 99999799", "output": "201 20301" }, { "input": "1 1", "output": "0 0" }, { "input": "2 1", "output": "1 1" }, { "input": "2 2", "output": "0 0" }, { "input": "10 10", "output": "0 0" } ]
1,658,752,843
2,147,483,647
Python 3
OK
TESTS
26
31
0
from math import comb n = input().split() part = int(n[0]) teams = int(n[1]) num = part-(teams - 1) maxx = 0 minn = 0 if num >= 2: maxx = comb(num, 2) repeat = part / teams reminder = part % teams num3 = int(part/teams) if num3 < 2 and reminder>1: minn = comb(num3+1,2)*reminder else: minn = comb(num3, 2) * (teams - reminder) + comb(num3+1 , 2)*reminder print(minn) print(maxx)
Title: Random Teams Time Limit: None seconds Memory Limit: None megabytes Problem Description: *n* participants of the competition were split into *m* teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends. Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition. Input Specification: The only line of input contains two integers *n* and *m*, separated by a single space (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the number of participants and the number of teams respectively. Output Specification: The only line of the output should contain two integers *k**min* and *k**max* — the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively. Demo Input: ['5 1\n', '3 2\n', '6 3\n'] Demo Output: ['10 10\n', '1 1\n', '3 6\n'] Note: In the first sample all the participants get into one team, so there will be exactly ten pairs of friends. In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one. In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people.
```python from math import comb n = input().split() part = int(n[0]) teams = int(n[1]) num = part-(teams - 1) maxx = 0 minn = 0 if num >= 2: maxx = comb(num, 2) repeat = part / teams reminder = part % teams num3 = int(part/teams) if num3 < 2 and reminder>1: minn = comb(num3+1,2)*reminder else: minn = comb(num3, 2) * (teams - reminder) + comb(num3+1 , 2)*reminder print(minn) print(maxx) ```
3
499
B
Lecture
PROGRAMMING
1,000
[ "implementation", "strings" ]
null
null
You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes. You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning. You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language. You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes.
The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages. The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once. The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}. All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters.
Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input.
[ "4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n", "5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n" ]
[ "codeforces round letter round\n", "hbnyiyc joll joll un joll\n" ]
none
500
[ { "input": "4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest", "output": "codeforces round letter round" }, { "input": "5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll", "output": "hbnyiyc joll joll un joll" }, { "input": "5 5\nqueyqj f\nb vn\ntabzvk qpfzoqx\nytnyonoc hnxsd\njpggvr lchinjmt\nqueyqj jpggvr b ytnyonoc b", "output": "f jpggvr b hnxsd b" }, { "input": "10 22\nazbrll oen\ngh vdyayei\njphveblohx vfglv\nmfyxib jepnvhcuwo\nrpikazqj uam\nl rx\nokjenof qpnyi\nj tixqrno\nod itozmfct\nikkdxmirx ev\nqexftojc p\nkdazb zjs\nmbk ykvqjrxaxu\nhbcwhouzq pwt\nmirpsz zfaegpl\nuhkkvcj rlvwj\nef iqnnwtolrc\npjzfcpmeag ecdayth\nsa qcthz\ncbfhfxi qrnbvdryz\nwqel tj\natx smkbid\nef hbcwhouzq cbfhfxi hbcwhouzq mirpsz cbfhfxi cbfhfxi okjenof pjzfcpmeag kdazb", "output": "ef pwt cbfhfxi pwt mirpsz cbfhfxi cbfhfxi qpnyi ecdayth zjs" }, { "input": "1 1\namit am\namit", "output": "am" }, { "input": "1 1\na c\na", "output": "a" } ]
1,680,428,642
2,147,483,647
Python 3
OK
TESTS
37
62
307,200
n,m=map(int,input().split()) d={} for i in range(m): k,v=map(str,input().split()) d[k]=v l=list(map(str,input().split())) for i in l: j=d[i] if len(j)<len(i): print(j) else: print(i)
Title: Lecture Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes. You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning. You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language. You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes. Input Specification: The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages. The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once. The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}. All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters. Output Specification: Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input. Demo Input: ['4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n', '5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n'] Demo Output: ['codeforces round letter round\n', 'hbnyiyc joll joll un joll\n'] Note: none
```python n,m=map(int,input().split()) d={} for i in range(m): k,v=map(str,input().split()) d[k]=v l=list(map(str,input().split())) for i in l: j=d[i] if len(j)<len(i): print(j) else: print(i) ```
3
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,665,470,337
2,147,483,647
Python 3
OK
TESTS
35
92
0
a,b=input().split() c=int(a)*int(b) if(c%2==0): print(c//2) else: print((c-1)//2)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python a,b=input().split() c=int(a)*int(b) if(c%2==0): print(c//2) else: print((c-1)//2) ```
3.977
75
A
Life Without Zeros
PROGRAMMING
1,000
[ "implementation" ]
A. Life Without Zeros
2
256
Can you imagine our life if we removed all zeros from it? For sure we will have many problems. In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros? For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation. But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation.
The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=≤<=*a*,<=*b*<=≤<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*.
The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise.
[ "101\n102\n", "105\n106\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "101\n102", "output": "YES" }, { "input": "105\n106", "output": "NO" }, { "input": "544\n397", "output": "YES" }, { "input": "822\n280", "output": "NO" }, { "input": "101\n413", "output": "NO" }, { "input": "309\n139", "output": "NO" }, { "input": "693\n970", "output": "NO" }, { "input": "981\n1", "output": "YES" }, { "input": "352\n276", "output": "YES" }, { "input": "164\n691", "output": "YES" }, { "input": "110036\n43", "output": "YES" }, { "input": "100\n1000", "output": "NO" }, { "input": "1000000000\n1000000000", "output": "YES" }, { "input": "999999999\n999999999", "output": "YES" }, { "input": "6\n4", "output": "NO" }, { "input": "123456\n876543", "output": "YES" }, { "input": "1234567\n9876543", "output": "NO" }, { "input": "1111111\n1119111", "output": "NO" }, { "input": "10502405\n40403403", "output": "YES" }, { "input": "1\n1", "output": "YES" }, { "input": "5\n4", "output": "YES" }, { "input": "1\n6", "output": "YES" }, { "input": "40\n17", "output": "NO" }, { "input": "35\n81", "output": "YES" }, { "input": "347\n908", "output": "NO" }, { "input": "2081\n7450", "output": "NO" }, { "input": "84355694\n373629503", "output": "NO" }, { "input": "885992048\n510468672", "output": "NO" }, { "input": "540144752\n647307841", "output": "NO" }, { "input": "341781108\n784147010", "output": "NO" }, { "input": "960440938\n572334653", "output": "NO" }, { "input": "657414510\n768771903", "output": "NO" }, { "input": "501871728\n725074574", "output": "NO" }, { "input": "968\n851", "output": "YES" }, { "input": "943\n939", "output": "YES" }, { "input": "347\n908", "output": "NO" }, { "input": "611\n41", "output": "YES" }, { "input": "737\n289", "output": "NO" }, { "input": "168\n571", "output": "YES" }, { "input": "868\n463", "output": "YES" }, { "input": "815732007\n913882008", "output": "NO" }, { "input": "459039901\n453033850", "output": "NO" }, { "input": "975305404\n484601256", "output": "NO" } ]
1,683,068,412
2,147,483,647
PyPy 3-64
OK
TESTS
43
92
0
x = input() y = input() z = int(x) + int(y) new_x = "" new_y = "" q = "" for i in range(len(x)): if x[i] != '0': new_x += x[i] else: continue for i in range(len(y)): if y[i] != '0': new_y += y[i] else: continue z = str(z) for i in range(len(z)): if z[i] != '0': q += z[i] else: continue p = int(new_x) + int(new_y) q = int(q) if q == p: print("YES") else: print("NO")
Title: Life Without Zeros Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Can you imagine our life if we removed all zeros from it? For sure we will have many problems. In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros? For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation. But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation. Input Specification: The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=≤<=*a*,<=*b*<=≤<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*. Output Specification: The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise. Demo Input: ['101\n102\n', '105\n106\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python x = input() y = input() z = int(x) + int(y) new_x = "" new_y = "" q = "" for i in range(len(x)): if x[i] != '0': new_x += x[i] else: continue for i in range(len(y)): if y[i] != '0': new_y += y[i] else: continue z = str(z) for i in range(len(z)): if z[i] != '0': q += z[i] else: continue p = int(new_x) + int(new_y) q = int(q) if q == p: print("YES") else: print("NO") ```
3.977
747
E
Comments
PROGRAMMING
1,700
[ "dfs and similar", "expression parsing", "implementation", "strings" ]
null
null
A rare article in the Internet is posted without a possibility to comment it. On a Polycarp's website each article has comments feed. Each comment on Polycarp's website is a non-empty string consisting of uppercase and lowercase letters of English alphabet. Comments have tree-like structure, that means each comment except root comments (comments of the highest level) has exactly one parent comment. When Polycarp wants to save comments to his hard drive he uses the following format. Each comment he writes in the following format: - at first, the text of the comment is written; - after that the number of comments is written, for which this comment is a parent comment (i. e. the number of the replies to this comments); - after that the comments for which this comment is a parent comment are written (the writing of these comments uses the same algorithm). For example, if the comments look like: then the first comment is written as "hello,2,ok,0,bye,0", the second is written as "test,0", the third comment is written as "one,1,two,2,a,0,b,0". The whole comments feed is written as: "hello,2,ok,0,bye,0,test,0,one,1,two,2,a,0,b,0". For a given comments feed in the format specified above print the comments in a different format: - at first, print a integer *d* — the maximum depth of nesting comments; - after that print *d* lines, the *i*-th of them corresponds to nesting level *i*; - for the *i*-th row print comments of nesting level *i* in the order of their appearance in the Policarp's comments feed, separated by space.
The first line contains non-empty comments feed in the described format. It consists of uppercase and lowercase letters of English alphabet, digits and commas. It is guaranteed that each comment is a non-empty string consisting of uppercase and lowercase English characters. Each of the number of comments is integer (consisting of at least one digit), and either equals 0 or does not contain leading zeros. The length of the whole string does not exceed 106. It is guaranteed that given structure of comments is valid.
Print comments in a format that is given in the statement. For each level of nesting, comments should be printed in the order they are given in the input.
[ "hello,2,ok,0,bye,0,test,0,one,1,two,2,a,0,b,0\n", "a,5,A,0,a,0,A,0,a,0,A,0\n", "A,3,B,2,C,0,D,1,E,0,F,1,G,0,H,1,I,1,J,0,K,1,L,0,M,2,N,0,O,1,P,0\n" ]
[ "3\nhello test one \nok bye two \na b \n", "2\na \nA a A a A \n", "4\nA K M \nB F H L N O \nC D G I P \nE J \n" ]
The first example is explained in the statements.
2,000
[ { "input": "hello,2,ok,0,bye,0,test,0,one,1,two,2,a,0,b,0", "output": "3\nhello test one \nok bye two \na b " }, { "input": "a,5,A,0,a,0,A,0,a,0,A,0", "output": "2\na \nA a A a A " }, { "input": "A,3,B,2,C,0,D,1,E,0,F,1,G,0,H,1,I,1,J,0,K,1,L,0,M,2,N,0,O,1,P,0", "output": "4\nA K M \nB F H L N O \nC D G I P \nE J " }, { "input": "BA,0", "output": "1\nBA " }, { "input": "Tu,1,dU,1,zncD,0", "output": "3\nTu \ndU \nzncD " }, { "input": "nwEwA,2,C,1,aG,0,xgv,0", "output": "3\nnwEwA \nC xgv \naG " }, { "input": "aa,0", "output": "1\naa " }, { "input": "ab,0,ba,0", "output": "1\nab ba " }, { "input": "aa,0,ab,1,a,0", "output": "2\naa ab \na " }, { "input": "a,0,bb,1,a,1,bb,0", "output": "3\na bb \na \nbb " }, { "input": "a,2,b,0,bb,1,a,1,a,0", "output": "4\na \nb bb \na \na " }, { "input": "bb,0,b,1,a,1,b,1,a,0,b,0", "output": "4\nbb b b \na \nb \na " }, { "input": "b,2,b,0,b,0,b,1,b,0,ba,1,b,0", "output": "2\nb b ba \nb b b b " }, { "input": "bb,0,bb,0,b,1,ab,0,b,0,a,2,ab,0,bb,0", "output": "2\nbb bb b b a \nab ab bb " }, { "input": "ba,0,aa,1,a,0,bb,1,a,0,a,0,a,0,a,1,a,0", "output": "2\nba aa bb a a a \na a a " }, { "input": "a,3,aa,0,b,0,b,0,b,0,a,0,b,2,aa,1,a,0,ab,0", "output": "3\na b a b \naa b b aa ab \na " } ]
1,645,381,185
2,147,483,647
PyPy 3-64
OK
TESTS
44
685
113,049,600
from sys import stdin input = lambda: stdin.buffer.readline().decode().strip() s, stk, levels, ans = input().split(','), [], [[] for _ in range(4 * 10 ** 5)], 0 for i in range(0, len(s), 2): s[i + 1] = int(s[i + 1]) while stk and s[stk[-1] + 1] == 0: stk.pop() if stk: s[stk[-1] + 1] -= 1 stk.append(i) levels[len(stk)].append(s[stk[-1]]) ans = max(ans, len(stk)) print(ans) [print(*levels[i]) for i in range(1, ans + 1)]
Title: Comments Time Limit: None seconds Memory Limit: None megabytes Problem Description: A rare article in the Internet is posted without a possibility to comment it. On a Polycarp's website each article has comments feed. Each comment on Polycarp's website is a non-empty string consisting of uppercase and lowercase letters of English alphabet. Comments have tree-like structure, that means each comment except root comments (comments of the highest level) has exactly one parent comment. When Polycarp wants to save comments to his hard drive he uses the following format. Each comment he writes in the following format: - at first, the text of the comment is written; - after that the number of comments is written, for which this comment is a parent comment (i. e. the number of the replies to this comments); - after that the comments for which this comment is a parent comment are written (the writing of these comments uses the same algorithm). For example, if the comments look like: then the first comment is written as "hello,2,ok,0,bye,0", the second is written as "test,0", the third comment is written as "one,1,two,2,a,0,b,0". The whole comments feed is written as: "hello,2,ok,0,bye,0,test,0,one,1,two,2,a,0,b,0". For a given comments feed in the format specified above print the comments in a different format: - at first, print a integer *d* — the maximum depth of nesting comments; - after that print *d* lines, the *i*-th of them corresponds to nesting level *i*; - for the *i*-th row print comments of nesting level *i* in the order of their appearance in the Policarp's comments feed, separated by space. Input Specification: The first line contains non-empty comments feed in the described format. It consists of uppercase and lowercase letters of English alphabet, digits and commas. It is guaranteed that each comment is a non-empty string consisting of uppercase and lowercase English characters. Each of the number of comments is integer (consisting of at least one digit), and either equals 0 or does not contain leading zeros. The length of the whole string does not exceed 106. It is guaranteed that given structure of comments is valid. Output Specification: Print comments in a format that is given in the statement. For each level of nesting, comments should be printed in the order they are given in the input. Demo Input: ['hello,2,ok,0,bye,0,test,0,one,1,two,2,a,0,b,0\n', 'a,5,A,0,a,0,A,0,a,0,A,0\n', 'A,3,B,2,C,0,D,1,E,0,F,1,G,0,H,1,I,1,J,0,K,1,L,0,M,2,N,0,O,1,P,0\n'] Demo Output: ['3\nhello test one \nok bye two \na b \n', '2\na \nA a A a A \n', '4\nA K M \nB F H L N O \nC D G I P \nE J \n'] Note: The first example is explained in the statements.
```python from sys import stdin input = lambda: stdin.buffer.readline().decode().strip() s, stk, levels, ans = input().split(','), [], [[] for _ in range(4 * 10 ** 5)], 0 for i in range(0, len(s), 2): s[i + 1] = int(s[i + 1]) while stk and s[stk[-1] + 1] == 0: stk.pop() if stk: s[stk[-1] + 1] -= 1 stk.append(i) levels[len(stk)].append(s[stk[-1]]) ans = max(ans, len(stk)) print(ans) [print(*levels[i]) for i in range(1, ans + 1)] ```
3
682
B
Alyona and Mex
PROGRAMMING
1,200
[ "sortings" ]
null
null
Someone gave Alyona an array containing *n* positive integers *a*1,<=*a*2,<=...,<=*a**n*. In one operation, Alyona can choose any element of the array and decrease it, i.e. replace with any positive integer that is smaller than the current one. Alyona can repeat this operation as many times as she wants. In particular, she may not apply any operation to the array at all. Formally, after applying some operations Alyona will get an array of *n* positive integers *b*1,<=*b*2,<=...,<=*b**n* such that 1<=≤<=*b**i*<=≤<=*a**i* for every 1<=≤<=*i*<=≤<=*n*. Your task is to determine the maximum possible value of mex of this array. Mex of an array in this problem is the minimum positive integer that doesn't appear in this array. For example, mex of the array containing 1, 3 and 4 is equal to 2, while mex of the array containing 2, 3 and 2 is equal to 1.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of elements in the Alyona's array. The second line of the input contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the elements of the array.
Print one positive integer — the maximum possible value of mex of the array after Alyona applies some (possibly none) operations.
[ "5\n1 3 3 3 6\n", "2\n2 1\n" ]
[ "5\n", "3\n" ]
In the first sample case if one will decrease the second element value to 2 and the fifth element value to 4 then the mex value of resulting array 1 2 3 3 4 will be equal to 5. To reach the answer to the second sample case one must not decrease any of the array elements.
1,000
[ { "input": "5\n1 3 3 3 6", "output": "5" }, { "input": "2\n2 1", "output": "3" }, { "input": "1\n1", "output": "2" }, { "input": "1\n1000000000", "output": "2" }, { "input": "1\n2", "output": "2" }, { "input": "2\n1 1", "output": "2" }, { "input": "2\n1 3", "output": "3" }, { "input": "2\n2 2", "output": "3" }, { "input": "2\n2 3", "output": "3" }, { "input": "2\n3 3", "output": "3" }, { "input": "3\n1 1 1", "output": "2" }, { "input": "3\n2 1 1", "output": "3" }, { "input": "3\n3 1 1", "output": "3" }, { "input": "3\n1 1 4", "output": "3" }, { "input": "3\n2 1 2", "output": "3" }, { "input": "3\n3 2 1", "output": "4" }, { "input": "3\n2 4 1", "output": "4" }, { "input": "3\n3 3 1", "output": "4" }, { "input": "3\n1 3 4", "output": "4" }, { "input": "3\n4 1 4", "output": "4" }, { "input": "3\n2 2 2", "output": "3" }, { "input": "3\n3 2 2", "output": "4" }, { "input": "3\n4 2 2", "output": "4" }, { "input": "3\n2 3 3", "output": "4" }, { "input": "3\n4 2 3", "output": "4" }, { "input": "3\n4 4 2", "output": "4" }, { "input": "3\n3 3 3", "output": "4" }, { "input": "3\n4 3 3", "output": "4" }, { "input": "3\n4 3 4", "output": "4" }, { "input": "3\n4 4 4", "output": "4" }, { "input": "4\n1 1 1 1", "output": "2" }, { "input": "4\n1 1 2 1", "output": "3" }, { "input": "4\n1 1 3 1", "output": "3" }, { "input": "4\n1 4 1 1", "output": "3" }, { "input": "4\n1 2 1 2", "output": "3" }, { "input": "4\n1 3 2 1", "output": "4" }, { "input": "4\n2 1 4 1", "output": "4" }, { "input": "4\n3 3 1 1", "output": "4" }, { "input": "4\n1 3 4 1", "output": "4" }, { "input": "4\n1 1 4 4", "output": "4" }, { "input": "4\n2 2 2 1", "output": "3" }, { "input": "4\n1 2 2 3", "output": "4" }, { "input": "4\n2 4 1 2", "output": "4" }, { "input": "4\n3 3 1 2", "output": "4" }, { "input": "4\n2 3 4 1", "output": "5" }, { "input": "4\n1 4 2 4", "output": "5" }, { "input": "4\n3 1 3 3", "output": "4" }, { "input": "4\n3 4 3 1", "output": "5" }, { "input": "4\n1 4 4 3", "output": "5" }, { "input": "4\n4 1 4 4", "output": "5" }, { "input": "4\n2 2 2 2", "output": "3" }, { "input": "4\n2 2 3 2", "output": "4" }, { "input": "4\n2 2 2 4", "output": "4" }, { "input": "4\n2 2 3 3", "output": "4" }, { "input": "4\n2 2 3 4", "output": "5" }, { "input": "4\n2 4 4 2", "output": "5" }, { "input": "4\n2 3 3 3", "output": "4" }, { "input": "4\n2 4 3 3", "output": "5" }, { "input": "4\n4 4 2 3", "output": "5" }, { "input": "4\n4 4 4 2", "output": "5" }, { "input": "4\n3 3 3 3", "output": "4" }, { "input": "4\n3 3 3 4", "output": "5" }, { "input": "4\n4 3 3 4", "output": "5" }, { "input": "4\n4 4 3 4", "output": "5" }, { "input": "4\n4 4 4 4", "output": "5" }, { "input": "11\n1 1 1 1 1 1 1 1 1 3 3", "output": "4" }, { "input": "20\n1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8", "output": "9" }, { "input": "4\n2 2 2 3", "output": "4" }, { "input": "3\n1 1 2", "output": "3" }, { "input": "15\n1 2 2 20 23 25 28 60 66 71 76 77 79 99 100", "output": "15" }, { "input": "7\n1 2 2 2 5 5 1", "output": "5" }, { "input": "4\n1 1 1 2", "output": "3" }, { "input": "5\n1 1 1 1 10000", "output": "3" }, { "input": "5\n1 1 1 1 2", "output": "3" }, { "input": "7\n1 3 3 3 3 3 6", "output": "5" }, { "input": "4\n1 1 1 3", "output": "3" }, { "input": "10\n1 1 1 1 1 1 1 1 1 100", "output": "3" }, { "input": "4\n1 1 2 2", "output": "3" }, { "input": "5\n1 1 1 3 4", "output": "4" }, { "input": "8\n1 1 1 1 2 2 3 40", "output": "5" }, { "input": "5\n1 1 1 1 1", "output": "2" }, { "input": "7\n1 2 2 2 2 2 4", "output": "4" }, { "input": "10\n1 1 1 10000000 10000000 10000000 10000000 10000000 10000000 10000000", "output": "9" }, { "input": "10\n1 1 1 1 1 1 1 1 2 3", "output": "4" }, { "input": "4\n8 8 8 8", "output": "5" }, { "input": "5\n5 6 6 6 7", "output": "6" } ]
1,662,453,025
2,147,483,647
PyPy 3-64
OK
TESTS
127
93
13,516,800
n = int(input()) l = list(map(int,input().split())) l.sort() # d = {} # for i in l: # d[i] = d.get(i,0)+1 i = 0 mex = 1 while i<n: if l[i]>=mex: mex += 1 i+=1 print(mex)
Title: Alyona and Mex Time Limit: None seconds Memory Limit: None megabytes Problem Description: Someone gave Alyona an array containing *n* positive integers *a*1,<=*a*2,<=...,<=*a**n*. In one operation, Alyona can choose any element of the array and decrease it, i.e. replace with any positive integer that is smaller than the current one. Alyona can repeat this operation as many times as she wants. In particular, she may not apply any operation to the array at all. Formally, after applying some operations Alyona will get an array of *n* positive integers *b*1,<=*b*2,<=...,<=*b**n* such that 1<=≤<=*b**i*<=≤<=*a**i* for every 1<=≤<=*i*<=≤<=*n*. Your task is to determine the maximum possible value of mex of this array. Mex of an array in this problem is the minimum positive integer that doesn't appear in this array. For example, mex of the array containing 1, 3 and 4 is equal to 2, while mex of the array containing 2, 3 and 2 is equal to 1. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of elements in the Alyona's array. The second line of the input contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the elements of the array. Output Specification: Print one positive integer — the maximum possible value of mex of the array after Alyona applies some (possibly none) operations. Demo Input: ['5\n1 3 3 3 6\n', '2\n2 1\n'] Demo Output: ['5\n', '3\n'] Note: In the first sample case if one will decrease the second element value to 2 and the fifth element value to 4 then the mex value of resulting array 1 2 3 3 4 will be equal to 5. To reach the answer to the second sample case one must not decrease any of the array elements.
```python n = int(input()) l = list(map(int,input().split())) l.sort() # d = {} # for i in l: # d[i] = d.get(i,0)+1 i = 0 mex = 1 while i<n: if l[i]>=mex: mex += 1 i+=1 print(mex) ```
3
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,661,108,152
2,147,483,647
PyPy 3-64
OK
TESTS
30
124
0
def convert(string): list1 = [] list1[:0] = string return list1 a = input() l1 = convert(a) lower = 0 upper = 0 for i in l1: if i.isupper(): upper += 1 else: lower += 1 if upper>lower: print(a.upper()) else: print(a.lower())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python def convert(string): list1 = [] list1[:0] = string return list1 a = input() l1 = convert(a) lower = 0 upper = 0 for i in l1: if i.isupper(): upper += 1 else: lower += 1 if upper>lower: print(a.upper()) else: print(a.lower()) ```
3.969
810
B
Summer sell-off
PROGRAMMING
1,300
[ "greedy", "sortings" ]
null
null
Summer holidays! Someone is going on trips, someone is visiting grandparents, but someone is trying to get a part-time job. This summer Noora decided that she wants to earn some money, and took a job in a shop as an assistant. Shop, where Noora is working, has a plan on the following *n* days. For each day sales manager knows exactly, that in *i*-th day *k**i* products will be put up for sale and exactly *l**i* clients will come to the shop that day. Also, the manager is sure, that everyone, who comes to the shop, buys exactly one product or, if there aren't any left, leaves the shop without buying anything. Moreover, due to the short shelf-life of the products, manager established the following rule: if some part of the products left on the shelves at the end of the day, that products aren't kept on the next day and are sent to the dump. For advertising purposes manager offered to start a sell-out in the shop. He asked Noora to choose any *f* days from *n* next for sell-outs. On each of *f* chosen days the number of products were put up for sale would be doubled. Thus, if on *i*-th day shop planned to put up for sale *k**i* products and Noora has chosen this day for sell-out, shelves of the shop would keep 2·*k**i* products. Consequently, there is an opportunity to sell two times more products on days of sell-out. Noora's task is to choose *f* days to maximize total number of sold products. She asks you to help her with such a difficult problem.
The first line contains two integers *n* and *f* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*f*<=≤<=*n*) denoting the number of days in shop's plan and the number of days that Noora has to choose for sell-out. Each line of the following *n* subsequent lines contains two integers *k**i*,<=*l**i* (0<=≤<=*k**i*,<=*l**i*<=≤<=109) denoting the number of products on the shelves of the shop on the *i*-th day and the number of clients that will come to the shop on *i*-th day.
Print a single integer denoting the maximal number of products that shop can sell.
[ "4 2\n2 1\n3 5\n2 3\n1 5\n", "4 1\n0 2\n0 3\n3 5\n0 6\n" ]
[ "10", "5" ]
In the first example we can choose days with numbers 2 and 4 for sell-out. In this case new numbers of products for sale would be equal to [2, 6, 2, 2] respectively. So on the first day shop will sell 1 product, on the second — 5, on the third — 2, on the fourth — 2. In total 1 + 5 + 2 + 2 = 10 product units. In the second example it is possible to sell 5 products, if you choose third day for sell-out.
1,000
[ { "input": "4 2\n2 1\n3 5\n2 3\n1 5", "output": "10" }, { "input": "4 1\n0 2\n0 3\n3 5\n0 6", "output": "5" }, { "input": "1 1\n5 8", "output": "8" }, { "input": "2 1\n8 12\n6 11", "output": "19" }, { "input": "2 1\n6 7\n5 7", "output": "13" }, { "input": "2 1\n5 7\n6 7", "output": "13" }, { "input": "2 1\n7 8\n3 6", "output": "13" }, { "input": "2 1\n9 10\n5 8", "output": "17" }, { "input": "2 1\n3 6\n7 8", "output": "13" }, { "input": "1 0\n10 20", "output": "10" }, { "input": "2 1\n99 100\n3 6", "output": "105" }, { "input": "4 2\n2 10\n3 10\n9 9\n5 10", "output": "27" }, { "input": "2 1\n3 4\n2 8", "output": "7" }, { "input": "50 2\n74 90\n68 33\n49 88\n52 13\n73 21\n77 63\n27 62\n8 52\n60 57\n42 83\n98 15\n79 11\n77 46\n55 91\n72 100\n70 86\n50 51\n57 39\n20 54\n64 95\n66 22\n79 64\n31 28\n11 89\n1 36\n13 4\n75 62\n16 62\n100 35\n43 96\n97 54\n86 33\n62 63\n94 24\n19 6\n20 58\n38 38\n11 76\n70 40\n44 24\n32 96\n28 100\n62 45\n41 68\n90 52\n16 0\n98 32\n81 79\n67 82\n28 2", "output": "1889" }, { "input": "2 1\n10 5\n2 4", "output": "9" }, { "input": "2 1\n50 51\n30 40", "output": "90" }, { "input": "3 2\n5 10\n5 10\n7 9", "output": "27" }, { "input": "3 1\n1000 1000\n50 100\n2 2", "output": "1102" }, { "input": "2 1\n2 4\n12 12", "output": "16" }, { "input": "2 1\n4 4\n1 2", "output": "6" }, { "input": "2 1\n4000 4000\n1 2", "output": "4002" }, { "input": "2 1\n5 6\n2 4", "output": "9" }, { "input": "3 2\n10 10\n10 10\n1 2", "output": "22" }, { "input": "10 5\n9 1\n11 1\n12 1\n13 1\n14 1\n2 4\n2 4\n2 4\n2 4\n2 4", "output": "25" }, { "input": "2 1\n30 30\n10 20", "output": "50" }, { "input": "1 1\n1 1", "output": "1" }, { "input": "2 1\n10 2\n2 10", "output": "6" }, { "input": "2 1\n4 5\n3 9", "output": "10" }, { "input": "2 1\n100 100\n5 10", "output": "110" }, { "input": "2 1\n14 28\n15 28", "output": "43" }, { "input": "2 1\n100 1\n20 40", "output": "41" }, { "input": "2 1\n5 10\n6 10", "output": "16" }, { "input": "2 1\n29 30\n10 20", "output": "49" }, { "input": "1 0\n12 12", "output": "12" }, { "input": "2 1\n7 8\n4 7", "output": "14" }, { "input": "2 1\n5 5\n2 4", "output": "9" }, { "input": "2 1\n1 2\n228 2", "output": "4" }, { "input": "2 1\n5 10\n100 20", "output": "30" }, { "input": "2 1\n1000 1001\n2 4", "output": "1004" }, { "input": "2 1\n3 9\n7 7", "output": "13" }, { "input": "2 0\n1 1\n1 1", "output": "2" }, { "input": "4 1\n10 10\n10 10\n10 10\n4 6", "output": "36" }, { "input": "18 13\n63 8\n87 100\n18 89\n35 29\n66 81\n27 85\n64 51\n60 52\n32 94\n74 22\n86 31\n43 78\n12 2\n36 2\n67 23\n2 16\n78 71\n34 64", "output": "772" }, { "input": "2 1\n10 18\n17 19", "output": "35" }, { "input": "3 0\n1 1\n1 1\n1 1", "output": "3" }, { "input": "2 1\n4 7\n8 9", "output": "15" }, { "input": "4 2\n2 10\n3 10\n9 10\n5 10", "output": "27" }, { "input": "2 1\n5 7\n3 6", "output": "11" }, { "input": "2 1\n3 4\n12 12", "output": "16" }, { "input": "2 1\n10 11\n9 20", "output": "28" }, { "input": "2 1\n7 8\n2 4", "output": "11" }, { "input": "2 1\n5 10\n7 10", "output": "17" }, { "input": "4 2\n2 10\n3 10\n5 10\n9 10", "output": "27" }, { "input": "2 1\n99 100\n5 10", "output": "109" }, { "input": "4 2\n2 10\n3 10\n5 10\n9 9", "output": "27" }, { "input": "2 1\n3 7\n5 7", "output": "11" }, { "input": "2 1\n10 10\n3 6", "output": "16" }, { "input": "2 1\n100 1\n2 4", "output": "5" }, { "input": "5 0\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "5" }, { "input": "3 1\n3 7\n4 5\n2 3", "output": "12" }, { "input": "2 1\n3 9\n7 8", "output": "13" }, { "input": "2 1\n10 2\n3 4", "output": "6" }, { "input": "2 1\n40 40\n3 5", "output": "45" }, { "input": "2 1\n5 3\n1 2", "output": "5" }, { "input": "10 5\n9 5\n10 5\n11 5\n12 5\n13 5\n2 4\n2 4\n2 4\n2 4\n2 4", "output": "45" }, { "input": "3 1\n1 5\n1 5\n4 4", "output": "7" }, { "input": "4 0\n1 1\n1 1\n1 1\n1 1", "output": "4" }, { "input": "4 1\n1000 1001\n1000 1001\n2 4\n1 2", "output": "2005" }, { "input": "2 1\n15 30\n50 59", "output": "80" }, { "input": "2 1\n8 8\n3 5", "output": "13" }, { "input": "2 1\n4 5\n2 5", "output": "8" }, { "input": "3 2\n3 3\n1 2\n1 2", "output": "7" }, { "input": "3 1\n2 5\n2 5\n4 4", "output": "10" }, { "input": "2 1\n3 10\n50 51", "output": "56" }, { "input": "4 2\n2 4\n2 4\n9 10\n9 10", "output": "26" }, { "input": "2 1\n3 5\n8 8", "output": "13" }, { "input": "2 1\n100 150\n70 150", "output": "240" }, { "input": "2 1\n4 5\n3 6", "output": "10" }, { "input": "2 1\n20 10\n3 5", "output": "15" }, { "input": "15 13\n76167099 92301116\n83163126 84046805\n45309500 65037149\n29982002 77381688\n76738161 52935441\n37889502 25466134\n55955619 14197941\n31462620 12999429\n64648384 8824773\n3552934 68992494\n2823376 9338427\n86832070 3763091\n67753633 2162190\n302887 92011825\n84894984 410533", "output": "435467000" }, { "input": "2 1\n8 7\n3 6", "output": "13" }, { "input": "2 1\n7 8\n3 5", "output": "12" }, { "input": "2 1\n10 10\n1 3", "output": "12" }, { "input": "2 1\n9 10\n2 4", "output": "13" }, { "input": "3 1\n10 11\n12 13\n8 10", "output": "32" }, { "input": "2 1\n5 10\n7 7", "output": "17" }, { "input": "4 2\n90 91\n2 10\n2 10\n2 10", "output": "100" }, { "input": "2 1\n2 4\n4 4", "output": "8" }, { "input": "2 1\n2 3\n4 3", "output": "6" }, { "input": "2 1\n40 45\n50 52", "output": "95" }, { "input": "3 1\n1 4\n2 4\n3 4", "output": "8" }, { "input": "2 1\n1 2\n1000 1000", "output": "1002" }, { "input": "2 1\n80 100\n70 95", "output": "175" } ]
1,656,988,320
2,147,483,647
Python 3
OK
TESTS
159
342
2,764,800
n,f = map(int,input().split()) days = [] total = 0 for i in range(n): k,l = map(int,input().split()) if k == 0: continue sales = min(k,l) total +=sales l -=sales days.append(min(k,l)) days.sort(reverse=1) # print(days) print(total + sum(days[:f]))
Title: Summer sell-off Time Limit: None seconds Memory Limit: None megabytes Problem Description: Summer holidays! Someone is going on trips, someone is visiting grandparents, but someone is trying to get a part-time job. This summer Noora decided that she wants to earn some money, and took a job in a shop as an assistant. Shop, where Noora is working, has a plan on the following *n* days. For each day sales manager knows exactly, that in *i*-th day *k**i* products will be put up for sale and exactly *l**i* clients will come to the shop that day. Also, the manager is sure, that everyone, who comes to the shop, buys exactly one product or, if there aren't any left, leaves the shop without buying anything. Moreover, due to the short shelf-life of the products, manager established the following rule: if some part of the products left on the shelves at the end of the day, that products aren't kept on the next day and are sent to the dump. For advertising purposes manager offered to start a sell-out in the shop. He asked Noora to choose any *f* days from *n* next for sell-outs. On each of *f* chosen days the number of products were put up for sale would be doubled. Thus, if on *i*-th day shop planned to put up for sale *k**i* products and Noora has chosen this day for sell-out, shelves of the shop would keep 2·*k**i* products. Consequently, there is an opportunity to sell two times more products on days of sell-out. Noora's task is to choose *f* days to maximize total number of sold products. She asks you to help her with such a difficult problem. Input Specification: The first line contains two integers *n* and *f* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*f*<=≤<=*n*) denoting the number of days in shop's plan and the number of days that Noora has to choose for sell-out. Each line of the following *n* subsequent lines contains two integers *k**i*,<=*l**i* (0<=≤<=*k**i*,<=*l**i*<=≤<=109) denoting the number of products on the shelves of the shop on the *i*-th day and the number of clients that will come to the shop on *i*-th day. Output Specification: Print a single integer denoting the maximal number of products that shop can sell. Demo Input: ['4 2\n2 1\n3 5\n2 3\n1 5\n', '4 1\n0 2\n0 3\n3 5\n0 6\n'] Demo Output: ['10', '5'] Note: In the first example we can choose days with numbers 2 and 4 for sell-out. In this case new numbers of products for sale would be equal to [2, 6, 2, 2] respectively. So on the first day shop will sell 1 product, on the second — 5, on the third — 2, on the fourth — 2. In total 1 + 5 + 2 + 2 = 10 product units. In the second example it is possible to sell 5 products, if you choose third day for sell-out.
```python n,f = map(int,input().split()) days = [] total = 0 for i in range(n): k,l = map(int,input().split()) if k == 0: continue sales = min(k,l) total +=sales l -=sales days.append(min(k,l)) days.sort(reverse=1) # print(days) print(total + sum(days[:f])) ```
3
731
A
Night at the Museum
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition. Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture: After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'. Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it.
The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters.
Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input.
[ "zeus\n", "map\n", "ares\n" ]
[ "18\n", "35\n", "34\n" ]
To print the string from the first sample it would be optimal to perform the following sequence of rotations: 1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
500
[ { "input": "zeus", "output": "18" }, { "input": "map", "output": "35" }, { "input": "ares", "output": "34" }, { "input": "l", "output": "11" }, { "input": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv", "output": "99" }, { "input": "gngvi", "output": "44" }, { "input": "aaaaa", "output": "0" }, { "input": "a", "output": "0" }, { "input": "z", "output": "1" }, { "input": "vyadeehhikklnoqrs", "output": "28" }, { "input": "jjiihhhhgggfedcccbazyxx", "output": "21" }, { "input": "fyyptqqxuciqvwdewyppjdzur", "output": "117" }, { "input": "fqcnzmzmbobmancqcoalzmanaobpdse", "output": "368" }, { "input": "zzzzzaaaaaaazzzzzzaaaaaaazzzzzzaaaazzzza", "output": "8" }, { "input": "aucnwhfixuruefkypvrvnvznwtjgwlghoqtisbkhuwxmgzuljvqhmnwzisnsgjhivnjmbknptxatdkelhzkhsuxzrmlcpeoyukiy", "output": "644" }, { "input": "sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss", "output": "8" }, { "input": "nypjygrdtpzpigzyrisqeqfriwgwlengnezppgttgtndbrryjdl", "output": "421" }, { "input": "pnllnnmmmmoqqqqqrrtssssuuvtsrpopqoonllmonnnpppopnonoopooqpnopppqppqstuuuwwwwvxzxzzaa", "output": "84" }, { "input": "btaoahqgxnfsdmzsjxgvdwjukcvereqeskrdufqfqgzqfsftdqcthtkcnaipftcnco", "output": "666" }, { "input": "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrwwwwwwwwww", "output": "22" }, { "input": "uyknzcrwjyzmscqucclvacmorepdgmnyhmakmmnygqwglrxkxhkpansbmruwxdeoprxzmpsvwackopujxbbkpwyeggsvjykpxh", "output": "643" }, { "input": "gzwpooohffcxwtpjgfzwtooiccxsrrokezutoojdzwsrmmhecaxwrojcbyrqlfdwwrliiib", "output": "245" }, { "input": "dbvnkktasjdwqsrzfwwtmjgbcxggdxsoeilecihduypktkkbwfbruxzzhlttrssicgdwqruddwrlbtxgmhdbatzvdxbbro", "output": "468" }, { "input": "mdtvowlktxzzbuaeiuebfeorgbdczauxsovbucactkvyvemsknsjfhifqgycqredzchipmkvzbxdjkcbyukomjlzvxzoswumned", "output": "523" }, { "input": "kkkkkkkaaaaxxaaaaaaaxxxxxxxxaaaaaaxaaaaaaaaaakkkkkkkkkaaaaaaannnnnxxxxkkkkkkkkaannnnnnna", "output": "130" }, { "input": "dffiknqqrsvwzcdgjkmpqtuwxadfhkkkmpqrtwxyadfggjmpppsuuwyyzcdgghhknnpsvvvwwwyabccffiloqruwwyyzabeeehh", "output": "163" }, { "input": "qpppmmkjihgecbyvvsppnnnkjiffeebaaywutrrqpmkjhgddbzzzywtssssqnmmljheddbbaxvusrqonmlifedbbzyywwtqnkheb", "output": "155" }, { "input": "wvvwwwvvwxxxyyyxxwwvwwvuttttttuvvwxxwxxyxxwwwwwvvuttssrssstsssssrqpqqppqrssrsrrssrssssrrsrqqrrqpppqp", "output": "57" }, { "input": "dqcpcobpcobnznamznamzlykxkxlxlylzmaobnaobpbnanbpcoaobnboaoboanzlymzmykylymylzlylymanboanaocqdqesfrfs", "output": "1236" }, { "input": "nnnnnnnnnnnnnnnnnnnnaaaaaaaaaaaaaaaaaaaakkkkkkkkkkkkkkkkkkkkkkaaaaaaaaaaaaaaaaaaaaxxxxxxxxxxxxxxxxxx", "output": "49" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "0" }, { "input": "cgilqsuwzaffilptwwbgmnttyyejkorxzflqvzbddhmnrvxchijpuwaeiimosxyycejlpquuwbfkpvbgijkqvxybdjjjptxcfkqt", "output": "331" }, { "input": "ufsepwgtzgtgjssxaitgpailuvgqweoppszjwhoxdhhhpwwdorwfrdjwcdekxiktwziqwbkvbknrtvajpyeqbjvhiikxxaejjpte", "output": "692" }, { "input": "uhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuh", "output": "1293" }, { "input": "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvgggggggggggggggggggggggggggggggggggggggggggggggggg", "output": "16" }, { "input": "lyidmjyzbszgiwkxhhpnnthfwcvvstueionspfrvqgkvngmwyhezlosrpdnbvtcjjxxsykixwnepbumaacdzadlqhnjlcejovple", "output": "616" }, { "input": "etzqqbaveffalkdguunfmyyrzkccnxmlluxeasqmopxzfvlkbhipqdwjgrttoemruohgwukfisdhznqyvhswbbypoxgtxyappcrl", "output": "605" }, { "input": "lizussgedcbdjhrbeskhgatyozvwwekanlggcstijrniivupmcoofbaxfqrxddyzzptwxcftlhajsmmkkriarrqtkoauhcqefyud", "output": "549" }, { "input": "dvjuvgfdogpknmbowlsfjzcimnygbtjiucyeeroqwhmzwpjqxlbjkqawrdtmvxbiqufllfuqibxvmtdrwaqkjblxqjpwzmhwqore", "output": "688" }, { "input": "eeycuijtbgynmiczjfslwobmnkpgodfgvujvduyfeqchuaoktqrrairkkmmsjahltfcxwtpzzyddxrqfxabfoocmpuviinrjitsc", "output": "604" }, { "input": "cgglnakewwvzoytaghksebrhjdbcdegssuzilrcppayxtgxopybbwshvyqnzhdsifkuwghourmeottrgjwdqpihbklvfzxpomqsa", "output": "572" }, { "input": "aexullmxncckzryymfnuugdklaffevabqqztelpvojecljnhqldazdcaamubpenwxikysxxjjctvbndprsolzehywmgnvkgqvrfp", "output": "609" }, { "input": "psnoieutsvvcwfhtnnphhxkwigzsbzyjmdiyl", "output": "223" }, { "input": "aa", "output": "0" } ]
1,670,312,560
2,147,483,647
Python 3
OK
TESTS
44
46
0
s=input() pos=ord('a') s1=0 for i in s: s1+=min(26-abs(ord(i)-pos),abs(ord(i)-pos)) pos=ord(i) print(s1)
Title: Night at the Museum Time Limit: None seconds Memory Limit: None megabytes Problem Description: Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition. Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture: After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'. Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it. Input Specification: The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters. Output Specification: Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input. Demo Input: ['zeus\n', 'map\n', 'ares\n'] Demo Output: ['18\n', '35\n', '34\n'] Note: To print the string from the first sample it would be optimal to perform the following sequence of rotations: 1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
```python s=input() pos=ord('a') s1=0 for i in s: s1+=min(26-abs(ord(i)-pos),abs(ord(i)-pos)) pos=ord(i) print(s1) ```
3
716
A
Crazy Computer
PROGRAMMING
800
[ "implementation" ]
null
null
ZS the Coder is coding on a crazy computer. If you don't type in a word for a *c* consecutive seconds, everything you typed disappear! More formally, if you typed a word at second *a* and then the next word at second *b*, then if *b*<=-<=*a*<=≤<=*c*, just the new word is appended to other words on the screen. If *b*<=-<=*a*<=&gt;<=*c*, then everything on the screen disappears and after that the word you have typed appears on the screen. For example, if *c*<==<=5 and you typed words at seconds 1,<=3,<=8,<=14,<=19,<=20 then at the second 8 there will be 3 words on the screen. After that, everything disappears at the second 13 because nothing was typed. At the seconds 14 and 19 another two words are typed, and finally, at the second 20, one more word is typed, and a total of 3 words remain on the screen. You're given the times when ZS the Coder typed the words. Determine how many words remain on the screen after he finished typing everything.
The first line contains two integers *n* and *c* (1<=≤<=*n*<=≤<=100<=000,<=1<=≤<=*c*<=≤<=109) — the number of words ZS the Coder typed and the crazy computer delay respectively. The next line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=&lt;<=*t*2<=&lt;<=...<=&lt;<=*t**n*<=≤<=109), where *t**i* denotes the second when ZS the Coder typed the *i*-th word.
Print a single positive integer, the number of words that remain on the screen after all *n* words was typed, in other words, at the second *t**n*.
[ "6 5\n1 3 8 14 19 20\n", "6 1\n1 3 5 7 9 10\n" ]
[ "3", "2" ]
The first sample is already explained in the problem statement. For the second sample, after typing the first word at the second 1, it disappears because the next word is typed at the second 3 and 3 - 1 &gt; 1. Similarly, only 1 word will remain at the second 9. Then, a word is typed at the second 10, so there will be two words on the screen, as the old word won't disappear because 10 - 9 ≤ 1.
500
[ { "input": "6 5\n1 3 8 14 19 20", "output": "3" }, { "input": "6 1\n1 3 5 7 9 10", "output": "2" }, { "input": "1 1\n1000000000", "output": "1" }, { "input": "5 5\n1 7 12 13 14", "output": "4" }, { "input": "2 1000000000\n1 1000000000", "output": "2" }, { "input": "3 5\n1 10 20", "output": "1" }, { "input": "3 10\n1 2 3", "output": "3" }, { "input": "2 1\n1 100", "output": "1" }, { "input": "3 1\n1 2 10", "output": "1" }, { "input": "2 1\n1 2", "output": "2" } ]
1,683,278,470
2,147,483,647
Python 3
OK
TESTS
81
77
13,209,600
n,c = map(int,input().split()) a = list(map(int,input().split())) m = 0 for i in range(1,len(a)): if((a[-i] - a[-(i+1)]) <= c): m = m+1 continue else: break print(m+1)
Title: Crazy Computer Time Limit: None seconds Memory Limit: None megabytes Problem Description: ZS the Coder is coding on a crazy computer. If you don't type in a word for a *c* consecutive seconds, everything you typed disappear! More formally, if you typed a word at second *a* and then the next word at second *b*, then if *b*<=-<=*a*<=≤<=*c*, just the new word is appended to other words on the screen. If *b*<=-<=*a*<=&gt;<=*c*, then everything on the screen disappears and after that the word you have typed appears on the screen. For example, if *c*<==<=5 and you typed words at seconds 1,<=3,<=8,<=14,<=19,<=20 then at the second 8 there will be 3 words on the screen. After that, everything disappears at the second 13 because nothing was typed. At the seconds 14 and 19 another two words are typed, and finally, at the second 20, one more word is typed, and a total of 3 words remain on the screen. You're given the times when ZS the Coder typed the words. Determine how many words remain on the screen after he finished typing everything. Input Specification: The first line contains two integers *n* and *c* (1<=≤<=*n*<=≤<=100<=000,<=1<=≤<=*c*<=≤<=109) — the number of words ZS the Coder typed and the crazy computer delay respectively. The next line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=&lt;<=*t*2<=&lt;<=...<=&lt;<=*t**n*<=≤<=109), where *t**i* denotes the second when ZS the Coder typed the *i*-th word. Output Specification: Print a single positive integer, the number of words that remain on the screen after all *n* words was typed, in other words, at the second *t**n*. Demo Input: ['6 5\n1 3 8 14 19 20\n', '6 1\n1 3 5 7 9 10\n'] Demo Output: ['3', '2'] Note: The first sample is already explained in the problem statement. For the second sample, after typing the first word at the second 1, it disappears because the next word is typed at the second 3 and 3 - 1 &gt; 1. Similarly, only 1 word will remain at the second 9. Then, a word is typed at the second 10, so there will be two words on the screen, as the old word won't disappear because 10 - 9 ≤ 1.
```python n,c = map(int,input().split()) a = list(map(int,input().split())) m = 0 for i in range(1,len(a)): if((a[-i] - a[-(i+1)]) <= c): m = m+1 continue else: break print(m+1) ```
3
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,580,890,989
2,147,483,647
Python 3
OK
TESTS
102
124
0
x=input() y=input() res="" for i in range (len(x)): res=(int(x[i]) ^ int(y[i])) print(res,end="")
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python x=input() y=input() res="" for i in range (len(x)): res=(int(x[i]) ^ int(y[i])) print(res,end="") ```
3.969
676
A
Nicholas and Permutation
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
Nicholas has an array *a* that contains *n* distinct integers from 1 to *n*. In other words, Nicholas has a permutation of size *n*. Nicholas want the minimum element (integer 1) and the maximum element (integer *n*) to be as far as possible from each other. He wants to perform exactly one swap in order to maximize the distance between the minimum and the maximum elements. The distance between two elements is considered to be equal to the absolute difference between their positions.
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100) — the size of the permutation. The second line of the input contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*), where *a**i* is equal to the element at the *i*-th position.
Print a single integer — the maximum possible distance between the minimum and the maximum elements Nicholas can achieve by performing exactly one swap.
[ "5\n4 5 1 3 2\n", "7\n1 6 5 3 4 7 2\n", "6\n6 5 4 3 2 1\n" ]
[ "3\n", "6\n", "5\n" ]
In the first sample, one may obtain the optimal answer by swapping elements 1 and 2. In the second sample, the minimum and the maximum elements will be located in the opposite ends of the array if we swap 7 and 2. In the third sample, the distance between the minimum and the maximum elements is already maximum possible, so we just perform some unnecessary swap, for example, one can swap 5 and 2.
500
[ { "input": "5\n4 5 1 3 2", "output": "3" }, { "input": "7\n1 6 5 3 4 7 2", "output": "6" }, { "input": "6\n6 5 4 3 2 1", "output": "5" }, { "input": "2\n1 2", "output": "1" }, { "input": "2\n2 1", "output": "1" }, { "input": "3\n2 3 1", "output": "2" }, { "input": "4\n4 1 3 2", "output": "3" }, { "input": "5\n1 4 5 2 3", "output": "4" }, { "input": "6\n4 6 3 5 2 1", "output": "5" }, { "input": "7\n1 5 3 6 2 4 7", "output": "6" }, { "input": "100\n76 70 67 54 40 1 48 63 64 36 42 90 99 27 47 17 93 7 13 84 16 57 74 5 83 61 19 56 52 92 38 91 82 79 34 66 71 28 37 98 35 94 77 53 73 10 26 80 15 32 8 81 3 95 44 46 72 6 33 11 21 85 4 30 24 51 49 96 87 55 14 31 12 60 45 9 29 22 58 18 88 2 50 59 20 86 23 41 100 39 62 68 69 97 78 43 25 89 65 75", "output": "94" }, { "input": "8\n4 5 3 8 6 7 1 2", "output": "6" }, { "input": "9\n6 8 5 3 4 7 9 2 1", "output": "8" }, { "input": "10\n8 7 10 1 2 3 4 6 5 9", "output": "7" }, { "input": "11\n5 4 6 9 10 11 7 3 1 2 8", "output": "8" }, { "input": "12\n3 6 7 8 9 10 12 5 4 2 11 1", "output": "11" }, { "input": "13\n8 4 3 7 5 11 9 1 10 2 13 12 6", "output": "10" }, { "input": "14\n6 10 13 9 7 1 12 14 3 2 5 4 11 8", "output": "8" }, { "input": "15\n3 14 13 12 7 2 4 11 15 1 8 6 5 10 9", "output": "9" }, { "input": "16\n11 6 9 8 7 14 12 13 10 15 2 5 3 1 4 16", "output": "15" }, { "input": "17\n13 12 5 3 9 16 8 14 2 4 10 1 6 11 7 15 17", "output": "16" }, { "input": "18\n8 6 14 17 9 11 15 13 5 3 18 1 2 7 12 16 4 10", "output": "11" }, { "input": "19\n12 19 3 11 15 6 18 14 5 10 2 13 9 7 4 8 17 16 1", "output": "18" }, { "input": "20\n15 17 10 20 7 2 16 9 13 6 18 5 19 8 11 14 4 12 3 1", "output": "19" }, { "input": "21\n1 9 14 18 13 12 11 20 16 2 4 19 15 7 6 17 8 5 3 10 21", "output": "20" }, { "input": "22\n8 3 17 4 16 21 14 11 10 15 6 18 13 12 22 20 5 2 9 7 19 1", "output": "21" }, { "input": "23\n1 23 11 20 9 3 12 4 7 17 5 15 2 10 18 16 8 22 14 13 19 21 6", "output": "22" }, { "input": "24\n2 10 23 22 20 19 18 16 11 12 15 17 21 8 24 13 1 5 6 7 14 3 9 4", "output": "16" }, { "input": "25\n12 13 22 17 1 18 14 5 21 2 10 4 3 23 11 6 20 8 24 16 15 19 9 7 25", "output": "24" }, { "input": "26\n6 21 20 16 26 17 11 2 24 4 1 12 14 8 25 7 15 10 22 5 13 18 9 23 19 3", "output": "21" }, { "input": "27\n20 14 18 10 5 3 9 4 24 22 21 27 17 15 26 2 23 7 12 11 6 8 19 25 16 13 1", "output": "26" }, { "input": "28\n28 13 16 6 1 12 4 27 22 7 18 3 21 26 25 11 5 10 20 24 19 15 14 8 23 17 9 2", "output": "27" }, { "input": "29\n21 11 10 25 2 5 9 16 29 8 17 4 15 13 6 22 7 24 19 12 18 20 1 3 23 28 27 14 26", "output": "22" }, { "input": "30\n6 19 14 22 26 17 27 8 25 3 24 30 4 18 23 16 9 13 29 20 15 2 5 11 28 12 1 10 21 7", "output": "26" }, { "input": "31\n29 13 26 27 9 28 2 16 30 21 12 11 3 31 23 6 22 20 1 5 14 24 19 18 8 4 10 17 15 25 7", "output": "18" }, { "input": "32\n15 32 11 3 18 23 19 14 5 8 6 21 13 24 25 4 16 9 27 20 17 31 2 22 7 12 30 1 26 10 29 28", "output": "30" }, { "input": "33\n22 13 10 33 8 25 15 14 21 28 27 19 26 24 1 12 5 11 32 20 30 31 18 4 6 23 7 29 16 2 17 9 3", "output": "29" }, { "input": "34\n34 30 7 16 6 1 10 23 29 13 15 25 32 26 18 11 28 3 14 21 19 5 31 33 4 17 8 9 24 20 27 22 2 12", "output": "33" }, { "input": "35\n24 33 20 8 34 11 31 25 2 4 18 13 9 35 16 30 23 32 17 1 14 22 19 21 28 26 3 15 5 12 27 29 10 6 7", "output": "21" }, { "input": "36\n1 32 27 35 22 7 34 15 18 36 31 28 13 2 10 21 20 17 16 4 3 24 19 29 11 12 25 5 33 26 14 6 9 23 30 8", "output": "35" }, { "input": "37\n24 1 12 23 11 6 30 15 4 21 13 20 25 17 5 8 36 19 32 26 14 9 7 18 10 29 37 35 16 2 22 34 3 27 31 33 28", "output": "35" }, { "input": "38\n9 35 37 28 36 21 10 25 19 4 26 5 22 7 27 18 6 14 15 24 1 17 11 34 20 8 2 16 3 23 32 31 13 12 38 33 30 29", "output": "34" }, { "input": "39\n16 28 4 33 26 36 25 23 22 30 27 7 12 34 17 6 3 38 10 24 13 31 29 39 14 32 9 20 35 11 18 21 8 2 15 37 5 19 1", "output": "38" }, { "input": "40\n35 39 28 11 9 31 36 8 5 32 26 19 38 33 2 22 23 25 6 37 12 7 3 10 17 24 20 16 27 4 34 15 40 14 18 13 29 21 30 1", "output": "39" }, { "input": "41\n24 18 7 23 3 15 1 17 25 5 30 10 34 36 2 14 9 21 41 40 20 28 33 35 12 22 11 8 19 16 31 27 26 32 29 4 13 38 37 39 6", "output": "34" }, { "input": "42\n42 15 24 26 4 34 19 29 38 32 31 33 14 41 21 3 11 39 25 6 5 20 23 10 16 36 18 28 27 1 7 40 22 30 9 2 37 17 8 12 13 35", "output": "41" }, { "input": "43\n43 24 20 13 22 29 28 4 30 3 32 40 31 8 7 9 35 27 18 5 42 6 17 19 23 12 41 21 16 37 33 34 2 14 36 38 25 10 15 39 26 11 1", "output": "42" }, { "input": "44\n4 38 6 40 29 3 44 2 30 35 25 36 34 10 11 31 21 7 14 23 37 19 27 18 5 22 1 16 17 9 39 13 15 32 43 8 41 26 42 12 24 33 20 28", "output": "37" }, { "input": "45\n45 29 24 2 31 5 34 41 26 44 33 43 15 3 4 11 21 37 27 12 14 39 23 42 16 6 13 19 8 38 20 9 25 22 40 17 32 35 18 10 28 7 30 36 1", "output": "44" }, { "input": "46\n29 3 12 33 45 40 19 17 25 27 28 1 16 23 24 46 31 8 44 15 5 32 22 11 4 36 34 10 35 26 21 7 14 2 18 9 20 41 6 43 42 37 38 13 39 30", "output": "34" }, { "input": "47\n7 3 8 12 24 16 29 10 28 38 1 20 37 40 21 5 15 6 45 23 36 44 25 43 41 4 11 42 18 35 32 31 39 33 27 30 22 34 14 13 17 47 19 9 46 26 2", "output": "41" }, { "input": "48\n29 26 14 18 34 33 13 39 32 1 37 20 35 19 28 48 30 23 46 27 5 22 24 38 12 15 8 36 43 45 16 47 6 9 31 40 44 17 2 41 11 42 25 4 21 3 10 7", "output": "38" }, { "input": "49\n16 7 42 32 11 35 15 8 23 41 6 20 47 24 9 45 49 2 37 48 25 28 5 18 3 19 12 4 22 33 13 14 10 36 44 17 40 38 30 26 1 43 29 46 21 34 27 39 31", "output": "40" }, { "input": "50\n31 45 3 34 13 43 32 4 42 9 7 8 24 14 35 6 19 46 44 17 18 1 25 20 27 41 2 16 12 10 11 47 38 21 28 49 30 15 50 36 29 26 22 39 48 5 23 37 33 40", "output": "38" }, { "input": "51\n47 29 2 11 43 44 27 1 39 14 25 30 33 21 38 45 34 51 16 50 42 31 41 46 15 48 13 19 6 37 35 7 22 28 20 4 17 10 5 8 24 40 9 36 18 49 12 26 23 3 32", "output": "43" }, { "input": "52\n16 45 23 7 15 19 43 20 4 32 35 36 9 50 5 26 38 46 13 33 12 2 48 37 41 31 10 28 8 42 3 21 11 1 17 27 34 30 44 40 6 51 49 47 25 22 18 24 52 29 14 39", "output": "48" }, { "input": "53\n53 30 50 22 51 31 32 38 12 7 39 43 1 23 6 8 24 52 2 21 34 13 3 35 5 15 19 11 47 18 9 20 29 4 36 45 27 41 25 48 16 46 44 17 10 14 42 26 40 28 33 37 49", "output": "52" }, { "input": "54\n6 39 17 3 45 52 16 21 23 48 42 36 13 37 46 10 43 27 49 7 38 32 31 30 15 25 2 29 8 51 54 19 41 44 24 34 22 5 20 14 12 1 33 40 4 26 9 35 18 28 47 50 11 53", "output": "41" }, { "input": "55\n26 15 31 21 32 43 34 51 7 12 5 44 17 54 18 25 48 47 20 3 41 24 45 2 11 22 29 39 37 53 35 28 36 9 50 10 30 38 19 13 4 8 27 1 42 6 49 23 55 40 33 16 46 14 52", "output": "48" }, { "input": "56\n6 20 38 46 10 11 40 19 5 1 47 33 4 18 32 36 37 45 56 49 48 52 12 26 31 14 2 9 24 3 16 51 41 43 23 17 34 7 29 50 55 25 39 44 22 27 54 8 28 35 30 42 13 53 21 15", "output": "46" }, { "input": "57\n39 28 53 36 3 6 12 56 55 20 50 19 43 42 18 40 24 52 38 17 33 23 22 41 14 7 26 44 45 16 35 1 8 47 31 5 30 51 32 4 37 25 13 34 54 21 46 10 15 11 2 27 29 48 49 9 57", "output": "56" }, { "input": "58\n1 26 28 14 22 33 57 40 9 42 44 37 24 19 58 12 48 3 34 31 49 4 16 47 55 52 27 23 46 18 20 32 56 6 39 36 41 38 13 43 45 21 53 54 29 17 5 10 25 30 2 35 11 7 15 51 8 50", "output": "57" }, { "input": "59\n1 27 10 37 53 9 14 49 46 26 50 42 59 11 47 15 24 56 43 45 44 38 5 8 58 30 52 12 23 32 22 3 31 41 2 25 29 6 54 16 35 33 18 55 4 51 57 28 40 19 13 21 7 39 36 48 34 17 20", "output": "58" }, { "input": "60\n60 27 34 32 54 55 33 12 40 3 47 44 50 39 38 59 11 25 17 15 16 30 21 31 10 52 5 23 4 48 6 26 36 57 14 22 8 56 58 9 24 7 37 53 42 43 20 49 51 19 2 46 28 18 35 13 29 45 41 1", "output": "59" }, { "input": "61\n61 11 26 29 31 40 32 30 35 3 18 52 9 53 42 4 50 54 20 58 28 49 22 12 2 19 16 15 57 34 51 43 7 17 25 41 56 47 55 60 46 14 44 45 24 27 33 1 48 13 59 23 38 39 6 5 36 10 8 37 21", "output": "60" }, { "input": "62\n21 23 34 38 11 61 55 30 37 48 54 51 46 47 6 56 36 49 1 35 12 28 29 20 43 42 5 8 22 57 44 4 53 10 58 33 27 25 16 45 50 40 18 15 3 41 39 2 7 60 59 13 32 24 52 31 14 9 19 26 17 62", "output": "61" }, { "input": "63\n2 5 29 48 31 26 21 16 47 24 43 22 61 28 6 39 60 27 14 52 37 7 53 8 62 56 63 10 50 18 44 13 4 9 25 11 23 42 45 41 59 12 32 36 40 51 1 35 49 54 57 20 19 34 38 46 33 3 55 15 30 58 17", "output": "46" }, { "input": "64\n23 5 51 40 12 46 44 8 64 31 58 55 45 24 54 39 21 19 52 61 30 42 16 18 15 32 53 22 28 26 11 25 48 56 27 9 29 41 35 49 59 38 62 7 34 1 20 33 60 17 2 3 43 37 57 14 6 36 13 10 50 4 63 47", "output": "55" }, { "input": "65\n10 11 55 43 53 25 35 26 16 37 41 38 59 21 48 2 65 49 17 23 18 30 62 36 3 4 47 15 28 63 57 54 31 46 44 12 51 7 29 13 56 52 14 22 39 19 8 27 45 5 6 34 32 61 20 50 9 24 33 58 60 40 1 42 64", "output": "62" }, { "input": "66\n66 39 3 2 55 53 60 54 12 49 10 30 59 26 32 46 50 56 7 13 43 36 24 28 11 8 6 21 35 25 42 57 23 45 64 5 34 61 27 51 52 9 15 1 38 17 63 48 37 20 58 14 47 19 22 41 31 44 33 65 4 62 40 18 16 29", "output": "65" }, { "input": "67\n66 16 2 53 35 38 49 28 18 6 36 58 21 47 27 5 50 62 44 12 52 37 11 56 15 31 25 65 17 29 59 41 7 42 4 43 39 10 1 40 24 13 20 54 19 67 46 60 51 45 64 30 8 33 26 9 3 22 34 23 57 48 55 14 63 61 32", "output": "45" }, { "input": "68\n13 6 27 21 65 23 59 14 62 43 33 31 38 41 67 20 16 25 42 4 28 40 29 9 64 17 2 26 32 58 60 53 46 48 47 54 44 50 39 19 30 57 61 1 11 18 37 24 55 15 63 34 8 52 56 7 10 12 35 66 5 36 45 49 68 22 51 3", "output": "64" }, { "input": "69\n29 49 25 51 21 35 11 61 39 54 40 37 60 42 27 33 59 53 34 10 46 2 23 69 8 47 58 36 1 38 19 12 7 48 13 3 6 22 18 5 65 24 50 41 66 44 67 57 4 56 62 43 9 30 14 15 28 31 64 26 16 55 68 17 32 20 45 52 63", "output": "45" }, { "input": "70\n19 12 15 18 36 16 61 69 24 7 11 13 3 48 55 21 37 17 43 31 41 22 28 32 27 63 38 49 59 56 30 25 67 51 52 45 50 44 66 57 26 60 5 46 33 6 23 34 8 40 2 68 14 39 65 64 62 42 47 54 10 53 9 1 70 58 20 4 29 35", "output": "64" }, { "input": "71\n40 6 62 3 41 52 31 66 27 16 35 5 17 60 2 15 51 22 67 61 71 53 1 64 8 45 28 18 50 30 12 69 20 26 10 37 36 49 70 32 33 11 57 14 9 55 4 58 29 25 44 65 39 48 24 47 19 46 56 38 34 42 59 63 54 23 7 68 43 13 21", "output": "50" }, { "input": "72\n52 64 71 40 32 10 62 21 11 37 38 13 22 70 1 66 41 50 27 20 42 47 25 68 49 12 15 72 44 60 53 5 23 14 43 29 65 36 51 54 35 67 7 19 55 48 58 46 39 24 33 30 61 45 57 2 31 3 18 59 6 9 4 63 8 16 26 34 28 69 17 56", "output": "57" }, { "input": "73\n58 38 47 34 39 64 69 66 72 57 9 4 67 22 35 13 61 14 28 52 56 20 31 70 27 24 36 1 62 17 10 5 12 33 16 73 18 49 63 71 44 65 23 30 40 8 50 46 60 25 11 26 37 55 29 68 42 2 3 32 59 7 15 43 41 48 51 53 6 45 54 19 21", "output": "45" }, { "input": "74\n19 51 59 34 8 40 42 55 65 16 74 26 49 63 64 70 35 72 7 12 43 18 61 27 47 31 13 32 71 22 25 67 9 1 48 50 33 10 21 46 11 45 17 37 28 60 69 66 38 2 30 3 39 15 53 68 57 41 6 36 24 73 4 23 5 62 44 14 20 29 52 54 56 58", "output": "63" }, { "input": "75\n75 28 60 19 59 17 65 26 32 23 18 64 8 62 4 11 42 16 47 5 72 46 9 1 25 21 2 50 33 6 36 68 30 12 20 40 53 45 34 7 37 39 38 44 63 61 67 3 66 51 29 73 24 57 70 27 10 56 22 55 13 49 35 15 54 41 14 74 69 48 52 31 71 43 58", "output": "74" }, { "input": "76\n1 47 54 17 38 37 12 32 14 48 43 71 60 56 4 13 64 41 52 57 62 24 23 49 20 10 63 3 25 66 59 40 58 33 53 46 70 7 35 61 72 74 73 19 30 5 29 6 15 28 21 27 51 55 50 9 65 8 67 39 76 42 31 34 16 2 36 11 26 44 22 45 75 18 69 68", "output": "75" }, { "input": "77\n10 20 57 65 53 69 59 45 58 32 28 72 4 14 1 33 40 47 7 5 51 76 37 16 41 61 42 2 21 26 38 74 35 64 43 77 71 50 39 48 27 63 73 44 52 66 9 18 23 54 25 6 8 56 13 67 36 22 15 46 62 75 55 11 31 17 24 29 60 68 12 30 3 70 49 19 34", "output": "62" }, { "input": "78\n7 61 69 47 68 42 65 78 70 3 32 59 49 51 23 71 11 63 22 18 43 34 24 13 27 16 19 40 21 46 48 77 28 66 54 67 60 15 75 62 9 26 52 58 4 25 8 37 41 76 1 6 30 50 44 36 5 14 29 53 17 12 2 57 73 35 64 39 56 10 33 20 45 74 31 55 38 72", "output": "70" }, { "input": "79\n75 79 43 66 72 52 29 65 74 38 24 1 5 51 13 7 71 33 4 61 2 36 63 47 64 44 34 27 3 21 17 37 54 53 49 20 28 60 39 10 16 76 6 77 73 22 50 48 78 30 67 56 31 26 40 59 41 11 18 45 69 62 15 23 32 70 19 55 68 57 35 25 12 46 14 42 9 8 58", "output": "77" }, { "input": "80\n51 20 37 12 68 11 28 52 76 21 7 5 3 16 64 34 25 2 6 40 60 62 75 13 45 17 56 29 32 47 79 73 49 72 15 46 30 54 80 27 43 24 74 18 42 71 14 4 44 63 65 33 1 77 55 57 41 59 58 70 69 35 19 67 10 36 26 23 48 50 39 61 9 66 38 8 31 22 53 78", "output": "52" }, { "input": "81\n63 22 4 41 43 74 64 39 10 35 20 81 11 28 70 67 53 79 16 61 68 52 27 37 58 9 50 49 18 30 72 47 7 60 78 51 23 48 73 66 44 13 15 57 56 38 1 76 25 45 36 34 42 8 75 26 59 14 71 21 6 77 5 17 2 32 40 54 46 24 29 3 31 19 65 62 33 69 12 80 55", "output": "69" }, { "input": "82\n50 24 17 41 49 18 80 11 79 72 57 31 21 35 2 51 36 66 20 65 38 3 45 32 59 81 28 30 70 55 29 76 73 6 33 39 8 7 19 48 63 1 77 43 4 13 78 54 69 9 40 46 74 82 60 71 16 64 12 14 47 26 44 5 10 75 53 25 27 15 56 42 58 34 23 61 67 62 68 22 37 52", "output": "53" }, { "input": "83\n64 8 58 17 67 46 3 82 23 70 72 16 53 45 13 20 12 48 40 4 6 47 76 60 19 44 30 78 28 22 75 15 25 29 63 74 55 32 14 51 35 31 62 77 27 42 65 71 56 61 66 41 68 49 7 34 2 83 36 5 33 26 37 80 59 50 1 9 54 21 18 24 38 73 81 52 10 39 43 79 57 11 69", "output": "66" }, { "input": "84\n75 8 66 21 61 63 72 51 52 13 59 25 28 58 64 53 79 41 34 7 67 11 39 56 44 24 50 9 49 55 1 80 26 6 73 74 27 69 65 37 18 43 36 17 30 3 47 29 76 78 32 22 12 68 46 5 42 81 57 31 33 83 54 48 14 62 10 16 4 20 71 70 35 15 45 19 60 77 2 23 84 40 82 38", "output": "80" }, { "input": "85\n1 18 58 8 22 76 3 61 12 33 54 41 6 24 82 15 10 17 38 64 26 4 62 28 47 14 66 9 84 75 2 71 67 43 37 32 85 21 69 52 55 63 81 51 74 59 65 34 29 36 30 45 27 53 13 79 39 57 5 70 19 40 7 42 68 48 16 80 83 23 46 35 72 31 11 44 73 77 50 56 49 25 60 20 78", "output": "84" }, { "input": "86\n64 56 41 10 31 69 47 39 37 36 27 19 9 42 15 6 78 59 52 17 71 45 72 14 2 54 38 79 4 18 16 8 46 75 50 82 44 24 20 55 58 86 61 43 35 32 33 40 63 30 28 60 13 53 12 57 77 81 76 66 73 84 85 62 68 22 51 5 49 7 1 70 80 65 34 48 23 21 83 11 74 26 29 67 25 3", "output": "70" }, { "input": "87\n14 20 82 47 39 75 71 45 3 37 63 19 32 68 7 41 48 76 27 46 84 49 4 44 26 69 17 64 1 18 58 33 11 23 21 86 67 52 70 16 77 78 6 74 15 87 10 59 13 34 22 2 65 38 66 61 51 57 35 60 81 40 36 80 31 43 83 56 79 55 29 5 12 8 50 30 53 72 54 9 24 25 42 62 73 28 85", "output": "58" }, { "input": "88\n1 83 73 46 61 31 39 86 57 43 16 29 26 80 82 7 36 42 13 20 6 64 19 40 24 12 47 87 8 34 75 9 69 3 11 52 14 25 84 59 27 10 54 51 81 74 65 77 70 17 60 35 23 44 49 2 4 88 5 21 41 32 68 66 15 55 48 58 78 53 22 38 45 33 30 50 85 76 37 79 63 18 28 62 72 56 71 67", "output": "87" }, { "input": "89\n68 40 14 58 56 25 8 44 49 55 9 76 66 54 33 81 42 15 59 17 21 30 75 60 4 48 64 6 52 63 61 27 12 57 72 67 23 86 77 80 22 13 43 73 26 78 50 51 18 62 1 29 82 16 74 2 87 24 3 41 11 46 47 69 10 84 65 39 35 79 70 32 34 31 20 19 53 71 36 28 83 88 38 85 7 5 37 45 89", "output": "88" }, { "input": "90\n2 67 26 58 9 49 76 22 60 30 77 20 13 7 37 81 47 16 19 12 14 45 41 68 85 54 28 24 46 1 27 43 32 89 53 35 59 75 18 51 17 64 66 80 31 88 87 90 38 72 55 71 42 11 73 69 62 78 23 74 65 79 84 4 86 52 10 6 3 82 56 5 48 33 21 57 40 29 61 63 34 36 83 8 15 44 50 70 39 25", "output": "60" }, { "input": "91\n91 69 56 16 73 55 14 82 80 46 57 81 22 71 63 76 43 37 77 75 70 3 26 2 28 17 51 38 30 67 41 47 54 62 34 25 84 11 87 39 32 52 31 36 50 19 21 53 29 24 79 8 74 64 44 7 6 18 10 42 13 9 83 58 4 88 65 60 20 90 66 49 86 89 78 48 5 27 23 59 61 15 72 45 40 33 68 85 35 12 1", "output": "90" }, { "input": "92\n67 57 76 78 25 89 6 82 11 16 26 17 59 48 73 10 21 31 27 80 4 5 22 13 92 55 45 85 63 28 75 60 54 88 91 47 29 35 7 87 1 39 43 51 71 84 83 81 46 9 38 56 90 24 37 41 19 86 50 61 79 20 18 14 69 23 62 65 49 52 58 53 36 2 68 64 15 42 30 34 66 32 44 40 8 33 3 77 74 12 70 72", "output": "67" }, { "input": "93\n76 35 5 87 7 21 59 71 24 37 2 73 31 74 4 52 28 20 56 27 65 86 16 45 85 67 68 70 47 72 91 88 14 32 62 69 78 41 15 22 57 18 50 13 39 58 17 83 64 51 25 11 38 77 82 90 8 26 29 61 10 43 79 53 48 6 23 55 63 49 81 92 80 44 89 60 66 30 1 9 36 33 19 46 75 93 3 12 42 84 40 54 34", "output": "85" }, { "input": "94\n29 85 82 78 61 83 80 63 11 38 50 43 9 24 4 87 79 45 3 17 90 7 34 27 1 76 26 39 84 47 22 41 81 19 44 23 56 92 35 31 72 62 70 53 40 88 13 14 73 2 59 86 46 94 15 12 77 57 89 42 75 48 18 51 32 55 71 30 49 91 20 60 5 93 33 64 21 36 10 28 8 65 66 69 74 58 6 52 25 67 16 37 54 68", "output": "69" }, { "input": "95\n36 73 18 77 15 71 50 57 79 65 94 88 9 69 52 70 26 66 78 89 55 20 72 83 75 68 32 28 45 74 19 22 54 23 84 90 86 12 42 58 11 81 39 31 85 47 60 44 59 43 21 7 30 41 64 76 93 46 87 48 10 40 3 14 38 49 29 35 2 67 5 34 13 37 27 56 91 17 62 80 8 61 53 95 24 92 6 82 63 33 51 25 4 16 1", "output": "94" }, { "input": "96\n64 3 47 83 19 10 72 61 73 95 16 40 54 84 8 86 28 4 37 42 92 48 63 76 67 1 59 66 20 35 93 2 43 7 45 70 34 33 26 91 85 89 13 29 58 68 44 25 87 75 49 71 41 17 55 36 32 31 74 22 52 79 30 88 50 78 38 39 65 27 69 77 81 94 82 53 21 80 57 60 24 46 51 9 18 15 96 62 6 23 11 12 90 5 14 56", "output": "86" }, { "input": "97\n40 63 44 64 84 92 38 41 28 91 3 70 76 67 94 96 35 79 29 22 78 88 85 8 21 1 93 54 71 80 37 17 13 26 62 59 75 87 69 33 89 49 77 61 12 39 6 36 58 18 73 50 82 45 74 52 11 34 95 7 23 30 15 32 31 16 55 19 20 83 60 72 10 53 51 14 27 9 68 47 5 2 81 46 57 86 56 43 48 66 24 25 4 42 65 97 90", "output": "95" }, { "input": "98\n85 94 69 86 22 52 27 79 53 91 35 55 33 88 8 75 76 95 64 54 67 30 70 49 6 16 2 48 80 32 25 90 98 46 9 96 36 81 10 92 28 11 37 97 15 41 38 40 83 44 29 47 23 3 31 61 87 39 78 20 68 12 17 73 59 18 77 72 43 51 84 24 89 65 26 7 74 93 21 19 5 14 50 42 82 71 60 56 34 62 58 57 45 66 13 63 4 1", "output": "97" }, { "input": "99\n33 48 19 41 59 64 16 12 17 13 7 1 9 6 4 92 61 49 60 25 74 65 22 97 30 32 10 62 14 55 80 66 82 78 31 23 87 93 27 98 20 29 88 84 77 34 83 96 79 90 56 89 58 72 52 47 21 76 24 70 44 94 5 39 8 18 57 36 40 68 43 75 3 2 35 99 63 26 67 73 15 11 53 28 42 46 69 50 51 95 38 37 54 85 81 91 45 86 71", "output": "87" }, { "input": "100\n28 30 77 4 81 67 31 25 66 56 88 73 83 51 57 34 21 90 38 76 22 99 53 70 91 3 64 54 6 94 8 5 97 80 50 45 61 40 16 95 36 98 9 2 17 44 72 55 18 58 47 12 87 24 7 32 14 23 65 41 63 48 62 39 92 27 43 19 46 13 42 52 96 84 26 69 100 79 93 49 35 60 71 59 68 15 10 29 20 1 78 33 75 86 11 85 74 82 89 37", "output": "89" }, { "input": "100\n100 97 35 55 45 3 46 98 77 64 94 85 73 43 49 79 72 9 70 62 80 88 29 58 61 20 89 83 66 86 82 15 6 87 42 96 90 75 63 38 81 40 5 23 4 18 41 19 99 60 8 12 76 51 39 93 53 26 21 50 47 28 13 30 68 59 34 54 24 56 31 27 65 16 32 10 36 52 44 91 22 14 33 25 7 78 67 17 57 37 92 11 2 69 84 95 74 71 48 1", "output": "99" }, { "input": "100\n83 96 73 70 30 25 7 77 58 89 76 85 49 82 45 51 14 62 50 9 31 32 16 15 97 64 4 37 20 93 24 10 80 71 100 39 75 72 78 74 8 29 53 86 79 48 3 68 90 99 56 87 63 94 36 1 40 65 6 44 43 84 17 52 34 95 38 47 60 57 98 59 33 41 46 81 23 27 19 2 54 91 55 35 26 12 92 18 28 66 69 21 5 67 13 11 22 88 61 42", "output": "65" }, { "input": "100\n96 80 47 60 56 9 78 20 37 72 68 15 100 94 51 26 65 38 50 19 4 70 25 63 22 30 13 58 43 69 18 33 5 66 39 73 12 55 95 92 97 1 14 83 10 28 64 31 46 91 32 86 74 54 29 52 89 53 90 44 62 40 16 24 67 81 36 34 7 23 79 87 75 98 84 3 41 77 76 42 71 35 49 61 2 27 59 82 99 85 21 11 45 6 88 48 17 57 8 93", "output": "87" }, { "input": "100\n5 6 88 37 97 51 25 81 54 17 57 98 99 44 67 24 30 93 100 36 8 38 84 42 21 4 75 31 85 48 70 77 43 50 65 94 29 32 68 86 56 39 69 47 20 60 52 53 10 34 79 2 95 40 89 64 71 26 22 46 1 62 91 76 83 41 9 78 16 63 13 3 28 92 27 49 7 12 96 72 80 23 14 19 18 66 59 87 90 45 73 82 33 74 35 61 55 15 58 11", "output": "81" }, { "input": "100\n100 97 92 12 62 17 19 58 37 26 30 95 31 35 87 10 13 43 98 61 28 89 76 1 23 21 11 22 50 56 91 74 3 24 96 55 64 67 14 4 71 16 18 9 77 68 51 81 32 82 46 88 86 60 29 66 72 85 70 7 53 63 33 45 83 2 25 94 52 93 5 69 20 47 49 54 57 39 34 27 90 80 78 59 40 42 79 6 38 8 48 15 65 73 99 44 41 84 36 75", "output": "99" }, { "input": "100\n22 47 34 65 69 5 68 78 53 54 41 23 80 51 11 8 2 85 81 75 25 58 29 73 30 49 10 71 17 96 76 89 79 20 12 15 55 7 46 32 19 3 82 35 74 44 38 40 92 14 6 50 97 63 45 93 37 18 62 77 87 36 83 9 90 61 57 28 39 43 52 42 24 56 21 84 26 99 88 59 33 70 4 60 98 95 94 100 13 48 66 72 16 31 64 91 1 86 27 67", "output": "96" }, { "input": "100\n41 67 94 18 14 83 59 12 19 54 13 68 75 26 15 65 80 40 23 30 34 78 47 21 63 79 4 70 3 31 86 69 92 10 61 74 97 100 9 99 32 27 91 55 85 52 16 17 28 1 64 29 58 76 98 25 84 7 2 96 20 72 36 46 49 82 93 44 45 6 38 87 57 50 53 35 60 33 8 89 39 42 37 48 62 81 73 43 95 11 66 88 90 22 24 77 71 51 5 56", "output": "62" }, { "input": "100\n1 88 38 56 62 99 39 80 12 33 57 24 28 84 37 42 10 95 83 58 8 40 20 2 30 78 60 79 36 71 51 31 27 65 22 47 6 19 61 94 75 4 74 35 15 23 92 9 70 13 11 59 90 18 66 81 64 72 16 32 34 67 46 91 21 87 77 97 82 41 7 86 26 43 45 3 93 17 52 96 50 63 48 5 53 44 29 25 98 54 49 14 73 69 89 55 76 85 68 100", "output": "99" }, { "input": "100\n22 59 25 77 68 79 32 45 20 28 61 60 38 86 33 10 100 15 53 75 78 39 67 13 66 34 96 4 63 23 73 29 31 35 71 55 16 14 72 56 94 97 17 93 47 84 57 8 21 51 54 85 26 76 49 81 2 92 62 44 91 87 11 24 95 69 5 7 99 6 65 48 70 12 41 18 74 27 42 3 80 30 50 98 58 37 82 89 83 36 40 52 19 9 88 46 43 1 90 64", "output": "97" }, { "input": "100\n12 1 76 78 97 82 59 80 48 8 91 51 54 74 16 10 89 99 83 63 93 90 55 25 30 33 29 6 9 65 92 79 44 39 15 58 37 46 32 19 27 3 75 49 62 71 98 42 69 50 26 81 96 5 7 61 60 21 20 36 18 34 40 4 47 85 64 38 22 84 2 68 11 56 31 66 17 14 95 43 53 35 23 52 70 13 72 45 41 77 73 87 88 94 28 86 24 67 100 57", "output": "98" }, { "input": "100\n66 100 53 88 7 73 54 41 31 42 8 46 65 90 78 14 94 30 79 39 89 5 83 50 38 61 37 86 22 95 60 98 34 57 91 10 75 25 15 43 23 17 96 35 93 48 87 47 56 13 19 9 82 62 67 80 11 55 99 70 18 26 58 85 12 44 16 45 4 49 20 71 92 24 81 2 76 32 6 21 84 36 52 97 59 63 40 51 27 64 68 3 77 72 28 33 29 1 74 69", "output": "98" }, { "input": "100\n56 64 1 95 72 39 9 49 87 29 94 7 32 6 30 48 50 25 31 78 90 45 60 44 80 68 17 20 73 15 75 98 83 13 71 22 36 26 96 88 35 3 85 54 16 41 92 99 69 86 93 33 43 62 77 46 47 37 12 10 18 40 27 4 63 55 28 59 23 34 61 53 76 42 51 91 21 70 8 58 38 19 5 66 84 11 52 24 81 82 79 67 97 65 57 74 2 89 100 14", "output": "98" }, { "input": "3\n1 2 3", "output": "2" }, { "input": "3\n1 3 2", "output": "2" }, { "input": "3\n2 1 3", "output": "2" }, { "input": "3\n2 3 1", "output": "2" }, { "input": "3\n3 1 2", "output": "2" }, { "input": "3\n3 2 1", "output": "2" }, { "input": "4\n1 2 3 4", "output": "3" }, { "input": "4\n1 2 4 3", "output": "3" }, { "input": "4\n1 3 2 4", "output": "3" }, { "input": "4\n1 3 4 2", "output": "3" }, { "input": "4\n1 4 2 3", "output": "3" }, { "input": "4\n1 4 3 2", "output": "3" }, { "input": "4\n2 1 3 4", "output": "3" }, { "input": "4\n2 1 4 3", "output": "2" }, { "input": "4\n2 4 1 3", "output": "2" }, { "input": "4\n2 4 3 1", "output": "3" }, { "input": "4\n3 1 2 4", "output": "3" }, { "input": "4\n3 1 4 2", "output": "2" }, { "input": "4\n3 2 1 4", "output": "3" }, { "input": "4\n3 2 4 1", "output": "3" }, { "input": "4\n3 4 1 2", "output": "2" }, { "input": "4\n3 4 2 1", "output": "3" }, { "input": "4\n4 1 2 3", "output": "3" }, { "input": "4\n4 1 3 2", "output": "3" }, { "input": "4\n4 2 1 3", "output": "3" }, { "input": "4\n4 2 3 1", "output": "3" }, { "input": "4\n4 3 1 2", "output": "3" }, { "input": "4\n4 3 2 1", "output": "3" }, { "input": "8\n2 5 6 4 8 3 1 7", "output": "6" }, { "input": "5\n2 3 1 5 4", "output": "3" }, { "input": "6\n2 5 3 6 4 1", "output": "5" }, { "input": "6\n5 4 2 6 1 3", "output": "4" }, { "input": "6\n4 2 3 1 6 5", "output": "4" }, { "input": "6\n5 4 2 1 6 3", "output": "4" }, { "input": "9\n7 2 3 4 5 6 1 9 8", "output": "7" }, { "input": "6\n3 2 1 4 6 5", "output": "4" }, { "input": "6\n2 3 4 1 6 5", "output": "4" }, { "input": "10\n5 2 3 4 1 6 7 8 10 9", "output": "8" }, { "input": "6\n5 2 3 1 6 4", "output": "4" }, { "input": "10\n2 9 3 4 1 10 5 6 7 8", "output": "5" }, { "input": "10\n2 3 4 5 6 7 1 8 10 9", "output": "8" }, { "input": "8\n2 3 4 5 1 6 8 7", "output": "6" }, { "input": "6\n2 1 3 4 5 6", "output": "5" } ]
1,656,229,851
2,147,483,647
PyPy 3-64
OK
TESTS
159
62
28,979,200
def main(): n = int(input()) ns = list(map(int, input().split())) min_pos = -1, max_pos = -1 for idx, e in enumerate(ns): if e == 1: min_pos = idx elif e == n: max_pos = idx print(max(max(n - 1 - min_pos, min_pos - 0), max(n - 1 - max_pos, max_pos - 0))) if __name__ == "__main__": main()
Title: Nicholas and Permutation Time Limit: None seconds Memory Limit: None megabytes Problem Description: Nicholas has an array *a* that contains *n* distinct integers from 1 to *n*. In other words, Nicholas has a permutation of size *n*. Nicholas want the minimum element (integer 1) and the maximum element (integer *n*) to be as far as possible from each other. He wants to perform exactly one swap in order to maximize the distance between the minimum and the maximum elements. The distance between two elements is considered to be equal to the absolute difference between their positions. Input Specification: The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100) — the size of the permutation. The second line of the input contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*), where *a**i* is equal to the element at the *i*-th position. Output Specification: Print a single integer — the maximum possible distance between the minimum and the maximum elements Nicholas can achieve by performing exactly one swap. Demo Input: ['5\n4 5 1 3 2\n', '7\n1 6 5 3 4 7 2\n', '6\n6 5 4 3 2 1\n'] Demo Output: ['3\n', '6\n', '5\n'] Note: In the first sample, one may obtain the optimal answer by swapping elements 1 and 2. In the second sample, the minimum and the maximum elements will be located in the opposite ends of the array if we swap 7 and 2. In the third sample, the distance between the minimum and the maximum elements is already maximum possible, so we just perform some unnecessary swap, for example, one can swap 5 and 2.
```python def main(): n = int(input()) ns = list(map(int, input().split())) min_pos = -1, max_pos = -1 for idx, e in enumerate(ns): if e == 1: min_pos = idx elif e == n: max_pos = idx print(max(max(n - 1 - min_pos, min_pos - 0), max(n - 1 - max_pos, max_pos - 0))) if __name__ == "__main__": main() ```
3
137
C
History
PROGRAMMING
1,500
[ "sortings" ]
null
null
Polycarpus likes studying at school a lot and he is always diligent about his homework. Polycarpus has never had any problems with natural sciences as his great-great-grandfather was the great physicist Seinstein. On the other hand though, Polycarpus has never had an easy time with history. Everybody knows that the World history encompasses exactly *n* events: the *i*-th event had continued from the year *a**i* to the year *b**i* inclusive (*a**i*<=&lt;<=*b**i*). Polycarpus easily learned the dates when each of *n* events started and ended (Polycarpus inherited excellent memory from his great-great-granddad). But the teacher gave him a more complicated task: Polycaprus should know when all events began and ended and he should also find out for each event whether it includes another event. Polycarpus' teacher thinks that an event *j* includes an event *i* if *a**j*<=&lt;<=*a**i* and *b**i*<=&lt;<=*b**j*. Your task is simpler: find the number of events that are included in some other event.
The first input line contains integer *n* (1<=≤<=*n*<=≤<=105) which represents the number of events. Next *n* lines contain descriptions of the historical events, one event per line. The *i*<=+<=1 line contains two integers *a**i* and *b**i* (1<=≤<=*a**i*<=&lt;<=*b**i*<=≤<=109) — the beginning and the end of the *i*-th event. No two events start or finish in the same year, that is, *a**i*<=≠<=*a**j*,<=*a**i*<=≠<=*b**j*,<=*b**i*<=≠<=*a**j*,<=*b**i*<=≠<=*b**j* for all *i*, *j* (where *i*<=≠<=*j*). Events are given in arbitrary order.
Print the only integer — the answer to the problem.
[ "5\n1 10\n2 9\n3 8\n4 7\n5 6\n", "5\n1 100\n2 50\n51 99\n52 98\n10 60\n", "1\n1 1000000000\n" ]
[ "4\n", "4\n", "0\n" ]
In the first example the fifth event is contained in the fourth. Similarly, the fourth event is contained in the third, the third — in the second and the second — in the first. In the second example all events except the first one are contained in the first. In the third example only one event, so the answer is 0.
1,500
[ { "input": "5\n1 10\n2 9\n3 8\n4 7\n5 6", "output": "4" }, { "input": "5\n1 100\n2 50\n51 99\n52 98\n10 60", "output": "4" }, { "input": "1\n1 1000000000", "output": "0" }, { "input": "2\n100 1000\n500 1500", "output": "0" }, { "input": "4\n1 100\n50 150\n120 200\n180 220", "output": "0" }, { "input": "10\n1 20\n2 19\n3 18\n4 17\n5 16\n6 15\n7 14\n8 13\n9 12\n10 11", "output": "9" }, { "input": "4\n1 5\n2 4\n10 15\n11 14", "output": "2" }, { "input": "10\n1 2\n3 4\n5 6\n7 8\n9 10\n11 12\n13 14\n15 16\n17 18\n19 20", "output": "0" }, { "input": "10\n58 22116\n112840 772160\n127432 399484\n182031 255417\n459340 548097\n603984 739189\n606173 663033\n280170 366159\n779239 906234\n874623 892907", "output": "7" }, { "input": "2\n2 3\n1 4", "output": "1" }, { "input": "3\n9 10\n1 2\n3 4", "output": "0" }, { "input": "4\n1 2\n3 6\n4 5\n10 11", "output": "1" }, { "input": "2\n5 6\n1 10", "output": "1" }, { "input": "7\n1 10\n2 5\n3 9\n100 1000\n200 500\n1001 1002\n777 7777", "output": "4" } ]
1,666,190,543
2,147,483,647
PyPy 3-64
OK
TESTS
75
1,466
19,456,000
a = int(input()) dict1 = {} for i in range(a): b, c = map(int, input().split()) dict1[b] = c sorted_values = sorted(dict1.keys()) dict2 = {} for i in sorted_values: dict2[i] = dict1[i] last = list(dict2.keys()) n = 0 maxchislo = dict2[min(last)] for i in range(1, a): if dict2[last[i]] < maxchislo: n += 1 if dict2[last[i]] > maxchislo: maxchislo = dict2[last[i]] print(n)
Title: History Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus likes studying at school a lot and he is always diligent about his homework. Polycarpus has never had any problems with natural sciences as his great-great-grandfather was the great physicist Seinstein. On the other hand though, Polycarpus has never had an easy time with history. Everybody knows that the World history encompasses exactly *n* events: the *i*-th event had continued from the year *a**i* to the year *b**i* inclusive (*a**i*<=&lt;<=*b**i*). Polycarpus easily learned the dates when each of *n* events started and ended (Polycarpus inherited excellent memory from his great-great-granddad). But the teacher gave him a more complicated task: Polycaprus should know when all events began and ended and he should also find out for each event whether it includes another event. Polycarpus' teacher thinks that an event *j* includes an event *i* if *a**j*<=&lt;<=*a**i* and *b**i*<=&lt;<=*b**j*. Your task is simpler: find the number of events that are included in some other event. Input Specification: The first input line contains integer *n* (1<=≤<=*n*<=≤<=105) which represents the number of events. Next *n* lines contain descriptions of the historical events, one event per line. The *i*<=+<=1 line contains two integers *a**i* and *b**i* (1<=≤<=*a**i*<=&lt;<=*b**i*<=≤<=109) — the beginning and the end of the *i*-th event. No two events start or finish in the same year, that is, *a**i*<=≠<=*a**j*,<=*a**i*<=≠<=*b**j*,<=*b**i*<=≠<=*a**j*,<=*b**i*<=≠<=*b**j* for all *i*, *j* (where *i*<=≠<=*j*). Events are given in arbitrary order. Output Specification: Print the only integer — the answer to the problem. Demo Input: ['5\n1 10\n2 9\n3 8\n4 7\n5 6\n', '5\n1 100\n2 50\n51 99\n52 98\n10 60\n', '1\n1 1000000000\n'] Demo Output: ['4\n', '4\n', '0\n'] Note: In the first example the fifth event is contained in the fourth. Similarly, the fourth event is contained in the third, the third — in the second and the second — in the first. In the second example all events except the first one are contained in the first. In the third example only one event, so the answer is 0.
```python a = int(input()) dict1 = {} for i in range(a): b, c = map(int, input().split()) dict1[b] = c sorted_values = sorted(dict1.keys()) dict2 = {} for i in sorted_values: dict2[i] = dict1[i] last = list(dict2.keys()) n = 0 maxchislo = dict2[min(last)] for i in range(1, a): if dict2[last[i]] < maxchislo: n += 1 if dict2[last[i]] > maxchislo: maxchislo = dict2[last[i]] print(n) ```
3
792
B
Counting-out Rhyme
PROGRAMMING
1,300
[ "implementation" ]
null
null
*n* children are standing in a circle and playing the counting-out game. Children are numbered clockwise from 1 to *n*. In the beginning, the first child is considered the leader. The game is played in *k* steps. In the *i*-th step the leader counts out *a**i* people in clockwise order, starting from the next person. The last one to be pointed at by the leader is eliminated, and the next player after him becomes the new leader. For example, if there are children with numbers [8,<=10,<=13,<=14,<=16] currently in the circle, the leader is child 13 and *a**i*<==<=12, then counting-out rhyme ends on child 16, who is eliminated. Child 8 becomes the leader. You have to write a program which prints the number of the child to be eliminated on every step.
The first line contains two integer numbers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=*n*<=-<=1). The next line contains *k* integer numbers *a*1,<=*a*2,<=...,<=*a**k* (1<=≤<=*a**i*<=≤<=109).
Print *k* numbers, the *i*-th one corresponds to the number of child to be eliminated at the *i*-th step.
[ "7 5\n10 4 11 4 1\n", "3 2\n2 5\n" ]
[ "4 2 5 6 1 \n", "3 2 \n" ]
Let's consider first example: - In the first step child 4 is eliminated, child 5 becomes the leader. - In the second step child 2 is eliminated, child 3 becomes the leader. - In the third step child 5 is eliminated, child 6 becomes the leader. - In the fourth step child 6 is eliminated, child 7 becomes the leader. - In the final step child 1 is eliminated, child 3 becomes the leader.
0
[ { "input": "7 5\n10 4 11 4 1", "output": "4 2 5 6 1 " }, { "input": "3 2\n2 5", "output": "3 2 " }, { "input": "2 1\n1", "output": "2 " }, { "input": "2 1\n2", "output": "1 " }, { "input": "2 1\n3", "output": "2 " }, { "input": "10 7\n5 10 4 3 8 10 6", "output": "6 8 3 9 2 4 10 " }, { "input": "10 8\n12 6 12 15 20 8 17 12", "output": "3 10 6 8 2 9 4 5 " }, { "input": "12 10\n76 58 82 54 97 46 17 40 36 15", "output": "5 9 12 1 3 10 8 11 2 4 " }, { "input": "12 6\n76 61 94 15 66 26", "output": "5 12 6 2 7 3 " }, { "input": "90 10\n1045 8705 6077 3282 1459 9809 383 6206 2674 7274", "output": "56 39 45 20 17 55 14 85 51 33 " }, { "input": "100 30\n601771 913885 829106 91674 465657 367068 142461 873149 294276 916519 720701 370006 551782 321506 68525 570684 81178 724855 564907 661130 10112 983124 799801 100639 766045 862312 513021 232094 979480 408554", "output": "72 89 16 26 85 73 29 99 63 30 8 46 70 19 100 93 36 54 65 77 17 79 62 64 21 69 42 82 68 1 " }, { "input": "3 2\n20148340 81473314", "output": "2 3 " }, { "input": "3 2\n301633543 643389490", "output": "2 3 " }, { "input": "6 5\n532623340 628883728 583960589 690950241 488468353", "output": "5 3 6 1 4 " }, { "input": "6 2\n458995521 294343587", "output": "4 1 " }, { "input": "68 1\n5", "output": "6 " } ]
1,490,969,079
2,147,483,647
Python 3
OK
TESTS
22
62
5,529,600
inp1 = input().split() n=int(inp1[0]) k=int(inp1[1]) koh_lanta = list(range(1,n+1)) liste_elimination = input().split() lead=0 eliminated = [] for i in range(k): lead = (lead + int(liste_elimination[i]))%(n-i) eliminated.append(koh_lanta.pop(int(lead))) print(*eliminated)
Title: Counting-out Rhyme Time Limit: None seconds Memory Limit: None megabytes Problem Description: *n* children are standing in a circle and playing the counting-out game. Children are numbered clockwise from 1 to *n*. In the beginning, the first child is considered the leader. The game is played in *k* steps. In the *i*-th step the leader counts out *a**i* people in clockwise order, starting from the next person. The last one to be pointed at by the leader is eliminated, and the next player after him becomes the new leader. For example, if there are children with numbers [8,<=10,<=13,<=14,<=16] currently in the circle, the leader is child 13 and *a**i*<==<=12, then counting-out rhyme ends on child 16, who is eliminated. Child 8 becomes the leader. You have to write a program which prints the number of the child to be eliminated on every step. Input Specification: The first line contains two integer numbers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=*n*<=-<=1). The next line contains *k* integer numbers *a*1,<=*a*2,<=...,<=*a**k* (1<=≤<=*a**i*<=≤<=109). Output Specification: Print *k* numbers, the *i*-th one corresponds to the number of child to be eliminated at the *i*-th step. Demo Input: ['7 5\n10 4 11 4 1\n', '3 2\n2 5\n'] Demo Output: ['4 2 5 6 1 \n', '3 2 \n'] Note: Let's consider first example: - In the first step child 4 is eliminated, child 5 becomes the leader. - In the second step child 2 is eliminated, child 3 becomes the leader. - In the third step child 5 is eliminated, child 6 becomes the leader. - In the fourth step child 6 is eliminated, child 7 becomes the leader. - In the final step child 1 is eliminated, child 3 becomes the leader.
```python inp1 = input().split() n=int(inp1[0]) k=int(inp1[1]) koh_lanta = list(range(1,n+1)) liste_elimination = input().split() lead=0 eliminated = [] for i in range(k): lead = (lead + int(liste_elimination[i]))%(n-i) eliminated.append(koh_lanta.pop(int(lead))) print(*eliminated) ```
3
279
B
Books
PROGRAMMING
1,400
[ "binary search", "brute force", "implementation", "two pointers" ]
null
null
When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book. Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it. Print the maximum number of books Valera can read.
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book.
Print a single integer — the maximum number of books Valera can read.
[ "4 5\n3 1 2 1\n", "3 3\n2 2 3\n" ]
[ "3\n", "1\n" ]
none
1,000
[ { "input": "4 5\n3 1 2 1", "output": "3" }, { "input": "3 3\n2 2 3", "output": "1" }, { "input": "1 3\n5", "output": "0" }, { "input": "1 10\n4", "output": "1" }, { "input": "2 10\n6 4", "output": "2" }, { "input": "6 10\n2 3 4 2 1 1", "output": "4" }, { "input": "7 13\n6 8 14 9 4 11 10", "output": "2" }, { "input": "10 15\n10 9 1 1 5 10 5 3 7 2", "output": "3" }, { "input": "20 30\n8 1 2 6 9 4 1 9 9 10 4 7 8 9 5 7 1 8 7 4", "output": "6" }, { "input": "30 60\n16 13 22 38 13 35 17 17 20 38 12 19 9 22 20 3 35 34 34 21 35 40 22 3 27 19 12 4 8 19", "output": "4" }, { "input": "100 100\n75 92 18 6 81 67 7 92 100 65 82 32 50 67 85 31 80 91 84 63 39 52 92 81 1 98 24 12 43 48 17 86 51 72 48 95 45 50 12 66 19 79 49 89 34 1 97 75 20 33 96 27 42 23 73 71 93 1 85 19 66 14 17 61 20 39 36 33 42 61 56 64 23 91 80 99 40 74 13 18 98 85 74 39 62 84 46 74 50 23 38 11 79 14 9 25 66 100 25 52", "output": "3" }, { "input": "10 1\n4418 7528 8170 1736 1317 3205 8183 4995 8039 4708", "output": "0" }, { "input": "50 2\n124 214 63 73 996 760 38 571 451 300 970 1 706 937 837 494 619 88 851 411 957 990 842 613 821 649 627 34 693 678 734 116 816 985 705 940 499 493 922 967 854 439 112 644 961 438 189 572 655 550", "output": "1" } ]
1,691,815,554
2,147,483,647
Python 3
OK
TESTS
38
186
13,824,000
def mbr(m, t, bt): max_books = 0 start = 0 sum = 0 for end in range(m): sum += bt[end] while sum > t: sum -= bt[start] start += 1 max_books = max(max_books, end - start + 1) return max_books m, t = map(int, input().split()) bt = list(map(int, input().split())) result = mbr(m, t, bt) print(result)
Title: Books Time Limit: None seconds Memory Limit: None megabytes Problem Description: When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book. Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it. Print the maximum number of books Valera can read. Input Specification: The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book. Output Specification: Print a single integer — the maximum number of books Valera can read. Demo Input: ['4 5\n3 1 2 1\n', '3 3\n2 2 3\n'] Demo Output: ['3\n', '1\n'] Note: none
```python def mbr(m, t, bt): max_books = 0 start = 0 sum = 0 for end in range(m): sum += bt[end] while sum > t: sum -= bt[start] start += 1 max_books = max(max_books, end - start + 1) return max_books m, t = map(int, input().split()) bt = list(map(int, input().split())) result = mbr(m, t, bt) print(result) ```
3
710
C
Magic Odd Square
PROGRAMMING
1,500
[ "constructive algorithms", "math" ]
null
null
Find an *n*<=×<=*n* matrix with different numbers from 1 to *n*2, so the sum in each row, column and both main diagonals are odd.
The only line contains odd integer *n* (1<=≤<=*n*<=≤<=49).
Print *n* lines with *n* integers. All the integers should be different and from 1 to *n*2. The sum in each row, column and both main diagonals should be odd.
[ "1\n", "3\n" ]
[ "1\n", "2 1 4\n3 5 7\n6 9 8\n" ]
none
0
[ { "input": "1", "output": "1" }, { "input": "3", "output": "2 1 4\n3 5 7\n6 9 8" }, { "input": "5", "output": "2 4 1 6 8\n10 3 5 7 12\n9 11 13 15 17\n14 19 21 23 16\n18 20 25 22 24" }, { "input": "7", "output": "2 4 6 1 8 10 12\n14 16 3 5 7 18 20\n22 9 11 13 15 17 24\n19 21 23 25 27 29 31\n26 33 35 37 39 41 28\n30 32 43 45 47 34 36\n38 40 42 49 44 46 48" }, { "input": "9", "output": "2 4 6 8 1 10 12 14 16\n18 20 22 3 5 7 24 26 28\n30 32 9 11 13 15 17 34 36\n38 19 21 23 25 27 29 31 40\n33 35 37 39 41 43 45 47 49\n42 51 53 55 57 59 61 63 44\n46 48 65 67 69 71 73 50 52\n54 56 58 75 77 79 60 62 64\n66 68 70 72 81 74 76 78 80" }, { "input": "11", "output": "2 4 6 8 10 1 12 14 16 18 20\n22 24 26 28 3 5 7 30 32 34 36\n38 40 42 9 11 13 15 17 44 46 48\n50 52 19 21 23 25 27 29 31 54 56\n58 33 35 37 39 41 43 45 47 49 60\n51 53 55 57 59 61 63 65 67 69 71\n62 73 75 77 79 81 83 85 87 89 64\n66 68 91 93 95 97 99 101 103 70 72\n74 76 78 105 107 109 111 113 80 82 84\n86 88 90 92 115 117 119 94 96 98 100\n102 104 106 108 110 121 112 114 116 118 120" }, { "input": "13", "output": "2 4 6 8 10 12 1 14 16 18 20 22 24\n26 28 30 32 34 3 5 7 36 38 40 42 44\n46 48 50 52 9 11 13 15 17 54 56 58 60\n62 64 66 19 21 23 25 27 29 31 68 70 72\n74 76 33 35 37 39 41 43 45 47 49 78 80\n82 51 53 55 57 59 61 63 65 67 69 71 84\n73 75 77 79 81 83 85 87 89 91 93 95 97\n86 99 101 103 105 107 109 111 113 115 117 119 88\n90 92 121 123 125 127 129 131 133 135 137 94 96\n98 100 102 139 141 143 145 147 149 151 104 106 108\n110 112 114 116 153 155 157 159 161 118 120 122 124\n126 128 130 132 134 163 165 167 136 ..." }, { "input": "15", "output": "2 4 6 8 10 12 14 1 16 18 20 22 24 26 28\n30 32 34 36 38 40 3 5 7 42 44 46 48 50 52\n54 56 58 60 62 9 11 13 15 17 64 66 68 70 72\n74 76 78 80 19 21 23 25 27 29 31 82 84 86 88\n90 92 94 33 35 37 39 41 43 45 47 49 96 98 100\n102 104 51 53 55 57 59 61 63 65 67 69 71 106 108\n110 73 75 77 79 81 83 85 87 89 91 93 95 97 112\n99 101 103 105 107 109 111 113 115 117 119 121 123 125 127\n114 129 131 133 135 137 139 141 143 145 147 149 151 153 116\n118 120 155 157 159 161 163 165 167 169 171 173 175 122 124\n126 128 1..." }, { "input": "17", "output": "2 4 6 8 10 12 14 16 1 18 20 22 24 26 28 30 32\n34 36 38 40 42 44 46 3 5 7 48 50 52 54 56 58 60\n62 64 66 68 70 72 9 11 13 15 17 74 76 78 80 82 84\n86 88 90 92 94 19 21 23 25 27 29 31 96 98 100 102 104\n106 108 110 112 33 35 37 39 41 43 45 47 49 114 116 118 120\n122 124 126 51 53 55 57 59 61 63 65 67 69 71 128 130 132\n134 136 73 75 77 79 81 83 85 87 89 91 93 95 97 138 140\n142 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 144\n129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161..." }, { "input": "19", "output": "2 4 6 8 10 12 14 16 18 1 20 22 24 26 28 30 32 34 36\n38 40 42 44 46 48 50 52 3 5 7 54 56 58 60 62 64 66 68\n70 72 74 76 78 80 82 9 11 13 15 17 84 86 88 90 92 94 96\n98 100 102 104 106 108 19 21 23 25 27 29 31 110 112 114 116 118 120\n122 124 126 128 130 33 35 37 39 41 43 45 47 49 132 134 136 138 140\n142 144 146 148 51 53 55 57 59 61 63 65 67 69 71 150 152 154 156\n158 160 162 73 75 77 79 81 83 85 87 89 91 93 95 97 164 166 168\n170 172 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 174 176\n178..." }, { "input": "21", "output": "2 4 6 8 10 12 14 16 18 20 1 22 24 26 28 30 32 34 36 38 40\n42 44 46 48 50 52 54 56 58 3 5 7 60 62 64 66 68 70 72 74 76\n78 80 82 84 86 88 90 92 9 11 13 15 17 94 96 98 100 102 104 106 108\n110 112 114 116 118 120 122 19 21 23 25 27 29 31 124 126 128 130 132 134 136\n138 140 142 144 146 148 33 35 37 39 41 43 45 47 49 150 152 154 156 158 160\n162 164 166 168 170 51 53 55 57 59 61 63 65 67 69 71 172 174 176 178 180\n182 184 186 188 73 75 77 79 81 83 85 87 89 91 93 95 97 190 192 194 196\n198 200 202 99 101 103 ..." }, { "input": "23", "output": "2 4 6 8 10 12 14 16 18 20 22 1 24 26 28 30 32 34 36 38 40 42 44\n46 48 50 52 54 56 58 60 62 64 3 5 7 66 68 70 72 74 76 78 80 82 84\n86 88 90 92 94 96 98 100 102 9 11 13 15 17 104 106 108 110 112 114 116 118 120\n122 124 126 128 130 132 134 136 19 21 23 25 27 29 31 138 140 142 144 146 148 150 152\n154 156 158 160 162 164 166 33 35 37 39 41 43 45 47 49 168 170 172 174 176 178 180\n182 184 186 188 190 192 51 53 55 57 59 61 63 65 67 69 71 194 196 198 200 202 204\n206 208 210 212 214 73 75 77 79 81 83 85 87 89 ..." }, { "input": "25", "output": "2 4 6 8 10 12 14 16 18 20 22 24 1 26 28 30 32 34 36 38 40 42 44 46 48\n50 52 54 56 58 60 62 64 66 68 70 3 5 7 72 74 76 78 80 82 84 86 88 90 92\n94 96 98 100 102 104 106 108 110 112 9 11 13 15 17 114 116 118 120 122 124 126 128 130 132\n134 136 138 140 142 144 146 148 150 19 21 23 25 27 29 31 152 154 156 158 160 162 164 166 168\n170 172 174 176 178 180 182 184 33 35 37 39 41 43 45 47 49 186 188 190 192 194 196 198 200\n202 204 206 208 210 212 214 51 53 55 57 59 61 63 65 67 69 71 216 218 220 222 224 226 228\n..." }, { "input": "27", "output": "2 4 6 8 10 12 14 16 18 20 22 24 26 1 28 30 32 34 36 38 40 42 44 46 48 50 52\n54 56 58 60 62 64 66 68 70 72 74 76 3 5 7 78 80 82 84 86 88 90 92 94 96 98 100\n102 104 106 108 110 112 114 116 118 120 122 9 11 13 15 17 124 126 128 130 132 134 136 138 140 142 144\n146 148 150 152 154 156 158 160 162 164 19 21 23 25 27 29 31 166 168 170 172 174 176 178 180 182 184\n186 188 190 192 194 196 198 200 202 33 35 37 39 41 43 45 47 49 204 206 208 210 212 214 216 218 220\n222 224 226 228 230 232 234 236 51 53 55 57 59 61..." }, { "input": "29", "output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 1 30 32 34 36 38 40 42 44 46 48 50 52 54 56\n58 60 62 64 66 68 70 72 74 76 78 80 82 3 5 7 84 86 88 90 92 94 96 98 100 102 104 106 108\n110 112 114 116 118 120 122 124 126 128 130 132 9 11 13 15 17 134 136 138 140 142 144 146 148 150 152 154 156\n158 160 162 164 166 168 170 172 174 176 178 19 21 23 25 27 29 31 180 182 184 186 188 190 192 194 196 198 200\n202 204 206 208 210 212 214 216 218 220 33 35 37 39 41 43 45 47 49 222 224 226 228 230 232 234 236 238 240\n242 244 2..." }, { "input": "31", "output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 1 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60\n62 64 66 68 70 72 74 76 78 80 82 84 86 88 3 5 7 90 92 94 96 98 100 102 104 106 108 110 112 114 116\n118 120 122 124 126 128 130 132 134 136 138 140 142 9 11 13 15 17 144 146 148 150 152 154 156 158 160 162 164 166 168\n170 172 174 176 178 180 182 184 186 188 190 192 19 21 23 25 27 29 31 194 196 198 200 202 204 206 208 210 212 214 216\n218 220 222 224 226 228 230 232 234 236 238 33 35 37 39 41 43 45 47 49 240 242 244 24..." }, { "input": "33", "output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 1 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64\n66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 3 5 7 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124\n126 128 130 132 134 136 138 140 142 144 146 148 150 152 9 11 13 15 17 154 156 158 160 162 164 166 168 170 172 174 176 178 180\n182 184 186 188 190 192 194 196 198 200 202 204 206 19 21 23 25 27 29 31 208 210 212 214 216 218 220 222 224 226 228 230 232\n234 236 238 240 242 244 246 248 250 252 254 256 33 35..." }, { "input": "35", "output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 1 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68\n70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 3 5 7 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132\n134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 9 11 13 15 17 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192\n194 196 198 200 202 204 206 208 210 212 214 216 218 220 19 21 23 25 27 29 31 222 224 226 228 230 232 234 236 238 240 242 244 246 248\n250 252 254 256 258 2..." }, { "input": "37", "output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 1 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72\n74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 3 5 7 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140\n142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 9 11 13 15 17 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204\n206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 19 21 23 25 27 29 31 236 238 240 242 244 246 248 250 252 254 256 258 26..." }, { "input": "39", "output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 1 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76\n78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 3 5 7 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148\n150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 9 11 13 15 17 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216\n218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 19 21 23 25 27 29 31 250 252 254 256 258 26..." }, { "input": "41", "output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 1 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80\n82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 3 5 7 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156\n158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 9 11 13 15 17 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228\n230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 19 21 23 25 27 ..." }, { "input": "43", "output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 1 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84\n86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 3 5 7 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164\n166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 9 11 13 15 17 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240\n242 244 246 248 250 252 254 256 258 260 262 264 266 268 270..." }, { "input": "45", "output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 1 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88\n90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 3 5 7 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172\n174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 9 11 13 15 17 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252\n254 256 258 260 262 264 266 268 270..." }, { "input": "47", "output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 1 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92\n94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 3 5 7 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180\n182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 9 11 13 15 17 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264\n266 268 270..." }, { "input": "49", "output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 1 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96\n98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 3 5 7 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188\n190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 9 11 13 15 17 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 ..." } ]
1,493,211,946
2,147,483,647
Python 3
OK
TESTS
25
62
5,529,600
a = int(input()) odd = 1 even = 2 c = a//2 l = [[] for x in range(a)] for row in range(0, a): for col in range(0, a): if c <= col <= a - 1 - c: l[row].append(odd) odd += 2 else: l[row].append(even) even += 2 if row < a//2: c -= 1 else: c += 1 for row in l: print(" ".join(list(map(str, row))))
Title: Magic Odd Square Time Limit: None seconds Memory Limit: None megabytes Problem Description: Find an *n*<=×<=*n* matrix with different numbers from 1 to *n*2, so the sum in each row, column and both main diagonals are odd. Input Specification: The only line contains odd integer *n* (1<=≤<=*n*<=≤<=49). Output Specification: Print *n* lines with *n* integers. All the integers should be different and from 1 to *n*2. The sum in each row, column and both main diagonals should be odd. Demo Input: ['1\n', '3\n'] Demo Output: ['1\n', '2 1 4\n3 5 7\n6 9 8\n'] Note: none
```python a = int(input()) odd = 1 even = 2 c = a//2 l = [[] for x in range(a)] for row in range(0, a): for col in range(0, a): if c <= col <= a - 1 - c: l[row].append(odd) odd += 2 else: l[row].append(even) even += 2 if row < a//2: c -= 1 else: c += 1 for row in l: print(" ".join(list(map(str, row)))) ```
3
1,003
A
Polycarp's Pockets
PROGRAMMING
800
[ "implementation" ]
null
null
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket. For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$. Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
[ "6\n1 2 4 3 3 2\n", "1\n100\n" ]
[ "2\n", "1\n" ]
none
0
[ { "input": "6\n1 2 4 3 3 2", "output": "2" }, { "input": "1\n100", "output": "1" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100" }, { "input": "100\n59 47 39 47 47 71 47 28 58 47 35 79 58 47 38 47 47 47 47 27 47 43 29 95 47 49 46 71 47 74 79 47 47 32 45 67 47 47 30 37 47 47 16 67 22 76 47 86 84 10 5 47 47 47 47 47 1 51 47 54 47 8 47 47 9 47 47 47 47 28 47 47 26 47 47 47 47 47 47 92 47 47 77 47 47 24 45 47 10 47 47 89 47 27 47 89 47 67 24 71", "output": "51" }, { "input": "100\n45 99 10 27 16 85 39 38 17 32 15 23 67 48 50 97 42 70 62 30 44 81 64 73 34 22 46 5 83 52 58 60 33 74 47 88 18 61 78 53 25 95 94 31 3 75 1 57 20 54 59 9 68 7 77 43 21 87 86 24 4 80 11 49 2 72 36 84 71 8 65 55 79 100 41 14 35 89 66 69 93 37 56 82 90 91 51 19 26 92 6 96 13 98 12 28 76 40 63 29", "output": "1" }, { "input": "100\n45 29 5 2 6 50 22 36 14 15 9 48 46 20 8 37 7 47 12 50 21 38 18 27 33 19 40 10 5 49 38 42 34 37 27 30 35 24 10 3 40 49 41 3 4 44 13 25 28 31 46 36 23 1 1 23 7 22 35 26 21 16 48 42 32 8 11 16 34 11 39 32 47 28 43 41 39 4 14 19 26 45 13 18 15 25 2 44 17 29 17 33 43 6 12 30 9 20 31 24", "output": "2" }, { "input": "50\n7 7 3 3 7 4 5 6 4 3 7 5 6 4 5 4 4 5 6 7 7 7 4 5 5 5 3 7 6 3 4 6 3 6 4 4 5 4 6 6 3 5 6 3 5 3 3 7 7 6", "output": "10" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "99" }, { "input": "7\n1 2 3 3 3 1 2", "output": "3" }, { "input": "5\n1 2 3 4 5", "output": "1" }, { "input": "7\n1 2 3 4 5 6 7", "output": "1" }, { "input": "8\n1 2 3 4 5 6 7 8", "output": "1" }, { "input": "9\n1 2 3 4 5 6 7 8 9", "output": "1" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "1" }, { "input": "3\n2 1 1", "output": "2" }, { "input": "11\n1 2 3 4 5 6 7 8 9 1 1", "output": "3" }, { "input": "12\n1 2 1 1 1 1 1 1 1 1 1 1", "output": "11" }, { "input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "13" }, { "input": "14\n1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "14" }, { "input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "15" }, { "input": "16\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "16" }, { "input": "3\n1 1 1", "output": "3" }, { "input": "3\n1 2 3", "output": "1" }, { "input": "10\n1 1 1 1 2 2 1 1 9 10", "output": "6" }, { "input": "2\n1 1", "output": "2" }, { "input": "56\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "56" }, { "input": "99\n35 96 73 72 70 83 22 93 98 75 45 32 81 82 45 54 25 7 53 72 29 2 94 19 21 98 34 28 39 99 55 85 44 23 6 47 98 2 33 34 19 57 49 35 67 4 60 4 4 23 55 6 57 66 16 68 34 45 84 79 48 63 4 9 46 88 98 13 19 27 83 12 4 63 57 22 44 77 44 62 28 52 44 64 9 24 55 22 48 4 2 9 80 76 45 1 56 22 92", "output": "6" }, { "input": "10\n1 2 2 3 3 3 4 4 4 4", "output": "4" }, { "input": "99\n97 44 33 56 42 10 61 85 64 26 40 39 82 34 75 9 51 51 39 73 58 38 74 31 13 99 58 1 28 89 76 19 52 7 40 56 12 27 72 72 67 75 62 46 22 55 35 16 18 39 60 63 92 42 85 69 34 61 73 50 57 95 30 4 45 63 76 58 32 35 48 81 10 78 95 79 55 97 21 21 22 94 30 17 78 57 89 93 100 44 16 89 68 55 19 46 42 73 21", "output": "3" }, { "input": "5\n5 5 5 5 1", "output": "4" }, { "input": "6\n2 3 2 5 2 6", "output": "3" }, { "input": "3\n58 59 58", "output": "2" }, { "input": "9\n1 2 3 4 5 6 7 8 8", "output": "2" }, { "input": "97\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "97" }, { "input": "3\n95 95 4", "output": "2" }, { "input": "3\n2 2 5", "output": "2" } ]
1,619,150,567
2,147,483,647
Python 3
OK
TESTS
37
62
0
input() a=[*map(int,input().split())] print(max(a.count(i)for i in a))
Title: Polycarp's Pockets Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket. For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$. Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that. Input Specification: The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins. Output Specification: Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket. Demo Input: ['6\n1 2 4 3 3 2\n', '1\n100\n'] Demo Output: ['2\n', '1\n'] Note: none
```python input() a=[*map(int,input().split())] print(max(a.count(i)for i in a)) ```
3
44
A
Indian Summer
PROGRAMMING
900
[ "implementation" ]
A. Indian Summer
2
256
Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space.
Output the single number — the number of Alyona's leaves.
[ "5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n", "3\noak yellow\noak yellow\noak yellow\n" ]
[ "4\n", "1\n" ]
none
0
[ { "input": "5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green", "output": "4" }, { "input": "3\noak yellow\noak yellow\noak yellow", "output": "1" }, { "input": "5\nxbnbkzn hp\nkaqkl vrgzbvqstu\nj aqidx\nhos gyul\nwefxmh tygpluae", "output": "5" }, { "input": "1\nqvwli hz", "output": "1" }, { "input": "4\nsrhk x\nsrhk x\nqfoe vnrjuab\nqfoe vnrjuab", "output": "2" }, { "input": "4\nsddqllmmpk syded\nfprsq fnenjnaz\nn hdej\nsddqllmmpk syded", "output": "3" }, { "input": "17\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw", "output": "1" }, { "input": "18\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nb d\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp", "output": "2" }, { "input": "13\nsvpzwtwn rykzfdce\nqweiyeck jkreouy\nhk nnli\ntwxrnbbdt vtuv\nxokqjtylly sz\nesdt dbfidjslq\ng ybqgomvw\nxcpfjmf zcqvz\nifajadhj invzueip\nvdemdnxifb hckwebmi\nsdpnhipam wvowzavh\nuqdlfskhgo vunbpghae\ne dtigwnb", "output": "13" }, { "input": "20\nm vkfh\nvptikamead mvx\nitu mf\nklruxckw aqega\nekqkd enjllwol\ncc uybfdh\nimrfdngvo u\ne uh\ntwt jsslcfuogk\nbljwqsag tuqbdn\nqcv q\nasx gzhvwwmajj\nqcv q\nekqkd enjllwol\nasx gzhvwwmajj\nks vv\nkzyfi cn\ncc uybfdh\nitu mf\ncjbjhtbyvk vatwfmux", "output": "15" }, { "input": "2\nab ab\na bab", "output": "2" } ]
1,627,320,318
2,147,483,647
Python 3
OK
TESTS
29
154
6,758,400
n = int(input()) bouquet = [] for i in range(n): [s,c] = input().split() if ([s,c] not in bouquet): bouquet.append([s,c]) print(len(bouquet))
Title: Indian Summer Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space. Output Specification: Output the single number — the number of Alyona's leaves. Demo Input: ['5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n', '3\noak yellow\noak yellow\noak yellow\n'] Demo Output: ['4\n', '1\n'] Note: none
```python n = int(input()) bouquet = [] for i in range(n): [s,c] = input().split() if ([s,c] not in bouquet): bouquet.append([s,c]) print(len(bouquet)) ```
3.948911
749
A
Bachgold Problem
PROGRAMMING
800
[ "greedy", "implementation", "math", "number theory" ]
null
null
Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1. Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*.
The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000).
The first line of the output contains a single integer *k* — maximum possible number of primes in representation. The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them.
[ "5\n", "6\n" ]
[ "2\n2 3\n", "3\n2 2 2\n" ]
none
500
[ { "input": "5", "output": "2\n2 3" }, { "input": "6", "output": "3\n2 2 2" }, { "input": "2", "output": "1\n2" }, { "input": "3", "output": "1\n3" }, { "input": "99999", "output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "100000", "output": "50000\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "7", "output": "3\n2 2 3" }, { "input": "4", "output": "2\n2 2" }, { "input": "8", "output": "4\n2 2 2 2" }, { "input": "9", "output": "4\n2 2 2 3" }, { "input": "99995", "output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99996", "output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "10", "output": "5\n2 2 2 2 2" }, { "input": "11", "output": "5\n2 2 2 2 3" }, { "input": "99997", "output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99998", "output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "12", "output": "6\n2 2 2 2 2 2" }, { "input": "13", "output": "6\n2 2 2 2 2 3" }, { "input": "99993", "output": "49996\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99994", "output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "14", "output": "7\n2 2 2 2 2 2 2" }, { "input": "15", "output": "7\n2 2 2 2 2 2 3" }, { "input": "53", "output": "26\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "57", "output": "28\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "61", "output": "30\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "774", "output": "387\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "202", "output": "101\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2" }, { "input": "530", "output": "265\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "7166", "output": "3583\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "9294", "output": "4647\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "2422", "output": "1211\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "15326", "output": "7663\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "11454", "output": "5727\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "14878", "output": "7439\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "90672", "output": "45336\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99544", "output": "49772\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "90472", "output": "45236\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "23", "output": "11\n2 2 2 2 2 2 2 2 2 2 3" }, { "input": "93", "output": "46\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "19", "output": "9\n2 2 2 2 2 2 2 2 3" }, { "input": "11110", "output": "5555\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." } ]
1,675,096,589
2,147,483,647
Python 3
OK
TESTS
41
93
614,400
def get_prime_list(num): d=[] for x in range(2,num+1): for gg in range(2,x): if x%gg==0:break else:d.append(gg) d.remove(2) return d def check_prime_num(num): flag=True if num>1: for x in range(2,num): if num%x == 0: flag=False break else:flag=True else:flag=False return flag c=0 n=int(input()) if n%2==0: d = [] a = int(n / 2) for x in range(a): d.append(2) print(a) print(*d) else: d = [] a = int((n - 1) / 2) for x in range(a-1): d.append(2) d.append(3) print(len(d)) print(*d)
Title: Bachgold Problem Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1. Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*. Input Specification: The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000). Output Specification: The first line of the output contains a single integer *k* — maximum possible number of primes in representation. The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them. Demo Input: ['5\n', '6\n'] Demo Output: ['2\n2 3\n', '3\n2 2 2\n'] Note: none
```python def get_prime_list(num): d=[] for x in range(2,num+1): for gg in range(2,x): if x%gg==0:break else:d.append(gg) d.remove(2) return d def check_prime_num(num): flag=True if num>1: for x in range(2,num): if num%x == 0: flag=False break else:flag=True else:flag=False return flag c=0 n=int(input()) if n%2==0: d = [] a = int(n / 2) for x in range(a): d.append(2) print(a) print(*d) else: d = [] a = int((n - 1) / 2) for x in range(a-1): d.append(2) d.append(3) print(len(d)) print(*d) ```
3
710
E
Generate a String
PROGRAMMING
2,000
[ "dfs and similar", "dp" ]
null
null
zscoder wants to generate an input file for some programming competition problem. His input is a string consisting of *n* letters 'a'. He is too lazy to write a generator so he will manually generate the input in a text editor. Initially, the text editor is empty. It takes him *x* seconds to insert or delete a letter 'a' from the text file and *y* seconds to copy the contents of the entire text file, and duplicate it. zscoder wants to find the minimum amount of time needed for him to create the input file of exactly *n* letters 'a'. Help him to determine the amount of time needed to generate the input.
The only line contains three integers *n*, *x* and *y* (1<=≤<=*n*<=≤<=107, 1<=≤<=*x*,<=*y*<=≤<=109) — the number of letters 'a' in the input file and the parameters from the problem statement.
Print the only integer *t* — the minimum amount of time needed to generate the input file.
[ "8 1 1\n", "8 1 10\n" ]
[ "4\n", "8\n" ]
none
0
[ { "input": "8 1 1", "output": "4" }, { "input": "8 1 10", "output": "8" }, { "input": "10 62 99", "output": "384" }, { "input": "88 417 591", "output": "4623" }, { "input": "57 5289 8444", "output": "60221" }, { "input": "382 81437847 324871127", "output": "2519291691" }, { "input": "244 575154303 436759189", "output": "5219536421" }, { "input": "85 902510038 553915152", "output": "6933531064" }, { "input": "1926 84641582 820814219", "output": "7184606427" }, { "input": "3768 561740421 232937477", "output": "5042211408" }, { "input": "2313 184063453 204869248", "output": "2969009745" }, { "input": "35896 278270961 253614967", "output": "5195579310" }, { "input": "483867 138842067 556741142", "output": "10712805143" }, { "input": "4528217 187553422 956731625", "output": "21178755627" }, { "input": "10000000 1000000000 1", "output": "8000000023" }, { "input": "10000000 1 100", "output": "1757" }, { "input": "10000000 1 1000000000", "output": "10000000" }, { "input": "10000000 1 1000", "output": "14224" }, { "input": "10000000 1 10", "output": "214" }, { "input": "1 1 1", "output": "1" }, { "input": "10000000 998 998", "output": "30938" }, { "input": "9999999 987654321 123456789", "output": "11728395036" }, { "input": "9999999 1 2", "output": "54" }, { "input": "10000000 1 1", "output": "31" }, { "input": "11478 29358 26962", "output": "556012" }, { "input": "4314870 1000000000 1", "output": "7000000022" }, { "input": "7186329 608148870 290497442", "output": "12762929866" }, { "input": "9917781 1 1", "output": "35" }, { "input": "7789084 807239576 813643932", "output": "25165322688" }, { "input": "58087 1 100000000", "output": "58087" }, { "input": "9999991 2 3", "output": "88" } ]
1,597,077,671
2,147,483,647
PyPy 3
OK
TESTS
31
218
101,580,800
n, x, y = map(int, input().split(" ")) l = [0.]*(n+1) for i in range(1,n+1): l[i] = min(l[i-1]+x, l[(i+1)//2]+y+(x*(i&1))) print(int(l[n]))
Title: Generate a String Time Limit: None seconds Memory Limit: None megabytes Problem Description: zscoder wants to generate an input file for some programming competition problem. His input is a string consisting of *n* letters 'a'. He is too lazy to write a generator so he will manually generate the input in a text editor. Initially, the text editor is empty. It takes him *x* seconds to insert or delete a letter 'a' from the text file and *y* seconds to copy the contents of the entire text file, and duplicate it. zscoder wants to find the minimum amount of time needed for him to create the input file of exactly *n* letters 'a'. Help him to determine the amount of time needed to generate the input. Input Specification: The only line contains three integers *n*, *x* and *y* (1<=≤<=*n*<=≤<=107, 1<=≤<=*x*,<=*y*<=≤<=109) — the number of letters 'a' in the input file and the parameters from the problem statement. Output Specification: Print the only integer *t* — the minimum amount of time needed to generate the input file. Demo Input: ['8 1 1\n', '8 1 10\n'] Demo Output: ['4\n', '8\n'] Note: none
```python n, x, y = map(int, input().split(" ")) l = [0.]*(n+1) for i in range(1,n+1): l[i] = min(l[i-1]+x, l[(i+1)//2]+y+(x*(i&1))) print(int(l[n])) ```
3
981
A
Antipalindrome
PROGRAMMING
900
[ "brute force", "implementation", "strings" ]
null
null
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring $s[l \ldots r]$ ($1<=\leq<=l<=\leq<=r<=\leq<=|s|$) of a string $s<==<=s_{1}s_{2} \ldots s_{|s|}$ is the string $s_{l}s_{l<=+<=1} \ldots s_{r}$. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word $s$ is changed into its longest substring that is not a palindrome. If all the substrings of $s$ are palindromes, she skips the word at all. Some time ago Ann read the word $s$. What is the word she changed it into?
The first line contains a non-empty string $s$ with length at most $50$ characters, containing lowercase English letters only.
If there is such a substring in $s$ that is not a palindrome, print the maximum length of such a substring. Otherwise print $0$. Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
[ "mew\n", "wuffuw\n", "qqqqqqqq\n" ]
[ "3\n", "5\n", "0\n" ]
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is $3$. The string "uffuw" is one of the longest non-palindrome substrings (of length $5$) of the string "wuffuw", so the answer for the second example is $5$. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is $0$.
500
[ { "input": "mew", "output": "3" }, { "input": "wuffuw", "output": "5" }, { "input": "qqqqqqqq", "output": "0" }, { "input": "ijvji", "output": "4" }, { "input": "iiiiiii", "output": "0" }, { "input": "wobervhvvkihcuyjtmqhaaigvvgiaahqmtjyuchikvvhvrebow", "output": "49" }, { "input": "wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww", "output": "0" }, { "input": "wobervhvvkihcuyjtmqhaaigvahheoqleromusrartldojsjvy", "output": "50" }, { "input": "ijvxljt", "output": "7" }, { "input": "fyhcncnchyf", "output": "10" }, { "input": "ffffffffffff", "output": "0" }, { "input": "fyhcncfsepqj", "output": "12" }, { "input": "ybejrrlbcinttnicblrrjeby", "output": "23" }, { "input": "yyyyyyyyyyyyyyyyyyyyyyyyy", "output": "0" }, { "input": "ybejrrlbcintahovgjddrqatv", "output": "25" }, { "input": "oftmhcmclgyqaojljoaqyglcmchmtfo", "output": "30" }, { "input": "oooooooooooooooooooooooooooooooo", "output": "0" }, { "input": "oftmhcmclgyqaojllbotztajglsmcilv", "output": "32" }, { "input": "gxandbtgpbknxvnkjaajknvxnkbpgtbdnaxg", "output": "35" }, { "input": "gggggggggggggggggggggggggggggggggggg", "output": "0" }, { "input": "gxandbtgpbknxvnkjaygommzqitqzjfalfkk", "output": "36" }, { "input": "fcliblymyqckxvieotjooojtoeivxkcqymylbilcf", "output": "40" }, { "input": "fffffffffffffffffffffffffffffffffffffffffff", "output": "0" }, { "input": "fcliblymyqckxvieotjootiqwtyznhhvuhbaixwqnsy", "output": "43" }, { "input": "rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr", "output": "0" }, { "input": "rajccqwqnqmshmerpvjyfepxwpxyldzpzhctqjnstxyfmlhiy", "output": "49" }, { "input": "a", "output": "0" }, { "input": "abca", "output": "4" }, { "input": "aaaaabaaaaa", "output": "10" }, { "input": "aba", "output": "2" }, { "input": "asaa", "output": "4" }, { "input": "aabaa", "output": "4" }, { "input": "aabbaa", "output": "5" }, { "input": "abcdaaa", "output": "7" }, { "input": "aaholaa", "output": "7" }, { "input": "abcdefghijka", "output": "12" }, { "input": "aaadcba", "output": "7" }, { "input": "aaaabaaaa", "output": "8" }, { "input": "abaa", "output": "4" }, { "input": "abcbaa", "output": "6" }, { "input": "ab", "output": "2" }, { "input": "l", "output": "0" }, { "input": "aaaabcaaaa", "output": "10" }, { "input": "abbaaaaaabba", "output": "11" }, { "input": "abaaa", "output": "5" }, { "input": "baa", "output": "3" }, { "input": "aaaaaaabbba", "output": "11" }, { "input": "ccbcc", "output": "4" }, { "input": "bbbaaab", "output": "7" }, { "input": "abaaaaaaaa", "output": "10" }, { "input": "abaaba", "output": "5" }, { "input": "aabsdfaaaa", "output": "10" }, { "input": "aaaba", "output": "5" }, { "input": "aaabaaa", "output": "6" }, { "input": "baaabbb", "output": "7" }, { "input": "ccbbabbcc", "output": "8" }, { "input": "cabc", "output": "4" }, { "input": "aabcd", "output": "5" }, { "input": "abcdea", "output": "6" }, { "input": "bbabb", "output": "4" }, { "input": "aaaaabababaaaaa", "output": "14" }, { "input": "bbabbb", "output": "6" }, { "input": "aababd", "output": "6" }, { "input": "abaaaa", "output": "6" }, { "input": "aaaaaaaabbba", "output": "12" }, { "input": "aabca", "output": "5" }, { "input": "aaabccbaaa", "output": "9" }, { "input": "aaaaaaaaaaaaaaaaaaaab", "output": "21" }, { "input": "babb", "output": "4" }, { "input": "abcaa", "output": "5" }, { "input": "qwqq", "output": "4" }, { "input": "aaaaaaaaaaabbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaa", "output": "48" }, { "input": "aaab", "output": "4" }, { "input": "aaaaaabaaaaa", "output": "12" }, { "input": "wwuww", "output": "4" }, { "input": "aaaaabcbaaaaa", "output": "12" }, { "input": "aaabbbaaa", "output": "8" }, { "input": "aabcbaa", "output": "6" }, { "input": "abccdefccba", "output": "11" }, { "input": "aabbcbbaa", "output": "8" }, { "input": "aaaabbaaaa", "output": "9" }, { "input": "aabcda", "output": "6" }, { "input": "abbca", "output": "5" }, { "input": "aaaaaabbaaa", "output": "11" }, { "input": "sssssspssssss", "output": "12" }, { "input": "sdnmsdcs", "output": "8" }, { "input": "aaabbbccbbbaaa", "output": "13" }, { "input": "cbdbdc", "output": "6" }, { "input": "abb", "output": "3" }, { "input": "abcdefaaaa", "output": "10" }, { "input": "abbbaaa", "output": "7" }, { "input": "v", "output": "0" }, { "input": "abccbba", "output": "7" }, { "input": "axyza", "output": "5" }, { "input": "abcdefgaaaa", "output": "11" }, { "input": "aaabcdaaa", "output": "9" }, { "input": "aaaacaaaa", "output": "8" }, { "input": "aaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaa", "output": "42" }, { "input": "abbbaa", "output": "6" }, { "input": "abcdee", "output": "6" }, { "input": "oom", "output": "3" }, { "input": "aabcaa", "output": "6" }, { "input": "abba", "output": "3" }, { "input": "aaca", "output": "4" }, { "input": "aacbca", "output": "6" }, { "input": "ababa", "output": "4" }, { "input": "abcda", "output": "5" }, { "input": "cccaaccc", "output": "7" }, { "input": "aaabcda", "output": "7" }, { "input": "aa", "output": "0" }, { "input": "aabaaaa", "output": "7" }, { "input": "abbaaaa", "output": "7" }, { "input": "aaabcbaaa", "output": "8" }, { "input": "aabba", "output": "5" }, { "input": "xyxx", "output": "4" }, { "input": "aaaaaaaaaaaabc", "output": "14" }, { "input": "bbaaaabb", "output": "7" }, { "input": "aaabaa", "output": "6" }, { "input": "sssssabsssss", "output": "12" }, { "input": "bbbaaaabbb", "output": "9" }, { "input": "abbbbaaaa", "output": "9" }, { "input": "wwufuww", "output": "6" }, { "input": "oowoo", "output": "4" }, { "input": "cccaccc", "output": "6" }, { "input": "aaa", "output": "0" }, { "input": "bbbcc", "output": "5" }, { "input": "abcdef", "output": "6" }, { "input": "abbba", "output": "4" }, { "input": "aab", "output": "3" }, { "input": "aaba", "output": "4" }, { "input": "azbyaaa", "output": "7" }, { "input": "oooooiooooo", "output": "10" }, { "input": "aabbbbbaaaaaa", "output": "13" } ]
1,660,154,197
2,147,483,647
Python 3
OK
TESTS
133
46
0
s = input() print(0 if s[1:]==s[:-1] else len(s)-1 if s==s[::-1] else len(s))
Title: Antipalindrome Time Limit: None seconds Memory Limit: None megabytes Problem Description: A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring $s[l \ldots r]$ ($1<=\leq<=l<=\leq<=r<=\leq<=|s|$) of a string $s<==<=s_{1}s_{2} \ldots s_{|s|}$ is the string $s_{l}s_{l<=+<=1} \ldots s_{r}$. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word $s$ is changed into its longest substring that is not a palindrome. If all the substrings of $s$ are palindromes, she skips the word at all. Some time ago Ann read the word $s$. What is the word she changed it into? Input Specification: The first line contains a non-empty string $s$ with length at most $50$ characters, containing lowercase English letters only. Output Specification: If there is such a substring in $s$ that is not a palindrome, print the maximum length of such a substring. Otherwise print $0$. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Demo Input: ['mew\n', 'wuffuw\n', 'qqqqqqqq\n'] Demo Output: ['3\n', '5\n', '0\n'] Note: "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is $3$. The string "uffuw" is one of the longest non-palindrome substrings (of length $5$) of the string "wuffuw", so the answer for the second example is $5$. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is $0$.
```python s = input() print(0 if s[1:]==s[:-1] else len(s)-1 if s==s[::-1] else len(s)) ```
3
214
A
System of Equations
PROGRAMMING
800
[ "brute force" ]
null
null
Furik loves math lessons very much, so he doesn't attend them, unlike Rubik. But now Furik wants to get a good mark for math. For that Ms. Ivanova, his math teacher, gave him a new task. Furik solved the task immediately. Can you? You are given a system of equations: You should count, how many there are pairs of integers (*a*,<=*b*) (0<=≤<=*a*,<=*b*) which satisfy the system.
A single line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the parameters of the system. The numbers on the line are separated by a space.
On a single line print the answer to the problem.
[ "9 3\n", "14 28\n", "4 20\n" ]
[ "1\n", "1\n", "0\n" ]
In the first sample the suitable pair is integers (3, 0). In the second sample the suitable pair is integers (3, 5). In the third sample there is no suitable pair.
500
[ { "input": "9 3", "output": "1" }, { "input": "14 28", "output": "1" }, { "input": "4 20", "output": "0" }, { "input": "18 198", "output": "1" }, { "input": "22 326", "output": "1" }, { "input": "26 104", "output": "1" }, { "input": "14 10", "output": "0" }, { "input": "8 20", "output": "0" }, { "input": "2 8", "output": "0" }, { "input": "20 11", "output": "0" }, { "input": "57 447", "output": "1" }, { "input": "1 1", "output": "2" }, { "input": "66 296", "output": "1" }, { "input": "75 683", "output": "1" }, { "input": "227 975", "output": "1" }, { "input": "247 499", "output": "1" }, { "input": "266 116", "output": "1" }, { "input": "286 916", "output": "1" }, { "input": "307 341", "output": "1" }, { "input": "451 121", "output": "1" }, { "input": "471 921", "output": "1" }, { "input": "502 346", "output": "1" }, { "input": "535 59", "output": "1" }, { "input": "555 699", "output": "1" }, { "input": "747 351", "output": "1" }, { "input": "790 64", "output": "1" }, { "input": "810 704", "output": "1" }, { "input": "855 225", "output": "1" }, { "input": "902 34", "output": "1" }, { "input": "922 514", "output": "1" }, { "input": "971 131", "output": "1" }, { "input": "991 931", "output": "1" }, { "input": "840 780", "output": "0" }, { "input": "102 595", "output": "0" }, { "input": "139 433", "output": "0" }, { "input": "968 288", "output": "0" }, { "input": "563 354", "output": "0" }, { "input": "994 975", "output": "0" }, { "input": "456 221", "output": "0" }, { "input": "205 210", "output": "0" }, { "input": "1 11", "output": "0" }, { "input": "1000 1000", "output": "0" }, { "input": "3 3", "output": "0" }, { "input": "11 99", "output": "0" }, { "input": "2 2", "output": "1" }, { "input": "11 1", "output": "0" }, { "input": "6 6", "output": "1" }, { "input": "100 452", "output": "0" }, { "input": "420 380", "output": "0" }, { "input": "31 31", "output": "0" }, { "input": "2 6", "output": "0" }, { "input": "112 134", "output": "0" }, { "input": "13 13", "output": "0" }, { "input": "1 571", "output": "0" } ]
1,662,636,345
2,147,483,647
Python 3
OK
TESTS
54
124
409,600
from re import A n,m = map(int,input().split()) res = 0 for a in range(int(n**0.5) + 1): b = n - a**2 if (a + b**2) == m: res+=1 print(res)
Title: System of Equations Time Limit: None seconds Memory Limit: None megabytes Problem Description: Furik loves math lessons very much, so he doesn't attend them, unlike Rubik. But now Furik wants to get a good mark for math. For that Ms. Ivanova, his math teacher, gave him a new task. Furik solved the task immediately. Can you? You are given a system of equations: You should count, how many there are pairs of integers (*a*,<=*b*) (0<=≤<=*a*,<=*b*) which satisfy the system. Input Specification: A single line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the parameters of the system. The numbers on the line are separated by a space. Output Specification: On a single line print the answer to the problem. Demo Input: ['9 3\n', '14 28\n', '4 20\n'] Demo Output: ['1\n', '1\n', '0\n'] Note: In the first sample the suitable pair is integers (3, 0). In the second sample the suitable pair is integers (3, 5). In the third sample there is no suitable pair.
```python from re import A n,m = map(int,input().split()) res = 0 for a in range(int(n**0.5) + 1): b = n - a**2 if (a + b**2) == m: res+=1 print(res) ```
3
584
A
Olesya and Rodion
PROGRAMMING
1,000
[ "math" ]
null
null
Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them. Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1.
The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by.
Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them.
[ "3 2\n" ]
[ "712" ]
none
500
[ { "input": "3 2", "output": "222" }, { "input": "2 2", "output": "22" }, { "input": "4 3", "output": "3333" }, { "input": "5 3", "output": "33333" }, { "input": "10 7", "output": "7777777777" }, { "input": "2 9", "output": "99" }, { "input": "18 8", "output": "888888888888888888" }, { "input": "1 5", "output": "5" }, { "input": "1 10", "output": "-1" }, { "input": "100 5", "output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "10 2", "output": "2222222222" }, { "input": "18 10", "output": "111111111111111110" }, { "input": "1 9", "output": "9" }, { "input": "7 6", "output": "6666666" }, { "input": "4 4", "output": "4444" }, { "input": "14 7", "output": "77777777777777" }, { "input": "3 8", "output": "888" }, { "input": "1 3", "output": "3" }, { "input": "2 8", "output": "88" }, { "input": "3 8", "output": "888" }, { "input": "4 3", "output": "3333" }, { "input": "5 9", "output": "99999" }, { "input": "4 8", "output": "8888" }, { "input": "3 4", "output": "444" }, { "input": "9 4", "output": "444444444" }, { "input": "8 10", "output": "11111110" }, { "input": "1 6", "output": "6" }, { "input": "20 3", "output": "33333333333333333333" }, { "input": "15 10", "output": "111111111111110" }, { "input": "31 4", "output": "4444444444444444444444444444444" }, { "input": "18 9", "output": "999999999999999999" }, { "input": "72 4", "output": "444444444444444444444444444444444444444444444444444444444444444444444444" }, { "input": "76 8", "output": "8888888888888888888888888888888888888888888888888888888888888888888888888888" }, { "input": "12 5", "output": "555555555555" }, { "input": "54 5", "output": "555555555555555555555555555555555555555555555555555555" }, { "input": "96 10", "output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "15 9", "output": "999999999999999" }, { "input": "100 2", "output": "2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222" }, { "input": "99 3", "output": "333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333" }, { "input": "98 4", "output": "44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444" }, { "input": "97 5", "output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "100 6", "output": "6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666" }, { "input": "99 7", "output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "98 8", "output": "88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888" }, { "input": "97 9", "output": "9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999" }, { "input": "100 10", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "3 10", "output": "110" }, { "input": "2 4", "output": "44" }, { "input": "2 10", "output": "10" }, { "input": "10 10", "output": "1111111110" }, { "input": "4 10", "output": "1110" }, { "input": "25 10", "output": "1111111111111111111111110" }, { "input": "50 10", "output": "11111111111111111111111111111111111111111111111110" }, { "input": "5 10", "output": "11110" }, { "input": "99 10", "output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "100 10", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "1 2", "output": "2" }, { "input": "20 10", "output": "11111111111111111110" }, { "input": "99 7", "output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "89 5", "output": "55555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "6 10", "output": "111110" }, { "input": "3 8", "output": "888" }, { "input": "1 9", "output": "9" }, { "input": "1 4", "output": "4" }, { "input": "100 7", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" } ]
1,679,783,008
2,147,483,647
Python 3
OK
TESTS
65
46
0
import sys n, t = map(int, input().split()) if n == 1 and t == 10: print("-1") sys.exit() if t == 10: t = 1 print(t, end="") for i in range(1, n): print("0", end="")
Title: Olesya and Rodion Time Limit: None seconds Memory Limit: None megabytes Problem Description: Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them. Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1. Input Specification: The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by. Output Specification: Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them. Demo Input: ['3 2\n'] Demo Output: ['712'] Note: none
```python import sys n, t = map(int, input().split()) if n == 1 and t == 10: print("-1") sys.exit() if t == 10: t = 1 print(t, end="") for i in range(1, n): print("0", end="") ```
3
735
A
Ostap and Grasshopper
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
On the way to Rio de Janeiro Ostap kills time playing with a grasshopper he took with him in a special box. Ostap builds a line of length *n* such that some cells of this line are empty and some contain obstacles. Then, he places his grasshopper to one of the empty cells and a small insect in another empty cell. The grasshopper wants to eat the insect. Ostap knows that grasshopper is able to jump to any empty cell that is exactly *k* cells away from the current (to the left or to the right). Note that it doesn't matter whether intermediate cells are empty or not as the grasshopper makes a jump over them. For example, if *k*<==<=1 the grasshopper can jump to a neighboring cell only, and if *k*<==<=2 the grasshopper can jump over a single cell. Your goal is to determine whether there is a sequence of jumps such that grasshopper will get from his initial position to the cell with an insect.
The first line of the input contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=*n*<=-<=1) — the number of cells in the line and the length of one grasshopper's jump. The second line contains a string of length *n* consisting of characters '.', '#', 'G' and 'T'. Character '.' means that the corresponding cell is empty, character '#' means that the corresponding cell contains an obstacle and grasshopper can't jump there. Character 'G' means that the grasshopper starts at this position and, finally, 'T' means that the target insect is located at this cell. It's guaranteed that characters 'G' and 'T' appear in this line exactly once.
If there exists a sequence of jumps (each jump of length *k*), such that the grasshopper can get from his initial position to the cell with the insect, print "YES" (without quotes) in the only line of the input. Otherwise, print "NO" (without quotes).
[ "5 2\n#G#T#\n", "6 1\nT....G\n", "7 3\nT..#..G\n", "6 2\n..GT..\n" ]
[ "YES\n", "YES\n", "NO\n", "NO\n" ]
In the first sample, the grasshopper can make one jump to the right in order to get from cell 2 to cell 4. In the second sample, the grasshopper is only able to jump to neighboring cells but the way to the insect is free — he can get there by jumping left 5 times. In the third sample, the grasshopper can't make a single jump. In the fourth sample, the grasshopper can only jump to the cells with odd indices, thus he won't be able to reach the insect.
500
[ { "input": "5 2\n#G#T#", "output": "YES" }, { "input": "6 1\nT....G", "output": "YES" }, { "input": "7 3\nT..#..G", "output": "NO" }, { "input": "6 2\n..GT..", "output": "NO" }, { "input": "2 1\nGT", "output": "YES" }, { "input": "100 5\nG####.####.####.####.####.####.####.####.####.####.####.####.####.####.####.####.####.####.####T####", "output": "YES" }, { "input": "100 5\nG####.####.####.####.####.####.####.####.####.####.####.####.####.#########.####.####.####.####T####", "output": "NO" }, { "input": "2 1\nTG", "output": "YES" }, { "input": "99 1\n...T.............................................................................................G.", "output": "YES" }, { "input": "100 2\nG............#.....#...........#....#...........##............#............#......................T.", "output": "NO" }, { "input": "100 1\n#.#.#.##..#..##.#....##.##.##.#....####..##.#.##..GT..##...###.#.##.#..#..##.###..#.####..#.#.##..##", "output": "YES" }, { "input": "100 2\n..#####.#.#.......#.#.#...##..####..###..#.#######GT####.#.#...##...##.#..###....##.#.#..#.###....#.", "output": "NO" }, { "input": "100 3\nG..................................................................................................T", "output": "YES" }, { "input": "100 3\nG..................................................................................................T", "output": "YES" }, { "input": "100 3\nG..................................#......#......#.......#.#..........#........#......#..........#.T", "output": "NO" }, { "input": "100 3\nG..............#..........#...#..............#.#.....................#......#........#.........#...T", "output": "NO" }, { "input": "100 3\nG##################################################################################################T", "output": "NO" }, { "input": "100 33\nG..................................................................................................T", "output": "YES" }, { "input": "100 33\nG..................................................................................................T", "output": "YES" }, { "input": "100 33\nG.........#........#..........#..............#.................#............................#.#....T", "output": "YES" }, { "input": "100 33\nG.......#..................#..............................#............................#..........T.", "output": "NO" }, { "input": "100 33\nG#..........##...#.#.....................#.#.#.........##..#...........#....#...........##...#..###T", "output": "YES" }, { "input": "100 33\nG..#.#..#..####......#......##...##...#.##........#...#...#.##....###..#...###..##.#.....#......#.T.", "output": "NO" }, { "input": "100 33\nG#....#..#..##.##..#.##.#......#.#.##..##.#.#.##.##....#.#.....####..##...#....##..##..........#...T", "output": "NO" }, { "input": "100 33\nG#######.#..##.##.#...#..#.###.#.##.##.#..#.###..####.##.#.##....####...##..####.#..##.##.##.#....#T", "output": "NO" }, { "input": "100 33\nG#####.#.##.###########.##..##..#######..########..###.###..#.####.######.############..####..#####T", "output": "NO" }, { "input": "100 99\nT..................................................................................................G", "output": "YES" }, { "input": "100 99\nT..................................................................................................G", "output": "YES" }, { "input": "100 99\nT.#...............................#............#..............................##...................G", "output": "YES" }, { "input": "100 99\nT..#....#.##...##########.#.#.#.#...####..#.....#..##..#######.######..#.....###..###...#.......#.#G", "output": "YES" }, { "input": "100 99\nG##################################################################################################T", "output": "YES" }, { "input": "100 9\nT..................................................................................................G", "output": "YES" }, { "input": "100 9\nT.................................................................................................G.", "output": "NO" }, { "input": "100 9\nT................................................................................................G..", "output": "NO" }, { "input": "100 1\nG..................................................................................................T", "output": "YES" }, { "input": "100 1\nT..................................................................................................G", "output": "YES" }, { "input": "100 1\n##########G.........T###############################################################################", "output": "YES" }, { "input": "100 1\n#################################################################################################G.T", "output": "YES" }, { "input": "100 17\n##########G################.################.################.################T#####################", "output": "YES" }, { "input": "100 17\n####.#..#.G######.#########.##..##########.#.################.################T######.####.#########", "output": "YES" }, { "input": "100 17\n.########.G##.####.#.######.###############..#.###########.##.#####.##.#####.#T.###..###.########.##", "output": "YES" }, { "input": "100 1\nG.............................................#....................................................T", "output": "NO" }, { "input": "100 1\nT.#................................................................................................G", "output": "NO" }, { "input": "100 1\n##########G....#....T###############################################################################", "output": "NO" }, { "input": "100 1\n#################################################################################################G#T", "output": "NO" }, { "input": "100 17\nG################.#################################.################T###############################", "output": "NO" }, { "input": "100 17\nG################.###############..###.######.#######.###.#######.##T######################.###.####", "output": "NO" }, { "input": "100 17\nG####.##.##.#####.####....##.####.#########.##.#..#.###############.T############.#########.#.####.#", "output": "NO" }, { "input": "48 1\nT..............................................G", "output": "YES" }, { "input": "23 1\nT.....................G", "output": "YES" }, { "input": "49 1\nG...............................................T", "output": "YES" }, { "input": "3 1\nTG#", "output": "YES" }, { "input": "6 2\n..TG..", "output": "NO" }, { "input": "14 3\n...G.....#..T.", "output": "NO" }, { "input": "5 4\n##GT#", "output": "NO" }, { "input": "6 2\nT#..G.", "output": "YES" }, { "input": "5 2\nT.G.#", "output": "YES" }, { "input": "6 1\nT...G#", "output": "YES" }, { "input": "5 1\nTG###", "output": "YES" }, { "input": "5 4\n.G..T", "output": "NO" }, { "input": "7 2\nT#...#G", "output": "YES" }, { "input": "7 1\n##TG###", "output": "YES" }, { "input": "7 1\n###GT##", "output": "YES" }, { "input": "5 2\nG..T.", "output": "NO" }, { "input": "5 1\nG.T##", "output": "YES" }, { "input": "6 2\nG.T###", "output": "YES" }, { "input": "6 2\nG#T###", "output": "YES" }, { "input": "10 2\n####T..G..", "output": "NO" }, { "input": "3 1\nGT#", "output": "YES" }, { "input": "4 1\nTG##", "output": "YES" }, { "input": "6 1\n.G..T.", "output": "YES" }, { "input": "10 3\n......G..T", "output": "YES" }, { "input": "3 2\nG.T", "output": "YES" }, { "input": "4 1\n#G.T", "output": "YES" }, { "input": "5 2\nT#G##", "output": "YES" }, { "input": "4 2\nG#.T", "output": "NO" }, { "input": "4 1\nGT##", "output": "YES" } ]
1,593,939,859
2,147,483,647
Python 3
OK
TESTS
83
109
6,963,200
nk = input().split() n = int(nk[0]) k = int(nk[1]) s = input() g_ind = 0 t_ind = 0 for i in range(0, n): if(s[i] == 'G'): g_ind = i elif(s[i] == 'T'): t_ind = i start = 0 end =0 if(g_ind < t_ind): start = g_ind end = t_ind else: start = t_ind end = g_ind res = True if((end - start) % k != 0): res = False else: while (start < end): if (s[start] == '#'): res = False break start += k if(res): print('YES') else: print('NO')
Title: Ostap and Grasshopper Time Limit: None seconds Memory Limit: None megabytes Problem Description: On the way to Rio de Janeiro Ostap kills time playing with a grasshopper he took with him in a special box. Ostap builds a line of length *n* such that some cells of this line are empty and some contain obstacles. Then, he places his grasshopper to one of the empty cells and a small insect in another empty cell. The grasshopper wants to eat the insect. Ostap knows that grasshopper is able to jump to any empty cell that is exactly *k* cells away from the current (to the left or to the right). Note that it doesn't matter whether intermediate cells are empty or not as the grasshopper makes a jump over them. For example, if *k*<==<=1 the grasshopper can jump to a neighboring cell only, and if *k*<==<=2 the grasshopper can jump over a single cell. Your goal is to determine whether there is a sequence of jumps such that grasshopper will get from his initial position to the cell with an insect. Input Specification: The first line of the input contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=*n*<=-<=1) — the number of cells in the line and the length of one grasshopper's jump. The second line contains a string of length *n* consisting of characters '.', '#', 'G' and 'T'. Character '.' means that the corresponding cell is empty, character '#' means that the corresponding cell contains an obstacle and grasshopper can't jump there. Character 'G' means that the grasshopper starts at this position and, finally, 'T' means that the target insect is located at this cell. It's guaranteed that characters 'G' and 'T' appear in this line exactly once. Output Specification: If there exists a sequence of jumps (each jump of length *k*), such that the grasshopper can get from his initial position to the cell with the insect, print "YES" (without quotes) in the only line of the input. Otherwise, print "NO" (without quotes). Demo Input: ['5 2\n#G#T#\n', '6 1\nT....G\n', '7 3\nT..#..G\n', '6 2\n..GT..\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n', 'NO\n'] Note: In the first sample, the grasshopper can make one jump to the right in order to get from cell 2 to cell 4. In the second sample, the grasshopper is only able to jump to neighboring cells but the way to the insect is free — he can get there by jumping left 5 times. In the third sample, the grasshopper can't make a single jump. In the fourth sample, the grasshopper can only jump to the cells with odd indices, thus he won't be able to reach the insect.
```python nk = input().split() n = int(nk[0]) k = int(nk[1]) s = input() g_ind = 0 t_ind = 0 for i in range(0, n): if(s[i] == 'G'): g_ind = i elif(s[i] == 'T'): t_ind = i start = 0 end =0 if(g_ind < t_ind): start = g_ind end = t_ind else: start = t_ind end = g_ind res = True if((end - start) % k != 0): res = False else: while (start < end): if (s[start] == '#'): res = False break start += k if(res): print('YES') else: print('NO') ```
3
349
A
Cinema Line
PROGRAMMING
1,100
[ "greedy", "implementation" ]
null
null
The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line?
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line.
Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO".
[ "4\n25 25 50 50\n", "2\n25 100\n", "4\n50 50 25 25\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "4\n25 25 50 50", "output": "YES" }, { "input": "2\n25 100", "output": "NO" }, { "input": "4\n50 50 25 25", "output": "NO" }, { "input": "3\n25 50 100", "output": "NO" }, { "input": "10\n25 25 25 25 25 25 25 25 25 25", "output": "YES" }, { "input": "10\n50 50 50 50 50 50 50 50 50 50", "output": "NO" }, { "input": "10\n100 100 100 100 100 100 100 100 100 100", "output": "NO" }, { "input": "7\n25 25 25 25 50 100 50", "output": "YES" }, { "input": "2\n25 25", "output": "YES" }, { "input": "3\n50 100 100", "output": "NO" }, { "input": "3\n25 50 50", "output": "NO" }, { "input": "2\n50 25", "output": "NO" }, { "input": "14\n25 25 25 25 25 25 25 50 50 50 100 100 100 100", "output": "NO" }, { "input": "5\n25 25 25 100 100", "output": "NO" }, { "input": "7\n25 50 25 50 25 50 100", "output": "NO" }, { "input": "5\n25 50 25 50 100", "output": "NO" }, { "input": "5\n25 25 50 50 50", "output": "NO" }, { "input": "5\n25 25 50 100 50", "output": "NO" }, { "input": "5\n25 25 50 50 100", "output": "NO" }, { "input": "1\n50", "output": "NO" } ]
1,668,362,744
2,147,483,647
Python 3
OK
TESTS
40
186
5,324,800
kackisi = int(input()) k = list(map(int,input().split())) sayi25 = 0 sayi50 = 0 true = 0 for i in k: if i == 25: sayi25 += 1 if i == 50: sayi25 -= 1 sayi50 += 1 if i == 100: if sayi50 == 0: sayi25 -= 3 else: sayi50 -= 1 sayi25 -= 1 if sayi25 < 0 or sayi50 < 0: print("NO") true = 1 break if true == 0: print("YES")
Title: Cinema Line Time Limit: None seconds Memory Limit: None megabytes Problem Description: The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line? Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line. Output Specification: Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO". Demo Input: ['4\n25 25 50 50\n', '2\n25 100\n', '4\n50 50 25 25\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python kackisi = int(input()) k = list(map(int,input().split())) sayi25 = 0 sayi50 = 0 true = 0 for i in k: if i == 25: sayi25 += 1 if i == 50: sayi25 -= 1 sayi50 += 1 if i == 100: if sayi50 == 0: sayi25 -= 3 else: sayi50 -= 1 sayi25 -= 1 if sayi25 < 0 or sayi50 < 0: print("NO") true = 1 break if true == 0: print("YES") ```
3
749
A
Bachgold Problem
PROGRAMMING
800
[ "greedy", "implementation", "math", "number theory" ]
null
null
Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1. Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*.
The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000).
The first line of the output contains a single integer *k* — maximum possible number of primes in representation. The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them.
[ "5\n", "6\n" ]
[ "2\n2 3\n", "3\n2 2 2\n" ]
none
500
[ { "input": "5", "output": "2\n2 3" }, { "input": "6", "output": "3\n2 2 2" }, { "input": "2", "output": "1\n2" }, { "input": "3", "output": "1\n3" }, { "input": "99999", "output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "100000", "output": "50000\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "7", "output": "3\n2 2 3" }, { "input": "4", "output": "2\n2 2" }, { "input": "8", "output": "4\n2 2 2 2" }, { "input": "9", "output": "4\n2 2 2 3" }, { "input": "99995", "output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99996", "output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "10", "output": "5\n2 2 2 2 2" }, { "input": "11", "output": "5\n2 2 2 2 3" }, { "input": "99997", "output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99998", "output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "12", "output": "6\n2 2 2 2 2 2" }, { "input": "13", "output": "6\n2 2 2 2 2 3" }, { "input": "99993", "output": "49996\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99994", "output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "14", "output": "7\n2 2 2 2 2 2 2" }, { "input": "15", "output": "7\n2 2 2 2 2 2 3" }, { "input": "53", "output": "26\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "57", "output": "28\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "61", "output": "30\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "774", "output": "387\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "202", "output": "101\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2" }, { "input": "530", "output": "265\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "7166", "output": "3583\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "9294", "output": "4647\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "2422", "output": "1211\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "15326", "output": "7663\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "11454", "output": "5727\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "14878", "output": "7439\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "90672", "output": "45336\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99544", "output": "49772\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "90472", "output": "45236\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "23", "output": "11\n2 2 2 2 2 2 2 2 2 2 3" }, { "input": "93", "output": "46\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "19", "output": "9\n2 2 2 2 2 2 2 2 3" }, { "input": "11110", "output": "5555\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." } ]
1,658,299,613
2,147,483,647
Python 3
OK
TESTS
41
93
614,400
n = int(input()) if not n % 2: print(n // 2) print(*[2 for _ in range(n // 2)]) else: print(1 + (n - 3) // 2) print(3, *[2 for _ in range((n - 3) // 2)])
Title: Bachgold Problem Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1. Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*. Input Specification: The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000). Output Specification: The first line of the output contains a single integer *k* — maximum possible number of primes in representation. The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them. Demo Input: ['5\n', '6\n'] Demo Output: ['2\n2 3\n', '3\n2 2 2\n'] Note: none
```python n = int(input()) if not n % 2: print(n // 2) print(*[2 for _ in range(n // 2)]) else: print(1 + (n - 3) // 2) print(3, *[2 for _ in range((n - 3) // 2)]) ```
3
946
C
String Transformation
PROGRAMMING
1,300
[ "greedy", "strings" ]
null
null
You are given a string *s* consisting of |*s*| small english letters. In one move you can replace any character of this string to the next character in alphabetical order (a will be replaced with b, s will be replaced with t, etc.). You cannot replace letter z with any other letter. Your target is to make some number of moves (not necessary minimal) to get string abcdefghijklmnopqrstuvwxyz (english alphabet) as a subsequence. Subsequence of the string is the string that is obtained by deleting characters at some positions. You need to print the string that will be obtained from the given string and will be contain english alphabet as a subsequence or say that it is impossible.
The only one line of the input consisting of the string *s* consisting of |*s*| (1<=≤<=|*s*|<=≤<=105) small english letters.
If you can get a string that can be obtained from the given string and will contain english alphabet as a subsequence, print it. Otherwise print «-1» (without quotes).
[ "aacceeggiikkmmooqqssuuwwyy\n", "thereisnoanswer\n" ]
[ "abcdefghijklmnopqrstuvwxyz\n", "-1\n" ]
none
0
[ { "input": "aacceeggiikkmmooqqssuuwwyy", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "thereisnoanswer", "output": "-1" }, { "input": "jqcfvsaveaixhioaaeephbmsmfcgdyawscpyioybkgxlcrhaxs", "output": "-1" }, { "input": "rtdacjpsjjmjdhcoprjhaenlwuvpfqzurnrswngmpnkdnunaendlpbfuylqgxtndhmhqgbsknsy", "output": "-1" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaa" }, { "input": "abcdefghijklmnopqrstuvwxxx", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "abcdefghijklmnopqrstuvwxya", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "cdaaaaaaaaabcdjklmnopqrstuvwxyzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "cdabcdefghijklmnopqrstuvwxyzxyzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz" }, { "input": "zazaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "zazbcdefghijklmnopqrstuvwxyz" }, { "input": "abcdefghijklmnopqrstuvwxyz", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "abbbefghijklmnopqrstuvwxyz", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaa" }, { "input": "abcdefghijklmaopqrstuvwxyz", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "abcdefghijklmnopqrstuvwxyx", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaz", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaz" }, { "input": "zaaaazaaaaaaaaaaaaaaaaaaaaaaaa", "output": "zabcdzefghijklmnopqrstuvwxyzaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaa" }, { "input": "aaaaaafghijklmnopqrstuvwxyz", "output": "abcdefghijklmnopqrstuvwxyzz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaz", "output": "abcdefghijklmnopqrstuvwxyzaaaaaz" }, { "input": "abcdefghijklmnopqrstuvwaxy", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaa" }, { "input": "abcdefghijklmnapqrstuvwxyz", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "abcdefghijklmnopqrstuvnxyz", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaa" }, { "input": "abcdefghijklmnopqrstuvwxyzzzz", "output": "abcdefghijklmnopqrstuvwxyzzzz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aacceeggiikkmmooqqssuuwwya", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aacdefghijklmnopqrstuvwxyyy", "output": "abcdefghijklmnopqrstuvwxyzy" }, { "input": "abcaefghijklmnopqrstuvwxyz", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "zaaacaaaaaaaaaaaaaaaaaaaayy", "output": "zabcdefghijklmnopqrstuvwxyz" }, { "input": "abcdedccdcdccdcdcdcdcdcddccdcdcdc", "output": "abcdefghijklmnopqrstuvwxyzcdcdcdc" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "abcdecdcdcddcdcdcdcdcdcdcd", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "abaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "a", "output": "-1" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaa" }, { "input": "aaadefghijklmnopqrstuvwxyz", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaa" }, { "input": "abbbbbbbbbbbbbbbbbbbbbbbbz", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "aacceeggiikkmmaacceeggiikkmmooaacceeggiikkmmaacceeggiikkmmooqqssuuwwzy", "output": "abcdefghijklmnopqrstuvwxyzmmooaacceeggiikkmmaacceeggiikkmmooqqssuuwwzy" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "phqghumeaylnlfdxfircvscxggbwkfnqduxwfnfozvsrtkjprepggxrpnrvystmwcysyycqpevikeffmznimkkasvwsrenzkycxf", "output": "-1" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaap", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "zabcdefghijklmnopqrstuvwxyz", "output": "zabcdefghijklmnopqrstuvwxyz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyza" }, { "input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzabcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "rveviaomdienfygifatviahordebxazoxflfgzslhyzowhxbhqzpsgellkoimnwkvhpbijorhpggwfjexivpqbcbmqjyghkbq", "output": "rveviaomdienfygifbtvichordefxgzoxhlijzslkyzowlxmnqzpsopqrstuvwxyzhpbijorhpggwfjexivpqbcbmqjyghkbq" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "xtlsgypsfadpooefxzbcoejuvpvaboygpoeylfpbnpljvrvipyamyehwqnqrqpmxujjloovaowuxwhmsncbxcoksfzkvatxdknly", "output": "xtlsgypsfadpooefxzbcoejuvpvdeoygpofylgphnpljvrvipyjmyklwqnqrqpmxunopqrvstwuxwvwxyzbxcoksfzkvatxdknly" }, { "input": "jqcfvsaveaixhioaaeephbmsmfcgdyawscpyioybkgxlcrhaxsa", "output": "jqcfvsavebixhiocdefphgmsmhijkylwsmpynoypqrxstuvwxyz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "wlrbbmqbhcdarzowkkyhiddqscdxrjmowfrxsjybldbefsarcbynecdyggxxpklorellnmpapqfwkhopkmcoqh", "output": "wlrbbmqbhcdarzowkkyhiddqscdxrjmowfrxsjybldcefsdrefynghiyjkxxplmornopqrstuvwxyzopkmcoqh" }, { "input": "abadefghijklmnopqrstuvwxyz", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "zazsazcbbbbbbbbbbbbbbbbbbbbbbb", "output": "zazsbzcdefghijklmnopqrstuvwxyz" }, { "input": "zazsazcbbbbbbbbbbbbbbbbbbbbbyb", "output": "zazsbzcdefghijklmnopqrstuvwxyz" }, { "input": "bbcdefghijklmnopqrstuvwxyzzz", "output": "-1" }, { "input": "zaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "zabcdefghijklmnopqrstuvwxyz" }, { "input": "zzzzzaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "zzzzzabcdefghijklmnopqrstuvwxyza" }, { "input": "kkimnfjbbgggicykcciwtoazomcvisigagkjwhyrmojmoebnqoadpmockfjxibdtvrbedrsdoundbcpkfdqdidqdmxdltink", "output": "kkimnfjbbgggicykcciwtoazomcvisigbgkjwhyrmojmoecnqodepmofkgjxihitvrjklrsmounopqrstuvwxyzdmxdltink" }, { "input": "cawgathqceccscakbazmhwbefvygjbcfyihcbgga", "output": "-1" }, { "input": "acrsbyszsbfslzbqzzamcmrypictkcheddehvxdipaxaannjodzyfxgtfnwababzjraapqbqbfzhbiewlzz", "output": "acrsbyszscfslzdqzzemfmrypigtkhijklmnvxopqrxstuvwxyzyfxgtfnwababzjraapqbqbfzhbiewlzz" }, { "input": "ggcebbheeblbioxdvtlrtkxeuilonazpebcbqpzz", "output": "-1" }, { "input": "zzzzabcdefghijklmnopqrstuvwxy", "output": "-1" }, { "input": "zabcdefghijklmnopqrstuvwxy", "output": "-1" }, { "input": "babcdefghijklmnopqrstuvwxyz", "output": "babcdefghijklmnopqrstuvwxyz" }, { "input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "-1" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaz", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" } ]
1,595,438,262
2,147,483,647
Python 3
OK
TESTS
102
139
7,270,400
def solve(s): if len(s)<26: return -1 n = len(s) lis = list('abcdefghijklmnopqrstuvwxyz') curr = 0 for i in range(n): if lis.index(s[i])<=curr: #print(s) s[i] = lis[curr] curr += 1 if curr == 26: break if curr == 26: return "".join(s) return -1 s = list(input()) print(solve(s))
Title: String Transformation Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a string *s* consisting of |*s*| small english letters. In one move you can replace any character of this string to the next character in alphabetical order (a will be replaced with b, s will be replaced with t, etc.). You cannot replace letter z with any other letter. Your target is to make some number of moves (not necessary minimal) to get string abcdefghijklmnopqrstuvwxyz (english alphabet) as a subsequence. Subsequence of the string is the string that is obtained by deleting characters at some positions. You need to print the string that will be obtained from the given string and will be contain english alphabet as a subsequence or say that it is impossible. Input Specification: The only one line of the input consisting of the string *s* consisting of |*s*| (1<=≤<=|*s*|<=≤<=105) small english letters. Output Specification: If you can get a string that can be obtained from the given string and will contain english alphabet as a subsequence, print it. Otherwise print «-1» (without quotes). Demo Input: ['aacceeggiikkmmooqqssuuwwyy\n', 'thereisnoanswer\n'] Demo Output: ['abcdefghijklmnopqrstuvwxyz\n', '-1\n'] Note: none
```python def solve(s): if len(s)<26: return -1 n = len(s) lis = list('abcdefghijklmnopqrstuvwxyz') curr = 0 for i in range(n): if lis.index(s[i])<=curr: #print(s) s[i] = lis[curr] curr += 1 if curr == 26: break if curr == 26: return "".join(s) return -1 s = list(input()) print(solve(s)) ```
3
404
A
Valera and X
PROGRAMMING
1,000
[ "implementation" ]
null
null
Valera is a little boy. Yesterday he got a huge Math hometask at school, so Valera didn't have enough time to properly learn the English alphabet for his English lesson. Unfortunately, the English teacher decided to have a test on alphabet today. At the test Valera got a square piece of squared paper. The length of the side equals *n* squares (*n* is an odd number) and each unit square contains some small letter of the English alphabet. Valera needs to know if the letters written on the square piece of paper form letter "X". Valera's teacher thinks that the letters on the piece of paper form an "X", if: - on both diagonals of the square paper all letters are the same; - all other squares of the paper (they are not on the diagonals) contain the same letter that is different from the letters on the diagonals. Help Valera, write the program that completes the described task for him.
The first line contains integer *n* (3<=≤<=*n*<=&lt;<=300; *n* is odd). Each of the next *n* lines contains *n* small English letters — the description of Valera's paper.
Print string "YES", if the letters on the paper form letter "X". Otherwise, print string "NO". Print the strings without quotes.
[ "5\nxooox\noxoxo\nsoxoo\noxoxo\nxooox\n", "3\nwsw\nsws\nwsw\n", "3\nxpx\npxp\nxpe\n" ]
[ "NO\n", "YES\n", "NO\n" ]
none
500
[ { "input": "5\nxooox\noxoxo\nsoxoo\noxoxo\nxooox", "output": "NO" }, { "input": "3\nwsw\nsws\nwsw", "output": "YES" }, { "input": "3\nxpx\npxp\nxpe", "output": "NO" }, { "input": "5\nliiil\nilili\niilii\nilili\nliiil", "output": "YES" }, { "input": "7\nbwccccb\nckcccbj\nccbcbcc\ncccbccc\nccbcbcc\ncbcccbc\nbccccdt", "output": "NO" }, { "input": "13\nsooooooooooos\nosoooooooooso\noosooooooosoo\nooosooooosooo\noooosooosoooo\nooooososooooo\noooooosoooooo\nooooososooooo\noooosooosoooo\nooosooooosooo\noosooooooosoo\nosoooooooooso\nsooooooooooos", "output": "YES" }, { "input": "3\naaa\naaa\naaa", "output": "NO" }, { "input": "3\naca\noec\nzba", "output": "NO" }, { "input": "15\nrxeeeeeeeeeeeer\nereeeeeeeeeeere\needeeeeeeeeeoee\neeereeeeeeeewee\neeeereeeeebeeee\nqeeeereeejedyee\neeeeeerereeeeee\neeeeeeereeeeeee\neeeeeerereeeeze\neeeeereeereeeee\neeeereeeeegeeee\neeereeeeeeereee\neereeeeeeqeeved\ncreeeeeeceeeere\nreeerneeeeeeeer", "output": "NO" }, { "input": "5\nxxxxx\nxxxxx\nxxxxx\nxxxxx\nxxxxx", "output": "NO" }, { "input": "5\nxxxxx\nxxxxx\nxoxxx\nxxxxx\nxxxxx", "output": "NO" }, { "input": "5\noxxxo\nxoxox\nxxxxx\nxoxox\noxxxo", "output": "NO" }, { "input": "5\noxxxo\nxoxox\nxxoox\nxoxox\noxxxo", "output": "NO" }, { "input": "5\noxxxo\nxoxox\nxxaxx\nxoxox\noxxxo", "output": "NO" }, { "input": "5\noxxxo\nxoxox\noxoxx\nxoxox\noxxxo", "output": "NO" }, { "input": "3\nxxx\naxa\nxax", "output": "NO" }, { "input": "3\nxax\naxx\nxax", "output": "NO" }, { "input": "3\nxax\naxa\nxxx", "output": "NO" }, { "input": "3\nxax\nxxa\nxax", "output": "NO" }, { "input": "3\nxax\naaa\nxax", "output": "NO" }, { "input": "3\naax\naxa\nxax", "output": "NO" }, { "input": "3\nxaa\naxa\nxax", "output": "NO" }, { "input": "3\nxax\naxa\naax", "output": "NO" }, { "input": "3\nxax\naxa\nxaa", "output": "NO" }, { "input": "3\nxfx\naxa\nxax", "output": "NO" }, { "input": "3\nxax\nafa\nxax", "output": "NO" }, { "input": "3\nxax\naxa\nxaf", "output": "NO" }, { "input": "3\nxox\nxxx\nxxx", "output": "NO" }, { "input": "3\naxa\naax\nxxa", "output": "NO" }, { "input": "3\nxox\noxx\nxox", "output": "NO" }, { "input": "3\nxox\nooo\nxox", "output": "NO" }, { "input": "3\naaa\naab\nbbb", "output": "NO" }, { "input": "3\nxxx\nsxs\nxsx", "output": "NO" }, { "input": "5\nabbba\nbabab\nbbbbb\nbaaab\nabbba", "output": "NO" }, { "input": "5\nabaaa\nbbbbb\nbbabb\nbabab\nabbba", "output": "NO" }, { "input": "5\nxoxox\noxoxo\nooxoo\noxoxo\nxooox", "output": "NO" }, { "input": "3\nxox\noxx\nxxx", "output": "NO" }, { "input": "5\nxoooo\noxooo\nooxoo\noooxo\noooox", "output": "NO" }, { "input": "5\nxoooo\noxoxx\nooxoo\noxoxo\noxoox", "output": "NO" }, { "input": "3\naaa\nbab\naba", "output": "NO" } ]
1,678,889,235
2,147,483,647
Python 3
OK
TESTS
47
46
0
n = int(input()) z = [] count = 0 for i in range(0, n): z.append(input()) for j in range(0, int(n/2)): if z[j] == z[n-j-1] and z[int(n/2)][j] == z[int(n/2)][n-j-1]: count += 1 else: break if count < int(n/2): print("NO") else: if z[int(n/2)][int(n/2)] == z[0][0] and z[int(n/2)][int(n/2)] != z[0][1]: print("YES") else: print("NO")
Title: Valera and X Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera is a little boy. Yesterday he got a huge Math hometask at school, so Valera didn't have enough time to properly learn the English alphabet for his English lesson. Unfortunately, the English teacher decided to have a test on alphabet today. At the test Valera got a square piece of squared paper. The length of the side equals *n* squares (*n* is an odd number) and each unit square contains some small letter of the English alphabet. Valera needs to know if the letters written on the square piece of paper form letter "X". Valera's teacher thinks that the letters on the piece of paper form an "X", if: - on both diagonals of the square paper all letters are the same; - all other squares of the paper (they are not on the diagonals) contain the same letter that is different from the letters on the diagonals. Help Valera, write the program that completes the described task for him. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=&lt;<=300; *n* is odd). Each of the next *n* lines contains *n* small English letters — the description of Valera's paper. Output Specification: Print string "YES", if the letters on the paper form letter "X". Otherwise, print string "NO". Print the strings without quotes. Demo Input: ['5\nxooox\noxoxo\nsoxoo\noxoxo\nxooox\n', '3\nwsw\nsws\nwsw\n', '3\nxpx\npxp\nxpe\n'] Demo Output: ['NO\n', 'YES\n', 'NO\n'] Note: none
```python n = int(input()) z = [] count = 0 for i in range(0, n): z.append(input()) for j in range(0, int(n/2)): if z[j] == z[n-j-1] and z[int(n/2)][j] == z[int(n/2)][n-j-1]: count += 1 else: break if count < int(n/2): print("NO") else: if z[int(n/2)][int(n/2)] == z[0][0] and z[int(n/2)][int(n/2)] != z[0][1]: print("YES") else: print("NO") ```
3
556
A
Case of the Zeros and Ones
PROGRAMMING
900
[ "greedy" ]
null
null
Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones. Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result. Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number.
First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=2·105), the length of the string that Andreid has. The second line contains the string of length *n* consisting only from zeros and ones.
Output the minimum length of the string that may remain after applying the described operations several times.
[ "4\n1100\n", "5\n01010\n", "8\n11101111\n" ]
[ "0\n", "1\n", "6\n" ]
In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
250
[ { "input": "4\n1100", "output": "0" }, { "input": "5\n01010", "output": "1" }, { "input": "8\n11101111", "output": "6" }, { "input": "1\n0", "output": "1" }, { "input": "1\n1", "output": "1" }, { "input": "2\n00", "output": "2" }, { "input": "2\n01", "output": "0" }, { "input": "2\n10", "output": "0" }, { "input": "2\n11", "output": "2" }, { "input": "3\n001", "output": "1" }, { "input": "6\n110110", "output": "2" }, { "input": "7\n0000011", "output": "3" }, { "input": "6\n110010", "output": "0" }, { "input": "6\n110100", "output": "0" }, { "input": "3\n100", "output": "1" }, { "input": "6\n010111", "output": "2" }, { "input": "8\n01011100", "output": "0" }, { "input": "6\n001011", "output": "0" }, { "input": "7\n1110000", "output": "1" }, { "input": "9\n011111101", "output": "5" } ]
1,682,771,053
2,147,483,647
PyPy 3-64
OK
TESTS
49
62
409,600
a=int(input()) b=input() zero=b.count('0') ones=b.count('1') print(abs(zero-ones))
Title: Case of the Zeros and Ones Time Limit: None seconds Memory Limit: None megabytes Problem Description: Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones. Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result. Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number. Input Specification: First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=2·105), the length of the string that Andreid has. The second line contains the string of length *n* consisting only from zeros and ones. Output Specification: Output the minimum length of the string that may remain after applying the described operations several times. Demo Input: ['4\n1100\n', '5\n01010\n', '8\n11101111\n'] Demo Output: ['0\n', '1\n', '6\n'] Note: In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
```python a=int(input()) b=input() zero=b.count('0') ones=b.count('1') print(abs(zero-ones)) ```
3
325
E
The Red Button
PROGRAMMING
2,800
[ "combinatorics", "dfs and similar", "dsu", "graphs", "greedy" ]
null
null
Piegirl found the red button. You have one last chance to change the inevitable end. The circuit under the button consists of *n* nodes, numbered from 0 to *n* - 1. In order to deactivate the button, the *n* nodes must be disarmed in a particular order. Node 0 must be disarmed first. After disarming node *i*, the next node to be disarmed must be either node (2·*i*) modulo *n* or node (2·*i*)<=+<=1 modulo *n*. The last node to be disarmed must be node 0. Node 0 must be disarmed twice, but all other nodes must be disarmed exactly once. Your task is to find any such order and print it. If there is no such order, print -1.
Input consists of a single integer *n* (2<=≤<=*n*<=≤<=105).
Print an order in which you can to disarm all nodes. If it is impossible, print -1 instead. If there are multiple orders, print any one of them.
[ "2\n", "3\n", "4\n", "16\n" ]
[ "0 1 0\n", "-1", "0 1 3 2 0\n", "0 1 2 4 9 3 6 13 10 5 11 7 15 14 12 8 0\n" ]
none
2,500
[ { "input": "2", "output": "0 1 0" }, { "input": "3", "output": "-1" }, { "input": "4", "output": "0 1 3 2 0" }, { "input": "16", "output": "0 1 2 4 9 3 6 13 10 5 11 7 15 14 12 8 0" }, { "input": "5", "output": "-1" }, { "input": "7", "output": "-1" }, { "input": "32", "output": "0 1 2 4 8 17 3 6 12 25 18 5 10 20 9 19 7 14 29 26 21 11 22 13 27 23 15 31 30 28 24 16 0" }, { "input": "255", "output": "-1" }, { "input": "65536", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32769 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49153 32770 5 10 20 40 80 160 320 640 1280 2560 5120 10240 20480 40960 16385 32771 7 14 28 56 112 224 448 896 1792 3584 7168 14336 28672 57345 49154 32772 9 18 36 72 144 288 576 1152 2304 4608 9216 18432 36864 8193 16386 32773 11 22 44 88 176 352 704 1408 2816 5632 11264 22528 45056 24577 49155 32774 13 26 52 104 208 416 832 1664 3328 6656 13312 26624 53248 40961 16387 32775 15 30 60 120 24..." }, { "input": "99999", "output": "-1" }, { "input": "9", "output": "-1" }, { "input": "6", "output": "0 1 2 5 4 3 0" }, { "input": "8", "output": "0 1 2 5 3 7 6 4 0" }, { "input": "10", "output": "0 1 2 4 9 8 6 3 7 5 0" }, { "input": "12", "output": "0 1 2 4 8 5 11 10 9 7 3 6 0" }, { "input": "20", "output": "0 1 2 4 8 16 12 5 11 3 6 13 7 14 9 19 18 17 15 10 0" }, { "input": "25", "output": "-1" }, { "input": "30", "output": "0 1 2 4 8 16 3 6 12 24 19 9 18 7 14 29 28 26 23 17 5 10 21 13 27 25 20 11 22 15 0" }, { "input": "32", "output": "0 1 2 4 8 17 3 6 12 25 18 5 10 20 9 19 7 14 29 26 21 11 22 13 27 23 15 31 30 28 24 16 0" }, { "input": "45", "output": "-1" }, { "input": "50", "output": "0 1 2 4 8 16 32 14 28 6 12 24 49 48 46 42 34 18 36 22 44 39 29 9 19 38 26 3 7 15 30 10 20 40 31 13 27 5 11 23 47 45 41 33 17 35 21 43 37 25 0" }, { "input": "100", "output": "0 1 2 4 8 16 32 64 28 56 12 24 48 96 92 84 68 36 72 44 88 76 52 5 10 20 40 80 60 21 42 85 70 41 82 65 30 61 22 45 90 81 62 25 51 3 6 13 26 53 7 14 29 58 17 34 69 38 77 54 9 18 37 74 49 99 98 97 94 89 79 59 19 39 78 57 15 31 63 27 55 11 23 46 93 86 73 47 95 91 83 66 33 67 35 71 43 87 75 50 0" }, { "input": "126", "output": "0 1 2 4 8 16 32 64 3 6 12 24 48 96 66 7 14 28 56 112 98 70 15 30 60 120 114 102 78 31 62 125 124 122 118 110 95 65 5 10 20 40 80 35 71 17 34 68 11 22 44 88 50 100 74 23 46 92 58 116 106 87 49 99 72 18 37 75 25 51 103 81 36 73 21 42 85 45 90 54 109 93 61 123 121 117 108 91 57 115 104 83 41 82 39 79 33 67 9 19 38 77 29 59 119 113 101 76 27 55 111 97 69 13 26 53 107 89 52 105 84 43 86 47 94 63 0" }, { "input": "513", "output": "-1" }, { "input": "514", "output": "0 1 2 4 8 16 32 64 128 256 513 512 510 506 498 482 450 386 258 3 6 12 24 48 96 192 384 254 508 502 490 466 418 322 130 260 7 14 28 56 112 224 448 382 250 500 486 458 402 290 66 132 264 15 30 60 120 240 480 446 378 242 484 454 394 274 34 68 136 272 31 62 124 248 496 478 442 370 226 452 390 266 18 36 72 144 288 63 126 252 504 494 474 434 354 194 388 262 10 20 40 80 160 321 129 259 5 11 22 44 88 176 352 190 380 246 492 470 426 338 162 324 134 268 23 46 92 184 368 222 444 374 234 468 422 330 146 292 70 140 280..." }, { "input": "800", "output": "0 1 2 4 8 16 32 64 128 256 512 224 448 96 192 384 768 736 672 544 288 576 352 704 608 416 33 66 132 264 528 257 514 228 456 112 225 450 100 200 401 3 6 12 24 48 97 194 388 776 752 705 610 420 40 80 160 320 640 480 161 322 644 488 176 353 706 612 424 49 98 196 392 784 769 738 676 552 304 609 418 36 72 144 289 578 356 712 624 449 99 198 396 792 785 770 740 680 560 321 642 484 168 336 673 546 292 584 368 737 674 548 296 592 385 771 742 684 568 337 675 550 300 601 402 5 10 20 41 82 164 328 656 513 226 452 104 ..." }, { "input": "1000", "output": "0 1 2 4 8 16 32 64 128 256 512 24 48 96 192 384 768 536 72 144 288 576 152 304 608 216 432 864 728 456 912 824 648 296 592 184 368 736 472 944 888 776 552 104 208 416 832 664 328 656 312 624 248 496 992 984 968 936 872 744 488 976 952 904 808 616 232 464 928 856 712 424 848 696 392 784 568 136 272 544 88 176 352 704 408 816 632 264 528 56 112 224 448 896 792 584 168 336 672 344 688 376 752 504 9 18 36 73 146 292 585 170 340 680 360 720 440 880 760 520 40 80 160 320 640 280 560 120 240 480 960 920 840 681 3..." }, { "input": "2500", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 1596 692 1384 268 536 1072 2144 1788 1076 2152 1804 1108 2216 1932 1364 228 456 912 1824 1148 2296 2092 1684 868 1736 972 1944 1388 276 552 1104 2208 1916 1332 164 328 656 1312 124 248 496 992 1984 1468 436 872 1744 988 1976 1452 404 808 1616 732 1464 428 856 1712 924 1848 1196 2392 2284 2068 1636 772 1544 588 1176 2352 2204 1908 1316 132 264 528 1056 2112 1724 948 1896 1292 84 168 336 672 1344 188 376 752 1504 508 1016 2032 1564 628 1256 12 24 48 96 192 384 768 153..." }, { "input": "6400", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 1792 3584 768 1536 3072 6144 5888 5376 4352 2304 4608 2816 5632 4864 3328 257 514 1028 2056 4112 1824 3648 896 1793 3586 772 1544 3088 6176 5952 5504 4609 2818 5636 4872 3344 288 576 1152 2305 4610 2820 5640 4880 3360 320 640 1280 2560 5120 3840 1281 2562 5124 3848 1296 2592 5184 3968 1537 3074 6148 5896 5392 4384 2368 4736 3073 6146 5892 5384 4368 2336 4672 2944 5889 5378 4356 2312 4624 2848 5696 4992 3585 770 1540 3080 6160 5920 5440 4480 2561 5122 3844 1288 ..." }, { "input": "23105", "output": "-1" }, { "input": "24002", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 8766 17532 11062 22124 20246 16490 8978 17956 11910 23820 23638 23274 22546 21090 18178 12354 706 1412 2824 5648 11296 22592 21182 18362 12722 1442 2884 5768 11536 23072 22142 20282 16562 9122 18244 12486 970 1940 3880 7760 15520 7038 14076 4150 8300 16600 9198 18396 12790 1578 3156 6312 12624 1246 2492 4984 9968 19936 15870 7738 15476 6950 13900 3798 7596 15192 6382 12764 1526 3052 6104 12208 414 828 1656 3312 6624 13248 2494 4988 9976 19952 15902 7..." }, { "input": "29024", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 3744 7488 14976 928 1856 3712 7424 14848 672 1344 2688 5376 10752 21504 13984 27968 26912 24800 20576 12128 24256 19488 9952 19904 10784 21568 14112 28224 27424 25824 22624 16224 3424 6848 13696 27392 25760 22496 15968 2912 5824 11648 23296 17568 6112 12224 24448 19872 10720 21440 13856 27712 26400 23776 18528 8032 16064 3104 6208 12416 24832 20640 12256 24512 20000 10976 21952 14880 736 1472 2944 5888 11776 23552 18080 7136 14272 28544 28064 27104 2..." }, { "input": "36002", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 29534 23066 10130 20260 4518 9036 18072 142 284 568 1136 2272 4544 9088 18176 350 700 1400 2800 5600 11200 22400 8798 17596 35192 34382 32762 29522 23042 10082 20164 4326 8652 17304 34608 33214 30426 24850 13698 27396 18790 1578 3156 6312 12624 25248 14494 28988 21974 7946 15892 31784 27566 19130 2258 4516 9032 18064 126 252 504 1008 2016 4032 8064 16128 32256 28510 21018 6034 12068 24136 12270 24540 13078 26156 16310 32620 29238 22474 8946 178..." }, { "input": "55555", "output": "-1" }, { "input": "65534", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 32770 7 14 28 56 112 224 448 896 1792 3584 7168 14336 28672 57344 49154 32774 15 30 60 120 240 480 960 1920 3840 7680 15360 30720 61440 57346 49158 32782 31 62 124 248 496 992 1984 3968 7936 15872 31744 63488 61442 57350 49166 32798 63 126 252 504 1008 2016 4032 8064 16128 32256 64512 63490 61446 57358 49182 32830 127 254 508 1016 2032 4064 8128 16256 32512 65024 64514 63494 61454 573..." }, { "input": "77776", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 53296 28816 57632 37488 74976 72176 66576 55376 32976 65952 54128 30480 60960 44144 10512 21024 42048 6320 12640 25280 50560 23344 46688 15600 31200 62400 47024 16272 32544 65088 52400 27024 54048 30320 60640 43504 9232 18464 36928 73856 69936 62096 46416 15056 30112 60224 42672 7568 15136 30272 60544 43312 8848 17696 35392 70784 63792 49808 21840 43680 9584 19168 38336 76672 75568 73360 68944 60112 42448 7120 14240 28480 56960 36144 7228..." }, { "input": "88888", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 42184 84368 79848 70808 52728 16568 33136 66272 43656 87312 85736 82584 76280 63672 38456 76912 64936 40984 81968 75048 61208 33528 67056 45224 1560 3120 6240 12480 24960 49920 10952 21904 43808 87616 86344 83800 78712 68536 48184 7480 14960 29920 59840 30792 61584 34280 68560 48232 7576 15152 30304 60608 32328 64656 40424 80848 72808 56728 24568 49136 9384 18768 37536 75072 61256 33624 67248 45608 2328 4656 9312 18624 37248 74496 60104 3..." }, { "input": "99494", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 31578 63156 26818 53636 7778 15556 31112 62224 24954 49908 322 644 1288 2576 5152 10304 20608 41216 82432 65370 31246 62492 25490 50980 2466 4932 9864 19728 39456 78912 58330 17166 34332 68664 37834 75668 51842 4190 8380 16760 33520 67040 34586 69172 38850 77700 55906 12318 24636 49272 98544 97594 95694 91894 84294 69094 38694 77388 55282 11070 22140 44280 88560 77626 55758 12022 24044 48088 96176 92858 86222 72950 46406 92812 86130 72766..." }, { "input": "99998", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 31074 62148 24298 48596 97192 94386 88774 77550 55102 10206 20412 40824 81648 63298 26598 53196 6394 12788 25576 51152 2306 4612 9224 18448 36896 73792 47586 95172 90346 80694 61390 22782 45564 91128 82258 64518 29038 58076 16154 32308 64616 29234 58468 16938 33876 67752 35506 71012 42026 84052 68106 36214 72428 44858 89716 79434 58870 17742 35484 70968 41938 83876 67754 35510 71020 42042 84084 68170 36342 72684 45370 90740 81482 62966 25..." }, { "input": "90248", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 40824 81648 73048 55848 21448 42896 85792 81336 72424 54600 18952 37904 75808 61368 32488 64976 39704 79408 68568 46888 3528 7056 14112 28224 56448 22648 45296 344 688 1376 2752 5504 11008 22016 44032 88064 85880 81512 72776 55304 20360 40720 81440 72632 55016 19784 39568 79136 68024 45800 1352 2704 5408 10816 21632 43264 86528 82808 75368 60488 30728 61456 32664 65328 40408 80816 71384 52520 14792 29584 59168 28088 56176 22104 44208 8841..." }, { "input": "99994", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 31078 62156 24318 48636 97272 94550 89106 78218 56442 12890 25780 51560 3126 6252 12504 25008 50016 38 76 152 304 608 1216 2432 4864 9728 19456 38912 77824 55654 11314 22628 45256 90512 81030 62066 24138 48276 96552 93110 86226 72458 44922 89844 79694 59394 18794 37588 75176 50358 722 1444 2888 5776 11552 23104 46208 92416 84838 69682 39370 78740 57486 14978 29956 59912 19830 39660 79320 58646 17298 34596 69192 38390 76780 53566 7138 1427..." }, { "input": "100000", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 31072 62144 24288 48576 97152 94304 88608 77216 54432 8864 17728 35456 70912 41824 83648 67296 34592 69184 38368 76736 53472 6944 13888 27776 55552 11104 22208 44416 88832 77664 55328 10656 21312 42624 85248 70496 40992 81984 63968 27936 55872 11744 23488 46976 93952 87904 75808 51616 3232 6464 12928 25856 51712 3424 6848 13696 27392 54784 9568 19136 38272 76544 53088 6176 12352 24704 49408 98816 97632 95264 90528 81056 62112 24224 48448 ..." }, { "input": "98300", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 32772 65544 32788 65576 32852 65704 33108 66216 34132 68264 38228 76456 54612 10924 21848 43696 87392 76484 54668 11036 22072 44144 88288 78276 58252 18204 36408 72816 47332 94664 91028 83756 69212 40124 80248 62196 26092 52184 6068 12136 24272 48544 97088 95876 93452 88604 78908 59516 20732 41464 82928 67556 36812 73624 48948 97896 97492 96684 95068 91836 85372 72444 46588 93176 88052 77804 57308 16316 32632 65264 32228 64456 30612 61224..." }, { "input": "95324", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 35748 71496 47668 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 2980 5960 11920 23840 47680 36 72 144 288 576 1152 2304 4608 9216 18432 36864 73728 52132 8940 17880 35760 71520 47716 108 216 432 864 1728 3456 6912 13824 27648 55296 15268 30536 61072 26820 53640 11956 23912 47824 324 648 1296 2592 5184 10368 20736 41472 82944 70564 45804 91608 87892 80460 65596 35868 71736 48148 972 1944 3888 7776 15552 31104 62208 29092 58184 2..." }, { "input": "87380", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 43692 5 10 20 40 80 160 320 640 1280 2560 5120 10240 20480 40960 81920 76460 65540 43700 21 42 84 168 336 672 1344 2688 5376 10752 21504 43008 86016 84652 81924 76468 65556 43732 85 170 340 680 1360 2720 5440 10880 21760 43520 87040 86700 86020 84660 81940 76500 65620 43860 341 682 1364 2728 5456 10912 21824 43648 87296 87212 87044 86708 86036 84692 82004 76628 65876 44372 1365 2730 5460 10920 21840 43680 87360 87340 87300 87220 87060 867..." }, { "input": "86036", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 45036 4036 8072 16144 32288 64576 43116 196 392 784 1568 3136 6272 12544 25088 50176 14316 28632 57264 28492 56984 27932 55864 25692 51384 16732 33464 66928 47820 9604 19208 38416 76832 67628 49220 12404 24808 49616 13196 26392 52784 19532 39064 78128 70220 54404 22772 45544 5052 10104 20208 40416 80832 75628 65220 44404 2772 5544 11088 22176 44352 2668 5336 10672 21344 42688 85376 84716 83396 80756 75476 64916 43796 1556 3112 6224 12448 ..." }, { "input": "81914", "output": "0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 49158 16402 32804 65608 49302 16690 33380 66760 51606 21298 42596 3278 6556 13112 26224 52448 22982 45964 10014 20028 40056 80112 78310 74706 67498 53082 24250 48500 15086 30172 60344 38774 77548 73182 64450 46986 12058 24116 48232 14550 29100 58200 34486 68972 56030 30146 60292 38670 77340 72766 63618 45322 8730 17460 34920 69840 57766 33618 67236 52558 23202 46404 10894 21788 43576 5238 10476 20952 41904 1894 3788 7576 15152 30304 60608..." } ]
1,485,404,043
2,147,483,647
Python 3
OK
TESTS
47
342
19,148,800
n=int(input()) if n&1: print(-1) else: D,R=[False]*(10**6),[0]*(10**6) i,j=0,0 while True: D[j]=True R[i]=j i+=1 if not D[(j+n)>>1]: j=(j+n)>>1 elif not D[j>>1]: j=j>>1 else: break print(" ".join(str(R[i]) for i in range(n,-1,-1)))
Title: The Red Button Time Limit: None seconds Memory Limit: None megabytes Problem Description: Piegirl found the red button. You have one last chance to change the inevitable end. The circuit under the button consists of *n* nodes, numbered from 0 to *n* - 1. In order to deactivate the button, the *n* nodes must be disarmed in a particular order. Node 0 must be disarmed first. After disarming node *i*, the next node to be disarmed must be either node (2·*i*) modulo *n* or node (2·*i*)<=+<=1 modulo *n*. The last node to be disarmed must be node 0. Node 0 must be disarmed twice, but all other nodes must be disarmed exactly once. Your task is to find any such order and print it. If there is no such order, print -1. Input Specification: Input consists of a single integer *n* (2<=≤<=*n*<=≤<=105). Output Specification: Print an order in which you can to disarm all nodes. If it is impossible, print -1 instead. If there are multiple orders, print any one of them. Demo Input: ['2\n', '3\n', '4\n', '16\n'] Demo Output: ['0 1 0\n', '-1', '0 1 3 2 0\n', '0 1 2 4 9 3 6 13 10 5 11 7 15 14 12 8 0\n'] Note: none
```python n=int(input()) if n&1: print(-1) else: D,R=[False]*(10**6),[0]*(10**6) i,j=0,0 while True: D[j]=True R[i]=j i+=1 if not D[(j+n)>>1]: j=(j+n)>>1 elif not D[j>>1]: j=j>>1 else: break print(" ".join(str(R[i]) for i in range(n,-1,-1))) ```
3
875
A
Classroom Watch
PROGRAMMING
1,200
[ "brute force", "math" ]
null
null
Eighth-grader Vova is on duty today in the class. After classes, he went into the office to wash the board, and found on it the number *n*. He asked what is this number and the teacher of mathematics Inna Petrovna answered Vova that *n* is the answer to the arithmetic task for first-graders. In the textbook, a certain positive integer *x* was given. The task was to add *x* to the sum of the digits of the number *x* written in decimal numeral system. Since the number *n* on the board was small, Vova quickly guessed which *x* could be in the textbook. Now he wants to get a program which will search for arbitrary values of the number *n* for all suitable values of *x* or determine that such *x* does not exist. Write such a program for Vova.
The first line contains integer *n* (1<=≤<=*n*<=≤<=109).
In the first line print one integer *k* — number of different values of *x* satisfying the condition. In next *k* lines print these values in ascending order.
[ "21\n", "20\n" ]
[ "1\n15\n", "0\n" ]
In the first test case *x* = 15 there is only one variant: 15 + 1 + 5 = 21. In the second test case there are no such *x*.
500
[ { "input": "21", "output": "1\n15" }, { "input": "20", "output": "0" }, { "input": "1", "output": "0" }, { "input": "2", "output": "1\n1" }, { "input": "3", "output": "0" }, { "input": "100000001", "output": "2\n99999937\n100000000" }, { "input": "1000000000", "output": "1\n999999932" }, { "input": "999999979", "output": "2\n999999899\n999999908" }, { "input": "9", "output": "0" }, { "input": "10", "output": "1\n5" }, { "input": "11", "output": "1\n10" }, { "input": "39", "output": "1\n33" }, { "input": "66", "output": "1\n60" }, { "input": "75", "output": "0" }, { "input": "100", "output": "1\n86" }, { "input": "101", "output": "2\n91\n100" }, { "input": "2014", "output": "2\n1988\n2006" }, { "input": "999999994", "output": "0" } ]
1,644,186,678
2,147,483,647
Python 3
OK
TESTS
18
46
0
n = int(input()) m = str(n) g = len(m) l = [int(m[0])-1]+[9]*(g-1) h = 0 less = 0 while(h<len(l)): less = less + l[h] h = h + 1 a = n - less r = [] i = 0 while(a<n): j = 0 s = str(a) c = a while j<len(s): c = c + int(s[j]) j = j + 1 if(c==n): i +=1 r = r + [a] a = a + 1 if(i==0): print(0) else: print(i) j = 0 while(j<len(r)): print(r[j]) j = j + 1
Title: Classroom Watch Time Limit: None seconds Memory Limit: None megabytes Problem Description: Eighth-grader Vova is on duty today in the class. After classes, he went into the office to wash the board, and found on it the number *n*. He asked what is this number and the teacher of mathematics Inna Petrovna answered Vova that *n* is the answer to the arithmetic task for first-graders. In the textbook, a certain positive integer *x* was given. The task was to add *x* to the sum of the digits of the number *x* written in decimal numeral system. Since the number *n* on the board was small, Vova quickly guessed which *x* could be in the textbook. Now he wants to get a program which will search for arbitrary values of the number *n* for all suitable values of *x* or determine that such *x* does not exist. Write such a program for Vova. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=109). Output Specification: In the first line print one integer *k* — number of different values of *x* satisfying the condition. In next *k* lines print these values in ascending order. Demo Input: ['21\n', '20\n'] Demo Output: ['1\n15\n', '0\n'] Note: In the first test case *x* = 15 there is only one variant: 15 + 1 + 5 = 21. In the second test case there are no such *x*.
```python n = int(input()) m = str(n) g = len(m) l = [int(m[0])-1]+[9]*(g-1) h = 0 less = 0 while(h<len(l)): less = less + l[h] h = h + 1 a = n - less r = [] i = 0 while(a<n): j = 0 s = str(a) c = a while j<len(s): c = c + int(s[j]) j = j + 1 if(c==n): i +=1 r = r + [a] a = a + 1 if(i==0): print(0) else: print(i) j = 0 while(j<len(r)): print(r[j]) j = j + 1 ```
3
527
A
Playing with Paper
PROGRAMMING
1,100
[ "implementation", "math" ]
null
null
One day Vasya was sitting on a not so interesting Maths lesson and making an origami from a rectangular *a* mm <=×<= *b* mm sheet of paper (*a*<=&gt;<=*b*). Usually the first step in making an origami is making a square piece of paper from the rectangular sheet by folding the sheet along the bisector of the right angle, and cutting the excess part. After making a paper ship from the square piece, Vasya looked on the remaining (*a*<=-<=*b*) mm <=×<= *b* mm strip of paper. He got the idea to use this strip of paper in the same way to make an origami, and then use the remainder (if it exists) and so on. At the moment when he is left with a square piece of paper, he will make the last ship from it and stop. Can you determine how many ships Vasya will make during the lesson?
The first line of the input contains two integers *a*, *b* (1<=≤<=*b*<=&lt;<=*a*<=≤<=1012) — the sizes of the original sheet of paper.
Print a single integer — the number of ships that Vasya will make.
[ "2 1\n", "10 7\n", "1000000000000 1\n" ]
[ "2\n", "6\n", "1000000000000\n" ]
Pictures to the first and second sample test.
500
[ { "input": "2 1", "output": "2" }, { "input": "10 7", "output": "6" }, { "input": "1000000000000 1", "output": "1000000000000" }, { "input": "3 1", "output": "3" }, { "input": "4 1", "output": "4" }, { "input": "3 2", "output": "3" }, { "input": "4 2", "output": "2" }, { "input": "1000 700", "output": "6" }, { "input": "959986566087 524054155168", "output": "90" }, { "input": "4 3", "output": "4" }, { "input": "7 6", "output": "7" }, { "input": "1000 999", "output": "1000" }, { "input": "1000 998", "output": "500" }, { "input": "1000 997", "output": "336" }, { "input": "42 1", "output": "42" }, { "input": "1000 1", "output": "1000" }, { "input": "8 5", "output": "5" }, { "input": "13 8", "output": "6" }, { "input": "987 610", "output": "15" }, { "input": "442 42", "output": "22" }, { "input": "754 466", "output": "13" }, { "input": "1000000000000 999999999999", "output": "1000000000000" }, { "input": "1000000000000 999999999998", "output": "500000000000" }, { "input": "941 14", "output": "74" }, { "input": "998 2", "output": "499" }, { "input": "1000 42", "output": "32" }, { "input": "1000 17", "output": "66" }, { "input": "5 1", "output": "5" }, { "input": "5 2", "output": "4" }, { "input": "5 3", "output": "4" }, { "input": "5 4", "output": "5" }, { "input": "293 210", "output": "17" }, { "input": "787878787878 424242424242", "output": "8" }, { "input": "956722026041 591286729879", "output": "58" }, { "input": "956722026041 365435296162", "output": "58" }, { "input": "628625247282 464807889701", "output": "102" }, { "input": "695928431619 424778620208", "output": "167" }, { "input": "1000000000000 42", "output": "23809523821" }, { "input": "987654345678 23", "output": "42941493300" }, { "input": "10000000001 2", "output": "5000000002" }, { "input": "1000000000000 2", "output": "500000000000" }, { "input": "1000000000000 3", "output": "333333333336" }, { "input": "100000000000 3", "output": "33333333336" }, { "input": "100000000000 23", "output": "4347826109" }, { "input": "999999999997 7", "output": "142857142861" }, { "input": "8589934592 4294967296", "output": "2" } ]
1,429,103,557
2,147,483,647
Python 3
OK
TESTS
46
62
0
s=input() a,b=s.split(' ') a,b=int(a),int(b) ans=1 while a!=b and a and b: if a<b: a,b=b,a d=a//b if a%b==0: d-=1 ans+=d a,b=b,a-d*b print(ans)
Title: Playing with Paper Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vasya was sitting on a not so interesting Maths lesson and making an origami from a rectangular *a* mm <=×<= *b* mm sheet of paper (*a*<=&gt;<=*b*). Usually the first step in making an origami is making a square piece of paper from the rectangular sheet by folding the sheet along the bisector of the right angle, and cutting the excess part. After making a paper ship from the square piece, Vasya looked on the remaining (*a*<=-<=*b*) mm <=×<= *b* mm strip of paper. He got the idea to use this strip of paper in the same way to make an origami, and then use the remainder (if it exists) and so on. At the moment when he is left with a square piece of paper, he will make the last ship from it and stop. Can you determine how many ships Vasya will make during the lesson? Input Specification: The first line of the input contains two integers *a*, *b* (1<=≤<=*b*<=&lt;<=*a*<=≤<=1012) — the sizes of the original sheet of paper. Output Specification: Print a single integer — the number of ships that Vasya will make. Demo Input: ['2 1\n', '10 7\n', '1000000000000 1\n'] Demo Output: ['2\n', '6\n', '1000000000000\n'] Note: Pictures to the first and second sample test.
```python s=input() a,b=s.split(' ') a,b=int(a),int(b) ans=1 while a!=b and a and b: if a<b: a,b=b,a d=a//b if a%b==0: d-=1 ans+=d a,b=b,a-d*b print(ans) ```
3
847
M
Weather Tomorrow
PROGRAMMING
1,000
[ "implementation", "math" ]
null
null
Vasya came up with his own weather forecasting method. He knows the information about the average air temperature for each of the last *n* days. Assume that the average air temperature for each day is integral. Vasya believes that if the average temperatures over the last *n* days form an arithmetic progression, where the first term equals to the average temperature on the first day, the second term equals to the average temperature on the second day and so on, then the average temperature of the next (*n*<=+<=1)-th day will be equal to the next term of the arithmetic progression. Otherwise, according to Vasya's method, the temperature of the (*n*<=+<=1)-th day will be equal to the temperature of the *n*-th day. Your task is to help Vasya predict the average temperature for tomorrow, i. e. for the (*n*<=+<=1)-th day.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=100) — the number of days for which the average air temperature is known. The second line contains a sequence of integers *t*1,<=*t*2,<=...,<=*t**n* (<=-<=1000<=≤<=*t**i*<=≤<=1000) — where *t**i* is the average temperature in the *i*-th day.
Print the average air temperature in the (*n*<=+<=1)-th day, which Vasya predicts according to his method. Note that the absolute value of the predicted temperature can exceed 1000.
[ "5\n10 5 0 -5 -10\n", "4\n1 1 1 1\n", "3\n5 1 -5\n", "2\n900 1000\n" ]
[ "-15\n", "1\n", "-5\n", "1100\n" ]
In the first example the sequence of the average temperatures is an arithmetic progression where the first term is 10 and each following terms decreases by 5. So the predicted average temperature for the sixth day is  - 10 - 5 =  - 15. In the second example the sequence of the average temperatures is an arithmetic progression where the first term is 1 and each following terms equals to the previous one. So the predicted average temperature in the fifth day is 1. In the third example the average temperatures do not form an arithmetic progression, so the average temperature of the fourth day equals to the temperature of the third day and equals to  - 5. In the fourth example the sequence of the average temperatures is an arithmetic progression where the first term is 900 and each the following terms increase by 100. So predicted average temperature in the third day is 1000 + 100 = 1100.
0
[ { "input": "5\n10 5 0 -5 -10", "output": "-15" }, { "input": "4\n1 1 1 1", "output": "1" }, { "input": "3\n5 1 -5", "output": "-5" }, { "input": "2\n900 1000", "output": "1100" }, { "input": "2\n1 2", "output": "3" }, { "input": "3\n2 5 8", "output": "11" }, { "input": "4\n4 1 -2 -5", "output": "-8" }, { "input": "10\n-1000 -995 -990 -985 -980 -975 -970 -965 -960 -955", "output": "-950" }, { "input": "11\n-1000 -800 -600 -400 -200 0 200 400 600 800 1000", "output": "1200" }, { "input": "31\n1000 978 956 934 912 890 868 846 824 802 780 758 736 714 692 670 648 626 604 582 560 538 516 494 472 450 428 406 384 362 340", "output": "318" }, { "input": "5\n1000 544 88 -368 -824", "output": "-1280" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "33\n456 411 366 321 276 231 186 141 96 51 6 -39 -84 -129 -174 -219 -264 -309 -354 -399 -444 -489 -534 -579 -624 -669 -714 -759 -804 -849 -894 -939 -984", "output": "-1029" }, { "input": "77\n-765 -742 -719 -696 -673 -650 -627 -604 -581 -558 -535 -512 -489 -466 -443 -420 -397 -374 -351 -328 -305 -282 -259 -236 -213 -190 -167 -144 -121 -98 -75 -52 -29 -6 17 40 63 86 109 132 155 178 201 224 247 270 293 316 339 362 385 408 431 454 477 500 523 546 569 592 615 638 661 684 707 730 753 776 799 822 845 868 891 914 937 960 983", "output": "1006" }, { "input": "3\n2 4 8", "output": "8" }, { "input": "4\n4 1 -3 -5", "output": "-5" }, { "input": "10\n-1000 -995 -990 -984 -980 -975 -970 -965 -960 -955", "output": "-955" }, { "input": "11\n-999 -800 -600 -400 -200 0 200 400 600 800 1000", "output": "1000" }, { "input": "51\n-9 10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490 510 530 550 570 590 610 630 650 670 690 710 730 750 770 790 810 830 850 870 890 910 930 950 970 990", "output": "990" }, { "input": "100\n10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 207", "output": "207" }, { "input": "2\n1000 1000", "output": "1000" }, { "input": "2\n-1000 1000", "output": "3000" }, { "input": "2\n1000 -1000", "output": "-3000" }, { "input": "2\n-1000 -1000", "output": "-1000" }, { "input": "100\n-85 -80 -76 -72 -68 -64 -60 -56 -52 -48 -44 -40 -36 -32 -28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312", "output": "312" }, { "input": "4\n1 2 4 5", "output": "5" } ]
1,589,823,526
2,147,483,647
Python 3
OK
TESTS
26
93
307,200
n=int(input()) a=list(map(int,input().split())) ans=a[0]+(n)*(a[1]-a[0]) t=[0]*(n-1) u=0 for i in range(len(a)-1): t[i]=a[i+1]-a[i] val=t[0] for j in t: if j==val: continue else: u=1 if u==0: print(ans) else: print(a.pop())
Title: Weather Tomorrow Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya came up with his own weather forecasting method. He knows the information about the average air temperature for each of the last *n* days. Assume that the average air temperature for each day is integral. Vasya believes that if the average temperatures over the last *n* days form an arithmetic progression, where the first term equals to the average temperature on the first day, the second term equals to the average temperature on the second day and so on, then the average temperature of the next (*n*<=+<=1)-th day will be equal to the next term of the arithmetic progression. Otherwise, according to Vasya's method, the temperature of the (*n*<=+<=1)-th day will be equal to the temperature of the *n*-th day. Your task is to help Vasya predict the average temperature for tomorrow, i. e. for the (*n*<=+<=1)-th day. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=100) — the number of days for which the average air temperature is known. The second line contains a sequence of integers *t*1,<=*t*2,<=...,<=*t**n* (<=-<=1000<=≤<=*t**i*<=≤<=1000) — where *t**i* is the average temperature in the *i*-th day. Output Specification: Print the average air temperature in the (*n*<=+<=1)-th day, which Vasya predicts according to his method. Note that the absolute value of the predicted temperature can exceed 1000. Demo Input: ['5\n10 5 0 -5 -10\n', '4\n1 1 1 1\n', '3\n5 1 -5\n', '2\n900 1000\n'] Demo Output: ['-15\n', '1\n', '-5\n', '1100\n'] Note: In the first example the sequence of the average temperatures is an arithmetic progression where the first term is 10 and each following terms decreases by 5. So the predicted average temperature for the sixth day is  - 10 - 5 =  - 15. In the second example the sequence of the average temperatures is an arithmetic progression where the first term is 1 and each following terms equals to the previous one. So the predicted average temperature in the fifth day is 1. In the third example the average temperatures do not form an arithmetic progression, so the average temperature of the fourth day equals to the temperature of the third day and equals to  - 5. In the fourth example the sequence of the average temperatures is an arithmetic progression where the first term is 900 and each the following terms increase by 100. So predicted average temperature in the third day is 1000 + 100 = 1100.
```python n=int(input()) a=list(map(int,input().split())) ans=a[0]+(n)*(a[1]-a[0]) t=[0]*(n-1) u=0 for i in range(len(a)-1): t[i]=a[i+1]-a[i] val=t[0] for j in t: if j==val: continue else: u=1 if u==0: print(ans) else: print(a.pop()) ```
3
994
A
Fingerprints
PROGRAMMING
800
[ "implementation" ]
null
null
You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits. Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code.
The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints. The next line contains $n$ distinct space-separated integers $x_1, x_2, \ldots, x_n$ ($0 \le x_i \le 9$) representing the sequence. The next line contains $m$ distinct space-separated integers $y_1, y_2, \ldots, y_m$ ($0 \le y_i \le 9$) — the keys with fingerprints.
In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable.
[ "7 3\n3 5 7 1 6 2 8\n1 2 7\n", "4 4\n3 4 1 0\n0 1 7 9\n" ]
[ "7 1 2\n", "1 0\n" ]
In the first example, the only digits with fingerprints are $1$, $2$ and $7$. All three of them appear in the sequence you know, $7$ first, then $1$ and then $2$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence. In the second example digits $0$, $1$, $7$ and $9$ have fingerprints, however only $0$ and $1$ appear in the original sequence. $1$ appears earlier, so the output is 1 0. Again, the order is important.
500
[ { "input": "7 3\n3 5 7 1 6 2 8\n1 2 7", "output": "7 1 2" }, { "input": "4 4\n3 4 1 0\n0 1 7 9", "output": "1 0" }, { "input": "9 4\n9 8 7 6 5 4 3 2 1\n2 4 6 8", "output": "8 6 4 2" }, { "input": "10 5\n3 7 1 2 4 6 9 0 5 8\n4 3 0 7 9", "output": "3 7 4 9 0" }, { "input": "10 10\n1 2 3 4 5 6 7 8 9 0\n4 5 6 7 1 2 3 0 9 8", "output": "1 2 3 4 5 6 7 8 9 0" }, { "input": "1 1\n4\n4", "output": "4" }, { "input": "3 7\n6 3 4\n4 9 0 1 7 8 6", "output": "6 4" }, { "input": "10 1\n9 0 8 1 7 4 6 5 2 3\n0", "output": "0" }, { "input": "5 10\n6 0 3 8 1\n3 1 0 5 4 7 2 8 9 6", "output": "6 0 3 8 1" }, { "input": "8 2\n7 2 9 6 1 0 3 4\n6 3", "output": "6 3" }, { "input": "5 4\n7 0 1 4 9\n0 9 5 3", "output": "0 9" }, { "input": "10 1\n9 6 2 0 1 8 3 4 7 5\n6", "output": "6" }, { "input": "10 2\n7 1 0 2 4 6 5 9 3 8\n3 2", "output": "2 3" }, { "input": "5 9\n3 7 9 2 4\n3 8 4 5 9 6 1 0 2", "output": "3 9 2 4" }, { "input": "10 6\n7 1 2 3 8 0 6 4 5 9\n1 5 8 2 3 6", "output": "1 2 3 8 6 5" }, { "input": "8 2\n7 4 8 9 2 5 6 1\n6 4", "output": "4 6" }, { "input": "10 2\n1 0 3 5 8 9 4 7 6 2\n0 3", "output": "0 3" }, { "input": "7 6\n9 2 8 6 1 3 7\n4 2 0 3 1 8", "output": "2 8 1 3" }, { "input": "1 6\n3\n6 8 2 4 5 3", "output": "3" }, { "input": "1 8\n0\n9 2 4 8 1 5 0 7", "output": "0" }, { "input": "6 9\n7 3 9 4 1 0\n9 1 5 8 0 6 2 7 4", "output": "7 9 4 1 0" }, { "input": "10 2\n4 9 6 8 3 0 1 5 7 2\n0 1", "output": "0 1" }, { "input": "10 5\n5 2 8 0 9 7 6 1 4 3\n9 6 4 1 2", "output": "2 9 6 1 4" }, { "input": "6 3\n8 3 9 2 7 6\n5 4 3", "output": "3" }, { "input": "4 10\n8 3 9 6\n4 9 6 2 7 0 8 1 3 5", "output": "8 3 9 6" }, { "input": "1 2\n1\n1 0", "output": "1" }, { "input": "3 6\n1 2 3\n4 5 6 1 2 3", "output": "1 2 3" }, { "input": "1 2\n2\n1 2", "output": "2" }, { "input": "1 10\n9\n0 1 2 3 4 5 6 7 8 9", "output": "9" } ]
1,561,556,549
2,147,483,647
Python 3
OK
TESTS
31
124
0
t = list(map(int,input().split(' '))) l1 = list(map(int,input().split(' '))) l2= list(map(int,input().split(' '))) l3=[] for i in l1: if i in l2: l3.append(i) for i in l3: print(i,end=" ")
Title: Fingerprints Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits. Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code. Input Specification: The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints. The next line contains $n$ distinct space-separated integers $x_1, x_2, \ldots, x_n$ ($0 \le x_i \le 9$) representing the sequence. The next line contains $m$ distinct space-separated integers $y_1, y_2, \ldots, y_m$ ($0 \le y_i \le 9$) — the keys with fingerprints. Output Specification: In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable. Demo Input: ['7 3\n3 5 7 1 6 2 8\n1 2 7\n', '4 4\n3 4 1 0\n0 1 7 9\n'] Demo Output: ['7 1 2\n', '1 0\n'] Note: In the first example, the only digits with fingerprints are $1$, $2$ and $7$. All three of them appear in the sequence you know, $7$ first, then $1$ and then $2$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence. In the second example digits $0$, $1$, $7$ and $9$ have fingerprints, however only $0$ and $1$ appear in the original sequence. $1$ appears earlier, so the output is 1 0. Again, the order is important.
```python t = list(map(int,input().split(' '))) l1 = list(map(int,input().split(' '))) l2= list(map(int,input().split(' '))) l3=[] for i in l1: if i in l2: l3.append(i) for i in l3: print(i,end=" ") ```
3
202
A
LLPS
PROGRAMMING
800
[ "binary search", "bitmasks", "brute force", "greedy", "implementation", "strings" ]
null
null
This problem's actual name, "Lexicographically Largest Palindromic Subsequence" is too long to fit into the page headline. You are given string *s* consisting of lowercase English letters only. Find its lexicographically largest palindromic subsequence. We'll call a non-empty string *s*[*p*1*p*2... *p**k*] = *s**p*1*s**p*2... *s**p**k* (1 <=≤<= *p*1<=&lt;<=*p*2<=&lt;<=...<=&lt;<=*p**k* <=≤<= |*s*|) a subsequence of string *s* = *s*1*s*2... *s*|*s*|, where |*s*| is the length of string *s*. For example, strings "abcb", "b" and "abacaba" are subsequences of string "abacaba". String *x* = *x*1*x*2... *x*|*x*| is lexicographically larger than string *y* = *y*1*y*2... *y*|*y*| if either |*x*| &gt; |*y*| and *x*1<==<=*y*1, *x*2<==<=*y*2, ...,<=*x*|*y*|<==<=*y*|*y*|, or there exists such number *r* (*r*<=&lt;<=|*x*|, *r*<=&lt;<=|*y*|) that *x*1<==<=*y*1, *x*2<==<=*y*2, ..., *x**r*<==<=*y**r* and *x**r*<=<=+<=<=1<=&gt;<=*y**r*<=<=+<=<=1. Characters in the strings are compared according to their ASCII codes. For example, string "ranger" is lexicographically larger than string "racecar" and string "poster" is lexicographically larger than string "post". String *s* = *s*1*s*2... *s*|*s*| is a palindrome if it matches string *rev*(*s*) = *s*|*s*|*s*|*s*|<=-<=1... *s*1. In other words, a string is a palindrome if it reads the same way from left to right and from right to left. For example, palindromic strings are "racecar", "refer" and "z".
The only input line contains a non-empty string *s* consisting of lowercase English letters only. Its length does not exceed 10.
Print the lexicographically largest palindromic subsequence of string *s*.
[ "radar\n", "bowwowwow\n", "codeforces\n", "mississipp\n" ]
[ "rr\n", "wwwww\n", "s\n", "ssss\n" ]
Among all distinct subsequences of string "radar" the following ones are palindromes: "a", "d", "r", "aa", "rr", "ada", "rar", "rdr", "raar" and "radar". The lexicographically largest of them is "rr".
500
[ { "input": "radar", "output": "rr" }, { "input": "bowwowwow", "output": "wwwww" }, { "input": "codeforces", "output": "s" }, { "input": "mississipp", "output": "ssss" }, { "input": "tourist", "output": "u" }, { "input": "romka", "output": "r" }, { "input": "helloworld", "output": "w" }, { "input": "zzzzzzzazz", "output": "zzzzzzzzz" }, { "input": "testcase", "output": "tt" }, { "input": "hahahahaha", "output": "hhhhh" }, { "input": "abbbbbbbbb", "output": "bbbbbbbbb" }, { "input": "zaz", "output": "zz" }, { "input": "aza", "output": "z" }, { "input": "dcbaedcba", "output": "e" }, { "input": "abcdeabcd", "output": "e" }, { "input": "edcbabcde", "output": "ee" }, { "input": "aaaaaaaaab", "output": "b" }, { "input": "testzzzzzz", "output": "zzzzzz" }, { "input": "zzzzzzwait", "output": "zzzzzz" }, { "input": "rrrrrqponm", "output": "rrrrr" }, { "input": "zzyzyy", "output": "zzz" }, { "input": "aababb", "output": "bbb" }, { "input": "zanzibar", "output": "zz" }, { "input": "hhgfedcbaa", "output": "hh" }, { "input": "aabcdefghh", "output": "hh" }, { "input": "aruaru", "output": "uu" }, { "input": "uraura", "output": "uu" }, { "input": "aru", "output": "u" }, { "input": "aburvabur", "output": "v" }, { "input": "ura", "output": "u" }, { "input": "eurottat", "output": "u" }, { "input": "referee", "output": "rr" }, { "input": "joking", "output": "o" }, { "input": "seriously", "output": "y" }, { "input": "sets", "output": "t" }, { "input": "test", "output": "tt" }, { "input": "klmgameklm", "output": "mmm" }, { "input": "dfkjafdkdd", "output": "kk" }, { "input": "zzzzzzzzzz", "output": "zzzzzzzzzz" }, { "input": "aaaaaaaaaa", "output": "aaaaaaaaaa" }, { "input": "buzz", "output": "zz" }, { "input": "b", "output": "b" }, { "input": "y", "output": "y" }, { "input": "yy", "output": "yy" }, { "input": "zz", "output": "zz" }, { "input": "bb", "output": "bb" }, { "input": "aa", "output": "aa" }, { "input": "a", "output": "a" }, { "input": "z", "output": "z" }, { "input": "zz", "output": "zz" }, { "input": "zzazazzzaz", "output": "zzzzzzz" }, { "input": "hellhellhe", "output": "llll" }, { "input": "hellohello", "output": "oo" }, { "input": "refer", "output": "rr" } ]
1,630,470,416
2,147,483,647
Python 3
OK
TESTS
54
124
6,758,400
word = str(input()) dictionary = dict() for i in word: dictionary[i] = i*(word.count(i)) sort = sorted(dictionary) print(dictionary[sort[-1]])
Title: LLPS Time Limit: None seconds Memory Limit: None megabytes Problem Description: This problem's actual name, "Lexicographically Largest Palindromic Subsequence" is too long to fit into the page headline. You are given string *s* consisting of lowercase English letters only. Find its lexicographically largest palindromic subsequence. We'll call a non-empty string *s*[*p*1*p*2... *p**k*] = *s**p*1*s**p*2... *s**p**k* (1 <=≤<= *p*1<=&lt;<=*p*2<=&lt;<=...<=&lt;<=*p**k* <=≤<= |*s*|) a subsequence of string *s* = *s*1*s*2... *s*|*s*|, where |*s*| is the length of string *s*. For example, strings "abcb", "b" and "abacaba" are subsequences of string "abacaba". String *x* = *x*1*x*2... *x*|*x*| is lexicographically larger than string *y* = *y*1*y*2... *y*|*y*| if either |*x*| &gt; |*y*| and *x*1<==<=*y*1, *x*2<==<=*y*2, ...,<=*x*|*y*|<==<=*y*|*y*|, or there exists such number *r* (*r*<=&lt;<=|*x*|, *r*<=&lt;<=|*y*|) that *x*1<==<=*y*1, *x*2<==<=*y*2, ..., *x**r*<==<=*y**r* and *x**r*<=<=+<=<=1<=&gt;<=*y**r*<=<=+<=<=1. Characters in the strings are compared according to their ASCII codes. For example, string "ranger" is lexicographically larger than string "racecar" and string "poster" is lexicographically larger than string "post". String *s* = *s*1*s*2... *s*|*s*| is a palindrome if it matches string *rev*(*s*) = *s*|*s*|*s*|*s*|<=-<=1... *s*1. In other words, a string is a palindrome if it reads the same way from left to right and from right to left. For example, palindromic strings are "racecar", "refer" and "z". Input Specification: The only input line contains a non-empty string *s* consisting of lowercase English letters only. Its length does not exceed 10. Output Specification: Print the lexicographically largest palindromic subsequence of string *s*. Demo Input: ['radar\n', 'bowwowwow\n', 'codeforces\n', 'mississipp\n'] Demo Output: ['rr\n', 'wwwww\n', 's\n', 'ssss\n'] Note: Among all distinct subsequences of string "radar" the following ones are palindromes: "a", "d", "r", "aa", "rr", "ada", "rar", "rdr", "raar" and "radar". The lexicographically largest of them is "rr".
```python word = str(input()) dictionary = dict() for i in word: dictionary[i] = i*(word.count(i)) sort = sorted(dictionary) print(dictionary[sort[-1]]) ```
3
203
D
Hit Ball
PROGRAMMING
1,700
[ "geometry", "implementation", "math" ]
null
null
When Valera was playing football on a stadium, it suddenly began to rain. Valera hid in the corridor under the grandstand not to get wet. However, the desire to play was so great that he decided to train his hitting the ball right in this corridor. Valera went back far enough, put the ball and hit it. The ball bounced off the walls, the ceiling and the floor corridor and finally hit the exit door. As the ball was wet, it left a spot on the door. Now Valera wants to know the coordinates for this spot. Let's describe the event more formally. The ball will be considered a point in space. The door of the corridor will be considered a rectangle located on plane *xOz*, such that the lower left corner of the door is located at point (0,<=0,<=0), and the upper right corner is located at point (*a*,<=0,<=*b*) . The corridor will be considered as a rectangular parallelepiped, infinite in the direction of increasing coordinates of *y*. In this corridor the floor will be considered as plane *xOy*, and the ceiling as plane, parallel to *xOy* and passing through point (*a*,<=0,<=*b*). We will also assume that one of the walls is plane *yOz*, and the other wall is plane, parallel to *yOz* and passing through point (*a*,<=0,<=*b*). We'll say that the ball hit the door when its coordinate *y* was equal to 0. Thus the coordinates of the spot are point (*x*0,<=0,<=*z*0), where 0<=≤<=*x*0<=≤<=*a*,<=0<=≤<=*z*0<=≤<=*b*. To hit the ball, Valera steps away from the door at distance *m* and puts the ball in the center of the corridor at point . After the hit the ball flies at speed (*v**x*,<=*v**y*,<=*v**z*). This means that if the ball has coordinates (*x*,<=*y*,<=*z*), then after one second it will have coordinates (*x*<=+<=*v**x*,<=*y*<=+<=*v**y*,<=*z*<=+<=*v**z*). See image in notes for clarification. When the ball collides with the ceiling, the floor or a wall of the corridor, it bounces off in accordance with the laws of reflection (the angle of incidence equals the angle of reflection). In the problem we consider the ideal physical model, so we can assume that there is no air resistance, friction force, or any loss of energy.
The first line contains three space-separated integers *a*,<=*b*,<=*m* (1<=≤<=*a*,<=*b*,<=*m*<=≤<=100). The first two integers specify point (*a*,<=0,<=*b*), through which the ceiling and one of the corridor walls pass. The third integer is the distance at which Valera went away from the door. The second line has three space-separated integers *v**x*,<=*v**y*,<=*v**z* (|*v**x*|,<=|*v**y*|,<=|*v**z*|<=≤<=100,<=*v**y*<=&lt;<=0,<=*v**z*<=≥<=0) — the speed of the ball after the hit. It is guaranteed that the ball hits the door.
Print two real numbers *x*0,<=*z*0 — the *x* and *z* coordinates of point (*x*0,<=0,<=*z*0), at which the ball hits the exit door. The answer will be considered correct, if its absolute or relative error does not exceed 10<=<=-<=6.
[ "7 2 11\n3 -11 2\n", "7 2 11\n4 -3 3\n" ]
[ "6.5000000000 2.0000000000\n", "4.1666666667 1.0000000000\n" ]
<img class="tex-graphics" src="https://espresso.codeforces.com/0b96c99a50a7ff8657d6301992a0fe440badfb7b.png" style="max-width: 100.0%;max-height: 100.0%;"/>
2,000
[ { "input": "7 2 11\n3 -11 2", "output": "6.5000000000 2.0000000000" }, { "input": "7 2 11\n4 -3 3", "output": "4.1666666667 1.0000000000" }, { "input": "44 94 98\n-17 -64 9", "output": "4.0312500000 13.7812500000" }, { "input": "41 4 58\n81 -9 65", "output": "31.5000000000 2.8888888889" }, { "input": "98 11 74\n79 -66 76", "output": "58.4242424242 2.7878787879" }, { "input": "7 21 86\n1 -19 20", "output": "5.9736842105 6.5263157895" }, { "input": "4 27 2\n-52 -64 31", "output": "0.3750000000 0.9687500000" }, { "input": "8 89 62\n47 -18 53", "output": "5.8888888889 4.5555555556" }, { "input": "57 7 78\n-31 -63 98", "output": "9.8809523810 4.6666666667" }, { "input": "62 14 94\n-33 -20 8", "output": "0.1000000000 9.6000000000" }, { "input": "59 24 6\n65 -73 53", "output": "34.8424657534 4.3561643836" }, { "input": "28 7 59\n83 -44 80", "output": "13.2954545455 4.7272727273" }, { "input": "24 26 75\n80 -97 58", "output": "22.1443298969 7.1546391753" }, { "input": "33 32 87\n-22 -47 2", "output": "24.2234042553 3.7021276596" }, { "input": "30 42 51\n0 -100 57", "output": "15.0000000000 29.0700000000" }, { "input": "87 4 63\n49 -53 68", "output": "72.2547169811 0.8301886792" }, { "input": "84 10 79\n-54 -98 12", "output": "1.5306122449 9.6734693878" }, { "input": "89 20 95\n-32 -52 23", "output": "13.9615384615 2.0192307692" }, { "input": "45 35 55\n67 -9 79", "output": "18.0555555556 7.2222222222" }, { "input": "42 45 71\n64 -54 89", "output": "21.1481481481 27.0185185185" }, { "input": "90 42 17\n8 -17 70", "output": "53.0000000000 14.0000000000" }, { "input": "86 1 77\n5 -70 48", "output": "48.5000000000 0.8000000000" }, { "input": "43 19 93\n-72 -19 93", "output": "13.0789473684 0.7894736842" }, { "input": "48 25 5\n26 -73 2", "output": "25.7808219178 0.1369863014" }, { "input": "45 35 21\n23 -66 58", "output": "29.8181818182 18.4545454545" }, { "input": "2 45 85\n-54 -19 2", "output": "0.5789473684 8.9473684211" }, { "input": "98 4 97\n-57 -72 13", "output": "27.7916666667 1.5138888889" }, { "input": "3 14 13\n42 -22 58", "output": "2.3181818182 6.2727272727" }, { "input": "4 28 25\n-86 -75 68", "output": "2.6666666667 22.6666666667" }, { "input": "46 9 34\n88 -31 94", "output": "27.5161290323 4.9032258065" }, { "input": "1 1 1\n0 -1 0", "output": "0.5000000000 0.0000000000" }, { "input": "100 100 100\n100 -1 100", "output": "50.0000000000 0.0000000000" }, { "input": "15 73 20\n15 -66 11", "output": "12.0454545455 3.3333333333" }, { "input": "1 1 1\n0 -100 100", "output": "0.5000000000 1.0000000000" }, { "input": "1 1 1\n100 -100 0", "output": "0.5000000000 0.0000000000" }, { "input": "100 100 1\n-100 -1 0", "output": "50.0000000000 0.0000000000" }, { "input": "100 100 77\n-14 -100 100", "output": "39.2200000000 77.0000000000" }, { "input": "68 39 46\n-31 -37 3", "output": "4.5405405405 3.7297297297" }, { "input": "17 45 6\n-9 -94 48", "output": "7.9255319149 3.0638297872" }, { "input": "7 34 67\n-36 -47 28", "output": "5.8191489362 28.0851063830" } ]
1,685,612,949
2,147,483,647
PyPy 3-64
OK
TESTS
40
124
0
# https://codeforces.com/contest/203/problem/D from enum import Enum class Planes(Enum): L = 'left_wall' R = 'right_wall' B = 'floor' T = 'ceiling' D = 'door' def __lt__(self, other): return str(self) < str(other) a, b, m = map(int, input().split()) vx, vy, vz = map(int, input().split()) x, y, z = a / 2, m, 0 while True: # t = d / v left_wall = float('inf') if vx >= 0 else x / -vx right_wall = float('inf') if vx <= 0 else (a - x) / vx floor = float('inf') if vz >= 0 else z / -vz ceiling = float('inf') if vz <= 0 else (b - z) / vz door = y / -vy t, plane = min([(left_wall, Planes.L), (right_wall, Planes.R), (floor, Planes.B), (ceiling, Planes.T), (door, Planes.D)]) x, y, z = (x + vx * t, y + vy * t, z + vz * t) if plane in {Planes.L, Planes.R}: vx = -vx elif plane in {Planes.B, Planes.T}: vz = -vz else: # we're at the door break print(x, z)
Title: Hit Ball Time Limit: None seconds Memory Limit: None megabytes Problem Description: When Valera was playing football on a stadium, it suddenly began to rain. Valera hid in the corridor under the grandstand not to get wet. However, the desire to play was so great that he decided to train his hitting the ball right in this corridor. Valera went back far enough, put the ball and hit it. The ball bounced off the walls, the ceiling and the floor corridor and finally hit the exit door. As the ball was wet, it left a spot on the door. Now Valera wants to know the coordinates for this spot. Let's describe the event more formally. The ball will be considered a point in space. The door of the corridor will be considered a rectangle located on plane *xOz*, such that the lower left corner of the door is located at point (0,<=0,<=0), and the upper right corner is located at point (*a*,<=0,<=*b*) . The corridor will be considered as a rectangular parallelepiped, infinite in the direction of increasing coordinates of *y*. In this corridor the floor will be considered as plane *xOy*, and the ceiling as plane, parallel to *xOy* and passing through point (*a*,<=0,<=*b*). We will also assume that one of the walls is plane *yOz*, and the other wall is plane, parallel to *yOz* and passing through point (*a*,<=0,<=*b*). We'll say that the ball hit the door when its coordinate *y* was equal to 0. Thus the coordinates of the spot are point (*x*0,<=0,<=*z*0), where 0<=≤<=*x*0<=≤<=*a*,<=0<=≤<=*z*0<=≤<=*b*. To hit the ball, Valera steps away from the door at distance *m* and puts the ball in the center of the corridor at point . After the hit the ball flies at speed (*v**x*,<=*v**y*,<=*v**z*). This means that if the ball has coordinates (*x*,<=*y*,<=*z*), then after one second it will have coordinates (*x*<=+<=*v**x*,<=*y*<=+<=*v**y*,<=*z*<=+<=*v**z*). See image in notes for clarification. When the ball collides with the ceiling, the floor or a wall of the corridor, it bounces off in accordance with the laws of reflection (the angle of incidence equals the angle of reflection). In the problem we consider the ideal physical model, so we can assume that there is no air resistance, friction force, or any loss of energy. Input Specification: The first line contains three space-separated integers *a*,<=*b*,<=*m* (1<=≤<=*a*,<=*b*,<=*m*<=≤<=100). The first two integers specify point (*a*,<=0,<=*b*), through which the ceiling and one of the corridor walls pass. The third integer is the distance at which Valera went away from the door. The second line has three space-separated integers *v**x*,<=*v**y*,<=*v**z* (|*v**x*|,<=|*v**y*|,<=|*v**z*|<=≤<=100,<=*v**y*<=&lt;<=0,<=*v**z*<=≥<=0) — the speed of the ball after the hit. It is guaranteed that the ball hits the door. Output Specification: Print two real numbers *x*0,<=*z*0 — the *x* and *z* coordinates of point (*x*0,<=0,<=*z*0), at which the ball hits the exit door. The answer will be considered correct, if its absolute or relative error does not exceed 10<=<=-<=6. Demo Input: ['7 2 11\n3 -11 2\n', '7 2 11\n4 -3 3\n'] Demo Output: ['6.5000000000 2.0000000000\n', '4.1666666667 1.0000000000\n'] Note: <img class="tex-graphics" src="https://espresso.codeforces.com/0b96c99a50a7ff8657d6301992a0fe440badfb7b.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python # https://codeforces.com/contest/203/problem/D from enum import Enum class Planes(Enum): L = 'left_wall' R = 'right_wall' B = 'floor' T = 'ceiling' D = 'door' def __lt__(self, other): return str(self) < str(other) a, b, m = map(int, input().split()) vx, vy, vz = map(int, input().split()) x, y, z = a / 2, m, 0 while True: # t = d / v left_wall = float('inf') if vx >= 0 else x / -vx right_wall = float('inf') if vx <= 0 else (a - x) / vx floor = float('inf') if vz >= 0 else z / -vz ceiling = float('inf') if vz <= 0 else (b - z) / vz door = y / -vy t, plane = min([(left_wall, Planes.L), (right_wall, Planes.R), (floor, Planes.B), (ceiling, Planes.T), (door, Planes.D)]) x, y, z = (x + vx * t, y + vy * t, z + vz * t) if plane in {Planes.L, Planes.R}: vx = -vx elif plane in {Planes.B, Planes.T}: vz = -vz else: # we're at the door break print(x, z) ```
3
699
A
Launch of Collider
PROGRAMMING
1,000
[ "implementation" ]
null
null
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles. The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen.
[ "4\nRLRL\n2 4 6 10\n", "3\nLLR\n40 50 60\n" ]
[ "1\n", "-1\n" ]
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
500
[ { "input": "4\nRLRL\n2 4 6 10", "output": "1" }, { "input": "3\nLLR\n40 50 60", "output": "-1" }, { "input": "4\nRLLR\n46 230 264 470", "output": "92" }, { "input": "6\nLLRLLL\n446 492 650 844 930 970", "output": "97" }, { "input": "8\nRRLLLLLL\n338 478 512 574 594 622 834 922", "output": "17" }, { "input": "10\nLRLRLLRRLR\n82 268 430 598 604 658 670 788 838 1000", "output": "3" }, { "input": "2\nRL\n0 1000000000", "output": "500000000" }, { "input": "12\nLRLLRRRRLRLL\n254 1260 1476 1768 2924 4126 4150 4602 5578 7142 8134 9082", "output": "108" }, { "input": "14\nRLLRRLRLLRLLLR\n698 2900 3476 3724 3772 3948 4320 4798 5680 6578 7754 8034 8300 8418", "output": "88" }, { "input": "16\nRRLLLRLRLLLLRLLR\n222 306 968 1060 1636 1782 2314 2710 3728 4608 5088 6790 6910 7156 7418 7668", "output": "123" }, { "input": "18\nRLRLLRRRLLLRLRRLRL\n1692 2028 2966 3008 3632 4890 5124 5838 6596 6598 6890 8294 8314 8752 8868 9396 9616 9808", "output": "10" }, { "input": "20\nRLLLLLLLRRRRLRRLRRLR\n380 902 1400 1834 2180 2366 2562 2596 2702 2816 3222 3238 3742 5434 6480 7220 7410 8752 9708 9970", "output": "252" }, { "input": "22\nLRRRRRRRRRRRLLRRRRRLRL\n1790 2150 2178 2456 2736 3282 3622 4114 4490 4772 5204 5240 5720 5840 5910 5912 6586 7920 8584 9404 9734 9830", "output": "48" }, { "input": "24\nLLRLRRLLRLRRRRLLRRLRLRRL\n100 360 864 1078 1360 1384 1438 2320 2618 3074 3874 3916 3964 5178 5578 6278 6630 6992 8648 8738 8922 8930 9276 9720", "output": "27" }, { "input": "26\nRLLLLLLLRLRRLRLRLRLRLLLRRR\n908 1826 2472 2474 2728 3654 3716 3718 3810 3928 4058 4418 4700 5024 5768 6006 6128 6386 6968 7040 7452 7774 7822 8726 9338 9402", "output": "59" }, { "input": "28\nRRLRLRRRRRRLLLRRLRRLLLRRLLLR\n156 172 1120 1362 2512 3326 3718 4804 4990 5810 6242 6756 6812 6890 6974 7014 7088 7724 8136 8596 8770 8840 9244 9250 9270 9372 9400 9626", "output": "10" }, { "input": "30\nRLLRLRLLRRRLRRRLLLLLLRRRLRRLRL\n128 610 1680 2436 2896 2994 3008 3358 3392 4020 4298 4582 4712 4728 5136 5900 6088 6232 6282 6858 6934 7186 7224 7256 7614 8802 8872 9170 9384 9794", "output": "7" }, { "input": "10\nLLLLRRRRRR\n0 2 4 6 8 10 12 14 16 18", "output": "-1" }, { "input": "5\nLLLLL\n0 10 20 30 40", "output": "-1" }, { "input": "6\nRRRRRR\n40 50 60 70 80 100", "output": "-1" }, { "input": "1\nR\n0", "output": "-1" }, { "input": "2\nRL\n2 1000000000", "output": "499999999" }, { "input": "2\nRL\n0 400000", "output": "200000" }, { "input": "2\nRL\n0 200002", "output": "100001" }, { "input": "2\nRL\n2 20000000", "output": "9999999" }, { "input": "4\nLLRL\n2 4 10 100", "output": "45" }, { "input": "4\nRLRL\n2 10 12 14", "output": "1" }, { "input": "2\nRL\n0 100000000", "output": "50000000" }, { "input": "2\nRL\n2 600002", "output": "300000" }, { "input": "1\nL\n0", "output": "-1" }, { "input": "2\nRL\n0 600000", "output": "300000" }, { "input": "5\nRRRRR\n0 2 4 6 8", "output": "-1" }, { "input": "2\nRL\n2 200000000", "output": "99999999" }, { "input": "2\nRL\n0 267382766", "output": "133691383" }, { "input": "3\nRRL\n4 8 999999998", "output": "499999995" }, { "input": "2\nRL\n0 2", "output": "1" }, { "input": "2\nRL\n2 400002", "output": "200000" }, { "input": "2\nLL\n2 4", "output": "-1" }, { "input": "2\nLL\n0 2", "output": "-1" }, { "input": "2\nRL\n0 100000", "output": "50000" }, { "input": "2\nRL\n2 200000020", "output": "100000009" }, { "input": "2\nRL\n2000000 4000000", "output": "1000000" }, { "input": "2\nRL\n0 199998", "output": "99999" }, { "input": "3\nLRR\n40 50 60", "output": "-1" }, { "input": "2\nRL\n200 400400", "output": "200100" }, { "input": "2\nRL\n2 400004", "output": "200001" }, { "input": "2\nRL\n0 200000000", "output": "100000000" } ]
1,674,378,477
2,147,483,647
Python 3
OK
TESTS
85
233
16,384,000
def collisions(): n = int(input()) directions = input() positions = list(map(int, input().split())) particles = list(zip(positions, directions)) time = [] for i in range(0, n-1): p1 = particles[i] p2 = particles[i+1] if p1[1] == p2[1] or (p1[1] == 'L' and p2[1] == 'R'): time.append(-1) else: time.append(int((p2[0] - p1[0])/2)) min_collide = min([t for t in time if t != -1], default=-1) return min_collide print(collisions())
Title: Launch of Collider Time Limit: None seconds Memory Limit: None megabytes Problem Description: There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input Specification: The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles. The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output Specification: In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Demo Input: ['4\nRLRL\n2 4 6 10\n', '3\nLLR\n40 50 60\n'] Demo Output: ['1\n', '-1\n'] Note: In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
```python def collisions(): n = int(input()) directions = input() positions = list(map(int, input().split())) particles = list(zip(positions, directions)) time = [] for i in range(0, n-1): p1 = particles[i] p2 = particles[i+1] if p1[1] == p2[1] or (p1[1] == 'L' and p2[1] == 'R'): time.append(-1) else: time.append(int((p2[0] - p1[0])/2)) min_collide = min([t for t in time if t != -1], default=-1) return min_collide print(collisions()) ```
3
540
A
Combination Lock
PROGRAMMING
800
[ "implementation" ]
null
null
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock. The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock. The second line contains a string of *n* digits — the original state of the disks. The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
[ "5\n82195\n64723\n" ]
[ "13\n" ]
In the sample he needs 13 moves: - 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
500
[ { "input": "5\n82195\n64723", "output": "13" }, { "input": "12\n102021090898\n010212908089", "output": "16" }, { "input": "1\n8\n1", "output": "3" }, { "input": "2\n83\n57", "output": "7" }, { "input": "10\n0728592530\n1362615763", "output": "27" }, { "input": "100\n4176196363694273682807653052945037727131821799902563705176501742060696655282954944720643131654235909\n3459912084922154505910287499879975659298239371519889866585472674423008837878123067103005344986554746", "output": "245" }, { "input": "1\n8\n1", "output": "3" }, { "input": "2\n83\n57", "output": "7" }, { "input": "3\n607\n684", "output": "5" }, { "input": "4\n0809\n0636", "output": "8" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8037856825987124762280548\n9519431339078678836940020", "output": "72" }, { "input": "125\n23269567683904664184142384849516523616863461607751021071772615078579713054027902974007001544768640273491193035874486891541257\n47635110303703399505805044019026243695451609639556649012447370081552870340011971572363458960190590266459684717415349529509024", "output": "305" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8037856825987124762285484\n9519431339078678836940202", "output": "74" }, { "input": "125\n23269567689466418414238845152168634610771021717726157879713054270294007001544768647391193035874486891412573389247025830678706\n47635110307339950580504010224954516093956649124473708152870340117152363458960190596659684717415349529090241694059599629136831", "output": "357" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8378525987476228048406972\n9194339078883694020217816", "output": "55" }, { "input": "125\n23269576839046618414238484916523616863461607750210717761078579713054027902974007015447686027349193035874486891541257338624472\n47635103037033950580504401926243695451609639556490124437081552870340011971572363489601905026645984717415349529509024169604599", "output": "274" }, { "input": "1\n0\n0", "output": "0" }, { "input": "1\n7\n7", "output": "0" }, { "input": "1\n0\n5", "output": "5" }, { "input": "1\n2\n7", "output": "5" }, { "input": "1\n7\n9", "output": "2" }, { "input": "1\n9\n7", "output": "2" }, { "input": "1\n2\n9", "output": "3" }, { "input": "1\n9\n2", "output": "3" }, { "input": "25\n3164978461316464614169874\n9413979197249127496597357", "output": "66" }, { "input": "4\n9999\n9999", "output": "0" }, { "input": "2\n11\n11", "output": "0" } ]
1,659,213,165
2,147,483,647
Python 3
OK
TESTS
43
46
0
n = int(input()) s1 = input() s2 = input() z = 0 for i in range(n): one = int(s1[i]) - int(s2[i]) two = int(s2[i]) - int(s1[i]) if one < 0: one += 10 if two < 0: two += 10 z += min(one, two) print(z)
Title: Combination Lock Time Limit: None seconds Memory Limit: None megabytes Problem Description: Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock. The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that? Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock. The second line contains a string of *n* digits — the original state of the disks. The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock. Output Specification: Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock. Demo Input: ['5\n82195\n64723\n'] Demo Output: ['13\n'] Note: In the sample he needs 13 moves: - 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python n = int(input()) s1 = input() s2 = input() z = 0 for i in range(n): one = int(s1[i]) - int(s2[i]) two = int(s2[i]) - int(s1[i]) if one < 0: one += 10 if two < 0: two += 10 z += min(one, two) print(z) ```
3
551
A
GukiZ and Contest
PROGRAMMING
800
[ "brute force", "implementation", "sortings" ]
null
null
Professor GukiZ likes programming contests. He especially likes to rate his students on the contests he prepares. Now, he has decided to prepare a new contest. In total, *n* students will attend, and before the start, every one of them has some positive integer rating. Students are indexed from 1 to *n*. Let's denote the rating of *i*-th student as *a**i*. After the contest ends, every student will end up with some positive integer position. GukiZ expects that his students will take places according to their ratings. He thinks that each student will take place equal to . In particular, if student *A* has rating strictly lower then student *B*, *A* will get the strictly better position than *B*, and if two students have equal ratings, they will share the same position. GukiZ would like you to reconstruct the results by following his expectations. Help him and determine the position after the end of the contest for each of his students if everything goes as expected.
The first line contains integer *n* (1<=≤<=*n*<=≤<=2000), number of GukiZ's students. The second line contains *n* numbers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=2000) where *a**i* is the rating of *i*-th student (1<=≤<=*i*<=≤<=*n*).
In a single line, print the position after the end of the contest for each of *n* students in the same order as they appear in the input.
[ "3\n1 3 3\n", "1\n1\n", "5\n3 5 3 4 5\n" ]
[ "3 1 1\n", "1\n", "4 1 4 3 1\n" ]
In the first sample, students 2 and 3 are positioned first (there is no other student with higher rating), and student 1 is positioned third since there are two students with higher rating. In the second sample, first student is the only one on the contest. In the third sample, students 2 and 5 share the first position with highest rating, student 4 is next with third position, and students 1 and 3 are the last sharing fourth position.
500
[ { "input": "3\n1 3 3", "output": "3 1 1" }, { "input": "1\n1", "output": "1" }, { "input": "5\n3 5 3 4 5", "output": "4 1 4 3 1" }, { "input": "7\n1 3 5 4 2 2 1", "output": "6 3 1 2 4 4 6" }, { "input": "11\n5 6 4 2 9 7 6 6 6 6 7", "output": "9 4 10 11 1 2 4 4 4 4 2" }, { "input": "1\n2000", "output": "1" }, { "input": "2\n2000 2000", "output": "1 1" }, { "input": "3\n500 501 502", "output": "3 2 1" }, { "input": "10\n105 106 1 1 1 11 1000 999 1000 999", "output": "6 5 8 8 8 7 1 3 1 3" }, { "input": "6\n1 2 3 4 5 6", "output": "6 5 4 3 2 1" }, { "input": "7\n6 5 4 3 2 1 1", "output": "1 2 3 4 5 6 6" }, { "input": "8\n153 100 87 14 10 8 6 5", "output": "1 2 3 4 5 6 7 8" }, { "input": "70\n11 54 37 62 1 46 13 17 38 47 28 15 63 5 61 34 49 66 32 59 3 41 58 28 23 62 41 64 20 5 14 41 10 37 51 32 65 46 61 8 15 19 16 44 31 42 19 46 66 25 26 58 60 5 19 18 69 53 20 40 45 27 24 41 32 23 57 56 62 10", "output": "62 18 35 7 70 23 61 56 34 22 42 58 6 66 10 37 21 2 38 13 69 29 14 42 48 7 29 5 50 66 60 29 63 35 20 38 4 23 10 65 58 52 57 27 41 28 52 23 2 46 45 14 12 66 52 55 1 19 50 33 26 44 47 29 38 48 16 17 7 63" }, { "input": "5\n1 2000 1 1 2000", "output": "3 1 3 3 1" } ]
1,447,412,096
2,147,483,647
Python 3
OK
TESTS
36
62
512,000
n=int(input()) arr=list(map(int,input().split())) s=sorted(arr,reverse=True) dic={} t=1 for i in s: if i not in dic: dic[i]=t t+=1 for i in arr: print(dic[i])
Title: GukiZ and Contest Time Limit: None seconds Memory Limit: None megabytes Problem Description: Professor GukiZ likes programming contests. He especially likes to rate his students on the contests he prepares. Now, he has decided to prepare a new contest. In total, *n* students will attend, and before the start, every one of them has some positive integer rating. Students are indexed from 1 to *n*. Let's denote the rating of *i*-th student as *a**i*. After the contest ends, every student will end up with some positive integer position. GukiZ expects that his students will take places according to their ratings. He thinks that each student will take place equal to . In particular, if student *A* has rating strictly lower then student *B*, *A* will get the strictly better position than *B*, and if two students have equal ratings, they will share the same position. GukiZ would like you to reconstruct the results by following his expectations. Help him and determine the position after the end of the contest for each of his students if everything goes as expected. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=2000), number of GukiZ's students. The second line contains *n* numbers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=2000) where *a**i* is the rating of *i*-th student (1<=≤<=*i*<=≤<=*n*). Output Specification: In a single line, print the position after the end of the contest for each of *n* students in the same order as they appear in the input. Demo Input: ['3\n1 3 3\n', '1\n1\n', '5\n3 5 3 4 5\n'] Demo Output: ['3 1 1\n', '1\n', '4 1 4 3 1\n'] Note: In the first sample, students 2 and 3 are positioned first (there is no other student with higher rating), and student 1 is positioned third since there are two students with higher rating. In the second sample, first student is the only one on the contest. In the third sample, students 2 and 5 share the first position with highest rating, student 4 is next with third position, and students 1 and 3 are the last sharing fourth position.
```python n=int(input()) arr=list(map(int,input().split())) s=sorted(arr,reverse=True) dic={} t=1 for i in s: if i not in dic: dic[i]=t t+=1 for i in arr: print(dic[i]) ```
3
136
A
Presents
PROGRAMMING
800
[ "implementation" ]
null
null
Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there. If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift. Now Petya wants to know for each friend *i* the number of a friend who has given him a gift.
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves.
Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*.
[ "4\n2 3 4 1\n", "3\n1 3 2\n", "2\n1 2\n" ]
[ "4 1 2 3\n", "1 3 2\n", "1 2\n" ]
none
500
[ { "input": "4\n2 3 4 1", "output": "4 1 2 3" }, { "input": "3\n1 3 2", "output": "1 3 2" }, { "input": "2\n1 2", "output": "1 2" }, { "input": "1\n1", "output": "1" }, { "input": "10\n1 3 2 6 4 5 7 9 8 10", "output": "1 3 2 5 6 4 7 9 8 10" }, { "input": "5\n5 4 3 2 1", "output": "5 4 3 2 1" }, { "input": "20\n2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19" }, { "input": "21\n3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19", "output": "3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19" }, { "input": "10\n3 4 5 6 7 8 9 10 1 2", "output": "9 10 1 2 3 4 5 6 7 8" }, { "input": "8\n1 5 3 7 2 6 4 8", "output": "1 5 3 7 2 6 4 8" }, { "input": "50\n49 22 4 2 20 46 7 32 5 19 48 24 26 15 45 21 44 11 50 43 39 17 31 1 42 34 3 27 36 25 12 30 13 33 28 35 18 6 8 37 38 14 10 9 29 16 40 23 41 47", "output": "24 4 27 3 9 38 7 39 44 43 18 31 33 42 14 46 22 37 10 5 16 2 48 12 30 13 28 35 45 32 23 8 34 26 36 29 40 41 21 47 49 25 20 17 15 6 50 11 1 19" }, { "input": "34\n13 20 33 30 15 11 27 4 8 2 29 25 24 7 3 22 18 10 26 16 5 1 32 9 34 6 12 14 28 19 31 21 23 17", "output": "22 10 15 8 21 26 14 9 24 18 6 27 1 28 5 20 34 17 30 2 32 16 33 13 12 19 7 29 11 4 31 23 3 25" }, { "input": "92\n23 1 6 4 84 54 44 76 63 34 61 20 48 13 28 78 26 46 90 72 24 55 91 89 53 38 82 5 79 92 29 32 15 64 11 88 60 70 7 66 18 59 8 57 19 16 42 21 80 71 62 27 75 86 36 9 83 73 74 50 43 31 56 30 17 33 40 81 49 12 10 41 22 77 25 68 51 2 47 3 58 69 87 67 39 37 35 65 14 45 52 85", "output": "2 78 80 4 28 3 39 43 56 71 35 70 14 89 33 46 65 41 45 12 48 73 1 21 75 17 52 15 31 64 62 32 66 10 87 55 86 26 85 67 72 47 61 7 90 18 79 13 69 60 77 91 25 6 22 63 44 81 42 37 11 51 9 34 88 40 84 76 82 38 50 20 58 59 53 8 74 16 29 49 68 27 57 5 92 54 83 36 24 19 23 30" }, { "input": "49\n30 24 33 48 7 3 17 2 8 35 10 39 23 40 46 32 18 21 26 22 1 16 47 45 41 28 31 6 12 43 27 11 13 37 19 15 44 5 29 42 4 38 20 34 14 9 25 36 49", "output": "21 8 6 41 38 28 5 9 46 11 32 29 33 45 36 22 7 17 35 43 18 20 13 2 47 19 31 26 39 1 27 16 3 44 10 48 34 42 12 14 25 40 30 37 24 15 23 4 49" }, { "input": "12\n3 8 7 4 6 5 2 1 11 9 10 12", "output": "8 7 1 4 6 5 3 2 10 11 9 12" }, { "input": "78\n16 56 36 78 21 14 9 77 26 57 70 61 41 47 18 44 5 31 50 74 65 52 6 39 22 62 67 69 43 7 64 29 24 40 48 51 73 54 72 12 19 34 4 25 55 33 17 35 23 53 10 8 27 32 42 68 20 63 3 2 1 71 58 46 13 30 49 11 37 66 38 60 28 75 15 59 45 76", "output": "61 60 59 43 17 23 30 52 7 51 68 40 65 6 75 1 47 15 41 57 5 25 49 33 44 9 53 73 32 66 18 54 46 42 48 3 69 71 24 34 13 55 29 16 77 64 14 35 67 19 36 22 50 38 45 2 10 63 76 72 12 26 58 31 21 70 27 56 28 11 62 39 37 20 74 78 8 4" }, { "input": "64\n64 57 40 3 15 8 62 18 33 59 51 19 22 13 4 37 47 45 50 35 63 11 58 42 46 21 7 2 41 48 32 23 28 38 17 12 24 27 49 31 60 6 30 25 61 52 26 54 9 14 29 20 44 39 55 10 34 16 5 56 1 36 53 43", "output": "61 28 4 15 59 42 27 6 49 56 22 36 14 50 5 58 35 8 12 52 26 13 32 37 44 47 38 33 51 43 40 31 9 57 20 62 16 34 54 3 29 24 64 53 18 25 17 30 39 19 11 46 63 48 55 60 2 23 10 41 45 7 21 1" }, { "input": "49\n38 20 49 32 14 41 39 45 25 48 40 19 26 43 34 12 10 3 35 42 5 7 46 47 4 2 13 22 16 24 33 15 11 18 29 31 23 9 44 36 6 17 37 1 30 28 8 21 27", "output": "44 26 18 25 21 41 22 47 38 17 33 16 27 5 32 29 42 34 12 2 48 28 37 30 9 13 49 46 35 45 36 4 31 15 19 40 43 1 7 11 6 20 14 39 8 23 24 10 3" }, { "input": "78\n17 50 30 48 33 12 42 4 18 53 76 67 38 3 20 72 51 55 60 63 46 10 57 45 54 32 24 62 8 11 35 44 65 74 58 28 2 6 56 52 39 23 47 49 61 1 66 41 15 77 7 27 78 13 14 34 5 31 37 21 40 16 29 69 59 43 64 36 70 19 25 73 71 75 9 68 26 22", "output": "46 37 14 8 57 38 51 29 75 22 30 6 54 55 49 62 1 9 70 15 60 78 42 27 71 77 52 36 63 3 58 26 5 56 31 68 59 13 41 61 48 7 66 32 24 21 43 4 44 2 17 40 10 25 18 39 23 35 65 19 45 28 20 67 33 47 12 76 64 69 73 16 72 34 74 11 50 53" }, { "input": "29\n14 21 27 1 4 18 10 17 20 23 2 24 7 9 28 22 8 25 12 15 11 6 16 29 3 26 19 5 13", "output": "4 11 25 5 28 22 13 17 14 7 21 19 29 1 20 23 8 6 27 9 2 16 10 12 18 26 3 15 24" }, { "input": "82\n6 1 10 75 28 66 61 81 78 63 17 19 58 34 49 12 67 50 41 44 3 15 59 38 51 72 36 11 46 29 18 64 27 23 13 53 56 68 2 25 47 40 69 54 42 5 60 55 4 16 24 79 57 20 7 73 32 80 76 52 82 37 26 31 65 8 39 62 33 71 30 9 77 43 48 74 70 22 14 45 35 21", "output": "2 39 21 49 46 1 55 66 72 3 28 16 35 79 22 50 11 31 12 54 82 78 34 51 40 63 33 5 30 71 64 57 69 14 81 27 62 24 67 42 19 45 74 20 80 29 41 75 15 18 25 60 36 44 48 37 53 13 23 47 7 68 10 32 65 6 17 38 43 77 70 26 56 76 4 59 73 9 52 58 8 61" }, { "input": "82\n74 18 15 69 71 77 19 26 80 20 66 7 30 82 22 48 21 44 52 65 64 61 35 49 12 8 53 81 54 16 11 9 40 46 13 1 29 58 5 41 55 4 78 60 6 51 56 2 38 36 34 62 63 25 17 67 45 14 32 37 75 79 10 47 27 39 31 68 59 24 50 43 72 70 42 28 76 23 57 3 73 33", "output": "36 48 80 42 39 45 12 26 32 63 31 25 35 58 3 30 55 2 7 10 17 15 78 70 54 8 65 76 37 13 67 59 82 51 23 50 60 49 66 33 40 75 72 18 57 34 64 16 24 71 46 19 27 29 41 47 79 38 69 44 22 52 53 21 20 11 56 68 4 74 5 73 81 1 61 77 6 43 62 9 28 14" }, { "input": "45\n2 32 34 13 3 15 16 33 22 12 31 38 42 14 27 7 36 8 4 19 45 41 5 35 10 11 39 20 29 44 17 9 6 40 37 28 25 21 1 30 24 18 43 26 23", "output": "39 1 5 19 23 33 16 18 32 25 26 10 4 14 6 7 31 42 20 28 38 9 45 41 37 44 15 36 29 40 11 2 8 3 24 17 35 12 27 34 22 13 43 30 21" }, { "input": "45\n4 32 33 39 43 21 22 35 45 7 14 5 16 9 42 31 24 36 17 29 41 25 37 34 27 20 11 44 3 13 19 2 1 10 26 30 38 18 6 8 15 23 40 28 12", "output": "33 32 29 1 12 39 10 40 14 34 27 45 30 11 41 13 19 38 31 26 6 7 42 17 22 35 25 44 20 36 16 2 3 24 8 18 23 37 4 43 21 15 5 28 9" }, { "input": "74\n48 72 40 67 17 4 27 53 11 32 25 9 74 2 41 24 56 22 14 21 33 5 18 55 20 7 29 36 69 13 52 19 38 30 68 59 66 34 63 6 47 45 54 44 62 12 50 71 16 10 8 64 57 73 46 26 49 42 3 23 35 1 61 39 70 60 65 43 15 28 37 51 58 31", "output": "62 14 59 6 22 40 26 51 12 50 9 46 30 19 69 49 5 23 32 25 20 18 60 16 11 56 7 70 27 34 74 10 21 38 61 28 71 33 64 3 15 58 68 44 42 55 41 1 57 47 72 31 8 43 24 17 53 73 36 66 63 45 39 52 67 37 4 35 29 65 48 2 54 13" }, { "input": "47\n9 26 27 10 6 34 28 42 39 22 45 21 11 43 14 47 38 15 40 32 46 1 36 29 17 25 2 23 31 5 24 4 7 8 12 19 16 44 37 20 18 33 30 13 35 41 3", "output": "22 27 47 32 30 5 33 34 1 4 13 35 44 15 18 37 25 41 36 40 12 10 28 31 26 2 3 7 24 43 29 20 42 6 45 23 39 17 9 19 46 8 14 38 11 21 16" }, { "input": "49\n14 38 6 29 9 49 36 43 47 3 44 20 34 15 7 11 1 28 12 40 16 37 31 10 42 41 33 21 18 30 5 27 17 35 25 26 45 19 2 13 23 32 4 22 46 48 24 39 8", "output": "17 39 10 43 31 3 15 49 5 24 16 19 40 1 14 21 33 29 38 12 28 44 41 47 35 36 32 18 4 30 23 42 27 13 34 7 22 2 48 20 26 25 8 11 37 45 9 46 6" }, { "input": "100\n78 56 31 91 90 95 16 65 58 77 37 89 33 61 10 76 62 47 35 67 69 7 63 83 22 25 49 8 12 30 39 44 57 64 48 42 32 11 70 43 55 50 99 24 85 73 45 14 54 21 98 84 74 2 26 18 9 36 80 53 75 46 66 86 59 93 87 68 94 13 72 28 79 88 92 29 52 82 34 97 19 38 1 41 27 4 40 5 96 100 51 6 20 23 81 15 17 3 60 71", "output": "83 54 98 86 88 92 22 28 57 15 38 29 70 48 96 7 97 56 81 93 50 25 94 44 26 55 85 72 76 30 3 37 13 79 19 58 11 82 31 87 84 36 40 32 47 62 18 35 27 42 91 77 60 49 41 2 33 9 65 99 14 17 23 34 8 63 20 68 21 39 100 71 46 53 61 16 10 1 73 59 95 78 24 52 45 64 67 74 12 5 4 75 66 69 6 89 80 51 43 90" }, { "input": "22\n12 8 11 2 16 7 13 6 22 21 20 10 4 14 18 1 5 15 3 19 17 9", "output": "16 4 19 13 17 8 6 2 22 12 3 1 7 14 18 5 21 15 20 11 10 9" }, { "input": "72\n16 11 49 51 3 27 60 55 23 40 66 7 53 70 13 5 15 32 18 72 33 30 8 31 46 12 28 67 25 38 50 22 69 34 71 52 58 39 24 35 42 9 41 26 62 1 63 65 36 64 68 61 37 14 45 47 6 57 54 20 17 2 56 59 29 10 4 48 21 43 19 44", "output": "46 62 5 67 16 57 12 23 42 66 2 26 15 54 17 1 61 19 71 60 69 32 9 39 29 44 6 27 65 22 24 18 21 34 40 49 53 30 38 10 43 41 70 72 55 25 56 68 3 31 4 36 13 59 8 63 58 37 64 7 52 45 47 50 48 11 28 51 33 14 35 20" }, { "input": "63\n21 56 11 10 62 24 20 42 28 52 38 2 37 43 48 22 7 8 40 14 13 46 53 1 23 4 60 63 51 36 25 12 39 32 49 16 58 44 31 61 33 50 55 54 45 6 47 41 9 57 30 29 26 18 19 27 15 34 3 35 59 5 17", "output": "24 12 59 26 62 46 17 18 49 4 3 32 21 20 57 36 63 54 55 7 1 16 25 6 31 53 56 9 52 51 39 34 41 58 60 30 13 11 33 19 48 8 14 38 45 22 47 15 35 42 29 10 23 44 43 2 50 37 61 27 40 5 28" }, { "input": "18\n2 16 8 4 18 12 3 6 5 9 10 15 11 17 14 13 1 7", "output": "17 1 7 4 9 8 18 3 10 11 13 6 16 15 12 2 14 5" }, { "input": "47\n6 9 10 41 25 3 4 37 20 1 36 22 29 27 11 24 43 31 12 17 34 42 38 39 13 2 7 21 18 5 15 35 44 26 33 46 19 40 30 14 28 23 47 32 45 8 16", "output": "10 26 6 7 30 1 27 46 2 3 15 19 25 40 31 47 20 29 37 9 28 12 42 16 5 34 14 41 13 39 18 44 35 21 32 11 8 23 24 38 4 22 17 33 45 36 43" }, { "input": "96\n41 91 48 88 29 57 1 19 44 43 37 5 10 75 25 63 30 78 76 53 8 92 18 70 39 17 49 60 9 16 3 34 86 59 23 79 55 45 72 51 28 33 96 40 26 54 6 32 89 61 85 74 7 82 52 31 64 66 94 95 11 22 2 73 35 13 42 71 14 47 84 69 50 67 58 12 77 46 38 68 15 36 20 93 27 90 83 56 87 4 21 24 81 62 80 65", "output": "7 63 31 90 12 47 53 21 29 13 61 76 66 69 81 30 26 23 8 83 91 62 35 92 15 45 85 41 5 17 56 48 42 32 65 82 11 79 25 44 1 67 10 9 38 78 70 3 27 73 40 55 20 46 37 88 6 75 34 28 50 94 16 57 96 58 74 80 72 24 68 39 64 52 14 19 77 18 36 95 93 54 87 71 51 33 89 4 49 86 2 22 84 59 60 43" }, { "input": "73\n67 24 39 22 23 20 48 34 42 40 19 70 65 69 64 21 53 11 59 15 26 10 30 33 72 29 55 25 56 71 8 9 57 49 41 61 13 12 6 27 66 36 47 50 73 60 2 37 7 4 51 17 1 46 14 62 35 3 45 63 43 58 54 32 31 5 28 44 18 52 68 38 16", "output": "53 47 58 50 66 39 49 31 32 22 18 38 37 55 20 73 52 69 11 6 16 4 5 2 28 21 40 67 26 23 65 64 24 8 57 42 48 72 3 10 35 9 61 68 59 54 43 7 34 44 51 70 17 63 27 29 33 62 19 46 36 56 60 15 13 41 1 71 14 12 30 25 45" }, { "input": "81\n25 2 78 40 12 80 69 13 49 43 17 33 23 54 32 61 77 66 27 71 24 26 42 55 60 9 5 30 7 37 45 63 53 11 38 44 68 34 28 52 67 22 57 46 47 50 8 16 79 62 4 36 20 14 73 64 6 76 35 74 58 10 29 81 59 31 19 1 75 39 70 18 41 21 72 65 3 48 15 56 51", "output": "68 2 77 51 27 57 29 47 26 62 34 5 8 54 79 48 11 72 67 53 74 42 13 21 1 22 19 39 63 28 66 15 12 38 59 52 30 35 70 4 73 23 10 36 31 44 45 78 9 46 81 40 33 14 24 80 43 61 65 25 16 50 32 56 76 18 41 37 7 71 20 75 55 60 69 58 17 3 49 6 64" }, { "input": "12\n12 3 1 5 11 6 7 10 2 8 9 4", "output": "3 9 2 12 4 6 7 10 11 8 5 1" }, { "input": "47\n7 21 41 18 40 31 12 28 24 14 43 23 33 10 19 38 26 8 34 15 29 44 5 13 39 25 3 27 20 42 35 9 2 1 30 46 36 32 4 22 37 45 6 47 11 16 17", "output": "34 33 27 39 23 43 1 18 32 14 45 7 24 10 20 46 47 4 15 29 2 40 12 9 26 17 28 8 21 35 6 38 13 19 31 37 41 16 25 5 3 30 11 22 42 36 44" }, { "input": "8\n1 3 5 2 4 8 6 7", "output": "1 4 2 5 3 7 8 6" }, { "input": "38\n28 8 2 33 20 32 26 29 23 31 15 38 11 37 18 21 22 19 4 34 1 35 16 7 17 6 27 30 36 12 9 24 25 13 5 3 10 14", "output": "21 3 36 19 35 26 24 2 31 37 13 30 34 38 11 23 25 15 18 5 16 17 9 32 33 7 27 1 8 28 10 6 4 20 22 29 14 12" }, { "input": "10\n2 9 4 6 10 1 7 5 3 8", "output": "6 1 9 3 8 4 7 10 2 5" }, { "input": "23\n20 11 15 1 5 12 23 9 2 22 13 19 16 14 7 4 8 21 6 17 18 10 3", "output": "4 9 23 16 5 19 15 17 8 22 2 6 11 14 3 13 20 21 12 1 18 10 7" }, { "input": "10\n2 4 9 3 6 8 10 5 1 7", "output": "9 1 4 2 8 5 10 6 3 7" }, { "input": "55\n9 48 23 49 11 24 4 22 34 32 17 45 39 13 14 21 19 25 2 31 37 7 55 36 20 51 5 12 54 10 35 40 43 1 46 18 53 41 38 26 29 50 3 42 52 27 8 28 47 33 6 16 30 44 15", "output": "34 19 43 7 27 51 22 47 1 30 5 28 14 15 55 52 11 36 17 25 16 8 3 6 18 40 46 48 41 53 20 10 50 9 31 24 21 39 13 32 38 44 33 54 12 35 49 2 4 42 26 45 37 29 23" }, { "input": "58\n49 13 12 54 2 38 56 11 33 25 26 19 28 8 23 41 20 36 46 55 15 35 9 7 32 37 58 6 3 14 47 31 40 30 53 44 4 50 29 34 10 43 39 57 5 22 27 45 51 42 24 16 18 21 52 17 48 1", "output": "58 5 29 37 45 28 24 14 23 41 8 3 2 30 21 52 56 53 12 17 54 46 15 51 10 11 47 13 39 34 32 25 9 40 22 18 26 6 43 33 16 50 42 36 48 19 31 57 1 38 49 55 35 4 20 7 44 27" }, { "input": "34\n20 25 2 3 33 29 1 16 14 7 21 9 32 31 6 26 22 4 27 23 24 10 34 12 19 15 5 18 28 17 13 8 11 30", "output": "7 3 4 18 27 15 10 32 12 22 33 24 31 9 26 8 30 28 25 1 11 17 20 21 2 16 19 29 6 34 14 13 5 23" }, { "input": "53\n47 29 46 25 23 13 7 31 33 4 38 11 35 16 42 14 15 43 34 39 28 18 6 45 30 1 40 20 2 37 5 32 24 12 44 26 27 3 19 51 36 21 22 9 10 50 41 48 49 53 8 17 52", "output": "26 29 38 10 31 23 7 51 44 45 12 34 6 16 17 14 52 22 39 28 42 43 5 33 4 36 37 21 2 25 8 32 9 19 13 41 30 11 20 27 47 15 18 35 24 3 1 48 49 46 40 53 50" }, { "input": "99\n77 87 90 48 53 38 68 6 28 57 35 82 63 71 60 41 3 12 86 65 10 59 22 67 33 74 93 27 24 1 61 43 25 4 51 52 15 88 9 31 30 42 89 49 23 21 29 32 46 73 37 16 5 69 56 26 92 64 20 54 75 14 98 13 94 2 95 7 36 66 58 8 50 78 84 45 11 96 76 62 97 80 40 39 47 85 34 79 83 17 91 72 19 44 70 81 55 99 18", "output": "30 66 17 34 53 8 68 72 39 21 77 18 64 62 37 52 90 99 93 59 46 23 45 29 33 56 28 9 47 41 40 48 25 87 11 69 51 6 84 83 16 42 32 94 76 49 85 4 44 73 35 36 5 60 97 55 10 71 22 15 31 80 13 58 20 70 24 7 54 95 14 92 50 26 61 79 1 74 88 82 96 12 89 75 86 19 2 38 43 3 91 57 27 65 67 78 81 63 98" }, { "input": "32\n17 29 2 6 30 8 26 7 1 27 10 9 13 24 31 21 15 19 22 18 4 11 25 28 32 3 23 12 5 14 20 16", "output": "9 3 26 21 29 4 8 6 12 11 22 28 13 30 17 32 1 20 18 31 16 19 27 14 23 7 10 24 2 5 15 25" }, { "input": "65\n18 40 1 60 17 19 4 6 12 49 28 58 2 25 13 14 64 56 61 34 62 30 59 51 26 8 33 63 36 48 46 7 43 21 31 27 11 44 29 5 32 23 35 9 53 57 52 50 15 38 42 3 54 65 55 41 20 24 22 47 45 10 39 16 37", "output": "3 13 52 7 40 8 32 26 44 62 37 9 15 16 49 64 5 1 6 57 34 59 42 58 14 25 36 11 39 22 35 41 27 20 43 29 65 50 63 2 56 51 33 38 61 31 60 30 10 48 24 47 45 53 55 18 46 12 23 4 19 21 28 17 54" }, { "input": "71\n35 50 55 58 25 32 26 40 63 34 44 53 24 18 37 7 64 27 56 65 1 19 2 43 42 14 57 47 22 13 59 61 39 67 30 45 54 38 33 48 6 5 3 69 36 21 41 4 16 46 20 17 15 12 10 70 68 23 60 31 52 29 66 28 51 49 62 11 8 9 71", "output": "21 23 43 48 42 41 16 69 70 55 68 54 30 26 53 49 52 14 22 51 46 29 58 13 5 7 18 64 62 35 60 6 39 10 1 45 15 38 33 8 47 25 24 11 36 50 28 40 66 2 65 61 12 37 3 19 27 4 31 59 32 67 9 17 20 63 34 57 44 56 71" }, { "input": "74\n33 8 42 63 64 61 31 74 11 50 68 14 36 25 57 30 7 44 21 15 6 9 23 59 46 3 73 16 62 51 40 60 41 54 5 39 35 28 48 4 58 12 66 69 13 26 71 1 24 19 29 52 37 2 20 43 18 72 17 56 34 38 65 67 27 10 47 70 53 32 45 55 49 22", "output": "48 54 26 40 35 21 17 2 22 66 9 42 45 12 20 28 59 57 50 55 19 74 23 49 14 46 65 38 51 16 7 70 1 61 37 13 53 62 36 31 33 3 56 18 71 25 67 39 73 10 30 52 69 34 72 60 15 41 24 32 6 29 4 5 63 43 64 11 44 68 47 58 27 8" }, { "input": "96\n78 10 82 46 38 91 77 69 2 27 58 80 79 44 59 41 6 31 76 11 42 48 51 37 19 87 43 25 52 32 1 39 63 29 21 65 53 74 92 16 15 95 90 83 30 73 71 5 50 17 96 33 86 60 67 64 20 26 61 40 55 88 94 93 9 72 47 57 14 45 22 3 54 68 13 24 4 7 56 81 89 70 49 8 84 28 18 62 35 36 75 23 66 85 34 12", "output": "31 9 72 77 48 17 78 84 65 2 20 96 75 69 41 40 50 87 25 57 35 71 92 76 28 58 10 86 34 45 18 30 52 95 89 90 24 5 32 60 16 21 27 14 70 4 67 22 83 49 23 29 37 73 61 79 68 11 15 54 59 88 33 56 36 93 55 74 8 82 47 66 46 38 91 19 7 1 13 12 80 3 44 85 94 53 26 62 81 43 6 39 64 63 42 51" }, { "input": "7\n2 1 5 7 3 4 6", "output": "2 1 5 6 3 7 4" }, { "input": "51\n8 33 37 2 16 22 24 30 4 9 5 15 27 3 18 39 31 26 10 17 46 41 25 14 6 1 29 48 36 20 51 49 21 43 19 13 38 50 47 34 11 23 28 12 42 7 32 40 44 45 35", "output": "26 4 14 9 11 25 46 1 10 19 41 44 36 24 12 5 20 15 35 30 33 6 42 7 23 18 13 43 27 8 17 47 2 40 51 29 3 37 16 48 22 45 34 49 50 21 39 28 32 38 31" }, { "input": "27\n12 14 7 3 20 21 25 13 22 15 23 4 2 24 10 17 19 8 26 11 27 18 9 5 6 1 16", "output": "26 13 4 12 24 25 3 18 23 15 20 1 8 2 10 27 16 22 17 5 6 9 11 14 7 19 21" }, { "input": "71\n51 13 20 48 54 23 24 64 14 62 71 67 57 53 3 30 55 43 33 25 39 40 66 6 46 18 5 19 61 16 32 68 70 41 60 44 29 49 27 69 50 38 10 17 45 56 9 21 26 63 28 35 7 59 1 65 2 15 8 11 12 34 37 47 58 22 31 4 36 42 52", "output": "55 57 15 68 27 24 53 59 47 43 60 61 2 9 58 30 44 26 28 3 48 66 6 7 20 49 39 51 37 16 67 31 19 62 52 69 63 42 21 22 34 70 18 36 45 25 64 4 38 41 1 71 14 5 17 46 13 65 54 35 29 10 50 8 56 23 12 32 40 33 11" }, { "input": "9\n8 5 2 6 1 9 4 7 3", "output": "5 3 9 7 2 4 8 1 6" }, { "input": "29\n10 24 11 5 26 25 2 9 22 15 8 14 29 21 4 1 23 17 3 12 13 16 18 28 19 20 7 6 27", "output": "16 7 19 15 4 28 27 11 8 1 3 20 21 12 10 22 18 23 25 26 14 9 17 2 6 5 29 24 13" }, { "input": "60\n39 25 42 4 55 60 16 18 47 1 11 40 7 50 19 35 49 54 12 3 30 38 2 58 17 26 45 6 33 43 37 32 52 36 15 23 27 59 24 20 28 14 8 9 13 29 44 46 41 21 5 48 51 22 31 56 57 53 10 34", "output": "10 23 20 4 51 28 13 43 44 59 11 19 45 42 35 7 25 8 15 40 50 54 36 39 2 26 37 41 46 21 55 32 29 60 16 34 31 22 1 12 49 3 30 47 27 48 9 52 17 14 53 33 58 18 5 56 57 24 38 6" }, { "input": "50\n37 45 22 5 12 21 28 24 18 47 20 25 8 50 14 2 34 43 11 16 49 41 48 1 19 31 39 46 32 23 15 42 3 35 38 30 44 26 10 9 40 36 7 17 33 4 27 6 13 29", "output": "24 16 33 46 4 48 43 13 40 39 19 5 49 15 31 20 44 9 25 11 6 3 30 8 12 38 47 7 50 36 26 29 45 17 34 42 1 35 27 41 22 32 18 37 2 28 10 23 21 14" }, { "input": "30\n8 29 28 16 17 25 27 15 21 11 6 20 2 13 1 30 5 4 24 10 14 3 23 18 26 9 12 22 19 7", "output": "15 13 22 18 17 11 30 1 26 20 10 27 14 21 8 4 5 24 29 12 9 28 23 19 6 25 7 3 2 16" }, { "input": "46\n15 2 44 43 38 19 31 42 4 37 29 30 24 45 27 41 8 20 33 7 35 3 18 46 36 26 1 28 21 40 16 22 32 11 14 13 12 9 25 39 10 6 23 17 5 34", "output": "27 2 22 9 45 42 20 17 38 41 34 37 36 35 1 31 44 23 6 18 29 32 43 13 39 26 15 28 11 12 7 33 19 46 21 25 10 5 40 30 16 8 4 3 14 24" }, { "input": "9\n4 8 6 5 3 9 2 7 1", "output": "9 7 5 1 4 3 8 2 6" }, { "input": "46\n31 30 33 23 45 7 36 8 11 3 32 39 41 20 1 28 6 27 18 24 17 5 16 37 26 13 22 14 2 38 15 46 9 4 19 21 12 44 10 35 25 34 42 43 40 29", "output": "15 29 10 34 22 17 6 8 33 39 9 37 26 28 31 23 21 19 35 14 36 27 4 20 41 25 18 16 46 2 1 11 3 42 40 7 24 30 12 45 13 43 44 38 5 32" }, { "input": "66\n27 12 37 48 46 21 34 58 38 28 66 2 64 32 44 31 13 36 40 15 19 11 22 5 30 29 6 7 61 39 20 42 23 54 51 33 50 9 60 8 57 45 49 10 62 41 59 3 55 63 52 24 25 26 43 56 65 4 16 14 1 35 18 17 53 47", "output": "61 12 48 58 24 27 28 40 38 44 22 2 17 60 20 59 64 63 21 31 6 23 33 52 53 54 1 10 26 25 16 14 36 7 62 18 3 9 30 19 46 32 55 15 42 5 66 4 43 37 35 51 65 34 49 56 41 8 47 39 29 45 50 13 57 11" }, { "input": "13\n3 12 9 2 8 5 13 4 11 1 10 7 6", "output": "10 4 1 8 6 13 12 5 3 11 9 2 7" }, { "input": "80\n21 25 56 50 20 61 7 74 51 69 8 2 46 57 45 71 14 52 17 43 9 30 70 78 31 10 38 13 23 15 37 79 6 16 77 73 80 4 49 48 18 28 26 58 33 41 64 22 54 72 59 60 40 63 53 27 1 5 75 67 62 34 19 39 68 65 44 55 3 32 11 42 76 12 35 47 66 36 24 29", "output": "57 12 69 38 58 33 7 11 21 26 71 74 28 17 30 34 19 41 63 5 1 48 29 79 2 43 56 42 80 22 25 70 45 62 75 78 31 27 64 53 46 72 20 67 15 13 76 40 39 4 9 18 55 49 68 3 14 44 51 52 6 61 54 47 66 77 60 65 10 23 16 50 36 8 59 73 35 24 32 37" }, { "input": "63\n9 49 53 25 40 46 43 51 54 22 58 16 23 26 10 47 5 27 2 8 61 59 19 35 63 56 28 20 34 4 62 38 6 55 36 31 57 15 29 33 1 48 50 37 7 30 18 42 32 52 12 41 14 21 45 11 24 17 39 13 44 60 3", "output": "41 19 63 30 17 33 45 20 1 15 56 51 60 53 38 12 58 47 23 28 54 10 13 57 4 14 18 27 39 46 36 49 40 29 24 35 44 32 59 5 52 48 7 61 55 6 16 42 2 43 8 50 3 9 34 26 37 11 22 62 21 31 25" }, { "input": "26\n11 4 19 13 17 9 2 24 6 5 22 23 14 15 3 25 16 8 18 10 21 1 12 26 7 20", "output": "22 7 15 2 10 9 25 18 6 20 1 23 4 13 14 17 5 19 3 26 21 11 12 8 16 24" }, { "input": "69\n40 22 11 66 4 27 31 29 64 53 37 55 51 2 7 36 18 52 6 1 30 21 17 20 14 9 59 62 49 68 3 50 65 57 44 5 67 46 33 13 34 15 24 48 63 58 38 25 41 35 16 54 32 10 60 61 39 12 69 8 23 45 26 47 56 43 28 19 42", "output": "20 14 31 5 36 19 15 60 26 54 3 58 40 25 42 51 23 17 68 24 22 2 61 43 48 63 6 67 8 21 7 53 39 41 50 16 11 47 57 1 49 69 66 35 62 38 64 44 29 32 13 18 10 52 12 65 34 46 27 55 56 28 45 9 33 4 37 30 59" }, { "input": "6\n4 3 6 5 1 2", "output": "5 6 2 1 4 3" }, { "input": "9\n7 8 5 3 1 4 2 9 6", "output": "5 7 4 6 3 9 1 2 8" }, { "input": "41\n27 24 16 30 25 8 32 2 26 20 39 33 41 22 40 14 36 9 28 4 34 11 31 23 19 18 17 35 3 10 6 13 5 15 29 38 7 21 1 12 37", "output": "39 8 29 20 33 31 37 6 18 30 22 40 32 16 34 3 27 26 25 10 38 14 24 2 5 9 1 19 35 4 23 7 12 21 28 17 41 36 11 15 13" }, { "input": "1\n1", "output": "1" }, { "input": "20\n2 6 4 18 7 10 17 13 16 8 14 9 20 5 19 12 1 3 15 11", "output": "17 1 18 3 14 2 5 10 12 6 20 16 8 11 19 9 7 4 15 13" }, { "input": "2\n2 1", "output": "2 1" }, { "input": "60\n2 4 31 51 11 7 34 20 3 14 18 23 48 54 15 36 38 60 49 40 5 33 41 26 55 58 10 8 13 9 27 30 37 1 21 59 44 57 35 19 46 43 42 45 12 22 39 32 24 16 6 56 53 52 25 17 47 29 50 28", "output": "34 1 9 2 21 51 6 28 30 27 5 45 29 10 15 50 56 11 40 8 35 46 12 49 55 24 31 60 58 32 3 48 22 7 39 16 33 17 47 20 23 43 42 37 44 41 57 13 19 59 4 54 53 14 25 52 38 26 36 18" }, { "input": "14\n14 6 3 12 11 2 7 1 10 9 8 5 4 13", "output": "8 6 3 13 12 2 7 11 10 9 5 4 14 1" }, { "input": "81\n13 43 79 8 7 21 73 46 63 4 62 78 56 11 70 68 61 53 60 49 16 27 59 47 69 5 22 44 77 57 52 48 1 9 72 81 28 55 58 33 51 18 31 17 41 20 42 3 32 54 19 2 75 34 64 10 65 50 30 29 67 12 71 66 74 15 26 23 6 38 25 35 37 24 80 76 40 45 39 36 14", "output": "33 52 48 10 26 69 5 4 34 56 14 62 1 81 66 21 44 42 51 46 6 27 68 74 71 67 22 37 60 59 43 49 40 54 72 80 73 70 79 77 45 47 2 28 78 8 24 32 20 58 41 31 18 50 38 13 30 39 23 19 17 11 9 55 57 64 61 16 25 15 63 35 7 65 53 76 29 12 3 75 36" }, { "input": "42\n41 11 10 8 21 37 32 19 31 25 1 15 36 5 6 27 4 3 13 7 16 17 2 23 34 24 38 28 12 20 30 42 18 26 39 35 33 40 9 14 22 29", "output": "11 23 18 17 14 15 20 4 39 3 2 29 19 40 12 21 22 33 8 30 5 41 24 26 10 34 16 28 42 31 9 7 37 25 36 13 6 27 35 38 1 32" }, { "input": "97\n20 6 76 42 4 18 35 59 39 63 27 7 66 47 61 52 15 36 88 93 19 33 10 92 1 34 46 86 78 57 51 94 77 29 26 73 41 2 58 97 43 65 17 74 21 49 25 3 91 82 95 12 96 13 84 90 69 24 72 37 16 55 54 71 64 62 48 89 11 70 80 67 30 40 44 85 53 83 79 9 56 45 75 87 22 14 81 68 8 38 60 50 28 23 31 32 5", "output": "25 38 48 5 97 2 12 89 80 23 69 52 54 86 17 61 43 6 21 1 45 85 94 58 47 35 11 93 34 73 95 96 22 26 7 18 60 90 9 74 37 4 41 75 82 27 14 67 46 92 31 16 77 63 62 81 30 39 8 91 15 66 10 65 42 13 72 88 57 70 64 59 36 44 83 3 33 29 79 71 87 50 78 55 76 28 84 19 68 56 49 24 20 32 51 53 40" }, { "input": "62\n15 27 46 6 8 51 14 56 23 48 42 49 52 22 20 31 29 12 47 3 62 34 37 35 32 57 19 25 5 60 61 38 18 10 11 55 45 53 17 30 9 36 4 50 41 16 44 28 40 59 24 1 13 39 26 7 33 58 2 43 21 54", "output": "52 59 20 43 29 4 56 5 41 34 35 18 53 7 1 46 39 33 27 15 61 14 9 51 28 55 2 48 17 40 16 25 57 22 24 42 23 32 54 49 45 11 60 47 37 3 19 10 12 44 6 13 38 62 36 8 26 58 50 30 31 21" }, { "input": "61\n35 27 4 61 52 32 41 46 14 37 17 54 55 31 11 26 44 49 15 30 9 50 45 39 7 38 53 3 58 40 13 56 18 19 28 6 43 5 21 42 20 34 2 25 36 12 33 57 16 60 1 8 59 10 22 23 24 48 51 47 29", "output": "51 43 28 3 38 36 25 52 21 54 15 46 31 9 19 49 11 33 34 41 39 55 56 57 44 16 2 35 61 20 14 6 47 42 1 45 10 26 24 30 7 40 37 17 23 8 60 58 18 22 59 5 27 12 13 32 48 29 53 50 4" }, { "input": "59\n31 26 36 15 17 19 10 53 11 34 13 46 55 9 44 7 8 37 32 52 47 25 51 22 35 39 41 4 43 24 5 27 20 57 6 38 3 28 21 40 50 18 14 56 33 45 12 2 49 59 54 29 16 48 42 58 1 30 23", "output": "57 48 37 28 31 35 16 17 14 7 9 47 11 43 4 53 5 42 6 33 39 24 59 30 22 2 32 38 52 58 1 19 45 10 25 3 18 36 26 40 27 55 29 15 46 12 21 54 49 41 23 20 8 51 13 44 34 56 50" }, { "input": "10\n2 10 7 4 1 5 8 6 3 9", "output": "5 1 9 4 6 8 3 7 10 2" }, { "input": "14\n14 2 1 8 6 12 11 10 9 7 3 4 5 13", "output": "3 2 11 12 13 5 10 4 9 8 7 6 14 1" }, { "input": "43\n28 38 15 14 31 42 27 30 19 33 43 26 22 29 18 32 3 13 1 8 35 34 4 12 11 17 41 21 5 25 39 37 20 23 7 24 16 10 40 9 6 36 2", "output": "19 43 17 23 29 41 35 20 40 38 25 24 18 4 3 37 26 15 9 33 28 13 34 36 30 12 7 1 14 8 5 16 10 22 21 42 32 2 31 39 27 6 11" }, { "input": "86\n39 11 20 31 28 76 29 64 35 21 41 71 12 82 5 37 80 73 38 26 79 75 23 15 59 45 47 6 3 62 50 49 51 22 2 65 86 60 70 42 74 17 1 30 55 44 8 66 81 27 57 77 43 13 54 32 72 46 48 56 14 34 78 52 36 85 24 19 69 83 25 61 7 4 84 33 63 58 18 40 68 10 67 9 16 53", "output": "43 35 29 74 15 28 73 47 84 82 2 13 54 61 24 85 42 79 68 3 10 34 23 67 71 20 50 5 7 44 4 56 76 62 9 65 16 19 1 80 11 40 53 46 26 58 27 59 32 31 33 64 86 55 45 60 51 78 25 38 72 30 77 8 36 48 83 81 69 39 12 57 18 41 22 6 52 63 21 17 49 14 70 75 66 37" }, { "input": "99\n65 78 56 98 33 24 61 40 29 93 1 64 57 22 25 52 67 95 50 3 31 15 90 68 71 83 38 36 6 46 89 26 4 87 14 88 72 37 23 43 63 12 80 96 5 34 73 86 9 48 92 62 99 10 16 20 66 27 28 2 82 70 30 94 49 8 84 69 18 60 58 59 44 39 21 7 91 76 54 19 75 85 74 47 55 32 97 77 51 13 35 79 45 42 11 41 17 81 53", "output": "11 60 20 33 45 29 76 66 49 54 95 42 90 35 22 55 97 69 80 56 75 14 39 6 15 32 58 59 9 63 21 86 5 46 91 28 38 27 74 8 96 94 40 73 93 30 84 50 65 19 89 16 99 79 85 3 13 71 72 70 7 52 41 12 1 57 17 24 68 62 25 37 47 83 81 78 88 2 92 43 98 61 26 67 82 48 34 36 31 23 77 51 10 64 18 44 87 4 53" }, { "input": "100\n42 23 48 88 36 6 18 70 96 1 34 40 46 22 39 55 85 93 45 67 71 75 59 9 21 3 86 63 65 68 20 38 73 31 84 90 50 51 56 95 72 33 49 19 83 76 54 74 100 30 17 98 15 94 4 97 5 99 81 27 92 32 89 12 13 91 87 29 60 11 52 43 35 58 10 25 16 80 28 2 44 61 8 82 66 69 41 24 57 62 78 37 79 77 53 7 14 47 26 64", "output": "10 80 26 55 57 6 96 83 24 75 70 64 65 97 53 77 51 7 44 31 25 14 2 88 76 99 60 79 68 50 34 62 42 11 73 5 92 32 15 12 87 1 72 81 19 13 98 3 43 37 38 71 95 47 16 39 89 74 23 69 82 90 28 100 29 85 20 30 86 8 21 41 33 48 22 46 94 91 93 78 59 84 45 35 17 27 67 4 63 36 66 61 18 54 40 9 56 52 58 49" }, { "input": "99\n8 68 94 75 71 60 57 58 6 11 5 48 65 41 49 12 46 72 95 59 13 70 74 7 84 62 17 36 55 76 38 79 2 85 23 10 32 99 87 50 83 28 54 91 53 51 1 3 97 81 21 89 93 78 61 26 82 96 4 98 25 40 31 44 24 47 30 52 14 16 39 27 9 29 45 18 67 63 37 43 90 66 19 69 88 22 92 77 34 42 73 80 56 64 20 35 15 33 86", "output": "47 33 48 59 11 9 24 1 73 36 10 16 21 69 97 70 27 76 83 95 51 86 35 65 61 56 72 42 74 67 63 37 98 89 96 28 79 31 71 62 14 90 80 64 75 17 66 12 15 40 46 68 45 43 29 93 7 8 20 6 55 26 78 94 13 82 77 2 84 22 5 18 91 23 4 30 88 54 32 92 50 57 41 25 34 99 39 85 52 81 44 87 53 3 19 58 49 60 38" }, { "input": "99\n12 99 88 13 7 19 74 47 23 90 16 29 26 11 58 60 64 98 37 18 82 67 72 46 51 85 17 92 87 20 77 36 78 71 57 35 80 54 73 15 14 62 97 45 31 79 94 56 76 96 28 63 8 44 38 86 49 2 52 66 61 59 10 43 55 50 22 34 83 53 95 40 81 21 30 42 27 3 5 41 1 70 69 25 93 48 65 6 24 89 91 33 39 68 9 4 32 84 75", "output": "81 58 78 96 79 88 5 53 95 63 14 1 4 41 40 11 27 20 6 30 74 67 9 89 84 13 77 51 12 75 45 97 92 68 36 32 19 55 93 72 80 76 64 54 44 24 8 86 57 66 25 59 70 38 65 48 35 15 62 16 61 42 52 17 87 60 22 94 83 82 34 23 39 7 99 49 31 33 46 37 73 21 69 98 26 56 29 3 90 10 91 28 85 47 71 50 43 18 2" }, { "input": "99\n20 79 26 75 99 69 98 47 93 62 18 42 43 38 90 66 67 8 13 84 76 58 81 60 64 46 56 23 78 17 86 36 19 52 85 39 48 27 96 49 37 95 5 31 10 24 12 1 80 35 92 33 16 68 57 54 32 29 45 88 72 77 4 87 97 89 59 3 21 22 61 94 83 15 44 34 70 91 55 9 51 50 73 11 14 6 40 7 63 25 2 82 41 65 28 74 71 30 53", "output": "48 91 68 63 43 86 88 18 80 45 84 47 19 85 74 53 30 11 33 1 69 70 28 46 90 3 38 95 58 98 44 57 52 76 50 32 41 14 36 87 93 12 13 75 59 26 8 37 40 82 81 34 99 56 79 27 55 22 67 24 71 10 89 25 94 16 17 54 6 77 97 61 83 96 4 21 62 29 2 49 23 92 73 20 35 31 64 60 66 15 78 51 9 72 42 39 65 7 5" }, { "input": "99\n74 20 9 1 60 85 65 13 4 25 40 99 5 53 64 3 36 31 73 44 55 50 45 63 98 51 68 6 47 37 71 82 88 34 84 18 19 12 93 58 86 7 11 46 90 17 33 27 81 69 42 59 56 32 95 52 76 61 96 62 78 43 66 21 49 97 75 14 41 72 89 16 30 79 22 23 15 83 91 38 48 2 87 26 28 80 94 70 54 92 57 10 8 35 67 77 29 24 39", "output": "4 82 16 9 13 28 42 93 3 92 43 38 8 68 77 72 46 36 37 2 64 75 76 98 10 84 48 85 97 73 18 54 47 34 94 17 30 80 99 11 69 51 62 20 23 44 29 81 65 22 26 56 14 89 21 53 91 40 52 5 58 60 24 15 7 63 95 27 50 88 31 70 19 1 67 57 96 61 74 86 49 32 78 35 6 41 83 33 71 45 79 90 39 87 55 59 66 25 12" }, { "input": "99\n50 94 2 18 69 90 59 83 75 68 77 97 39 78 25 7 16 9 49 4 42 89 44 48 17 96 61 70 3 10 5 81 56 57 88 6 98 1 46 67 92 37 11 30 85 41 8 36 51 29 20 71 19 79 74 93 43 34 55 40 38 21 64 63 32 24 72 14 12 86 82 15 65 23 66 22 28 53 13 26 95 99 91 52 76 27 60 45 47 33 73 84 31 35 54 80 58 62 87", "output": "38 3 29 20 31 36 16 47 18 30 43 69 79 68 72 17 25 4 53 51 62 76 74 66 15 80 86 77 50 44 93 65 90 58 94 48 42 61 13 60 46 21 57 23 88 39 89 24 19 1 49 84 78 95 59 33 34 97 7 87 27 98 64 63 73 75 40 10 5 28 52 67 91 55 9 85 11 14 54 96 32 71 8 92 45 70 99 35 22 6 83 41 56 2 81 26 12 37 82" }, { "input": "99\n19 93 14 34 39 37 33 15 52 88 7 43 69 27 9 77 94 31 48 22 63 70 79 17 50 6 81 8 76 58 23 74 86 11 57 62 41 87 75 51 12 18 68 56 95 3 80 83 84 29 24 61 71 78 59 96 20 85 90 28 45 36 38 97 1 49 40 98 44 67 13 73 72 91 47 10 30 54 35 42 4 2 92 26 64 60 53 21 5 82 46 32 55 66 16 89 99 65 25", "output": "65 82 46 81 89 26 11 28 15 76 34 41 71 3 8 95 24 42 1 57 88 20 31 51 99 84 14 60 50 77 18 92 7 4 79 62 6 63 5 67 37 80 12 69 61 91 75 19 66 25 40 9 87 78 93 44 35 30 55 86 52 36 21 85 98 94 70 43 13 22 53 73 72 32 39 29 16 54 23 47 27 90 48 49 58 33 38 10 96 59 74 83 2 17 45 56 64 68 97" }, { "input": "99\n86 25 50 51 62 39 41 67 44 20 45 14 80 88 66 7 36 59 13 84 78 58 96 75 2 43 48 47 69 12 19 98 22 38 28 55 11 76 68 46 53 70 85 34 16 33 91 30 8 40 74 60 94 82 87 32 37 4 5 10 89 73 90 29 35 26 23 57 27 65 24 3 9 83 77 72 6 31 15 92 93 79 64 18 63 42 56 1 52 97 17 81 71 21 49 99 54 95 61", "output": "88 25 72 58 59 77 16 49 73 60 37 30 19 12 79 45 91 84 31 10 94 33 67 71 2 66 69 35 64 48 78 56 46 44 65 17 57 34 6 50 7 86 26 9 11 40 28 27 95 3 4 89 41 97 36 87 68 22 18 52 99 5 85 83 70 15 8 39 29 42 93 76 62 51 24 38 75 21 82 13 92 54 74 20 43 1 55 14 61 63 47 80 81 53 98 23 90 32 96" }, { "input": "100\n66 44 99 15 43 79 28 33 88 90 49 68 82 38 9 74 4 58 29 81 31 94 10 42 89 21 63 40 62 61 18 6 84 72 48 25 67 69 71 85 98 34 83 70 65 78 91 77 93 41 23 24 87 11 55 12 59 73 36 97 7 14 26 39 30 27 45 20 50 17 53 2 57 47 95 56 75 19 37 96 16 35 8 3 76 60 13 86 5 32 64 80 46 51 54 100 1 22 52 92", "output": "97 72 84 17 89 32 61 83 15 23 54 56 87 62 4 81 70 31 78 68 26 98 51 52 36 63 66 7 19 65 21 90 8 42 82 59 79 14 64 28 50 24 5 2 67 93 74 35 11 69 94 99 71 95 55 76 73 18 57 86 30 29 27 91 45 1 37 12 38 44 39 34 58 16 77 85 48 46 6 92 20 13 43 33 40 88 53 9 25 10 47 100 49 22 75 80 60 41 3 96" }, { "input": "99\n3 73 32 37 25 15 93 63 85 8 91 78 80 5 39 48 46 7 83 70 23 96 9 29 77 53 30 20 56 50 13 45 21 76 87 99 65 31 16 18 14 72 51 28 43 2 81 34 38 40 66 54 74 26 71 4 61 17 58 24 22 33 49 36 42 11 12 55 60 27 62 90 79 92 94 68 1 52 84 41 86 35 69 75 47 10 64 88 97 98 67 19 89 95 59 82 57 44 6", "output": "77 46 1 56 14 99 18 10 23 86 66 67 31 41 6 39 58 40 92 28 33 61 21 60 5 54 70 44 24 27 38 3 62 48 82 64 4 49 15 50 80 65 45 98 32 17 85 16 63 30 43 78 26 52 68 29 97 59 95 69 57 71 8 87 37 51 91 76 83 20 55 42 2 53 84 34 25 12 73 13 47 96 19 79 9 81 35 88 93 72 11 74 7 75 94 22 89 90 36" }, { "input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1" } ]
1,677,615,234
2,147,483,647
Python 3
OK
TESTS
101
92
0
n = int(input()) a = list(map(int, input().split())) num_list = [0] * n for i in range(n): num_list[a[i] - 1] = i + 1 print(*num_list)
Title: Presents Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there. If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift. Now Petya wants to know for each friend *i* the number of a friend who has given him a gift. Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves. Output Specification: Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*. Demo Input: ['4\n2 3 4 1\n', '3\n1 3 2\n', '2\n1 2\n'] Demo Output: ['4 1 2 3\n', '1 3 2\n', '1 2\n'] Note: none
```python n = int(input()) a = list(map(int, input().split())) num_list = [0] * n for i in range(n): num_list[a[i] - 1] = i + 1 print(*num_list) ```
3
155
A
I_love_\%username\%
PROGRAMMING
800
[ "brute force" ]
null
null
Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him. One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously). Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him.
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated. The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000.
Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests.
[ "5\n100 50 200 150 200\n", "10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n" ]
[ "2\n", "4\n" ]
In the first sample the performances number 2 and 3 are amazing. In the second sample the performances number 2, 4, 9 and 10 are amazing.
500
[ { "input": "5\n100 50 200 150 200", "output": "2" }, { "input": "10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242", "output": "4" }, { "input": "1\n6", "output": "0" }, { "input": "2\n2 1", "output": "1" }, { "input": "5\n100 36 53 7 81", "output": "2" }, { "input": "5\n7 36 53 81 100", "output": "4" }, { "input": "5\n100 81 53 36 7", "output": "4" }, { "input": "10\n8 6 3 4 9 10 7 7 1 3", "output": "5" }, { "input": "10\n1627 1675 1488 1390 1812 1137 1746 1324 1952 1862", "output": "6" }, { "input": "10\n1 3 3 4 6 7 7 8 9 10", "output": "7" }, { "input": "10\n1952 1862 1812 1746 1675 1627 1488 1390 1324 1137", "output": "9" }, { "input": "25\n1448 4549 2310 2725 2091 3509 1565 2475 2232 3989 4231 779 2967 2702 608 3739 721 1552 2767 530 3114 665 1940 48 4198", "output": "5" }, { "input": "33\n1097 1132 1091 1104 1049 1038 1023 1080 1104 1029 1035 1061 1049 1060 1088 1106 1105 1087 1063 1076 1054 1103 1047 1041 1028 1120 1126 1063 1117 1110 1044 1093 1101", "output": "5" }, { "input": "34\n821 5536 2491 6074 7216 9885 764 1603 778 8736 8987 771 617 1587 8943 7922 439 7367 4115 8886 7878 6899 8811 5752 3184 3401 9760 9400 8995 4681 1323 6637 6554 6498", "output": "7" }, { "input": "68\n6764 6877 6950 6768 6839 6755 6726 6778 6699 6805 6777 6985 6821 6801 6791 6805 6940 6761 6677 6999 6911 6699 6959 6933 6903 6843 6972 6717 6997 6756 6789 6668 6735 6852 6735 6880 6723 6834 6810 6694 6780 6679 6698 6857 6826 6896 6979 6968 6957 6988 6960 6700 6919 6892 6984 6685 6813 6678 6715 6857 6976 6902 6780 6686 6777 6686 6842 6679", "output": "9" }, { "input": "60\n9000 9014 9034 9081 9131 9162 9174 9199 9202 9220 9221 9223 9229 9235 9251 9260 9268 9269 9270 9298 9307 9309 9313 9323 9386 9399 9407 9495 9497 9529 9531 9544 9614 9615 9627 9627 9643 9654 9656 9657 9685 9699 9701 9736 9745 9758 9799 9827 9843 9845 9854 9854 9885 9891 9896 9913 9942 9963 9986 9992", "output": "57" }, { "input": "100\n7 61 12 52 41 16 34 99 30 44 48 89 31 54 21 1 48 52 61 15 35 87 21 76 64 92 44 81 16 93 84 92 32 15 68 76 53 39 26 4 11 26 7 4 99 99 61 65 55 85 65 67 47 39 2 74 63 49 98 87 5 94 22 30 25 42 31 84 49 23 89 60 16 26 92 27 9 57 75 61 94 35 83 47 99 100 63 24 91 88 79 10 15 45 22 64 3 11 89 83", "output": "4" }, { "input": "100\n9999 9999 9999 9998 9998 9998 9997 9996 9996 9995 9993 9993 9991 9990 9989 9986 9984 9984 9983 9981 9981 9980 9980 9980 9979 9977 9977 9977 9977 9977 9976 9976 9975 9975 9973 9972 9972 9972 9972 9971 9969 9969 9969 9968 9967 9965 9962 9962 9962 9962 9960 9958 9958 9955 9954 9954 9954 9954 9950 9949 9949 9947 9943 9943 9940 9940 9939 9937 9937 9937 9936 9935 9932 9932 9931 9929 9927 9927 9926 9923 9919 9919 9918 9918 9918 9917 9917 9916 9916 9915 9914 9911 9910 9907 9907 9906 9905 9905 9904 9901", "output": "57" }, { "input": "100\n158 159 157 156 155 154 160 153 161 152 162 163 151 164 150 165 149 148 147 166 146 167 145 144 143 142 168 141 169 170 140 139 138 137 171 136 135 134 172 173 174 133 175 132 177 178 131 179 180 130 129 181 128 127 182 126 183 125 124 184 123 122 121 120 119 118 117 185 186 187 188 189 116 190 115 191 192 193 114 113 112 111 110 109 108 194 195 107 106 105 196 197 104 198 199 103 102 200 101 100", "output": "99" }, { "input": "2\n0 10000", "output": "1" }, { "input": "2\n5 5", "output": "0" }, { "input": "2\n1 1", "output": "0" }, { "input": "2\n10 10", "output": "0" }, { "input": "1\n0", "output": "0" } ]
1,674,828,579
2,147,483,647
PyPy 3-64
OK
TESTS
37
124
0
n = input() points = list(map(int, input().split(" "))) maxm = points[0] minm = points[0] num_amazing = 0 for point in points[1:]: if point > maxm: num_amazing += 1 maxm = point elif point < minm: num_amazing += 1 minm = point print(num_amazing)
Title: I_love_\%username\% Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him. One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously). Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him. Input Specification: The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated. The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000. Output Specification: Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests. Demo Input: ['5\n100 50 200 150 200\n', '10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n'] Demo Output: ['2\n', '4\n'] Note: In the first sample the performances number 2 and 3 are amazing. In the second sample the performances number 2, 4, 9 and 10 are amazing.
```python n = input() points = list(map(int, input().split(" "))) maxm = points[0] minm = points[0] num_amazing = 0 for point in points[1:]: if point > maxm: num_amazing += 1 maxm = point elif point < minm: num_amazing += 1 minm = point print(num_amazing) ```
3