contestId
int64 0
1.01k
| index
stringclasses 40
values | name
stringlengths 2
54
| type
stringclasses 2
values | rating
int64 0
3.4k
| tags
listlengths 0
7
| title
stringclasses 393
values | time-limit
stringclasses 7
values | memory-limit
stringclasses 6
values | problem-description
stringlengths 0
2.97k
| input-specification
stringlengths 4
1.87k
| output-specification
stringlengths 4
1.12k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
3.5k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 1
value | testset
stringclasses 9
values | passedTestCount
int64 1
402
| timeConsumedMillis
int64 15
8.06k
| memoryConsumedBytes
int64 0
514M
| code
stringlengths 11
61.4k
| prompt
stringlengths 297
7.35k
| response
stringlengths 25
61.4k
| score
float64 2.82
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
228
|
A
|
Is your horseshoe on the other hoof?
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades.
Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.
|
The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has.
Consider all possible colors indexed with integers.
|
Print a single integer — the minimum number of horseshoes Valera needs to buy.
|
[
"1 7 3 3\n",
"7 7 7 7\n"
] |
[
"1\n",
"3\n"
] |
none
| 500
|
[
{
"input": "1 7 3 3",
"output": "1"
},
{
"input": "7 7 7 7",
"output": "3"
},
{
"input": "81170865 673572653 756938629 995577259",
"output": "0"
},
{
"input": "3491663 217797045 522540872 715355328",
"output": "0"
},
{
"input": "251590420 586975278 916631563 586975278",
"output": "1"
},
{
"input": "259504825 377489979 588153796 377489979",
"output": "1"
},
{
"input": "652588203 931100304 931100304 652588203",
"output": "2"
},
{
"input": "391958720 651507265 391958720 651507265",
"output": "2"
},
{
"input": "90793237 90793237 90793237 90793237",
"output": "3"
},
{
"input": "551651653 551651653 551651653 551651653",
"output": "3"
},
{
"input": "156630260 609654355 668943582 973622757",
"output": "0"
},
{
"input": "17061017 110313588 434481173 796661222",
"output": "0"
},
{
"input": "24975422 256716298 337790533 690960249",
"output": "0"
},
{
"input": "255635360 732742923 798648949 883146723",
"output": "0"
},
{
"input": "133315691 265159773 734556507 265159773",
"output": "1"
},
{
"input": "28442865 741657755 978106882 978106882",
"output": "1"
},
{
"input": "131245479 174845575 497483467 131245479",
"output": "1"
},
{
"input": "139159884 616215581 958341883 616215581",
"output": "1"
},
{
"input": "147784432 947653080 947653080 947653080",
"output": "2"
},
{
"input": "94055790 756126496 756126496 94055790",
"output": "2"
},
{
"input": "240458500 511952208 240458500 511952208",
"output": "2"
},
{
"input": "681828506 972810624 972810624 681828506",
"output": "2"
},
{
"input": "454961014 454961014 454961014 454961014",
"output": "3"
},
{
"input": "915819430 915819430 915819430 915819430",
"output": "3"
},
{
"input": "671645142 671645142 671645142 671645142",
"output": "3"
},
{
"input": "132503558 132503558 132503558 132503558",
"output": "3"
},
{
"input": "5 5 999999 6",
"output": "1"
},
{
"input": "1 1 2 5",
"output": "1"
},
{
"input": "2 1 2 3",
"output": "1"
},
{
"input": "1 1 3 5",
"output": "1"
},
{
"input": "1 1 3 3",
"output": "2"
},
{
"input": "2 2 2 1",
"output": "2"
},
{
"input": "3 1 1 1",
"output": "2"
},
{
"input": "1 2 2 2",
"output": "2"
}
] | 1,694,538,377
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 92
| 0
|
s1, s2, s3, s4 = map(int, input().split())
colors = set([s1, s2, s3, s4])
additional=4-len(colors)
print(additional)
|
Title: Is your horseshoe on the other hoof?
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades.
Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.
Input Specification:
The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has.
Consider all possible colors indexed with integers.
Output Specification:
Print a single integer — the minimum number of horseshoes Valera needs to buy.
Demo Input:
['1 7 3 3\n', '7 7 7 7\n']
Demo Output:
['1\n', '3\n']
Note:
none
|
```python
s1, s2, s3, s4 = map(int, input().split())
colors = set([s1, s2, s3, s4])
additional=4-len(colors)
print(additional)
```
| 3
|
|
200
|
B
|
Drinks
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
|
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
|
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
|
[
"3\n50 50 100\n",
"4\n0 25 50 75\n"
] |
[
"66.666666666667\n",
"37.500000000000\n"
] |
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
| 500
|
[
{
"input": "3\n50 50 100",
"output": "66.666666666667"
},
{
"input": "4\n0 25 50 75",
"output": "37.500000000000"
},
{
"input": "3\n0 1 8",
"output": "3.000000000000"
},
{
"input": "5\n96 89 93 95 70",
"output": "88.600000000000"
},
{
"input": "7\n62 41 78 4 38 39 75",
"output": "48.142857142857"
},
{
"input": "13\n2 22 7 0 1 17 3 17 11 2 21 26 22",
"output": "11.615384615385"
},
{
"input": "21\n5 4 11 7 0 5 45 21 0 14 51 6 0 16 10 19 8 9 7 12 18",
"output": "12.761904761905"
},
{
"input": "26\n95 70 93 74 94 70 91 70 39 79 80 57 87 75 37 93 48 67 51 90 85 26 23 64 66 84",
"output": "69.538461538462"
},
{
"input": "29\n84 99 72 96 83 92 95 98 97 93 76 84 99 93 81 76 93 99 99 100 95 100 96 95 97 100 71 98 94",
"output": "91.551724137931"
},
{
"input": "33\n100 99 100 100 99 99 99 100 100 100 99 99 99 100 100 100 100 99 100 99 100 100 97 100 100 100 100 100 100 100 98 98 100",
"output": "99.515151515152"
},
{
"input": "34\n14 9 10 5 4 26 18 23 0 1 0 20 18 15 2 2 3 5 14 1 9 4 2 15 7 1 7 19 10 0 0 11 0 2",
"output": "8.147058823529"
},
{
"input": "38\n99 98 100 100 99 92 99 99 98 84 88 94 86 99 93 100 98 99 65 98 85 84 64 97 96 89 79 96 91 84 99 93 72 96 94 97 96 93",
"output": "91.921052631579"
},
{
"input": "52\n100 94 99 98 99 99 99 95 97 97 98 100 100 98 97 100 98 90 100 99 97 94 90 98 100 100 90 99 100 95 98 95 94 85 97 94 96 94 99 99 99 98 100 100 94 99 99 100 98 87 100 100",
"output": "97.019230769231"
},
{
"input": "58\n10 70 12 89 1 82 100 53 40 100 21 69 92 91 67 66 99 77 25 48 8 63 93 39 46 79 82 14 44 42 1 79 0 69 56 73 67 17 59 4 65 80 20 60 77 52 3 61 16 76 33 18 46 100 28 59 9 6",
"output": "50.965517241379"
},
{
"input": "85\n7 8 1 16 0 15 1 7 0 11 15 6 2 12 2 8 9 8 2 0 3 7 15 7 1 8 5 7 2 26 0 3 11 1 8 10 31 0 7 6 1 8 1 0 9 14 4 8 7 16 9 1 0 16 10 9 6 1 1 4 2 7 4 5 4 1 20 6 16 16 1 1 10 17 8 12 14 19 3 8 1 7 10 23 10",
"output": "7.505882352941"
},
{
"input": "74\n5 3 0 7 13 10 12 10 18 5 0 18 2 13 7 17 2 7 5 2 40 19 0 2 2 3 0 45 4 20 0 4 2 8 1 19 3 9 17 1 15 0 16 1 9 4 0 9 32 2 6 18 11 18 1 15 16 12 7 19 5 3 9 28 26 8 3 10 33 29 4 13 28 6",
"output": "10.418918918919"
},
{
"input": "98\n42 9 21 11 9 11 22 12 52 20 10 6 56 9 26 27 1 29 29 14 38 17 41 21 7 45 15 5 29 4 51 20 6 8 34 17 13 53 30 45 0 10 16 41 4 5 6 4 14 2 31 6 0 11 13 3 3 43 13 36 51 0 7 16 28 23 8 36 30 22 8 54 21 45 39 4 50 15 1 30 17 8 18 10 2 20 16 50 6 68 15 6 38 7 28 8 29 41",
"output": "20.928571428571"
},
{
"input": "99\n60 65 40 63 57 44 30 84 3 10 39 53 40 45 72 20 76 11 61 32 4 26 97 55 14 57 86 96 34 69 52 22 26 79 31 4 21 35 82 47 81 28 72 70 93 84 40 4 69 39 83 58 30 7 32 73 74 12 92 23 61 88 9 58 70 32 75 40 63 71 46 55 39 36 14 97 32 16 95 41 28 20 85 40 5 50 50 50 75 6 10 64 38 19 77 91 50 72 96",
"output": "49.191919191919"
},
{
"input": "99\n100 88 40 30 81 80 91 98 69 73 88 96 79 58 14 100 87 84 52 91 83 88 72 83 99 35 54 80 46 79 52 72 85 32 99 39 79 79 45 83 88 50 75 75 50 59 65 75 97 63 92 58 89 46 93 80 89 33 69 86 99 99 66 85 72 74 79 98 85 95 46 63 77 97 49 81 89 39 70 76 68 91 90 56 31 93 51 87 73 95 74 69 87 95 57 68 49 95 92",
"output": "73.484848484848"
},
{
"input": "100\n18 15 17 0 3 3 0 4 1 8 2 22 7 21 5 0 0 8 3 16 1 0 2 9 9 3 10 8 17 20 5 4 8 12 2 3 1 1 3 2 23 0 1 0 5 7 4 0 1 3 3 4 25 2 2 14 8 4 9 3 0 11 0 3 12 3 14 16 7 7 14 1 17 9 0 35 42 12 3 1 25 9 3 8 5 3 2 8 22 14 11 6 3 9 6 8 7 7 4 6",
"output": "7.640000000000"
},
{
"input": "100\n88 77 65 87 100 63 91 96 92 89 77 95 76 80 84 83 100 71 85 98 26 54 74 78 69 59 96 86 88 91 95 26 52 88 64 70 84 81 76 84 94 82 100 66 97 98 43 94 59 94 100 80 98 73 69 83 94 70 74 79 91 31 62 88 69 55 62 97 40 64 62 83 87 85 50 90 69 72 67 49 100 51 69 96 81 90 83 91 86 34 79 69 100 66 97 98 47 97 74 100",
"output": "77.660000000000"
},
{
"input": "100\n91 92 90 91 98 84 85 96 83 98 99 87 94 70 87 75 86 90 89 88 82 83 91 94 88 86 90 99 100 98 97 75 95 99 95 100 91 92 76 93 95 97 88 93 95 81 96 89 88 100 98 87 90 96 100 99 58 90 96 77 92 82 100 100 93 93 98 99 79 88 97 95 98 66 96 83 96 100 99 92 98 98 92 93 100 97 98 100 98 97 100 100 94 90 99 100 98 79 80 81",
"output": "91.480000000000"
},
{
"input": "1\n0",
"output": "0.000000000000"
},
{
"input": "1\n100",
"output": "100.000000000000"
},
{
"input": "1\n78",
"output": "78.000000000000"
},
{
"input": "2\n0 100",
"output": "50.000000000000"
},
{
"input": "2\n100 100",
"output": "100.000000000000"
},
{
"input": "5\n0 0 0 0 1",
"output": "0.200000000000"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99",
"output": "99.990000000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1",
"output": "0.010000000000"
},
{
"input": "5\n100 100 100 100 100",
"output": "100.000000000000"
}
] | 1,694,883,768
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 92
| 0
|
number = int(input())
sum_number = 0
for i in input().split():
i = int(i)
sum_number += i
result = sum_number/number
print('%.12f' %result)
|
Title: Drinks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
Input Specification:
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
Output Specification:
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
Demo Input:
['3\n50 50 100\n', '4\n0 25 50 75\n']
Demo Output:
['66.666666666667\n', '37.500000000000\n']
Note:
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
|
```python
number = int(input())
sum_number = 0
for i in input().split():
i = int(i)
sum_number += i
result = sum_number/number
print('%.12f' %result)
```
| 3
|
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,620,052,815
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 81
| 154
| 0
|
n=int(input())
x=0
y=0
z=0
for i in range(n):
a,b,c=map(int,input().split())
x+=a
y+=b
z+=c
if x==y==z==0:
print("YES")
else:
print("NO")
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
n=int(input())
x=0
y=0
z=0
for i in range(n):
a,b,c=map(int,input().split())
x+=a
y+=b
z+=c
if x==y==z==0:
print("YES")
else:
print("NO")
```
| 3.9615
|
47
|
A
|
Triangular numbers
|
PROGRAMMING
| 800
|
[
"brute force",
"math"
] |
A. Triangular numbers
|
2
|
256
|
A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number).
Your task is to find out if a given integer is a triangular number.
|
The first line contains the single number *n* (1<=≤<=*n*<=≤<=500) — the given integer.
|
If the given integer is a triangular number output YES, otherwise output NO.
|
[
"1\n",
"2\n",
"3\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
none
| 500
|
[
{
"input": "1",
"output": "YES"
},
{
"input": "2",
"output": "NO"
},
{
"input": "3",
"output": "YES"
},
{
"input": "4",
"output": "NO"
},
{
"input": "5",
"output": "NO"
},
{
"input": "6",
"output": "YES"
},
{
"input": "7",
"output": "NO"
},
{
"input": "8",
"output": "NO"
},
{
"input": "12",
"output": "NO"
},
{
"input": "10",
"output": "YES"
},
{
"input": "11",
"output": "NO"
},
{
"input": "9",
"output": "NO"
},
{
"input": "14",
"output": "NO"
},
{
"input": "15",
"output": "YES"
},
{
"input": "16",
"output": "NO"
},
{
"input": "20",
"output": "NO"
},
{
"input": "21",
"output": "YES"
},
{
"input": "22",
"output": "NO"
},
{
"input": "121",
"output": "NO"
},
{
"input": "135",
"output": "NO"
},
{
"input": "136",
"output": "YES"
},
{
"input": "137",
"output": "NO"
},
{
"input": "152",
"output": "NO"
},
{
"input": "153",
"output": "YES"
},
{
"input": "154",
"output": "NO"
},
{
"input": "171",
"output": "YES"
},
{
"input": "189",
"output": "NO"
},
{
"input": "190",
"output": "YES"
},
{
"input": "191",
"output": "NO"
},
{
"input": "210",
"output": "YES"
},
{
"input": "211",
"output": "NO"
},
{
"input": "231",
"output": "YES"
},
{
"input": "232",
"output": "NO"
},
{
"input": "252",
"output": "NO"
},
{
"input": "253",
"output": "YES"
},
{
"input": "254",
"output": "NO"
},
{
"input": "275",
"output": "NO"
},
{
"input": "276",
"output": "YES"
},
{
"input": "277",
"output": "NO"
},
{
"input": "299",
"output": "NO"
},
{
"input": "300",
"output": "YES"
},
{
"input": "301",
"output": "NO"
},
{
"input": "324",
"output": "NO"
},
{
"input": "325",
"output": "YES"
},
{
"input": "326",
"output": "NO"
},
{
"input": "350",
"output": "NO"
},
{
"input": "351",
"output": "YES"
},
{
"input": "352",
"output": "NO"
},
{
"input": "377",
"output": "NO"
},
{
"input": "378",
"output": "YES"
},
{
"input": "406",
"output": "YES"
},
{
"input": "434",
"output": "NO"
},
{
"input": "435",
"output": "YES"
},
{
"input": "464",
"output": "NO"
},
{
"input": "465",
"output": "YES"
},
{
"input": "495",
"output": "NO"
},
{
"input": "496",
"output": "YES"
},
{
"input": "497",
"output": "NO"
},
{
"input": "331",
"output": "NO"
},
{
"input": "413",
"output": "NO"
},
{
"input": "177",
"output": "NO"
},
{
"input": "122",
"output": "NO"
},
{
"input": "478",
"output": "NO"
},
{
"input": "188",
"output": "NO"
},
{
"input": "21",
"output": "YES"
},
{
"input": "474",
"output": "NO"
},
{
"input": "21",
"output": "YES"
},
{
"input": "48",
"output": "NO"
},
{
"input": "498",
"output": "NO"
},
{
"input": "499",
"output": "NO"
},
{
"input": "500",
"output": "NO"
}
] | 1,488,058,889
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 124
| 4,608,000
|
def main():
n = int(input())
a = []
i = 1
while(i < 50):
a.append(i * (i + 1) // 2)
i += 1
fnd = False
for i in a:
if i == n :
fnd = True
break
print("YES" if fnd == True else "NO")
if __name__ == "__main__": main()
|
Title: Triangular numbers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number).
Your task is to find out if a given integer is a triangular number.
Input Specification:
The first line contains the single number *n* (1<=≤<=*n*<=≤<=500) — the given integer.
Output Specification:
If the given integer is a triangular number output YES, otherwise output NO.
Demo Input:
['1\n', '2\n', '3\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
none
|
```python
def main():
n = int(input())
a = []
i = 1
while(i < 50):
a.append(i * (i + 1) // 2)
i += 1
fnd = False
for i in a:
if i == n :
fnd = True
break
print("YES" if fnd == True else "NO")
if __name__ == "__main__": main()
```
| 3.960417
|
48
|
D
|
Permutations
|
PROGRAMMING
| 1,500
|
[
"greedy"
] |
D. Permutations
|
1
|
256
|
A permutation is a sequence of integers from 1 to *n* of length *n* containing each number exactly once. For example, (1), (4,<=3,<=5,<=1,<=2), (3,<=2,<=1) are permutations, and (1,<=1), (4,<=3,<=1), (2,<=3,<=4) are not.
There are many tasks on permutations. Today you are going to solve one of them. Let’s imagine that somebody took several permutations (perhaps, with a different number of elements), wrote them down consecutively as one array and then shuffled the resulting array. The task is to restore the initial permutations if it is possible.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105). The next line contains the mixed array of *n* integers, divided with a single space. The numbers in the array are from 1 to 105.
|
If this array can be split into several permutations so that every element of the array belongs to exactly one permutation, print in the first line the number of permutations. The second line should contain *n* numbers, corresponding to the elements of the given array. If the *i*-th element belongs to the first permutation, the *i*-th number should be 1, if it belongs to the second one, then its number should be 2 and so on. The order of the permutations’ numbering is free.
If several solutions are possible, print any one of them. If there’s no solution, print in the first line <=-<=1.
|
[
"9\n1 2 3 1 2 1 4 2 5\n",
"4\n4 3 2 1\n",
"4\n1 2 2 3\n"
] |
[
"3\n3 1 2 1 2 2 2 3 2\n",
"1\n1 1 1 1 ",
"-1\n"
] |
In the first sample test the array is split into three permutations: (2, 1), (3, 2, 1, 4, 5), (1, 2). The first permutation is formed by the second and the fourth elements of the array, the second one — by the third, the fifth, the sixth, the seventh and the ninth elements, the third one — by the first and the eigth elements. Clearly, there are other splitting variants possible.
| 0
|
[
{
"input": "9\n1 2 3 1 2 1 4 2 5",
"output": "3\n1 1 1 2 2 3 1 3 1 "
},
{
"input": "4\n4 3 2 1",
"output": "1\n1 1 1 1 "
},
{
"input": "4\n1 2 2 3",
"output": "-1"
},
{
"input": "1\n1",
"output": "1\n1 "
},
{
"input": "1\n2",
"output": "-1"
},
{
"input": "5\n1 1 1 1 1",
"output": "5\n1 2 3 4 5 "
},
{
"input": "3\n2 1 1",
"output": "2\n1 1 2 "
},
{
"input": "6\n3 3 2 2 1 1",
"output": "2\n1 2 1 2 1 2 "
},
{
"input": "2\n1000 1",
"output": "-1"
},
{
"input": "5\n2 2 1 1 3",
"output": "2\n1 2 1 2 1 "
},
{
"input": "10\n2 1 2 4 6 1 5 3 7 1",
"output": "3\n1 1 2 1 1 2 1 1 1 3 "
},
{
"input": "10\n4 1 2 1 3 3 1 2 2 1",
"output": "4\n1 1 1 2 1 2 3 2 3 4 "
},
{
"input": "10\n1 2 5 1 1 1 4 1 3 2",
"output": "5\n1 1 1 2 3 4 1 5 1 2 "
},
{
"input": "20\n2 7 3 8 4 6 3 7 6 4 13 5 1 12 1 10 2 11 5 9",
"output": "2\n1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 1 2 1 2 1 "
},
{
"input": "20\n1 1 1 2 3 1 5 9 5 8 4 6 7 3 1 2 2 1 3 4",
"output": "6\n1 2 3 1 1 4 1 1 2 1 1 1 1 2 5 2 3 6 3 2 "
},
{
"input": "20\n2 10 3 3 2 1 14 13 2 15 1 4 5 12 7 11 9 1 6 8",
"output": "3\n1 1 1 2 2 1 1 1 3 1 2 1 1 1 1 1 1 3 1 1 "
},
{
"input": "20\n1 7 2 3 1 1 8 1 6 1 9 11 5 10 1 4 2 3 1 2",
"output": "7\n1 1 1 1 2 3 1 4 1 5 1 1 1 1 6 1 2 2 7 3 "
},
{
"input": "30\n6 1 2 3 6 4 1 8 1 2 2 5 5 1 1 3 9 1 5 8 1 2 7 7 4 3 1 3 4 2",
"output": "8\n1 1 1 1 2 1 2 1 3 2 3 1 2 4 5 2 1 6 3 2 7 4 1 2 2 3 8 4 3 5 "
},
{
"input": "30\n2 6 2 3 3 1 4 2 1 3 3 2 1 2 1 8 1 2 4 1 1 1 5 1 4 7 1 9 1 1",
"output": "12\n1 1 2 1 2 1 1 3 2 3 4 4 3 5 4 1 5 6 2 6 7 8 1 9 3 1 10 1 11 12 "
},
{
"input": "30\n1 3 2 5 9 4 16 14 2 2 4 11 7 17 1 15 13 3 6 12 6 19 8 1 20 5 18 4 10 3",
"output": "3\n1 1 1 1 1 1 1 1 2 3 2 1 1 1 2 1 1 2 1 1 2 1 1 3 1 2 1 3 1 3 "
},
{
"input": "10\n2 2 6 3 1 4 5 3 7 7",
"output": "-1"
},
{
"input": "20\n4 6 6 4 5 4 3 2 5 7 3 2 4 1 3 1 1 4 1 7",
"output": "-1"
},
{
"input": "30\n2 8 3 3 7 4 2 9 4 3 5 6 1 5 3 5 8 1 9 6 6 7 2 7 1 1 1 10 2 1",
"output": "-1"
},
{
"input": "30\n8 7 9 6 2 3 7 1 1 5 7 2 3 1 7 4 5 6 3 9 4 9 4 2 3 1 1 2 2 10",
"output": "-1"
},
{
"input": "50\n7 1 6 5 15 3 13 7 1 1 4 2 4 3 2 1 11 9 4 2 3 7 1 1 1 14 3 14 5 2 5 4 1 8 2 2 2 2 1 1 4 1 2 3 6 12 1 1 5 1",
"output": "-1"
},
{
"input": "50\n1 1 4 1 1 1 1 1 1 3 1 1 3 2 1 1 1 1 5 2 1 1 1 1 1 3 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "41\n1 2 1 3 4 5 6 7 8 1 9 10 2 1 11 12 13 14 1 2 15 16 17 18 19 3 20 21 22 23 24 25 3 26 27 4 28 29 30 31 32 33 34 35 36 37 38 39 40 41 "
},
{
"input": "100\n2 13 10 4 13 8 22 11 5 3 4 6 19 4 8 8 6 1 16 4 11 17 5 18 7 7 4 5 3 7 2 16 5 6 10 1 6 12 14 6 8 7 9 7 1 2 1 8 5 5 9 21 7 11 6 1 12 10 6 23 10 9 8 4 1 2 3 13 2 14 15 1 1 12 3 9 12 3 13 9 8 1 12 5 2 3 11 7 11 9 3 14 1 2 15 2 10 4 14 20",
"output": "10\n1 1 1 1 2 1 1 1 1 1 2 1 1 3 2 3 2 1 1 4 2 1 2 1 1 2 5 3 2 3 2 2 4 3 2 2 4 1 1 5 4 4 1 5 3 3 4 5 5 6 2 1 6 3 6 5 2 3 7 1 4 3 6 6 6 4 3 3 5 2 1 7 8 3 4 4 4 5 4 5 7 9 5 7 6 6 4 7 5 6 7 3 10 7 2 8 5 7 4 1 "
},
{
"input": "100\n9 6 3 28 10 2 2 11 2 1 25 3 13 5 14 13 4 14 2 16 12 27 8 1 7 9 8 19 33 23 4 1 15 6 7 12 2 8 30 4 1 31 6 1 15 5 18 3 2 24 7 3 1 20 10 8 26 22 3 3 9 6 1 10 1 5 1 3 7 6 11 10 1 16 19 5 9 4 4 4 2 18 12 21 11 5 2 32 17 29 2 4 8 1 7 5 3 2 17 1",
"output": "12\n1 1 1 1 1 1 2 1 3 1 1 2 1 1 1 2 1 2 4 1 1 1 1 2 1 2 2 1 1 1 2 3 1 2 2 2 5 3 1 3 4 1 3 5 2 2 1 3 6 1 3 4 6 1 2 4 1 1 5 6 3 4 7 3 8 3 9 7 4 5 2 4 10 2 2 4 4 4 5 6 7 2 3 1 3 5 8 1 1 1 9 7 5 11 5 6 8 10 2 12 "
},
{
"input": "100\n12 18 1 1 14 23 1 1 22 5 7 9 7 1 1 1 3 8 4 2 1 6 9 1 3 2 11 1 11 2 3 2 1 4 2 7 1 16 3 4 2 13 3 1 5 11 2 10 20 24 3 21 5 2 6 2 1 10 10 5 17 1 1 4 19 8 5 5 3 9 4 2 7 8 10 4 9 1 3 3 9 7 6 4 4 3 6 8 12 1 3 6 2 1 8 4 1 15 2 5",
"output": "20\n1 1 1 2 1 1 3 4 1 1 1 1 2 5 6 7 1 1 1 1 8 1 2 9 2 2 1 10 2 3 3 4 11 2 5 3 12 1 4 3 6 1 5 13 2 3 7 1 1 1 6 1 3 8 2 9 14 2 3 4 1 15 16 4 1 2 5 6 7 3 5 10 4 3 4 6 4 17 8 9 5 5 3 7 8 10 4 4 2 18 11 5 11 19 5 9 20 1 12 7 "
},
{
"input": "100\n10 1 13 1 5 2 5 5 9 10 3 8 4 1 3 5 6 4 1 4 9 8 1 1 1 1 8 2 3 1 1 2 5 1 1 12 6 4 5 3 1 3 18 10 1 2 3 2 6 2 3 15 1 3 5 3 9 7 1 6 11 7 7 8 6 17 11 7 6 1 4 4 1 1 3 1 2 6 7 14 4 4 5 1 11 1 4 2 8 4 2 7 16 12 1 1 2 2 1 2",
"output": "25\n1 1 1 2 1 1 2 3 1 2 1 1 1 3 2 4 1 2 4 3 2 2 5 6 7 8 3 2 3 9 10 3 5 11 12 1 2 4 6 4 13 5 1 3 14 4 6 5 3 6 7 1 15 8 7 9 3 1 16 4 1 2 3 4 5 1 2 4 6 17 5 6 18 19 10 20 7 7 5 1 7 8 8 21 3 22 9 8 5 10 9 6 1 2 23 24 10 11 25 12 "
}
] | 1,641,551,795
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 60
| 233
| 7,372,800
|
n= int(input())
a = list(map(int,input().split()))
a.insert(0,0)
k = [0]*(100001)
a1=[0]*(n+1)
maxK=1
maxA=a[1]
for i in range(1,n+1):
k[a[i]]+=1
if k[a[i]]>maxK: maxK=k[a[i]]
if a[i]>maxA: maxA=a[i]
a1[i]=k[a[i]]
f=1
for i in range(1,maxA):
if k[i]<k[i+1]:
f=0
break
if f:
print(maxK)
print(*a1[1:])
else:
print(-1)
# Fri Jan 07 2022 10:36:34 GMT+0000 (Coordinated Universal Time)
|
Title: Permutations
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
A permutation is a sequence of integers from 1 to *n* of length *n* containing each number exactly once. For example, (1), (4,<=3,<=5,<=1,<=2), (3,<=2,<=1) are permutations, and (1,<=1), (4,<=3,<=1), (2,<=3,<=4) are not.
There are many tasks on permutations. Today you are going to solve one of them. Let’s imagine that somebody took several permutations (perhaps, with a different number of elements), wrote them down consecutively as one array and then shuffled the resulting array. The task is to restore the initial permutations if it is possible.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105). The next line contains the mixed array of *n* integers, divided with a single space. The numbers in the array are from 1 to 105.
Output Specification:
If this array can be split into several permutations so that every element of the array belongs to exactly one permutation, print in the first line the number of permutations. The second line should contain *n* numbers, corresponding to the elements of the given array. If the *i*-th element belongs to the first permutation, the *i*-th number should be 1, if it belongs to the second one, then its number should be 2 and so on. The order of the permutations’ numbering is free.
If several solutions are possible, print any one of them. If there’s no solution, print in the first line <=-<=1.
Demo Input:
['9\n1 2 3 1 2 1 4 2 5\n', '4\n4 3 2 1\n', '4\n1 2 2 3\n']
Demo Output:
['3\n3 1 2 1 2 2 2 3 2\n', '1\n1 1 1 1 ', '-1\n']
Note:
In the first sample test the array is split into three permutations: (2, 1), (3, 2, 1, 4, 5), (1, 2). The first permutation is formed by the second and the fourth elements of the array, the second one — by the third, the fifth, the sixth, the seventh and the ninth elements, the third one — by the first and the eigth elements. Clearly, there are other splitting variants possible.
|
```python
n= int(input())
a = list(map(int,input().split()))
a.insert(0,0)
k = [0]*(100001)
a1=[0]*(n+1)
maxK=1
maxA=a[1]
for i in range(1,n+1):
k[a[i]]+=1
if k[a[i]]>maxK: maxK=k[a[i]]
if a[i]>maxA: maxA=a[i]
a1[i]=k[a[i]]
f=1
for i in range(1,maxA):
if k[i]<k[i+1]:
f=0
break
if f:
print(maxK)
print(*a1[1:])
else:
print(-1)
# Fri Jan 07 2022 10:36:34 GMT+0000 (Coordinated Universal Time)
```
| 3.869767
|
266
|
A
|
Stones on the Table
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table.
The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue.
|
Print a single integer — the answer to the problem.
|
[
"3\nRRG\n",
"5\nRRRRR\n",
"4\nBRBG\n"
] |
[
"1\n",
"4\n",
"0\n"
] |
none
| 500
|
[
{
"input": "3\nRRG",
"output": "1"
},
{
"input": "5\nRRRRR",
"output": "4"
},
{
"input": "4\nBRBG",
"output": "0"
},
{
"input": "1\nB",
"output": "0"
},
{
"input": "2\nBG",
"output": "0"
},
{
"input": "3\nBGB",
"output": "0"
},
{
"input": "4\nRBBR",
"output": "1"
},
{
"input": "5\nRGGBG",
"output": "1"
},
{
"input": "10\nGGBRBRGGRB",
"output": "2"
},
{
"input": "50\nGRBGGRBRGRBGGBBBBBGGGBBBBRBRGBRRBRGBBBRBBRRGBGGGRB",
"output": "18"
},
{
"input": "15\nBRRBRGGBBRRRRGR",
"output": "6"
},
{
"input": "20\nRRGBBRBRGRGBBGGRGRRR",
"output": "6"
},
{
"input": "25\nBBGBGRBGGBRRBGRRBGGBBRBRB",
"output": "6"
},
{
"input": "30\nGRGGGBGGRGBGGRGRBGBGBRRRRRRGRB",
"output": "9"
},
{
"input": "35\nGBBGBRGBBGGRBBGBRRGGRRRRRRRBRBBRRGB",
"output": "14"
},
{
"input": "40\nGBBRRGBGGGRGGGRRRRBRBGGBBGGGBGBBBBBRGGGG",
"output": "20"
},
{
"input": "45\nGGGBBRBBRRGRBBGGBGRBRGGBRBRGBRRGBGRRBGRGRBRRG",
"output": "11"
},
{
"input": "50\nRBGGBGGRBGRBBBGBBGRBBBGGGRBBBGBBBGRGGBGGBRBGBGRRGG",
"output": "17"
},
{
"input": "50\nGGGBBRGGGGGRRGGRBGGRGBBRBRRBGRGBBBGBRBGRGBBGRGGBRB",
"output": "16"
},
{
"input": "50\nGBGRGRRBRRRRRGGBBGBRRRBBBRBBBRRGRBBRGBRBGGRGRBBGGG",
"output": "19"
},
{
"input": "10\nGRRBRBRBGR",
"output": "1"
},
{
"input": "10\nBRBGBGRRBR",
"output": "1"
},
{
"input": "20\nGBGBGGRRRRGRBBGRGRGR",
"output": "5"
},
{
"input": "20\nRRGGRBBGBBRBGRRBRRBG",
"output": "6"
},
{
"input": "30\nBGBRGBBBGRGBBRGBGRBBBRGGRRGRRB",
"output": "8"
},
{
"input": "30\nBBBBGGBRBGBBGBGBGBGGGRGRRGGBBB",
"output": "11"
},
{
"input": "40\nGBRRGRBGBRRGBRGGGBRGBGBRGBBRRGRGGBBGBGBB",
"output": "9"
},
{
"input": "40\nBRGRGGRGGRBBRRRBRBBGGGRRGBGBBGRBBRGBRRGG",
"output": "13"
},
{
"input": "50\nRBGBGGRRGGRGGBGBGRRBGGBGBRRBBGBBGBBBGBBRBBRBRBRGRG",
"output": "13"
},
{
"input": "50\nRBRRGBGRRRBGRRBGRRGRBBRBBRRBRGGBRBRRBGGRBGGBRBRGRB",
"output": "12"
},
{
"input": "2\nBB",
"output": "1"
},
{
"input": "50\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "49"
},
{
"input": "50\nRRRRRRRRGRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "47"
},
{
"input": "50\nRRRRRRRRRRRRGGRRRRRRRRRBRRRRRRRRRRRRRRBBRRRRRRRRRR",
"output": "43"
}
] | 1,698,901,050
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 92
| 0
|
n = int(input())
str = input()
lst = list(str)
lst1 = lst.copy()
count = 0
for i in range (0,len(lst1)-1):
if(lst[i] == lst[i+1]):
count = count+1
print(count)
|
Title: Stones on the Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table.
The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue.
Output Specification:
Print a single integer — the answer to the problem.
Demo Input:
['3\nRRG\n', '5\nRRRRR\n', '4\nBRBG\n']
Demo Output:
['1\n', '4\n', '0\n']
Note:
none
|
```python
n = int(input())
str = input()
lst = list(str)
lst1 = lst.copy()
count = 0
for i in range (0,len(lst1)-1):
if(lst[i] == lst[i+1]):
count = count+1
print(count)
```
| 3
|
|
217
|
A
|
Ice Skating
|
PROGRAMMING
| 1,200
|
[
"brute force",
"dfs and similar",
"dsu",
"graphs"
] | null | null |
Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created.
We assume that Bajtek can only heap up snow drifts at integer coordinates.
|
The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift.
Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct.
|
Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one.
|
[
"2\n2 1\n1 2\n",
"2\n2 1\n4 1\n"
] |
[
"1\n",
"0\n"
] |
none
| 500
|
[
{
"input": "2\n2 1\n1 2",
"output": "1"
},
{
"input": "2\n2 1\n4 1",
"output": "0"
},
{
"input": "24\n171 35\n261 20\n4 206\n501 446\n961 912\n581 748\n946 978\n463 514\n841 889\n341 466\n842 967\n54 102\n235 261\n925 889\n682 672\n623 636\n268 94\n635 710\n474 510\n697 794\n586 663\n182 184\n806 663\n468 459",
"output": "21"
},
{
"input": "17\n660 646\n440 442\n689 618\n441 415\n922 865\n950 972\n312 366\n203 229\n873 860\n219 199\n344 308\n169 176\n961 992\n153 84\n201 230\n987 938\n834 815",
"output": "16"
},
{
"input": "11\n798 845\n722 911\n374 270\n629 537\n748 856\n831 885\n486 641\n751 829\n609 492\n98 27\n654 663",
"output": "10"
},
{
"input": "1\n321 88",
"output": "0"
},
{
"input": "9\n811 859\n656 676\n76 141\n945 951\n497 455\n18 55\n335 294\n267 275\n656 689",
"output": "7"
},
{
"input": "7\n948 946\n130 130\n761 758\n941 938\n971 971\n387 385\n509 510",
"output": "6"
},
{
"input": "6\n535 699\n217 337\n508 780\n180 292\n393 112\n732 888",
"output": "5"
},
{
"input": "14\n25 23\n499 406\n193 266\n823 751\n219 227\n101 138\n978 992\n43 74\n997 932\n237 189\n634 538\n774 740\n842 767\n742 802",
"output": "13"
},
{
"input": "12\n548 506\n151 198\n370 380\n655 694\n654 690\n407 370\n518 497\n819 827\n765 751\n802 771\n741 752\n653 662",
"output": "11"
},
{
"input": "40\n685 711\n433 403\n703 710\n491 485\n616 619\n288 282\n884 871\n367 352\n500 511\n977 982\n51 31\n576 564\n508 519\n755 762\n22 20\n368 353\n232 225\n953 955\n452 436\n311 330\n967 988\n369 364\n791 803\n150 149\n651 661\n118 93\n398 387\n748 766\n852 852\n230 228\n555 545\n515 519\n667 678\n867 862\n134 146\n859 863\n96 99\n486 469\n303 296\n780 786",
"output": "38"
},
{
"input": "3\n175 201\n907 909\n388 360",
"output": "2"
},
{
"input": "7\n312 298\n86 78\n73 97\n619 594\n403 451\n538 528\n71 86",
"output": "6"
},
{
"input": "19\n802 820\n368 248\n758 794\n455 378\n876 888\n771 814\n245 177\n586 555\n844 842\n364 360\n820 856\n731 624\n982 975\n825 856\n122 121\n862 896\n42 4\n792 841\n828 820",
"output": "16"
},
{
"input": "32\n643 877\n842 614\n387 176\n99 338\n894 798\n652 728\n611 648\n622 694\n579 781\n243 46\n322 305\n198 438\n708 579\n246 325\n536 459\n874 593\n120 277\n989 907\n223 110\n35 130\n761 692\n690 661\n518 766\n226 93\n678 597\n725 617\n661 574\n775 496\n56 416\n14 189\n358 359\n898 901",
"output": "31"
},
{
"input": "32\n325 327\n20 22\n72 74\n935 933\n664 663\n726 729\n785 784\n170 171\n315 314\n577 580\n984 987\n313 317\n434 435\n962 961\n55 54\n46 44\n743 742\n434 433\n617 612\n332 332\n883 886\n940 936\n793 792\n645 644\n611 607\n418 418\n465 465\n219 218\n167 164\n56 54\n403 405\n210 210",
"output": "29"
},
{
"input": "32\n652 712\n260 241\n27 154\n188 16\n521 351\n518 356\n452 540\n790 827\n339 396\n336 551\n897 930\n828 627\n27 168\n180 113\n134 67\n794 671\n812 711\n100 241\n686 813\n138 289\n384 506\n884 932\n913 959\n470 508\n730 734\n373 478\n788 862\n392 426\n148 68\n113 49\n713 852\n924 894",
"output": "29"
},
{
"input": "14\n685 808\n542 677\n712 747\n832 852\n187 410\n399 338\n626 556\n530 635\n267 145\n215 209\n559 684\n944 949\n753 596\n601 823",
"output": "13"
},
{
"input": "5\n175 158\n16 2\n397 381\n668 686\n957 945",
"output": "4"
},
{
"input": "5\n312 284\n490 509\n730 747\n504 497\n782 793",
"output": "4"
},
{
"input": "2\n802 903\n476 348",
"output": "1"
},
{
"input": "4\n325 343\n425 442\n785 798\n275 270",
"output": "3"
},
{
"input": "28\n462 483\n411 401\n118 94\n111 127\n5 6\n70 52\n893 910\n73 63\n818 818\n182 201\n642 633\n900 886\n893 886\n684 700\n157 173\n953 953\n671 660\n224 225\n832 801\n152 157\n601 585\n115 101\n739 722\n611 606\n659 642\n461 469\n702 689\n649 653",
"output": "25"
},
{
"input": "36\n952 981\n885 900\n803 790\n107 129\n670 654\n143 132\n66 58\n813 819\n849 837\n165 198\n247 228\n15 39\n619 618\n105 138\n868 855\n965 957\n293 298\n613 599\n227 212\n745 754\n723 704\n877 858\n503 487\n678 697\n592 595\n155 135\n962 982\n93 89\n660 673\n225 212\n967 987\n690 680\n804 813\n489 518\n240 221\n111 124",
"output": "34"
},
{
"input": "30\n89 3\n167 156\n784 849\n943 937\n144 95\n24 159\n80 120\n657 683\n585 596\n43 147\n909 964\n131 84\n345 389\n333 321\n91 126\n274 325\n859 723\n866 922\n622 595\n690 752\n902 944\n127 170\n426 383\n905 925\n172 284\n793 810\n414 510\n890 884\n123 24\n267 255",
"output": "29"
},
{
"input": "5\n664 666\n951 941\n739 742\n844 842\n2 2",
"output": "4"
},
{
"input": "3\n939 867\n411 427\n757 708",
"output": "2"
},
{
"input": "36\n429 424\n885 972\n442 386\n512 511\n751 759\n4 115\n461 497\n496 408\n8 23\n542 562\n296 331\n448 492\n412 395\n109 166\n622 640\n379 355\n251 262\n564 586\n66 115\n275 291\n666 611\n629 534\n510 567\n635 666\n738 803\n420 369\n92 17\n101 144\n141 92\n258 258\n184 235\n492 456\n311 210\n394 357\n531 512\n634 636",
"output": "34"
},
{
"input": "29\n462 519\n871 825\n127 335\n156 93\n576 612\n885 830\n634 779\n340 105\n744 795\n716 474\n93 139\n563 805\n137 276\n177 101\n333 14\n391 437\n873 588\n817 518\n460 597\n572 670\n140 303\n392 441\n273 120\n862 578\n670 639\n410 161\n544 577\n193 116\n252 195",
"output": "28"
},
{
"input": "23\n952 907\n345 356\n812 807\n344 328\n242 268\n254 280\n1000 990\n80 78\n424 396\n595 608\n755 813\n383 380\n55 56\n598 633\n203 211\n508 476\n600 593\n206 192\n855 882\n517 462\n967 994\n642 657\n493 488",
"output": "22"
},
{
"input": "10\n579 816\n806 590\n830 787\n120 278\n677 800\n16 67\n188 251\n559 560\n87 67\n104 235",
"output": "8"
},
{
"input": "23\n420 424\n280 303\n515 511\n956 948\n799 803\n441 455\n362 369\n299 289\n823 813\n982 967\n876 878\n185 157\n529 551\n964 989\n655 656\n1 21\n114 112\n45 56\n935 937\n1000 997\n934 942\n360 366\n648 621",
"output": "22"
},
{
"input": "23\n102 84\n562 608\n200 127\n952 999\n465 496\n322 367\n728 690\n143 147\n855 867\n861 866\n26 59\n300 273\n255 351\n192 246\n70 111\n365 277\n32 104\n298 319\n330 354\n241 141\n56 125\n315 298\n412 461",
"output": "22"
},
{
"input": "7\n429 506\n346 307\n99 171\n853 916\n322 263\n115 157\n906 924",
"output": "6"
},
{
"input": "3\n1 1\n2 1\n2 2",
"output": "0"
},
{
"input": "4\n1 1\n1 2\n2 1\n2 2",
"output": "0"
},
{
"input": "5\n1 1\n1 2\n2 2\n3 1\n3 3",
"output": "0"
},
{
"input": "6\n1 1\n1 2\n2 2\n3 1\n3 2\n3 3",
"output": "0"
},
{
"input": "20\n1 1\n2 2\n3 3\n3 9\n4 4\n5 2\n5 5\n5 7\n5 8\n6 2\n6 6\n6 9\n7 7\n8 8\n9 4\n9 7\n9 9\n10 2\n10 9\n10 10",
"output": "1"
},
{
"input": "21\n1 1\n1 9\n2 1\n2 2\n2 5\n2 6\n2 9\n3 3\n3 8\n4 1\n4 4\n5 5\n5 8\n6 6\n7 7\n8 8\n9 9\n10 4\n10 10\n11 5\n11 11",
"output": "1"
},
{
"input": "22\n1 1\n1 3\n1 4\n1 8\n1 9\n1 11\n2 2\n3 3\n4 4\n4 5\n5 5\n6 6\n6 8\n7 7\n8 3\n8 4\n8 8\n9 9\n10 10\n11 4\n11 9\n11 11",
"output": "3"
},
{
"input": "50\n1 1\n2 2\n2 9\n3 3\n4 4\n4 9\n4 16\n4 24\n5 5\n6 6\n7 7\n8 8\n8 9\n8 20\n9 9\n10 10\n11 11\n12 12\n13 13\n14 7\n14 14\n14 16\n14 25\n15 4\n15 6\n15 15\n15 22\n16 6\n16 16\n17 17\n18 18\n19 6\n19 19\n20 20\n21 21\n22 6\n22 22\n23 23\n24 6\n24 7\n24 8\n24 9\n24 24\n25 1\n25 3\n25 5\n25 7\n25 23\n25 24\n25 25",
"output": "7"
},
{
"input": "55\n1 1\n1 14\n2 2\n2 19\n3 1\n3 3\n3 8\n3 14\n3 23\n4 1\n4 4\n5 5\n5 8\n5 15\n6 2\n6 3\n6 4\n6 6\n7 7\n8 8\n8 21\n9 9\n10 1\n10 10\n11 9\n11 11\n12 12\n13 13\n14 14\n15 15\n15 24\n16 5\n16 16\n17 5\n17 10\n17 17\n17 18\n17 22\n17 27\n18 18\n19 19\n20 20\n21 20\n21 21\n22 22\n23 23\n24 14\n24 24\n25 25\n26 8\n26 11\n26 26\n27 3\n27 27\n28 28",
"output": "5"
},
{
"input": "3\n1 2\n2 1\n2 2",
"output": "0"
},
{
"input": "6\n4 4\n3 4\n5 4\n4 5\n4 3\n3 1",
"output": "0"
},
{
"input": "4\n1 1\n1 2\n2 1\n2 2",
"output": "0"
},
{
"input": "3\n1 1\n2 2\n1 2",
"output": "0"
},
{
"input": "8\n1 3\n1 1\n4 1\n2 2\n2 5\n5 9\n5 1\n5 4",
"output": "1"
},
{
"input": "10\n1 1\n1 2\n1 3\n1 4\n5 5\n6 6\n7 7\n8 8\n9 9\n100 100",
"output": "6"
},
{
"input": "7\n1 1\n2 2\n3 3\n4 4\n1 2\n2 3\n3 4",
"output": "0"
},
{
"input": "6\n1 1\n2 1\n2 2\n2 4\n4 3\n2 3",
"output": "0"
},
{
"input": "4\n3 1\n2 1\n2 2\n1 2",
"output": "0"
},
{
"input": "6\n1 1\n2 2\n2 1\n2 4\n4 3\n2 3",
"output": "0"
},
{
"input": "3\n1 2\n1 3\n1 4",
"output": "0"
},
{
"input": "4\n1 1\n2 2\n1 2\n2 1",
"output": "0"
},
{
"input": "4\n1 3\n2 1\n3 2\n3 1",
"output": "1"
},
{
"input": "7\n1 1\n1 2\n2 2\n3 3\n3 4\n4 4\n1 4",
"output": "0"
},
{
"input": "21\n12 12\n13 12\n12 11\n13 13\n10 10\n11 10\n11 11\n501 500\n501 501\n503 502\n500 500\n503 503\n502 501\n502 502\n700 700\n702 702\n703 702\n701 701\n702 701\n703 703\n701 700",
"output": "2"
},
{
"input": "6\n1 11\n6 8\n11 10\n1 10\n11 11\n6 9",
"output": "1"
},
{
"input": "4\n1 1\n2 2\n3 2\n3 1",
"output": "0"
},
{
"input": "3\n1 2\n3 4\n3 2",
"output": "0"
},
{
"input": "3\n1 1\n1 2\n2 2",
"output": "0"
},
{
"input": "4\n5 5\n5 4\n6 3\n6 4",
"output": "0"
},
{
"input": "3\n1 1\n2 2\n2 1",
"output": "0"
}
] | 1,495,639,935
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 76
| 248
| 5,324,800
|
n=int(input())
M=[[0 for i in range(1001)] for i in range(1001)]
ans=n-1
T=[]
for i in range(n) :
a,b=map(int,input().split())
M[a][b]=1
T.append([a,b])
for i in range(n) :
r=T[i]
if M[r[0]][r[1]]!=-1 :
M[r[0]][r[1]]=-1
l=[[r[0],r[1]]]
while len(l)>0 :
g=l[0]
del(l[0])
for j in range(n) :
if T[j][0]==g[0] and M[T[j][0]][T[j][1]]!=-1 or T[j][1]==g[1] and M[T[j][0]][T[j][1]]!=-1 :
l.append([T[j][0],T[j][1]])
M[T[j][0]][T[j][1]]=-1
ans=ans-1
print(ans)
|
Title: Ice Skating
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created.
We assume that Bajtek can only heap up snow drifts at integer coordinates.
Input Specification:
The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift.
Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct.
Output Specification:
Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one.
Demo Input:
['2\n2 1\n1 2\n', '2\n2 1\n4 1\n']
Demo Output:
['1\n', '0\n']
Note:
none
|
```python
n=int(input())
M=[[0 for i in range(1001)] for i in range(1001)]
ans=n-1
T=[]
for i in range(n) :
a,b=map(int,input().split())
M[a][b]=1
T.append([a,b])
for i in range(n) :
r=T[i]
if M[r[0]][r[1]]!=-1 :
M[r[0]][r[1]]=-1
l=[[r[0],r[1]]]
while len(l)>0 :
g=l[0]
del(l[0])
for j in range(n) :
if T[j][0]==g[0] and M[T[j][0]][T[j][1]]!=-1 or T[j][1]==g[1] and M[T[j][0]][T[j][1]]!=-1 :
l.append([T[j][0],T[j][1]])
M[T[j][0]][T[j][1]]=-1
ans=ans-1
print(ans)
```
| 3
|
|
71
|
A
|
Way Too Long Words
|
PROGRAMMING
| 800
|
[
"strings"
] |
A. Way Too Long Words
|
1
|
256
|
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
|
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
|
[
"4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n"
] |
[
"word\nl10n\ni18n\np43s\n"
] |
none
| 500
|
[
{
"input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis",
"output": "word\nl10n\ni18n\np43s"
},
{
"input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm",
"output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m"
},
{
"input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd",
"output": "n20n\nj27b\nk15d"
},
{
"input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt",
"output": "t41t"
},
{
"input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings",
"output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings"
},
{
"input": "1\na",
"output": "a"
},
{
"input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz",
"output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz"
},
{
"input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij",
"output": "a98j"
},
{
"input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco",
"output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco"
},
{
"input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt",
"output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t"
},
{
"input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr",
"output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr"
}
] | 1,673,189,863
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 46
| 0
|
"""
### Task 4A - Watermelon ###
weight = int(input())
if weight %2 ==0 and 4<= weight<=100:
print('YES')
else:
print('NO')
"""
### Task 71A Way too long words ###
i_words = int(input())
for i in range(i_words):
word = input()
if len(word)>10:
print(f"{word[0]}{len(word[1:len(word)-1])}{word[len(word)-1]}")
else:
print(word)
|
Title: Way Too Long Words
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Output Specification:
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
Demo Input:
['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n']
Demo Output:
['word\nl10n\ni18n\np43s\n']
Note:
none
|
```python
"""
### Task 4A - Watermelon ###
weight = int(input())
if weight %2 ==0 and 4<= weight<=100:
print('YES')
else:
print('NO')
"""
### Task 71A Way too long words ###
i_words = int(input())
for i in range(i_words):
word = input()
if len(word)>10:
print(f"{word[0]}{len(word[1:len(word)-1])}{word[len(word)-1]}")
else:
print(word)
```
| 3.977
|
932
|
A
|
Palindromic Supersequence
|
PROGRAMMING
| 800
|
[
"constructive algorithms"
] | null | null |
You are given a string *A*. Find a string *B*, where *B* is a palindrome and *A* is a subsequence of *B*.
A subsequence of a string is a string that can be derived from it by deleting some (not necessarily consecutive) characters without changing the order of the remaining characters. For example, "cotst" is a subsequence of "contest".
A palindrome is a string that reads the same forward or backward.
The length of string *B* should be at most 104. It is guaranteed that there always exists such string.
You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104.
|
First line contains a string *A* (1<=≤<=|*A*|<=≤<=103) consisting of lowercase Latin letters, where |*A*| is a length of *A*.
|
Output single line containing *B* consisting of only lowercase Latin letters. You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104. If there are many possible *B*, print any of them.
|
[
"aba\n",
"ab\n"
] |
[
"aba",
"aabaa"
] |
In the first example, "aba" is a subsequence of "aba" which is a palindrome.
In the second example, "ab" is a subsequence of "aabaa" which is a palindrome.
| 500
|
[
{
"input": "aba",
"output": "abaaba"
},
{
"input": "ab",
"output": "abba"
},
{
"input": "krnyoixirslfszfqivgkaflgkctvbvksipwomqxlyqxhlbceuhbjbfnhofcgpgwdseffycthmlpcqejgskwjkbkbbmifnurnwyhevsoqzmtvzgfiqajfrgyuzxnrtxectcnlyoisbglpdbjbslxlpoymrcxmdtqhcnlvtqdwftuzgbdxsyscwbrguostbelnvtaqdmkmihmoxqtqlxvlsssisvqvvzotoyqryuyqwoknnqcqggysrqpkrccvyhxsjmhoqoyocwcriplarjoyiqrmmpmueqbsbljddwrumauczfziodpudheexalbwpiypmdjlmwtgdrzhpxneofhqzjdmurgvmrwdotuwyknlrbvuvtnhiouvqitgyfgfieonbaapyhwpcrmehxcpkijzfiayfvoxkpa",
"output": "krnyoixirslfszfqivgkaflgkctvbvksipwomqxlyqxhlbceuhbjbfnhofcgpgwdseffycthmlpcqejgskwjkbkbbmifnurnwyhevsoqzmtvzgfiqajfrgyuzxnrtxectcnlyoisbglpdbjbslxlpoymrcxmdtqhcnlvtqdwftuzgbdxsyscwbrguostbelnvtaqdmkmihmoxqtqlxvlsssisvqvvzotoyqryuyqwoknnqcqggysrqpkrccvyhxsjmhoqoyocwcriplarjoyiqrmmpmueqbsbljddwrumauczfziodpudheexalbwpiypmdjlmwtgdrzhpxneofhqzjdmurgvmrwdotuwyknlrbvuvtnhiouvqitgyfgfieonbaapyhwpcrmehxcpkijzfiayfvoxkpaapkxovfyaifzjikpcxhemrcpwhypaabnoeifgfygtiqvuoihntvuvbrlnkywutodwrmvgrumdjzqhfoenxphzrdgtwmljdm..."
},
{
"input": "mgrfmzxqpejcixxppqgvuawutgrmezjkteofjbnrvzzkvjtacfxjjokisavsgrslryxfqgrmdsqwptajbqzvethuljbdatxghfzqrwvfgakwmoawlzqjypmhllbbuuhbpriqsnibywlgjlxowyzagrfnqafvcqwktkcjwejevzbnxhsfmwojshcdypnvbuhhuzqmgovmvgwiizatoxgblyudipahfbkewmuneoqhjmbpdtwnznblwvtjrniwlbyblhppndspojrouffazpoxtqdfpjuhitvijrohavpqatofxwmksvjcvhdecxwwmosqiczjpkfafqlboxosnjgzgdraehzdltthemeusxhiiimrdrugabnxwsygsktkcslhjebfexucsyvlwrptebkjhefsvfrmcqqdlanbetrgzwylizmrystvpgrkhlicfadco",
"output": "mgrfmzxqpejcixxppqgvuawutgrmezjkteofjbnrvzzkvjtacfxjjokisavsgrslryxfqgrmdsqwptajbqzvethuljbdatxghfzqrwvfgakwmoawlzqjypmhllbbuuhbpriqsnibywlgjlxowyzagrfnqafvcqwktkcjwejevzbnxhsfmwojshcdypnvbuhhuzqmgovmvgwiizatoxgblyudipahfbkewmuneoqhjmbpdtwnznblwvtjrniwlbyblhppndspojrouffazpoxtqdfpjuhitvijrohavpqatofxwmksvjcvhdecxwwmosqiczjpkfafqlboxosnjgzgdraehzdltthemeusxhiiimrdrugabnxwsygsktkcslhjebfexucsyvlwrptebkjhefsvfrmcqqdlanbetrgzwylizmrystvpgrkhlicfadcoocdafcilhkrgpvtsyrmzilywzgrtebnaldqqcmrfvsfehjkbetprwlvyscuxef..."
},
{
"input": "hdmasfcjuigrwjchmjslmpynewnzpphmudzcbxzdexjuhktdtcoibzvevsmwaxakrtdfoivkvoooypyemiidadquqepxwqkesdnakxkbzrcjkgvwwxtqxvfpxcwitljyehldgsjytmekimkkndjvnzqtjykiymkmdzpwakxdtkzcqcatlevppgfhyykgmipuodjrnfjzhcmjdbzvhywprbwdcfxiffpzbjbmbyijkqnosslqbfvvicxvoeuzruraetglthgourzhfpnubzvblfzmmbgepjjyshchthulxar",
"output": "hdmasfcjuigrwjchmjslmpynewnzpphmudzcbxzdexjuhktdtcoibzvevsmwaxakrtdfoivkvoooypyemiidadquqepxwqkesdnakxkbzrcjkgvwwxtqxvfpxcwitljyehldgsjytmekimkkndjvnzqtjykiymkmdzpwakxdtkzcqcatlevppgfhyykgmipuodjrnfjzhcmjdbzvhywprbwdcfxiffpzbjbmbyijkqnosslqbfvvicxvoeuzruraetglthgourzhfpnubzvblfzmmbgepjjyshchthulxarraxluhthchsyjjpegbmmzflbvzbunpfhzruoghtlgtearurzueovxcivvfbqlssonqkjiybmbjbzpffixfcdwbrpwyhvzbdjmchzjfnrjdoupimgkyyhfgppveltacqczktdxkawpzdmkmyikyjtqznvjdnkkmikemtyjsgdlheyjltiwcxpfvxqtxwwvgkjcrzbkxkandsekqwxpequ..."
},
{
"input": "fggbyzobbmxtwdajawqdywnppflkkmtxzjvxopqvliwdwhzepcuiwelhbuotlkvesexnwkytonfrpqcxzzqzdvsmbsjcxxeugavekozfjlolrtqgwzqxsfgrnvrgfrqpixhsskbpzghndesvwptpvvkasfalzsetopervpwzmkgpcexqnvtnoulprwnowmsorscecvvvrjfwumcjqyrounqsgdruxttvtmrkivtxauhosokdiahsyrftzsgvgyveqwkzhqstbgywrvmsgfcfyuxpphvmyydzpohgdicoxbtjnsbyhoidnkrialowvlvmjpxcfeygqzphmbcjkupojsmmuqlydixbaluwezvnfasjfxilbyllwyipsmovdzosuwotcxerzcfuvxprtziseshjfcosalyqglpotxvxaanpocypsiyazsejjoximnbvqucftuvdksaxutvjeunodbipsumlaymjnzljurefjg",
"output": "fggbyzobbmxtwdajawqdywnppflkkmtxzjvxopqvliwdwhzepcuiwelhbuotlkvesexnwkytonfrpqcxzzqzdvsmbsjcxxeugavekozfjlolrtqgwzqxsfgrnvrgfrqpixhsskbpzghndesvwptpvvkasfalzsetopervpwzmkgpcexqnvtnoulprwnowmsorscecvvvrjfwumcjqyrounqsgdruxttvtmrkivtxauhosokdiahsyrftzsgvgyveqwkzhqstbgywrvmsgfcfyuxpphvmyydzpohgdicoxbtjnsbyhoidnkrialowvlvmjpxcfeygqzphmbcjkupojsmmuqlydixbaluwezvnfasjfxilbyllwyipsmovdzosuwotcxerzcfuvxprtziseshjfcosalyqglpotxvxaanpocypsiyazsejjoximnbvqucftuvdksaxutvjeunodbipsumlaymjnzljurefjggjferujlznjmyalmuspib..."
},
{
"input": "qyyxqkbxsvfnjzttdqmpzinbdgayllxpfrpopwciejjjzadguurnnhvixgueukugkkjyghxknedojvmdrskswiotgatsajowionuiumuhyggjuoympuxyfahwftwufvocdguxmxabbxnfviscxtilzzauizsgugwcqtbqgoosefhkumhodwpgolfdkbuiwlzjydonwbgyzzrjwxnceltqgqelrrljmzdbftmaogiuosaqhngmdzxzlmyrwefzhqawmkdckfnyyjgdjgadtfjvrkdwysqofcgyqrnyzutycvspzbjmmesobvhshtqlrytztyieknnkporrbcmlopgtknlmsstzkigreqwgsvagmvbrvwypoxttmzzsgm",
"output": "qyyxqkbxsvfnjzttdqmpzinbdgayllxpfrpopwciejjjzadguurnnhvixgueukugkkjyghxknedojvmdrskswiotgatsajowionuiumuhyggjuoympuxyfahwftwufvocdguxmxabbxnfviscxtilzzauizsgugwcqtbqgoosefhkumhodwpgolfdkbuiwlzjydonwbgyzzrjwxnceltqgqelrrljmzdbftmaogiuosaqhngmdzxzlmyrwefzhqawmkdckfnyyjgdjgadtfjvrkdwysqofcgyqrnyzutycvspzbjmmesobvhshtqlrytztyieknnkporrbcmlopgtknlmsstzkigreqwgsvagmvbrvwypoxttmzzsgmmgszzmttxopywvrbvmgavsgwqergikztssmlnktgpolmcbrropknnkeiytztyrlqthshvbosemmjbzpsvcytuzynrqygcfoqsywdkrvjftdagjdgjyynfkcdkmwaqhzfewry..."
},
{
"input": "scvlhflaqvniyiyofonowwcuqajuwscdrzhbvasymvqfnthzvtjcfuaftrbjghhvslcohwpxkggrbtatjtgehuqtorwinwvrtdldyoeeozxwippuahgkuehvsmyqtodqvlufqqmqautaqirvwzvtodzxtgxiinubhrbeoiybidutrqamsdnasctxatzkvkjkrmavdravnsxyngjlugwftmhmcvvxdbfndurrbmcpuoigjpssqcortmqoqttrabhoqvopjkxvpbqdqsilvlplhgqazauyvnodsxtwnomlinjpozwhrgrkqwmlwcwdkxjxjftexiavwrejvdjcfptterblxysjcheesyqsbgdrzjxbfjqgjgmvccqcyj",
"output": "scvlhflaqvniyiyofonowwcuqajuwscdrzhbvasymvqfnthzvtjcfuaftrbjghhvslcohwpxkggrbtatjtgehuqtorwinwvrtdldyoeeozxwippuahgkuehvsmyqtodqvlufqqmqautaqirvwzvtodzxtgxiinubhrbeoiybidutrqamsdnasctxatzkvkjkrmavdravnsxyngjlugwftmhmcvvxdbfndurrbmcpuoigjpssqcortmqoqttrabhoqvopjkxvpbqdqsilvlplhgqazauyvnodsxtwnomlinjpozwhrgrkqwmlwcwdkxjxjftexiavwrejvdjcfptterblxysjcheesyqsbgdrzjxbfjqgjgmvccqcyjjycqccvmgjgqjfbxjzrdgbsqyseehcjsyxlbrettpfcjdvjerwvaixetfjxjxkdwcwlmwqkrgrhwzopjnilmonwtxsdonvyuazaqghlplvlisqdqbpvxkjpovqohbarttqoqm..."
},
{
"input": "oohkqxxtvxzmvfjjxyjwlbqmeqwwlienzkdbhswgfbkhfygltsucdijozwaiewpixapyazfztksjeoqjugjfhdbqzuezbuajfvvffkwprroyivfoocvslejffgxuiofisenroxoeixmdbzonmreikpflciwsbafrdqfvdfojgoziiibqhwwsvhnzmptgirqqulkgmyzrfekzqqujmdumxkudsgexisupedisgmdgebvlvrpyfrbrqjknrxyzfpwmsxjxismgd",
"output": "oohkqxxtvxzmvfjjxyjwlbqmeqwwlienzkdbhswgfbkhfygltsucdijozwaiewpixapyazfztksjeoqjugjfhdbqzuezbuajfvvffkwprroyivfoocvslejffgxuiofisenroxoeixmdbzonmreikpflciwsbafrdqfvdfojgoziiibqhwwsvhnzmptgirqqulkgmyzrfekzqqujmdumxkudsgexisupedisgmdgebvlvrpyfrbrqjknrxyzfpwmsxjxismgddgmsixjxsmwpfzyxrnkjqrbrfyprvlvbegdmgsidepusixegsdukxmudmjuqqzkefrzymgkluqqrigtpmznhvswwhqbiiizogjofdvfqdrfabswiclfpkiermnozbdmxieoxornesifoiuxgffjelsvcoofviyorrpwkffvvfjaubzeuzqbdhfjgujqoejsktzfzaypaxipweiawzojidcustlgyfhkbfgwshbdkzneilwwqemqblw..."
},
{
"input": "gilhoixzjgidfanqrmekjelnvicpuujlpxittgadgrhqallnkjlemwazntwfywjnrxdkgrnczlwzjyeyfktduzdjnivcldjjarfzmmdbyytvipbbnjqolfnlqjpidotxxfobgtgpvjmpddcyddwdcjsxxumuoyznhpvpqccgqnuouzojntanfwctthcgynrukcvshsuuqrxfdvqqggaatwytikkitywtaaggqqvdfxrquushsvckurnygchttcwfnatnjozuounqgccqpvphnzyoumuxxsjcdwddycddpmjvpgtgbofxxtodipjqlnfloqjnbbpivtyybdmmzfrajjdlcvinjdzudtkfyeyjzwlzcnrgkdxrnjwyfwtnzawmeljknllaqhrgdagttixpljuupcivnlejkemrqnafdigjzxiohlig",
"output": "gilhoixzjgidfanqrmekjelnvicpuujlpxittgadgrhqallnkjlemwazntwfywjnrxdkgrnczlwzjyeyfktduzdjnivcldjjarfzmmdbyytvipbbnjqolfnlqjpidotxxfobgtgpvjmpddcyddwdcjsxxumuoyznhpvpqccgqnuouzojntanfwctthcgynrukcvshsuuqrxfdvqqggaatwytikkitywtaaggqqvdfxrquushsvckurnygchttcwfnatnjozuounqgccqpvphnzyoumuxxsjcdwddycddpmjvpgtgbofxxtodipjqlnfloqjnbbpivtyybdmmzfrajjdlcvinjdzudtkfyeyjzwlzcnrgkdxrnjwyfwtnzawmeljknllaqhrgdagttixpljuupcivnlejkemrqnafdigjzxiohliggilhoixzjgidfanqrmekjelnvicpuujlpxittgadgrhqallnkjlemwazntwfywjnrxdkgrnczlw..."
},
{
"input": "abcab",
"output": "abcabbacba"
},
{
"input": "baaaaaaa",
"output": "baaaaaaaaaaaaaab"
},
{
"input": "baaaaaa",
"output": "baaaaaaaaaaaab"
},
{
"input": "baaaaaaaaa",
"output": "baaaaaaaaaaaaaaaaaab"
},
{
"input": "baaaaaaaa",
"output": "baaaaaaaaaaaaaaaab"
}
] | 1,622,892,071
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 48
| 170
| 0
|
class SuperPolindrom:
def __init__(self,str):
self.__str=str
def IsPolindrom(self):
return self.__str==self.__str[::-1]
def __str__(self):
return self.__str if self.IsPolindrom() else "{0}{1}{2}".format(self.__str,self.__str[-2:0:-1],self.__str[0])
print(SuperPolindrom(input()))
|
Title: Palindromic Supersequence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a string *A*. Find a string *B*, where *B* is a palindrome and *A* is a subsequence of *B*.
A subsequence of a string is a string that can be derived from it by deleting some (not necessarily consecutive) characters without changing the order of the remaining characters. For example, "cotst" is a subsequence of "contest".
A palindrome is a string that reads the same forward or backward.
The length of string *B* should be at most 104. It is guaranteed that there always exists such string.
You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104.
Input Specification:
First line contains a string *A* (1<=≤<=|*A*|<=≤<=103) consisting of lowercase Latin letters, where |*A*| is a length of *A*.
Output Specification:
Output single line containing *B* consisting of only lowercase Latin letters. You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104. If there are many possible *B*, print any of them.
Demo Input:
['aba\n', 'ab\n']
Demo Output:
['aba', 'aabaa']
Note:
In the first example, "aba" is a subsequence of "aba" which is a palindrome.
In the second example, "ab" is a subsequence of "aabaa" which is a palindrome.
|
```python
class SuperPolindrom:
def __init__(self,str):
self.__str=str
def IsPolindrom(self):
return self.__str==self.__str[::-1]
def __str__(self):
return self.__str if self.IsPolindrom() else "{0}{1}{2}".format(self.__str,self.__str[-2:0:-1],self.__str[0])
print(SuperPolindrom(input()))
```
| 3
|
|
445
|
B
|
DZY Loves Chemistry
|
PROGRAMMING
| 1,400
|
[
"dfs and similar",
"dsu",
"greedy"
] | null | null |
DZY loves chemistry, and he enjoys mixing chemicals.
DZY has *n* chemicals, and *m* pairs of them will react. He wants to pour these chemicals into a test tube, and he needs to pour them in one by one, in any order.
Let's consider the danger of a test tube. Danger of an empty test tube is 1. And every time when DZY pours a chemical, if there are already one or more chemicals in the test tube that can react with it, the danger of the test tube will be multiplied by 2. Otherwise the danger remains as it is.
Find the maximum possible danger after pouring all the chemicals one by one in optimal order.
|
The first line contains two space-separated integers *n* and *m* .
Each of the next *m* lines contains two space-separated integers *x**i* and *y**i* (1<=≤<=*x**i*<=<<=*y**i*<=≤<=*n*). These integers mean that the chemical *x**i* will react with the chemical *y**i*. Each pair of chemicals will appear at most once in the input.
Consider all the chemicals numbered from 1 to *n* in some order.
|
Print a single integer — the maximum possible danger.
|
[
"1 0\n",
"2 1\n1 2\n",
"3 2\n1 2\n2 3\n"
] |
[
"1\n",
"2\n",
"4\n"
] |
In the first sample, there's only one way to pour, and the danger won't increase.
In the second sample, no matter we pour the 1st chemical first, or pour the 2nd chemical first, the answer is always 2.
In the third sample, there are four ways to achieve the maximum possible danger: 2-1-3, 2-3-1, 1-2-3 and 3-2-1 (that is the numbers of the chemicals in order of pouring).
| 1,000
|
[
{
"input": "1 0",
"output": "1"
},
{
"input": "2 1\n1 2",
"output": "2"
},
{
"input": "3 2\n1 2\n2 3",
"output": "4"
},
{
"input": "10 10\n1 8\n4 10\n4 6\n5 10\n2 3\n1 7\n3 4\n3 6\n6 9\n3 7",
"output": "512"
},
{
"input": "20 20\n6 8\n13 20\n7 13\n6 17\n5 15\n1 12\n2 15\n5 17\n5 14\n6 14\n12 20\n7 20\n1 6\n1 7\n2 19\n14 17\n1 10\n11 15\n9 18\n2 12",
"output": "32768"
},
{
"input": "30 30\n7 28\n16 26\n14 24\n16 18\n20 29\n4 28\n19 21\n8 26\n1 25\n14 22\n13 23\n4 15\n15 16\n2 19\n29 30\n12 20\n3 4\n3 26\n3 11\n22 27\n5 16\n2 24\n2 18\n7 16\n17 21\n17 25\n8 15\n23 27\n12 21\n5 30",
"output": "67108864"
},
{
"input": "40 40\n28 33\n15 21\n12 29\n14 31\n2 26\n3 12\n25 34\n6 30\n6 25\n5 28\n9 17\n23 29\n30 36\n3 21\n35 37\n7 25\n29 39\n15 19\n12 35\n24 34\n15 25\n19 33\n26 31\n7 29\n1 40\n11 27\n6 9\n6 27\n36 39\n10 14\n6 16\n23 25\n2 38\n3 24\n30 31\n29 30\n4 12\n11 13\n14 40\n22 39",
"output": "34359738368"
},
{
"input": "50 50\n16 21\n23 47\n23 30\n2 12\n23 41\n3 16\n14 20\n4 49\n2 47\n19 29\n13 42\n5 8\n24 38\n13 32\n34 37\n38 46\n3 20\n27 50\n7 42\n33 45\n2 48\n41 47\n9 48\n15 26\n27 37\n32 34\n17 24\n1 39\n27 30\n10 33\n38 47\n32 33\n14 39\n35 50\n2 19\n3 12\n27 34\n18 25\n12 23\n31 44\n5 35\n28 45\n38 39\n13 44\n34 38\n16 46\n5 15\n26 30\n47 49\n2 10",
"output": "4398046511104"
},
{
"input": "50 0",
"output": "1"
},
{
"input": "50 7\n16 32\n31 34\n4 16\n4 39\n1 50\n43 49\n1 33",
"output": "128"
},
{
"input": "7 20\n2 3\n3 6\n1 6\n1 2\n3 5\n1 7\n4 5\n4 7\n1 3\n2 6\n2 7\n4 6\n3 4\n1 4\n3 7\n1 5\n2 5\n5 6\n5 7\n2 4",
"output": "64"
},
{
"input": "5 4\n1 2\n2 3\n3 4\n4 5",
"output": "16"
},
{
"input": "10 7\n1 2\n2 3\n1 5\n2 7\n7 8\n1 9\n9 10",
"output": "128"
},
{
"input": "20 15\n1 3\n3 4\n3 5\n4 6\n1 7\n1 8\n1 9\n7 11\n8 12\n5 13\n3 16\n1 17\n3 18\n1 19\n17 20",
"output": "32768"
},
{
"input": "30 24\n2 3\n3 4\n1 5\n4 6\n6 7\n1 8\n1 9\n4 10\n9 11\n5 12\n6 13\n10 14\n14 15\n12 16\n14 17\n2 18\n8 19\n3 20\n10 21\n11 24\n3 25\n1 26\n7 27\n4 29",
"output": "16777216"
},
{
"input": "40 28\n1 2\n2 4\n3 5\n1 7\n1 8\n7 9\n6 10\n7 11\n2 12\n9 13\n11 15\n12 16\n1 18\n10 19\n7 21\n7 23\n20 25\n24 27\n14 28\n9 29\n23 30\n27 31\n11 34\n21 35\n32 36\n23 38\n7 39\n20 40",
"output": "268435456"
},
{
"input": "50 41\n1 2\n1 3\n2 4\n1 5\n2 7\n4 8\n7 9\n2 11\n10 13\n11 14\n12 15\n14 16\n4 19\n7 20\n14 21\n8 23\n16 24\n16 25\n16 26\n19 27\n2 28\n3 29\n21 30\n12 31\n20 32\n23 33\n30 34\n6 35\n34 36\n34 37\n33 38\n34 40\n30 41\n3 42\n39 43\n5 44\n8 45\n40 46\n20 47\n31 49\n34 50",
"output": "2199023255552"
},
{
"input": "50 39\n1 2\n1 4\n5 6\n4 7\n5 8\n7 9\n9 10\n10 11\n2 12\n8 14\n11 15\n11 17\n3 18\n13 19\n17 20\n7 21\n6 22\n22 23\n14 24\n22 25\n23 26\n26 27\n27 28\n15 29\n8 30\n26 31\n32 33\n21 35\n14 36\n30 37\n17 38\n12 40\n11 42\n14 43\n12 44\n1 45\n29 46\n22 47\n47 50",
"output": "549755813888"
},
{
"input": "50 38\n1 2\n2 3\n3 4\n3 5\n4 7\n5 10\n9 11\n9 12\n11 13\n12 14\n6 15\n8 16\n2 18\n15 19\n3 20\n10 21\n4 22\n9 24\n2 25\n23 26\n3 28\n20 29\n14 30\n4 32\n24 33\n20 36\n1 38\n19 39\n39 40\n22 41\n18 42\n19 43\n40 45\n45 46\n9 47\n6 48\n9 49\n25 50",
"output": "274877906944"
},
{
"input": "50 41\n1 3\n1 4\n2 5\n2 7\n1 8\n2 10\n4 11\n5 12\n12 13\n4 14\n10 17\n1 18\n1 21\n5 22\n14 23\n19 24\n13 25\n3 26\n11 27\n6 28\n26 29\n21 30\n17 31\n15 32\n1 33\n12 34\n23 36\n6 37\n15 38\n37 39\n31 40\n15 41\n25 42\n19 43\n20 44\n32 45\n44 46\n31 47\n2 48\n32 49\n27 50",
"output": "2199023255552"
},
{
"input": "50 47\n1 2\n1 3\n1 4\n1 5\n5 6\n2 7\n2 8\n2 9\n2 10\n8 11\n5 12\n11 13\n10 14\n6 15\n9 16\n1 17\n1 18\n8 19\n5 20\n5 21\n11 22\n2 23\n22 24\n24 25\n5 26\n21 27\n27 28\n8 29\n2 30\n4 31\n11 32\n17 33\n22 34\n25 35\n28 36\n28 37\n11 38\n17 39\n19 42\n6 43\n11 44\n29 45\n2 46\n24 47\n7 48\n3 49\n44 50",
"output": "140737488355328"
},
{
"input": "11 20\n3 6\n2 6\n2 9\n4 5\n9 11\n6 8\n5 6\n1 6\n4 11\n9 10\n5 10\n4 6\n3 8\n2 3\n1 7\n1 11\n2 7\n1 3\n3 7\n1 8",
"output": "1024"
},
{
"input": "26 17\n1 2\n2 3\n1 6\n6 7\n7 8\n2 9\n4 10\n3 11\n11 12\n9 13\n6 14\n2 16\n5 18\n6 19\n11 22\n15 24\n6 26",
"output": "131072"
},
{
"input": "48 43\n1 2\n1 3\n3 4\n4 5\n2 6\n5 7\n7 9\n4 10\n6 11\n3 12\n6 13\n3 14\n6 15\n13 16\n4 17\n12 18\n18 19\n1 20\n1 21\n16 22\n9 23\n3 24\n22 25\n2 26\n10 27\n18 28\n13 30\n3 31\n24 33\n29 34\n15 35\n16 36\n23 37\n21 38\n34 39\n37 40\n39 41\n19 42\n15 43\n23 44\n22 45\n14 47\n10 48",
"output": "8796093022208"
},
{
"input": "8 5\n1 2\n1 3\n1 4\n5 6\n7 8",
"output": "32"
},
{
"input": "8 7\n1 2\n2 3\n3 4\n1 4\n5 6\n6 7\n7 8",
"output": "64"
}
] | 1,625,162,866
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 32
| 234
| 10,035,200
|
import sys
import math
import collections
import heapq
import decimal
input=sys.stdin.readline
n,m=(int(i) for i in input().split())
d={}
for i in range(n):
d[i]=[]
for j in range(m):
x,y=(int(i) for i in input().split())
d[x-1].append(y-1)
d[y-1].append(x-1)
p=1
v=[0]*n
for i in range(n):
if(v[i]==0):
c=0
queue=[i]
v[i]=1
while(queue!=[]):
s=queue.pop(0)
c+=1
for j in d[s]:
if(v[j]==0):
v[j]=1
queue.append(j)
p*=pow(2,c-1)
print(p)
|
Title: DZY Loves Chemistry
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
DZY loves chemistry, and he enjoys mixing chemicals.
DZY has *n* chemicals, and *m* pairs of them will react. He wants to pour these chemicals into a test tube, and he needs to pour them in one by one, in any order.
Let's consider the danger of a test tube. Danger of an empty test tube is 1. And every time when DZY pours a chemical, if there are already one or more chemicals in the test tube that can react with it, the danger of the test tube will be multiplied by 2. Otherwise the danger remains as it is.
Find the maximum possible danger after pouring all the chemicals one by one in optimal order.
Input Specification:
The first line contains two space-separated integers *n* and *m* .
Each of the next *m* lines contains two space-separated integers *x**i* and *y**i* (1<=≤<=*x**i*<=<<=*y**i*<=≤<=*n*). These integers mean that the chemical *x**i* will react with the chemical *y**i*. Each pair of chemicals will appear at most once in the input.
Consider all the chemicals numbered from 1 to *n* in some order.
Output Specification:
Print a single integer — the maximum possible danger.
Demo Input:
['1 0\n', '2 1\n1 2\n', '3 2\n1 2\n2 3\n']
Demo Output:
['1\n', '2\n', '4\n']
Note:
In the first sample, there's only one way to pour, and the danger won't increase.
In the second sample, no matter we pour the 1st chemical first, or pour the 2nd chemical first, the answer is always 2.
In the third sample, there are four ways to achieve the maximum possible danger: 2-1-3, 2-3-1, 1-2-3 and 3-2-1 (that is the numbers of the chemicals in order of pouring).
|
```python
import sys
import math
import collections
import heapq
import decimal
input=sys.stdin.readline
n,m=(int(i) for i in input().split())
d={}
for i in range(n):
d[i]=[]
for j in range(m):
x,y=(int(i) for i in input().split())
d[x-1].append(y-1)
d[y-1].append(x-1)
p=1
v=[0]*n
for i in range(n):
if(v[i]==0):
c=0
queue=[i]
v[i]=1
while(queue!=[]):
s=queue.pop(0)
c+=1
for j in d[s]:
if(v[j]==0):
v[j]=1
queue.append(j)
p*=pow(2,c-1)
print(p)
```
| 3
|
|
23
|
A
|
You're Given a String...
|
PROGRAMMING
| 1,200
|
[
"brute force",
"greedy"
] |
A. You're Given a String...
|
2
|
256
|
You're given a string of lower-case Latin letters. Your task is to find the length of its longest substring that can be met in the string at least twice. These occurrences can overlap (see sample test 2).
|
The first input line contains the string. It's guaranteed, that the string is non-empty, consists of lower-case Latin letters, and its length doesn't exceed 100.
|
Output one number — length of the longest substring that can be met in the string at least twice.
|
[
"abcd\n",
"ababa\n",
"zzz\n"
] |
[
"0",
"3",
"2"
] |
none
| 0
|
[
{
"input": "abcd",
"output": "0"
},
{
"input": "ababa",
"output": "3"
},
{
"input": "zzz",
"output": "2"
},
{
"input": "kmmm",
"output": "2"
},
{
"input": "wzznz",
"output": "1"
},
{
"input": "qlzazaaqll",
"output": "2"
},
{
"input": "lzggglgpep",
"output": "2"
},
{
"input": "iegdlraaidefgegiagrdfhihe",
"output": "2"
},
{
"input": "esxpqmdrtidgtkxojuxyrcwxlycywtzbjzpxvbngnlepgzcaeg",
"output": "1"
},
{
"input": "garvpaimjdjiivamusjdwfcaoswuhxyyxvrxzajoyihggvuxumaadycfphrzbprraicvjjlsdhojihaw",
"output": "2"
},
{
"input": "ckvfndqgkmhcyojaqgdkenmbexufryhqejdhctxujmtrwkpbqxufxamgoeigzfyzbhevpbkvviwntdhqscvkmphnkkljizndnbjt",
"output": "3"
},
{
"input": "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
"output": "99"
},
{
"input": "ikiikiikikiiikkkkkikkkkiiiiikkiiikkiikiikkkkikkkikikkikiiikkikikiiikikkkiiikkkikkikkikkkkiiikkiiiiii",
"output": "10"
},
{
"input": "ovovhoovvhohhhvhhvhhvhovoohovhhoooooovohvooooohvvoooohvvovhhvhovhhvoovhvhvoovovvhooovhhooovohvhhovhv",
"output": "8"
},
{
"input": "ccwckkkycccccckwckwkwkwkkkkyycykcccycyckwywcckwykcycykkkwcycwwcykcwkwkwwykwkwcykywwwyyykckkyycckwcwk",
"output": "5"
},
{
"input": "ttketfkefktfztezzkzfkkeetkkfktftzktezekkeezkeeetteeteefetefkzzzetekfftkeffzkktffzkzzeftfeezfefzffeef",
"output": "4"
},
{
"input": "rtharczpfznrgdnkltchafduydgbgkdjqrmjqyfmpwjwphrtsjbmswkanjlprbnduaqbcjqxlxmkspkhkcnzbqwxonzxxdmoigti",
"output": "2"
},
{
"input": "fplrkfklvwdeiynbjgaypekambmbjfnoknlhczhkdmljicookdywdgpnlnqlpunnkebnikgcgcjefeqhknvlynmvjcegvcdgvvdb",
"output": "2"
},
{
"input": "txbciieycswqpniwvzipwlottivvnfsysgzvzxwbctcchfpvlbcjikdofhpvsknptpjdbxemtmjcimetkemdbettqnbvzzbdyxxb",
"output": "2"
},
{
"input": "fmubmfwefikoxtqvmaavwjxmoqltapexkqxcsztpezfcltqavuicefxovuswmqimuikoppgqpiapqutkczgcvxzutavkujxvpklv",
"output": "3"
},
{
"input": "ipsrjylhpkjvlzncfixipstwcicxqygqcfrawpzzvckoveyqhathglblhpkjvlzncfixipfajaqobtzvthmhgbuawoxoknirclxg",
"output": "15"
},
{
"input": "kcnjsntjzcbgzjscrsrjkrbytqsrptzspzctjrorsyggrtkcnjsntjzcbgzjscrsrjyqbrtpcgqirsrrjbbbrnyqstnrozcoztt",
"output": "20"
},
{
"input": "unhcfnrhsqetuerjqcetrhlsqgfnqfntvkgxsscquolxxroqgtchffyccetrhlsqgfnqfntvkgxsscquolxxroqgtchffhfqvx",
"output": "37"
},
{
"input": "kkcckkccckkcckcccckcckkkkcckkkkckkkcckckkkkkckkkkkcckkccckkcckcccckcckkkkcckkkkckkkcckckkkkkckckckkc",
"output": "46"
},
{
"input": "mlhsyijxeydqxhtkmpdeqwzogjvxahmssyhfhqessbxzvydbrxdmlhsyijxeydqxhtkmpdeqwzogjvxahmssyhfhqessbxzvydik",
"output": "47"
},
{
"input": "abcdefghijklmnopqrstuvwxyz",
"output": "0"
},
{
"input": "tttttbttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttmttttttt",
"output": "85"
},
{
"input": "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffffffffffffffffffffffffffffffffff",
"output": "61"
},
{
"input": "cccccccccccccccccccccccwcccccccccccccccccccccuccccccccccccccnccccccccccccccccccccccccccccccccccccccc",
"output": "38"
},
{
"input": "ffffffffffffffffffffffffffufffgfffffffffffffffffffffffffffffffffffffffgffffffftffffffgffffffffffffff",
"output": "38"
},
{
"input": "rrrrrrrrrrrrrrrrrrrlhbrrrrrrrrurrrrrrrfrrqrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrewrrrrrrryrrxrrrrrrrrrrr",
"output": "33"
},
{
"input": "vyvvvvvvvvzvvvvvzvvvwvvvvrvvvvvvvvvvvvvvvrvvvvvvvvvpkvvpvgvvvvvvvvvvvvvgvvvvvvvvvvvvvvvvvvysvvvbvvvv",
"output": "17"
},
{
"input": "cbubbbbbbbbbbfbbbbbbbbjbobbbbbbbbbbibbubbbbjbbbnzgbbzbbfbbbbbbbbbbbfbpbbbbbbbbbbygbbbgbabbbbbbbhibbb",
"output": "12"
},
{
"input": "lrqrrrrrrrjrrrrrcdrrgrrmwvrrrrrrrrrxfzrmrmrryrrrurrrdrrrrrrrrrrererrrsrrrrrrrrrrrqrrrrcrrwjsrrlrrrrr",
"output": "10"
},
{
"input": "ssssusisisosscssssztzessssyspskjssvosiissussszsosssslsssdsssvssvsssslsssmsfjasjsssssowscsjsssszsspss",
"output": "8"
},
{
"input": "uukuuuumueuuuujuukgdhbztuuuubbguuocuozfaunqufjujuguyuuvkuuauubuubuucuvtjuuuuuusduduuuuuuuueunuuuuuzu",
"output": "7"
},
{
"input": "jpkkgwklngwqcfzmwkkpcwkkkkkekkkekkkdsykqwjkkkhkkkxdnukkkkkkmkqykkkxqklkskkrkkkkkqqjikkkkkkpknkkkkkoh",
"output": "7"
},
{
"input": "bmzbbfbbhqxwthtbbisbbbbbtbbfbbpbfbbpbkbjfbcbbbbzbbbdwmbbbrnvqdbbtbbuglrnbbbbvmbyblebbabibrevaxbbjbqb",
"output": "6"
},
{
"input": "qqqmqqqsbteqqopsuqiqumrqzpqnqgqeniqqkyqqyqqqpxzqeqqquhdqquhqqqfqjirqaqqaquxqoqqjqqqqbjbgqcqqqqicnkqc",
"output": "4"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasaaaavaaaaaaauaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "44"
},
{
"input": "a",
"output": "0"
},
{
"input": "fg",
"output": "0"
},
{
"input": "yy",
"output": "1"
},
{
"input": "abcabcabc",
"output": "6"
},
{
"input": "qwerqwedqwes",
"output": "3"
}
] | 1,677,471,140
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 840
| 204,800
|
a=input()
l=[]
n=0
for i in range(len(a)):
for j in range(i+1,len(a)+1):
l.append(a[i:j])
for i in l:
if l.count(i)>=2:
if len(i)>n:
n=len(i)
print(n)
|
Title: You're Given a String...
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You're given a string of lower-case Latin letters. Your task is to find the length of its longest substring that can be met in the string at least twice. These occurrences can overlap (see sample test 2).
Input Specification:
The first input line contains the string. It's guaranteed, that the string is non-empty, consists of lower-case Latin letters, and its length doesn't exceed 100.
Output Specification:
Output one number — length of the longest substring that can be met in the string at least twice.
Demo Input:
['abcd\n', 'ababa\n', 'zzz\n']
Demo Output:
['0', '3', '2']
Note:
none
|
```python
a=input()
l=[]
n=0
for i in range(len(a)):
for j in range(i+1,len(a)+1):
l.append(a[i:j])
for i in l:
if l.count(i)>=2:
if len(i)>n:
n=len(i)
print(n)
```
| 3.789619
|
219
|
B
|
Special Offer! Super Price 999 Bourles!
|
PROGRAMMING
| 1,400
|
[
"implementation"
] | null | null |
Polycarpus is an amateur businessman. Recently he was surprised to find out that the market for paper scissors is completely free! Without further ado, Polycarpus decided to start producing and selling such scissors.
Polycaprus calculated that the optimal celling price for such scissors would be *p* bourles. However, he read somewhere that customers are attracted by prices that say something like "Special Offer! Super price 999 bourles!". So Polycarpus decided to lower the price a little if it leads to the desired effect.
Polycarpus agrees to lower the price by no more than *d* bourles so that the number of nines at the end of the resulting price is maximum. If there are several ways to do it, he chooses the maximum possible price.
Note, Polycarpus counts only the trailing nines in a price.
|
The first line contains two integers *p* and *d* (1<=≤<=*p*<=≤<=1018; 0<=≤<=*d*<=<<=*p*) — the initial price of scissors and the maximum possible price reduction.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.
|
Print the required price — the maximum price that ends with the largest number of nines and that is less than *p* by no more than *d*.
The required number shouldn't have leading zeroes.
|
[
"1029 102\n",
"27191 17\n"
] |
[
"999\n",
"27189\n"
] |
none
| 1,000
|
[
{
"input": "1029 102",
"output": "999"
},
{
"input": "27191 17",
"output": "27189"
},
{
"input": "1 0",
"output": "1"
},
{
"input": "9 0",
"output": "9"
},
{
"input": "20 1",
"output": "19"
},
{
"input": "100 23",
"output": "99"
},
{
"input": "10281 1",
"output": "10281"
},
{
"input": "2111 21",
"output": "2099"
},
{
"input": "3021 112",
"output": "2999"
},
{
"input": "1000000000000000000 999999999999999999",
"output": "999999999999999999"
},
{
"input": "29287101 301",
"output": "29286999"
},
{
"input": "302918113 8113",
"output": "302917999"
},
{
"input": "23483247283432 47283432",
"output": "23483239999999"
},
{
"input": "47283432 7283432",
"output": "46999999"
},
{
"input": "7283432 7283431",
"output": "6999999"
},
{
"input": "2304324853947 5853947",
"output": "2304319999999"
},
{
"input": "2485348653485 123483",
"output": "2485348599999"
},
{
"input": "29845435345 34543",
"output": "29845429999"
},
{
"input": "2348723847234234 234829384234",
"output": "2348699999999999"
},
{
"input": "2348723847234234 234829384234",
"output": "2348699999999999"
},
{
"input": "596383801524465437 13997918422040",
"output": "596379999999999999"
},
{
"input": "621306590487786841 47851896849379",
"output": "621299999999999999"
},
{
"input": "990575220328844835 100861359807341",
"output": "990499999999999999"
},
{
"input": "403277728241895842 15097810739041",
"output": "403269999999999999"
},
{
"input": "287854791214303304 98046359947548",
"output": "287799999999999999"
},
{
"input": "847222126505823289 115713658562976",
"output": "847199999999999999"
},
{
"input": "991096248227872657 181679439312637",
"output": "990999999999999999"
},
{
"input": "954402996235787062 354162450334047",
"output": "954399999999999999"
},
{
"input": "220466716596033408 44952575147901",
"output": "220459999999999999"
},
{
"input": "559198116944738707 844709119308273",
"output": "558999999999999999"
},
{
"input": "363980380443991024 4242310030748",
"output": "363979999999999999"
},
{
"input": "733498827000355608 13253459808159",
"output": "733489999999999999"
},
{
"input": "757663489894439901 139905688448459",
"output": "757599999999999999"
},
{
"input": "30528581170507487 1199546082507",
"output": "30527999999999999"
},
{
"input": "534463403123444176 67776394133861",
"output": "534399999999999999"
},
{
"input": "399943891120381720 89545256475298",
"output": "399899999999999999"
},
{
"input": "697076786191991245 95935185412097",
"output": "696999999999999999"
},
{
"input": "495773842562930245 17116719198640",
"output": "495769999999999999"
},
{
"input": "343540186435799067 48368225269792",
"output": "343499999999999999"
},
{
"input": "393776794010351632 4138311260892",
"output": "393775999999999999"
},
{
"input": "830005749156754342 157633405415940",
"output": "829999999999999999"
},
{
"input": "735716632509713228 109839072010906",
"output": "735699999999999999"
},
{
"input": "925835698451819219 232827103605000",
"output": "925799999999999999"
},
{
"input": "362064657893189225 54298707317247",
"output": "362059999999999999"
},
{
"input": "286739242579659245 61808986676984",
"output": "286699999999999999"
},
{
"input": "234522568185994645 14536016333590",
"output": "234519999999999999"
},
{
"input": "989980699593228598 382407804389880",
"output": "989899999999999999"
},
{
"input": "953287447601143003 367647762226264",
"output": "952999999999999999"
},
{
"input": "369834331957505226 421031521866991",
"output": "369799999999999999"
},
{
"input": "433225528653135646 16671330805568",
"output": "433219999999999999"
},
{
"input": "664584428369850915 516656201621892",
"output": "664499999999999999"
},
{
"input": "100813383516253625 468493737928751",
"output": "100799999999999999"
},
{
"input": "63600749936231318 12287109070881",
"output": "63599999999999999"
},
{
"input": "196643334958802150 3659421793154",
"output": "196639999999999999"
},
{
"input": "803015192835672406 14043666502157",
"output": "803009999999999999"
},
{
"input": "43201857567928862 5891486380570",
"output": "43199999999999999"
},
{
"input": "142195487377202511 32209508975060",
"output": "142189999999999999"
},
{
"input": "159171676706847083 28512592184962",
"output": "159169999999999999"
},
{
"input": "377788117133266645 12127036235155",
"output": "377779999999999999"
},
{
"input": "949501478909148807 31763408418934",
"output": "949499999999999999"
},
{
"input": "955412075341421601 220849506773896",
"output": "955399999999999999"
},
{
"input": "652742935922718161 11045914932687",
"output": "652739999999999999"
},
{
"input": "371621017875752909 511452352707014",
"output": "371599999999999999"
},
{
"input": "979748686171802330 281906901894586",
"output": "979699999999999999"
},
{
"input": "987860891213585005 85386263418762",
"output": "987799999999999999"
},
{
"input": "59225847802373220 8605552735740",
"output": "59219999999999999"
},
{
"input": "22532595810287625 1459945485391",
"output": "22531999999999999"
},
{
"input": "191654878233371957 258451919478343",
"output": "191599999999999999"
},
{
"input": "796937674525939896 892734175683845",
"output": "796899999999999999"
},
{
"input": "166564871934000326 22888347028438",
"output": "166559999999999999"
},
{
"input": "559198116944738707 84470911930827",
"output": "559189999999999999"
},
{
"input": "559198116944738707 8447091193082",
"output": "559189999999999999"
},
{
"input": "559198116944738707 844709119308",
"output": "559197999999999999"
},
{
"input": "559198116944738707 84470911930",
"output": "559198099999999999"
},
{
"input": "559198116944738707 8447091193",
"output": "559198109999999999"
},
{
"input": "559198116944738707 844709119",
"output": "559198116899999999"
},
{
"input": "559198116944738707 84470911",
"output": "559198116899999999"
},
{
"input": "559198116944738707 8447091",
"output": "559198116939999999"
},
{
"input": "559198116944738707 844709",
"output": "559198116943999999"
},
{
"input": "559198116944738707 84470",
"output": "559198116944699999"
},
{
"input": "559198116944738707 8447",
"output": "559198116944737999"
},
{
"input": "559198116944738707 844",
"output": "559198116944737999"
},
{
"input": "559198116944738707 84",
"output": "559198116944738699"
},
{
"input": "559198116944738707 8",
"output": "559198116944738699"
},
{
"input": "559198116944738707 7",
"output": "559198116944738707"
},
{
"input": "559198116944738707 6",
"output": "559198116944738707"
},
{
"input": "559198116944738707 1",
"output": "559198116944738707"
},
{
"input": "559198116944738707 0",
"output": "559198116944738707"
},
{
"input": "559198116944738700 1",
"output": "559198116944738699"
},
{
"input": "559198116944738700 0",
"output": "559198116944738700"
},
{
"input": "559198116944738999 0",
"output": "559198116944738999"
},
{
"input": "559198116944738999 1",
"output": "559198116944738999"
},
{
"input": "199 100",
"output": "199"
},
{
"input": "99 10",
"output": "99"
},
{
"input": "10 1",
"output": "9"
},
{
"input": "18 17",
"output": "9"
},
{
"input": "199 198",
"output": "199"
},
{
"input": "1000000000000000000 0",
"output": "1000000000000000000"
},
{
"input": "59 3",
"output": "59"
},
{
"input": "9999 10",
"output": "9999"
},
{
"input": "999999999999999998 999999999999999997",
"output": "899999999999999999"
},
{
"input": "8 7",
"output": "8"
}
] | 1,686,324,660
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 102
| 124
| 0
|
p, d = map(int,input().split())
i, dis = 1, 0
while p%(10**i) + 1 <= d :
if (p%(10**i) + 1)%10**i == 0 :
i += 1
continue
dis = p%(10**i) + 1
i += 1
print(p-dis)
|
Title: Special Offer! Super Price 999 Bourles!
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarpus is an amateur businessman. Recently he was surprised to find out that the market for paper scissors is completely free! Without further ado, Polycarpus decided to start producing and selling such scissors.
Polycaprus calculated that the optimal celling price for such scissors would be *p* bourles. However, he read somewhere that customers are attracted by prices that say something like "Special Offer! Super price 999 bourles!". So Polycarpus decided to lower the price a little if it leads to the desired effect.
Polycarpus agrees to lower the price by no more than *d* bourles so that the number of nines at the end of the resulting price is maximum. If there are several ways to do it, he chooses the maximum possible price.
Note, Polycarpus counts only the trailing nines in a price.
Input Specification:
The first line contains two integers *p* and *d* (1<=≤<=*p*<=≤<=1018; 0<=≤<=*d*<=<<=*p*) — the initial price of scissors and the maximum possible price reduction.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.
Output Specification:
Print the required price — the maximum price that ends with the largest number of nines and that is less than *p* by no more than *d*.
The required number shouldn't have leading zeroes.
Demo Input:
['1029 102\n', '27191 17\n']
Demo Output:
['999\n', '27189\n']
Note:
none
|
```python
p, d = map(int,input().split())
i, dis = 1, 0
while p%(10**i) + 1 <= d :
if (p%(10**i) + 1)%10**i == 0 :
i += 1
continue
dis = p%(10**i) + 1
i += 1
print(p-dis)
```
| 3
|
|
1,005
|
D
|
Polycarp and Div 3
|
PROGRAMMING
| 1,500
|
[
"dp",
"greedy",
"number theory"
] | null | null |
Polycarp likes numbers that are divisible by 3.
He has a huge number $s$. Polycarp wants to cut from it the maximum number of numbers that are divisible by $3$. To do this, he makes an arbitrary number of vertical cuts between pairs of adjacent digits. As a result, after $m$ such cuts, there will be $m+1$ parts in total. Polycarp analyzes each of the obtained numbers and finds the number of those that are divisible by $3$.
For example, if the original number is $s=3121$, then Polycarp can cut it into three parts with two cuts: $3|1|21$. As a result, he will get two numbers that are divisible by $3$.
Polycarp can make an arbitrary number of vertical cuts, where each cut is made between a pair of adjacent digits. The resulting numbers cannot contain extra leading zeroes (that is, the number can begin with 0 if and only if this number is exactly one character '0'). For example, 007, 01 and 00099 are not valid numbers, but 90, 0 and 10001 are valid.
What is the maximum number of numbers divisible by $3$ that Polycarp can obtain?
|
The first line of the input contains a positive integer $s$. The number of digits of the number $s$ is between $1$ and $2\cdot10^5$, inclusive. The first (leftmost) digit is not equal to 0.
|
Print the maximum number of numbers divisible by $3$ that Polycarp can get by making vertical cuts in the given number $s$.
|
[
"3121\n",
"6\n",
"1000000000000000000000000000000000\n",
"201920181\n"
] |
[
"2\n",
"1\n",
"33\n",
"4\n"
] |
In the first example, an example set of optimal cuts on the number is 3|1|21.
In the second example, you do not need to make any cuts. The specified number 6 forms one number that is divisible by $3$.
In the third example, cuts must be made between each pair of digits. As a result, Polycarp gets one digit 1 and $33$ digits 0. Each of the $33$ digits 0 forms a number that is divisible by $3$.
In the fourth example, an example set of optimal cuts is 2|0|1|9|201|81. The numbers $0$, $9$, $201$ and $81$ are divisible by $3$.
| 0
|
[
{
"input": "3121",
"output": "2"
},
{
"input": "6",
"output": "1"
},
{
"input": "1000000000000000000000000000000000",
"output": "33"
},
{
"input": "201920181",
"output": "4"
},
{
"input": "4",
"output": "0"
},
{
"input": "10",
"output": "1"
},
{
"input": "11",
"output": "0"
},
{
"input": "12",
"output": "1"
},
{
"input": "13",
"output": "1"
},
{
"input": "31",
"output": "1"
},
{
"input": "14139582796",
"output": "6"
},
{
"input": "1670000",
"output": "5"
},
{
"input": "604500",
"output": "5"
},
{
"input": "40041",
"output": "2"
},
{
"input": "10000170",
"output": "5"
}
] | 1,685,649,876
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 701
| 42,905,600
|
from functools import lru_cache
import sys
input = sys.stdin.readline
num = input().strip()
n = len(num)
# @lru_cache(None)
# def dp(i, sum_under_mod):
# if i >= n:
# return 0
# sum_under_mod = ( sum_under_mod + int(num[i]) ) % 3
# return max(
# dp(i + 1, sum_under_mod),
# dp(i + 1, 0) + (sum_under_mod % 3 == 0)
# )
# print(dp(0, 0))
dp = [[0 for _ in range(3)] for _ in range(n + 1)]
for i in range(n - 1, -1, -1):
for j in range(2, -1, -1):
hold = (j + int(num[i])) % 3
dp[i][j] = max(dp[i + 1][hold], dp[i + 1][0] + (hold % 3 == 0))
print(dp[0][0])
# print(dp)
# 3 1 2 1
# 6
|
Title: Polycarp and Div 3
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp likes numbers that are divisible by 3.
He has a huge number $s$. Polycarp wants to cut from it the maximum number of numbers that are divisible by $3$. To do this, he makes an arbitrary number of vertical cuts between pairs of adjacent digits. As a result, after $m$ such cuts, there will be $m+1$ parts in total. Polycarp analyzes each of the obtained numbers and finds the number of those that are divisible by $3$.
For example, if the original number is $s=3121$, then Polycarp can cut it into three parts with two cuts: $3|1|21$. As a result, he will get two numbers that are divisible by $3$.
Polycarp can make an arbitrary number of vertical cuts, where each cut is made between a pair of adjacent digits. The resulting numbers cannot contain extra leading zeroes (that is, the number can begin with 0 if and only if this number is exactly one character '0'). For example, 007, 01 and 00099 are not valid numbers, but 90, 0 and 10001 are valid.
What is the maximum number of numbers divisible by $3$ that Polycarp can obtain?
Input Specification:
The first line of the input contains a positive integer $s$. The number of digits of the number $s$ is between $1$ and $2\cdot10^5$, inclusive. The first (leftmost) digit is not equal to 0.
Output Specification:
Print the maximum number of numbers divisible by $3$ that Polycarp can get by making vertical cuts in the given number $s$.
Demo Input:
['3121\n', '6\n', '1000000000000000000000000000000000\n', '201920181\n']
Demo Output:
['2\n', '1\n', '33\n', '4\n']
Note:
In the first example, an example set of optimal cuts on the number is 3|1|21.
In the second example, you do not need to make any cuts. The specified number 6 forms one number that is divisible by $3$.
In the third example, cuts must be made between each pair of digits. As a result, Polycarp gets one digit 1 and $33$ digits 0. Each of the $33$ digits 0 forms a number that is divisible by $3$.
In the fourth example, an example set of optimal cuts is 2|0|1|9|201|81. The numbers $0$, $9$, $201$ and $81$ are divisible by $3$.
|
```python
from functools import lru_cache
import sys
input = sys.stdin.readline
num = input().strip()
n = len(num)
# @lru_cache(None)
# def dp(i, sum_under_mod):
# if i >= n:
# return 0
# sum_under_mod = ( sum_under_mod + int(num[i]) ) % 3
# return max(
# dp(i + 1, sum_under_mod),
# dp(i + 1, 0) + (sum_under_mod % 3 == 0)
# )
# print(dp(0, 0))
dp = [[0 for _ in range(3)] for _ in range(n + 1)]
for i in range(n - 1, -1, -1):
for j in range(2, -1, -1):
hold = (j + int(num[i])) % 3
dp[i][j] = max(dp[i + 1][hold], dp[i + 1][0] + (hold % 3 == 0))
print(dp[0][0])
# print(dp)
# 3 1 2 1
# 6
```
| 3
|
|
899
|
C
|
Dividing the numbers
|
PROGRAMMING
| 1,300
|
[
"constructive algorithms",
"graphs",
"math"
] | null | null |
Petya has *n* integers: 1,<=2,<=3,<=...,<=*n*. He wants to split these integers in two non-empty groups in such a way that the absolute difference of sums of integers in each group is as small as possible.
Help Petya to split the integers. Each of *n* integers should be exactly in one group.
|
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=60<=000) — the number of integers Petya has.
|
Print the smallest possible absolute difference in the first line.
In the second line print the size of the first group, followed by the integers in that group. You can print these integers in arbitrary order. If there are multiple answers, print any of them.
|
[
"4\n",
"2\n"
] |
[
"0\n2 1 4 \n",
"1\n1 1 \n"
] |
In the first example you have to put integers 1 and 4 in the first group, and 2 and 3 in the second. This way the sum in each group is 5, and the absolute difference is 0.
In the second example there are only two integers, and since both groups should be non-empty, you have to put one integer in the first group and one in the second. This way the absolute difference of sums of integers in each group is 1.
| 1,500
|
[
{
"input": "4",
"output": "0\n2 1 4 "
},
{
"input": "2",
"output": "1\n1 1 "
},
{
"input": "3",
"output": "0\n1\n3 "
},
{
"input": "5",
"output": "1\n3\n1 2 5 "
},
{
"input": "59998",
"output": "1\n29999 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..."
},
{
"input": "60000",
"output": "0\n30000 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..."
},
{
"input": "59991",
"output": "0\n29995\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..."
},
{
"input": "59989",
"output": "1\n29995\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..."
},
{
"input": "6",
"output": "1\n3 1 4 5 "
},
{
"input": "7",
"output": "0\n3\n1 6 7 "
},
{
"input": "8",
"output": "0\n4 1 4 5 8 "
},
{
"input": "9",
"output": "1\n5\n1 2 3 8 9 "
},
{
"input": "10",
"output": "1\n5 1 4 5 8 9 "
},
{
"input": "11",
"output": "0\n5\n1 2 9 10 11 "
},
{
"input": "12",
"output": "0\n6 1 4 5 8 9 12 "
},
{
"input": "13",
"output": "1\n7\n1 2 3 4 11 12 13 "
},
{
"input": "14",
"output": "1\n7 1 4 5 8 9 12 13 "
},
{
"input": "15",
"output": "0\n7\n1 2 3 12 13 14 15 "
},
{
"input": "16",
"output": "0\n8 1 4 5 8 9 12 13 16 "
},
{
"input": "17",
"output": "1\n9\n1 2 3 4 5 14 15 16 17 "
},
{
"input": "18",
"output": "1\n9 1 4 5 8 9 12 13 16 17 "
},
{
"input": "19",
"output": "0\n9\n1 2 3 4 15 16 17 18 19 "
},
{
"input": "20",
"output": "0\n10 1 4 5 8 9 12 13 16 17 20 "
},
{
"input": "21",
"output": "1\n11\n1 2 3 4 5 6 17 18 19 20 21 "
},
{
"input": "22",
"output": "1\n11 1 4 5 8 9 12 13 16 17 20 21 "
},
{
"input": "23",
"output": "0\n11\n1 2 3 4 5 18 19 20 21 22 23 "
},
{
"input": "24",
"output": "0\n12 1 4 5 8 9 12 13 16 17 20 21 24 "
},
{
"input": "59999",
"output": "0\n29999\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..."
},
{
"input": "59997",
"output": "1\n29999\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..."
},
{
"input": "59996",
"output": "0\n29998 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..."
},
{
"input": "59995",
"output": "0\n29997\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..."
},
{
"input": "59994",
"output": "1\n29997 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..."
},
{
"input": "59993",
"output": "1\n29997\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..."
},
{
"input": "59992",
"output": "0\n29996 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..."
},
{
"input": "59990",
"output": "1\n29995 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..."
},
{
"input": "100",
"output": "0\n50 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 "
},
{
"input": "1000",
"output": "0\n500 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 28..."
},
{
"input": "10001",
"output": "1\n5001\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "103",
"output": "0\n51\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 "
},
{
"input": "1002",
"output": "1\n501 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 28..."
},
{
"input": "31724",
"output": "0\n15862 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..."
},
{
"input": "2032",
"output": "0\n1016 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..."
},
{
"input": "42620",
"output": "0\n21310 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..."
},
{
"input": "18076",
"output": "0\n9038 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..."
},
{
"input": "53520",
"output": "0\n26760 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..."
},
{
"input": "37193",
"output": "1\n18597\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..."
},
{
"input": "12645",
"output": "1\n6323\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "53237",
"output": "1\n26619\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..."
},
{
"input": "28693",
"output": "1\n14347\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..."
},
{
"input": "4145",
"output": "1\n2073\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "36042",
"output": "1\n18021 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..."
},
{
"input": "16646",
"output": "1\n8323 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..."
},
{
"input": "57238",
"output": "1\n28619 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..."
},
{
"input": "27542",
"output": "1\n13771 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..."
},
{
"input": "8146",
"output": "1\n4073 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..."
},
{
"input": "46659",
"output": "0\n23329\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..."
},
{
"input": "27259",
"output": "0\n13629\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..."
},
{
"input": "2715",
"output": "0\n1357\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "38159",
"output": "0\n19079\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..."
},
{
"input": "18759",
"output": "0\n9379\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
}
] | 1,610,285,535
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 60
| 109
| 3,481,600
|
n = int(input())
h = n * (n + 1) // 4
used = []
high = n
while h > 0 and high <= h:
h -= high
used.append(high)
high -= 1
if h:
used.append(h)
print(n * (n + 1) // 2 % 2)
print(len(used), *used)
|
Title: Dividing the numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya has *n* integers: 1,<=2,<=3,<=...,<=*n*. He wants to split these integers in two non-empty groups in such a way that the absolute difference of sums of integers in each group is as small as possible.
Help Petya to split the integers. Each of *n* integers should be exactly in one group.
Input Specification:
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=60<=000) — the number of integers Petya has.
Output Specification:
Print the smallest possible absolute difference in the first line.
In the second line print the size of the first group, followed by the integers in that group. You can print these integers in arbitrary order. If there are multiple answers, print any of them.
Demo Input:
['4\n', '2\n']
Demo Output:
['0\n2 1 4 \n', '1\n1 1 \n']
Note:
In the first example you have to put integers 1 and 4 in the first group, and 2 and 3 in the second. This way the sum in each group is 5, and the absolute difference is 0.
In the second example there are only two integers, and since both groups should be non-empty, you have to put one integer in the first group and one in the second. This way the absolute difference of sums of integers in each group is 1.
|
```python
n = int(input())
h = n * (n + 1) // 4
used = []
high = n
while h > 0 and high <= h:
h -= high
used.append(high)
high -= 1
if h:
used.append(h)
print(n * (n + 1) // 2 % 2)
print(len(used), *used)
```
| 3
|
|
9
|
A
|
Die Roll
|
PROGRAMMING
| 800
|
[
"math",
"probabilities"
] |
A. Die Roll
|
1
|
64
|
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place.
But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams.
Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania.
It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
|
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
|
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
|
[
"4 2\n"
] |
[
"1/2\n"
] |
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
| 0
|
[
{
"input": "4 2",
"output": "1/2"
},
{
"input": "1 1",
"output": "1/1"
},
{
"input": "1 2",
"output": "5/6"
},
{
"input": "1 3",
"output": "2/3"
},
{
"input": "1 4",
"output": "1/2"
},
{
"input": "1 5",
"output": "1/3"
},
{
"input": "1 6",
"output": "1/6"
},
{
"input": "2 1",
"output": "5/6"
},
{
"input": "2 2",
"output": "5/6"
},
{
"input": "2 3",
"output": "2/3"
},
{
"input": "2 4",
"output": "1/2"
},
{
"input": "2 5",
"output": "1/3"
},
{
"input": "2 6",
"output": "1/6"
},
{
"input": "3 1",
"output": "2/3"
},
{
"input": "3 2",
"output": "2/3"
},
{
"input": "3 3",
"output": "2/3"
},
{
"input": "3 4",
"output": "1/2"
},
{
"input": "3 5",
"output": "1/3"
},
{
"input": "3 6",
"output": "1/6"
},
{
"input": "4 1",
"output": "1/2"
},
{
"input": "4 3",
"output": "1/2"
},
{
"input": "4 4",
"output": "1/2"
},
{
"input": "4 5",
"output": "1/3"
},
{
"input": "4 6",
"output": "1/6"
},
{
"input": "5 1",
"output": "1/3"
},
{
"input": "5 2",
"output": "1/3"
},
{
"input": "5 3",
"output": "1/3"
},
{
"input": "5 4",
"output": "1/3"
},
{
"input": "5 5",
"output": "1/3"
},
{
"input": "5 6",
"output": "1/6"
},
{
"input": "6 1",
"output": "1/6"
},
{
"input": "6 2",
"output": "1/6"
},
{
"input": "6 3",
"output": "1/6"
},
{
"input": "6 4",
"output": "1/6"
},
{
"input": "6 5",
"output": "1/6"
},
{
"input": "6 6",
"output": "1/6"
}
] | 1,674,733,340
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 36
| 122
| 0
|
a,b = map(int, input().split())
n = 6-max([a,b]) + 1
if 6 % n == 0:
print(f"1/{6//n}")
elif n % 2 == 0:
print(f"{n//2}/{6//2}")
else:
print(f"{n}/6")
|
Title: Die Roll
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place.
But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams.
Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania.
It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
Input Specification:
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
Output Specification:
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
Demo Input:
['4 2\n']
Demo Output:
['1/2\n']
Note:
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
|
```python
a,b = map(int, input().split())
n = 6-max([a,b]) + 1
if 6 % n == 0:
print(f"1/{6//n}")
elif n % 2 == 0:
print(f"{n//2}/{6//2}")
else:
print(f"{n}/6")
```
| 3.939
|
979
|
A
|
Pizza, Pizza, Pizza!!!
|
PROGRAMMING
| 1,000
|
[
"math"
] | null | null |
Katie, Kuro and Shiro are best friends. They have known each other since kindergarten. That's why they often share everything with each other and work together on some very hard problems.
Today is Shiro's birthday. She really loves pizza so she wants to invite her friends to the pizza restaurant near her house to celebrate her birthday, including her best friends Katie and Kuro.
She has ordered a very big round pizza, in order to serve her many friends. Exactly $n$ of Shiro's friends are here. That's why she has to divide the pizza into $n + 1$ slices (Shiro also needs to eat). She wants the slices to be exactly the same size and shape. If not, some of her friends will get mad and go home early, and the party will be over.
Shiro is now hungry. She wants to cut the pizza with minimum of straight cuts. A cut is a straight segment, it might have ends inside or outside the pizza. But she is too lazy to pick up the calculator.
As usual, she will ask Katie and Kuro for help. But they haven't come yet. Could you help Shiro with this problem?
|
A single line contains one non-negative integer $n$ ($0 \le n \leq 10^{18}$) — the number of Shiro's friends. The circular pizza has to be sliced into $n + 1$ pieces.
|
A single integer — the number of straight cuts Shiro needs.
|
[
"3\n",
"4\n"
] |
[
"2",
"5"
] |
To cut the round pizza into quarters one has to make two cuts through the center with angle $90^{\circ}$ between them.
To cut the round pizza into five equal parts one has to make five cuts.
| 500
|
[
{
"input": "3",
"output": "2"
},
{
"input": "4",
"output": "5"
},
{
"input": "10",
"output": "11"
},
{
"input": "10000000000",
"output": "10000000001"
},
{
"input": "1234567891",
"output": "617283946"
},
{
"input": "7509213957",
"output": "3754606979"
},
{
"input": "99999999999999999",
"output": "50000000000000000"
},
{
"input": "21",
"output": "11"
},
{
"input": "712394453192",
"output": "712394453193"
},
{
"input": "172212168",
"output": "172212169"
},
{
"input": "822981260158260519",
"output": "411490630079130260"
},
{
"input": "28316250877914571",
"output": "14158125438957286"
},
{
"input": "779547116602436424",
"output": "779547116602436425"
},
{
"input": "578223540024979436",
"output": "578223540024979437"
},
{
"input": "335408917861648766",
"output": "335408917861648767"
},
{
"input": "74859962623690078",
"output": "74859962623690079"
},
{
"input": "252509054433933439",
"output": "126254527216966720"
},
{
"input": "760713016476190622",
"output": "760713016476190623"
},
{
"input": "919845426262703496",
"output": "919845426262703497"
},
{
"input": "585335723211047194",
"output": "585335723211047195"
},
{
"input": "522842184971407769",
"output": "261421092485703885"
},
{
"input": "148049062628894320",
"output": "148049062628894321"
},
{
"input": "84324828731963974",
"output": "84324828731963975"
},
{
"input": "354979173822804781",
"output": "177489586911402391"
},
{
"input": "1312150450968413",
"output": "656075225484207"
},
{
"input": "269587449430302150",
"output": "269587449430302151"
},
{
"input": "645762258982631926",
"output": "645762258982631927"
},
{
"input": "615812229161735895",
"output": "307906114580867948"
},
{
"input": "0",
"output": "0"
},
{
"input": "349993004923078531",
"output": "174996502461539266"
},
{
"input": "891351282707723851",
"output": "445675641353861926"
},
{
"input": "563324731189330734",
"output": "563324731189330735"
},
{
"input": "520974001910286909",
"output": "260487000955143455"
},
{
"input": "666729339802329204",
"output": "666729339802329205"
},
{
"input": "856674611404539671",
"output": "428337305702269836"
},
{
"input": "791809296303238499",
"output": "395904648151619250"
},
{
"input": "711066337317063338",
"output": "711066337317063339"
},
{
"input": "931356503492686566",
"output": "931356503492686567"
},
{
"input": "234122432773361866",
"output": "234122432773361867"
},
{
"input": "1000000000000000000",
"output": "1000000000000000001"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "3"
},
{
"input": "7",
"output": "4"
},
{
"input": "63",
"output": "32"
},
{
"input": "24",
"output": "25"
},
{
"input": "8",
"output": "9"
},
{
"input": "15",
"output": "8"
}
] | 1,527,334,199
| 599
|
Python 3
|
OK
|
TESTS
| 47
| 93
| 0
|
n = int(input())
n+=1
if(n==1):
ans = 0
elif(n%2==0):
ans = n//2
else:
ans = n
print(ans)
|
Title: Pizza, Pizza, Pizza!!!
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Katie, Kuro and Shiro are best friends. They have known each other since kindergarten. That's why they often share everything with each other and work together on some very hard problems.
Today is Shiro's birthday. She really loves pizza so she wants to invite her friends to the pizza restaurant near her house to celebrate her birthday, including her best friends Katie and Kuro.
She has ordered a very big round pizza, in order to serve her many friends. Exactly $n$ of Shiro's friends are here. That's why she has to divide the pizza into $n + 1$ slices (Shiro also needs to eat). She wants the slices to be exactly the same size and shape. If not, some of her friends will get mad and go home early, and the party will be over.
Shiro is now hungry. She wants to cut the pizza with minimum of straight cuts. A cut is a straight segment, it might have ends inside or outside the pizza. But she is too lazy to pick up the calculator.
As usual, she will ask Katie and Kuro for help. But they haven't come yet. Could you help Shiro with this problem?
Input Specification:
A single line contains one non-negative integer $n$ ($0 \le n \leq 10^{18}$) — the number of Shiro's friends. The circular pizza has to be sliced into $n + 1$ pieces.
Output Specification:
A single integer — the number of straight cuts Shiro needs.
Demo Input:
['3\n', '4\n']
Demo Output:
['2', '5']
Note:
To cut the round pizza into quarters one has to make two cuts through the center with angle $90^{\circ}$ between them.
To cut the round pizza into five equal parts one has to make five cuts.
|
```python
n = int(input())
n+=1
if(n==1):
ans = 0
elif(n%2==0):
ans = n//2
else:
ans = n
print(ans)
```
| 3
|
|
714
|
B
|
Filya and Homework
|
PROGRAMMING
| 1,200
|
[
"implementation",
"sortings"
] | null | null |
Today, hedgehog Filya went to school for the very first time! Teacher gave him a homework which Filya was unable to complete without your help.
Filya is given an array of non-negative integers *a*1,<=*a*2,<=...,<=*a**n*. First, he pick an integer *x* and then he adds *x* to some elements of the array (no more than once), subtract *x* from some other elements (also, no more than once) and do no change other elements. He wants all elements of the array to be equal.
Now he wonders if it's possible to pick such integer *x* and change some elements of the array using this *x* in order to make all elements equal.
|
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of integers in the Filya's array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109) — elements of the array.
|
If it's impossible to make all elements of the array equal using the process given in the problem statement, then print "NO" (without quotes) in the only line of the output. Otherwise print "YES" (without quotes).
|
[
"5\n1 3 3 2 1\n",
"5\n1 2 3 4 5\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample Filya should select *x* = 1, then add it to the first and the last elements of the array and subtract from the second and the third elements.
| 1,000
|
[
{
"input": "5\n1 3 3 2 1",
"output": "YES"
},
{
"input": "5\n1 2 3 4 5",
"output": "NO"
},
{
"input": "2\n1 2",
"output": "YES"
},
{
"input": "3\n1 2 3",
"output": "YES"
},
{
"input": "3\n1 1 1",
"output": "YES"
},
{
"input": "2\n1 1000000000",
"output": "YES"
},
{
"input": "4\n1 2 3 4",
"output": "NO"
},
{
"input": "10\n1 1 1 1 1 2 2 2 2 2",
"output": "YES"
},
{
"input": "2\n4 2",
"output": "YES"
},
{
"input": "4\n1 1 4 7",
"output": "YES"
},
{
"input": "3\n99999999 1 50000000",
"output": "YES"
},
{
"input": "1\n0",
"output": "YES"
},
{
"input": "5\n0 0 0 0 0",
"output": "YES"
},
{
"input": "4\n4 2 2 1",
"output": "NO"
},
{
"input": "3\n1 4 2",
"output": "NO"
},
{
"input": "3\n1 4 100",
"output": "NO"
},
{
"input": "3\n2 5 11",
"output": "NO"
},
{
"input": "3\n1 4 6",
"output": "NO"
},
{
"input": "3\n1 2 4",
"output": "NO"
},
{
"input": "3\n1 2 7",
"output": "NO"
},
{
"input": "5\n1 1 1 4 5",
"output": "NO"
},
{
"input": "2\n100000001 100000003",
"output": "YES"
},
{
"input": "3\n7 4 5",
"output": "NO"
},
{
"input": "3\n2 3 5",
"output": "NO"
},
{
"input": "3\n1 2 5",
"output": "NO"
},
{
"input": "2\n2 3",
"output": "YES"
},
{
"input": "3\n2 100 29",
"output": "NO"
},
{
"input": "3\n0 1 5",
"output": "NO"
},
{
"input": "3\n1 3 6",
"output": "NO"
},
{
"input": "3\n2 1 3",
"output": "YES"
},
{
"input": "3\n1 5 100",
"output": "NO"
},
{
"input": "3\n1 4 8",
"output": "NO"
},
{
"input": "3\n1 7 10",
"output": "NO"
},
{
"input": "3\n5 4 1",
"output": "NO"
},
{
"input": "3\n1 6 10",
"output": "NO"
},
{
"input": "4\n1 3 4 5",
"output": "NO"
},
{
"input": "3\n1 5 4",
"output": "NO"
},
{
"input": "5\n1 2 3 3 5",
"output": "NO"
},
{
"input": "3\n2 3 1",
"output": "YES"
},
{
"input": "3\n2 3 8",
"output": "NO"
},
{
"input": "3\n0 3 5",
"output": "NO"
},
{
"input": "3\n1 5 10",
"output": "NO"
},
{
"input": "3\n1 7 2",
"output": "NO"
},
{
"input": "3\n1 3 9",
"output": "NO"
},
{
"input": "3\n1 1 2",
"output": "YES"
},
{
"input": "7\n1 1 1 1 1 2 4",
"output": "NO"
},
{
"input": "5\n1 4 4 4 6",
"output": "NO"
},
{
"input": "5\n1 2 2 4 4",
"output": "NO"
},
{
"input": "3\n1 9 10",
"output": "NO"
},
{
"input": "8\n1 1 1 1 1 1 2 3",
"output": "YES"
},
{
"input": "3\n1 2 100",
"output": "NO"
},
{
"input": "3\n1 3 4",
"output": "NO"
},
{
"input": "3\n1 15 14",
"output": "NO"
},
{
"input": "3\n1 3 8",
"output": "NO"
},
{
"input": "3\n1 2 10",
"output": "NO"
},
{
"input": "4\n2 2 4 5",
"output": "NO"
},
{
"input": "3\n1 3 5",
"output": "YES"
},
{
"input": "5\n3 6 7 8 9",
"output": "NO"
},
{
"input": "3\n7 6 8",
"output": "YES"
},
{
"input": "3\n3 2 1",
"output": "YES"
},
{
"input": "5\n1 2 2 2 3",
"output": "YES"
},
{
"input": "3\n4 6 7",
"output": "NO"
},
{
"input": "3\n2 0 4",
"output": "YES"
},
{
"input": "4\n10 20 21 30",
"output": "NO"
},
{
"input": "4\n0 2 3 4",
"output": "NO"
},
{
"input": "3\n3 6 12",
"output": "NO"
},
{
"input": "5\n0 0 1 3 5",
"output": "NO"
},
{
"input": "3\n3 5 8",
"output": "NO"
},
{
"input": "3\n1 4 4",
"output": "YES"
},
{
"input": "4\n2 4 5 6",
"output": "NO"
}
] | 1,483,257,428
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 79
| 109
| 13,619,200
|
# print("Input n")
n = int(input())
# print("Input the elements")
a = [int(x) for x in input().split()]
s = set()
for x in a:
s.add(x)
thelist = list(s)
if len(thelist) == 1 or len(thelist) == 2:
print("YES")
elif len(thelist) > 3:
print("NO")
else:
a = min(thelist)
c = max(thelist)
b = sum(thelist) - a - c
if (a+c)/2 == b:
print("YES")
else:
print("NO")
|
Title: Filya and Homework
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today, hedgehog Filya went to school for the very first time! Teacher gave him a homework which Filya was unable to complete without your help.
Filya is given an array of non-negative integers *a*1,<=*a*2,<=...,<=*a**n*. First, he pick an integer *x* and then he adds *x* to some elements of the array (no more than once), subtract *x* from some other elements (also, no more than once) and do no change other elements. He wants all elements of the array to be equal.
Now he wonders if it's possible to pick such integer *x* and change some elements of the array using this *x* in order to make all elements equal.
Input Specification:
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of integers in the Filya's array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109) — elements of the array.
Output Specification:
If it's impossible to make all elements of the array equal using the process given in the problem statement, then print "NO" (without quotes) in the only line of the output. Otherwise print "YES" (without quotes).
Demo Input:
['5\n1 3 3 2 1\n', '5\n1 2 3 4 5\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample Filya should select *x* = 1, then add it to the first and the last elements of the array and subtract from the second and the third elements.
|
```python
# print("Input n")
n = int(input())
# print("Input the elements")
a = [int(x) for x in input().split()]
s = set()
for x in a:
s.add(x)
thelist = list(s)
if len(thelist) == 1 or len(thelist) == 2:
print("YES")
elif len(thelist) > 3:
print("NO")
else:
a = min(thelist)
c = max(thelist)
b = sum(thelist) - a - c
if (a+c)/2 == b:
print("YES")
else:
print("NO")
```
| 3
|
|
331
|
C1
|
The Great Julya Calendar
|
PROGRAMMING
| 1,100
|
[
"dp"
] | null | null |
Yet another Armageddon is coming! This time the culprit is the Julya tribe calendar.
The beavers in this tribe knew math very well. Smart Beaver, an archaeologist, got a sacred plate with a magic integer on it. The translation from Old Beaverish is as follows:
"May the Great Beaver bless you! May your chacres open and may your third eye never turn blind from beholding the Truth! Take the magic number, subtract a digit from it (the digit must occur in the number) and get a new magic number. Repeat this operation until a magic number equals zero. The Earth will stand on Three Beavers for the time, equal to the number of subtractions you perform!"
Distinct subtraction sequences can obviously get you different number of operations. But the Smart Beaver is ready to face the worst and is asking you to count the minimum number of operations he needs to reduce the magic number to zero.
|
The single line contains the magic integer *n*, 0<=≤<=*n*.
- to get 20 points, you need to solve the problem with constraints: *n*<=≤<=106 (subproblem C1); - to get 40 points, you need to solve the problem with constraints: *n*<=≤<=1012 (subproblems C1+C2); - to get 100 points, you need to solve the problem with constraints: *n*<=≤<=1018 (subproblems C1+C2+C3).
|
Print a single integer — the minimum number of subtractions that turns the magic number to a zero.
|
[
"24\n"
] |
[
"5"
] |
In the first test sample the minimum number of operations can be reached by the following sequence of subtractions:
| 20
|
[
{
"input": "24",
"output": "5"
},
{
"input": "0",
"output": "0"
},
{
"input": "3",
"output": "1"
},
{
"input": "8",
"output": "1"
},
{
"input": "9",
"output": "1"
},
{
"input": "10",
"output": "2"
},
{
"input": "31",
"output": "6"
},
{
"input": "701",
"output": "116"
},
{
"input": "222",
"output": "39"
},
{
"input": "156",
"output": "28"
},
{
"input": "12343",
"output": "1778"
},
{
"input": "7984",
"output": "1178"
},
{
"input": "1000000",
"output": "128207"
},
{
"input": "1",
"output": "1"
},
{
"input": "3",
"output": "1"
},
{
"input": "5",
"output": "1"
},
{
"input": "11",
"output": "3"
},
{
"input": "77",
"output": "14"
},
{
"input": "216",
"output": "37"
},
{
"input": "1468",
"output": "233"
},
{
"input": "1995",
"output": "305"
},
{
"input": "11010",
"output": "1568"
},
{
"input": "47320",
"output": "6746"
},
{
"input": "258634",
"output": "35024"
}
] | 1,637,156,069
| 2,147,483,647
|
Python 3
|
OK
|
TESTS1
| 24
| 404
| 0
|
n=int(input())
cnt=0
while n!=0:
x=n
n=list(str(n))
x=x-int(max(n))
n=x
cnt+=1
print(cnt)
|
Title: The Great Julya Calendar
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Yet another Armageddon is coming! This time the culprit is the Julya tribe calendar.
The beavers in this tribe knew math very well. Smart Beaver, an archaeologist, got a sacred plate with a magic integer on it. The translation from Old Beaverish is as follows:
"May the Great Beaver bless you! May your chacres open and may your third eye never turn blind from beholding the Truth! Take the magic number, subtract a digit from it (the digit must occur in the number) and get a new magic number. Repeat this operation until a magic number equals zero. The Earth will stand on Three Beavers for the time, equal to the number of subtractions you perform!"
Distinct subtraction sequences can obviously get you different number of operations. But the Smart Beaver is ready to face the worst and is asking you to count the minimum number of operations he needs to reduce the magic number to zero.
Input Specification:
The single line contains the magic integer *n*, 0<=≤<=*n*.
- to get 20 points, you need to solve the problem with constraints: *n*<=≤<=106 (subproblem C1); - to get 40 points, you need to solve the problem with constraints: *n*<=≤<=1012 (subproblems C1+C2); - to get 100 points, you need to solve the problem with constraints: *n*<=≤<=1018 (subproblems C1+C2+C3).
Output Specification:
Print a single integer — the minimum number of subtractions that turns the magic number to a zero.
Demo Input:
['24\n']
Demo Output:
['5']
Note:
In the first test sample the minimum number of operations can be reached by the following sequence of subtractions:
|
```python
n=int(input())
cnt=0
while n!=0:
x=n
n=list(str(n))
x=x-int(max(n))
n=x
cnt+=1
print(cnt)
```
| 3
|
|
94
|
A
|
Restoring Password
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] |
A. Restoring Password
|
2
|
256
|
Igor K. always used to trust his favorite Kashpirovsky Antivirus. That is why he didn't hesitate to download the link one of his groupmates sent him via QIP Infinium. The link was said to contain "some real funny stuff about swine influenza". The antivirus had no objections and Igor K. run the flash application he had downloaded. Immediately his QIP Infinium said: "invalid login/password".
Igor K. entered the ISQ from his additional account and looked at the info of his main one. His name and surname changed to "H1N1" and "Infected" correspondingly, and the "Additional Information" field contained a strange-looking binary code 80 characters in length, consisting of zeroes and ones. "I've been hacked" — thought Igor K. and run the Internet Exploiter browser to quickly type his favourite search engine's address.
Soon he learned that it really was a virus that changed ISQ users' passwords. Fortunately, he soon found out that the binary code was actually the encrypted password where each group of 10 characters stood for one decimal digit. Accordingly, the original password consisted of 8 decimal digits.
Help Igor K. restore his ISQ account by the encrypted password and encryption specification.
|
The input data contains 11 lines. The first line represents the binary code 80 characters in length. That is the code written in Igor K.'s ISQ account's info. Next 10 lines contain pairwise distinct binary codes 10 characters in length, corresponding to numbers 0, 1, ..., 9.
|
Print one line containing 8 characters — The password to Igor K.'s ISQ account. It is guaranteed that the solution exists.
|
[
"01001100100101100000010110001001011001000101100110010110100001011010100101101100\n0100110000\n0100110010\n0101100000\n0101100010\n0101100100\n0101100110\n0101101000\n0101101010\n0101101100\n0101101110\n",
"10101101111001000010100100011010101101110010110111011000100011011110010110001000\n1001000010\n1101111001\n1001000110\n1010110111\n0010110111\n1101001101\n1011000001\n1110010101\n1011011000\n0110001000\n"
] |
[
"12345678\n",
"30234919\n"
] |
none
| 500
|
[
{
"input": "01001100100101100000010110001001011001000101100110010110100001011010100101101100\n0100110000\n0100110010\n0101100000\n0101100010\n0101100100\n0101100110\n0101101000\n0101101010\n0101101100\n0101101110",
"output": "12345678"
},
{
"input": "10101101111001000010100100011010101101110010110111011000100011011110010110001000\n1001000010\n1101111001\n1001000110\n1010110111\n0010110111\n1101001101\n1011000001\n1110010101\n1011011000\n0110001000",
"output": "30234919"
},
{
"input": "00010101101110110101100110101100010101100010101111000101011010011010110010000011\n0101010110\n0001001101\n1001101011\n0000100011\n0010101111\n1110110101\n0001010110\n0110111000\n0000111110\n0010000011",
"output": "65264629"
},
{
"input": "10100100010010010011011001101000100100110110011010011001101011000100110110011010\n1111110011\n1001000111\n1001000100\n1100010011\n0110011010\n0010000001\n1110101110\n0010000110\n0010010011\n1010010001",
"output": "98484434"
},
{
"input": "00101100011111010001001000000110110000000110010011001111111010110010001011000000\n0010000001\n0110010011\n0010000010\n1011001000\n0011111110\n0110001000\n1111010001\n1011000000\n0000100110\n0010110001",
"output": "96071437"
},
{
"input": "10001110111110000001000010001010001110110000100010100010111101101101010000100010\n0000010110\n1101010111\n1000101111\n0001011110\n0011110101\n0101100100\n0110110101\n0000100010\n1000111011\n1110000001",
"output": "89787267"
},
{
"input": "10010100011001010001010101001101010100110100111011001010111100011001000010100000\n0011100000\n1001100100\n0001100100\n0010100000\n0101010011\n0010101110\n0010101111\n0100111011\n1001010001\n1111111110",
"output": "88447623"
},
{
"input": "01101100111000000101011011001110000001011111111000111111100001011010001001011001\n1000000101\n0101101000\n0101110101\n1101011110\n0000101100\n1111111000\n0001001101\n0110111011\n0110110011\n1001011001",
"output": "80805519"
},
{
"input": "11100011000100010110010011101010101010011110001100011010111110011000011010110111\n1110001100\n0110101111\n0100111010\n0101000000\n1001100001\n1010101001\n0000100010\n1010110111\n1100011100\n0100010110",
"output": "09250147"
},
{
"input": "10000110110000010100000010001000111101110110101011110111000100001101000000100010\n0000010100\n0000110001\n0110101011\n1101110001\n1000011011\n0000110100\n0011110111\n1000110010\n0000100010\n0000011011",
"output": "40862358"
},
{
"input": "01000000010000000110100101000110110000100100000001101100001000011111111001010001\n1011000010\n1111101010\n0111110011\n0000000110\n0000001001\n0001111111\n0110010010\n0100000001\n1011001000\n1001010001",
"output": "73907059"
},
{
"input": "01111000111110011001110101110011110000111110010001101100110110100111101011001101\n1110010001\n1001100000\n1100001000\n1010011110\n1011001101\n0111100011\n1101011100\n1110011001\n1111000011\n0010000101",
"output": "57680434"
},
{
"input": "01001100101000100010001011110001000101001001100010010000001001001100101001011111\n1001011111\n1110010111\n0111101011\n1000100010\n0011100101\n0100000010\n0010111100\n0100010100\n1001100010\n0100110010",
"output": "93678590"
},
{
"input": "01110111110000111011101010110110101011010100110111000011101101110101011101001000\n0110000101\n1010101101\n1101010111\n1101011100\n0100110111\n0111011111\n1100011001\n0111010101\n0000111011\n1101001000",
"output": "58114879"
},
{
"input": "11101001111100110101110011010100110011011110100111010110110011000111000011001101\n1100011100\n1100110101\n1011101000\n0011011110\n0011001101\n0100010001\n1110100111\n1010101100\n1110110100\n0101101100",
"output": "61146904"
},
{
"input": "10101010001011010001001001011000100101100001011011101010101110101010001010101000\n0010110101\n1010011010\n1010101000\n1011010001\n1010101011\n0010010110\n0110100010\n1010100101\n0001011011\n0110100001",
"output": "23558422"
},
{
"input": "11110101001100010000110100001110101011011111010100110001000001001010001001101111\n0101101100\n1001101111\n1010101101\n0100101000\n1111110000\n0101010010\n1100010000\n1111010100\n1101000011\n1011111111",
"output": "76827631"
},
{
"input": "10001100110000110111100011001101111110110011110101000011011100001101110000110111\n0011110101\n0101100011\n1000110011\n1011011001\n0111111011\n0101111011\n0000110111\n0100001110\n1000000111\n0110110111",
"output": "26240666"
},
{
"input": "10000100010000111101100100111101111011101000001001100001000110000010010000111101\n1001001111\n0000111101\n1000010001\n0110011101\n0110101000\n1011111001\n0111101110\n1000001001\n1101011111\n0001010100",
"output": "21067271"
},
{
"input": "01101111000110111100011011110001101111001010001100101000110001010101100100000010\n1010001100\n0011010011\n0101010110\n1111001100\n1100011000\n0100101100\n1001100101\n0110111100\n0011001101\n0100000010",
"output": "77770029"
},
{
"input": "10100111011010001011111000000111100000010101000011000010111101010000111010011101\n1010011101\n1010111111\n0110100110\n1111000100\n1110000001\n0000101111\n0011111000\n1000110001\n0101000011\n1010001011",
"output": "09448580"
},
{
"input": "10000111111000011111001010101010010011111001001111000010010100100011000010001100\n1101101110\n1001001111\n0000100101\n1100111010\n0010101010\n1110000110\n1100111101\n0010001100\n1110000001\n1000011111",
"output": "99411277"
},
{
"input": "10110110111011001111101100111100111111011011011011001111110110010011100010000111\n0111010011\n0111101100\n1001101010\n0101000101\n0010000111\n0011111101\n1011001111\n1101111000\n1011011011\n1001001110",
"output": "86658594"
},
{
"input": "01001001100101100011110110111100000110001111001000100000110111110010000000011000\n0100100110\n1000001011\n1000111110\n0000011000\n0101100011\n1101101111\n1111001000\n1011011001\n1000001101\n0010101000",
"output": "04536863"
},
{
"input": "10010100011101000011100100001100101111000010111100000010010000001001001101011101\n1001000011\n1101000011\n1001010001\n1101011101\n1000010110\n0011111101\n0010111100\n0000100100\n1010001000\n0101000110",
"output": "21066773"
},
{
"input": "01111111110101111111011111111111010010000001100000101000100100111001011010001001\n0111111111\n0101111111\n0100101101\n0001100000\n0011000101\n0011100101\n1101001000\n0010111110\n1010001001\n1111000111",
"output": "01063858"
},
{
"input": "00100011111001001010001111000011101000001110100000000100101011101000001001001010\n0010001111\n1001001010\n1010011001\n0011100111\n1000111000\n0011110000\n0000100010\n0001001010\n1111110111\n1110100000",
"output": "01599791"
},
{
"input": "11011101000100110100110011010101100011111010011010010011010010010010100110101111\n0100110100\n1001001010\n0001111101\n1101011010\n1101110100\n1100110101\n0110101111\n0110001111\n0001101000\n1010011010",
"output": "40579016"
},
{
"input": "10000010111101110110011000111110000011100110001111100100000111000011011000001011\n0111010100\n1010110110\n1000001110\n1110000100\n0110001111\n1101110110\n1100001101\n1000001011\n0000000101\n1001000001",
"output": "75424967"
},
{
"input": "11101100101110111110111011111010001111111111000001001001000010001111111110110010\n0101100001\n1111010011\n1110111110\n0100110100\n1110011111\n1000111111\n0010010000\n1110110010\n0011000010\n1111000001",
"output": "72259657"
},
{
"input": "01011110100101111010011000001001100000101001110011010111101011010000110110010101\n0100111100\n0101110011\n0101111010\n0110000010\n0101001111\n1101000011\n0110010101\n0111011010\n0001101110\n1001110011",
"output": "22339256"
},
{
"input": "01100000100101111000100001100010000110000010100100100001100000110011101001110000\n0101111000\n1001110000\n0001000101\n0110110111\n0010100100\n1000011000\n1101110110\n0110000010\n0001011010\n0011001110",
"output": "70554591"
},
{
"input": "11110011011000001001111100110101001000010100100000110011001110011111100100100001\n1010011000\n1111001101\n0100100001\n1111010011\n0100100000\n1001111110\n1010100111\n1000100111\n1000001001\n1100110011",
"output": "18124952"
},
{
"input": "10001001011000100101010110011101011001110010000001010110000101000100101111101010\n0101100001\n1100001100\n1111101010\n1000100101\n0010000001\n0100010010\n0010110110\n0101100111\n0000001110\n1101001110",
"output": "33774052"
},
{
"input": "00110010000111001001001100100010010111101011011110001011111100000101000100000001\n0100000001\n1011011110\n0010111111\n0111100111\n0100111001\n0000010100\n1001011110\n0111001001\n0100010011\n0011001000",
"output": "97961250"
},
{
"input": "01101100001000110101101100101111101110010011010111100011010100010001101000110101\n1001101001\n1000110101\n0110110000\n0111100100\n0011010111\n1110111001\n0001000110\n0000000100\n0001101001\n1011001011",
"output": "21954161"
},
{
"input": "10101110000011010110101011100000101101000110100000101101101101110101000011110010\n0110100000\n1011011011\n0011110010\n0001110110\n0010110100\n1100010010\n0001101011\n1010111000\n0011010110\n0111010100",
"output": "78740192"
},
{
"input": "11000101011100100111010000010001000001001100101100000011000000001100000101011010\n1100010101\n1111101011\n0101011010\n0100000100\n1000110111\n1100100111\n1100101100\n0111001000\n0000110000\n0110011111",
"output": "05336882"
},
{
"input": "11110100010000101110010110001000001011100101100010110011011011111110001100110110\n0101100010\n0100010001\n0000101110\n1100110110\n0101000101\n0011001011\n1111010001\n1000110010\n1111111000\n1010011111",
"output": "62020383"
},
{
"input": "00011001111110000011101011010001010111100110100101000110011111011001100000001100\n0111001101\n0101011110\n0001100111\n1101011111\n1110000011\n0000001100\n0111010001\n1101100110\n1010110100\n0110100101",
"output": "24819275"
},
{
"input": "10111110010011111001001111100101010111010011111001001110101000111110011001111101\n0011111001\n0101011101\n0100001010\n0001110010\n1001111101\n0011101010\n1111001001\n1100100001\n1001101000\n1011111001",
"output": "90010504"
},
{
"input": "01111101111100101010001001011110111001110111110111011111011110110111111011011111\n1111110111\n0010000101\n0110000100\n0111111011\n1011100111\n1100101010\n1011011111\n1100010001\n0111110111\n0010010111",
"output": "85948866"
},
{
"input": "01111100000111110000110010111001111100001001101010110010111010001000101001101010\n0100010101\n1011110101\n1010100100\n1010000001\n1001101010\n0101100110\n1000100010\n0111110000\n1100101110\n0110010110",
"output": "77874864"
},
{
"input": "11100011010000000010011110010111001011111001000111000000001000000000100111100101\n0000000010\n1110001101\n0011010101\n0111100101\n1001000111\n1101001111\n0111010110\n1100101111\n0110000000\n1101101011",
"output": "10374003"
},
{
"input": "01111011100111101110011001000110001111101000111110100100100001011111001011100010\n0110010100\n1100010001\n0111101110\n1001001000\n1010011011\n1000111110\n0010110101\n1011100010\n0101111100\n0110010001",
"output": "22955387"
},
{
"input": "11011010001100000011000100110011010101000110011110110000001100111100001000011111\n0000100010\n1000011111\n1101101000\n0110011110\n0011110000\n1100000011\n0010001100\n0101101000\n0001001100\n1101010100",
"output": "25893541"
},
{
"input": "01011001011111010010101111011001000011001100011101101111011011010011101011110110\n0100001100\n0101100101\n1111111011\n1111010010\n1111101100\n1100011101\n1011000011\n1101001110\n1011110110\n0110001010",
"output": "13805878"
},
{
"input": "11110011011000111111001100111110001111111100000010111100110100110011111111001101\n1111001101\n1001101010\n1100110010\n0011001111\n0001011110\n1000110011\n1000111111\n0110001010\n1001011101\n1100000010",
"output": "06369030"
},
{
"input": "01110011110010000011011001011000001000010110010110011001100001100110001100101000\n0000100001\n0110011000\n1010000010\n1110011101\n0111001111\n1100101000\n0010000011\n0110010000\n1100100101\n0110010110",
"output": "46909115"
},
{
"input": "00001011001111110111111111011111111101110101110100010111010010100101100001010110\n1111110111\n0001010110\n0111011011\n0111000001\n1010010110\n0101110100\n0001000101\n0000111000\n0110100001\n0000101100",
"output": "90005541"
}
] | 1,584,688,849
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 50
| 310
| 0
|
#!/usr/bin/python3
s, ma = input(), {}
[ma.update({input(): i}) for i in range(10)]
[print(ma[s[i:(i+10)]], end='') for i in range(0, len(s), 10)]
|
Title: Restoring Password
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Igor K. always used to trust his favorite Kashpirovsky Antivirus. That is why he didn't hesitate to download the link one of his groupmates sent him via QIP Infinium. The link was said to contain "some real funny stuff about swine influenza". The antivirus had no objections and Igor K. run the flash application he had downloaded. Immediately his QIP Infinium said: "invalid login/password".
Igor K. entered the ISQ from his additional account and looked at the info of his main one. His name and surname changed to "H1N1" and "Infected" correspondingly, and the "Additional Information" field contained a strange-looking binary code 80 characters in length, consisting of zeroes and ones. "I've been hacked" — thought Igor K. and run the Internet Exploiter browser to quickly type his favourite search engine's address.
Soon he learned that it really was a virus that changed ISQ users' passwords. Fortunately, he soon found out that the binary code was actually the encrypted password where each group of 10 characters stood for one decimal digit. Accordingly, the original password consisted of 8 decimal digits.
Help Igor K. restore his ISQ account by the encrypted password and encryption specification.
Input Specification:
The input data contains 11 lines. The first line represents the binary code 80 characters in length. That is the code written in Igor K.'s ISQ account's info. Next 10 lines contain pairwise distinct binary codes 10 characters in length, corresponding to numbers 0, 1, ..., 9.
Output Specification:
Print one line containing 8 characters — The password to Igor K.'s ISQ account. It is guaranteed that the solution exists.
Demo Input:
['01001100100101100000010110001001011001000101100110010110100001011010100101101100\n0100110000\n0100110010\n0101100000\n0101100010\n0101100100\n0101100110\n0101101000\n0101101010\n0101101100\n0101101110\n', '10101101111001000010100100011010101101110010110111011000100011011110010110001000\n1001000010\n1101111001\n1001000110\n1010110111\n0010110111\n1101001101\n1011000001\n1110010101\n1011011000\n0110001000\n']
Demo Output:
['12345678\n', '30234919\n']
Note:
none
|
```python
#!/usr/bin/python3
s, ma = input(), {}
[ma.update({input(): i}) for i in range(10)]
[print(ma[s[i:(i+10)]], end='') for i in range(0, len(s), 10)]
```
| 3.9225
|
828
|
A
|
Restaurant Tables
|
PROGRAMMING
| 1,200
|
[
"implementation"
] | null | null |
In a small restaurant there are *a* tables for one person and *b* tables for two persons.
It it known that *n* groups of people come today, each consisting of one or two people.
If a group consist of one person, it is seated at a vacant one-seater table. If there are none of them, it is seated at a vacant two-seater table. If there are none of them, it is seated at a two-seater table occupied by single person. If there are still none of them, the restaurant denies service to this group.
If a group consist of two people, it is seated at a vacant two-seater table. If there are none of them, the restaurant denies service to this group.
You are given a chronological order of groups coming. You are to determine the total number of people the restaurant denies service to.
|
The first line contains three integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=2·105, 1<=≤<=*a*,<=*b*<=≤<=2·105) — the number of groups coming to the restaurant, the number of one-seater and the number of two-seater tables.
The second line contains a sequence of integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=2) — the description of clients in chronological order. If *t**i* is equal to one, then the *i*-th group consists of one person, otherwise the *i*-th group consists of two people.
|
Print the total number of people the restaurant denies service to.
|
[
"4 1 2\n1 2 1 1\n",
"4 1 1\n1 1 2 1\n"
] |
[
"0\n",
"2\n"
] |
In the first example the first group consists of one person, it is seated at a vacant one-seater table. The next group occupies a whole two-seater table. The third group consists of one person, it occupies one place at the remaining two-seater table. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, all clients are served.
In the second example the first group consists of one person, it is seated at the vacant one-seater table. The next group consists of one person, it occupies one place at the two-seater table. It's impossible to seat the next group of two people, so the restaurant denies service to them. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, the restaurant denies service to 2 clients.
| 500
|
[
{
"input": "4 1 2\n1 2 1 1",
"output": "0"
},
{
"input": "4 1 1\n1 1 2 1",
"output": "2"
},
{
"input": "1 1 1\n1",
"output": "0"
},
{
"input": "2 1 2\n2 2",
"output": "0"
},
{
"input": "5 1 3\n1 2 2 2 1",
"output": "1"
},
{
"input": "7 6 1\n1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "10 2 1\n2 1 2 2 2 2 1 2 1 2",
"output": "13"
},
{
"input": "20 4 3\n2 2 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 1 2",
"output": "25"
},
{
"input": "1 1 1\n1",
"output": "0"
},
{
"input": "1 1 1\n2",
"output": "0"
},
{
"input": "1 200000 200000\n2",
"output": "0"
},
{
"input": "30 10 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2",
"output": "20"
},
{
"input": "4 1 2\n1 1 1 2",
"output": "2"
},
{
"input": "6 2 3\n1 2 1 1 1 2",
"output": "2"
},
{
"input": "6 1 4\n1 1 1 1 1 2",
"output": "2"
},
{
"input": "6 1 3\n1 1 1 1 2 2",
"output": "4"
},
{
"input": "6 1 3\n1 1 1 1 1 2",
"output": "2"
},
{
"input": "6 4 2\n2 1 2 2 1 1",
"output": "2"
},
{
"input": "3 10 1\n2 2 2",
"output": "4"
},
{
"input": "5 1 3\n1 1 1 1 2",
"output": "2"
},
{
"input": "5 2 2\n1 1 1 1 2",
"output": "2"
},
{
"input": "15 5 5\n1 1 1 1 1 1 1 1 1 1 2 2 2 2 2",
"output": "10"
},
{
"input": "5 1 2\n1 1 1 1 1",
"output": "0"
},
{
"input": "3 6 1\n2 2 2",
"output": "4"
},
{
"input": "5 3 3\n2 2 2 2 2",
"output": "4"
},
{
"input": "8 3 3\n1 1 1 1 1 1 2 2",
"output": "4"
},
{
"input": "5 1 2\n1 1 1 2 1",
"output": "2"
},
{
"input": "6 1 4\n1 2 2 1 2 2",
"output": "2"
},
{
"input": "2 1 1\n2 2",
"output": "2"
},
{
"input": "2 2 1\n2 2",
"output": "2"
},
{
"input": "5 8 1\n2 2 2 2 2",
"output": "8"
},
{
"input": "3 1 4\n1 1 2",
"output": "0"
},
{
"input": "7 1 5\n1 1 1 1 1 1 2",
"output": "2"
},
{
"input": "6 1 3\n1 1 1 2 1 1",
"output": "0"
},
{
"input": "6 1 2\n1 1 1 2 2 2",
"output": "6"
},
{
"input": "8 1 4\n2 1 1 1 2 2 2 2",
"output": "6"
},
{
"input": "4 2 3\n2 2 2 2",
"output": "2"
},
{
"input": "3 1 1\n1 1 2",
"output": "2"
},
{
"input": "5 1 1\n2 2 2 2 2",
"output": "8"
},
{
"input": "10 1 5\n1 1 1 1 1 2 2 2 2 2",
"output": "8"
},
{
"input": "5 1 2\n1 1 1 2 2",
"output": "4"
},
{
"input": "4 1 1\n1 1 2 2",
"output": "4"
},
{
"input": "7 1 2\n1 1 1 1 1 1 1",
"output": "2"
},
{
"input": "5 1 4\n2 2 2 2 2",
"output": "2"
},
{
"input": "6 2 3\n1 1 1 1 2 2",
"output": "2"
},
{
"input": "5 2 2\n2 1 2 1 2",
"output": "2"
},
{
"input": "4 6 1\n2 2 2 2",
"output": "6"
},
{
"input": "6 1 4\n1 1 2 1 1 2",
"output": "2"
},
{
"input": "7 1 3\n1 1 1 1 2 2 2",
"output": "6"
},
{
"input": "4 1 2\n1 1 2 2",
"output": "2"
},
{
"input": "3 1 2\n1 1 2",
"output": "0"
},
{
"input": "6 1 3\n1 2 1 1 2 1",
"output": "2"
},
{
"input": "6 1 3\n1 1 1 2 2 2",
"output": "4"
},
{
"input": "10 2 2\n1 1 1 1 2 2 2 2 2 2",
"output": "12"
},
{
"input": "10 1 4\n1 1 1 1 1 2 2 2 2 2",
"output": "10"
},
{
"input": "3 10 2\n2 2 2",
"output": "2"
},
{
"input": "4 3 1\n1 2 2 2",
"output": "4"
},
{
"input": "7 1 4\n1 1 1 1 1 2 2",
"output": "4"
},
{
"input": "3 4 1\n2 2 2",
"output": "4"
},
{
"input": "4 1 2\n2 1 1 2",
"output": "2"
},
{
"input": "10 1 2\n1 1 1 1 1 1 1 1 1 2",
"output": "6"
},
{
"input": "5 1 3\n1 1 2 1 2",
"output": "2"
},
{
"input": "6 1 3\n1 1 1 1 2 1",
"output": "2"
},
{
"input": "6 1 4\n1 1 1 2 2 2",
"output": "2"
},
{
"input": "7 1 2\n1 2 1 1 1 1 1",
"output": "3"
},
{
"input": "6 2 2\n1 1 1 1 1 1",
"output": "0"
},
{
"input": "6 1 2\n1 1 2 1 1 1",
"output": "2"
},
{
"input": "3 3 1\n2 2 1",
"output": "2"
},
{
"input": "8 4 2\n1 1 1 1 1 1 1 2",
"output": "2"
},
{
"input": "9 1 4\n1 1 1 1 1 2 2 2 2",
"output": "8"
},
{
"input": "5 10 1\n2 2 2 2 2",
"output": "8"
},
{
"input": "3 5 1\n2 2 2",
"output": "4"
},
{
"input": "5 100 1\n2 2 2 2 2",
"output": "8"
},
{
"input": "4 1 2\n1 1 1 1",
"output": "0"
},
{
"input": "4 1 1\n1 1 1 1",
"output": "1"
},
{
"input": "7 2 2\n1 1 1 1 1 1 1",
"output": "1"
}
] | 1,597,848,964
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 97
| 187
| 4,300,800
|
n, a, b = map(int, input().split())
ls = list(map(int, input().split()))
cnt = 0
ba = 0
for i in ls:
if i == 2:
if b > 0:
b -= 1
else:
cnt += 2
else:
if a > 0:
a -= 1
else:
if b > 0:
b -= 1
ba += 1
elif ba > 0:
ba -= 1
else:
cnt += 1
print(cnt)
|
Title: Restaurant Tables
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In a small restaurant there are *a* tables for one person and *b* tables for two persons.
It it known that *n* groups of people come today, each consisting of one or two people.
If a group consist of one person, it is seated at a vacant one-seater table. If there are none of them, it is seated at a vacant two-seater table. If there are none of them, it is seated at a two-seater table occupied by single person. If there are still none of them, the restaurant denies service to this group.
If a group consist of two people, it is seated at a vacant two-seater table. If there are none of them, the restaurant denies service to this group.
You are given a chronological order of groups coming. You are to determine the total number of people the restaurant denies service to.
Input Specification:
The first line contains three integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=2·105, 1<=≤<=*a*,<=*b*<=≤<=2·105) — the number of groups coming to the restaurant, the number of one-seater and the number of two-seater tables.
The second line contains a sequence of integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=2) — the description of clients in chronological order. If *t**i* is equal to one, then the *i*-th group consists of one person, otherwise the *i*-th group consists of two people.
Output Specification:
Print the total number of people the restaurant denies service to.
Demo Input:
['4 1 2\n1 2 1 1\n', '4 1 1\n1 1 2 1\n']
Demo Output:
['0\n', '2\n']
Note:
In the first example the first group consists of one person, it is seated at a vacant one-seater table. The next group occupies a whole two-seater table. The third group consists of one person, it occupies one place at the remaining two-seater table. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, all clients are served.
In the second example the first group consists of one person, it is seated at the vacant one-seater table. The next group consists of one person, it occupies one place at the two-seater table. It's impossible to seat the next group of two people, so the restaurant denies service to them. The fourth group consists of one person, he is seated at the remaining seat at the two-seater table. Thus, the restaurant denies service to 2 clients.
|
```python
n, a, b = map(int, input().split())
ls = list(map(int, input().split()))
cnt = 0
ba = 0
for i in ls:
if i == 2:
if b > 0:
b -= 1
else:
cnt += 2
else:
if a > 0:
a -= 1
else:
if b > 0:
b -= 1
ba += 1
elif ba > 0:
ba -= 1
else:
cnt += 1
print(cnt)
```
| 3
|
|
839
|
C
|
Journey
|
PROGRAMMING
| 1,500
|
[
"dfs and similar",
"dp",
"graphs",
"probabilities",
"trees"
] | null | null |
There are *n* cities and *n*<=-<=1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.
Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.
Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link [https://en.wikipedia.org/wiki/Expected_value](https://en.wikipedia.org/wiki/Expected_value).
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100000) — number of cities.
Then *n*<=-<=1 lines follow. The *i*-th line of these lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the cities connected by the *i*-th road.
It is guaranteed that one can reach any city from any other by the roads.
|
Print a number — the expected length of their journey. The journey starts in the city 1.
Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6.
Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if .
|
[
"4\n1 2\n1 3\n2 4\n",
"5\n1 2\n1 3\n3 4\n2 5\n"
] |
[
"1.500000000000000\n",
"2.000000000000000\n"
] |
In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.
In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.
| 1,500
|
[
{
"input": "4\n1 2\n1 3\n2 4",
"output": "1.500000000000000"
},
{
"input": "5\n1 2\n1 3\n3 4\n2 5",
"output": "2.000000000000000"
},
{
"input": "70\n1 25\n57 1\n18 1\n65 1\n38 1\n1 41\n1 5\n1 69\n1 3\n31 1\n1 8\n1 9\n53 1\n70 1\n45 1\n1 24\n1 42\n1 30\n1 12\n1 37\n64 1\n1 28\n1 58\n1 22\n11 1\n1 4\n1 27\n1 16\n1 21\n54 1\n1 51\n1 43\n29 1\n56 1\n1 39\n32 1\n1 15\n1 17\n1 19\n1 40\n36 1\n48 1\n63 1\n1 7\n1 47\n1 13\n1 46\n60 1\n1 6\n23 1\n20 1\n1 52\n2 1\n26 1\n1 59\n1 66\n10 1\n1 62\n1 68\n1 55\n50 1\n33 1\n44 1\n1 34\n1 35\n1 61\n14 1\n67 1\n49 1",
"output": "1.000000000000000"
},
{
"input": "10\n8 6\n9 10\n8 7\n1 4\n1 8\n9 5\n9 8\n2 5\n3 1",
"output": "1.500000000000000"
},
{
"input": "1",
"output": "0.000000000000000"
}
] | 1,666,884,799
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 40
| 1,091
| 27,136,000
|
from collections import defaultdict, deque
from typing import List, Dict
'''
DFS optimization:
https://www.python.org/doc/essays/graphs/
'''
n = int(input())
if n == 1:
print(0)
elif n == 2:
u, v = [int(x) for x in input().split()]
print(1)
else:
adj = defaultdict(list)
for edge in range(n - 1):
u, v = [int(x) for x in input().split()]
adj[u].append(v)
adj[v].append(u)
#curr_node, curr_prob, curr_level
bfs, visited, ans = deque([(1, 1, 0)]), set([1]), 0
while bfs:
curr_node, curr_prob, curr_level = bfs.popleft()
num_adj = 0
for nex_node in adj[curr_node]:
if nex_node not in visited: num_adj += 1
for nex_node in adj[curr_node]:
if nex_node not in visited:
visited.add(nex_node)
bfs.append((nex_node, curr_prob / num_adj, curr_level + 1))
if num_adj == 0:
ans += curr_prob * curr_level
print(ans)
|
Title: Journey
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* cities and *n*<=-<=1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.
Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.
Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link [https://en.wikipedia.org/wiki/Expected_value](https://en.wikipedia.org/wiki/Expected_value).
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100000) — number of cities.
Then *n*<=-<=1 lines follow. The *i*-th line of these lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the cities connected by the *i*-th road.
It is guaranteed that one can reach any city from any other by the roads.
Output Specification:
Print a number — the expected length of their journey. The journey starts in the city 1.
Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6.
Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if .
Demo Input:
['4\n1 2\n1 3\n2 4\n', '5\n1 2\n1 3\n3 4\n2 5\n']
Demo Output:
['1.500000000000000\n', '2.000000000000000\n']
Note:
In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.
In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.
|
```python
from collections import defaultdict, deque
from typing import List, Dict
'''
DFS optimization:
https://www.python.org/doc/essays/graphs/
'''
n = int(input())
if n == 1:
print(0)
elif n == 2:
u, v = [int(x) for x in input().split()]
print(1)
else:
adj = defaultdict(list)
for edge in range(n - 1):
u, v = [int(x) for x in input().split()]
adj[u].append(v)
adj[v].append(u)
#curr_node, curr_prob, curr_level
bfs, visited, ans = deque([(1, 1, 0)]), set([1]), 0
while bfs:
curr_node, curr_prob, curr_level = bfs.popleft()
num_adj = 0
for nex_node in adj[curr_node]:
if nex_node not in visited: num_adj += 1
for nex_node in adj[curr_node]:
if nex_node not in visited:
visited.add(nex_node)
bfs.append((nex_node, curr_prob / num_adj, curr_level + 1))
if num_adj == 0:
ans += curr_prob * curr_level
print(ans)
```
| 3
|
|
155
|
A
|
I_love_\%username\%
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him.
One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously).
Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him.
|
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated.
The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000.
|
Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests.
|
[
"5\n100 50 200 150 200\n",
"10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n"
] |
[
"2\n",
"4\n"
] |
In the first sample the performances number 2 and 3 are amazing.
In the second sample the performances number 2, 4, 9 and 10 are amazing.
| 500
|
[
{
"input": "5\n100 50 200 150 200",
"output": "2"
},
{
"input": "10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242",
"output": "4"
},
{
"input": "1\n6",
"output": "0"
},
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "5\n100 36 53 7 81",
"output": "2"
},
{
"input": "5\n7 36 53 81 100",
"output": "4"
},
{
"input": "5\n100 81 53 36 7",
"output": "4"
},
{
"input": "10\n8 6 3 4 9 10 7 7 1 3",
"output": "5"
},
{
"input": "10\n1627 1675 1488 1390 1812 1137 1746 1324 1952 1862",
"output": "6"
},
{
"input": "10\n1 3 3 4 6 7 7 8 9 10",
"output": "7"
},
{
"input": "10\n1952 1862 1812 1746 1675 1627 1488 1390 1324 1137",
"output": "9"
},
{
"input": "25\n1448 4549 2310 2725 2091 3509 1565 2475 2232 3989 4231 779 2967 2702 608 3739 721 1552 2767 530 3114 665 1940 48 4198",
"output": "5"
},
{
"input": "33\n1097 1132 1091 1104 1049 1038 1023 1080 1104 1029 1035 1061 1049 1060 1088 1106 1105 1087 1063 1076 1054 1103 1047 1041 1028 1120 1126 1063 1117 1110 1044 1093 1101",
"output": "5"
},
{
"input": "34\n821 5536 2491 6074 7216 9885 764 1603 778 8736 8987 771 617 1587 8943 7922 439 7367 4115 8886 7878 6899 8811 5752 3184 3401 9760 9400 8995 4681 1323 6637 6554 6498",
"output": "7"
},
{
"input": "68\n6764 6877 6950 6768 6839 6755 6726 6778 6699 6805 6777 6985 6821 6801 6791 6805 6940 6761 6677 6999 6911 6699 6959 6933 6903 6843 6972 6717 6997 6756 6789 6668 6735 6852 6735 6880 6723 6834 6810 6694 6780 6679 6698 6857 6826 6896 6979 6968 6957 6988 6960 6700 6919 6892 6984 6685 6813 6678 6715 6857 6976 6902 6780 6686 6777 6686 6842 6679",
"output": "9"
},
{
"input": "60\n9000 9014 9034 9081 9131 9162 9174 9199 9202 9220 9221 9223 9229 9235 9251 9260 9268 9269 9270 9298 9307 9309 9313 9323 9386 9399 9407 9495 9497 9529 9531 9544 9614 9615 9627 9627 9643 9654 9656 9657 9685 9699 9701 9736 9745 9758 9799 9827 9843 9845 9854 9854 9885 9891 9896 9913 9942 9963 9986 9992",
"output": "57"
},
{
"input": "100\n7 61 12 52 41 16 34 99 30 44 48 89 31 54 21 1 48 52 61 15 35 87 21 76 64 92 44 81 16 93 84 92 32 15 68 76 53 39 26 4 11 26 7 4 99 99 61 65 55 85 65 67 47 39 2 74 63 49 98 87 5 94 22 30 25 42 31 84 49 23 89 60 16 26 92 27 9 57 75 61 94 35 83 47 99 100 63 24 91 88 79 10 15 45 22 64 3 11 89 83",
"output": "4"
},
{
"input": "100\n9999 9999 9999 9998 9998 9998 9997 9996 9996 9995 9993 9993 9991 9990 9989 9986 9984 9984 9983 9981 9981 9980 9980 9980 9979 9977 9977 9977 9977 9977 9976 9976 9975 9975 9973 9972 9972 9972 9972 9971 9969 9969 9969 9968 9967 9965 9962 9962 9962 9962 9960 9958 9958 9955 9954 9954 9954 9954 9950 9949 9949 9947 9943 9943 9940 9940 9939 9937 9937 9937 9936 9935 9932 9932 9931 9929 9927 9927 9926 9923 9919 9919 9918 9918 9918 9917 9917 9916 9916 9915 9914 9911 9910 9907 9907 9906 9905 9905 9904 9901",
"output": "57"
},
{
"input": "100\n158 159 157 156 155 154 160 153 161 152 162 163 151 164 150 165 149 148 147 166 146 167 145 144 143 142 168 141 169 170 140 139 138 137 171 136 135 134 172 173 174 133 175 132 177 178 131 179 180 130 129 181 128 127 182 126 183 125 124 184 123 122 121 120 119 118 117 185 186 187 188 189 116 190 115 191 192 193 114 113 112 111 110 109 108 194 195 107 106 105 196 197 104 198 199 103 102 200 101 100",
"output": "99"
},
{
"input": "2\n0 10000",
"output": "1"
},
{
"input": "2\n5 5",
"output": "0"
},
{
"input": "2\n1 1",
"output": "0"
},
{
"input": "2\n10 10",
"output": "0"
},
{
"input": "1\n0",
"output": "0"
}
] | 1,688,843,499
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 92
| 0
|
#https://codeforces.com/problemset/problem/155/A
number_of_contests = int(input())
contest_result = [int(x) for x in input().split(" ")]
max_result, min_result = contest_result[0], contest_result[0]
amazing_results = 0
for result in contest_result:
if(result > max_result):
max_result = result
amazing_results +=1
elif(result < min_result):
min_result = result
amazing_results +=1
print(amazing_results)
|
Title: I_love_\%username\%
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him.
One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously).
Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him.
Input Specification:
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated.
The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000.
Output Specification:
Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests.
Demo Input:
['5\n100 50 200 150 200\n', '10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n']
Demo Output:
['2\n', '4\n']
Note:
In the first sample the performances number 2 and 3 are amazing.
In the second sample the performances number 2, 4, 9 and 10 are amazing.
|
```python
#https://codeforces.com/problemset/problem/155/A
number_of_contests = int(input())
contest_result = [int(x) for x in input().split(" ")]
max_result, min_result = contest_result[0], contest_result[0]
amazing_results = 0
for result in contest_result:
if(result > max_result):
max_result = result
amazing_results +=1
elif(result < min_result):
min_result = result
amazing_results +=1
print(amazing_results)
```
| 3
|
|
462
|
B
|
Appleman and Card Game
|
PROGRAMMING
| 1,300
|
[
"greedy"
] | null | null |
Appleman has *n* cards. Each card has an uppercase letter written on it. Toastman must choose *k* cards from Appleman's cards. Then Appleman should give Toastman some coins depending on the chosen cards. Formally, for each Toastman's card *i* you should calculate how much Toastman's cards have the letter equal to letter on *i*th, then sum up all these quantities, such a number of coins Appleman should give to Toastman.
Given the description of Appleman's cards. What is the maximum number of coins Toastman can get?
|
The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105). The next line contains *n* uppercase letters without spaces — the *i*-th letter describes the *i*-th card of the Appleman.
|
Print a single integer – the answer to the problem.
|
[
"15 10\nDZFDFZDFDDDDDDF\n",
"6 4\nYJSNPI\n"
] |
[
"82\n",
"4\n"
] |
In the first test example Toastman can choose nine cards with letter D and one additional card with any letter. For each card with D he will get 9 coins and for the additional card he will get 1 coin.
| 1,000
|
[
{
"input": "15 10\nDZFDFZDFDDDDDDF",
"output": "82"
},
{
"input": "6 4\nYJSNPI",
"output": "4"
},
{
"input": "5 3\nAOWBY",
"output": "3"
},
{
"input": "1 1\nV",
"output": "1"
},
{
"input": "2 1\nWT",
"output": "1"
},
{
"input": "2 2\nBL",
"output": "2"
},
{
"input": "5 1\nFACJT",
"output": "1"
},
{
"input": "5 5\nMJDIJ",
"output": "7"
},
{
"input": "15 5\nAZBIPTOFTJCJJIK",
"output": "13"
},
{
"input": "100 1\nEVEEVEEEGGECFEHEFVFVFHVHEEEEEFCVEEEEEEVFVEEVEEHEEVEFEVVEFEEEFEVECEHGHEEFGEEVCEECCECEFHEVEEEEEEGEEHVH",
"output": "1"
},
{
"input": "100 15\nKKTFFUTFCKUIKKKKFIFFKTUKUUKUKKIKKKTIFKTKUCFFKKKIIKKKKKKTFKFKKIRKKKFKUUKIKUUUFFKKKKTUZKITUIKKIKUKKTIK",
"output": "225"
},
{
"input": "100 50\nYYIYYAAAIEAAYAYAEAIIIAAEAAYEAEYYYIAEYAYAYYAAAIAYAEAAYAYYIYAAYYAAAAAAIYYYAAYAAEAAYAIEIYIYAYAYAYIIAAEY",
"output": "1972"
},
{
"input": "100 90\nFAFAOOAOOAFAOTFAFAFFATAAAOFAAOAFBAAAFBOAOFFFOAOAFAPFOFAOFAAFOAAAAFAAFOFAAOFPPAAOOAAOOFFOFFFOFAOTOFAF",
"output": "2828"
},
{
"input": "100 99\nBFFBBFBFBQFFFFFQBFFBFFBQFBFQFBBFQFFFBFFFBFQFQFBFFBBFYQFBFFFFFFFBQQFQBFBQBQFFFBQQFFFBQFYFBFBFFFBBBQQY",
"output": "3713"
},
{
"input": "100 100\nMQSBDAJABILIBCUEOWGWCEXMUTEYQKAIWGINXVQEOFDUBSVULROQHQRZZAALVQFEFRAAAYUIMGCAFQGIAEFBETRECGSFQJNXHHDN",
"output": "514"
},
{
"input": "100 50\nBMYIXQSJNHGFVFPJBIOBXIKSFNUFPVODCUBQYSIIQNVNXXCWXWRHKFEUPPIIDDGRDBJLZDCBMNJMYRMWFIHOSTDJJHXHPNRKWNFD",
"output": "328"
},
{
"input": "100 50\nENFNEMLJEMDMFMNNGNIMNINALGLLLAEMENEMNLMMIEIJNAINBJEJMFJLLIMINELGFLAIAMJMHMGNLIEFJIEEFEFGLLLDLMEAEIMM",
"output": "748"
}
] | 1,593,481,655
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 41
| 171
| 7,680,000
|
n,k = map(int,input().split())
lst = list(input())
uni = set(lst)
count = []
for i in uni :
x = lst.count(i)
count.append(x)
count.sort()
count.reverse()
##print(count)
ans = []
while k > 0 :
for i in count :
if i <= k :
ans.append(i)
k -= i
count.remove(i)
break
elif i > k :
ans.append(k)
k = 0
break
ans = [i ** 2 for i in ans]
##print(ans)
print(sum(ans))
|
Title: Appleman and Card Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Appleman has *n* cards. Each card has an uppercase letter written on it. Toastman must choose *k* cards from Appleman's cards. Then Appleman should give Toastman some coins depending on the chosen cards. Formally, for each Toastman's card *i* you should calculate how much Toastman's cards have the letter equal to letter on *i*th, then sum up all these quantities, such a number of coins Appleman should give to Toastman.
Given the description of Appleman's cards. What is the maximum number of coins Toastman can get?
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105). The next line contains *n* uppercase letters without spaces — the *i*-th letter describes the *i*-th card of the Appleman.
Output Specification:
Print a single integer – the answer to the problem.
Demo Input:
['15 10\nDZFDFZDFDDDDDDF\n', '6 4\nYJSNPI\n']
Demo Output:
['82\n', '4\n']
Note:
In the first test example Toastman can choose nine cards with letter D and one additional card with any letter. For each card with D he will get 9 coins and for the additional card he will get 1 coin.
|
```python
n,k = map(int,input().split())
lst = list(input())
uni = set(lst)
count = []
for i in uni :
x = lst.count(i)
count.append(x)
count.sort()
count.reverse()
##print(count)
ans = []
while k > 0 :
for i in count :
if i <= k :
ans.append(i)
k -= i
count.remove(i)
break
elif i > k :
ans.append(k)
k = 0
break
ans = [i ** 2 for i in ans]
##print(ans)
print(sum(ans))
```
| 3
|
|
699
|
B
|
One Bomb
|
PROGRAMMING
| 1,400
|
[
"implementation"
] | null | null |
You are given a description of a depot. It is a rectangular checkered field of *n*<=×<=*m* size. Each cell in a field can be empty (".") or it can be occupied by a wall ("*").
You have one bomb. If you lay the bomb at the cell (*x*,<=*y*), then after triggering it will wipe out all walls in the row *x* and all walls in the column *y*.
You are to determine if it is possible to wipe out all walls in the depot by placing and triggering exactly one bomb. The bomb can be laid both in an empty cell or in a cell occupied by a wall.
|
The first line contains two positive integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the number of rows and columns in the depot field.
The next *n* lines contain *m* symbols "." and "*" each — the description of the field. *j*-th symbol in *i*-th of them stands for cell (*i*,<=*j*). If the symbol is equal to ".", then the corresponding cell is empty, otherwise it equals "*" and the corresponding cell is occupied by a wall.
|
If it is impossible to wipe out all walls by placing and triggering exactly one bomb, then print "NO" in the first line (without quotes).
Otherwise print "YES" (without quotes) in the first line and two integers in the second line — the coordinates of the cell at which the bomb should be laid. If there are multiple answers, print any of them.
|
[
"3 4\n.*..\n....\n.*..\n",
"3 3\n..*\n.*.\n*..\n",
"6 5\n..*..\n..*..\n*****\n..*..\n..*..\n..*..\n"
] |
[
"YES\n1 2\n",
"NO\n",
"YES\n3 3\n"
] |
none
| 1,000
|
[
{
"input": "3 4\n.*..\n....\n.*..",
"output": "YES\n1 2"
},
{
"input": "3 3\n..*\n.*.\n*..",
"output": "NO"
},
{
"input": "6 5\n..*..\n..*..\n*****\n..*..\n..*..\n..*..",
"output": "YES\n3 3"
},
{
"input": "1 10\n**********",
"output": "YES\n1 1"
},
{
"input": "10 1\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*",
"output": "YES\n1 1"
},
{
"input": "10 10\n.........*\n.........*\n........**\n.........*\n.........*\n.........*\n.........*\n.........*\n.........*\n.........*",
"output": "YES\n3 10"
},
{
"input": "10 10\n.........*\n.........*\n.........*\n.........*\n.........*\n.........*\n.........*\n.........*\n.........*\n.........*",
"output": "YES\n1 10"
},
{
"input": "2 2\n.*\n*.",
"output": "YES\n2 2"
},
{
"input": "4 4\n....\n...*\n....\n*..*",
"output": "YES\n4 4"
},
{
"input": "4 4\n*...\n*...\n....\n****",
"output": "YES\n4 1"
},
{
"input": "1 1\n*",
"output": "YES\n1 1"
},
{
"input": "1 1\n.",
"output": "YES\n1 1"
},
{
"input": "1 2\n.*",
"output": "YES\n1 2"
},
{
"input": "2 1\n.\n*",
"output": "YES\n1 1"
},
{
"input": "2 2\n**\n**",
"output": "NO"
},
{
"input": "3 1\n*\n*\n*",
"output": "YES\n1 1"
},
{
"input": "3 2\n*.\n.*\n.*",
"output": "YES\n1 2"
},
{
"input": "3 3\n***\n***\n***",
"output": "NO"
},
{
"input": "2 2\n..\n.*",
"output": "YES\n1 2"
},
{
"input": "6 5\n..*..\n..*..\n**.**\n..*..\n..*..\n..*..",
"output": "YES\n3 3"
},
{
"input": "3 3\n.*.\n*.*\n.*.",
"output": "YES\n2 2"
},
{
"input": "4 4\n*...\n....\n....\n...*",
"output": "YES\n4 1"
},
{
"input": "2 4\n...*\n...*",
"output": "YES\n1 4"
},
{
"input": "2 2\n..\n..",
"output": "YES\n1 1"
},
{
"input": "3 3\n..*\n.*.\n..*",
"output": "YES\n2 3"
},
{
"input": "2 2\n*.\n.*",
"output": "YES\n2 1"
},
{
"input": "3 2\n.*\n*.\n.*",
"output": "YES\n2 2"
},
{
"input": "3 3\n***\n.*.\n.*.",
"output": "YES\n1 2"
},
{
"input": "4 4\n*.*.\n..*.\n.***\n..*.",
"output": "NO"
},
{
"input": "2 3\n..*\n**.",
"output": "YES\n2 3"
},
{
"input": "3 2\n*.\n.*\n*.",
"output": "YES\n2 1"
},
{
"input": "4 4\n..*.\n**.*\n..*.\n..*.",
"output": "YES\n2 3"
},
{
"input": "3 3\n*..\n*..\n***",
"output": "YES\n3 1"
},
{
"input": "3 3\n...\n*.*\n.*.",
"output": "YES\n2 2"
},
{
"input": "3 2\n..\n..\n**",
"output": "YES\n3 1"
},
{
"input": "3 4\n...*\n...*\n...*",
"output": "YES\n1 4"
},
{
"input": "5 5\n..*..\n..*..\n**.**\n..*..\n..*..",
"output": "YES\n3 3"
},
{
"input": "6 5\n..*..\n..*..\n*****\n..*..\n..*..\n..*.*",
"output": "NO"
},
{
"input": "3 3\n...\n.*.\n..*",
"output": "YES\n3 2"
},
{
"input": "3 5\n....*\n....*\n....*",
"output": "YES\n1 5"
},
{
"input": "3 3\n...\n...\n.*.",
"output": "YES\n1 2"
},
{
"input": "3 3\n*..\n...\n..*",
"output": "YES\n3 1"
},
{
"input": "2 3\n..*\n..*",
"output": "YES\n1 3"
},
{
"input": "2 2\n**\n.*",
"output": "YES\n1 2"
},
{
"input": "3 3\n..*\n*..\n*..",
"output": "YES\n1 1"
},
{
"input": "5 4\n.*..\n*.**\n.*..\n.*..\n.*..",
"output": "YES\n2 2"
},
{
"input": "6 5\n*.*..\n..*..\n*****\n..*..\n..*..\n..*..",
"output": "NO"
},
{
"input": "4 4\n.*..\n*.**\n....\n.*..",
"output": "YES\n2 2"
},
{
"input": "3 5\n....*\n....*\n*****",
"output": "YES\n3 5"
},
{
"input": "3 3\n..*\n*..\n..*",
"output": "YES\n2 3"
},
{
"input": "6 6\n..*...\n......\n......\n......\n......\n*....*",
"output": "YES\n6 3"
},
{
"input": "4 4\n.*..\n*...\n.*..\n.*..",
"output": "YES\n2 2"
},
{
"input": "3 3\n...\n..*\n.*.",
"output": "YES\n3 3"
},
{
"input": "3 2\n.*\n*.\n*.",
"output": "YES\n1 1"
},
{
"input": "4 2\n**\n.*\n.*\n.*",
"output": "YES\n1 2"
},
{
"input": "5 5\n*...*\n.....\n.....\n.....\n..*..",
"output": "YES\n1 3"
},
{
"input": "3 3\n**.\n...\n..*",
"output": "YES\n1 3"
},
{
"input": "3 3\n*.*\n*..\n*.*",
"output": "NO"
},
{
"input": "5 4\n....\n....\n*..*\n....\n.*..",
"output": "YES\n3 2"
},
{
"input": "5 5\n...*.\n...*.\n...*.\n...*.\n***.*",
"output": "YES\n5 4"
},
{
"input": "5 5\n*****\n*****\n*****\n*****\n*****",
"output": "NO"
},
{
"input": "3 3\n.*.\n..*\n.*.",
"output": "YES\n2 2"
},
{
"input": "3 3\n*.*\n...\n*.*",
"output": "NO"
},
{
"input": "2 3\n.*.\n*.*",
"output": "YES\n2 2"
},
{
"input": "3 10\n.......*..\n........*.\n.........*",
"output": "NO"
},
{
"input": "3 3\n.*.\n.*.\n.**",
"output": "YES\n3 2"
},
{
"input": "4 4\n*...\n....\n....\n..**",
"output": "YES\n4 1"
},
{
"input": "4 4\n****\n****\n****\n****",
"output": "NO"
},
{
"input": "3 2\n.*\n.*\n*.",
"output": "YES\n3 2"
},
{
"input": "3 3\n..*\n..*\n**.",
"output": "YES\n3 3"
},
{
"input": "6 3\n...\n...\n...\n...\n**.\n.*.",
"output": "YES\n5 2"
},
{
"input": "3 4\n****\n..*.\n..*.",
"output": "YES\n1 3"
},
{
"input": "5 5\n*..*.\n.....\n.....\n.....\n...*.",
"output": "YES\n1 4"
},
{
"input": "6 5\n..*..\n..*..\n.*...\n..*..\n..*..\n..*..",
"output": "YES\n3 3"
}
] | 1,570,859,568
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 172
| 811
| 1,638,400
|
import sys
input= lambda:sys.stdin.readline()
MOD = 1000000007
ii = lambda: int(input())
si = lambda: input()
dgl = lambda: list(map(int, input()))
f = lambda: list(map(int, input().split()))
il = lambda: list(map(int, input().split()))
ls = lambda: list(input())
lr=[]
lc=[]
l=[]
n,m=f()
cnt=0
for _ in range(n):
x=si()
cnt=x.count('*')
lr.append(cnt)
l.append(x)
for i in range(m):
cnt=0
for j in range(n):
cnt+=(l[j][i]=='*')
lc.append(cnt)
tcnt=sum(lr)
for i in range(n):
for j in range(m):
if (lr[i]+lc[j]-(l[i][j]=='*'))==tcnt:
print('YES')
print(i+1,j+1)
exit()
print('NO')
|
Title: One Bomb
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a description of a depot. It is a rectangular checkered field of *n*<=×<=*m* size. Each cell in a field can be empty (".") or it can be occupied by a wall ("*").
You have one bomb. If you lay the bomb at the cell (*x*,<=*y*), then after triggering it will wipe out all walls in the row *x* and all walls in the column *y*.
You are to determine if it is possible to wipe out all walls in the depot by placing and triggering exactly one bomb. The bomb can be laid both in an empty cell or in a cell occupied by a wall.
Input Specification:
The first line contains two positive integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the number of rows and columns in the depot field.
The next *n* lines contain *m* symbols "." and "*" each — the description of the field. *j*-th symbol in *i*-th of them stands for cell (*i*,<=*j*). If the symbol is equal to ".", then the corresponding cell is empty, otherwise it equals "*" and the corresponding cell is occupied by a wall.
Output Specification:
If it is impossible to wipe out all walls by placing and triggering exactly one bomb, then print "NO" in the first line (without quotes).
Otherwise print "YES" (without quotes) in the first line and two integers in the second line — the coordinates of the cell at which the bomb should be laid. If there are multiple answers, print any of them.
Demo Input:
['3 4\n.*..\n....\n.*..\n', '3 3\n..*\n.*.\n*..\n', '6 5\n..*..\n..*..\n*****\n..*..\n..*..\n..*..\n']
Demo Output:
['YES\n1 2\n', 'NO\n', 'YES\n3 3\n']
Note:
none
|
```python
import sys
input= lambda:sys.stdin.readline()
MOD = 1000000007
ii = lambda: int(input())
si = lambda: input()
dgl = lambda: list(map(int, input()))
f = lambda: list(map(int, input().split()))
il = lambda: list(map(int, input().split()))
ls = lambda: list(input())
lr=[]
lc=[]
l=[]
n,m=f()
cnt=0
for _ in range(n):
x=si()
cnt=x.count('*')
lr.append(cnt)
l.append(x)
for i in range(m):
cnt=0
for j in range(n):
cnt+=(l[j][i]=='*')
lc.append(cnt)
tcnt=sum(lr)
for i in range(n):
for j in range(m):
if (lr[i]+lc[j]-(l[i][j]=='*'))==tcnt:
print('YES')
print(i+1,j+1)
exit()
print('NO')
```
| 3
|
|
37
|
A
|
Towers
|
PROGRAMMING
| 1,000
|
[
"sortings"
] |
A. Towers
|
2
|
256
|
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
|
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
|
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
|
[
"3\n1 2 3\n",
"4\n6 5 6 7\n"
] |
[
"1 3\n",
"2 3\n"
] |
none
| 500
|
[
{
"input": "3\n1 2 3",
"output": "1 3"
},
{
"input": "4\n6 5 6 7",
"output": "2 3"
},
{
"input": "4\n3 2 1 1",
"output": "2 3"
},
{
"input": "4\n1 2 3 3",
"output": "2 3"
},
{
"input": "3\n20 22 36",
"output": "1 3"
},
{
"input": "25\n47 30 94 41 45 20 96 51 110 129 24 116 9 47 32 82 105 114 116 75 154 151 70 42 162",
"output": "2 23"
},
{
"input": "45\n802 664 442 318 318 827 417 878 711 291 231 414 807 553 657 392 279 202 386 606 465 655 658 112 887 15 25 502 95 44 679 775 942 609 209 871 31 234 4 231 150 110 22 823 193",
"output": "2 43"
},
{
"input": "63\n93 180 116 7 8 179 268 279 136 94 221 153 264 190 278 19 19 63 153 26 158 225 25 49 89 218 111 149 255 225 197 122 243 80 3 224 107 178 202 17 53 92 69 42 228 24 81 205 95 8 265 82 228 156 127 241 172 159 106 60 67 155 111",
"output": "2 57"
},
{
"input": "83\n246 535 994 33 390 927 321 97 223 922 812 705 79 80 977 457 476 636 511 137 6 360 815 319 717 674 368 551 714 628 278 713 761 553 184 414 623 753 428 214 581 115 439 61 677 216 772 592 187 603 658 310 439 559 870 376 109 321 189 337 277 26 70 734 796 907 979 693 570 227 345 650 737 633 701 914 134 403 972 940 371 6 642",
"output": "2 80"
},
{
"input": "105\n246 57 12 204 165 123 246 68 191 310 3 152 386 333 374 257 158 104 333 50 80 290 8 340 101 76 221 316 388 289 138 359 316 26 93 290 105 178 81 195 41 196 218 180 244 292 187 97 315 323 174 119 248 239 92 312 31 2 101 180 307 170 338 314 163 281 217 31 142 238 280 190 190 156 70 74 329 113 151 8 141 313 366 40 253 116 168 124 135 230 294 266 353 389 371 359 195 200 183 237 93 102 315 118 188",
"output": "2 92"
},
{
"input": "123\n112 277 170 247 252 115 157 293 256 143 196 90 12 164 164 42 8 223 167 109 175 232 239 111 148 51 9 254 93 32 268 162 231 91 47 162 161 191 195 145 247 292 129 199 230 94 144 217 18 205 176 20 143 198 121 243 211 262 230 277 195 255 108 290 220 275 158 2 286 200 60 267 278 207 123 150 123 116 131 13 12 226 33 244 30 275 263 45 158 192 254 149 242 176 62 224 221 288 250 160 155 225 132 143 276 293 218 145 197 175 33 129 79 206 210 192 222 262 190 52 274 243 233",
"output": "3 101"
},
{
"input": "5\n5 5 5 5 5",
"output": "5 1"
},
{
"input": "3\n1000 1000 1000",
"output": "3 1"
},
{
"input": "1\n1000",
"output": "1 1"
},
{
"input": "1\n1",
"output": "1 1"
},
{
"input": "5\n1 1000 1000 1000 1000",
"output": "4 2"
},
{
"input": "5\n1000 1000 1000 8 7",
"output": "3 3"
}
] | 1,587,289,564
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 61
| 248
| 409,600
|
from collections import Counter
n = int(input())
l = list(map(int,input().split()))
count = Counter(l)
_max = 0
for i in count.keys():
_max = max(_max,count[i])
print(_max, len(set(l)))
|
Title: Towers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
Input Specification:
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
Output Specification:
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
Demo Input:
['3\n1 2 3\n', '4\n6 5 6 7\n']
Demo Output:
['1 3\n', '2 3\n']
Note:
none
|
```python
from collections import Counter
n = int(input())
l = list(map(int,input().split()))
count = Counter(l)
_max = 0
for i in count.keys():
_max = max(_max,count[i])
print(_max, len(set(l)))
```
| 3.937237
|
14
|
B
|
Young Photographer
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
B. Young Photographer
|
2
|
64
|
Among other things, Bob is keen on photography. Especially he likes to take pictures of sportsmen. That was the reason why he placed himself in position *x*0 of a long straight racetrack and got ready to take pictures. But the problem was that not all the runners passed him. The total amount of sportsmen, training at that racetrack, equals *n*. And each of them regularly runs distances within a particular segment of the racetrack, which is the same for each sportsman. For example, the first sportsman runs from position *a*1 to position *b*1, the second — from *a*2 to *b*2
What is the minimum distance that Bob should move to have a chance to take pictures of each sportsman? Bob can take a picture of a sportsman, if he stands within the segment that this sportsman covers on the racetrack.
|
The first line of the input file contains integers *n* and *x*0 (1<=≤<=*n*<=≤<=100; 0<=≤<=*x*0<=≤<=1000). The following *n* lines contain pairs of integers *a**i*,<=*b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000; *a**i*<=≠<=*b**i*).
|
Output the required minimum distance in the same units as the positions on the racetrack. If there is no such a position, output -1.
|
[
"3 3\n0 7\n14 2\n4 6\n"
] |
[
"1\n"
] |
none
| 0
|
[
{
"input": "3 3\n0 7\n14 2\n4 6",
"output": "1"
},
{
"input": "1 1\n0 10",
"output": "0"
},
{
"input": "2 2\n1 2\n3 2",
"output": "0"
},
{
"input": "3 2\n1 2\n2 3\n3 4",
"output": "-1"
},
{
"input": "2 4\n10 4\n1 5",
"output": "0"
},
{
"input": "1 10\n1 9",
"output": "1"
},
{
"input": "1 10\n123 12",
"output": "2"
},
{
"input": "1 17\n10 17",
"output": "0"
},
{
"input": "1 22\n22 33",
"output": "0"
},
{
"input": "1 3\n1 2",
"output": "1"
},
{
"input": "2 5\n0 3\n2 1",
"output": "3"
},
{
"input": "3 3\n7 3\n6 4\n3 7",
"output": "1"
},
{
"input": "4 9\n8 6\n11 5\n5 11\n8 3",
"output": "1"
},
{
"input": "2 4\n1 4\n4 0",
"output": "0"
},
{
"input": "3 7\n5 8\n7 5\n4 7",
"output": "0"
},
{
"input": "4 7\n8 2\n5 7\n8 2\n5 8",
"output": "0"
},
{
"input": "2 3\n4 1\n4 1",
"output": "0"
},
{
"input": "3 8\n7 2\n3 7\n5 2",
"output": "3"
},
{
"input": "4 0\n9 1\n8 1\n8 4\n4 5",
"output": "4"
},
{
"input": "4 7\n2 5\n3 6\n3 5\n7 4",
"output": "2"
},
{
"input": "10 16\n4 18\n6 19\n22 1\n23 0\n1 22\n9 22\n4 19\n0 14\n6 14\n0 16",
"output": "2"
},
{
"input": "20 1\n35 8\n40 6\n49 5\n48 18\n46 16\n45 16\n44 10\n16 44\n8 46\n2 45\n38 3\n42 1\n13 35\n35 18\n12 33\n32 11\n31 3\n50 20\n47 6\n38 2",
"output": "19"
},
{
"input": "30 43\n17 72\n75 26\n23 69\n83 30\n15 82\n4 67\n83 27\n33 62\n26 83\n70 26\n69 25\n16 67\n77 26\n66 33\n7 88\n70 9\n10 79\n76 9\n30 77\n77 28\n21 68\n81 14\n13 72\n88 15\n60 29\n87 28\n16 58\n6 58\n71 9\n83 18",
"output": "0"
},
{
"input": "40 69\n29 109\n28 87\n52 106\n101 34\n32 92\n91 60\n90 47\n62 102\n33 72\n27 87\n45 78\n103 37\n94 33\n56 98\n38 79\n31 83\n105 53\n47 89\n50 83\n93 62\n96 49\n47 75\n89 47\n89 61\n93 54\n46 100\n110 41\n103 28\n101 57\n100 62\n71 37\n65 80\n86 28\n73 42\n96 44\n33 111\n98 39\n87 55\n108 65\n31 101",
"output": "0"
},
{
"input": "50 77\n95 55\n113 33\n101 17\n109 56\n117 7\n77 12\n14 84\n57 101\n96 28\n108 22\n105 12\n17 114\n51 115\n18 112\n104 25\n50 115\n14 111\n55 113\n124 20\n101 37\n18 121\n41 90\n77 41\n117 16\n8 83\n92 45\n48 86\n16 84\n13 98\n40 107\n14 94\n23 111\n36 121\n50 100\n35 90\n103 37\n96 51\n109 15\n13 117\n117 42\n112 45\n88 36\n51 121\n127 49\n112 15\n9 95\n122 46\n126 40\n57 93\n56 88",
"output": "0"
},
{
"input": "5 12\n2 7\n7 5\n3 10\n11 3\n2 11",
"output": "5"
},
{
"input": "15 15\n12 37\n40 4\n38 8\n5 36\n11 31\n21 33\n9 37\n4 38\n8 33\n5 39\n7 39\n38 16\n16 41\n38 9\n5 32",
"output": "6"
},
{
"input": "25 40\n66 26\n56 19\n64 38\n64 23\n25 49\n51 26\n67 20\n65 35\n33 66\n28 63\n27 57\n40 56\n59 26\n35 56\n39 67\n30 63\n69 22\n21 63\n67 22\n20 66\n26 65\n64 26\n44 57\n57 41\n35 50",
"output": "4"
},
{
"input": "50 77\n24 119\n43 119\n102 22\n117 30\n127 54\n93 19\n120 9\n118 27\n98 16\n17 105\n22 127\n109 52\n115 40\n11 121\n12 120\n113 30\n13 108\n33 124\n31 116\n112 39\n37 108\n127 28\n127 39\n120 29\n19 114\n103 18\n106 16\n24 121\n93 10\n36 112\n104 40\n39 100\n36 97\n83 9\n14 114\n126 12\n85 47\n25 84\n105 29\n35 113\n102 19\n8 110\n111 28\n94 12\n11 115\n40 124\n39 85\n47 93\n94 31\n17 121",
"output": "0"
},
{
"input": "1 21\n973 373",
"output": "352"
},
{
"input": "2 212\n831 551\n810 753",
"output": "541"
},
{
"input": "3 404\n690 728\n820 260\n186 402",
"output": "-1"
},
{
"input": "4 906\n548 906\n830 457\n228 638\n464 167",
"output": "-1"
},
{
"input": "5 97\n97 393\n840 965\n269 183\n596 49\n975 62",
"output": "-1"
},
{
"input": "3 183\n416 335\n773 648\n434 198",
"output": "-1"
},
{
"input": "3 868\n251 927\n862 464\n157 756",
"output": "112"
},
{
"input": "3 242\n397 208\n951 279\n570 622",
"output": "-1"
},
{
"input": "3 618\n543 800\n38 94\n293 179",
"output": "-1"
},
{
"input": "3 993\n378 81\n127 911\n16 737",
"output": "615"
},
{
"input": "5 12\n11 1\n9 6\n1 11\n3 8\n874 842",
"output": "-1"
},
{
"input": "15 16\n11 40\n5 32\n5 31\n36 10\n34 9\n43 6\n28 6\n34 8\n43 15\n9 28\n14 34\n34 6\n7 31\n31 14\n68 478",
"output": "-1"
},
{
"input": "25 57\n47 31\n64 21\n43 56\n47 19\n70 27\n28 61\n41 61\n39 45\n46 21\n55 35\n70 22\n22 69\n30 67\n55 42\n37 58\n50 28\n57 42\n35 48\n68 40\n38 50\n62 20\n31 52\n38 70\n64 35\n666 393",
"output": "-1"
},
{
"input": "50 118\n83 55\n101 33\n89 17\n97 56\n105 7\n65 12\n14 72\n57 89\n84 28\n96 22\n93 12\n17 102\n51 103\n18 100\n92 25\n50 103\n14 99\n55 101\n112 20\n89 37\n18 109\n41 78\n65 41\n105 16\n8 71\n80 45\n48 74\n16 72\n13 86\n40 95\n14 82\n23 99\n36 109\n50 88\n35 78\n91 37\n84 51\n97 15\n13 105\n105 42\n100 45\n76 36\n51 109\n115 49\n100 15\n9 83\n110 46\n114 40\n57 81\n528 348",
"output": "-1"
},
{
"input": "1 21\n0 1000",
"output": "0"
}
] | 1,623,219,856
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 52
| 342
| 2,867,200
|
n, x0 = map(int, input().split())
has = set([x for x in range(1, 1001)])
for _ in range(n):
a, b = map(int, input().split())
a, b = min(a, b), max(a, b)
has2 = set([x for x in range(a, b+1)])
has = has & has2
if len(has) == 0:
print(-1)
elif x0 in has:
print(0)
elif x0 < min(has):
print(min(has) - x0)
else:
print(x0 - max(has))
|
Title: Young Photographer
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
Among other things, Bob is keen on photography. Especially he likes to take pictures of sportsmen. That was the reason why he placed himself in position *x*0 of a long straight racetrack and got ready to take pictures. But the problem was that not all the runners passed him. The total amount of sportsmen, training at that racetrack, equals *n*. And each of them regularly runs distances within a particular segment of the racetrack, which is the same for each sportsman. For example, the first sportsman runs from position *a*1 to position *b*1, the second — from *a*2 to *b*2
What is the minimum distance that Bob should move to have a chance to take pictures of each sportsman? Bob can take a picture of a sportsman, if he stands within the segment that this sportsman covers on the racetrack.
Input Specification:
The first line of the input file contains integers *n* and *x*0 (1<=≤<=*n*<=≤<=100; 0<=≤<=*x*0<=≤<=1000). The following *n* lines contain pairs of integers *a**i*,<=*b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000; *a**i*<=≠<=*b**i*).
Output Specification:
Output the required minimum distance in the same units as the positions on the racetrack. If there is no such a position, output -1.
Demo Input:
['3 3\n0 7\n14 2\n4 6\n']
Demo Output:
['1\n']
Note:
none
|
```python
n, x0 = map(int, input().split())
has = set([x for x in range(1, 1001)])
for _ in range(n):
a, b = map(int, input().split())
a, b = min(a, b), max(a, b)
has2 = set([x for x in range(a, b+1)])
has = has & has2
if len(has) == 0:
print(-1)
elif x0 in has:
print(0)
elif x0 < min(has):
print(min(has) - x0)
else:
print(x0 - max(has))
```
| 3.893138
|
12
|
A
|
Super Agent
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Super Agent
|
2
|
256
|
There is a very secret base in Potatoland where potato mash is made according to a special recipe. The neighbours from Porridgia decided to seize this recipe and to sell it to Pilauland. For this mission they have been preparing special agent Pearlo for many years. When, finally, Pearlo learned all secrets of espionage, he penetrated into the Potatoland territory and reached the secret base.
Now he is standing at the entrance, but to get inside he need to pass combination lock. Minute ago one of the workers entered the password on the terminal and opened the door. The terminal is a square digital keyboard 3<=×<=3 with digits from 1 to 9.
Pearlo knows that the password consists from distinct digits and is probably symmetric with respect to the central button of the terminal. He has heat sensor which allowed him to detect the digits which the worker pressed. Now he wants to check whether the password entered by the worker is symmetric with respect to the central button of the terminal. This fact can Help Pearlo to reduce the number of different possible password combinations.
|
Input contains the matrix of three rows of three symbols each. Symbol «X» means that the corresponding button was pressed, and «.» means that is was not pressed. The matrix may contain no «X», also it may contain no «.».
|
Print YES if the password is symmetric with respect to the central button of the terminal and NO otherwise.
|
[
"XX.\n...\n.XX\n",
"X.X\nX..\n...\n"
] |
[
"YES\n",
"NO\n"
] |
If you are not familiar with the term «central symmetry», you may look into http://en.wikipedia.org/wiki/Central_symmetry
| 0
|
[
{
"input": "XX.\n...\n.XX",
"output": "YES"
},
{
"input": ".X.\n.X.\n.X.",
"output": "YES"
},
{
"input": "XXX\nXXX\nXXX",
"output": "YES"
},
{
"input": "XXX\nX.X\nXXX",
"output": "YES"
},
{
"input": "X..\n.X.\n..X",
"output": "YES"
},
{
"input": "...\nX.X\nX..",
"output": "NO"
},
{
"input": ".X.\nX.X\n.X.",
"output": "YES"
},
{
"input": "X.X\n.X.\nX.X",
"output": "YES"
},
{
"input": "...\n...\n..X",
"output": "NO"
},
{
"input": "XXX\n...\nXXX",
"output": "YES"
},
{
"input": "..X\nX..\n..X",
"output": "NO"
},
{
"input": ".X.\n...\nX.X",
"output": "NO"
},
{
"input": "X.X\nX.X\nX.X",
"output": "YES"
},
{
"input": ".X.\nX.X\nXX.",
"output": "NO"
},
{
"input": "...\nXXX\nXXX",
"output": "NO"
},
{
"input": "XXX\n..X\nXXX",
"output": "NO"
},
{
"input": "X..\nX.X\n.X.",
"output": "NO"
},
{
"input": "...\n..X\nXXX",
"output": "NO"
},
{
"input": "..X\nX.X\nX..",
"output": "YES"
},
{
"input": "..X\n..X\nXXX",
"output": "NO"
},
{
"input": "X..\nX..\nX..",
"output": "NO"
},
{
"input": "XXX\n.X.\nXXX",
"output": "YES"
},
{
"input": "..X\n...\nX..",
"output": "YES"
},
{
"input": "...\n...\nX..",
"output": "NO"
},
{
"input": "...\n...\n.X.",
"output": "NO"
},
{
"input": "...\n...\n..X",
"output": "NO"
},
{
"input": "...\n.X.\nX..",
"output": "NO"
}
] | 1,676,479,824
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 40
| 124
| 0
|
a = [input(), input(), input()]
ans = "YES"
for i in range(3):
for j in range(3):
if a[i][j] != a[~i][~j]:
ans = "NO"
break
print(ans)
|
Title: Super Agent
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
There is a very secret base in Potatoland where potato mash is made according to a special recipe. The neighbours from Porridgia decided to seize this recipe and to sell it to Pilauland. For this mission they have been preparing special agent Pearlo for many years. When, finally, Pearlo learned all secrets of espionage, he penetrated into the Potatoland territory and reached the secret base.
Now he is standing at the entrance, but to get inside he need to pass combination lock. Minute ago one of the workers entered the password on the terminal and opened the door. The terminal is a square digital keyboard 3<=×<=3 with digits from 1 to 9.
Pearlo knows that the password consists from distinct digits and is probably symmetric with respect to the central button of the terminal. He has heat sensor which allowed him to detect the digits which the worker pressed. Now he wants to check whether the password entered by the worker is symmetric with respect to the central button of the terminal. This fact can Help Pearlo to reduce the number of different possible password combinations.
Input Specification:
Input contains the matrix of three rows of three symbols each. Symbol «X» means that the corresponding button was pressed, and «.» means that is was not pressed. The matrix may contain no «X», also it may contain no «.».
Output Specification:
Print YES if the password is symmetric with respect to the central button of the terminal and NO otherwise.
Demo Input:
['XX.\n...\n.XX\n', 'X.X\nX..\n...\n']
Demo Output:
['YES\n', 'NO\n']
Note:
If you are not familiar with the term «central symmetry», you may look into http://en.wikipedia.org/wiki/Central_symmetry
|
```python
a = [input(), input(), input()]
ans = "YES"
for i in range(3):
for j in range(3):
if a[i][j] != a[~i][~j]:
ans = "NO"
break
print(ans)
```
| 3.969
|
886
|
C
|
Petya and Catacombs
|
PROGRAMMING
| 1,300
|
[
"dsu",
"greedy",
"implementation",
"trees"
] | null | null |
A very brave explorer Petya once decided to explore Paris catacombs. Since Petya is not really experienced, his exploration is just walking through the catacombs.
Catacombs consist of several rooms and bidirectional passages between some pairs of them. Some passages can connect a room to itself and since the passages are built on different depths they do not intersect each other. Every minute Petya arbitrary chooses a passage from the room he is currently in and then reaches the room on the other end of the passage in exactly one minute. When he enters a room at minute *i*, he makes a note in his logbook with number *t**i*:
- If Petya has visited this room before, he writes down the minute he was in this room last time; - Otherwise, Petya writes down an arbitrary non-negative integer strictly less than current minute *i*.
Initially, Petya was in one of the rooms at minute 0, he didn't write down number *t*0.
At some point during his wandering Petya got tired, threw out his logbook and went home. Vasya found his logbook and now he is curious: what is the minimum possible number of rooms in Paris catacombs according to Petya's logbook?
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·105) — then number of notes in Petya's logbook.
The second line contains *n* non-negative integers *t*1,<=*t*2,<=...,<=*t**n* (0<=≤<=*t**i*<=<<=*i*) — notes in the logbook.
|
In the only line print a single integer — the minimum possible number of rooms in Paris catacombs.
|
[
"2\n0 0\n",
"5\n0 1 0 1 3\n"
] |
[
"2\n",
"3\n"
] |
In the first sample, sequence of rooms Petya visited could be, for example 1 → 1 → 2, 1 → 2 → 1 or 1 → 2 → 3. The minimum possible number of rooms is 2.
In the second sample, the sequence could be 1 → 2 → 3 → 1 → 2 → 1.
| 1,500
|
[
{
"input": "2\n0 0",
"output": "2"
},
{
"input": "5\n0 1 0 1 3",
"output": "3"
},
{
"input": "7\n0 1 0 0 0 0 0",
"output": "6"
},
{
"input": "100\n0 0 0 0 0 0 1 4 4 0 2 2 4 1 7 1 11 0 8 4 12 12 3 0 3 2 2 4 3 9 1 5 4 6 9 14 6 2 4 18 7 7 19 11 20 13 17 16 0 34 2 6 12 27 9 4 29 22 4 20 20 17 17 20 37 53 17 3 3 15 1 46 11 24 31 6 12 6 11 18 13 1 5 0 19 10 24 41 16 41 18 52 46 39 16 30 18 23 53 13",
"output": "66"
},
{
"input": "100\n0 0 0 0 1 2 0 0 3 3 2 2 6 4 1 6 2 9 8 0 2 0 2 2 0 0 10 0 4 20 4 11 3 9 0 3 8 2 6 3 13 2 1 23 20 20 16 7 1 37 6 1 25 25 14 30 6 23 18 3 2 16 0 4 37 9 4 6 2 14 15 11 16 35 36 7 32 26 8 1 0 37 35 38 27 3 16 8 3 7 7 25 13 13 30 11 5 28 0 12",
"output": "71"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "14\n0 0 1 1 2 2 3 3 4 4 5 5 6 6",
"output": "8"
},
{
"input": "2\n0 1",
"output": "1"
}
] | 1,587,167,988
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 31
| 233
| 21,401,600
|
import math
import sys
from collections import defaultdict
from collections import Counter
import bisect
input = iter(sys.stdin.buffer.read().decode().splitlines()).__next__
ilele = lambda: map(int,input().split())
alele = lambda: list(map(int, input().split()))
def list2d(a, b, c): return [[c] * b for i in range(a)]
def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]
INF = 10 ** 18
MOD = 10 ** 9 + 7
N, =ilele()
A = alele()
C = Counter(A)
tot = 1
for i in C.values():
tot += max(0,i-1)
print(tot)
|
Title: Petya and Catacombs
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A very brave explorer Petya once decided to explore Paris catacombs. Since Petya is not really experienced, his exploration is just walking through the catacombs.
Catacombs consist of several rooms and bidirectional passages between some pairs of them. Some passages can connect a room to itself and since the passages are built on different depths they do not intersect each other. Every minute Petya arbitrary chooses a passage from the room he is currently in and then reaches the room on the other end of the passage in exactly one minute. When he enters a room at minute *i*, he makes a note in his logbook with number *t**i*:
- If Petya has visited this room before, he writes down the minute he was in this room last time; - Otherwise, Petya writes down an arbitrary non-negative integer strictly less than current minute *i*.
Initially, Petya was in one of the rooms at minute 0, he didn't write down number *t*0.
At some point during his wandering Petya got tired, threw out his logbook and went home. Vasya found his logbook and now he is curious: what is the minimum possible number of rooms in Paris catacombs according to Petya's logbook?
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·105) — then number of notes in Petya's logbook.
The second line contains *n* non-negative integers *t*1,<=*t*2,<=...,<=*t**n* (0<=≤<=*t**i*<=<<=*i*) — notes in the logbook.
Output Specification:
In the only line print a single integer — the minimum possible number of rooms in Paris catacombs.
Demo Input:
['2\n0 0\n', '5\n0 1 0 1 3\n']
Demo Output:
['2\n', '3\n']
Note:
In the first sample, sequence of rooms Petya visited could be, for example 1 → 1 → 2, 1 → 2 → 1 or 1 → 2 → 3. The minimum possible number of rooms is 2.
In the second sample, the sequence could be 1 → 2 → 3 → 1 → 2 → 1.
|
```python
import math
import sys
from collections import defaultdict
from collections import Counter
import bisect
input = iter(sys.stdin.buffer.read().decode().splitlines()).__next__
ilele = lambda: map(int,input().split())
alele = lambda: list(map(int, input().split()))
def list2d(a, b, c): return [[c] * b for i in range(a)]
def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]
INF = 10 ** 18
MOD = 10 ** 9 + 7
N, =ilele()
A = alele()
C = Counter(A)
tot = 1
for i in C.values():
tot += max(0,i-1)
print(tot)
```
| 3
|
|
229
|
B
|
Planets
|
PROGRAMMING
| 1,700
|
[
"binary search",
"data structures",
"graphs",
"shortest paths"
] | null | null |
Goa'uld Apophis captured Jack O'Neill's team again! Jack himself was able to escape, but by that time Apophis's ship had already jumped to hyperspace. But Jack knows on what planet will Apophis land. In order to save his friends, Jack must repeatedly go through stargates to get to this planet.
Overall the galaxy has *n* planets, indexed with numbers from 1 to *n*. Jack is on the planet with index 1, and Apophis will land on the planet with index *n*. Jack can move between some pairs of planets through stargates (he can move in both directions); the transfer takes a positive, and, perhaps, for different pairs of planets unequal number of seconds. Jack begins his journey at time 0.
It can be that other travellers are arriving to the planet where Jack is currently located. In this case, Jack has to wait for exactly 1 second before he can use the stargate. That is, if at time *t* another traveller arrives to the planet, Jack can only pass through the stargate at time *t*<=+<=1, unless there are more travellers arriving at time *t*<=+<=1 to the same planet.
Knowing the information about travel times between the planets, and the times when Jack would not be able to use the stargate on particular planets, determine the minimum time in which he can get to the planet with index *n*.
|
The first line contains two space-separated integers: *n* (2<=≤<=*n*<=≤<=105), the number of planets in the galaxy, and *m* (0<=≤<=*m*<=≤<=105) — the number of pairs of planets between which Jack can travel using stargates. Then *m* lines follow, containing three integers each: the *i*-th line contains numbers of planets *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*, *a**i*<=≠<=*b**i*), which are connected through stargates, and the integer transfer time (in seconds) *c**i* (1<=≤<=*c**i*<=≤<=104) between these planets. It is guaranteed that between any pair of planets there is at most one stargate connection.
Then *n* lines follow: the *i*-th line contains an integer *k**i* (0<=≤<=*k**i*<=≤<=105) that denotes the number of moments of time when other travellers arrive to the planet with index *i*. Then *k**i* distinct space-separated integers *t**ij* (0<=≤<=*t**ij*<=<<=109) follow, sorted in ascending order. An integer *t**ij* means that at time *t**ij* (in seconds) another traveller arrives to the planet *i*. It is guaranteed that the sum of all *k**i* does not exceed 105.
|
Print a single number — the least amount of time Jack needs to get from planet 1 to planet *n*. If Jack can't get to planet *n* in any amount of time, print number -1.
|
[
"4 6\n1 2 2\n1 3 3\n1 4 8\n2 3 4\n2 4 5\n3 4 3\n0\n1 3\n2 3 4\n0\n",
"3 1\n1 2 3\n0\n1 3\n0\n"
] |
[
"7\n",
"-1\n"
] |
In the first sample Jack has three ways to go from planet 1. If he moves to planet 4 at once, he spends 8 seconds. If he transfers to planet 3, he spends 3 seconds, but as other travellers arrive to planet 3 at time 3 and 4, he can travel to planet 4 only at time 5, thus spending 8 seconds in total. But if Jack moves to planet 2, and then — to planet 4, then he spends a total of only 2 + 5 = 7 seconds.
In the second sample one can't get from planet 1 to planet 3 by moving through stargates.
| 500
|
[
{
"input": "4 6\n1 2 2\n1 3 3\n1 4 8\n2 3 4\n2 4 5\n3 4 3\n0\n1 3\n2 3 4\n0",
"output": "7"
},
{
"input": "3 1\n1 2 3\n0\n1 3\n0",
"output": "-1"
},
{
"input": "2 1\n1 2 3\n0\n1 3",
"output": "3"
},
{
"input": "2 1\n1 2 3\n1 0\n0",
"output": "4"
},
{
"input": "3 3\n1 2 5\n2 3 6\n1 3 7\n0\n0\n0",
"output": "7"
},
{
"input": "3 3\n1 2 3\n2 3 2\n1 3 7\n0\n0\n0",
"output": "5"
},
{
"input": "2 0\n0\n0",
"output": "-1"
},
{
"input": "3 1\n1 2 3\n1 1\n1 5\n0",
"output": "-1"
},
{
"input": "2 1\n1 2 3\n0\n2 2 4",
"output": "3"
},
{
"input": "2 1\n1 2 1\n0\n0",
"output": "1"
},
{
"input": "2 1\n2 1 10000\n0\n0",
"output": "10000"
},
{
"input": "2 1\n1 2 3\n0\n3 3 4 5",
"output": "3"
},
{
"input": "3 0\n0\n0\n0",
"output": "-1"
},
{
"input": "3 2\n1 2 5\n2 3 7\n2 0 1\n3 4 5 6\n3 11 12 13",
"output": "14"
},
{
"input": "2 1\n1 2 3\n3 0 1 2\n3 5 6 7",
"output": "6"
},
{
"input": "3 3\n1 2 3\n2 3 2\n1 3 7\n0\n4 3 4 5 6\n0",
"output": "7"
},
{
"input": "6 7\n1 2 1\n1 3 8\n2 4 2\n4 3 3\n3 5 4\n4 6 100\n5 6 5\n0\n0\n1 7\n2 3 4\n0\n0",
"output": "17"
},
{
"input": "3 3\n1 2 3\n2 3 2\n1 3 6\n0\n1 3\n0",
"output": "6"
},
{
"input": "7 7\n1 2 1\n2 4 2\n2 3 2\n3 6 2\n6 5 2\n4 5 3\n5 7 7\n0\n0\n0\n3 3 4 5\n0\n0\n0",
"output": "14"
},
{
"input": "7 6\n1 2 1\n1 3 1\n1 4 1\n1 5 1\n1 6 1\n1 7 1\n1 0\n0\n0\n0\n0\n0\n0",
"output": "2"
},
{
"input": "8 10\n1 2 3\n2 8 3\n1 4 1\n4 3 6\n3 7 7\n4 5 5\n5 7 2\n7 8 1\n1 6 8\n6 8 7\n0\n4 1 2 3 4\n0\n0\n0\n0\n0\n0",
"output": "8"
},
{
"input": "7 6\n1 2 1\n1 3 2\n2 4 3\n2 5 4\n3 5 6\n3 6 7\n0\n3 1 2 3\n2 2 3\n0\n2 7 8\n0\n0",
"output": "-1"
}
] | 1,685,090,637
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 68
| 1,184
| 41,676,800
|
# '''
# https://codeforces.com/contest/229/problem/B
# 输入 n(2≤n≤1e5) m(0≤m≤1e5) 表示一个 n 点 m 边的无向图(节点编号从 1 开始)。
# 然后输入 m 条边,每条边包含 3 个数 a b c(1≤c≤1e4),表示有一条边权为 c 的无向边连接 a 和 b。
# 保证无自环、无重边。
# 然后输入 n 行,每行第一个数 k 表示数组 t[i] 的长度,然后输入数组 t[i]。
# 数组 t[i] 是一个严格递增序列,0≤t[i][j]<1e9。
# 所有 k 之和 ≤1e5。
# 初始时间为 0。你从 1 出发,要去 n。
# 如果你在点 i,但是当前时间在数组 t[i] 中,那么你必须等待 1 秒。如果下一秒仍然在 t[i] 中,那么继续等待 1 秒。依此类推。
# 输出到达 n 的最早时间。
# 如果无法到达 n,输出 -1。
# 【易错题】
# 输入
# 4 6
# 1 2 2
# 1 3 3
# 1 4 8
# 2 3 4
# 2 4 5
# 3 4 3
# 0
# 1 3
# 2 3 4
# 0
# 输出 7
# 输入
# 3 1
# 1 2 3
# 0
# 1 3
# 0
# 输出 -1
# '''
# from cmath import inf
# from collections import defaultdict
# from heapq import heappop, heappush
# def _n():
# return int(input())
# def _nA():
# return list(map(int, input().split()))
# def _nS():
# return input().split()
# def solve():
# n, m = _nA()
# graph = [[]for _ in range(n)]
# for i in range(m):
# a, b, c = _nA()
# a -= 1
# b -= 1
# graph[a].append((b, c))
# graph[b].append((a, c))
# t = [None]*n
# for i in range(n):
# t[i] = _nA()[1:]
# dist = [inf]*n
# dist[0] = 0
# q = [(0, 0)]
# while q:
# d, x = heappop(q)
# if d!=dist[x]:
# continue
# for i in t[x]:
# if d == i:
# d += 1
# for y, c in graph[x]:
# if dist[x]+c < dist[y]:
# dist[y] = min(dist[y], d+c)
# heappush(q, (dist[y], y))
# return dist[-1] if dist[-1] != inf else -1
# print(solve())
import sys
from heapq import *
r=sys.stdin.readline
n,m = map(int,r().split())
g=[[] for _ in range(n+1)]
for _ in range(m):
a,b,c=map(int,r().split())
g[a].append((b,c))
g[b].append((a,c))
times=[[]]
for _ in range(n):
times.append(list(map(int,r().split()))[1:])
INF = sys.maxsize
dist = [INF]*(n+1)
dist[1]=0
q=[(0,1)]
while q:
d,idx = heappop(q)
if d !=dist[idx]:
continue
cur = dist[idx]
for i in times[idx]:
if i==cur:
cur+=1
for e,cost in g[idx]:
if dist[e] > dist[idx]+cost:
dist[e] = min(dist[e], cur+cost)
heappush(q,(dist[e],e))
print(dist[n] if dist[n]!=INF else -1)
|
Title: Planets
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Goa'uld Apophis captured Jack O'Neill's team again! Jack himself was able to escape, but by that time Apophis's ship had already jumped to hyperspace. But Jack knows on what planet will Apophis land. In order to save his friends, Jack must repeatedly go through stargates to get to this planet.
Overall the galaxy has *n* planets, indexed with numbers from 1 to *n*. Jack is on the planet with index 1, and Apophis will land on the planet with index *n*. Jack can move between some pairs of planets through stargates (he can move in both directions); the transfer takes a positive, and, perhaps, for different pairs of planets unequal number of seconds. Jack begins his journey at time 0.
It can be that other travellers are arriving to the planet where Jack is currently located. In this case, Jack has to wait for exactly 1 second before he can use the stargate. That is, if at time *t* another traveller arrives to the planet, Jack can only pass through the stargate at time *t*<=+<=1, unless there are more travellers arriving at time *t*<=+<=1 to the same planet.
Knowing the information about travel times between the planets, and the times when Jack would not be able to use the stargate on particular planets, determine the minimum time in which he can get to the planet with index *n*.
Input Specification:
The first line contains two space-separated integers: *n* (2<=≤<=*n*<=≤<=105), the number of planets in the galaxy, and *m* (0<=≤<=*m*<=≤<=105) — the number of pairs of planets between which Jack can travel using stargates. Then *m* lines follow, containing three integers each: the *i*-th line contains numbers of planets *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*, *a**i*<=≠<=*b**i*), which are connected through stargates, and the integer transfer time (in seconds) *c**i* (1<=≤<=*c**i*<=≤<=104) between these planets. It is guaranteed that between any pair of planets there is at most one stargate connection.
Then *n* lines follow: the *i*-th line contains an integer *k**i* (0<=≤<=*k**i*<=≤<=105) that denotes the number of moments of time when other travellers arrive to the planet with index *i*. Then *k**i* distinct space-separated integers *t**ij* (0<=≤<=*t**ij*<=<<=109) follow, sorted in ascending order. An integer *t**ij* means that at time *t**ij* (in seconds) another traveller arrives to the planet *i*. It is guaranteed that the sum of all *k**i* does not exceed 105.
Output Specification:
Print a single number — the least amount of time Jack needs to get from planet 1 to planet *n*. If Jack can't get to planet *n* in any amount of time, print number -1.
Demo Input:
['4 6\n1 2 2\n1 3 3\n1 4 8\n2 3 4\n2 4 5\n3 4 3\n0\n1 3\n2 3 4\n0\n', '3 1\n1 2 3\n0\n1 3\n0\n']
Demo Output:
['7\n', '-1\n']
Note:
In the first sample Jack has three ways to go from planet 1. If he moves to planet 4 at once, he spends 8 seconds. If he transfers to planet 3, he spends 3 seconds, but as other travellers arrive to planet 3 at time 3 and 4, he can travel to planet 4 only at time 5, thus spending 8 seconds in total. But if Jack moves to planet 2, and then — to planet 4, then he spends a total of only 2 + 5 = 7 seconds.
In the second sample one can't get from planet 1 to planet 3 by moving through stargates.
|
```python
# '''
# https://codeforces.com/contest/229/problem/B
# 输入 n(2≤n≤1e5) m(0≤m≤1e5) 表示一个 n 点 m 边的无向图(节点编号从 1 开始)。
# 然后输入 m 条边,每条边包含 3 个数 a b c(1≤c≤1e4),表示有一条边权为 c 的无向边连接 a 和 b。
# 保证无自环、无重边。
# 然后输入 n 行,每行第一个数 k 表示数组 t[i] 的长度,然后输入数组 t[i]。
# 数组 t[i] 是一个严格递增序列,0≤t[i][j]<1e9。
# 所有 k 之和 ≤1e5。
# 初始时间为 0。你从 1 出发,要去 n。
# 如果你在点 i,但是当前时间在数组 t[i] 中,那么你必须等待 1 秒。如果下一秒仍然在 t[i] 中,那么继续等待 1 秒。依此类推。
# 输出到达 n 的最早时间。
# 如果无法到达 n,输出 -1。
# 【易错题】
# 输入
# 4 6
# 1 2 2
# 1 3 3
# 1 4 8
# 2 3 4
# 2 4 5
# 3 4 3
# 0
# 1 3
# 2 3 4
# 0
# 输出 7
# 输入
# 3 1
# 1 2 3
# 0
# 1 3
# 0
# 输出 -1
# '''
# from cmath import inf
# from collections import defaultdict
# from heapq import heappop, heappush
# def _n():
# return int(input())
# def _nA():
# return list(map(int, input().split()))
# def _nS():
# return input().split()
# def solve():
# n, m = _nA()
# graph = [[]for _ in range(n)]
# for i in range(m):
# a, b, c = _nA()
# a -= 1
# b -= 1
# graph[a].append((b, c))
# graph[b].append((a, c))
# t = [None]*n
# for i in range(n):
# t[i] = _nA()[1:]
# dist = [inf]*n
# dist[0] = 0
# q = [(0, 0)]
# while q:
# d, x = heappop(q)
# if d!=dist[x]:
# continue
# for i in t[x]:
# if d == i:
# d += 1
# for y, c in graph[x]:
# if dist[x]+c < dist[y]:
# dist[y] = min(dist[y], d+c)
# heappush(q, (dist[y], y))
# return dist[-1] if dist[-1] != inf else -1
# print(solve())
import sys
from heapq import *
r=sys.stdin.readline
n,m = map(int,r().split())
g=[[] for _ in range(n+1)]
for _ in range(m):
a,b,c=map(int,r().split())
g[a].append((b,c))
g[b].append((a,c))
times=[[]]
for _ in range(n):
times.append(list(map(int,r().split()))[1:])
INF = sys.maxsize
dist = [INF]*(n+1)
dist[1]=0
q=[(0,1)]
while q:
d,idx = heappop(q)
if d !=dist[idx]:
continue
cur = dist[idx]
for i in times[idx]:
if i==cur:
cur+=1
for e,cost in g[idx]:
if dist[e] > dist[idx]+cost:
dist[e] = min(dist[e], cur+cost)
heappush(q,(dist[e],e))
print(dist[n] if dist[n]!=INF else -1)
```
| 3
|
|
731
|
A
|
Night at the Museum
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition.
Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture:
After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'.
Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it.
|
The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters.
|
Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input.
|
[
"zeus\n",
"map\n",
"ares\n"
] |
[
"18\n",
"35\n",
"34\n"
] |
To print the string from the first sample it would be optimal to perform the following sequence of rotations:
1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
| 500
|
[
{
"input": "zeus",
"output": "18"
},
{
"input": "map",
"output": "35"
},
{
"input": "ares",
"output": "34"
},
{
"input": "l",
"output": "11"
},
{
"input": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv",
"output": "99"
},
{
"input": "gngvi",
"output": "44"
},
{
"input": "aaaaa",
"output": "0"
},
{
"input": "a",
"output": "0"
},
{
"input": "z",
"output": "1"
},
{
"input": "vyadeehhikklnoqrs",
"output": "28"
},
{
"input": "jjiihhhhgggfedcccbazyxx",
"output": "21"
},
{
"input": "fyyptqqxuciqvwdewyppjdzur",
"output": "117"
},
{
"input": "fqcnzmzmbobmancqcoalzmanaobpdse",
"output": "368"
},
{
"input": "zzzzzaaaaaaazzzzzzaaaaaaazzzzzzaaaazzzza",
"output": "8"
},
{
"input": "aucnwhfixuruefkypvrvnvznwtjgwlghoqtisbkhuwxmgzuljvqhmnwzisnsgjhivnjmbknptxatdkelhzkhsuxzrmlcpeoyukiy",
"output": "644"
},
{
"input": "sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss",
"output": "8"
},
{
"input": "nypjygrdtpzpigzyrisqeqfriwgwlengnezppgttgtndbrryjdl",
"output": "421"
},
{
"input": "pnllnnmmmmoqqqqqrrtssssuuvtsrpopqoonllmonnnpppopnonoopooqpnopppqppqstuuuwwwwvxzxzzaa",
"output": "84"
},
{
"input": "btaoahqgxnfsdmzsjxgvdwjukcvereqeskrdufqfqgzqfsftdqcthtkcnaipftcnco",
"output": "666"
},
{
"input": "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrwwwwwwwwww",
"output": "22"
},
{
"input": "uyknzcrwjyzmscqucclvacmorepdgmnyhmakmmnygqwglrxkxhkpansbmruwxdeoprxzmpsvwackopujxbbkpwyeggsvjykpxh",
"output": "643"
},
{
"input": "gzwpooohffcxwtpjgfzwtooiccxsrrokezutoojdzwsrmmhecaxwrojcbyrqlfdwwrliiib",
"output": "245"
},
{
"input": "dbvnkktasjdwqsrzfwwtmjgbcxggdxsoeilecihduypktkkbwfbruxzzhlttrssicgdwqruddwrlbtxgmhdbatzvdxbbro",
"output": "468"
},
{
"input": "mdtvowlktxzzbuaeiuebfeorgbdczauxsovbucactkvyvemsknsjfhifqgycqredzchipmkvzbxdjkcbyukomjlzvxzoswumned",
"output": "523"
},
{
"input": "kkkkkkkaaaaxxaaaaaaaxxxxxxxxaaaaaaxaaaaaaaaaakkkkkkkkkaaaaaaannnnnxxxxkkkkkkkkaannnnnnna",
"output": "130"
},
{
"input": "dffiknqqrsvwzcdgjkmpqtuwxadfhkkkmpqrtwxyadfggjmpppsuuwyyzcdgghhknnpsvvvwwwyabccffiloqruwwyyzabeeehh",
"output": "163"
},
{
"input": "qpppmmkjihgecbyvvsppnnnkjiffeebaaywutrrqpmkjhgddbzzzywtssssqnmmljheddbbaxvusrqonmlifedbbzyywwtqnkheb",
"output": "155"
},
{
"input": "wvvwwwvvwxxxyyyxxwwvwwvuttttttuvvwxxwxxyxxwwwwwvvuttssrssstsssssrqpqqppqrssrsrrssrssssrrsrqqrrqpppqp",
"output": "57"
},
{
"input": "dqcpcobpcobnznamznamzlykxkxlxlylzmaobnaobpbnanbpcoaobnboaoboanzlymzmykylymylzlylymanboanaocqdqesfrfs",
"output": "1236"
},
{
"input": "nnnnnnnnnnnnnnnnnnnnaaaaaaaaaaaaaaaaaaaakkkkkkkkkkkkkkkkkkkkkkaaaaaaaaaaaaaaaaaaaaxxxxxxxxxxxxxxxxxx",
"output": "49"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "0"
},
{
"input": "cgilqsuwzaffilptwwbgmnttyyejkorxzflqvzbddhmnrvxchijpuwaeiimosxyycejlpquuwbfkpvbgijkqvxybdjjjptxcfkqt",
"output": "331"
},
{
"input": "ufsepwgtzgtgjssxaitgpailuvgqweoppszjwhoxdhhhpwwdorwfrdjwcdekxiktwziqwbkvbknrtvajpyeqbjvhiikxxaejjpte",
"output": "692"
},
{
"input": "uhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuh",
"output": "1293"
},
{
"input": "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvgggggggggggggggggggggggggggggggggggggggggggggggggg",
"output": "16"
},
{
"input": "lyidmjyzbszgiwkxhhpnnthfwcvvstueionspfrvqgkvngmwyhezlosrpdnbvtcjjxxsykixwnepbumaacdzadlqhnjlcejovple",
"output": "616"
},
{
"input": "etzqqbaveffalkdguunfmyyrzkccnxmlluxeasqmopxzfvlkbhipqdwjgrttoemruohgwukfisdhznqyvhswbbypoxgtxyappcrl",
"output": "605"
},
{
"input": "lizussgedcbdjhrbeskhgatyozvwwekanlggcstijrniivupmcoofbaxfqrxddyzzptwxcftlhajsmmkkriarrqtkoauhcqefyud",
"output": "549"
},
{
"input": "dvjuvgfdogpknmbowlsfjzcimnygbtjiucyeeroqwhmzwpjqxlbjkqawrdtmvxbiqufllfuqibxvmtdrwaqkjblxqjpwzmhwqore",
"output": "688"
},
{
"input": "eeycuijtbgynmiczjfslwobmnkpgodfgvujvduyfeqchuaoktqrrairkkmmsjahltfcxwtpzzyddxrqfxabfoocmpuviinrjitsc",
"output": "604"
},
{
"input": "cgglnakewwvzoytaghksebrhjdbcdegssuzilrcppayxtgxopybbwshvyqnzhdsifkuwghourmeottrgjwdqpihbklvfzxpomqsa",
"output": "572"
},
{
"input": "aexullmxncckzryymfnuugdklaffevabqqztelpvojecljnhqldazdcaamubpenwxikysxxjjctvbndprsolzehywmgnvkgqvrfp",
"output": "609"
},
{
"input": "psnoieutsvvcwfhtnnphhxkwigzsbzyjmdiyl",
"output": "223"
},
{
"input": "aa",
"output": "0"
}
] | 1,673,211,825
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 44
| 62
| 409,600
|
from string import *
alp = list(ascii_lowercase)
s = list(input())
count = 0
x = 0
for i in s:
y = alp.index(i)
count += min(abs(x-y), 26-(abs(x-y)))
x = y
print(count)
|
Title: Night at the Museum
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition.
Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture:
After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'.
Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it.
Input Specification:
The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters.
Output Specification:
Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input.
Demo Input:
['zeus\n', 'map\n', 'ares\n']
Demo Output:
['18\n', '35\n', '34\n']
Note:
To print the string from the first sample it would be optimal to perform the following sequence of rotations:
1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
|
```python
from string import *
alp = list(ascii_lowercase)
s = list(input())
count = 0
x = 0
for i in s:
y = alp.index(i)
count += min(abs(x-y), 26-(abs(x-y)))
x = y
print(count)
```
| 3
|
|
268
|
A
|
Games
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different.
There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number.
You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question.
|
The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively.
|
In a single line print the number of games where the host team is going to play in the guest uniform.
|
[
"3\n1 2\n2 4\n3 4\n",
"4\n100 42\n42 100\n5 42\n100 5\n",
"2\n1 2\n1 2\n"
] |
[
"1\n",
"5\n",
"0\n"
] |
In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2.
In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
| 500
|
[
{
"input": "3\n1 2\n2 4\n3 4",
"output": "1"
},
{
"input": "4\n100 42\n42 100\n5 42\n100 5",
"output": "5"
},
{
"input": "2\n1 2\n1 2",
"output": "0"
},
{
"input": "7\n4 7\n52 55\n16 4\n55 4\n20 99\n3 4\n7 52",
"output": "6"
},
{
"input": "10\n68 42\n1 35\n25 70\n59 79\n65 63\n46 6\n28 82\n92 62\n43 96\n37 28",
"output": "1"
},
{
"input": "30\n10 39\n89 1\n78 58\n75 99\n36 13\n77 50\n6 97\n79 28\n27 52\n56 5\n93 96\n40 21\n33 74\n26 37\n53 59\n98 56\n61 65\n42 57\n9 7\n25 63\n74 34\n96 84\n95 47\n12 23\n34 21\n71 6\n27 13\n15 47\n64 14\n12 77",
"output": "6"
},
{
"input": "30\n46 100\n87 53\n34 84\n44 66\n23 20\n50 34\n90 66\n17 39\n13 22\n94 33\n92 46\n63 78\n26 48\n44 61\n3 19\n41 84\n62 31\n65 89\n23 28\n58 57\n19 85\n26 60\n75 66\n69 67\n76 15\n64 15\n36 72\n90 89\n42 69\n45 35",
"output": "4"
},
{
"input": "2\n46 6\n6 46",
"output": "2"
},
{
"input": "29\n8 18\n33 75\n69 22\n97 95\n1 97\n78 10\n88 18\n13 3\n19 64\n98 12\n79 92\n41 72\n69 15\n98 31\n57 74\n15 56\n36 37\n15 66\n63 100\n16 42\n47 56\n6 4\n73 15\n30 24\n27 71\n12 19\n88 69\n85 6\n50 11",
"output": "10"
},
{
"input": "23\n43 78\n31 28\n58 80\n66 63\n20 4\n51 95\n40 20\n50 14\n5 34\n36 39\n77 42\n64 97\n62 89\n16 56\n8 34\n58 16\n37 35\n37 66\n8 54\n50 36\n24 8\n68 48\n85 33",
"output": "6"
},
{
"input": "13\n76 58\n32 85\n99 79\n23 58\n96 59\n72 35\n53 43\n96 55\n41 78\n75 10\n28 11\n72 7\n52 73",
"output": "0"
},
{
"input": "18\n6 90\n70 79\n26 52\n67 81\n29 95\n41 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 2",
"output": "1"
},
{
"input": "18\n6 90\n100 79\n26 100\n67 100\n29 100\n100 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 100",
"output": "8"
},
{
"input": "30\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1",
"output": "450"
},
{
"input": "30\n100 99\n58 59\n56 57\n54 55\n52 53\n50 51\n48 49\n46 47\n44 45\n42 43\n40 41\n38 39\n36 37\n34 35\n32 33\n30 31\n28 29\n26 27\n24 25\n22 23\n20 21\n18 19\n16 17\n14 15\n12 13\n10 11\n8 9\n6 7\n4 5\n2 3",
"output": "0"
},
{
"input": "15\n9 3\n2 6\n7 6\n5 10\n9 5\n8 1\n10 5\n2 8\n4 5\n9 8\n5 3\n3 8\n9 8\n4 10\n8 5",
"output": "20"
},
{
"input": "15\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n1 2",
"output": "108"
},
{
"input": "25\n2 1\n1 2\n1 2\n1 2\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n1 2\n2 1\n2 1\n2 1\n2 1\n1 2",
"output": "312"
},
{
"input": "25\n91 57\n2 73\n54 57\n2 57\n23 57\n2 6\n57 54\n57 23\n91 54\n91 23\n57 23\n91 57\n54 2\n6 91\n57 54\n2 57\n57 91\n73 91\n57 23\n91 57\n2 73\n91 2\n23 6\n2 73\n23 6",
"output": "96"
},
{
"input": "28\n31 66\n31 91\n91 31\n97 66\n31 66\n31 66\n66 91\n91 31\n97 31\n91 97\n97 31\n66 31\n66 97\n91 31\n31 66\n31 66\n66 31\n31 97\n66 97\n97 31\n31 91\n66 91\n91 66\n31 66\n91 66\n66 31\n66 31\n91 97",
"output": "210"
},
{
"input": "29\n78 27\n50 68\n24 26\n68 43\n38 78\n26 38\n78 28\n28 26\n27 24\n23 38\n24 26\n24 43\n61 50\n38 78\n27 23\n61 26\n27 28\n43 23\n28 78\n43 27\n43 78\n27 61\n28 38\n61 78\n50 26\n43 27\n26 78\n28 50\n43 78",
"output": "73"
},
{
"input": "29\n80 27\n69 80\n27 80\n69 80\n80 27\n80 27\n80 27\n80 69\n27 69\n80 69\n80 27\n27 69\n69 27\n80 69\n27 69\n69 80\n27 69\n80 69\n80 27\n69 27\n27 69\n27 80\n80 27\n69 80\n27 69\n80 69\n69 80\n69 80\n27 80",
"output": "277"
},
{
"input": "30\n19 71\n7 89\n89 71\n21 7\n19 21\n7 89\n19 71\n89 8\n89 21\n19 8\n21 7\n8 89\n19 89\n7 21\n19 8\n19 7\n7 19\n8 21\n71 21\n71 89\n7 19\n7 19\n21 7\n21 19\n21 19\n71 8\n21 8\n71 19\n19 71\n8 21",
"output": "154"
},
{
"input": "30\n44 17\n44 17\n44 17\n17 44\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n44 17\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n17 44\n44 17\n44 17\n44 17\n17 44\n17 44\n44 17\n17 44\n44 17\n44 17\n44 17",
"output": "418"
},
{
"input": "22\n78 92\n15 92\n92 78\n78 80\n92 16\n24 80\n92 16\n16 92\n78 16\n24 78\n80 78\n92 80\n16 80\n80 78\n15 78\n92 16\n24 15\n24 80\n80 16\n16 80\n92 80\n24 80",
"output": "74"
},
{
"input": "24\n9 83\n90 31\n83 3\n83 3\n21 31\n83 3\n32 31\n12 21\n31 21\n90 32\n32 21\n12 9\n12 31\n9 83\n83 12\n32 3\n32 83\n90 31\n9 32\n31 21\n83 90\n32 21\n21 3\n32 9",
"output": "59"
},
{
"input": "30\n67 21\n85 39\n85 87\n21 39\n66 85\n10 95\n10 21\n87 85\n82 21\n67 21\n95 10\n21 39\n82 21\n21 66\n66 39\n95 30\n67 85\n66 82\n85 82\n21 66\n10 39\n67 10\n21 85\n10 82\n85 95\n10 85\n21 39\n85 39\n39 10\n95 67",
"output": "100"
},
{
"input": "4\n8 7\n8 7\n7 8\n7 8",
"output": "8"
},
{
"input": "6\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1",
"output": "10"
},
{
"input": "12\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1",
"output": "72"
},
{
"input": "4\n1 2\n1 2\n2 1\n2 1",
"output": "8"
}
] | 1,697,738,945
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 92
| 0
|
n = int(input())
mas1 = []
mas2 = []
for i in range(n):
h,a = map(int,input().split())
mas1.append(h)
mas2.append(a)
res = 0
for i in range(n):
c = 0
for j in range(n):
if mas2[j] == mas1[i]:
c+=1
res+=c
print(res)
|
Title: Games
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different.
There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number.
You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question.
Input Specification:
The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively.
Output Specification:
In a single line print the number of games where the host team is going to play in the guest uniform.
Demo Input:
['3\n1 2\n2 4\n3 4\n', '4\n100 42\n42 100\n5 42\n100 5\n', '2\n1 2\n1 2\n']
Demo Output:
['1\n', '5\n', '0\n']
Note:
In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2.
In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
|
```python
n = int(input())
mas1 = []
mas2 = []
for i in range(n):
h,a = map(int,input().split())
mas1.append(h)
mas2.append(a)
res = 0
for i in range(n):
c = 0
for j in range(n):
if mas2[j] == mas1[i]:
c+=1
res+=c
print(res)
```
| 3
|
|
389
|
A
|
Fox and Number Game
|
PROGRAMMING
| 1,000
|
[
"greedy",
"math"
] | null | null |
Fox Ciel is playing a game with numbers now.
Ciel has *n* positive integers: *x*1, *x*2, ..., *x**n*. She can do the following operation as many times as needed: select two different indexes *i* and *j* such that *x**i* > *x**j* hold, and then apply assignment *x**i* = *x**i* - *x**j*. The goal is to make the sum of all numbers as small as possible.
Please help Ciel to find this minimal sum.
|
The first line contains an integer *n* (2<=≤<=*n*<=≤<=100). Then the second line contains *n* integers: *x*1, *x*2, ..., *x**n* (1<=≤<=*x**i*<=≤<=100).
|
Output a single integer — the required minimal sum.
|
[
"2\n1 2\n",
"3\n2 4 6\n",
"2\n12 18\n",
"5\n45 12 27 30 18\n"
] |
[
"2\n",
"6\n",
"12\n",
"15\n"
] |
In the first example the optimal way is to do the assignment: *x*<sub class="lower-index">2</sub> = *x*<sub class="lower-index">2</sub> - *x*<sub class="lower-index">1</sub>.
In the second example the optimal sequence of operations is: *x*<sub class="lower-index">3</sub> = *x*<sub class="lower-index">3</sub> - *x*<sub class="lower-index">2</sub>, *x*<sub class="lower-index">2</sub> = *x*<sub class="lower-index">2</sub> - *x*<sub class="lower-index">1</sub>.
| 500
|
[
{
"input": "2\n1 2",
"output": "2"
},
{
"input": "3\n2 4 6",
"output": "6"
},
{
"input": "2\n12 18",
"output": "12"
},
{
"input": "5\n45 12 27 30 18",
"output": "15"
},
{
"input": "2\n1 1",
"output": "2"
},
{
"input": "2\n100 100",
"output": "200"
},
{
"input": "2\n87 58",
"output": "58"
},
{
"input": "39\n52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52",
"output": "2028"
},
{
"input": "59\n96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96",
"output": "5664"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "10000"
},
{
"input": "100\n70 70 77 42 98 84 56 91 35 21 7 70 77 77 56 63 14 84 56 14 77 77 63 70 14 7 28 91 63 49 21 84 98 56 77 98 98 84 98 14 7 56 49 28 91 98 7 56 14 91 14 98 49 28 98 14 98 98 14 70 35 28 63 28 49 63 63 56 91 98 35 42 42 35 63 35 42 14 63 21 77 56 42 77 35 91 56 21 28 84 56 70 70 91 98 70 84 63 21 98",
"output": "700"
},
{
"input": "39\n63 21 21 42 21 63 21 84 42 21 84 63 42 63 84 84 84 42 42 84 21 63 42 63 42 42 63 42 42 63 84 42 21 84 21 63 42 21 42",
"output": "819"
},
{
"input": "59\n70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70",
"output": "4130"
},
{
"input": "87\n44 88 88 88 88 66 88 22 22 88 88 44 88 22 22 22 88 88 88 88 66 22 88 88 88 88 66 66 44 88 44 44 66 22 88 88 22 44 66 44 88 66 66 22 22 22 22 88 22 22 44 66 88 22 22 88 66 66 88 22 66 88 66 88 66 44 88 44 22 44 44 22 44 88 44 44 44 44 22 88 88 88 66 66 88 44 22",
"output": "1914"
},
{
"input": "15\n63 63 63 63 63 63 63 63 63 63 63 63 63 63 63",
"output": "945"
},
{
"input": "39\n63 77 21 14 14 35 21 21 70 42 21 70 28 77 28 77 7 42 63 7 98 49 98 84 35 70 70 91 14 42 98 7 42 7 98 42 56 35 91",
"output": "273"
},
{
"input": "18\n18 18 18 36 36 36 54 72 54 36 72 54 36 36 36 36 18 36",
"output": "324"
},
{
"input": "46\n71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71",
"output": "3266"
},
{
"input": "70\n66 11 66 11 44 11 44 99 55 22 88 11 11 22 55 44 22 77 44 77 77 22 44 55 88 11 99 99 88 22 77 77 66 11 11 66 99 55 55 44 66 44 77 44 44 55 33 55 44 88 77 77 22 66 33 44 11 22 55 44 22 66 77 33 33 44 44 44 22 33",
"output": "770"
},
{
"input": "10\n60 12 96 48 60 24 60 36 60 60",
"output": "120"
},
{
"input": "20\n51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51",
"output": "1020"
},
{
"input": "50\n58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58",
"output": "2900"
},
{
"input": "98\n70 60 100 30 70 20 30 50 50 30 90 40 30 40 60 80 60 60 80 50 10 80 20 10 20 10 50 70 30 80 30 50 60 90 90 100 60 30 90 20 30 60 90 80 60 60 10 90 10 50 40 40 80 90 100 40 70 40 30 50 60 50 60 30 40 20 90 60 20 20 20 70 60 70 50 100 90 50 20 40 80 60 10 60 50 40 40 10 50 10 40 10 80 100 100 90 10 90",
"output": "980"
},
{
"input": "100\n82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82",
"output": "8200"
},
{
"input": "100\n11 87 77 93 3 54 21 93 9 71 37 23 69 85 74 3 48 99 51 31 56 19 21 96 39 6 4 4 29 69 100 42 1 22 81 53 48 49 81 61 10 7 40 61 7 71 51 59 79 44 50 35 95 80 83 8 98 40 18 94 84 49 52 74 66 69 39 37 100 44 38 62 2 80 46 31 35 53 5 60 21 49 63 55 20 53 80 53 66 34 23 92 77 50 86 63 65 24 12 70",
"output": "100"
},
{
"input": "2\n100 1",
"output": "2"
},
{
"input": "2\n18 30",
"output": "12"
},
{
"input": "2\n3 5",
"output": "2"
},
{
"input": "2\n1 10",
"output": "2"
},
{
"input": "2\n8 5",
"output": "2"
},
{
"input": "5\n2 3 5 8 18",
"output": "5"
},
{
"input": "5\n2 4 1 6 8",
"output": "5"
},
{
"input": "3\n12 10 5",
"output": "3"
},
{
"input": "3\n6 10 15",
"output": "3"
}
] | 1,579,332,629
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 34
| 140
| 0
|
from math import gcd
n = int(input()); res = 0
for i in input().split():
res = gcd(res, int(i))
print(res * n)
|
Title: Fox and Number Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fox Ciel is playing a game with numbers now.
Ciel has *n* positive integers: *x*1, *x*2, ..., *x**n*. She can do the following operation as many times as needed: select two different indexes *i* and *j* such that *x**i* > *x**j* hold, and then apply assignment *x**i* = *x**i* - *x**j*. The goal is to make the sum of all numbers as small as possible.
Please help Ciel to find this minimal sum.
Input Specification:
The first line contains an integer *n* (2<=≤<=*n*<=≤<=100). Then the second line contains *n* integers: *x*1, *x*2, ..., *x**n* (1<=≤<=*x**i*<=≤<=100).
Output Specification:
Output a single integer — the required minimal sum.
Demo Input:
['2\n1 2\n', '3\n2 4 6\n', '2\n12 18\n', '5\n45 12 27 30 18\n']
Demo Output:
['2\n', '6\n', '12\n', '15\n']
Note:
In the first example the optimal way is to do the assignment: *x*<sub class="lower-index">2</sub> = *x*<sub class="lower-index">2</sub> - *x*<sub class="lower-index">1</sub>.
In the second example the optimal sequence of operations is: *x*<sub class="lower-index">3</sub> = *x*<sub class="lower-index">3</sub> - *x*<sub class="lower-index">2</sub>, *x*<sub class="lower-index">2</sub> = *x*<sub class="lower-index">2</sub> - *x*<sub class="lower-index">1</sub>.
|
```python
from math import gcd
n = int(input()); res = 0
for i in input().split():
res = gcd(res, int(i))
print(res * n)
```
| 3
|
|
805
|
B
|
3-palindrome
|
PROGRAMMING
| 1,000
|
[
"constructive algorithms"
] | null | null |
In the beginning of the new year Keivan decided to reverse his name. He doesn't like palindromes, so he changed Naviek to Navick.
He is too selfish, so for a given *n* he wants to obtain a string of *n* characters, each of which is either 'a', 'b' or 'c', with no palindromes of length 3 appearing in the string as a substring. For example, the strings "abc" and "abca" suit him, while the string "aba" doesn't. He also want the number of letters 'c' in his string to be as little as possible.
|
The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the length of the string.
|
Print the string that satisfies all the constraints.
If there are multiple answers, print any of them.
|
[
"2\n",
"3\n"
] |
[
"aa\n",
"bba\n"
] |
A palindrome is a sequence of characters which reads the same backward and forward.
| 1,000
|
[
{
"input": "2",
"output": "aa"
},
{
"input": "3",
"output": "aab"
},
{
"input": "38",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaa"
},
{
"input": "47",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab"
},
{
"input": "59",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab"
},
{
"input": "67",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab"
},
{
"input": "77",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabba"
},
{
"input": "89",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabba"
},
{
"input": "98",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaa"
},
{
"input": "109",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabba"
},
{
"input": "117",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabba"
},
{
"input": "1",
"output": "a"
},
{
"input": "200000",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "100000",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "143670",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "104217",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "17879",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "131809",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "140873",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "77859",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "153022",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "179227",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "182801",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "5188",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "86539",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "12802",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "120289",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "132866",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "133377",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "31775",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "160397",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "161415",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "163623",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "22942",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "134767",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "52257",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "64905",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "183758",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "60131",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "146883",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "6",
"output": "aabbaa"
},
{
"input": "4",
"output": "aabb"
}
] | 1,628,491,926
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 530
| 7,168,000
|
n=int(input())
for i in range(n):
if i%4==0 or i%4==3:
print('a',end='')
else:
print('b',end='')
|
Title: 3-palindrome
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In the beginning of the new year Keivan decided to reverse his name. He doesn't like palindromes, so he changed Naviek to Navick.
He is too selfish, so for a given *n* he wants to obtain a string of *n* characters, each of which is either 'a', 'b' or 'c', with no palindromes of length 3 appearing in the string as a substring. For example, the strings "abc" and "abca" suit him, while the string "aba" doesn't. He also want the number of letters 'c' in his string to be as little as possible.
Input Specification:
The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the length of the string.
Output Specification:
Print the string that satisfies all the constraints.
If there are multiple answers, print any of them.
Demo Input:
['2\n', '3\n']
Demo Output:
['aa\n', 'bba\n']
Note:
A palindrome is a sequence of characters which reads the same backward and forward.
|
```python
n=int(input())
for i in range(n):
if i%4==0 or i%4==3:
print('a',end='')
else:
print('b',end='')
```
| 3
|
|
281
|
A
|
Word Capitalization
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.
Note, that during capitalization all the letters except the first one remains unchanged.
|
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
|
Output the given word after capitalization.
|
[
"ApPLe\n",
"konjac\n"
] |
[
"ApPLe\n",
"Konjac\n"
] |
none
| 500
|
[
{
"input": "ApPLe",
"output": "ApPLe"
},
{
"input": "konjac",
"output": "Konjac"
},
{
"input": "a",
"output": "A"
},
{
"input": "A",
"output": "A"
},
{
"input": "z",
"output": "Z"
},
{
"input": "ABACABA",
"output": "ABACABA"
},
{
"input": "xYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX",
"output": "XYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX"
},
{
"input": "rZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO",
"output": "RZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO"
},
{
"input": "hDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD",
"output": "HDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD"
},
{
"input": "qUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW",
"output": "QUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW"
},
{
"input": "kHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL",
"output": "KHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL"
},
{
"input": "aHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC",
"output": "AHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC"
},
{
"input": "sLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN",
"output": "SLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN"
},
{
"input": "iRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE",
"output": "IRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE"
},
{
"input": "cRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP",
"output": "CRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP"
},
{
"input": "wVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG",
"output": "WVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG"
},
{
"input": "kEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV",
"output": "KEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV"
},
{
"input": "eIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI",
"output": "EIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI"
},
{
"input": "uOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX",
"output": "UOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX"
},
{
"input": "lZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ",
"output": "LZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ"
},
{
"input": "P",
"output": "P"
},
{
"input": "Xyzzy",
"output": "Xyzzy"
},
{
"input": "Zzz",
"output": "Zzz"
},
{
"input": "Zp",
"output": "Zp"
}
] | 1,696,207,015
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 62
| 0
|
word=str(input())
A=str(word[0]).upper()
B=str(word[1:])
print(A+B)
|
Title: Word Capitalization
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.
Note, that during capitalization all the letters except the first one remains unchanged.
Input Specification:
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
Output Specification:
Output the given word after capitalization.
Demo Input:
['ApPLe\n', 'konjac\n']
Demo Output:
['ApPLe\n', 'Konjac\n']
Note:
none
|
```python
word=str(input())
A=str(word[0]).upper()
B=str(word[1:])
print(A+B)
```
| 3
|
|
251
|
A
|
Points on Line
|
PROGRAMMING
| 1,300
|
[
"binary search",
"combinatorics",
"two pointers"
] | null | null |
Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*.
Note that the order of the points inside the group of three chosen points doesn't matter.
|
The first line contains two integers: *n* and *d* (1<=≤<=*n*<=≤<=105; 1<=≤<=*d*<=≤<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 — the *x*-coordinates of the points that Petya has got.
It is guaranteed that the coordinates of the points in the input strictly increase.
|
Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed *d*.
Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
|
[
"4 3\n1 2 3 4\n",
"4 2\n-3 -2 -1 0\n",
"5 19\n1 10 20 30 50\n"
] |
[
"4\n",
"2\n",
"1\n"
] |
In the first sample any group of three points meets our conditions.
In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}.
In the third sample only one group does: {1, 10, 20}.
| 500
|
[
{
"input": "4 3\n1 2 3 4",
"output": "4"
},
{
"input": "4 2\n-3 -2 -1 0",
"output": "2"
},
{
"input": "5 19\n1 10 20 30 50",
"output": "1"
},
{
"input": "10 5\n31 36 43 47 48 50 56 69 71 86",
"output": "2"
},
{
"input": "10 50\n1 4 20 27 65 79 82 83 99 100",
"output": "25"
},
{
"input": "10 90\n24 27 40 41 61 69 73 87 95 97",
"output": "120"
},
{
"input": "100 100\n-98 -97 -96 -93 -92 -91 -90 -87 -86 -84 -81 -80 -79 -78 -76 -75 -73 -71 -69 -67 -65 -64 -63 -62 -61 -54 -51 -50 -49 -48 -46 -45 -44 -37 -36 -33 -30 -28 -27 -16 -15 -13 -12 -10 -9 -7 -6 -5 -4 2 3 5 8 9 10 11 13 14 15 16 17 19 22 24 25 26 27 28 30 31 32 36 40 43 45 46 47 50 51 52 53 58 60 63 69 70 73 78 80 81 82 85 88 89 90 91 95 96 97 99",
"output": "79351"
},
{
"input": "1 14751211\n847188590",
"output": "0"
},
{
"input": "2 1000000000\n-907894512 -289906312",
"output": "0"
},
{
"input": "2 1000000000\n-14348867 1760823",
"output": "0"
},
{
"input": "3 1000000000\n-5 -1 1",
"output": "1"
}
] | 1,541,759,582
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 39
| 654
| 8,601,600
|
if __name__ == "__main__":
ans = 0
n, x = map(int, input().split(' '))
lst = list(int(x) for x in input().split(' '))
j = 2
for i in range(0, n-2):
b = 0
for k in range(j, n):
if lst[k] - lst[i] > x:
b = k-1
j = k
break
else:
b = k
j = k
z = b-(i+1)
if b != 0:
ans += (z*(z+1))/2
print(int(ans))
|
Title: Points on Line
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*.
Note that the order of the points inside the group of three chosen points doesn't matter.
Input Specification:
The first line contains two integers: *n* and *d* (1<=≤<=*n*<=≤<=105; 1<=≤<=*d*<=≤<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 — the *x*-coordinates of the points that Petya has got.
It is guaranteed that the coordinates of the points in the input strictly increase.
Output Specification:
Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed *d*.
Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Demo Input:
['4 3\n1 2 3 4\n', '4 2\n-3 -2 -1 0\n', '5 19\n1 10 20 30 50\n']
Demo Output:
['4\n', '2\n', '1\n']
Note:
In the first sample any group of three points meets our conditions.
In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}.
In the third sample only one group does: {1, 10, 20}.
|
```python
if __name__ == "__main__":
ans = 0
n, x = map(int, input().split(' '))
lst = list(int(x) for x in input().split(' '))
j = 2
for i in range(0, n-2):
b = 0
for k in range(j, n):
if lst[k] - lst[i] > x:
b = k-1
j = k
break
else:
b = k
j = k
z = b-(i+1)
if b != 0:
ans += (z*(z+1))/2
print(int(ans))
```
| 3
|
|
535
|
B
|
Tavas and SaDDas
|
PROGRAMMING
| 1,100
|
[
"bitmasks",
"brute force",
"combinatorics",
"implementation"
] | null | null |
Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you."
The problem is:
You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
If we sort all lucky numbers in increasing order, what's the 1-based index of *n*?
Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back.
|
The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109).
|
Print the index of *n* among all lucky numbers.
|
[
"4\n",
"7\n",
"77\n"
] |
[
"1\n",
"2\n",
"6\n"
] |
none
| 1,000
|
[
{
"input": "4",
"output": "1"
},
{
"input": "7",
"output": "2"
},
{
"input": "77",
"output": "6"
},
{
"input": "4",
"output": "1"
},
{
"input": "474744",
"output": "83"
},
{
"input": "777774",
"output": "125"
},
{
"input": "447",
"output": "8"
},
{
"input": "774",
"output": "13"
},
{
"input": "4",
"output": "1"
},
{
"input": "4447747",
"output": "140"
},
{
"input": "7747474",
"output": "233"
},
{
"input": "4444",
"output": "15"
},
{
"input": "4447",
"output": "16"
},
{
"input": "7",
"output": "2"
},
{
"input": "4",
"output": "1"
},
{
"input": "4447744",
"output": "139"
},
{
"input": "77474",
"output": "57"
},
{
"input": "7747",
"output": "28"
},
{
"input": "444",
"output": "7"
},
{
"input": "7",
"output": "2"
},
{
"input": "7774477",
"output": "242"
},
{
"input": "4477774",
"output": "157"
},
{
"input": "7444",
"output": "23"
},
{
"input": "7474747",
"output": "212"
},
{
"input": "77",
"output": "6"
},
{
"input": "774477",
"output": "114"
},
{
"input": "7",
"output": "2"
},
{
"input": "47",
"output": "4"
},
{
"input": "747777",
"output": "110"
},
{
"input": "444444444",
"output": "511"
},
{
"input": "777777777",
"output": "1022"
},
{
"input": "477477447",
"output": "728"
},
{
"input": "777744747",
"output": "996"
}
] | 1,596,956,965
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 93
| 6,963,200
|
# Solution for codeforces problem 535-B, problem was completed as part
# of the coding coversations session held on 9th August 2020.
#
# author - atifcppprogrammer
# Generating all possible lucky numbers and sorting them in place.
from itertools import product as prod
luckyNumbers = []
for j in [1,2,3,4,5,6,7,8,9]:
tuples = list(prod(['4','7'], repeat = j))
for element in tuples:
luckyNumbers.append(int(''.join(element)))
luckyNumbers.sort()
# Collecting number from codeforces and determining its 1-based
# index.
number=int(input())
print(1+luckyNumbers.index(number))
|
Title: Tavas and SaDDas
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you."
The problem is:
You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
If we sort all lucky numbers in increasing order, what's the 1-based index of *n*?
Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back.
Input Specification:
The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109).
Output Specification:
Print the index of *n* among all lucky numbers.
Demo Input:
['4\n', '7\n', '77\n']
Demo Output:
['1\n', '2\n', '6\n']
Note:
none
|
```python
# Solution for codeforces problem 535-B, problem was completed as part
# of the coding coversations session held on 9th August 2020.
#
# author - atifcppprogrammer
# Generating all possible lucky numbers and sorting them in place.
from itertools import product as prod
luckyNumbers = []
for j in [1,2,3,4,5,6,7,8,9]:
tuples = list(prod(['4','7'], repeat = j))
for element in tuples:
luckyNumbers.append(int(''.join(element)))
luckyNumbers.sort()
# Collecting number from codeforces and determining its 1-based
# index.
number=int(input())
print(1+luckyNumbers.index(number))
```
| 3
|
|
136
|
A
|
Presents
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there.
If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift.
Now Petya wants to know for each friend *i* the number of a friend who has given him a gift.
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves.
|
Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*.
|
[
"4\n2 3 4 1\n",
"3\n1 3 2\n",
"2\n1 2\n"
] |
[
"4 1 2 3\n",
"1 3 2\n",
"1 2\n"
] |
none
| 500
|
[
{
"input": "4\n2 3 4 1",
"output": "4 1 2 3"
},
{
"input": "3\n1 3 2",
"output": "1 3 2"
},
{
"input": "2\n1 2",
"output": "1 2"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "10\n1 3 2 6 4 5 7 9 8 10",
"output": "1 3 2 5 6 4 7 9 8 10"
},
{
"input": "5\n5 4 3 2 1",
"output": "5 4 3 2 1"
},
{
"input": "20\n2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19"
},
{
"input": "21\n3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19",
"output": "3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19"
},
{
"input": "10\n3 4 5 6 7 8 9 10 1 2",
"output": "9 10 1 2 3 4 5 6 7 8"
},
{
"input": "8\n1 5 3 7 2 6 4 8",
"output": "1 5 3 7 2 6 4 8"
},
{
"input": "50\n49 22 4 2 20 46 7 32 5 19 48 24 26 15 45 21 44 11 50 43 39 17 31 1 42 34 3 27 36 25 12 30 13 33 28 35 18 6 8 37 38 14 10 9 29 16 40 23 41 47",
"output": "24 4 27 3 9 38 7 39 44 43 18 31 33 42 14 46 22 37 10 5 16 2 48 12 30 13 28 35 45 32 23 8 34 26 36 29 40 41 21 47 49 25 20 17 15 6 50 11 1 19"
},
{
"input": "34\n13 20 33 30 15 11 27 4 8 2 29 25 24 7 3 22 18 10 26 16 5 1 32 9 34 6 12 14 28 19 31 21 23 17",
"output": "22 10 15 8 21 26 14 9 24 18 6 27 1 28 5 20 34 17 30 2 32 16 33 13 12 19 7 29 11 4 31 23 3 25"
},
{
"input": "92\n23 1 6 4 84 54 44 76 63 34 61 20 48 13 28 78 26 46 90 72 24 55 91 89 53 38 82 5 79 92 29 32 15 64 11 88 60 70 7 66 18 59 8 57 19 16 42 21 80 71 62 27 75 86 36 9 83 73 74 50 43 31 56 30 17 33 40 81 49 12 10 41 22 77 25 68 51 2 47 3 58 69 87 67 39 37 35 65 14 45 52 85",
"output": "2 78 80 4 28 3 39 43 56 71 35 70 14 89 33 46 65 41 45 12 48 73 1 21 75 17 52 15 31 64 62 32 66 10 87 55 86 26 85 67 72 47 61 7 90 18 79 13 69 60 77 91 25 6 22 63 44 81 42 37 11 51 9 34 88 40 84 76 82 38 50 20 58 59 53 8 74 16 29 49 68 27 57 5 92 54 83 36 24 19 23 30"
},
{
"input": "49\n30 24 33 48 7 3 17 2 8 35 10 39 23 40 46 32 18 21 26 22 1 16 47 45 41 28 31 6 12 43 27 11 13 37 19 15 44 5 29 42 4 38 20 34 14 9 25 36 49",
"output": "21 8 6 41 38 28 5 9 46 11 32 29 33 45 36 22 7 17 35 43 18 20 13 2 47 19 31 26 39 1 27 16 3 44 10 48 34 42 12 14 25 40 30 37 24 15 23 4 49"
},
{
"input": "12\n3 8 7 4 6 5 2 1 11 9 10 12",
"output": "8 7 1 4 6 5 3 2 10 11 9 12"
},
{
"input": "78\n16 56 36 78 21 14 9 77 26 57 70 61 41 47 18 44 5 31 50 74 65 52 6 39 22 62 67 69 43 7 64 29 24 40 48 51 73 54 72 12 19 34 4 25 55 33 17 35 23 53 10 8 27 32 42 68 20 63 3 2 1 71 58 46 13 30 49 11 37 66 38 60 28 75 15 59 45 76",
"output": "61 60 59 43 17 23 30 52 7 51 68 40 65 6 75 1 47 15 41 57 5 25 49 33 44 9 53 73 32 66 18 54 46 42 48 3 69 71 24 34 13 55 29 16 77 64 14 35 67 19 36 22 50 38 45 2 10 63 76 72 12 26 58 31 21 70 27 56 28 11 62 39 37 20 74 78 8 4"
},
{
"input": "64\n64 57 40 3 15 8 62 18 33 59 51 19 22 13 4 37 47 45 50 35 63 11 58 42 46 21 7 2 41 48 32 23 28 38 17 12 24 27 49 31 60 6 30 25 61 52 26 54 9 14 29 20 44 39 55 10 34 16 5 56 1 36 53 43",
"output": "61 28 4 15 59 42 27 6 49 56 22 36 14 50 5 58 35 8 12 52 26 13 32 37 44 47 38 33 51 43 40 31 9 57 20 62 16 34 54 3 29 24 64 53 18 25 17 30 39 19 11 46 63 48 55 60 2 23 10 41 45 7 21 1"
},
{
"input": "49\n38 20 49 32 14 41 39 45 25 48 40 19 26 43 34 12 10 3 35 42 5 7 46 47 4 2 13 22 16 24 33 15 11 18 29 31 23 9 44 36 6 17 37 1 30 28 8 21 27",
"output": "44 26 18 25 21 41 22 47 38 17 33 16 27 5 32 29 42 34 12 2 48 28 37 30 9 13 49 46 35 45 36 4 31 15 19 40 43 1 7 11 6 20 14 39 8 23 24 10 3"
},
{
"input": "78\n17 50 30 48 33 12 42 4 18 53 76 67 38 3 20 72 51 55 60 63 46 10 57 45 54 32 24 62 8 11 35 44 65 74 58 28 2 6 56 52 39 23 47 49 61 1 66 41 15 77 7 27 78 13 14 34 5 31 37 21 40 16 29 69 59 43 64 36 70 19 25 73 71 75 9 68 26 22",
"output": "46 37 14 8 57 38 51 29 75 22 30 6 54 55 49 62 1 9 70 15 60 78 42 27 71 77 52 36 63 3 58 26 5 56 31 68 59 13 41 61 48 7 66 32 24 21 43 4 44 2 17 40 10 25 18 39 23 35 65 19 45 28 20 67 33 47 12 76 64 69 73 16 72 34 74 11 50 53"
},
{
"input": "29\n14 21 27 1 4 18 10 17 20 23 2 24 7 9 28 22 8 25 12 15 11 6 16 29 3 26 19 5 13",
"output": "4 11 25 5 28 22 13 17 14 7 21 19 29 1 20 23 8 6 27 9 2 16 10 12 18 26 3 15 24"
},
{
"input": "82\n6 1 10 75 28 66 61 81 78 63 17 19 58 34 49 12 67 50 41 44 3 15 59 38 51 72 36 11 46 29 18 64 27 23 13 53 56 68 2 25 47 40 69 54 42 5 60 55 4 16 24 79 57 20 7 73 32 80 76 52 82 37 26 31 65 8 39 62 33 71 30 9 77 43 48 74 70 22 14 45 35 21",
"output": "2 39 21 49 46 1 55 66 72 3 28 16 35 79 22 50 11 31 12 54 82 78 34 51 40 63 33 5 30 71 64 57 69 14 81 27 62 24 67 42 19 45 74 20 80 29 41 75 15 18 25 60 36 44 48 37 53 13 23 47 7 68 10 32 65 6 17 38 43 77 70 26 56 76 4 59 73 9 52 58 8 61"
},
{
"input": "82\n74 18 15 69 71 77 19 26 80 20 66 7 30 82 22 48 21 44 52 65 64 61 35 49 12 8 53 81 54 16 11 9 40 46 13 1 29 58 5 41 55 4 78 60 6 51 56 2 38 36 34 62 63 25 17 67 45 14 32 37 75 79 10 47 27 39 31 68 59 24 50 43 72 70 42 28 76 23 57 3 73 33",
"output": "36 48 80 42 39 45 12 26 32 63 31 25 35 58 3 30 55 2 7 10 17 15 78 70 54 8 65 76 37 13 67 59 82 51 23 50 60 49 66 33 40 75 72 18 57 34 64 16 24 71 46 19 27 29 41 47 79 38 69 44 22 52 53 21 20 11 56 68 4 74 5 73 81 1 61 77 6 43 62 9 28 14"
},
{
"input": "45\n2 32 34 13 3 15 16 33 22 12 31 38 42 14 27 7 36 8 4 19 45 41 5 35 10 11 39 20 29 44 17 9 6 40 37 28 25 21 1 30 24 18 43 26 23",
"output": "39 1 5 19 23 33 16 18 32 25 26 10 4 14 6 7 31 42 20 28 38 9 45 41 37 44 15 36 29 40 11 2 8 3 24 17 35 12 27 34 22 13 43 30 21"
},
{
"input": "45\n4 32 33 39 43 21 22 35 45 7 14 5 16 9 42 31 24 36 17 29 41 25 37 34 27 20 11 44 3 13 19 2 1 10 26 30 38 18 6 8 15 23 40 28 12",
"output": "33 32 29 1 12 39 10 40 14 34 27 45 30 11 41 13 19 38 31 26 6 7 42 17 22 35 25 44 20 36 16 2 3 24 8 18 23 37 4 43 21 15 5 28 9"
},
{
"input": "74\n48 72 40 67 17 4 27 53 11 32 25 9 74 2 41 24 56 22 14 21 33 5 18 55 20 7 29 36 69 13 52 19 38 30 68 59 66 34 63 6 47 45 54 44 62 12 50 71 16 10 8 64 57 73 46 26 49 42 3 23 35 1 61 39 70 60 65 43 15 28 37 51 58 31",
"output": "62 14 59 6 22 40 26 51 12 50 9 46 30 19 69 49 5 23 32 25 20 18 60 16 11 56 7 70 27 34 74 10 21 38 61 28 71 33 64 3 15 58 68 44 42 55 41 1 57 47 72 31 8 43 24 17 53 73 36 66 63 45 39 52 67 37 4 35 29 65 48 2 54 13"
},
{
"input": "47\n9 26 27 10 6 34 28 42 39 22 45 21 11 43 14 47 38 15 40 32 46 1 36 29 17 25 2 23 31 5 24 4 7 8 12 19 16 44 37 20 18 33 30 13 35 41 3",
"output": "22 27 47 32 30 5 33 34 1 4 13 35 44 15 18 37 25 41 36 40 12 10 28 31 26 2 3 7 24 43 29 20 42 6 45 23 39 17 9 19 46 8 14 38 11 21 16"
},
{
"input": "49\n14 38 6 29 9 49 36 43 47 3 44 20 34 15 7 11 1 28 12 40 16 37 31 10 42 41 33 21 18 30 5 27 17 35 25 26 45 19 2 13 23 32 4 22 46 48 24 39 8",
"output": "17 39 10 43 31 3 15 49 5 24 16 19 40 1 14 21 33 29 38 12 28 44 41 47 35 36 32 18 4 30 23 42 27 13 34 7 22 2 48 20 26 25 8 11 37 45 9 46 6"
},
{
"input": "100\n78 56 31 91 90 95 16 65 58 77 37 89 33 61 10 76 62 47 35 67 69 7 63 83 22 25 49 8 12 30 39 44 57 64 48 42 32 11 70 43 55 50 99 24 85 73 45 14 54 21 98 84 74 2 26 18 9 36 80 53 75 46 66 86 59 93 87 68 94 13 72 28 79 88 92 29 52 82 34 97 19 38 1 41 27 4 40 5 96 100 51 6 20 23 81 15 17 3 60 71",
"output": "83 54 98 86 88 92 22 28 57 15 38 29 70 48 96 7 97 56 81 93 50 25 94 44 26 55 85 72 76 30 3 37 13 79 19 58 11 82 31 87 84 36 40 32 47 62 18 35 27 42 91 77 60 49 41 2 33 9 65 99 14 17 23 34 8 63 20 68 21 39 100 71 46 53 61 16 10 1 73 59 95 78 24 52 45 64 67 74 12 5 4 75 66 69 6 89 80 51 43 90"
},
{
"input": "22\n12 8 11 2 16 7 13 6 22 21 20 10 4 14 18 1 5 15 3 19 17 9",
"output": "16 4 19 13 17 8 6 2 22 12 3 1 7 14 18 5 21 15 20 11 10 9"
},
{
"input": "72\n16 11 49 51 3 27 60 55 23 40 66 7 53 70 13 5 15 32 18 72 33 30 8 31 46 12 28 67 25 38 50 22 69 34 71 52 58 39 24 35 42 9 41 26 62 1 63 65 36 64 68 61 37 14 45 47 6 57 54 20 17 2 56 59 29 10 4 48 21 43 19 44",
"output": "46 62 5 67 16 57 12 23 42 66 2 26 15 54 17 1 61 19 71 60 69 32 9 39 29 44 6 27 65 22 24 18 21 34 40 49 53 30 38 10 43 41 70 72 55 25 56 68 3 31 4 36 13 59 8 63 58 37 64 7 52 45 47 50 48 11 28 51 33 14 35 20"
},
{
"input": "63\n21 56 11 10 62 24 20 42 28 52 38 2 37 43 48 22 7 8 40 14 13 46 53 1 23 4 60 63 51 36 25 12 39 32 49 16 58 44 31 61 33 50 55 54 45 6 47 41 9 57 30 29 26 18 19 27 15 34 3 35 59 5 17",
"output": "24 12 59 26 62 46 17 18 49 4 3 32 21 20 57 36 63 54 55 7 1 16 25 6 31 53 56 9 52 51 39 34 41 58 60 30 13 11 33 19 48 8 14 38 45 22 47 15 35 42 29 10 23 44 43 2 50 37 61 27 40 5 28"
},
{
"input": "18\n2 16 8 4 18 12 3 6 5 9 10 15 11 17 14 13 1 7",
"output": "17 1 7 4 9 8 18 3 10 11 13 6 16 15 12 2 14 5"
},
{
"input": "47\n6 9 10 41 25 3 4 37 20 1 36 22 29 27 11 24 43 31 12 17 34 42 38 39 13 2 7 21 18 5 15 35 44 26 33 46 19 40 30 14 28 23 47 32 45 8 16",
"output": "10 26 6 7 30 1 27 46 2 3 15 19 25 40 31 47 20 29 37 9 28 12 42 16 5 34 14 41 13 39 18 44 35 21 32 11 8 23 24 38 4 22 17 33 45 36 43"
},
{
"input": "96\n41 91 48 88 29 57 1 19 44 43 37 5 10 75 25 63 30 78 76 53 8 92 18 70 39 17 49 60 9 16 3 34 86 59 23 79 55 45 72 51 28 33 96 40 26 54 6 32 89 61 85 74 7 82 52 31 64 66 94 95 11 22 2 73 35 13 42 71 14 47 84 69 50 67 58 12 77 46 38 68 15 36 20 93 27 90 83 56 87 4 21 24 81 62 80 65",
"output": "7 63 31 90 12 47 53 21 29 13 61 76 66 69 81 30 26 23 8 83 91 62 35 92 15 45 85 41 5 17 56 48 42 32 65 82 11 79 25 44 1 67 10 9 38 78 70 3 27 73 40 55 20 46 37 88 6 75 34 28 50 94 16 57 96 58 74 80 72 24 68 39 64 52 14 19 77 18 36 95 93 54 87 71 51 33 89 4 49 86 2 22 84 59 60 43"
},
{
"input": "73\n67 24 39 22 23 20 48 34 42 40 19 70 65 69 64 21 53 11 59 15 26 10 30 33 72 29 55 25 56 71 8 9 57 49 41 61 13 12 6 27 66 36 47 50 73 60 2 37 7 4 51 17 1 46 14 62 35 3 45 63 43 58 54 32 31 5 28 44 18 52 68 38 16",
"output": "53 47 58 50 66 39 49 31 32 22 18 38 37 55 20 73 52 69 11 6 16 4 5 2 28 21 40 67 26 23 65 64 24 8 57 42 48 72 3 10 35 9 61 68 59 54 43 7 34 44 51 70 17 63 27 29 33 62 19 46 36 56 60 15 13 41 1 71 14 12 30 25 45"
},
{
"input": "81\n25 2 78 40 12 80 69 13 49 43 17 33 23 54 32 61 77 66 27 71 24 26 42 55 60 9 5 30 7 37 45 63 53 11 38 44 68 34 28 52 67 22 57 46 47 50 8 16 79 62 4 36 20 14 73 64 6 76 35 74 58 10 29 81 59 31 19 1 75 39 70 18 41 21 72 65 3 48 15 56 51",
"output": "68 2 77 51 27 57 29 47 26 62 34 5 8 54 79 48 11 72 67 53 74 42 13 21 1 22 19 39 63 28 66 15 12 38 59 52 30 35 70 4 73 23 10 36 31 44 45 78 9 46 81 40 33 14 24 80 43 61 65 25 16 50 32 56 76 18 41 37 7 71 20 75 55 60 69 58 17 3 49 6 64"
},
{
"input": "12\n12 3 1 5 11 6 7 10 2 8 9 4",
"output": "3 9 2 12 4 6 7 10 11 8 5 1"
},
{
"input": "47\n7 21 41 18 40 31 12 28 24 14 43 23 33 10 19 38 26 8 34 15 29 44 5 13 39 25 3 27 20 42 35 9 2 1 30 46 36 32 4 22 37 45 6 47 11 16 17",
"output": "34 33 27 39 23 43 1 18 32 14 45 7 24 10 20 46 47 4 15 29 2 40 12 9 26 17 28 8 21 35 6 38 13 19 31 37 41 16 25 5 3 30 11 22 42 36 44"
},
{
"input": "8\n1 3 5 2 4 8 6 7",
"output": "1 4 2 5 3 7 8 6"
},
{
"input": "38\n28 8 2 33 20 32 26 29 23 31 15 38 11 37 18 21 22 19 4 34 1 35 16 7 17 6 27 30 36 12 9 24 25 13 5 3 10 14",
"output": "21 3 36 19 35 26 24 2 31 37 13 30 34 38 11 23 25 15 18 5 16 17 9 32 33 7 27 1 8 28 10 6 4 20 22 29 14 12"
},
{
"input": "10\n2 9 4 6 10 1 7 5 3 8",
"output": "6 1 9 3 8 4 7 10 2 5"
},
{
"input": "23\n20 11 15 1 5 12 23 9 2 22 13 19 16 14 7 4 8 21 6 17 18 10 3",
"output": "4 9 23 16 5 19 15 17 8 22 2 6 11 14 3 13 20 21 12 1 18 10 7"
},
{
"input": "10\n2 4 9 3 6 8 10 5 1 7",
"output": "9 1 4 2 8 5 10 6 3 7"
},
{
"input": "55\n9 48 23 49 11 24 4 22 34 32 17 45 39 13 14 21 19 25 2 31 37 7 55 36 20 51 5 12 54 10 35 40 43 1 46 18 53 41 38 26 29 50 3 42 52 27 8 28 47 33 6 16 30 44 15",
"output": "34 19 43 7 27 51 22 47 1 30 5 28 14 15 55 52 11 36 17 25 16 8 3 6 18 40 46 48 41 53 20 10 50 9 31 24 21 39 13 32 38 44 33 54 12 35 49 2 4 42 26 45 37 29 23"
},
{
"input": "58\n49 13 12 54 2 38 56 11 33 25 26 19 28 8 23 41 20 36 46 55 15 35 9 7 32 37 58 6 3 14 47 31 40 30 53 44 4 50 29 34 10 43 39 57 5 22 27 45 51 42 24 16 18 21 52 17 48 1",
"output": "58 5 29 37 45 28 24 14 23 41 8 3 2 30 21 52 56 53 12 17 54 46 15 51 10 11 47 13 39 34 32 25 9 40 22 18 26 6 43 33 16 50 42 36 48 19 31 57 1 38 49 55 35 4 20 7 44 27"
},
{
"input": "34\n20 25 2 3 33 29 1 16 14 7 21 9 32 31 6 26 22 4 27 23 24 10 34 12 19 15 5 18 28 17 13 8 11 30",
"output": "7 3 4 18 27 15 10 32 12 22 33 24 31 9 26 8 30 28 25 1 11 17 20 21 2 16 19 29 6 34 14 13 5 23"
},
{
"input": "53\n47 29 46 25 23 13 7 31 33 4 38 11 35 16 42 14 15 43 34 39 28 18 6 45 30 1 40 20 2 37 5 32 24 12 44 26 27 3 19 51 36 21 22 9 10 50 41 48 49 53 8 17 52",
"output": "26 29 38 10 31 23 7 51 44 45 12 34 6 16 17 14 52 22 39 28 42 43 5 33 4 36 37 21 2 25 8 32 9 19 13 41 30 11 20 27 47 15 18 35 24 3 1 48 49 46 40 53 50"
},
{
"input": "99\n77 87 90 48 53 38 68 6 28 57 35 82 63 71 60 41 3 12 86 65 10 59 22 67 33 74 93 27 24 1 61 43 25 4 51 52 15 88 9 31 30 42 89 49 23 21 29 32 46 73 37 16 5 69 56 26 92 64 20 54 75 14 98 13 94 2 95 7 36 66 58 8 50 78 84 45 11 96 76 62 97 80 40 39 47 85 34 79 83 17 91 72 19 44 70 81 55 99 18",
"output": "30 66 17 34 53 8 68 72 39 21 77 18 64 62 37 52 90 99 93 59 46 23 45 29 33 56 28 9 47 41 40 48 25 87 11 69 51 6 84 83 16 42 32 94 76 49 85 4 44 73 35 36 5 60 97 55 10 71 22 15 31 80 13 58 20 70 24 7 54 95 14 92 50 26 61 79 1 74 88 82 96 12 89 75 86 19 2 38 43 3 91 57 27 65 67 78 81 63 98"
},
{
"input": "32\n17 29 2 6 30 8 26 7 1 27 10 9 13 24 31 21 15 19 22 18 4 11 25 28 32 3 23 12 5 14 20 16",
"output": "9 3 26 21 29 4 8 6 12 11 22 28 13 30 17 32 1 20 18 31 16 19 27 14 23 7 10 24 2 5 15 25"
},
{
"input": "65\n18 40 1 60 17 19 4 6 12 49 28 58 2 25 13 14 64 56 61 34 62 30 59 51 26 8 33 63 36 48 46 7 43 21 31 27 11 44 29 5 32 23 35 9 53 57 52 50 15 38 42 3 54 65 55 41 20 24 22 47 45 10 39 16 37",
"output": "3 13 52 7 40 8 32 26 44 62 37 9 15 16 49 64 5 1 6 57 34 59 42 58 14 25 36 11 39 22 35 41 27 20 43 29 65 50 63 2 56 51 33 38 61 31 60 30 10 48 24 47 45 53 55 18 46 12 23 4 19 21 28 17 54"
},
{
"input": "71\n35 50 55 58 25 32 26 40 63 34 44 53 24 18 37 7 64 27 56 65 1 19 2 43 42 14 57 47 22 13 59 61 39 67 30 45 54 38 33 48 6 5 3 69 36 21 41 4 16 46 20 17 15 12 10 70 68 23 60 31 52 29 66 28 51 49 62 11 8 9 71",
"output": "21 23 43 48 42 41 16 69 70 55 68 54 30 26 53 49 52 14 22 51 46 29 58 13 5 7 18 64 62 35 60 6 39 10 1 45 15 38 33 8 47 25 24 11 36 50 28 40 66 2 65 61 12 37 3 19 27 4 31 59 32 67 9 17 20 63 34 57 44 56 71"
},
{
"input": "74\n33 8 42 63 64 61 31 74 11 50 68 14 36 25 57 30 7 44 21 15 6 9 23 59 46 3 73 16 62 51 40 60 41 54 5 39 35 28 48 4 58 12 66 69 13 26 71 1 24 19 29 52 37 2 20 43 18 72 17 56 34 38 65 67 27 10 47 70 53 32 45 55 49 22",
"output": "48 54 26 40 35 21 17 2 22 66 9 42 45 12 20 28 59 57 50 55 19 74 23 49 14 46 65 38 51 16 7 70 1 61 37 13 53 62 36 31 33 3 56 18 71 25 67 39 73 10 30 52 69 34 72 60 15 41 24 32 6 29 4 5 63 43 64 11 44 68 47 58 27 8"
},
{
"input": "96\n78 10 82 46 38 91 77 69 2 27 58 80 79 44 59 41 6 31 76 11 42 48 51 37 19 87 43 25 52 32 1 39 63 29 21 65 53 74 92 16 15 95 90 83 30 73 71 5 50 17 96 33 86 60 67 64 20 26 61 40 55 88 94 93 9 72 47 57 14 45 22 3 54 68 13 24 4 7 56 81 89 70 49 8 84 28 18 62 35 36 75 23 66 85 34 12",
"output": "31 9 72 77 48 17 78 84 65 2 20 96 75 69 41 40 50 87 25 57 35 71 92 76 28 58 10 86 34 45 18 30 52 95 89 90 24 5 32 60 16 21 27 14 70 4 67 22 83 49 23 29 37 73 61 79 68 11 15 54 59 88 33 56 36 93 55 74 8 82 47 66 46 38 91 19 7 1 13 12 80 3 44 85 94 53 26 62 81 43 6 39 64 63 42 51"
},
{
"input": "7\n2 1 5 7 3 4 6",
"output": "2 1 5 6 3 7 4"
},
{
"input": "51\n8 33 37 2 16 22 24 30 4 9 5 15 27 3 18 39 31 26 10 17 46 41 25 14 6 1 29 48 36 20 51 49 21 43 19 13 38 50 47 34 11 23 28 12 42 7 32 40 44 45 35",
"output": "26 4 14 9 11 25 46 1 10 19 41 44 36 24 12 5 20 15 35 30 33 6 42 7 23 18 13 43 27 8 17 47 2 40 51 29 3 37 16 48 22 45 34 49 50 21 39 28 32 38 31"
},
{
"input": "27\n12 14 7 3 20 21 25 13 22 15 23 4 2 24 10 17 19 8 26 11 27 18 9 5 6 1 16",
"output": "26 13 4 12 24 25 3 18 23 15 20 1 8 2 10 27 16 22 17 5 6 9 11 14 7 19 21"
},
{
"input": "71\n51 13 20 48 54 23 24 64 14 62 71 67 57 53 3 30 55 43 33 25 39 40 66 6 46 18 5 19 61 16 32 68 70 41 60 44 29 49 27 69 50 38 10 17 45 56 9 21 26 63 28 35 7 59 1 65 2 15 8 11 12 34 37 47 58 22 31 4 36 42 52",
"output": "55 57 15 68 27 24 53 59 47 43 60 61 2 9 58 30 44 26 28 3 48 66 6 7 20 49 39 51 37 16 67 31 19 62 52 69 63 42 21 22 34 70 18 36 45 25 64 4 38 41 1 71 14 5 17 46 13 65 54 35 29 10 50 8 56 23 12 32 40 33 11"
},
{
"input": "9\n8 5 2 6 1 9 4 7 3",
"output": "5 3 9 7 2 4 8 1 6"
},
{
"input": "29\n10 24 11 5 26 25 2 9 22 15 8 14 29 21 4 1 23 17 3 12 13 16 18 28 19 20 7 6 27",
"output": "16 7 19 15 4 28 27 11 8 1 3 20 21 12 10 22 18 23 25 26 14 9 17 2 6 5 29 24 13"
},
{
"input": "60\n39 25 42 4 55 60 16 18 47 1 11 40 7 50 19 35 49 54 12 3 30 38 2 58 17 26 45 6 33 43 37 32 52 36 15 23 27 59 24 20 28 14 8 9 13 29 44 46 41 21 5 48 51 22 31 56 57 53 10 34",
"output": "10 23 20 4 51 28 13 43 44 59 11 19 45 42 35 7 25 8 15 40 50 54 36 39 2 26 37 41 46 21 55 32 29 60 16 34 31 22 1 12 49 3 30 47 27 48 9 52 17 14 53 33 58 18 5 56 57 24 38 6"
},
{
"input": "50\n37 45 22 5 12 21 28 24 18 47 20 25 8 50 14 2 34 43 11 16 49 41 48 1 19 31 39 46 32 23 15 42 3 35 38 30 44 26 10 9 40 36 7 17 33 4 27 6 13 29",
"output": "24 16 33 46 4 48 43 13 40 39 19 5 49 15 31 20 44 9 25 11 6 3 30 8 12 38 47 7 50 36 26 29 45 17 34 42 1 35 27 41 22 32 18 37 2 28 10 23 21 14"
},
{
"input": "30\n8 29 28 16 17 25 27 15 21 11 6 20 2 13 1 30 5 4 24 10 14 3 23 18 26 9 12 22 19 7",
"output": "15 13 22 18 17 11 30 1 26 20 10 27 14 21 8 4 5 24 29 12 9 28 23 19 6 25 7 3 2 16"
},
{
"input": "46\n15 2 44 43 38 19 31 42 4 37 29 30 24 45 27 41 8 20 33 7 35 3 18 46 36 26 1 28 21 40 16 22 32 11 14 13 12 9 25 39 10 6 23 17 5 34",
"output": "27 2 22 9 45 42 20 17 38 41 34 37 36 35 1 31 44 23 6 18 29 32 43 13 39 26 15 28 11 12 7 33 19 46 21 25 10 5 40 30 16 8 4 3 14 24"
},
{
"input": "9\n4 8 6 5 3 9 2 7 1",
"output": "9 7 5 1 4 3 8 2 6"
},
{
"input": "46\n31 30 33 23 45 7 36 8 11 3 32 39 41 20 1 28 6 27 18 24 17 5 16 37 26 13 22 14 2 38 15 46 9 4 19 21 12 44 10 35 25 34 42 43 40 29",
"output": "15 29 10 34 22 17 6 8 33 39 9 37 26 28 31 23 21 19 35 14 36 27 4 20 41 25 18 16 46 2 1 11 3 42 40 7 24 30 12 45 13 43 44 38 5 32"
},
{
"input": "66\n27 12 37 48 46 21 34 58 38 28 66 2 64 32 44 31 13 36 40 15 19 11 22 5 30 29 6 7 61 39 20 42 23 54 51 33 50 9 60 8 57 45 49 10 62 41 59 3 55 63 52 24 25 26 43 56 65 4 16 14 1 35 18 17 53 47",
"output": "61 12 48 58 24 27 28 40 38 44 22 2 17 60 20 59 64 63 21 31 6 23 33 52 53 54 1 10 26 25 16 14 36 7 62 18 3 9 30 19 46 32 55 15 42 5 66 4 43 37 35 51 65 34 49 56 41 8 47 39 29 45 50 13 57 11"
},
{
"input": "13\n3 12 9 2 8 5 13 4 11 1 10 7 6",
"output": "10 4 1 8 6 13 12 5 3 11 9 2 7"
},
{
"input": "80\n21 25 56 50 20 61 7 74 51 69 8 2 46 57 45 71 14 52 17 43 9 30 70 78 31 10 38 13 23 15 37 79 6 16 77 73 80 4 49 48 18 28 26 58 33 41 64 22 54 72 59 60 40 63 53 27 1 5 75 67 62 34 19 39 68 65 44 55 3 32 11 42 76 12 35 47 66 36 24 29",
"output": "57 12 69 38 58 33 7 11 21 26 71 74 28 17 30 34 19 41 63 5 1 48 29 79 2 43 56 42 80 22 25 70 45 62 75 78 31 27 64 53 46 72 20 67 15 13 76 40 39 4 9 18 55 49 68 3 14 44 51 52 6 61 54 47 66 77 60 65 10 23 16 50 36 8 59 73 35 24 32 37"
},
{
"input": "63\n9 49 53 25 40 46 43 51 54 22 58 16 23 26 10 47 5 27 2 8 61 59 19 35 63 56 28 20 34 4 62 38 6 55 36 31 57 15 29 33 1 48 50 37 7 30 18 42 32 52 12 41 14 21 45 11 24 17 39 13 44 60 3",
"output": "41 19 63 30 17 33 45 20 1 15 56 51 60 53 38 12 58 47 23 28 54 10 13 57 4 14 18 27 39 46 36 49 40 29 24 35 44 32 59 5 52 48 7 61 55 6 16 42 2 43 8 50 3 9 34 26 37 11 22 62 21 31 25"
},
{
"input": "26\n11 4 19 13 17 9 2 24 6 5 22 23 14 15 3 25 16 8 18 10 21 1 12 26 7 20",
"output": "22 7 15 2 10 9 25 18 6 20 1 23 4 13 14 17 5 19 3 26 21 11 12 8 16 24"
},
{
"input": "69\n40 22 11 66 4 27 31 29 64 53 37 55 51 2 7 36 18 52 6 1 30 21 17 20 14 9 59 62 49 68 3 50 65 57 44 5 67 46 33 13 34 15 24 48 63 58 38 25 41 35 16 54 32 10 60 61 39 12 69 8 23 45 26 47 56 43 28 19 42",
"output": "20 14 31 5 36 19 15 60 26 54 3 58 40 25 42 51 23 17 68 24 22 2 61 43 48 63 6 67 8 21 7 53 39 41 50 16 11 47 57 1 49 69 66 35 62 38 64 44 29 32 13 18 10 52 12 65 34 46 27 55 56 28 45 9 33 4 37 30 59"
},
{
"input": "6\n4 3 6 5 1 2",
"output": "5 6 2 1 4 3"
},
{
"input": "9\n7 8 5 3 1 4 2 9 6",
"output": "5 7 4 6 3 9 1 2 8"
},
{
"input": "41\n27 24 16 30 25 8 32 2 26 20 39 33 41 22 40 14 36 9 28 4 34 11 31 23 19 18 17 35 3 10 6 13 5 15 29 38 7 21 1 12 37",
"output": "39 8 29 20 33 31 37 6 18 30 22 40 32 16 34 3 27 26 25 10 38 14 24 2 5 9 1 19 35 4 23 7 12 21 28 17 41 36 11 15 13"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "20\n2 6 4 18 7 10 17 13 16 8 14 9 20 5 19 12 1 3 15 11",
"output": "17 1 18 3 14 2 5 10 12 6 20 16 8 11 19 9 7 4 15 13"
},
{
"input": "2\n2 1",
"output": "2 1"
},
{
"input": "60\n2 4 31 51 11 7 34 20 3 14 18 23 48 54 15 36 38 60 49 40 5 33 41 26 55 58 10 8 13 9 27 30 37 1 21 59 44 57 35 19 46 43 42 45 12 22 39 32 24 16 6 56 53 52 25 17 47 29 50 28",
"output": "34 1 9 2 21 51 6 28 30 27 5 45 29 10 15 50 56 11 40 8 35 46 12 49 55 24 31 60 58 32 3 48 22 7 39 16 33 17 47 20 23 43 42 37 44 41 57 13 19 59 4 54 53 14 25 52 38 26 36 18"
},
{
"input": "14\n14 6 3 12 11 2 7 1 10 9 8 5 4 13",
"output": "8 6 3 13 12 2 7 11 10 9 5 4 14 1"
},
{
"input": "81\n13 43 79 8 7 21 73 46 63 4 62 78 56 11 70 68 61 53 60 49 16 27 59 47 69 5 22 44 77 57 52 48 1 9 72 81 28 55 58 33 51 18 31 17 41 20 42 3 32 54 19 2 75 34 64 10 65 50 30 29 67 12 71 66 74 15 26 23 6 38 25 35 37 24 80 76 40 45 39 36 14",
"output": "33 52 48 10 26 69 5 4 34 56 14 62 1 81 66 21 44 42 51 46 6 27 68 74 71 67 22 37 60 59 43 49 40 54 72 80 73 70 79 77 45 47 2 28 78 8 24 32 20 58 41 31 18 50 38 13 30 39 23 19 17 11 9 55 57 64 61 16 25 15 63 35 7 65 53 76 29 12 3 75 36"
},
{
"input": "42\n41 11 10 8 21 37 32 19 31 25 1 15 36 5 6 27 4 3 13 7 16 17 2 23 34 24 38 28 12 20 30 42 18 26 39 35 33 40 9 14 22 29",
"output": "11 23 18 17 14 15 20 4 39 3 2 29 19 40 12 21 22 33 8 30 5 41 24 26 10 34 16 28 42 31 9 7 37 25 36 13 6 27 35 38 1 32"
},
{
"input": "97\n20 6 76 42 4 18 35 59 39 63 27 7 66 47 61 52 15 36 88 93 19 33 10 92 1 34 46 86 78 57 51 94 77 29 26 73 41 2 58 97 43 65 17 74 21 49 25 3 91 82 95 12 96 13 84 90 69 24 72 37 16 55 54 71 64 62 48 89 11 70 80 67 30 40 44 85 53 83 79 9 56 45 75 87 22 14 81 68 8 38 60 50 28 23 31 32 5",
"output": "25 38 48 5 97 2 12 89 80 23 69 52 54 86 17 61 43 6 21 1 45 85 94 58 47 35 11 93 34 73 95 96 22 26 7 18 60 90 9 74 37 4 41 75 82 27 14 67 46 92 31 16 77 63 62 81 30 39 8 91 15 66 10 65 42 13 72 88 57 70 64 59 36 44 83 3 33 29 79 71 87 50 78 55 76 28 84 19 68 56 49 24 20 32 51 53 40"
},
{
"input": "62\n15 27 46 6 8 51 14 56 23 48 42 49 52 22 20 31 29 12 47 3 62 34 37 35 32 57 19 25 5 60 61 38 18 10 11 55 45 53 17 30 9 36 4 50 41 16 44 28 40 59 24 1 13 39 26 7 33 58 2 43 21 54",
"output": "52 59 20 43 29 4 56 5 41 34 35 18 53 7 1 46 39 33 27 15 61 14 9 51 28 55 2 48 17 40 16 25 57 22 24 42 23 32 54 49 45 11 60 47 37 3 19 10 12 44 6 13 38 62 36 8 26 58 50 30 31 21"
},
{
"input": "61\n35 27 4 61 52 32 41 46 14 37 17 54 55 31 11 26 44 49 15 30 9 50 45 39 7 38 53 3 58 40 13 56 18 19 28 6 43 5 21 42 20 34 2 25 36 12 33 57 16 60 1 8 59 10 22 23 24 48 51 47 29",
"output": "51 43 28 3 38 36 25 52 21 54 15 46 31 9 19 49 11 33 34 41 39 55 56 57 44 16 2 35 61 20 14 6 47 42 1 45 10 26 24 30 7 40 37 17 23 8 60 58 18 22 59 5 27 12 13 32 48 29 53 50 4"
},
{
"input": "59\n31 26 36 15 17 19 10 53 11 34 13 46 55 9 44 7 8 37 32 52 47 25 51 22 35 39 41 4 43 24 5 27 20 57 6 38 3 28 21 40 50 18 14 56 33 45 12 2 49 59 54 29 16 48 42 58 1 30 23",
"output": "57 48 37 28 31 35 16 17 14 7 9 47 11 43 4 53 5 42 6 33 39 24 59 30 22 2 32 38 52 58 1 19 45 10 25 3 18 36 26 40 27 55 29 15 46 12 21 54 49 41 23 20 8 51 13 44 34 56 50"
},
{
"input": "10\n2 10 7 4 1 5 8 6 3 9",
"output": "5 1 9 4 6 8 3 7 10 2"
},
{
"input": "14\n14 2 1 8 6 12 11 10 9 7 3 4 5 13",
"output": "3 2 11 12 13 5 10 4 9 8 7 6 14 1"
},
{
"input": "43\n28 38 15 14 31 42 27 30 19 33 43 26 22 29 18 32 3 13 1 8 35 34 4 12 11 17 41 21 5 25 39 37 20 23 7 24 16 10 40 9 6 36 2",
"output": "19 43 17 23 29 41 35 20 40 38 25 24 18 4 3 37 26 15 9 33 28 13 34 36 30 12 7 1 14 8 5 16 10 22 21 42 32 2 31 39 27 6 11"
},
{
"input": "86\n39 11 20 31 28 76 29 64 35 21 41 71 12 82 5 37 80 73 38 26 79 75 23 15 59 45 47 6 3 62 50 49 51 22 2 65 86 60 70 42 74 17 1 30 55 44 8 66 81 27 57 77 43 13 54 32 72 46 48 56 14 34 78 52 36 85 24 19 69 83 25 61 7 4 84 33 63 58 18 40 68 10 67 9 16 53",
"output": "43 35 29 74 15 28 73 47 84 82 2 13 54 61 24 85 42 79 68 3 10 34 23 67 71 20 50 5 7 44 4 56 76 62 9 65 16 19 1 80 11 40 53 46 26 58 27 59 32 31 33 64 86 55 45 60 51 78 25 38 72 30 77 8 36 48 83 81 69 39 12 57 18 41 22 6 52 63 21 17 49 14 70 75 66 37"
},
{
"input": "99\n65 78 56 98 33 24 61 40 29 93 1 64 57 22 25 52 67 95 50 3 31 15 90 68 71 83 38 36 6 46 89 26 4 87 14 88 72 37 23 43 63 12 80 96 5 34 73 86 9 48 92 62 99 10 16 20 66 27 28 2 82 70 30 94 49 8 84 69 18 60 58 59 44 39 21 7 91 76 54 19 75 85 74 47 55 32 97 77 51 13 35 79 45 42 11 41 17 81 53",
"output": "11 60 20 33 45 29 76 66 49 54 95 42 90 35 22 55 97 69 80 56 75 14 39 6 15 32 58 59 9 63 21 86 5 46 91 28 38 27 74 8 96 94 40 73 93 30 84 50 65 19 89 16 99 79 85 3 13 71 72 70 7 52 41 12 1 57 17 24 68 62 25 37 47 83 81 78 88 2 92 43 98 61 26 67 82 48 34 36 31 23 77 51 10 64 18 44 87 4 53"
},
{
"input": "100\n42 23 48 88 36 6 18 70 96 1 34 40 46 22 39 55 85 93 45 67 71 75 59 9 21 3 86 63 65 68 20 38 73 31 84 90 50 51 56 95 72 33 49 19 83 76 54 74 100 30 17 98 15 94 4 97 5 99 81 27 92 32 89 12 13 91 87 29 60 11 52 43 35 58 10 25 16 80 28 2 44 61 8 82 66 69 41 24 57 62 78 37 79 77 53 7 14 47 26 64",
"output": "10 80 26 55 57 6 96 83 24 75 70 64 65 97 53 77 51 7 44 31 25 14 2 88 76 99 60 79 68 50 34 62 42 11 73 5 92 32 15 12 87 1 72 81 19 13 98 3 43 37 38 71 95 47 16 39 89 74 23 69 82 90 28 100 29 85 20 30 86 8 21 41 33 48 22 46 94 91 93 78 59 84 45 35 17 27 67 4 63 36 66 61 18 54 40 9 56 52 58 49"
},
{
"input": "99\n8 68 94 75 71 60 57 58 6 11 5 48 65 41 49 12 46 72 95 59 13 70 74 7 84 62 17 36 55 76 38 79 2 85 23 10 32 99 87 50 83 28 54 91 53 51 1 3 97 81 21 89 93 78 61 26 82 96 4 98 25 40 31 44 24 47 30 52 14 16 39 27 9 29 45 18 67 63 37 43 90 66 19 69 88 22 92 77 34 42 73 80 56 64 20 35 15 33 86",
"output": "47 33 48 59 11 9 24 1 73 36 10 16 21 69 97 70 27 76 83 95 51 86 35 65 61 56 72 42 74 67 63 37 98 89 96 28 79 31 71 62 14 90 80 64 75 17 66 12 15 40 46 68 45 43 29 93 7 8 20 6 55 26 78 94 13 82 77 2 84 22 5 18 91 23 4 30 88 54 32 92 50 57 41 25 34 99 39 85 52 81 44 87 53 3 19 58 49 60 38"
},
{
"input": "99\n12 99 88 13 7 19 74 47 23 90 16 29 26 11 58 60 64 98 37 18 82 67 72 46 51 85 17 92 87 20 77 36 78 71 57 35 80 54 73 15 14 62 97 45 31 79 94 56 76 96 28 63 8 44 38 86 49 2 52 66 61 59 10 43 55 50 22 34 83 53 95 40 81 21 30 42 27 3 5 41 1 70 69 25 93 48 65 6 24 89 91 33 39 68 9 4 32 84 75",
"output": "81 58 78 96 79 88 5 53 95 63 14 1 4 41 40 11 27 20 6 30 74 67 9 89 84 13 77 51 12 75 45 97 92 68 36 32 19 55 93 72 80 76 64 54 44 24 8 86 57 66 25 59 70 38 65 48 35 15 62 16 61 42 52 17 87 60 22 94 83 82 34 23 39 7 99 49 31 33 46 37 73 21 69 98 26 56 29 3 90 10 91 28 85 47 71 50 43 18 2"
},
{
"input": "99\n20 79 26 75 99 69 98 47 93 62 18 42 43 38 90 66 67 8 13 84 76 58 81 60 64 46 56 23 78 17 86 36 19 52 85 39 48 27 96 49 37 95 5 31 10 24 12 1 80 35 92 33 16 68 57 54 32 29 45 88 72 77 4 87 97 89 59 3 21 22 61 94 83 15 44 34 70 91 55 9 51 50 73 11 14 6 40 7 63 25 2 82 41 65 28 74 71 30 53",
"output": "48 91 68 63 43 86 88 18 80 45 84 47 19 85 74 53 30 11 33 1 69 70 28 46 90 3 38 95 58 98 44 57 52 76 50 32 41 14 36 87 93 12 13 75 59 26 8 37 40 82 81 34 99 56 79 27 55 22 67 24 71 10 89 25 94 16 17 54 6 77 97 61 83 96 4 21 62 29 2 49 23 92 73 20 35 31 64 60 66 15 78 51 9 72 42 39 65 7 5"
},
{
"input": "99\n74 20 9 1 60 85 65 13 4 25 40 99 5 53 64 3 36 31 73 44 55 50 45 63 98 51 68 6 47 37 71 82 88 34 84 18 19 12 93 58 86 7 11 46 90 17 33 27 81 69 42 59 56 32 95 52 76 61 96 62 78 43 66 21 49 97 75 14 41 72 89 16 30 79 22 23 15 83 91 38 48 2 87 26 28 80 94 70 54 92 57 10 8 35 67 77 29 24 39",
"output": "4 82 16 9 13 28 42 93 3 92 43 38 8 68 77 72 46 36 37 2 64 75 76 98 10 84 48 85 97 73 18 54 47 34 94 17 30 80 99 11 69 51 62 20 23 44 29 81 65 22 26 56 14 89 21 53 91 40 52 5 58 60 24 15 7 63 95 27 50 88 31 70 19 1 67 57 96 61 74 86 49 32 78 35 6 41 83 33 71 45 79 90 39 87 55 59 66 25 12"
},
{
"input": "99\n50 94 2 18 69 90 59 83 75 68 77 97 39 78 25 7 16 9 49 4 42 89 44 48 17 96 61 70 3 10 5 81 56 57 88 6 98 1 46 67 92 37 11 30 85 41 8 36 51 29 20 71 19 79 74 93 43 34 55 40 38 21 64 63 32 24 72 14 12 86 82 15 65 23 66 22 28 53 13 26 95 99 91 52 76 27 60 45 47 33 73 84 31 35 54 80 58 62 87",
"output": "38 3 29 20 31 36 16 47 18 30 43 69 79 68 72 17 25 4 53 51 62 76 74 66 15 80 86 77 50 44 93 65 90 58 94 48 42 61 13 60 46 21 57 23 88 39 89 24 19 1 49 84 78 95 59 33 34 97 7 87 27 98 64 63 73 75 40 10 5 28 52 67 91 55 9 85 11 14 54 96 32 71 8 92 45 70 99 35 22 6 83 41 56 2 81 26 12 37 82"
},
{
"input": "99\n19 93 14 34 39 37 33 15 52 88 7 43 69 27 9 77 94 31 48 22 63 70 79 17 50 6 81 8 76 58 23 74 86 11 57 62 41 87 75 51 12 18 68 56 95 3 80 83 84 29 24 61 71 78 59 96 20 85 90 28 45 36 38 97 1 49 40 98 44 67 13 73 72 91 47 10 30 54 35 42 4 2 92 26 64 60 53 21 5 82 46 32 55 66 16 89 99 65 25",
"output": "65 82 46 81 89 26 11 28 15 76 34 41 71 3 8 95 24 42 1 57 88 20 31 51 99 84 14 60 50 77 18 92 7 4 79 62 6 63 5 67 37 80 12 69 61 91 75 19 66 25 40 9 87 78 93 44 35 30 55 86 52 36 21 85 98 94 70 43 13 22 53 73 72 32 39 29 16 54 23 47 27 90 48 49 58 33 38 10 96 59 74 83 2 17 45 56 64 68 97"
},
{
"input": "99\n86 25 50 51 62 39 41 67 44 20 45 14 80 88 66 7 36 59 13 84 78 58 96 75 2 43 48 47 69 12 19 98 22 38 28 55 11 76 68 46 53 70 85 34 16 33 91 30 8 40 74 60 94 82 87 32 37 4 5 10 89 73 90 29 35 26 23 57 27 65 24 3 9 83 77 72 6 31 15 92 93 79 64 18 63 42 56 1 52 97 17 81 71 21 49 99 54 95 61",
"output": "88 25 72 58 59 77 16 49 73 60 37 30 19 12 79 45 91 84 31 10 94 33 67 71 2 66 69 35 64 48 78 56 46 44 65 17 57 34 6 50 7 86 26 9 11 40 28 27 95 3 4 89 41 97 36 87 68 22 18 52 99 5 85 83 70 15 8 39 29 42 93 76 62 51 24 38 75 21 82 13 92 54 74 20 43 1 55 14 61 63 47 80 81 53 98 23 90 32 96"
},
{
"input": "100\n66 44 99 15 43 79 28 33 88 90 49 68 82 38 9 74 4 58 29 81 31 94 10 42 89 21 63 40 62 61 18 6 84 72 48 25 67 69 71 85 98 34 83 70 65 78 91 77 93 41 23 24 87 11 55 12 59 73 36 97 7 14 26 39 30 27 45 20 50 17 53 2 57 47 95 56 75 19 37 96 16 35 8 3 76 60 13 86 5 32 64 80 46 51 54 100 1 22 52 92",
"output": "97 72 84 17 89 32 61 83 15 23 54 56 87 62 4 81 70 31 78 68 26 98 51 52 36 63 66 7 19 65 21 90 8 42 82 59 79 14 64 28 50 24 5 2 67 93 74 35 11 69 94 99 71 95 55 76 73 18 57 86 30 29 27 91 45 1 37 12 38 44 39 34 58 16 77 85 48 46 6 92 20 13 43 33 40 88 53 9 25 10 47 100 49 22 75 80 60 41 3 96"
},
{
"input": "99\n3 73 32 37 25 15 93 63 85 8 91 78 80 5 39 48 46 7 83 70 23 96 9 29 77 53 30 20 56 50 13 45 21 76 87 99 65 31 16 18 14 72 51 28 43 2 81 34 38 40 66 54 74 26 71 4 61 17 58 24 22 33 49 36 42 11 12 55 60 27 62 90 79 92 94 68 1 52 84 41 86 35 69 75 47 10 64 88 97 98 67 19 89 95 59 82 57 44 6",
"output": "77 46 1 56 14 99 18 10 23 86 66 67 31 41 6 39 58 40 92 28 33 61 21 60 5 54 70 44 24 27 38 3 62 48 82 64 4 49 15 50 80 65 45 98 32 17 85 16 63 30 43 78 26 52 68 29 97 59 95 69 57 71 8 87 37 51 91 76 83 20 55 42 2 53 84 34 25 12 73 13 47 96 19 79 9 81 35 88 93 72 11 74 7 75 94 22 89 90 36"
},
{
"input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1"
}
] | 1,687,397,266
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 101
| 92
| 0
|
from sys import stdin,stdout
n = int(input())
a = list(map(int,stdin.readline().split()))
b = [0]*n
for i in range(n):
b[a[i]-1] = i+1
for i in b:
print(i,end=" ")
|
Title: Presents
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there.
If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift.
Now Petya wants to know for each friend *i* the number of a friend who has given him a gift.
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves.
Output Specification:
Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*.
Demo Input:
['4\n2 3 4 1\n', '3\n1 3 2\n', '2\n1 2\n']
Demo Output:
['4 1 2 3\n', '1 3 2\n', '1 2\n']
Note:
none
|
```python
from sys import stdin,stdout
n = int(input())
a = list(map(int,stdin.readline().split()))
b = [0]*n
for i in range(n):
b[a[i]-1] = i+1
for i in b:
print(i,end=" ")
```
| 3
|
|
250
|
D
|
Building Bridge
|
PROGRAMMING
| 1,900
|
[
"geometry",
"ternary search",
"two pointers"
] | null | null |
Two villages are separated by a river that flows from the north to the south. The villagers want to build a bridge across the river to make it easier to move across the villages.
The river banks can be assumed to be vertical straight lines *x*<==<=*a* and *x*<==<=*b* (0<=<<=*a*<=<<=*b*).
The west village lies in a steppe at point *O*<==<=(0,<=0). There are *n* pathways leading from the village to the river, they end at points *A**i*<==<=(*a*,<=*y**i*). The villagers there are plain and simple, so their pathways are straight segments as well.
The east village has reserved and cunning people. Their village is in the forest on the east bank of the river, but its exact position is not clear. There are *m* twisted paths leading from this village to the river and ending at points *B**i*<==<=(*b*,<=*y*'*i*). The lengths of all these paths are known, the length of the path that leads from the eastern village to point *B**i*, equals *l**i*.
The villagers want to choose exactly one point on the left bank of river *A**i*, exactly one point on the right bank *B**j* and connect them by a straight-line bridge so as to make the total distance between the villages (the sum of |*OA**i*|<=+<=|*A**i**B**j*|<=+<=*l**j*, where |*XY*| is the Euclidean distance between points *X* and *Y*) were minimum. The Euclidean distance between points (*x*1,<=*y*1) and (*x*2,<=*y*2) equals .
Help them and find the required pair of points.
|
The first line contains integers *n*, *m*, *a*, *b* (1<=≤<=*n*,<=*m*<=≤<=105, 0<=<<=*a*<=<<=*b*<=<<=106).
The second line contains *n* integers in the ascending order: the *i*-th integer determines the coordinate of point *A**i* and equals *y**i* (|*y**i*|<=≤<=106).
The third line contains *m* integers in the ascending order: the *i*-th integer determines the coordinate of point *B**i* and equals *y*'*i* (|*y*'*i*|<=≤<=106).
The fourth line contains *m* more integers: the *i*-th of them determines the length of the path that connects the eastern village and point *B**i*, and equals *l**i* (1<=≤<=*l**i*<=≤<=106).
It is guaranteed, that there is such a point *C* with abscissa at least *b*, that |*B**i**C*|<=≤<=*l**i* for all *i* (1<=≤<=*i*<=≤<=*m*). It is guaranteed that no two points *A**i* coincide. It is guaranteed that no two points *B**i* coincide.
|
Print two integers — the numbers of points on the left (west) and right (east) banks, respectively, between which you need to build a bridge. You can assume that the points on the west bank are numbered from 1 to *n*, in the order in which they are given in the input. Similarly, the points on the east bank are numbered from 1 to *m* in the order in which they are given in the input.
If there are multiple solutions, print any of them. The solution will be accepted if the final length of the path will differ from the answer of the jury by no more than 10<=-<=6 in absolute or relative value.
|
[
"3 2 3 5\n-2 -1 4\n-1 2\n7 3\n"
] |
[
"2 2"
] |
none
| 1,500
|
[
{
"input": "3 2 3 5\n-2 -1 4\n-1 2\n7 3",
"output": "2 2"
},
{
"input": "1 1 10 20\n5\n-5\n1",
"output": "1 1"
},
{
"input": "2 2 1 2\n-1 10\n8 9\n3 7",
"output": "1 1"
},
{
"input": "10 20 50 60\n-96 -75 32 37 42 43 44 57 61 65\n-95 -90 -86 -79 -65 -62 -47 -11 -8 -6 1 8 23 25 32 51 73 88 94 100\n138 75 132 116 49 43 96 166 96 161 146 112 195 192 201 186 251 254 220 227",
"output": "2 6"
}
] | 1,445,798,714
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 1,122
| 11,878,400
|
from math import sqrt,fabs
def dist(x1, y1, x2, y2):
return sqrt(pow(abs(x1 - x2), 2) + pow(abs(y1 - y2), 2))
def calcOptimumRightPoint(startX, startY):
l = float("inf")
idx = -1
for i in range(len(B)):
d = dist(startX, startY, b, B[i]) + L[i]
if d <= l:
l = d
idx = i
return idx
n,m,a,b = [int(x) for x in input().split()]
A = [int(x) for x in input().split()]
B = [int(x) for x in input().split()]
L = [int(x) for x in input().split()]
optimumRightPoint = calcOptimumRightPoint(0,0)
intersectLeft = (a * B[optimumRightPoint]) / b
l = float("inf")
optimumLeftPoint = -1
for i in range(len(A)):
if fabs(intersectLeft-A[i]) < l:
l = fabs(intersectLeft-A[i])
optimumLeftPoint = i
optimumRightPoint = calcOptimumRightPoint(a, A[optimumLeftPoint])
print(optimumLeftPoint + 1, optimumRightPoint + 1)
|
Title: Building Bridge
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two villages are separated by a river that flows from the north to the south. The villagers want to build a bridge across the river to make it easier to move across the villages.
The river banks can be assumed to be vertical straight lines *x*<==<=*a* and *x*<==<=*b* (0<=<<=*a*<=<<=*b*).
The west village lies in a steppe at point *O*<==<=(0,<=0). There are *n* pathways leading from the village to the river, they end at points *A**i*<==<=(*a*,<=*y**i*). The villagers there are plain and simple, so their pathways are straight segments as well.
The east village has reserved and cunning people. Their village is in the forest on the east bank of the river, but its exact position is not clear. There are *m* twisted paths leading from this village to the river and ending at points *B**i*<==<=(*b*,<=*y*'*i*). The lengths of all these paths are known, the length of the path that leads from the eastern village to point *B**i*, equals *l**i*.
The villagers want to choose exactly one point on the left bank of river *A**i*, exactly one point on the right bank *B**j* and connect them by a straight-line bridge so as to make the total distance between the villages (the sum of |*OA**i*|<=+<=|*A**i**B**j*|<=+<=*l**j*, where |*XY*| is the Euclidean distance between points *X* and *Y*) were minimum. The Euclidean distance between points (*x*1,<=*y*1) and (*x*2,<=*y*2) equals .
Help them and find the required pair of points.
Input Specification:
The first line contains integers *n*, *m*, *a*, *b* (1<=≤<=*n*,<=*m*<=≤<=105, 0<=<<=*a*<=<<=*b*<=<<=106).
The second line contains *n* integers in the ascending order: the *i*-th integer determines the coordinate of point *A**i* and equals *y**i* (|*y**i*|<=≤<=106).
The third line contains *m* integers in the ascending order: the *i*-th integer determines the coordinate of point *B**i* and equals *y*'*i* (|*y*'*i*|<=≤<=106).
The fourth line contains *m* more integers: the *i*-th of them determines the length of the path that connects the eastern village and point *B**i*, and equals *l**i* (1<=≤<=*l**i*<=≤<=106).
It is guaranteed, that there is such a point *C* with abscissa at least *b*, that |*B**i**C*|<=≤<=*l**i* for all *i* (1<=≤<=*i*<=≤<=*m*). It is guaranteed that no two points *A**i* coincide. It is guaranteed that no two points *B**i* coincide.
Output Specification:
Print two integers — the numbers of points on the left (west) and right (east) banks, respectively, between which you need to build a bridge. You can assume that the points on the west bank are numbered from 1 to *n*, in the order in which they are given in the input. Similarly, the points on the east bank are numbered from 1 to *m* in the order in which they are given in the input.
If there are multiple solutions, print any of them. The solution will be accepted if the final length of the path will differ from the answer of the jury by no more than 10<=-<=6 in absolute or relative value.
Demo Input:
['3 2 3 5\n-2 -1 4\n-1 2\n7 3\n']
Demo Output:
['2 2']
Note:
none
|
```python
from math import sqrt,fabs
def dist(x1, y1, x2, y2):
return sqrt(pow(abs(x1 - x2), 2) + pow(abs(y1 - y2), 2))
def calcOptimumRightPoint(startX, startY):
l = float("inf")
idx = -1
for i in range(len(B)):
d = dist(startX, startY, b, B[i]) + L[i]
if d <= l:
l = d
idx = i
return idx
n,m,a,b = [int(x) for x in input().split()]
A = [int(x) for x in input().split()]
B = [int(x) for x in input().split()]
L = [int(x) for x in input().split()]
optimumRightPoint = calcOptimumRightPoint(0,0)
intersectLeft = (a * B[optimumRightPoint]) / b
l = float("inf")
optimumLeftPoint = -1
for i in range(len(A)):
if fabs(intersectLeft-A[i]) < l:
l = fabs(intersectLeft-A[i])
optimumLeftPoint = i
optimumRightPoint = calcOptimumRightPoint(a, A[optimumLeftPoint])
print(optimumLeftPoint + 1, optimumRightPoint + 1)
```
| 3
|
|
116
|
A
|
Tram
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
|
The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
|
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
|
[
"4\n0 3\n2 5\n4 2\n4 0\n"
] |
[
"6\n"
] |
For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
| 500
|
[
{
"input": "4\n0 3\n2 5\n4 2\n4 0",
"output": "6"
},
{
"input": "5\n0 4\n4 6\n6 5\n5 4\n4 0",
"output": "6"
},
{
"input": "10\n0 5\n1 7\n10 8\n5 3\n0 5\n3 3\n8 8\n0 6\n10 1\n9 0",
"output": "18"
},
{
"input": "3\n0 1\n1 1\n1 0",
"output": "1"
},
{
"input": "4\n0 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "3\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "3\n0 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "5\n0 73\n73 189\n189 766\n766 0\n0 0",
"output": "766"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 1\n1 0",
"output": "1"
},
{
"input": "5\n0 917\n917 923\n904 992\n1000 0\n11 0",
"output": "1011"
},
{
"input": "5\n0 1\n1 2\n2 1\n1 2\n2 0",
"output": "2"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "20\n0 7\n2 1\n2 2\n5 7\n2 6\n6 10\n2 4\n0 4\n7 4\n8 0\n10 6\n2 1\n6 1\n1 7\n0 3\n8 7\n6 3\n6 3\n1 1\n3 0",
"output": "22"
},
{
"input": "5\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "10\n0 592\n258 598\n389 203\n249 836\n196 635\n478 482\n994 987\n1000 0\n769 0\n0 0",
"output": "1776"
},
{
"input": "10\n0 1\n1 0\n0 0\n0 0\n0 0\n0 1\n1 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "10\n0 926\n926 938\n938 931\n931 964\n937 989\n983 936\n908 949\n997 932\n945 988\n988 0",
"output": "1016"
},
{
"input": "10\n0 1\n1 2\n1 2\n2 2\n2 2\n2 2\n1 1\n1 1\n2 1\n2 0",
"output": "3"
},
{
"input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "10\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "50\n0 332\n332 268\n268 56\n56 711\n420 180\n160 834\n149 341\n373 777\n763 93\n994 407\n86 803\n700 132\n471 608\n429 467\n75 5\n638 305\n405 853\n316 478\n643 163\n18 131\n648 241\n241 766\n316 847\n640 380\n923 759\n789 41\n125 421\n421 9\n9 388\n388 829\n408 108\n462 856\n816 411\n518 688\n290 7\n405 912\n397 772\n396 652\n394 146\n27 648\n462 617\n514 433\n780 35\n710 705\n460 390\n194 508\n643 56\n172 469\n1000 0\n194 0",
"output": "2071"
},
{
"input": "50\n0 0\n0 1\n1 1\n0 1\n0 0\n1 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 1\n1 0\n0 1\n0 0\n1 1\n1 0\n0 1\n0 0\n1 1\n0 1\n1 0\n1 1\n1 0\n0 0\n1 1\n1 0\n0 1\n0 0\n0 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 0\n0 1\n1 0\n0 0\n0 1\n1 1\n1 1\n0 1\n0 0\n1 0\n1 0",
"output": "3"
},
{
"input": "50\n0 926\n926 971\n915 980\n920 965\n954 944\n928 952\n955 980\n916 980\n906 935\n944 913\n905 923\n912 922\n965 934\n912 900\n946 930\n931 983\n979 905\n925 969\n924 926\n910 914\n921 977\n934 979\n962 986\n942 909\n976 903\n982 982\n991 941\n954 929\n902 980\n947 983\n919 924\n917 943\n916 905\n907 913\n964 977\n984 904\n905 999\n950 970\n986 906\n993 970\n960 994\n963 983\n918 986\n980 900\n931 986\n993 997\n941 909\n907 909\n1000 0\n278 0",
"output": "1329"
},
{
"input": "2\n0 863\n863 0",
"output": "863"
},
{
"input": "50\n0 1\n1 2\n2 2\n1 1\n1 1\n1 2\n1 2\n1 1\n1 2\n1 1\n1 1\n1 2\n1 2\n1 1\n2 1\n2 2\n1 2\n2 2\n1 2\n2 1\n2 1\n2 2\n2 1\n1 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n2 2\n2 1\n1 2\n2 2\n1 2\n1 1\n1 1\n2 1\n2 1\n2 2\n2 1\n2 1\n1 2\n1 2\n1 2\n1 2\n2 0\n2 0\n2 0\n0 0",
"output": "8"
},
{
"input": "50\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "100\n0 1\n0 0\n0 0\n1 0\n0 0\n0 1\n0 1\n1 1\n0 0\n0 0\n1 1\n0 0\n1 1\n0 1\n1 1\n0 1\n1 1\n1 0\n1 0\n0 0\n1 0\n0 1\n1 0\n0 0\n0 0\n1 1\n1 1\n0 1\n0 0\n1 0\n1 1\n0 1\n1 0\n1 1\n0 1\n1 1\n1 0\n0 0\n0 0\n0 1\n0 0\n0 1\n1 1\n0 0\n1 1\n1 1\n0 0\n0 1\n1 0\n0 1\n0 0\n0 1\n0 1\n1 1\n1 1\n1 1\n0 0\n0 0\n1 1\n0 1\n0 1\n1 0\n0 0\n0 0\n1 1\n0 1\n0 1\n1 1\n1 1\n0 1\n1 1\n1 1\n0 0\n1 0\n0 1\n0 0\n0 0\n1 1\n1 1\n1 1\n1 1\n0 1\n1 0\n1 0\n1 0\n1 0\n1 0\n0 0\n1 0\n1 0\n0 0\n1 0\n0 0\n0 1\n1 0\n0 1\n1 0\n1 0\n1 0\n1 0",
"output": "11"
},
{
"input": "100\n0 2\n1 2\n2 1\n1 2\n1 2\n2 1\n2 2\n1 1\n1 1\n2 1\n1 2\n2 1\n1 2\n2 2\n2 2\n2 2\n1 2\n2 2\n2 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 2\n1 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n1 1\n2 2\n2 1\n1 2\n1 1\n1 2\n2 1\n2 2\n1 1\n2 1\n1 1\n2 1\n1 1\n1 2\n2 2\n2 2\n1 1\n2 2\n1 2\n2 1\n2 1\n1 1\n1 1\n1 2\n1 2\n1 1\n1 1\n2 1\n1 2\n1 2\n2 1\n2 2\n2 2\n2 2\n2 1\n2 2\n1 1\n1 2\n1 2\n1 1\n2 2\n2 2\n1 1\n2 1\n1 1\n1 2\n1 2\n1 2\n1 1\n1 1\n2 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 1\n2 2\n1 2\n2 0\n2 0\n2 0\n1 0",
"output": "7"
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 900\n900 0",
"output": "900"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1000\n1000 0",
"output": "1000"
},
{
"input": "3\n0 802\n175 188\n815 0",
"output": "815"
},
{
"input": "3\n0 910\n910 976\n976 0",
"output": "976"
},
{
"input": "3\n0 2\n2 1\n1 0",
"output": "2"
}
] | 1,695,120,110
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 92
| 0
|
n=int(input())
s=0
m=0
for i in range(n):
a,b=map(int,input().split())
s=s-a+b
m=max(m,s)
print(m)
|
Title: Tram
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
Input Specification:
The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
Output Specification:
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
Demo Input:
['4\n0 3\n2 5\n4 2\n4 0\n']
Demo Output:
['6\n']
Note:
For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
|
```python
n=int(input())
s=0
m=0
for i in range(n):
a,b=map(int,input().split())
s=s-a+b
m=max(m,s)
print(m)
```
| 3
|
|
439
|
D
|
Devu and his Brother
|
PROGRAMMING
| 1,700
|
[
"binary search",
"sortings",
"ternary search",
"two pointers"
] | null | null |
Devu and his brother love each other a lot. As they are super geeks, they only like to play with arrays. They are given two arrays *a* and *b* by their father. The array *a* is given to Devu and *b* to his brother.
As Devu is really a naughty kid, he wants the minimum value of his array *a* should be at least as much as the maximum value of his brother's array *b*.
Now you have to help Devu in achieving this condition. You can perform multiple operations on the arrays. In a single operation, you are allowed to decrease or increase any element of any of the arrays by 1. Note that you are allowed to apply the operation on any index of the array multiple times.
You need to find minimum number of operations required to satisfy Devu's condition so that the brothers can play peacefully without fighting.
|
The first line contains two space-separated integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line will contain *n* space-separated integers representing content of the array *a* (1<=≤<=*a**i*<=≤<=109). The third line will contain *m* space-separated integers representing content of the array *b* (1<=≤<=*b**i*<=≤<=109).
|
You need to output a single integer representing the minimum number of operations needed to satisfy Devu's condition.
|
[
"2 2\n2 3\n3 5\n",
"3 2\n1 2 3\n3 4\n",
"3 2\n4 5 6\n1 2\n"
] |
[
"3\n",
"4\n",
"0\n"
] |
In example 1, you can increase *a*<sub class="lower-index">1</sub> by 1 and decrease *b*<sub class="lower-index">2</sub> by 1 and then again decrease *b*<sub class="lower-index">2</sub> by 1. Now array *a* will be [3; 3] and array *b* will also be [3; 3]. Here minimum element of *a* is at least as large as maximum element of *b*. So minimum number of operations needed to satisfy Devu's condition are 3.
In example 3, you don't need to do any operation, Devu's condition is already satisfied.
| 2,000
|
[
{
"input": "2 2\n2 3\n3 5",
"output": "3"
},
{
"input": "3 2\n1 2 3\n3 4",
"output": "4"
},
{
"input": "3 2\n4 5 6\n1 2",
"output": "0"
},
{
"input": "10 10\n23 100 38 38 73 54 59 69 44 86\n100 100 100 100 100 100 100 100 100 100",
"output": "416"
},
{
"input": "1 1\n401114\n998223974",
"output": "997822860"
},
{
"input": "1 1\n100\n4",
"output": "0"
},
{
"input": "1 1\n100\n183299",
"output": "183199"
},
{
"input": "1 1\n999999999\n1000000000",
"output": "1"
},
{
"input": "1 1\n1000000000\n1000000000",
"output": "0"
},
{
"input": "1 1\n1\n2",
"output": "1"
},
{
"input": "1 1\n1\n1",
"output": "0"
},
{
"input": "1 1\n2\n1",
"output": "0"
},
{
"input": "1 1\n1\n2",
"output": "1"
},
{
"input": "1 1\n1\n3",
"output": "2"
},
{
"input": "1 2\n1\n2 2",
"output": "1"
},
{
"input": "2 1\n2 2\n3",
"output": "1"
}
] | 1,600,044,644
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 70
| 468
| 18,944,000
|
def getIndexA(a, value, l, r):
ans = -1;
while(l <= r):
m = int(( l + r )/2);
if(a[m] < value):
ans = m;
l = m + 1
else:
r = m - 1;
return ans
def getIndexB(b, value, l, r):
ans = -1;
while(l <= r):
m = int(( l + r )/2);
if(b[m] > value):
ans = m;
l = m + 1
else:
r = m - 1;
return ans
def main():
string = input().split()
n = int(string[0])
m = int(string[1])
a = [int(value) for value in input().split()]
b = [int(value) for value in input().split()]
a.sort()
b.sort(reverse = True)
sum_a = [0]*n
sum_a[0] = a[0]
for i in range(1, n):
sum_a[i] = sum_a[i - 1] + a[i]
sum_b = [0]*m
sum_b[0] = b[0]
for i in range(1, m):
sum_b[i] = sum_b[i - 1] + b[i]
if(a[0] >= b[0]):
print("0")
return
l = a[0];
r = b[0];
ans = 9223372036854775807
for i in range(n):
mid = a[i]
index_a = i
index_b = getIndexB(b, mid, 0, m - 1)
req_sum_a = mid*(index_a + 1) - sum_a[index_a]
req_sum_b = 0;
if(index_b != -1):
req_sum_b = req_sum_b + sum_b[index_b]
req_sum_b = req_sum_b - (mid*(index_b + 1))
if(req_sum_a + req_sum_b <= ans):
ans = req_sum_b + req_sum_a
for i in range(m):
mid = b[i]
index_a = getIndexA(a, mid, 0, n - 1)
index_b = i
req_sum_a = mid*(index_a + 1)
if(index_a != -1):
req_sum_a = req_sum_a - sum_a[index_a]
req_sum_b = sum_b[index_b] - (mid*(index_b + 1))
if(req_sum_a + req_sum_b <= ans):
ans = req_sum_b + req_sum_a
print(ans)
main()
|
Title: Devu and his Brother
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Devu and his brother love each other a lot. As they are super geeks, they only like to play with arrays. They are given two arrays *a* and *b* by their father. The array *a* is given to Devu and *b* to his brother.
As Devu is really a naughty kid, he wants the minimum value of his array *a* should be at least as much as the maximum value of his brother's array *b*.
Now you have to help Devu in achieving this condition. You can perform multiple operations on the arrays. In a single operation, you are allowed to decrease or increase any element of any of the arrays by 1. Note that you are allowed to apply the operation on any index of the array multiple times.
You need to find minimum number of operations required to satisfy Devu's condition so that the brothers can play peacefully without fighting.
Input Specification:
The first line contains two space-separated integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line will contain *n* space-separated integers representing content of the array *a* (1<=≤<=*a**i*<=≤<=109). The third line will contain *m* space-separated integers representing content of the array *b* (1<=≤<=*b**i*<=≤<=109).
Output Specification:
You need to output a single integer representing the minimum number of operations needed to satisfy Devu's condition.
Demo Input:
['2 2\n2 3\n3 5\n', '3 2\n1 2 3\n3 4\n', '3 2\n4 5 6\n1 2\n']
Demo Output:
['3\n', '4\n', '0\n']
Note:
In example 1, you can increase *a*<sub class="lower-index">1</sub> by 1 and decrease *b*<sub class="lower-index">2</sub> by 1 and then again decrease *b*<sub class="lower-index">2</sub> by 1. Now array *a* will be [3; 3] and array *b* will also be [3; 3]. Here minimum element of *a* is at least as large as maximum element of *b*. So minimum number of operations needed to satisfy Devu's condition are 3.
In example 3, you don't need to do any operation, Devu's condition is already satisfied.
|
```python
def getIndexA(a, value, l, r):
ans = -1;
while(l <= r):
m = int(( l + r )/2);
if(a[m] < value):
ans = m;
l = m + 1
else:
r = m - 1;
return ans
def getIndexB(b, value, l, r):
ans = -1;
while(l <= r):
m = int(( l + r )/2);
if(b[m] > value):
ans = m;
l = m + 1
else:
r = m - 1;
return ans
def main():
string = input().split()
n = int(string[0])
m = int(string[1])
a = [int(value) for value in input().split()]
b = [int(value) for value in input().split()]
a.sort()
b.sort(reverse = True)
sum_a = [0]*n
sum_a[0] = a[0]
for i in range(1, n):
sum_a[i] = sum_a[i - 1] + a[i]
sum_b = [0]*m
sum_b[0] = b[0]
for i in range(1, m):
sum_b[i] = sum_b[i - 1] + b[i]
if(a[0] >= b[0]):
print("0")
return
l = a[0];
r = b[0];
ans = 9223372036854775807
for i in range(n):
mid = a[i]
index_a = i
index_b = getIndexB(b, mid, 0, m - 1)
req_sum_a = mid*(index_a + 1) - sum_a[index_a]
req_sum_b = 0;
if(index_b != -1):
req_sum_b = req_sum_b + sum_b[index_b]
req_sum_b = req_sum_b - (mid*(index_b + 1))
if(req_sum_a + req_sum_b <= ans):
ans = req_sum_b + req_sum_a
for i in range(m):
mid = b[i]
index_a = getIndexA(a, mid, 0, n - 1)
index_b = i
req_sum_a = mid*(index_a + 1)
if(index_a != -1):
req_sum_a = req_sum_a - sum_a[index_a]
req_sum_b = sum_b[index_b] - (mid*(index_b + 1))
if(req_sum_a + req_sum_b <= ans):
ans = req_sum_b + req_sum_a
print(ans)
main()
```
| 3
|
|
894
|
A
|
QAQ
|
PROGRAMMING
| 800
|
[
"brute force",
"dp"
] | null | null |
"QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth.
Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!).
Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact.
|
The only line contains a string of length *n* (1<=≤<=*n*<=≤<=100). It's guaranteed that the string only contains uppercase English letters.
|
Print a single integer — the number of subsequences "QAQ" in the string.
|
[
"QAQAQYSYIOIWIN\n",
"QAQQQZZYNOIWIN\n"
] |
[
"4\n",
"3\n"
] |
In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
| 500
|
[
{
"input": "QAQAQYSYIOIWIN",
"output": "4"
},
{
"input": "QAQQQZZYNOIWIN",
"output": "3"
},
{
"input": "QA",
"output": "0"
},
{
"input": "IAQVAQZLQBQVQFTQQQADAQJA",
"output": "24"
},
{
"input": "QQAAQASGAYAAAAKAKAQIQEAQAIAAIAQQQQQ",
"output": "378"
},
{
"input": "AMVFNFJIAVNQJWIVONQOAOOQSNQSONOASONAONQINAONAOIQONANOIQOANOQINAONOQINAONOXJCOIAQOAOQAQAQAQAQWWWAQQAQ",
"output": "1077"
},
{
"input": "AAQQAXBQQBQQXBNQRJAQKQNAQNQVDQASAGGANQQQQTJFFQQQTQQA",
"output": "568"
},
{
"input": "KAZXAVLPJQBQVQQQQQAPAQQGQTQVZQAAAOYA",
"output": "70"
},
{
"input": "W",
"output": "0"
},
{
"input": "DBA",
"output": "0"
},
{
"input": "RQAWNACASAAKAGAAAAQ",
"output": "10"
},
{
"input": "QJAWZAAOAAGIAAAAAOQATASQAEAAAAQFQQHPA",
"output": "111"
},
{
"input": "QQKWQAQAAAAAAAAGAAVAQUEQQUMQMAQQQNQLAMAAAUAEAAEMAAA",
"output": "411"
},
{
"input": "QQUMQAYAUAAGWAAAQSDAVAAQAAAASKQJJQQQQMAWAYYAAAAAAEAJAXWQQ",
"output": "625"
},
{
"input": "QORZOYAQ",
"output": "1"
},
{
"input": "QCQAQAGAWAQQQAQAVQAQQQQAQAQQQAQAAATQAAVAAAQQQQAAAUUQAQQNQQWQQWAQAAQQKQYAQAAQQQAAQRAQQQWBQQQQAPBAQGQA",
"output": "13174"
},
{
"input": "QQAQQAKQFAQLQAAWAMQAZQAJQAAQQOACQQAAAYANAQAQQAQAAQQAOBQQJQAQAQAQQQAAAAABQQQAVNZAQQQQAMQQAFAAEAQAQHQT",
"output": "10420"
},
{
"input": "AQEGQHQQKQAQQPQKAQQQAAAAQQQAQEQAAQAAQAQFSLAAQQAQOQQAVQAAAPQQAWAQAQAFQAXAQQQQTRLOQAQQJQNQXQQQQSQVDQQQ",
"output": "12488"
},
{
"input": "QNQKQQQLASQBAVQQQQAAQQOQRJQQAQQQEQZUOANAADAAQQJAQAQARAAAQQQEQBHTQAAQAAAAQQMKQQQIAOJJQQAQAAADADQUQQQA",
"output": "9114"
},
{
"input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ",
"output": "35937"
},
{
"input": "AMQQAAQAAQAAAAAAQQQBOAAANAAKQJCYQAE",
"output": "254"
},
{
"input": "AYQBAEQGAQEOAKGIXLQJAIAKQAAAQPUAJAKAATFWQQAOQQQUFQYAQQMQHOKAAJXGFCARAQSATHAUQQAATQJJQDQRAANQQAE",
"output": "2174"
},
{
"input": "AAQXAAQAYQAAAAGAQHVQYAGIVACADFAAQAAAAQZAAQMAKZAADQAQDAAQDAAAMQQOXYAQQQAKQBAAQQKAXQBJZDDLAAHQQ",
"output": "2962"
},
{
"input": "AYQQYAVAMNIAUAAKBBQVACWKTQSAQZAAQAAASZJAWBCAALAARHACQAKQQAQAARPAQAAQAQAAZQUSHQAMFVFZQQQQSAQQXAA",
"output": "2482"
},
{
"input": "LQMAQQARQAQBJQQQAGAAZQQXALQQAARQAQQQQAAQQAQQQAQQCAQQAQQAYQQQRAAZATQALYQQAAHHAAQHAAAAAAAAQQMAAQNAKQ",
"output": "7768"
},
{
"input": "MAQQWAQOYQMAAAQAQPQZAOAAQAUAQNAAQAAAITQSAQAKAQKAQQWSQAAQQAGUCDQMQWKQUXKWQQAAQQAAQQZQDQQQAABXQUUXQOA",
"output": "5422"
},
{
"input": "QTAAQDAQXAQQJQQQGAAAQQQQSBQZKAQQAQQQQEAQNUQBZCQLYQZQEQQAAQHQVAORKQVAQYQNASZQAARZAAGAAAAOQDCQ",
"output": "3024"
},
{
"input": "QQWAQQGQQUZQQQLZAAQYQXQVAQFQUAQZUQZZQUKBHSHTQYLQAOQXAQQGAQQTQOAQARQADAJRAAQPQAQQUQAUAMAUVQAAAQQAWQ",
"output": "4527"
},
{
"input": "QQAAQQAQVAQZQQQQAOEAQZPQIBQZACQQAFQQLAAQDATZQANHKYQQAQTAAFQRQAIQAJPWQAQTEIRXAEQQAYWAAAUKQQAQAQQQSQQH",
"output": "6416"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAAAA",
"output": "14270"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQ",
"output": "13136"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA",
"output": "14270"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQQAA",
"output": "14231"
},
{
"input": "QQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA",
"output": "15296"
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ",
"output": "0"
},
{
"input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "0"
},
{
"input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ",
"output": "0"
},
{
"input": "QAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQA",
"output": "20825"
},
{
"input": "AQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQ",
"output": "20825"
},
{
"input": "Q",
"output": "0"
},
{
"input": "A",
"output": "0"
},
{
"input": "FFF",
"output": "0"
},
{
"input": "AAAAAA",
"output": "0"
}
] | 1,622,484,955
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 43
| 156
| 1,536,000
|
import math
import sys
#from collections import deque, Counter, OrderedDict, defaultdict
#import heapq
#ceil,floor,log,sqrt,factorial,pow,pi,gcd
#import bisect
#from bisect import bisect_left,bisect_right
input = sys.stdin.readline
def inp():
return(int(input()))
def inlt():
return(list(map(int,input().split())))
def insr():
s = input().strip()
return(list(s[:len(s)]))
def invr():
return(map(int,input().split()))
s=insr()
cnt=0
for i in range(len(s)):
if s[i]=='Q':
for j in range(i+1,len(s)):
if s[j]=='A':
for k in range(j+1,len(s)):
if s[k]=='Q':
cnt+=1
print(cnt)
|
Title: QAQ
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
"QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth.
Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!).
Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact.
Input Specification:
The only line contains a string of length *n* (1<=≤<=*n*<=≤<=100). It's guaranteed that the string only contains uppercase English letters.
Output Specification:
Print a single integer — the number of subsequences "QAQ" in the string.
Demo Input:
['QAQAQYSYIOIWIN\n', 'QAQQQZZYNOIWIN\n']
Demo Output:
['4\n', '3\n']
Note:
In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
|
```python
import math
import sys
#from collections import deque, Counter, OrderedDict, defaultdict
#import heapq
#ceil,floor,log,sqrt,factorial,pow,pi,gcd
#import bisect
#from bisect import bisect_left,bisect_right
input = sys.stdin.readline
def inp():
return(int(input()))
def inlt():
return(list(map(int,input().split())))
def insr():
s = input().strip()
return(list(s[:len(s)]))
def invr():
return(map(int,input().split()))
s=insr()
cnt=0
for i in range(len(s)):
if s[i]=='Q':
for j in range(i+1,len(s)):
if s[j]=='A':
for k in range(j+1,len(s)):
if s[k]=='Q':
cnt+=1
print(cnt)
```
| 3
|
|
404
|
A
|
Valera and X
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Valera is a little boy. Yesterday he got a huge Math hometask at school, so Valera didn't have enough time to properly learn the English alphabet for his English lesson. Unfortunately, the English teacher decided to have a test on alphabet today. At the test Valera got a square piece of squared paper. The length of the side equals *n* squares (*n* is an odd number) and each unit square contains some small letter of the English alphabet.
Valera needs to know if the letters written on the square piece of paper form letter "X". Valera's teacher thinks that the letters on the piece of paper form an "X", if:
- on both diagonals of the square paper all letters are the same; - all other squares of the paper (they are not on the diagonals) contain the same letter that is different from the letters on the diagonals.
Help Valera, write the program that completes the described task for him.
|
The first line contains integer *n* (3<=≤<=*n*<=<<=300; *n* is odd). Each of the next *n* lines contains *n* small English letters — the description of Valera's paper.
|
Print string "YES", if the letters on the paper form letter "X". Otherwise, print string "NO". Print the strings without quotes.
|
[
"5\nxooox\noxoxo\nsoxoo\noxoxo\nxooox\n",
"3\nwsw\nsws\nwsw\n",
"3\nxpx\npxp\nxpe\n"
] |
[
"NO\n",
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "5\nxooox\noxoxo\nsoxoo\noxoxo\nxooox",
"output": "NO"
},
{
"input": "3\nwsw\nsws\nwsw",
"output": "YES"
},
{
"input": "3\nxpx\npxp\nxpe",
"output": "NO"
},
{
"input": "5\nliiil\nilili\niilii\nilili\nliiil",
"output": "YES"
},
{
"input": "7\nbwccccb\nckcccbj\nccbcbcc\ncccbccc\nccbcbcc\ncbcccbc\nbccccdt",
"output": "NO"
},
{
"input": "13\nsooooooooooos\nosoooooooooso\noosooooooosoo\nooosooooosooo\noooosooosoooo\nooooososooooo\noooooosoooooo\nooooososooooo\noooosooosoooo\nooosooooosooo\noosooooooosoo\nosoooooooooso\nsooooooooooos",
"output": "YES"
},
{
"input": "3\naaa\naaa\naaa",
"output": "NO"
},
{
"input": "3\naca\noec\nzba",
"output": "NO"
},
{
"input": "15\nrxeeeeeeeeeeeer\nereeeeeeeeeeere\needeeeeeeeeeoee\neeereeeeeeeewee\neeeereeeeebeeee\nqeeeereeejedyee\neeeeeerereeeeee\neeeeeeereeeeeee\neeeeeerereeeeze\neeeeereeereeeee\neeeereeeeegeeee\neeereeeeeeereee\neereeeeeeqeeved\ncreeeeeeceeeere\nreeerneeeeeeeer",
"output": "NO"
},
{
"input": "5\nxxxxx\nxxxxx\nxxxxx\nxxxxx\nxxxxx",
"output": "NO"
},
{
"input": "5\nxxxxx\nxxxxx\nxoxxx\nxxxxx\nxxxxx",
"output": "NO"
},
{
"input": "5\noxxxo\nxoxox\nxxxxx\nxoxox\noxxxo",
"output": "NO"
},
{
"input": "5\noxxxo\nxoxox\nxxoox\nxoxox\noxxxo",
"output": "NO"
},
{
"input": "5\noxxxo\nxoxox\nxxaxx\nxoxox\noxxxo",
"output": "NO"
},
{
"input": "5\noxxxo\nxoxox\noxoxx\nxoxox\noxxxo",
"output": "NO"
},
{
"input": "3\nxxx\naxa\nxax",
"output": "NO"
},
{
"input": "3\nxax\naxx\nxax",
"output": "NO"
},
{
"input": "3\nxax\naxa\nxxx",
"output": "NO"
},
{
"input": "3\nxax\nxxa\nxax",
"output": "NO"
},
{
"input": "3\nxax\naaa\nxax",
"output": "NO"
},
{
"input": "3\naax\naxa\nxax",
"output": "NO"
},
{
"input": "3\nxaa\naxa\nxax",
"output": "NO"
},
{
"input": "3\nxax\naxa\naax",
"output": "NO"
},
{
"input": "3\nxax\naxa\nxaa",
"output": "NO"
},
{
"input": "3\nxfx\naxa\nxax",
"output": "NO"
},
{
"input": "3\nxax\nafa\nxax",
"output": "NO"
},
{
"input": "3\nxax\naxa\nxaf",
"output": "NO"
},
{
"input": "3\nxox\nxxx\nxxx",
"output": "NO"
},
{
"input": "3\naxa\naax\nxxa",
"output": "NO"
},
{
"input": "3\nxox\noxx\nxox",
"output": "NO"
},
{
"input": "3\nxox\nooo\nxox",
"output": "NO"
},
{
"input": "3\naaa\naab\nbbb",
"output": "NO"
},
{
"input": "3\nxxx\nsxs\nxsx",
"output": "NO"
},
{
"input": "5\nabbba\nbabab\nbbbbb\nbaaab\nabbba",
"output": "NO"
},
{
"input": "5\nabaaa\nbbbbb\nbbabb\nbabab\nabbba",
"output": "NO"
},
{
"input": "5\nxoxox\noxoxo\nooxoo\noxoxo\nxooox",
"output": "NO"
},
{
"input": "3\nxox\noxx\nxxx",
"output": "NO"
},
{
"input": "5\nxoooo\noxooo\nooxoo\noooxo\noooox",
"output": "NO"
},
{
"input": "5\nxoooo\noxoxx\nooxoo\noxoxo\noxoox",
"output": "NO"
},
{
"input": "3\naaa\nbab\naba",
"output": "NO"
}
] | 1,601,689,108
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 47
| 109
| 1,228,800
|
n = int(input())
s = ''
for i in range(n):
s = s + input()
#if the count of diagonal elemtns is same as 2*n-1 and on reversing the string string remains same then answer is yes
if list(s)==list(s)[::-1] and s.count(s[0])==(2*n-1):
print("YES")
else:
print("NO")
|
Title: Valera and X
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera is a little boy. Yesterday he got a huge Math hometask at school, so Valera didn't have enough time to properly learn the English alphabet for his English lesson. Unfortunately, the English teacher decided to have a test on alphabet today. At the test Valera got a square piece of squared paper. The length of the side equals *n* squares (*n* is an odd number) and each unit square contains some small letter of the English alphabet.
Valera needs to know if the letters written on the square piece of paper form letter "X". Valera's teacher thinks that the letters on the piece of paper form an "X", if:
- on both diagonals of the square paper all letters are the same; - all other squares of the paper (they are not on the diagonals) contain the same letter that is different from the letters on the diagonals.
Help Valera, write the program that completes the described task for him.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=<<=300; *n* is odd). Each of the next *n* lines contains *n* small English letters — the description of Valera's paper.
Output Specification:
Print string "YES", if the letters on the paper form letter "X". Otherwise, print string "NO". Print the strings without quotes.
Demo Input:
['5\nxooox\noxoxo\nsoxoo\noxoxo\nxooox\n', '3\nwsw\nsws\nwsw\n', '3\nxpx\npxp\nxpe\n']
Demo Output:
['NO\n', 'YES\n', 'NO\n']
Note:
none
|
```python
n = int(input())
s = ''
for i in range(n):
s = s + input()
#if the count of diagonal elemtns is same as 2*n-1 and on reversing the string string remains same then answer is yes
if list(s)==list(s)[::-1] and s.count(s[0])==(2*n-1):
print("YES")
else:
print("NO")
```
| 3
|
|
961
|
B
|
Lecture Sleep
|
PROGRAMMING
| 1,200
|
[
"data structures",
"dp",
"implementation",
"two pointers"
] | null | null |
Your friend Mishka and you attend a calculus lecture. Lecture lasts *n* minutes. Lecturer tells *a**i* theorems during the *i*-th minute.
Mishka is really interested in calculus, though it is so hard to stay awake for all the time of lecture. You are given an array *t* of Mishka's behavior. If Mishka is asleep during the *i*-th minute of the lecture then *t**i* will be equal to 0, otherwise it will be equal to 1. When Mishka is awake he writes down all the theorems he is being told — *a**i* during the *i*-th minute. Otherwise he writes nothing.
You know some secret technique to keep Mishka awake for *k* minutes straight. However you can use it only once. You can start using it at the beginning of any minute between 1 and *n*<=-<=*k*<=+<=1. If you use it on some minute *i* then Mishka will be awake during minutes *j* such that and will write down all the theorems lecturer tells.
You task is to calculate the maximum number of theorems Mishka will be able to write down if you use your technique only once to wake him up.
|
The first line of the input contains two integer numbers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105) — the duration of the lecture in minutes and the number of minutes you can keep Mishka awake.
The second line of the input contains *n* integer numbers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=104) — the number of theorems lecturer tells during the *i*-th minute.
The third line of the input contains *n* integer numbers *t*1,<=*t*2,<=... *t**n* (0<=≤<=*t**i*<=≤<=1) — type of Mishka's behavior at the *i*-th minute of the lecture.
|
Print only one integer — the maximum number of theorems Mishka will be able to write down if you use your technique only once to wake him up.
|
[
"6 3\n1 3 5 2 5 4\n1 1 0 1 0 0\n"
] |
[
"16\n"
] |
In the sample case the better way is to use the secret technique at the beginning of the third minute. Then the number of theorems Mishka will be able to write down will be equal to 16.
| 0
|
[
{
"input": "6 3\n1 3 5 2 5 4\n1 1 0 1 0 0",
"output": "16"
},
{
"input": "5 3\n1 9999 10000 10000 10000\n0 0 0 0 0",
"output": "30000"
},
{
"input": "3 3\n10 10 10\n1 1 0",
"output": "30"
},
{
"input": "1 1\n423\n0",
"output": "423"
},
{
"input": "6 6\n1 3 5 2 5 4\n1 1 0 1 0 0",
"output": "20"
},
{
"input": "5 2\n1 2 3 4 20\n0 0 0 1 0",
"output": "24"
},
{
"input": "3 1\n1 2 3\n0 0 1",
"output": "5"
},
{
"input": "4 2\n4 5 6 8\n1 0 1 0",
"output": "18"
},
{
"input": "6 3\n1 3 5 2 1 15\n1 1 0 1 0 0",
"output": "22"
},
{
"input": "5 5\n1 2 3 4 5\n1 1 1 0 1",
"output": "15"
},
{
"input": "3 3\n3 3 3\n1 0 1",
"output": "9"
},
{
"input": "5 5\n500 44 3 4 50\n1 0 0 0 0",
"output": "601"
},
{
"input": "2 2\n3 2\n1 0",
"output": "5"
},
{
"input": "7 6\n4 9 1 7 1 8 4\n0 0 0 1 0 1 0",
"output": "30"
},
{
"input": "4 3\n6 5 9 6\n1 1 0 1",
"output": "26"
},
{
"input": "2 1\n3 2\n0 0",
"output": "3"
},
{
"input": "1 1\n10\n0",
"output": "10"
},
{
"input": "2 1\n3 2\n1 0",
"output": "5"
},
{
"input": "4 2\n3 6 7 2\n0 0 1 1",
"output": "18"
},
{
"input": "10 5\n3 5 9 2 5 9 3 8 8 1\n0 1 1 1 0 1 0 0 0 0",
"output": "49"
},
{
"input": "10 4\n9 5 6 4 3 9 5 1 10 7\n0 0 0 0 0 0 1 0 0 1",
"output": "36"
},
{
"input": "9 8\n3 3 7 7 1 9 10 7 1\n1 1 1 1 1 1 1 1 1",
"output": "48"
},
{
"input": "2 1\n3 4\n0 0",
"output": "4"
},
{
"input": "2 1\n3 2\n0 1",
"output": "5"
},
{
"input": "10 1\n6 6 8 7 6 6 3 2 5 6\n0 0 1 0 0 1 0 1 1 1",
"output": "34"
},
{
"input": "3 2\n10 10 6\n0 0 0",
"output": "20"
},
{
"input": "6 3\n1 3 5 2 5 4\n1 1 1 1 1 1",
"output": "20"
},
{
"input": "10 5\n1 1 1 1 1 1 1 1 10000 1\n1 1 1 1 1 1 1 1 0 1",
"output": "10009"
}
] | 1,668,435,983
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 37
| 109
| 19,251,200
|
n,k=map(int,input().split())
# s=(input().strip())
# t=(input().strip())
val=list(map(int,input().split()))
# s=list(map(int,input()))
bi=list(map(int,input().split()))
i=0;j=0;ans=0;mx=-1
while j<n:
if bi[j]==0:
ans+=val[j]
if j-i+1<k:
j+=1
elif j-i+1==k:
mx=max(mx,ans)
if bi[i]==0:
ans-=val[i]
i+=1
j+=1
if mx==-1:mx=0
for i in range(n):
if bi[i]==1:
mx+=val[i]
print(mx)
|
Title: Lecture Sleep
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Your friend Mishka and you attend a calculus lecture. Lecture lasts *n* minutes. Lecturer tells *a**i* theorems during the *i*-th minute.
Mishka is really interested in calculus, though it is so hard to stay awake for all the time of lecture. You are given an array *t* of Mishka's behavior. If Mishka is asleep during the *i*-th minute of the lecture then *t**i* will be equal to 0, otherwise it will be equal to 1. When Mishka is awake he writes down all the theorems he is being told — *a**i* during the *i*-th minute. Otherwise he writes nothing.
You know some secret technique to keep Mishka awake for *k* minutes straight. However you can use it only once. You can start using it at the beginning of any minute between 1 and *n*<=-<=*k*<=+<=1. If you use it on some minute *i* then Mishka will be awake during minutes *j* such that and will write down all the theorems lecturer tells.
You task is to calculate the maximum number of theorems Mishka will be able to write down if you use your technique only once to wake him up.
Input Specification:
The first line of the input contains two integer numbers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105) — the duration of the lecture in minutes and the number of minutes you can keep Mishka awake.
The second line of the input contains *n* integer numbers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=104) — the number of theorems lecturer tells during the *i*-th minute.
The third line of the input contains *n* integer numbers *t*1,<=*t*2,<=... *t**n* (0<=≤<=*t**i*<=≤<=1) — type of Mishka's behavior at the *i*-th minute of the lecture.
Output Specification:
Print only one integer — the maximum number of theorems Mishka will be able to write down if you use your technique only once to wake him up.
Demo Input:
['6 3\n1 3 5 2 5 4\n1 1 0 1 0 0\n']
Demo Output:
['16\n']
Note:
In the sample case the better way is to use the secret technique at the beginning of the third minute. Then the number of theorems Mishka will be able to write down will be equal to 16.
|
```python
n,k=map(int,input().split())
# s=(input().strip())
# t=(input().strip())
val=list(map(int,input().split()))
# s=list(map(int,input()))
bi=list(map(int,input().split()))
i=0;j=0;ans=0;mx=-1
while j<n:
if bi[j]==0:
ans+=val[j]
if j-i+1<k:
j+=1
elif j-i+1==k:
mx=max(mx,ans)
if bi[i]==0:
ans-=val[i]
i+=1
j+=1
if mx==-1:mx=0
for i in range(n):
if bi[i]==1:
mx+=val[i]
print(mx)
```
| 3
|
|
122
|
A
|
Lucky Division
|
PROGRAMMING
| 1,000
|
[
"brute force",
"number theory"
] | null | null |
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number *n* is almost lucky.
|
The single line contains an integer *n* (1<=≤<=*n*<=≤<=1000) — the number that needs to be checked.
|
In the only line print "YES" (without the quotes), if number *n* is almost lucky. Otherwise, print "NO" (without the quotes).
|
[
"47\n",
"16\n",
"78\n"
] |
[
"YES\n",
"YES\n",
"NO\n"
] |
Note that all lucky numbers are almost lucky as any number is evenly divisible by itself.
In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4.
| 500
|
[
{
"input": "47",
"output": "YES"
},
{
"input": "16",
"output": "YES"
},
{
"input": "78",
"output": "NO"
},
{
"input": "48",
"output": "YES"
},
{
"input": "100",
"output": "YES"
},
{
"input": "107",
"output": "NO"
},
{
"input": "77",
"output": "YES"
},
{
"input": "477",
"output": "YES"
},
{
"input": "480",
"output": "YES"
},
{
"input": "1",
"output": "NO"
},
{
"input": "3",
"output": "NO"
},
{
"input": "4",
"output": "YES"
},
{
"input": "49",
"output": "YES"
},
{
"input": "56",
"output": "YES"
},
{
"input": "124",
"output": "YES"
},
{
"input": "1000",
"output": "YES"
},
{
"input": "999",
"output": "NO"
},
{
"input": "298",
"output": "NO"
},
{
"input": "274",
"output": "NO"
},
{
"input": "998",
"output": "NO"
},
{
"input": "42",
"output": "YES"
},
{
"input": "788",
"output": "YES"
},
{
"input": "70",
"output": "YES"
},
{
"input": "444",
"output": "YES"
},
{
"input": "777",
"output": "YES"
},
{
"input": "799",
"output": "YES"
},
{
"input": "25",
"output": "NO"
},
{
"input": "882",
"output": "YES"
},
{
"input": "88",
"output": "YES"
},
{
"input": "11",
"output": "NO"
},
{
"input": "2",
"output": "NO"
},
{
"input": "7",
"output": "YES"
},
{
"input": "8",
"output": "YES"
},
{
"input": "94",
"output": "YES"
},
{
"input": "477",
"output": "YES"
},
{
"input": "141",
"output": "YES"
}
] | 1,696,659,849
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 92
| 0
|
n = int(input())
a = []
for i in range(1, 1001):
k = 0
for j in str(i):
if int(j) in [0, 1, 2, 3, 5, 6, 8, 9]:
k += 1
break
if k == 0:
a.append(i)
for i in a:
if n % i == 0:
print('YES')
quit()
print('NO')
|
Title: Lucky Division
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number *n* is almost lucky.
Input Specification:
The single line contains an integer *n* (1<=≤<=*n*<=≤<=1000) — the number that needs to be checked.
Output Specification:
In the only line print "YES" (without the quotes), if number *n* is almost lucky. Otherwise, print "NO" (without the quotes).
Demo Input:
['47\n', '16\n', '78\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n']
Note:
Note that all lucky numbers are almost lucky as any number is evenly divisible by itself.
In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4.
|
```python
n = int(input())
a = []
for i in range(1, 1001):
k = 0
for j in str(i):
if int(j) in [0, 1, 2, 3, 5, 6, 8, 9]:
k += 1
break
if k == 0:
a.append(i)
for i in a:
if n % i == 0:
print('YES')
quit()
print('NO')
```
| 3
|
|
18
|
C
|
Stripe
|
PROGRAMMING
| 1,200
|
[
"data structures",
"implementation"
] |
C. Stripe
|
2
|
64
|
Once Bob took a paper stripe of *n* squares (the height of the stripe is 1 square). In each square he wrote an integer number, possibly negative. He became interested in how many ways exist to cut this stripe into two pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece, and each piece contains positive integer amount of squares. Would you help Bob solve this problem?
|
The first input line contains integer *n* (1<=≤<=*n*<=≤<=105) — amount of squares in the stripe. The second line contains *n* space-separated numbers — they are the numbers written in the squares of the stripe. These numbers are integer and do not exceed 10000 in absolute value.
|
Output the amount of ways to cut the stripe into two non-empty pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece. Don't forget that it's allowed to cut the stripe along the squares' borders only.
|
[
"9\n1 5 -6 7 9 -16 0 -2 2\n",
"3\n1 1 1\n",
"2\n0 0\n"
] |
[
"3\n",
"0\n",
"1\n"
] |
none
| 0
|
[
{
"input": "9\n1 5 -6 7 9 -16 0 -2 2",
"output": "3"
},
{
"input": "3\n1 1 1",
"output": "0"
},
{
"input": "2\n0 0",
"output": "1"
},
{
"input": "4\n100 1 10 111",
"output": "1"
},
{
"input": "10\n0 4 -3 0 -2 2 -3 -3 2 5",
"output": "3"
},
{
"input": "10\n0 -1 2 2 -1 1 0 0 0 2",
"output": "0"
},
{
"input": "10\n-1 -1 1 -1 0 1 0 1 1 1",
"output": "1"
},
{
"input": "10\n0 0 0 0 0 0 0 0 0 0",
"output": "9"
},
{
"input": "50\n-4 -3 3 4 -1 0 2 -4 -3 -4 1 4 3 0 4 1 0 -3 4 -3 -2 2 2 1 0 -4 -4 -5 3 2 -1 4 5 -3 -3 4 4 -5 2 -3 4 -5 2 5 -4 4 1 -2 -4 3",
"output": "3"
},
{
"input": "15\n0 4 0 3 -1 4 -2 -2 -4 -4 3 2 4 -1 -3",
"output": "0"
},
{
"input": "10\n3 -1 -3 -1 3 -2 0 3 1 -2",
"output": "0"
},
{
"input": "100\n-4 2 4 4 1 3 -3 -3 2 1 -4 0 0 2 3 -1 -4 -3 4 -2 -3 -3 -3 -1 -2 -3 -1 -4 0 4 0 -1 4 0 -4 -4 4 -4 -2 1 -4 1 -3 -2 3 -4 4 0 -1 3 -1 4 -1 4 -1 3 -3 -3 -2 -2 4 -3 -3 4 -3 -2 -1 0 -2 4 0 -3 -1 -2 -3 1 -4 1 -3 -3 -3 -2 -3 0 1 -2 -2 -4 -3 -1 2 3 -1 1 1 0 3 -3 -1 -2",
"output": "1"
},
{
"input": "100\n-2 -1 1 0 -2 -1 2 2 0 0 2 1 0 2 0 2 1 0 -1 -1 -1 0 -2 -1 2 -1 -2 2 -2 2 -2 -2 2 1 1 1 -2 2 0 0 2 -1 2 2 2 0 -1 -1 -1 1 -2 2 2 2 -2 0 0 -2 0 -2 -2 0 -1 -1 -2 -1 1 2 -2 -1 1 -2 -1 0 -2 2 2 -1 -2 2 0 0 0 1 0 1 2 1 -2 -2 -1 -1 -2 -2 -2 -1 2 2 2 -2",
"output": "6"
},
{
"input": "100\n2 7 6 0 8 -2 0 1 8 -1 7 -4 -1 1 0 3 4 -4 3 7 8 -4 -6 6 4 -2 -5 7 4 6 1 6 3 8 -2 6 -6 -3 0 -1 -7 -8 -2 5 8 6 -2 -2 -5 -4 -7 -3 -5 -3 -3 -1 5 8 4 0 -7 -6 8 -4 -1 7 2 6 6 4 -5 -4 -5 -2 2 -2 -7 -1 5 -8 -6 -2 -5 4 2 8 -6 7 -8 -1 -5 8 6 -3 -1 7 -1 2 -8 -8",
"output": "0"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "1\n10000",
"output": "0"
},
{
"input": "1\n-10000",
"output": "0"
}
] | 1,680,010,643
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 340
| 7,680,000
|
n = int(input())
entrada = input().split(" ")
lista = []
for i in entrada:
lista.append(int(i))
for j in range(1,len(lista)):
lista[j] = lista[j] + lista[j - 1]
count = 0
for k in range(len(lista) - 1):
esquerda = lista[k]
direita = lista[len(lista) - 1] - esquerda
if(esquerda == direita):
count+=1
print(count)
|
Title: Stripe
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
Once Bob took a paper stripe of *n* squares (the height of the stripe is 1 square). In each square he wrote an integer number, possibly negative. He became interested in how many ways exist to cut this stripe into two pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece, and each piece contains positive integer amount of squares. Would you help Bob solve this problem?
Input Specification:
The first input line contains integer *n* (1<=≤<=*n*<=≤<=105) — amount of squares in the stripe. The second line contains *n* space-separated numbers — they are the numbers written in the squares of the stripe. These numbers are integer and do not exceed 10000 in absolute value.
Output Specification:
Output the amount of ways to cut the stripe into two non-empty pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece. Don't forget that it's allowed to cut the stripe along the squares' borders only.
Demo Input:
['9\n1 5 -6 7 9 -16 0 -2 2\n', '3\n1 1 1\n', '2\n0 0\n']
Demo Output:
['3\n', '0\n', '1\n']
Note:
none
|
```python
n = int(input())
entrada = input().split(" ")
lista = []
for i in entrada:
lista.append(int(i))
for j in range(1,len(lista)):
lista[j] = lista[j] + lista[j - 1]
count = 0
for k in range(len(lista) - 1):
esquerda = lista[k]
direita = lista[len(lista) - 1] - esquerda
if(esquerda == direita):
count+=1
print(count)
```
| 3.85778
|
45
|
A
|
Codecraft III
|
PROGRAMMING
| 900
|
[
"implementation"
] |
A. Codecraft III
|
2
|
256
|
Today Vasya visited a widely known site and learned that the continuation of his favourite game Codecraft II will appear after exactly *k* months. He looked at the calendar and learned that at the moment is the month number *s*. Vasya immediately got interested in what month Codecraft III will appear. Help him understand that.
All the twelve months in Vasya's calendar are named using their usual English names: January, February, March, April, May, June, July, August, September, October, November, December.
|
The first input line contains the name of the current month. It is guaranteed that it is a proper English name of one of twelve months. The first letter is uppercase, the rest are lowercase. The second line contains integer *k* (0<=≤<=*k*<=≤<=100) — the number of months left till the appearance of Codecraft III.
|
Print starting from an uppercase letter the name of the month in which the continuation of Codeforces II will appear. The printed name must be contained in the list January, February, March, April, May, June, July, August, September, October, November, December.
|
[
"November\n3\n",
"May\n24\n"
] |
[
"February\n",
"May\n"
] |
none
| 0
|
[
{
"input": "November\n3",
"output": "February"
},
{
"input": "May\n24",
"output": "May"
},
{
"input": "April\n0",
"output": "April"
},
{
"input": "September\n0",
"output": "September"
},
{
"input": "August\n0",
"output": "August"
},
{
"input": "June\n1",
"output": "July"
},
{
"input": "July\n2",
"output": "September"
},
{
"input": "September\n3",
"output": "December"
},
{
"input": "July\n4",
"output": "November"
},
{
"input": "August\n24",
"output": "August"
},
{
"input": "May\n48",
"output": "May"
},
{
"input": "November\n47",
"output": "October"
},
{
"input": "December\n49",
"output": "January"
},
{
"input": "June\n99",
"output": "September"
},
{
"input": "March\n100",
"output": "July"
},
{
"input": "December\n1",
"output": "January"
},
{
"input": "January\n11",
"output": "December"
},
{
"input": "December\n0",
"output": "December"
},
{
"input": "January\n0",
"output": "January"
},
{
"input": "July\n77",
"output": "December"
},
{
"input": "February\n11",
"output": "January"
},
{
"input": "February\n22",
"output": "December"
},
{
"input": "July\n33",
"output": "April"
},
{
"input": "May\n44",
"output": "January"
},
{
"input": "June\n97",
"output": "July"
}
] | 1,649,092,670
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 62
| 0
|
month = input()
n = int(input())
months = ['January', 'February', 'March', 'April', 'May', 'June',
'July', 'August', 'September', 'October', 'November', 'December']
index =(months.index(month)+n)%12
print(months[index])
|
Title: Codecraft III
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Today Vasya visited a widely known site and learned that the continuation of his favourite game Codecraft II will appear after exactly *k* months. He looked at the calendar and learned that at the moment is the month number *s*. Vasya immediately got interested in what month Codecraft III will appear. Help him understand that.
All the twelve months in Vasya's calendar are named using their usual English names: January, February, March, April, May, June, July, August, September, October, November, December.
Input Specification:
The first input line contains the name of the current month. It is guaranteed that it is a proper English name of one of twelve months. The first letter is uppercase, the rest are lowercase. The second line contains integer *k* (0<=≤<=*k*<=≤<=100) — the number of months left till the appearance of Codecraft III.
Output Specification:
Print starting from an uppercase letter the name of the month in which the continuation of Codeforces II will appear. The printed name must be contained in the list January, February, March, April, May, June, July, August, September, October, November, December.
Demo Input:
['November\n3\n', 'May\n24\n']
Demo Output:
['February\n', 'May\n']
Note:
none
|
```python
month = input()
n = int(input())
months = ['January', 'February', 'March', 'April', 'May', 'June',
'July', 'August', 'September', 'October', 'November', 'December']
index =(months.index(month)+n)%12
print(months[index])
```
| 3.9845
|
27
|
A
|
Next Test
|
PROGRAMMING
| 1,200
|
[
"implementation",
"sortings"
] |
A. Next Test
|
2
|
256
|
«Polygon» is a system which allows to create programming tasks in a simple and professional way. When you add a test to the problem, the corresponding form asks you for the test index. As in most cases it is clear which index the next test will have, the system suggests the default value of the index. It is calculated as the smallest positive integer which is not used as an index for some previously added test.
You are to implement this feature. Create a program which determines the default index of the next test, given the indexes of the previously added tests.
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=3000) — the amount of previously added tests. The second line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=3000) — indexes of these tests.
|
Output the required default value for the next test index.
|
[
"3\n1 7 2\n"
] |
[
"3\n"
] |
none
| 500
|
[
{
"input": "1\n1",
"output": "2"
},
{
"input": "2\n2 1",
"output": "3"
},
{
"input": "3\n3 4 1",
"output": "2"
},
{
"input": "4\n6 4 3 5",
"output": "1"
},
{
"input": "5\n3 2 1 7 4",
"output": "5"
},
{
"input": "6\n4 1 2 5 3 7",
"output": "6"
},
{
"input": "7\n3 2 1 6 5 7 4",
"output": "8"
},
{
"input": "8\n2 8 3 7 6 9 1 5",
"output": "4"
},
{
"input": "9\n10 5 9 3 8 7 1 2 4",
"output": "6"
},
{
"input": "10\n7 2 3 8 9 6 5 4 1 10",
"output": "11"
},
{
"input": "1\n1",
"output": "2"
},
{
"input": "2\n1 2",
"output": "3"
},
{
"input": "3\n2 4 1",
"output": "3"
},
{
"input": "4\n4 2 3 1",
"output": "5"
},
{
"input": "5\n3 1 4 2 5",
"output": "6"
},
{
"input": "6\n1 3 6 7 2 4",
"output": "5"
},
{
"input": "7\n1 5 4 7 2 3 6",
"output": "8"
},
{
"input": "8\n12 1 6 5 2 8 3 4",
"output": "7"
},
{
"input": "9\n3 2 7 5 6 4 1 9 10",
"output": "8"
},
{
"input": "10\n1 7 13 6 5 10 3 8 2 4",
"output": "9"
},
{
"input": "1\n2",
"output": "1"
},
{
"input": "1\n3",
"output": "1"
},
{
"input": "1\n3000",
"output": "1"
},
{
"input": "2\n2 3",
"output": "1"
},
{
"input": "2\n3000 1",
"output": "2"
}
] | 1,610,294,477
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 124
| 409,600
|
input(); print(min(set(range(1, 3002)) - set(map(int, input().split()))))
|
Title: Next Test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
«Polygon» is a system which allows to create programming tasks in a simple and professional way. When you add a test to the problem, the corresponding form asks you for the test index. As in most cases it is clear which index the next test will have, the system suggests the default value of the index. It is calculated as the smallest positive integer which is not used as an index for some previously added test.
You are to implement this feature. Create a program which determines the default index of the next test, given the indexes of the previously added tests.
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=3000) — the amount of previously added tests. The second line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=3000) — indexes of these tests.
Output Specification:
Output the required default value for the next test index.
Demo Input:
['3\n1 7 2\n']
Demo Output:
['3\n']
Note:
none
|
```python
input(); print(min(set(range(1, 3002)) - set(map(int, input().split()))))
```
| 3.968237
|
266
|
A
|
Stones on the Table
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table.
The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue.
|
Print a single integer — the answer to the problem.
|
[
"3\nRRG\n",
"5\nRRRRR\n",
"4\nBRBG\n"
] |
[
"1\n",
"4\n",
"0\n"
] |
none
| 500
|
[
{
"input": "3\nRRG",
"output": "1"
},
{
"input": "5\nRRRRR",
"output": "4"
},
{
"input": "4\nBRBG",
"output": "0"
},
{
"input": "1\nB",
"output": "0"
},
{
"input": "2\nBG",
"output": "0"
},
{
"input": "3\nBGB",
"output": "0"
},
{
"input": "4\nRBBR",
"output": "1"
},
{
"input": "5\nRGGBG",
"output": "1"
},
{
"input": "10\nGGBRBRGGRB",
"output": "2"
},
{
"input": "50\nGRBGGRBRGRBGGBBBBBGGGBBBBRBRGBRRBRGBBBRBBRRGBGGGRB",
"output": "18"
},
{
"input": "15\nBRRBRGGBBRRRRGR",
"output": "6"
},
{
"input": "20\nRRGBBRBRGRGBBGGRGRRR",
"output": "6"
},
{
"input": "25\nBBGBGRBGGBRRBGRRBGGBBRBRB",
"output": "6"
},
{
"input": "30\nGRGGGBGGRGBGGRGRBGBGBRRRRRRGRB",
"output": "9"
},
{
"input": "35\nGBBGBRGBBGGRBBGBRRGGRRRRRRRBRBBRRGB",
"output": "14"
},
{
"input": "40\nGBBRRGBGGGRGGGRRRRBRBGGBBGGGBGBBBBBRGGGG",
"output": "20"
},
{
"input": "45\nGGGBBRBBRRGRBBGGBGRBRGGBRBRGBRRGBGRRBGRGRBRRG",
"output": "11"
},
{
"input": "50\nRBGGBGGRBGRBBBGBBGRBBBGGGRBBBGBBBGRGGBGGBRBGBGRRGG",
"output": "17"
},
{
"input": "50\nGGGBBRGGGGGRRGGRBGGRGBBRBRRBGRGBBBGBRBGRGBBGRGGBRB",
"output": "16"
},
{
"input": "50\nGBGRGRRBRRRRRGGBBGBRRRBBBRBBBRRGRBBRGBRBGGRGRBBGGG",
"output": "19"
},
{
"input": "10\nGRRBRBRBGR",
"output": "1"
},
{
"input": "10\nBRBGBGRRBR",
"output": "1"
},
{
"input": "20\nGBGBGGRRRRGRBBGRGRGR",
"output": "5"
},
{
"input": "20\nRRGGRBBGBBRBGRRBRRBG",
"output": "6"
},
{
"input": "30\nBGBRGBBBGRGBBRGBGRBBBRGGRRGRRB",
"output": "8"
},
{
"input": "30\nBBBBGGBRBGBBGBGBGBGGGRGRRGGBBB",
"output": "11"
},
{
"input": "40\nGBRRGRBGBRRGBRGGGBRGBGBRGBBRRGRGGBBGBGBB",
"output": "9"
},
{
"input": "40\nBRGRGGRGGRBBRRRBRBBGGGRRGBGBBGRBBRGBRRGG",
"output": "13"
},
{
"input": "50\nRBGBGGRRGGRGGBGBGRRBGGBGBRRBBGBBGBBBGBBRBBRBRBRGRG",
"output": "13"
},
{
"input": "50\nRBRRGBGRRRBGRRBGRRGRBBRBBRRBRGGBRBRRBGGRBGGBRBRGRB",
"output": "12"
},
{
"input": "2\nBB",
"output": "1"
},
{
"input": "50\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "49"
},
{
"input": "50\nRRRRRRRRGRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "47"
},
{
"input": "50\nRRRRRRRRRRRRGGRRRRRRRRRBRRRRRRRRRRRRRRBBRRRRRRRRRR",
"output": "43"
}
] | 1,696,865,530
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 92
| 0
|
test_number=int(input())
test_list=list(input())
num=0
for i in range(test_number-1):
if test_list[i]==test_list[i+1]:
num+=1
print(num)
|
Title: Stones on the Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table.
The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue.
Output Specification:
Print a single integer — the answer to the problem.
Demo Input:
['3\nRRG\n', '5\nRRRRR\n', '4\nBRBG\n']
Demo Output:
['1\n', '4\n', '0\n']
Note:
none
|
```python
test_number=int(input())
test_list=list(input())
num=0
for i in range(test_number-1):
if test_list[i]==test_list[i+1]:
num+=1
print(num)
```
| 3
|
|
215
|
A
|
Bicycle Chain
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
Vasya's bicycle chain drive consists of two parts: *n* stars are attached to the pedal axle, *m* stars are attached to the rear wheel axle. The chain helps to rotate the rear wheel by transmitting the pedal rotation.
We know that the *i*-th star on the pedal axle has *a**i* (0<=<<=*a*1<=<<=*a*2<=<<=...<=<<=*a**n*) teeth, and the *j*-th star on the rear wheel axle has *b**j* (0<=<<=*b*1<=<<=*b*2<=<<=...<=<<=*b**m*) teeth. Any pair (*i*,<=*j*) (1<=≤<=*i*<=≤<=*n*; 1<=≤<=*j*<=≤<=*m*) is called a gear and sets the indexes of stars to which the chain is currently attached. Gear (*i*,<=*j*) has a gear ratio, equal to the value .
Since Vasya likes integers, he wants to find such gears (*i*,<=*j*), that their ratios are integers. On the other hand, Vasya likes fast driving, so among all "integer" gears (*i*,<=*j*) he wants to choose a gear with the maximum ratio. Help him to find the number of such gears.
In the problem, fraction denotes division in real numbers, that is, no rounding is performed.
|
The first input line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stars on the bicycle's pedal axle. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104) in the order of strict increasing.
The third input line contains integer *m* (1<=≤<=*m*<=≤<=50) — the number of stars on the rear wheel axle. The fourth line contains *m* integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=104) in the order of strict increasing.
It is guaranteed that there exists at least one gear (*i*,<=*j*), that its gear ratio is an integer. The numbers on the lines are separated by spaces.
|
Print the number of "integer" gears with the maximum ratio among all "integer" gears.
|
[
"2\n4 5\n3\n12 13 15\n",
"4\n1 2 3 4\n5\n10 11 12 13 14\n"
] |
[
"2\n",
"1\n"
] |
In the first sample the maximum "integer" gear ratio equals 3. There are two gears that have such gear ratio. For one of them *a*<sub class="lower-index">1</sub> = 4, *b*<sub class="lower-index">1</sub> = 12, and for the other *a*<sub class="lower-index">2</sub> = 5, *b*<sub class="lower-index">3</sub> = 15.
| 500
|
[
{
"input": "2\n4 5\n3\n12 13 15",
"output": "2"
},
{
"input": "4\n1 2 3 4\n5\n10 11 12 13 14",
"output": "1"
},
{
"input": "1\n1\n1\n1",
"output": "1"
},
{
"input": "2\n1 2\n1\n1",
"output": "1"
},
{
"input": "1\n1\n2\n1 2",
"output": "1"
},
{
"input": "4\n3 7 11 13\n4\n51 119 187 221",
"output": "4"
},
{
"input": "4\n2 3 4 5\n3\n1 2 3",
"output": "2"
},
{
"input": "10\n6 12 13 20 48 53 74 92 96 97\n10\n1 21 32 36 47 54 69 75 95 97",
"output": "1"
},
{
"input": "10\n5 9 10 14 15 17 19 22 24 26\n10\n2 11 17 19 21 22 24 25 27 28",
"output": "1"
},
{
"input": "10\n24 53 56 126 354 432 442 740 795 856\n10\n273 438 494 619 689 711 894 947 954 958",
"output": "1"
},
{
"input": "10\n3 4 6 7 8 10 14 16 19 20\n10\n3 4 5 7 8 10 15 16 18 20",
"output": "1"
},
{
"input": "10\n1 6 8 14 15 17 25 27 34 39\n10\n1 8 16 17 19 22 32 39 44 50",
"output": "1"
},
{
"input": "10\n5 21 22 23 25 32 35 36 38 39\n10\n3 7 8 9 18 21 23 24 36 38",
"output": "4"
},
{
"input": "50\n5 8 13 16 19 20 21 22 24 27 28 29 30 32 33 34 35 43 45 48 50 51 54 55 58 59 60 61 62 65 70 71 72 76 78 79 80 81 83 84 85 87 89 91 92 94 97 98 99 100\n50\n2 3 5 6 7 10 15 16 17 20 23 28 29 30 31 34 36 37 40 42 45 46 48 54 55 56 58 59 61 62 69 70 71 72 75 76 78 82 84 85 86 87 88 89 90 91 92 97 99 100",
"output": "1"
},
{
"input": "50\n3 5 6 8 9 11 13 19 21 23 24 32 34 35 42 50 51 52 56 58 59 69 70 72 73 75 76 77 78 80 83 88 90 95 96 100 101 102 108 109 113 119 124 135 138 141 142 143 145 150\n50\n5 8 10 11 18 19 23 30 35 43 51 53 55 58 63 68 69 71 77 78 79 82 83 86 88 89 91 92 93 94 96 102 103 105 109 110 113 114 116 123 124 126 127 132 133 135 136 137 142 149",
"output": "1"
},
{
"input": "50\n6 16 24 25 27 33 36 40 51 60 62 65 71 72 75 77 85 87 91 93 98 102 103 106 117 118 120 121 122 123 125 131 134 136 143 148 155 157 160 161 164 166 170 178 184 187 188 192 194 197\n50\n5 9 17 23 27 34 40 44 47 59 62 70 81 82 87 88 89 90 98 101 102 110 113 114 115 116 119 122 124 128 130 137 138 140 144 150 152 155 159 164 166 169 171 175 185 186 187 189 190 193",
"output": "1"
},
{
"input": "50\n14 22 23 31 32 35 48 63 76 79 88 97 101 102 103 104 106 113 114 115 116 126 136 138 145 152 155 156 162 170 172 173 179 180 182 203 208 210 212 222 226 229 231 232 235 237 245 246 247 248\n50\n2 5 6 16 28 44 45 46 54 55 56 63 72 80 87 93 94 96 97 100 101 103 132 135 140 160 164 165 167 168 173 180 182 185 186 192 194 198 199 202 203 211 213 216 217 227 232 233 236 245",
"output": "1"
},
{
"input": "50\n14 19 33 35 38 41 51 54 69 70 71 73 76 80 84 94 102 104 105 106 107 113 121 128 131 168 180 181 187 191 195 201 205 207 210 216 220 238 249 251 263 271 272 275 281 283 285 286 291 294\n50\n2 3 5 20 21 35 38 40 43 48 49 52 55 64 73 77 82 97 109 113 119 121 125 132 137 139 145 146 149 180 182 197 203 229 234 241 244 251 264 271 274 281 284 285 287 291 292 293 294 298",
"output": "1"
},
{
"input": "50\n2 4 5 16 18 19 22 23 25 26 34 44 48 54 67 79 80 84 92 110 116 133 138 154 163 171 174 202 205 218 228 229 234 245 247 249 250 263 270 272 274 275 277 283 289 310 312 334 339 342\n50\n1 5 17 18 25 37 46 47 48 59 67 75 80 83 84 107 115 122 137 141 159 162 175 180 184 204 221 224 240 243 247 248 249 258 259 260 264 266 269 271 274 293 294 306 329 330 334 335 342 350",
"output": "1"
},
{
"input": "50\n6 9 11 21 28 39 42 56 60 63 81 88 91 95 105 110 117 125 149 165 174 176 185 189 193 196 205 231 233 268 278 279 281 286 289 292 298 303 305 306 334 342 350 353 361 371 372 375 376 378\n50\n6 17 20 43 45 52 58 59 82 83 88 102 111 118 121 131 145 173 190 191 200 216 224 225 232 235 243 256 260 271 290 291 321 322 323 329 331 333 334 341 343 348 351 354 356 360 366 379 387 388",
"output": "1"
},
{
"input": "10\n17 239 443 467 661 1069 1823 2333 3767 4201\n20\n51 83 97 457 593 717 997 1329 1401 1459 1471 1983 2371 2539 3207 3251 3329 5469 6637 6999",
"output": "8"
},
{
"input": "20\n179 359 401 467 521 601 919 941 1103 1279 1709 1913 1949 2003 2099 2143 2179 2213 2399 4673\n20\n151 181 191 251 421 967 1109 1181 1249 1447 1471 1553 1619 2327 2551 2791 3049 3727 6071 7813",
"output": "3"
},
{
"input": "20\n79 113 151 709 809 983 1291 1399 1409 1429 2377 2659 2671 2897 3217 3511 3557 3797 3823 4363\n10\n19 101 659 797 1027 1963 2129 2971 3299 9217",
"output": "3"
},
{
"input": "30\n19 47 109 179 307 331 389 401 461 509 547 569 617 853 883 1249 1361 1381 1511 1723 1741 1783 2459 2531 2621 3533 3821 4091 5557 6217\n20\n401 443 563 941 967 997 1535 1567 1655 1747 1787 1945 1999 2251 2305 2543 2735 4415 6245 7555",
"output": "8"
},
{
"input": "30\n3 43 97 179 257 313 353 359 367 389 397 457 547 599 601 647 1013 1021 1063 1433 1481 1531 1669 3181 3373 3559 3769 4157 4549 5197\n50\n13 15 17 19 29 79 113 193 197 199 215 223 271 293 359 485 487 569 601 683 895 919 941 967 1283 1285 1289 1549 1565 1765 1795 1835 1907 1931 1945 1985 1993 2285 2731 2735 2995 3257 4049 4139 5105 5315 7165 7405 7655 8345",
"output": "20"
},
{
"input": "50\n11 17 23 53 59 109 137 149 173 251 353 379 419 421 439 503 593 607 661 773 821 877 941 997 1061 1117 1153 1229 1289 1297 1321 1609 1747 2311 2389 2543 2693 3041 3083 3137 3181 3209 3331 3373 3617 3767 4201 4409 4931 6379\n50\n55 59 67 73 85 89 101 115 211 263 295 353 545 599 607 685 739 745 997 1031 1255 1493 1523 1667 1709 1895 1949 2161 2195 2965 3019 3035 3305 3361 3373 3673 3739 3865 3881 4231 4253 4385 4985 5305 5585 5765 6145 6445 8045 8735",
"output": "23"
},
{
"input": "5\n33 78 146 3055 4268\n5\n2211 2584 5226 9402 9782",
"output": "3"
},
{
"input": "5\n35 48 52 86 8001\n10\n332 3430 3554 4704 4860 5096 6215 7583 8228 8428",
"output": "4"
},
{
"input": "10\n97 184 207 228 269 2084 4450 6396 7214 9457\n16\n338 1179 1284 1545 1570 2444 3167 3395 3397 5550 6440 7245 7804 7980 9415 9959",
"output": "5"
},
{
"input": "30\n25 30 41 57 58 62 70 72 76 79 84 85 88 91 98 101 104 109 119 129 136 139 148 151 926 1372 3093 3936 5423 7350\n25\n1600 1920 2624 3648 3712 3968 4480 4608 4864 5056 5376 5440 5632 5824 6272 6464 6656 6934 6976 7616 8256 8704 8896 9472 9664",
"output": "24"
},
{
"input": "5\n33 78 146 3055 4268\n5\n2211 2584 5226 9402 9782",
"output": "3"
},
{
"input": "5\n35 48 52 86 8001\n10\n332 3430 3554 4704 4860 5096 6215 7583 8228 8428",
"output": "4"
},
{
"input": "10\n97 184 207 228 269 2084 4450 6396 7214 9457\n16\n338 1179 1284 1545 1570 2444 3167 3395 3397 5550 6440 7245 7804 7980 9415 9959",
"output": "5"
},
{
"input": "30\n25 30 41 57 58 62 70 72 76 79 84 85 88 91 98 101 104 109 119 129 136 139 148 151 926 1372 3093 3936 5423 7350\n25\n1600 1920 2624 3648 3712 3968 4480 4608 4864 5056 5376 5440 5632 5824 6272 6464 6656 6934 6976 7616 8256 8704 8896 9472 9664",
"output": "24"
},
{
"input": "47\n66 262 357 457 513 530 538 540 592 691 707 979 1015 1242 1246 1667 1823 1886 1963 2133 2649 2679 2916 2949 3413 3523 3699 3958 4393 4922 5233 5306 5799 6036 6302 6629 7208 7282 7315 7822 7833 7927 8068 8150 8870 8962 9987\n39\n167 199 360 528 1515 1643 1986 1988 2154 2397 2856 3552 3656 3784 3980 4096 4104 4240 4320 4736 4951 5266 5656 5849 5850 6169 6517 6875 7244 7339 7689 7832 8120 8716 9503 9509 9933 9936 9968",
"output": "12"
},
{
"input": "1\n94\n50\n423 446 485 1214 1468 1507 1853 1930 1999 2258 2271 2285 2425 2543 2715 2743 2992 3196 4074 4108 4448 4475 4652 5057 5250 5312 5356 5375 5731 5986 6298 6501 6521 7146 7255 7276 7332 7481 7998 8141 8413 8665 8908 9221 9336 9491 9504 9677 9693 9706",
"output": "1"
},
{
"input": "50\n51 67 75 186 194 355 512 561 720 876 1077 1221 1503 1820 2153 2385 2568 2608 2937 2969 3271 3311 3481 4081 4093 4171 4255 4256 4829 5020 5192 5636 5817 6156 6712 6717 7153 7436 7608 7612 7866 7988 8264 8293 8867 9311 9879 9882 9889 9908\n1\n5394",
"output": "1"
},
{
"input": "50\n26 367 495 585 675 789 855 1185 1312 1606 2037 2241 2587 2612 2628 2807 2873 2924 3774 4067 4376 4668 4902 5001 5082 5100 5104 5209 5345 5515 5661 5777 5902 5907 6155 6323 6675 6791 7503 8159 8207 8254 8740 8848 8855 8933 9069 9164 9171 9586\n5\n1557 6246 7545 8074 8284",
"output": "1"
},
{
"input": "5\n25 58 91 110 2658\n50\n21 372 909 1172 1517 1554 1797 1802 1843 1977 2006 2025 2137 2225 2317 2507 2645 2754 2919 3024 3202 3212 3267 3852 4374 4487 4553 4668 4883 4911 4916 5016 5021 5068 5104 5162 5683 5856 6374 6871 7333 7531 8099 8135 8173 8215 8462 8776 9433 9790",
"output": "4"
},
{
"input": "45\n37 48 56 59 69 70 79 83 85 86 99 114 131 134 135 145 156 250 1739 1947 2116 2315 2449 3104 3666 4008 4406 4723 4829 5345 5836 6262 6296 6870 7065 7110 7130 7510 7595 8092 8442 8574 9032 9091 9355\n50\n343 846 893 1110 1651 1837 2162 2331 2596 3012 3024 3131 3294 3394 3528 3717 3997 4125 4347 4410 4581 4977 5030 5070 5119 5229 5355 5413 5418 5474 5763 5940 6151 6161 6164 6237 6506 6519 6783 7182 7413 7534 8069 8253 8442 8505 9135 9308 9828 9902",
"output": "17"
},
{
"input": "50\n17 20 22 28 36 38 46 47 48 50 52 57 58 62 63 69 70 74 75 78 79 81 82 86 87 90 93 95 103 202 292 442 1756 1769 2208 2311 2799 2957 3483 4280 4324 4932 5109 5204 6225 6354 6561 7136 8754 9670\n40\n68 214 957 1649 1940 2078 2134 2716 3492 3686 4462 4559 4656 4756 4850 5044 5490 5529 5592 5626 6014 6111 6693 6790 7178 7275 7566 7663 7702 7857 7954 8342 8511 8730 8957 9021 9215 9377 9445 9991",
"output": "28"
},
{
"input": "39\n10 13 21 25 36 38 47 48 58 64 68 69 73 79 86 972 2012 2215 2267 2503 3717 3945 4197 4800 5266 6169 6612 6824 7023 7322 7582 7766 8381 8626 8879 9079 9088 9838 9968\n50\n432 877 970 1152 1202 1223 1261 1435 1454 1578 1843 1907 2003 2037 2183 2195 2215 2425 3065 3492 3615 3637 3686 3946 4189 4415 4559 4656 4665 4707 4886 4887 5626 5703 5955 6208 6521 6581 6596 6693 6985 7013 7081 7343 7663 8332 8342 8637 9207 9862",
"output": "15"
},
{
"input": "50\n7 144 269 339 395 505 625 688 709 950 1102 1152 1350 1381 1641 1830 1977 1999 2093 2180 2718 3308 3574 4168 4232 4259 4393 4689 4982 5154 5476 5581 5635 5721 6159 6302 6741 7010 7152 7315 7417 7482 8116 8239 8640 9347 9395 9614 9661 9822\n20\n84 162 292 1728 1866 2088 3228 3470 4068 5318 5470 6060 6380 6929 7500 8256 8399 8467 8508 9691",
"output": "8"
},
{
"input": "50\n159 880 1070 1139 1358 1608 1691 1841 2073 2171 2213 2597 2692 2759 2879 2931 3173 3217 3441 4201 4878 5106 5129 5253 5395 5647 5968 6019 6130 6276 6286 6330 6409 6728 7488 7713 7765 7828 7899 8064 8264 8457 8483 8685 8900 8946 8965 9133 9187 9638\n45\n57 159 1070 1139 1391 1608 1691 1841 2171 2213 2692 2759 2931 3173 3217 3441 4201 4878 5106 5129 5253 5647 5968 6130 6276 6286 6409 7488 7694 7713 7765 7828 7899 8003 8064 8081 8244 8264 8685 8900 8946 8965 9133 9638 9673",
"output": "38"
},
{
"input": "3\n3 4 5\n3\n6 20 25",
"output": "2"
},
{
"input": "4\n2 3 5 8\n4\n2 6 8 10",
"output": "1"
},
{
"input": "4\n3 5 7 11\n4\n3 5 7 22",
"output": "1"
},
{
"input": "2\n2 3\n3\n20 30 50",
"output": "1"
},
{
"input": "3\n1 2 3\n4\n2 4 6 49",
"output": "1"
},
{
"input": "2\n4 5\n3\n12 15 20",
"output": "1"
},
{
"input": "3\n2 5 7\n3\n4 5 7",
"output": "1"
},
{
"input": "3\n3 5 8\n3\n6 8 10",
"output": "2"
},
{
"input": "2\n2 3\n4\n4 6 9 33",
"output": "1"
},
{
"input": "2\n2 3\n4\n4 6 21 40",
"output": "1"
},
{
"input": "3\n4 9 10\n3\n8 9 10",
"output": "1"
},
{
"input": "5\n1 5 6 9 51\n5\n5 12 18 27 10000",
"output": "1"
},
{
"input": "13\n1 2 3 4 5 6 7 8 9 10 11 12 13\n1\n14",
"output": "1"
}
] | 1,637,305,733
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 57
| 92
| 0
|
n=int(input())
a=[int(x) for x in input().split()]
m=int(input())
b=[int(x) for x in input().split()]
lst=[]
for i in a:
for j in b:
if j%i==0:
lst.append(j//i)
print(lst.count(max(lst)))
|
Title: Bicycle Chain
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya's bicycle chain drive consists of two parts: *n* stars are attached to the pedal axle, *m* stars are attached to the rear wheel axle. The chain helps to rotate the rear wheel by transmitting the pedal rotation.
We know that the *i*-th star on the pedal axle has *a**i* (0<=<<=*a*1<=<<=*a*2<=<<=...<=<<=*a**n*) teeth, and the *j*-th star on the rear wheel axle has *b**j* (0<=<<=*b*1<=<<=*b*2<=<<=...<=<<=*b**m*) teeth. Any pair (*i*,<=*j*) (1<=≤<=*i*<=≤<=*n*; 1<=≤<=*j*<=≤<=*m*) is called a gear and sets the indexes of stars to which the chain is currently attached. Gear (*i*,<=*j*) has a gear ratio, equal to the value .
Since Vasya likes integers, he wants to find such gears (*i*,<=*j*), that their ratios are integers. On the other hand, Vasya likes fast driving, so among all "integer" gears (*i*,<=*j*) he wants to choose a gear with the maximum ratio. Help him to find the number of such gears.
In the problem, fraction denotes division in real numbers, that is, no rounding is performed.
Input Specification:
The first input line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stars on the bicycle's pedal axle. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104) in the order of strict increasing.
The third input line contains integer *m* (1<=≤<=*m*<=≤<=50) — the number of stars on the rear wheel axle. The fourth line contains *m* integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=104) in the order of strict increasing.
It is guaranteed that there exists at least one gear (*i*,<=*j*), that its gear ratio is an integer. The numbers on the lines are separated by spaces.
Output Specification:
Print the number of "integer" gears with the maximum ratio among all "integer" gears.
Demo Input:
['2\n4 5\n3\n12 13 15\n', '4\n1 2 3 4\n5\n10 11 12 13 14\n']
Demo Output:
['2\n', '1\n']
Note:
In the first sample the maximum "integer" gear ratio equals 3. There are two gears that have such gear ratio. For one of them *a*<sub class="lower-index">1</sub> = 4, *b*<sub class="lower-index">1</sub> = 12, and for the other *a*<sub class="lower-index">2</sub> = 5, *b*<sub class="lower-index">3</sub> = 15.
|
```python
n=int(input())
a=[int(x) for x in input().split()]
m=int(input())
b=[int(x) for x in input().split()]
lst=[]
for i in a:
for j in b:
if j%i==0:
lst.append(j//i)
print(lst.count(max(lst)))
```
| 3
|
|
246
|
B
|
Increase and Decrease
|
PROGRAMMING
| 1,300
|
[
"greedy",
"math"
] | null | null |
Polycarpus has an array, consisting of *n* integers *a*1,<=*a*2,<=...,<=*a**n*. Polycarpus likes it when numbers in an array match. That's why he wants the array to have as many equal numbers as possible. For that Polycarpus performs the following operation multiple times:
- he chooses two elements of the array *a**i*, *a**j* (*i*<=≠<=*j*); - he simultaneously increases number *a**i* by 1 and decreases number *a**j* by 1, that is, executes *a**i*<==<=*a**i*<=+<=1 and *a**j*<==<=*a**j*<=-<=1.
The given operation changes exactly two distinct array elements. Polycarpus can apply the described operation an infinite number of times.
Now he wants to know what maximum number of equal array elements he can get if he performs an arbitrary number of such operation. Help Polycarpus.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the array size. The second line contains space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (|*a**i*|<=≤<=104) — the original array.
|
Print a single integer — the maximum number of equal array elements he can get if he performs an arbitrary number of the given operation.
|
[
"2\n2 1\n",
"3\n1 4 1\n"
] |
[
"1\n",
"3\n"
] |
none
| 1,000
|
[
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "3\n1 4 1",
"output": "3"
},
{
"input": "4\n2 -7 -2 -6",
"output": "3"
},
{
"input": "4\n2 0 -2 -1",
"output": "3"
},
{
"input": "6\n-1 1 0 0 -1 -1",
"output": "5"
},
{
"input": "5\n0 0 0 0 0",
"output": "5"
},
{
"input": "100\n968 793 -628 -416 942 -308 977 168 728 -879 952 781 -425 -475 -480 738 -740 142 -319 -116 -701 -183 41 324 -918 -391 -176 781 763 888 475 -617 134 -802 -133 -211 855 -869 -236 503 550 387 137 -221 -957 -800 -56 -673 440 -791 -217 -959 -892 886 -593 427 890 223 -425 -342 -262 693 -137 924 860 156 -110 444 -12 703 421 -638 725 -551 597 -206 -80 393 -441 -759 617 424 -506 209 579 -685 -861 507 312 597 -81 -491 424 222 -892 629 512 743 -452 -504",
"output": "99"
}
] | 1,676,711,149
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 124
| 3,174,400
|
n = int(input())
print(n if sum([int(i) for i in input().split()]) % n == 0 else n - 1)
|
Title: Increase and Decrease
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarpus has an array, consisting of *n* integers *a*1,<=*a*2,<=...,<=*a**n*. Polycarpus likes it when numbers in an array match. That's why he wants the array to have as many equal numbers as possible. For that Polycarpus performs the following operation multiple times:
- he chooses two elements of the array *a**i*, *a**j* (*i*<=≠<=*j*); - he simultaneously increases number *a**i* by 1 and decreases number *a**j* by 1, that is, executes *a**i*<==<=*a**i*<=+<=1 and *a**j*<==<=*a**j*<=-<=1.
The given operation changes exactly two distinct array elements. Polycarpus can apply the described operation an infinite number of times.
Now he wants to know what maximum number of equal array elements he can get if he performs an arbitrary number of such operation. Help Polycarpus.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the array size. The second line contains space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (|*a**i*|<=≤<=104) — the original array.
Output Specification:
Print a single integer — the maximum number of equal array elements he can get if he performs an arbitrary number of the given operation.
Demo Input:
['2\n2 1\n', '3\n1 4 1\n']
Demo Output:
['1\n', '3\n']
Note:
none
|
```python
n = int(input())
print(n if sum([int(i) for i in input().split()]) % n == 0 else n - 1)
```
| 3
|
|
508
|
A
|
Pasha and Pixels
|
PROGRAMMING
| 1,100
|
[
"brute force"
] | null | null |
Pasha loves his phone and also putting his hair up... But the hair is now irrelevant.
Pasha has installed a new game to his phone. The goal of the game is following. There is a rectangular field consisting of *n* row with *m* pixels in each row. Initially, all the pixels are colored white. In one move, Pasha can choose any pixel and color it black. In particular, he can choose the pixel that is already black, then after the boy's move the pixel does not change, that is, it remains black. Pasha loses the game when a 2<=×<=2 square consisting of black pixels is formed.
Pasha has made a plan of *k* moves, according to which he will paint pixels. Each turn in his plan is represented as a pair of numbers *i* and *j*, denoting respectively the row and the column of the pixel to be colored on the current move.
Determine whether Pasha loses if he acts in accordance with his plan, and if he does, on what move the 2<=×<=2 square consisting of black pixels is formed.
|
The first line of the input contains three integers *n*,<=*m*,<=*k* (1<=≤<=*n*,<=*m*<=≤<=1000, 1<=≤<=*k*<=≤<=105) — the number of rows, the number of columns and the number of moves that Pasha is going to perform.
The next *k* lines contain Pasha's moves in the order he makes them. Each line contains two integers *i* and *j* (1<=≤<=*i*<=≤<=*n*, 1<=≤<=*j*<=≤<=*m*), representing the row number and column number of the pixel that was painted during a move.
|
If Pasha loses, print the number of the move when the 2<=×<=2 square consisting of black pixels is formed.
If Pasha doesn't lose, that is, no 2<=×<=2 square consisting of black pixels is formed during the given *k* moves, print 0.
|
[
"2 2 4\n1 1\n1 2\n2 1\n2 2\n",
"2 3 6\n2 3\n2 2\n1 3\n2 2\n1 2\n1 1\n",
"5 3 7\n2 3\n1 2\n1 1\n4 1\n3 1\n5 3\n3 2\n"
] |
[
"4\n",
"5\n",
"0\n"
] |
none
| 500
|
[
{
"input": "2 2 4\n1 1\n1 2\n2 1\n2 2",
"output": "4"
},
{
"input": "2 3 6\n2 3\n2 2\n1 3\n2 2\n1 2\n1 1",
"output": "5"
},
{
"input": "5 3 7\n2 3\n1 2\n1 1\n4 1\n3 1\n5 3\n3 2",
"output": "0"
},
{
"input": "3 3 11\n2 1\n3 1\n1 1\n1 3\n1 2\n2 3\n3 3\n3 2\n2 2\n1 3\n3 3",
"output": "9"
},
{
"input": "2 2 5\n1 1\n2 1\n2 1\n1 2\n2 2",
"output": "5"
},
{
"input": "518 518 10\n37 97\n47 278\n17 467\n158 66\n483 351\n83 123\n285 219\n513 187\n380 75\n304 352",
"output": "0"
},
{
"input": "1 1 5\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "0"
},
{
"input": "1 5 5\n1 1\n1 2\n1 3\n1 4\n1 5",
"output": "0"
},
{
"input": "5 1 5\n1 1\n2 1\n3 1\n4 1\n5 1",
"output": "0"
},
{
"input": "1 1 1\n1 1",
"output": "0"
},
{
"input": "10 10 4\n5 9\n6 9\n6 10\n5 10",
"output": "4"
},
{
"input": "1000 1000 4\n999 999\n999 1000\n1000 999\n1000 1000",
"output": "4"
},
{
"input": "2 3 5\n2 3\n1 3\n1 2\n1 1\n2 2",
"output": "5"
},
{
"input": "1000 1000 4\n1000 1000\n999 999\n1000 999\n999 1000",
"output": "4"
}
] | 1,697,856,980
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 52
| 249
| 8,499,200
|
n,m,k=map(int,input().split())
ma=[[0]*(m+2) for _ in range(n+2)]
s=[]
for _ in range(k):
a,b=map(int,input().split())
ma[a][b]=1
if ma[a][b]==1 and ma[a+1][b]==1 and ma[a][b+1]==1 and ma[a+1][b+1]==1:
s.append(_)
elif ma[a][b-1]==1 and ma[a+1][b]==1 and ma[a+1][b-1]==1:
s.append(_)
elif ma[a-1][b]==1 and ma[a][b+1]==1 and ma[a-1][b+1]==1:
s.append(_)
elif ma[a][b-1]==1 and ma[a-1][b]==1 and ma[a-1][b-1]==1:
s.append(_)
if len(s)!=0:
print(str(s[0]+1))
elif len(s)==0:
print(0)
|
Title: Pasha and Pixels
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pasha loves his phone and also putting his hair up... But the hair is now irrelevant.
Pasha has installed a new game to his phone. The goal of the game is following. There is a rectangular field consisting of *n* row with *m* pixels in each row. Initially, all the pixels are colored white. In one move, Pasha can choose any pixel and color it black. In particular, he can choose the pixel that is already black, then after the boy's move the pixel does not change, that is, it remains black. Pasha loses the game when a 2<=×<=2 square consisting of black pixels is formed.
Pasha has made a plan of *k* moves, according to which he will paint pixels. Each turn in his plan is represented as a pair of numbers *i* and *j*, denoting respectively the row and the column of the pixel to be colored on the current move.
Determine whether Pasha loses if he acts in accordance with his plan, and if he does, on what move the 2<=×<=2 square consisting of black pixels is formed.
Input Specification:
The first line of the input contains three integers *n*,<=*m*,<=*k* (1<=≤<=*n*,<=*m*<=≤<=1000, 1<=≤<=*k*<=≤<=105) — the number of rows, the number of columns and the number of moves that Pasha is going to perform.
The next *k* lines contain Pasha's moves in the order he makes them. Each line contains two integers *i* and *j* (1<=≤<=*i*<=≤<=*n*, 1<=≤<=*j*<=≤<=*m*), representing the row number and column number of the pixel that was painted during a move.
Output Specification:
If Pasha loses, print the number of the move when the 2<=×<=2 square consisting of black pixels is formed.
If Pasha doesn't lose, that is, no 2<=×<=2 square consisting of black pixels is formed during the given *k* moves, print 0.
Demo Input:
['2 2 4\n1 1\n1 2\n2 1\n2 2\n', '2 3 6\n2 3\n2 2\n1 3\n2 2\n1 2\n1 1\n', '5 3 7\n2 3\n1 2\n1 1\n4 1\n3 1\n5 3\n3 2\n']
Demo Output:
['4\n', '5\n', '0\n']
Note:
none
|
```python
n,m,k=map(int,input().split())
ma=[[0]*(m+2) for _ in range(n+2)]
s=[]
for _ in range(k):
a,b=map(int,input().split())
ma[a][b]=1
if ma[a][b]==1 and ma[a+1][b]==1 and ma[a][b+1]==1 and ma[a+1][b+1]==1:
s.append(_)
elif ma[a][b-1]==1 and ma[a+1][b]==1 and ma[a+1][b-1]==1:
s.append(_)
elif ma[a-1][b]==1 and ma[a][b+1]==1 and ma[a-1][b+1]==1:
s.append(_)
elif ma[a][b-1]==1 and ma[a-1][b]==1 and ma[a-1][b-1]==1:
s.append(_)
if len(s)!=0:
print(str(s[0]+1))
elif len(s)==0:
print(0)
```
| 3
|
|
522
|
A
|
Reposts
|
PROGRAMMING
| 1,200
|
[
"*special",
"dfs and similar",
"dp",
"graphs",
"trees"
] | null | null |
One day Polycarp published a funny picture in a social network making a poll about the color of his handle. Many of his friends started reposting Polycarp's joke to their news feed. Some of them reposted the reposts and so on.
These events are given as a sequence of strings "name1 reposted name2", where name1 is the name of the person who reposted the joke, and name2 is the name of the person from whose news feed the joke was reposted. It is guaranteed that for each string "name1 reposted name2" user "name1" didn't have the joke in his feed yet, and "name2" already had it in his feed by the moment of repost. Polycarp was registered as "Polycarp" and initially the joke was only in his feed.
Polycarp measures the popularity of the joke as the length of the largest repost chain. Print the popularity of Polycarp's joke.
|
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=200) — the number of reposts. Next follow the reposts in the order they were made. Each of them is written on a single line and looks as "name1 reposted name2". All the names in the input consist of lowercase or uppercase English letters and/or digits and have lengths from 2 to 24 characters, inclusive.
We know that the user names are case-insensitive, that is, two names that only differ in the letter case correspond to the same social network user.
|
Print a single integer — the maximum length of a repost chain.
|
[
"5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya\n",
"6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp\n",
"1\nSoMeStRaNgEgUe reposted PoLyCaRp\n"
] |
[
"6\n",
"2\n",
"2\n"
] |
none
| 500
|
[
{
"input": "5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya",
"output": "6"
},
{
"input": "6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp",
"output": "2"
},
{
"input": "1\nSoMeStRaNgEgUe reposted PoLyCaRp",
"output": "2"
},
{
"input": "1\niuNtwVf reposted POlYcarP",
"output": "2"
},
{
"input": "10\ncs reposted poLYCaRp\nAFIkDrY7Of4V7Mq reposted CS\nsoBiwyN7KOvoFUfbhux reposted aFikDry7Of4v7MQ\nvb6LbwA reposted sObIWYN7KOvoFufBHUx\nDtWKIcVwIHgj4Rcv reposted vb6lbwa\nkt reposted DTwKicvwihgJ4rCV\n75K reposted kT\njKzyxx1 reposted 75K\nuoS reposted jkZyXX1\npZJskHTCIqE3YyZ5ME reposted uoS",
"output": "11"
},
{
"input": "10\nvxrUpCXvx8Isq reposted pOLYcaRP\nICb1 reposted vXRUpCxvX8ISq\nJFMt4b8jZE7iF2m8by7y2 reposted Icb1\nqkG6ZkMIf9QRrBFQU reposted ICb1\nnawsNfcR2palIMnmKZ reposted pOlYcaRP\nKksyH reposted jFMT4b8JzE7If2M8by7y2\nwJtWwQS5FvzN0h8CxrYyL reposted NawsNfcR2paLIMnmKz\nDpBcBPYAcTXEdhldI6tPl reposted NaWSnFCr2pALiMnmkZ\nlEnwTVnlwdQg2vaIRQry reposted kKSYh\nQUVFgwllaWO reposted Wjtwwqs5FVzN0H8cxRyyl",
"output": "6"
},
{
"input": "10\nkkuLGEiHv reposted POLYcArp\n3oX1AoUqyw1eR3nCADY9hLwd reposted kkuLGeIHV\nwf97dqq5bx1dPIchCoT reposted 3OX1AOuQYW1eR3ncAdY9hLwD\nWANr8h reposted Wf97dQQ5bx1dpIcHcoT\n3Fb736lkljZK2LtSbfL reposted wANR8h\n6nq9xLOn reposted 3fB736lKlJZk2LtSbFL\nWL reposted 3Fb736lKLjZk2LTSbfl\ndvxn4Xtc6SBcvKf1 reposted wF97DQq5bX1dPiChCOt\nMCcPLIMISqxDzrj reposted 6nQ9XLOn\nxsQL4Z2Iu reposted MCcpLiMiSqxdzrj",
"output": "9"
},
{
"input": "10\nsMA4 reposted pOLyCARP\nlq3 reposted pOlycARp\nEa16LSFTQxLJnE reposted polYcARp\nkvZVZhJwXcWsnC7NA1DV2WvS reposted polYCArp\nEYqqlrjRwddI reposted pOlyCArP\nsPqQCA67Y6PBBbcaV3EhooO reposted ea16LSFTqxLJne\njjPnneZdF6WLZ3v reposted Ea16LSFTqxLjNe\nWEoi6UpnfBUx79 reposted ea16LSFtqXljNe\nqi4yra reposted eYqqlRJrWDDI\ncw7E1UCSUD reposted eYqqLRJRwDdI",
"output": "3"
}
] | 1,651,297,429
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 46
| 0
|
n=int(input())
a=[["POLYCARP",1]]
maxim=1
for i in range(n):
s=input().split()
for i in range(len(s[0])):
if(s[0][i]>='a'):
s[0]=s[0][:i]+chr(ord(s[0][i])-(ord('a')-ord('A')))+s[0][i+1:]
for i in range(len(s[2])):
if(s[2][i]>='a'):
s[2]=s[2][:i]+chr(ord(s[2][i])-(ord('a')-ord('A')))+s[2][i+1:]
x=-1
for i in range(len(a)):
if a[i][0]==s[2]:
a.append([s[0],a[i][1]+1])
maxim=max(maxim,a[i][1]+1)
break
print(maxim)
|
Title: Reposts
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Polycarp published a funny picture in a social network making a poll about the color of his handle. Many of his friends started reposting Polycarp's joke to their news feed. Some of them reposted the reposts and so on.
These events are given as a sequence of strings "name1 reposted name2", where name1 is the name of the person who reposted the joke, and name2 is the name of the person from whose news feed the joke was reposted. It is guaranteed that for each string "name1 reposted name2" user "name1" didn't have the joke in his feed yet, and "name2" already had it in his feed by the moment of repost. Polycarp was registered as "Polycarp" and initially the joke was only in his feed.
Polycarp measures the popularity of the joke as the length of the largest repost chain. Print the popularity of Polycarp's joke.
Input Specification:
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=200) — the number of reposts. Next follow the reposts in the order they were made. Each of them is written on a single line and looks as "name1 reposted name2". All the names in the input consist of lowercase or uppercase English letters and/or digits and have lengths from 2 to 24 characters, inclusive.
We know that the user names are case-insensitive, that is, two names that only differ in the letter case correspond to the same social network user.
Output Specification:
Print a single integer — the maximum length of a repost chain.
Demo Input:
['5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya\n', '6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp\n', '1\nSoMeStRaNgEgUe reposted PoLyCaRp\n']
Demo Output:
['6\n', '2\n', '2\n']
Note:
none
|
```python
n=int(input())
a=[["POLYCARP",1]]
maxim=1
for i in range(n):
s=input().split()
for i in range(len(s[0])):
if(s[0][i]>='a'):
s[0]=s[0][:i]+chr(ord(s[0][i])-(ord('a')-ord('A')))+s[0][i+1:]
for i in range(len(s[2])):
if(s[2][i]>='a'):
s[2]=s[2][:i]+chr(ord(s[2][i])-(ord('a')-ord('A')))+s[2][i+1:]
x=-1
for i in range(len(a)):
if a[i][0]==s[2]:
a.append([s[0],a[i][1]+1])
maxim=max(maxim,a[i][1]+1)
break
print(maxim)
```
| 3
|
|
237
|
B
|
Young Table
|
PROGRAMMING
| 1,500
|
[
"implementation",
"sortings"
] | null | null |
You've got table *a*, consisting of *n* rows, numbered from 1 to *n*. The *i*-th line of table *a* contains *c**i* cells, at that for all *i* (1<=<<=*i*<=≤<=*n*) holds *c**i*<=≤<=*c**i*<=-<=1.
Let's denote *s* as the total number of cells of table *a*, that is, . We know that each cell of the table contains a single integer from 1 to *s*, at that all written integers are distinct.
Let's assume that the cells of the *i*-th row of table *a* are numbered from 1 to *c**i*, then let's denote the number written in the *j*-th cell of the *i*-th row as *a**i*,<=*j*. Your task is to perform several swap operations to rearrange the numbers in the table so as to fulfill the following conditions:
1. for all *i*,<=*j* (1<=<<=*i*<=≤<=*n*; 1<=≤<=*j*<=≤<=*c**i*) holds *a**i*,<=*j*<=><=*a**i*<=-<=1,<=*j*; 1. for all *i*,<=*j* (1<=≤<=*i*<=≤<=*n*; 1<=<<=*j*<=≤<=*c**i*) holds *a**i*,<=*j*<=><=*a**i*,<=*j*<=-<=1.
In one swap operation you are allowed to choose two different cells of the table and swap the recorded there numbers, that is the number that was recorded in the first of the selected cells before the swap, is written in the second cell after it. Similarly, the number that was recorded in the second of the selected cells, is written in the first cell after the swap.
Rearrange the numbers in the required manner. Note that you are allowed to perform any number of operations, but not more than *s*. You do not have to minimize the number of operations.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=50) that shows the number of rows in the table. The second line contains *n* space-separated integers *c**i* (1<=≤<=*c**i*<=≤<=50; *c**i*<=≤<=*c**i*<=-<=1) — the numbers of cells on the corresponding rows.
Next *n* lines contain table *а*. The *i*-th of them contains *c**i* space-separated integers: the *j*-th integer in this line represents *a**i*,<=*j*.
It is guaranteed that all the given numbers *a**i*,<=*j* are positive and do not exceed *s*. It is guaranteed that all *a**i*,<=*j* are distinct.
|
In the first line print a single integer *m* (0<=≤<=*m*<=≤<=*s*), representing the number of performed swaps.
In the next *m* lines print the description of these swap operations. In the *i*-th line print four space-separated integers *x**i*,<=*y**i*,<=*p**i*,<=*q**i* (1<=≤<=*x**i*,<=*p**i*<=≤<=*n*; 1<=≤<=*y**i*<=≤<=*c**x**i*; 1<=≤<=*q**i*<=≤<=*c**p**i*). The printed numbers denote swapping the contents of cells *a**x**i*,<=*y**i* and *a**p**i*,<=*q**i*. Note that a swap operation can change the contents of distinct table cells. Print the swaps in the order, in which they should be executed.
|
[
"3\n3 2 1\n4 3 5\n6 1\n2\n",
"1\n4\n4 3 2 1\n"
] |
[
"2\n1 1 2 2\n2 1 3 1\n",
"2\n1 1 1 4\n1 2 1 3\n"
] |
none
| 1,000
|
[
{
"input": "3\n3 2 1\n4 3 5\n6 1\n2",
"output": "2\n1 1 2 2\n2 1 3 1"
},
{
"input": "1\n4\n4 3 2 1",
"output": "2\n1 1 1 4\n1 2 1 3"
},
{
"input": "5\n4 4 3 3 1\n14 13 4 15\n11 1 2 5\n7 6 10\n8 9 3\n12",
"output": "13\n1 1 2 2\n1 2 2 3\n1 3 4 3\n1 4 4 3\n2 1 2 4\n2 2 3 2\n2 3 3 1\n2 4 4 1\n3 1 4 2\n3 2 3 3\n3 3 4 1\n4 1 5 1\n4 3 5 1"
},
{
"input": "2\n8 6\n1 2 3 13 10 4 11 7\n9 12 8 5 14 6",
"output": "7\n1 4 1 6\n1 5 2 4\n1 6 2 6\n1 7 1 8\n1 8 2 3\n2 2 2 4\n2 5 2 6"
},
{
"input": "6\n10 9 7 6 4 3\n18 20 29 19 5 28 31 30 32 15\n38 33 11 8 39 2 6 9 3\n13 37 27 24 26 1 17\n36 10 35 21 7 16\n22 23 4 12\n34 25 14",
"output": "33\n1 1 3 6\n1 2 2 6\n1 3 2 9\n1 4 5 3\n1 6 2 7\n1 7 4 5\n1 8 2 4\n1 9 2 8\n1 10 4 2\n2 1 2 3\n2 2 5 4\n2 3 3 1\n2 4 6 3\n2 5 4 2\n2 6 4 6\n2 7 3 7\n2 8 3 6\n2 9 5 3\n3 1 4 6\n3 2 4 4\n3 3 5 1\n3 4 5 2\n3 5 5 2\n3 6 6 2\n3 7 5 2\n4 1 5 1\n4 2 5 2\n4 3 5 3\n4 4 6 3\n4 6 6 2\n5 1 5 4\n5 2 6 1\n6 1 6 3"
},
{
"input": "8\n2 2 2 2 1 1 1 1\n10 9\n11 5\n7 3\n2 6\n12\n1\n8\n4",
"output": "9\n1 1 6 1\n1 2 4 1\n2 1 3 2\n2 2 8 1\n3 1 8 1\n3 2 4 2\n4 1 8 1\n4 2 7 1\n5 1 8 1"
},
{
"input": "4\n3 3 3 2\n6 3 11\n10 7 1\n9 4 5\n2 8",
"output": "8\n1 1 2 3\n1 2 4 1\n1 3 4 1\n2 1 3 2\n2 2 3 3\n3 1 3 3\n3 2 4 2\n4 1 4 2"
},
{
"input": "1\n1\n1",
"output": "0"
},
{
"input": "2\n35 7\n6 8 35 9 28 25 10 41 33 39 19 24 5 12 30 40 18 2 4 11 32 13 31 21 14 27 3 34 37 16 17 29 1 42 36\n20 23 38 15 26 7 22",
"output": "39\n1 1 1 33\n1 2 1 18\n1 3 1 27\n1 4 1 19\n1 5 1 13\n1 6 1 33\n1 7 2 6\n1 8 1 18\n1 9 1 19\n1 10 2 6\n1 11 1 20\n1 12 1 14\n1 13 1 22\n1 14 1 25\n1 15 2 4\n1 16 1 30\n1 17 1 31\n1 18 1 31\n1 19 1 20\n1 20 2 1\n1 21 1 24\n1 22 2 7\n1 23 2 2\n1 24 1 25\n1 25 1 33\n1 26 2 5\n1 27 2 5\n1 28 2 7\n1 29 1 32\n1 30 2 4\n1 31 2 2\n1 32 1 33\n1 33 2 1\n1 34 2 7\n1 35 2 5\n2 1 2 5\n2 2 2 5\n2 4 2 6\n2 5 2 6"
},
{
"input": "3\n36 28 14\n46 15 35 60 41 65 73 33 18 20 68 22 28 23 67 44 2 24 21 51 37 3 48 69 12 50 32 72 45 53 17 47 56 52 29 57\n8 62 10 19 26 64 7 49 6 25 34 63 74 31 14 43 30 4 11 76 16 55 36 5 70 61 77 27\n38 40 1 78 58 42 66 71 75 59 54 9 39 13",
"output": "73\n1 1 3 3\n1 2 1 17\n1 3 1 22\n1 4 2 18\n1 5 2 24\n1 6 2 9\n1 7 2 7\n1 8 2 1\n1 9 3 12\n1 10 2 3\n1 11 2 19\n1 12 1 25\n1 13 3 14\n1 14 2 15\n1 15 1 17\n1 16 2 21\n1 17 1 31\n1 18 3 12\n1 19 2 4\n1 20 2 3\n1 21 2 4\n1 22 1 25\n1 23 2 15\n1 24 3 12\n1 25 2 10\n1 26 2 5\n1 27 2 28\n1 28 3 14\n1 29 1 35\n1 30 2 17\n1 31 2 14\n1 32 2 28\n1 33 2 1\n1 34 2 11\n1 35 2 10\n1 36 2 23\n2 1 2 4\n2 2 3 1\n2 3 3 13\n2 4 3 2\n2 5 2 24\n2 6 3 6\n2 7 2 16\n2 8 2 21\n2 9 2 10\n2 10 3 3\n2 11 2 28\n2 12 2 15\n2 13 2 21\n2..."
},
{
"input": "4\n40 40 24 5\n56 14 59 76 92 34 43 96 33 44 72 37 81 27 42 5 7 95 22 4 60 18 61 103 74 84 93 55 3 62 70 82 77 51 86 102 29 67 91 9\n71 53 21 64 17 45 46 101 97 30 109 100 57 16 80 87 28 12 94 23 39 98 32 52 54 10 19 41 90 11 66 65 99 89 40 36 58 20 78 108\n35 88 73 75 104 63 79 31 1 26 2 50 24 83 15 49 106 48 105 47 8 68 107 38\n69 85 13 25 6",
"output": "106\n1 1 3 9\n1 2 3 11\n1 3 1 29\n1 4 1 20\n1 5 1 16\n1 6 4 5\n1 7 1 17\n1 8 3 21\n1 9 1 40\n1 10 2 26\n1 11 2 30\n1 12 2 18\n1 13 4 3\n1 14 3 11\n1 15 3 15\n1 16 2 14\n1 17 2 5\n1 18 1 22\n1 19 2 27\n1 20 2 38\n1 21 2 3\n1 22 2 27\n1 23 2 20\n1 24 3 13\n1 25 4 4\n1 26 3 10\n1 27 3 11\n1 28 2 17\n1 29 1 37\n1 30 2 10\n1 31 3 8\n1 32 2 23\n1 33 1 40\n1 34 4 5\n1 35 3 1\n1 36 2 36\n1 37 2 18\n1 38 3 24\n1 39 2 21\n1 40 2 35\n2 1 2 28\n2 2 3 15\n2 3 2 5\n2 4 2 26\n2 5 2 6\n2 6 2 7\n2 7 3 20\n2 8 3 18\n2 9 3 1..."
},
{
"input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n6\n42\n43\n50\n36\n39\n13\n44\n16\n25\n11\n23\n15\n46\n10\n45\n1\n37\n20\n5\n8\n48\n35\n12\n38\n40\n2\n4\n21\n31\n22\n18\n27\n26\n41\n34\n9\n14\n24\n17\n30\n28\n32\n47\n33\n49\n19\n3\n29\n7",
"output": "48\n1 1 17 1\n2 1 27 1\n3 1 48 1\n4 1 28 1\n5 1 20 1\n6 1 17 1\n7 1 50 1\n8 1 21 1\n9 1 37 1\n10 1 15 1\n12 1 24 1\n13 1 50 1\n14 1 38 1\n15 1 50 1\n16 1 37 1\n17 1 40 1\n18 1 32 1\n19 1 47 1\n20 1 47 1\n21 1 29 1\n22 1 31 1\n23 1 24 1\n24 1 39 1\n25 1 50 1\n26 1 34 1\n27 1 33 1\n28 1 42 1\n29 1 49 1\n30 1 41 1\n31 1 41 1\n32 1 43 1\n33 1 45 1\n34 1 36 1\n35 1 39 1\n36 1 47 1\n37 1 43 1\n38 1 50 1\n39 1 40 1\n40 1 47 1\n41 1 47 1\n42 1 45 1\n43 1 48 1\n44 1 49 1\n45 1 48 1\n46 1 50 1\n47 1 49 1\n48 1 49 1\n..."
},
{
"input": "49\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n71 11\n56 27\n72 51\n65 46\n36 55\n34 60\n31 18\n22 52\n63 59\n37 17\n3 48\n35 69\n8 29\n4 19\n10 1\n33 32\n62 26\n9 64\n12 57\n30 25\n7 38\n15 14\n61 68\n50 28\n21\n58\n47\n2\n13\n44\n20\n23\n73\n49\n43\n54\n70\n16\n39\n41\n42\n66\n5\n6\n53\n24\n67\n45\n40",
"output": "67\n1 1 15 2\n1 2 28 1\n2 1 11 1\n2 2 14 1\n3 1 43 1\n3 2 44 1\n4 1 21 1\n4 2 13 1\n5 1 18 1\n5 2 15 1\n6 1 28 1\n6 2 19 1\n7 1 29 1\n7 2 22 2\n8 1 22 1\n8 2 38 1\n9 1 10 2\n9 2 22 2\n10 1 14 2\n10 2 31 1\n11 1 25 1\n11 2 22 1\n12 1 32 1\n12 2 46 1\n13 1 20 2\n13 2 17 2\n14 2 24 2\n15 1 17 2\n15 2 20 1\n16 1 29 1\n17 1 29 1\n17 2 28 1\n18 1 32 1\n18 2 32 1\n19 1 24 2\n19 2 21 2\n20 1 39 1\n20 2 49 1\n21 1 40 1\n21 2 41 1\n22 1 35 1\n22 2 30 1\n23 1 48 1\n23 2 49 1\n24 1 27 1\n24 2 35 1\n25 1 34 1\n26 1 27 ..."
},
{
"input": "48\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n90 26 28\n70 20 1\n11 10 9\n69 84 30\n73 63 61\n17 58 41\n54 57 51\n88 4 32\n85 33 34\n40 80 77\n93 7 3\n38 75 53\n79 74 81\n91 76 87\n22 2 59\n86 82 60\n24 52\n92 72\n49 6\n8 65\n50 25\n46 16\n42 48\n78 37\n39 71\n31 5\n19 43\n64 67\n36 45\n18\n89\n55\n15\n56\n13\n27\n47\n23\n14\n68\n62\n83\n66\n29\n35\n44\n21\n12",
"output": "88\n1 1 2 3\n1 2 15 2\n1 3 11 3\n2 1 8 2\n2 2 26 2\n2 3 19 2\n3 1 11 2\n3 2 20 1\n4 1 20 1\n4 2 11 2\n4 3 48 1\n5 1 35 1\n5 2 39 1\n5 3 33 1\n6 1 22 2\n6 2 22 2\n6 3 30 1\n7 1 27 1\n7 2 26 2\n7 3 47 1\n8 1 15 1\n8 2 38 1\n8 3 17 1\n9 1 21 2\n9 2 15 2\n9 3 36 1\n10 1 11 3\n10 2 44 1\n10 3 48 1\n11 1 26 1\n11 2 17 1\n11 3 15 2\n12 1 36 1\n12 2 45 1\n12 3 29 1\n13 1 24 2\n13 2 36 1\n13 3 25 1\n14 1 15 2\n14 2 30 1\n14 3 23 1\n15 1 27 2\n15 2 46 1\n15 3 29 2\n16 1 22 1\n16 2 37 1\n16 3 23 2\n17 1 19 1\n17 2 21..."
},
{
"input": "5\n5 2 2 2 1\n1 3 4 5 12\n2 6\n8 9\n7 10\n11",
"output": "8\n1 2 2 1\n1 3 2 1\n1 4 2 1\n1 5 2 1\n2 1 2 2\n2 2 4 1\n4 1 4 2\n4 2 5 1"
},
{
"input": "5\n5 4 3 2 1\n1 2 3 4 5\n6 7 8 9\n10 11 12\n13 14\n15",
"output": "0"
},
{
"input": "1\n1\n1",
"output": "0"
},
{
"input": "4\n4 4 2 2\n1 2 3 4\n5 6 7 8\n9 10\n11 12",
"output": "0"
},
{
"input": "1\n50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50",
"output": "0"
}
] | 1,593,190,303
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 55
| 218
| 6,963,200
|
n = int(input())
c = [0] + list(map(int, input().split()))
m = sum(c)
p, q, r, t = [0] * (m + 1), {}, [0] * m, []
k = 0
for i in range(1, n + 1):
s = str(i) + ' '
for j in range(1, c[i] + 1):
r[k] = s + str(j)
k += 1
k = 0
for i in range(n):
for x in tuple(map(int, input().split())):
p[x], q[r[k]] = r[k], x
k += 1
k = 1
for y in r:
a, b = q[y], p[k]
if p[k] != y:
t.append(y + ' ' + b)
p[a], q[b] = b, a
k += 1
print(len(t))
print('\n'.join(t))
|
Title: Young Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got table *a*, consisting of *n* rows, numbered from 1 to *n*. The *i*-th line of table *a* contains *c**i* cells, at that for all *i* (1<=<<=*i*<=≤<=*n*) holds *c**i*<=≤<=*c**i*<=-<=1.
Let's denote *s* as the total number of cells of table *a*, that is, . We know that each cell of the table contains a single integer from 1 to *s*, at that all written integers are distinct.
Let's assume that the cells of the *i*-th row of table *a* are numbered from 1 to *c**i*, then let's denote the number written in the *j*-th cell of the *i*-th row as *a**i*,<=*j*. Your task is to perform several swap operations to rearrange the numbers in the table so as to fulfill the following conditions:
1. for all *i*,<=*j* (1<=<<=*i*<=≤<=*n*; 1<=≤<=*j*<=≤<=*c**i*) holds *a**i*,<=*j*<=><=*a**i*<=-<=1,<=*j*; 1. for all *i*,<=*j* (1<=≤<=*i*<=≤<=*n*; 1<=<<=*j*<=≤<=*c**i*) holds *a**i*,<=*j*<=><=*a**i*,<=*j*<=-<=1.
In one swap operation you are allowed to choose two different cells of the table and swap the recorded there numbers, that is the number that was recorded in the first of the selected cells before the swap, is written in the second cell after it. Similarly, the number that was recorded in the second of the selected cells, is written in the first cell after the swap.
Rearrange the numbers in the required manner. Note that you are allowed to perform any number of operations, but not more than *s*. You do not have to minimize the number of operations.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=50) that shows the number of rows in the table. The second line contains *n* space-separated integers *c**i* (1<=≤<=*c**i*<=≤<=50; *c**i*<=≤<=*c**i*<=-<=1) — the numbers of cells on the corresponding rows.
Next *n* lines contain table *а*. The *i*-th of them contains *c**i* space-separated integers: the *j*-th integer in this line represents *a**i*,<=*j*.
It is guaranteed that all the given numbers *a**i*,<=*j* are positive and do not exceed *s*. It is guaranteed that all *a**i*,<=*j* are distinct.
Output Specification:
In the first line print a single integer *m* (0<=≤<=*m*<=≤<=*s*), representing the number of performed swaps.
In the next *m* lines print the description of these swap operations. In the *i*-th line print four space-separated integers *x**i*,<=*y**i*,<=*p**i*,<=*q**i* (1<=≤<=*x**i*,<=*p**i*<=≤<=*n*; 1<=≤<=*y**i*<=≤<=*c**x**i*; 1<=≤<=*q**i*<=≤<=*c**p**i*). The printed numbers denote swapping the contents of cells *a**x**i*,<=*y**i* and *a**p**i*,<=*q**i*. Note that a swap operation can change the contents of distinct table cells. Print the swaps in the order, in which they should be executed.
Demo Input:
['3\n3 2 1\n4 3 5\n6 1\n2\n', '1\n4\n4 3 2 1\n']
Demo Output:
['2\n1 1 2 2\n2 1 3 1\n', '2\n1 1 1 4\n1 2 1 3\n']
Note:
none
|
```python
n = int(input())
c = [0] + list(map(int, input().split()))
m = sum(c)
p, q, r, t = [0] * (m + 1), {}, [0] * m, []
k = 0
for i in range(1, n + 1):
s = str(i) + ' '
for j in range(1, c[i] + 1):
r[k] = s + str(j)
k += 1
k = 0
for i in range(n):
for x in tuple(map(int, input().split())):
p[x], q[r[k]] = r[k], x
k += 1
k = 1
for y in r:
a, b = q[y], p[k]
if p[k] != y:
t.append(y + ' ' + b)
p[a], q[b] = b, a
k += 1
print(len(t))
print('\n'.join(t))
```
| 3
|
|
746
|
B
|
Decoding
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] | null | null |
Polycarp is mad about coding, that is why he writes Sveta encoded messages. He calls the median letter in a word the letter which is in the middle of the word. If the word's length is even, the median letter is the left of the two middle letters. In the following examples, the median letter is highlighted: contest, info. If the word consists of single letter, then according to above definition this letter is the median letter.
Polycarp encodes each word in the following way: he writes down the median letter of the word, then deletes it and repeats the process until there are no letters left. For example, he encodes the word volga as logva.
You are given an encoding *s* of some word, your task is to decode it.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=2000) — the length of the encoded word.
The second line contains the string *s* of length *n* consisting of lowercase English letters — the encoding.
|
Print the word that Polycarp encoded.
|
[
"5\nlogva\n",
"2\nno\n",
"4\nabba\n"
] |
[
"volga\n",
"no\n",
"baba\n"
] |
In the first example Polycarp encoded the word volga. At first, he wrote down the letter l from the position 3, after that his word looked like voga. After that Polycarp wrote down the letter o from the position 2, his word became vga. Then Polycarp wrote down the letter g which was at the second position, the word became va. Then he wrote down the letter v, then the letter a. Thus, the encoding looked like logva.
In the second example Polycarp encoded the word no. He wrote down the letter n, the word became o, and he wrote down the letter o. Thus, in this example, the word and its encoding are the same.
In the third example Polycarp encoded the word baba. At first, he wrote down the letter a, which was at the position 2, after that the word looked like bba. Then he wrote down the letter b, which was at the position 2, his word looked like ba. After that he wrote down the letter b, which was at the position 1, the word looked like a, and he wrote down that letter a. Thus, the encoding is abba.
| 1,000
|
[
{
"input": "5\nlogva",
"output": "volga"
},
{
"input": "2\nno",
"output": "no"
},
{
"input": "4\nabba",
"output": "baba"
},
{
"input": "51\nkfsmpaeviowvkdbuhdagquxxqniselafnfbrgbhmsugcbbnlrvv",
"output": "vlbcumbrfflsnxugdudvovamfkspeiwkbhaqxqieanbghsgbnrv"
},
{
"input": "1\nw",
"output": "w"
},
{
"input": "2\ncb",
"output": "cb"
},
{
"input": "3\nqok",
"output": "oqk"
},
{
"input": "4\naegi",
"output": "gaei"
},
{
"input": "5\noqquy",
"output": "uqoqy"
},
{
"input": "6\nulhpnm",
"output": "nhulpm"
},
{
"input": "7\nijvxljt",
"output": "jxjivlt"
},
{
"input": "8\nwwmiwkeo",
"output": "ewmwwiko"
},
{
"input": "9\ngmwqmpfow",
"output": "opqmgwmfw"
},
{
"input": "10\nhncmexsslh",
"output": "lsechnmxsh"
},
{
"input": "20\nrtcjbjlbtjfmvzdqutuw",
"output": "uudvftlbcrtjjbjmzqtw"
},
{
"input": "21\ngjyiqoebcnpsdegxnsauh",
"output": "usxesnboijgyqecpdgnah"
},
{
"input": "30\nudotcwvcwxajkadxqvxvwgmwmnqrby",
"output": "bqmmwxqdkawvcoudtwcxjaxvvgwnry"
},
{
"input": "31\nipgfrxxcgckksfgexlicjvtnhvrfbmb",
"output": "mfvnvclefkccxfpigrxgksgxijthrbb"
},
{
"input": "50\nwobervhvvkihcuyjtmqhaaigvahheoqleromusrartldojsjvy",
"output": "vsolrruoeqehviaqtycivhrbwoevvkhujmhagaholrmsatdjjy"
},
{
"input": "200\nhvayscqiwpcfykibwyudkzuzdkgqqvbnrfeupjefevlvojngmlcjwzijrkzbsaovabkvvwmjgoonyhuiphwmqdoiuueuyqtychbsklflnvghipdgaxhuhiiqlqocpvhldgvnsrtcwxpidrjffwvwcirluyyxzxrglheczeuouklzkvnyubsvgvmdbrylimztotdbmjph",
"output": "pmdoziybmgsunkluuzelrzyurcvfjdpwtsvdhpolihhadignfkbctyeuoqwpuyogmvkaoszriwcmnoleeperbqgdukuwiycwqsahvycipfkbydzzkqvnfujfvvjgljzjkbavbvwjonhihmdiuuqyhsllvhpgxuiqqcvlgnrcxirfwwilyxxghceokzvybvvdrlmttbjh"
},
{
"input": "201\nrpkghhfibtmlkpdiklegblbuyshfirheatjkfoqkfayfbxeeqijwqdwkkrkbdxlhzkhyiifemsghwovorlqedngldskfbhmwrnzmtjuckxoqdszmsdnbuqnlqzswdfhagasmfswanifrjjcuwdsplytvmnfarchgqteedgfpumkssindxndliozojzlpznwedodzwrrus",
"output": "urzoenpzoolndismpgetgcanvypdujriasmaafwzlqbdmsqxcjmnwhfslneloohseiykhxbrkdwiexfakokterfsulglipltihgprkhfbmkdkebbyhihajfqfybeqjqwkkdlzhifmgwvrqdgdkbmrztukodzsnunqsdhgsfwnfjcwsltmfrhqedfuksnxdizjlzwddwrs"
},
{
"input": "500\naopxumqciwxewxvlxzebsztskjvjzwyewjztqrsuvamtvklhqrbodtncqdchjrlpywvmtgnkkwtvpggktewdgvnhydkexwoxkgltaesrtifbwpciqsvrgjtqrdnyqkgqwrryacluaqmgdwxinqieiblolyekcbzahlhxdwqcgieyfgmicvgbbitbzhejkshjunzjteyyfngigjwyqqndtjrdykzrnrpinkwtrlchhxvycrhstpecadszilicrqdeyyidohqvzfnsqfyuemigacysxvtrgxyjcvejkjstsnatfqlkeytxgsksgpcooypsmqgcluzwofaupegxppbupvtumjerohdteuenwcmqaoazohkilgpkjavcrjcslhzkyjcgfzxxzjfufichxcodcawonkxhbqgfimmlycswdzwbnmjwhbwihfoftpcqplncavmbxuwnsabiyvpcrhfgtqyaguoaigknushbqjwqmmyvsxwabrub",
"output": "ubwsymwqhukiogytfrpybswxmanpctohwhjnwdsymigbxnwcoxcffzxfcyzlcrvjplkoaamweedoemtpbpgpaozlgmpocgkgtelfasskecygtxyaieyqnzqoiydriisaethcvhcrwnpnzyrtnqwggfytzuhkeztbgcmfegqdhhzcelliinxdmalarwgqnrtgvqcwftsalkoxkyngwtgptkntvyljcqndbqlvmvsqzwyzvktsexvwxiqupaoxmcwexlzbzsjjwejtruatkhrotcdhrpwmgkwvgkedvhdewxgteribpisrjqdykqrycuqgwiqeboykbalxwciygivbibhjsjnjeynijyqdjdkrriktlhxyrspcdzlcqeydhvfsfumgcsvrxjvjjtntqkyxsspoysqcuwfuexpuvujrhtuncqozhigkacjshkjgzxjuihcdaokhqfmlcwzbmwbiffpqlcvbunaivchgqauagnsbjqmvxarb"
},
{
"input": "501\noilesjbgowlnayckhpoaitijewsyhgavnthycaecwnvzpxgjqfjyxnjcjknvvsmjbjwtcoyfbegmnnheeamvtfjkigqoanhvgdfrjchdqgowrstlmrjmcsuuwvvoeucfyhnxivosrxblfoqwikfxjnnyejdiihpenfcahtjwcnzwvxxseicvdfgqhtvefswznuyohmmljlnxubhevywpmnitnkhecsgccpstxkmdzabsnwxkokdfsogzbpnfvgudvqlstxojzfzugxbfrozveaiofrzksegdelxsdhcjlqwqlgjcqiujptoenxozhkqhcpkarretqzfkwuvbmfdcdoqliyzmlfrfhzrnkbhofuctkpeacqejwvdrlyvepudrlzncbhwrgmxrczphsoymvtuzqjscvbtqpymogupgzctepccravjcrfsadueyraqvwasravkubebojqspdntewnjohvccamvoxdauyakvehjhabpdyzyme",
"output": "mzdbhhvaudomcvonenpqoeuvravayuafcvrcecguoyqbcjztmohzrmrhczrueyrvjqaptuobnzffmylocfbukztraphkzxetjicgqqjhsldekroavofxufjxsqdgfpzofkkwsadktpcsektnpyebxllmouzsetqfvisxwnwtafehijynxkwolxsvxhfuovusmrlswgdcrdvnogkfvaenmefotjjsvkcnyfjxzncaytvgywjtapkynwgjeiolsbolachoiieshanhcewvpgqjxjjnvmbwcybgnhemtjiqahgfjhqortmjcuwvecyniorbfqifjnedipnchjczvxecdghvfwnyhmjnuhvwminhcgcsxmzbnxodsgbnvuvltozzgbrzeifzsgexdclwljquponohqckreqfwvmddqizlrhrkhfckecewdlvpdlnbwgxcpsyvuqsvtpmgpztpcajrsderqwsakbbjsdtwjhcavxaykejapyye"
}
] | 1,692,806,471
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 46
| 307,200
|
from collections import deque
a=int(input())
b=input()
req=deque([b[0]])
if a%2:
for i in range(1,len(b)):
if i%2:
req.appendleft(b[i])
else:
req.append(b[i])
print("".join(req))
else:
for i in range(1,len(b)):
if i%2:
req.append(b[i])
else:
req.appendleft(b[i])
print("".join(req))
|
Title: Decoding
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp is mad about coding, that is why he writes Sveta encoded messages. He calls the median letter in a word the letter which is in the middle of the word. If the word's length is even, the median letter is the left of the two middle letters. In the following examples, the median letter is highlighted: contest, info. If the word consists of single letter, then according to above definition this letter is the median letter.
Polycarp encodes each word in the following way: he writes down the median letter of the word, then deletes it and repeats the process until there are no letters left. For example, he encodes the word volga as logva.
You are given an encoding *s* of some word, your task is to decode it.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=2000) — the length of the encoded word.
The second line contains the string *s* of length *n* consisting of lowercase English letters — the encoding.
Output Specification:
Print the word that Polycarp encoded.
Demo Input:
['5\nlogva\n', '2\nno\n', '4\nabba\n']
Demo Output:
['volga\n', 'no\n', 'baba\n']
Note:
In the first example Polycarp encoded the word volga. At first, he wrote down the letter l from the position 3, after that his word looked like voga. After that Polycarp wrote down the letter o from the position 2, his word became vga. Then Polycarp wrote down the letter g which was at the second position, the word became va. Then he wrote down the letter v, then the letter a. Thus, the encoding looked like logva.
In the second example Polycarp encoded the word no. He wrote down the letter n, the word became o, and he wrote down the letter o. Thus, in this example, the word and its encoding are the same.
In the third example Polycarp encoded the word baba. At first, he wrote down the letter a, which was at the position 2, after that the word looked like bba. Then he wrote down the letter b, which was at the position 2, his word looked like ba. After that he wrote down the letter b, which was at the position 1, the word looked like a, and he wrote down that letter a. Thus, the encoding is abba.
|
```python
from collections import deque
a=int(input())
b=input()
req=deque([b[0]])
if a%2:
for i in range(1,len(b)):
if i%2:
req.appendleft(b[i])
else:
req.append(b[i])
print("".join(req))
else:
for i in range(1,len(b)):
if i%2:
req.append(b[i])
else:
req.appendleft(b[i])
print("".join(req))
```
| 3
|
|
604
|
A
|
Uncowed Forces
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Kevin Sun has just finished competing in Codeforces Round #334! The round was 120 minutes long and featured five problems with maximum point values of 500, 1000, 1500, 2000, and 2500, respectively. Despite the challenging tasks, Kevin was uncowed and bulldozed through all of them, distinguishing himself from the herd as the best cowmputer scientist in all of Bovinia. Kevin knows his submission time for each problem, the number of wrong submissions that he made on each problem, and his total numbers of successful and unsuccessful hacks. Because Codeforces scoring is complicated, Kevin wants you to write a program to compute his final score.
Codeforces scores are computed as follows: If the maximum point value of a problem is *x*, and Kevin submitted correctly at minute *m* but made *w* wrong submissions, then his score on that problem is . His total score is equal to the sum of his scores for each problem. In addition, Kevin's total score gets increased by 100 points for each successful hack, but gets decreased by 50 points for each unsuccessful hack.
All arithmetic operations are performed with absolute precision and no rounding. It is guaranteed that Kevin's final score is an integer.
|
The first line of the input contains five space-separated integers *m*1, *m*2, *m*3, *m*4, *m*5, where *m**i* (0<=≤<=*m**i*<=≤<=119) is the time of Kevin's last submission for problem *i*. His last submission is always correct and gets accepted.
The second line contains five space-separated integers *w*1, *w*2, *w*3, *w*4, *w*5, where *w**i* (0<=≤<=*w**i*<=≤<=10) is Kevin's number of wrong submissions on problem *i*.
The last line contains two space-separated integers *h**s* and *h**u* (0<=≤<=*h**s*,<=*h**u*<=≤<=20), denoting the Kevin's numbers of successful and unsuccessful hacks, respectively.
|
Print a single integer, the value of Kevin's final score.
|
[
"20 40 60 80 100\n0 1 2 3 4\n1 0\n",
"119 119 119 119 119\n0 0 0 0 0\n10 0\n"
] |
[
"4900\n",
"4930\n"
] |
In the second sample, Kevin takes 119 minutes on all of the problems. Therefore, he gets <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/42158dc2bc78cd21fa679530ae9ef8b9ea298d15.png" style="max-width: 100.0%;max-height: 100.0%;"/> of the points on each problem. So his score from solving problems is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/fdf392d8508500b57f8057ac0c4c892ab5f925a2.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Adding in 10·100 = 1000 points from hacks, his total score becomes 3930 + 1000 = 4930.
| 500
|
[
{
"input": "20 40 60 80 100\n0 1 2 3 4\n1 0",
"output": "4900"
},
{
"input": "119 119 119 119 119\n0 0 0 0 0\n10 0",
"output": "4930"
},
{
"input": "3 6 13 38 60\n6 10 10 3 8\n9 9",
"output": "5088"
},
{
"input": "21 44 11 68 75\n6 2 4 8 4\n2 8",
"output": "4522"
},
{
"input": "16 112 50 114 68\n1 4 8 4 9\n19 11",
"output": "5178"
},
{
"input": "55 66 75 44 47\n6 0 6 6 10\n19 0",
"output": "6414"
},
{
"input": "47 11 88 5 110\n6 10 4 2 3\n10 6",
"output": "5188"
},
{
"input": "5 44 61 103 92\n9 0 10 4 8\n15 7",
"output": "4914"
},
{
"input": "115 53 96 62 110\n7 8 1 7 9\n7 16",
"output": "3416"
},
{
"input": "102 83 26 6 11\n3 4 1 8 3\n17 14",
"output": "6704"
},
{
"input": "36 102 73 101 19\n5 9 2 2 6\n4 13",
"output": "4292"
},
{
"input": "40 115 93 107 113\n5 7 2 6 8\n6 17",
"output": "2876"
},
{
"input": "53 34 53 107 81\n4 3 1 10 8\n7 7",
"output": "4324"
},
{
"input": "113 37 4 84 66\n2 0 10 3 0\n20 19",
"output": "6070"
},
{
"input": "10 53 101 62 1\n8 0 9 7 9\n0 11",
"output": "4032"
},
{
"input": "45 45 75 36 76\n6 2 2 0 0\n8 17",
"output": "5222"
},
{
"input": "47 16 44 78 111\n7 9 8 0 2\n1 19",
"output": "3288"
},
{
"input": "7 54 39 102 31\n6 0 2 10 1\n18 3",
"output": "6610"
},
{
"input": "0 46 86 72 40\n1 5 5 5 9\n6 5",
"output": "4924"
},
{
"input": "114 4 45 78 113\n0 4 8 10 2\n10 12",
"output": "4432"
},
{
"input": "56 56 96 105 107\n4 9 10 4 8\n2 1",
"output": "3104"
},
{
"input": "113 107 59 50 56\n3 7 10 6 3\n10 12",
"output": "4586"
},
{
"input": "96 104 9 94 84\n6 10 7 8 3\n14 11",
"output": "4754"
},
{
"input": "98 15 116 43 55\n4 3 0 9 3\n10 7",
"output": "5400"
},
{
"input": "0 26 99 108 35\n0 4 3 0 10\n9 5",
"output": "5388"
},
{
"input": "89 24 51 49 84\n5 6 2 2 9\n2 14",
"output": "4066"
},
{
"input": "57 51 76 45 96\n1 0 4 3 6\n12 15",
"output": "5156"
},
{
"input": "79 112 37 36 116\n2 8 4 7 5\n4 12",
"output": "3872"
},
{
"input": "71 42 60 20 7\n7 1 1 10 6\n1 7",
"output": "5242"
},
{
"input": "86 10 66 80 55\n0 2 5 10 5\n15 6",
"output": "5802"
},
{
"input": "66 109 22 22 62\n3 1 5 4 5\n10 5",
"output": "5854"
},
{
"input": "97 17 43 84 58\n2 8 3 8 6\n10 7",
"output": "5028"
},
{
"input": "109 83 5 114 104\n6 0 3 9 5\n5 2",
"output": "4386"
},
{
"input": "94 18 24 91 105\n2 0 7 10 3\n1 4",
"output": "4118"
},
{
"input": "64 17 86 59 45\n8 0 10 2 2\n4 4",
"output": "5144"
},
{
"input": "70 84 31 57 2\n7 0 0 2 7\n12 5",
"output": "6652"
},
{
"input": "98 118 117 86 4\n2 10 9 7 5\n11 15",
"output": "4476"
},
{
"input": "103 110 101 97 70\n4 2 1 0 5\n7 5",
"output": "4678"
},
{
"input": "78 96 6 97 62\n7 7 9 2 9\n10 3",
"output": "4868"
},
{
"input": "95 28 3 31 115\n1 9 0 7 3\n10 13",
"output": "5132"
},
{
"input": "45 17 116 58 3\n8 8 7 6 4\n3 19",
"output": "3992"
},
{
"input": "19 12 0 113 77\n3 0 10 9 2\n8 6",
"output": "5040"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0",
"output": "7500"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n20 0",
"output": "9500"
},
{
"input": "119 119 119 119 119\n10 10 10 10 10\n0 20",
"output": "1310"
},
{
"input": "0 0 0 0 0\n10 10 10 10 10\n0 20",
"output": "4150"
},
{
"input": "119 0 0 0 0\n10 0 0 0 0\n5 5",
"output": "7400"
},
{
"input": "0 119 0 0 0\n0 10 0 0 0\n5 5",
"output": "7050"
},
{
"input": "0 0 119 0 0\n0 0 10 0 0\n0 0",
"output": "6450"
},
{
"input": "0 0 0 119 0\n0 0 0 10 0\n5 5",
"output": "6350"
},
{
"input": "0 0 0 0 119\n0 0 0 0 10\n5 5",
"output": "6060"
},
{
"input": "119 0 0 0 0\n2 0 0 0 0\n5 5",
"output": "7412"
},
{
"input": "0 119 0 0 0\n0 2 0 0 0\n5 5",
"output": "7174"
},
{
"input": "0 0 119 0 0\n0 0 2 0 0\n5 5",
"output": "6936"
},
{
"input": "0 0 0 119 0\n0 0 0 2 0\n5 5",
"output": "6698"
},
{
"input": "0 0 0 0 119\n0 0 0 0 2\n5 5",
"output": "6460"
},
{
"input": "119 0 0 0 0\n0 0 0 0 0\n4 9",
"output": "7212"
}
] | 1,590,436,613
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 57
| 108
| 307,200
|
m = list(map(int,input().split(' ')))
w = list(map(int,input().split(' ')))
h = list(map(int,input().split(' ')))
x = [500, 1000, 1500, 2000, 2500]
r = []
result = 0
for i in range(5):
r.append(max(0.3 * x[i], ((1 - (m[i]/250)) * x[i]) - 50 * w[i]))
for i in r:
result += i
print(int( result + h[0] * 100 - h[1] * 50))
|
Title: Uncowed Forces
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kevin Sun has just finished competing in Codeforces Round #334! The round was 120 minutes long and featured five problems with maximum point values of 500, 1000, 1500, 2000, and 2500, respectively. Despite the challenging tasks, Kevin was uncowed and bulldozed through all of them, distinguishing himself from the herd as the best cowmputer scientist in all of Bovinia. Kevin knows his submission time for each problem, the number of wrong submissions that he made on each problem, and his total numbers of successful and unsuccessful hacks. Because Codeforces scoring is complicated, Kevin wants you to write a program to compute his final score.
Codeforces scores are computed as follows: If the maximum point value of a problem is *x*, and Kevin submitted correctly at minute *m* but made *w* wrong submissions, then his score on that problem is . His total score is equal to the sum of his scores for each problem. In addition, Kevin's total score gets increased by 100 points for each successful hack, but gets decreased by 50 points for each unsuccessful hack.
All arithmetic operations are performed with absolute precision and no rounding. It is guaranteed that Kevin's final score is an integer.
Input Specification:
The first line of the input contains five space-separated integers *m*1, *m*2, *m*3, *m*4, *m*5, where *m**i* (0<=≤<=*m**i*<=≤<=119) is the time of Kevin's last submission for problem *i*. His last submission is always correct and gets accepted.
The second line contains five space-separated integers *w*1, *w*2, *w*3, *w*4, *w*5, where *w**i* (0<=≤<=*w**i*<=≤<=10) is Kevin's number of wrong submissions on problem *i*.
The last line contains two space-separated integers *h**s* and *h**u* (0<=≤<=*h**s*,<=*h**u*<=≤<=20), denoting the Kevin's numbers of successful and unsuccessful hacks, respectively.
Output Specification:
Print a single integer, the value of Kevin's final score.
Demo Input:
['20 40 60 80 100\n0 1 2 3 4\n1 0\n', '119 119 119 119 119\n0 0 0 0 0\n10 0\n']
Demo Output:
['4900\n', '4930\n']
Note:
In the second sample, Kevin takes 119 minutes on all of the problems. Therefore, he gets <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/42158dc2bc78cd21fa679530ae9ef8b9ea298d15.png" style="max-width: 100.0%;max-height: 100.0%;"/> of the points on each problem. So his score from solving problems is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/fdf392d8508500b57f8057ac0c4c892ab5f925a2.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Adding in 10·100 = 1000 points from hacks, his total score becomes 3930 + 1000 = 4930.
|
```python
m = list(map(int,input().split(' ')))
w = list(map(int,input().split(' ')))
h = list(map(int,input().split(' ')))
x = [500, 1000, 1500, 2000, 2500]
r = []
result = 0
for i in range(5):
r.append(max(0.3 * x[i], ((1 - (m[i]/250)) * x[i]) - 50 * w[i]))
for i in r:
result += i
print(int( result + h[0] * 100 - h[1] * 50))
```
| 3
|
|
638
|
A
|
Home Numbers
|
PROGRAMMING
| 1,100
|
[
"*special",
"constructive algorithms",
"math"
] | null | null |
The main street of Berland is a straight line with *n* houses built along it (*n* is an even number). The houses are located at both sides of the street. The houses with odd numbers are at one side of the street and are numbered from 1 to *n*<=-<=1 in the order from the beginning of the street to the end (in the picture: from left to right). The houses with even numbers are at the other side of the street and are numbered from 2 to *n* in the order from the end of the street to its beginning (in the picture: from right to left). The corresponding houses with even and odd numbers are strictly opposite each other, that is, house 1 is opposite house *n*, house 3 is opposite house *n*<=-<=2, house 5 is opposite house *n*<=-<=4 and so on.
Vasya needs to get to house number *a* as quickly as possible. He starts driving from the beginning of the street and drives his car to house *a*. To get from the beginning of the street to houses number 1 and *n*, he spends exactly 1 second. He also spends exactly one second to drive the distance between two neighbouring houses. Vasya can park at any side of the road, so the distance between the beginning of the street at the houses that stand opposite one another should be considered the same.
Your task is: find the minimum time Vasya needs to reach house *a*.
|
The first line of the input contains two integers, *n* and *a* (1<=≤<=*a*<=≤<=*n*<=≤<=100<=000) — the number of houses on the street and the number of the house that Vasya needs to reach, correspondingly. It is guaranteed that number *n* is even.
|
Print a single integer — the minimum time Vasya needs to get from the beginning of the street to house *a*.
|
[
"4 2\n",
"8 5\n"
] |
[
"2\n",
"3\n"
] |
In the first sample there are only four houses on the street, two houses at each side. House 2 will be the last at Vasya's right.
The second sample corresponds to picture with *n* = 8. House 5 is the one before last at Vasya's left.
| 500
|
[
{
"input": "4 2",
"output": "2"
},
{
"input": "8 5",
"output": "3"
},
{
"input": "2 1",
"output": "1"
},
{
"input": "2 2",
"output": "1"
},
{
"input": "10 1",
"output": "1"
},
{
"input": "10 10",
"output": "1"
},
{
"input": "100000 100000",
"output": "1"
},
{
"input": "100000 2",
"output": "50000"
},
{
"input": "100000 3",
"output": "2"
},
{
"input": "100000 99999",
"output": "50000"
},
{
"input": "100 100",
"output": "1"
},
{
"input": "3000 34",
"output": "1484"
},
{
"input": "2000 1",
"output": "1"
},
{
"input": "100000 1",
"output": "1"
},
{
"input": "24842 1038",
"output": "11903"
},
{
"input": "1628 274",
"output": "678"
},
{
"input": "16186 337",
"output": "169"
},
{
"input": "24562 2009",
"output": "1005"
},
{
"input": "9456 3443",
"output": "1722"
},
{
"input": "5610 332",
"output": "2640"
},
{
"input": "1764 1288",
"output": "239"
},
{
"input": "28588 13902",
"output": "7344"
},
{
"input": "92480 43074",
"output": "24704"
},
{
"input": "40022 26492",
"output": "6766"
},
{
"input": "85766 64050",
"output": "10859"
},
{
"input": "67808 61809",
"output": "30905"
},
{
"input": "80124 68695",
"output": "34348"
},
{
"input": "95522 91716",
"output": "1904"
},
{
"input": "7752 2915",
"output": "1458"
},
{
"input": "5094 5058",
"output": "19"
},
{
"input": "6144 4792",
"output": "677"
},
{
"input": "34334 20793",
"output": "10397"
},
{
"input": "23538 10243",
"output": "5122"
},
{
"input": "9328 7933",
"output": "3967"
},
{
"input": "11110 9885",
"output": "4943"
},
{
"input": "26096 2778",
"output": "11660"
},
{
"input": "75062 5323",
"output": "2662"
},
{
"input": "94790 7722",
"output": "43535"
},
{
"input": "90616 32240",
"output": "29189"
},
{
"input": "96998 8992",
"output": "44004"
},
{
"input": "95130 19219",
"output": "9610"
},
{
"input": "92586 8812",
"output": "41888"
},
{
"input": "3266 3044",
"output": "112"
},
{
"input": "5026 4697",
"output": "2349"
},
{
"input": "3044 2904",
"output": "71"
},
{
"input": "6022 5396",
"output": "314"
},
{
"input": "31270 25522",
"output": "2875"
},
{
"input": "82156 75519",
"output": "37760"
},
{
"input": "34614 27913",
"output": "13957"
},
{
"input": "88024 61143",
"output": "30572"
},
{
"input": "91870 55672",
"output": "18100"
},
{
"input": "95718 4868",
"output": "45426"
},
{
"input": "99564 358",
"output": "49604"
},
{
"input": "89266 13047",
"output": "6524"
},
{
"input": "90904 16455",
"output": "8228"
},
{
"input": "94750 13761",
"output": "6881"
},
{
"input": "100000 23458",
"output": "38272"
},
{
"input": "100000 23457",
"output": "11729"
},
{
"input": "59140 24272",
"output": "17435"
},
{
"input": "9860 8516",
"output": "673"
},
{
"input": "25988 2733",
"output": "1367"
},
{
"input": "9412 5309",
"output": "2655"
},
{
"input": "25540 23601",
"output": "11801"
},
{
"input": "76260 6050",
"output": "35106"
},
{
"input": "92388 39118",
"output": "26636"
},
{
"input": "8516 5495",
"output": "2748"
},
{
"input": "91940 37847",
"output": "18924"
},
{
"input": "30518 286",
"output": "15117"
},
{
"input": "46646 19345",
"output": "9673"
}
] | 1,488,708,395
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 69
| 62
| 4,608,000
|
n, a = map(int, input().split())
if a%2==0:
print((n-a)//2 + 1)
else:
print((a-1)//2+1)
|
Title: Home Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The main street of Berland is a straight line with *n* houses built along it (*n* is an even number). The houses are located at both sides of the street. The houses with odd numbers are at one side of the street and are numbered from 1 to *n*<=-<=1 in the order from the beginning of the street to the end (in the picture: from left to right). The houses with even numbers are at the other side of the street and are numbered from 2 to *n* in the order from the end of the street to its beginning (in the picture: from right to left). The corresponding houses with even and odd numbers are strictly opposite each other, that is, house 1 is opposite house *n*, house 3 is opposite house *n*<=-<=2, house 5 is opposite house *n*<=-<=4 and so on.
Vasya needs to get to house number *a* as quickly as possible. He starts driving from the beginning of the street and drives his car to house *a*. To get from the beginning of the street to houses number 1 and *n*, he spends exactly 1 second. He also spends exactly one second to drive the distance between two neighbouring houses. Vasya can park at any side of the road, so the distance between the beginning of the street at the houses that stand opposite one another should be considered the same.
Your task is: find the minimum time Vasya needs to reach house *a*.
Input Specification:
The first line of the input contains two integers, *n* and *a* (1<=≤<=*a*<=≤<=*n*<=≤<=100<=000) — the number of houses on the street and the number of the house that Vasya needs to reach, correspondingly. It is guaranteed that number *n* is even.
Output Specification:
Print a single integer — the minimum time Vasya needs to get from the beginning of the street to house *a*.
Demo Input:
['4 2\n', '8 5\n']
Demo Output:
['2\n', '3\n']
Note:
In the first sample there are only four houses on the street, two houses at each side. House 2 will be the last at Vasya's right.
The second sample corresponds to picture with *n* = 8. House 5 is the one before last at Vasya's left.
|
```python
n, a = map(int, input().split())
if a%2==0:
print((n-a)//2 + 1)
else:
print((a-1)//2+1)
```
| 3
|
|
447
|
B
|
DZY Loves Strings
|
PROGRAMMING
| 1,000
|
[
"greedy",
"implementation"
] | null | null |
DZY loves collecting special strings which only contain lowercase letters. For each lowercase letter *c* DZY knows its value *w**c*. For each special string *s*<==<=*s*1*s*2... *s*|*s*| (|*s*| is the length of the string) he represents its value with a function *f*(*s*), where
Now DZY has a string *s*. He wants to insert *k* lowercase letters into this string in order to get the largest possible value of the resulting string. Can you help him calculate the largest possible value he could get?
|
The first line contains a single string *s* (1<=≤<=|*s*|<=≤<=103).
The second line contains a single integer *k* (0<=≤<=*k*<=≤<=103).
The third line contains twenty-six integers from *w**a* to *w**z*. Each such number is non-negative and doesn't exceed 1000.
|
Print a single integer — the largest possible value of the resulting string DZY could get.
|
[
"abc\n3\n1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n"
] |
[
"41\n"
] |
In the test sample DZY can obtain "abcbbc", *value* = 1·1 + 2·2 + 3·2 + 4·2 + 5·2 + 6·2 = 41.
| 1,000
|
[
{
"input": "abc\n3\n1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "41"
},
{
"input": "mmzhr\n3\n443 497 867 471 195 670 453 413 579 466 553 881 847 642 269 996 666 702 487 209 257 741 974 133 519 453",
"output": "29978"
},
{
"input": "ajeeseerqnpaujubmajpibxrccazaawetywxmifzehojf\n23\n359 813 772 413 733 654 33 87 890 433 395 311 801 852 376 148 914 420 636 695 583 733 664 394 407 314",
"output": "1762894"
},
{
"input": "uahngxejpomhbsebcxvelfsojbaouynnlsogjyvktpwwtcyddkcdqcqs\n34\n530 709 150 660 947 830 487 142 208 276 885 542 138 214 76 184 273 753 30 195 722 236 82 691 572 585",
"output": "2960349"
},
{
"input": "xnzeqmouqyzvblcidmhbkqmtusszuczadpooslqxegldanwopilmdwzbczvrwgnwaireykwpugvpnpafbxlyggkgawghysufuegvmzvpgcqyjkoadcreaguzepbendwnowsuekxxivkziibxvxfoilofxcgnxvfefyezfhevfvtetsuhwtyxdlkccdkvqjl\n282\n170 117 627 886 751 147 414 187 150 960 410 70 576 681 641 729 798 877 611 108 772 643 683 166 305 933",
"output": "99140444"
},
{
"input": "pplkqmluhfympkjfjnfdkwrkpumgdmbkfbbldpepicbbmdgafttpopzdxsevlqbtywzkoxyviglbbxsohycbdqksrhlumsldiwzjmednbkcjishkiekfrchzuztkcxnvuykhuenqojrmzaxlaoxnljnvqgnabtmcftisaazzgbmubmpsorygyusmeonrhrgphnfhlaxrvyhuxsnnezjxmdoklpquzpvjbxgbywppmegzxknhfzyygrmejleesoqfwheulmqhonqaukyuejtwxskjldplripyihbfpookxkuehiwqthbfafyrgmykuxglpplozycgydyecqkgfjljfqvigqhuxssqqtfanwszduwbsoytnrtgc\n464\n838 95 473 955 690 84 436 19 179 437 674 626 377 365 781 4 733 776 462 203 119 256 381 668 855 686",
"output": "301124161"
},
{
"input": "qkautnuilwlhjsldfcuwhiqtgtoihifszlyvfaygrnivzgvwthkrzzdtfjcirrjjlrmjtbjlzmjeqmuffsjorjyggzefwgvmblvotvzffnwjhqxorpowzdcnfksdibezdtfjjxfozaghieksbmowrbeehuxlesmvqjsphlvauxiijm\n98\n121 622 0 691 616 959 838 161 581 862 876 830 267 812 598 106 337 73 588 323 999 17 522 399 657 495",
"output": "30125295"
},
{
"input": "tghyxqfmhz\n8\n191 893 426 203 780 326 148 259 182 140 847 636 778 97 167 773 219 891 758 993 695 603 223 779 368 165",
"output": "136422"
},
{
"input": "nyawbfjxnxjiyhwkydaruozobpphgjqdpfdqzezcsoyvurnapu\n30\n65 682 543 533 990 148 815 821 315 916 632 771 332 513 472 864 12 73 548 687 660 572 507 192 226 348",
"output": "2578628"
},
{
"input": "pylrnkrbcjgoytvdnhmlvnkknijkdgdhworlvtwuonrkhrilkewcnofodaumgvnsisxooswgrgtvdeauyxhkipfoxrrtysuepjcf\n60\n894 206 704 179 272 337 413 828 119 182 330 46 440 102 250 191 242 539 678 783 843 431 612 567 33 338",
"output": "9168707"
},
{
"input": "vhjnkrxbyhjhnjrxvwxmhxwoxttbtqosfxtcuvhfjlkyfspeypthsdkkwnqdpxdlnxsgtzvkrgqosgfjrwetqbxgoarkjhrjbspzgblsapifltkfxbfdbxqwoohlgyzijmiwnpmveybyzvasoctxsmgjehpyysmqblwnmkappbecklqjfmxhlyceordroflnposohfplrvijxbwvqdtvzhobtrumiujnyrfbwthvciinuveoizkccelxtaveiiagryqnyvsgfnipnavrtmdqlcnldepocbpzmqnarkdvykds\n276\n364 244 798 82 582 9 309 950 286 547 892 371 569 159 705 975 740 845 655 179 130 993 255 552 882 657",
"output": "144901921"
},
{
"input": "gsaddmezrnttfalbwlqbnedumvikplfosw\n12\n290 850 872 361 483 895 152 118 974 619 701 154 899 285 328 712 669 984 407 340 851 775 324 892 554 860",
"output": "809931"
},
{
"input": "a\n0\n5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "5"
},
{
"input": "lol\n3\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "21"
}
] | 1,643,189,116
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 24
| 46
| 0
|
s=input()
k=int(input())
nums=[int(nums) for nums in input().split()]
maxvalue=0
for index in range(len(s)):
maxvalue+=(index+1)*(nums[ord(s[index])-97])
n=len(s)
temp=0
for index in range(k):
n+=1
temp+=n
n=max(nums)
maxvalue+=(n*temp)
print(maxvalue)
|
Title: DZY Loves Strings
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
DZY loves collecting special strings which only contain lowercase letters. For each lowercase letter *c* DZY knows its value *w**c*. For each special string *s*<==<=*s*1*s*2... *s*|*s*| (|*s*| is the length of the string) he represents its value with a function *f*(*s*), where
Now DZY has a string *s*. He wants to insert *k* lowercase letters into this string in order to get the largest possible value of the resulting string. Can you help him calculate the largest possible value he could get?
Input Specification:
The first line contains a single string *s* (1<=≤<=|*s*|<=≤<=103).
The second line contains a single integer *k* (0<=≤<=*k*<=≤<=103).
The third line contains twenty-six integers from *w**a* to *w**z*. Each such number is non-negative and doesn't exceed 1000.
Output Specification:
Print a single integer — the largest possible value of the resulting string DZY could get.
Demo Input:
['abc\n3\n1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n']
Demo Output:
['41\n']
Note:
In the test sample DZY can obtain "abcbbc", *value* = 1·1 + 2·2 + 3·2 + 4·2 + 5·2 + 6·2 = 41.
|
```python
s=input()
k=int(input())
nums=[int(nums) for nums in input().split()]
maxvalue=0
for index in range(len(s)):
maxvalue+=(index+1)*(nums[ord(s[index])-97])
n=len(s)
temp=0
for index in range(k):
n+=1
temp+=n
n=max(nums)
maxvalue+=(n*temp)
print(maxvalue)
```
| 3
|
|
44
|
E
|
Anfisa the Monkey
|
PROGRAMMING
| 1,400
|
[
"dp"
] |
E. Anfisa the Monkey
|
2
|
256
|
Anfisa the monkey learns to type. She is yet unfamiliar with the "space" key and can only type in lower-case Latin letters. Having typed for a fairly long line, Anfisa understood that it would be great to divide what she has written into *k* lines not shorter than *a* and not longer than *b*, for the text to resemble human speech more. Help Anfisa.
|
The first line contains three integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=200, 1<=≤<=*a*<=≤<=*b*<=≤<=200). The second line contains a sequence of lowercase Latin letters — the text typed by Anfisa. It is guaranteed that the given line is not empty and its length does not exceed 200 symbols.
|
Print *k* lines, each of which contains no less than *a* and no more than *b* symbols — Anfisa's text divided into lines. It is not allowed to perform any changes in the text, such as: deleting or adding symbols, changing their order, etc. If the solution is not unique, print any of them. If there is no solution, print "No solution" (without quotes).
|
[
"3 2 5\nabrakadabra\n",
"4 1 2\nabrakadabra\n"
] |
[
"ab\nrakad\nabra\n",
"No solution\n"
] |
none
| 0
|
[
{
"input": "3 2 5\nabrakadabra",
"output": "abra\nkada\nbra"
},
{
"input": "4 1 2\nabrakadabra",
"output": "No solution"
},
{
"input": "3 1 2\nvgnfpo",
"output": "vg\nnf\npo"
},
{
"input": "5 3 4\nvrrdnhazvexzjfv",
"output": "vrr\ndnh\nazv\nexz\njfv"
},
{
"input": "10 12 15\nctxgddcfdtllmpuxsjkubuqpldznulsilueakbwwlzgeyudyrjachmitfdcgyzszoejphrubpxzpdtgexaqpxgnoxwfjoikljudnoucirussumyhetfwgaoxfbugfiyjmp",
"output": "ctxgddcfdtllm\npuxsjkubuqpld\nznulsilueakbw\nwlzgeyudyrjac\nhmitfdcgyzszo\nejphrubpxzpdt\ngexaqpxgnoxwf\njoikljudnouci\nrussumyhetfwg\naoxfbugfiyjmp"
},
{
"input": "10 20 30\nbvdqvlxiyogiyimdlwdyxsummjgqxaxsucfeuegleetybsylpnepkqzbutibtlgqrbjbwqnvkysxftmsjqkczoploxoqfuwyrufzwwsxpcqfuckjainpphpbvvtllgkljnnoibsvwnxvaksxjrffakpoxwkhjjjemqatbfkmmlmjhhroetlqvfaumctbicqkuxaabpsh",
"output": "bvdqvlxiyogiyimdlwdy\nxsummjgqxaxsucfeuegl\neetybsylpnepkqzbutib\ntlgqrbjbwqnvkysxftms\njqkczoploxoqfuwyrufz\nwwsxpcqfuckjainpphpb\nvvtllgkljnnoibsvwnxv\naksxjrffakpoxwkhjjje\nmqatbfkmmlmjhhroetlq\nvfaumctbicqkuxaabpsh"
},
{
"input": "10 1 200\nolahgjusovchbowjxtwzvjakrktyjqcgkqmcxknjchzxcvbnkbakwnxdouebomyhjsrfsicmzsgdweabbuipbzrhuqfpynybaohzquqbbsqpoaskccszzsmnfleevtasmjuwqgcqtvysohvyutqipnvuhjumwwyytkeuebbncxsnpavwdkoxyycqrhcidf",
"output": "olahgjusovchbowjxtw\nzvjakrktyjqcgkqmcxk\nnjchzxcvbnkbakwnxdo\nuebomyhjsrfsicmzsgd\nweabbuipbzrhuqfpyny\nbaohzquqbbsqpoaskcc\nszzsmnfleevtasmjuwq\ngcqtvysohvyutqipnvu\nhjumwwyytkeuebbncxs\nnpavwdkoxyycqrhcidf"
},
{
"input": "30 3 6\nebdgacrmhfldirwrcfadurngearrfyjiqkmfqmgzpnzcpprkjyeuuppzvmibzzwyouhxclcgqtjhjmucypqnhdaqke",
"output": "ebd\ngac\nrmh\nfld\nirw\nrcf\nadu\nrng\near\nrfy\njiq\nkmf\nqmg\nzpn\nzcp\nprk\njye\nuup\npzv\nmib\nzzw\nyou\nhxc\nlcg\nqtj\nhjm\nucy\npqn\nhda\nqke"
},
{
"input": "200 1 200\nlycjpjrpkgxrkfvutlcwglghxadttpihmlpphwfttegfpimjxintjdxgqfhzrmxfcfojnxruhyfynlzgpxjeobjyxarsfxaqeogxfzvdlwsimupkwujudtfenryulzvsiazneyibqtweeuxpzrbumqqswjasliyjnnzfzuvthhzcsgfljikkajqkpjftztrzpjneaxqg",
"output": "l\ny\nc\nj\np\nj\nr\np\nk\ng\nx\nr\nk\nf\nv\nu\nt\nl\nc\nw\ng\nl\ng\nh\nx\na\nd\nt\nt\np\ni\nh\nm\nl\np\np\nh\nw\nf\nt\nt\ne\ng\nf\np\ni\nm\nj\nx\ni\nn\nt\nj\nd\nx\ng\nq\nf\nh\nz\nr\nm\nx\nf\nc\nf\no\nj\nn\nx\nr\nu\nh\ny\nf\ny\nn\nl\nz\ng\np\nx\nj\ne\no\nb\nj\ny\nx\na\nr\ns\nf\nx\na\nq\ne\no\ng\nx\nf\nz\nv\nd\nl\nw\ns\ni\nm\nu\np\nk\nw\nu\nj\nu\nd\nt\nf\ne\nn\nr\ny\nu\nl\nz\nv\ns\ni\na\nz\nn\ne\ny\ni\nb\nq\nt\nw\ne\ne\nu\nx\np\nz\nr\nb\nu\nm\nq\nq\ns\nw\nj\na\ns\nl\ni\ny\nj\nn\nn\nz\nf\nz\nu\nv\nt\nh\nh\nz..."
},
{
"input": "15 3 4\naronayjutjdhjcelgexgalnyiruevjelvcvzaihgbwwrc",
"output": "aro\nnay\njut\njdh\njce\nlge\nxga\nlny\niru\nevj\nelv\ncvz\naih\ngbw\nwrc"
},
{
"input": "7 3 4\nweoghhroclwslkfcsszplh",
"output": "weog\nhhr\nocl\nwsl\nkfc\nssz\nplh"
},
{
"input": "12 2 5\nozgscnrddhejkhllokmafxcuorxryhvqnkikauclhfbddfoxl",
"output": "ozgsc\nnrdd\nhejk\nhllo\nkmaf\nxcuo\nrxry\nhvqn\nkika\nuclh\nfbdd\nfoxl"
},
{
"input": "3 1 2\nfpos",
"output": "fp\no\ns"
},
{
"input": "5 3 4\nvrrdnhazvexzjfvs",
"output": "vrrd\nnha\nzve\nxzj\nfvs"
},
{
"input": "10 12 15\nllmpuxsjkubuqpldznulsilueakbwwlzgeyudyrjachmitfdcgyzszoejphrubpxzpdtgexaqpxgnoxwfjoikljudnoucirussumyhetfwgaoxfbugfiyjmpm",
"output": "llmpuxsjkubuq\npldznulsilue\nakbwwlzgeyud\nyrjachmitfdc\ngyzszoejphru\nbpxzpdtgexaq\npxgnoxwfjoik\nljudnoucirus\nsumyhetfwgao\nxfbugfiyjmpm"
},
{
"input": "10 20 30\nvdqvlxiyogiyimdlwdyxsummjgqxaxsucfeuegleetybsylpnepkqzbutibtlgqrbjbwqnvkysxftmsjqkczoploxoqfuwyrufzwwsxpcqfuckjainpphpbvvtllgkljnnoibsvwnxvaksxjrffakpoxwkhjjjemqatbfkmmlmjhhroetlqvfaumctbicqkuxaabpshu",
"output": "vdqvlxiyogiyimdlwdyx\nsummjgqxaxsucfeuegle\netybsylpnepkqzbutibt\nlgqrbjbwqnvkysxftmsj\nqkczoploxoqfuwyrufzw\nwsxpcqfuckjainpphpbv\nvtllgkljnnoibsvwnxva\nksxjrffakpoxwkhjjjem\nqatbfkmmlmjhhroetlqv\nfaumctbicqkuxaabpshu"
},
{
"input": "10 1 200\nolahgjusovchbowjxtwzvjakrktyjqcgkqmcxknjchzxcvbnkbakwnxdouebomyhjsrfsicmzsgdweabbuipbzrhuqfpynybaohzquqbbsqpoaskccszzsmnfleevtasmjuwqgcqtvysohvyutqipnvuhjumwwyytkeuebbncxsnpavwdkoxyycqrhcidfd",
"output": "olahgjusovchbowjxtwz\nvjakrktyjqcgkqmcxkn\njchzxcvbnkbakwnxdou\nebomyhjsrfsicmzsgdw\neabbuipbzrhuqfpynyb\naohzquqbbsqpoaskccs\nzzsmnfleevtasmjuwqg\ncqtvysohvyutqipnvuh\njumwwyytkeuebbncxsn\npavwdkoxyycqrhcidfd"
},
{
"input": "30 3 6\nhstvoyuksbbsbgatemzmvbhbjdmnzpluefgzlcqgfsmkdydadsonaryzskleebdgacrmhfldirwrcfadurngearrfyjiqkmfqmgzpnzcpprkjyeuuppzvmibzzwyouhxclcgqtjhjmucypqnhdaqkea",
"output": "hstvoy\nuksbb\nsbgat\nemzmv\nbhbjd\nmnzpl\nuefgz\nlcqgf\nsmkdy\ndadso\nnaryz\nsklee\nbdgac\nrmhfl\ndirwr\ncfadu\nrngea\nrrfyj\niqkmf\nqmgzp\nnzcpp\nrkjye\nuuppz\nvmibz\nzwyou\nhxclc\ngqtjh\njmucy\npqnhd\naqkea"
},
{
"input": "200 1 200\nycjpjrpkgxrkfvutlcwglghxadttpihmlpphwfttegfpimjxintjdxgqfhzrmxfcfojnxruhyfynlzgpxjeobjyxarsfxaqeogxfzvdlwsimupkwujudtfenryulzvsiazneyibqtweeuxpzrbumqqswjasliyjnnzfzuvthhzcsgfljikkajqkpjftztrzpjneaxqgn",
"output": "y\nc\nj\np\nj\nr\np\nk\ng\nx\nr\nk\nf\nv\nu\nt\nl\nc\nw\ng\nl\ng\nh\nx\na\nd\nt\nt\np\ni\nh\nm\nl\np\np\nh\nw\nf\nt\nt\ne\ng\nf\np\ni\nm\nj\nx\ni\nn\nt\nj\nd\nx\ng\nq\nf\nh\nz\nr\nm\nx\nf\nc\nf\no\nj\nn\nx\nr\nu\nh\ny\nf\ny\nn\nl\nz\ng\np\nx\nj\ne\no\nb\nj\ny\nx\na\nr\ns\nf\nx\na\nq\ne\no\ng\nx\nf\nz\nv\nd\nl\nw\ns\ni\nm\nu\np\nk\nw\nu\nj\nu\nd\nt\nf\ne\nn\nr\ny\nu\nl\nz\nv\ns\ni\na\nz\nn\ne\ny\ni\nb\nq\nt\nw\ne\ne\nu\nx\np\nz\nr\nb\nu\nm\nq\nq\ns\nw\nj\na\ns\nl\ni\ny\nj\nn\nn\nz\nf\nz\nu\nv\nt\nh\nh\nz\nc..."
},
{
"input": "15 3 4\naronayjutjdhjcelgexgalnyiruevjelvcvzaihgbwwrcq",
"output": "aron\nayj\nutj\ndhj\ncel\ngex\ngal\nnyi\nrue\nvje\nlvc\nvza\nihg\nbww\nrcq"
},
{
"input": "200 1 10\njtlykeyfekfrzbpzrhvrxagzywzlsktyzoriwiyatoetikfnhyhlrhuogyhjrxdmlqvpfsmqiqkivtodligzerymdtnqahuprhbfefbjwuavmpkurtfzmwediq",
"output": "No solution"
},
{
"input": "15 2 3\ndplkzxpsxodehcj",
"output": "No solution"
},
{
"input": "100 100 200\nximcxraplfjygtrpxrgjhqagrojixizlogaqfvwvqjaiqvcimelxtmtcsqluvcrdzhihgmwhywfgxmzmikdqdytfrlpzqmvhaexrtflwacsuxhkuzbukgvbdcmwpcvxwznupsmmryxwexlevjlonpipuxjgagxtcgqjdczrnmktgcaagmiumnbcxuafmysisahaqnngc",
"output": "No solution"
},
{
"input": "7 2 3\nggzkinj",
"output": "No solution"
},
{
"input": "17 2 4\npgyujupquzenuldnt",
"output": "No solution"
},
{
"input": "100 1 1\nratfdjnvjmaqgcttjtenixeocyxrtuwhpmejhpxjcqhzjsujqolgcccmvnpoomkrforsdtvhgrcpakibozhgqotcrctzozhggrufk",
"output": "No solution"
},
{
"input": "50 2 3\nizlszyucwjarrrgxzbfzyoxapozmunxuygfjynslcjnxitimjjklucjowtkccbnfsuwtyroxirhxzosbyhvnrroaxryhcvvcjvwfcpvnpdaqwzaiuzycyrtvkgkjfbdqnzrmritaonptpvncdifushrquywzykybhjdplbmsrgibpknxkxkqqywmkeljpxrrmufpkubv",
"output": "No solution"
},
{
"input": "15 2 5\nkddainaviqrjsesrhhdnbuisennbgcxseeyxqtmautpoobtpfigcpgagcixmyzsntmgzwmiczsfp",
"output": "No solution"
},
{
"input": "3 1 50\nhcdonseimahtfmtejvxebwctfkjsrcqjrunpcofrapijvwmmbbbrohkskjomeknlwkdxscybxkintcaynwyjfaghwcofpsbwruzqqqkhyndbxbdpgqokjqitznnnrfuaciriqmyuvktpdxewkrycjefkmjwglhoggpgvztvqndbhiajryxqlrqdb",
"output": "No solution"
},
{
"input": "5 1 30\nxmuatgstrlkerxzezenrauupxiskpfugncncatcgtffhuwzojuapgrevnwzfkpyzbzljbzwvfoeuqhinyravsfqrjmgidjoszvkkhxrdstmydvbertvzltpipmcuakzqflldztzdjqlicvadgpicqio",
"output": "No solution"
},
{
"input": "5 2 3\nabacababb",
"output": "No solution"
},
{
"input": "5 6 6\nabacabadabacabaabacabadabacab",
"output": "No solution"
}
] | 1,569,875,841
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 218
| 0
|
k,a,b=map(int,input().split())
ss=input()
h=len(ss)
q,r=divmod(h,k)
if q<a or q>b or (q==b and r>0):
print('No solution')
else:
i=0
while r>0:
print(ss[i:i+q+1])
r-=1
i=i+q+1
while i<h:
print(ss[i:i+q])
i=i+q
|
Title: Anfisa the Monkey
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Anfisa the monkey learns to type. She is yet unfamiliar with the "space" key and can only type in lower-case Latin letters. Having typed for a fairly long line, Anfisa understood that it would be great to divide what she has written into *k* lines not shorter than *a* and not longer than *b*, for the text to resemble human speech more. Help Anfisa.
Input Specification:
The first line contains three integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=200, 1<=≤<=*a*<=≤<=*b*<=≤<=200). The second line contains a sequence of lowercase Latin letters — the text typed by Anfisa. It is guaranteed that the given line is not empty and its length does not exceed 200 symbols.
Output Specification:
Print *k* lines, each of which contains no less than *a* and no more than *b* symbols — Anfisa's text divided into lines. It is not allowed to perform any changes in the text, such as: deleting or adding symbols, changing their order, etc. If the solution is not unique, print any of them. If there is no solution, print "No solution" (without quotes).
Demo Input:
['3 2 5\nabrakadabra\n', '4 1 2\nabrakadabra\n']
Demo Output:
['ab\nrakad\nabra\n', 'No solution\n']
Note:
none
|
```python
k,a,b=map(int,input().split())
ss=input()
h=len(ss)
q,r=divmod(h,k)
if q<a or q>b or (q==b and r>0):
print('No solution')
else:
i=0
while r>0:
print(ss[i:i+q+1])
r-=1
i=i+q+1
while i<h:
print(ss[i:i+q])
i=i+q
```
| 3.9455
|
439
|
B
|
Devu, the Dumb Guy
|
PROGRAMMING
| 1,200
|
[
"implementation",
"sortings"
] | null | null |
Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously.
Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours.
Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour.
You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy.
Please be careful that answer might not fit in 32 bit data type.
|
The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105).
|
Output a single integer representing the answer to the problem.
|
[
"2 3\n4 1\n",
"4 2\n5 1 2 1\n",
"3 3\n1 1 1\n"
] |
[
"11\n",
"10\n",
"6\n"
] |
Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours.
Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours.
So overall, minimum of both the cases is 11 hours.
Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
| 1,000
|
[
{
"input": "2 3\n4 1",
"output": "11"
},
{
"input": "4 2\n5 1 2 1",
"output": "10"
},
{
"input": "3 3\n1 1 1",
"output": "6"
},
{
"input": "20 4\n1 1 3 5 5 1 3 4 2 5 2 4 3 1 3 3 3 3 4 3",
"output": "65"
},
{
"input": "20 10\n6 6 1 2 6 4 5 3 6 5 4 5 6 5 4 6 6 2 3 3",
"output": "196"
},
{
"input": "1 1\n9273",
"output": "9273"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 2\n1",
"output": "2"
},
{
"input": "1 2\n2",
"output": "4"
},
{
"input": "2 1\n1 2",
"output": "3"
}
] | 1,555,428,743
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 217
| 7,680,000
|
n,x=map(int,input().split())
listsub=sorted(map(int,input().split()))
ketqua=0
for i in listsub:
ketqua+=i*x
x=max(x-1,1)
print(ketqua)
|
Title: Devu, the Dumb Guy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously.
Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours.
Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour.
You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy.
Please be careful that answer might not fit in 32 bit data type.
Input Specification:
The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105).
Output Specification:
Output a single integer representing the answer to the problem.
Demo Input:
['2 3\n4 1\n', '4 2\n5 1 2 1\n', '3 3\n1 1 1\n']
Demo Output:
['11\n', '10\n', '6\n']
Note:
Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours.
Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours.
So overall, minimum of both the cases is 11 hours.
Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
|
```python
n,x=map(int,input().split())
listsub=sorted(map(int,input().split()))
ketqua=0
for i in listsub:
ketqua+=i*x
x=max(x-1,1)
print(ketqua)
```
| 3
|
|
485
|
A
|
Factory
|
PROGRAMMING
| 1,400
|
[
"implementation",
"math",
"matrices"
] | null | null |
One industrial factory is reforming working plan. The director suggested to set a mythical detail production norm. If at the beginning of the day there were *x* details in the factory storage, then by the end of the day the factory has to produce (remainder after dividing *x* by *m*) more details. Unfortunately, no customer has ever bought any mythical detail, so all the details produced stay on the factory.
The board of directors are worried that the production by the given plan may eventually stop (that means that there will be а moment when the current number of details on the factory is divisible by *m*).
Given the number of details *a* on the first day and number *m* check if the production stops at some moment.
|
The first line contains two integers *a* and *m* (1<=≤<=*a*,<=*m*<=≤<=105).
|
Print "Yes" (without quotes) if the production will eventually stop, otherwise print "No".
|
[
"1 5\n",
"3 6\n"
] |
[
"No\n",
"Yes\n"
] |
none
| 1,000
|
[
{
"input": "1 5",
"output": "No"
},
{
"input": "3 6",
"output": "Yes"
},
{
"input": "1 8",
"output": "Yes"
},
{
"input": "2 3",
"output": "No"
},
{
"input": "3 24",
"output": "Yes"
},
{
"input": "1 1",
"output": "Yes"
},
{
"input": "100000 100000",
"output": "Yes"
},
{
"input": "1 99989",
"output": "No"
},
{
"input": "512 2",
"output": "Yes"
},
{
"input": "100 24",
"output": "No"
},
{
"input": "1 100000",
"output": "No"
},
{
"input": "100000 1",
"output": "Yes"
},
{
"input": "3 99929",
"output": "No"
},
{
"input": "99961 99971",
"output": "No"
},
{
"input": "1 65536",
"output": "Yes"
},
{
"input": "4 65536",
"output": "Yes"
},
{
"input": "3 65536",
"output": "Yes"
},
{
"input": "32768 65536",
"output": "Yes"
},
{
"input": "65535 65536",
"output": "Yes"
},
{
"input": "1 65535",
"output": "No"
},
{
"input": "98812 100000",
"output": "No"
},
{
"input": "10 5",
"output": "Yes"
},
{
"input": "6 8",
"output": "Yes"
}
] | 1,667,767,866
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 23
| 93
| 0
|
# factory
arr = input().split()
a = int(arr[0])
m = int(arr[1])
contador = 0
while True:
resto = a%m
if resto == 0:
print('Yes')
break
elif contador >= (10**5)+1:
print('No')
break
a += resto
contador += 1
|
Title: Factory
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One industrial factory is reforming working plan. The director suggested to set a mythical detail production norm. If at the beginning of the day there were *x* details in the factory storage, then by the end of the day the factory has to produce (remainder after dividing *x* by *m*) more details. Unfortunately, no customer has ever bought any mythical detail, so all the details produced stay on the factory.
The board of directors are worried that the production by the given plan may eventually stop (that means that there will be а moment when the current number of details on the factory is divisible by *m*).
Given the number of details *a* on the first day and number *m* check if the production stops at some moment.
Input Specification:
The first line contains two integers *a* and *m* (1<=≤<=*a*,<=*m*<=≤<=105).
Output Specification:
Print "Yes" (without quotes) if the production will eventually stop, otherwise print "No".
Demo Input:
['1 5\n', '3 6\n']
Demo Output:
['No\n', 'Yes\n']
Note:
none
|
```python
# factory
arr = input().split()
a = int(arr[0])
m = int(arr[1])
contador = 0
while True:
resto = a%m
if resto == 0:
print('Yes')
break
elif contador >= (10**5)+1:
print('No')
break
a += resto
contador += 1
```
| 3
|
|
785
|
A
|
Anton and Polyhedrons
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons:
- Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces.
All five kinds of polyhedrons are shown on the picture below:
Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number!
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of polyhedrons in Anton's collection.
Each of the following *n* lines of the input contains a string *s**i* — the name of the *i*-th polyhedron in Anton's collection. The string can look like this:
- "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron.
|
Output one number — the total number of faces in all the polyhedrons in Anton's collection.
|
[
"4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n",
"3\nDodecahedron\nOctahedron\nOctahedron\n"
] |
[
"42\n",
"28\n"
] |
In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20 + 6 + 4 + 12 = 42 faces.
| 500
|
[
{
"input": "4\nIcosahedron\nCube\nTetrahedron\nDodecahedron",
"output": "42"
},
{
"input": "3\nDodecahedron\nOctahedron\nOctahedron",
"output": "28"
},
{
"input": "25\nIcosahedron\nOctahedron\nTetrahedron\nDodecahedron\nCube\nIcosahedron\nOctahedron\nCube\nTetrahedron\nIcosahedron\nIcosahedron\nTetrahedron\nOctahedron\nDodecahedron\nIcosahedron\nOctahedron\nIcosahedron\nTetrahedron\nDodecahedron\nTetrahedron\nOctahedron\nCube\nCube\nDodecahedron\nTetrahedron",
"output": "256"
},
{
"input": "1\nTetrahedron",
"output": "4"
},
{
"input": "1\nCube",
"output": "6"
},
{
"input": "1\nOctahedron",
"output": "8"
},
{
"input": "1\nDodecahedron",
"output": "12"
},
{
"input": "1\nIcosahedron",
"output": "20"
},
{
"input": "28\nOctahedron\nDodecahedron\nOctahedron\nOctahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nDodecahedron\nDodecahedron\nCube\nDodecahedron\nCube\nTetrahedron\nCube\nCube\nTetrahedron\nDodecahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nIcosahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron",
"output": "340"
}
] | 1,690,913,438
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 30
| 1,091
| 9,216,000
|
n = int(input())
faces = {"Tetrahedron": 4, "Cube": 6, "Octahedron": 8, "Dodecahedron": 12, "Icosahedron": 20}
total = 0
for i in range(n):
name = input()
total += faces[name]
print(total)
|
Title: Anton and Polyhedrons
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons:
- Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces.
All five kinds of polyhedrons are shown on the picture below:
Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number!
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of polyhedrons in Anton's collection.
Each of the following *n* lines of the input contains a string *s**i* — the name of the *i*-th polyhedron in Anton's collection. The string can look like this:
- "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron.
Output Specification:
Output one number — the total number of faces in all the polyhedrons in Anton's collection.
Demo Input:
['4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n', '3\nDodecahedron\nOctahedron\nOctahedron\n']
Demo Output:
['42\n', '28\n']
Note:
In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20 + 6 + 4 + 12 = 42 faces.
|
```python
n = int(input())
faces = {"Tetrahedron": 4, "Cube": 6, "Octahedron": 8, "Dodecahedron": 12, "Icosahedron": 20}
total = 0
for i in range(n):
name = input()
total += faces[name]
print(total)
```
| 3
|
|
445
|
A
|
DZY Loves Chessboard
|
PROGRAMMING
| 1,200
|
[
"dfs and similar",
"implementation"
] | null | null |
DZY loves chessboard, and he enjoys playing with it.
He has a chessboard of *n* rows and *m* columns. Some cells of the chessboard are bad, others are good. For every good cell, DZY wants to put a chessman on it. Each chessman is either white or black. After putting all chessmen, DZY wants that no two chessmen with the same color are on two adjacent cells. Two cells are adjacent if and only if they share a common edge.
You task is to find any suitable placement of chessmen on the given chessboard.
|
The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
Each of the next *n* lines contains a string of *m* characters: the *j*-th character of the *i*-th string is either "." or "-". A "." means that the corresponding cell (in the *i*-th row and the *j*-th column) is good, while a "-" means it is bad.
|
Output must contain *n* lines, each line must contain a string of *m* characters. The *j*-th character of the *i*-th string should be either "W", "B" or "-". Character "W" means the chessman on the cell is white, "B" means it is black, "-" means the cell is a bad cell.
If multiple answers exist, print any of them. It is guaranteed that at least one answer exists.
|
[
"1 1\n.\n",
"2 2\n..\n..\n",
"3 3\n.-.\n---\n--."
] |
[
"B\n",
"BW\nWB\n",
"B-B\n---\n--B"
] |
In the first sample, DZY puts a single black chessman. Of course putting a white one is also OK.
In the second sample, all 4 cells are good. No two same chessmen share an edge in the sample output.
In the third sample, no good cells are adjacent. So you can just put 3 chessmen, no matter what their colors are.
| 500
|
[
{
"input": "1 1\n.",
"output": "B"
},
{
"input": "2 2\n..\n..",
"output": "BW\nWB"
},
{
"input": "3 3\n.-.\n---\n--.",
"output": "B-B\n---\n--B"
},
{
"input": "3 1\n-\n.\n.",
"output": "-\nW\nB"
},
{
"input": "11 11\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------",
"output": "-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------"
},
{
"input": "1 1\n-",
"output": "-"
},
{
"input": "4 2\n..\n..\n..\n..",
"output": "BW\nWB\nBW\nWB"
},
{
"input": "5 1\n.\n.\n.\n.\n.",
"output": "B\nW\nB\nW\nB"
}
] | 1,650,692,784
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 46
| 0
|
n, m = map(int, input().split())
matrix = []
row = ""
for i in range(n):
matrix.append(input())
for j in range(m):
if matrix[i][j] == '.':
if (i+j) & 1 == 1:
row += 'W'
else:
row += 'B'
else:
row += '-'
row += '\n'
print(row)
|
Title: DZY Loves Chessboard
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
DZY loves chessboard, and he enjoys playing with it.
He has a chessboard of *n* rows and *m* columns. Some cells of the chessboard are bad, others are good. For every good cell, DZY wants to put a chessman on it. Each chessman is either white or black. After putting all chessmen, DZY wants that no two chessmen with the same color are on two adjacent cells. Two cells are adjacent if and only if they share a common edge.
You task is to find any suitable placement of chessmen on the given chessboard.
Input Specification:
The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
Each of the next *n* lines contains a string of *m* characters: the *j*-th character of the *i*-th string is either "." or "-". A "." means that the corresponding cell (in the *i*-th row and the *j*-th column) is good, while a "-" means it is bad.
Output Specification:
Output must contain *n* lines, each line must contain a string of *m* characters. The *j*-th character of the *i*-th string should be either "W", "B" or "-". Character "W" means the chessman on the cell is white, "B" means it is black, "-" means the cell is a bad cell.
If multiple answers exist, print any of them. It is guaranteed that at least one answer exists.
Demo Input:
['1 1\n.\n', '2 2\n..\n..\n', '3 3\n.-.\n---\n--.']
Demo Output:
['B\n', 'BW\nWB\n', 'B-B\n---\n--B']
Note:
In the first sample, DZY puts a single black chessman. Of course putting a white one is also OK.
In the second sample, all 4 cells are good. No two same chessmen share an edge in the sample output.
In the third sample, no good cells are adjacent. So you can just put 3 chessmen, no matter what their colors are.
|
```python
n, m = map(int, input().split())
matrix = []
row = ""
for i in range(n):
matrix.append(input())
for j in range(m):
if matrix[i][j] == '.':
if (i+j) & 1 == 1:
row += 'W'
else:
row += 'B'
else:
row += '-'
row += '\n'
print(row)
```
| 3
|
|
441
|
A
|
Valera and Antique Items
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Valera is a collector. Once he wanted to expand his collection with exactly one antique item.
Valera knows *n* sellers of antiques, the *i*-th of them auctioned *k**i* items. Currently the auction price of the *j*-th object of the *i*-th seller is *s**ij*. Valera gets on well with each of the *n* sellers. He is perfectly sure that if he outbids the current price of one of the items in the auction (in other words, offers the seller the money that is strictly greater than the current price of the item at the auction), the seller of the object will immediately sign a contract with him.
Unfortunately, Valera has only *v* units of money. Help him to determine which of the *n* sellers he can make a deal with.
|
The first line contains two space-separated integers *n*,<=*v* (1<=≤<=*n*<=≤<=50; 104<=≤<=*v*<=≤<=106) — the number of sellers and the units of money the Valera has.
Then *n* lines follow. The *i*-th line first contains integer *k**i* (1<=≤<=*k**i*<=≤<=50) the number of items of the *i*-th seller. Then go *k**i* space-separated integers *s**i*1,<=*s**i*2,<=...,<=*s**ik**i* (104<=≤<=*s**ij*<=≤<=106) — the current prices of the items of the *i*-th seller.
|
In the first line, print integer *p* — the number of sellers with who Valera can make a deal.
In the second line print *p* space-separated integers *q*1,<=*q*2,<=...,<=*q**p* (1<=≤<=*q**i*<=≤<=*n*) — the numbers of the sellers with who Valera can make a deal. Print the numbers of the sellers in the increasing order.
|
[
"3 50000\n1 40000\n2 20000 60000\n3 10000 70000 190000\n",
"3 50000\n1 50000\n3 100000 120000 110000\n3 120000 110000 120000\n"
] |
[
"3\n1 2 3\n",
"0\n\n"
] |
In the first sample Valera can bargain with each of the sellers. He can outbid the following items: a 40000 item from the first seller, a 20000 item from the second seller, and a 10000 item from the third seller.
In the second sample Valera can not make a deal with any of the sellers, as the prices of all items in the auction too big for him.
| 500
|
[
{
"input": "3 50000\n1 40000\n2 20000 60000\n3 10000 70000 190000",
"output": "3\n1 2 3"
},
{
"input": "3 50000\n1 50000\n3 100000 120000 110000\n3 120000 110000 120000",
"output": "0"
},
{
"input": "2 100001\n1 895737\n1 541571",
"output": "0"
},
{
"input": "1 1000000\n1 1000000",
"output": "0"
},
{
"input": "1 1000000\n1 561774",
"output": "1\n1"
},
{
"input": "3 1000000\n5 1000000 568832 1000000 1000000 1000000\n13 1000000 1000000 1000000 596527 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000\n20 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000",
"output": "2\n1 2"
},
{
"input": "3 999999\n7 1000000 1000000 1000000 999999 1000000 999999 1000000\n6 999999 1000000 999999 1000000 999999 999999\n7 999999 1000000 1000000 999999 1000000 1000000 1000000",
"output": "0"
},
{
"input": "3 999999\n22 1000000 1000000 999999 999999 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 999999 1000000 1000000 999999 1000000 1000000 1000000 352800 999999 1000000\n14 999999 999999 999999 999999 999999 1000000 999999 999999 999999 999999 702638 999999 1000000 999999\n5 999999 1000000 1000000 999999 363236",
"output": "3\n1 2 3"
},
{
"input": "1 50001\n1 50000",
"output": "1\n1"
}
] | 1,477,896,446
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 62
| 0
|
n,v = list(map(int, input().split()))
ans=[]
for i in range(n):
arr = list(map(int, input().split()))
arr.sort()
if v>arr[1]:
ans.append(i+1)
print(len(ans))
for i in ans:
print(i, end=' ')
|
Title: Valera and Antique Items
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera is a collector. Once he wanted to expand his collection with exactly one antique item.
Valera knows *n* sellers of antiques, the *i*-th of them auctioned *k**i* items. Currently the auction price of the *j*-th object of the *i*-th seller is *s**ij*. Valera gets on well with each of the *n* sellers. He is perfectly sure that if he outbids the current price of one of the items in the auction (in other words, offers the seller the money that is strictly greater than the current price of the item at the auction), the seller of the object will immediately sign a contract with him.
Unfortunately, Valera has only *v* units of money. Help him to determine which of the *n* sellers he can make a deal with.
Input Specification:
The first line contains two space-separated integers *n*,<=*v* (1<=≤<=*n*<=≤<=50; 104<=≤<=*v*<=≤<=106) — the number of sellers and the units of money the Valera has.
Then *n* lines follow. The *i*-th line first contains integer *k**i* (1<=≤<=*k**i*<=≤<=50) the number of items of the *i*-th seller. Then go *k**i* space-separated integers *s**i*1,<=*s**i*2,<=...,<=*s**ik**i* (104<=≤<=*s**ij*<=≤<=106) — the current prices of the items of the *i*-th seller.
Output Specification:
In the first line, print integer *p* — the number of sellers with who Valera can make a deal.
In the second line print *p* space-separated integers *q*1,<=*q*2,<=...,<=*q**p* (1<=≤<=*q**i*<=≤<=*n*) — the numbers of the sellers with who Valera can make a deal. Print the numbers of the sellers in the increasing order.
Demo Input:
['3 50000\n1 40000\n2 20000 60000\n3 10000 70000 190000\n', '3 50000\n1 50000\n3 100000 120000 110000\n3 120000 110000 120000\n']
Demo Output:
['3\n1 2 3\n', '0\n\n']
Note:
In the first sample Valera can bargain with each of the sellers. He can outbid the following items: a 40000 item from the first seller, a 20000 item from the second seller, and a 10000 item from the third seller.
In the second sample Valera can not make a deal with any of the sellers, as the prices of all items in the auction too big for him.
|
```python
n,v = list(map(int, input().split()))
ans=[]
for i in range(n):
arr = list(map(int, input().split()))
arr.sort()
if v>arr[1]:
ans.append(i+1)
print(len(ans))
for i in ans:
print(i, end=' ')
```
| 3
|
|
761
|
A
|
Dasha and Stairs
|
PROGRAMMING
| 1,000
|
[
"brute force",
"constructive algorithms",
"implementation",
"math"
] | null | null |
On her way to programming school tiger Dasha faced her first test — a huge staircase!
The steps were numbered from one to infinity. As we know, tigers are very fond of all striped things, it is possible that it has something to do with their color. So on some interval of her way she calculated two values — the number of steps with even and odd numbers.
You need to check whether there is an interval of steps from the *l*-th to the *r*-th (1<=≤<=*l*<=≤<=*r*), for which values that Dasha has found are correct.
|
In the only line you are given two integers *a*, *b* (0<=≤<=*a*,<=*b*<=≤<=100) — the number of even and odd steps, accordingly.
|
In the only line print "YES", if the interval of steps described above exists, and "NO" otherwise.
|
[
"2 3\n",
"3 1\n"
] |
[
"YES\n",
"NO\n"
] |
In the first example one of suitable intervals is from 1 to 5. The interval contains two even steps — 2 and 4, and three odd: 1, 3 and 5.
| 500
|
[
{
"input": "2 3",
"output": "YES"
},
{
"input": "3 1",
"output": "NO"
},
{
"input": "5 4",
"output": "YES"
},
{
"input": "9 9",
"output": "YES"
},
{
"input": "85 95",
"output": "NO"
},
{
"input": "0 1",
"output": "YES"
},
{
"input": "89 25",
"output": "NO"
},
{
"input": "74 73",
"output": "YES"
},
{
"input": "62 39",
"output": "NO"
},
{
"input": "57 57",
"output": "YES"
},
{
"input": "100 99",
"output": "YES"
},
{
"input": "0 0",
"output": "NO"
},
{
"input": "98 100",
"output": "NO"
},
{
"input": "99 100",
"output": "YES"
},
{
"input": "1 0",
"output": "YES"
},
{
"input": "100 0",
"output": "NO"
},
{
"input": "0 100",
"output": "NO"
},
{
"input": "100 98",
"output": "NO"
},
{
"input": "100 100",
"output": "YES"
},
{
"input": "0 5",
"output": "NO"
},
{
"input": "2 2",
"output": "YES"
}
] | 1,593,955,745
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 21
| 109
| 6,758,400
|
a=input()
a=a.split()
n=int(a[0])
m=int(a[1])
if(n==0 and m==0):
print('NO')
else:
if(abs(n-m)<2):
print('YES')
else:
print("NO")
|
Title: Dasha and Stairs
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
On her way to programming school tiger Dasha faced her first test — a huge staircase!
The steps were numbered from one to infinity. As we know, tigers are very fond of all striped things, it is possible that it has something to do with their color. So on some interval of her way she calculated two values — the number of steps with even and odd numbers.
You need to check whether there is an interval of steps from the *l*-th to the *r*-th (1<=≤<=*l*<=≤<=*r*), for which values that Dasha has found are correct.
Input Specification:
In the only line you are given two integers *a*, *b* (0<=≤<=*a*,<=*b*<=≤<=100) — the number of even and odd steps, accordingly.
Output Specification:
In the only line print "YES", if the interval of steps described above exists, and "NO" otherwise.
Demo Input:
['2 3\n', '3 1\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first example one of suitable intervals is from 1 to 5. The interval contains two even steps — 2 and 4, and three odd: 1, 3 and 5.
|
```python
a=input()
a=a.split()
n=int(a[0])
m=int(a[1])
if(n==0 and m==0):
print('NO')
else:
if(abs(n-m)<2):
print('YES')
else:
print("NO")
```
| 3
|
|
1
|
A
|
Theatre Square
|
PROGRAMMING
| 1,000
|
[
"math"
] |
A. Theatre Square
|
1
|
256
|
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
|
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
|
Write the needed number of flagstones.
|
[
"6 6 4\n"
] |
[
"4\n"
] |
none
| 0
|
[
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,665,492,857
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 46
| 0
|
n,m,a=[int(i) for i in input().split()]
res=((n+a-1)//a)*((m+a-1)//a)
print(res)
|
Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none
|
```python
n,m,a=[int(i) for i in input().split()]
res=((n+a-1)//a)*((m+a-1)//a)
print(res)
```
| 3.977
|
669
|
A
|
Little Artem and Presents
|
PROGRAMMING
| 800
|
[
"math"
] | null | null |
Little Artem got *n* stones on his birthday and now wants to give some of them to Masha. He knows that Masha cares more about the fact of receiving the present, rather than the value of that present, so he wants to give her stones as many times as possible. However, Masha remembers the last present she received, so Artem can't give her the same number of stones twice in a row. For example, he can give her 3 stones, then 1 stone, then again 3 stones, but he can't give her 3 stones and then again 3 stones right after that.
How many times can Artem give presents to Masha?
|
The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=109) — number of stones Artem received on his birthday.
|
Print the maximum possible number of times Artem can give presents to Masha.
|
[
"1\n",
"2\n",
"3\n",
"4\n"
] |
[
"1\n",
"1\n",
"2\n",
"3\n"
] |
In the first sample, Artem can only give 1 stone to Masha.
In the second sample, Atrem can give Masha 1 or 2 stones, though he can't give her 1 stone two times.
In the third sample, Atrem can first give Masha 2 stones, a then 1 more stone.
In the fourth sample, Atrem can first give Masha 1 stone, then 2 stones, and finally 1 stone again.
| 500
|
[
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "1"
},
{
"input": "3",
"output": "2"
},
{
"input": "4",
"output": "3"
},
{
"input": "100",
"output": "67"
},
{
"input": "101",
"output": "67"
},
{
"input": "102",
"output": "68"
},
{
"input": "1000000000",
"output": "666666667"
},
{
"input": "5",
"output": "3"
},
{
"input": "6",
"output": "4"
},
{
"input": "999999999",
"output": "666666666"
},
{
"input": "999999998",
"output": "666666665"
},
{
"input": "999999997",
"output": "666666665"
},
{
"input": "999999996",
"output": "666666664"
},
{
"input": "999999995",
"output": "666666663"
},
{
"input": "999999994",
"output": "666666663"
},
{
"input": "999999993",
"output": "666666662"
},
{
"input": "999999992",
"output": "666666661"
},
{
"input": "999999991",
"output": "666666661"
},
{
"input": "1000",
"output": "667"
},
{
"input": "10000",
"output": "6667"
},
{
"input": "100000",
"output": "66667"
},
{
"input": "1000000",
"output": "666667"
},
{
"input": "10000000",
"output": "6666667"
},
{
"input": "100000000",
"output": "66666667"
},
{
"input": "7",
"output": "5"
}
] | 1,566,237,816
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 124
| 0
|
n=int(input())
n=2*n
n=n+1
print(n//3)
|
Title: Little Artem and Presents
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Artem got *n* stones on his birthday and now wants to give some of them to Masha. He knows that Masha cares more about the fact of receiving the present, rather than the value of that present, so he wants to give her stones as many times as possible. However, Masha remembers the last present she received, so Artem can't give her the same number of stones twice in a row. For example, he can give her 3 stones, then 1 stone, then again 3 stones, but he can't give her 3 stones and then again 3 stones right after that.
How many times can Artem give presents to Masha?
Input Specification:
The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=109) — number of stones Artem received on his birthday.
Output Specification:
Print the maximum possible number of times Artem can give presents to Masha.
Demo Input:
['1\n', '2\n', '3\n', '4\n']
Demo Output:
['1\n', '1\n', '2\n', '3\n']
Note:
In the first sample, Artem can only give 1 stone to Masha.
In the second sample, Atrem can give Masha 1 or 2 stones, though he can't give her 1 stone two times.
In the third sample, Atrem can first give Masha 2 stones, a then 1 more stone.
In the fourth sample, Atrem can first give Masha 1 stone, then 2 stones, and finally 1 stone again.
|
```python
n=int(input())
n=2*n
n=n+1
print(n//3)
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
In a small but very proud high school it was decided to win ACM ICPC. This goal requires to compose as many teams of three as possible, but since there were only 6 students who wished to participate, the decision was to build exactly two teams.
After practice competition, participant number *i* got a score of *a**i*. Team score is defined as sum of scores of its participants. High school management is interested if it's possible to build two teams with equal scores. Your task is to answer that question.
|
The single line contains six integers *a*1,<=...,<=*a*6 (0<=≤<=*a**i*<=≤<=1000) — scores of the participants
|
Print "YES" (quotes for clarity), if it is possible to build teams with equal score, and "NO" otherwise.
You can print each character either upper- or lowercase ("YeS" and "yes" are valid when the answer is "YES").
|
[
"1 3 2 1 2 1\n",
"1 1 1 1 1 99\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample, first team can be composed of 1st, 2nd and 6th participant, second — of 3rd, 4th and 5th: team scores are 1 + 3 + 1 = 2 + 1 + 2 = 5.
In the second sample, score of participant number 6 is too high: his team score will be definitely greater.
| 0
|
[
{
"input": "1 3 2 1 2 1",
"output": "YES"
},
{
"input": "1 1 1 1 1 99",
"output": "NO"
},
{
"input": "1000 1000 1000 1000 1000 1000",
"output": "YES"
},
{
"input": "0 0 0 0 0 0",
"output": "YES"
},
{
"input": "633 609 369 704 573 416",
"output": "NO"
},
{
"input": "353 313 327 470 597 31",
"output": "NO"
},
{
"input": "835 638 673 624 232 266",
"output": "NO"
},
{
"input": "936 342 19 398 247 874",
"output": "NO"
},
{
"input": "417 666 978 553 271 488",
"output": "NO"
},
{
"input": "71 66 124 199 67 147",
"output": "YES"
},
{
"input": "54 26 0 171 239 12",
"output": "YES"
},
{
"input": "72 8 186 92 267 69",
"output": "YES"
},
{
"input": "180 179 188 50 75 214",
"output": "YES"
},
{
"input": "16 169 110 136 404 277",
"output": "YES"
},
{
"input": "101 400 9 200 300 10",
"output": "YES"
},
{
"input": "101 400 200 9 300 10",
"output": "YES"
},
{
"input": "101 200 400 9 300 10",
"output": "YES"
},
{
"input": "101 400 200 300 9 10",
"output": "YES"
},
{
"input": "101 200 400 300 9 10",
"output": "YES"
},
{
"input": "4 4 4 4 5 4",
"output": "NO"
},
{
"input": "2 2 2 2 2 1",
"output": "NO"
},
{
"input": "1000 1000 999 1000 1000 1000",
"output": "NO"
},
{
"input": "129 1 10 29 8 111",
"output": "NO"
},
{
"input": "1000 1000 1000 999 999 1000",
"output": "YES"
},
{
"input": "101 200 300 400 9 10",
"output": "YES"
},
{
"input": "101 400 200 300 10 9",
"output": "YES"
},
{
"input": "101 200 400 300 10 9",
"output": "YES"
},
{
"input": "101 200 300 400 10 9",
"output": "YES"
},
{
"input": "101 200 300 10 400 9",
"output": "YES"
},
{
"input": "1 1 1 1 1 5",
"output": "NO"
},
{
"input": "8 1 1 3 3 0",
"output": "NO"
},
{
"input": "1 1 2 2 3 3",
"output": "YES"
},
{
"input": "1 2 2 5 2 5",
"output": "NO"
},
{
"input": "1 2 3 6 6 6",
"output": "NO"
},
{
"input": "36 91 7 86 51 89",
"output": "NO"
},
{
"input": "10 1 1 1 23 24",
"output": "NO"
},
{
"input": "1 1 1 10 23 24",
"output": "NO"
},
{
"input": "20 10 1 2 3 44",
"output": "NO"
},
{
"input": "7 0 14 11 8 6",
"output": "NO"
},
{
"input": "100 496 1 1 1 1",
"output": "NO"
},
{
"input": "5 4 2 5 11 3",
"output": "NO"
},
{
"input": "1 3 7 8 8 9",
"output": "YES"
},
{
"input": "1 3 4 5 18 19",
"output": "YES"
},
{
"input": "5 5 1 2 2 15",
"output": "NO"
},
{
"input": "2 1 0 0 0 5",
"output": "NO"
},
{
"input": "1 6 6 1 20 2",
"output": "NO"
},
{
"input": "2 10 0 0 0 0",
"output": "NO"
},
{
"input": "1 1 3 1 1 11",
"output": "NO"
},
{
"input": "10 10 1 1 1 37",
"output": "NO"
},
{
"input": "1 1 0 0 0 4",
"output": "NO"
},
{
"input": "1 1 10 1 1 28",
"output": "NO"
},
{
"input": "1 5 5 5 6 8",
"output": "YES"
},
{
"input": "0 2 3 4 4 5",
"output": "YES"
}
] | 1,512,589,300
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 53
| 62
| 5,529,600
|
n = [int(i) for i in input().split()]
p = ['012','013','014','015','123','124','125','234','235','345','023','024','025','034','035','045','134','135','145','245']
try:
for i in p:
if sum([n[int(j)] for j in i]) == sum(n)/2:
print('YES')
3/0
print('NO')
except ZeroDivisionError:
pass
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In a small but very proud high school it was decided to win ACM ICPC. This goal requires to compose as many teams of three as possible, but since there were only 6 students who wished to participate, the decision was to build exactly two teams.
After practice competition, participant number *i* got a score of *a**i*. Team score is defined as sum of scores of its participants. High school management is interested if it's possible to build two teams with equal scores. Your task is to answer that question.
Input Specification:
The single line contains six integers *a*1,<=...,<=*a*6 (0<=≤<=*a**i*<=≤<=1000) — scores of the participants
Output Specification:
Print "YES" (quotes for clarity), if it is possible to build teams with equal score, and "NO" otherwise.
You can print each character either upper- or lowercase ("YeS" and "yes" are valid when the answer is "YES").
Demo Input:
['1 3 2 1 2 1\n', '1 1 1 1 1 99\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample, first team can be composed of 1st, 2nd and 6th participant, second — of 3rd, 4th and 5th: team scores are 1 + 3 + 1 = 2 + 1 + 2 = 5.
In the second sample, score of participant number 6 is too high: his team score will be definitely greater.
|
```python
n = [int(i) for i in input().split()]
p = ['012','013','014','015','123','124','125','234','235','345','023','024','025','034','035','045','134','135','145','245']
try:
for i in p:
if sum([n[int(j)] for j in i]) == sum(n)/2:
print('YES')
3/0
print('NO')
except ZeroDivisionError:
pass
```
| 3
|
|
23
|
B
|
Party
|
PROGRAMMING
| 1,600
|
[
"constructive algorithms",
"graphs",
"math"
] |
B. Party
|
2
|
256
|
*n* people came to a party. Then those, who had no friends among people at the party, left. Then those, who had exactly 1 friend among those who stayed, left as well. Then those, who had exactly 2,<=3,<=...,<=*n*<=-<=1 friends among those who stayed by the moment of their leaving, did the same.
What is the maximum amount of people that could stay at the party in the end?
|
The first input line contains one number *t* — amount of tests (1<=≤<=*t*<=≤<=105). Each of the following *t* lines contains one integer number *n* (1<=≤<=*n*<=≤<=105).
|
For each test output in a separate line one number — the maximum amount of people that could stay in the end.
|
[
"1\n3\n"
] |
[
"1\n"
] |
none
| 0
|
[
{
"input": "1\n3",
"output": "1"
}
] | 1,625,663,348
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 2
| 1,526
| 0
|
test_case = int(input());
while test_case > 0:
people = int(input());
if people>2:
people=people-2;
else:
people=0;
print(people);
test_case -= 1
|
Title: Party
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
*n* people came to a party. Then those, who had no friends among people at the party, left. Then those, who had exactly 1 friend among those who stayed, left as well. Then those, who had exactly 2,<=3,<=...,<=*n*<=-<=1 friends among those who stayed by the moment of their leaving, did the same.
What is the maximum amount of people that could stay at the party in the end?
Input Specification:
The first input line contains one number *t* — amount of tests (1<=≤<=*t*<=≤<=105). Each of the following *t* lines contains one integer number *n* (1<=≤<=*n*<=≤<=105).
Output Specification:
For each test output in a separate line one number — the maximum amount of people that could stay in the end.
Demo Input:
['1\n3\n']
Demo Output:
['1\n']
Note:
none
|
```python
test_case = int(input());
while test_case > 0:
people = int(input());
if people>2:
people=people-2;
else:
people=0;
print(people);
test_case -= 1
```
| 3.6185
|
748
|
C
|
Santa Claus and Robot
|
PROGRAMMING
| 1,400
|
[
"constructive algorithms",
"math"
] | null | null |
Santa Claus has Robot which lives on the infinite grid and can move along its lines. He can also, having a sequence of *m* points *p*1,<=*p*2,<=...,<=*p**m* with integer coordinates, do the following: denote its initial location by *p*0. First, the robot will move from *p*0 to *p*1 along one of the shortest paths between them (please notice that since the robot moves only along the grid lines, there can be several shortest paths). Then, after it reaches *p*1, it'll move to *p*2, again, choosing one of the shortest ways, then to *p*3, and so on, until he has visited all points in the given order. Some of the points in the sequence may coincide, in that case Robot will visit that point several times according to the sequence order.
While Santa was away, someone gave a sequence of points to Robot. This sequence is now lost, but Robot saved the protocol of its unit movements. Please, find the minimum possible length of the sequence.
|
The first line of input contains the only positive integer *n* (1<=≤<=*n*<=≤<=2·105) which equals the number of unit segments the robot traveled. The second line contains the movements protocol, which consists of *n* letters, each being equal either L, or R, or U, or D. *k*-th letter stands for the direction which Robot traveled the *k*-th unit segment in: L means that it moved to the left, R — to the right, U — to the top and D — to the bottom. Have a look at the illustrations for better explanation.
|
The only line of input should contain the minimum possible length of the sequence.
|
[
"4\nRURD\n",
"6\nRRULDD\n",
"26\nRRRULURURUULULLLDLDDRDRDLD\n",
"3\nRLL\n",
"4\nLRLR\n"
] |
[
"2\n",
"2\n",
"7\n",
"2\n",
"4\n"
] |
The illustrations to the first three tests are given below.
<img class="tex-graphics" src="https://espresso.codeforces.com/832fb8f97a482be815e0f87edde26c9791a0d330.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/119a8ba68772b2c2bf76f2acdc58027f6c5cde1f.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/c7b4534f24cbad48148bcba24bc44f37bf7a2dbf.png" style="max-width: 100.0%;max-height: 100.0%;"/>
The last example illustrates that each point in the sequence should be counted as many times as it is presented in the sequence.
| 1,500
|
[
{
"input": "4\nRURD",
"output": "2"
},
{
"input": "6\nRRULDD",
"output": "2"
},
{
"input": "26\nRRRULURURUULULLLDLDDRDRDLD",
"output": "7"
},
{
"input": "3\nRLL",
"output": "2"
},
{
"input": "4\nLRLR",
"output": "4"
},
{
"input": "5\nLRDLR",
"output": "4"
},
{
"input": "10\nDDRDUULUDD",
"output": "3"
},
{
"input": "1\nD",
"output": "1"
}
] | 1,482,660,900
| 4,200
|
Python 3
|
OK
|
TESTS
| 32
| 826
| 5,222,400
|
class Point:
x = 0
y = 0
def __init__(self, new_x, new_y):
self.x = new_x
self.y = new_y
def is_shortest(a, b, turn):
if a.x == b.x and a.y < b.y:
return not turn[0] and not turn[1] and not turn[3]
elif a.x > b.x and a.y < b.y:
return not turn[0] and not turn[3]
elif a.x > b.x and a.y == b.y:
return not turn[0] and not turn[2] and not turn[3]
elif a.x > b.x and a.y > b.y:
return not turn[0] and not turn[2]
elif a.x == b.x and a.y > b.y:
return not turn[0] and not turn[1] and not turn[2]
elif a.x < b.x and a.y > b.y:
return not turn[1] and not turn[2]
elif a.x < b.x and a.y == b.y:
return not turn[1] and not turn[2] and not turn[3]
elif a.x < b.x and a.y < b.y:
return not turn[1] and not turn[3]
else:
return not turn[0] and not turn[1] and not turn[2] and not turn[3]
#print(is_shortest(Point(2, 2), Point(3, 2), [1, 0, 0, 0]))
input()
point = 0
turn = [0] * 4
A = Point(0, 0)
B = Point(0, 0)
state = Point(0, 0)
s = input().strip()
i = 0
while i < len(s):
c = s[i]
B.x = state.x
B.y = state.y
if c == "R":
B.x += 1
turn[0] = 1
elif c == "L":
B.x -= 1
turn[1] = 1
elif c == "U":
B.y += 1
turn[2] = 1
else:
B.y -= 1
turn[3] = 1
#print("#")
#print(A.x, A.y)
#print(B.x, B.y)
if not is_shortest(A, B, turn):
A.x = state.x
A.y = state.y
#print(A.x, A.y)
point += 1
turn = [0] * 4
else:
state.x = B.x
state.y = B.y
i += 1
print(point + 1)
|
Title: Santa Claus and Robot
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Santa Claus has Robot which lives on the infinite grid and can move along its lines. He can also, having a sequence of *m* points *p*1,<=*p*2,<=...,<=*p**m* with integer coordinates, do the following: denote its initial location by *p*0. First, the robot will move from *p*0 to *p*1 along one of the shortest paths between them (please notice that since the robot moves only along the grid lines, there can be several shortest paths). Then, after it reaches *p*1, it'll move to *p*2, again, choosing one of the shortest ways, then to *p*3, and so on, until he has visited all points in the given order. Some of the points in the sequence may coincide, in that case Robot will visit that point several times according to the sequence order.
While Santa was away, someone gave a sequence of points to Robot. This sequence is now lost, but Robot saved the protocol of its unit movements. Please, find the minimum possible length of the sequence.
Input Specification:
The first line of input contains the only positive integer *n* (1<=≤<=*n*<=≤<=2·105) which equals the number of unit segments the robot traveled. The second line contains the movements protocol, which consists of *n* letters, each being equal either L, or R, or U, or D. *k*-th letter stands for the direction which Robot traveled the *k*-th unit segment in: L means that it moved to the left, R — to the right, U — to the top and D — to the bottom. Have a look at the illustrations for better explanation.
Output Specification:
The only line of input should contain the minimum possible length of the sequence.
Demo Input:
['4\nRURD\n', '6\nRRULDD\n', '26\nRRRULURURUULULLLDLDDRDRDLD\n', '3\nRLL\n', '4\nLRLR\n']
Demo Output:
['2\n', '2\n', '7\n', '2\n', '4\n']
Note:
The illustrations to the first three tests are given below.
<img class="tex-graphics" src="https://espresso.codeforces.com/832fb8f97a482be815e0f87edde26c9791a0d330.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/119a8ba68772b2c2bf76f2acdc58027f6c5cde1f.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/c7b4534f24cbad48148bcba24bc44f37bf7a2dbf.png" style="max-width: 100.0%;max-height: 100.0%;"/>
The last example illustrates that each point in the sequence should be counted as many times as it is presented in the sequence.
|
```python
class Point:
x = 0
y = 0
def __init__(self, new_x, new_y):
self.x = new_x
self.y = new_y
def is_shortest(a, b, turn):
if a.x == b.x and a.y < b.y:
return not turn[0] and not turn[1] and not turn[3]
elif a.x > b.x and a.y < b.y:
return not turn[0] and not turn[3]
elif a.x > b.x and a.y == b.y:
return not turn[0] and not turn[2] and not turn[3]
elif a.x > b.x and a.y > b.y:
return not turn[0] and not turn[2]
elif a.x == b.x and a.y > b.y:
return not turn[0] and not turn[1] and not turn[2]
elif a.x < b.x and a.y > b.y:
return not turn[1] and not turn[2]
elif a.x < b.x and a.y == b.y:
return not turn[1] and not turn[2] and not turn[3]
elif a.x < b.x and a.y < b.y:
return not turn[1] and not turn[3]
else:
return not turn[0] and not turn[1] and not turn[2] and not turn[3]
#print(is_shortest(Point(2, 2), Point(3, 2), [1, 0, 0, 0]))
input()
point = 0
turn = [0] * 4
A = Point(0, 0)
B = Point(0, 0)
state = Point(0, 0)
s = input().strip()
i = 0
while i < len(s):
c = s[i]
B.x = state.x
B.y = state.y
if c == "R":
B.x += 1
turn[0] = 1
elif c == "L":
B.x -= 1
turn[1] = 1
elif c == "U":
B.y += 1
turn[2] = 1
else:
B.y -= 1
turn[3] = 1
#print("#")
#print(A.x, A.y)
#print(B.x, B.y)
if not is_shortest(A, B, turn):
A.x = state.x
A.y = state.y
#print(A.x, A.y)
point += 1
turn = [0] * 4
else:
state.x = B.x
state.y = B.y
i += 1
print(point + 1)
```
| 3
|
|
270
|
A
|
Fancy Fence
|
PROGRAMMING
| 1,100
|
[
"geometry",
"implementation",
"math"
] | null | null |
Emuskald needs a fence around his farm, but he is too lazy to build it himself. So he purchased a fence-building robot.
He wants the fence to be a regular polygon. The robot builds the fence along a single path, but it can only make fence corners at a single angle *a*.
Will the robot be able to build the fence Emuskald wants? In other words, is there a regular polygon which angles are equal to *a*?
|
The first line of input contains an integer *t* (0<=<<=*t*<=<<=180) — the number of tests. Each of the following *t* lines contains a single integer *a* (0<=<<=*a*<=<<=180) — the angle the robot can make corners at measured in degrees.
|
For each test, output on a single line "YES" (without quotes), if the robot can build a fence Emuskald wants, and "NO" (without quotes), if it is impossible.
|
[
"3\n30\n60\n90\n"
] |
[
"NO\nYES\nYES\n"
] |
In the first test case, it is impossible to build the fence, since there is no regular polygon with angle <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/df5f4b07dd5316fde165b43657b2696e2919e791.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second test case, the fence is a regular triangle, and in the last test case — a square.
| 500
|
[
{
"input": "3\n30\n60\n90",
"output": "NO\nYES\nYES"
},
{
"input": "6\n1\n2\n3\n170\n179\n25",
"output": "NO\nNO\nNO\nYES\nYES\nNO"
}
] | 1,655,959,087
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 3
| 122
| 2,048,000
|
t = int(input())
while t>0:
n= int(input())
check = False
for i in range(3, 361):
if n*i == (i-2)*180:
print("YES")
check = True
break
if check == False:
print("NO")
t-=1
|
Title: Fancy Fence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Emuskald needs a fence around his farm, but he is too lazy to build it himself. So he purchased a fence-building robot.
He wants the fence to be a regular polygon. The robot builds the fence along a single path, but it can only make fence corners at a single angle *a*.
Will the robot be able to build the fence Emuskald wants? In other words, is there a regular polygon which angles are equal to *a*?
Input Specification:
The first line of input contains an integer *t* (0<=<<=*t*<=<<=180) — the number of tests. Each of the following *t* lines contains a single integer *a* (0<=<<=*a*<=<<=180) — the angle the robot can make corners at measured in degrees.
Output Specification:
For each test, output on a single line "YES" (without quotes), if the robot can build a fence Emuskald wants, and "NO" (without quotes), if it is impossible.
Demo Input:
['3\n30\n60\n90\n']
Demo Output:
['NO\nYES\nYES\n']
Note:
In the first test case, it is impossible to build the fence, since there is no regular polygon with angle <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/df5f4b07dd5316fde165b43657b2696e2919e791.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second test case, the fence is a regular triangle, and in the last test case — a square.
|
```python
t = int(input())
while t>0:
n= int(input())
check = False
for i in range(3, 361):
if n*i == (i-2)*180:
print("YES")
check = True
break
if check == False:
print("NO")
t-=1
```
| 3
|
|
119
|
A
|
Epic Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Simon and Antisimon play a game. Initially each player receives one fixed positive integer that doesn't change throughout the game. Simon receives number *a* and Antisimon receives number *b*. They also have a heap of *n* stones. The players take turns to make a move and Simon starts. During a move a player should take from the heap the number of stones equal to the greatest common divisor of the fixed number he has received and the number of stones left in the heap. A player loses when he cannot take the required number of stones (i. e. the heap has strictly less stones left than one needs to take).
Your task is to determine by the given *a*, *b* and *n* who wins the game.
|
The only string contains space-separated integers *a*, *b* and *n* (1<=≤<=*a*,<=*b*,<=*n*<=≤<=100) — the fixed numbers Simon and Antisimon have received correspondingly and the initial number of stones in the pile.
|
If Simon wins, print "0" (without the quotes), otherwise print "1" (without the quotes).
|
[
"3 5 9\n",
"1 1 100\n"
] |
[
"0",
"1"
] |
The greatest common divisor of two non-negative integers *a* and *b* is such maximum positive integer *k*, that *a* is divisible by *k* without remainder and similarly, *b* is divisible by *k* without remainder. Let *gcd*(*a*, *b*) represent the operation of calculating the greatest common divisor of numbers *a* and *b*. Specifically, *gcd*(*x*, 0) = *gcd*(0, *x*) = *x*.
In the first sample the game will go like that:
- Simon should take *gcd*(3, 9) = 3 stones from the heap. After his move the heap has 6 stones left.- Antisimon should take *gcd*(5, 6) = 1 stone from the heap. After his move the heap has 5 stones left.- Simon should take *gcd*(3, 5) = 1 stone from the heap. After his move the heap has 4 stones left.- Antisimon should take *gcd*(5, 4) = 1 stone from the heap. After his move the heap has 3 stones left.- Simon should take *gcd*(3, 3) = 3 stones from the heap. After his move the heap has 0 stones left.- Antisimon should take *gcd*(5, 0) = 5 stones from the heap. As 0 < 5, it is impossible and Antisimon loses.
In the second sample each player during each move takes one stone from the heap. As *n* is even, Antisimon takes the last stone and Simon can't make a move after that.
| 500
|
[
{
"input": "3 5 9",
"output": "0"
},
{
"input": "1 1 100",
"output": "1"
},
{
"input": "23 12 16",
"output": "1"
},
{
"input": "95 26 29",
"output": "1"
},
{
"input": "73 32 99",
"output": "1"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "41 12 65",
"output": "1"
},
{
"input": "13 61 100",
"output": "1"
},
{
"input": "100 100 10",
"output": "0"
},
{
"input": "12 24 26",
"output": "1"
},
{
"input": "73 21 96",
"output": "1"
},
{
"input": "17 22 81",
"output": "1"
},
{
"input": "14 88 97",
"output": "1"
},
{
"input": "42 81 17",
"output": "0"
},
{
"input": "34 36 19",
"output": "1"
},
{
"input": "21 87 12",
"output": "1"
},
{
"input": "97 92 98",
"output": "1"
},
{
"input": "49 25 62",
"output": "1"
},
{
"input": "29 17 44",
"output": "1"
},
{
"input": "10 1 10",
"output": "0"
},
{
"input": "99 98 100",
"output": "1"
},
{
"input": "100 100 1",
"output": "0"
},
{
"input": "11 99 55",
"output": "0"
},
{
"input": "8 13 21",
"output": "0"
},
{
"input": "34 55 89",
"output": "0"
},
{
"input": "21 34 55",
"output": "1"
},
{
"input": "13 21 34",
"output": "1"
},
{
"input": "34 21 55",
"output": "0"
},
{
"input": "10 20 84",
"output": "1"
},
{
"input": "4 2 5",
"output": "0"
},
{
"input": "3 2 3",
"output": "0"
},
{
"input": "31 23 1",
"output": "0"
},
{
"input": "100 100 100",
"output": "0"
},
{
"input": "100 1 100",
"output": "0"
},
{
"input": "1 100 100",
"output": "1"
},
{
"input": "1 1 100",
"output": "1"
},
{
"input": "17 23 100",
"output": "1"
},
{
"input": "99 98 100",
"output": "1"
},
{
"input": "1 1 2",
"output": "1"
},
{
"input": "2 1 1",
"output": "0"
},
{
"input": "1 2 1",
"output": "0"
},
{
"input": "2 1 2",
"output": "0"
},
{
"input": "10 10 3",
"output": "1"
},
{
"input": "2 2 1",
"output": "0"
},
{
"input": "9 5 1",
"output": "0"
}
] | 1,577,179,980
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 218
| 0
|
import math
a,b,c=map(int,input().split());cnt=int(0);
while True:
if cnt==0:
cnt=1;
if math.gcd(a,c)<=c:
c-=math.gcd(a,c)
else:
print(1)
exit(0)
else:
cnt=0
if(math.gcd(b,c)<=c):
c-=math.gcd(b,c)
else:
print(0)
exit(0)
|
Title: Epic Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Simon and Antisimon play a game. Initially each player receives one fixed positive integer that doesn't change throughout the game. Simon receives number *a* and Antisimon receives number *b*. They also have a heap of *n* stones. The players take turns to make a move and Simon starts. During a move a player should take from the heap the number of stones equal to the greatest common divisor of the fixed number he has received and the number of stones left in the heap. A player loses when he cannot take the required number of stones (i. e. the heap has strictly less stones left than one needs to take).
Your task is to determine by the given *a*, *b* and *n* who wins the game.
Input Specification:
The only string contains space-separated integers *a*, *b* and *n* (1<=≤<=*a*,<=*b*,<=*n*<=≤<=100) — the fixed numbers Simon and Antisimon have received correspondingly and the initial number of stones in the pile.
Output Specification:
If Simon wins, print "0" (without the quotes), otherwise print "1" (without the quotes).
Demo Input:
['3 5 9\n', '1 1 100\n']
Demo Output:
['0', '1']
Note:
The greatest common divisor of two non-negative integers *a* and *b* is such maximum positive integer *k*, that *a* is divisible by *k* without remainder and similarly, *b* is divisible by *k* without remainder. Let *gcd*(*a*, *b*) represent the operation of calculating the greatest common divisor of numbers *a* and *b*. Specifically, *gcd*(*x*, 0) = *gcd*(0, *x*) = *x*.
In the first sample the game will go like that:
- Simon should take *gcd*(3, 9) = 3 stones from the heap. After his move the heap has 6 stones left.- Antisimon should take *gcd*(5, 6) = 1 stone from the heap. After his move the heap has 5 stones left.- Simon should take *gcd*(3, 5) = 1 stone from the heap. After his move the heap has 4 stones left.- Antisimon should take *gcd*(5, 4) = 1 stone from the heap. After his move the heap has 3 stones left.- Simon should take *gcd*(3, 3) = 3 stones from the heap. After his move the heap has 0 stones left.- Antisimon should take *gcd*(5, 0) = 5 stones from the heap. As 0 < 5, it is impossible and Antisimon loses.
In the second sample each player during each move takes one stone from the heap. As *n* is even, Antisimon takes the last stone and Simon can't make a move after that.
|
```python
import math
a,b,c=map(int,input().split());cnt=int(0);
while True:
if cnt==0:
cnt=1;
if math.gcd(a,c)<=c:
c-=math.gcd(a,c)
else:
print(1)
exit(0)
else:
cnt=0
if(math.gcd(b,c)<=c):
c-=math.gcd(b,c)
else:
print(0)
exit(0)
```
| 3
|
|
877
|
A
|
Alex and broken contest
|
PROGRAMMING
| 1,100
|
[
"implementation",
"strings"
] | null | null |
One day Alex was creating a contest about his friends, but accidentally deleted it. Fortunately, all the problems were saved, but now he needs to find them among other problems.
But there are too many problems, to do it manually. Alex asks you to write a program, which will determine if a problem is from this contest by its name.
It is known, that problem is from this contest if and only if its name contains one of Alex's friends' name exactly once. His friends' names are "Danil", "Olya", "Slava", "Ann" and "Nikita".
Names are case sensitive.
|
The only line contains string from lowercase and uppercase letters and "_" symbols of length, not more than 100 — the name of the problem.
|
Print "YES", if problem is from this contest, and "NO" otherwise.
|
[
"Alex_and_broken_contest\n",
"NikitaAndString\n",
"Danil_and_Olya\n"
] |
[
"NO",
"YES",
"NO"
] |
none
| 500
|
[
{
"input": "Alex_and_broken_contest",
"output": "NO"
},
{
"input": "NikitaAndString",
"output": "YES"
},
{
"input": "Danil_and_Olya",
"output": "NO"
},
{
"input": "Slava____and_the_game",
"output": "YES"
},
{
"input": "Olya_and_energy_drinks",
"output": "YES"
},
{
"input": "Danil_and_part_time_job",
"output": "YES"
},
{
"input": "Ann_and_books",
"output": "YES"
},
{
"input": "Olya",
"output": "YES"
},
{
"input": "Nikita",
"output": "YES"
},
{
"input": "Slava",
"output": "YES"
},
{
"input": "Vanya",
"output": "NO"
},
{
"input": "I_dont_know_what_to_write_here",
"output": "NO"
},
{
"input": "danil_and_work",
"output": "NO"
},
{
"input": "Ann",
"output": "YES"
},
{
"input": "Batman_Nananananananan_Batman",
"output": "NO"
},
{
"input": "Olya_Nikita_Ann_Slava_Danil",
"output": "NO"
},
{
"input": "its_me_Mario",
"output": "NO"
},
{
"input": "A",
"output": "NO"
},
{
"input": "Wake_up_Neo",
"output": "NO"
},
{
"input": "Hardest_problem_ever",
"output": "NO"
},
{
"input": "Nikita_Nikita",
"output": "NO"
},
{
"input": "____________________________________________________________________________________________________",
"output": "NO"
},
{
"input": "Nikitb",
"output": "NO"
},
{
"input": "Unn",
"output": "NO"
},
{
"input": "oLya_adn_smth",
"output": "NO"
},
{
"input": "FloorISLava",
"output": "NO"
},
{
"input": "ann",
"output": "NO"
},
{
"input": "aa",
"output": "NO"
},
{
"input": "AAnnnnn",
"output": "YES"
},
{
"input": "AnnAnn",
"output": "NO"
},
{
"input": "Annn",
"output": "YES"
},
{
"input": "Dilzhan",
"output": "NO"
},
{
"input": "Danilaaa",
"output": "YES"
},
{
"input": "AndAnn",
"output": "YES"
},
{
"input": "OlyaAnnAnn",
"output": "NO"
},
{
"input": "DanilDanilOlya",
"output": "NO"
},
{
"input": "DDanil",
"output": "YES"
},
{
"input": "AnnAnnDanil",
"output": "NO"
},
{
"input": "And_Danil",
"output": "YES"
},
{
"input": "abcddddDanil",
"output": "YES"
},
{
"input": "DanilOlyaOlya",
"output": "NO"
},
{
"input": "Nikitaaa",
"output": "YES"
},
{
"input": "aaabbba",
"output": "NO"
},
{
"input": "Ann_Ann_Danil",
"output": "NO"
},
{
"input": "Danil_Danil_Nikita",
"output": "NO"
},
{
"input": "AlexaaaaaaBBBBBOlyaDDDDD",
"output": "YES"
},
{
"input": "IloveDaniland",
"output": "YES"
},
{
"input": "AnAnn",
"output": "YES"
},
{
"input": "Danil_Danil_Olya",
"output": "NO"
},
{
"input": "DanilDanilSlava",
"output": "NO"
},
{
"input": "DanilDanil",
"output": "NO"
},
{
"input": "OlyOlya",
"output": "YES"
},
{
"input": "NikitaNikitb",
"output": "YES"
},
{
"input": "ababaca",
"output": "NO"
},
{
"input": "AnnNikitaNikitaNikitaNikita__good_luck",
"output": "NO"
}
] | 1,612,066,154
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 55
| 109
| 0
|
s=input()
a="Danil"
b="Olya"
c="Ann"
d="Nikita"
e="Slava"
j=s.count(a)+s.count(b)+s.count(c)+s.count(d)+s.count(e)
if j==1:
print("YES")
else:
print("NO")
|
Title: Alex and broken contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Alex was creating a contest about his friends, but accidentally deleted it. Fortunately, all the problems were saved, but now he needs to find them among other problems.
But there are too many problems, to do it manually. Alex asks you to write a program, which will determine if a problem is from this contest by its name.
It is known, that problem is from this contest if and only if its name contains one of Alex's friends' name exactly once. His friends' names are "Danil", "Olya", "Slava", "Ann" and "Nikita".
Names are case sensitive.
Input Specification:
The only line contains string from lowercase and uppercase letters and "_" symbols of length, not more than 100 — the name of the problem.
Output Specification:
Print "YES", if problem is from this contest, and "NO" otherwise.
Demo Input:
['Alex_and_broken_contest\n', 'NikitaAndString\n', 'Danil_and_Olya\n']
Demo Output:
['NO', 'YES', 'NO']
Note:
none
|
```python
s=input()
a="Danil"
b="Olya"
c="Ann"
d="Nikita"
e="Slava"
j=s.count(a)+s.count(b)+s.count(c)+s.count(d)+s.count(e)
if j==1:
print("YES")
else:
print("NO")
```
| 3
|
|
858
|
A
|
k-rounding
|
PROGRAMMING
| 1,100
|
[
"brute force",
"math",
"number theory"
] | null | null |
For a given positive integer *n* denote its *k*-rounding as the minimum positive integer *x*, such that *x* ends with *k* or more zeros in base 10 and is divisible by *n*.
For example, 4-rounding of 375 is 375·80<==<=30000. 30000 is the minimum integer such that it ends with 4 or more zeros and is divisible by 375.
Write a program that will perform the *k*-rounding of *n*.
|
The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=109, 0<=≤<=*k*<=≤<=8).
|
Print the *k*-rounding of *n*.
|
[
"375 4\n",
"10000 1\n",
"38101 0\n",
"123456789 8\n"
] |
[
"30000\n",
"10000\n",
"38101\n",
"12345678900000000\n"
] |
none
| 750
|
[
{
"input": "375 4",
"output": "30000"
},
{
"input": "10000 1",
"output": "10000"
},
{
"input": "38101 0",
"output": "38101"
},
{
"input": "123456789 8",
"output": "12345678900000000"
},
{
"input": "1 0",
"output": "1"
},
{
"input": "2 0",
"output": "2"
},
{
"input": "100 0",
"output": "100"
},
{
"input": "1000000000 0",
"output": "1000000000"
},
{
"input": "160 2",
"output": "800"
},
{
"input": "3 0",
"output": "3"
},
{
"input": "10 0",
"output": "10"
},
{
"input": "1 1",
"output": "10"
},
{
"input": "2 1",
"output": "10"
},
{
"input": "3 1",
"output": "30"
},
{
"input": "4 1",
"output": "20"
},
{
"input": "5 1",
"output": "10"
},
{
"input": "6 1",
"output": "30"
},
{
"input": "7 1",
"output": "70"
},
{
"input": "8 1",
"output": "40"
},
{
"input": "9 1",
"output": "90"
},
{
"input": "10 1",
"output": "10"
},
{
"input": "11 1",
"output": "110"
},
{
"input": "12 1",
"output": "60"
},
{
"input": "16 2",
"output": "400"
},
{
"input": "2 2",
"output": "100"
},
{
"input": "1 2",
"output": "100"
},
{
"input": "5 2",
"output": "100"
},
{
"input": "15 2",
"output": "300"
},
{
"input": "36 2",
"output": "900"
},
{
"input": "1 8",
"output": "100000000"
},
{
"input": "8 8",
"output": "100000000"
},
{
"input": "96 8",
"output": "300000000"
},
{
"input": "175 8",
"output": "700000000"
},
{
"input": "9999995 8",
"output": "199999900000000"
},
{
"input": "999999999 8",
"output": "99999999900000000"
},
{
"input": "12345678 8",
"output": "617283900000000"
},
{
"input": "78125 8",
"output": "100000000"
},
{
"input": "390625 8",
"output": "100000000"
},
{
"input": "1953125 8",
"output": "500000000"
},
{
"input": "9765625 8",
"output": "2500000000"
},
{
"input": "68359375 8",
"output": "17500000000"
},
{
"input": "268435456 8",
"output": "104857600000000"
},
{
"input": "125829120 8",
"output": "9830400000000"
},
{
"input": "128000 8",
"output": "400000000"
},
{
"input": "300000 8",
"output": "300000000"
},
{
"input": "3711871 8",
"output": "371187100000000"
},
{
"input": "55555 8",
"output": "1111100000000"
},
{
"input": "222222222 8",
"output": "11111111100000000"
},
{
"input": "479001600 8",
"output": "7484400000000"
},
{
"input": "655360001 7",
"output": "6553600010000000"
},
{
"input": "655360001 8",
"output": "65536000100000000"
},
{
"input": "1000000000 1",
"output": "1000000000"
},
{
"input": "1000000000 7",
"output": "1000000000"
},
{
"input": "1000000000 8",
"output": "1000000000"
},
{
"input": "100000000 8",
"output": "100000000"
},
{
"input": "10000000 8",
"output": "100000000"
},
{
"input": "1000000 8",
"output": "100000000"
},
{
"input": "10000009 8",
"output": "1000000900000000"
},
{
"input": "10000005 8",
"output": "200000100000000"
},
{
"input": "10000002 8",
"output": "500000100000000"
},
{
"input": "999999997 8",
"output": "99999999700000000"
},
{
"input": "999999997 7",
"output": "9999999970000000"
},
{
"input": "999999995 8",
"output": "19999999900000000"
},
{
"input": "123 8",
"output": "12300000000"
},
{
"input": "24 2",
"output": "600"
},
{
"input": "16 4",
"output": "10000"
},
{
"input": "123456787 8",
"output": "12345678700000000"
},
{
"input": "100000000 8",
"output": "100000000"
},
{
"input": "7 1",
"output": "70"
},
{
"input": "101 1",
"output": "1010"
},
{
"input": "50 2",
"output": "100"
},
{
"input": "999999818 1",
"output": "4999999090"
},
{
"input": "2 1",
"output": "10"
},
{
"input": "123 1",
"output": "1230"
},
{
"input": "16 1",
"output": "80"
},
{
"input": "1 1",
"output": "10"
},
{
"input": "1000000000 8",
"output": "1000000000"
},
{
"input": "15304 6",
"output": "1913000000"
},
{
"input": "3 8",
"output": "300000000"
},
{
"input": "4 2",
"output": "100"
},
{
"input": "100000 7",
"output": "10000000"
},
{
"input": "5 8",
"output": "100000000"
},
{
"input": "16724 6",
"output": "4181000000"
},
{
"input": "999999999 1",
"output": "9999999990"
},
{
"input": "999999990 8",
"output": "9999999900000000"
},
{
"input": "999999999 8",
"output": "99999999900000000"
},
{
"input": "100000 1",
"output": "100000"
},
{
"input": "8 3",
"output": "1000"
},
{
"input": "16768 6",
"output": "262000000"
},
{
"input": "123456789 1",
"output": "1234567890"
},
{
"input": "2 8",
"output": "100000000"
},
{
"input": "999999937 8",
"output": "99999993700000000"
},
{
"input": "5 1",
"output": "10"
},
{
"input": "2000000 7",
"output": "10000000"
},
{
"input": "1999998 2",
"output": "99999900"
},
{
"input": "125 3",
"output": "1000"
}
] | 1,511,377,255
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 96
| 108
| 307,200
|
n,k=map(int,input().split())
x=10**k
if(n>x):
big=n
small=x
else:
big=x
small=n
mod=-1
while(mod!=0):
mod=big%small
big=small
if(mod!=0):
small=mod
print(small*int(n/small)*int(x/small))
|
Title: k-rounding
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
For a given positive integer *n* denote its *k*-rounding as the minimum positive integer *x*, such that *x* ends with *k* or more zeros in base 10 and is divisible by *n*.
For example, 4-rounding of 375 is 375·80<==<=30000. 30000 is the minimum integer such that it ends with 4 or more zeros and is divisible by 375.
Write a program that will perform the *k*-rounding of *n*.
Input Specification:
The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=109, 0<=≤<=*k*<=≤<=8).
Output Specification:
Print the *k*-rounding of *n*.
Demo Input:
['375 4\n', '10000 1\n', '38101 0\n', '123456789 8\n']
Demo Output:
['30000\n', '10000\n', '38101\n', '12345678900000000\n']
Note:
none
|
```python
n,k=map(int,input().split())
x=10**k
if(n>x):
big=n
small=x
else:
big=x
small=n
mod=-1
while(mod!=0):
mod=big%small
big=small
if(mod!=0):
small=mod
print(small*int(n/small)*int(x/small))
```
| 3
|
|
355
|
A
|
Vasya and Digital Root
|
PROGRAMMING
| 1,100
|
[
"constructive algorithms",
"implementation"
] | null | null |
Vasya has recently found out what a digital root of a number is and he decided to share his knowledge with you.
Let's assume that *S*(*n*) is the sum of digits of number *n*, for example, *S*(4098)<==<=4<=+<=0<=+<=9<=+<=8<==<=21. Then the digital root of number *n* equals to:
1. *dr*(*n*)<==<=*S*(*n*), if *S*(*n*)<=<<=10; 1. *dr*(*n*)<==<=*dr*(<=*S*(*n*)<=), if *S*(*n*)<=≥<=10.
For example, *dr*(4098)<=<==<=<=*dr*(21)<=<==<=<=3.
Vasya is afraid of large numbers, so the numbers he works with are at most 101000. For all such numbers, he has proved that *dr*(*n*)<=<==<=<=*S*(<=*S*(<=*S*(<=*S*(*n*)<=)<=)<=) (*n*<=≤<=101000).
Now Vasya wants to quickly find numbers with the given digital root. The problem is, he hasn't learned how to do that and he asked you to help him. You task is, given numbers *k* and *d*, find the number consisting of exactly *k* digits (the leading zeroes are not allowed), with digital root equal to *d*, or else state that such number does not exist.
|
The first line contains two integers *k* and *d* (1<=≤<=*k*<=≤<=1000; 0<=≤<=*d*<=≤<=9).
|
In a single line print either any number that meets the requirements (without the leading zeroes) or "No solution" (without the quotes), if the corresponding number does not exist.
The chosen number must consist of exactly *k* digits. We assume that number 0 doesn't contain any leading zeroes.
|
[
"4 4\n",
"5 1\n",
"1 0\n"
] |
[
"5881\n",
"36172\n",
"0\n"
] |
For the first test sample *dr*(5881) = *dr*(22) = 4.
For the second test sample *dr*(36172) = *dr*(19) = *dr*(10) = 1.
| 500
|
[
{
"input": "4 4",
"output": "5881"
},
{
"input": "5 1",
"output": "36172"
},
{
"input": "1 0",
"output": "0"
},
{
"input": "8 7",
"output": "49722154"
},
{
"input": "487 0",
"output": "No solution"
},
{
"input": "1000 5",
"output": "8541939554067890866522280268745476436249986028349767396372181155840878549622667946850256234534972693110974918858266403731194206972478044933297639886527448596769215803533001453375065914421371731616055420973164037664278812596299678416020519508892847037891229851414508562230407367486468987019052183250172396304562086008837592345867873765321840214188417303688776985319268802181355472294386101622570417737061113209187893810568585166094583478900129912239498334853726870963804475563182775380744565964067602555515611220..."
},
{
"input": "22 9",
"output": "1583569962049529809017"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1 9",
"output": "9"
},
{
"input": "13 5",
"output": "1381199538344"
},
{
"input": "100 4",
"output": "6334594910586850938286642284598905674550356974741186703111536643493065423553455569335256292313330478"
},
{
"input": "123 6",
"output": "928024873067884441426263446866614165147002631091527531801777528825238463822318502518751375671158771476735217071878592158343"
},
{
"input": "1000 1",
"output": "8286301124628812353504240076754144327937426329149605334362213339655339076564408659154706137278060590992944494591503606137350736487608756923833530346502466262820452589925067370165968733865814927433418675056573256434073937686361155637721866942352171450747045834987797118866710087297111065178077368748085213082452303815796793489599773148508108295035303578345492871662297456131736137780231762177312635688688714815857818196180724774924848693916003108422682889382923194020205691379066085156078824413573001257245677878..."
},
{
"input": "2 0",
"output": "No solution"
},
{
"input": "734 9",
"output": "5509849803670339733829077693143634799621955270111335907079347964026719040571586127009915057683769302171314977999063915868539391500563742827163274052101515706840652002966522709635011152141196057419086708927225560622675363856445980167733179728663010064912099615416068178748694469047950713834326493597331720572208847439692450327661109751421257198843242305082523510866664350537162158359215265173356615680034808012842300294492281197211603826994471586252822908597603049772690875861970190564793056757768783375525854981..."
},
{
"input": "678 8",
"output": "3301967993506605598118564082793505826927835671912383741219911930496842130418974223636865915672261642456247377827650506657877850580145623499927271391838907804651235401527392426584047219626357010023552497909436550723659221336486898100975437974320483591226280567200180225706948265372905918038750624429412331582504280650041845010449084641487447573160867860208332424835101416924485616494780952529083292227777966546236453553361466209621076748915774965082618181512654546592160909206650552581723190500273752213154329310..."
},
{
"input": "955 7",
"output": "4875434946733568640983465009954221247849488705968833681097920555785434899849497268074436910608289709905212840964404347113134616236366794383005890642796609027376389191650656756216171636192669456464756898600086886269167613161503734300581107122411830728903919402846291350458047685924037685489537178939190129043010338580479169957795695942333133962326316127076129681213167918954090336000635320714955444899171270809399782177230616239894234246885245402806465700760528496316658100834632585364274381823984214942419830421..."
},
{
"input": "893 3",
"output": "3154491812688062338683413382839715419754844054478504300541293341098785797116419835470049101334759365561276155814822131363018164033585874216523127145546903121862283071300185033613164338905028463571111541628115658108609505120357131336651371062955497690723492519748325195227665653129911625684144804656937323976632567108677478936761775342496303735237936919652618323430255701996987753367609559178855599470625167628439986055634187527493497208780060336400261449926469512996188738133678473883670714775784527941804249702..."
},
{
"input": "998 2",
"output": "8948712698877635315965401396781625629035528026219922557326466734622505808493494219669540192792500692387387200924494124219975316993592377253517258369463882172533672158172302951620486954085880606055358057621166471042557383036617719864238933843342304818076672889894622975857106353903546493307325157763617269195570831067239463586554245706859061059010215520785892192165179414199200952765077228454366556358805840526959104496983177402562569401945586771345953166346316987259989961516385311376707950154520512125143059966..."
},
{
"input": "960 6",
"output": "7291446744949293530598651243840704118065364362420848463900543089429494124955982767375712583398715647208330285855809398453361266463042342917037983463277320070057956978767965467358862479678812136400444143489366786562672928727263605336304125661306952421127807059398289873947797478996261161224877129724944902005212399176751167053423457968483336961277157597291131065544350665072172392437597673561840137077580044817979332136630042866681837917711758227272499659805765131669208911408670581308412686469802437930679571593..."
}
] | 1,415,381,744
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 62
| 0
|
import sys
import math
k, d = [int(x) for x in (sys.stdin.readline()).split()]
if(d == 0 and k == 1):
print(0)
exit()
elif(d == 0):
print("No solution")
exit()
t = []
for i in range(k - 1):
t.append(str(9))
t.append(str(d))
print("".join(t))
|
Title: Vasya and Digital Root
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya has recently found out what a digital root of a number is and he decided to share his knowledge with you.
Let's assume that *S*(*n*) is the sum of digits of number *n*, for example, *S*(4098)<==<=4<=+<=0<=+<=9<=+<=8<==<=21. Then the digital root of number *n* equals to:
1. *dr*(*n*)<==<=*S*(*n*), if *S*(*n*)<=<<=10; 1. *dr*(*n*)<==<=*dr*(<=*S*(*n*)<=), if *S*(*n*)<=≥<=10.
For example, *dr*(4098)<=<==<=<=*dr*(21)<=<==<=<=3.
Vasya is afraid of large numbers, so the numbers he works with are at most 101000. For all such numbers, he has proved that *dr*(*n*)<=<==<=<=*S*(<=*S*(<=*S*(<=*S*(*n*)<=)<=)<=) (*n*<=≤<=101000).
Now Vasya wants to quickly find numbers with the given digital root. The problem is, he hasn't learned how to do that and he asked you to help him. You task is, given numbers *k* and *d*, find the number consisting of exactly *k* digits (the leading zeroes are not allowed), with digital root equal to *d*, or else state that such number does not exist.
Input Specification:
The first line contains two integers *k* and *d* (1<=≤<=*k*<=≤<=1000; 0<=≤<=*d*<=≤<=9).
Output Specification:
In a single line print either any number that meets the requirements (without the leading zeroes) or "No solution" (without the quotes), if the corresponding number does not exist.
The chosen number must consist of exactly *k* digits. We assume that number 0 doesn't contain any leading zeroes.
Demo Input:
['4 4\n', '5 1\n', '1 0\n']
Demo Output:
['5881\n', '36172\n', '0\n']
Note:
For the first test sample *dr*(5881) = *dr*(22) = 4.
For the second test sample *dr*(36172) = *dr*(19) = *dr*(10) = 1.
|
```python
import sys
import math
k, d = [int(x) for x in (sys.stdin.readline()).split()]
if(d == 0 and k == 1):
print(0)
exit()
elif(d == 0):
print("No solution")
exit()
t = []
for i in range(k - 1):
t.append(str(9))
t.append(str(d))
print("".join(t))
```
| 3
|
|
244
|
B
|
Undoubtedly Lucky Numbers
|
PROGRAMMING
| 1,600
|
[
"bitmasks",
"brute force",
"dfs and similar"
] | null | null |
Polycarpus loves lucky numbers. Everybody knows that lucky numbers are positive integers, whose decimal representation (without leading zeroes) contain only the lucky digits *x* and *y*. For example, if *x*<==<=4, and *y*<==<=7, then numbers 47, 744, 4 are lucky.
Let's call a positive integer *a* undoubtedly lucky, if there are such digits *x* and *y* (0<=≤<=*x*,<=*y*<=≤<=9), that the decimal representation of number *a* (without leading zeroes) contains only digits *x* and *y*.
Polycarpus has integer *n*. He wants to know how many positive integers that do not exceed *n*, are undoubtedly lucky. Help him, count this number.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=109) — Polycarpus's number.
|
Print a single integer that says, how many positive integers that do not exceed *n* are undoubtedly lucky.
|
[
"10\n",
"123\n"
] |
[
"10\n",
"113\n"
] |
In the first test sample all numbers that do not exceed 10 are undoubtedly lucky.
In the second sample numbers 102, 103, 104, 105, 106, 107, 108, 109, 120, 123 are not undoubtedly lucky.
| 1,000
|
[
{
"input": "10",
"output": "10"
},
{
"input": "123",
"output": "113"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "2"
},
{
"input": "1000",
"output": "352"
},
{
"input": "1000000000",
"output": "40744"
},
{
"input": "999999999",
"output": "40743"
},
{
"input": "999999998",
"output": "40742"
},
{
"input": "999999997",
"output": "40741"
},
{
"input": "909090901",
"output": "38532"
},
{
"input": "142498040",
"output": "21671"
},
{
"input": "603356456",
"output": "31623"
},
{
"input": "64214872",
"output": "15759"
},
{
"input": "820040584",
"output": "36407"
},
{
"input": "442198",
"output": "3071"
},
{
"input": "784262",
"output": "4079"
},
{
"input": "642678",
"output": "3615"
},
{
"input": "468390",
"output": "3223"
},
{
"input": "326806",
"output": "2759"
},
{
"input": "940",
"output": "331"
},
{
"input": "356",
"output": "175"
},
{
"input": "68",
"output": "68"
},
{
"input": "132",
"output": "114"
},
{
"input": "72",
"output": "72"
},
{
"input": "89",
"output": "89"
},
{
"input": "1",
"output": "1"
},
{
"input": "3",
"output": "3"
},
{
"input": "4",
"output": "4"
},
{
"input": "5",
"output": "5"
},
{
"input": "6",
"output": "6"
},
{
"input": "7",
"output": "7"
},
{
"input": "8",
"output": "8"
},
{
"input": "9",
"output": "9"
},
{
"input": "101",
"output": "101"
},
{
"input": "102",
"output": "101"
}
] | 1,683,990,738
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 530
| 0
|
n=int(input())
g=len(str(n))
c=0
def sol(k,l):
global c
if k and int(k)>n:
return
if len(set(k))>2:
return
if l>g:
return
if k:
c+=1
for i in range(0 if k else 1,10):
sol(k+str(i),l+1)
sol("",0)
print(c)
|
Title: Undoubtedly Lucky Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarpus loves lucky numbers. Everybody knows that lucky numbers are positive integers, whose decimal representation (without leading zeroes) contain only the lucky digits *x* and *y*. For example, if *x*<==<=4, and *y*<==<=7, then numbers 47, 744, 4 are lucky.
Let's call a positive integer *a* undoubtedly lucky, if there are such digits *x* and *y* (0<=≤<=*x*,<=*y*<=≤<=9), that the decimal representation of number *a* (without leading zeroes) contains only digits *x* and *y*.
Polycarpus has integer *n*. He wants to know how many positive integers that do not exceed *n*, are undoubtedly lucky. Help him, count this number.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=109) — Polycarpus's number.
Output Specification:
Print a single integer that says, how many positive integers that do not exceed *n* are undoubtedly lucky.
Demo Input:
['10\n', '123\n']
Demo Output:
['10\n', '113\n']
Note:
In the first test sample all numbers that do not exceed 10 are undoubtedly lucky.
In the second sample numbers 102, 103, 104, 105, 106, 107, 108, 109, 120, 123 are not undoubtedly lucky.
|
```python
n=int(input())
g=len(str(n))
c=0
def sol(k,l):
global c
if k and int(k)>n:
return
if len(set(k))>2:
return
if l>g:
return
if k:
c+=1
for i in range(0 if k else 1,10):
sol(k+str(i),l+1)
sol("",0)
print(c)
```
| 3
|
|
628
|
B
|
New Skateboard
|
PROGRAMMING
| 1,300
|
[
"dp"
] | null | null |
Max wants to buy a new skateboard. He has calculated the amount of money that is needed to buy a new skateboard. He left a calculator on the floor and went to ask some money from his parents. Meanwhile his little brother Yusuf came and started to press the keys randomly. Unfortunately Max has forgotten the number which he had calculated. The only thing he knows is that the number is divisible by 4.
You are given a string *s* consisting of digits (the number on the display of the calculator after Yusuf randomly pressed the keys). Your task is to find the number of substrings which are divisible by 4. A substring can start with a zero.
A substring of a string is a nonempty sequence of consecutive characters.
For example if string *s* is 124 then we have four substrings that are divisible by 4: 12, 4, 24 and 124. For the string 04 the answer is three: 0, 4, 04.
As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use gets/scanf/printf instead of getline/cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java.
|
The only line contains string *s* (1<=≤<=|*s*|<=≤<=3·105). The string *s* contains only digits from 0 to 9.
|
Print integer *a* — the number of substrings of the string *s* that are divisible by 4.
Note that the answer can be huge, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
|
[
"124\n",
"04\n",
"5810438174\n"
] |
[
"4\n",
"3\n",
"9\n"
] |
none
| 0
|
[
{
"input": "124",
"output": "4"
},
{
"input": "04",
"output": "3"
},
{
"input": "5810438174",
"output": "9"
},
{
"input": "1",
"output": "0"
},
{
"input": "039",
"output": "1"
},
{
"input": "97247",
"output": "6"
},
{
"input": "5810438174",
"output": "9"
},
{
"input": "12883340691714056185860211260984431382156326935244",
"output": "424"
},
{
"input": "2144315253572020279108092911160072328496568665545836825277616363478721946398140227406814602154768031",
"output": "1528"
},
{
"input": "80124649014054971081213608137817466046254652492627741860478258558206397113198232823859870363821007188476405951611069347299689170240023979048198711745011542774268179055311013054073075176122755643483380248999657649211459997766221072399103579977409770898200358240970169892326442892826731631357561876251276209119521202062222947560634301788787748428236988789594458520867663257476744168528121470923031438015546006185059454402637036376247785881323277542968298682307854655591317046086531554595892680980142608",
"output": "30826"
},
{
"input": "123456",
"output": "7"
},
{
"input": "4",
"output": "1"
},
{
"input": "123",
"output": "1"
}
] | 1,613,754,121
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 22
| 202
| 10,854,400
|
s = input()
s1 = list(s)
count = 0
count += s1.count('0')
count += s1.count('4')
count += s1.count('8')
for i in range(len(s)-1):
if(int(''.join(s[i:i+2]))%4==0):
count += i+1
print(count)
|
Title: New Skateboard
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Max wants to buy a new skateboard. He has calculated the amount of money that is needed to buy a new skateboard. He left a calculator on the floor and went to ask some money from his parents. Meanwhile his little brother Yusuf came and started to press the keys randomly. Unfortunately Max has forgotten the number which he had calculated. The only thing he knows is that the number is divisible by 4.
You are given a string *s* consisting of digits (the number on the display of the calculator after Yusuf randomly pressed the keys). Your task is to find the number of substrings which are divisible by 4. A substring can start with a zero.
A substring of a string is a nonempty sequence of consecutive characters.
For example if string *s* is 124 then we have four substrings that are divisible by 4: 12, 4, 24 and 124. For the string 04 the answer is three: 0, 4, 04.
As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use gets/scanf/printf instead of getline/cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java.
Input Specification:
The only line contains string *s* (1<=≤<=|*s*|<=≤<=3·105). The string *s* contains only digits from 0 to 9.
Output Specification:
Print integer *a* — the number of substrings of the string *s* that are divisible by 4.
Note that the answer can be huge, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
Demo Input:
['124\n', '04\n', '5810438174\n']
Demo Output:
['4\n', '3\n', '9\n']
Note:
none
|
```python
s = input()
s1 = list(s)
count = 0
count += s1.count('0')
count += s1.count('4')
count += s1.count('8')
for i in range(len(s)-1):
if(int(''.join(s[i:i+2]))%4==0):
count += i+1
print(count)
```
| 3
|
|
711
|
A
|
Bus to Udayland
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
ZS the Coder and Chris the Baboon are travelling to Udayland! To get there, they have to get on the special IOI bus. The IOI bus has *n* rows of seats. There are 4 seats in each row, and the seats are separated into pairs by a walkway. When ZS and Chris came, some places in the bus was already occupied.
ZS and Chris are good friends. They insist to get a pair of neighbouring empty seats. Two seats are considered neighbouring if they are in the same row and in the same pair. Given the configuration of the bus, can you help ZS and Chris determine where they should sit?
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of rows of seats in the bus.
Then, *n* lines follow. Each line contains exactly 5 characters, the first two of them denote the first pair of seats in the row, the third character denotes the walkway (it always equals '|') and the last two of them denote the second pair of seats in the row.
Each character, except the walkway, equals to 'O' or to 'X'. 'O' denotes an empty seat, 'X' denotes an occupied seat. See the sample cases for more details.
|
If it is possible for Chris and ZS to sit at neighbouring empty seats, print "YES" (without quotes) in the first line. In the next *n* lines print the bus configuration, where the characters in the pair of seats for Chris and ZS is changed with characters '+'. Thus the configuration should differ from the input one by exactly two charaters (they should be equal to 'O' in the input and to '+' in the output).
If there is no pair of seats for Chris and ZS, print "NO" (without quotes) in a single line.
If there are multiple solutions, you may print any of them.
|
[
"6\nOO|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n",
"4\nXO|OX\nXO|XX\nOX|OX\nXX|OX\n",
"5\nXX|XX\nXX|XX\nXO|OX\nXO|OO\nOX|XO\n"
] |
[
"YES\n++|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n",
"NO\n",
"YES\nXX|XX\nXX|XX\nXO|OX\nXO|++\nOX|XO\n"
] |
Note that the following is an incorrect configuration for the first sample case because the seats must be in the same pair.
O+|+X
XO|XX
OX|OO
XX|OX
OO|OO
OO|XX
| 500
|
[
{
"input": "6\nOO|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX",
"output": "YES\n++|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX"
},
{
"input": "4\nXO|OX\nXO|XX\nOX|OX\nXX|OX",
"output": "NO"
},
{
"input": "5\nXX|XX\nXX|XX\nXO|OX\nXO|OO\nOX|XO",
"output": "YES\nXX|XX\nXX|XX\nXO|OX\nXO|++\nOX|XO"
},
{
"input": "1\nXO|OX",
"output": "NO"
},
{
"input": "1\nOO|OO",
"output": "YES\n++|OO"
},
{
"input": "4\nXO|XX\nXX|XO\nOX|XX\nXO|XO",
"output": "NO"
},
{
"input": "9\nOX|XO\nOX|XO\nXO|OX\nOX|OX\nXO|OX\nXX|OO\nOX|OX\nOX|XO\nOX|OX",
"output": "YES\nOX|XO\nOX|XO\nXO|OX\nOX|OX\nXO|OX\nXX|++\nOX|OX\nOX|XO\nOX|OX"
},
{
"input": "61\nOX|XX\nOX|XX\nOX|XX\nXO|XO\nXX|XO\nXX|XX\nXX|XX\nOX|XX\nXO|XO\nOX|XO\nXO|OX\nXX|XX\nXX|XX\nOX|OX\nXX|OX\nOX|XO\nOX|XO\nXO|OX\nXO|XX\nOX|XX\nOX|XX\nXO|OX\nXO|XX\nXO|XX\nOX|XX\nXX|XX\nXX|XO\nXO|XX\nXX|XX\nXO|OX\nXX|XO\nXO|XX\nXO|XO\nXO|OX\nXX|OX\nXO|OX\nOX|XX\nXX|OX\nXX|XX\nOX|XO\nOX|XX\nXO|OX\nOX|XX\nOX|XX\nXO|XO\nXO|XX\nOX|XX\nXO|XO\nOX|XX\nXX|XX\nOX|XO\nXO|XO\nXO|XO\nOX|OX\nXX|OX\nXX|OX\nOX|XO\nOX|XX\nOX|OX\nXO|XX\nOX|XX",
"output": "NO"
},
{
"input": "1\nOO|XX",
"output": "YES\n++|XX"
},
{
"input": "10\nOO|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|XX",
"output": "YES\n++|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|XX"
},
{
"input": "10\nXX|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|OO",
"output": "YES\nXX|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|++"
},
{
"input": "5\nXX|XX\nXX|XX\nXO|OX\nOO|OX\nOX|XO",
"output": "YES\nXX|XX\nXX|XX\nXO|OX\n++|OX\nOX|XO"
},
{
"input": "6\nOO|XX\nXO|XX\nOX|OO\nXX|OX\nOO|XX\nOX|XX",
"output": "YES\n++|XX\nXO|XX\nOX|OO\nXX|OX\nOO|XX\nOX|XX"
}
] | 1,598,276,458
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 109
| 6,963,200
|
n = int(input())
result = []
z = 0
for i in range(n):
place = input()
if place.count('OO') > 0:
if z == 0:
result.append(place.replace('OO', '++', 1))
z += 1
else:
result.append(place)
else:
result.append(place)
if z == 1:
print('YES')
for elem in result:
print(elem, end="\n")
else:
print('NO')
|
Title: Bus to Udayland
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
ZS the Coder and Chris the Baboon are travelling to Udayland! To get there, they have to get on the special IOI bus. The IOI bus has *n* rows of seats. There are 4 seats in each row, and the seats are separated into pairs by a walkway. When ZS and Chris came, some places in the bus was already occupied.
ZS and Chris are good friends. They insist to get a pair of neighbouring empty seats. Two seats are considered neighbouring if they are in the same row and in the same pair. Given the configuration of the bus, can you help ZS and Chris determine where they should sit?
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of rows of seats in the bus.
Then, *n* lines follow. Each line contains exactly 5 characters, the first two of them denote the first pair of seats in the row, the third character denotes the walkway (it always equals '|') and the last two of them denote the second pair of seats in the row.
Each character, except the walkway, equals to 'O' or to 'X'. 'O' denotes an empty seat, 'X' denotes an occupied seat. See the sample cases for more details.
Output Specification:
If it is possible for Chris and ZS to sit at neighbouring empty seats, print "YES" (without quotes) in the first line. In the next *n* lines print the bus configuration, where the characters in the pair of seats for Chris and ZS is changed with characters '+'. Thus the configuration should differ from the input one by exactly two charaters (they should be equal to 'O' in the input and to '+' in the output).
If there is no pair of seats for Chris and ZS, print "NO" (without quotes) in a single line.
If there are multiple solutions, you may print any of them.
Demo Input:
['6\nOO|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n', '4\nXO|OX\nXO|XX\nOX|OX\nXX|OX\n', '5\nXX|XX\nXX|XX\nXO|OX\nXO|OO\nOX|XO\n']
Demo Output:
['YES\n++|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n', 'NO\n', 'YES\nXX|XX\nXX|XX\nXO|OX\nXO|++\nOX|XO\n']
Note:
Note that the following is an incorrect configuration for the first sample case because the seats must be in the same pair.
O+|+X
XO|XX
OX|OO
XX|OX
OO|OO
OO|XX
|
```python
n = int(input())
result = []
z = 0
for i in range(n):
place = input()
if place.count('OO') > 0:
if z == 0:
result.append(place.replace('OO', '++', 1))
z += 1
else:
result.append(place)
else:
result.append(place)
if z == 1:
print('YES')
for elem in result:
print(elem, end="\n")
else:
print('NO')
```
| 3
|
|
165
|
A
|
Supercentral Point
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
One day Vasya painted a Cartesian coordinate system on a piece of paper and marked some set of points (*x*1,<=*y*1),<=(*x*2,<=*y*2),<=...,<=(*x**n*,<=*y**n*). Let's define neighbors for some fixed point from the given set (*x*,<=*y*):
- point (*x*',<=*y*') is (*x*,<=*y*)'s right neighbor, if *x*'<=><=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s left neighbor, if *x*'<=<<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s lower neighbor, if *x*'<==<=*x* and *y*'<=<<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s upper neighbor, if *x*'<==<=*x* and *y*'<=><=*y*
We'll consider point (*x*,<=*y*) from the given set supercentral, if it has at least one upper, at least one lower, at least one left and at least one right neighbor among this set's points.
Vasya marked quite many points on the paper. Analyzing the picture manually is rather a challenge, so Vasya asked you to help him. Your task is to find the number of supercentral points in the given set.
|
The first input line contains the only integer *n* (1<=≤<=*n*<=≤<=200) — the number of points in the given set. Next *n* lines contain the coordinates of the points written as "*x* *y*" (without the quotes) (|*x*|,<=|*y*|<=≤<=1000), all coordinates are integers. The numbers in the line are separated by exactly one space. It is guaranteed that all points are different.
|
Print the only number — the number of supercentral points of the given set.
|
[
"8\n1 1\n4 2\n3 1\n1 2\n0 2\n0 1\n1 0\n1 3\n",
"5\n0 0\n0 1\n1 0\n0 -1\n-1 0\n"
] |
[
"2\n",
"1\n"
] |
In the first sample the supercentral points are only points (1, 1) and (1, 2).
In the second sample there is one supercental point — point (0, 0).
| 500
|
[
{
"input": "8\n1 1\n4 2\n3 1\n1 2\n0 2\n0 1\n1 0\n1 3",
"output": "2"
},
{
"input": "5\n0 0\n0 1\n1 0\n0 -1\n-1 0",
"output": "1"
},
{
"input": "9\n-565 -752\n-184 723\n-184 -752\n-184 1\n950 723\n-565 723\n950 -752\n950 1\n-565 1",
"output": "1"
},
{
"input": "25\n-651 897\n916 897\n-651 -808\n-748 301\n-734 414\n-651 -973\n-734 897\n916 -550\n-758 414\n916 180\n-758 -808\n-758 -973\n125 -550\n125 -973\n125 301\n916 414\n-748 -808\n-651 301\n-734 301\n-307 897\n-651 -550\n-651 414\n125 -808\n-748 -550\n916 -808",
"output": "7"
},
{
"input": "1\n487 550",
"output": "0"
},
{
"input": "10\n990 -396\n990 736\n990 646\n990 -102\n990 -570\n990 155\n990 528\n990 489\n990 268\n990 676",
"output": "0"
},
{
"input": "30\n507 836\n525 836\n-779 196\n507 -814\n525 -814\n525 42\n525 196\n525 -136\n-779 311\n507 -360\n525 300\n507 578\n507 311\n-779 836\n507 300\n525 -360\n525 311\n-779 -360\n-779 578\n-779 300\n507 42\n525 578\n-779 379\n507 196\n525 379\n507 379\n-779 -814\n-779 42\n-779 -136\n507 -136",
"output": "8"
},
{
"input": "25\n890 -756\n890 -188\n-37 -756\n-37 853\n523 998\n-261 853\n-351 853\n-351 -188\n523 -756\n-261 -188\n-37 998\n523 -212\n-351 998\n-37 -188\n-351 -756\n-37 -212\n890 998\n890 -212\n523 853\n-351 -212\n-261 -212\n-261 998\n-261 -756\n890 853\n523 -188",
"output": "9"
},
{
"input": "21\n-813 -11\n486 254\n685 254\n-708 254\n-55 -11\n-671 -191\n486 -11\n-671 -11\n685 -11\n685 -191\n486 -191\n-55 254\n-708 -11\n-813 254\n-708 -191\n41 -11\n-671 254\n-813 -191\n41 254\n-55 -191\n41 -191",
"output": "5"
},
{
"input": "4\n1 0\n2 0\n1 1\n1 -1",
"output": "0"
}
] | 1,604,874,159
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 280
| 307,200
|
n = int(input())
lst = []
for i in range(n):
lst.append(list(map(int, input().split())))
counter = 0
for i in range(n):
up, low, left, right = False, False, False, False
for j in range(n):
if lst[i][0] > lst[j][0] and lst[i][1] == lst[j][1]: right = True
if lst[i][0] < lst[j][0] and lst[i][1] == lst[j][1]: left = True
if lst[i][0] == lst[j][0] and lst[i][1] < lst[j][1]: low = True
if lst[i][0] == lst[j][0] and lst[i][1] > lst[j][1]: up = True
if up and low and right and left:
counter += 1
break
print(counter)
|
Title: Supercentral Point
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vasya painted a Cartesian coordinate system on a piece of paper and marked some set of points (*x*1,<=*y*1),<=(*x*2,<=*y*2),<=...,<=(*x**n*,<=*y**n*). Let's define neighbors for some fixed point from the given set (*x*,<=*y*):
- point (*x*',<=*y*') is (*x*,<=*y*)'s right neighbor, if *x*'<=><=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s left neighbor, if *x*'<=<<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s lower neighbor, if *x*'<==<=*x* and *y*'<=<<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s upper neighbor, if *x*'<==<=*x* and *y*'<=><=*y*
We'll consider point (*x*,<=*y*) from the given set supercentral, if it has at least one upper, at least one lower, at least one left and at least one right neighbor among this set's points.
Vasya marked quite many points on the paper. Analyzing the picture manually is rather a challenge, so Vasya asked you to help him. Your task is to find the number of supercentral points in the given set.
Input Specification:
The first input line contains the only integer *n* (1<=≤<=*n*<=≤<=200) — the number of points in the given set. Next *n* lines contain the coordinates of the points written as "*x* *y*" (without the quotes) (|*x*|,<=|*y*|<=≤<=1000), all coordinates are integers. The numbers in the line are separated by exactly one space. It is guaranteed that all points are different.
Output Specification:
Print the only number — the number of supercentral points of the given set.
Demo Input:
['8\n1 1\n4 2\n3 1\n1 2\n0 2\n0 1\n1 0\n1 3\n', '5\n0 0\n0 1\n1 0\n0 -1\n-1 0\n']
Demo Output:
['2\n', '1\n']
Note:
In the first sample the supercentral points are only points (1, 1) and (1, 2).
In the second sample there is one supercental point — point (0, 0).
|
```python
n = int(input())
lst = []
for i in range(n):
lst.append(list(map(int, input().split())))
counter = 0
for i in range(n):
up, low, left, right = False, False, False, False
for j in range(n):
if lst[i][0] > lst[j][0] and lst[i][1] == lst[j][1]: right = True
if lst[i][0] < lst[j][0] and lst[i][1] == lst[j][1]: left = True
if lst[i][0] == lst[j][0] and lst[i][1] < lst[j][1]: low = True
if lst[i][0] == lst[j][0] and lst[i][1] > lst[j][1]: up = True
if up and low and right and left:
counter += 1
break
print(counter)
```
| 3
|
|
581
|
A
|
Vasya the Hipster
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
|
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
|
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
|
[
"3 1\n",
"2 3\n",
"7 3\n"
] |
[
"1 1\n",
"2 0\n",
"3 2\n"
] |
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
| 500
|
[
{
"input": "3 1",
"output": "1 1"
},
{
"input": "2 3",
"output": "2 0"
},
{
"input": "7 3",
"output": "3 2"
},
{
"input": "100 100",
"output": "100 0"
},
{
"input": "4 10",
"output": "4 3"
},
{
"input": "6 10",
"output": "6 2"
},
{
"input": "6 11",
"output": "6 2"
},
{
"input": "10 40",
"output": "10 15"
},
{
"input": "11 56",
"output": "11 22"
},
{
"input": "34 30",
"output": "30 2"
},
{
"input": "33 33",
"output": "33 0"
},
{
"input": "100 45",
"output": "45 27"
},
{
"input": "100 23",
"output": "23 38"
},
{
"input": "45 12",
"output": "12 16"
},
{
"input": "1 1",
"output": "1 0"
},
{
"input": "1 100",
"output": "1 49"
},
{
"input": "100 1",
"output": "1 49"
},
{
"input": "68 59",
"output": "59 4"
},
{
"input": "45 99",
"output": "45 27"
},
{
"input": "99 100",
"output": "99 0"
},
{
"input": "100 98",
"output": "98 1"
},
{
"input": "59 12",
"output": "12 23"
},
{
"input": "86 4",
"output": "4 41"
},
{
"input": "68 21",
"output": "21 23"
},
{
"input": "100 11",
"output": "11 44"
},
{
"input": "100 10",
"output": "10 45"
},
{
"input": "15 45",
"output": "15 15"
},
{
"input": "11 32",
"output": "11 10"
},
{
"input": "34 96",
"output": "34 31"
},
{
"input": "89 89",
"output": "89 0"
}
] | 1,664,397,157
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 46
| 0
|
strs = input()
a,b = tuple(strs.split())
a,b = int(a), int(b)
if a == b:
fashion = a
onecolor = 0
else:
if a > b:
fashion = b
onecolor = (a-b)//2
else:
fashion = a
onecolor = (b-a)//2
print("{} {}".format(fashion,onecolor))
|
Title: Vasya the Hipster
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
Input Specification:
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
Output Specification:
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
Demo Input:
['3 1\n', '2 3\n', '7 3\n']
Demo Output:
['1 1\n', '2 0\n', '3 2\n']
Note:
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
|
```python
strs = input()
a,b = tuple(strs.split())
a,b = int(a), int(b)
if a == b:
fashion = a
onecolor = 0
else:
if a > b:
fashion = b
onecolor = (a-b)//2
else:
fashion = a
onecolor = (b-a)//2
print("{} {}".format(fashion,onecolor))
```
| 3
|
|
670
|
A
|
Holidays
|
PROGRAMMING
| 900
|
[
"brute force",
"constructive algorithms",
"greedy",
"math"
] | null | null |
On the planet Mars a year lasts exactly *n* days (there are no leap years on Mars). But Martians have the same weeks as earthlings — 5 work days and then 2 days off. Your task is to determine the minimum possible and the maximum possible number of days off per year on Mars.
|
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=1<=000<=000) — the number of days in a year on Mars.
|
Print two integers — the minimum possible and the maximum possible number of days off per year on Mars.
|
[
"14\n",
"2\n"
] |
[
"4 4\n",
"0 2\n"
] |
In the first sample there are 14 days in a year on Mars, and therefore independently of the day a year starts with there will be exactly 4 days off .
In the second sample there are only 2 days in a year on Mars, and they can both be either work days or days off.
| 500
|
[
{
"input": "14",
"output": "4 4"
},
{
"input": "2",
"output": "0 2"
},
{
"input": "1",
"output": "0 1"
},
{
"input": "3",
"output": "0 2"
},
{
"input": "4",
"output": "0 2"
},
{
"input": "5",
"output": "0 2"
},
{
"input": "6",
"output": "1 2"
},
{
"input": "7",
"output": "2 2"
},
{
"input": "8",
"output": "2 3"
},
{
"input": "9",
"output": "2 4"
},
{
"input": "10",
"output": "2 4"
},
{
"input": "11",
"output": "2 4"
},
{
"input": "12",
"output": "2 4"
},
{
"input": "13",
"output": "3 4"
},
{
"input": "1000000",
"output": "285714 285715"
},
{
"input": "16",
"output": "4 6"
},
{
"input": "17",
"output": "4 6"
},
{
"input": "18",
"output": "4 6"
},
{
"input": "19",
"output": "4 6"
},
{
"input": "20",
"output": "5 6"
},
{
"input": "21",
"output": "6 6"
},
{
"input": "22",
"output": "6 7"
},
{
"input": "23",
"output": "6 8"
},
{
"input": "24",
"output": "6 8"
},
{
"input": "25",
"output": "6 8"
},
{
"input": "26",
"output": "6 8"
},
{
"input": "27",
"output": "7 8"
},
{
"input": "28",
"output": "8 8"
},
{
"input": "29",
"output": "8 9"
},
{
"input": "30",
"output": "8 10"
},
{
"input": "100",
"output": "28 30"
},
{
"input": "99",
"output": "28 29"
},
{
"input": "98",
"output": "28 28"
},
{
"input": "97",
"output": "27 28"
},
{
"input": "96",
"output": "26 28"
},
{
"input": "95",
"output": "26 28"
},
{
"input": "94",
"output": "26 28"
},
{
"input": "93",
"output": "26 28"
},
{
"input": "92",
"output": "26 27"
},
{
"input": "91",
"output": "26 26"
},
{
"input": "90",
"output": "25 26"
},
{
"input": "89",
"output": "24 26"
},
{
"input": "88",
"output": "24 26"
},
{
"input": "87",
"output": "24 26"
},
{
"input": "86",
"output": "24 26"
},
{
"input": "85",
"output": "24 25"
},
{
"input": "84",
"output": "24 24"
},
{
"input": "83",
"output": "23 24"
},
{
"input": "82",
"output": "22 24"
},
{
"input": "81",
"output": "22 24"
},
{
"input": "80",
"output": "22 24"
},
{
"input": "1000",
"output": "285 286"
},
{
"input": "999",
"output": "284 286"
},
{
"input": "998",
"output": "284 286"
},
{
"input": "997",
"output": "284 286"
},
{
"input": "996",
"output": "284 286"
},
{
"input": "995",
"output": "284 285"
},
{
"input": "994",
"output": "284 284"
},
{
"input": "993",
"output": "283 284"
},
{
"input": "992",
"output": "282 284"
},
{
"input": "991",
"output": "282 284"
},
{
"input": "990",
"output": "282 284"
},
{
"input": "989",
"output": "282 284"
},
{
"input": "988",
"output": "282 283"
},
{
"input": "987",
"output": "282 282"
},
{
"input": "986",
"output": "281 282"
},
{
"input": "985",
"output": "280 282"
},
{
"input": "984",
"output": "280 282"
},
{
"input": "983",
"output": "280 282"
},
{
"input": "982",
"output": "280 282"
},
{
"input": "981",
"output": "280 281"
},
{
"input": "980",
"output": "280 280"
},
{
"input": "10000",
"output": "2856 2858"
},
{
"input": "9999",
"output": "2856 2858"
},
{
"input": "9998",
"output": "2856 2858"
},
{
"input": "9997",
"output": "2856 2857"
},
{
"input": "9996",
"output": "2856 2856"
},
{
"input": "9995",
"output": "2855 2856"
},
{
"input": "9994",
"output": "2854 2856"
},
{
"input": "9993",
"output": "2854 2856"
},
{
"input": "9992",
"output": "2854 2856"
},
{
"input": "9991",
"output": "2854 2856"
},
{
"input": "9990",
"output": "2854 2855"
},
{
"input": "9989",
"output": "2854 2854"
},
{
"input": "9988",
"output": "2853 2854"
},
{
"input": "9987",
"output": "2852 2854"
},
{
"input": "9986",
"output": "2852 2854"
},
{
"input": "9985",
"output": "2852 2854"
},
{
"input": "9984",
"output": "2852 2854"
},
{
"input": "9983",
"output": "2852 2853"
},
{
"input": "9982",
"output": "2852 2852"
},
{
"input": "9981",
"output": "2851 2852"
},
{
"input": "9980",
"output": "2850 2852"
},
{
"input": "100000",
"output": "28570 28572"
},
{
"input": "99999",
"output": "28570 28572"
},
{
"input": "99998",
"output": "28570 28572"
},
{
"input": "99997",
"output": "28570 28572"
},
{
"input": "99996",
"output": "28570 28571"
},
{
"input": "99995",
"output": "28570 28570"
},
{
"input": "99994",
"output": "28569 28570"
},
{
"input": "99993",
"output": "28568 28570"
},
{
"input": "99992",
"output": "28568 28570"
},
{
"input": "99991",
"output": "28568 28570"
},
{
"input": "99990",
"output": "28568 28570"
},
{
"input": "99989",
"output": "28568 28569"
},
{
"input": "99988",
"output": "28568 28568"
},
{
"input": "99987",
"output": "28567 28568"
},
{
"input": "99986",
"output": "28566 28568"
},
{
"input": "99985",
"output": "28566 28568"
},
{
"input": "99984",
"output": "28566 28568"
},
{
"input": "99983",
"output": "28566 28568"
},
{
"input": "99982",
"output": "28566 28567"
},
{
"input": "99981",
"output": "28566 28566"
},
{
"input": "99980",
"output": "28565 28566"
},
{
"input": "999999",
"output": "285714 285714"
},
{
"input": "999998",
"output": "285713 285714"
},
{
"input": "999997",
"output": "285712 285714"
},
{
"input": "999996",
"output": "285712 285714"
},
{
"input": "999995",
"output": "285712 285714"
},
{
"input": "999994",
"output": "285712 285714"
},
{
"input": "999993",
"output": "285712 285713"
},
{
"input": "999992",
"output": "285712 285712"
},
{
"input": "999991",
"output": "285711 285712"
},
{
"input": "999990",
"output": "285710 285712"
},
{
"input": "999989",
"output": "285710 285712"
},
{
"input": "999988",
"output": "285710 285712"
},
{
"input": "999987",
"output": "285710 285712"
},
{
"input": "999986",
"output": "285710 285711"
},
{
"input": "999985",
"output": "285710 285710"
},
{
"input": "999984",
"output": "285709 285710"
},
{
"input": "999983",
"output": "285708 285710"
},
{
"input": "999982",
"output": "285708 285710"
},
{
"input": "999981",
"output": "285708 285710"
},
{
"input": "999980",
"output": "285708 285710"
},
{
"input": "234123",
"output": "66892 66893"
},
{
"input": "234122",
"output": "66892 66892"
},
{
"input": "234121",
"output": "66891 66892"
},
{
"input": "234120",
"output": "66890 66892"
},
{
"input": "234119",
"output": "66890 66892"
},
{
"input": "234118",
"output": "66890 66892"
},
{
"input": "234117",
"output": "66890 66892"
},
{
"input": "234116",
"output": "66890 66891"
},
{
"input": "234115",
"output": "66890 66890"
},
{
"input": "234114",
"output": "66889 66890"
},
{
"input": "234113",
"output": "66888 66890"
},
{
"input": "234112",
"output": "66888 66890"
},
{
"input": "234111",
"output": "66888 66890"
},
{
"input": "234110",
"output": "66888 66890"
},
{
"input": "234109",
"output": "66888 66889"
},
{
"input": "234108",
"output": "66888 66888"
},
{
"input": "234107",
"output": "66887 66888"
},
{
"input": "234106",
"output": "66886 66888"
},
{
"input": "234105",
"output": "66886 66888"
},
{
"input": "234104",
"output": "66886 66888"
},
{
"input": "234103",
"output": "66886 66888"
},
{
"input": "868531",
"output": "248151 248152"
},
{
"input": "868530",
"output": "248150 248152"
},
{
"input": "868529",
"output": "248150 248152"
},
{
"input": "868528",
"output": "248150 248152"
},
{
"input": "868527",
"output": "248150 248152"
},
{
"input": "868526",
"output": "248150 248151"
},
{
"input": "868525",
"output": "248150 248150"
},
{
"input": "868524",
"output": "248149 248150"
},
{
"input": "868523",
"output": "248148 248150"
},
{
"input": "868522",
"output": "248148 248150"
},
{
"input": "868521",
"output": "248148 248150"
},
{
"input": "868520",
"output": "248148 248150"
},
{
"input": "868519",
"output": "248148 248149"
},
{
"input": "868518",
"output": "248148 248148"
},
{
"input": "868517",
"output": "248147 248148"
},
{
"input": "868516",
"output": "248146 248148"
},
{
"input": "868515",
"output": "248146 248148"
},
{
"input": "868514",
"output": "248146 248148"
},
{
"input": "868513",
"output": "248146 248148"
},
{
"input": "868512",
"output": "248146 248147"
},
{
"input": "868511",
"output": "248146 248146"
},
{
"input": "123413",
"output": "35260 35262"
},
{
"input": "123412",
"output": "35260 35262"
},
{
"input": "123411",
"output": "35260 35261"
},
{
"input": "123410",
"output": "35260 35260"
},
{
"input": "123409",
"output": "35259 35260"
},
{
"input": "123408",
"output": "35258 35260"
},
{
"input": "123407",
"output": "35258 35260"
},
{
"input": "123406",
"output": "35258 35260"
},
{
"input": "123405",
"output": "35258 35260"
},
{
"input": "123404",
"output": "35258 35259"
},
{
"input": "123403",
"output": "35258 35258"
},
{
"input": "123402",
"output": "35257 35258"
},
{
"input": "123401",
"output": "35256 35258"
},
{
"input": "123400",
"output": "35256 35258"
},
{
"input": "123399",
"output": "35256 35258"
},
{
"input": "123398",
"output": "35256 35258"
},
{
"input": "123397",
"output": "35256 35257"
},
{
"input": "123396",
"output": "35256 35256"
},
{
"input": "123395",
"output": "35255 35256"
},
{
"input": "123394",
"output": "35254 35256"
},
{
"input": "123393",
"output": "35254 35256"
},
{
"input": "15",
"output": "4 5"
}
] | 1,695,392,297
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 198
| 77
| 1,638,400
|
def calculate_days_off(n, start_day):
days_off = 0
current_day = start_day
for i in range(1, n+1):
if current_day == 6 or current_day == 7: # Saturday or Sunday
days_off += 1
current_day = (current_day % 7) + 1
return days_off
n = int(input())
min_start_day = 1
max_start_day = 6
min_days_off = calculate_days_off(n, min_start_day)
max_days_off = calculate_days_off(n, max_start_day)
print(min_days_off, max_days_off)
|
Title: Holidays
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
On the planet Mars a year lasts exactly *n* days (there are no leap years on Mars). But Martians have the same weeks as earthlings — 5 work days and then 2 days off. Your task is to determine the minimum possible and the maximum possible number of days off per year on Mars.
Input Specification:
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=1<=000<=000) — the number of days in a year on Mars.
Output Specification:
Print two integers — the minimum possible and the maximum possible number of days off per year on Mars.
Demo Input:
['14\n', '2\n']
Demo Output:
['4 4\n', '0 2\n']
Note:
In the first sample there are 14 days in a year on Mars, and therefore independently of the day a year starts with there will be exactly 4 days off .
In the second sample there are only 2 days in a year on Mars, and they can both be either work days or days off.
|
```python
def calculate_days_off(n, start_day):
days_off = 0
current_day = start_day
for i in range(1, n+1):
if current_day == 6 or current_day == 7: # Saturday or Sunday
days_off += 1
current_day = (current_day % 7) + 1
return days_off
n = int(input())
min_start_day = 1
max_start_day = 6
min_days_off = calculate_days_off(n, min_start_day)
max_days_off = calculate_days_off(n, max_start_day)
print(min_days_off, max_days_off)
```
| 3
|
|
44
|
E
|
Anfisa the Monkey
|
PROGRAMMING
| 1,400
|
[
"dp"
] |
E. Anfisa the Monkey
|
2
|
256
|
Anfisa the monkey learns to type. She is yet unfamiliar with the "space" key and can only type in lower-case Latin letters. Having typed for a fairly long line, Anfisa understood that it would be great to divide what she has written into *k* lines not shorter than *a* and not longer than *b*, for the text to resemble human speech more. Help Anfisa.
|
The first line contains three integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=200, 1<=≤<=*a*<=≤<=*b*<=≤<=200). The second line contains a sequence of lowercase Latin letters — the text typed by Anfisa. It is guaranteed that the given line is not empty and its length does not exceed 200 symbols.
|
Print *k* lines, each of which contains no less than *a* and no more than *b* symbols — Anfisa's text divided into lines. It is not allowed to perform any changes in the text, such as: deleting or adding symbols, changing their order, etc. If the solution is not unique, print any of them. If there is no solution, print "No solution" (without quotes).
|
[
"3 2 5\nabrakadabra\n",
"4 1 2\nabrakadabra\n"
] |
[
"ab\nrakad\nabra\n",
"No solution\n"
] |
none
| 0
|
[
{
"input": "3 2 5\nabrakadabra",
"output": "abra\nkada\nbra"
},
{
"input": "4 1 2\nabrakadabra",
"output": "No solution"
},
{
"input": "3 1 2\nvgnfpo",
"output": "vg\nnf\npo"
},
{
"input": "5 3 4\nvrrdnhazvexzjfv",
"output": "vrr\ndnh\nazv\nexz\njfv"
},
{
"input": "10 12 15\nctxgddcfdtllmpuxsjkubuqpldznulsilueakbwwlzgeyudyrjachmitfdcgyzszoejphrubpxzpdtgexaqpxgnoxwfjoikljudnoucirussumyhetfwgaoxfbugfiyjmp",
"output": "ctxgddcfdtllm\npuxsjkubuqpld\nznulsilueakbw\nwlzgeyudyrjac\nhmitfdcgyzszo\nejphrubpxzpdt\ngexaqpxgnoxwf\njoikljudnouci\nrussumyhetfwg\naoxfbugfiyjmp"
},
{
"input": "10 20 30\nbvdqvlxiyogiyimdlwdyxsummjgqxaxsucfeuegleetybsylpnepkqzbutibtlgqrbjbwqnvkysxftmsjqkczoploxoqfuwyrufzwwsxpcqfuckjainpphpbvvtllgkljnnoibsvwnxvaksxjrffakpoxwkhjjjemqatbfkmmlmjhhroetlqvfaumctbicqkuxaabpsh",
"output": "bvdqvlxiyogiyimdlwdy\nxsummjgqxaxsucfeuegl\neetybsylpnepkqzbutib\ntlgqrbjbwqnvkysxftms\njqkczoploxoqfuwyrufz\nwwsxpcqfuckjainpphpb\nvvtllgkljnnoibsvwnxv\naksxjrffakpoxwkhjjje\nmqatbfkmmlmjhhroetlq\nvfaumctbicqkuxaabpsh"
},
{
"input": "10 1 200\nolahgjusovchbowjxtwzvjakrktyjqcgkqmcxknjchzxcvbnkbakwnxdouebomyhjsrfsicmzsgdweabbuipbzrhuqfpynybaohzquqbbsqpoaskccszzsmnfleevtasmjuwqgcqtvysohvyutqipnvuhjumwwyytkeuebbncxsnpavwdkoxyycqrhcidf",
"output": "olahgjusovchbowjxtw\nzvjakrktyjqcgkqmcxk\nnjchzxcvbnkbakwnxdo\nuebomyhjsrfsicmzsgd\nweabbuipbzrhuqfpyny\nbaohzquqbbsqpoaskcc\nszzsmnfleevtasmjuwq\ngcqtvysohvyutqipnvu\nhjumwwyytkeuebbncxs\nnpavwdkoxyycqrhcidf"
},
{
"input": "30 3 6\nebdgacrmhfldirwrcfadurngearrfyjiqkmfqmgzpnzcpprkjyeuuppzvmibzzwyouhxclcgqtjhjmucypqnhdaqke",
"output": "ebd\ngac\nrmh\nfld\nirw\nrcf\nadu\nrng\near\nrfy\njiq\nkmf\nqmg\nzpn\nzcp\nprk\njye\nuup\npzv\nmib\nzzw\nyou\nhxc\nlcg\nqtj\nhjm\nucy\npqn\nhda\nqke"
},
{
"input": "200 1 200\nlycjpjrpkgxrkfvutlcwglghxadttpihmlpphwfttegfpimjxintjdxgqfhzrmxfcfojnxruhyfynlzgpxjeobjyxarsfxaqeogxfzvdlwsimupkwujudtfenryulzvsiazneyibqtweeuxpzrbumqqswjasliyjnnzfzuvthhzcsgfljikkajqkpjftztrzpjneaxqg",
"output": "l\ny\nc\nj\np\nj\nr\np\nk\ng\nx\nr\nk\nf\nv\nu\nt\nl\nc\nw\ng\nl\ng\nh\nx\na\nd\nt\nt\np\ni\nh\nm\nl\np\np\nh\nw\nf\nt\nt\ne\ng\nf\np\ni\nm\nj\nx\ni\nn\nt\nj\nd\nx\ng\nq\nf\nh\nz\nr\nm\nx\nf\nc\nf\no\nj\nn\nx\nr\nu\nh\ny\nf\ny\nn\nl\nz\ng\np\nx\nj\ne\no\nb\nj\ny\nx\na\nr\ns\nf\nx\na\nq\ne\no\ng\nx\nf\nz\nv\nd\nl\nw\ns\ni\nm\nu\np\nk\nw\nu\nj\nu\nd\nt\nf\ne\nn\nr\ny\nu\nl\nz\nv\ns\ni\na\nz\nn\ne\ny\ni\nb\nq\nt\nw\ne\ne\nu\nx\np\nz\nr\nb\nu\nm\nq\nq\ns\nw\nj\na\ns\nl\ni\ny\nj\nn\nn\nz\nf\nz\nu\nv\nt\nh\nh\nz..."
},
{
"input": "15 3 4\naronayjutjdhjcelgexgalnyiruevjelvcvzaihgbwwrc",
"output": "aro\nnay\njut\njdh\njce\nlge\nxga\nlny\niru\nevj\nelv\ncvz\naih\ngbw\nwrc"
},
{
"input": "7 3 4\nweoghhroclwslkfcsszplh",
"output": "weog\nhhr\nocl\nwsl\nkfc\nssz\nplh"
},
{
"input": "12 2 5\nozgscnrddhejkhllokmafxcuorxryhvqnkikauclhfbddfoxl",
"output": "ozgsc\nnrdd\nhejk\nhllo\nkmaf\nxcuo\nrxry\nhvqn\nkika\nuclh\nfbdd\nfoxl"
},
{
"input": "3 1 2\nfpos",
"output": "fp\no\ns"
},
{
"input": "5 3 4\nvrrdnhazvexzjfvs",
"output": "vrrd\nnha\nzve\nxzj\nfvs"
},
{
"input": "10 12 15\nllmpuxsjkubuqpldznulsilueakbwwlzgeyudyrjachmitfdcgyzszoejphrubpxzpdtgexaqpxgnoxwfjoikljudnoucirussumyhetfwgaoxfbugfiyjmpm",
"output": "llmpuxsjkubuq\npldznulsilue\nakbwwlzgeyud\nyrjachmitfdc\ngyzszoejphru\nbpxzpdtgexaq\npxgnoxwfjoik\nljudnoucirus\nsumyhetfwgao\nxfbugfiyjmpm"
},
{
"input": "10 20 30\nvdqvlxiyogiyimdlwdyxsummjgqxaxsucfeuegleetybsylpnepkqzbutibtlgqrbjbwqnvkysxftmsjqkczoploxoqfuwyrufzwwsxpcqfuckjainpphpbvvtllgkljnnoibsvwnxvaksxjrffakpoxwkhjjjemqatbfkmmlmjhhroetlqvfaumctbicqkuxaabpshu",
"output": "vdqvlxiyogiyimdlwdyx\nsummjgqxaxsucfeuegle\netybsylpnepkqzbutibt\nlgqrbjbwqnvkysxftmsj\nqkczoploxoqfuwyrufzw\nwsxpcqfuckjainpphpbv\nvtllgkljnnoibsvwnxva\nksxjrffakpoxwkhjjjem\nqatbfkmmlmjhhroetlqv\nfaumctbicqkuxaabpshu"
},
{
"input": "10 1 200\nolahgjusovchbowjxtwzvjakrktyjqcgkqmcxknjchzxcvbnkbakwnxdouebomyhjsrfsicmzsgdweabbuipbzrhuqfpynybaohzquqbbsqpoaskccszzsmnfleevtasmjuwqgcqtvysohvyutqipnvuhjumwwyytkeuebbncxsnpavwdkoxyycqrhcidfd",
"output": "olahgjusovchbowjxtwz\nvjakrktyjqcgkqmcxkn\njchzxcvbnkbakwnxdou\nebomyhjsrfsicmzsgdw\neabbuipbzrhuqfpynyb\naohzquqbbsqpoaskccs\nzzsmnfleevtasmjuwqg\ncqtvysohvyutqipnvuh\njumwwyytkeuebbncxsn\npavwdkoxyycqrhcidfd"
},
{
"input": "30 3 6\nhstvoyuksbbsbgatemzmvbhbjdmnzpluefgzlcqgfsmkdydadsonaryzskleebdgacrmhfldirwrcfadurngearrfyjiqkmfqmgzpnzcpprkjyeuuppzvmibzzwyouhxclcgqtjhjmucypqnhdaqkea",
"output": "hstvoy\nuksbb\nsbgat\nemzmv\nbhbjd\nmnzpl\nuefgz\nlcqgf\nsmkdy\ndadso\nnaryz\nsklee\nbdgac\nrmhfl\ndirwr\ncfadu\nrngea\nrrfyj\niqkmf\nqmgzp\nnzcpp\nrkjye\nuuppz\nvmibz\nzwyou\nhxclc\ngqtjh\njmucy\npqnhd\naqkea"
},
{
"input": "200 1 200\nycjpjrpkgxrkfvutlcwglghxadttpihmlpphwfttegfpimjxintjdxgqfhzrmxfcfojnxruhyfynlzgpxjeobjyxarsfxaqeogxfzvdlwsimupkwujudtfenryulzvsiazneyibqtweeuxpzrbumqqswjasliyjnnzfzuvthhzcsgfljikkajqkpjftztrzpjneaxqgn",
"output": "y\nc\nj\np\nj\nr\np\nk\ng\nx\nr\nk\nf\nv\nu\nt\nl\nc\nw\ng\nl\ng\nh\nx\na\nd\nt\nt\np\ni\nh\nm\nl\np\np\nh\nw\nf\nt\nt\ne\ng\nf\np\ni\nm\nj\nx\ni\nn\nt\nj\nd\nx\ng\nq\nf\nh\nz\nr\nm\nx\nf\nc\nf\no\nj\nn\nx\nr\nu\nh\ny\nf\ny\nn\nl\nz\ng\np\nx\nj\ne\no\nb\nj\ny\nx\na\nr\ns\nf\nx\na\nq\ne\no\ng\nx\nf\nz\nv\nd\nl\nw\ns\ni\nm\nu\np\nk\nw\nu\nj\nu\nd\nt\nf\ne\nn\nr\ny\nu\nl\nz\nv\ns\ni\na\nz\nn\ne\ny\ni\nb\nq\nt\nw\ne\ne\nu\nx\np\nz\nr\nb\nu\nm\nq\nq\ns\nw\nj\na\ns\nl\ni\ny\nj\nn\nn\nz\nf\nz\nu\nv\nt\nh\nh\nz\nc..."
},
{
"input": "15 3 4\naronayjutjdhjcelgexgalnyiruevjelvcvzaihgbwwrcq",
"output": "aron\nayj\nutj\ndhj\ncel\ngex\ngal\nnyi\nrue\nvje\nlvc\nvza\nihg\nbww\nrcq"
},
{
"input": "200 1 10\njtlykeyfekfrzbpzrhvrxagzywzlsktyzoriwiyatoetikfnhyhlrhuogyhjrxdmlqvpfsmqiqkivtodligzerymdtnqahuprhbfefbjwuavmpkurtfzmwediq",
"output": "No solution"
},
{
"input": "15 2 3\ndplkzxpsxodehcj",
"output": "No solution"
},
{
"input": "100 100 200\nximcxraplfjygtrpxrgjhqagrojixizlogaqfvwvqjaiqvcimelxtmtcsqluvcrdzhihgmwhywfgxmzmikdqdytfrlpzqmvhaexrtflwacsuxhkuzbukgvbdcmwpcvxwznupsmmryxwexlevjlonpipuxjgagxtcgqjdczrnmktgcaagmiumnbcxuafmysisahaqnngc",
"output": "No solution"
},
{
"input": "7 2 3\nggzkinj",
"output": "No solution"
},
{
"input": "17 2 4\npgyujupquzenuldnt",
"output": "No solution"
},
{
"input": "100 1 1\nratfdjnvjmaqgcttjtenixeocyxrtuwhpmejhpxjcqhzjsujqolgcccmvnpoomkrforsdtvhgrcpakibozhgqotcrctzozhggrufk",
"output": "No solution"
},
{
"input": "50 2 3\nizlszyucwjarrrgxzbfzyoxapozmunxuygfjynslcjnxitimjjklucjowtkccbnfsuwtyroxirhxzosbyhvnrroaxryhcvvcjvwfcpvnpdaqwzaiuzycyrtvkgkjfbdqnzrmritaonptpvncdifushrquywzykybhjdplbmsrgibpknxkxkqqywmkeljpxrrmufpkubv",
"output": "No solution"
},
{
"input": "15 2 5\nkddainaviqrjsesrhhdnbuisennbgcxseeyxqtmautpoobtpfigcpgagcixmyzsntmgzwmiczsfp",
"output": "No solution"
},
{
"input": "3 1 50\nhcdonseimahtfmtejvxebwctfkjsrcqjrunpcofrapijvwmmbbbrohkskjomeknlwkdxscybxkintcaynwyjfaghwcofpsbwruzqqqkhyndbxbdpgqokjqitznnnrfuaciriqmyuvktpdxewkrycjefkmjwglhoggpgvztvqndbhiajryxqlrqdb",
"output": "No solution"
},
{
"input": "5 1 30\nxmuatgstrlkerxzezenrauupxiskpfugncncatcgtffhuwzojuapgrevnwzfkpyzbzljbzwvfoeuqhinyravsfqrjmgidjoszvkkhxrdstmydvbertvzltpipmcuakzqflldztzdjqlicvadgpicqio",
"output": "No solution"
},
{
"input": "5 2 3\nabacababb",
"output": "No solution"
},
{
"input": "5 6 6\nabacabadabacabaabacabadabacab",
"output": "No solution"
}
] | 1,572,263,553
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 32
| 280
| 0
|
k,a,b = map(int, input().split())
s=input()
length = len(s)
if length < a*k or length > b*k:
print("No solution")
quit()
parts=[a]*k
length -= a*k
cur=0
while length > 0:
if length < b-a:
parts[cur] += length
length = 0
else:
parts[cur] += b-a
length -= (b-a)
cur += 1
for part in parts:
print(s[:part])
s = s[part:]
|
Title: Anfisa the Monkey
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Anfisa the monkey learns to type. She is yet unfamiliar with the "space" key and can only type in lower-case Latin letters. Having typed for a fairly long line, Anfisa understood that it would be great to divide what she has written into *k* lines not shorter than *a* and not longer than *b*, for the text to resemble human speech more. Help Anfisa.
Input Specification:
The first line contains three integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=200, 1<=≤<=*a*<=≤<=*b*<=≤<=200). The second line contains a sequence of lowercase Latin letters — the text typed by Anfisa. It is guaranteed that the given line is not empty and its length does not exceed 200 symbols.
Output Specification:
Print *k* lines, each of which contains no less than *a* and no more than *b* symbols — Anfisa's text divided into lines. It is not allowed to perform any changes in the text, such as: deleting or adding symbols, changing their order, etc. If the solution is not unique, print any of them. If there is no solution, print "No solution" (without quotes).
Demo Input:
['3 2 5\nabrakadabra\n', '4 1 2\nabrakadabra\n']
Demo Output:
['ab\nrakad\nabra\n', 'No solution\n']
Note:
none
|
```python
k,a,b = map(int, input().split())
s=input()
length = len(s)
if length < a*k or length > b*k:
print("No solution")
quit()
parts=[a]*k
length -= a*k
cur=0
while length > 0:
if length < b-a:
parts[cur] += length
length = 0
else:
parts[cur] += b-a
length -= (b-a)
cur += 1
for part in parts:
print(s[:part])
s = s[part:]
```
| 3.93
|
296
|
A
|
Yaroslav and Permutations
|
PROGRAMMING
| 1,100
|
[
"greedy",
"math"
] | null | null |
Yaroslav has an array that consists of *n* integers. In one second Yaroslav can swap two neighboring array elements. Now Yaroslav is wondering if he can obtain an array where any two neighboring elements would be distinct in a finite time.
Help Yaroslav.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000) — the array elements.
|
In the single line print "YES" (without the quotes) if Yaroslav can obtain the array he needs, and "NO" (without the quotes) otherwise.
|
[
"1\n1\n",
"3\n1 1 2\n",
"4\n7 7 7 7\n"
] |
[
"YES\n",
"YES\n",
"NO\n"
] |
In the first sample the initial array fits well.
In the second sample Yaroslav can get array: 1, 2, 1. He can swap the last and the second last elements to obtain it.
In the third sample Yarosav can't get the array he needs.
| 500
|
[
{
"input": "1\n1",
"output": "YES"
},
{
"input": "3\n1 1 2",
"output": "YES"
},
{
"input": "4\n7 7 7 7",
"output": "NO"
},
{
"input": "4\n479 170 465 146",
"output": "YES"
},
{
"input": "5\n996 437 605 996 293",
"output": "YES"
},
{
"input": "6\n727 539 896 668 36 896",
"output": "YES"
},
{
"input": "7\n674 712 674 674 674 674 674",
"output": "NO"
},
{
"input": "8\n742 742 742 742 742 289 742 742",
"output": "NO"
},
{
"input": "9\n730 351 806 806 806 630 85 757 967",
"output": "YES"
},
{
"input": "10\n324 539 83 440 834 640 440 440 440 440",
"output": "YES"
},
{
"input": "7\n925 830 925 98 987 162 356",
"output": "YES"
},
{
"input": "68\n575 32 53 351 151 942 725 967 431 108 192 8 338 458 288 754 384 946 910 210 759 222 589 423 947 507 31 414 169 901 592 763 656 411 360 625 538 549 484 596 42 603 351 292 837 375 21 597 22 349 200 669 485 282 735 54 1000 419 939 901 789 128 468 729 894 649 484 808",
"output": "YES"
},
{
"input": "22\n618 814 515 310 617 936 452 601 250 520 557 799 304 225 9 845 610 990 703 196 486 94",
"output": "YES"
},
{
"input": "44\n459 581 449 449 449 449 449 449 449 623 449 449 449 449 449 449 449 449 889 449 203 273 329 449 449 449 449 449 449 845 882 323 22 449 449 893 449 449 449 449 449 870 449 402",
"output": "NO"
},
{
"input": "90\n424 3 586 183 286 89 427 618 758 833 933 170 155 722 190 977 330 369 693 426 556 435 550 442 513 146 61 719 754 140 424 280 997 688 530 550 438 867 950 194 196 298 417 287 106 489 283 456 735 115 702 317 672 787 264 314 356 186 54 913 809 833 946 314 757 322 559 647 983 482 145 197 223 130 162 536 451 174 467 45 660 293 440 254 25 155 511 746 650 187",
"output": "YES"
},
{
"input": "14\n959 203 478 315 788 788 373 834 488 519 774 764 193 103",
"output": "YES"
},
{
"input": "81\n544 528 528 528 528 4 506 528 32 528 528 528 528 528 528 528 528 975 528 528 528 528 528 528 528 528 528 528 528 528 528 20 528 528 528 528 528 528 528 528 852 528 528 120 528 528 61 11 528 528 528 228 528 165 883 528 488 475 628 528 528 528 528 528 528 597 528 528 528 528 528 528 528 528 528 528 528 412 528 521 925",
"output": "NO"
},
{
"input": "89\n354 356 352 355 355 355 352 354 354 352 355 356 355 352 354 356 354 355 355 354 353 352 352 355 355 356 352 352 353 356 352 353 354 352 355 352 353 353 353 354 353 354 354 353 356 353 353 354 354 354 354 353 352 353 355 356 356 352 356 354 353 352 355 354 356 356 356 354 354 356 354 355 354 355 353 352 354 355 352 355 355 354 356 353 353 352 356 352 353",
"output": "YES"
},
{
"input": "71\n284 284 285 285 285 284 285 284 284 285 284 285 284 284 285 284 285 285 285 285 284 284 285 285 284 284 284 285 284 285 284 285 285 284 284 284 285 284 284 285 285 285 284 284 285 284 285 285 284 285 285 284 285 284 284 284 285 285 284 285 284 285 285 285 285 284 284 285 285 284 285",
"output": "NO"
},
{
"input": "28\n602 216 214 825 814 760 814 28 76 814 814 288 814 814 222 707 11 490 814 543 914 705 814 751 976 814 814 99",
"output": "YES"
},
{
"input": "48\n546 547 914 263 986 945 914 914 509 871 324 914 153 571 914 914 914 528 970 566 544 914 914 914 410 914 914 589 609 222 914 889 691 844 621 68 914 36 914 39 630 749 914 258 945 914 727 26",
"output": "YES"
},
{
"input": "56\n516 76 516 197 516 427 174 516 706 813 94 37 516 815 516 516 937 483 16 516 842 516 638 691 516 635 516 516 453 263 516 516 635 257 125 214 29 81 516 51 362 516 677 516 903 516 949 654 221 924 516 879 516 516 972 516",
"output": "YES"
},
{
"input": "46\n314 723 314 314 314 235 314 314 314 314 270 314 59 972 314 216 816 40 314 314 314 314 314 314 314 381 314 314 314 314 314 314 314 789 314 957 114 942 314 314 29 314 314 72 314 314",
"output": "NO"
},
{
"input": "72\n169 169 169 599 694 81 250 529 865 406 817 169 667 169 965 169 169 663 65 169 903 169 942 763 169 807 169 603 169 169 13 169 169 810 169 291 169 169 169 169 169 169 169 713 169 440 169 169 169 169 169 480 169 169 867 169 169 169 169 169 169 169 169 393 169 169 459 169 99 169 601 800",
"output": "NO"
},
{
"input": "100\n317 316 317 316 317 316 317 316 317 316 316 317 317 316 317 316 316 316 317 316 317 317 316 317 316 316 316 316 316 316 317 316 317 317 317 317 317 317 316 316 316 317 316 317 316 317 316 317 317 316 317 316 317 317 316 317 316 317 316 317 316 316 316 317 317 317 317 317 316 317 317 316 316 316 316 317 317 316 317 316 316 316 316 316 316 317 316 316 317 317 317 317 317 317 317 317 317 316 316 317",
"output": "NO"
},
{
"input": "100\n510 510 510 162 969 32 510 511 510 510 911 183 496 875 903 461 510 510 123 578 510 510 510 510 510 755 510 673 510 510 763 510 510 909 510 435 487 959 807 510 368 788 557 448 284 332 510 949 510 510 777 112 857 926 487 510 510 510 678 510 510 197 829 427 698 704 409 509 510 238 314 851 510 651 510 455 682 510 714 635 973 510 443 878 510 510 510 591 510 24 596 510 43 183 510 510 671 652 214 784",
"output": "YES"
},
{
"input": "100\n476 477 474 476 476 475 473 476 474 475 473 477 476 476 474 476 474 475 476 477 473 473 473 474 474 476 473 473 476 476 475 476 473 474 473 473 477 475 475 475 476 475 477 477 477 476 475 475 475 473 476 477 475 476 477 473 474 477 473 475 476 476 474 477 476 474 473 477 473 475 477 473 476 474 477 473 475 477 473 476 476 475 476 475 474 473 477 473 475 473 477 473 473 474 475 473 477 476 477 474",
"output": "YES"
},
{
"input": "100\n498 498 498 498 498 499 498 499 499 499 498 498 498 498 499 498 499 499 498 499 498 498 498 499 499 499 498 498 499 499 498 498 498 499 498 499 498 498 498 499 498 499 498 498 498 498 499 498 498 499 498 498 499 498 499 499 498 499 499 499 498 498 498 498 499 498 499 498 499 499 499 499 498 498 499 499 498 499 499 498 498 499 499 498 498 499 499 499 498 498 499 498 498 498 499 499 499 498 498 499",
"output": "NO"
},
{
"input": "100\n858 53 816 816 816 816 816 816 816 181 816 816 816 816 579 879 816 948 171 816 816 150 866 816 816 816 897 816 816 816 816 816 816 706 816 539 816 816 816 816 816 816 423 487 816 615 254 816 816 816 816 83 816 816 816 816 816 816 816 816 816 816 816 136 775 999 816 816 816 644 816 816 816 816 927 816 802 816 856 816 816 816 816 816 816 816 816 816 816 700 816 816 816 816 982 477 816 891 806 816",
"output": "NO"
},
{
"input": "100\n167 169 169 167 169 169 167 167 167 167 168 166 170 170 169 170 170 170 169 168 166 167 170 169 167 169 168 169 166 170 166 167 170 166 166 167 169 166 166 169 166 167 168 168 170 167 168 166 168 170 167 168 167 169 169 166 168 167 170 168 167 169 168 169 166 168 168 169 169 166 170 168 167 169 170 168 167 169 168 167 168 168 166 169 170 170 166 166 167 170 167 168 167 167 169 169 166 166 169 167",
"output": "YES"
},
{
"input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "NO"
},
{
"input": "99\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "NO"
},
{
"input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "YES"
},
{
"input": "99\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "YES"
},
{
"input": "2\n1 1",
"output": "NO"
},
{
"input": "1\n1000",
"output": "YES"
},
{
"input": "12\n2 2 4 4 4 4 6 6 6 6 6 6",
"output": "YES"
}
] | 1,627,738,166
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 124
| 6,963,200
|
n = int(input())
array = list(map(int, input().split()))
hash_map = {}
for x in array:
if x not in hash_map:
hash_map[x] = 1
else:
hash_map[x] += 1
flag = True
for v in hash_map.values():
if v > (n + 1) / 2:
flag = False
break
if flag:
print("YES")
else:
print("NO")
|
Title: Yaroslav and Permutations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Yaroslav has an array that consists of *n* integers. In one second Yaroslav can swap two neighboring array elements. Now Yaroslav is wondering if he can obtain an array where any two neighboring elements would be distinct in a finite time.
Help Yaroslav.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000) — the array elements.
Output Specification:
In the single line print "YES" (without the quotes) if Yaroslav can obtain the array he needs, and "NO" (without the quotes) otherwise.
Demo Input:
['1\n1\n', '3\n1 1 2\n', '4\n7 7 7 7\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n']
Note:
In the first sample the initial array fits well.
In the second sample Yaroslav can get array: 1, 2, 1. He can swap the last and the second last elements to obtain it.
In the third sample Yarosav can't get the array he needs.
|
```python
n = int(input())
array = list(map(int, input().split()))
hash_map = {}
for x in array:
if x not in hash_map:
hash_map[x] = 1
else:
hash_map[x] += 1
flag = True
for v in hash_map.values():
if v > (n + 1) / 2:
flag = False
break
if flag:
print("YES")
else:
print("NO")
```
| 3
|
|
908
|
A
|
New Year and Counting Cards
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
Your friend has *n* cards.
You know that each card has a lowercase English letter on one side and a digit on the other.
Currently, your friend has laid out the cards on a table so only one side of each card is visible.
You would like to know if the following statement is true for cards that your friend owns: "If a card has a vowel on one side, then it has an even digit on the other side." More specifically, a vowel is one of 'a', 'e', 'i', 'o' or 'u', and even digit is one of '0', '2', '4', '6' or '8'.
For example, if a card has 'a' on one side, and '6' on the other side, then this statement is true for it. Also, the statement is true, for example, for a card with 'b' and '4', and for a card with 'b' and '3' (since the letter is not a vowel). The statement is false, for example, for card with 'e' and '5'. You are interested if the statement is true for all cards. In particular, if no card has a vowel, the statement is true.
To determine this, you can flip over some cards to reveal the other side. You would like to know what is the minimum number of cards you need to flip in the worst case in order to verify that the statement is true.
|
The first and only line of input will contain a string *s* (1<=≤<=|*s*|<=≤<=50), denoting the sides of the cards that you can see on the table currently. Each character of *s* is either a lowercase English letter or a digit.
|
Print a single integer, the minimum number of cards you must turn over to verify your claim.
|
[
"ee\n",
"z\n",
"0ay1\n"
] |
[
"2\n",
"0\n",
"2\n"
] |
In the first sample, we must turn over both cards. Note that even though both cards have the same letter, they could possibly have different numbers on the other side.
In the second sample, we don't need to turn over any cards. The statement is vacuously true, since you know your friend has no cards with a vowel on them.
In the third sample, we need to flip the second and fourth cards.
| 500
|
[
{
"input": "ee",
"output": "2"
},
{
"input": "z",
"output": "0"
},
{
"input": "0ay1",
"output": "2"
},
{
"input": "0abcdefghijklmnopqrstuvwxyz1234567896",
"output": "10"
},
{
"input": "0a0a9e9e2i2i9o9o6u6u9z9z4x4x9b9b",
"output": "18"
},
{
"input": "01234567890123456789012345678901234567890123456789",
"output": "25"
},
{
"input": "qwertyuioplkjhgfdsazxcvbnmqwertyuioplkjhgfdsazxcvb",
"output": "10"
},
{
"input": "cjw2dwmr10pku4yxohe0wglktd",
"output": "4"
},
{
"input": "6z2tx805jie8cfybwtfqvmlveec3iak5z5u3lu62vbxyqht6",
"output": "13"
},
{
"input": "kaq7jyialrfp4ilkni90eq8v3amcbygon7py0hb8z26fbl8ss1",
"output": "13"
},
{
"input": "hpwn50zgbmct80k9rizjqg40nycgs0acwikjqt11nr6m61krfs",
"output": "8"
},
{
"input": "l3rw91a4m25l8iytxyeuixsegzcbm4h41ornf3pixkrmwznrzc",
"output": "14"
},
{
"input": "2222",
"output": "0"
},
{
"input": "13579",
"output": "5"
},
{
"input": "1",
"output": "1"
},
{
"input": "0",
"output": "0"
},
{
"input": "a",
"output": "1"
},
{
"input": "y",
"output": "0"
},
{
"input": "w",
"output": "0"
},
{
"input": "oo",
"output": "2"
},
{
"input": "oy",
"output": "1"
},
{
"input": "yo",
"output": "1"
},
{
"input": "yy",
"output": "0"
},
{
"input": "a0",
"output": "1"
},
{
"input": "a9",
"output": "2"
},
{
"input": "y0",
"output": "0"
},
{
"input": "y7",
"output": "1"
},
{
"input": "0a",
"output": "1"
},
{
"input": "3a",
"output": "2"
},
{
"input": "06",
"output": "0"
},
{
"input": "07",
"output": "1"
},
{
"input": "70",
"output": "1"
},
{
"input": "77",
"output": "2"
},
{
"input": "13570",
"output": "4"
},
{
"input": "0000000000011111",
"output": "5"
},
{
"input": "1357",
"output": "4"
},
{
"input": "uuuuuuuuuuuuuuuuuu",
"output": "18"
},
{
"input": "gabieurat",
"output": "5"
}
] | 1,618,191,270
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 38
| 77
| 0
|
string = str(input())
counter = 0
l = ['1','3','5','7','9','a','i','o','u','e']
for ch in string:
if ch in l:
counter += 1
print(counter)
|
Title: New Year and Counting Cards
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Your friend has *n* cards.
You know that each card has a lowercase English letter on one side and a digit on the other.
Currently, your friend has laid out the cards on a table so only one side of each card is visible.
You would like to know if the following statement is true for cards that your friend owns: "If a card has a vowel on one side, then it has an even digit on the other side." More specifically, a vowel is one of 'a', 'e', 'i', 'o' or 'u', and even digit is one of '0', '2', '4', '6' or '8'.
For example, if a card has 'a' on one side, and '6' on the other side, then this statement is true for it. Also, the statement is true, for example, for a card with 'b' and '4', and for a card with 'b' and '3' (since the letter is not a vowel). The statement is false, for example, for card with 'e' and '5'. You are interested if the statement is true for all cards. In particular, if no card has a vowel, the statement is true.
To determine this, you can flip over some cards to reveal the other side. You would like to know what is the minimum number of cards you need to flip in the worst case in order to verify that the statement is true.
Input Specification:
The first and only line of input will contain a string *s* (1<=≤<=|*s*|<=≤<=50), denoting the sides of the cards that you can see on the table currently. Each character of *s* is either a lowercase English letter or a digit.
Output Specification:
Print a single integer, the minimum number of cards you must turn over to verify your claim.
Demo Input:
['ee\n', 'z\n', '0ay1\n']
Demo Output:
['2\n', '0\n', '2\n']
Note:
In the first sample, we must turn over both cards. Note that even though both cards have the same letter, they could possibly have different numbers on the other side.
In the second sample, we don't need to turn over any cards. The statement is vacuously true, since you know your friend has no cards with a vowel on them.
In the third sample, we need to flip the second and fourth cards.
|
```python
string = str(input())
counter = 0
l = ['1','3','5','7','9','a','i','o','u','e']
for ch in string:
if ch in l:
counter += 1
print(counter)
```
| 3
|
|
79
|
B
|
Colorful Field
|
PROGRAMMING
| 1,400
|
[
"implementation",
"sortings"
] |
B. Colorful Field
|
2
|
256
|
Fox Ciel saw a large field while she was on a bus. The field was a *n*<=×<=*m* rectangle divided into 1<=×<=1 cells. Some cells were wasteland, and other each cell contained crop plants: either carrots or kiwis or grapes.
After seeing the field carefully, Ciel found that the crop plants of each cell were planted in following procedure:
- Assume that the rows are numbered 1 to *n* from top to bottom and the columns are numbered 1 to *m* from left to right, and a cell in row *i* and column *j* is represented as (*i*,<=*j*). - First, each field is either cultivated or waste. Crop plants will be planted in the cultivated cells in the order of (1,<=1)<=→<=...<=→<=(1,<=*m*)<=→<=(2,<=1)<=→<=...<=→<=(2,<=*m*)<=→<=...<=→<=(*n*,<=1)<=→<=...<=→<=(*n*,<=*m*). Waste cells will be ignored. - Crop plants (either carrots or kiwis or grapes) will be planted in each cell one after another cyclically. Carrots will be planted in the first cell, then kiwis in the second one, grapes in the third one, carrots in the forth one, kiwis in the fifth one, and so on.
The following figure will show you the example of this procedure. Here, a white square represents a cultivated cell, and a black square represents a waste cell.
Now she is wondering how to determine the crop plants in some certain cells.
|
In the first line there are four positive integers *n*,<=*m*,<=*k*,<=*t* (1<=≤<=*n*<=≤<=4·104,<=1<=≤<=*m*<=≤<=4·104,<=1<=≤<=*k*<=≤<=103,<=1<=≤<=*t*<=≤<=103), each of which represents the height of the field, the width of the field, the number of waste cells and the number of queries that ask the kind of crop plants in a certain cell.
Following each *k* lines contains two integers *a*,<=*b* (1<=≤<=*a*<=≤<=*n*,<=1<=≤<=*b*<=≤<=*m*), which denotes a cell (*a*,<=*b*) is waste. It is guaranteed that the same cell will not appear twice in this section.
Following each *t* lines contains two integers *i*,<=*j* (1<=≤<=*i*<=≤<=*n*,<=1<=≤<=*j*<=≤<=*m*), which is a query that asks you the kind of crop plants of a cell (*i*,<=*j*).
|
For each query, if the cell is waste, print Waste. Otherwise, print the name of crop plants in the cell: either Carrots or Kiwis or Grapes.
|
[
"4 5 5 6\n4 3\n1 3\n3 3\n2 5\n3 2\n1 3\n1 4\n2 3\n2 4\n1 1\n1 1\n"
] |
[
"Waste\nGrapes\nCarrots\nKiwis\nCarrots\nCarrots\n"
] |
The sample corresponds to the figure in the statement.
| 1,000
|
[
{
"input": "4 5 5 6\n4 3\n1 3\n3 3\n2 5\n3 2\n1 3\n1 4\n2 3\n2 4\n1 1\n1 1",
"output": "Waste\nGrapes\nCarrots\nKiwis\nCarrots\nCarrots"
},
{
"input": "2 3 2 2\n1 1\n2 2\n2 1\n2 2",
"output": "Grapes\nWaste"
},
{
"input": "31 31 31 4\n4 9\n16 27\n11 29\n8 28\n11 2\n10 7\n22 6\n1 25\n14 8\n9 7\n9 1\n2 3\n5 2\n21 16\n20 19\n23 14\n27 6\n25 21\n14 1\n18 14\n7 2\n19 12\n30 27\n4 27\n24 12\n25 20\n26 22\n21 17\n11 6\n5 28\n28 24\n17 30\n2 5\n30 10\n4 21",
"output": "Kiwis\nCarrots\nGrapes\nGrapes"
},
{
"input": "39898 39898 3 1\n4567 8901\n12345 23456\n24680 35679\n29292 12121",
"output": "Grapes"
},
{
"input": "1 1 1 1\n1 1\n1 1",
"output": "Waste"
},
{
"input": "1 2 1 2\n1 1\n1 2\n1 1",
"output": "Carrots\nWaste"
},
{
"input": "1 6 3 12\n1 2\n1 4\n1 6\n1 1\n1 2\n1 6\n1 2\n1 5\n1 3\n1 4\n1 5\n1 5\n1 4\n1 6\n1 3",
"output": "Carrots\nWaste\nWaste\nWaste\nGrapes\nKiwis\nWaste\nGrapes\nGrapes\nWaste\nWaste\nKiwis"
},
{
"input": "1 10 1 3\n1 5\n1 5\n1 5\n1 5",
"output": "Waste\nWaste\nWaste"
},
{
"input": "5 5 1 3\n2 2\n2 2\n2 2\n2 2",
"output": "Waste\nWaste\nWaste"
},
{
"input": "3 3 3 5\n1 1\n2 2\n3 3\n1 1\n2 2\n2 2\n2 2\n3 3",
"output": "Waste\nWaste\nWaste\nWaste\nWaste"
},
{
"input": "1 10 2 4\n1 9\n1 5\n1 5\n1 6\n1 9\n1 10",
"output": "Waste\nKiwis\nWaste\nKiwis"
},
{
"input": "5 2 2 1\n3 2\n4 2\n5 2",
"output": "Kiwis"
}
] | 1,628,612,638
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 434
| 6,963,200
|
n,m,k,t=map(int,input().split())
plant=['Grapes','Carrots','Kiwis']
waste=[]
for i in range(0,k):
x,y=map(int,input().split())
waste.append((x-1)*m+(y-1))
for i in range(0,t):
x,y=map(int,input().split())
index=(x-1)*m+(y-1)
if index in waste:
print("Waste")
else:
num=index+1
for j in waste:
if j<index:
num=num-1
print(plant[num%3])
|
Title: Colorful Field
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Fox Ciel saw a large field while she was on a bus. The field was a *n*<=×<=*m* rectangle divided into 1<=×<=1 cells. Some cells were wasteland, and other each cell contained crop plants: either carrots or kiwis or grapes.
After seeing the field carefully, Ciel found that the crop plants of each cell were planted in following procedure:
- Assume that the rows are numbered 1 to *n* from top to bottom and the columns are numbered 1 to *m* from left to right, and a cell in row *i* and column *j* is represented as (*i*,<=*j*). - First, each field is either cultivated or waste. Crop plants will be planted in the cultivated cells in the order of (1,<=1)<=→<=...<=→<=(1,<=*m*)<=→<=(2,<=1)<=→<=...<=→<=(2,<=*m*)<=→<=...<=→<=(*n*,<=1)<=→<=...<=→<=(*n*,<=*m*). Waste cells will be ignored. - Crop plants (either carrots or kiwis or grapes) will be planted in each cell one after another cyclically. Carrots will be planted in the first cell, then kiwis in the second one, grapes in the third one, carrots in the forth one, kiwis in the fifth one, and so on.
The following figure will show you the example of this procedure. Here, a white square represents a cultivated cell, and a black square represents a waste cell.
Now she is wondering how to determine the crop plants in some certain cells.
Input Specification:
In the first line there are four positive integers *n*,<=*m*,<=*k*,<=*t* (1<=≤<=*n*<=≤<=4·104,<=1<=≤<=*m*<=≤<=4·104,<=1<=≤<=*k*<=≤<=103,<=1<=≤<=*t*<=≤<=103), each of which represents the height of the field, the width of the field, the number of waste cells and the number of queries that ask the kind of crop plants in a certain cell.
Following each *k* lines contains two integers *a*,<=*b* (1<=≤<=*a*<=≤<=*n*,<=1<=≤<=*b*<=≤<=*m*), which denotes a cell (*a*,<=*b*) is waste. It is guaranteed that the same cell will not appear twice in this section.
Following each *t* lines contains two integers *i*,<=*j* (1<=≤<=*i*<=≤<=*n*,<=1<=≤<=*j*<=≤<=*m*), which is a query that asks you the kind of crop plants of a cell (*i*,<=*j*).
Output Specification:
For each query, if the cell is waste, print Waste. Otherwise, print the name of crop plants in the cell: either Carrots or Kiwis or Grapes.
Demo Input:
['4 5 5 6\n4 3\n1 3\n3 3\n2 5\n3 2\n1 3\n1 4\n2 3\n2 4\n1 1\n1 1\n']
Demo Output:
['Waste\nGrapes\nCarrots\nKiwis\nCarrots\nCarrots\n']
Note:
The sample corresponds to the figure in the statement.
|
```python
n,m,k,t=map(int,input().split())
plant=['Grapes','Carrots','Kiwis']
waste=[]
for i in range(0,k):
x,y=map(int,input().split())
waste.append((x-1)*m+(y-1))
for i in range(0,t):
x,y=map(int,input().split())
index=(x-1)*m+(y-1)
if index in waste:
print("Waste")
else:
num=index+1
for j in waste:
if j<index:
num=num-1
print(plant[num%3])
```
| 3.87853
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,623,655,348
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 77
| 0
|
s = ''
s1,s2 = input(), input()
for i,j in zip(s1,s2):
if i != j:
s += '1'
else:
s += '0'
print(s)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
s = ''
s1,s2 = input(), input()
for i,j in zip(s1,s2):
if i != j:
s += '1'
else:
s += '0'
print(s)
```
| 3.98075
|
501
|
B
|
Misha and Changing Handles
|
PROGRAMMING
| 1,100
|
[
"data structures",
"dsu",
"strings"
] | null | null |
Misha hacked the Codeforces site. Then he decided to let all the users change their handles. A user can now change his handle any number of times. But each new handle must not be equal to any handle that is already used or that was used at some point.
Misha has a list of handle change requests. After completing the requests he wants to understand the relation between the original and the new handles of the users. Help him to do that.
|
The first line contains integer *q* (1<=≤<=*q*<=≤<=1000), the number of handle change requests.
Next *q* lines contain the descriptions of the requests, one per line.
Each query consists of two non-empty strings *old* and *new*, separated by a space. The strings consist of lowercase and uppercase Latin letters and digits. Strings *old* and *new* are distinct. The lengths of the strings do not exceed 20.
The requests are given chronologically. In other words, by the moment of a query there is a single person with handle *old*, and handle *new* is not used and has not been used by anyone.
|
In the first line output the integer *n* — the number of users that changed their handles at least once.
In the next *n* lines print the mapping between the old and the new handles of the users. Each of them must contain two strings, *old* and *new*, separated by a space, meaning that before the user had handle *old*, and after all the requests are completed, his handle is *new*. You may output lines in any order.
Each user who changes the handle must occur exactly once in this description.
|
[
"5\nMisha ILoveCodeforces\nVasya Petrov\nPetrov VasyaPetrov123\nILoveCodeforces MikeMirzayanov\nPetya Ivanov\n"
] |
[
"3\nPetya Ivanov\nMisha MikeMirzayanov\nVasya VasyaPetrov123\n"
] |
none
| 500
|
[
{
"input": "5\nMisha ILoveCodeforces\nVasya Petrov\nPetrov VasyaPetrov123\nILoveCodeforces MikeMirzayanov\nPetya Ivanov",
"output": "3\nPetya Ivanov\nMisha MikeMirzayanov\nVasya VasyaPetrov123"
},
{
"input": "1\nMisha Vasya",
"output": "1\nMisha Vasya"
},
{
"input": "10\na b\nb c\nc d\nd e\ne f\nf g\ng h\nh i\ni j\nj k",
"output": "1\na k"
},
{
"input": "5\n123abc abc123\nabc123 a1b2c3\na1b2c3 1A2B3C\n1 2\n2 Misha",
"output": "2\n123abc 1A2B3C\n1 Misha"
},
{
"input": "8\nM F\nS D\n1 2\nF G\n2 R\nD Q\nQ W\nW e",
"output": "3\nM G\n1 R\nS e"
},
{
"input": "17\nn5WhQ VCczxtxKwFio5U\nVCczxtxKwFio5U 1WMVGA17cd1LRcp4r\n1WMVGA17cd1LRcp4r SJl\nSJl D8bPUoIft5v1\nNAvvUgunbPZNCL9ZY2 jnLkarKYsotz\nD8bPUoIft5v1 DnDkHi7\njnLkarKYsotz GfjX109HSQ81gFEBJc\nGfjX109HSQ81gFEBJc kBJ0zrH78mveJ\nkBJ0zrH78mveJ 9DrAypYW\nDnDkHi7 3Wkho2PglMDaFQw\n3Wkho2PglMDaFQw pOqW\n9DrAypYW G3y0cXXGsWAh\npOqW yr1Ec\nG3y0cXXGsWAh HrmWWg5u4Hsy\nyr1Ec GkFeivXjQ01\nGkFeivXjQ01 mSsWgbCCZcotV4goiA\nHrmWWg5u4Hsy zkCmEV",
"output": "2\nn5WhQ mSsWgbCCZcotV4goiA\nNAvvUgunbPZNCL9ZY2 zkCmEV"
},
{
"input": "10\nH1nauWCJOImtVqXk gWPMQ9DHv5CtkYp9lwm9\nSEj 2knOMLyzr\n0v69ijnAc S7d7zGTjmlku01Gv\n2knOMLyzr otGmEd\nacwr3TfMV7oCIp RUSVFa9TIWlLsd7SB\nS7d7zGTjmlku01Gv Gd6ZufVmQnBpi\nS1 WOJLpk\nWOJLpk Gu\nRUSVFa9TIWlLsd7SB RFawatGnbVB\notGmEd OTB1zKiOI",
"output": "5\n0v69ijnAc Gd6ZufVmQnBpi\nS1 Gu\nSEj OTB1zKiOI\nacwr3TfMV7oCIp RFawatGnbVB\nH1nauWCJOImtVqXk gWPMQ9DHv5CtkYp9lwm9"
},
{
"input": "14\nTPdoztSZROpjZe z6F8bYFvnER4V5SP0n\n8Aa3PQY3hzHZTPEUz fhrZZPJ3iUS\nm9p888KaZAoQaO KNmdRSAlUVn8zXOM0\nAO s1VGWTCbHzM\ni 4F\nfhrZZPJ3iUS j0OVZQF6MvNcKN9xDZFJ\nDnlkXtaKNlYEI2ApBuwu DMA9i8ScKRxwhe72a3\nj0OVZQF6MvNcKN9xDZFJ DzjmeNqN0H4Teq0Awr\n4F wJcdxt1kwqfDeJ\nqxXlsa5t RHCL1K6aUyns\nr6WYbDaXt hEHw\nJ0Usg DKdKMFJ6tK8XA\nz6F8bYFvnER4V5SP0n 0alJ\nMijh2O6 qic8kXWuR6",
"output": "10\nTPdoztSZROpjZe 0alJ\nJ0Usg DKdKMFJ6tK8XA\nDnlkXtaKNlYEI2ApBuwu DMA9i8ScKRxwhe72a3\n8Aa3PQY3hzHZTPEUz DzjmeNqN0H4Teq0Awr\nm9p888KaZAoQaO KNmdRSAlUVn8zXOM0\nqxXlsa5t RHCL1K6aUyns\nr6WYbDaXt hEHw\nMijh2O6 qic8kXWuR6\nAO s1VGWTCbHzM\ni wJcdxt1kwqfDeJ"
},
{
"input": "14\nHAXRxayyf1Dj1F0mT hjR4A8IQMb0nyBtqG\nWNuMJa5Jg05qkqZOrL noNkWXrSidHGwxgbQ\nmOitVy6W52s0FENMz6 oLUkLNfojssvLvb1t\nhjR4A8IQMb0nyBtqG oA7uBFu4Oo\noA7uBFu4Oo M450\nM450 LXEzO4\noLUkLNfojssvLvb1t YG5\nnoNkWXrSidHGwxgbQ L\nL YBWzu4W\nYBWzu4W ML\nML scVZE9m8JnH\nLXEzO4 Ne0oBPY0Iy\nscVZE9m8JnH GXhznv\nYG5 UY08abilYF1LaXj49hQ",
"output": "3\nWNuMJa5Jg05qkqZOrL GXhznv\nHAXRxayyf1Dj1F0mT Ne0oBPY0Iy\nmOitVy6W52s0FENMz6 UY08abilYF1LaXj49hQ"
}
] | 1,625,535,858
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 77
| 0
|
times = int(input())
old_to_new = {}
new_to_old = {}
for _ in range(times):
(old, new) = input().split(" ")
if old in new_to_old:
old_to_new[new_to_old[old]] = new
new_to_old[new] = new_to_old[old]
else:
old_to_new[old] = new
new_to_old[new] = old
print(len(old_to_new))
for k in old_to_new:
print(f"{k} {old_to_new[k]}")
|
Title: Misha and Changing Handles
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Misha hacked the Codeforces site. Then he decided to let all the users change their handles. A user can now change his handle any number of times. But each new handle must not be equal to any handle that is already used or that was used at some point.
Misha has a list of handle change requests. After completing the requests he wants to understand the relation between the original and the new handles of the users. Help him to do that.
Input Specification:
The first line contains integer *q* (1<=≤<=*q*<=≤<=1000), the number of handle change requests.
Next *q* lines contain the descriptions of the requests, one per line.
Each query consists of two non-empty strings *old* and *new*, separated by a space. The strings consist of lowercase and uppercase Latin letters and digits. Strings *old* and *new* are distinct. The lengths of the strings do not exceed 20.
The requests are given chronologically. In other words, by the moment of a query there is a single person with handle *old*, and handle *new* is not used and has not been used by anyone.
Output Specification:
In the first line output the integer *n* — the number of users that changed their handles at least once.
In the next *n* lines print the mapping between the old and the new handles of the users. Each of them must contain two strings, *old* and *new*, separated by a space, meaning that before the user had handle *old*, and after all the requests are completed, his handle is *new*. You may output lines in any order.
Each user who changes the handle must occur exactly once in this description.
Demo Input:
['5\nMisha ILoveCodeforces\nVasya Petrov\nPetrov VasyaPetrov123\nILoveCodeforces MikeMirzayanov\nPetya Ivanov\n']
Demo Output:
['3\nPetya Ivanov\nMisha MikeMirzayanov\nVasya VasyaPetrov123\n']
Note:
none
|
```python
times = int(input())
old_to_new = {}
new_to_old = {}
for _ in range(times):
(old, new) = input().split(" ")
if old in new_to_old:
old_to_new[new_to_old[old]] = new
new_to_old[new] = new_to_old[old]
else:
old_to_new[old] = new
new_to_old[new] = old
print(len(old_to_new))
for k in old_to_new:
print(f"{k} {old_to_new[k]}")
```
| 3
|
|
774
|
J
|
Stepan's Series
|
PROGRAMMING
| 2,000
|
[
"*special",
"dp"
] | null | null |
Well, the series which Stepan watched for a very long time, ended. In total, the series had *n* episodes. For each of them, Stepan remembers either that he definitely has watched it, or that he definitely hasn't watched it, or he is unsure, has he watched this episode or not.
Stepan's dissatisfaction is the maximum number of consecutive series that Stepan did not watch.
Your task is to determine according to Stepan's memories if his dissatisfaction could be exactly equal to *k*.
|
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=*n*) — the number of episodes in the series and the dissatisfaction which should be checked.
The second line contains the sequence which consists of *n* symbols "Y", "N" and "?". If the *i*-th symbol equals "Y", Stepan remembers that he has watched the episode number *i*. If the *i*-th symbol equals "N", Stepan remembers that he hasn't watched the epizode number *i*. If the *i*-th symbol equals "?", Stepan doesn't exactly remember if he has watched the episode number *i* or not.
|
If Stepan's dissatisfaction can be exactly equal to *k*, then print "YES" (without qoutes). Otherwise print "NO" (without qoutes).
|
[
"5 2\nNYNNY\n",
"6 1\n????NN\n"
] |
[
"YES\n",
"NO\n"
] |
In the first test Stepan remembers about all the episodes whether he has watched them or not. His dissatisfaction is 2, because he hasn't watch two episodes in a row — the episode number 3 and the episode number 4. The answer is "YES", because *k* = 2.
In the second test *k* = 1, Stepan's dissatisfaction is greater than or equal to 2 (because he remembers that he hasn't watch at least two episodes in a row — number 5 and number 6), even if he has watched the episodes from the first to the fourth, inclusive.
| 0
|
[
{
"input": "5 2\nNYNNY",
"output": "YES"
},
{
"input": "6 1\n????NN",
"output": "NO"
},
{
"input": "100 8\nNYNNY?YNNNNNN?NNNNNYNY?YYNYNN?NNNY??NNYNYNNNYNNNYNNNNNNNNY?NNNYNYN?NNNY?YY?NNYNN?NNNYNNYNNYN?NNYNYNN",
"output": "YES"
},
{
"input": "10 1\nNY???NY?Y?",
"output": "YES"
},
{
"input": "20 7\nN?N??NNN?NNN?Y???Y??",
"output": "YES"
},
{
"input": "30 1\nNYYYNYYY?Y?YY?YYYYYYYYYYYYYNYY",
"output": "YES"
},
{
"input": "40 14\nNNNNNNNNNNNNNNNNNYNNNNYNNYNNNNNNYNNNNNNN",
"output": "NO"
},
{
"input": "51 1\nYYYNYNYNNYYNNY?YNYYYYYYNNYNYN??NYNYYNYYYYYYNNYNNNYY",
"output": "NO"
},
{
"input": "70 3\nYNNNYYYNY?YYNYYNYYN?NYYYYYYYYYYYYYNYYNNYYYYYYYNYYNNNY??YYNYYYYYYYYNYYN",
"output": "YES"
},
{
"input": "85 10\nYNNYNNNNNYNNNNNNNNNNNYNYYNNYNNNYYYNNNYYNNNNYNNNYNNNYNNNNNNNNNNNNN?NNNNYNNYYNNNNNNYNNN",
"output": "NO"
},
{
"input": "90 18\nNNNN?NNNNNYNYNYNNY?NNNNNNNNNNNNNNYNNNNNNYYNYYNNNNYNNNNNNNNNNNNNNNNNNNYNNYYNYNNNNNNNYNNNNYN",
"output": "NO"
},
{
"input": "99 2\nYNYYYYYYYYYYYN?YYNYYYYYYYYYYYYYY?YYYNYYYYYYYYYYYYYNYYYYYYNY?YYYYYNNYYYNYNYYYYNYYYYYYYYYYYNYY?NYYYYY",
"output": "YES"
},
{
"input": "100 74\nNNNNNNNNNNNNNNNNNNNNNNNNYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN?NNNNNNNNNNNN?NNNNNNNNNNNNNN",
"output": "NO"
},
{
"input": "100 19\nYYNN?NNNNNNNNNNNYNYYNYNNNNNNNNNNNNNNNNNNNNNNYNNNNNNNNYNNNNNNYNNYYNNNYNNNYNYNNYNNNYYNNNYNNN?NNNNN?YNN",
"output": "NO"
},
{
"input": "100 10\nNNNNYNNNYNNNNNNNNYNYNYNNNNNYNNNNNYNNNNNNNNNNNYNYYNNNNNNNYYNNYNYNNYYNNNNYNNNNNYNNNNYNNNNYNNY??YNNNNYY",
"output": "NO"
},
{
"input": "100 4\nYYNNNNYYYNNNNNNYNYYYNYYNYYNNYYNNNNNNNYNYYNYYNNYNNNNNYN?YNYYYNNYNNNNNYNNNNYYNYYYYYNYNNNNYYNNNNYNNNNYY",
"output": "NO"
},
{
"input": "100 2\nYYNNYYYNNYYYYYYYYYYYYYYYNYYYNYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYNYNYYYYYYNNYYYNYYNNYYNYYYYNYNYYYYYYNYYY",
"output": "YES"
},
{
"input": "100 3\nYYYYYYYYNNNYNYNYYYYNY?YYYYYYNYYYNYYYYYYYYYYYYNNYYYYYNYNYYNYYYYYYYYYYYYYYYYYYY?YYNNYYNNYYYNYYYYYYYYYY",
"output": "YES"
},
{
"input": "100 2\nYYYYYYYYYYYNYYYYYYYYYYYYYYYYYYYYYYYYYNYY?YYYYYYYYYYYYYYYNYYYYYYYYYYYYNNYYYYYYYYYNYYYYYYYYYYNYYYYYYYY",
"output": "YES"
},
{
"input": "100 3\nNYNNYYYYYYNYNNYYYYYYNYYNYNYYYYYNYYYYYNNNYYYYYNYNYYNYYNYYNYNNNYYNYYYYYNYYYYYYNNYYNYNNYYNYYYY?YYNNYYNN",
"output": "YES"
},
{
"input": "100 26\nNNYNNNNNNNNNNNNN?NNNNNNNNNNNNNYNNNNYNNNNNNNNNNNNYNNNNNN?NNNYNNNNNNNNNNYYNNNNNNNNYNNNNNNNNYYYNNNNYYNY",
"output": "NO"
},
{
"input": "1 1\nY",
"output": "NO"
},
{
"input": "1 1\nN",
"output": "YES"
},
{
"input": "1 1\n?",
"output": "YES"
},
{
"input": "1 0\n?",
"output": "YES"
},
{
"input": "1 0\nN",
"output": "NO"
},
{
"input": "1 0\nY",
"output": "YES"
},
{
"input": "100 100\n????????????????????????????????????????????????????????????????????????????????????????????????????",
"output": "YES"
},
{
"input": "6 4\nNN??NN",
"output": "NO"
},
{
"input": "6 3\nNNYYN?",
"output": "NO"
},
{
"input": "7 3\nN?YY???",
"output": "YES"
},
{
"input": "24 4\nY?NYYNYYYNYYN?NNN?N?Y?Y?",
"output": "NO"
},
{
"input": "3 3\n?Y?",
"output": "NO"
},
{
"input": "10 1\nNY???NY?Y?",
"output": "YES"
},
{
"input": "20 8\nNNNYY?????NN???N?YN?",
"output": "YES"
},
{
"input": "30 2\n??????????????????????????????",
"output": "YES"
},
{
"input": "40 17\nNNNNNNNNNNNNNNNNNYNNNNYNNYNNNNNNYNNNNNNN",
"output": "YES"
},
{
"input": "51 5\nY??N????????Y??N?????N???N???YN?N?Y?N??Y?Y??Y???NN?",
"output": "YES"
},
{
"input": "70 3\nY?N?Y???NN?NY?N?YY?Y????YNYY?Y?N??Y????YY??N????NY?NYY?YY?YYYY?YY?N?Y?",
"output": "YES"
},
{
"input": "85 18\nNNNNNNN??Y???NN?YNNNNNNNN???YNNNNNN??Y?N?YNYYNN?NNNNNNNNNNNNNN????NNY??NNNN?NN??NNNNN",
"output": "YES"
},
{
"input": "90 15\nYNNNNN?NNYNNYNNNN?NNNNYNNY?NNNNNNN?NNNNNNYN?NNYNNNNNN?NNYYNNYN?NNN??NNNNYNNN?YN?NNNNYNN?NY",
"output": "YES"
},
{
"input": "99 1\nYYYYYYYNYYY??YY??YYYYYYY????NYY?YYY?Y??YYYY????YY?YY?YYY?YY??YYY?Y??NYYYY?YNYY??Y??YYYYY?YYY????YYY",
"output": "YES"
},
{
"input": "100 34\n?NNNN??N???NNNN?NNN?N???N?N????NNNNNNN?N??N???NNNN???N?N?NN?NNNNN?NNN???N??NN??Y??NNN??N?NNN???NN?NN",
"output": "YES"
},
{
"input": "100 21\n?NNNNNYNN??NNN?N????N?NN?N??NN?NNNY?NN?NY?NN?NNN?NN?N?NNNNNNY?NYNN??N??NYNN?NN?NNNN?N???NN?NN?Y?NYNY",
"output": "YES"
},
{
"input": "100 10\nN?NNYYYNNNNNNYYNNYYNNNNNNNNYYNNNYYNNYNYNY?NNNNNNNNNYYNNNNYNNNNYNNNYNNYNNN?NNY?NNNNNNNNN?NYNYNNNNNNNN",
"output": "YES"
},
{
"input": "100 6\n????????????????????????????????????????????????????????????????????????????????????????????????????",
"output": "YES"
},
{
"input": "100 2\nYYNNYYYNNYYYYYYYYYYYYYYYNYYYNYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYNYNYYYYYYNNYYYNYYNNYYNYYYYNYNYYYYYYNYYY",
"output": "YES"
},
{
"input": "100 1\n???Y??????????????????????????????????????Y?????????N???Y????????Y?????Y???????Y??Y??????????YY?????",
"output": "YES"
},
{
"input": "100 1\nYYYYYYYYY??YYN?YYNYYYYYYYNYYYYYYYYYYY?YN?YYYYY?YYYYYYYYYYYYY?YYYYYYYYYYYYN?YYYYYYYY?YYYYY?YYNYYYYYNY",
"output": "YES"
},
{
"input": "100 3\n?YNNYYNYYYYYYNYYYYYNY?NNYYYYNYY??NYYNYNYYYY?YYNYYNYYYYYYYYYYNYYYYNYYYYNYYYYNYYNYYYYYYNYNYNYYYYYYNNYY",
"output": "YES"
},
{
"input": "3 2\n?Y?",
"output": "NO"
}
] | 1,492,502,454
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 51
| 342
| 12,288,000
|
from sys import stdin
from functools import lru_cache
from collections import defaultdict
infile = stdin
N, K = map(int, infile.readline().split())
watched = infile.readline().strip()
mem = set()
mem.add((0,0,0))
for i, letter in enumerate(watched):
for d in range(K+1):
for c in range(K+1):
if (i,d,c) in mem:
if letter in ('N', '?'):
mem.add((i+1, max(d, c+1), c+1))
if letter in ('Y', '?'):
mem.add((i+1, d, 0))
def good():
for i,d,c in mem:
if i == N and d == K:
return 'YES'
return 'NO'
print(good())
|
Title: Stepan's Series
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Well, the series which Stepan watched for a very long time, ended. In total, the series had *n* episodes. For each of them, Stepan remembers either that he definitely has watched it, or that he definitely hasn't watched it, or he is unsure, has he watched this episode or not.
Stepan's dissatisfaction is the maximum number of consecutive series that Stepan did not watch.
Your task is to determine according to Stepan's memories if his dissatisfaction could be exactly equal to *k*.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=*n*) — the number of episodes in the series and the dissatisfaction which should be checked.
The second line contains the sequence which consists of *n* symbols "Y", "N" and "?". If the *i*-th symbol equals "Y", Stepan remembers that he has watched the episode number *i*. If the *i*-th symbol equals "N", Stepan remembers that he hasn't watched the epizode number *i*. If the *i*-th symbol equals "?", Stepan doesn't exactly remember if he has watched the episode number *i* or not.
Output Specification:
If Stepan's dissatisfaction can be exactly equal to *k*, then print "YES" (without qoutes). Otherwise print "NO" (without qoutes).
Demo Input:
['5 2\nNYNNY\n', '6 1\n????NN\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first test Stepan remembers about all the episodes whether he has watched them or not. His dissatisfaction is 2, because he hasn't watch two episodes in a row — the episode number 3 and the episode number 4. The answer is "YES", because *k* = 2.
In the second test *k* = 1, Stepan's dissatisfaction is greater than or equal to 2 (because he remembers that he hasn't watch at least two episodes in a row — number 5 and number 6), even if he has watched the episodes from the first to the fourth, inclusive.
|
```python
from sys import stdin
from functools import lru_cache
from collections import defaultdict
infile = stdin
N, K = map(int, infile.readline().split())
watched = infile.readline().strip()
mem = set()
mem.add((0,0,0))
for i, letter in enumerate(watched):
for d in range(K+1):
for c in range(K+1):
if (i,d,c) in mem:
if letter in ('N', '?'):
mem.add((i+1, max(d, c+1), c+1))
if letter in ('Y', '?'):
mem.add((i+1, d, 0))
def good():
for i,d,c in mem:
if i == N and d == K:
return 'YES'
return 'NO'
print(good())
```
| 3
|
|
22
|
A
|
Second Order Statistics
|
PROGRAMMING
| 800
|
[
"brute force"
] |
A. Second Order Statistics
|
2
|
256
|
Once Bob needed to find the second order statistics of a sequence of integer numbers. Lets choose each number from the sequence exactly once and sort them. The value on the second position is the second order statistics of the given sequence. In other words it is the smallest element strictly greater than the minimum. Help Bob solve this problem.
|
The first input line contains integer *n* (1<=≤<=*n*<=≤<=100) — amount of numbers in the sequence. The second line contains *n* space-separated integer numbers — elements of the sequence. These numbers don't exceed 100 in absolute value.
|
If the given sequence has the second order statistics, output this order statistics, otherwise output NO.
|
[
"4\n1 2 2 -4\n",
"5\n1 2 3 1 1\n"
] |
[
"1\n",
"2\n"
] |
none
| 0
|
[
{
"input": "4\n1 2 2 -4",
"output": "1"
},
{
"input": "5\n1 2 3 1 1",
"output": "2"
},
{
"input": "1\n28",
"output": "NO"
},
{
"input": "2\n-28 12",
"output": "12"
},
{
"input": "3\n-83 40 -80",
"output": "-80"
},
{
"input": "8\n93 77 -92 26 21 -48 53 91",
"output": "-48"
},
{
"input": "20\n-72 -9 -86 80 7 -10 40 -27 -94 92 96 56 28 -19 79 36 -3 -73 -63 -49",
"output": "-86"
},
{
"input": "49\n-74 -100 -80 23 -8 -83 -41 -20 48 17 46 -73 -55 67 85 4 40 -60 -69 -75 56 -74 -42 93 74 -95 64 -46 97 -47 55 0 -78 -34 -31 40 -63 -49 -76 48 21 -1 -49 -29 -98 -11 76 26 94",
"output": "-98"
},
{
"input": "88\n63 48 1 -53 -89 -49 64 -70 -49 71 -17 -16 76 81 -26 -50 67 -59 -56 97 2 100 14 18 -91 -80 42 92 -25 -88 59 8 -56 38 48 -71 -78 24 -14 48 -1 69 73 -76 54 16 -92 44 47 33 -34 -17 -81 21 -59 -61 53 26 10 -76 67 35 -29 70 65 -13 -29 81 80 32 74 -6 34 46 57 1 -45 -55 69 79 -58 11 -2 22 -18 -16 -89 -46",
"output": "-91"
},
{
"input": "100\n34 32 88 20 76 53 -71 -39 -98 -10 57 37 63 -3 -54 -64 -78 -82 73 20 -30 -4 22 75 51 -64 -91 29 -52 -48 83 19 18 -47 46 57 -44 95 89 89 -30 84 -83 67 58 -99 -90 -53 92 -60 -5 -56 -61 27 68 -48 52 -95 64 -48 -30 -67 66 89 14 -33 -31 -91 39 7 -94 -54 92 -96 -99 -83 -16 91 -28 -66 81 44 14 -85 -21 18 40 16 -13 -82 -33 47 -10 -40 -19 10 25 60 -34 -89",
"output": "-98"
},
{
"input": "2\n-1 -1",
"output": "NO"
},
{
"input": "3\n-2 -2 -2",
"output": "NO"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "NO"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100"
},
{
"input": "10\n40 71 -85 -85 40 -85 -85 64 -85 47",
"output": "40"
},
{
"input": "23\n-90 -90 -41 -64 -64 -90 -15 10 -43 -90 -64 -64 89 -64 36 47 38 -90 -64 -90 -90 68 -90",
"output": "-64"
},
{
"input": "39\n-97 -93 -42 -93 -97 -93 56 -97 -97 -97 76 -33 -60 91 7 82 17 47 -97 -97 -93 73 -97 12 -97 -97 -97 -97 56 -92 -83 -93 -93 49 -93 -97 -97 -17 -93",
"output": "-93"
},
{
"input": "51\n-21 6 -35 -98 -86 -98 -86 -43 -65 32 -98 -40 96 -98 -98 -98 -98 -86 -86 -98 56 -86 -98 -98 -30 -98 -86 -31 -98 -86 -86 -86 -86 -30 96 -86 -86 -86 -60 25 88 -86 -86 58 31 -47 57 -86 37 44 -83",
"output": "-86"
},
{
"input": "66\n-14 -95 65 -95 -95 -97 -90 -71 -97 -97 70 -95 -95 -97 -95 -27 35 -87 -95 -5 -97 -97 87 34 -49 -95 -97 -95 -97 -95 -30 -95 -97 47 -95 -17 -97 -95 -97 -69 51 -97 -97 -95 -75 87 59 21 63 56 76 -91 98 -97 6 -97 -95 -95 -97 -73 11 -97 -35 -95 -95 -43",
"output": "-95"
},
{
"input": "77\n-67 -93 -93 -92 97 29 93 -93 -93 -5 -93 -7 60 -92 -93 44 -84 68 -92 -93 69 -92 -37 56 43 -93 35 -92 -93 19 -79 18 -92 -93 -93 -37 -93 -47 -93 -92 -92 74 67 19 40 -92 -92 -92 -92 -93 -93 -41 -93 -92 -93 -93 -92 -93 51 -80 6 -42 -92 -92 -66 -12 -92 -92 -3 93 -92 -49 -93 40 62 -92 -92",
"output": "-92"
},
{
"input": "89\n-98 40 16 -87 -98 63 -100 55 -96 -98 -21 -100 -93 26 -98 -98 -100 -89 -98 -5 -65 -28 -100 -6 -66 67 -100 -98 -98 10 -98 -98 -70 7 -98 2 -100 -100 -98 25 -100 -100 -98 23 -68 -100 -98 3 98 -100 -98 -98 -98 -98 -24 -100 -100 -9 -98 35 -100 99 -5 -98 -100 -100 37 -100 -84 57 -98 40 -47 -100 -1 -92 -76 -98 -98 -100 -100 -100 -63 30 21 -100 -100 -100 -12",
"output": "-98"
},
{
"input": "99\n10 -84 -100 -100 73 -64 -100 -94 33 -100 -100 -100 -100 71 64 24 7 -100 -32 -100 -100 77 -100 62 -12 55 45 -100 -100 -80 -100 -100 -100 -100 -100 -100 -100 -100 -100 -39 -48 -100 -34 47 -100 -100 -100 -100 -100 -77 -100 -100 -100 -100 -100 -100 -52 40 -55 -100 -44 -100 72 33 70 -100 -100 -78 -100 -3 100 -77 22 -100 95 -30 -100 10 -69 -100 -100 -100 -100 52 -39 -100 -100 -100 7 -100 -98 -66 95 -17 -100 52 -100 68 -100",
"output": "-98"
},
{
"input": "100\n-99 -98 -64 89 53 57 -99 29 -78 18 -3 -54 76 -98 -99 -98 37 -98 19 -47 89 73 -98 -91 -99 -99 -98 -48 -99 22 -99 -98 -99 -99 -98 -60 84 67 -99 -98 20 -98 88 -98 46 -98 -99 -98 -99 -71 -99 -98 -98 -39 83 95 -98 63 -98 -99 32 -98 -99 -64 57 -30 -53 -83 -4 -99 58 20 -98 -10 -99 -44 -99 -99 -99 -99 75 34 -98 -52 -98 -30 -98 -99 -98 -98 51 -99 -99 -99 -98 -99 -99 -82 -90 92",
"output": "-98"
},
{
"input": "3\n1 2 3",
"output": "2"
},
{
"input": "3\n1 3 2",
"output": "2"
},
{
"input": "3\n2 1 3",
"output": "2"
},
{
"input": "3\n2 3 1",
"output": "2"
},
{
"input": "3\n3 1 2",
"output": "2"
},
{
"input": "3\n3 2 1",
"output": "2"
},
{
"input": "9\n99 99 99 99 100 100 100 100 100",
"output": "100"
},
{
"input": "5\n-100 -100 -100 -100 -100",
"output": "NO"
}
] | 1,686,491,836
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 92
| 0
|
t = int(input())
a = list(map(int, input().split()[:t]))
new_a = sorted(set(a))
if len(new_a) < 2:
print("NO")
else:
print(new_a[1])
|
Title: Second Order Statistics
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Once Bob needed to find the second order statistics of a sequence of integer numbers. Lets choose each number from the sequence exactly once and sort them. The value on the second position is the second order statistics of the given sequence. In other words it is the smallest element strictly greater than the minimum. Help Bob solve this problem.
Input Specification:
The first input line contains integer *n* (1<=≤<=*n*<=≤<=100) — amount of numbers in the sequence. The second line contains *n* space-separated integer numbers — elements of the sequence. These numbers don't exceed 100 in absolute value.
Output Specification:
If the given sequence has the second order statistics, output this order statistics, otherwise output NO.
Demo Input:
['4\n1 2 2 -4\n', '5\n1 2 3 1 1\n']
Demo Output:
['1\n', '2\n']
Note:
none
|
```python
t = int(input())
a = list(map(int, input().split()[:t]))
new_a = sorted(set(a))
if len(new_a) < 2:
print("NO")
else:
print(new_a[1])
```
| 3.977
|
583
|
A
|
Asphalting Roads
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
City X consists of *n* vertical and *n* horizontal infinite roads, forming *n*<=×<=*n* intersections. Roads (both vertical and horizontal) are numbered from 1 to *n*, and the intersections are indicated by the numbers of the roads that form them.
Sand roads have long been recognized out of date, so the decision was made to asphalt them. To do this, a team of workers was hired and a schedule of work was made, according to which the intersections should be asphalted.
Road repairs are planned for *n*2 days. On the *i*-th day of the team arrives at the *i*-th intersection in the list and if none of the two roads that form the intersection were already asphalted they asphalt both roads. Otherwise, the team leaves the intersection, without doing anything with the roads.
According to the schedule of road works tell in which days at least one road will be asphalted.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of vertical and horizontal roads in the city.
Next *n*2 lines contain the order of intersections in the schedule. The *i*-th of them contains two numbers *h**i*,<=*v**i* (1<=≤<=*h**i*,<=*v**i*<=≤<=*n*), separated by a space, and meaning that the intersection that goes *i*-th in the timetable is at the intersection of the *h**i*-th horizontal and *v**i*-th vertical roads. It is guaranteed that all the intersections in the timetable are distinct.
|
In the single line print the numbers of the days when road works will be in progress in ascending order. The days are numbered starting from 1.
|
[
"2\n1 1\n1 2\n2 1\n2 2\n",
"1\n1 1\n"
] |
[
"1 4 \n",
"1 \n"
] |
In the sample the brigade acts like that:
1. On the first day the brigade comes to the intersection of the 1-st horizontal and the 1-st vertical road. As none of them has been asphalted, the workers asphalt the 1-st vertical and the 1-st horizontal road; 1. On the second day the brigade of the workers comes to the intersection of the 1-st horizontal and the 2-nd vertical road. The 2-nd vertical road hasn't been asphalted, but as the 1-st horizontal road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the third day the brigade of the workers come to the intersection of the 2-nd horizontal and the 1-st vertical road. The 2-nd horizontal road hasn't been asphalted but as the 1-st vertical road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the fourth day the brigade come to the intersection formed by the intersection of the 2-nd horizontal and 2-nd vertical road. As none of them has been asphalted, the workers asphalt the 2-nd vertical and the 2-nd horizontal road.
| 500
|
[
{
"input": "2\n1 1\n1 2\n2 1\n2 2",
"output": "1 4 "
},
{
"input": "1\n1 1",
"output": "1 "
},
{
"input": "2\n1 1\n2 2\n1 2\n2 1",
"output": "1 2 "
},
{
"input": "2\n1 2\n2 2\n2 1\n1 1",
"output": "1 3 "
},
{
"input": "3\n2 2\n1 2\n3 2\n3 3\n1 1\n2 3\n1 3\n3 1\n2 1",
"output": "1 4 5 "
},
{
"input": "3\n1 3\n3 1\n2 1\n1 1\n1 2\n2 2\n3 2\n3 3\n2 3",
"output": "1 2 6 "
},
{
"input": "4\n1 3\n2 3\n2 4\n4 4\n3 1\n1 1\n3 4\n2 1\n1 4\n4 3\n4 1\n3 2\n1 2\n4 2\n2 2\n3 3",
"output": "1 3 5 14 "
},
{
"input": "4\n3 3\n4 2\n2 3\n3 4\n4 4\n1 2\n3 2\n2 2\n1 4\n3 1\n4 1\n2 1\n1 3\n1 1\n4 3\n2 4",
"output": "1 2 9 12 "
},
{
"input": "9\n4 5\n2 3\n8 3\n5 6\n9 3\n4 4\n5 4\n4 7\n1 7\n8 4\n1 4\n1 5\n5 7\n7 8\n7 1\n9 9\n8 7\n7 5\n3 7\n6 6\n7 3\n5 2\n3 6\n7 4\n9 6\n5 8\n9 7\n6 3\n7 9\n1 2\n1 1\n6 2\n5 3\n7 2\n1 6\n4 1\n6 1\n8 9\n2 2\n3 9\n2 9\n7 7\n2 8\n9 4\n2 5\n8 6\n3 4\n2 1\n2 7\n6 5\n9 1\n3 3\n3 8\n5 5\n4 3\n3 1\n1 9\n6 4\n3 2\n6 8\n2 6\n5 9\n8 5\n8 8\n9 5\n6 9\n9 2\n3 5\n4 9\n4 8\n2 4\n5 1\n4 6\n7 6\n9 8\n1 3\n4 2\n8 1\n8 2\n6 7\n1 8",
"output": "1 2 4 9 10 14 16 32 56 "
},
{
"input": "8\n1 1\n1 2\n1 3\n1 4\n1 5\n8 6\n1 7\n1 8\n2 1\n8 5\n2 3\n2 4\n2 5\n2 6\n4 3\n2 2\n3 1\n3 2\n3 3\n3 4\n3 5\n3 6\n5 6\n3 8\n4 1\n4 2\n2 7\n4 4\n8 8\n4 6\n4 7\n4 8\n5 1\n5 2\n5 3\n6 5\n5 5\n3 7\n5 7\n5 8\n6 1\n6 2\n6 3\n6 4\n5 4\n6 6\n6 7\n6 8\n7 1\n7 2\n7 3\n7 4\n7 5\n7 6\n7 7\n7 8\n8 1\n8 2\n8 3\n8 4\n2 8\n1 6\n8 7\n4 5",
"output": "1 6 11 18 28 36 39 56 "
},
{
"input": "9\n9 9\n5 5\n8 8\n3 3\n2 2\n6 6\n4 4\n1 1\n7 7\n8 4\n1 4\n1 5\n5 7\n7 8\n7 1\n1 7\n8 7\n7 5\n3 7\n5 6\n7 3\n5 2\n3 6\n7 4\n9 6\n5 8\n9 7\n6 3\n7 9\n1 2\n4 5\n6 2\n5 3\n7 2\n1 6\n4 1\n6 1\n8 9\n2 3\n3 9\n2 9\n5 4\n2 8\n9 4\n2 5\n8 6\n3 4\n2 1\n2 7\n6 5\n9 1\n8 3\n3 8\n9 3\n4 3\n3 1\n1 9\n6 4\n3 2\n6 8\n2 6\n5 9\n8 5\n4 7\n9 5\n6 9\n9 2\n3 5\n4 9\n4 8\n2 4\n5 1\n4 6\n7 6\n9 8\n1 3\n4 2\n8 1\n8 2\n6 7\n1 8",
"output": "1 2 3 4 5 6 7 8 9 "
}
] | 1,579,110,279
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 39
| 109
| 307,200
|
a = int(input())
x = []
y = []
res = []
for i in range(a**2):
a = [i for i in input().split()]
if a[0] not in x and a[1] not in y:
res.append(int(i)+1)
x.append(a[0])
y.append(a[1])
print(*res)
|
Title: Asphalting Roads
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
City X consists of *n* vertical and *n* horizontal infinite roads, forming *n*<=×<=*n* intersections. Roads (both vertical and horizontal) are numbered from 1 to *n*, and the intersections are indicated by the numbers of the roads that form them.
Sand roads have long been recognized out of date, so the decision was made to asphalt them. To do this, a team of workers was hired and a schedule of work was made, according to which the intersections should be asphalted.
Road repairs are planned for *n*2 days. On the *i*-th day of the team arrives at the *i*-th intersection in the list and if none of the two roads that form the intersection were already asphalted they asphalt both roads. Otherwise, the team leaves the intersection, without doing anything with the roads.
According to the schedule of road works tell in which days at least one road will be asphalted.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of vertical and horizontal roads in the city.
Next *n*2 lines contain the order of intersections in the schedule. The *i*-th of them contains two numbers *h**i*,<=*v**i* (1<=≤<=*h**i*,<=*v**i*<=≤<=*n*), separated by a space, and meaning that the intersection that goes *i*-th in the timetable is at the intersection of the *h**i*-th horizontal and *v**i*-th vertical roads. It is guaranteed that all the intersections in the timetable are distinct.
Output Specification:
In the single line print the numbers of the days when road works will be in progress in ascending order. The days are numbered starting from 1.
Demo Input:
['2\n1 1\n1 2\n2 1\n2 2\n', '1\n1 1\n']
Demo Output:
['1 4 \n', '1 \n']
Note:
In the sample the brigade acts like that:
1. On the first day the brigade comes to the intersection of the 1-st horizontal and the 1-st vertical road. As none of them has been asphalted, the workers asphalt the 1-st vertical and the 1-st horizontal road; 1. On the second day the brigade of the workers comes to the intersection of the 1-st horizontal and the 2-nd vertical road. The 2-nd vertical road hasn't been asphalted, but as the 1-st horizontal road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the third day the brigade of the workers come to the intersection of the 2-nd horizontal and the 1-st vertical road. The 2-nd horizontal road hasn't been asphalted but as the 1-st vertical road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the fourth day the brigade come to the intersection formed by the intersection of the 2-nd horizontal and 2-nd vertical road. As none of them has been asphalted, the workers asphalt the 2-nd vertical and the 2-nd horizontal road.
|
```python
a = int(input())
x = []
y = []
res = []
for i in range(a**2):
a = [i for i in input().split()]
if a[0] not in x and a[1] not in y:
res.append(int(i)+1)
x.append(a[0])
y.append(a[1])
print(*res)
```
| 3
|
|
350
|
A
|
TL
|
PROGRAMMING
| 1,200
|
[
"brute force",
"greedy",
"implementation"
] | null | null |
Valera wanted to prepare a Codesecrof round. He's already got one problem and he wants to set a time limit (TL) on it.
Valera has written *n* correct solutions. For each correct solution, he knows its running time (in seconds). Valera has also wrote *m* wrong solutions and for each wrong solution he knows its running time (in seconds).
Let's suppose that Valera will set *v* seconds TL in the problem. Then we can say that a solution passes the system testing if its running time is at most *v* seconds. We can also say that a solution passes the system testing with some "extra" time if for its running time, *a* seconds, an inequality 2*a*<=≤<=*v* holds.
As a result, Valera decided to set *v* seconds TL, that the following conditions are met:
1. *v* is a positive integer; 1. all correct solutions pass the system testing; 1. at least one correct solution passes the system testing with some "extra" time; 1. all wrong solutions do not pass the system testing; 1. value *v* is minimum among all TLs, for which points 1, 2, 3, 4 hold.
Help Valera and find the most suitable TL or else state that such TL doesn't exist.
|
The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *n* space-separated positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) — the running time of each of the *n* correct solutions in seconds. The third line contains *m* space-separated positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=100) — the running time of each of *m* wrong solutions in seconds.
|
If there is a valid TL value, print it. Otherwise, print -1.
|
[
"3 6\n4 5 2\n8 9 6 10 7 11\n",
"3 1\n3 4 5\n6\n"
] |
[
"5",
"-1\n"
] |
none
| 500
|
[
{
"input": "3 6\n4 5 2\n8 9 6 10 7 11",
"output": "5"
},
{
"input": "3 1\n3 4 5\n6",
"output": "-1"
},
{
"input": "2 5\n45 99\n49 41 77 83 45",
"output": "-1"
},
{
"input": "50 50\n18 13 5 34 10 36 36 12 15 11 16 17 14 36 23 45 32 24 31 18 24 32 7 1 31 3 49 8 16 23 3 39 47 43 42 38 40 22 41 1 49 47 9 8 19 15 29 30 16 18\n91 58 86 51 94 94 73 84 98 69 74 56 52 80 88 61 53 99 88 50 55 95 65 84 87 79 51 52 69 60 74 73 93 61 73 59 64 56 95 78 86 72 79 70 93 78 54 61 71 50",
"output": "49"
},
{
"input": "55 44\n93 17 74 15 34 16 41 80 26 54 94 94 86 93 20 44 63 72 39 43 67 4 37 49 76 94 5 51 64 74 11 47 77 97 57 30 42 72 71 26 8 14 67 64 49 57 30 23 40 4 76 78 87 78 79\n38 55 17 65 26 7 36 65 48 28 49 93 18 98 31 90 26 57 1 26 88 56 48 56 23 13 8 67 80 2 51 3 21 33 20 54 2 45 21 36 3 98 62 2",
"output": "-1"
},
{
"input": "32 100\n30 8 4 35 18 41 18 12 33 39 39 18 39 19 33 46 45 33 34 27 14 39 40 21 38 9 42 35 27 10 14 14\n65 49 89 64 47 78 59 52 73 51 84 82 88 63 91 99 67 87 53 99 75 47 85 82 58 47 80 50 65 91 83 90 77 52 100 88 97 74 98 99 50 93 65 61 65 65 65 96 61 51 84 67 79 90 92 83 100 100 100 95 80 54 77 51 98 64 74 62 60 96 73 74 94 55 89 60 92 65 74 79 66 81 53 47 71 51 54 85 74 97 68 72 88 94 100 85 65 63 65 90",
"output": "46"
},
{
"input": "1 50\n7\n65 52 99 78 71 19 96 72 80 15 50 94 20 35 79 95 44 41 45 53 77 50 74 66 59 96 26 84 27 48 56 84 36 78 89 81 67 34 79 74 99 47 93 92 90 96 72 28 78 66",
"output": "14"
},
{
"input": "1 1\n4\n9",
"output": "8"
},
{
"input": "1 1\n2\n4",
"output": "-1"
},
{
"input": "22 56\n49 20 42 68 15 46 98 78 82 8 7 33 50 30 75 96 36 88 35 99 19 87\n15 18 81 24 35 89 25 32 23 3 48 24 52 69 18 32 23 61 48 98 50 38 5 17 70 20 38 32 49 54 68 11 51 81 46 22 19 59 29 38 45 83 18 13 91 17 84 62 25 60 97 32 23 13 83 58",
"output": "-1"
},
{
"input": "1 1\n50\n100",
"output": "-1"
},
{
"input": "1 1\n49\n100",
"output": "98"
},
{
"input": "1 1\n100\n100",
"output": "-1"
},
{
"input": "1 1\n99\n100",
"output": "-1"
},
{
"input": "8 4\n1 2 49 99 99 95 78 98\n100 100 100 100",
"output": "99"
},
{
"input": "68 85\n43 55 2 4 72 45 19 56 53 81 18 90 11 87 47 8 94 88 24 4 67 9 21 70 25 66 65 27 46 13 8 51 65 99 37 43 71 59 71 79 32 56 49 43 57 85 95 81 40 28 60 36 72 81 60 40 16 78 61 37 29 26 15 95 70 27 50 97\n6 6 48 72 54 31 1 50 29 64 93 9 29 93 66 63 25 90 52 1 66 13 70 30 24 87 32 90 84 72 44 13 25 45 31 16 92 60 87 40 62 7 20 63 86 78 73 88 5 36 74 100 64 34 9 5 62 29 58 48 81 46 84 56 27 1 60 14 54 88 31 93 62 7 9 69 27 48 10 5 33 10 53 66 2",
"output": "-1"
},
{
"input": "5 100\n1 1 1 1 1\n77 53 38 29 97 33 64 17 78 100 27 12 42 44 20 24 44 68 58 57 65 90 8 24 4 6 74 68 61 43 25 69 8 62 36 85 67 48 69 30 35 41 42 12 87 66 50 92 53 76 38 67 85 7 80 78 53 76 94 8 37 50 4 100 4 71 10 48 34 47 83 42 25 81 64 72 25 51 53 75 43 98 53 77 94 38 81 15 89 91 72 76 7 36 27 41 88 18 19 75",
"output": "2"
},
{
"input": "3 3\n2 3 4\n8 9 10",
"output": "4"
},
{
"input": "2 1\n2 3\n15",
"output": "4"
},
{
"input": "2 1\n2 4\n4",
"output": "-1"
},
{
"input": "2 3\n4 5\n10 11 12",
"output": "8"
},
{
"input": "3 1\n2 3 3\n5",
"output": "4"
},
{
"input": "2 1\n9 10\n100",
"output": "18"
},
{
"input": "3 3\n3 12 15\n7 8 9",
"output": "-1"
},
{
"input": "2 2\n3 5\n7 8",
"output": "6"
},
{
"input": "3 3\n4 5 6\n10 11 12",
"output": "8"
},
{
"input": "3 5\n2 3 3\n6 6 6 6 2",
"output": "-1"
},
{
"input": "3 6\n4 5 3\n8 9 7 10 7 11",
"output": "6"
},
{
"input": "3 6\n4 5 2\n8 9 6 10 7 4",
"output": "-1"
},
{
"input": "2 1\n4 6\n10",
"output": "8"
},
{
"input": "1 2\n1\n3 1",
"output": "-1"
},
{
"input": "2 1\n5 6\n20",
"output": "10"
},
{
"input": "2 1\n1 5\n5",
"output": "-1"
},
{
"input": "3 2\n10 20 30\n30 40",
"output": "-1"
},
{
"input": "2 2\n5 6\n7 100",
"output": "-1"
},
{
"input": "2 1\n2 5\n7",
"output": "5"
},
{
"input": "1 1\n5\n20",
"output": "10"
},
{
"input": "2 1\n10 11\n100",
"output": "20"
},
{
"input": "1 1\n1\n10",
"output": "2"
},
{
"input": "1 1\n10\n100",
"output": "20"
}
] | 1,575,912,581
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 248
| 0
|
n, k = [int(i) for i in input().split()] #int(input())
corr = [int(i) for i in input().split()]
wrong = [int(i) for i in input().split()]
max_corr = max(corr)
min_corr = min(corr)
min_wrong = min(wrong)
best_tl = max(max_corr, 2*min_corr)
if best_tl<min_wrong:
print(best_tl)
else:
print(-1)
|
Title: TL
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera wanted to prepare a Codesecrof round. He's already got one problem and he wants to set a time limit (TL) on it.
Valera has written *n* correct solutions. For each correct solution, he knows its running time (in seconds). Valera has also wrote *m* wrong solutions and for each wrong solution he knows its running time (in seconds).
Let's suppose that Valera will set *v* seconds TL in the problem. Then we can say that a solution passes the system testing if its running time is at most *v* seconds. We can also say that a solution passes the system testing with some "extra" time if for its running time, *a* seconds, an inequality 2*a*<=≤<=*v* holds.
As a result, Valera decided to set *v* seconds TL, that the following conditions are met:
1. *v* is a positive integer; 1. all correct solutions pass the system testing; 1. at least one correct solution passes the system testing with some "extra" time; 1. all wrong solutions do not pass the system testing; 1. value *v* is minimum among all TLs, for which points 1, 2, 3, 4 hold.
Help Valera and find the most suitable TL or else state that such TL doesn't exist.
Input Specification:
The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *n* space-separated positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) — the running time of each of the *n* correct solutions in seconds. The third line contains *m* space-separated positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=100) — the running time of each of *m* wrong solutions in seconds.
Output Specification:
If there is a valid TL value, print it. Otherwise, print -1.
Demo Input:
['3 6\n4 5 2\n8 9 6 10 7 11\n', '3 1\n3 4 5\n6\n']
Demo Output:
['5', '-1\n']
Note:
none
|
```python
n, k = [int(i) for i in input().split()] #int(input())
corr = [int(i) for i in input().split()]
wrong = [int(i) for i in input().split()]
max_corr = max(corr)
min_corr = min(corr)
min_wrong = min(wrong)
best_tl = max(max_corr, 2*min_corr)
if best_tl<min_wrong:
print(best_tl)
else:
print(-1)
```
| 3
|
|
740
|
B
|
Alyona and flowers
|
PROGRAMMING
| 1,200
|
[
"constructive algorithms"
] | null | null |
Little Alyona is celebrating Happy Birthday! Her mother has an array of *n* flowers. Each flower has some mood, the mood of *i*-th flower is *a**i*. The mood can be positive, zero or negative.
Let's define a subarray as a segment of consecutive flowers. The mother suggested some set of subarrays. Alyona wants to choose several of the subarrays suggested by her mother. After that, each of the flowers will add to the girl's happiness its mood multiplied by the number of chosen subarrays the flower is in.
For example, consider the case when the mother has 5 flowers, and their moods are equal to 1,<=<=-<=2,<=1,<=3,<=<=-<=4. Suppose the mother suggested subarrays (1,<=<=-<=2), (3,<=<=-<=4), (1,<=3), (1,<=<=-<=2,<=1,<=3). Then if the girl chooses the third and the fourth subarrays then:
- the first flower adds 1·1<==<=1 to the girl's happiness, because he is in one of chosen subarrays, - the second flower adds (<=-<=2)·1<==<=<=-<=2, because he is in one of chosen subarrays, - the third flower adds 1·2<==<=2, because he is in two of chosen subarrays, - the fourth flower adds 3·2<==<=6, because he is in two of chosen subarrays, - the fifth flower adds (<=-<=4)·0<==<=0, because he is in no chosen subarrays.
Thus, in total 1<=+<=(<=-<=2)<=+<=2<=+<=6<=+<=0<==<=7 is added to the girl's happiness. Alyona wants to choose such subarrays from those suggested by the mother that the value added to her happiness would be as large as possible. Help her do this!
Alyona can choose any number of the subarrays, even 0 or all suggested by her mother.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of flowers and the number of subarrays suggested by the mother.
The second line contains the flowers moods — *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=100<=≤<=*a**i*<=≤<=100).
The next *m* lines contain the description of the subarrays suggested by the mother. The *i*-th of these lines contain two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) denoting the subarray *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*].
Each subarray can encounter more than once.
|
Print single integer — the maximum possible value added to the Alyona's happiness.
|
[
"5 4\n1 -2 1 3 -4\n1 2\n4 5\n3 4\n1 4\n",
"4 3\n1 2 3 4\n1 3\n2 4\n1 1\n",
"2 2\n-1 -2\n1 1\n1 2\n"
] |
[
"7\n",
"16\n",
"0\n"
] |
The first example is the situation described in the statements.
In the second example Alyona should choose all subarrays.
The third example has answer 0 because Alyona can choose none of the subarrays.
| 1,000
|
[
{
"input": "5 4\n1 -2 1 3 -4\n1 2\n4 5\n3 4\n1 4",
"output": "7"
},
{
"input": "4 3\n1 2 3 4\n1 3\n2 4\n1 1",
"output": "16"
},
{
"input": "2 2\n-1 -2\n1 1\n1 2",
"output": "0"
},
{
"input": "5 6\n1 1 1 -1 0\n2 4\n1 3\n4 5\n1 5\n1 4\n4 5",
"output": "8"
},
{
"input": "8 3\n5 -4 -2 5 3 -4 -2 6\n3 8\n4 6\n2 3",
"output": "10"
},
{
"input": "10 10\n0 0 0 0 0 0 0 0 0 0\n5 9\n1 9\n5 7\n3 8\n1 6\n1 9\n1 6\n6 9\n1 10\n3 8",
"output": "0"
},
{
"input": "3 6\n0 0 0\n1 1\n1 1\n1 3\n3 3\n2 3\n1 2",
"output": "0"
},
{
"input": "3 3\n1 -1 3\n1 2\n2 3\n1 3",
"output": "5"
},
{
"input": "6 8\n0 6 -5 8 -3 -2\n6 6\n2 3\n5 6\n4 6\n3 4\n2 5\n3 3\n5 6",
"output": "13"
},
{
"input": "10 4\n6 5 5 -1 0 5 0 -3 5 -4\n3 6\n4 9\n1 6\n1 4",
"output": "50"
},
{
"input": "9 1\n-1 -1 -1 -1 2 -1 2 0 0\n2 5",
"output": "0"
},
{
"input": "3 8\n3 4 4\n1 2\n1 3\n2 3\n1 2\n2 2\n1 1\n2 3\n1 3",
"output": "59"
},
{
"input": "3 8\n6 7 -1\n1 1\n1 3\n2 2\n1 3\n1 3\n1 1\n2 3\n2 3",
"output": "67"
},
{
"input": "53 7\n-43 57 92 97 85 -29 28 -8 -37 -47 51 -53 -95 -50 -39 -87 43 36 60 -95 93 8 67 -22 -78 -46 99 93 27 -72 -84 77 96 -47 1 -12 21 -98 -34 -88 57 -43 5 -15 20 -66 61 -29 30 -85 52 53 82\n15 26\n34 43\n37 41\n22 34\n19 43\n2 15\n13 35",
"output": "170"
},
{
"input": "20 42\n61 86 5 -87 -33 51 -79 17 -3 65 -42 74 -94 40 -35 22 58 81 -75 5\n3 6\n12 13\n3 16\n3 16\n5 7\n5 16\n2 15\n6 18\n4 18\n10 17\n14 16\n4 15\n4 11\n13 20\n5 6\n5 15\n16 17\n3 14\n9 10\n5 19\n5 14\n2 4\n17 20\n10 11\n5 18\n10 11\n1 14\n1 6\n1 10\n8 16\n11 14\n12 20\n11 13\n4 5\n2 13\n1 5\n11 15\n1 18\n3 8\n8 20\n1 4\n10 13",
"output": "1502"
},
{
"input": "64 19\n-47 13 19 51 -25 72 38 32 54 7 -49 -50 -59 73 45 -87 -15 -72 -32 -10 -7 47 -34 35 48 -73 79 25 -80 -34 4 77 60 30 61 -25 23 17 -73 -73 69 29 -50 -55 53 15 -33 7 -46 -5 85 -86 77 -51 87 -69 -64 -24 -64 29 -20 -58 11 -26\n6 53\n13 28\n15 47\n20 52\n12 22\n6 49\n31 54\n2 39\n32 49\n27 64\n22 63\n33 48\n49 58\n39 47\n6 29\n21 44\n24 59\n20 24\n39 54",
"output": "804"
},
{
"input": "1 10\n-46\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "0"
},
{
"input": "10 7\n44 18 9 -22 -23 7 -25 -2 15 35\n6 8\n6 7\n3 3\n2 6\n9 10\n2 2\n1 5",
"output": "103"
},
{
"input": "4 3\n10 -2 68 35\n4 4\n1 1\n1 3",
"output": "121"
},
{
"input": "3 6\n27 -31 -81\n2 3\n2 3\n1 1\n1 2\n1 2\n2 2",
"output": "27"
},
{
"input": "7 3\n-24 -12 16 -43 -30 31 16\n3 6\n3 4\n1 7",
"output": "0"
},
{
"input": "10 7\n-33 -24 -86 -20 5 -91 38 -12 -90 -67\n7 8\n7 10\n4 7\n1 3\n6 10\n6 6\n3 5",
"output": "26"
},
{
"input": "4 4\n95 35 96 -27\n3 4\n3 3\n4 4\n3 3",
"output": "261"
},
{
"input": "7 7\n-33 26 -25 44 -20 -50 33\n4 6\n4 4\n3 7\n5 7\n1 4\n2 5\n4 6",
"output": "81"
},
{
"input": "5 3\n-35 -39 93 59 -4\n2 2\n2 3\n2 5",
"output": "163"
},
{
"input": "3 7\n0 0 0\n1 2\n1 2\n2 3\n3 3\n1 3\n1 2\n2 3",
"output": "0"
},
{
"input": "8 2\n17 32 30 -6 -39 -15 33 74\n6 6\n8 8",
"output": "74"
},
{
"input": "8 1\n-20 -15 21 -21 1 -12 -7 9\n4 7",
"output": "0"
},
{
"input": "7 9\n-23 -4 -44 -47 -35 47 25\n1 6\n3 5\n4 7\n6 7\n2 4\n2 3\n2 7\n1 2\n5 5",
"output": "72"
},
{
"input": "8 8\n0 6 -25 -15 29 -24 31 23\n2 8\n5 5\n3 3\n2 8\n6 6\n3 6\n3 4\n2 4",
"output": "79"
},
{
"input": "4 3\n-39 -63 9 -16\n1 4\n1 3\n2 4",
"output": "0"
},
{
"input": "9 1\n-3 -13 -13 -19 -4 -11 8 -11 -3\n9 9",
"output": "0"
},
{
"input": "9 6\n25 18 -62 0 33 62 -23 4 -15\n7 9\n2 3\n1 4\n2 6\n1 6\n2 3",
"output": "127"
},
{
"input": "4 5\n-12 39 8 -12\n1 4\n3 4\n1 3\n1 3\n2 3",
"output": "140"
},
{
"input": "3 9\n-9 7 3\n1 2\n1 1\n1 3\n1 2\n2 3\n1 3\n2 2\n1 2\n3 3",
"output": "22"
},
{
"input": "10 7\n0 4 3 3 -2 -2 -4 -2 -3 -2\n5 6\n1 10\n2 10\n7 10\n1 1\n6 7\n3 4",
"output": "6"
},
{
"input": "86 30\n16 -12 11 16 8 14 7 -29 18 30 -32 -10 20 29 -14 -21 23 -19 -15 17 -2 25 -22 2 26 15 -7 -12 -4 -28 21 -4 -2 22 28 -32 9 -20 23 38 -21 21 37 -13 -30 25 31 6 18 29 29 29 27 38 -15 -32 32 -7 -8 -33 -11 24 23 -19 -36 -36 -18 9 -1 32 -34 -26 1 -1 -16 -14 17 -17 15 -24 38 5 -27 -12 8 -38\n60 66\n29 48\n32 51\n38 77\n17 79\n23 74\n39 50\n14 29\n26 76\n9 76\n2 67\n23 48\n17 68\n33 75\n59 78\n46 78\n9 69\n16 83\n18 21\n17 34\n24 61\n15 79\n4 31\n62 63\n46 76\n79 82\n25 39\n5 81\n19 77\n26 71",
"output": "3076"
},
{
"input": "33 17\n11 6 -19 14 23 -23 21 15 29 19 13 -18 -19 20 16 -10 26 -22 3 17 13 -10 19 22 -5 21 12 6 28 -13 -27 25 6\n4 17\n12 16\n9 17\n25 30\n31 32\n4 28\n11 24\n16 19\n3 27\n7 17\n1 16\n15 28\n30 33\n9 31\n14 30\n13 23\n27 27",
"output": "1366"
},
{
"input": "16 44\n32 23 -27 -2 -10 -42 32 -14 -13 4 9 -2 19 35 16 22\n6 12\n8 11\n13 15\n12 12\n3 10\n9 13\n7 15\n2 11\n1 13\n5 6\n9 14\n3 16\n10 13\n3 15\n6 10\n14 16\n4 5\n7 10\n5 14\n1 16\n2 5\n1 6\n9 10\n4 7\n4 12\n2 5\n7 10\n7 9\n2 8\n9 10\n4 10\n7 12\n10 11\n6 6\n15 15\n8 12\n9 10\n3 3\n4 15\n10 12\n7 16\n4 14\n14 16\n5 6",
"output": "777"
},
{
"input": "63 24\n-23 -46 0 33 24 13 39 -6 -4 49 19 -18 -11 -38 0 -3 -33 -17 -4 -44 -22 -12 -16 42 16 -10 7 37 -6 16 -41 -18 -20 51 -49 28 -14 -22 -37 -7 -50 31 -41 -47 18 -8 -39 -29 35 -32 14 -29 44 -29 -19 -25 -47 -8 16 11 20 12 38\n21 61\n35 61\n29 61\n21 34\n12 48\n32 33\n9 27\n4 42\n4 60\n37 61\n19 44\n46 60\n51 53\n31 34\n23 32\n5 29\n43 59\n7 31\n29 48\n15 50\n19 51\n7 28\n17 41\n1 62",
"output": "82"
},
{
"input": "6 51\n45 -33 -17 -48 2 2\n2 5\n1 1\n1 3\n5 5\n4 6\n1 2\n2 3\n3 4\n1 6\n4 6\n3 5\n1 5\n2 2\n2 6\n4 6\n1 5\n1 5\n1 5\n1 6\n6 6\n3 5\n6 6\n1 6\n3 4\n3 3\n2 4\n3 3\n1 4\n2 4\n5 6\n4 5\n2 4\n1 5\n1 2\n4 5\n1 5\n5 6\n2 2\n3 4\n1 3\n1 2\n2 5\n3 6\n4 6\n3 4\n2 4\n1 4\n1 1\n4 6\n3 5\n1 4",
"output": "140"
},
{
"input": "3 5\n2 -1 3\n2 3\n2 3\n2 3\n2 3\n1 2",
"output": "9"
},
{
"input": "4 30\n1 1 1 1\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4",
"output": "120"
}
] | 1,479,988,553
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 53
| 78
| 0
|
inp = [int(x) for x in input().split()]
l = [int(x) for x in input().split()]
total = 0
ans = 0
for x in range(inp[1]):
val = [int(y) for y in input().split()]
total = sum(l[val[0]-1:val[1]])
if(total > 0):
ans = ans + total
print(ans)
|
Title: Alyona and flowers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Alyona is celebrating Happy Birthday! Her mother has an array of *n* flowers. Each flower has some mood, the mood of *i*-th flower is *a**i*. The mood can be positive, zero or negative.
Let's define a subarray as a segment of consecutive flowers. The mother suggested some set of subarrays. Alyona wants to choose several of the subarrays suggested by her mother. After that, each of the flowers will add to the girl's happiness its mood multiplied by the number of chosen subarrays the flower is in.
For example, consider the case when the mother has 5 flowers, and their moods are equal to 1,<=<=-<=2,<=1,<=3,<=<=-<=4. Suppose the mother suggested subarrays (1,<=<=-<=2), (3,<=<=-<=4), (1,<=3), (1,<=<=-<=2,<=1,<=3). Then if the girl chooses the third and the fourth subarrays then:
- the first flower adds 1·1<==<=1 to the girl's happiness, because he is in one of chosen subarrays, - the second flower adds (<=-<=2)·1<==<=<=-<=2, because he is in one of chosen subarrays, - the third flower adds 1·2<==<=2, because he is in two of chosen subarrays, - the fourth flower adds 3·2<==<=6, because he is in two of chosen subarrays, - the fifth flower adds (<=-<=4)·0<==<=0, because he is in no chosen subarrays.
Thus, in total 1<=+<=(<=-<=2)<=+<=2<=+<=6<=+<=0<==<=7 is added to the girl's happiness. Alyona wants to choose such subarrays from those suggested by the mother that the value added to her happiness would be as large as possible. Help her do this!
Alyona can choose any number of the subarrays, even 0 or all suggested by her mother.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of flowers and the number of subarrays suggested by the mother.
The second line contains the flowers moods — *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=100<=≤<=*a**i*<=≤<=100).
The next *m* lines contain the description of the subarrays suggested by the mother. The *i*-th of these lines contain two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) denoting the subarray *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*].
Each subarray can encounter more than once.
Output Specification:
Print single integer — the maximum possible value added to the Alyona's happiness.
Demo Input:
['5 4\n1 -2 1 3 -4\n1 2\n4 5\n3 4\n1 4\n', '4 3\n1 2 3 4\n1 3\n2 4\n1 1\n', '2 2\n-1 -2\n1 1\n1 2\n']
Demo Output:
['7\n', '16\n', '0\n']
Note:
The first example is the situation described in the statements.
In the second example Alyona should choose all subarrays.
The third example has answer 0 because Alyona can choose none of the subarrays.
|
```python
inp = [int(x) for x in input().split()]
l = [int(x) for x in input().split()]
total = 0
ans = 0
for x in range(inp[1]):
val = [int(y) for y in input().split()]
total = sum(l[val[0]-1:val[1]])
if(total > 0):
ans = ans + total
print(ans)
```
| 3
|
|
746
|
A
|
Compote
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Nikolay has *a* lemons, *b* apples and *c* pears. He decided to cook a compote. According to the recipe the fruits should be in the ratio 1:<=2:<=4. It means that for each lemon in the compote should be exactly 2 apples and exactly 4 pears. You can't crumble up, break up or cut these fruits into pieces. These fruits — lemons, apples and pears — should be put in the compote as whole fruits.
Your task is to determine the maximum total number of lemons, apples and pears from which Nikolay can cook the compote. It is possible that Nikolay can't use any fruits, in this case print 0.
|
The first line contains the positive integer *a* (1<=≤<=*a*<=≤<=1000) — the number of lemons Nikolay has.
The second line contains the positive integer *b* (1<=≤<=*b*<=≤<=1000) — the number of apples Nikolay has.
The third line contains the positive integer *c* (1<=≤<=*c*<=≤<=1000) — the number of pears Nikolay has.
|
Print the maximum total number of lemons, apples and pears from which Nikolay can cook the compote.
|
[
"2\n5\n7\n",
"4\n7\n13\n",
"2\n3\n2\n"
] |
[
"7\n",
"21\n",
"0\n"
] |
In the first example Nikolay can use 1 lemon, 2 apples and 4 pears, so the answer is 1 + 2 + 4 = 7.
In the second example Nikolay can use 3 lemons, 6 apples and 12 pears, so the answer is 3 + 6 + 12 = 21.
In the third example Nikolay don't have enough pears to cook any compote, so the answer is 0.
| 500
|
[
{
"input": "2\n5\n7",
"output": "7"
},
{
"input": "4\n7\n13",
"output": "21"
},
{
"input": "2\n3\n2",
"output": "0"
},
{
"input": "1\n1\n1",
"output": "0"
},
{
"input": "1\n2\n4",
"output": "7"
},
{
"input": "1000\n1000\n1000",
"output": "1750"
},
{
"input": "1\n1\n4",
"output": "0"
},
{
"input": "1\n2\n3",
"output": "0"
},
{
"input": "1\n1000\n1000",
"output": "7"
},
{
"input": "1000\n1\n1000",
"output": "0"
},
{
"input": "1000\n2\n1000",
"output": "7"
},
{
"input": "1000\n500\n1000",
"output": "1750"
},
{
"input": "1000\n1000\n4",
"output": "7"
},
{
"input": "1000\n1000\n3",
"output": "0"
},
{
"input": "4\n8\n12",
"output": "21"
},
{
"input": "10\n20\n40",
"output": "70"
},
{
"input": "100\n200\n399",
"output": "693"
},
{
"input": "200\n400\n800",
"output": "1400"
},
{
"input": "199\n400\n800",
"output": "1393"
},
{
"input": "201\n400\n800",
"output": "1400"
},
{
"input": "200\n399\n800",
"output": "1393"
},
{
"input": "200\n401\n800",
"output": "1400"
},
{
"input": "200\n400\n799",
"output": "1393"
},
{
"input": "200\n400\n801",
"output": "1400"
},
{
"input": "139\n252\n871",
"output": "882"
},
{
"input": "109\n346\n811",
"output": "763"
},
{
"input": "237\n487\n517",
"output": "903"
},
{
"input": "161\n331\n725",
"output": "1127"
},
{
"input": "39\n471\n665",
"output": "273"
},
{
"input": "9\n270\n879",
"output": "63"
},
{
"input": "137\n422\n812",
"output": "959"
},
{
"input": "15\n313\n525",
"output": "105"
},
{
"input": "189\n407\n966",
"output": "1323"
},
{
"input": "18\n268\n538",
"output": "126"
},
{
"input": "146\n421\n978",
"output": "1022"
},
{
"input": "70\n311\n685",
"output": "490"
},
{
"input": "244\n405\n625",
"output": "1092"
},
{
"input": "168\n454\n832",
"output": "1176"
},
{
"input": "46\n344\n772",
"output": "322"
},
{
"input": "174\n438\n987",
"output": "1218"
},
{
"input": "144\n387\n693",
"output": "1008"
},
{
"input": "22\n481\n633",
"output": "154"
},
{
"input": "196\n280\n848",
"output": "980"
},
{
"input": "190\n454\n699",
"output": "1218"
},
{
"input": "231\n464\n928",
"output": "1617"
},
{
"input": "151\n308\n616",
"output": "1057"
},
{
"input": "88\n182\n364",
"output": "616"
},
{
"input": "12\n26\n52",
"output": "84"
},
{
"input": "204\n412\n824",
"output": "1428"
},
{
"input": "127\n256\n512",
"output": "889"
},
{
"input": "224\n446\n896",
"output": "1561"
},
{
"input": "146\n291\n584",
"output": "1015"
},
{
"input": "83\n164\n332",
"output": "574"
},
{
"input": "20\n38\n80",
"output": "133"
},
{
"input": "198\n393\n792",
"output": "1372"
},
{
"input": "120\n239\n480",
"output": "833"
},
{
"input": "208\n416\n831",
"output": "1449"
},
{
"input": "130\n260\n517",
"output": "903"
},
{
"input": "67\n134\n267",
"output": "462"
},
{
"input": "245\n490\n979",
"output": "1708"
},
{
"input": "182\n364\n727",
"output": "1267"
},
{
"input": "104\n208\n413",
"output": "721"
},
{
"input": "10\n2\n100",
"output": "7"
},
{
"input": "2\n100\n100",
"output": "14"
},
{
"input": "2\n3\n8",
"output": "7"
},
{
"input": "1\n2\n8",
"output": "7"
},
{
"input": "1\n2\n200",
"output": "7"
},
{
"input": "5\n4\n16",
"output": "14"
},
{
"input": "1\n10\n10",
"output": "7"
},
{
"input": "1\n4\n8",
"output": "7"
},
{
"input": "100\n4\n1000",
"output": "14"
},
{
"input": "2\n6\n12",
"output": "14"
},
{
"input": "10\n7\n4",
"output": "7"
},
{
"input": "2\n10\n100",
"output": "14"
},
{
"input": "2\n3\n4",
"output": "7"
},
{
"input": "1\n2\n999",
"output": "7"
},
{
"input": "1\n10\n20",
"output": "7"
},
{
"input": "100\n18\n20",
"output": "35"
},
{
"input": "100\n1\n100",
"output": "0"
},
{
"input": "3\n7\n80",
"output": "21"
},
{
"input": "2\n8\n24",
"output": "14"
},
{
"input": "1\n100\n100",
"output": "7"
},
{
"input": "2\n1\n8",
"output": "0"
},
{
"input": "10\n5\n23",
"output": "14"
}
] | 1,609,357,406
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 84
| 109
| 0
|
a=int(input())
b=int(input())
c=int(input())
for i in range (a,-1,-1):
if(b>=2*i and c>=4*i):
print(7*i)
break
elif(i==0):
print(0)
|
Title: Compote
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Nikolay has *a* lemons, *b* apples and *c* pears. He decided to cook a compote. According to the recipe the fruits should be in the ratio 1:<=2:<=4. It means that for each lemon in the compote should be exactly 2 apples and exactly 4 pears. You can't crumble up, break up or cut these fruits into pieces. These fruits — lemons, apples and pears — should be put in the compote as whole fruits.
Your task is to determine the maximum total number of lemons, apples and pears from which Nikolay can cook the compote. It is possible that Nikolay can't use any fruits, in this case print 0.
Input Specification:
The first line contains the positive integer *a* (1<=≤<=*a*<=≤<=1000) — the number of lemons Nikolay has.
The second line contains the positive integer *b* (1<=≤<=*b*<=≤<=1000) — the number of apples Nikolay has.
The third line contains the positive integer *c* (1<=≤<=*c*<=≤<=1000) — the number of pears Nikolay has.
Output Specification:
Print the maximum total number of lemons, apples and pears from which Nikolay can cook the compote.
Demo Input:
['2\n5\n7\n', '4\n7\n13\n', '2\n3\n2\n']
Demo Output:
['7\n', '21\n', '0\n']
Note:
In the first example Nikolay can use 1 lemon, 2 apples and 4 pears, so the answer is 1 + 2 + 4 = 7.
In the second example Nikolay can use 3 lemons, 6 apples and 12 pears, so the answer is 3 + 6 + 12 = 21.
In the third example Nikolay don't have enough pears to cook any compote, so the answer is 0.
|
```python
a=int(input())
b=int(input())
c=int(input())
for i in range (a,-1,-1):
if(b>=2*i and c>=4*i):
print(7*i)
break
elif(i==0):
print(0)
```
| 3
|
|
322
|
B
|
Ciel and Flowers
|
PROGRAMMING
| 1,600
|
[
"combinatorics",
"math"
] | null | null |
Fox Ciel has some flowers: *r* red flowers, *g* green flowers and *b* blue flowers. She wants to use these flowers to make several bouquets. There are 4 types of bouquets:
- To make a "red bouquet", it needs 3 red flowers. - To make a "green bouquet", it needs 3 green flowers. - To make a "blue bouquet", it needs 3 blue flowers. - To make a "mixing bouquet", it needs 1 red, 1 green and 1 blue flower.
Help Fox Ciel to find the maximal number of bouquets she can make.
|
The first line contains three integers *r*, *g* and *b* (0<=≤<=*r*,<=*g*,<=*b*<=≤<=109) — the number of red, green and blue flowers.
|
Print the maximal number of bouquets Fox Ciel can make.
|
[
"3 6 9\n",
"4 4 4\n",
"0 0 0\n"
] |
[
"6\n",
"4\n",
"0\n"
] |
In test case 1, we can make 1 red bouquet, 2 green bouquets and 3 blue bouquets.
In test case 2, we can make 1 red, 1 green, 1 blue and 1 mixing bouquet.
| 1,000
|
[
{
"input": "3 6 9",
"output": "6"
},
{
"input": "4 4 4",
"output": "4"
},
{
"input": "0 0 0",
"output": "0"
},
{
"input": "0 3 6",
"output": "3"
},
{
"input": "7 8 9",
"output": "7"
},
{
"input": "8 8 9",
"output": "8"
},
{
"input": "15 3 999",
"output": "339"
},
{
"input": "32 62 92",
"output": "62"
},
{
"input": "123456789 123456789 123456789",
"output": "123456789"
},
{
"input": "3 5 5",
"output": "4"
},
{
"input": "666806767 385540591 357848286",
"output": "470065214"
},
{
"input": "80010646 727118126 817880463",
"output": "541669744"
},
{
"input": "829651016 732259171 572879931",
"output": "711596705"
},
{
"input": "242854896 442432924 180395753",
"output": "288561190"
},
{
"input": "139978911 5123031 935395222",
"output": "360165721"
},
{
"input": "553182792 10264076 395427398",
"output": "319624755"
},
{
"input": "597790453 720437830 855459575",
"output": "724562619"
},
{
"input": "494914467 356982656 757942689",
"output": "536613270"
},
{
"input": "908118348 67156409 217974865",
"output": "397749873"
},
{
"input": "952726009 629846517 972974334",
"output": "851848953"
},
{
"input": "775140200 616574841 630329230",
"output": "674014756"
},
{
"input": "524780569 326748594 90361407",
"output": "313963523"
},
{
"input": "937984449 184405994 992844522",
"output": "705078321"
},
{
"input": "835108464 525983528 452876698",
"output": "604656229"
},
{
"input": "879716125 531124573 207876166",
"output": "539572288"
},
{
"input": "292920005 241298326 667908343",
"output": "400708891"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1000000000"
},
{
"input": "1000000000 999999999 999999998",
"output": "999999998"
},
{
"input": "999999998 999999998 999999999",
"output": "999999998"
},
{
"input": "0 1 1",
"output": "0"
},
{
"input": "0 1000000000 0",
"output": "333333333"
},
{
"input": "0 1 0",
"output": "0"
},
{
"input": "1 0 0",
"output": "0"
},
{
"input": "0 2 2",
"output": "0"
},
{
"input": "3 3 5",
"output": "3"
},
{
"input": "2 2 0",
"output": "0"
},
{
"input": "0 5 5",
"output": "2"
},
{
"input": "2 0 11",
"output": "3"
},
{
"input": "9 9 7",
"output": "8"
},
{
"input": "65 30 74",
"output": "56"
}
] | 1,634,912,512
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 40
| 122
| 28,364,800
|
r,g,b=map(int,input().split())
ans=0
for i in range(3):
t=0
rt=r
gt=g
bt=b
if rt>=i and gt>=i and bt>=i:
rt-=i
gt-=i
bt-=i
t+=i
t+=rt//3+gt//3+bt//3
ans=max(ans,t)
print(ans)
|
Title: Ciel and Flowers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fox Ciel has some flowers: *r* red flowers, *g* green flowers and *b* blue flowers. She wants to use these flowers to make several bouquets. There are 4 types of bouquets:
- To make a "red bouquet", it needs 3 red flowers. - To make a "green bouquet", it needs 3 green flowers. - To make a "blue bouquet", it needs 3 blue flowers. - To make a "mixing bouquet", it needs 1 red, 1 green and 1 blue flower.
Help Fox Ciel to find the maximal number of bouquets she can make.
Input Specification:
The first line contains three integers *r*, *g* and *b* (0<=≤<=*r*,<=*g*,<=*b*<=≤<=109) — the number of red, green and blue flowers.
Output Specification:
Print the maximal number of bouquets Fox Ciel can make.
Demo Input:
['3 6 9\n', '4 4 4\n', '0 0 0\n']
Demo Output:
['6\n', '4\n', '0\n']
Note:
In test case 1, we can make 1 red bouquet, 2 green bouquets and 3 blue bouquets.
In test case 2, we can make 1 red, 1 green, 1 blue and 1 mixing bouquet.
|
```python
r,g,b=map(int,input().split())
ans=0
for i in range(3):
t=0
rt=r
gt=g
bt=b
if rt>=i and gt>=i and bt>=i:
rt-=i
gt-=i
bt-=i
t+=i
t+=rt//3+gt//3+bt//3
ans=max(ans,t)
print(ans)
```
| 3
|
|
928
|
B
|
Chat
|
PROGRAMMING
| 1,400
|
[
"*special",
"dp"
] | null | null |
There are times you recall a good old friend and everything you've come through together. Luckily there are social networks — they store all your message history making it easy to know what you argued over 10 years ago.
More formal, your message history is a sequence of messages ordered by time sent numbered from 1 to *n* where *n* is the total number of messages in the chat.
Each message might contain a link to an earlier message which it is a reply to. When opening a message *x* or getting a link to it, the dialogue is shown in such a way that *k* previous messages, message *x* and *k* next messages are visible (with respect to message *x*). In case there are less than *k* messages somewhere, they are yet all shown.
Digging deep into your message history, you always read all visible messages and then go by the link in the current message *x* (if there is one) and continue reading in the same manner.
Determine the number of messages you'll read if your start from message number *t* for all *t* from 1 to *n*. Calculate these numbers independently. If you start with message *x*, the initial configuration is *x* itself, *k* previous and *k* next messages. Messages read multiple times are considered as one.
|
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105, 0<=≤<=*k*<=≤<=*n*) — the total amount of messages and the number of previous and next messages visible.
The second line features a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=<<=*i*), where *a**i* denotes the *i*-th message link destination or zero, if there's no link from *i*. All messages are listed in chronological order. It's guaranteed that the link from message *x* goes to message with number strictly less than *x*.
|
Print *n* integers with *i*-th denoting the number of distinct messages you can read starting from message *i* and traversing the links while possible.
|
[
"6 0\n0 1 1 2 3 2\n",
"10 1\n0 1 0 3 4 5 2 3 7 0\n",
"2 2\n0 1\n"
] |
[
"1 2 2 3 3 3 \n",
"2 3 3 4 5 6 6 6 8 2 \n",
"2 2 \n"
] |
Consider *i* = 6 in sample case one. You will read message 6, then 2, then 1 and then there will be no link to go.
In the second sample case *i* = 6 gives you messages 5, 6, 7 since *k* = 1, then 4, 5, 6, then 2, 3, 4 and then the link sequence breaks. The number of distinct messages here is equal to 6.
| 1,250
|
[
{
"input": "6 0\n0 1 1 2 3 2",
"output": "1 2 2 3 3 3 "
},
{
"input": "10 1\n0 1 0 3 4 5 2 3 7 0",
"output": "2 3 3 4 5 6 6 6 8 2 "
},
{
"input": "2 2\n0 1",
"output": "2 2 "
},
{
"input": "1 1\n0",
"output": "1 "
},
{
"input": "5 2\n0 1 2 3 1",
"output": "3 4 5 5 5 "
},
{
"input": "30 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 2 0 0 0 0 0 2 1 0",
"output": "2 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 3 3 3 3 3 6 3 3 3 3 3 6 5 2 "
},
{
"input": "100 5\n0 1 1 1 0 5 6 6 8 8 9 11 12 11 8 0 0 14 6 16 7 21 15 23 15 24 0 0 0 28 0 29 26 27 19 0 0 21 37 32 40 30 37 34 39 38 34 38 0 0 41 24 45 47 0 33 46 26 31 0 21 57 57 31 63 63 25 59 65 56 68 0 30 55 55 0 70 43 59 49 59 79 66 74 0 11 65 0 80 63 0 84 73 49 73 81 0 86 76 98",
"output": "6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 11 11 23 22 15 23 24 28 29 30 31 11 11 11 13 11 14 38 18 33 11 11 34 13 22 23 24 17 28 19 42 29 44 11 11 33 40 27 36 11 49 53 42 22 11 34 58 59 22 61 62 41 31 65 60 34 11 24 22 22 11 67 28 33 22 33 36 73 32 11 27 72 11 31 70 11 40 35 22 35 43 9 35 18 35 "
},
{
"input": "2 2\n0 0",
"output": "2 2 "
},
{
"input": "2 1\n0 0",
"output": "2 2 "
},
{
"input": "2 1\n0 1",
"output": "2 2 "
},
{
"input": "2 0\n0 0",
"output": "1 1 "
},
{
"input": "2 0\n0 1",
"output": "1 2 "
},
{
"input": "3 0\n0 0 0",
"output": "1 1 1 "
},
{
"input": "3 0\n0 0 1",
"output": "1 1 2 "
},
{
"input": "3 0\n0 0 2",
"output": "1 1 2 "
},
{
"input": "3 0\n0 1 0",
"output": "1 2 1 "
},
{
"input": "3 0\n0 1 1",
"output": "1 2 2 "
},
{
"input": "3 0\n0 1 2",
"output": "1 2 3 "
},
{
"input": "3 1\n0 0 0",
"output": "2 3 2 "
},
{
"input": "3 1\n0 0 1",
"output": "2 3 3 "
},
{
"input": "3 1\n0 0 2",
"output": "2 3 3 "
},
{
"input": "3 1\n0 1 0",
"output": "2 3 2 "
},
{
"input": "3 1\n0 1 1",
"output": "2 3 3 "
},
{
"input": "3 1\n0 1 2",
"output": "2 3 3 "
},
{
"input": "3 2\n0 0 0",
"output": "3 3 3 "
},
{
"input": "3 2\n0 0 1",
"output": "3 3 3 "
},
{
"input": "3 2\n0 0 2",
"output": "3 3 3 "
},
{
"input": "3 2\n0 1 0",
"output": "3 3 3 "
},
{
"input": "3 2\n0 1 1",
"output": "3 3 3 "
},
{
"input": "3 2\n0 1 2",
"output": "3 3 3 "
},
{
"input": "3 3\n0 0 0",
"output": "3 3 3 "
},
{
"input": "3 3\n0 0 1",
"output": "3 3 3 "
},
{
"input": "3 3\n0 0 2",
"output": "3 3 3 "
},
{
"input": "3 3\n0 1 0",
"output": "3 3 3 "
},
{
"input": "3 3\n0 1 1",
"output": "3 3 3 "
},
{
"input": "3 3\n0 1 2",
"output": "3 3 3 "
},
{
"input": "10 3\n0 0 0 0 0 0 0 4 0 4",
"output": "4 5 6 7 7 7 7 10 5 10 "
},
{
"input": "20 2\n0 0 0 0 2 1 0 3 0 1 1 11 0 10 0 0 9 17 9 0",
"output": "3 4 5 5 7 8 5 10 5 8 8 9 5 12 5 5 10 11 9 3 "
},
{
"input": "40 0\n0 1 2 3 4 5 0 0 0 0 0 11 12 0 14 10 0 16 15 0 19 21 22 0 23 25 25 24 24 29 29 0 0 31 0 35 31 36 34 29",
"output": "1 2 3 4 5 6 1 1 1 1 1 2 3 1 2 2 1 3 3 1 4 5 6 1 7 8 8 2 2 3 3 1 1 4 1 2 4 3 5 3 "
}
] | 1,665,137,409
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 118
| 140
| 16,281,600
|
n,k=map(int,input().split())
arr=list(map(int,input().split()))
dp=[0]*(n)
arr=[el-1 for el in arr]
for i in range(n):
if arr[i]==-1:
dp[i]=1+min(n-1-i,k)+min(k,i)
else :
dp[i]=dp[arr[i]]+min(1+min(n-1-i,k)+min(i,k),min(n-1,i+k)-min(n-1,arr[i]+k))
print(*dp)
|
Title: Chat
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are times you recall a good old friend and everything you've come through together. Luckily there are social networks — they store all your message history making it easy to know what you argued over 10 years ago.
More formal, your message history is a sequence of messages ordered by time sent numbered from 1 to *n* where *n* is the total number of messages in the chat.
Each message might contain a link to an earlier message which it is a reply to. When opening a message *x* or getting a link to it, the dialogue is shown in such a way that *k* previous messages, message *x* and *k* next messages are visible (with respect to message *x*). In case there are less than *k* messages somewhere, they are yet all shown.
Digging deep into your message history, you always read all visible messages and then go by the link in the current message *x* (if there is one) and continue reading in the same manner.
Determine the number of messages you'll read if your start from message number *t* for all *t* from 1 to *n*. Calculate these numbers independently. If you start with message *x*, the initial configuration is *x* itself, *k* previous and *k* next messages. Messages read multiple times are considered as one.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105, 0<=≤<=*k*<=≤<=*n*) — the total amount of messages and the number of previous and next messages visible.
The second line features a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=<<=*i*), where *a**i* denotes the *i*-th message link destination or zero, if there's no link from *i*. All messages are listed in chronological order. It's guaranteed that the link from message *x* goes to message with number strictly less than *x*.
Output Specification:
Print *n* integers with *i*-th denoting the number of distinct messages you can read starting from message *i* and traversing the links while possible.
Demo Input:
['6 0\n0 1 1 2 3 2\n', '10 1\n0 1 0 3 4 5 2 3 7 0\n', '2 2\n0 1\n']
Demo Output:
['1 2 2 3 3 3 \n', '2 3 3 4 5 6 6 6 8 2 \n', '2 2 \n']
Note:
Consider *i* = 6 in sample case one. You will read message 6, then 2, then 1 and then there will be no link to go.
In the second sample case *i* = 6 gives you messages 5, 6, 7 since *k* = 1, then 4, 5, 6, then 2, 3, 4 and then the link sequence breaks. The number of distinct messages here is equal to 6.
|
```python
n,k=map(int,input().split())
arr=list(map(int,input().split()))
dp=[0]*(n)
arr=[el-1 for el in arr]
for i in range(n):
if arr[i]==-1:
dp[i]=1+min(n-1-i,k)+min(k,i)
else :
dp[i]=dp[arr[i]]+min(1+min(n-1-i,k)+min(i,k),min(n-1,i+k)-min(n-1,arr[i]+k))
print(*dp)
```
| 3
|
|
208
|
A
|
Dubstep
|
PROGRAMMING
| 900
|
[
"strings"
] | null | null |
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them.
Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club.
For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX".
Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
|
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
|
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
|
[
"WUBWUBABCWUB\n",
"WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n"
] |
[
"ABC ",
"WE ARE THE CHAMPIONS MY FRIEND "
] |
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya.
In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
| 500
|
[
{
"input": "WUBWUBABCWUB",
"output": "ABC "
},
{
"input": "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB",
"output": "WE ARE THE CHAMPIONS MY FRIEND "
},
{
"input": "WUBWUBWUBSR",
"output": "SR "
},
{
"input": "RWUBWUBWUBLWUB",
"output": "R L "
},
{
"input": "ZJWUBWUBWUBJWUBWUBWUBL",
"output": "ZJ J L "
},
{
"input": "CWUBBWUBWUBWUBEWUBWUBWUBQWUBWUBWUB",
"output": "C B E Q "
},
{
"input": "WUBJKDWUBWUBWBIRAQKFWUBWUBYEWUBWUBWUBWVWUBWUB",
"output": "JKD WBIRAQKF YE WV "
},
{
"input": "WUBKSDHEMIXUJWUBWUBRWUBWUBWUBSWUBWUBWUBHWUBWUBWUB",
"output": "KSDHEMIXUJ R S H "
},
{
"input": "OGWUBWUBWUBXWUBWUBWUBIWUBWUBWUBKOWUBWUB",
"output": "OG X I KO "
},
{
"input": "QWUBQQWUBWUBWUBIWUBWUBWWWUBWUBWUBJOPJPBRH",
"output": "Q QQ I WW JOPJPBRH "
},
{
"input": "VSRNVEATZTLGQRFEGBFPWUBWUBWUBAJWUBWUBWUBPQCHNWUBCWUB",
"output": "VSRNVEATZTLGQRFEGBFP AJ PQCHN C "
},
{
"input": "WUBWUBEWUBWUBWUBIQMJNIQWUBWUBWUBGZZBQZAUHYPWUBWUBWUBPMRWUBWUBWUBDCV",
"output": "E IQMJNIQ GZZBQZAUHYP PMR DCV "
},
{
"input": "WUBWUBWUBFVWUBWUBWUBBPSWUBWUBWUBRXNETCJWUBWUBWUBJDMBHWUBWUBWUBBWUBWUBVWUBWUBB",
"output": "FV BPS RXNETCJ JDMBH B V B "
},
{
"input": "WUBWUBWUBFBQWUBWUBWUBIDFSYWUBWUBWUBCTWDMWUBWUBWUBSXOWUBWUBWUBQIWUBWUBWUBL",
"output": "FBQ IDFSY CTWDM SXO QI L "
},
{
"input": "IWUBWUBQLHDWUBYIIKZDFQWUBWUBWUBCXWUBWUBUWUBWUBWUBKWUBWUBWUBNL",
"output": "I QLHD YIIKZDFQ CX U K NL "
},
{
"input": "KWUBUPDYXGOKUWUBWUBWUBAGOAHWUBIZDWUBWUBWUBIYWUBWUBWUBVWUBWUBWUBPWUBWUBWUBE",
"output": "K UPDYXGOKU AGOAH IZD IY V P E "
},
{
"input": "WUBWUBOWUBWUBWUBIPVCQAFWYWUBWUBWUBQWUBWUBWUBXHDKCPYKCTWWYWUBWUBWUBVWUBWUBWUBFZWUBWUB",
"output": "O IPVCQAFWY Q XHDKCPYKCTWWY V FZ "
},
{
"input": "PAMJGYWUBWUBWUBXGPQMWUBWUBWUBTKGSXUYWUBWUBWUBEWUBWUBWUBNWUBWUBWUBHWUBWUBWUBEWUBWUB",
"output": "PAMJGY XGPQM TKGSXUY E N H E "
},
{
"input": "WUBYYRTSMNWUWUBWUBWUBCWUBWUBWUBCWUBWUBWUBFSYUINDWOBVWUBWUBWUBFWUBWUBWUBAUWUBWUBWUBVWUBWUBWUBJB",
"output": "YYRTSMNWU C C FSYUINDWOBV F AU V JB "
},
{
"input": "WUBWUBYGPYEYBNRTFKOQCWUBWUBWUBUYGRTQEGWLFYWUBWUBWUBFVWUBHPWUBWUBWUBXZQWUBWUBWUBZDWUBWUBWUBM",
"output": "YGPYEYBNRTFKOQC UYGRTQEGWLFY FV HP XZQ ZD M "
},
{
"input": "WUBZVMJWUBWUBWUBFOIMJQWKNZUBOFOFYCCWUBWUBWUBAUWWUBRDRADWUBWUBWUBCHQVWUBWUBWUBKFTWUBWUBWUBW",
"output": "ZVMJ FOIMJQWKNZUBOFOFYCC AUW RDRAD CHQV KFT W "
},
{
"input": "WUBWUBZBKOKHQLGKRVIMZQMQNRWUBWUBWUBDACWUBWUBNZHFJMPEYKRVSWUBWUBWUBPPHGAVVPRZWUBWUBWUBQWUBWUBAWUBG",
"output": "ZBKOKHQLGKRVIMZQMQNR DAC NZHFJMPEYKRVS PPHGAVVPRZ Q A G "
},
{
"input": "WUBWUBJWUBWUBWUBNFLWUBWUBWUBGECAWUBYFKBYJWTGBYHVSSNTINKWSINWSMAWUBWUBWUBFWUBWUBWUBOVWUBWUBLPWUBWUBWUBN",
"output": "J NFL GECA YFKBYJWTGBYHVSSNTINKWSINWSMA F OV LP N "
},
{
"input": "WUBWUBLCWUBWUBWUBZGEQUEATJVIXETVTWUBWUBWUBEXMGWUBWUBWUBRSWUBWUBWUBVWUBWUBWUBTAWUBWUBWUBCWUBWUBWUBQG",
"output": "LC ZGEQUEATJVIXETVT EXMG RS V TA C QG "
},
{
"input": "WUBMPWUBWUBWUBORWUBWUBDLGKWUBWUBWUBVVZQCAAKVJTIKWUBWUBWUBTJLUBZJCILQDIFVZWUBWUBYXWUBWUBWUBQWUBWUBWUBLWUB",
"output": "MP OR DLGK VVZQCAAKVJTIK TJLUBZJCILQDIFVZ YX Q L "
},
{
"input": "WUBNXOLIBKEGXNWUBWUBWUBUWUBGITCNMDQFUAOVLWUBWUBWUBAIJDJZJHFMPVTPOXHPWUBWUBWUBISCIOWUBWUBWUBGWUBWUBWUBUWUB",
"output": "NXOLIBKEGXN U GITCNMDQFUAOVL AIJDJZJHFMPVTPOXHP ISCIO G U "
},
{
"input": "WUBWUBNMMWCZOLYPNBELIYVDNHJUNINWUBWUBWUBDXLHYOWUBWUBWUBOJXUWUBWUBWUBRFHTGJCEFHCGWARGWUBWUBWUBJKWUBWUBSJWUBWUB",
"output": "NMMWCZOLYPNBELIYVDNHJUNIN DXLHYO OJXU RFHTGJCEFHCGWARG JK SJ "
},
{
"input": "SGWLYSAUJOJBNOXNWUBWUBWUBBOSSFWKXPDPDCQEWUBWUBWUBDIRZINODWUBWUBWUBWWUBWUBWUBPPHWUBWUBWUBRWUBWUBWUBQWUBWUBWUBJWUB",
"output": "SGWLYSAUJOJBNOXN BOSSFWKXPDPDCQE DIRZINOD W PPH R Q J "
},
{
"input": "TOWUBWUBWUBGBTBNWUBWUBWUBJVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSAWUBWUBWUBSWUBWUBWUBTOLVXWUBWUBWUBNHWUBWUBWUBO",
"output": "TO GBTBN JVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSA S TOLVX NH O "
},
{
"input": "WUBWUBWSPLAYSZSAUDSWUBWUBWUBUWUBWUBWUBKRWUBWUBWUBRSOKQMZFIYZQUWUBWUBWUBELSHUWUBWUBWUBUKHWUBWUBWUBQXEUHQWUBWUBWUBBWUBWUBWUBR",
"output": "WSPLAYSZSAUDS U KR RSOKQMZFIYZQU ELSHU UKH QXEUHQ B R "
},
{
"input": "WUBXEMWWVUHLSUUGRWUBWUBWUBAWUBXEGILZUNKWUBWUBWUBJDHHKSWUBWUBWUBDTSUYSJHWUBWUBWUBPXFWUBMOHNJWUBWUBWUBZFXVMDWUBWUBWUBZMWUBWUB",
"output": "XEMWWVUHLSUUGR A XEGILZUNK JDHHKS DTSUYSJH PXF MOHNJ ZFXVMD ZM "
},
{
"input": "BMBWUBWUBWUBOQKWUBWUBWUBPITCIHXHCKLRQRUGXJWUBWUBWUBVWUBWUBWUBJCWUBWUBWUBQJPWUBWUBWUBBWUBWUBWUBBMYGIZOOXWUBWUBWUBTAGWUBWUBHWUB",
"output": "BMB OQK PITCIHXHCKLRQRUGXJ V JC QJP B BMYGIZOOX TAG H "
},
{
"input": "CBZNWUBWUBWUBNHWUBWUBWUBYQSYWUBWUBWUBMWUBWUBWUBXRHBTMWUBWUBWUBPCRCWUBWUBWUBTZUYLYOWUBWUBWUBCYGCWUBWUBWUBCLJWUBWUBWUBSWUBWUBWUB",
"output": "CBZN NH YQSY M XRHBTM PCRC TZUYLYO CYGC CLJ S "
},
{
"input": "DPDWUBWUBWUBEUQKWPUHLTLNXHAEKGWUBRRFYCAYZFJDCJLXBAWUBWUBWUBHJWUBOJWUBWUBWUBNHBJEYFWUBWUBWUBRWUBWUBWUBSWUBWWUBWUBWUBXDWUBWUBWUBJWUB",
"output": "DPD EUQKWPUHLTLNXHAEKG RRFYCAYZFJDCJLXBA HJ OJ NHBJEYF R S W XD J "
},
{
"input": "WUBWUBWUBISERPQITVIYERSCNWUBWUBWUBQWUBWUBWUBDGSDIPWUBWUBWUBCAHKDZWEXBIBJVVSKKVQJWUBWUBWUBKIWUBWUBWUBCWUBWUBWUBAWUBWUBWUBPWUBWUBWUBHWUBWUBWUBF",
"output": "ISERPQITVIYERSCN Q DGSDIP CAHKDZWEXBIBJVVSKKVQJ KI C A P H F "
},
{
"input": "WUBWUBWUBIWUBWUBLIKNQVWUBWUBWUBPWUBWUBWUBHWUBWUBWUBMWUBWUBWUBDPRSWUBWUBWUBBSAGYLQEENWXXVWUBWUBWUBXMHOWUBWUBWUBUWUBWUBWUBYRYWUBWUBWUBCWUBWUBWUBY",
"output": "I LIKNQV P H M DPRS BSAGYLQEENWXXV XMHO U YRY C Y "
},
{
"input": "WUBWUBWUBMWUBWUBWUBQWUBWUBWUBITCFEYEWUBWUBWUBHEUWGNDFNZGWKLJWUBWUBWUBMZPWUBWUBWUBUWUBWUBWUBBWUBWUBWUBDTJWUBHZVIWUBWUBWUBPWUBFNHHWUBWUBWUBVTOWUB",
"output": "M Q ITCFEYE HEUWGNDFNZGWKLJ MZP U B DTJ HZVI P FNHH VTO "
},
{
"input": "WUBWUBNDNRFHYJAAUULLHRRDEDHYFSRXJWUBWUBWUBMUJVDTIRSGYZAVWKRGIFWUBWUBWUBHMZWUBWUBWUBVAIWUBWUBWUBDDKJXPZRGWUBWUBWUBSGXWUBWUBWUBIFKWUBWUBWUBUWUBWUBWUBW",
"output": "NDNRFHYJAAUULLHRRDEDHYFSRXJ MUJVDTIRSGYZAVWKRGIF HMZ VAI DDKJXPZRG SGX IFK U W "
},
{
"input": "WUBOJMWRSLAXXHQRTPMJNCMPGWUBWUBWUBNYGMZIXNLAKSQYWDWUBWUBWUBXNIWUBWUBWUBFWUBWUBWUBXMBWUBWUBWUBIWUBWUBWUBINWUBWUBWUBWDWUBWUBWUBDDWUBWUBWUBD",
"output": "OJMWRSLAXXHQRTPMJNCMPG NYGMZIXNLAKSQYWD XNI F XMB I IN WD DD D "
},
{
"input": "WUBWUBWUBREHMWUBWUBWUBXWUBWUBWUBQASNWUBWUBWUBNLSMHLCMTICWUBWUBWUBVAWUBWUBWUBHNWUBWUBWUBNWUBWUBWUBUEXLSFOEULBWUBWUBWUBXWUBWUBWUBJWUBWUBWUBQWUBWUBWUBAWUBWUB",
"output": "REHM X QASN NLSMHLCMTIC VA HN N UEXLSFOEULB X J Q A "
},
{
"input": "WUBWUBWUBSTEZTZEFFIWUBWUBWUBSWUBWUBWUBCWUBFWUBHRJPVWUBWUBWUBDYJUWUBWUBWUBPWYDKCWUBWUBWUBCWUBWUBWUBUUEOGCVHHBWUBWUBWUBEXLWUBWUBWUBVCYWUBWUBWUBMWUBWUBWUBYWUB",
"output": "STEZTZEFFI S C F HRJPV DYJU PWYDKC C UUEOGCVHHB EXL VCY M Y "
},
{
"input": "WPPNMSQOQIWUBWUBWUBPNQXWUBWUBWUBHWUBWUBWUBNFLWUBWUBWUBGWSGAHVJFNUWUBWUBWUBFWUBWUBWUBWCMLRICFSCQQQTNBWUBWUBWUBSWUBWUBWUBKGWUBWUBWUBCWUBWUBWUBBMWUBWUBWUBRWUBWUB",
"output": "WPPNMSQOQI PNQX H NFL GWSGAHVJFNU F WCMLRICFSCQQQTNB S KG C BM R "
},
{
"input": "YZJOOYITZRARKVFYWUBWUBRZQGWUBWUBWUBUOQWUBWUBWUBIWUBWUBWUBNKVDTBOLETKZISTWUBWUBWUBWLWUBQQFMMGSONZMAWUBZWUBWUBWUBQZUXGCWUBWUBWUBIRZWUBWUBWUBLTTVTLCWUBWUBWUBY",
"output": "YZJOOYITZRARKVFY RZQG UOQ I NKVDTBOLETKZIST WL QQFMMGSONZMA Z QZUXGC IRZ LTTVTLC Y "
},
{
"input": "WUBCAXNCKFBVZLGCBWCOAWVWOFKZVQYLVTWUBWUBWUBNLGWUBWUBWUBAMGDZBDHZMRMQMDLIRMIWUBWUBWUBGAJSHTBSWUBWUBWUBCXWUBWUBWUBYWUBZLXAWWUBWUBWUBOHWUBWUBWUBZWUBWUBWUBGBWUBWUBWUBE",
"output": "CAXNCKFBVZLGCBWCOAWVWOFKZVQYLVT NLG AMGDZBDHZMRMQMDLIRMI GAJSHTBS CX Y ZLXAW OH Z GB E "
},
{
"input": "WUBWUBCHXSOWTSQWUBWUBWUBCYUZBPBWUBWUBWUBSGWUBWUBWKWORLRRLQYUUFDNWUBWUBWUBYYGOJNEVEMWUBWUBWUBRWUBWUBWUBQWUBWUBWUBIHCKWUBWUBWUBKTWUBWUBWUBRGSNTGGWUBWUBWUBXCXWUBWUBWUBS",
"output": "CHXSOWTSQ CYUZBPB SG WKWORLRRLQYUUFDN YYGOJNEVEM R Q IHCK KT RGSNTGG XCX S "
},
{
"input": "WUBWUBWUBHJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQWUBWUBWUBXTZKGIITWUBWUBWUBAWUBWUBWUBVNCXPUBCQWUBWUBWUBIDPNAWUBWUBWUBOWUBWUBWUBYGFWUBWUBWUBMQOWUBWUBWUBKWUBWUBWUBAZVWUBWUBWUBEP",
"output": "HJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQ XTZKGIIT A VNCXPUBCQ IDPNA O YGF MQO K AZV EP "
},
{
"input": "WUBKYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTVWUBWUBWUBLRMIIWUBWUBWUBGWUBWUBWUBADPSWUBWUBWUBANBWUBWUBPCWUBWUBWUBPWUBWUBWUBGPVNLSWIRFORYGAABUXMWUBWUBWUBOWUBWUBWUBNWUBWUBWUBYWUBWUB",
"output": "KYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTV LRMII G ADPS ANB PC P GPVNLSWIRFORYGAABUXM O N Y "
},
{
"input": "REWUBWUBWUBJDWUBWUBWUBNWUBWUBWUBTWWUBWUBWUBWZDOCKKWUBWUBWUBLDPOVBFRCFWUBWUBAKZIBQKEUAZEEWUBWUBWUBLQYPNPFWUBYEWUBWUBWUBFWUBWUBWUBBPWUBWUBWUBAWWUBWUBWUBQWUBWUBWUBBRWUBWUBWUBXJL",
"output": "RE JD N TW WZDOCKK LDPOVBFRCF AKZIBQKEUAZEE LQYPNPF YE F BP AW Q BR XJL "
},
{
"input": "CUFGJDXGMWUBWUBWUBOMWUBWUBWUBSIEWUBWUBWUBJJWKNOWUBWUBWUBYBHVNRNORGYWUBWUBWUBOAGCAWUBWUBWUBSBLBKTPFKPBIWUBWUBWUBJBWUBWUBWUBRMFCJPGWUBWUBWUBDWUBWUBWUBOJOWUBWUBWUBZPWUBWUBWUBMWUBRWUBWUBWUBFXWWUBWUBWUBO",
"output": "CUFGJDXGM OM SIE JJWKNO YBHVNRNORGY OAGCA SBLBKTPFKPBI JB RMFCJPG D OJO ZP M R FXW O "
},
{
"input": "WUBJZGAEXFMFEWMAKGQLUWUBWUBWUBICYTPQWGENELVYWANKUOJYWUBWUBWUBGWUBWUBWUBHYCJVLPHTUPNEGKCDGQWUBWUBWUBOFWUBWUBWUBCPGSOGZBRPRPVJJEWUBWUBWUBDQBCWUBWUBWUBHWUBWUBWUBMHOHYBMATWUBWUBWUBVWUBWUBWUBSWUBWUBWUBKOWU",
"output": "JZGAEXFMFEWMAKGQLU ICYTPQWGENELVYWANKUOJY G HYCJVLPHTUPNEGKCDGQ OF CPGSOGZBRPRPVJJE DQBC H MHOHYBMAT V S KOWU "
},
{
"input": "A",
"output": "A "
},
{
"input": "WUBA",
"output": "A "
},
{
"input": "WUBWUBA",
"output": "A "
},
{
"input": "AWUBWUBWUB",
"output": "A "
},
{
"input": "AWUBBWUBCWUBD",
"output": "A B C D "
},
{
"input": "WUBWWUBWUBWUBUWUBWUBBWUB",
"output": "W U B "
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA "
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA "
},
{
"input": "WUWUBBWWUBUB",
"output": "WU BW UB "
},
{
"input": "WUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUABWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUB",
"output": "WUAB "
},
{
"input": "ZWUB",
"output": "Z "
},
{
"input": "WU",
"output": "WU "
},
{
"input": "UB",
"output": "UB "
},
{
"input": "U",
"output": "U "
},
{
"input": "WUBW",
"output": "W "
},
{
"input": "WUBWU",
"output": "WU "
},
{
"input": "WUWUB",
"output": "WU "
},
{
"input": "UBWUB",
"output": "UB "
},
{
"input": "WUWUBUBWUBUWUB",
"output": "WU UB U "
},
{
"input": "WUBWWUBAWUB",
"output": "W A "
},
{
"input": "WUUUUU",
"output": "WUUUUU "
}
] | 1,699,382,194
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 71
| 186
| 0
|
s = input()
og = ''
i = 0
while i < len(s):
if s[i:i+3] != "WUB":
og = og + s[i]
i = i + 1
else:
if (len(og) != 0) and (og[-1] != " "):
og = og + " "
i = i + 3
print(og)
|
Title: Dubstep
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them.
Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club.
For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX".
Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
Input Specification:
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
Output Specification:
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
Demo Input:
['WUBWUBABCWUB\n', 'WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n']
Demo Output:
['ABC ', 'WE ARE THE CHAMPIONS MY FRIEND ']
Note:
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya.
In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
|
```python
s = input()
og = ''
i = 0
while i < len(s):
if s[i:i+3] != "WUB":
og = og + s[i]
i = i + 1
else:
if (len(og) != 0) and (og[-1] != " "):
og = og + " "
i = i + 3
print(og)
```
| 3
|
|
53
|
C
|
Little Frog
|
PROGRAMMING
| 1,200
|
[
"constructive algorithms"
] |
C. Little Frog
|
2
|
256
|
Once upon a time a little frog whose name was Vasya decided to travel around his home swamp. Overall there are *n* mounds on the swamp, located on one line. The distance between the neighboring mounds is one meter. Vasya wants to visit all the mounds in one day; besides, he wants to visit each one exactly once. For that he makes a route plan, to decide the order in which to jump on the mounds. Vasya can pick any mound as the first one. He thinks it boring to jump two times at the same distance. That's why he wants any two jumps on his route to have different lengths. Help Vasya the Frog and make the plan for him.
|
The single line contains a number *n* (1<=≤<=*n*<=≤<=104) which is the number of mounds.
|
Print *n* integers *p**i* (1<=≤<=*p**i*<=≤<=*n*) which are the frog's route plan.
- All the *p**i*'s should be mutually different. - All the |*p**i*–*p**i*<=+<=1|'s should be mutually different (1<=≤<=*i*<=≤<=*n*<=-<=1).
If there are several solutions, output any.
|
[
"2\n",
"3\n"
] |
[
"1 2 ",
"1 3 2 "
] |
none
| 1,500
|
[
{
"input": "2",
"output": "1 2 "
},
{
"input": "3",
"output": "1 3 2 "
},
{
"input": "4",
"output": "1 4 2 3 "
},
{
"input": "5",
"output": "1 5 2 4 3 "
},
{
"input": "6",
"output": "1 6 2 5 3 4 "
},
{
"input": "1",
"output": "1 "
},
{
"input": "9149",
"output": "1 9149 2 9148 3 9147 4 9146 5 9145 6 9144 7 9143 8 9142 9 9141 10 9140 11 9139 12 9138 13 9137 14 9136 15 9135 16 9134 17 9133 18 9132 19 9131 20 9130 21 9129 22 9128 23 9127 24 9126 25 9125 26 9124 27 9123 28 9122 29 9121 30 9120 31 9119 32 9118 33 9117 34 9116 35 9115 36 9114 37 9113 38 9112 39 9111 40 9110 41 9109 42 9108 43 9107 44 9106 45 9105 46 9104 47 9103 48 9102 49 9101 50 9100 51 9099 52 9098 53 9097 54 9096 55 9095 56 9094 57 9093 58 9092 59 9091 60 9090 61 9089 62 9088 63 9087 64 9086 65 9085 ..."
},
{
"input": "2877",
"output": "1 2877 2 2876 3 2875 4 2874 5 2873 6 2872 7 2871 8 2870 9 2869 10 2868 11 2867 12 2866 13 2865 14 2864 15 2863 16 2862 17 2861 18 2860 19 2859 20 2858 21 2857 22 2856 23 2855 24 2854 25 2853 26 2852 27 2851 28 2850 29 2849 30 2848 31 2847 32 2846 33 2845 34 2844 35 2843 36 2842 37 2841 38 2840 39 2839 40 2838 41 2837 42 2836 43 2835 44 2834 45 2833 46 2832 47 2831 48 2830 49 2829 50 2828 51 2827 52 2826 53 2825 54 2824 55 2823 56 2822 57 2821 58 2820 59 2819 60 2818 61 2817 62 2816 63 2815 64 2814 65 2813 ..."
},
{
"input": "2956",
"output": "1 2956 2 2955 3 2954 4 2953 5 2952 6 2951 7 2950 8 2949 9 2948 10 2947 11 2946 12 2945 13 2944 14 2943 15 2942 16 2941 17 2940 18 2939 19 2938 20 2937 21 2936 22 2935 23 2934 24 2933 25 2932 26 2931 27 2930 28 2929 29 2928 30 2927 31 2926 32 2925 33 2924 34 2923 35 2922 36 2921 37 2920 38 2919 39 2918 40 2917 41 2916 42 2915 43 2914 44 2913 45 2912 46 2911 47 2910 48 2909 49 2908 50 2907 51 2906 52 2905 53 2904 54 2903 55 2902 56 2901 57 2900 58 2899 59 2898 60 2897 61 2896 62 2895 63 2894 64 2893 65 2892 ..."
},
{
"input": "3035",
"output": "1 3035 2 3034 3 3033 4 3032 5 3031 6 3030 7 3029 8 3028 9 3027 10 3026 11 3025 12 3024 13 3023 14 3022 15 3021 16 3020 17 3019 18 3018 19 3017 20 3016 21 3015 22 3014 23 3013 24 3012 25 3011 26 3010 27 3009 28 3008 29 3007 30 3006 31 3005 32 3004 33 3003 34 3002 35 3001 36 3000 37 2999 38 2998 39 2997 40 2996 41 2995 42 2994 43 2993 44 2992 45 2991 46 2990 47 2989 48 2988 49 2987 50 2986 51 2985 52 2984 53 2983 54 2982 55 2981 56 2980 57 2979 58 2978 59 2977 60 2976 61 2975 62 2974 63 2973 64 2972 65 2971 ..."
},
{
"input": "3114",
"output": "1 3114 2 3113 3 3112 4 3111 5 3110 6 3109 7 3108 8 3107 9 3106 10 3105 11 3104 12 3103 13 3102 14 3101 15 3100 16 3099 17 3098 18 3097 19 3096 20 3095 21 3094 22 3093 23 3092 24 3091 25 3090 26 3089 27 3088 28 3087 29 3086 30 3085 31 3084 32 3083 33 3082 34 3081 35 3080 36 3079 37 3078 38 3077 39 3076 40 3075 41 3074 42 3073 43 3072 44 3071 45 3070 46 3069 47 3068 48 3067 49 3066 50 3065 51 3064 52 3063 53 3062 54 3061 55 3060 56 3059 57 3058 58 3057 59 3056 60 3055 61 3054 62 3053 63 3052 64 3051 65 3050 ..."
},
{
"input": "3193",
"output": "1 3193 2 3192 3 3191 4 3190 5 3189 6 3188 7 3187 8 3186 9 3185 10 3184 11 3183 12 3182 13 3181 14 3180 15 3179 16 3178 17 3177 18 3176 19 3175 20 3174 21 3173 22 3172 23 3171 24 3170 25 3169 26 3168 27 3167 28 3166 29 3165 30 3164 31 3163 32 3162 33 3161 34 3160 35 3159 36 3158 37 3157 38 3156 39 3155 40 3154 41 3153 42 3152 43 3151 44 3150 45 3149 46 3148 47 3147 48 3146 49 3145 50 3144 51 3143 52 3142 53 3141 54 3140 55 3139 56 3138 57 3137 58 3136 59 3135 60 3134 61 3133 62 3132 63 3131 64 3130 65 3129 ..."
},
{
"input": "3273",
"output": "1 3273 2 3272 3 3271 4 3270 5 3269 6 3268 7 3267 8 3266 9 3265 10 3264 11 3263 12 3262 13 3261 14 3260 15 3259 16 3258 17 3257 18 3256 19 3255 20 3254 21 3253 22 3252 23 3251 24 3250 25 3249 26 3248 27 3247 28 3246 29 3245 30 3244 31 3243 32 3242 33 3241 34 3240 35 3239 36 3238 37 3237 38 3236 39 3235 40 3234 41 3233 42 3232 43 3231 44 3230 45 3229 46 3228 47 3227 48 3226 49 3225 50 3224 51 3223 52 3222 53 3221 54 3220 55 3219 56 3218 57 3217 58 3216 59 3215 60 3214 61 3213 62 3212 63 3211 64 3210 65 3209 ..."
},
{
"input": "7000",
"output": "1 7000 2 6999 3 6998 4 6997 5 6996 6 6995 7 6994 8 6993 9 6992 10 6991 11 6990 12 6989 13 6988 14 6987 15 6986 16 6985 17 6984 18 6983 19 6982 20 6981 21 6980 22 6979 23 6978 24 6977 25 6976 26 6975 27 6974 28 6973 29 6972 30 6971 31 6970 32 6969 33 6968 34 6967 35 6966 36 6965 37 6964 38 6963 39 6962 40 6961 41 6960 42 6959 43 6958 44 6957 45 6956 46 6955 47 6954 48 6953 49 6952 50 6951 51 6950 52 6949 53 6948 54 6947 55 6946 56 6945 57 6944 58 6943 59 6942 60 6941 61 6940 62 6939 63 6938 64 6937 65 6936 ..."
},
{
"input": "7079",
"output": "1 7079 2 7078 3 7077 4 7076 5 7075 6 7074 7 7073 8 7072 9 7071 10 7070 11 7069 12 7068 13 7067 14 7066 15 7065 16 7064 17 7063 18 7062 19 7061 20 7060 21 7059 22 7058 23 7057 24 7056 25 7055 26 7054 27 7053 28 7052 29 7051 30 7050 31 7049 32 7048 33 7047 34 7046 35 7045 36 7044 37 7043 38 7042 39 7041 40 7040 41 7039 42 7038 43 7037 44 7036 45 7035 46 7034 47 7033 48 7032 49 7031 50 7030 51 7029 52 7028 53 7027 54 7026 55 7025 56 7024 57 7023 58 7022 59 7021 60 7020 61 7019 62 7018 63 7017 64 7016 65 7015 ..."
},
{
"input": "4653",
"output": "1 4653 2 4652 3 4651 4 4650 5 4649 6 4648 7 4647 8 4646 9 4645 10 4644 11 4643 12 4642 13 4641 14 4640 15 4639 16 4638 17 4637 18 4636 19 4635 20 4634 21 4633 22 4632 23 4631 24 4630 25 4629 26 4628 27 4627 28 4626 29 4625 30 4624 31 4623 32 4622 33 4621 34 4620 35 4619 36 4618 37 4617 38 4616 39 4615 40 4614 41 4613 42 4612 43 4611 44 4610 45 4609 46 4608 47 4607 48 4606 49 4605 50 4604 51 4603 52 4602 53 4601 54 4600 55 4599 56 4598 57 4597 58 4596 59 4595 60 4594 61 4593 62 4592 63 4591 64 4590 65 4589 ..."
},
{
"input": "9995",
"output": "1 9995 2 9994 3 9993 4 9992 5 9991 6 9990 7 9989 8 9988 9 9987 10 9986 11 9985 12 9984 13 9983 14 9982 15 9981 16 9980 17 9979 18 9978 19 9977 20 9976 21 9975 22 9974 23 9973 24 9972 25 9971 26 9970 27 9969 28 9968 29 9967 30 9966 31 9965 32 9964 33 9963 34 9962 35 9961 36 9960 37 9959 38 9958 39 9957 40 9956 41 9955 42 9954 43 9953 44 9952 45 9951 46 9950 47 9949 48 9948 49 9947 50 9946 51 9945 52 9944 53 9943 54 9942 55 9941 56 9940 57 9939 58 9938 59 9937 60 9936 61 9935 62 9934 63 9933 64 9932 65 9931 ..."
},
{
"input": "9996",
"output": "1 9996 2 9995 3 9994 4 9993 5 9992 6 9991 7 9990 8 9989 9 9988 10 9987 11 9986 12 9985 13 9984 14 9983 15 9982 16 9981 17 9980 18 9979 19 9978 20 9977 21 9976 22 9975 23 9974 24 9973 25 9972 26 9971 27 9970 28 9969 29 9968 30 9967 31 9966 32 9965 33 9964 34 9963 35 9962 36 9961 37 9960 38 9959 39 9958 40 9957 41 9956 42 9955 43 9954 44 9953 45 9952 46 9951 47 9950 48 9949 49 9948 50 9947 51 9946 52 9945 53 9944 54 9943 55 9942 56 9941 57 9940 58 9939 59 9938 60 9937 61 9936 62 9935 63 9934 64 9933 65 9932 ..."
},
{
"input": "9997",
"output": "1 9997 2 9996 3 9995 4 9994 5 9993 6 9992 7 9991 8 9990 9 9989 10 9988 11 9987 12 9986 13 9985 14 9984 15 9983 16 9982 17 9981 18 9980 19 9979 20 9978 21 9977 22 9976 23 9975 24 9974 25 9973 26 9972 27 9971 28 9970 29 9969 30 9968 31 9967 32 9966 33 9965 34 9964 35 9963 36 9962 37 9961 38 9960 39 9959 40 9958 41 9957 42 9956 43 9955 44 9954 45 9953 46 9952 47 9951 48 9950 49 9949 50 9948 51 9947 52 9946 53 9945 54 9944 55 9943 56 9942 57 9941 58 9940 59 9939 60 9938 61 9937 62 9936 63 9935 64 9934 65 9933 ..."
},
{
"input": "9998",
"output": "1 9998 2 9997 3 9996 4 9995 5 9994 6 9993 7 9992 8 9991 9 9990 10 9989 11 9988 12 9987 13 9986 14 9985 15 9984 16 9983 17 9982 18 9981 19 9980 20 9979 21 9978 22 9977 23 9976 24 9975 25 9974 26 9973 27 9972 28 9971 29 9970 30 9969 31 9968 32 9967 33 9966 34 9965 35 9964 36 9963 37 9962 38 9961 39 9960 40 9959 41 9958 42 9957 43 9956 44 9955 45 9954 46 9953 47 9952 48 9951 49 9950 50 9949 51 9948 52 9947 53 9946 54 9945 55 9944 56 9943 57 9942 58 9941 59 9940 60 9939 61 9938 62 9937 63 9936 64 9935 65 9934 ..."
},
{
"input": "9999",
"output": "1 9999 2 9998 3 9997 4 9996 5 9995 6 9994 7 9993 8 9992 9 9991 10 9990 11 9989 12 9988 13 9987 14 9986 15 9985 16 9984 17 9983 18 9982 19 9981 20 9980 21 9979 22 9978 23 9977 24 9976 25 9975 26 9974 27 9973 28 9972 29 9971 30 9970 31 9969 32 9968 33 9967 34 9966 35 9965 36 9964 37 9963 38 9962 39 9961 40 9960 41 9959 42 9958 43 9957 44 9956 45 9955 46 9954 47 9953 48 9952 49 9951 50 9950 51 9949 52 9948 53 9947 54 9946 55 9945 56 9944 57 9943 58 9942 59 9941 60 9940 61 9939 62 9938 63 9937 64 9936 65 9935 ..."
},
{
"input": "10000",
"output": "1 10000 2 9999 3 9998 4 9997 5 9996 6 9995 7 9994 8 9993 9 9992 10 9991 11 9990 12 9989 13 9988 14 9987 15 9986 16 9985 17 9984 18 9983 19 9982 20 9981 21 9980 22 9979 23 9978 24 9977 25 9976 26 9975 27 9974 28 9973 29 9972 30 9971 31 9970 32 9969 33 9968 34 9967 35 9966 36 9965 37 9964 38 9963 39 9962 40 9961 41 9960 42 9959 43 9958 44 9957 45 9956 46 9955 47 9954 48 9953 49 9952 50 9951 51 9950 52 9949 53 9948 54 9947 55 9946 56 9945 57 9944 58 9943 59 9942 60 9941 61 9940 62 9939 63 9938 64 9937 65 9936..."
}
] | 1,643,366,404
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 22
| 122
| 0
|
import math
def main_function():
n = int(input())
current_ = 1
direction_plus = True
dif = n - 1
for i in range(n):
if i == 0:
print(1, end=" ")
elif i != n - 1:
if direction_plus:
print(dif + current_, end=" ")
current_ += dif
else:
print(current_ - dif, end=" ")
current_ -= dif
dif -= 1
direction_plus = not direction_plus
else:
if direction_plus:
print(dif + current_)
current_ += dif
else:
print(current_ - dif,)
current_ -= dif
dif -= 1
direction_plus = not direction_plus
main_function()
|
Title: Little Frog
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Once upon a time a little frog whose name was Vasya decided to travel around his home swamp. Overall there are *n* mounds on the swamp, located on one line. The distance between the neighboring mounds is one meter. Vasya wants to visit all the mounds in one day; besides, he wants to visit each one exactly once. For that he makes a route plan, to decide the order in which to jump on the mounds. Vasya can pick any mound as the first one. He thinks it boring to jump two times at the same distance. That's why he wants any two jumps on his route to have different lengths. Help Vasya the Frog and make the plan for him.
Input Specification:
The single line contains a number *n* (1<=≤<=*n*<=≤<=104) which is the number of mounds.
Output Specification:
Print *n* integers *p**i* (1<=≤<=*p**i*<=≤<=*n*) which are the frog's route plan.
- All the *p**i*'s should be mutually different. - All the |*p**i*–*p**i*<=+<=1|'s should be mutually different (1<=≤<=*i*<=≤<=*n*<=-<=1).
If there are several solutions, output any.
Demo Input:
['2\n', '3\n']
Demo Output:
['1 2 ', '1 3 2 ']
Note:
none
|
```python
import math
def main_function():
n = int(input())
current_ = 1
direction_plus = True
dif = n - 1
for i in range(n):
if i == 0:
print(1, end=" ")
elif i != n - 1:
if direction_plus:
print(dif + current_, end=" ")
current_ += dif
else:
print(current_ - dif, end=" ")
current_ -= dif
dif -= 1
direction_plus = not direction_plus
else:
if direction_plus:
print(dif + current_)
current_ += dif
else:
print(current_ - dif,)
current_ -= dif
dif -= 1
direction_plus = not direction_plus
main_function()
```
| 3.9695
|
691
|
B
|
s-palindrome
|
PROGRAMMING
| 1,600
|
[
"implementation",
"strings"
] | null | null |
Let's call a string "s-palindrome" if it is symmetric about the middle of the string. For example, the string "oHo" is "s-palindrome", but the string "aa" is not. The string "aa" is not "s-palindrome", because the second half of it is not a mirror reflection of the first half.
You are given a string *s*. Check if the string is "s-palindrome".
|
The only line contains the string *s* (1<=≤<=|*s*|<=≤<=1000) which consists of only English letters.
|
Print "TAK" if the string *s* is "s-palindrome" and "NIE" otherwise.
|
[
"oXoxoXo\n",
"bod\n",
"ER\n"
] |
[
"TAK\n",
"TAK\n",
"NIE\n"
] |
none
| 0
|
[
{
"input": "oXoxoXo",
"output": "TAK"
},
{
"input": "bod",
"output": "TAK"
},
{
"input": "ER",
"output": "NIE"
},
{
"input": "o",
"output": "TAK"
},
{
"input": "a",
"output": "NIE"
},
{
"input": "opo",
"output": "NIE"
},
{
"input": "HCMoxkgbNb",
"output": "NIE"
},
{
"input": "vMhhXCMWDe",
"output": "NIE"
},
{
"input": "iIcamjTRFH",
"output": "NIE"
},
{
"input": "WvoWvvWovW",
"output": "TAK"
},
{
"input": "WXxAdbAxXW",
"output": "TAK"
},
{
"input": "vqMTUUTMpv",
"output": "TAK"
},
{
"input": "iii",
"output": "NIE"
},
{
"input": "AAWW",
"output": "NIE"
},
{
"input": "ss",
"output": "NIE"
},
{
"input": "i",
"output": "NIE"
},
{
"input": "ii",
"output": "NIE"
},
{
"input": "mm",
"output": "NIE"
},
{
"input": "LJ",
"output": "NIE"
},
{
"input": "m",
"output": "NIE"
},
{
"input": "ioi",
"output": "NIE"
},
{
"input": "OA",
"output": "NIE"
},
{
"input": "aaaiaaa",
"output": "NIE"
},
{
"input": "SS",
"output": "NIE"
},
{
"input": "iiii",
"output": "NIE"
},
{
"input": "ssops",
"output": "NIE"
},
{
"input": "ssss",
"output": "NIE"
},
{
"input": "ll",
"output": "NIE"
},
{
"input": "s",
"output": "NIE"
},
{
"input": "bb",
"output": "NIE"
},
{
"input": "uu",
"output": "NIE"
},
{
"input": "ZoZ",
"output": "NIE"
},
{
"input": "mom",
"output": "NIE"
},
{
"input": "uou",
"output": "NIE"
},
{
"input": "u",
"output": "NIE"
},
{
"input": "JL",
"output": "NIE"
},
{
"input": "mOm",
"output": "NIE"
},
{
"input": "llll",
"output": "NIE"
},
{
"input": "ouo",
"output": "NIE"
},
{
"input": "aa",
"output": "NIE"
},
{
"input": "olo",
"output": "NIE"
},
{
"input": "S",
"output": "NIE"
},
{
"input": "lAl",
"output": "NIE"
},
{
"input": "nnnn",
"output": "NIE"
},
{
"input": "ZzZ",
"output": "NIE"
},
{
"input": "bNd",
"output": "NIE"
},
{
"input": "ZZ",
"output": "NIE"
},
{
"input": "oNoNo",
"output": "NIE"
},
{
"input": "l",
"output": "NIE"
},
{
"input": "zz",
"output": "NIE"
},
{
"input": "NON",
"output": "NIE"
},
{
"input": "nn",
"output": "NIE"
},
{
"input": "NoN",
"output": "NIE"
},
{
"input": "sos",
"output": "NIE"
},
{
"input": "lol",
"output": "NIE"
},
{
"input": "mmm",
"output": "NIE"
},
{
"input": "YAiAY",
"output": "NIE"
},
{
"input": "ipIqi",
"output": "NIE"
},
{
"input": "AAA",
"output": "TAK"
},
{
"input": "uoOou",
"output": "NIE"
},
{
"input": "SOS",
"output": "NIE"
},
{
"input": "NN",
"output": "NIE"
},
{
"input": "n",
"output": "NIE"
},
{
"input": "h",
"output": "NIE"
},
{
"input": "blld",
"output": "NIE"
},
{
"input": "ipOqi",
"output": "NIE"
},
{
"input": "pop",
"output": "NIE"
},
{
"input": "BB",
"output": "NIE"
},
{
"input": "OuO",
"output": "NIE"
},
{
"input": "lxl",
"output": "NIE"
},
{
"input": "Z",
"output": "NIE"
},
{
"input": "vvivv",
"output": "NIE"
},
{
"input": "nnnnnnnnnnnnn",
"output": "NIE"
},
{
"input": "AA",
"output": "TAK"
},
{
"input": "t",
"output": "NIE"
},
{
"input": "z",
"output": "NIE"
},
{
"input": "mmmAmmm",
"output": "NIE"
},
{
"input": "qlililp",
"output": "NIE"
},
{
"input": "mpOqm",
"output": "NIE"
},
{
"input": "iiiiiiiiii",
"output": "NIE"
},
{
"input": "BAAAB",
"output": "NIE"
},
{
"input": "UA",
"output": "NIE"
},
{
"input": "mmmmmmm",
"output": "NIE"
},
{
"input": "NpOqN",
"output": "NIE"
},
{
"input": "uOu",
"output": "NIE"
},
{
"input": "uuu",
"output": "NIE"
},
{
"input": "NAMAN",
"output": "NIE"
},
{
"input": "lllll",
"output": "NIE"
},
{
"input": "T",
"output": "TAK"
},
{
"input": "mmmmmmmmmmmmmmmm",
"output": "NIE"
},
{
"input": "AiiA",
"output": "NIE"
},
{
"input": "iOi",
"output": "NIE"
},
{
"input": "lll",
"output": "NIE"
},
{
"input": "N",
"output": "NIE"
},
{
"input": "viv",
"output": "NIE"
},
{
"input": "oiio",
"output": "NIE"
},
{
"input": "AiiiA",
"output": "NIE"
},
{
"input": "NNNN",
"output": "NIE"
},
{
"input": "ixi",
"output": "NIE"
},
{
"input": "AuuA",
"output": "NIE"
},
{
"input": "AAAANANAAAA",
"output": "NIE"
},
{
"input": "mmmmm",
"output": "NIE"
},
{
"input": "oYo",
"output": "TAK"
},
{
"input": "dd",
"output": "NIE"
},
{
"input": "A",
"output": "TAK"
},
{
"input": "ioh",
"output": "NIE"
},
{
"input": "mmmm",
"output": "NIE"
},
{
"input": "uuuu",
"output": "NIE"
},
{
"input": "puq",
"output": "NIE"
},
{
"input": "rrrrrr",
"output": "NIE"
},
{
"input": "c",
"output": "NIE"
},
{
"input": "AbpA",
"output": "NIE"
},
{
"input": "qAq",
"output": "NIE"
},
{
"input": "tt",
"output": "NIE"
},
{
"input": "mnmnm",
"output": "NIE"
},
{
"input": "sss",
"output": "NIE"
},
{
"input": "yy",
"output": "NIE"
},
{
"input": "bob",
"output": "NIE"
},
{
"input": "NAN",
"output": "NIE"
},
{
"input": "mAm",
"output": "NIE"
},
{
"input": "tAt",
"output": "NIE"
},
{
"input": "yAy",
"output": "NIE"
},
{
"input": "zAz",
"output": "NIE"
},
{
"input": "aZ",
"output": "NIE"
},
{
"input": "hh",
"output": "NIE"
},
{
"input": "bbbb",
"output": "NIE"
},
{
"input": "ZAZ",
"output": "NIE"
},
{
"input": "Y",
"output": "TAK"
},
{
"input": "AAMM",
"output": "NIE"
},
{
"input": "lml",
"output": "NIE"
},
{
"input": "AZA",
"output": "NIE"
},
{
"input": "mXm",
"output": "NIE"
},
{
"input": "bd",
"output": "TAK"
},
{
"input": "H",
"output": "TAK"
},
{
"input": "uvu",
"output": "NIE"
},
{
"input": "dxxd",
"output": "NIE"
},
{
"input": "dp",
"output": "NIE"
},
{
"input": "vV",
"output": "NIE"
},
{
"input": "vMo",
"output": "NIE"
},
{
"input": "O",
"output": "TAK"
},
{
"input": "vYv",
"output": "TAK"
},
{
"input": "fv",
"output": "NIE"
},
{
"input": "U",
"output": "TAK"
},
{
"input": "iAi",
"output": "NIE"
},
{
"input": "I",
"output": "TAK"
},
{
"input": "VxrV",
"output": "NIE"
},
{
"input": "POP",
"output": "NIE"
},
{
"input": "bid",
"output": "NIE"
},
{
"input": "bmd",
"output": "NIE"
},
{
"input": "AiA",
"output": "NIE"
},
{
"input": "mmmmmm",
"output": "NIE"
},
{
"input": "XHX",
"output": "TAK"
},
{
"input": "llllll",
"output": "NIE"
},
{
"input": "aAa",
"output": "NIE"
},
{
"input": "Db",
"output": "NIE"
},
{
"input": "lOl",
"output": "NIE"
},
{
"input": "bzd",
"output": "NIE"
}
] | 1,655,008,376
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 168
| 93
| 0
|
s = str(input())
t = 'AHIMOoTUVvWwXxY'
d = {'p' : 'q', 'q' : 'p', 'b' : 'd', 'd' : 'b'}
for c in t:
d[c] = c
for i, c in enumerate(s):
if c in d and s[len(s)-1-i] == d[c]:
continue
else:
print('NIE')
exit()
print('TAK')
|
Title: s-palindrome
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Let's call a string "s-palindrome" if it is symmetric about the middle of the string. For example, the string "oHo" is "s-palindrome", but the string "aa" is not. The string "aa" is not "s-palindrome", because the second half of it is not a mirror reflection of the first half.
You are given a string *s*. Check if the string is "s-palindrome".
Input Specification:
The only line contains the string *s* (1<=≤<=|*s*|<=≤<=1000) which consists of only English letters.
Output Specification:
Print "TAK" if the string *s* is "s-palindrome" and "NIE" otherwise.
Demo Input:
['oXoxoXo\n', 'bod\n', 'ER\n']
Demo Output:
['TAK\n', 'TAK\n', 'NIE\n']
Note:
none
|
```python
s = str(input())
t = 'AHIMOoTUVvWwXxY'
d = {'p' : 'q', 'q' : 'p', 'b' : 'd', 'd' : 'b'}
for c in t:
d[c] = c
for i, c in enumerate(s):
if c in d and s[len(s)-1-i] == d[c]:
continue
else:
print('NIE')
exit()
print('TAK')
```
| 3
|
|
412
|
B
|
Network Configuration
|
PROGRAMMING
| 900
|
[
"greedy",
"sortings"
] | null | null |
The R1 company wants to hold a web search championship. There were *n* computers given for the competition, each of them is connected to the Internet. The organizers believe that the data transfer speed directly affects the result. The higher the speed of the Internet is, the faster the participant will find the necessary information. Therefore, before the competition started, each computer had its maximum possible data transfer speed measured. On the *i*-th computer it was *a**i* kilobits per second.
There will be *k* participants competing in the championship, each should get a separate computer. The organizing company does not want any of the participants to have an advantage over the others, so they want to provide the same data transfer speed to each participant's computer. Also, the organizers want to create the most comfortable conditions for the participants, so the data transfer speed on the participants' computers should be as large as possible.
The network settings of the R1 company has a special option that lets you to cut the initial maximum data transfer speed of any computer to any lower speed. How should the R1 company configure the network using the described option so that at least *k* of *n* computers had the same data transfer speed and the data transfer speed on these computers was as large as possible?
|
The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100) — the number of computers and the number of participants, respectively. In the second line you have a space-separated sequence consisting of *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (16<=≤<=*a**i*<=≤<=32768); number *a**i* denotes the maximum data transfer speed on the *i*-th computer.
|
Print a single integer — the maximum Internet speed value. It is guaranteed that the answer to the problem is always an integer.
|
[
"3 2\n40 20 30\n",
"6 4\n100 20 40 20 50 50\n"
] |
[
"30\n",
"40\n"
] |
In the first test case the organizers can cut the first computer's speed to 30 kilobits. Then two computers (the first and the third one) will have the same speed of 30 kilobits. They should be used as the participants' computers. This answer is optimal.
| 1,000
|
[
{
"input": "3 2\n40 20 30",
"output": "30"
},
{
"input": "6 4\n100 20 40 20 50 50",
"output": "40"
},
{
"input": "1 1\n16",
"output": "16"
},
{
"input": "2 1\n10000 17",
"output": "10000"
},
{
"input": "2 2\n200 300",
"output": "200"
},
{
"input": "3 1\n21 25 16",
"output": "25"
},
{
"input": "3 2\n23 20 26",
"output": "23"
},
{
"input": "3 3\n19 29 28",
"output": "19"
},
{
"input": "100 2\n82 37 88 28 98 30 38 76 90 68 79 29 67 93 19 71 122 103 110 79 20 75 68 101 16 120 114 68 73 71 103 114 99 70 73 18 36 31 32 87 32 79 44 72 58 25 44 72 106 38 47 17 83 41 75 23 49 30 73 67 117 52 22 117 109 89 66 88 75 62 17 35 83 69 63 60 23 120 93 18 112 93 39 72 116 109 106 72 27 123 117 119 87 72 33 73 70 110 43 43",
"output": "122"
},
{
"input": "30 13\n36 82 93 91 48 62 59 96 72 40 45 68 97 70 26 22 35 98 92 83 72 49 70 39 53 94 97 65 37 28",
"output": "70"
},
{
"input": "50 49\n20 77 31 40 18 87 44 64 70 48 29 59 98 33 95 17 69 84 81 17 24 66 37 54 97 55 77 79 42 21 23 42 36 55 81 83 94 45 25 84 20 97 37 95 46 92 73 39 90 71",
"output": "17"
},
{
"input": "40 40\n110 674 669 146 882 590 650 844 427 187 380 711 122 94 38 216 414 874 380 31 895 390 414 557 913 68 665 964 895 708 594 17 24 621 780 509 837 550 630 568",
"output": "17"
},
{
"input": "40 1\n851 110 1523 1572 945 4966 4560 756 2373 4760 144 2579 4022 220 1924 1042 160 2792 2425 4483 2154 4120 319 4617 4686 2502 4797 4941 4590 4478 4705 4355 695 684 1560 684 2780 1090 4995 3113",
"output": "4995"
},
{
"input": "70 12\n6321 2502 557 2734 16524 10133 13931 5045 3897 18993 5745 8687 12344 1724 12071 2345 3852 9312 14432 8615 7461 2439 4751 19872 12266 12997 8276 8155 9502 3047 7226 12754 9447 17349 1888 14564 18257 18099 8924 14199 738 13693 10917 15554 15773 17859 13391 13176 10567 19658 16494 3968 13977 14694 10537 4044 16402 9714 4425 13599 19660 2426 19687 2455 2382 3413 5754 113 7542 8353",
"output": "16402"
},
{
"input": "80 60\n6159 26457 23753 27073 9877 4492 11957 10989 27151 6552 1646 7773 23924 27554 10517 8788 31160 455 12625 22009 22133 15657 14968 31871 15344 16550 27414 876 31213 10895 21508 17516 12747 59 11786 10497 30143 25548 22003 2809 11694 30395 8122 31248 23075 19013 31614 9133 27942 27346 15969 19415 10367 8424 29355 18903 3396 6327 4201 24124 24266 22586 724 1595 3972 17526 2843 20982 23655 12714 18050 15225 2658 7236 27555 13023 729 9022 17386 2585",
"output": "8122"
},
{
"input": "100 1\n199 348 489 76 638 579 982 125 28 401 228 117 195 337 80 914 752 98 679 417 47 225 357 413 849 622 477 620 487 223 321 240 439 393 733 660 652 500 877 40 788 246 376 723 952 601 912 316 598 809 476 932 384 147 982 271 202 695 129 303 304 712 49 306 598 141 833 730 946 708 724 788 202 465 951 118 279 706 214 655 152 976 998 231 487 311 342 317 243 554 977 232 365 643 336 501 761 400 600 528",
"output": "998"
},
{
"input": "80 50\n15160 6853 20254 11358 19535 27691 2983 31650 9219 11833 32053 31695 21511 4320 4384 24843 1454 31543 18796 13815 1546 27926 16276 14315 12542 25370 24890 29647 3584 17867 12446 15072 19852 30207 16361 7964 5343 398 10837 31114 9252 12767 15098 22562 32637 31823 8160 12658 6422 19142 12448 6765 7373 868 31712 24856 23251 29200 8159 16144 27165 4308 13652 12502 4183 7961 3032 26855 8687 12263 24319 7722 19460 30700 29806 1280 21141 25965 25550 26881",
"output": "12448"
},
{
"input": "50 16\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 1\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 2\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 100\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 99\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
}
] | 1,568,996,118
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 34
| 140
| 0
|
n, k = map(int, input().split())
a = list(reversed(sorted(map(int, input().split()))))
print(a[k - 1])
# ♥
|
Title: Network Configuration
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The R1 company wants to hold a web search championship. There were *n* computers given for the competition, each of them is connected to the Internet. The organizers believe that the data transfer speed directly affects the result. The higher the speed of the Internet is, the faster the participant will find the necessary information. Therefore, before the competition started, each computer had its maximum possible data transfer speed measured. On the *i*-th computer it was *a**i* kilobits per second.
There will be *k* participants competing in the championship, each should get a separate computer. The organizing company does not want any of the participants to have an advantage over the others, so they want to provide the same data transfer speed to each participant's computer. Also, the organizers want to create the most comfortable conditions for the participants, so the data transfer speed on the participants' computers should be as large as possible.
The network settings of the R1 company has a special option that lets you to cut the initial maximum data transfer speed of any computer to any lower speed. How should the R1 company configure the network using the described option so that at least *k* of *n* computers had the same data transfer speed and the data transfer speed on these computers was as large as possible?
Input Specification:
The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100) — the number of computers and the number of participants, respectively. In the second line you have a space-separated sequence consisting of *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (16<=≤<=*a**i*<=≤<=32768); number *a**i* denotes the maximum data transfer speed on the *i*-th computer.
Output Specification:
Print a single integer — the maximum Internet speed value. It is guaranteed that the answer to the problem is always an integer.
Demo Input:
['3 2\n40 20 30\n', '6 4\n100 20 40 20 50 50\n']
Demo Output:
['30\n', '40\n']
Note:
In the first test case the organizers can cut the first computer's speed to 30 kilobits. Then two computers (the first and the third one) will have the same speed of 30 kilobits. They should be used as the participants' computers. This answer is optimal.
|
```python
n, k = map(int, input().split())
a = list(reversed(sorted(map(int, input().split()))))
print(a[k - 1])
# ♥
```
| 3
|
|
629
|
B
|
Far Relative’s Problem
|
PROGRAMMING
| 1,100
|
[
"brute force"
] | null | null |
Famil Door wants to celebrate his birthday with his friends from Far Far Away. He has *n* friends and each of them can come to the party in a specific range of days of the year from *a**i* to *b**i*. Of course, Famil Door wants to have as many friends celebrating together with him as possible.
Far cars are as weird as Far Far Away citizens, so they can only carry two people of opposite gender, that is exactly one male and one female. However, Far is so far from here that no other transportation may be used to get to the party.
Famil Door should select some day of the year and invite some of his friends, such that they all are available at this moment and the number of male friends invited is equal to the number of female friends invited. Find the maximum number of friends that may present at the party.
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=5000) — then number of Famil Door's friends.
Then follow *n* lines, that describe the friends. Each line starts with a capital letter 'F' for female friends and with a capital letter 'M' for male friends. Then follow two integers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=*b**i*<=≤<=366), providing that the *i*-th friend can come to the party from day *a**i* to day *b**i* inclusive.
|
Print the maximum number of people that may come to Famil Door's party.
|
[
"4\nM 151 307\nF 343 352\nF 117 145\nM 24 128\n",
"6\nM 128 130\nF 128 131\nF 131 140\nF 131 141\nM 131 200\nM 140 200\n"
] |
[
"2\n",
"4\n"
] |
In the first sample, friends 3 and 4 can come on any day in range [117, 128].
In the second sample, friends with indices 3, 4, 5 and 6 can come on day 140.
| 1,000
|
[
{
"input": "4\nM 151 307\nF 343 352\nF 117 145\nM 24 128",
"output": "2"
},
{
"input": "6\nM 128 130\nF 128 131\nF 131 140\nF 131 141\nM 131 200\nM 140 200",
"output": "4"
},
{
"input": "1\nF 68 307",
"output": "0"
},
{
"input": "40\nM 55 363\nF 117 252\nM 157 282\nF 322 345\nM 330 363\nF 154 231\nF 216 352\nF 357 365\nM 279 292\nF 353 359\nF 82 183\nM 78 297\nM 231 314\nM 107 264\nF 34 318\nM 44 244\nF 42 339\nM 253 307\nM 128 192\nF 119 328\nM 135 249\nF 303 358\nF 348 352\nF 8 364\nF 126 303\nM 226 346\nF 110 300\nF 47 303\nF 201 311\nF 287 288\nM 270 352\nM 227 351\nF 8 111\nF 39 229\nM 163 315\nF 269 335\nF 147 351\nF 96 143\nM 97 99\nM 177 295",
"output": "22"
},
{
"input": "2\nF 1 1\nM 1 1",
"output": "2"
},
{
"input": "4\nM 1 2\nM 2 3\nF 3 4\nF 4 5",
"output": "2"
},
{
"input": "1\nF 1 2",
"output": "0"
},
{
"input": "18\nF 3 4\nF 3 4\nF 3 4\nF 3 4\nF 5 6\nF 5 6\nM 3 4\nM 3 4\nM 5 6\nM 5 6\nM 5 6\nM 5 6\nF 7 8\nF 7 8\nF 7 8\nM 7 8\nM 7 8\nM 7 8",
"output": "6"
},
{
"input": "2\nM 1 1\nF 1 1",
"output": "2"
},
{
"input": "3\nM 1 1\nF 1 1\nM 1 1",
"output": "2"
}
] | 1,666,718,529
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 76
| 93
| 1,843,200
|
from sys import stdin,stdout
input=stdin.readline
def print(*args, end='\n', sep=' ') -> None:
stdout.write(sep.join(map(str, args)) + end)
n=int(input()) ; female=[0]*368 ; male=[0]*368 ; ans=0
for i in range(n):
gen,st,end=input().split()
if gen=="F":
female[int(st)-1]+=1
female[int(end)]-=1
else:
male[int(st)-1]+=1
male[int(end)]-=1
for i in range(367):
female[i+1]+=female[i]
male[i+1]+=male[i]
for i in range(368):
ans=max(min(female[i],male[i]),ans)
print(ans*2)
|
Title: Far Relative’s Problem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Famil Door wants to celebrate his birthday with his friends from Far Far Away. He has *n* friends and each of them can come to the party in a specific range of days of the year from *a**i* to *b**i*. Of course, Famil Door wants to have as many friends celebrating together with him as possible.
Far cars are as weird as Far Far Away citizens, so they can only carry two people of opposite gender, that is exactly one male and one female. However, Far is so far from here that no other transportation may be used to get to the party.
Famil Door should select some day of the year and invite some of his friends, such that they all are available at this moment and the number of male friends invited is equal to the number of female friends invited. Find the maximum number of friends that may present at the party.
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=5000) — then number of Famil Door's friends.
Then follow *n* lines, that describe the friends. Each line starts with a capital letter 'F' for female friends and with a capital letter 'M' for male friends. Then follow two integers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=*b**i*<=≤<=366), providing that the *i*-th friend can come to the party from day *a**i* to day *b**i* inclusive.
Output Specification:
Print the maximum number of people that may come to Famil Door's party.
Demo Input:
['4\nM 151 307\nF 343 352\nF 117 145\nM 24 128\n', '6\nM 128 130\nF 128 131\nF 131 140\nF 131 141\nM 131 200\nM 140 200\n']
Demo Output:
['2\n', '4\n']
Note:
In the first sample, friends 3 and 4 can come on any day in range [117, 128].
In the second sample, friends with indices 3, 4, 5 and 6 can come on day 140.
|
```python
from sys import stdin,stdout
input=stdin.readline
def print(*args, end='\n', sep=' ') -> None:
stdout.write(sep.join(map(str, args)) + end)
n=int(input()) ; female=[0]*368 ; male=[0]*368 ; ans=0
for i in range(n):
gen,st,end=input().split()
if gen=="F":
female[int(st)-1]+=1
female[int(end)]-=1
else:
male[int(st)-1]+=1
male[int(end)]-=1
for i in range(367):
female[i+1]+=female[i]
male[i+1]+=male[i]
for i in range(368):
ans=max(min(female[i],male[i]),ans)
print(ans*2)
```
| 3
|
|
11
|
A
|
Increasing Sequence
|
PROGRAMMING
| 900
|
[
"constructive algorithms",
"implementation",
"math"
] |
A. Increasing Sequence
|
1
|
64
|
A sequence *a*0,<=*a*1,<=...,<=*a**t*<=-<=1 is called increasing if *a**i*<=-<=1<=<<=*a**i* for each *i*:<=0<=<<=*i*<=<<=*t*.
You are given a sequence *b*0,<=*b*1,<=...,<=*b**n*<=-<=1 and a positive integer *d*. In each move you may choose one element of the given sequence and add *d* to it. What is the least number of moves required to make the given sequence increasing?
|
The first line of the input contains two integer numbers *n* and *d* (2<=≤<=*n*<=≤<=2000,<=1<=≤<=*d*<=≤<=106). The second line contains space separated sequence *b*0,<=*b*1,<=...,<=*b**n*<=-<=1 (1<=≤<=*b**i*<=≤<=106).
|
Output the minimal number of moves needed to make the sequence increasing.
|
[
"4 2\n1 3 3 2\n"
] |
[
"3\n"
] |
none
| 0
|
[
{
"input": "4 2\n1 3 3 2",
"output": "3"
},
{
"input": "2 1\n1 1",
"output": "1"
},
{
"input": "2 1\n2 5",
"output": "0"
},
{
"input": "2 1\n1 2",
"output": "0"
},
{
"input": "2 1\n1 1",
"output": "1"
},
{
"input": "2 7\n10 20",
"output": "0"
},
{
"input": "2 7\n1 1",
"output": "1"
},
{
"input": "3 3\n18 1 9",
"output": "10"
},
{
"input": "3 3\n15 17 9",
"output": "3"
},
{
"input": "3 3\n10 9 12",
"output": "2"
},
{
"input": "10 3\n2 1 17 10 5 16 8 4 15 17",
"output": "31"
},
{
"input": "10 3\n6 11 4 12 22 15 23 26 24 26",
"output": "13"
},
{
"input": "10 3\n10 24 13 15 18 14 15 26 33 35",
"output": "29"
},
{
"input": "100 3\n529 178 280 403 326 531 671 427 188 866 669 646 421 804 494 609 53 1012 211 243 887 833 900 543 226 42 859 718 454 372 971 692 846 770 511 395 499 479 641 756 115 269 206 45 1039 727 400 779 859 614 146 214 196 919 702 959 380 830 535 878 859 784 316 305 782 924 536 243 236 978 564 150 291 877 808 983 537 839 490 120 168 838 267 650 900 170 211 504 326 771 895 984 994 483 776 100 471 1078 317 580",
"output": "15717"
},
{
"input": "100 3\n329 226 331 909 962 112 837 1005 194 818 506 416 125 648 367 459 400 582 989 547 329 438 234 121 272 226 821 376 834 427 718 164 834 113 654 177 737 212 169 696 744 180 89 944 233 147 667 990 809 1072 1085 1093 814 265 1067 312 833 572 303 901 1032 504 185 817 389 158 613 723 239 269 911 352 769 404 225 822 897 606 947 323 913 804 923 1084 552 901 486 249 209 898 847 610 728 1122 986 669 1116 1076 367 327",
"output": "16133"
}
] | 1,591,733,210
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 25
| 280
| 1,331,200
|
from math import ceil
n,d=map(int,input().split())
p=-1
ans=0
for i in map(int,input().split()):
k=ceil((max(p-i+1,0))/d)
ans+=k
p=i+k*d
print(ans)
|
Title: Increasing Sequence
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
A sequence *a*0,<=*a*1,<=...,<=*a**t*<=-<=1 is called increasing if *a**i*<=-<=1<=<<=*a**i* for each *i*:<=0<=<<=*i*<=<<=*t*.
You are given a sequence *b*0,<=*b*1,<=...,<=*b**n*<=-<=1 and a positive integer *d*. In each move you may choose one element of the given sequence and add *d* to it. What is the least number of moves required to make the given sequence increasing?
Input Specification:
The first line of the input contains two integer numbers *n* and *d* (2<=≤<=*n*<=≤<=2000,<=1<=≤<=*d*<=≤<=106). The second line contains space separated sequence *b*0,<=*b*1,<=...,<=*b**n*<=-<=1 (1<=≤<=*b**i*<=≤<=106).
Output Specification:
Output the minimal number of moves needed to make the sequence increasing.
Demo Input:
['4 2\n1 3 3 2\n']
Demo Output:
['3\n']
Note:
none
|
```python
from math import ceil
n,d=map(int,input().split())
p=-1
ans=0
for i in map(int,input().split()):
k=ceil((max(p-i+1,0))/d)
ans+=k
p=i+k*d
print(ans)
```
| 3.850082
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.