Problem
stringlengths
5
784
Rationale
stringlengths
1
990
Choices
stringlengths
31
310
Correct
stringclasses
5 values
jaclyn cumpără $ 20 000 de obligațiuni într-o companie. ea câștigă 9.5 % p. a. dobândă simplă, plătită ei trimestrial ( adică, la fiecare 3 luni ). dacă perioada convenită a obligațiunii a fost de 18 luni : calculați suma de dobândă pe care jaclyn o va câștiga pentru fiecare trimestru
"explicație : i = ( p x r x t ) / 100 = 30000 * 9.5 / 100 * ( 18 / 12 ) ^ 1 / 6 = 475 răspuns : a"
a ) 475, b ) 234, c ) 289, d ) 345, e ) none of these
a
dacă 5 linii paralele într-un plan sunt intersectate de o familie de alte 8 linii paralele, câte paralelograme sunt în rețeaua astfel formată?
paralelogram poate fi format de 2 linii orizontale și 2 linii verticale pentru orizontale 5 c 2 pentru verticale 8 c 2 paralelograme totale este 5 c 2 * 8 c 2 = 10 * 28 = 280 răspuns : a
a ) 280, b ) 63, c ) 120, d ) 160, e ) 1260
a
într-un grup de bivoli și rațe, numărul de picioare sunt 24 mai mult decât de două ori numărul de capete. care este numărul de bivoli în grup?
lăsați no. de bivoli să fie x & no. de rațe să fie y bivolii au 4 picioare în timp ce rațele au 2 4 x + 2 y = 2 * ( x + y ) + 24 = > 4 x + 2 y - 2 x - 2 y = 24 = > x = 12 numărul de bivoli în grup = 12 răspuns : a
a ) 12, b ) 13, c ) 14, d ) 15, e ) 16
a
un bărbat a început să conducă cu o viteză constantă, de la locul unei explozii, în momentul în care a auzit explozia. a auzit o a doua explozie după un timp de 30 de minute și 24 de secunde. dacă a doua explozie a avut loc exact 30 de minute după prima, câți metri era de la locul în care a auzit a doua explozie? (viteza sunetului = 330 m / s)
distanța pe care sunetul a călătorit la om este 24 * 330 = 7920 de metri răspunsul este b.
a ) 6810, b ) 7920, c ) 9030, d ) 10,140, e ) 11,250
b
care este cifra miilor în echivalentul zecimal al lui 57 / 5000?
57 / 5000 = 57 / ( 5 * 10 ^ 3 ) = ( 57 / 5 ) * 10 ^ - 3 = 11.4 * 10 ^ - 3 =. 0114 cifra miilor = 1 răspuns b
a ) 0, b ) 1, c ) 3, d ) 5, e ) 6
b
6 / 8 din populația țării venezia trăiește în provincia montague, în timp ce restul trăiește în provincia capulet. în alegerile viitoare, 80 % din rezidenții montague îl susțin pe romeo, în timp ce 70 % din rezidenții capulet o susțin pe juliet ; fiecare rezident din venezia susține exact unul dintre acești doi candidați. rotunjit dacă este necesar la cel mai apropiat procent, probabilitatea ca un susținător juliet ales la întâmplare să locuiască în capulet este
"populația totală = 80 ( presupune ). 6 / 8 * 80 = 60 de persoane din montague. 2 / 8 * 80 = 20 de persoane din capulet. 0.2 * 60 = 12 persoane din montague o susțin pe juliet. 0.7 * 20 = 14 persoane din capulet o susțin pe juliet. probabilitatea ca un susținător juliet ales la întâmplare să locuiască în capulet este 14 / ( 12 + 14 ) = ~ 54 răspuns : b."
a ) 28 %, b ) 54 %, c ) 45 %, d ) 72 %, e ) 78 %
b
45 de persoane pot repara un drum în 12 zile, lucrând 5 ore pe zi. În câte zile vor termina 30 de persoane, lucrând 6 ore pe zi, această lucrare?
"lăsând numărul de zile necesar să fie x. mai puține persoane, mai multe zile (proporție indirectă) mai multe ore de lucru pe zi, mai puține zile (proporție indirectă) persoane 30 : 45 : : 12 : x ore de lucru / zi 6 : 5 30 x 6 x x = 45 x 5 x 12 x = ( 45 x 5 x 12 ) / ( 30 x 6 ) x = 15 răspuns b"
a ) 10, b ) 15, c ) 13, d ) 18, e ) 19
b
greutatea medie a 8 persoane crește cu 2,5 kg când o persoană nouă vine în locul uneia care cântărește 65 kg. care este greutatea persoanei noi?
"creșterea totală în greutate = 8 × 2,5 = 20 dacă x este greutatea persoanei noi, creșterea totală în greutate = x − 65 = > 20 = x - 65 = > x = 20 + 65 = 85 răspunsul este c."
a ) 75, b ) 65, c ) 85, d ) 95, e ) 80
c
sunt necesare 60 de mașini de tipărit identice 4 ore pentru a imprima 200.000 de carduri. cât timp ar dura 50 dintre aceste mașini să imprime același total?
"50 % din 60 = 40 % sau 0.30 4 ore x 60 min = 240 min 240 min x 0.30 = 72 min sau 1 oră și 12 min 1 oră și 12 min + 4 ore = 5 ore și 12 min răspunsul este e"
a ) 10 ore, b ) 5 ore, c ) 6 ore, d ) 4 ore 30 min, e ) 5 ore 12 min
e
la o petrecere, există rânduri aranjate cu 1220 și 30 de scaune și au fost 3 rămase în toate cazurile. când erau 11 rânduri. nu au mai rămas scaune. dacă s-au adăugat 30 de scaune. atunci care va fi restantul?
lcm din 12, 2030 este 120. deci numărul este sub forma de 120 x + 3 care este divizibil cu 11, prin plasarea x = 3, obținem 363 care este divizibil cu 11 și multiplu de 120 când 3 este scăzut din 363. deci nr. este 363. așa că atunci când se adaugă 30 la el și se împarte la 11 obținem rest ca 8 răspuns : a
a ) 8, b ) 9, c ) 10, d ) 11, e ) 12
a
pentru fiecare număr întreg n ≥ 3, funcția g ( n ) este definită ca produsul tuturor numerelor impare de la 1 la n, inclusiv. care este valoarea g ( 106 ) – g ( 103 )?
"g ( 106 ) = 1 * 3 * 5 * 7 * 9 *... * 99 * 101 * 103 * 105 g ( 103 ) = 1 * 3 * 5 * 7 * 9 *... * 99 * 101 * 103 g ( 106 ) - g ( 103 ) = 1 * 3 * 5 * 7 * 9 *... * 99 * 101 * 103 * 105 - 1 * 3 * 5 * 7 * 9 *... * 99 * 101 * 103 = 1 * 3 * 5 * 7 * 9 *... * 103 * ( 105 - 1 ) = 1 * 3 * 5 * 7 * 9 *... * 99 * 101 * 103 * 104 prin urmare : e"
a ) 100, b ) 99, c ) 98, d ) 102, e ) 104
e
dacă x este cu 11 % mai mare decât 90, atunci x =
"11 % din 90 = ( 90 * 0.11 ) = 9.9 11 % mai mare decât 90 = 90 + 9.9 = 99.9 răspunsul este clar a."
a ) 99.9, b ) 91.0, c ) 88.0, d ) 70.9, e ) 71.2
a
laturile unui triunghi sunt în raportul 5 : 12 : 13 și perimetrul său este de 240 m, aria sa este?
"5 x + 12 x + 13 x = 240 = > x = 8 a = 40, b = 96, c = 104 s = ( 40 + 96 + 104 ) / 2 = 120 answer : e"
a ) 150, b ) 882, c ) 277, d ) 261, e ) 120
e
total 22 matches are conducted in knockout match type. how many players will be participated in that tournament?
"21 players answer : c"
a ) 24, b ) 26, c ) 21, d ) 20, e ) 19
c
într-o competiție intercolegială care a durat 3 zile, 150 de studenți au participat în prima zi, 110 în a doua zi și 140 în a treia zi. dacă 75 au participat în prima zi și a doua zi și 25 au participat în a doua zi și a treia zi și 15 au participat în toate cele trei zile, câți studenți au participat doar în a doua zi?
"ziua 1 și 2 = 75; doar ziua 1 și 2 (75 - 15) = 60, ziua 2 și 3 = 25; doar ziua 2 și 3 (25 - 15) = 10, doar ziua 2 = 110 - (60 + 10 + 15) = 25 răspuns: d"
a ) 50, b ) 35, c ) 45, d ) 25, e ) 60
d
care este restul când împarți 2 ^ 200 + 2 la 7?
răspunsul este d. aceasta este foarte similară cu întrebarea 32 ^ 32 ^ 32 + 2 împărțit la 7.
a ) 1, b ) 2, c ) 3, d ) 6, e ) 5
d
jim a condus 923 de mile dintr-o călătorie de 1200 de mile. câte mile mai trebuie să conducă pentru a-și termina călătoria?
numărul de mile pentru a conduce pentru a-și termina călătoria este dat de 1200 - 923 = 277 de mile răspunsul corect b
a ) 113 mile, b ) 277 mile, c ) 456 mile, d ) 887 mile, e ) 767 mile
b
la creșterea prețului televizoarelor cu 70 %, vânzările acestora scad cu 20 %. care este efectul asupra veniturilor încasate de magazin?
"explicație : să presupunem că prețul este = rs. 100, iar numărul de unități vândute = 100 atunci, valoarea vânzării = rs. ( 100 × 100 ) = rs. 10000 noua valoare a vânzării = rs. ( 170 × 80 ) = rs. 13600 creșterea % = 3600 / 10000 × 100 = 36 % răspuns : c"
a ) 4, b ) 5, c ) 36, d ) 2, e ) 7
c
Câte cuburi cu latura de 10 cm pot fi puse într-o cutie cubică cu latura de 1 m?
"( 110 × 100 × 100 ) / 10 × 10 × 10 = 1000 răspunsul este e."
a ) 4000, b ) 2000, c ) 3000, d ) 5000, e ) 1000
e
care este restul când împărțiți 2 ^ 200 + 1 la 7?
răspunsul este e. acesta este foarte similar cu întrebarea 32 ^ 32 ^ 32 + 1 împărțit la 7.
a ) 1, b ) 2, c ) 3, d ) 4, e ) 5
e
un tren care rulează cu viteza de 60 km / hr traversează un stâlp în 36 de secunde. găsiți lungimea trenului?
"viteza = 60 * ( 5 / 18 ) m / sec = 50 / 3 m / sec lungimea trenului ( distanță ) = viteza * timp ( 50 / 3 ) * 36 = 600 de metri răspuns : b"
a ) 150 de metri, b ) 600 de metri, c ) 167 de metri, d ) 719 de metri, e ) 169 de metri
b
aria unui paralelogram este 128 m 2 și înălțimea sa este de două ori baza corespunzătoare. atunci lungimea bazei este?
2 x * x = 128 = > x = 8 răspuns : a
['a ) 8', 'b ) 7', 'c ) 6', 'd ) 5', 'e ) 2']
a
punctajul total obținut de un student la matematică și fizică este 60 și punctajul său la chimie este cu 20 de puncte mai mare decât cel la fizică. găsiți punctajul mediu obținut la matematică și chimie împreună?
"să presupunem că punctajul obținut de student la matematică, fizică și chimie este m, p și c respectiv. dat, m + c = 60 și c - p = 20 m + c / 2 = [ ( m + p ) + ( c - p ) ] / 2 = ( 60 + 20 ) / 2 = 40. răspuns : a"
a ) 40, b ) 99, c ) 88, d ) 77, e ) 66
a
a, b, și c au început o afacere, profitul total pentru un an este de 56700 $. raportul de împărțire a profitului este 8 : 9 : 10 ( conform investiției lor își împart profitul ). care este profitul lui c?
a : b : c = 8 + 9 + 10 = 27 ; cota lui c = 10 / 27 din profitul total. c va primi = 10 / 27 * 56700 $ = 21000 $. răspuns : c
a ) 5670 $, b ) 18900 $, c ) 21000 $, d ) 13500 $, e ) 27000 $
c
dacă produsul numerelor întregi de la 1 la n este divizibil cu 1029, care este cea mai mică valoare posibilă a lui n?
1029 = 7 x 7 x 7 x 3 n trebuie să includă cel puțin 7, 2 * 7, și 3 * 7. răspunsul este c.
a ) 7, b ) 14, c ) 21, d ) 28, e ) 35
c
familiile medii de 4 plătesc 3000 $ pentru deductibilele lor de asigurare de sănătate anual. va exista o creștere de 2 / 3 în deductibile pentru anul viitor. cât mai mult va plăti familia medie în deductibile anul viitor?
un anumit procent de întrebări din secțiunea cantitativă a gmat sunt doar'întrebări matematice'- veți folosi o formulă, veți face niște calcule și veți avea răspunsul. acesta este unul dintre acele tipuri de întrebări. încă trebuie să scrieți totul și să rămâneți organizat, dar munca implicată este relativ simplă. aici, ni se spune că deductibilul anual actual este de 3000 $ și că deductibilul urmează să fie majorat cu 2 / 3. suntem întrebați cât mai mult va costa deductibilul o familie anul viitor. deductibil original = 3000 $ creștere în deductibil = 2 / 3 răspunsul este calculat prin ecuația : 3000 $ × 2 / 3 = 2000 $. b
a ) 1000 $, b ) 2000 $, c ) 3000 $, d ) 4000 $, e ) 5000 $
b
o anumită universitate va selecta 1 din 3 candidați eligibili pentru a ocupa o poziție în departamentul de matematică și 2 din 10 candidați eligibili pentru a ocupa 2 poziții identice în departamentul de informatică. dacă niciunul dintre candidați nu este eligibil pentru o poziție în ambele departamente, câte seturi diferite de 3 candidați există pentru a ocupa cele 3 poziții?
"1 din 3 va fi ales pentru matematică 2 din 10 vor fi aleși pentru informatică niciunul dintre cei 3 oameni aleși nu poate fi în mai mult de un departament. putem alege oricare dintre cei 3 candidați pentru departamentul de matematică., care ne oferă 3 selecții. putem alege 2 dintre cei 10 candidați pentru departamentul de informatică., care ne oferă 2 selecții și 8 respingeri. așa că, pentru a afla câte selecții diferite de 2 candidați putem avea pentru departamentul de informatică., facem : 10! / 2! * 8! = ( 9 * 10 ) / 2 = 90 / 2 = 45. ne înmulțim selecțiile individuale : 3 * 45 = 135 în partea îngroșată, nu trebuie să înmulțim toate numerele, deoarece cele din 8! sunt incluse în 10!, așa că simplificăm în schimb. ans d"
a ) 42, b ) 70, c ) 140, d ) 135, e ) 315
d
la sfârșitul lunii, un anumit rezervor de desalinizare a oceanului conținea 6 milioane de galoane de apă. această cantitate este de două ori nivelul normal. dacă această cantitate reprezintă 60 % din capacitatea totală a rezervorului, câte milioane de galoane sunt mai mici decât capacitatea totală este nivelul normal?
"q vorbește despre capacitatea totală, nivelul normal, nivelul prezent, lipsa etc.. așa că este vorba despre a nu merge greșit în aceste condiții 6 mg = 60 % din total.. total = 6 /. 6 = 10 mg.. nivelul normal = 1 / 2 din 10 = 5 mg.. lipsa nivelului normal = 10 - 5 = 5 mg.. c"
a ) 15, b ) 10, c ) 5, d ) 20, e ) 25
c
două angrenaje circulare interconectate călătoresc cu aceeași rată circumferențială. dacă angrenajul a are un diametru de 60 de centimetri și angrenajul b are un diametru de 50 de centimetri, care este raportul dintre numărul de rotații pe care angrenajul a îl face pe minut față de numărul de rotații pe care angrenajul b îl face pe minut?
"același ritm circumferențial înseamnă că un punct pe ambele angrenaje ar dura același timp pentru a reveni la aceeași poziție din nou. prin urmare, cu alte cuvinte, timpul luat de punctul pentru a acoperi circumferința angrenajului a = timpul ia punctul pentru a acoperi circumferința angrenajului b timpul a = 2 * pi * 25 / viteza a timpul b = 2 * pi * 30 / viteza b deoarece timpii sunt aceiași, 50 pi / viteza a = 60 pi / viteza b speeda / viteza b = 50 pi / 60 pi = 5 / 6 opțiunea corectă : c"
a ) 6 : 5, b ) 9 : 25, c ) 5 : 6, d ) 25 : 9, e ) nu se poate determina din informațiile furnizate
c
o sumă de bani împrumutată la s. i. ajunge la un total de $ 600 după 2 ani și la $ 850 după o perioadă suplimentară de 5 ani. care a fost suma inițială de bani care a fost investită?
s. i pentru 5 ani = $ 850 - $ 600 = $ 250 s. i. este $ 50 / an s. i. pentru 2 ani = $ 100 principal = $ 600 - $ 100 = $ 500 răspunsul este a.
a ) $ 500, b ) $ 520, c ) $ 540, d ) $ 560, e ) $ 580
a
un tren trece pe lângă o platformă a stației în 46 de secunde și un bărbat care stă pe platformă în 16 secunde. dacă viteza trenului este de 54 km / h. care este lungimea platformei?
"viteza = 54 * 5 / 18 = 15 m / sec. lungimea trenului = 15 * 16 = 240 m. să fie lungimea platformei x m. atunci, ( x + 240 ) / 46 = 15 = > x = 450 m. răspuns : d"
a ) 227, b ) 240, c ) 460, d ) 450, e ) 455
d
dacă aria unui pătrat cu laturi de lungime 5 centimetri este egală cu aria unui dreptunghi cu lățimea de 4 centimetri, care este lungimea dreptunghiului, în centimetri?
"lățimea dreptunghiului = l 5 ^ 2 = l * 4 = > l = 25 / 4 = 7 răspuns d"
a ) 4, b ) 8, c ) 12, d ) 7, e ) 18
d
o parcelă de iarbă dreptunghiulară de 110 m. cu 65 m are o potecă de pietriș de 2,5 m lățime în jurul ei pe interior. găsiți costul pietruirii căii la 80 de paise pe metru pătrat
"aria parcelei = 110 m * 65 m = 7150 mp aria parcelei excluzând pietrișul = 105 m * 60 m = 6300 mp aria pietrișului = 7150 mp - 6300 mp = 850 mp costul construirii acestuia = 850 mp * 80 = 68000 p în rs = 68000 / 100 = rs 680 răspuns : a"
a ) rs 680, b ) rs 780, c ) rs 880, d ) rs 480, e ) rs 980
a
un anumit joc de societate se joacă prin aruncarea unei perechi de zaruri cu 6 fețe și apoi mutarea piesei unuia înainte cu numărul de spații indicat de suma de pe zaruri. un jucător este înghețat dacă piesa adversarului său se oprește în spațiul ocupat deja de piesa sa. dacă jucătorul a este pe cale să arunce și este în prezent cu 8 spații în spatele jucătorului b, care este probabilitatea ca jucătorul b să fie înghețat după ce jucătorul a aruncă?
nr. de rezultate posibile = 6 * 6 = 36 nr. de rezultate care rezultă un total de 8 ( deoarece a este cu 8 spații în spatele lui b ) = 5 ( ( 2,6 ), ( 3,5 ), ( 4,4 ), ( 5,3 ), ( 6,2 ) ) deci, probabilitatea = 5 / 36 ( opțiunea b )
a ) 1 / 12, b ) 5 / 36, c ) 1 / 6, d ) 1 / 3, e ) 17 / 36
b
am cumpărat 85 de pălării la magazin. pălăriile albastre costă 6 $ și pălăriile verzi costă 7 $. prețul total a fost de 548 $. câte pălării verzi am cumpărat?
"să presupunem că b este numărul de pălării albastre și g este numărul de pălării verzi. b + g = 85. b = 85 - g. 6 b + 7 g = 548. 6 b + 7 g = 548. 6 ( 85 - g ) + 7 g = 548. 510 - 6 g + 7 g = 548. g = 548 - 510 = 38. răspunsul este b."
a ) 36, b ) 38, c ) 40, d ) 42, e ) 44
b
într-o cursă de 100 m, sam îl bate pe john cu 5 secunde. pe de altă parte, dacă sam îi permite lui john să înceapă cu 35 m înaintea lui sam, atunci sam și john ajung la linia de sosire în același timp. cât timp îi ia lui sam să alerge cei 100 m?
"diferența lor este de 5 secunde, dar această diferență este 0 dacă john îi permite lui sam să înceapă cursa cu 35 m înaintea lui. asta înseamnă că jhon era la 35 m de linia de sosire când au început împreună. așa că el va parcurge 35 m în 5 secunde. așa că viteza lui = 35 / 5 = 7 metri / secundă. așa că timpul luat = 100 / 5 = 20 de secunde. așa că sam a luat = 13 secunde. răspunsul corect = a"
a ) 13 secunde, b ) 25 secunde, c ) 29 secunde, d ) 21 secunde, e ) 6.25 secunde
a
când un tren călătorește cu o viteză de 110 kmph, ajunge la destinație la timp. când același tren călătorește cu o viteză de 50 kmph, ajunge la destinație cu 15 min întârziere. care este lungimea călătoriei?
"lăsați x să fie timpul ajuns cu viteza 110 km / h 50 km / h - - - - > x + 15 distanța este egală, deci 110 ( km / h ) × xhr = 50 ( km / h ) × ( x + 15 ) hr, deci 110 x = 50 x + 750, deci ar fi în km și x = 12.5 răspuns : a"
a ) 12.5 km, b ) 50 km, c ) 60 km, d ) 8.5 km, e ) 9.5 km
a
trei alergători care aleargă în jurul unei piste circulare pot completa o revoluție în 2, 4 și 5.5 respectiv. când se vor întâlni la punctul de plecare?
timpul la care se întâlnesc la punctul de plecare = lcm din 2, 4 și 5.5 = 44 h răspuns : b
['a ) 40 h', 'b ) 44 h', 'c ) 38 h', 'd ) 20 h', 'e ) 22 h']
b
3 sticle conțin amestecuri egale de spirit și apă în raportul 6 : 1, 5 : 2 și 3 : 1 respectiv. dacă toate soluțiile sunt amestecate împreună, raportul dintre spirit și apă în amestecul final va fi
dat fiind că toate sticlele conțin o cantitate egală de amestec să spunem v. deci în primul vas - > apă : spirit = 1 / 7 : 6 / 7 în a doua sticlă - > 2 / 7 : 5 / 7 în a treia sticlă - > l / 4 : 3 / 4. prin urmare, raportul final este = ( ( 6 / 7 ) + ( 5 / 7 ) + ( 3 / 4 ) ) / ( ( 1 / 7 ) + ( 2 / 7 ) + ( 1 / 4 ) ) = 65 / 19 răspuns : d
a ) 64 : 65, b ) 65 : 64, c ) 19 : 65, d ) 65 : 19, e ) none of these
d
12 mașini pot face o lucrare în 10 zile. câte mașini sunt necesare pentru a finaliza lucrarea în 40 de zile?
numărul necesar de mașini = 12 * 10 / 40 = 3 răspunsul este b
a ) 10, b ) 3, c ) 4, d ) 7, e ) 5
b
vârsta lui somu este o treime din vârsta tatălui său. acum 10 ani, el era o cincime din vârsta tatălui său. care este vârsta lui actuală în procente?
"explicație : să presupunem că vârsta lui somu este x și că a tatălui său este 3 x. astfel, x - 10 = 3 x - 10 / 5 = x = 20 răspuns : opțiunea e"
a ) 11, b ) 13, c ) 14, d ) 12, e ) 20
e
din 1 ianuarie 2015 până în 1 ianuarie 2017, numărul persoanelor înscrise în organizațiile de întreținere a sănătății a crescut cu 8 la sută. înscrierea la 1 ianuarie 2017 a fost de 45 de milioane. câte milioane de oameni, până la cel mai apropiat milion, au fost înscriși în organizațiile de întreținere a sănătății la 1 ianuarie 2015?
"soln : - 8 x = 45 - - > 27 / 25 * x = 45 - - > x = 45 * 25 / 27 = 125 / 3 = ~ 42. răspuns : e."
a ) 38, b ) 39, c ) 40, d ) 41, e ) 42
e
un grup de studenți au decis să colecteze de la fiecare membru al grupului cât mai mulți paise, cât este numărul de membri. dacă colecția totală se ridică la rs. 92.16, numărul membrilor grupului este :
"explicație : banii colectați = ( 92.16 x 100 ) paise = 9216 paise. ∴ numărul de membri = √ ( 9216 ) = 96. răspuns : e"
a ) 57, b ) 67, c ) 77, d ) 87, e ) 96
e
dacă o persoană merge cu 10 km / h în loc de 5 km / h, ar fi mers cu 20 km mai mult. distanța reală parcursă de el este?
"lăsați distanța reală parcursă să fie x km. apoi, x / 5 = ( x + 20 ) / 10 5 x - 100 = > x = 20 km. răspuns : c"
a ) 50 km, b ) 76 km, c ) 20 km, d ) 16 km, e ) 97 km
c
într-un spectacol public 75 % din locuri au fost ocupate. dacă în sală erau 700 de locuri, câte locuri erau libere?
"75 % din 600 = 75 / 100 × 700 = 450 prin urmare, numărul de locuri libere = 700 - 450 = 175. răspuns : d"
a ) 100, b ) 110, c ) 120, d ) 175, e ) 150
d
găsește valoarea lui m 82519 x 9999 = m?
"82519 x 9999 = 82519 x ( 10000 - 1 ) = 82519 x 10000 - 82519 x 1 = 825190000 - 82519 = 825107481 c"
a ) 724533811, b ) 353654655, c ) 825107481, d ) 725117481, e ) 477899932
c
pe o fermă, un fermier poate plasa o buclă de frânghie, numită lasso, o dată la fiecare 3 aruncări în jurul gâtului unei vaci. care este probabilitatea ca fermierul să poată plasa un lasso în jurul gâtului unei vaci cel puțin o dată în 4 încercări?
"p ( lipsa tuturor 3 ) = ( 2 / 3 ) ^ 4 = 16 / 81 p ( succes la cel puțin o încercare ) = 1 - 16 / 81 = 65 / 81 răspunsul este e."
a ) 4 / 9, b ) 5 / 9, c ) 17 / 27, d ) 23 / 27, e ) 65 / 81
e
dacă o rădăcină a ecuației 2 x ^ 2 + 3 x – k = 0 este 4, care este valoarea lui k?
"introducem această rădăcină în ecuație pentru a obține o ecuație pentru a găsi răspunsul! 2 * 4 ^ 2 + 3 * 4 - k = 0 k = 32 + 12 = 44 răspunsul este c"
a ) 35, b ) 40, c ) 44, d ) 45, e ) 56
c
4 avioane diferite deținute de o trupă rock vor fi realimentate astăzi la același aeroport. există 2 avioane mai mari care transportă oameni și 2 avioane mai mici care transportă echipamente. toate rezervoarele sunt goale și vor trebui umplute complet. cele 2 rezervoare mai mici conțin 60 de litri fiecare și rezervoarele mai mari sunt cu 50 % mai mari. combustibilul este de 0,50 cenți pe litru și există o taxă de 100 $ pentru fiecare avion. cât va costa să umpleți toate cele 4 avioane?
o mulțime de calcule. 100 * 4 + 2 * 60 * 0,50 + 60 * ( 3 / 2 ) * 2 * 0,50 răspuns = 550 $ opțiunea corectă este d
a ) 475 $, b ) 500 $, c ) 525 $, d ) 550 $, e ) 575 $
d
câte litri de acid pur sunt în 12 litri de soluție de 40 %
explicație : întrebarea de acest tip pare un pic tipică, dar este prea simplă, după cum urmează... va fi 12 * 40 / 100 = 4.8 răspuns : opțiunea b
a ) 3.6, b ) 4.8, c ) 3.5, d ) 2.3, e ) 4.4
b
un tren de 100 de metri lungime are nevoie de 6 secunde pentru a trece de un om care merge cu 5 kmph în direcția opusă trenului. găsește viteza trenului.
"explicație : să presupunem că viteza trenului este x kmph. viteza trenului relativă la om = ( x + 5 ) kmph = ( x + 5 ) × 5 / 18 m / sec. prin urmare 100 / ( ( x + 5 ) × 5 / 18 ) = 6 < = > 30 ( x + 5 ) = 1800 < = > x = 55 viteza trenului este 55 kmph. răspuns : opțiunea c"
a ) 45 kmph, b ) 50 kmph, c ) 55 kmph, d ) 60 kmph, e ) 70 kmph
c
dacă lungimea diagonalei unui pătrat este 20 cm, atunci perimetrul său trebuie să fie
explicație : d = √ 2 l răspuns : a ) 40
['a ) 40', 'b ) 38', 'c ) 27', 'd ) 29', 'e ) 11']
a
linia m se află în planul xy. intersecția y a liniei m este - 4, iar linia m trece prin mijlocul segmentului de linie ale cărui puncte finale sunt ( 2, 4 ) și ( 6, - 8 ). care este panta liniei m?
"ans : a soluție : linia m trece prin mijlocul ( 2, 4 ) și ( 6, - 8 ). mijlocul este ( 4, - 2 ) după cum putem vedea că axa y a punctului de intersecție este ( 0, - 4 ) înseamnă că linia m este paralelă cu axa x panta m = - 2 ans : a"
a ) - 2, b ) - 1, c ) - 1 / 3, d ) 0, e ) nedefinit
a
două țevi a și b pot umple un rezervor în 6 ore și 4 ore respectiv. dacă sunt deschise pe ore alternative și dacă țeava a este deschisă prima, în câte ore, rezervorul va fi plin?
"a's work in 1 hour = 1 / 6 b's work in 1 hour = 1 / 4 a + b 2 hour's work when opened alternately = 1 / 6 + 1 / 4 = 5 / 12 a + b 4 hour's work when opened alternately = 10 / 12 = 5 / 6 remaining part = 1 - 5 / 6 = 1 / 6 it is a's turn and 1 / 6 part is filled by a in 1 hour. total time taken to fill the tank = 4 + 1 = 5 hrs answer is c"
a ) 2 hrs, b ) 4 hrs, c ) 5 hrs, d ) 6 hrs, e ) 7 hrs
c
două trenuri de lungime egală rulează pe linii paralele în aceeași direcție la 46 km / hr și 36 km / hr. trenul mai rapid prinde și trece complet trenul mai lent în 45 de secunde. care este lungimea fiecărui tren ( în metri )?
viteza relativă = 46 - 36 = 10 km / hr = 10 * 5 / 18 = 25 / 9 m / s în 45 de secunde, diferența relativă în distanța parcursă este 45 * 25 / 9 = 125 de metri această distanță este de două ori lungimea fiecărui tren. lungimea fiecărui tren este 125 / 2 = 62,5 metri răspunsul este b.
a ) 48.5, b ) 62.5, c ) 73.5, d ) 87.5, e ) 96.5
b
un anumit laborator experimentează doar cu șoareci albi și maro. într-un experiment, 4 / 9 dintre șoareci sunt maro. dacă există 20 de șoareci maro în experiment, câți șoareci sunt în total în experiment?
"lăsați numărul total de șoareci = m numărul de șoareci maro = 4 / 9 m numărul de șoareci albi = 5 / 9 m = 20 = > m = 36 răspuns c"
a ) 32, b ) 26, c ) 36, d ) 28, e ) 24
c
dacă a + b + c = 21, care este numărul total de soluții integrale non - negative?
gândește-te că este o problemă de împărțire a 21 de obiecte la trei persoane a, b & c care pot sau nu să primească un obiect. așa că folosește pur și simplu combinația aici ca ( n - r + 1 ) c ( r - 1 ) i. e. ( 21 + 3 - 1 ) c ( 3 - 1 ) = > 23 c 2 = = > 253 soluții. răspuns : e
a ) 223, b ) 233, c ) 240, d ) 243, e ) 253
e
un șofer merge într-o călătorie de 60 de kilometri, primii 30 de kilometri cu 48 de kilometri pe oră și restul distanței cu 24 de kilometri pe oră. care este viteza medie a întregii călătorii în kilometri pe oră?
"timpul pentru prima parte a călătoriei a fost 30 / 48 = 5 / 8 ore. timpul pentru a doua parte a călătoriei a fost 30 / 24 = 5 / 4 ore. timpul total pentru călătorie a fost 5 / 8 + 5 / 4 = 15 / 8 ore. viteza medie pentru călătorie a fost 60 / ( 15 / 8 ) = 32 kph răspunsul este b."
a ) 30, b ) 32, c ) 36, d ) 40, e ) 42
b
un tren a călătorit de la punctul a la punctul b cu 160 km / h. pe drumul de întoarcere trenul a călătorit cu 120 km / h și, prin urmare, călătoria de întoarcere a durat cu o oră mai mult. care este distanța ( în km ) între a și b?
distanța = viteza * timpul d 1 = s 1 t 1 d 2 = s 2 t 2 distanța de la punctul a la punctul b este aceeași pentru fiecare călătorie, deci, d 1 = d 2 și t 2 = t 1 + 1 astfel, s 1 t 1 = s 2 ( t 1 + 1 ) 160 t 1 = 120 ( t 1 + 1 ) t 1 = 3 160 * 3 = 480 răspuns : a
a ) 480., b ) 500., c ) 510., d ) 600., e ) 800.
a
lungimea podului, pe care un tren de 120 de metri lungime și care călătorește cu 45 km / h îl poate traversa în 30 de secunde, este?
viteza = ( 45 * 5 / 18 ) m / sec = ( 25 / 2 ) m / sec. timpul = 30 sec. să fie lungimea podului x metri. atunci, ( 120 + x ) / 30 = 25 / 2 = = > 2 ( 120 + x ) = 750 = = > x = 255 m. răspuns : c
a ) 328, b ) 279, c ) 255, d ) 288, e ) 211
c
dacă a este un număr întreg mai mare decât 8 dar mai mic decât 15 și b este un număr întreg mai mare decât 6 dar mai mic decât 21, care este intervalul lui a / b?
modul de abordare a acestei probleme este 8 < a < 15 și 6 < b < 21 valoarea minimă posibilă a lui a este 9 și valoarea maximă este 14 valoarea minimă posibilă a lui b este 7 și valoarea maximă este 20 intervalul = max a / min b - min a / max b ( cel mai mare - cel mai mic ) 14 / 7 - 9 / 20 = 217 / 140 prin urmare c
a ) 140 / 217, b ) 156 / 185, c ) 217 / 140, d ) 263 / 149, e ) 241 / 163
c
media ( media aritmetica ) a numerelor intregi de la 25 la 225, inclusiv, este cu cat mai mica decat media numerelor intregi de la 50 la 1050 inclusiv?
"pentru o ap media sau media seriei este media primului si ultimului termen. asa ca, media numerelor intre 50 si 1050, inclusiv = ( 50 + 1050 ) / 2 = 550 media numerelor intre 25 si 225, inclusiv = ( 25 + 225 ) / 2 = 125 diferenta = 550 - 125 = 425 raspunsul este d"
a ) 450, b ) 375, c ) 500, d ) 425, e ) 400
d
8 mașini identice, lucrând singure și la vitezele lor constante, au nevoie de 6 ore pentru a finaliza un lot de lucru. Cât timp ar dura 5 astfel de mașini să efectueze aceeași lucrare?
"lăsați fiecare mașină să facă 1 unitate de lucru timp de 1 oră 8 mașini - - > 8 unități de lucru în 1 oră timp de 6 ore = 8 * 6 = 48 unități de lucru totală este făcută. acum această lucrare totală de 48 de unități trebuie făcută de 5 mașini 5 unități de lucru (5 mașini) - - - > 1 oră pentru 48 de unități de lucru 5 * 9.6 - - - > 1 * 9.6 ore e 9.6 ore"
a ) 2.25 hours, b ) 8.75 hours, c ) 12 hours, d ) 14.25 hours, e ) 9.6 hours
e
lungimea și lățimea unui dreptunghi sunt crescute cu 10 % și 25 % respectiv. care este creșterea în suprafață?. a. 27.5 %
explicație : 100 * 100 = 10000 110 * 125 = 13750 - - - - - - - - - - - 3750 10000 - - - - - - 3750 100 - - - - - - -? = > 37.5 % răspuns : opțiunea b
['a ) 37.2 %', 'b ) 37.5 %', 'c ) 30.2 %', 'd ) 37.7 %', 'e ) 33.2 %']
b
suma a 3 numere este 98. dacă raportul dintre primul și al doilea este 2 : 3 și cel dintre al doilea și al treilea este 5 : 8, atunci al doilea număr este :
a : b = 2 : 3 = 2 × 5 : 3 × 5 = 10 : 15 și b : c = 5 : 8 = 5 × 3 : 8 × 3 = 15 : 24 prin urmare, a : b : c = 10 : 15 : 24 ∴ a : b : c = 10 : 15 : 24 să lăsăm numerele să fie 10 x, 15 x și 24 x. atunci, 10 x + 15 x + 24 x = 98 sau 49 x = 98 sau x = 2 ⇒ al doilea număr = 15 x = 15 × 2 = 30 răspuns b
a ) 20, b ) 30, c ) 38, d ) 48, e ) none of these
b
dacă 20 de bărbați pot construi o fântână de apă de 56 de metri lungime în 42 de zile, ce lungime a unei fântâni de apă similare poate fi construită de 35 de bărbați în 3 zile?
explicație: să fie lungimea necesară x metri mai mulți bărbați, mai multă lungime construită (proporție directă) mai puține zile, mai puțină lungime construită (proporție directă) bărbați 20: 35 zile 42: 3: : 56: x prin urmare (20 x 42 x x) = (35 x 3 x 56) x = (35 x 3 x 56) / 840 = 7 prin urmare, lungimea necesară este de 7 m. răspuns: c
a ) 3 m, b ) 4 m, c ) 7 m, d ) 9 m, e ) 10 m
c
găsește numărul mare din întrebarea de mai jos diferența dintre două numere este 1500. împărțind numărul mai mare la cel mai mic, obținem 6 ca și coeficient și 15 ca și rest
"lăsați numărul mai mic să fie x. atunci numărul mai mare = ( x + 1500 ). x + 1500 = 6 x + 15 5 x = 1485 x = 297 numărul mare = 297 + 1500 = 1797 d"
a ) 1234, b ) 1345, c ) 1456, d ) 1797, e ) 1635
d
Care dintre opțiunile de mai jos este divizibilă cu 27?
"27 / 9 = 3 c"
a ) a ) 4, b ) b ) 8, c ) c ) 9, d ) d ) 10, e ) e ) 911
c
cantitățile de timp pe care trei secretare le-au lucrat la un proiect special sunt în raportul de 2 la 3 la 5. dacă au lucrat un total combinat de 80 de ore, câte ore a petrecut secretara care a lucrat cel mai mult la proiect?
"10 x = 80 = > x = 8 prin urmare, secretara care a lucrat cel mai mult a petrecut 8 x 5 = 40 de ore la proiect opțiune ( e )"
a ) 80, b ) 70, c ) 56, d ) 16, e ) 40
e
raportul dintre numărul de băieți și fete dintr-o clasă este 3 : 2. în examenul din primul semestru, 20 % dintre băieți și 25 % dintre fete obțin cel puțin 90 % din punctaj. ce procent de elevi obțin mai puțin de 90 % din punctaj?
să presupunem că numărul de băieți este 3 x și numărul de fete este 2 x. numărul celor care obțin mai puțin de 90 % din punctaj = ( 80 % din 3 x ) + ( 75 % din 2 x ) = ( 80 / 100 ) * 3 x + ( 75 / 100 * 2 x ) = 39 x / 10 procentul cerut = ( 39 x / 10 * 1 / 5 x * 100 ) % = 78 %. răspuns : c
a ) 56, b ) 70, c ) 78, d ) 80, e ) 85
c
dacă x = 4 și y = − 2, care este valoarea lui ( x − 2 y ) ^ y?
"putem observa rapid că răspunsul nu este nici întreg, nici negativ. eliminați a, de prin inversare și pătrundere 0.015 răspuns : b"
a ) − 100, b ) 0.015, c ) 0.25, d ) 4, e ) 8
b
un urn conține 5 bile roșii, 6 bile albastre și 8 bile verzi. 4 bile sunt selectate aleatoriu din urn, găsiți probabilitatea ca bila trasă să fie 1 albastru și 2 roșu și 1 bile verzi?
"spațiu de eșantionare = nr. de moduri 4 bile au fost trase din urn = 19 c 4 = 3876 nr. de moduri 1 albastru și 2 roșu și 1 bile verzi au fost trase din pungă = 6 c 1 * 5 c 2 * 8 c 1 = 480 probabilitate = 480 / 3876 = 40 / 323 ans - b"
a ) 20 / 323, b ) 40 / 323, c ) 60 / 273, d ) 50 / 373, e ) 40 / 373
b
o mașină parcurge o distanță de 504 km în 6 ore. care ar trebui să fie viteza în kmph pentru a parcurge aceeași distanță în 3 / 2 din timpul anterior?
timpul = 6 distence = 504 3 / 2 din 6 ore = 6 * 3 / 2 = 9 ore viteza necesară = 504 / 9 = 56 kmph d
a ) 48 kmph, b ) 50 kmph, c ) 52 kmph, d ) 56 kmph, e ) 60 kmph
d
o șeptime din întrerupătoarele de lumină produse de o anumită fabrică sunt defecte. 4 - cincimi din întrerupătoarele defecte sunt respinse și 1 / 15 din întrerupătoarele fără defecte sunt respinse din greșeală. dacă toate întrerupătoarele care nu sunt respinse sunt vândute, ce procent din întrerupătoarele vândute de fabrică sunt defecte?
1 / 7 din întrerupătoare sunt defecte. întrerupătoarele defecte care nu sunt respinse sunt 1 / 5 * 1 / 7 = 1 / 35 = 3 / 105 din toate întrerupătoarele. întrerupătoarele fără defecte care sunt vândute sunt 6 / 7 * 14 / 15 = 84 / 105 din toate întrerupătoarele. procentul de întrerupătoare vândute care sunt defecte este 3 / 87 care este aproximativ 3.4 %. răspunsul este b.
a ) 2.3 %, b ) 3.4 %, c ) 4.5 %, d ) 5.6 %, e ) 6.7 %
b
media a 10 numere este calculată ca 23. se descoperă mai târziu că, în timp ce se calcula media, un număr, și anume 36, a fost citit greșit ca 26. care este media corectă?
"explicație : 10 * 23 + 36 – 26 = 240 = > 240 / 10 = 24 e )"
a ) a ) 16, b ) b ) 18, c ) c ) 19, d ) d ) 22, e ) e ) 24
e
un sondaj a fost trimis la 80 de clienți, 7 dintre care au răspuns. apoi sondajul a fost reproiectat și trimis la alți 63 de clienți, 9 dintre care au răspuns. cu aproximativ ce procent a crescut rata de răspuns de la sondajul original la sondajul reproiectat?
"caz 1 : ( 7 / 80 ) = x / 100 x = 9 % caz 2 : ( 9 / 63 ) = y / 100 y = 14 % deci procentul de creștere este = ( y - x ) = ( 14 - 9 ) % = 5 % răspunsul este b"
a ) 2 %, b ) 5 %, c ) 14 %, d ) 28 %, e ) 63 %
b
vârsta medie a elevilor unei școli pentru adulți este de 42 de ani. 120 de noi elevi, a căror vârstă medie este de 32 de ani, s-au alăturat școlii. ca urmare, vârsta medie a scăzut cu 4 ani. găsiți numărul de elevi ai școlii după alăturarea noilor elevi.
"explicație : să fie numărul original de elevi x. conform situației, 42 x + 120 * 32 = ( x + 120 ) 36 ⇒ x = 80, deci, numărul necesar de elevi după alăturarea noilor elevi = x + 120 = 200. răspuns : d"
a ) 1200, b ) 120, c ) 360, d ) 200, e ) none of these
d
ați primit un cântar fizic și 7 greutăți de 45, 50, 53, 46, 52, 46 și 80 kg. păstrând greutățile pe o parte și obiectul pe cealaltă, care este maximul pe care îl puteți cântări mai puțin de 188 kg.
"80 + 52 + 53 = 185 answer : b"
a ) 183, b ) 185, c ) 182, d ) 184, e ) 181
b
o persoană trebuie să facă 146 de bucăți de bară lungă. el ia $ secunde pentru a tăia o bucată. cât timp îi ia în total pentru a face 146 de bucăți?
dacă sunt 4 secunde, deoarece ați greșit cu tasta shift, atunci.... va trebui să facem 145 de tăieturi pentru 146 de bucăți. deci 145 * 5 = 580 de secunde răspuns : a
a ) 580 de secunde, b ) 680 de secunde, c ) 500 de secunde, d ) 540 de secunde, e ) 560 de secunde
a
un rezervor poate furniza apă unui sat timp de 60 de zile. dacă o scurgere în partea de jos a rezervorului scurge 10 litri pe zi, alimentarea durează doar 45 de zile. pentru câte zile va dura alimentarea dacă scurgerea scurge 20 de litri pe zi?
pierderea a 10 litri pe zi duce la o pierdere de 450 de litri în 45 de zile. astfel, acei 450 de litri au fost pentru 15 zile, făcând consumul zilnic al satului de 30 de litri pe zi. astfel capacitatea rezervorului este de 30 * 60 = 1800 litri. pierderea a 20 de litri plus 30 de litri dă 50 de litri pe zi. la această rată alimentarea va dura 1800 / 50 = 36 de zile. răspunsul este e.
a ) 15, b ) 18, c ) 20, d ) 24, e ) 36
e
câte plante vor fi într-un pat circular a cărui margine exterioară măsoară 32 cm, permițând 4 cm 2 pentru fiecare plantă?
"circumferința patului circular = 32 cm aria patului circular = ( 32 ) 2 ⠁ „ 4 ï € spațiu pentru fiecare plantă = 4 cm 2 â ˆ ´ numărul necesar de plante = ( 32 ) 2 ⠁ „ 4 ï € ã · 4 = 20.36 = 20 ( aprox. ) răspuns d"
a ) 18, b ) 750, c ) 24, d ) 20, e ) niciuna dintre acestea
d
greutatea medie a 8 persoane crește cu 2,5 kg când o persoană nouă vine în locul uneia dintre ele cântărind 60 kg. care ar putea fi greutatea persoanei noi?
"explicație : greutatea totală a crescut = ( 8 x 2,5 ) kg = 20 kg. greutatea persoanei noi = ( 60 + 20 ) kg = 80 kg. răspuns : c"
a ) 75 kg, b ) 55 kg, c ) 80 kg, d ) 85 kg, e ) 25 kg
c
a a început o afacere cu o investiție de rs. 70000 și după 6 luni b s-a alăturat investind rs. 120000. dacă profitul la sfârșitul unui an este rs. 65000, atunci partea lui b este?
"raportul investițiilor lui a și b este ( 70000 * 12 ) : ( 120000 * 6 ) = 7 : 6 profitul total = rs. 65000 partea lui b = 6 / 13 ( 65000 ) = rs. 30000 răspuns : a"
a ) a ) 30000, b ) b ) 34000, c ) c ) 34098, d ) d ) 33007, e ) e ) 44098
a
dacă raza unui cerc este redusă cu 10 %, ce se întâmplă cu aria?
"aria pătratului = pi * raza ^ 2 noua rază = 0.9 * vechea rază deci noua arie = ( 0.9 ) ^ 2 vechea arie = > 0.81 din vechea arie = > 81 % din vechea arie răspuns : b"
a ) 10 % scădere, b ) 19 % scădere, c ) 36 % scădere, d ) 40 % scădere, e ) 50 % scădere
b
vârsta medie a elevilor unei școli pentru adulți este de 44 de ani. 120 de noi elevi, a căror vârstă medie este de 32 de ani, s-au alăturat școlii. ca urmare, vârsta medie a scăzut cu 4 ani. găsiți numărul de elevi ai școlii după alăturarea noilor elevi.
"explicație : să fie numărul original de elevi x. conform situației, 44 x + 120 * 32 = ( x + 120 ) 36 ⇒ x = 60 deci, numărul necesar de elevi după alăturarea noilor elevi = x + 120 = 180 răspuns : b"
a ) 1200, b ) 180, c ) 360, d ) 240, e ) none of these
b
un jucător de cricket face un scor de 87 de alergări în a 17-a repriză și astfel își crește media cu 2. găsește-i media după a 17-a repriză.
"lăsați media după a 17-a repriză = x. apoi, media după a 16-a repriză = ( x – 2 ). ∴ 16 ( x – 2 ) + 87 = 17 x sau x = ( 87 – 32 ) = 55. răspuns e"
a ) 36, b ) 39, c ) 42, d ) 45, e ) none of the above
e
24 oz de suc p și 25 oz de suc v sunt amestecate pentru a face smoothie a și y. raportul dintre p și v în smoothie a este 4 este la 1 și că în y este 1 este la 5. câte uncii de suc p sunt conținute în smoothie a?
raportul dintre p și v în smoothie x este 4 este la 1 și că în y este 1 este la 5. p 1 + p 2 = 24 v 1 + v 2 = 25 p 1 = 4 v 1 p 2 = v 2 / 5 4 v 1 + v 2 / 5 = 24 v 1 + v 2 = 25 4 v 2 - v 2 / 5 = 76 19 v 2 / 5 = 76 = > v 2 = 20 = > v 1 = 5 = > p 1 = 20 răspuns - d
a ) 5, b ) 10, c ) 15, d ) 20, e ) 25
d
într-un anumit iaz, 20 de pești au fost prinși, etichetați și returnați în iaz. la câteva zile mai târziu, 20 de pești au fost prinși din nou, dintre care 2 au fost găsiți a fi etichetați. dacă procentul de pești etichetați în a doua captură aproximează procentul de pești etichetați în iaz, care este numărul aproximativ de pești din iaz?
"dacă x este numărul total de pești din iaz : 4 = 20 / x * 100 = > x = 500 deci răspunsul este e"
a ) 400, b ) 625, c ) 1250, d ) 2500, e ) 500
e
un anumit șofer de autobuz este plătit cu o rată regulată de 18 USD pe oră pentru orice număr de ore care nu depășește 40 de ore pe săptămână. pentru orice ore suplimentare lucrate în exces de 40 de ore pe săptămână, șoferul de autobuz este plătit la o rată care este cu 75 % mai mare decât rata sa obișnuită. dacă săptămâna trecută șoferul de autobuz a câștigat 976 USD în total, câte ore a lucrat în total săptămâna aceea?
"pentru 40 de ore = 40 * 18 = 720 exces = 976 - 720 = 252 pentru ore suplimentare =. 75 ( 18 ) = 13.5 + 18 = 31.5 numărul de ore suplimentare = 252 / 31.5 = 8 ore totale = 40 + 8 = 48 răspuns d 48"
a ) 36, b ) 40, c ) 44, d ) 48, e ) 52
d
un negustor cumpără două articole cu rs. 1000 fiecare și apoi le vinde, făcând 75 % profit pe primul articol și 75 % pierdere pe al doilea articol. găsește procentul de profit sau pierdere net?
"profitul pe primul articol = 75 % din 1000 = 750. acesta este egal cu pierderea pe care o face pe al doilea articol. adică nu face nici profit, nici pierdere. răspuns : d"
a ) 200, b ) 768, c ) 276, d ) 750, e ) 279
d
o soluție de spirit și apă este vândută pe piață. costul pe litru al soluției este direct proporțional cu partea ( fracțiunea ) de spirit ( în volum ) pe care o are soluția. o soluție de 1 litru de spirit și 1 litru de apă costă 50 de cenți. cât costă o soluție de 1 litru de spirit și 2 litri de apă?
"costul pe litru al soluției este direct proporțional cu partea ( fracțiunea ) de spirit ( în volum ) pe care o are soluția. înseamnă că nu există niciun efect al schimbării volumului de apă asupra costului soluției, astfel încât o soluție de 1 litru de spirit și 2 litri de apă va costa 50 de cenți răspuns = 50 răspuns : c"
a ) 13, b ) 33, c ) 50, d ) 51, e ) 52
c
într-o companie de 180 de angajați, 110 sunt femei. un total de 90 de angajați au diplome avansate și restul au doar o diplomă de facultate. dacă 35 de angajați sunt bărbați cu doar o diplomă de facultate, câți angajați sunt femei cu diplome avansate?
"numărul de bărbați este 180 - 110 = 70. numărul de bărbați cu diplome avansate este 70 - 35 = 35. numărul de femei cu diplome avansate este 90 - 35 = 55. răspunsul este b."
a ) 50, b ) 55, c ) 60, d ) 65, e ) 70
b
câte numere naturale pozitive mai mici decât 8.000 există în care suma cifrelor este egală cu 5?
"în esență, întrebarea întreabă câte numere de 4 cifre ( inclusiv cele în forma 0 xxx, 00 xx, și 000 x ) au cifre care se adună la 5. gândește-te la întrebare în felul următor : știm că există un total de 5 de distribuit între cele 4 cifre, trebuie doar să determinăm numărul de moduri în care poate fi distribuit. să reprezinte o sumă de 1, și | să reprezinte un separator între două cifre. ca rezultat, vom avea 5 x's ( cifre care se adună la 5 ), și 3 |'s ( 3 separatoare de cifre ). deci, de exemplu : xx | x | x | x = 2111 | | xxx | xx = 0032 etc. există 8 c 3 moduri de a determina unde să plasezi separatorii. prin urmare, răspunsul este 8 c 3 = 56. b"
a ) 57, b ) 56, c ) 55, d ) 54, e ) 53
b
c și d au început o afacere investind rs. 1000 / - și rs. 1500 / - respectiv. găsiți partea lui d dintr-un profit total de rs. 500 :
c = rs. 1000 / - d = rs. 1500 / - partea lui c 2 părți & partea lui d 3 părți total 5 părți - - - - - > rs. 500 / - - - - - > 1 parte - - - - - - - > rs. 100 / - partea lui d = 3 părți - - - - - > rs. 300 / - d
a ) 400, b ) 300, c ) 200, d ) 100, e ) 150
d
un tren de 400 de metri lungime traversează complet un pod de 300 de metri lungime în 45 de secunde. care este viteza trenului?
"s = ( 400 + 300 ) / 45 = 700 / 45 * 18 / 5 = 56 răspuns : b"
a ) 32, b ) 56, c ) 29, d ) 27, e ) 21
b
q și r sunt două numere pozitive cu două cifre care au aceleași cifre, dar în ordine inversă. Dacă diferența pozitivă dintre q și r este mai mică de 70, care este cea mai mare valoare posibilă a lui q minus r?
"un număr cu două cifre ` ` ab'' poate fi exprimat algebric ca 10 a + b. q - r = ( 10 a + b ) - ( 10 b + a ) = 9 ( a - b ) < 70. cel mai mare multiplu de 9 care este mai mic de 70 este 63. răspunsul este a."
a ) 63, b ) 64, c ) 65, d ) 66, e ) 67
a
la un anumit magazin de vopsele, verdele pădure este făcut prin amestecarea a 4 părți de vopsea albastră cu 3 părți de vopsea galbenă. verdele verdant este făcut prin amestecarea a 4 părți de vopsea galbenă cu 3 părți de vopsea albastră. câte litri de vopsea galbenă trebuie adăugați la 7 litri de verde pădure pentru a o schimba în verde verdant?
7 litri de verde pădure au 4 litri de albastru și 3 litri de galben să presupunem că adăugăm x litri de galben pentru a-l face verde verdant, astfel încât raportul dintre albastru și galben în verde verdant este ¾, deci ecuația este albastru / galben = 4 / ( 3 + x ) = ¾ 9 + 3 x = 16 = > x = 7 / 3 răspuns : c
a ) 5 / 3, b ) 2 / 7, c ) 7 / 3, d ) 1 / 7, e ) 1 / 4
c
suma a trei numere consecutive multiple de 3 este 90. care este cel mai mare număr?
"lăsând numerele să fie 3 x, 3 x + 3 și 3 x + 6. atunci, 3 x + ( 3 x + 3 ) + ( 3 x + 6 ) = 90 9 x = 81 x = 9 cel mai mare număr = 3 x + 6 = 33 răspuns : b"
a ) 30, b ) 33, c ) 36, d ) 39, e ) 42
b
care va fi diferența dintre dobânda simplă și dobânda compusă @ 25 % pe an la o sumă de $ 3600 după 2 ani?
"d. s. = 3600 * 25 * 2 / 100 = $ 1800 d. c. = 3600 * ( 1 + 25 / 100 ) ^ 2 - 3600 = $ 2025 diferența = 2025 - 1800 = $ 225 răspunsul este c"
a ) $ 150, b ) $ 220, c ) $ 225, d ) $ 182, e ) $ 189
c
dacă 3 persoane pot face 3 ori dintr-o anumită lucrare în 3 zile, atunci câte zile ar dura 8 persoane să facă 8 ori din acea lucrare specifică?
"3 persoane pot face lucrarea o dată într-o zi. 1 persoană poate face 1 / 3 din lucrare într-o zi. 8 persoane pot face 8 / 3 din lucrare într-o zi. 8 persoane pot face de 8 ori lucrarea în 3 zile. răspunsul este c."
a ) 1, b ) 2, c ) 3, d ) 8, e ) 11
c