Problem
stringlengths 5
784
| Rationale
stringlengths 1
990
| Choices
stringlengths 31
310
| Correct
stringclasses 5
values |
|---|---|---|---|
o cutie de lemn cu dimensiunile 8 m x 10 m x 6 m trebuie să transporte cutii dreptunghiulare cu dimensiunile 4 cm x 5 cm x 6 cm. numărul maxim de cutii care pot fi transportate în cutia de lemn, este
|
explicație : numărul = ( 800 * 1000 * 600 ) / 4 * 5 * 6 = 4000000 răspuns : d
|
a ) 9800000, b ) 1000000, c ) 7500000, d ) 4000000, e ) none of these
|
d
|
dintr-un pachet de 52 de cărți, două cărți sunt trase împreună la întâmplare. care este probabilitatea ca ambele cărți să fie regi?
|
s să fie spațiul de eșantionare. atunci, n ( s ) = 52 c 2 = ( 52 x 51 ) / ( 2 x 1 ) = 1326. să e = evenimentul de a obține 2 regi din 4. n ( e ) = 4 c 2 = ( 4 x 3 ) / ( 2 x 1 ) = 6. p ( e ) = n ( e ) / n ( s ) = 6 / 1326 = 1 / 221. opțiunea d"
|
a ) 1 / 15, b ) 25 / 57, c ) 35 / 256, d ) 1 / 221, e ) 2 / 15
|
d
|
o școală are 4 secțiuni de chimie în clasa x având 65, 35, 45 și 42 de studenți. notele medii obținute la testul de chimie sunt 50, 60, 55 și 45 respectiv pentru cele 4 secțiuni. determinați media generală a notelor pe student.
|
media necesară a notelor = 65 ã — 50 + 35 ã — 60 + 45 ã — 55 + 42 ã — 45 / 65 + 35 + 45 + 42 = 3250 + 2100 + 2475 + 1890 / 187 = 9715 â „ 187 = 51.95 răspuns c
|
a ) 50.25, b ) 52.25, c ) 51.95, d ) 53.25, e ) none of the above
|
c
|
viteza cu care o fată poate vâsli o barcă în apă liniștită este de 75 kmph. dacă vâslește în aval, unde viteza curentului este de 15 kmph, cât timp va dura să parcurgă 300 de metri?
|
"viteza bărcii în aval = 75 + 15 = 90 kmph = 90 * 5 / 18 = 25 m / s prin urmare, timpul necesar pentru a parcurge 400 m = 400 / 25 = 16 secunde. răspuns : a"
|
a ) 16, b ) 17, c ) 18, d ) 19, e ) 20
|
a
|
x, y, și z sunt toate numere unice. dacă x este ales aleatoriu din mulțimea { 8, 9, 10, 11 } și y și z sunt alese aleatoriu din mulțimea { 20, 21, 22, 23 }, care este probabilitatea ca x și y să fie prime și z să nu fie?
|
"p ( x este prim ) = 1 / 4 p ( y este prim ) = 1 / 4 dacă y este prim, atunci z nu este prim deoarece y și z sunt unice. atunci probabilitatea este 1 / 4 * 1 / 4 = 1 / 16 răspunsul este a."
|
a ) 1 / 16, b ) 3 / 11, c ) 13 / 20, d ) 3 / 10, e ) 1 / 10
|
a
|
care ar fi perimetrul pătratului a cărui latură este egală cu diametrul cercului al cărui perimetru este 52.5 cm?
|
diametrul cercului = perimetrul / ï € = 52.5 x 7 / 22 = 16.70 perimetrul pătratului = 16.70 x 4 = 66.8 cm răspuns : c
|
['a ) 52.5', 'b ) 60.2', 'c ) 66.8', 'd ) 74.25', 'e ) 80.12']
|
c
|
un coș cu 1430 de mere este împărțit în mod egal între un grup de iubitori de mere. dacă 45 de persoane se alătură grupului, fiecare iubitor de mere ar primi 9 mere mai puțin. câte mere a primit fiecare persoană înainte ca 45 de persoane să se alăture festinului?
|
dacă 1430 este divizibil cu oricare dintre alegerile de răspuns. a. 1430 / 20 = 143 / 2 b 1430 / 21 = 1430 / 21 c 1430 / 22 = 65 dacă 1430 de mere au fost împărțite între 65 de persoane, fiecare ar fi primit 22. după adăugarea a 45 de persoane, răspunsul ar trebui să fie 13. 1430 / 110 = 13. c este răspunsul.
|
a ) 20., b ) 21, c ) 22, d ) 23, e ) 24
|
c
|
un comerciant a cumpărat o jachetă pentru $ 42 și apoi a determinat un preț de vânzare care a egalat prețul de cumpărare al jachetei plus o marjă care a fost de 30% din prețul de vânzare. în timpul unei vânzări, comerciantul a redus prețul de vânzare cu 20% și a vândut jacheta. care a fost profitul brut al comerciantului la această vânzare?
|
costul real = $ 42 sp = costul real + marja = costul real + 30% sp = 42 * 100 / 70 la vânzare sp = 80 / 100 ( 42 * 100 / 70 ) = 48 profit brut = $ 6 răspunsul este c
|
a ) $ 0, b ) $ 3, c ) $ 6, d ) $ 12, e ) $ 15
|
c
|
dacă două numere pozitive sunt în raportul 1 / 9 : 1 / 5, atunci cu ce procent este al doilea număr mai mare decât primul?
|
"raportul dat = 1 / 9 : 1 / 5 = 5 : 9 să fie primul număr 5 x și al doilea număr 9 x. al doilea număr este mai mare decât primul număr cu 4 x. procentul necesar = 4 x / 5 x * 100 = 80 %. răspuns : e"
|
a ) 67 %., b ) 70 %., c ) 60 %., d ) 68 %., e ) 80 %.
|
e
|
o companie farmaceutică a primit 3 milioane de dolari în redevențe pentru primii 25 de milioane de dolari în vânzări și apoi 9 milioane de dolari în redevențe pentru următorii 130 de milioane de dolari în vânzări. cu aproximativ ce procent a scăzut raportul dintre redevențe și vânzări de la primii 25 de milioane de dolari în vânzări la următorii 130 de milioane de dolari în vânzări?
|
"( 9 / 130 ) / ( 3 / 25 ) = 15 / 26 = 57.7 % înseamnă că 9 / 130 reprezintă doar 57.7 %. prin urmare o scădere de 42 %. răspuns d"
|
a ) 8 %, b ) 15 %, c ) 35 %, d ) 42 %, e ) 56 %
|
d
|
alergând la viteza lor constantă, mașina x durează 2 zile mai mult pentru a produce widget-uri w decât mașinile y. la aceste rate, dacă cele două mașini împreună produc 5 w / 4 widget-uri în 3 zile, câte zile ar dura mașina x pentru a produce 5 widget-uri w.
|
"obțin 12. e. sper că nu am făcut greșeli de calcul.. abordare.. să presupunem că y = nr. de zile luate de y pentru a face widget-uri w. apoi x va dura y + 2 zile. 1 / ( y + 2 ) + 1 / y = 5 / 12 ( 5 / 12 este pentru că ( 5 / 4 ) widget-uri w sunt făcute în 3 zile. așa că, widget-urile x vor fi făcute în 12 / 5 zile sau 5 / 12 dintr-un widget pe zi ) rezolvând, avem y = 4 = > x durează 6 zile pentru a face widget-uri x. așa că, el va lua 30 de zile pentru a face 5 widget-uri w. răspuns : d"
|
a ) 4, b ) 6, c ) 8, d ) 30, e ) 12
|
d
|
doi angajați x și y sunt plătiți cu un total de rs. 616 pe săptămână de către angajatorul lor. dacă x este plătit cu 120 la sută din suma plătită lui y, cât este plătit y pe săptămână?
|
"să presupunem că suma plătită lui x pe săptămână = x și suma plătită lui y pe săptămână = y atunci x + y = 616 dar x = 120 % din y = 120 y / 100 = 12 y / 10 ∴ 12 y / 10 + y = 616 ⇒ y [ 12 / 10 + 1 ] = 616 ⇒ 22 y / 10 = 616 ⇒ 22 y = 6160 ⇒ y = 6160 / 22 = 560 / 2 = rs. 280 b"
|
a ) s. 250, b ) s. 280, c ) s. 290, d ) s. 299, e ) s. 300
|
b
|
carol și jordan desenează dreptunghiuri de arie egală. dacă dreptunghiul lui carol măsoară 5 inci pe 24 inci și dreptunghiul lui jordan are 8 inci lungime, cât de lat este dreptunghiul lui jordan, în inci?
|
"aria dreptunghiului lui carol = 24 * 5 = 120 lățimea dreptunghiului lui jordan = w deoarece, ariile sunt egale 8 w = 120 = > w = 15 răspuns d"
|
a ) 25, b ) 23, c ) 22, d ) 15, e ) 18
|
d
|
o bucată de carne de vită a pierdut 35 la sută din greutatea sa în procesare. dacă bucata de carne de vită cântărea 546 de kilograme după procesare, câte kilograme cântărea înainte de procesare?
|
"lăsați greutatea bucății de carne de vită înainte de procesare = x ( 65 / 100 ) * x = 546 = > x = ( 546 * 100 ) / 65 = 840 răspuns d"
|
a ) 191, b ) 355, c ) 737, d ) 840, e ) 1,560
|
d
|
jacob are acum cu 14 ani mai tânăr decât michael. dacă peste 9 ani michael va fi de două ori mai în vârstă decât jacob, câți ani va avea jacob peste 4 ani?
|
"jacob = x ani, michael = x + 14 ani peste 9 ani, 2 ( x + 9 ) = x + 23 2 x + 18 = x + 23 x = 5 x + 4 = 9 ani răspuns c"
|
a ) 3, b ) 7, c ) 9, d ) 21, e ) 25
|
c
|
o pungă conține 60 de mărgele, dintre care 5 sunt albastre, 9 sunt roșii, iar restul sunt albe. dacă lisa trebuie să selecteze o mărgea din pungă la întâmplare, care este probabilitatea ca mărgea să fie roșie sau albă?
|
punga conține 60 de mărgele, dintre care 5 sunt albastre, 9 sunt roșii restul sunt albe. deci, alb = 60 - 5 - 9 = 46. probabilitatea ca mărgea să fie roșie sau albă = probabilitatea ca mărgea să fie roșie + probabilitatea ca mărgea să fie albă probabilitatea ca mărgea să fie roșie sau albă = 9 / 60 + 46 / 60 = 55 / 60 = 11 / 12 prin urmare, răspunsul va fi a.
|
a ) 11 / 12, b ) 2 / 4, c ) 1 / 4, d ) 1 / 8, e ) 1 / 16
|
a
|
dacă 6 femei pot colora 360 m de pânză în 3 zile, atunci 5 femei pot colora 100 m de pânză în?
|
"lungimea pânzei pictate de o femeie într-o zi = 360 / 6 × 3 = 20 m numărul de zile necesare pentru a picta 100 m de pânză de 5 femei = 100 / 5 × 20 = 1 zi răspuns : e"
|
a ) 2 zile, b ) 3 zile, c ) 2.5 zile, d ) 4 zile, e ) 1 zi
|
e
|
când un anumit număr x este împărțit la 95, restul este 31. care este restul când x este împărțit la 19?
|
"să presupunem că valoarea posibilă a lui x este 126 cel mai mic număr posibil al lui x / 19 este 126 / 19 = > 6 cu restul 12 astfel încât răspunsul este ( c ) 12"
|
a ) 10, b ) 11, c ) 12, d ) 15, e ) 17
|
c
|
ram a vândut două biciclete, fiecare cu rs. 990. dacă a făcut 10 % profit pe prima și 10 % pierdere pe a doua, care este costul total al ambelor biciclete?
|
( 10 * 10 ) / 100 = 1 % pierdere 100 - - - 99? - - - 1980 = > rs. 2000 răspuns : a
|
a ) 2000, b ) 2888, c ) 2667, d ) 2999, e ) 2122
|
a
|
forma simplă a raportului 7 / 6 : 3 / 2 este?
|
"7 / 6 : 3 / 2 = 7 : 9 răspuns : b"
|
a ) 5 : 8, b ) 7 : 9, c ) 5 : 9, d ) 5 : 3, e ) 5 : 1
|
b
|
o companie produce 72000 de sticle de apă în fiecare zi. dacă un caz poate ține 9 sticle de apă. câte cazuri sunt necesare de către companie pentru a-și ține producția de o zi
|
"numărul de sticle care pot fi ținute într-un caz = 9. numărul de cazuri necesare pentru a ține 72000 de sticle = 72000 / 9 = 8000 de cazuri. așa că răspunsul este d = 8000"
|
a ) 2000, b ) 4500, c ) 5000, d ) 8000, e ) 9000
|
d
|
un număr este dublat și se adaugă 5. dacă rezultatul este triplat, devine 135. care este acel număr?
|
"explicație : să fie numărul x. prin urmare, 3 ( 2 x + 5 ) = 135 6 x + 15 = 135 6 x = 120 x = 20 răspuns : c"
|
a ) 12, b ) 29, c ) 20, d ) 15, e ) 99
|
c
|
în medie, celulele de drojdie activate se divid o dată la fiecare 120 de minute ; adică, fiecare celulă individuală se divide în două celule individuale în acel interval de timp. dat fiind că o anumită colonie de drojdie era formată din 310000 de celule acum două ore, aproximativ câte celule vor popula colonia peste 12 ore de acum?
|
310000 × 2 × 2 × 2 × 2 x 2 × 2 × 2 = 310000 × 128 = e
|
a ) 77500, b ) 1, 860000, c ) 2, 480000, d ) 3, 720000, e ) 39, 680000
|
e
|
populația unui oraș este de 8000. scade anual cu 10 % p. a. care va fi populația sa după 1 ani?
|
"formula : ( după = 100 numitor acum = 100 numărător ) 8000 ã — 90 / 100 = 7200 răspuns : c"
|
a ) 5100, b ) 5120, c ) 7200, d ) 5400, e ) 5500
|
c
|
media ( media aritmetica ) a numerelor 10, 30, si 50 este cu 8 mai mare decat media numerelor 20, 40 si x. care este x?
|
"media numerelor 10, 30, si 50 este 30. media numerelor 20, 40 si x este 22. atunci 20 + 40 + x = 66. x = 6. raspunsul este c."
|
a ) 2, b ) 4, c ) 6, d ) 8, e ) 10
|
c
|
care este valoarea lui ( p + q ) / ( p - q ) dacă p / q este 7?
|
"( p + q ) / ( p - q ) = [ ( p / q ) + 1 ] / [ ( p / q ) - 1 ] = ( 7 + 1 ) / ( 7 - 1 ) = 8 / 6 = 4 / 3 răspuns : a"
|
a ) 4 / 3, b ) 2 / 3, c ) 2 / 6, d ) 7 / 8, e ) 8 / 7
|
a
|
care este rădăcina pătrată a lui 625, împărțită la 5?
|
rădăcina pătrată este un număr înmulțit cu el însuși rădăcina pătrată a lui 625 = 25, 25 / 5 = 5 ( c ) 5
|
a ) 9, b ) 36, c ) 5, d ) 6, e ) 1
|
c
|
găsește dobânda simplă pentru rs. 350 pentru 10 luni la 5 paisa pe lună?
|
"i = ( 350 * 10 * 5 ) / 100 = 175 răspuns : b"
|
a ) 277, b ) 175, c ) 288, d ) 266, e ) 121
|
b
|
a și b pot face o lucrare în 60 de zile și 60 de zile respectiv. ei lucrează împreună timp de 10 zile și b pleacă. în câte zile este finalizată întreaga lucrare?
|
"explicație : ( a + b ) ’ s 10 zile de lucru = 10 [ 1 / 60 + 1 / 60 ] = 10 [ 1 + 1 / 60 ] = 1 / 3 a completează lucrarea rămasă în 1 / 3 * 60 = 20 total de lucru = 10 + 20 = 30 de zile răspuns : opțiunea a"
|
a ) 30 de zile, b ) 35 de zile, c ) 40 de zile, d ) 45 de zile, e ) 50 de zile
|
a
|
2 + 2 + 2 ² + 2 ³... + 2 ^ 9
|
"2 + 2 = 2 ^ 2 2 ^ 2 + 2 ^ 2 = ( 2 ^ 2 ) * ( 1 + 1 ) = 2 ^ 3 2 ^ 3 + 2 ^ 3 = ( 2 ^ 3 ) * ( 1 + 1 ) = 2 ^ 4 so you can notice the pattern... in the end you will have 2 ^ 9 + 2 ^ 9, which will give you 2 ^ 10 answer b"
|
a ) 2 ^ 9, b ) 2 ^ 10, c ) 2 ^ 16, d ) 2 ^ 35, e ) 2 ^ 37
|
b
|
care este raportul dintre 4 / 7 și produsul 2 * ( 7 / 3 )?
|
"4 / 7 / 14 / 3 = 6 / 49... imo option a."
|
a ) 6 : 49, b ) 1 : 3, c ) 3 : 21, d ) 1 : 7, e ) 3 : 49
|
a
|
calculați suma primelor 39 de numere naturale.
|
"soluție știm că ( 1 + 2 + 3 +..... + 39 ) = n ( n + 1 ) / 2 prin urmare ( 1 + 2 + 3 +.... + 39 ) = ( 39 × 40 / 2 ) = 780. răspuns a"
|
a ) 780, b ) 891, c ) 812, d ) 847, e ) 890
|
a
|
operația # este definită ca adăugarea unui multiplu aleatoriu de două cifre de 14 la un număr prim aleatoriu de două cifre și reducerea rezultatului la jumătate. dacă operația # se repetă de 10 ori, care este probabilitatea ca aceasta să producă cel puțin două numere întregi?
|
"orice multiplu de 14 este par. orice număr prim cu două cifre este impar. ( par + impar ) / 2 nu este un număr întreg. prin urmare, # nu produce un număr întreg. prin urmare, p = 0. răspuns : a."
|
a ) 0 %, b ) 10 %, c ) 20 %, d ) 30 %, e ) 40 %
|
a
|
dacă laturile unui triunghi sunt 26 cm, 24 cm și 10 cm, care este aria sa?
|
"triunghiul cu laturile 26 cm, 24 cm și 10 cm este dreptunghic, unde ipotenuza este 26 cm. aria triunghiului = 1 / 2 * 24 * 10 = 120 cm 2 răspuns : a"
|
a ) 120 cm 2, b ) 130 cm 2, c ) 312 cm 2, d ) 315 cm 2, e ) niciuna dintre acestea
|
a
|
din cei 150 de oameni de la petrecere, 70 erau femei, iar 40 de femei au încercat aperitivul. dacă 50 de oameni nu au încercat aperitivul, care este numărul total de bărbați care au încercat aperitivul?
|
"numărul total de persoane de la petrecere = 150 femei = 70 deci bărbați 150 - 70 = 80 nr. de persoane care au încercat aperitivul = 150 - 50 ( informații date ) = 100 nr de femei care au încercat aperitivul = 40 deci restul de persoane ( bărbați ) care au încercat aperitivul = 100 - 40 = 60 opțiunea corectă c"
|
a ) 40, b ) 50, c ) 60, d ) 70, e ) 80
|
c
|
respirația unui peisaj dreptunghiular este de 6 ori lungimea sa. există un loc de joacă în el a cărui suprafață este de 4200 de metri pătrați și care este 1 / 7 din peisajul total. care este respirația peisajului?
|
"sol. 6 x * x = 7 * 4200 x = 70 lungimea = 6 * 70 = 420 b"
|
a ) 520, b ) 420, c ) 320, d ) 550, e ) 450
|
b
|
s-a calculat că 75 de bărbați ar putea finaliza o lucrare în 25 de zile. când a fost programată începerea lucrului, s-a constatat că este necesar să se trimită 25 de bărbați la un alt proiect. cât va dura finalizarea lucrării?
|
"o zi de lucru = 1 / 25 o zi de lucru a unui bărbat = 1 / ( 25 * 75 ) acum : nr. de muncitori = 50 o zi de lucru = 50 * 1 / ( 25 * 75 ) numărul total de zile necesare pentru finalizarea lucrării = ( 75 * 25 ) / 50 = 37.5 răspuns : c"
|
a ) 28 de zile., b ) 30 de zile., c ) 37.5 zile., d ) 40 de zile., e ) 36 de zile.
|
c
|
un fermier își împarte cireada de x vaci între cei 4 fii ai săi, astfel încât un fiu primește jumătate din cireadă, al doilea primește un sfert, al treilea primește o cincime și al patrulea primește 7 vaci. atunci x este egal cu
|
nr. de vaci : : x 1 st son : x / 2 2 nd son : x / 4 3 rd son : x / 5 4 th son : 7 ( x ) + ( x / 4 ) + ( x / 5 ) + 7 = x = > x - ( 19 x / 20 ) = 7 = > ( 20 x - 19 x ) / 20 = 7 = > x = 140 răspuns : b
|
a ) 100, b ) 140, c ) 180, d ) 160, e ) 120
|
b
|
rezolvă pentru x și verifică: x + 5 = 3
|
"soluție: x + 5 - 5 = 3 - 5 x = - 2 verifică: x + 5 = 3 - 2 + 5 = 3 3 = 3 răspuns: d"
|
a ) 2, b ) 3, c ) 1, d ) - 2, e ) 4
|
d
|
un tren a parcurs x km cu 40 kmph și încă 4 x km cu 20 kmph. găsește viteza medie a trenului în parcurgerea întregii distanțe de 3 x km.
|
"timpul total de parcurgere = x / 40 + 4 x / 20 ore = 9 x / 40 ore viteza medie = 3 x / ( 9 x / 40 ) = 13.33 kmph răspuns : c"
|
a ) 11.33 kmph, b ) 12.33 kmph, c ) 13.33 kmph, d ) 14.33 kmph, e ) 23.33 kmph
|
c
|
un bloc dreptunghiular de 8 cm cu 24 cm cu 56 cm este tăiat într-un număr exact de cuburi egale. găsiți cel mai mic număr posibil de cuburi?
|
"volumul blocului = 8 * 24 * 56 = 10752 cm ^ 3 latura celui mai mare cub = h. c. f de 8, 24,56 = 8 cm volumul cubului = 8 * 8 * 8 = 512 cm ^ 3 numărul de cuburi = 10752 / 512 = 21 răspunsul este e"
|
a ) 6, b ) 10, c ) 15, d ) 40, e ) 21
|
e
|
salariul mediu al unui muncitor în timpul unei săptămâni de 15 zile lucrătoare consecutive a fost de 90 $ pe zi. în primele 7 zile, salariul său mediu a fost de 87 $ pe zi, iar salariul mediu în ultimele 7 zile a fost de 93 $ pe zi. care a fost salariul său în a 8 a zi?
|
"salariul mediu zilnic al unui muncitor pentru 15 zile lucrătoare consecutive = 90 $ în primele 7 zile, salariul mediu zilnic = 87 $ în ultimele 7 zile, salariul mediu zilnic = 93 $ salariul în a 8 a zi = 90 * 15 - ( 87 * 7 + 93 * 7 ) = 1350 - ( 609 + 651 ) = 1350 - 1260 = 90 răspuns b"
|
a ) $ 83, b ) $ 90, c ) $ 92, d ) $ 97, e ) $ 104
|
b
|
găsește raportul compus al ( 2 : 3 ), ( 5 : 11 ) și ( 11 : 2 ) este
|
"raportul necesar = 2 / 3 * 5 / 11 * 11 / 2 = 2 / 1 = 5 : 3 răspunsul este e"
|
a ) 3 : 2, b ) 2 : 1, c ) 1 : 2, d ) 4 : 5, e ) 5 : 3
|
e
|
care este cel mai mic multiplu comun al numerelor 15, 18 și 34?
|
"să scriem mai întâi numerele sub formă de factori primi : 15 = 3 * 5 18 = 2 * 3 ^ 2 34 = 2 * 17 ^ 1 cel mai mic multiplu comun ar fi cele mai mari puteri ale numerelor prime din toate aceste trei numere. prin urmare lcm = 1530 opțiunea e"
|
a ) 60, b ) 120, c ) 240, d ) 360, e ) 1530
|
e
|
o întâlnire trebuie să fie condusă cu 4 manageri. găsiți numărul de moduri în care managerii pot fi selectați dintre 8 manageri, dacă există 2 manageri care refuză să participe la întâlnire împreună.
|
"numărul total de moduri de a alege 4 manageri este 8 c 4 = 70 trebuie să scădem numărul de grupuri care includ cei doi manageri, care este 6 c 2 = 15. 70 - 15 = 55 răspunsul este b."
|
a ) 48, b ) 55, c ) 58, d ) 62, e ) 70
|
b
|
pe scara richter, care măsoară cantitatea totală de energie eliberată în timpul unui cutremur, o citire de x - 1 indică o zecime din energia eliberată indicată de o citire de x. pe acea scară, frecvența corespunzătoare unei citiri de 9 este de câte ori mai mare decât frecvența corespunzătoare unei citiri de 3?
|
"dacă citirea scalei richter trece de la x - 1 la x va fi 10 dacă citirea scalei richter trece de la 3 la 4 va fi 10 dacă citirea scalei richter trece de la 4 la 5 va fi 10 dacă citirea scalei richter trece de la 5 la 6 va fi 10 în mod similar dacă citirea scalei richter trece de la 6 la 7 va fi 10 și dacă citirea scalei richter trece de la 7 la 8 va fi 10 și dacă citirea scalei richter trece de la 8 la 9 va fi 10 așa că va fi de la 3 la 9 adică 4,5, 6,7, 8,9 = 10 * 10 * 10 * 10 * 10 * 10 = 10 ^ 6 răspunsul este e"
|
a ) 40, b ) 50, c ) 10 ^ 4, d ) 10 ^ 5, e ) 10 ^ 6
|
e
|
conținutul unei anumite cutii constă în 72 de mere și 30 de portocale. câte portocale trebuie adăugate la cutie pentru ca exact 30 % din fructele din cutie să fie mere?
|
"apple = ( apple + orange + x ) * 0.3 72 = ( 30 + 72 + x ) * 0.3 x = 138 answer : d"
|
a ) 68, b ) 78, c ) 88, d ) 138, e ) 108
|
d
|
o fabrică produce 6000 de jucării pe săptămână. dacă muncitorii de la această fabrică lucrează 4 zile pe săptămână și dacă acești muncitori fac același număr de jucării în fiecare zi, câte jucării sunt produse în fiecare zi?
|
"pentru a găsi numărul de jucării produse în fiecare zi, împărțim numărul total de jucării produse într-o săptămână ( de 4 zile ) la 4. 6000 / 4 = 1500 de jucării răspunsul corect b"
|
a ) 4436 de jucării, b ) 1500 de jucării, c ) 6113 de jucării, d ) 2354 de jucării, e ) 1375 de jucării
|
b
|
doi mecanici lucrau la mașina ta. unul poate termina treaba în șase ore, dar cel nou ia 9 ore. au lucrat împreună primele două ore, dar apoi primul tip a plecat să ajute un alt mecanic la o altă treabă. cât timp îi va lua tipului nou să termine mașina ta?
|
"rată ( 1 ) = 1 / 6 rată ( 2 ) = 1 / 9 combinată = 5 / 18 munca făcută în 2 zile = 5 / 9 munca rămasă = 4 / 9 rată * timp = munca rămasă 1 / 8 * timp = 4 / 9 timp = 32 / 9 b"
|
a ) 7 / 4, b ) 32 / 9, c ) 15 / 4, d ) 10 / 3, e ) 17 / 5
|
b
|
o cutie conține 100 de mingi, numerotate de la 1 la 100. dacă 3 mingi sunt selectate la întâmplare și cu înlocuire din cutie, care este probabilitatea ca suma celor 3 numere de pe mingile selectate din cutie să fie impară?
|
suma celor trei numere de pe mingile selectate din cutie pentru a fi impară trebuie să selectați fie trei mingi numerotate impare ( impar + impar + impar = impar ) sau două mingi numerotate pare și o minge numerotată impară ( par + par + impar = impar ) ; p ( ooo ) = ( 1 / 2 ) ^ 3 ; p ( eeo ) = 3 * ( 1 / 2 ) ^ 2 * 1 / 2 = 3 / 8 ( ar trebui să înmulțiți cu 3 deoarece scenariul a două mingi numerotate pare și o minge numerotată impară poate apărea în 3 moduri diferite : eeo, eoe, sau oee ) ; deci în cele din urmă p = 1 / 8 + 3 / 8 = 1 / 2. răspuns : c.
|
a ) 1 / 4, b ) 3 / 8, c ) 1 / 2, d ) 5 / 8, e ) 3 / 4
|
c
|
două vase p și q conțin 62.5 % și 87.5 % de alcool respectiv. dacă 2 litri din vasul p este amestecat cu 8 litri din vasul q, raportul dintre alcool și apă în amestecul rezultat este?
|
"cantitatea de alcool în vasul p = 62.5 / 100 * 2 = 5 / 4 litri cantitatea de alcool în vasul q = 87.5 / 100 * 4 = 7 / 1 litri cantitatea de alcool în amestecul format = 5 / 4 + 7 / 1 = 33 / 4 = 8.25 litri deoarece 10 litri de amestec este format, raportul dintre alcool și apă în amestecul format = 8.25 : 1.75 = 33 : 7. răspuns : b"
|
a ) 33 : 1, b ) 33 : 7, c ) 33 : 8, d ) 33 : 5, e ) 33 : 2
|
b
|
vârsta medie a unei clase de 39 de elevi este de 15 ani. dacă vârsta profesorului este inclusă, atunci media crește cu 3 luni. găsiți vârsta profesorului.
|
"vârsta totală a 39 de persoane = ( 39 x 15 ) ani = 585 ani. vârsta medie a 40 de persoane = 15 ani 3 luni = 61 / 4 ani. vârsta totală a 40 de persoane = ( 61 / 4 ) x 40 ) ani = 610 ani. :. vârsta profesorului = ( 610 - 585 ) ani = 25 ani. răspunsul este c."
|
a ) 20, b ) 23, c ) 25, d ) 21, e ) 22
|
c
|
un om poate vâsli 5 kmph în apă stătătoare. când râul curge cu 2.3 kmph, îi ia 1 oră să vâslească până la un loc și înapoi. care este distanța totală parcursă de om?
|
"m = 5 s = 2.3 ds = 6.3 us = 2.7 x / 6.3 + x / 2.7 = 1 x = 1.89 d = 1.89 * 2 = 3.78 răspuns : d"
|
a ) 2.91, b ) 3.48, c ) 2.98, d ) 3.78, e ) 4.21
|
d
|
Un angajat cu jumătate de normă, al cărui salariu orar a fost majorat cu 15%, a decis să reducă numărul de ore lucrate pe săptămână, astfel încât venitul săptămânal total al angajatului să rămână neschimbat. Cu ce procent ar trebui redus numărul de ore lucrate?
|
"să presupunem că salariul orar inițial este x și numărul de ore lucrate este y. Venitul total va fi = x * y. După majorare, salariul va fi = 1.15 x. Acum trebuie să găsim numărul de ore lucrate, astfel încât x * y = 1.15 x * z. i. e z = 1 / 1.15 y. % reducere = ( y - 1 / 1.15 y ) / y * 100 = 13.04 %. Astfel, răspunsul meu este b."
|
a ) 9, b ) 13.04, c ) 10, d ) 11, e ) 12
|
b
|
dacă 4 ( capitalul lui p ) = 6 ( capitalul lui q ) = 10 ( capitalul lui r ), atunci din profitul total de rs 4650, cât va primi r?
|
"să presupunem că capitalul lui p este p, capitalul lui q este q, și capitalul lui r este r atunci 4 p = 6 q = 10 r 2 p = 3 q = 5 r ⋯ ( a ) din ( a ), q = 2 p / 3 ⋯ ( 1 ) r = 2 p / 5 ⋯ ( 2 ) p : q : r = p : 2 p / 3 : 2 p / 5 = 15 : 10 : 6 partea lui r = 4650 × 6 / 31 = 150 × 6 = 900 răspunsul este c."
|
a ) 300, b ) 600, c ) 900, d ) 800, e ) 500
|
c
|
un tren de 260 m lungime care rulează cu viteza de 120 km / h traversează un alt tren care rulează în direcția opusă cu viteza de 80 km / h în 9 sec. care este lungimea celuilalt tren?
|
explicație : viteza relativă = 120 + 80 = 200 km / h. = 200 x 5 / 18 = 500 / 9 m / sec. să fie lungimea celuilalt tren l mts. atunci, ( l + 260 ) / 9 = 500 / 9 = > l = 240 mts. răspunsul este a
|
a ) 240 mts, b ) 270 mts, c ) 260 mts, d ) 250 mts, e ) none of these
|
a
|
pentru orice număr întreg n mai mare decât 1, n * denotă produsul tuturor numerelor întregi de la 1 la n, inclusiv. câte numere prime r sunt între 6 * + 2 și 6 * + 6, inclusiv?
|
"dat fiind că n * denotă produsul tuturor numerelor întregi de la 1 la n, inclusiv deci, 6 * + 2 = 6! + 2 și 6 * + 6 = 6! + 6. acum, observați că putem factoriza 2 din 6! + 2 deci nu poate fi un număr prim, putem factoriza 3 din 6! + 3 deci nu poate fi un număr prim, putem factoriza 4 din 6! + 4 deci nu poate fi un număr prim,... la fel pentru toate numerele între 6 * + 2 = 6! + 2 și 6 * + 6 = 6! + 6, inclusiv. ceea ce înseamnă că nu există prime r în acest interval. răspuns : a."
|
a ) none, b ) one, c ) two, d ) three, e ) four
|
a
|
25 de persoane au mers la un hotel pentru o petrecere de cină combinată 15 dintre ei au cheltuit rs. 5 fiecare pe cina lor și restul au cheltuit 4 mai mult decât cheltuielile medii ale tuturor celor 25. ce a fost totalul de bani cheltuiți de ei.
|
"soluție : să fie media cheltuielilor a 25 de persoane x. apoi, 25 x = 15 * 5 + 10 * ( x + 4 ) ; sau, 25 x = 15 * 5 + 10 x + 20 ; sau, x = 6.33 ; deci, totalul de bani cheltuiți = 6.33 * 25 = rs. 158.25. răspuns : opțiunea d"
|
a ) 1628.4, b ) 1534, c ) 1492, d ) 158.25, e ) niciuna dintre acestea
|
d
|
găsește numărul de divizori ai lui 1080 excluzând divizorii care sunt pătrate perfecte.
|
1080 = 2 ^ 3 * 3 ^ 3 * 5 ^ 1 numărul total de divizori = ( 3 + 1 ) * ( 3 + 1 ) * ( 1 + 1 ) = 32 numai 4 divizori 1, 2 ^ 2 = 4, 3 ^ 2 = 9 & 2 ^ 2 * 3 ^ 2 = 36 sunt pătrate perfecte deci, numărul de divizori excluzând divizorii pătrate perfecte = 32 - 4 = 28 răspuns : a
|
a ) 28, b ) 29, c ) 30, d ) 31, e ) 32
|
a
|
linia q are ecuația 5 y - 3 x = 60. dacă linia s este perpendiculară pe q, are un număr întreg pentru intersecția sa y și intersectează q în al doilea cadran, atunci câte linii s posibile există? ( notă : intersecțiile pe una dintre axe nu se iau în considerare. )
|
"5 y - 3 x = 60 și astfel y = 3 x / 5 + 12 când x = 0, atunci y = 12. când y = 0, atunci x = - 20 panta este 3 / 5, deci panta liniei s este - 5 / 3. prin punctul ( - 20, 0 ), 0 = - 5 ( - 20 ) / 3 + c intersecția y este c = - 100 / 3 < - 33. astfel, liniile perpendiculare s pot avea intersecții y de la - 33 până la 11. numărul de linii posibile este 33 + 11 + 1 = 45 răspunsul este c."
|
a ) 35, b ) 40, c ) 45, d ) 50, e ) 55
|
c
|
când greenville state university a decis să își mute colecția de arte frumoase într-o nouă bibliotecă, a trebuit să împacheteze colecția în cutii de 20 de inci cu 20 de inci cu 15 inci. dacă universitatea plătește 0,70 dolari pentru fiecare cutie și dacă universitatea are nevoie de 3.06 milioane de inci cubi pentru a împacheta colecția, care este suma minimă pe care universitatea trebuie să o cheltuiască pe cutii?
|
"numărul total de cutii = 3060000 / ( 20 × 20 × 15 ) = 510 costul total = 510 × 0,7 $ = 357 $ răspuns b"
|
a ) 255 $, b ) 357 $, c ) 510 $, d ) 1.250 $, e ) 2.550 $
|
b
|
pe o pistă de curse, cel mult 5 cai pot concura împreună în același timp. există un total de 25 de cai. nu există nicio modalitate de a cronometra cursele. care este numărul minim y de curse de care avem nevoie pentru a obține cei mai rapizi 3 cai?
|
"y = 7 este răspunsul corect. bună soluție buneul. b"
|
a ) 5, b ) 7, c ) 8, d ) 10, e ) 11
|
b
|
mersul cu 5 / 6 din viteza sa obișnuită, un tren este cu 10 minute prea târziu. care este timpul obișnuit pentru a parcurge călătoria?
|
"et speed be s and time to cover the journey be t s * t = d ( distance of journey ) - - - 1 now as per the question stem we have ( 5 / 6 ) s * ( t + 10 ) = d - - - - 2 equating value of d from ( 1 ) in ( 2 ) we get t = 50 mins or 5 / 6 hrs. answer : d"
|
a ) 70 minutes, b ) 2 hours, c ) 2 / 3 hours, d ) 5 / 6 hours, e ) 85 minutes
|
d
|
un vânzător de fructe vinde mango la prețul de rs. 6 pe kg și astfel pierde 15 %. la ce preț pe kg, ar fi trebuit să le vândă pentru a obține un profit de 5 %
|
"explicație : 85 : 6 = 105 : x x = ( 6 × 105 / 85 ) = rs 7.41 opțiune a"
|
a ) rs 7.41, b ) rs 9.81, c ) rs 10.41, d ) rs 11.81, e ) none of these
|
a
|
salariile lui a și b împreună sunt de $ 5000. a cheltuiește 95 % din salariul său și b, 85 % din al său. dacă acum, economiile lor sunt aceleași, care este salariul lui a?
|
"să presupunem că salariul lui a este x salariul lui b = 5000 - x ( 100 - 95 ) % din x = ( 100 - 85 ) % din ( 5000 - x ) x = $ 3750 răspunsul este e"
|
a ) $ 1000, b ) $ 1250, c ) $ 2500, d ) $ 3500, e ) $ 3750
|
e
|
când este aruncată, o anumită monedă are o probabilitate egală de a ateriza pe oricare parte. dacă moneda este aruncată de 4 ori, care este probabilitatea ca aceasta să aterizeze pe aceeași parte de fiecare dată?
|
la prima aruncare, moneda va ateriza pe o parte sau pe cealaltă. la a doua aruncare, probabilitatea de a ateriza pe aceeași parte este 1 / 2. la a treia aruncare, probabilitatea de a ateriza pe aceeași parte este 1 / 2. la a patra aruncare, probabilitatea de a ateriza pe aceeași parte este 1 / 2. p ( aceeași parte toate cele patru ori ) = 1 / 2 * 1 / 2 * 1 / 2 = 1 / 8. răspunsul este c.
|
a ) 1 / 4, b ) 1 / 6, c ) 1 / 8, d ) 1 / 12, e ) 1 / 16
|
c
|
bob vrea să alerge o milă în același timp cu sora lui. dacă timpul lui bob pentru o milă este în prezent de 10 minute 40 de secunde și timpul surorii sale este în prezent de 9 minute 42 de secunde, cu ce procent trebuie să își îmbunătățească bob timpul pentru a alerga o milă în același timp cu sora lui?
|
"timpul lui bob = 640 secs. timpul surorii lui = 582 secs. procentul de creștere necesar = ( 640 - 582 / 640 ) * 100 = 58 / 640 * 100 = 9 %. ans ( d )."
|
a ) 3 %, b ) 5 %, c ) 8 %, d ) 9 %, e ) 12 %
|
d
|
convertește 300 mile în metri?
|
"1 milă = 1609.34 metri 300 mile = 300 * 1609.34 = 482802 metri răspunsul este d"
|
a ) 784596, b ) 845796, c ) 804670, d ) 482802, e ) 864520
|
d
|
dacă d = 1 / ( 2 ^ 3 * 5 ^ 9 ) este exprimat ca un număr zecimal terminator, câte cifre non-zero va avea d?
|
"un alt mod de a face acest lucru este : știm că x ^ a * y ^ a = ( x * y ) ^ a dat = 1 / ( 2 ^ 3 * 5 ^ 9 ) = înmulțiți și împărțiți cu 2 ^ 4 = 2 ^ 6 / ( 2 ^ 3 * 2 ^ 6 * 5 ^ 9 ) = 2 ^ 6 / 10 ^ 9 = > cifrele non-zero sunt 64 = > ans b"
|
a ) one, b ) two, c ) three, d ) seven, e ) ten
|
b
|
greutatea medie a 5 persoane crește cu 4 kg când o persoană nouă vine în locul uneia care cântărește 50 kg. care este greutatea persoanei noi?
|
"creșterea totală în greutate = 5 × 4 = 20 dacă x este greutatea persoanei noi, creșterea totală în greutate = x − 50 = > 20 = x - 50 = > x = 20 + 50 = 70 răspuns : a"
|
a ) 70, b ) 86.5, c ) 80, d ) 88.5, e ) 75
|
a
|
care este cel mai mic număr întreg care este multiplu de 7, 12 și 20
|
"răspuns corect : e este lcm din 7, 12 și 20 care este 420"
|
a ) 141, b ) 180, c ) 130, d ) 122, e ) 420
|
e
|
vârsta medie a 15 elevi dintr-o clasă este de 15 ani. dintre aceștia, vârsta medie a 8 elevi este de 14 ani și cea a celorlalți 6 elevi este de 16 ani. vârsta celui de-al 15-lea elev este
|
"vârsta celui de-al 15-lea elev = [ 15 x 15 - ( 14 x 8 + 16 x 6 ) ] = ( 225 - 208 ) = 17 ani. răspuns c"
|
a ) 9 ani, b ) 11 ani, c ) 17 ani, d ) 21 ani, e ) 25 ani
|
c
|
costul unei case cu o singură familie era de 120.000 $ în 1980. în 1988, prețul a crescut la 174.000 $. care a fost creșterea procentuală a costului casei?
|
"creștere = 174000 - 120000 = 54000 % creștere = 54000 * 100 / 120000 = 45 % răspuns : opțiune e"
|
a ) 60 %, b ) 50 %, c ) 55 %, d ) 40 %, e ) 45 %
|
e
|
în facultatea de inginerie inversă, 200 de studenți din anul doi studiază metode numerice, 400 de studenți din anul doi studiază controlul automat al vehiculelor aeriene și 100 de studenți din anul doi studiază ambele. câți studenți sunt în facultate dacă studenții din anul doi sunt aproximativ 60 % din total?
|
"numărul total de studenți care studiază ambele este 400 + 200 - 100 = 500 ( scăzând 100 deoarece au fost incluși în celelalte numere deja ). deci 60 % din total este 500, deci 100 % este aprox. 834. răspunsul este a"
|
a ) 834, b ) 750, c ) 633, d ) 654, e ) 812
|
a
|
jerry a mers la un magazin și a cumpărat lucruri în valoare de rs. 35, din care 30 % au fost pentru taxe de vânzare pe achiziții impozabile. dacă rata de impozitare a fost de 6 %, atunci care a fost costul articolelor fără taxe?
|
"costul total al articolelor pe care le-a cumpărat = rs. 35 dat că din acest rs. 35, 30 % este dat ca taxă = > taxa totală suportată = 30 % = rs. 30 / 100 lăsați costul articolelor fără taxe = x dat că rata de impozitare = 6 % ∴ ( 35 − 30 / 100 − x ) 6 / 100 = 30 / 100 ⇒ 6 ( 35 − 0.3 − x ) = 30 ⇒ ( 35 − 0.3 − x ) = 5 ⇒ x = 35 − 0.3 − 5 = 29.7 e )"
|
a ) 19, b ) 19.7, c ) 21.3, d ) 21.5, e ) 29.7
|
e
|
cât timp durează un tren de 110 m lungime care rulează la viteza de 36 km / hr pentru a traversa un pod de 132 m lungime?
|
"viteza = 36 * 5 / 18 = 10 m / sec distanța totală acoperită = 110 + 132 = 242 m. timpul necesar = 242 / 10 = 24.2 sec. răspuns : c"
|
a ) 82.1 sec, b ) 12.1 sec, c ) 24.2 sec, d ) 13.1 sec, e ) 12.15 sec
|
c
|
kathleen poate picta o cameră în 3 ore, iar anthony poate picta o cameră identică în 5 ore. cât timp le-ar lua lui kathleen și anthony să picteze ambele camere dacă lucrează împreună la ratele lor respective?
|
"kat - - - 3 h - - - 1 cameră ; deci rata este muncă / timp = 1 / 3 anthony - - - 5 h - - - 1 cameră ; rata = 1 / 5 rata lui kat și anthony împreună = 1 / 3 + 1 / 5 = 8 / 15 dar ni se spune că amândoi pictează 2 camere care sunt identice. așa că ; munca este 2 camere, rata este 8 / 15, timpul total necesar pentru ca amândoi să termine munca = 2 / ( 8 / 15 ) = 30 / 8 = 15 / 4 prin urmare, răspunsul = e"
|
a ) 8 / 15, b ) 4 / 3, c ) 15 / 8, d ) 9 / 4, e ) 15 / 4
|
e
|
1200 de bărbați au provizii pentru 15 zile. Dacă se alătură încă 200 de bărbați, pentru câte zile vor dura proviziile acum?
|
"1200 * 15 = 1400 * x x = 12.85. răspuns : a"
|
a ) 12.85, b ) 12.62, c ) 12.5, d ) 12.24, e ) 12.1
|
a
|
media ( media aritmetica ) a 4 numere naturale pozitive este 50. daca media a 2 dintre aceste numere este 35, care este cea mai mare valoare posibila pe care o poate avea unul dintre celelalte 2 numere?
|
"a + b + c + d = 200 a + b = 70 c + d = 130 cea mai mare valoare posibila = 129 ( doar mai putin decat 1 ) raspuns = e"
|
a ) 55, b ) 65, c ) 100, d ) 109, e ) 129
|
e
|
care va fi dobânda compusă pentru o sumă de rs. 21,000 după 3 ani la o rată de 12 % p. a.?
|
"suma = [ 21000 * ( 1 + 12 / 100 ) 3 ] = 21000 * 28 / 25 * 28 / 25 * 28 / 25 = rs. 29503.49 d. i. = ( 29503.49 - 21000 ) = rs. 8503.49 răspuns : a"
|
a ) rs. 8503.49, b ) rs. 9720, c ) rs. 10123.20, d ) rs. 10483.20, e ) none
|
a
|
un om înoată în aval 72 km și în amonte 45 km, luând 10 ore fiecare dată; care este viteza curentului?
|
"72 - - - 10 ds = 7.2? - - - - 1 45 - - - - 10 us = 4.5? - - - - 1 s =? s = ( 7.2 - 4.5 ) / 2 = 1.35 răspuns : d"
|
a ) 1.55, b ) 1.85, c ) 1.65, d ) 1.35, e ) 1.15
|
d
|
lungimea unui dreptunghi este dublul lățimii sale. dacă lungimea sa este redusă cu 5 cm și lățimea este mărită cu 5 cm, aria dreptunghiului este mărită cu 65 cm pătrați. găsiți lungimea dreptunghiului.
|
"explicație : să presupunem că lățimea = x. atunci, lungimea = 2 x. atunci, ( 2 x - 5 ) ( x + 5 ) - 2 x * x = 65 = > 5 x - 25 = 65 = > x = 16. lungimea dreptunghiului = 16 cm. răspuns : opțiunea c"
|
a ) 12 cm, b ) 14 cm, c ) 16 cm, d ) 18 cm, e ) 20 cm
|
c
|
găsește suma de rs. 6000 în 2 ani, rata dobânzii fiind 4 % pentru primul an și 5 % pentru al doilea an?
|
"6000 * 104 / 100 * 105 / 100 = > 6552 răspuns : e"
|
a ) 5568, b ) 6369, c ) 5460, d ) 5635, e ) 6552
|
e
|
un avion parcurge o anumită distanță cu o viteză de 320 kmph în 4 ore. pentru a parcurge aceeași distanță în 1 2 / 3 ore, trebuie să călătorească cu o viteză de :
|
"distanță = ( 240 x 5 ) = 1280 km. viteză = distanță / timp viteză = 1280 / ( 5 / 3 ) km / h. [ putem scrie 1 2 / 3 ore ca 5 / 3 ore ] viteza necesară = ( 1280 x 3 / 5 ) km / h = 768 km / h răspuns d ) 768 km / h"
|
a ) 520, b ) 620, c ) 820, d ) 768, e ) 720
|
d
|
un client a cumpărat un produs la magazin. cu toate acestea, vânzătorul a crescut prețul produsului cu 20 %, astfel încât clientul nu a putut cumpăra cantitatea necesară de produs. clientul a reușit să cumpere doar 70 % din cantitatea necesară. care este diferența în suma de bani pe care clientul a plătit-o pentru a doua achiziție în comparație cu prima achiziție?
|
să presupunem că x este suma de bani plătită pentru prima achiziție. a doua oară, clientul a plătit 0.7 ( 1.2 x ) = 0.84 x. diferența este de 16 %. răspunsul este a.
|
a ) 16 %, b ) 18 %, c ) 20 %, d ) 22 %, e ) 24 %
|
a
|
un grup de oameni au decis să facă o muncă în 10 zile, dar 5 dintre ei au devenit absenți. dacă restul grupului a făcut munca în 12 zile, găsiți numărul original de oameni?
|
numărul original de oameni = 5 * 12 / ( 12 - 10 ) = 30 răspuns este c
|
a ) 15, b ) 20, c ) 30, d ) 25, e ) 18
|
c
|
george poate face o lucrare în 8 ore. paul poate face aceeași lucrare în 10 ore, hari poate face aceeași lucrare în 12 ore. george, paul și hari încep aceeași lucrare la 9 dimineața, în timp ce george se oprește la 11 dimineața, ceilalți doi termină lucrarea. la ce oră se va termina lucrarea?
|
( ( 1 / 8 ) + ( 1 / 10 ) + ( 1 / 12 ) ) 2 + ( ( 1 / 10 ) + ( 1 / 12 ) ) ( x - 2 ) = 1 x = 4 hrs work started at 9 am.. takes 4 hrs to complete 9 am + 4 hrs = 1 : 00 pm answer : b
|
a ) 12 : 00 pm, b ) 1 : 00 pm, c ) 2 : 00 pm, d ) 3 : 00 pm, e ) 4 : 00 pm
|
b
|
dacă x și y sunt numere prime impare și x < y, câte numere întregi pozitive distincte are 2 xy?
|
soluția ar trebui să fie aceeași pentru toate numerele care îndeplinesc condiția de mai sus. deoarece x și y sunt numere prime impare, acestea trebuie să fie > 2. de asemenea, acestea trebuie să fie distincte deoarece x < y. aleg x = 3 și y = 5 : câte numere are 2 x 3 x 5 = 30 : 1, 2, 3, 5, 6, 10, 15, 30 = 8 numere întregi pozitive distincte. prin urmare, răspunsul corect este d.
|
a ) 3, b ) 4, c ) 6, d ) 8, e ) 12
|
d
|
dacă 3 pisici pot ucide 3 șobolani în 3 minute, cât timp va dura ca 100 de pisici să ucidă 100 de șobolani?
|
"va dura 3 minute pentru 100 de pisici să ucidă 100 de șobolani. 1 pisică poate ucide 1 șobolan în 3 minute, așa că 100 de pisici pot ucide 100 de șobolani în 3 minute răspuns c"
|
a ) 1 minute, b ) 2 minute, c ) 3 minute, d ) 4 minute, e ) 5 minute
|
c
|
ciocanele și cheile sunt fabricate la o greutate uniformă pe ciocan și o greutate uniformă pe cheie. dacă greutatea totală a două ciocane și trei chei este o treime din cea a 6 ciocane și 5 chei, atunci greutatea totală a unei chei este de câte ori cea a unui ciocan?
|
"x să fie greutatea unui ciocan și y să fie greutatea unei chei. ( 2 x + 3 y ) = 1 / 3 * ( 7 x + 5 y ) 3 ( 2 x + 3 y ) = ( 7 x + 5 y ) 6 x + 9 y = 7 x + 5 y 4 y = x y = x / 4 ans - a"
|
a ) 1 / 4, b ) 2 / 3, c ) 1, d ) 3 / 2, e ) 2
|
a
|
o anumită cantitate de soluție de 80 % este înlocuită cu soluție de 25 % astfel încât noua concentrație să fie 35 %. care este fracția de soluție care a fost înlocuită?
|
"să presupunem că amestecul original total a este 100 ml amestecul original a are astfel 50 ml de alcool din 100 ml de soluție vrei să înlocuiești o parte din acel amestec original a cu un alt amestec b care conține 25 ml de alcool per 100 ml. astfel, diferența dintre 80 ml și 25 ml este 55 ml per 100 ml de amestec. acest lucru înseamnă că de fiecare dată când înlocuiești 100 ml din amestecul original a cu 100 ml de amestec b, concentrația originală de alcool va scădea cu 25 %. întrebarea spune că noul amestec, să îl numim c, trebuie să fie 35 % alcool, o scădere de doar 45 %. prin urmare, 45 din 55 este 9 / 11 și e este răspunsul."
|
a ) 1 / 4, b ) 1 / 3, c ) 1 / 2, d ) 2 / 3, e ) 9 / 11
|
e
|
numărul de diagonale ale unui poligon cu n laturi este dat de formula c = n ( n - 3 ) / 2. dacă un poligon are de două ori mai multe diagonale decât laturi, câte laturi are?
|
c = n ( n - 3 ) c = 2 * n 2 n = n ( n - 3 ) = > 2 = n - 3 = > n = 5 răspuns b
|
a ) 3, b ) 5, c ) 6, d ) 7, e ) 8
|
b
|
5358 x 53 =?
|
"5358 x 51 = 5358 x ( 50 + 3 ) = 5358 x 50 + 5358 x 3 = 267900 + 16074 = 283974. c )"
|
a ) 272258, b ) 272358, c ) 283974, d ) 274258, e ) 274358
|
c
|
80 este mărit cu 50 %. găsește numărul final.
|
"numărul final = numărul inițial + 50 % ( numărul original ) = 80 + 50 % ( 80 ) = 80 + 40 = 120. răspuns c"
|
a ) 100, b ) 110, c ) 120, d ) 30, e ) 160
|
c
|
vârsta totală a lui a și b este cu 12 ani mai mare decât vârsta totală a lui b și c. c este cu câți ani mai tânăr decât a?
|
"( a + b ) - ( b + c ) = 12 a - c = 12 răspuns : a"
|
a ) 12, b ) 81, c ) 77, d ) 66, e ) 73
|
a
|
Într-o pungă sunt 2400 de mingi, iar culorile lor sunt roșu, verde și albastru. Raportul dintre mingi este 15 : 13 : 17. Câte mingi roșii sunt disponibile în pungă?
|
roșu : verde : albastru = 15 + 13 + 17 = 45; raportul dintre mingile roșii = 15 / 40 simplificat = 3 / 8 * 2400 = 900. răspuns = a
|
a ) 900, b ) 1600, c ) 750, d ) 890, e ) 1010
|
a
|
vârsta medie a 39 de elevi dintr-un grup este de 10 ani. când vârsta profesorului este inclusă în aceasta, media crește cu una. care este vârsta profesorului în ani?
|
"vârsta profesorului = ( 40 × 11 – 39 × 10 ) ani = 50 de ani. răspuns a"
|
a ) 50, b ) 55, c ) 60, d ) nu se poate determina, e ) niciuna dintre acestea
|
a
|
un aliaj trebuie să conțină cupru și zinc în raportul 9 : 4. zincul necesar pentru a fi topit cu 24 kg de cupru este?
|
"lăsați cantitatea necesară de cupru să fie x kg 9 : 4 : : 24 : x 9 x = 4 * 24 x = 10 2 / 3 kg = 32 / 3 = 10.7 kg răspunsul este c"
|
a ) 12 kg, b ) 8.3 kg, c ) 10.7 kg, d ) 15.5 kg, e ) 7 kg
|
c
|
două trenuri de lungimi egale durează 9 sec și 15 sec pentru a trece un stâlp de telegraf. dacă lungimea fiecărui tren este de 120 m, în cât timp se vor trece unul pe altul călătorind în direcții opuse?
|
"viteza primului tren = 120 / 9 = 13.3 m / sec. viteza celui de-al doilea tren = 120 / 15 = 8 m / sec. viteza relativă = 13.3 + 8 = 21.3 m / sec. timpul necesar = ( 120 + 120 ) / 21.3 = 11.3 sec. răspuns : opțiunea b"
|
a ) 10, b ) 11.3, c ) 13, d ) 14, e ) 15
|
b
|
trenurile a și b pornesc simultan din stații aflate la 350 de mile distanță și călătoresc pe aceeași rută spre fiecare dintre ele pe șine paralele adiacente. dacă trenul a și trenul b călătoresc cu o rată constantă de 40 de mile pe oră și 30 de mile pe oră, respectiv, câte mile va călători trenul a când trenurile trec unul pe lângă celălalt, la cea mai apropiată milă?
|
deoarece cunoaștem distanța ( 350 ) și rata combinată ( 70 ), o introducem în formulă : distanța = rata * timpul 350 = 70 * timpul putem rezolva timpul în care se vor întâlni deoarece am adăugat rata trenului a și a trenului b împreună. așa că timpul va fi 350 / 70 din împărțirea 70 pe ambele părți pentru a izola timpul în ecuația de mai sus. timpul va fi 5 ore acum puteți introduce asta pentru distanța trenului a. distanța = rata * timpul distanța = 40 * 5 distanța = 200 conform alegerii răspunsului e.
|
a ) 112, b ) 133, c ) 150, d ) 167, e ) 200
|
e
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.